WorldWideScience

Sample records for rattlesnake ridge aquifers

  1. An evaluation of aquifer intercommunication between the unconfined and Rattlesnake Ridge aquifers on the Hanford Site

    International Nuclear Information System (INIS)

    Jensen, E.J.

    1987-10-01

    During 1986, Pacific Northwest Laboratory conducted a study of a portion of the Rattlesnake Ridge aquifer (confined aquifer) that lies beneath the B Pond - Gable Mountain Pond area of the Hanford Site. The purpose was to determine the extent of intercommunication between the unconfined aquifer and the uppermost regionally extensive confined aquifer, referred to as the Rattlesnake Ridge aquifer. Hydraulic head data and chemical data were collected from the ground water in the study area during December 1986. The hydraulic head data were used to determine the effects caused by water discharged to the ground from B Pond on both the water table of the unconfined aquifer and the potentiometric surface of the confined aquifer. The chemical data were collected to determine the extent of chemical constituents migrating from the unconfined aquifer to the confined aquifer. Analysis of chemical constituents in the Rattlesnake Ridge aquifer demonstrated that communication between the unconfined and confined aquifers had occurred. However, the levels of contaminants found in the Rattlesnake Ridge aquifer during this study were below the DOE Derived Concentration Guides

  2. Hydrologic test results for the Rattlesnake Ridge interbed and Pomona basalt flow top at Borehole DB-15

    International Nuclear Information System (INIS)

    Strait, S.R.; Brown, W.R.

    1983-07-01

    This report presents results and description of hydrologic test activities for the Rattlesnake Ridge interbed and Pomona basalt flow top at Borehole DB-15. Hydrologic tests conducted include constant discharge air-lift and constant discharge submersible pumping tests. An observed hydraulic head for the test interval was 409 ± 1 feet above mean sea level. Transmissivity values determined from hydrologic tests performed, ranged between 493 and 469 ft 2 /day. The best estimate of transmissivity is 480 ft 2 /day. The best estimate of equivalent hydraulic conductivity, based on an effective test thickness of 56 feet is 8.6 ft/day. 4 refs., 7 figs., 2 tabs

  3. Groundwater quality in the Piedmont and Blue Ridge crystalline-rock aquifers, eastern United States

    Science.gov (United States)

    Lindsey, Bruce

    2017-12-07

    Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water (Burow and Belitz, 2014). The Piedmont and Blue Ridge crystalline-rock aquifers constitute one of the important areas being evaluated.

  4. Year End Progress Report on Rattlesnake Improvements

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yaqi [Idaho National Lab. (INL), Idaho Falls, ID (United States); DeHart, Mark David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gleicher, Frederick Nathan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ortensi, Javier [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schunert, Sebastian [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    Rattlesnake is a MOOSE-based radiation transport application developed at INL to support modern multi-physics simulations. At the beginning of the last year, Rattlesnake was able to perform steady-state, transient and eigenvalue calculations for the multigroup radiation transport equations. Various discretization schemes, including continuous finite element method (FEM) with discrete ordinates method (SN) and spherical harmonics expansion method (PN) for the self-adjoint angular flux (SAAF) formulation, continuous FEM (CFEM) with SN for the least square (LS) formulation, diffusion approximation with CFEM and discontinuous FEM (DFEM), have been implemented. A separate toolkit, YAKXS, for multigroup cross section management was developed to support Rattlesnake calculations with feedback both from changes in the field variables, such as fuel temperature, coolant density, and etc., and in isotope inventory. The framework for doing nonlinear diffusion acceleration (NDA) within Rattlesnake has been set up, and both NDA calculations with SAAF-SN-CFEM scheme and Monte Carlo with OpenMC have been performed. It was also used for coupling BISON and RELAP-7 for the full-core multiphysics simulations. Within the last fiscal year, significant improvements have been made in Rattlesnake. Rattlesnake development was migrated into our internal GITLAB development environment at the end of year 2014. Since then total 369 merge requests has been accepted into Rattlesnake. It is noted that the MOOSE framework that Rattlesnake is based on is under continuous developments. Improvements made in MOOSE can improve the Rattlesnake. It is acknowledged that MOOSE developers spent efforts on patching Rattlesnake for the improvements made on the framework side. This report will not cover the code restructuring for better readability and modularity and documentation improvements, which we have spent tremendous effort on. It only details some of improvements in the following sections.

  5. Prairie rattlesnake envenomation in 27 New World camelids.

    Science.gov (United States)

    Sonis, J M; Hackett, E S; Callan, R J; Holt, T N; Hackett, T B

    2013-01-01

    Morbidity and case fatality from rattlesnake envenomation is regionally specific because of variability in relative toxicity of the species of snake encountered. A previous report of rattlesnake envenomation in New World camelids (NWC) from the western coastal United States documented high case fatality rates and guarded prognosis for survival. To describe clinical findings, treatments, and outcome of NWC with prairie rattlesnake (Crotalus viridis viridis) envenomation in the Rocky Mountain region of the United States. Twenty-seven NWC admitted to the Colorado State University Veterinary Teaching Hospital for evaluation of acute rattlesnake envenomation between 1992 and 2012. Medical records of NWC evaluated for rattlesnake envenomation as coded by the attending clinician and identified by a database search were reviewed retrospectively. Month of admission, signalment, area of bite, clinical and clinicopathologic data, treatments, and outcome were recorded. Twenty-five llamas and 2 alpacas were admitted for envenomation. Llamas were overrepresented compared to hospital caseload. The face was the most common site of envenomation, observed in 96% of recorded cases. Presenting clinical signs included fever, tachypnea, tachycardia, and respiratory distress. Nine animals required a tracheotomy. Median hospitalization time was 3 days and overall survival rate was 69%. Case fatality rate for prairie rattlesnake envenomation in NWC was lower than that reported in the Western coastal region of the United States and similar to that reported for prairie rattlesnake envenomation in horses. Copyright © 2013 by the American College of Veterinary Internal Medicine.

  6. Preliminary Results for the OECD/NEA Time Dependent Benchmark using Rattlesnake, Rattlesnake-IQS and TDKENO

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, Mark D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mausolff, Zander [Univ. of Florida, Gainesville, FL (United States); Weems, Zach [Univ. of Florida, Gainesville, FL (United States); Popp, Dustin [Univ. of Florida, Gainesville, FL (United States); Smith, Kristin [Univ. of Florida, Gainesville, FL (United States); Shriver, Forrest [Univ. of Florida, Gainesville, FL (United States); Goluoglu, Sedat [Univ. of Florida, Gainesville, FL (United States); Prince, Zachary [Texas A & M Univ., College Station, TX (United States); Ragusa, Jean [Texas A & M Univ., College Station, TX (United States)

    2016-08-01

    One goal of the MAMMOTH M&S project is to validate the analysis capabilities within MAMMOTH. Historical data has shown limited value for validation of full three-dimensional (3D) multi-physics methods. Initial analysis considered the TREAT startup minimum critical core and one of the startup transient tests. At present, validation is focusing on measurements taken during the M8CAL test calibration series. These exercises will valuable in preliminary assessment of the ability of MAMMOTH to perform coupled multi-physics calculations; calculations performed to date are being used to validate the neutron transport solver Rattlesnake\\cite{Rattlesnake} and the fuels performance code BISON. Other validation projects outside of TREAT are available for single-physics benchmarking. Because the transient solution capability of Rattlesnake is one of the key attributes that makes it unique for TREAT transient simulations, validation of the transient solution of Rattlesnake using other time dependent kinetics benchmarks has considerable value. The Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD) has recently developed a computational benchmark for transient simulations. This benchmark considered both two-dimensional (2D) and 3D configurations for a total number of 26 different transients. All are negative reactivity insertions, typically returning to the critical state after some time.

  7. Savage Island Project borehole completion report

    International Nuclear Information System (INIS)

    Chamness, M.A.; Gilmore, T.J.; Teel, S.S.

    1993-02-01

    This report discusses three wells which were drilled in 1990 and 1991 in support of Pacific Northwest Laboratory's Ground-Water surveillance Project. These wells were intended to monitor the Rattlesnake Ridge interbed aquifer and the deeper portion of the unconfined aquifer to determine whether ground-water contamination emanating from the Hanford Site was migrating offsite through these aquifers. This report discusses well construction, lithologies encountered, and other data collected during drilling. At least three reports have been or are being prepared to discuss the results of this well monitoring project

  8. Preliminary Results for the OECD/NEA Time Dependent Benchmark using Rattlesnake, Rattlesnake-IQS and TDKENO

    International Nuclear Information System (INIS)

    DeHart, Mark D.; Mausolff, Zander; Weems, Zach; Popp, Dustin; Smith, Kristin; Shriver, Forrest; Goluoglu, Sedat; Prince, Zachary; Ragusa, Jean

    2016-01-01

    One goal of the MAMMOTH M&S project is to validate the analysis capabilities within MAMMOTH. Historical data has shown limited value for validation of full three-dimensional (3D) multi-physics methods. Initial analysis considered the TREAT startup minimum critical core and one of the startup transient tests. At present, validation is focusing on measurements taken during the M8CAL test calibration series. These exercises will valuable in preliminary assessment of the ability of MAMMOTH to perform coupled multi-physics calculations; calculations performed to date are being used to validate the neutron transport solver Rattlesnake\\citelesnake) and the fuels performance code BISON. Other validation projects outside of TREAT are available for single-physics benchmarking. Because the transient solution capability of Rattlesnake is one of the key attributes that makes it unique for TREAT transient simulations, validation of the transient solution of Rattlesnake using other time dependent kinetics benchmarks has considerable value. The Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD) has recently developed a computational benchmark for transient simulations. This benchmark considered both two-dimensional (2D) and 3D configurations for a total number of 26 different transients. All are negative reactivity insertions, typically returning to the critical state after some time.

  9. Rattlesnake envenomation in 12 New World camelids.

    Science.gov (United States)

    Dykgraaf, Susanne; Pusterla, Nicola; Van Hoogmoed, Linda M

    2006-01-01

    Rattlesnake envenomation of New World camelids is a seasonal problem with often dramatic clinical signs. The purpose of this study was to identify the clinical signs, laboratory results, treatment methods, and outcome for rattlesnake envenomation in New World camelids. Medical records from 1988 to 2004 were searched for New World camelids presented for rattlesnake bite or clinical signs suspected to be related to recent envenomation. Twelve records were identified. From these records a retrospective study was performed. Nine camelids presented for acute disease (2/9 arrived dead), whereas 3 presented for subacute onset of disease. Swelling of the lips, head and neck, tachypnea, dyspnea, tachycardia, and lethargy were the most common presenting signs. Snake bites were most commonly located to the muzzle (10/12). Common complete blood count (CBC) and serum biochemical abnormalities were neutrophilia, lymphopenia, increased muscle enzyme activity, hypoalbuminemia, hyperglycemia, hypokalemia, and thrombocytopenia. Treatment included combinations of intravenous fluid therapy, antimicrobials, anti-inflammatory drugs, tetanus prophylaxis, tracheostomy, supplemental oxygen, antivenom, total parenteral nutrition, and nursing care. Five of the 10 animals with acute onset of clinical signs survived, and all animals with subacute presentation died. The mortality rate for New World camelids with severe local tissue reaction and systemic signs of envenomation was 58%. New World camelids that sustain rattlesnake envenomation and severe facial swelling precluding prehension and mastication have a guarded prognosis for survival. Aggressive treatment is recommended to optimize the chances of survival. Animals with less severe local tissue reaction and absence of systemic signs have a better prognosis.

  10. Daily and seasonal activity patterns of free range South-American rattlesnake (Crotalus durissus).

    Science.gov (United States)

    Tozetti, Alexandro M; Martins, Marcio

    2013-09-01

    This study aimed at describing daily and seasonal variation in the activity of a population of South-American rattlesnakes (Crotalus durissus) in a savanna like habitat (Cerrado) in Southeastern Brazil. Seasonal and daily activities of snakes were evaluated by the number of captures of snakes during road surveys, accidental encounters, and relocations by radio-tracking. Our results show that climatic variables such as air temperature and rainfall have little influence on the activity pattern of rattlesnakes. Our findings indicate that rattlesnakes spend most of the day resting and most of the night in ambush posture. The South-American rattlesnake is active throughout the year with a discrete peak in activity of males during the matting season. The possibility of maintaining activity levels even during the coldest and driest season can facilitate the colonization of several habitats in South America. This possibility currently facilitates the colonization of deforested areas by rattlesnakes.

  11. Daily and seasonal activity patterns of free range South-American rattlesnake (Crotalus durissus

    Directory of Open Access Journals (Sweden)

    ALEXANDRO M. TOZETTI

    2013-09-01

    Full Text Available This study aimed at describing daily and seasonal variation in the activity of a population of South-American rattlesnakes (Crotalus durissus in a savanna like habitat (Cerrado in Southeastern Brazil. Seasonal and daily activities of snakes were evaluated by the number of captures of snakes during road surveys, accidental encounters, and relocations by radio-tracking. Our results show that climatic variables such as air temperature and rainfall have little influence on the activity pattern of rattlesnakes. Our findings indicate that rattlesnakes spend most of the day resting and most of the night in ambush posture. The South-American rattlesnake is active throughout the year with a discrete peak in activity of males during the matting season. The possibility of maintaining activity levels even during the coldest and driest season can facilitate the colonization of several habitats in South America. This possibility currently facilitates the colonization of deforested areas by rattlesnakes.

  12. Minimum area thresholds for rattlesnakes and colubrid snakes on islands in the Gulf of California, Mexico.

    Science.gov (United States)

    Meik, Jesse M; Makowsky, Robert

    2018-01-01

    We expand a framework for estimating minimum area thresholds to elaborate biogeographic patterns between two groups of snakes (rattlesnakes and colubrid snakes) on islands in the western Gulf of California, Mexico. The minimum area thresholds for supporting single species versus coexistence of two or more species relate to hypotheses of the relative importance of energetic efficiency and competitive interactions within groups, respectively. We used ordinal logistic regression probability functions to estimate minimum area thresholds after evaluating the influence of island area, isolation, and age on rattlesnake and colubrid occupancy patterns across 83 islands. Minimum area thresholds for islands supporting one species were nearly identical for rattlesnakes and colubrids (~1.7 km 2 ), suggesting that selective tradeoffs for distinctive life history traits between rattlesnakes and colubrids did not result in any clear advantage of one life history strategy over the other on islands. However, the minimum area threshold for supporting two or more species of rattlesnakes (37.1 km 2 ) was over five times greater than it was for supporting two or more species of colubrids (6.7 km 2 ). The great differences between rattlesnakes and colubrids in minimum area required to support more than one species imply that for islands in the Gulf of California relative extinction risks are higher for coexistence of multiple species of rattlesnakes and that competition within and between species of rattlesnakes is likely much more intense than it is within and between species of colubrids.

  13. Characterization of ten microsatellite loci in midget faded rattlesnake (Crotalus oreganus concolor)

    Science.gov (United States)

    Oyler-McCance, Sara J.; Parker, Joshua M.

    2010-01-01

    Primers for 10 microsatellite loci were developed for midget faded rattlesnake (Crotalus oreganus concolor), a small bodied subspecies of the Western Rattlesnake, which is found in the Colorado Plateau of eastern Utah, western Colorado and southwestern Wyoming. In a screen of 23 individuals from the most northern portion of the subspecies range in southwestern Wyoming, the 10 loci were found to have levels of variability ranging from 4 to 11 alleles. No loci were found to be linked, although one locus revealed significant departures from Hardy–Weinberg equilibrium. These microsatellite loci will be applicable for population genetic analyses, which will ultimately aid in management efforts for this rare subspecies of rattlesnake.

  14. Body size evolution in insular speckled rattlesnakes (Viperidae: Crotalus mitchellii.

    Directory of Open Access Journals (Sweden)

    Jesse M Meik

    2010-03-01

    Full Text Available Speckled rattlesnakes (Crotalus mitchellii inhabit multiple islands off the coast of Baja California, Mexico. Two of the 14 known insular populations have been recognized as subspecies based primarily on body size divergence from putative mainland ancestral populations; however, a survey of body size variation from other islands occupied by these snakes has not been previously reported. We examined body size variation between island and mainland speckled rattlesnakes, and the relationship between body size and various island physical variables among 12 island populations. We also examined relative head size among giant, dwarfed, and mainland speckled rattlesnakes to determine whether allometric differences conformed to predictions of gape size (and indirectly body size evolving in response to shifts in prey size.Insular speckled rattlesnakes show considerable variation in body size when compared to mainland source subspecies. In addition to previously known instances of gigantism on Angel de la Guarda and dwarfism on El Muerto, various degrees of body size decrease have occurred frequently in this taxon, with dwarfed rattlesnakes occurring mostly on small, recently isolated, land-bridge islands. Regression models using the Akaike information criterion (AIC showed that mean SVL of insular populations was most strongly correlated with island area, suggesting the influence of selection for different body size optima for islands of different size. Allometric differences in head size of giant and dwarf rattlesnakes revealed patterns consistent with shifts to larger and smaller prey, respectively.Our data provide the first example of a clear relationship between body size and island area in a squamate reptile species; among vertebrates this pattern has been previously documented in few insular mammals. This finding suggests that selection for body size is influenced by changes in community dynamics that are related to graded differences in area over

  15. Physiological importance of the coronary arterial blood supply to the rattlesnake heart

    DEFF Research Database (Denmark)

    Hagensen, Mette; Abe, Augusto S.; Falk, Erling

    2008-01-01

    Pa and 58.2±2.2 beats min-1, respectively, during activity and the ECG was not affected. This was not different from sham-operated snakes. Thus, while the outer compact layer of the rattlesnake heart clearly has an extensive coronary supply, rattlesnakes sustain a high blood pressure and heart rate during...

  16. Hydraulic contacts identification in the aquifers of limestone ridges: tracer tests in the Montelago pilot area (Central Apennines

    Directory of Open Access Journals (Sweden)

    Alberto Tazioli

    2016-08-01

    Full Text Available The investigated area, located in the inner part of the Marche region (central Italy and belonging to the carbonate Umbria- Marche ridges in the central Apennines, is characterised by very complex geo-structural setting and widespread karst phenomena that make difficult the definition of the relation among the aquifers basing only on the hydrogeological survey. Hence, the presence of different flowpaths among aquifers of the Umbria-Marche hydrostratigraphic sequence and of tectonic contacts among the different structures is verified using tracer tests. In particular, the tests showed that the Calcare Massiccio and the Maiolica aquifers are connected under certain tectonic conditions. A new tracer given by a single stranded DNA molecule and traditional fluorescent dyes have been injected into the Montelago sinkhole in different periods (during the recharge and during the discharge and recovered in several points along the expected hydrogeological basin, using either manual and automatic sampling. Fluorescent traps were positioned in creeks, rivers and springs. The DNA molecule is useful to trace surface water and groundwater, is detectable even at very low concentrations, no significant change in water density and viscosity can be observed and its use is not dangerous for the environment. The results stress the suitability of DNA as hydrogeological tracer, capable to identify connections among aquifers and study different flowpaths even in high flow conditions when traditional tracers are more and more diluted. Moreover, fluorescein tracer allowed for the transport parameter determination, giving mean velocities ranging from 100 to 3000 m/day and mean residence time from some tens to hundreds of hours, and determining the aquifer volumes.

  17. Complete Bouguer gravity and aeromagnetic maps of the Rattlesnake Roadless Area, Missoula County, Montana

    Science.gov (United States)

    Kulik, Dolores M.

    1986-01-01

    The Rattlesnake Roadless Area was identified by the U.S. Forest Service as a possible addition to the Wilderness System.  This 120 square mile area is north of Missoula, Mont. (see index map); Rattlesnake Creek forms the major drainage to the south.

  18. Preliminary analysis of some waters from the confined aquifers underlying the Hanford site

    International Nuclear Information System (INIS)

    Deju, R.A.

    1978-09-01

    This report presents results of analyses available at this time from waters from some wells sampled in or near the Hanford Site. The analyses of these wells were done for various purposes and are consolidated to help define the nature of the waters found within the Columbia Plateau basaltic sequence. Results of the analyses show the waters from the unconfined aquifers underlying the Hanford Site are characterized by a high calcium--magnesium content. These waters can be described as calcium--magnesium--bicarbonate-type. Waters from deeper basaltic confined aquifers are primarily of the sodium bicarbonate type. Two waters sampled from the Grande Ronde Formation from Rattlesnake Hills Exploratory Well Number 1 are slightly different and can be described as sodium--calcium--bicarbonate--sulfate--chloride-type. Age-dating results for these water samples lead to the conclusions that waters from the confined aquifers were entrapped 15,000 to 23,000 years ago

  19. Spatial ecology of timber rattlesnakes on the hardwood ecosystem experiment: pre-treatment results

    Science.gov (United States)

    Brian J. MacGowan; Zachary J. Walker

    2013-01-01

    The timber rattlesnake (Crotalus horridus) is a species of conservation concern throughout much of its geographic range and may serve as a sentinel species in investigations of the effects of timber harvesting on forest reptiles. Our objective was to determine the effect of even-aged timber management regimes on timber rattlesnake home range and...

  20. Contaminant transport model validation: The Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Lee, R.R.; Ketelle, R.H.

    1988-09-01

    In the complex geologic setting on the Oak Ridge Reservation, hydraulic conductivity is anisotropic and flow is strongly influenced by an extensive and largely discontinuous fracture network. Difficulties in describing and modeling the aquifer system prompted a study to obtain aquifer property data to be used in a groundwater flow model validation experiment. Characterization studies included the performance of an extensive suite of aquifer test within a 600-square-meter area to obtain aquifer property values to describe the flow field in detail. Following aquifer test, a groundwater tracer test was performed under ambient conditions to verify the aquifer analysis. Tracer migration data in the near-field were used in model calibration to predict tracer arrival time and concentration in the far-field. Despite the extensive aquifer testing, initial modeling inaccurately predicted tracer migration direction. Initial tracer migration rates were consistent with those predicted by the model; however, changing environmental conditions resulted in an unanticipated decay in tracer movement. Evaluation of the predictive accuracy of groundwater flow and contaminant transport models on the Oak Ridge Reservation depends on defining the resolution required, followed by field testing and model grid definition at compatible scales. The use of tracer tests, both as a characterization method and to verify model results, provides the highest level of resolution of groundwater flow characteristics. 3 refs., 4 figs

  1. A study of bacterial contamination of rattlesnake venom

    Directory of Open Access Journals (Sweden)

    E. Garcia-Lima

    1987-03-01

    Full Text Available The authors studied the bacterial contamination of rattlesnake venom isolated from snakes in captivity and wild snakes caught recently. The captive snakes showed a relatively high incidence of bacterial contamination of their venom.

  2. Geomorphic Controls on Aquifer Geometry in Northwestern India

    Science.gov (United States)

    van Dijk, W. M.; Densmore, A. L.; Sinha, R.; Gupta, S.; Mason, P. J.; Singh, A.; Joshi, S. K.; Nayak, N.; Kumar, M.; Shekhar, S.

    2014-12-01

    The Indo-Gangetic foreland basin suffers from one of the highest rates of groundwater extraction in the world, especially in the Indian states of Punjab, Haryana and Rajasthan. To understand the effects of this extraction on ground water levels, we must first understand the geometry and sedimentary architecture of the aquifer system, which in turn depend upon its geomorphic setting. We use satellite images and digital elevation models to map the geomorphology of the Sutlej and Yamuna river systems, while aquifer geometry is assessed using ~250 wells that extend to ~300 m depth in Punjab and Haryana. The Sutlej and Yamuna rivers have deposited large sedimentary fans at their outlets. Elongate downslope ridges on the fan surfaces form distributary networks that radiate from the Sutlej and Yamuna fan apices, and we interpret these ridges as paleochannel deposits associated with discrete fan lobes. Paleochannels picked out by soil moisture variations illustrate a complex late Quaternary history of channel avulsion and incision, probably associated with variations in monsoon intensity. Aquifer bodies on the Sutlej and Yamuna fans have a median thickness of 7 and 6 m, respectively, and follow a heavy-tailed distribution, probably because of stacked sand bodies. The percentage of aquifer material in individual lithologs decreases downstream, although the exponent on the thickness distribution remains the same, indicating that aquifer bodies decrease in number down fan but do not thin appreciably. Critically, the interfan area between the Sutlej and Yamuna fans has thinner aquifers and a lower proportion of aquifer material, despite its proximal location. Our data show that the Sutlej and Yamuna fan systems form the major aquifer systems in this area, and that their geomorphic setting therefore provides a first-order control on aquifer distribution and geometry. The large spatial heterogeneity of the system must be considered in any future aquifer management scheme.

  3. Delineating the Rattlesnake Springs, New Mexico Watershed Using Precision Gravity Techniques

    Science.gov (United States)

    Doser, D. I.; Boykov, N. D.; Baker, M. R.; Kaip, G. M.; Langford, R. P.

    2009-12-01

    Rattlesnake Springs serves as the sole domestic water source for Carlsbad Caverns National Park. The recent development of oil and gas leases and agricultural lands surrounding the springs has led to concern about contamination of the fracture controlled aquifer system. We have conducted a series of precision gravity surveys (station spacing 200 to 300 m in a 4 x 4 km area), combined with other geophysical studies and geologic mapping, to delineate possible fracture systems in the gypsum and carbonate bedrock that feed the spring system. Our combined results suggest several pathways for water to enter the springs. A series of WNW-ESE striking features are apparent in our gravity data that appear to align with relict spring valleys we have mapped to the west of the springs. A self potential survey indicates that water is entering the springs at a shallow level from the northwest direction. However, gravity data also indicate a north-south trending fracture system could be providing a pathway for water to enter from the south. This is consistent with drawdown tests conducted in the 1950’s and 1960’s on irrigation wells located to the south of the springs. The north-south fracture system appears related to a basin bounding fault system observed in the regional gravity data.

  4. Effects of the canine rattlesnake vaccine in moderate to severe cases of canine crotalid envenomation

    Directory of Open Access Journals (Sweden)

    Leonard MJ

    2014-10-01

    Full Text Available McGee J Leonard,1 Catherine Bresee,2 Andrew Cruikshank1 1Animal Specialty and Emergency Center, Los Angeles, CA, USA; 2The Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA Abstract: This is a retrospective multicenter study (2006–2012 examining a population of dogs with moderate to severe crotalid envenomation for protective effects of the canine rattlesnake vaccine. Five nonacademic emergency and referral veterinary hospitals in Southern California were involved in the study and contributed records regarding a total of 82 client-owned dogs that were treated for naturally occurring rattlesnake envenomation. All dogs received antivenin (Crotalidae polyvalent, with dosages ranging from one to three vials (mean: 1.3±0.6. Fourteen dogs (17% had a history of prior vaccination against crotalid venom. In univariate logistic regression modeling, cases with lower body weight (P=0.0001 or higher snakebite severity scores (P<0.0001 were associated with greater morbidity. No statistically significant difference in morbidity or mortality between vaccinated and unvaccinated dogs was found. The findings of this study did not identify a significantly protective effect of previous vaccination in the cases of moderate to severe rattlesnake envenomation that require treatment with antivenin. Keywords: rattlesnake envenomation, vaccine, antivenin, canine

  5. Integrated numerical modeling for basin-wide water management: The case of the Rattlesnake Creek basin in south-central Kansas

    Science.gov (United States)

    Sophocleous, M.A.; Koelliker, J.K.; Govindaraju, R.S.; Birdie, T.; Ramireddygari, S.R.; Perkins, S.P.

    1999-01-01

    The objective of this article is to develop and implement a comprehensive computer model that is capable of simulating the surface-water, ground-water, and stream-aquifer interactions on a continuous basis for the Rattlesnake Creek basin in south-central Kansas. The model is to be used as a tool for evaluating long-term water-management strategies. The agriculturally-based watershed model SWAT and the ground-water model MODFLOW with stream-aquifer interaction routines, suitably modified, were linked into a comprehensive basin model known as SWATMOD. The hydrologic response unit concept was implemented to overcome the quasi-lumped nature of SWAT and represent the heterogeneity within each subbasin of the basin model. A graphical user-interface and a decision support system were also developed to evaluate scenarios involving manipulation of water fights and agricultural land uses on stream-aquifer system response. An extensive sensitivity analysis on model parameters was conducted, and model limitations and parameter uncertainties were emphasized. A combination of trial-and-error and inverse modeling techniques were employed to calibrate the model against multiple calibration targets of measured ground-water levels, streamflows, and reported irrigation amounts. The split-sample technique was employed for corroborating the calibrated model. The model was run for a 40 y historical simulation period, and a 40 y prediction period. A number of hypothetical management scenarios involving reductions and variations in withdrawal rates and patterns were simulated. The SWATMOD model was developed as a hydrologically rational low-flow model for analyzing, in a user-friendly manner, the conditions in the basin when there is a shortage of water.

  6. Environmental Assessment for Atlantic White Cedar Restoration Project at Dare County Range, Seymour Johnson Air Force Base, North Carolina

    Science.gov (United States)

    2014-12-23

    rattlesnakes inhabit forested areas, and in the mountains, they will often hibernate together in large numbers (Davidson Herpetology , 2013). Timber...YorktownAquiferVol1-Missimer1992.pdf Davidson Herpetology . (2013). Timber Rattlesnake (Crotalus horridus). Retrieved November 19, 2013, from http

  7. The coupling of the neutron transport application RATTLESNAKE to the nuclear fuels performance application BISON under the MOOSE framework

    Energy Technology Data Exchange (ETDEWEB)

    Gleicher, Frederick N.; Williamson, Richard L.; Ortensi, Javier; Wang, Yaqi; Spencer, Benjamin W.; Novascone, Stephen R.; Hales, Jason D.; Martineau, Richard C.

    2014-10-01

    The MOOSE neutron transport application RATTLESNAKE was coupled to the fuels performance application BISON to provide a higher fidelity tool for fuel performance simulation. This project is motivated by the desire to couple a high fidelity core analysis program (based on the self-adjoint angular flux equations) to a high fidelity fuel performance program, both of which can simulate on unstructured meshes. RATTLESNAKE solves self-adjoint angular flux transport equation and provides a sub-pin level resolution of the multigroup neutron flux with resonance treatment during burnup or a fast transient. BISON solves the coupled thermomechanical equations for the fuel on a sub-millimeter scale. Both applications are able to solve their respective systems on aligned and unaligned unstructured finite element meshes. The power density and local burnup was transferred from RATTLESNAKE to BISON with the MOOSE Multiapp transfer system. Multiple depletion cases were run with one-way data transfer from RATTLESNAKE to BISON. The eigenvalues are shown to agree well with values obtained from the lattice physics code DRAGON. The one-way data transfer of power density is shown to agree with the power density obtained from an internal Lassman-style model in BISON.

  8. Responses of timber rattlesnakes to fire: Lessons from two prescribed burns

    Science.gov (United States)

    Steven J. Beaupre; Lara E. Douglas

    2012-01-01

    Timber rattlesnakes (Crotalus horridus) are excellent model organisms for understanding the effects of large scale habitat manipulations because of their low-energy lifestyle, rapid response to changes in resource environment, uniform diet (small mammals), and simple behaviors. We present two case studies that illustrate interactions between timber...

  9. Numerical simulation of earth fissures caused by overly aquifer exploitation at Guangming Village, China

    Science.gov (United States)

    Ye, S.; Franceschini, A.; Zhang, Y.; Janna, C.; Gong, X.; Yu, J.; Teatini, P.

    2017-12-01

    Earth fissures accompanying anthropogenic land subsidence due to overly aquifer exploitation create significant geohazards in China. In the framework of an efficient and safe management of groundwater, numerical models represent a unique scientific approach to predict the generation and development of earth fissures. However, the common geomechanical simulators fail to reproduce fissure development because, due to compatibility conditions, they cannot be effectively applied in discontinuous mechanics. We present an innovative modelling approach for the simulation of fissure development. Firstly, a regional 3D groundwater model is calibrated on available piezometric records; secondly, the regional outcome is used to define the boundary conditions of a local 3D groundwater model developed at the fissure scale and implementing a refined discretization of the local hydrogeologic setting; finally, the pressure change are used as forcing factor in a local 3D geomechanical model, which combines Finite Elements and Interface Elements to simulate the deformation of the continuous aquifer system and the generation and sliding/opening of earth fissures The approach has been applied to simulate the earth fissure at Guangming Village in Wuxi, China with land subsidence of more than 1 m caused by the overexploitation of the second confined aquifer. The first earth fissure was observed in 1998. It developed fast from 1998 to 2007. The domain addressed by the local simulations is 2 km wide and 5 km long. The thickness of the aquifer system ranges from 0 m, in the proximity of a mountain ridge southward, to 210 m northward and includes a phreatic aquifer, the first and second confined aquifers, and four aquitards. The simulations spanned the period from 1980, i.e. before the inception of large groundwater withdrawals, to 2015. The modelling results highlight that the earth fissures at Guangming Village have been caused by tension and shear, which developed from the land surface

  10. Isolation and characterization of two disintegrins inhibiting ADP-induced human platelet aggregation from the venom of Crotalus scutulatus scutulatus (Mohave Rattlesnake)

    International Nuclear Information System (INIS)

    Sanchez, Elda E.; Galan, Jacob A.; Russell, William K.; Soto, Julio G.; Russell, David H.; Perez, John C.

    2006-01-01

    Disintegrins and disintegrin-like proteins are molecules found in the venom of four snake families (Atractaspididae, Elapidae, Viperidae, and Colubridae). The disintegrins are nonenzymatic proteins that inhibit cell-cell interactions, cell-matrix interactions, and signal transduction, and may have potential in the treatment of strokes, heart attacks, cancers, and osteoporosis. Prior to 1983, the venom of Crotalus scutulatus scutulatus (Mohave Rattlesnake) was known to be only neurotoxic; however, now there is evidence that these snakes can contain venom with: (1) neurotoxins; (2) hemorrhagins; and (3) both neurotoxins and hemorrhagins. In this study, two disintegrins, mojastin 1 and mojastin 2, from the venom of a Mohave rattlesnake collected in central Arizona (Pinal County), were isolated and characterized. The disintegrins in these venoms were identified by mass-analyzed laser desorption ionization/time-of-flight/time-of-flight (MALDI/TOF/TOF) mass spectrometry as having masses of 7.436 and 7.636 kDa. Their amino acid sequences are similar to crotratroxin, a disintegrin isolated from the venom of the western diamondback rattlesnake (C. atrox). The amino acid sequence of mojastin 1 was identical to the amino acid sequence of a disintegrin isolated from the venom of the Timber rattlesnake (C. horridus). The disintegrins from the Mohave rattlesnake venom were able to inhibit ADP-induced platelet aggregation in whole human blood both having IC 5 s of 13.8 nM, but were not effective in inhibiting the binding of human urinary bladder carcinoma cells (T24) to fibronectin

  11. Roads, interrupted dispersal, and genetic diversity in timber rattlesnakes.

    Science.gov (United States)

    Clark, Rulon W; Brown, William S; Stechert, Randy; Zamudio, Kelly R

    2010-08-01

    Anthropogenic habitat modification often creates barriers to animal movement, transforming formerly contiguous habitat into a patchwork of habitat islands with low connectivity. Roadways are a feature of most landscapes that can act as barriers or filters to migration among local populations. Even small and recently constructed roads can have a significant impact on population genetic structure of some species, but not others. We developed a research approach that combines fine-scale molecular genetics with behavioral and ecological data to understand the impacts of roads on population structure and connectivity. We used microsatellite markers to characterize genetic variation within and among populations of timber rattlesnakes (Crotalus horridus) occupying communal hibernacula (dens) in regions bisected by roadways. We examined the impact of roads on seasonal migration, genetic diversity, and gene flow among populations. Snakes in hibernacula isolated by roads had significantly lower genetic diversity and higher genetic differentiation than snakes in hibernacula in contiguous habitat. Genetic-assignment analyses revealed that interruption to seasonal migration was the mechanism underlying these patterns. Our results underscore the sizeable impact of roads on this species, despite their relatively recent construction at our study sites (7 to 10 generations of rattlesnakes), the utility of population genetics for studies of road ecology, and the need for mitigating effects of roads.

  12. Gross and histologic features of gastritis due to Ophidascaris arndti in tropical rattlesnakes ( Crotalus durissus

    Directory of Open Access Journals (Sweden)

    É.M. Mello

    Full Text Available ABSTRACT The tropical rattlesnake (Crotalus durissus is a snake of great importance for biomedical industry since its poison is used for the production of antiophidic serum and researches. Several conditions related to animal health, such as diseases and parasites, which can promote the reduction of poison production by these snakes should be investigated. Accordingly, the aim of this study was to characterize the gross and microscopic lesions related to the presence of Ophidascaris arndti in stomachs of tropical rattlesnakes. The gastrointestinal tract of thirty-five South American rattlesnakes captured in Southeastern region of Brazil were analyzed and nineteen animals showed infestation by the parasites, found in the small intestine and, especially, in the stomach of the hosts. Grossly, lesions were characterized by mucosal ulcers occasionally associated with hemorrhage. Microscopic alterations included histiocytic granulomas, fibrosis, necrosis, and hemorrhage. Based on these findings, the diagnosis of a parasitic granulomatous disease was made. The lesions may be related to the cause of death in captivity snakes, since the lesions can promote secondary infections by opportunistic bacteria. Moreover, the intense inflammatory response accompanied by fibrosis may be related to poor functioning of the gastric snakes, which it may exhibit frequent regurgitation of the food.

  13. A study of bacterial contamination of rattlesnake venom

    Directory of Open Access Journals (Sweden)

    E. Garcia-Lima

    1987-03-01

    Full Text Available The authors studied the bacterial contamination of rattlesnake venom isolated from snakes in captivity and wild snakes caught recently. The captive snakes showed a relatively high incidence of bacterial contamination of their venom.Os autores estudaram a contaminação bacteriana do veneno dë cascavéis mantidas em cativeiro e das recentemente capturadas. Verificaram que os venenos dos animais cativos apresentaram alta incidência de contaminação e os tidos como recentemente capturados estavam com baixa contaminação aparente.

  14. Assessing the influence of mechanical ventilation on blood gases and blood pressure in rattlesnakes

    DEFF Research Database (Denmark)

    Bertelsen, Mads Frost; Buchanan, Rasmus; Jensen, Heidi Meldgaard

    2014-01-01

    OBJECTIVE: To characterize the impact of mechanical positive pressure ventilation on heart rate (HR), arterial blood pressure, blood gases, lactate, glucose, sodium, potassium and calcium concentrations in rattlesnakes during anesthesia and the subsequent recovery period. STUDY DESIGN: Prospectiv...

  15. The impact of roads on the timber rattlesnake (Crotalus horridus) in eastern Texas

    Science.gov (United States)

    D. Craig Rudolph; Shirley J. Burgdorf; Richard N. Conner; James G. Dickson

    1998-01-01

    Roads and associated vehicular traffic have the potential to significantly impact vertebrate populations. In eastern Texas we compared the densities of paved and unpaved roads within 2 and 4 km radii of timber rattlesnake (Crotalus horridus) ocations and of random points. Road networks were significantly more dense at random points than at snake...

  16. Assess Current and Potential Salmonid Production in Rattlesnake Creek Associated with Restoration Efforts; US Geological Survey Reports, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J. (US Geological Survey, Columbia River Research Laboratory, Western Fisheries Research Center, Cook, WA)

    2003-12-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attend to three main objectives of the Rattlesnake Creek project. The first is to characterize stream and riparian habitat conditions. This effort includes measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective is to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective is to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the second year of at least a three-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

  17. Electrical resistivity characterization of anisotropy in the Biscayne Aquifer.

    Science.gov (United States)

    Yeboah-Forson, Albert; Whitman, Dean

    2014-01-01

    Electrical anisotropy occurs when electric current flow varies with azimuth. In porous media, this may correspond to anisotropy in the hydraulic conductivity resulting from sedimentary fabric, fractures, or dissolution. In this study, a 28-electrode resistivity imaging system was used to investigate electrical anisotropy at 13 sites in the Biscayne Aquifer of SE Florida using the rotated square array method. The measured coefficient of electrical anisotropy generally ranged from 1.01 to 1.12 with values as high as 1.36 found at one site. The observed electrical anisotropy was used to estimate hydraulic anisotropy (ratio of maximum to minimum hydraulic conductivity) which ranged from 1.18 to 2.83. The largest values generally were located on the Atlantic Coastal Ridge while the lowest values were in low elevation areas on the margin of the Everglades to the west. The higher values of anisotropy found on the ridge may be due to increased dissolution rates of the oolitic facies of the Miami formation limestone compared with the bryozoan facies to the west. The predominate trend of minimum resistivity and maximum hydraulic conductivity was E-W/SE-NW beneath the ridge and E-W/SW-NE farther west. The anisotropy directions are similar to the predevelopment groundwater flow direction as indicated in published studies. This suggests that the observed anisotropy is related to the paleo-groundwater flow in the Biscayne Aquifer. © 2013, National Ground Water Association.

  18. Draft Genome Sequence of Clostridium mangenotii TR, Isolated from the Fecal Material of a Timber Rattlesnake

    Science.gov (United States)

    Cochran, Philip A.; Dowd, Scot E.; Andersen, Kylie; Anderson, Nichole; Brennan, Rachel; Brook, Nicole; Callaway, Tracie; Diamante, Kimberly; Duberstine, Annie; Fitch, Karla; Freiheit, Heidi; Godlewski, Chantel; Gorman, Kelly; Haubrich, Mark; Hernandez, Mercedes; Hirtreiter, Amber; Ivanoski, Beth; Jaminet, Xochitl; Kirkpatrick, Travis; Kratowicz, Jennifer; Latus, Casey; Leable, Tiegen; Lingafelt, Nicole; Lowe, DeAnna; Lowrance, Holly; Malsack, Latiffa; Mazurkiewicz, Julie; Merlos, Persida; Messley, Jamie; Montemurro, Dawn; Nakitare, Samora; Nelson, Christine; Nye, Amber; Pazera, Valerie; Pierangeli, Gina; Rellora, Ashley; Reyes, Angelica; Roberts, Jennifer; Robins, Shadara; Robinson, Jeshannah; Schultz, Alissa; Seifert, Sara; Sigler, Elona; Spangler, Julie; Swift, Ebony; TenCate, Rebecca; Thurber, Jessica; Vallee, Kristin; Wamboldt, Jennifer; Whitten, Shannon; Woods, De’andrea; Wright, Amanda; Yankunas, Darin

    2014-01-01

    Here, we report the draft genome sequence of Clostridium mangenotii strain TR, which was isolated from the fecal material of a timber rattlesnake. This bacterium is nonpathogenic but contains 68 genes involved in virulence, disease, and defense. PMID:24407632

  19. Assess Current and Potential Salmonid Production in Rattlesnake Creek in Association with Restoration Efforts, US Geological Survey Report, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Allen, M. Brady; Connolly, Patrick J.; Jezorek, Ian G. (US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA)

    2006-06-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attended to three main objectives of the Rattlesnake Creek project. The first objective was to characterize stream and riparian habitat conditions. This effort included measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective was to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective was to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the fourth year of a five-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

  20. Assess Current and Potential Salmonid Production in Rattlesnake Creek in Association with Restoration Effors; US Geological Survey Reports, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Allen, M. Brady; Connolly, Patrick J.; Munz, Carrie S. (US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA)

    2006-02-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attend to three main objectives of the Rattlesnake Creek project. The first is to characterize stream and riparian habitat conditions. This effort includes measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective is to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective was to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the third year of at least a five-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

  1. Electrical resistivity and porosity structure of the upper Biscayne Aquifer in Miami-Dade County, Florida

    Science.gov (United States)

    Whitman, Dean; Yeboah-Forson, Albert

    2015-12-01

    Square array electrical soundings were made at 13 sites in the Biscayne Aquifer distributed between 1 and 20 km from the shoreline. These soundings were modeled to investigate how resistivity varies spatially and with depth in the upper 15 m of the aquifer. Porosity was estimated from the modeled formation resistivity and observed pore fluid resistivity with Archie's Law. The models were used to interpolate resistivity and porosity surfaces at -2, -5, -8, and -15 m elevations. Modeled resistivity in the unsaturated zone is generally higher than 300 Ω m with the resistivity at sites with thick unsaturated zones greater than 1000 Ω m. Resistivity in the saturated zone ranges from 30 to 320 Ω m. At many sites in the western portions of the study area, resistivity is constant or increases with depth whereas sites in the center of the Atlantic Coastal Ridge exhibit a distinct low resistivity zone (ρ aquifer. The estimated porosity ranges between 14% and 71% with modal values near 25%. The porosity structure varies both with depth and spatially. Western sites exhibit a high porosity zone at shallow depths best expressed in a NE-SW trending zone of 40-50% porosity situated near the western margin of the Atlantic Coastal Ridge. This zone roughly corresponds in depth with the Q5 chronostratigraphic unit of the Miami Fm. which constitutes the upper flow unit of the Biscayne Aquifer. The highest porosity (>50%) is seen at elevations below -5 m at sites in the center of the Atlantic Coastal Ridge and likely corresponds to solution features. The general NE-SW trend of the resistivity and porosity structure suggests a causal connection with the Pleistocene paleogeography and sedimentary environments.

  2. Chemical characteristics of waters in Karst Formations at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    Shevenell, L.A.

    1994-11-01

    Several waste disposal sites are located adjacent to or on a karst aquifer composed of the Cambrian Maynardville Limestone (Cmn) and the Cambrian Copper Ridge Dolomite (Ccr) at the U.S. Department of Energy Oak Ridge Y-12 Plant in Oak Ridge, TN. Highly variable chemical characteristics (i.e., hardness) can indicate that the portion of the aquifer tapped by a particular well is subject to a significant quick-flow component where recharge to the system is rapid and water levels and water quality change rapidly in response to precipitation events. Water zones in wells at the Y-12 Plant that exhibit quick-flow behavior (i.e., high hydraulic conductivity) are identified based on their geochemical characteristics and variability in geochemical parameters, and observations made during drilling of the wells. The chemical data used in this study consist of between one and 20 chemical analyses for each of 102 wells and multipart monitoring zones. Of these 102 water zones, 10 were consistently undersaturated with respect to calcite suggesting active dissolution. Repeat sampling of water zones shows that both supersaturation and undersaturation with respect to dolomite occurs in 46 water zones. Twelve of the zones had partial pressure of CO 2 near atmospheric values suggesting limited interaction between recharge waters and the gases and solids in the vadose zone and aquifer, and hence, relatively short residence times. The preliminary data suggest that the Cmn is composed of a complicated network of interconnected, perhaps anastomosing, cavities. The degree of interconnection between the identified cavities is yet to be determined, although it is expected that there is a significant vertical and lateral interconnection between the cavities located at shallow depths in the Cnm throughout Bear Creek Valley and the Y-12 Plant area

  3. RCRA Facility investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-09-01

    This report describes the borehole geophysical logging performed at selected monitoring wells at waste area grouping (WAG) 6 of Oak Ridge National Laboratory in support of the WAG 6 Resource Conservation and Recovery Act Facility Investigation (RFI). It identifies the locations and describes the methods, equipment used in the effort, and the results of the activity. The actual logs for each well logged are presented in Attachment 1 through 4 of the TM. Attachment 5 provide logging contractor service literature and Attachment 6 is the Oak Ridge National Laboratory (ORNL) Procedure for Control of a Nuclear Source Utilized in Geophysical logging. The primary objectives of the borehole geophysical logging program were to (1) identify water-bearing fractured bedrock zones to determine the placement of the screen and sealed intervals for subsequent installation, and (2) further characterize local bedrock geology and hydrogeology and gain insight about the deeper component of the shallow bedrock aquifer flow system. A secondary objective was to provide stratigraphic and structural correlations with existing logs for Hydraulic Head Monitoring Station (HHMS) wells, which display evidence of faulting

  4. Investigation of shallow groundwater contamination near East Fork Poplar Creek, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Carmichael, J.K.

    1989-01-01

    Alluvial soils of the flood plain of East Fork Poplar Creek in Oak Ridge, Tennessee, are contaminated with mercury and other metals, organic compounds, and radionuclides originating from the Y-12 Plant, a nuclear-processing facility located within the US Department of Energy's Oak Ridge Reservation. Observation wells were installed in the shallow aquifer of the flood plain, and water quality samples were collected to determine if contaminants are present in the shallow groundwater. Groundwater in the shallow aquifer occurs under water-table conditions. Recharge is primarily from precipitation and discharge is to East Fork Poplar Creek. Groundwater levels fluctuate seasonally in response to variations in recharge and evapotranspiration. During extremely dry periods, the water table drops below the base of the shallow aquifer in some flood-plain areas. Contaminants were found in water samples from several of the wells in concentrations which equaled or exceeded drinking-water standards established by the US Environmental Protection Agency are antimony, chromium, lead, mercury, selenium, phenols, and strontium-90. Total and dissolved uranium concentrations exceeded the analytical detection limit in nearly 70% of the wells in the flood plain. The results of water quality determinations demonstrate that elevated concentrations of most trace metals (and possibly organic compounds and radionuclides) were caused by contaminated sediments in the samples. The presence of contaminated sediment in samples is suspected to be the result of borehole contamination during well installation. 21 refs., 20 figs., 6 tabs

  5. Intraspecific venom variation in the medically significant Southern Pacific Rattlesnake (Crotalus oreganus helleri): biodiscovery, clinical and evolutionary implications.

    Science.gov (United States)

    Sunagar, Kartik; Undheim, Eivind A B; Scheib, Holger; Gren, Eric C K; Cochran, Chip; Person, Carl E; Koludarov, Ivan; Kelln, Wayne; Hayes, William K; King, Glenn F; Antunes, Agosthino; Fry, Bryan Grieg

    2014-03-17

    Due to the extreme variation of venom, which consequently results in drastically variable degrees of neutralization by CroFab antivenom, the management and treatment of envenoming by Crotalus oreganus helleri (the Southern Pacific Rattlesnake), one of the most medically significant snake species in all of North America, has been a clinician's nightmare. This snake has also been the subject of sensational news stories regarding supposed rapid (within the last few decades) evolution of its venom. This research demonstrates for the first time that variable evolutionary selection pressures sculpt the intraspecific molecular diversity of venom components in C. o. helleri. We show that myotoxic β-defensin peptides (aka: crotamines/small basic myotoxic peptides) are secreted in large amounts by all populations. However, the mature toxin-encoding nucleotide regions evolve under the constraints of negative selection, likely as a result of their non-specific mode of action which doesn't enforce them to follow the regime of the classic predator-prey chemical arms race. The hemorrhagic and tissue destroying snake venom metalloproteinases (SVMPs) were secreted in larger amounts by the Catalina Island and Phelan rattlesnake populations, in moderate amounts in the Loma Linda population and in only trace levels by the Idyllwild population. Only the Idyllwild population in the San Jacinto Mountains contained potent presynaptic neurotoxic phospholipase A2 complex characteristic of Mohave Rattlesnake (Crotalus scutulatus) and Neotropical Rattlesnake (Crotalus durissus terrificus). The derived heterodimeric lectin toxins characteristic of viper venoms, which exhibit a diversity of biological activities, including anticoagulation, agonism/antagonism of platelet activation, or procoagulation, appear to have evolved under extremely variable selection pressures. While most lectin α- and β-chains evolved rapidly under the influence of positive Darwinian selection, the β-chain lectin of

  6. Airborne plutonium and americium concentrations measured from the top of Rattlesnake Mountain

    International Nuclear Information System (INIS)

    Sehmel, G.A.

    1979-01-01

    Airborne plutonium-239+240 and americium-241 blowing from offsite was measured in an initial experiment at the top of Rattlesnake Mountain. Average airborne concentration measured was similar to fallout concentrations. Airborne plutonium concentrations were independent of wind speed for seven wind speed increments between 0.5 and 31 m/sec. In contrast the airborne americium concentration was a minimum at a wind speed of approximately 7 m/sec. Similarly, the airborne solids concentration in μg/m 3 was a minimum at an intermediate wind speed increment of 7 to 11 m/sec

  7. Electric shocks are ineffective in treatment of lethal effects of rattlesnake envenomation in mice.

    Science.gov (United States)

    Johnson, E K; Kardong, K V; Mackessy, S P

    1987-01-01

    Electrical shocks, even crudely delivered from 'stun guns' and gasoline engine spark plugs, have been reported to be effective in the treatment of snake bite. We thus applied similar electric shocks to mice artificially injected with reconstituted rattlesnake venom at various LD50 multiples. Those envenomated mice treated with electric shock survived no better than the controls. We thus found no evidence that electric shocks crudely administered had any life saving effect in mice.

  8. Hydrology of Alkali Creek and Castle Valley Ridge coal-lease tracts, central Utah, and potential effects of coal mining

    Science.gov (United States)

    Seiler, R.L.; Baskin, R.L.

    1988-01-01

    The Alkali Creek coal-lease tract includes about 2,150 acres in the Book Cliffs coal field in central Utah, and the Castle Valley Ridge coal-lease tract includes about 3,360 acres in the Wasatch Plateau coal field, also in central Utah. Both the Alkali Creek and Castle Valley Ridge coal-lease tracts are near areas where coal is currently (1987) mined by underground methods from the Cretaceous Blackhawk Formation. The Alkali Creek and Castle Valley Ridge areas have intermittent streams in which flow after snowmelt runoff is locally sustained into midsummer by springflow. The only perennial stream is South Fork Corner Canyon Creek in the Castle Valley Ridge area. Peak flow in both areas generally is from snowmelt runoff; however, peak flow from thunderstorm runoff in the Alkali Creek area can exceed that from snowmelt runoff. Estimated annual source-area sediment yield was 0.5 acre-ft/sq mi in the Alkali Creek lease tract and it was 0.3 acre-ft/sq mi in the Castle Valley Ridge lease tract. Groundwater in the Alkali Creek area occurs in perched aquifers in the Flagstaff Limestone and in other formations above the coal-bearing Blackhawk Formation. The principal source of recharge to the aquifers is snowmelt on outcrops. Faults may be major conduits and control the movement of groundwater. Groundwater discharges at formation contacts, between zones of differing permeability within a formation, near faults and into mines. Water sampled from 13 springs in the Alkali Creek area contained dissolved solids at concentrations ranging from 273 to 5,210 mg/L. Water sampled from 17 springs in the Castle Valley Ridge area contained dissolved solids at concentrations ranging from 208 to 579 mg/L. The composition of water from a recently abandoned part of an active mine the Wasatch Plateau closely resembles that of water discharging from a nearby mine that has been abandoned for more than 30 years. Mining of the Alkali Creek and Castle Valley Ridge coal-lease tracts likely will

  9. Potential for formation of disinfection by-products from storage of chlorinated surface water in the Basalt aquifer near Fallon, Nevada

    Science.gov (United States)

    Fram, Miranda S.; Maurer, Douglas K.; Lico, Michael S.

    2005-01-01

    Increased pumpage from a basalt aquifer near Fallon, Nevada, has caused its water levels to decline and has induced changes in the quality of water pumped from the basalt. The aquifer is the sole source of water for municipal supply to the city of Fallon, the Naval Air Station Fallon, and the Fallon Paiute-Shoshone Tribe. These changes may be mitigated by storage of surface water in the basalt for subsequent use. Because chlorination of the surface water may be required for storage, the U.S. Geological Survey, in cooperation with the Fallon Paiute-Shoshone Tribe, made laboratory tests using laboratory carbon-organic-free water, surface-water, ground-water, and basaltic-rock samples to determine the potential for formation of disinfection by-products. Experiments with water samples only (no rock and no chlorine) indicated no change in dissolved-organic-carbon (DOC) concentrations over a 20-day reaction period; whereas, all experiments using rock, water, and no chlorine indicated an increase in DOC concentrations. The greatest increase in DOC concentrations for all three water samples occurred in experiments with the rock samples from outcrops on Rattlesnake Hill. Experiments with water only and chlorine yielded a total trihalomethane (THM) concentration of 97.4 ?g/L for the ground-water sample and 347 ?g/L for the surface-water sample. Experiments with mixtures of water, rocks, and chlorine indicated that reactions with the rock consumed chlorine and released significant amounts of organic carbon from the rock, increasing the DOC concentration in the water. The organic carbon in the rocks likely is associated with the secondary clay minerals that line vesicles and fractures in the rocks. THM concentrations were greatest, from 335 to 909 ?g/L, for surface water equilibrated with rock samples from Rattlesnake Hill. However, the concentration of chlorine required to produce these high THM concentrations ranged from 18 to 84 mg/L. The results of the experiments suggest

  10. Vascular effects and electrolyte homeostasis of the natriuretic peptide isolated from Crotalus oreganus abyssus (North American Grand Canyon rattlesnake) venom

    NARCIS (Netherlands)

    Da Silva, S.L.; Dias-Junior, C.A.; Baldasso, P.A.; Damico, D.C.; Carvalho, B.M.; Garanto, A.; Acosta, G.; Oliveira, E.; Albericio, F.; Soares, A.M.; Marangoni, S.; Resende, R.R.

    2012-01-01

    Crotalus oreganus abyssus is a rattlesnake that is usually found in the Grand Canyon, United States of America. Knowledge regarding the composition of C. o. abyssus venom is scarce. New natriuretic peptides (NPs) have been isolated and characterized from the venoms of members of the Crotalinae

  11. Partial characterization of the venom of the Peruvian rattlesnake Crotalus durissus terrificus

    Directory of Open Access Journals (Sweden)

    César Remuzgo

    2014-06-01

    Full Text Available The venom of the rattlesnake Crotalus durissus terrificus from the region of Sandia, Puno, has been investigated for its protein content and some enzymatic activities, using for it the whole venom as well as the fractions obtained by gel filtration chromatography in Sephadex G-100. The protein percentage calculated by the method of Lowry was of 68,6% for the whole venom; 3 peaks were obtained during the fractionation; the first showed proteolytic activity, the second, amidolytic, clotting and phospholipase A2 activities, while the third, another proteolytic activity. Acetylcholinesterase activity was not found while L-aminoacid oxidase activity was found only in the whole venom.

  12. Sensationalistic journalism and tales of snakebite: are rattlesnakes rapidly evolving more toxic venom?

    Science.gov (United States)

    Hayes, William K; Mackessy, Stephen P

    2010-03-01

    Recent reports in the lay press have suggested that bites by rattlesnakes in the last several years have been more severe than those in the past. The explanation, often citing physicians, is that rattlesnakes are evolving more toxic venom, perhaps in response to anthropogenic causes. We suggest that other explanations are more parsimonious, including factors dependent on the snake and factors associated with the bite victim's response to envenomation. Although bites could become more severe from an increased proportion of bites from larger or more provoked snakes (ie, more venom injected), the venom itself evolves much too slowly to explain the severe symptoms occasionally seen. Increased snakebite severity could also result from a number of demographic changes in the victim profile, including age and body size, behavior toward the snake (provocation), anatomical site of bite, clothing, and general health including asthma prevalence and sensitivity to foreign antigens. Clinical management of bites also changes perpetually, rendering comparisons of snakebite severity over time tenuous. Clearly, careful study taking into consideration many factors will be essential to document temporal changes in snakebite severity or venom toxicity. Presently, no published evidence for these changes exists. The sensationalistic coverage of these atypical bites and accompanying speculation is highly misleading and can produce many detrimental results, such as inappropriate fear of the outdoors and snakes, and distraction from proven snakebite management needs, including a consistent supply of antivenom, adequate health care, and training. We urge healthcare providers to avoid propagating misinformation about snakes and snakebites. Copyright (c) 2010 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  13. Molecular exclusion chromatographic analysis on 60Co irradiated rattlesnake

    International Nuclear Information System (INIS)

    Murata, Y.; Rogero, J.R.

    1988-07-01

    Ionizing radiations are sufficiently energetic to be able of breaking chemical bonds and as result of that molecules of substances present in the irradiated will be chemically changed and their biological properties affected also. In this paper the effects of gamma radiation of Co-60 on the rattlesnake venom were studied. A pool of positive crotamina Crotalus durissus terrificus venom was dissolved in 0,15 M NaCl and irradiated with Co-60. Doses of 100, 250, 500, 750, 1500 and 2000 Gy were applied at the dose rate of 1190 Gy/h. With doses over 500 Gy the solutions became turbid, suggesting the presence of aggregates and structural changes of the proteins. The concentration of proteins from the filtered solution was measured by the Lowry method. One ml samples were measured at 230 nm. The partition coefficients and the areas of the three main fraction obtained were calculated. (author) [pt

  14. Ground-water availability from surficial aquifers in the Red River of the North Basin, Minnesota

    Science.gov (United States)

    Reppe, Thomas H.C.

    2005-01-01

    Population growth and commercial and industrial development in the Red River of the North Basin in Minnesota, North Dakota, and South Dakota have prompted the Bureau of Reclamation, U.S. Department of the Interior, to evaluate sources of water to sustain this growth. Nine surficial-glacial (surficial) aquifers (Buffalo, Middle River, Two Rivers, Beach Ridges, Pelican River, Otter Tail, Wadena, Pineland Sands, and Bemidji-Bagley) within the Minnesota part of the basin were identified and evaluated for their ground-water resources. Information was compiled and summarized from published studies to evaluate the availability of ground water. Published information reviewed for each of the aquifers included location and extent, physical characteristics, hydraulic properties, ground-water and surface-water interactions, estimates of water budgets (sources of recharge and discharge) and aquifer storage, theoretical well yields and actual ground-water pumping data, recent (2003) ground-water use data, and baseline ground-water-quality data.

  15. Hybrid PN-SN Calculations with SAAF for the Multiscale Transport Capability in Rattlesnake

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yaqi; Schunert, Sebastian; DeHart, Mark; Martineau, Richard

    2016-05-01

    Two interface conditions, the Lagrange multiplier method and the upwinding method, for hybrid \\pn-\\sn calculations is proposed for the self-adjoint angular flux (SAAF) formulation of the transport equation using the continuous finite element method (FEM) for spatial discretization. These interface conditions are implemented in Rattlesnake, the radiation transport application built on MOOSE, for the on-going multiscale transport simulation effort at INL. For smoothing the solution at the interface for the Lagrange multiplier method, a method based on \\sn Lagrange interpolation on the sphere is proposed. Numerical results indicate that the interface conditions give the expected convergence.

  16. Full Core TREAT Kinetics Demonstration Using Rattlesnake/BISON Coupling Within MAMMOTH

    Energy Technology Data Exchange (ETDEWEB)

    Ortensi, Javier [Idaho National Lab. (INL), Idaho Falls, ID (United States); DeHart, Mark D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gleicher, Frederick N. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Yaqi [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alberti, Anthony L. [Oregon State Univ., Corvallis, OR (United States); Palmer, Todd S. [Oregon State Univ., Corvallis, OR (United States)

    2015-08-01

    This report summarizes key aspects of research in evaluation of modeling needs for TREAT transient simulation. Using a measured TREAT critical measurement and a transient for a small, experimentally simplified core, Rattlesnake and MAMMOTH simulations are performed building from simple infinite media to a full core model. Cross sections processing methods are evaluated, various homogenization approaches are assessed and the neutronic behavior of the core studied to determine key modeling aspects. The simulation of the minimum critical core with the diffusion solver shows very good agreement with the reference Monte Carlo simulation and the experiment. The full core transient simulation with thermal feedback shows a significantly lower power peak compared to the documented experimental measurement, which is not unexpected in the early stages of model development.

  17. Natural history of a northern population of twin-spotted rattlesnakes, Crotalus pricei

    Science.gov (United States)

    Prival, D.B.; Goode, M.J.; Swann, D.E.; Schwalbe, C.R.; Schroff, M.J.

    2002-01-01

    The twin-spotted rattlesnake (Crotalus pricei) is a small-bodied pitviper that has received little attention in the literature to date. The species reaches the northern limit of its range in southeastern Arizona, where it inhabits higher elevations than any of the state's 10 other rattlesnake species. During 1997-2000, we captured, measured, and marked 127 C. pricei in Arizona's Chiricahua Mountains between 2530 and 2900 m elevation. We also used radiotelemetry to track the movements of 16 C. pricei in the study area during 1997-1998. Mean (?? SE) snout-vent length of C. pricei was 387.8 ?? 8.3 mm (range = 168-572), and mean mass was 53.5 ?? 3.3 g (range = 3.6-188.5). Based on fecal analyses, lizards constituted the bulk of prey (74%), but the diet of C. pricei also included mammals, birds, and a conspecific. Mating was concentrated in August and early September and parturition took place during late July and August. Mean number of embryos was 3.94 ?? 0.34 (range = 1-6) and female reproduction appeared biennial or less frequent. Based on shed and growth rates, female C. pricei develop embryos at 4-5 years of age. Gravid females maintained warmer body temperatures relative to substrate temperature than nongravid females or males, presumably by spending more time basking than other snakes. Radiotelemetry revealed that movement patterns varied from year to year, as males moved over six times farther per week during the 1998 monsoon season (July to September) than during the 1997 monsoon season. Additionally, use of talus slopes by males decreased during 1998. During dry years, such as 1998, males may be forced off talus into cooler microclimates where resources are less concentrated than on talus.

  18. Seasonal variation in hormonal responses of timber rattlesnakes (Crotalus horridus) to reproductive and environmental stressors.

    Science.gov (United States)

    Lutterschmidt, William I; Lutterschmidt, Deborah I; Mason, Robert T; Reinert, Howard K

    2009-08-01

    Data addressing adrenocortical modulation across taxonomic groups are limited, especially with regard to how female reproductive condition influences the sensitivity of the hypothalamus-pituitary-adrenal axis. We investigated seasonal and reproductive variation in basal and stress-induced hormone profiles in a population of free-ranging timber rattlesnakes (Crotalus horridus) in north-central Pennsylvania during spring (i.e., May), summer (i.e., July), and early fall (i.e., September). Baseline corticosterone concentrations varied seasonally and were significantly lower during the summer sampling period in July. We observed a significant negative relationship between baseline corticosterone and testosterone in male snakes, while baseline corticosterone and estradiol tended to be positively correlated in females. Treatment of snakes with 1 h of capture stress significantly increased corticosterone across all seasons. However, there was a significant interaction between corticosterone responses to capture stress and season, suggesting that adrenocortical function is modulated seasonally. Because elevated corticosterone may be associated with reproduction, we asked whether hormonal stress responses vary with female reproductive condition. Although sample sizes are low, reproductive snakes had significantly higher baseline and stress-induced corticosterone concentrations than non-reproductive or post-parturient females. Further, despite similar baseline corticosterone concentrations between non-reproductive and post-parturient rattlesnakes, post-parturient females responded to capture stress with a significantly higher increase in corticosterone. Collectively, these data suggest that the sensitivity of the hypothalamus-pituitary-adrenal axis varies both seasonally and with changing reproductive states.

  19. Evaluation of cross borehole tests at selected wells in the Maynardville Limestone and Copper Ridge Dolomite at the Oak Ridge Y- 12 Plant

    International Nuclear Information System (INIS)

    Shevenell, L.A.; McMaster, B.W.; Desmarais, K.M.

    1995-05-01

    Several waste disposal sites are located on or adjacent to the karstic Maynardville Limestone (Cmn) and the Copper Ridge Dolomite (Ccr) at the Department of Energy Y-12 Plant. These formations receive contaminants from nearby disposal sites, and transport of these contaminants through the formations can be quite rapid due to the karst flow system. Groups of wells, aligned perpendicular to strike, were drilled to investigate the characteristics of the Cmn, and these wells are identified as Pickets. In order to evaluate transport processes through the karst aquifer, the formations must be characterized. As one component of this characterization effort, cross borehole tests were conducted where water was injected into one well at a site, and water level responses were monitored in nearby wells to determine the directions in which quick flow is more dominant. The ultimate objective of the studies of the Cmn is to characterize the hydrologic characteristics of the karst aquifer and to identify the generalized configuration of the conduit systems and portions subject to a significant quick flow component (i.e., higher hydraulic conductivity zones). The resultant conceptual model will be useful in constructing numerical models to be used to predict flow paths

  20. Denitrification and dilution along fracture flowpaths influence the recovery of a bedrock aquifer from nitrate contamination

    International Nuclear Information System (INIS)

    Kim, Jonathan J.; Comstock, Jeff; Ryan, Peter; Heindel, Craig; Koenigsberger, Stephan

    2016-01-01

    In 2000, elevated nitrate concentrations ranging from 12 to 34 mg/L NO_3−N were discovered in groundwater from numerous domestic bedrock wells adjacent to a large dairy farm in central Vermont. Long-term plots and contours of nitrate vs. time for bedrock wells showed “little/no”, “moderate”, and “large” change patterns that were spatially separable. The metasedimentary bedrock aquifer is strongly anisotropic and groundwater flow is controlled by fractures, bedding/foliation, and basins and ridges in the bedrock surface. Integration of the nitrate concentration vs. time data and the physical and chemical aquifer characterization suggest two nitrate sources: a point source emanating from a waste ravine and a non-point source that encompasses the surrounding fields. Once removed, the point source of NO_3 (manure deposited in a ravine) was exhausted and NO_3 dropped from 34 mg/L to 10 mg/L. Our multidisciplinary methods of aquifer characterization are applicable to groundwater contamination in any complexly-deformed and metamorphosed bedrock aquifer. - Highlights: • Bedrock wells contaminated with nitrates at a dairy farm in Vermont, U.S.A. • Nitrate concentration vs. time patterns for wells were spatially separable. • Multidisciplinary aquifer characterization used physical and chemical methods. • Denitrification dominant over dilution along fracture flowpaths • Conceptual model shows exhaustion of a nitrate point-source over 12 years.

  1. Carbonate aquifers

    Science.gov (United States)

    Cunningham, Kevin J.; Sukop, Michael; Curran, H. Allen

    2012-01-01

    Only limited hydrogeological research has been conducted using ichnology in carbonate aquifer characterization. Regardless, important applications of ichnology to carbonate aquifer characterization include its use to distinguish and delineate depositional cycles, correlate mappable biogenically altered surfaces, identify zones of preferential groundwater flow and paleogroundwater flow, and better understand the origin of ichnofabric-related karst features. Three case studies, which include Pleistocene carbonate rocks of the Biscayne aquifer in southern Florida and Cretaceous carbonate strata of the Edwards–Trinity aquifer system in central Texas, demonstrate that (1) there can be a strong relation between ichnofabrics and groundwater flow in carbonate aquifers and (2) ichnology can offer a useful methodology for carbonate aquifer characterization. In these examples, zones of extremely permeable, ichnofabric-related macroporosity are mappable stratiform geobodies and as such can be represented in groundwater flow and transport simulations.

  2. The adrenergic retulation of the cardiovascular system in the South American rattlesnake, Crotalus durissus

    DEFF Research Database (Denmark)

    Galli, G.L.J.; Jensen, Nini Skovgaard; Abe, A.S.

    2007-01-01

    The present study investigates adrenergic regulation of the systemic and pulmonary circulations of the anaesthetised South American rattlesnake, Crotalus durissus. Haemodynamic measurements were made following bolus injections of adrenaline and adrenergic antagonists administered through a systemic...... arterial catheter. Adrenaline caused a marked systemic vasoconstriction that was abolished by phentolamine, indicating this response was mediated through α-adrenergic receptors. Injection of phentolamine gave rise to a pronounced vasodilatation (systemic conductance (Gsys) more than doubled), while...... injection of propranolol caused a systemic vasoconstriction, pointing to a potent α-adrenergic, and a weaker β-adrenergic tone in the systemic vasculature of Crotalus. Overall, the pulmonary vasculature was far less responsive to adrenergic stimulation than the systemic circulation. Adrenaline caused...

  3. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-03-01

    This document outlines the activities necessary to conduct a Remedial Investigation (RI) of the Chestnut Ridge Security Pits (CRSP) at the Oak Ridge Y-12 Plant. The CRSP, also designated Chestnut Ridge Operable Unit (OU) 1, is one of four OUs along Chestnut Ridge on the Oak Ridge Reservation (ORR). The purpose of the RI is to collect data to (1) evaluate the nature and extent of known and suspected contaminants, (2) support an Ecological Risk Assessment (ERA) and a Human Health Risk Assessment (HHRA), (3) support the feasibility study in the development and analysis of remedial alternatives, and (4) ultimately, develop a Record of Decision (ROD) for the site. This chapter summarizes the regulatory background of environmental investigation on the ORR and the approach currently being followed and provides an overview of the RI to be conducted at the CRSP. Subsequent chapters provide details on site history, sampling activities, procedures and methods, quality assurance (QA), health and safety, and waste management related to the RI

  4. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This document outlines the activities necessary to conduct a Remedial Investigation (RI) of the Chestnut Ridge Security Pits (CRSP) at the Oak Ridge Y-12 Plant. The CRSP, also designated Chestnut Ridge Operable Unit (OU) 1, is one of four OUs along Chestnut Ridge on the Oak Ridge Reservation (ORR). The purpose of the RI is to collect data to (1) evaluate the nature and extent of known and suspected contaminants, (2) support an Ecological Risk Assessment (ERA) and a Human Health Risk Assessment (HHRA), (3) support the feasibility study in the development and analysis of remedial alternatives, and (4) ultimately, develop a Record of Decision (ROD) for the site. This chapter summarizes the regulatory background of environmental investigation on the ORR and the approach currently being followed and provides an overview of the RI to be conducted at the CRSP. Subsequent chapters provide details on site history, sampling activities, procedures and methods, quality assurance (QA), health and safety, and waste management related to the RI.

  5. An aerial radiological survey of the Oak Ridge Reservation, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Maurer, R.J.

    1993-04-01

    An aerial radiological survey of the Oak Ridge Reservation (ORR) and surrounding area in Oak Ridge, Tennessee, was conducted during the period March 30 to April 14,1992. The purpose of the survey was to measure and document the terrestrial radiological environment of the Oak Ridge Reservation for use in environmental management programs and emergency response planning. The aerial survey was flown at an altitude of 150 feet (46 meters) along a series of parallel lines 250 feet (76 meters) apart and included X-10 (Oak Ridge National Laboratory), K-25 (former Gaseous Diffusion Plant), Y-12 (Weapons Production Plant), the Freels Bend Area and Oak Ridge Institute for Science and Education, the East Fork Poplar Creek (100-year floodplain extending from K-25 to Y-12), Elza Gate (former uranium ore storage site located in the city of Oak Ridge), Parcel A, the Clinch River (river banks extending from Melton Hill Dam to the city of Kingston), and the CSX Railroad Tracks (extending from Y-12 to the city of Oak Ridge). The survey encompassed approximately 55 square miles (1 41 square kilometers) of the Oak Ridge Reservation and surrounding area

  6. Natural Recharge to the Unconfined Aquifer System on the Hanford Site from the Greater Cold Creek Watershed: Progress Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Waichler, Scott R.; Wigmosta, Mark S.; Coleman, Andre M.

    2004-09-14

    Movement of contaminants in groundwater at the Hanford Site is heavily dependent on recharge to the unconfined aquifer. As the effects of past artificial discharges dissipate, the water table is expected to return to more natural conditions, and natural recharge will become the driving force when evaluating future groundwater flow conditions and related contaminant transport. Previous work on the relationship of natural recharge to groundwater movement at the Hanford Site has focused on direct recharge from infiltrating rainfall and snowmelt within the area represented by the Sitewide Groundwater Model (SGM) domain. However, part of the groundwater recharge at Hanford is provided by flow from Greater Cold Creek watershed (GCC), a large drainage area on the western boundary of the Hanford Site that includes Cold Creek Valley, Dry Creek Valley, and the Hanford side of Rattlesnake Mountain. This study was undertaken to estimate the recharge from GCC, which is believed to enter the unconfined aquifer as both infiltrating streamflow and shallow subsurface flow. To estimate recharge, the Distributed Hydrology-Soil-Vegetation Model (DHSVM) was used to simulate a detailed water balance of GCC from 1956 to 2001 at a spatial resolution of 200~m and a temporal resolution of one hour. For estimating natural recharge to Hanford from watersheds along its western and southwestern boundaries, the most important aspects that need to be considered are 1)~distribution and relative magnitude of precipitation and evapotranspiration over the watershed, 2)~streamflow generation at upper elevations and infiltration at lower elevations during rare runoff events, and 3)~permeability of the basalt bedrock surface underlying the soil mantle.

  7. Snake venomics of Crotalus tigris: the minimalist toxin arsenal of the deadliest Nearctic rattlesnake venom. Evolutionary Clues for generating a pan-specific antivenom against crotalid type II venoms [corrected].

    Science.gov (United States)

    Calvete, Juan J; Pérez, Alicia; Lomonte, Bruno; Sánchez, Elda E; Sanz, Libia

    2012-02-03

    We report the proteomic and antivenomic characterization of Crotalus tigris venom. This venom exhibits the highest lethality for mice among rattlesnakes and the simplest toxin proteome reported to date. The venom proteome of C. tigris comprises 7-8 gene products from 6 toxin families; the presynaptic β-neurotoxic heterodimeric PLA(2), Mojave toxin, and two serine proteinases comprise, respectively, 66 and 27% of the C. tigris toxin arsenal, whereas a VEGF-like protein, a CRISP molecule, a medium-sized disintegrin, and 1-2 PIII-SVMPs each represent 0.1-5% of the total venom proteome. This toxin profile really explains the systemic neuro- and myotoxic effects observed in envenomated animals. In addition, we found that venom lethality of C. tigris and other North American rattlesnake type II venoms correlates with the concentration of Mojave toxin A-subunit, supporting the view that the neurotoxic venom phenotype of crotalid type II venoms may be described as a single-allele adaptation. Our data suggest that the evolutionary trend toward neurotoxicity, which has been also reported for the South American rattlesnakes, may have resulted by pedomorphism. The ability of an experimental antivenom to effectively immunodeplete proteins from the type II venoms of C. tigris, Crotalus horridus , Crotalus oreganus helleri, Crotalus scutulatus scutulatus, and Sistrurus catenatus catenatus indicated the feasibility of generating a pan-American anti-Crotalus type II antivenom, suggested by the identification of shared evolutionary trends among South and North American Crotalus species.

  8. Characterising aquifer treatment for pathogens in managed aquifer recharge.

    Science.gov (United States)

    Page, D; Dillon, P; Toze, S; Sidhu, J P S

    2010-01-01

    In this study the value of subsurface treatment of urban stormwater during Aquifer Storage Transfer Recovery (ASTR) is characterised using quantitative microbial risk assessment (QMRA) methodology. The ASTR project utilizes a multi-barrier treatment train to treat urban stormwater but to date the role of the aquifer has not been quantified. In this study it was estimated that the aquifer barrier provided 1.4, 2.6, >6.0 log(10) removals for rotavirus, Cryptosporidium and Campylobacter respectively based on pathogen diffusion chamber results. The aquifer treatment barrier was found to vary in importance vis-à-vis the pre-treatment via a constructed wetland and potential post-treatment options of UV-disinfection and chlorination for the reference pathogens. The risk assessment demonstrated that the human health risk associated with potable reuse of stormwater can be mitigated (disability adjusted life years, DALYs aquifer is integrated with suitable post treatment options into a treatment train to attenuate pathogens and protect human health.

  9. Alluvial Aquifer

    Data.gov (United States)

    Kansas Data Access and Support Center — This coverage shows the extents of the alluvial aquifers in Kansas. The alluvial aquifers consist of unconsolidated Quaternary alluvium and contiguous terrace...

  10. Groundwater quality monitoring well installation for Waste Area Grouping at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    International Nuclear Information System (INIS)

    Mortimore, J.A.; Lee, T.A.

    1994-09-01

    This report documents the drilling and installation of 18 groundwater quality monitoring (GQM) wells on the perimeter of Waste Area Grouping (WAG) 11. WAG 11 (White Wing Scrap Yard) is located on the west end of East Fork Ridge between White Wing Road and the Oak Ridge Turnpike. The scrap yard is approximately 25 acres in size. The wells at WAG 11 were drilled and developed between January 1990 and October 1990. These wells were installed to characterize and assess the WAG in accordance with applicable Department of Energy, state, and Environmental Protection Agency regulatory requirements. The wells at WAG 11 were drilled with auger or air rotary rigs. Depending on the hydrogeologic conditions present at each proposed well location, one of four basic installation methods was utilized. Detailed procedures for well construction were specified by the Engineering Division to ensure that the wells would provide water samples representative of the aquifer. To ensure conformance with the specifications, Energy Systems Construction Engineering and ERCE provided continuous oversight of field activities. The purpose of the well installation program was to install GQM wells for groundwater characterization at WAG 11. Data packages produced during installation activities by the ERCE hydrogeologists are an important product of the program. These packages document the well drilling, installation, and development activities and provide valuable data for well sampling and WAG characterization. The forms contained in the packages include predrilling and postdrilling checklists, drilling and construction logs, development and hydraulic conductivity records, and quality control-related documents

  11. Thickness of Knox Group overburden on Central Chestnut Ridge, Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Staub, W.P.; Hopkins, R.A.

    1984-05-01

    The thickness of residual soil overlying the Knox Group along Central Chestnut Ridge was estimated by a conventional seismic refraction survey. The purpose of this survey was to identify sites on the Department of Energy's Oak Ridge Reservation where ample overburden exists above the water table for the shallow land burial of low-level radioactive waste. The results of the survey suggest that the upper slopes of the higher ridges in the area have a minimum of 16 to 26 m (52 to 85 ft) of overburden and that the crests of these ridges may have more than 30 m (100 ft). Therefore, it is unlikely that sound bedrock would be encountered during trench excavation [maximum of 10 m (32 ft)] along Central Chestnut Ridge. Also, the relatively low seismic wave velocities measured in the overburden suggest that the water table is generally deep. On the basis of these preliminary results, Central Chestnut Ridge appears to be suitable for further site characterization for the shallow land burial of low-level radioactive waste. 3 references, 5 figures, 1 table

  12. Stratabound pathways of preferred groundwater flow: An example from the Copper Ridge Dolomite in East Tennessee

    International Nuclear Information System (INIS)

    Lee, R.; Ketelle, D.

    1987-01-01

    The Copper Ridge Dolomite of the Upper Cambrian Knox Group underlies a site at Oak Ridge, Tennessee under consideration by the Department of Energy (DOE) for a below ground waste disposal facility. The Copper Ridge was studied for DOE to understand the influence of lithology on deep groundwater flow. Three facies types are distinguished which comprise laterally continuous, 1 to 4 m thick rock units interpreted to represent upward-shallowing depositional cycles having an apparently significant effect on groundwater flow at depth. Rock core observations indicate one of the recurring facies types is characterized by thin to medium-bedded, fine-grained dolostone with planar cryptalgal laminae and thin shaley partings. Distinctive fracturing in this facies type, that may have resulted from regional structural deformation, it considered to be responsible for weathering at depth and the development of stratabound pathways of preferred groundwater flow. In addition, geophysical data suggest that one occurrence of this weathered facies type coincides with an apparent geochemical interface at depth. Geophysical data also indicate the presence of several fluid invasion horizons, traceable outside the study area, which coincide with the unweathered occurrence of this fine-grained facies type. The subcropping of recurrent zones of preferred groundwater flow at the weathered/unweathered interface may define linear traces of enhanced aquifer recharge paralleling geologic strike. Vertical projection of these zones from the weathered/unweathered rock interface to the ground surface may describe areas of enhanced infiltration. Tests to determine the role of stratigraphic controls on groundwater flow are key components of future investigations on West Chestnut Ridge. 14 refs., 13 figs

  13. Comparison of aquifer characteristics derived from local and regional aquifer tests.

    Science.gov (United States)

    Randolph, R.B.; Krause, R.E.; Maslia, M.L.

    1985-01-01

    A comparison of the aquifer parameter values obtained through the analysis of a local and a regional aquifer test involving the same area in southeast Georgia is made in order to evaluate the validity of extrapolating local aquifer-test results for use in large-scale flow simulations. Time-drawdown and time-recovery data were analyzed by using both graphical and least-squares fitting of the data to the Theis curve. Additionally, directional transmissivity, transmissivity tensor, and angle of anisotropy were computed for both tests. -from Authors Georgia drawdown transmissivity regional aquifer tests

  14. Aquifer Storage Recovery (ASR) of chlorinated municipal drinking water in a confined aquifer

    Science.gov (United States)

    Izbicki, John A.; Petersen, Christen E.; Glotzbach, Kenneth J.; Metzger, Loren F.; Christensen, Allen H.; Smith, Gregory A.; O'Leary, David R.; Fram, Miranda S.; Joseph, Trevor; Shannon, Heather

    2010-01-01

    About 1.02 x 106 m3 of chlorinated municipal drinking water was injected into a confined aquifer, 94-137 m below Roseville, California, between December 2005 and April 2006. The water was stored in the aquifer for 438 days, and 2.64 x 106 m3 of water were extracted between July 2007 and February 2008. On the basis of Cl data, 35% of the injected water was recovered and 65% of the injected water and associated disinfection by-products (DBPs) remained in the aquifer at the end of extraction. About 46.3 kg of total trihalomethanes (TTHM) entered the aquifer with the injected water and 37.6 kg of TTHM were extracted. As much as 44 kg of TTHMs remained in the aquifer at the end of extraction because of incomplete recovery of injected water and formation of THMs within the aquifer by reactions with freechlorine in the injected water. Well-bore velocity log data collected from the Aquifer Storage Recovery (ASR) well show as much as 60% of the injected water entered the aquifer through a 9 m thick, high-permeability layer within the confined aquifer near the top of the screened interval. Model simulations of ground-water flow near the ASR well indicate that (1) aquifer heterogeneity allowed injected water to move rapidly through the aquifer to nearby monitoring wells, (2) aquifer heterogeneity caused injected water to move further than expected assuming uniform aquifer properties, and (3) physical clogging of high-permeability layers is the probable cause for the observed change in the distribution of borehole flow. Aquifer heterogeneity also enhanced mixing of native anoxic ground water with oxic injected water, promoting removal of THMs primarily through sorption. A 3 to 4-fold reduction in TTHM concentrations was observed in the furthest monitoring well 427 m downgradient from the ASR well, and similar magnitude reductions were observed in depth-dependent water samples collected from the upper part of the screened interval in the ASR well near the end of the extraction

  15. Interpretation of well hydrographs in the karstic Maynardville Limestone at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    Shevenell, L.A.; McMaster, B.W.

    1996-06-01

    The Maynardville Limestone in Oak Ridge, Tennessee underlies the southern portion of Bear Creek Valley (BCV), and is considered to be the primary pathway for groundwater leaving the Y-12 Plant boundaries. Sixty-seven percent of all wells drilled into the Maynardville Limestone have intersected at least one cavity, suggesting karst features may be encountered throughout the shallow (< 200 ft) portions of the Limestone. Because waste facilities at the Y-12 Plant are located adjacent to the Maynardville Limestone, contaminants could enter the karst aquifer and be transported in the conduit system. As part of an overall hydrologic characterization effort of this karst aquifer, 41 wells in the Maynardville Limestone were instrumented with pressure transducers to monitor water level changes (hydrographs) associated with rain events. Wells at depths between approximately 20 and 750 ft were monitored over the course of at least two storms in order that variations with depth could be identified. The wells selected were not exclusively completed in cavities but were selected to include the broad range of hydrologic conditions present in the Maynardville Limestone. Cavities, fractures and diffuse flow zones were measured at a variety of depths. The water level data from the storms are used to identify areas of quickflow versus slower flowing water zones. The data are also used to estimate specific yields and continuum transmissitives in different portions of the aquifer

  16. Hydrology of the Claiborne aquifer and interconnection with the Upper Floridan aquifer in southwest Georgia

    Science.gov (United States)

    Gordon, Debbie W.; Gonthier, Gerard

    2017-04-24

    The U.S. Geological Survey conducted a study, in cooperation with the Georgia Environmental Protection Division, to define the hydrologic properties of the Claiborne aquifer and evaluate its connection with the Upper Floridan aquifer in southwest Georgia. The effort involved collecting and compiling hydrologic data from the aquifer in subarea 4 of southwestern Georgia. Data collected for this study include borehole geophysical logs in 7 wells, and two 72-hour aquifer tests to determine aquifer properties.The top of the Claiborne aquifer extends from an altitude of about 200 feet above the North American Vertical Datum of 1988 (NAVD 88) in Terrell County to 402 feet below NAVD 88 in Decatur County, Georgia. The base of the aquifer extends from an altitude of about 60 feet above NAVD 88 in eastern Sumter County to about 750 feet below NAVD 88 in Decatur County. Aquifer thickness ranges from about 70 feet in eastern Early County to 400 feet in Decatur County.The transmissivity of the Claiborne aquifer, determined from two 72-hour aquifer tests, was estimated to be 1,500 and 700 feet squared per day in Mitchell and Early Counties, respectively. The storage coefficient was estimated to be 0.0006 and 0.0004 for the same sites, respectively. Aquifer test data from Mitchell County indicate a small amount of leakage occurred during the test. Groundwater-flow models suggest that the source of the leakage was the underlying Clayton aquifer, which produced about 2.5 feet of drawdown in response to pumping in the Claiborne aquifer. The vertical hydraulic conductivity of the confining unit between the Claiborne and Clayton aquifers was simulated to be about 0.02 foot per day.Results from the 72-hour aquifer tests run for this study indicated no interconnection between the Claiborne and overlying Upper Floridan aquifers at the two test sites. Additional data are needed to monitor the effects that increased withdrawals from the Claiborne aquifer may have on future water resources.

  17. Diagnosis of the Ghiss Nekor aquifer in order to elaborate the aquifer contract

    Science.gov (United States)

    Baite, Wissal; Boukdir, A.; Zitouni, A.; Dahbi, S. D.; Mesmoudi, H.; Elissami, A.; Sabri, E.; Ikhmerdi, H.

    2018-05-01

    The Ghiss-Nekor aquifer, located in the north-east of the action area of the ABHL, plays a strategic role in the drinkable water supply of the city of Al Hoceima and of the neighboring urban areas. It also participates in the irrigation of PMH. However, this aquifer has problems such as over-exploitation and pollution. In the face of these problems, the only Solution is the establishment of a new mode of governance, which privileges the participation, the involvement and the responsibility of the actors concerned in a negotiated contractual framework, namely the aquifer contract. The purpose of this study is to diagnose the current state of the Ghiss Nekor aquifer, the hydrogeological characterization of the aquifer, the use of the waters of the aquifer, the Problem identification and the introduction of the aquifer contract, which aims at the participatory and sustainable management of underground water resources in the Ghiss- Nekor plain, to ensure sustainable development.

  18. Ecology and conservation of an endangered rattlesnake, Sistrurus catenatus, in Missouri, USA

    Energy Technology Data Exchange (ETDEWEB)

    Seigel, R A

    1986-01-01

    The life history and ecology of the massasauga Sistrurus catenatus, an endangered rattlesnake, was studied from 1979 to 1983 at the Squaw Creek National Wildlife Refuge, Missouri. Except for tail length, this population exhibits little sexual dimorphism. Massasaugas are active from April to October, and are primarily diurnal, except in summer. Snakes are found mainly in a cordgrass prairie in spring and autumn, utilizing drier, upland areas in summer. Mean brood size for this population was 6.35, and there was a significant positive relationship between brood size and female body size. Although this species apparently demonstrates considerable geographic variation in reproductive potential, the significance of this variation cannot be currently assessed. Growth rates, estimated from size-frequency data, suggest an age of maturity of 3-4 years for females. Massasaugas at Squaw Creek feed mainly on rodents and other snakes. Current refuge practices, such as controlled burning of the prairie and unrestricted visitor usage, may have significant negative impacts on Sistrurus populations. Recommendations for mitigating these impacts are provided.

  19. EPA Region 1 Sole Source Aquifers

    Science.gov (United States)

    This coverage contains boundaries of EPA-approved sole source aquifers. Sole source aquifers are defined as an aquifer designated as the sole or principal source of drinking water for a given aquifer service area; that is, an aquifer which is needed to supply 50% or more of the drinking water for the area and for which there are no reasonable alternative sources should the aquifer become contaminated.The aquifers were defined by a EPA hydrogeologist. Aquifer boundaries were then drafted by EPA onto 1:24000 USGS quadrangles. For the coastal sole source aquifers the shoreline as it appeared on the quadrangle was used as a boundary. Delineated boundaries were then digitized into ARC/INFO.

  20. Hydrological connectivity of perched aquifers and regional aquifers in semi-arid environments: a case study from Namibia

    Science.gov (United States)

    Hamutoko, J. T.; Wanke, H.

    2017-12-01

    Integrated isotopic and hydrological tracers along with standard hydrological data are used to understand complex dry land hydrological processes on different spatial and temporal scales. The objective of this study is to analyse the relationship between the perched aquifers and the regional aquifer using hydrochemical data and isotopic composition in the Cuvelai-Etosha Basin in Namibia. This relation between the aquifers will aid in understanding groundwater recharge processes and flow dynamics. Perched aquifers are discontinuous shallow aquifers with water level ranging from 0 to 30 meters below ground level. The regional aquifer occurs in semi-consolidated sandstone at depths between about 60 and 160 meters below ground level. Water samples were collected from both aquifers in 10 villages and were analysed for major ions and stable isotopes. The results show overlapping hydrochemistry and isotopic compositions of both aquifers in 8 villages which suggest the possibility of perched aquifer water infiltrating into the regional aquifer. In two villages the hydrochemistry and isotopic composition of the aquifers are totally different and this suggests that there is no interaction between this aquifers. Areas where perched aquifers are connected to regional aquifers maybe recharge zones. These finding have important implications for groundwater resource management.

  1. Multiscale Capability in Rattlesnake using Contiguous Discontinuous Discretization of Self-Adjoint Angular Flux Equation

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Weixiong [Texas A & M Univ., College Station, TX (United States); Wang, Yaqi [Idaho National Lab. (INL), Idaho Falls, ID (United States); DeHart, Mark D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    In this report, we present a new upwinding scheme for the multiscale capability in Rattlesnake, the MOOSE based radiation transport application. Comparing with the initial implementation of multiscale utilizing Lagrange multipliers to impose strong continuity of angular flux on interface of in-between subdomains, this scheme does not require the particular domain partitioning. This upwinding scheme introduces discontinuity of angular flux and resembles the classic upwinding technique developed for solving first order transport equation using discontinuous finite element method (DFEM) on the subdomain interfaces. Because this scheme restores the causality of radiation streaming on the interfaces, significant accuracy improvement can be observed with moderate increase of the degrees of freedom comparing with the continuous method over the entire solution domain. Hybrid SN-PN is implemented and tested with this upwinding scheme. Numerical results show that the angular smoothing required by Lagrange multiplier method is not necessary for the upwinding scheme.

  2. A Black Hills-Madison Aquifer origin for Dakota Aquifer groundwater in northeastern Nebraska.

    Science.gov (United States)

    Stotler, Randy; Harvey, F Edwin; Gosselin, David C

    2010-01-01

    Previous studies of the Dakota Aquifer in South Dakota attributed elevated groundwater sulfate concentrations to Madison Aquifer recharge in the Black Hills with subsequent chemical evolution prior to upward migration into the Dakota Aquifer. This study examines the plausibility of a Madison Aquifer origin for groundwater in northeastern Nebraska. Dakota Aquifer water samples were collected for major ion chemistry and isotopic analysis ((18)O, (2)H, (3)H, (14)C, (13)C, (34)S, (18)O-SO(4), (87)Sr, (37)Cl). Results show that groundwater beneath the eastern, unconfined portion of the study area is distinctly different from groundwater sampled beneath the western, confined portion. In the east, groundwater is calcium-bicarbonate type, with delta(18)O values (-9.6 per thousand to -12.4 per thousand) similar to local, modern precipitation (-7.4 per thousand to -10 per thousand), and tritium values reflecting modern recharge. In the west, groundwater is calcium-sulfate type, having depleted delta(18)O values (-16 per thousand to -18 per thousand) relative to local, modern precipitation, and (14)C ages 32,000 to more than 47,000 years before present. Sulfate, delta(18)O, delta(2)H, delta(34)S, and delta(18)O-SO(4) concentrations are similar to those found in Madison Aquifer groundwater in South Dakota. Thus, it is proposed that Madison Aquifer source water is also present within the Dakota Aquifer beneath northeastern Nebraska. A simple Darcy equation estimate of groundwater velocities and travel times using reported physical parameters from the Madison and Dakota Aquifers suggests such a migration is plausible. However, discrepancies between (14)C and Darcy age estimates indicate that (14)C ages may not accurately reflect aquifer residence time, due to mixtures of varying aged water.

  3. Estimating Groundwater Mounding in Sloping Aquifers for Managed Aquifer Recharge.

    Science.gov (United States)

    Zlotnik, Vitaly A; Kacimov, Anvar; Al-Maktoumi, Ali

    2017-11-01

    Design of managed aquifer recharge (MAR) for augmentation of groundwater resources often lacks detailed data, and simple diagnostic tools for evaluation of the water table in a broad range of parameters are needed. In many large-scale MAR projects, the effect of a regional aquifer base dip cannot be ignored due to the scale of recharge sources (e.g., wadis, streams, reservoirs). However, Hantush's (1967) solution for a horizontal aquifer base is commonly used. To address sloping aquifers, a new closed-form analytical solution for water table mound accounts for the geometry and orientation of recharge sources at the land surface with respect to the aquifer base dip. The solution, based on the Dupiuit-Forchheimer approximation, Green's function method, and coordinate transformations is convenient for computing. This solution reveals important MAR traits in variance with Hantush's solution: mounding is limited in time and space; elevation of the mound is strongly affected by the dip angle; and the peak of the mound moves over time. These findings have important practical implications for assessment of various MAR scenarios, including waterlogging potential and determining proper rates of recharge. Computations are illustrated for several characteristic MAR settings. © 2017, National Ground Water Association.

  4. Aquifer thermal-energy-storage modeling

    Science.gov (United States)

    Schaetzle, W. J.; Lecroy, J. E.

    1982-09-01

    A model aquifer was constructed to simulate the operation of a full size aquifer. Instrumentation to evaluate the water flow and thermal energy storage was installed in the system. Numerous runs injecting warm water into a preconditioned uniform aquifer were made. Energy recoveries were evaluated and agree with comparisons of other limited available data. The model aquifer is simulated in a swimming pool, 18 ft by 4 ft, which was filled with sand. Temperature probes were installed in the system. A 2 ft thick aquifer is confined by two layers of polyethylene. Both the aquifer and overburden are sand. Four well configurations are available. The system description and original tests, including energy recovery, are described.

  5. Variational Ridging in Sea Ice Models

    Science.gov (United States)

    Roberts, A.; Hunke, E. C.; Lipscomb, W. H.; Maslowski, W.; Kamal, S.

    2017-12-01

    This work presents the results of a new development to make basin-scale sea ice models aware of the shape, porosity and extent of individual ridges within the pack. We have derived an analytic solution for the Euler-Lagrange equation of individual ridges that accounts for non-conservative forces, and therefore the compressive strength of individual ridges. Because a region of the pack is simply a collection of paths of individual ridges, we are able to solve the Euler-Lagrange equation for a large-scale sea ice field also, and therefore the compressive strength of a region of the pack that explicitly accounts for the macro-porosity of ridged debris. We make a number of assumptions that have simplified the problem, such as treating sea ice as a granular material in ridges, and assuming that bending moments associated with ridging are perturbations around an isostatic state. Regardless of these simplifications, the ridge model is remarkably predictive of macro-porosity and ridge shape, and, because our equations are analytic, they do not require costly computations to solve the Euler-Lagrange equation of ridges on the large scale. The new ridge model is therefore applicable to large-scale sea ice models. We present results from this theoretical development, as well as plans to apply it to the Regional Arctic System Model and a community sea ice code. Most importantly, the new ridging model is particularly useful for pinpointing gaps in our observational record of sea ice ridges, and points to the need for improved measurements of the evolution of porosity of deformed ice in the Arctic and Antarctic. Such knowledge is not only useful for improving models, but also for improving estimates of sea ice volume derived from altimetric measurements of sea ice freeboard.

  6. Morulustatin, A Disintegrin that Inhibits ADP-Induced Platelet Aggregation, Isolated from the Mexican Tamaulipan Rock Rattlesnake (Crotalus lepidus morulus)

    Science.gov (United States)

    Borja, Miguel; Galan, Jacob Anthony; Cantu, Esteban; Zugasti-Cruz, Alejandro; Rodríguez-Acosta, Alexis; Lazcano, David; Lucena, Sara; Suntravat, Montamas; Sánchez, y Elda Eliza

    2016-01-01

    The Tamaulipan rock rattlesnake (Crotalus lepidus morulus) is a montane snake that occurs in the humid pine-oak forest and the upper cloud forest of the Sierra Madre Oriental in southwestern Tamaulipas, central Nuevo Leon, and southeastern Coahuila in Mexico. Venom from this rattlesnake was fractionated by High-Performance Liquid Chromatography for the purpose of discovering disintegrin molecules. Disintegrins are non-enzymatic, small molecular weight peptides that interfere with cell-cell and cell-matrix interactions by binding to various cell receptors. Eleven fractions were collected by anion exchange chromatography and pooled into six groups (I, II, III, IV, V, and VI). Proteins of the six groups were analyzed by SDS-PAGE and western blot using antibodies raised against a disintegrin. The antibodies recognized different protein bands in five (II, III, IV, V, and VI) of six groups in a molecular mass range of 7 to 105 kDa. Western blot analysis revealed fewer protein bands in the higher molecular mass range and two bands in the disintegrin weight range in group II compared with the other four groups. Proteins in group II were further separated into nine fractions using reverse phase C18 chromatography. Fraction 4 inhibited platelet aggregation and was named morulustatin, which exhibited a single band with a molecular mass of approximately 7 kDa. Mass spectrometry analysis of fraction 4 revealed the identification of disintegrin peptides LRPGAQCADGLCCDQCR (MH+ 2035.84) and AGEECDCGSPANCCDAATCK (MH+ 2328.82). Morulustatin inhibited ADP-induced platelet aggregation in human whole blood and was concentration-dependent with an IC50 of 89.5 nM ± 12. PMID:28713196

  7. Ridge regression estimator: combining unbiased and ordinary ridge regression methods of estimation

    Directory of Open Access Journals (Sweden)

    Sharad Damodar Gore

    2009-10-01

    Full Text Available Statistical literature has several methods for coping with multicollinearity. This paper introduces a new shrinkage estimator, called modified unbiased ridge (MUR. This estimator is obtained from unbiased ridge regression (URR in the same way that ordinary ridge regression (ORR is obtained from ordinary least squares (OLS. Properties of MUR are derived. Results on its matrix mean squared error (MMSE are obtained. MUR is compared with ORR and URR in terms of MMSE. These results are illustrated with an example based on data generated by Hoerl and Kennard (1975.

  8. Large fault fabric of the Ninetyeast Ridge implies near-spreading ridge formation

    Digital Repository Service at National Institute of Oceanography (India)

    Sager, W.W.; Paul, C.F.; Krishna, K.S.; Pringle, M.S.; Eisin, A.E.; Frey, F.A.; Rao, D.G.; Levchenko, O.V.

    of the high ridge. At 26°S, prominent NE-SW 97 oriented lineations extend southwest from the ridge. Some appear to connect with N-S fracture 98 zone troughs east of NER, implying that the NE-SW features are fracture zone scars formed after 99 the change... to the 105 ridge (Fig. 3). This is especially true for NER south of ~4°S. Where KNOX06RR crossed a 106 gravity lineation, negative gradient features correspond to troughs whereas positive gradient 107 features result from igneous basement highs (Fig. 3...

  9. Aquifer test to determine hydraulic properties of the Elm aquifer near Aberdeen, South Dakota

    Science.gov (United States)

    Schaap, Bryan D.

    2000-01-01

    The Elm aquifer, which consists of sandy and gravelly glacial-outwash deposits, is present in several counties in northeastern South Dakota. An aquifer test was conducted northeast of Aberdeen during the fall of 1999 to determine the hydraulic properties of the Elm aquifer in that area. An improved understanding of the properties of the aquifer will be useful in the possible development of the aquifer as a water resource. Historical water-level data indicate that the saturated thickness of the Elm aquifer can change considerably over time. From September 1977 through November 1985, water levels at three wells completed in the Elm aquifer near the aquifer test site varied by 5.1 ft, 9.50 ft, and 11.1 ft. From June 1982 through October 1999, water levels at five wells completed in the Elm aquifer near the aquifer test site varied by 8.7 ft, 11.4 ft, 13.2 ft, 13.8 ft, and 19.7 ft. The water levels during the fall of 1999 were among the highest on record, so the aquifer test was affected by portions of the aquifer being saturated that might not be saturated during drier times. The aquifer test was conducted using five existing wells that had been installed prior to this study. Well A, the pumped well, has an operating irrigation pump and is centrally located among the wells. Wells B, C, D, and E are about 70 ft, 1,390 ft, 2,200 ft, and 3,100 ft, respectively, in different directions from Well A. Using vented pressure transducers and programmable data loggers, water-level data were collected at the five wells prior to, during, and after the pumping, which started on November 19, 1999, and continued a little over 72 hours. Based on available drilling logs, the Elm aquifer near the test area was assumed to be unconfined. The Neuman (1974) method theoretical response curves that most closely match the observed water-level changes at Wells A and B were calculated using software (AQTESOLV for Windows Version 2.13-Professional) developed by Glenn M. Duffield of Hydro

  10. Hydrogeology and water quality of the Floridan aquifer system and effect of Lower Floridan aquifer withdrawals on the Upper Floridan aquifer at Barbour Pointe Community, Chatham County, Georgia, 2013

    Science.gov (United States)

    Gonthier, Gerard; Clarke, John S.

    2016-06-02

    Two test wells were completed at the Barbour Pointe community in western Chatham County, near Savannah, Georgia, in 2013 to investigate the potential of using the Lower Floridan aquifer as a source of municipal water supply. One well was completed in the Lower Floridan aquifer at a depth of 1,080 feet (ft) below land surface; the other well was completed in the Upper Floridan aquifer at a depth of 440 ft below land surface. At the Barbour Pointe test site, the U.S. Geological Survey completed electromagnetic (EM) flowmeter surveys, collected and analyzed water samples from discrete depths, and completed a 72-hour aquifer test of the Floridan aquifer system withdrawing from the Lower Floridan aquifer.Based on drill cuttings, geophysical logs, and borehole EM flowmeter surveys collected at the Barbour Pointe test site, the Upper Floridan aquifer extends 369 to 567 ft below land surface, the middle semiconfining unit, separating the two aquifers, extends 567 to 714 ft below land surface, and the Lower Floridan aquifer extends 714 to 1,056 ft below land surface.A borehole EM flowmeter survey indicates that the Upper Floridan and Lower Floridan aquifers each contain four water-bearing zones. The EM flowmeter logs of the test hole open to the entire Floridan aquifer system indicated that the Upper Floridan aquifer contributed 91 percent of the total flow rate of 1,000 gallons per minute; the Lower Floridan aquifer contributed about 8 percent. Based on the transmissivity of the middle semiconfining unit and the Floridan aquifer system, the middle semiconfining unit probably contributed on the order of 1 percent of the total flow.Hydraulic properties of the Upper Floridan and Lower Floridan aquifers were estimated based on results of the EM flowmeter survey and a 72-hour aquifer test completed in Lower Floridan aquifer well 36Q398. The EM flowmeter data were analyzed using an AnalyzeHOLE-generated model to simulate upward borehole flow and determine the transmissivity of

  11. A Study of the Effects of Gas Well Compressor Noise on Breeding Bird Populations of the Rattlesnake Canyon Habitat Management Area, San Juan County, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    LaGory, K.E.; Chang, Young-Soo; Chun, K.C.; Reeves, T.; Liebich, R.; Smith, K.

    2001-06-04

    This report, conducted from May through July 2000, addressed the potential effect of compressor noise on breeding birds in gas-production areas administered by the FFO, specifically in the Rattlesnake Canyon Habitat Management Area northeast of Farmington, New Mexico. The study was designed to quantify and characterize noise output from these compressors and to determine if compressor noise affected bird populations in adjacent habitat during the breeding season.

  12. Environmental baseline survey report for West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge and parcel 21D in the vicinity of the East Technology Park, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    King, David A. [Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States). Independent Environmental Assessment and Verification Program

    2012-11-29

    This environmental baseline survey (EBS) report documents the baseline environmental conditions of five land parcels located near the U.S. Department of Energy?s (DOE?s) East Tennessee Technology Park (ETTP), including West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge, and Parcel 21d. Preparation of this report included the detailed search of federal government records, title documents, aerial photos that may reflect prior uses, and visual inspections of the property and adjacent properties. Interviews with current employees involved in, or familiar with, operations on the real property were also conducted to identify any areas on the property where hazardous substances and petroleum products, or their derivatives, and acutely hazardous wastes may have been released or disposed. In addition, a search was made of reasonably obtainable federal, state, and local government records of each adjacent facility where there has been a release of any hazardous substance or any petroleum product or their derivatives, including aviation fuel and motor oil, and which is likely to cause or contribute to a release of any hazardous substance or any petroleum product or its derivatives, including aviation fuel or motor oil, on the real property. A radiological survey and soil/sediment sampling was conducted to assess baseline conditions of Parcel 21d that were not addressed by the soils-only no-further-investigation (NFI) reports. Groundwater sampling was also conducted to support a Parcel 21d decision. Based on available data West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, and West Pine Ridge are not impacted by site operations and are not subject to actions per the Federal Facility Agreement (FFA). This determination is supported by visual inspections, records searches and interviews, groundwater conceptual modeling, approved NFI reports, analytical data, and risk analysis results. Parcel 21d data, however, demonstrate impacts from site

  13. Environmental baseline survey report for West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge and parcel 21D in the vicinity of the East Technology Park, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    King, David A.

    2012-01-01

    This environmental baseline survey (EBS) report documents the baseline environmental conditions of five land parcels located near the U.S. Department of Energy's (DOE's) East Tennessee Technology Park (ETTP), including West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge, and Parcel 21d. Preparation of this report included the detailed search of federal government records, title documents, aerial photos that may reflect prior uses, and visual inspections of the property and adjacent properties. Interviews with current employees involved in, or familiar with, operations on the real property were also conducted to identify any areas on the property where hazardous substances and petroleum products, or their derivatives, and acutely hazardous wastes may have been released or disposed. In addition, a search was made of reasonably obtainable federal, state, and local government records of each adjacent facility where there has been a release of any hazardous substance or any petroleum product or their derivatives, including aviation fuel and motor oil, and which is likely to cause or contribute to a release of any hazardous substance or any petroleum product or its derivatives, including aviation fuel or motor oil, on the real property. A radiological survey and soil/sediment sampling was conducted to assess baseline conditions of Parcel 21d that were not addressed by the soils-only no-further-investigation (NFI) reports. Groundwater sampling was also conducted to support a Parcel 21d decision. Based on available data West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, and West Pine Ridge are not impacted by site operations and are not subject to actions per the Federal Facility Agreement (FFA). This determination is supported by visual inspections, records searches and interviews, groundwater conceptual modeling, approved NFI reports, analytical data, and risk analysis results. Parcel 21d data, however, demonstrate impacts from site

  14. Guarani aquifer hydrogeological synthesis of the Guarani aquifer system. Edicion bilingue

    International Nuclear Information System (INIS)

    2009-01-01

    This work represents the synthesis of current knowledge of the Guarani Aquifer System, based on technical products made by different companies and consultants who participated in the framework of the Project for Environmental Protection and Sustainable Development of the Guarani Aquifer.

  15. Monitoring Aquifer Depletion from Space: Case Studies from the Saharan and Arabian Aquifers

    Science.gov (United States)

    Ahmed, M.; Sultan, M.; Wahr, J. M.; Yan, E.

    2013-12-01

    Access to potable fresh water resources is a human right and a basic requirement for economic development in any society. In arid and semi-arid areas, the characterization and understanding of the geologic and hydrologic settings of, and the controlling factors affecting, these resources is gaining increasing importance due to the challenges posed by increasing population. In these areas, there is immense natural fossil fresh water resources stored in large extensive aquifers, the transboundary aquifers. Yet, natural phenomena (e.g., rainfall patterns and climate change) together with human-related factors (e.g., population growth, unsustainable over-exploitation, and pollution) are threatening the sustainability of these resources. In this study, we are developing and applying an integrated cost-effective approach to investigate the nature (i.e., natural and anthropogenic) and the controlling factors affecting the hydrologic settings of the Saharan (i.e., Nubian Sandstone Aquifer System [NSAS], Northwest Sahara Aquifer System [NWSA]) and Arabian (i.e., Arabian Peninsula Aquifer System [APAS]) aquifer systems. Analysis of the Gravity Recovery and Climate Experiment (GRACE)-derived Terrestrial Water Storage (TWS) inter-annual trends over the NSAS and the APAS revealed two areas of significant TWS depletions; the first correlated with the Dakhla Aquifer System (DAS) in the NSAS and second with the Saq Aquifer System (SAS) in the APAS. Annual depletion rates were estimated at 1.3 × 0.66 × 109 m3/yr and 6.95 × 0.68 × 109 m3/yr for DAS and SAS, respectively. Findings include (1) excessive groundwater extraction, not climatic changes, is responsible for the observed TWS depletions ;(2) the DAS could be consumed in 350 years if extraction rates continue to double every 50 years and the APAS available reserves could be consumed within 60-140 years at present extraction (7.08 × 109 m3/yr) and depletion rates; and (3) observed depletions over DAS and SAS and their

  16. Recharge and Aquifer Response: Manukan Island’s Aquifer, Sabah, Malaysia

    Directory of Open Access Journals (Sweden)

    Sarva Mangala Praveena

    2010-01-01

    Full Text Available Manukan Island is a small island located in North-West of Sabah, Malaysia was used as a case study area for numerical modeling of an aquifer response to recharge and pumping rates. The results in this study present the variations of recharge into the aquifer under the prediction simulations. The recharge rate increases the water level as indicated by hydraulic heads. This shows that it can alter groundwater of Manukan Island which has been suffering from an overexploration in its unconfined the aquifer. The increase in recharge rate (from 600 mm/year to 750 mm/year increases the water level indicated by hydraulic heads. A reduction in pumping rate (from 0.072 m3/day to 0.058 m3/day not only increases the amount of water levels in aquifer but also reduces the supply hence a deficit in supply. The increase in hydraulic heads depends on the percentage reduction of pumping and recharges rates. The well water has 1978.3 mg/L chloride with current pumping (0.072 m3/day and recharge rates (600 mm/year. However, with an increased of recharge rate and current pumping rate it has decreased about 1.13%. In addition, reduction in pumping rate made the chloride concentration decreased about 2.8%. In general, a reduction in pumping with an increase in recharge rate leads to a decreased in chloride concentrations within the vicinity of cone of depression. Next, to further develop the numerical model, the model should focus on climate change variables such as consequences of climate change are increase in air temperature, increase in sea surface temperature, and more extreme weather conditions. These parameters are considered critical parameters for climate change impact modeling in aquifers. The behavior of the aquifer and its sustainable pumping rate can be done by applying a computer modeling component.

  17. A General Solution for Groundwater Flow in Estuarine Leaky Aquifer System with Considering Aquifer Anisotropy

    Science.gov (United States)

    Chen, Po-Chia; Chuang, Mo-Hsiung; Tan, Yih-Chi

    2014-05-01

    In recent years the urban and industrial developments near the coastal area are rapid and therefore the associated population grows dramatically. More and more water demand for human activities, agriculture irrigation, and aquaculture relies on heavy pumping in coastal area. The decline of groundwater table may result in the problems of seawater intrusion and/or land subsidence. Since the 1950s, numerous studies focused on the effect of tidal fluctuation on the groundwater flow in the coastal area. Many studies concentrated on the developments of one-dimensional (1D) and two-dimensional (2D) analytical solutions describing the tide-induced head fluctuations. For example, Jacob (1950) derived an analytical solution of 1D groundwater flow in a confined aquifer with a boundary condition subject to sinusoidal oscillation. Jiao and Tang (1999) derived a 1D analytical solution of a leaky confined aquifer by considered a constant groundwater head in the overlying unconfined aquifer. Jeng et al. (2002) studied the tidal propagation in a coupled unconfined and confined costal aquifer system. Sun (1997) presented a 2D solution for groundwater response to tidal loading in an estuary. Tang and Jiao (2001) derived a 2D analytical solution in a leaky confined aquifer system near open tidal water. This study aims at developing a general analytical solution describing the head fluctuations in a 2D estuarine aquifer system consisted of an unconfined aquifer, a confined aquifer, and an aquitard between them. Both the confined and unconfined aquifers are considered to be anisotropic. The predicted head fluctuations from this solution will compare with the simulation results from the MODFLOW program. In addition, the solutions mentioned above will be shown to be special cases of the present solution. Some hypothetical cases regarding the head fluctuation in costal aquifers will be made to investigate the dynamic effects of water table fluctuation, hydrogeological conditions, and

  18. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This Remedial Investigation (RI) Work Plan specifically addresses Chestnut Ridge Operable Unit 1, (OU1) which consists of the Chestnut Ridge Security Pits (CRSP). The CRSP are located {approximately}800 ft southeast of the central portion of the Y-12 Plant atop Chestnut Ridge, which is bounded to the northwest by Bear Creek Valley and to the southeast by Bethel Valley. Operated from 1973 to 1988, the CRSP consisted of a series of trenches used for the disposal of classified hazardous and nonhazardous waste materials. Disposal of hazardous waste materials was discontinued in December 1984, while nonhazardous waste disposal ended on November 8, 1988. An RI is being conducted at this site in response to CERCLA regulations. The overall objectives of the RI are to collect data necessary to evaluate the nature and extent of contaminants of concern (COC), support an ecological risk assessment (ERA) and a human health risk assessment (HHRA), support the evaluation of remedial alternatives, and ultimately develop a Record of Decision for the site. The purpose of this Work Plan is to outline RI activities necessary to define the nature and extent of suspected contaminants at Chestnut Ridge OU1. Potential migration pathways also will be investigated. Data collected during the RI will be used to evaluate the overall risk posed to human health and the environment by OU1.

  19. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-09-01

    This Remedial Investigation (RI) Work Plan specifically addresses Chestnut Ridge Operable Unit 1, (OU1) which consists of the Chestnut Ridge Security Pits (CRSP). The CRSP are located ∼800 ft southeast of the central portion of the Y-12 Plant atop Chestnut Ridge, which is bounded to the northwest by Bear Creek Valley and to the southeast by Bethel Valley. Operated from 1973 to 1988, the CRSP consisted of a series of trenches used for the disposal of classified hazardous and nonhazardous waste materials. Disposal of hazardous waste materials was discontinued in December 1984, while nonhazardous waste disposal ended on November 8, 1988. An RI is being conducted at this site in response to CERCLA regulations. The overall objectives of the RI are to collect data necessary to evaluate the nature and extent of contaminants of concern (COC), support an ecological risk assessment (ERA) and a human health risk assessment (HHRA), support the evaluation of remedial alternatives, and ultimately develop a Record of Decision for the site. The purpose of this Work Plan is to outline RI activities necessary to define the nature and extent of suspected contaminants at Chestnut Ridge OU1. Potential migration pathways also will be investigated. Data collected during the RI will be used to evaluate the overall risk posed to human health and the environment by OU1

  20. Nutrient Removal during Stormwater Aquifer Storage and Recovery in an Anoxic Carbonate Aquifer.

    Science.gov (United States)

    Vanderzalm, Joanne L; Page, Declan W; Dillon, Peter J; Barry, Karen E; Gonzalez, Dennis

    2018-03-01

    Stormwater harvesting coupled to managed aquifer recharge (MAR) provides a means to use the often wasted stormwater resource while also providing protection of the natural and built environment. Aquifers can act as a treatment barrier within a multiple-barrier approach to harvest and use urban stormwater. However, it remains challenging to assess the treatment performance of a MAR scheme due to the heterogeneity of aquifers and MAR operations, which in turn influences water treatment processes. This study uses a probabilistic method to evaluate aquifer treatment performance based on the removal of total organic C (TOC), N, and P during MAR with urban stormwater in an anoxic carbonate aquifer. Total organic C, N, and P are represented as stochastic variables and described by probability density functions (PDFs) for the "injectant" and "recovery"; these injectant and recovery PDFs are used to derive a theoretical MAR removal efficiency PDF. Four long-term MAR sites targeting one of two tertiary carbonate aquifers (T1 and T2) were used to describe the nutrient removal efficiencies. Removal of TOC and total N (TN) was dominated by redox processes, with median removal of TOC between 50 and 60% at all sites and TN from 40 to 50% at three sites with no change at the fourth. Total P removal due to filtration and sorption accounted for median removal of 29 to 53%. Thus, the statistical method was able to characterize the capacity of the anoxic carbonate aquifer treatment barrier for nutrient removal, which highlights that aquifers can be an effective long-term natural treatment option for management of water quality, as well as storage of urban stormwater. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Ridge Regression Signal Processing

    Science.gov (United States)

    Kuhl, Mark R.

    1990-01-01

    The introduction of the Global Positioning System (GPS) into the National Airspace System (NAS) necessitates the development of Receiver Autonomous Integrity Monitoring (RAIM) techniques. In order to guarantee a certain level of integrity, a thorough understanding of modern estimation techniques applied to navigational problems is required. The extended Kalman filter (EKF) is derived and analyzed under poor geometry conditions. It was found that the performance of the EKF is difficult to predict, since the EKF is designed for a Gaussian environment. A novel approach is implemented which incorporates ridge regression to explain the behavior of an EKF in the presence of dynamics under poor geometry conditions. The basic principles of ridge regression theory are presented, followed by the derivation of a linearized recursive ridge estimator. Computer simulations are performed to confirm the underlying theory and to provide a comparative analysis of the EKF and the recursive ridge estimator.

  2. Geology of Gable Mountain-Gable Butte Area

    International Nuclear Information System (INIS)

    Fecht, K.R.

    1978-09-01

    Gable Mountain and Gable Butte are two ridges which form the only extensive outcrops of the Columbia River Basalt Group in the central portion of the Pasco Basin. The Saddle Mountains Basalt and two interbedded sedimentary units of the Ellensburg Formation crop out on the ridges. These include, from oldest to youngest, the Asotin Member (oldest), Esquatzel Member, Selah Interbed, Pomona Member, Rattlesnake Ridge Interbed, and Elephant Mountain Member (youngest). A fluvial plain composed of sediments from the Ringold and Hanford (informal) formations surrounds these ridges. The structure of Gable Mountain and Gable Butte is dominated by an east-west-trending major fold and northwest-southeast-trending parasitic folds. Two faults associated with the uplift of these structures were mapped on Gable Mountain. The geomorphic expression of the Gable Mountain-Gable Butte area resulted from the comlex folding and subsequent scouring by post-basalt fluvial systems

  3. Preliminary results from the first InRidge cruise to the central Indian Ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Murthy, K.S.R.; Iyer, S.D.; Rao, M.M.M.; Banerjee, R.; Subrahmanyam, A.S.; Shirodkar, P.V.; Ghose, I.; Ganesan, P.; Rao, A.K.; Suribabu, A.; Ganesh, C.; Naik, G.P.

    stream_size 1 stream_content_type text/plain stream_name Inter_Ridge_News_7_40.pdf.txt stream_source_info Inter_Ridge_News_7_40.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  4. The usefulness of multi-well aquifer tests in heterogeneous aquifers

    International Nuclear Information System (INIS)

    Young, S.C.; Benton, D.J.; Herweijer, J.C.; Sims, P.

    1990-01-01

    Three large-scale (100 m) and seven small-scale (3-7 m) multi-well aquifer tests were conducted in a heterogeneous aquifer to determine the transmissivity distribution across a one-hectare test site. Two of the large-scale tests had constant but different rates of discharge; the remaining large-scale test had a discharge that was pulsed at regulated intervals. The small-scale tests were conducted at two well clusters 20 m apart. The program WELTEST was written to analyze the data. By using the methods of non-linear least squares regression analysis and Broyden's method to solve for non-linear extrema, WELTEST automatically determines the best values of transmissivity and the storage coefficient. The test results show that order of magnitude differences in the calculated transmissivities at a well location can be realized by varying the discharge rate at the pumping well, the duration of the aquifer test, and/or the location of the pumping well. The calculated storage coefficients for the tests cover a five-order magnitude range. The data show a definite trend for the storage coefficient to increase with the distance between the pumping and the observation wells. This trend is shown to be related to the orientation of high hydraulic conductivity zones between the pumping and the observation wells. A comparison among single-well aquifer tests, geological investigations and multi-well aquifer tests indicate that the multi-well tests are poorly suited for characterizing a transmissivity field. (Author) (11 refs., 14 figs.)

  5. Greenland Fracture Zone-East Greenland Ridge(s) revisited: Indications of a C22-change in plate motion?

    DEFF Research Database (Denmark)

    Døssing, Arne; Funck, T.

    2012-01-01

    a reinterpretation of the Greenland Fracture Zone -East Greenland Ridge based on new and existing geophysical data. Evidence is shown for two overstepping ridge segments (Segments A and B) of which Segment A corresponds to the already known East Greenland Ridge while Segment B was not detected previously......Changes in the lithospheric stress field, causing axial rift migration and reorientation of the transform, are generally proposed as an explanation for anomalously old crust and/or major aseismic valleys in oceanic ridge-transform-ridge settings. Similarly, transform migration of the Greenland...... Fracture Zone and separation of the 200-km-long, fracture-zone-parallel continental East Greenland Ridge from the Eurasia plate is thought to be related to a major change in relative plate motions between Greenland and Eurasia during the earliest Oligocene (Chron 13 time). This study presents...

  6. Denitrification and dilution along fracture flowpaths influence the recovery of a bedrock aquifer from nitrate contamination

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jonathan J., E-mail: jon.kim@vermont.gov [Vermont Geological Survey, 1 National Life Drive, Main 2, Montpelier, VT 05620 (United States); Comstock, Jeff [Vermont Agency of Agriculture, 116 State Street, Montpelier, VT 05620 (United States); Ryan, Peter [Dept. of Geology, Middlebury College, Middlebury, VT 05753 (United States); Heindel, Craig [Waite-Heindel Environmental Management, 7 Kilburn Street, Suite 301, Burlington, VT 05401 (United States); Koenigsberger, Stephan [Dept. of Geology, Middlebury College, Middlebury, VT 05753 (United States)

    2016-11-01

    In 2000, elevated nitrate concentrations ranging from 12 to 34 mg/L NO{sub 3}−N were discovered in groundwater from numerous domestic bedrock wells adjacent to a large dairy farm in central Vermont. Long-term plots and contours of nitrate vs. time for bedrock wells showed “little/no”, “moderate”, and “large” change patterns that were spatially separable. The metasedimentary bedrock aquifer is strongly anisotropic and groundwater flow is controlled by fractures, bedding/foliation, and basins and ridges in the bedrock surface. Integration of the nitrate concentration vs. time data and the physical and chemical aquifer characterization suggest two nitrate sources: a point source emanating from a waste ravine and a non-point source that encompasses the surrounding fields. Once removed, the point source of NO{sub 3} (manure deposited in a ravine) was exhausted and NO{sub 3} dropped from 34 mg/L to < 10 mg/L after ~ 10 years; however, persistence of NO{sub 3} in the 3 to 8 mg/L range (background) reflects the long term flux of nitrates from nutrients applied to the farm fields surrounding the ravine over the years predating and including this study. Inferred groundwater flow rates from the waste ravine to either moderate change wells in basin 2 or to the shallow bedrock zone beneath the large change wells are 0.05 m/day, well within published bedrock aquifer flow rates. Enrichment of {sup 15}N and {sup 18}O in nitrate is consistent with lithotrophic denitrification of NO{sub 3} in the presence of dissolved Mn and Fe. Once the ravine point-source was removed, denitrification and dilution collectively were responsible for the down-gradient decrease of nitrate in this bedrock aquifer. Denitrification was most influential when NO{sub 3}−N was > 10 mg/L. Our multidisciplinary methods of aquifer characterization are applicable to groundwater contamination in any complexly-deformed and metamorphosed bedrock aquifer. - Highlights: • Bedrock wells contaminated

  7. Straddle-packer aquifer test analyses of the Snake River Plain aquifer at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Johnson, G.S.; Frederick, D.B.

    1997-01-01

    The State of Idaho INEL Oversight Program, with the University of Idaho, Idaho State University, Boise State University, and the Idaho Geologic Survey, used a straddle-packer system to investigate vertical variations in characteristics of the Snake River Plain aquifer at the Idaho National Engineering Laboratory in southeast Idaho. Sixteen single-well aquifer tests were conducted on.isolated intervals in three observation wells. Each of these wells has approximately 200 feet of open borehole below the water table, penetrating the E through G and I basalt flow groups and interbedded sediments of the Snake River Plain aquifer. The success of the aquifer tests was limited by the inability to induce measurable drawdown in several zones. Time-drawdown data from aquifer tests were matched to type curves for 8 of the 16 zones tested. A single aquifer test at the water table exhibited greater curvature than those at depth. The increased degree of curvature suggests an unconfined response and resulted in an estimate of specific yield of 0.03. Aquifer tests below the water table generally yielded time-drawdown graphs with a rapid initial response followed by constant drawdown throughout the duration of the tests; up to several hours in length. The rapid initial response implies that the aquifer responds as a confined system during brief pumping periods. The nearly constant drawdown suggests a secondary source of water, probably vertical flow from overlying and underlying aquifer layers. Three analytical models were applied for comparison to the conceptual model and to provide estimates of aquifer properties. This, Hantush-Jacob leaky aquifer, and the Moench double-porosity fractured rock models were fit to time-drawdown data. The leaky aquifer type curves of Hantush and Jacob generally provided the best match to observed drawdown. A specific capacity regression equation was also used to estimate hydraulic conductivity

  8. Aquifer thermal energy stores in Germany

    International Nuclear Information System (INIS)

    Kabus, F.; Seibt, P.; Poppei, J.

    2000-01-01

    This paper describes the state of essential demonstration projects of heat and cold storage in aquifers in Germany. Into the energy supply system of the buildings of the German Parliament in Berlin, there are integrated both a deep brine-bearing aquifer for the seasonal storage of waste heat from power and heat cogeneration and a shallow-freshwater bearing aquifer for cold storage. In Neubrandenburg, a geothermal heating plant which uses a 1.200 m deep aquifer is being retrofitted into an aquifer heat storage system which can be charged with the waste heat from a gas and steam cogeneration plant. The first centralised solar heating plant including an aquifer thermal energy store in Germany was constructed in Rostock. Solar collectors with a total area of 1000m 2 serve for the heating of a complex of buildings with 108 flats. A shallow freshwater-bearing aquifer is used for thermal energy storage. (Authors)

  9. EPA Region 1 Sole Source Aquifers

    Data.gov (United States)

    U.S. Environmental Protection Agency — This coverage contains boundaries of EPA-approved sole source aquifers. Sole source aquifers are defined as an aquifer designated as the sole or principal source of...

  10. Development and Modelling of a High-Resolution Aquifer Analog in the Guarani Aquifer (Brazil)

    OpenAIRE

    Höyng, Dominik

    2014-01-01

    A comprehensive and detailed knowledge about the spatial distribution of physical and chemical properties in heterogeneous porous aquifers plays a decisive role for a realistic representation of governing parameters in mathematical models. Models allow the simulation, prediction and reproduction of subsurface flow and transport characteristics. This work explains the identification, characterization and effects of small-scale aquifer heterogeneities in the Guarani Aquifer System (GAS) in S...

  11. Global survey of lunar wrinkle ridge formation times

    Science.gov (United States)

    Yue, Z.; Michael, G. G.; Di, K.; Liu, J.

    2017-11-01

    Wrinkle ridges are a common feature of the lunar maria and record subsequent contraction of mare infill. Constraining the timing of wrinkle ridge formation from crater counts is challenging because they have limited areal extent and it is difficult to determine whether superposed craters post-date ridge formation or have alternatively been uplifted by the deformation. Some wrinkle ridges do allow determination to be made. This is possible where a ridge shows a sufficiently steep boundary or scarp that can be identified as deforming an intersecting crater or the crater obliterates the relief of the ridge. Such boundaries constitute only a small fraction of lunar wrinkle ridge structures yet they are sufficiently numerous to enable us to obtain statistically significant crater counts over systems of structurally related wrinkle ridges. We carried out a global mapping of mare wrinkle ridges, identifying appropriate boundaries for crater identification, and mapping superposed craters. Selected groups of ridges were analyzed using the buffered crater counting method. We found that, except for the ridges in mare Tranquilitatis, the ridge groups formed with average ages between 3.5 and 3.1 Ga ago, or 100-650 Ma after the oldest observable erupted basalts where they are located. We interpret these results to suggest that local stresses from loading by basalt fill are the principal agent responsible for the formation of lunar wrinkle ridges, as others have proposed. We find a markedly longer interval before wrinkle ridge formation in Tranquilitatis which likely indicates a different mechanism of stress accumulation at this site.

  12. Best management practices plan for the Chestnut Ridge-Filled Coal Ash Pond at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-05-01

    The Chestnut Ridge Filled Coal Ash Pond (FCAP) Project has been established to satisfy Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements for the Chestnut Ridge Operable Unit 2. FCAP is on Chestnut Ridge, approximately 0.5 miles south of the Y-12 Plant. A 62-foot high earthen dam across Upper McCoy Branch was constructed in 1955 to create a pond to serve as a settling basin for fly and bottom ashes generated by burning coal at the Y-12 Steam Plant. Ash from the steam was mixed with water to form a slurry and then pumped to the crest of Chestnut Ridge and released through a large pipe to flow across the Sluice Channel area and into the pond. The ash slurry eventually overtopped the dam and flowed along Upper McCoy Branch to Rogers Quarry. The purpose of this document is to provide a site-specific Best Management Practices (BMP) Plan for construction associated with environmental restoration activities at the FCAP Site

  13. Ridge interaction features of the Line Islands

    Science.gov (United States)

    Konter, J. G.; Koppers, A. A. P.; Storm, L. P.

    2016-12-01

    The sections of Pacific absolute plate motion history that precede the Hawaii-Emperor and Louisville chains are based on three chains: the Line Islands-Mid-Pacific Mountains, the Hess Rise-Shatsky Rise, and the Marshall Islands-Wake Islands (Rurutu hotspot). Although it has been clear that the Line Islands do not define a simple age progression (e.g. Schlanger et al., 1984), the apparent similarity to the Emperor Seamount geographic trend has been used to extend the overall Hawaii-Emperor track further into the past. However, we show here that plate tectonic reconstructions suggest that the Mid-Pacific Mountains (MPMs) and Line Islands (LIs) were erupted near a mid-ocean ridge, and thus these structures do not reflect absolute plate motion. Moverover, the morphology and geochemistry of the volcanoes show similarities with Pukapuka Ridge (e.g. Davis et al., 2002) and the Rano Rahi seamounts, presumed to have a shallow origin. Modern 40Ar/39Ar ages show that the LIs erupted at various times along the entire volcanic chain. The oldest structures formed within 10 Ma of plate formation. Given the short distance to the ridge system, large aseismic volcanic ridges, such as Necker Ridge and Horizon Guyot may simply reflect a connection between MPMs and the ridge, similar to the Pukapuka Ridge. The Line Islands to the south (including Karin Ridge) define short subchains of elongated seamounts that are widespread, resembling the Rano Rahi seamount field. During this time, the plate moved nearly parallel to the ridge system. The change from few large ridges to many subchains may reflect a change in absolute plate motion, similar to the Rano Rahi field. Here, significant MPMs volcanism is no longer connected to the ridge along plate motion. Similar to Pukapuka vs. Rano Rahi, the difference in direction between plate motion and the closest ridge determines whether larger ridges or smaller seamount subchains are formed. The difference between the largest structures (MPMs and LIs

  14. Radiogenic isotopes in enriched mid-ocean ridge basalts from Explorer Ridge, northeast Pacific Ocean

    Science.gov (United States)

    Cousens, Brian; Weis, Dominique; Constantin, Marc; Scott, Steve

    2017-09-01

    Extreme gradients in topography related to variations in magma supply are observed on the Southern Explorer Ridge (SER), part of the northern Juan de Fuca ridge system. We report radiogenic isotope (Pb, Sr, Nd, Hf) and geochemical data for twenty-four basalt whole-rock and glass samples collected from the length of the SER and from Explorer Deep, a rift to the north of the SER. Lavas from the SER form a north-south geochemical gradient, dominated by E-MORB at the northern axial high, and range from T-MORB to N-MORB towards the southern deepest part of the ridge. Linear relationships between incompatible element ratios and isotopic ratios in MORB along the ridge are consistent with mixing of magmas beneath the ridge to generate the geographic gradient from E- to N-MORB. The E-MORB have high Sr and Pb, and low Nd and Hf isotopic ratios, typical of enriched mantle that includes a FOZO or HIMU isotopic component. The West Valley and Endeavour segments of the northern Juan de Fuca ridge also include this isotopic component, but the proportion of the FOZO or HIMU component is more extreme in the SER basalts. The FOZO or HIMU component may be garnet-bearing peridotite, or a garnet pyroxenite embedded in peridotite. Recycled garnet pyroxenite better explains the very shallow SER axial high, high Nb/La and La/Sm, and the ;enriched; isotopic compositions.

  15. Investigating river–aquifer relations using water temperature in an anthropized environment (Motril-Salobreña aquifer)

    DEFF Research Database (Denmark)

    Duque, Carlos; Calvache, Marie; Engesgaard, Peter Knudegaard

    2010-01-01

    Heat was applied as a tracer for determining river–aquifer relations in the Motril-Salobreña aquifer (S Spain). The aquifer has typically been recharged by River Guadalfeo infiltration, nevertheless from 2005 a dam was constructed changing the traditional dynamic river flow and recharge events...

  16. Review of Aquifer Storage and Recovery Performance in the Upper Floridan Aquifer in Southern Florida

    Science.gov (United States)

    Reese, Ronald S.

    2006-01-01

    Introduction: Interest and activity in aquifer storage and recovery (ASR) in southern Florida has increased greatly during the past 10 to 15 years. ASR wells have been drilled to the carbonate Floridan aquifer system at 30 sites in southern Florida, mostly by local municipalities or counties located in coastal areas. The primary storage zone at these sites is contained within the brackish to saline Upper Floridan aquifer of the Floridan aquifer system. The strategy for use of ASR in southern Florida is to store excess freshwater available during the wet season in an aquifer and recover it during the dry season when needed for supplemental water supply. Each ASR cycle is defined by three periods: recharge, storage, and recovery. This fact sheet summarizes some of the findings of a second phase retrospective assessment of existing ASR facilities and sites.

  17. Geospatial compilation of historical water-level changes in the Chicot and Evangeline aquifers 1977-2013 and Jasper aquifer 2000-13, Gulf Coast aquifer system, Houston-Galveston region, Texas

    Science.gov (United States)

    Johnson, Michaela R.; Linard, Joshua I.

    2014-01-01

    The U.S. Geological Survey (USGS) in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District has produced an annual series of reports that depict water-level changes in the Chicot, Evangeline, and Jasper aquifers of the Gulf Coast aquifer system in the Houston-Galveston region, Texas, from 1977 to 2013. Changes are determined from water-level measurements between December and March of each year from groundwater wells screened in one of the three aquifers. Existing published maps and unpublished geographic information system (GIS) datasets were compiled into a comprehensive geodatabase of all water-level-change maps produced as part of this multiagency effort. Annual water-level-change maps were georeferenced and digitized where existing GIS data were unavailable (1979–99). Existing GIS data available for 2000–13 were included in the geodatabase. The compilation contains 121 datasets showing water-level changes for each primary aquifer of the Gulf Coast aquifer system: 56 for the Chicot aquifer (1977; 1979–2013 and 1990; 1993–2013), 56 for the Evangeline aquifer (1977; 1979–2013 and 1990; 1993–2013), and 9 for the Jasper aquifer (2000; 2005–13).

  18. Guarani aquifer

    International Nuclear Information System (INIS)

    2007-01-01

    The environmental protection and sustain ability develop project of Guarani Aquifer System is a join work from Argentina, Brazil, Paraguay and Uruguay with a purpose to increase the knowledge resource and propose technical legal and organizational framework for sustainable management between countries.The Universities funds were created as regional universities support in promotion, training and academic research activities related to environmental al social aspects of the Guarani Aquifer System.The aim of the project is the management and protection of the underground waters resources taking advantage and assesment for nowadays and future generations

  19. IMPLEMENTATION OF THE IMPROVED QUASI-STATIC METHOD IN RATTLESNAKE/MOOSE FOR TIME-DEPENDENT RADIATION TRANSPORT MODELLING

    Energy Technology Data Exchange (ETDEWEB)

    Zachary M. Prince; Jean C. Ragusa; Yaqi Wang

    2016-02-01

    Because of the recent interest in reactor transient modeling and the restart of the Transient Reactor (TREAT) Facility, there has been a need for more efficient, robust methods in computation frameworks. This is the impetus of implementing the Improved Quasi-Static method (IQS) in the RATTLESNAKE/MOOSE framework. IQS has implemented with CFEM diffusion by factorizing flux into time-dependent amplitude and spacial- and weakly time-dependent shape. The shape evaluation is very similar to a flux diffusion solve and is computed at large (macro) time steps. While the amplitude evaluation is a PRKE solve where the parameters are dependent on the shape and is computed at small (micro) time steps. IQS has been tested with a custom one-dimensional example and the TWIGL ramp benchmark. These examples prove it to be a viable and effective method for highly transient cases. More complex cases are intended to be applied to further test the method and its implementation.

  20. Geohydrology of the Cerro Prieto geothermal aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez R, J.; de la Pena L, A.

    1981-01-01

    The most recent information on the Cerro Prieto geothermal aquifer is summarized, with special emphasis on the initial production zone where the wells completed in the Alpha aquifer are located. These wells produce steam for power plant units 1 and 2. Brief comments also are made on the Beta aquifer, which underlies the Alpha aquifer in the Cerro Prieto I area and which extends to the east to what is known as the Cerro Prieto II and Cerro Prieto III areas. The location of the area studied is shown. The Alpha and Beta aquifers differ in their mineralogy and cementing mineral composition, temperatures, and piezometric levels. The difference in piezometric levels indicates that there is no local communication between the two aquifers. This situation has been verified by a well interference test, using well E-1 as a producer in the Beta aquifer and well M-46 as the observation well in the Alpha aquifer. No interference between them was observed. Information on the geology, geohydrology, and geochemistry of Cerro Prieto is presented.

  1. New methodology for aquifer influx status classification for single wells in a gas reservoir with aquifer support

    Directory of Open Access Journals (Sweden)

    Yong Li

    2016-10-01

    Full Text Available For gas reservoirs with strong bottom or edge aquifer support, the most important thing is avoiding aquifer breakthrough in a gas well. Water production in gas wells does not only result in processing problems in surface facilities, but it also explicitly reduces well productivity and reservoir recovery. There are a lot of studies on the prediction of water breakthrough time, but they are not completely practicable due to reservoir heterogeneity. This paper provides a new method together with three diagnostic curves to identify aquifer influx status for single gas wells; the aforementioned curves are based on well production and pressure data. The whole production period of a gas well can be classified into three periods based on the diagnostic curves: no aquifer influx period, early aquifer influx period, and middle-late aquifer influx period. This new method has been used for actual gas well analysis to accurately identify gas well aquifer influx status and the water breakthrough sequence of all wells in the same gas field. Additionally, the evaluation results are significantly beneficial for well production rate optimization and development of an effective gas field.

  2. The beach ridges of India: A review

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.; Wagle, B.G.

    , and is presented in a consolidated form. Beach ridges of the east and west coast of India are grouped in thirteen-beach ridge complexes based on their association. Review indicates that the beach ridges of India are not older than the Holocene age...

  3. Increasing freshwater recovery upon aquifer storage : A field and modelling study of dedicated aquifer storage and recovery configurations in brackish-saline aquifers

    NARCIS (Netherlands)

    Zuurbier, Koen

    2016-01-01

    The subsurface may provide opportunities for robust, effective, sustainable, and cost-efficient freshwater management solutions. For instance, via aquifer storage and recovery (ASR; Pyne, 2005): “the storage of water in a suitable aquifer through a well during times when water is available, and the

  4. Aquifers

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This map layer contains the shallowest principal aquifers of the conterminous United States, Hawaii, Puerto Rico, and the U.S. Virgin Islands, portrayed as polygons....

  5. Cytoskeleton, endoplasmic reticulum and nucleus alterations in CHO-K1 cell line after Crotalus durissus terrificus (South American rattlesnake venom treatment

    Directory of Open Access Journals (Sweden)

    B. P. Tamieti

    2007-01-01

    Full Text Available Snake venoms are toxic to a variety of cell types. However, the intracellular damages and the cell death fate induced by venom are unclear. In the present work, the action of the South American rattlesnake Crotalus durissus terrificus venom on CHO-K1 cell line was analyzed. The cells CHO-K1 were incubated with C. d. terrificus venom (10, 50 and 100g/ml for 1 and 24 hours, and structural alterations of actin filaments, endoplasmic reticulum and nucleus were assessed using specific fluorescent probes and agarose gel electrophoresis for DNA fragmentation. Significant structural changes were observed in all analyzed structures. DNA fragmentation was detected suggesting that, at the concentrations used, the venom induced apoptosis.

  6. Remedial Investigation Report on Chestnut Ridge Operable Unit 2 (Filled Coal Ash Pond/Upper McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1. Main Text

    International Nuclear Information System (INIS)

    1994-08-01

    This document is a report on the remedial investigation (RI) of Chestnut Ridge Operable Unit (OU) 2 at the Oak Ridge Y-12 Plant. Chestnut Ridge OU 2 consists of Upper McCoy Branch (UMB), the Filled Coal Ash Pond (FCAP), and the area surrounding the Sluice Channel formerly associated with coal ash disposal in the FCAP. Chestnut Ridge OU 2 is located within the U.S. Department of Energy's (DOE's) Oak Ridge Reservation in Anderson County, Tennessee, approximately 24 miles west of Knoxville. The pond is an 8.5-acre area on the southern slope of Chestnut Ridge, 0.5 mile south of the main Y-12 Plant and geographically separated from the Y-12 Plant by Chestnut Ridge. The elevation of the FCAP is ∼ 950 ft above mean sea level (msl), and it is relatively flat and largely vegetated. Two small ponds are usually present at the northeast and northwest comers of the FCAP. The Sluice Channel Area extends ∼1000 ft from the northern margin of the FCAP to the crest of Chestnut Ridge, which has an elevation of ∼1100 ft above msl. The Sluice Channel Area is largely vegetated also. McCoy Branch runs from the top of Chestnut Ridge across the FCAP into Rogers Quarry and out of the quarry where it runs a short distance into Milton Hill Lake at McCoy Embayment, termed UMB. The portion south of Rogers Quarry, within Chestnut Ridge OU 4, is termed Lower McCoy Branch. The DOE Oak Ridge Y-12 Plant disposed of coal ash from its steam plant operations as a slurry that was discharged into an ash retention impoundment; this impoundment is the FCAP. The FCAP was built in 1955 to serve as a settling basin after coal ash slurried over Chestnut Ridge from the Y-12 Plant. The FCAP was constructed by building an earthen dam across the northern tributary of McCoy Branch. The dam was designed to hold 20 years of Y-12 steam plant ash. By July 1967, ash had filled up the impoundment storage behind the dam to within 4 ft of the top

  7. Remedial Investigation Report on Chestnut Ridge Operable Unit 2 (Filled Coal Ash Pond/Upper McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1. Main Text

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This document is a report on the remedial investigation (RI) of Chestnut Ridge Operable Unit (OU) 2 at the Oak Ridge Y-12 Plant. Chestnut Ridge OU 2 consists of Upper McCoy Branch (UMB), the Filled Coal Ash Pond (FCAP), and the area surrounding the Sluice Channel formerly associated with coal ash disposal in the FCAP. Chestnut Ridge OU 2 is located within the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation in Anderson County, Tennessee, approximately 24 miles west of Knoxville. The pond is an 8.5-acre area on the southern slope of Chestnut Ridge, 0.5 mile south of the main Y-12 Plant and geographically separated from the Y-12 Plant by Chestnut Ridge. The elevation of the FCAP is {approximately} 950 ft above mean sea level (msl), and it is relatively flat and largely vegetated. Two small ponds are usually present at the northeast and northwest comers of the FCAP. The Sluice Channel Area extends {approximately}1000 ft from the northern margin of the FCAP to the crest of Chestnut Ridge, which has an elevation of {approximately}1100 ft above msl. The Sluice Channel Area is largely vegetated also. McCoy Branch runs from the top of Chestnut Ridge across the FCAP into Rogers Quarry and out of the quarry where it runs a short distance into Milton Hill Lake at McCoy Embayment, termed UMB. The portion south of Rogers Quarry, within Chestnut Ridge OU 4, is termed Lower McCoy Branch. The DOE Oak Ridge Y-12 Plant disposed of coal ash from its steam plant operations as a slurry that was discharged into an ash retention impoundment; this impoundment is the FCAP. The FCAP was built in 1955 to serve as a settling basin after coal ash slurried over Chestnut Ridge from the Y-12 Plant. The FCAP was constructed by building an earthen dam across the northern tributary of McCoy Branch. The dam was designed to hold 20 years of Y-12 steam plant ash. By July 1967, ash had filled up the impoundment storage behind the dam to within 4 ft of the top.

  8. Preliminary Analysis of the Knipovich Ridge Segmentation - Influence of Focused Magmatism and Ridge Obliquity on an Ultraslow Spreading System

    Science.gov (United States)

    Okino, K.; Curewitz, D.; Asada, M.; Tamaki, K.

    2002-12-01

    Bathymetry, gravity and deep-tow sonar image data are used to define the segmentation of a 400 km long portion of the ultraslow-spreading Knipovich Ridge in the Norwegian-Greenland Sea, Northeast Atlantic Ocean. Discrete volcanic centers marked by large volcanic constructions and accompanying short wavelength mantle Bouguer anomaly (MBA) lows generally resemble those of the Gakkel Ridge and the easternmost Southwest Indian Ridge (SWIR). These magmatically robust segment centers are regularly spaced about 85-100 km apart along the ridge, and are characterized by accumulated hummocky terrain, high relief, off-axis seamount chains and significant MBA lows. We suggest that these eruptive centers correspond to areas of enhanced magma flux, and that their spacing reflects the geometry of underlying mantle upwelling cells. The large-scale thermal structure of the mantle primarily controls discrete and focused magmatism, and the relatively wide spacing of these segments may reflect cool mantle beneath the ridge. Segment centers along the southern Knipovich Ridge are characterized by lower relief and smaller MBA anomalies than along the northern section of the ridge. This suggests that ridge obliquity is a secondary control on ridge construction on the Knipovich Ridge, as the obliquity changes from 35° to 49° from north to south, respectively, while spreading rate and axial depth remain approximately constant. The increased obliquity may contribute to decreased effective spreading rates, lower upwelling magma velocity and melt formation, and limited horizontal dike propagation near the surface. We also identify small, magmatically weaker segments with low relief, little or no MBA anomaly, and no off axis expression. We suggest that these segments are either fed by lateral melt migration from adjacent magmatically stronger segments or represent smaller, discrete mantle upwelling centers with short-lived melt supply.

  9. Preliminary analysis of the Knipovich Ridge segmentation: influence of focused magmatism and ridge obliquity on an ultraslow spreading system

    Science.gov (United States)

    Okino, Kyoko; Curewitz, Daniel; Asada, Miho; Tamaki, Kensaku; Vogt, Peter; Crane, Kathleen

    2002-09-01

    Bathymetry, gravity and deep-tow sonar image data are used to define the segmentation of a 400 km long portion of the ultraslow-spreading Knipovich Ridge in the Norwegian-Greenland Sea, Northeast Atlantic Ocean. Discrete volcanic centers marked by large volcanic constructions and accompanying short wavelength mantle Bouguer anomaly (MBA) lows generally resemble those of the Gakkel Ridge and the easternmost Southwest Indian Ridge. These magmatically robust segment centers are regularly spaced about 85-100 km apart along the ridge, and are characterized by accumulated hummocky terrain, high relief, off-axis seamount chains and significant MBA lows. We suggest that these eruptive centers correspond to areas of enhanced magma flux, and that their spacing reflects the geometry of underlying mantle upwelling cells. The large-scale thermal structure of the mantle primarily controls discrete and focused magmatism, and the relatively wide spacing of these segments may reflect cool mantle beneath the ridge. Segment centers along the southern Knipovich Ridge are characterized by lower relief and smaller MBA anomalies than along the northern section of the ridge. This suggests that ridge obliquity is a secondary control on ridge construction on the Knipovich Ridge, as the obliquity changes from 35° to 49° from north to south, respectively, while spreading rate and axial depth remain approximately constant. The increased obliquity may contribute to decreased effective spreading rates, lower upwelling magma velocity and melt formation, and limited horizontal dike propagation near the surface. We also identify small, magmatically weaker segments with low relief, little or no MBA anomaly, and no off-axis expression. We suggest that these segments are either fed by lateral melt migration from adjacent magmatically stronger segments or represent smaller, discrete mantle upwelling centers with short-lived melt supply.

  10. Comprehensive integrated planning: A process for the Oak Ridge Reservation, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-05-01

    The Oak Ridge Comprehensive Integrated Plan is intended to assist the US Department of Energy (DOE) and contractor personnel in implementing a comprehensive integrated planning process consistent with DOE Order 430.1, Life Cycle Asset Management and Oak Ridge Operations Order 430. DOE contractors are charged with developing and producing the Comprehensive Integrated Plan, which serves as a summary document, providing information from other planning efforts regarding vision statements, missions, contextual conditions, resources and facilities, decision processes, and stakeholder involvement. The Comprehensive Integrated Plan is a planning reference that identifies primary issues regarding major changes in land and facility use and serves all programs and functions on-site as well as the Oak Ridge Operations Office and DOE Headquarters. The Oak Ridge Reservation is a valuable national resource and is managed on the basis of the principles of ecosystem management and sustainable development and how mission, economic, ecological, social, and cultural factors are used to guide land- and facility-use decisions. The long-term goals of the comprehensive integrated planning process, in priority order, are to support DOE critical missions and to stimulate the economy while maintaining a quality environment

  11. Comprehensive integrated planning: A process for the Oak Ridge Reservation, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The Oak Ridge Comprehensive Integrated Plan is intended to assist the US Department of Energy (DOE) and contractor personnel in implementing a comprehensive integrated planning process consistent with DOE Order 430.1, Life Cycle Asset Management and Oak Ridge Operations Order 430. DOE contractors are charged with developing and producing the Comprehensive Integrated Plan, which serves as a summary document, providing information from other planning efforts regarding vision statements, missions, contextual conditions, resources and facilities, decision processes, and stakeholder involvement. The Comprehensive Integrated Plan is a planning reference that identifies primary issues regarding major changes in land and facility use and serves all programs and functions on-site as well as the Oak Ridge Operations Office and DOE Headquarters. The Oak Ridge Reservation is a valuable national resource and is managed on the basis of the principles of ecosystem management and sustainable development and how mission, economic, ecological, social, and cultural factors are used to guide land- and facility-use decisions. The long-term goals of the comprehensive integrated planning process, in priority order, are to support DOE critical missions and to stimulate the economy while maintaining a quality environment.

  12. Ground-water-quality assessment of the Central Oklahoma Aquifer, Oklahoma: geochemical and geohydrologic investigations

    Science.gov (United States)

    Parkhurst, David L.; Christenson, Scott C.; Breit, George N.

    1993-01-01

    aquifer, and (3) a deep, regional flow system in the confined part of the aquifer. In the shallow, local flow system, water flows relatively quickly along short flowlines from the point of recharge to the point of discharge at the nearest stream. Many water samples from shallow wells contain large concentrations of tritium, which indicate ground-water ages of less than 40 years. In the deep, regional flow system in the unconfined part of the aquifer, water takes more time to flow along longer flowlines than in the shallow, local flow system. Much of the water in this flow system is recharged along ridges that correspond to ground-water divides between drainage basins. Transit times for water recharging the aquifer along ridges is greater than 5,000 years, computed using a numerical flow model in conjunction with a particle-tracking model. The deep, regional flow system in the confined part of the Garber Sandstone and Wellington Formation is recharged from a small part of the outcrop area of the Garber Sandstone. From the recharge area, water flows west under the confining unit to discharge to streams as far away as the Cimarron River. Flowpaths are relatively long, as much as 50 miles. The transit times in this flow system range from thousands to tens of thousands of years.The long-term hydrogeochemical process occurring in the Central Oklahoma aquifer is removal of unstable minerals, including dolomite, calcite, biotite, chlorite, and feldspars, and the replacement of exchangeable sodium on clays with calcium and magnesium. Over geologic time, the flux of water through the rapidly moving, local flow system has been sufficient to remove most of the dolomite, calcite, and exchangeable sodium. In places, chlorite and feldspars have been removed. In the deep, regional flow system of the unconfined part of the Garber Sandstone and Wellington Formation, the flux of water has been sufficient to remove most of the exchangeable sodium, but carbonate minerals remain sufficiently

  13. Limitations of climatic data for inferring species boundaries: insights from speckled rattlesnakes.

    Directory of Open Access Journals (Sweden)

    Jesse M Meik

    Full Text Available Phenotypes, DNA, and measures of ecological differences are widely used in species delimitation. Although rarely defined in such studies, ecological divergence is almost always approximated using multivariate climatic data associated with sets of specimens (i.e., the "climatic niche"; the justification for this approach is that species-specific climatic envelopes act as surrogates for physiological tolerances. Using identical statistical procedures, we evaluated the usefulness and validity of the climate-as-proxy assumption by comparing performance of genetic (nDNA SNPs and mitochondrial DNA, phenotypic, and climatic data for objective species delimitation in the speckled rattlesnake (Crotalus mitchellii complex. Ordination and clustering patterns were largely congruent among intrinsic (heritable traits (nDNA, mtDNA, phenotype, and discordance is explained by biological processes (e.g., ontogeny, hybridization. In contrast, climatic data did not produce biologically meaningful clusters that were congruent with any intrinsic dataset, but rather corresponded to regional differences in atmospheric circulation and climate, indicating an absence of inherent taxonomic signal in these data. Surrogating climate for physiological tolerances adds artificial weight to evidence of species boundaries, as these data are irrelevant for that purpose. Based on the evidence from congruent clustering of intrinsic datasets, we recommend that three subspecies of C. mitchellii be recognized as species: C. angelensis, C. mitchellii, and C. Pyrrhus.

  14. Geospatial compilation of historical water-level altitudes in the Chicot and Evangeline aquifers 1977-2013 and Jasper aquifer 2000-13 in the Gulf Coast aquifer system, Houston-Galveston Region, Texas

    Science.gov (United States)

    Johnson, Michaela R.; Ellis, Robert H.H.

    2013-01-01

    The U.S. Geological Survey (USGS) in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District has produced a series of annual reports depicting groundwater-level altitudes in the Chicot, Evangeline, and Jasper aquifers of the Gulf Coast aquifer system in the Houston-Galveston region, Texas. To produce these annual reports, contours of equal water-level altitudes are created from water levels measured between December and March of each year from groundwater wells screened completely within one of these three aquifers. Information obtained from maps published in the annual series of USGS reports and geospatial datasets of water-level altitude contours used to create the annual series of USGS reports were compiled into a comprehensive geodatabase. The geospatial compilation contains 88 datasets from previously published contour maps showing water-level altitudes for each primary aquifer of the Gulf Coast aquifer system, 37 for the Chicot (1977–2013), 37 for the Evangeline aquifer (1977–2013), and 14 for the Jasper aquifer (2000–13).

  15. Oak Ridge Leadership Computing Facility (OLCF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Oak Ridge Leadership Computing Facility (OLCF) was established at Oak Ridge National Laboratory in 2004 with the mission of standing up a supercomputer 100 times...

  16. US Department of Energy Oak Ridge Operations Environmental Management Public Involvement Plan for the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    1996-03-01

    This document was prepared in accordance with CERCLA requirements for writing community relations plans. It includes information on how the DOE Oak Ridge Operations Office prepares and executes Environmental Management Community relations activities. It is divided into three sections: the public involvement plan, public involvement in Oak Ridge, and public involvement in 1995. Four appendices are also included: environmental management in Oak Ridge; community and regional overview; key laws, agreements, and policy; and principal contacts

  17. Can Remote Sensing Detect Aquifer Characteristics?: A Case Study in the Guarani Aquifer System

    Science.gov (United States)

    Richey, A. S.; Thomas, B.; Famiglietti, J. S.

    2013-12-01

    Global water supply resiliency depends on groundwater, especially regions threatened by population growth and climate change. Aquifer characteristics, even as basic as confined versus unconfined, are necessary to prescribe regulations to sustainably manage groundwater supplies. A significant barrier to sustainable groundwater management exists in the difficulties associated with mapping groundwater resources and characteristics at a large spatial scale. This study addresses this challenge by investigating if remote sensing, including with NASA's Gravity Recovery and Climate Experiment (GRACE), can detect and quantify key aquifer parameters and characteristics. We explore this through a case study in the Guarani Aquifer System (GAS) of South America, validating our remote sensing-based findings against the best available regional estimates. The use of remote sensing to advance the understanding of large aquifers is beneficial to sustainable groundwater management, especially in a trans-boundary system, where consistent information exchange can occur within hydrologic boundaries instead of political boundaries.

  18. Estimating Aquifer Properties Using Sinusoidal Pumping Tests

    Science.gov (United States)

    Rasmussen, T. C.; Haborak, K. G.; Young, M. H.

    2001-12-01

    We develop the theoretical and applied framework for using sinusoidal pumping tests to estimate aquifer properties for confined, leaky, and partially penetrating conditions. The framework 1) derives analytical solutions for three boundary conditions suitable for many practical applications, 2) validates the analytical solutions against a finite element model, 3) establishes a protocol for conducting sinusoidal pumping tests, and 4) estimates aquifer hydraulic parameters based on the analytical solutions. The analytical solutions to sinusoidal stimuli in radial coordinates are derived for boundary value problems that are analogous to the Theis (1935) confined aquifer solution, the Hantush and Jacob (1955) leaky aquifer solution, and the Hantush (1964) partially penetrated confined aquifer solution. The analytical solutions compare favorably to a finite-element solution of a simulated flow domain, except in the region immediately adjacent to the pumping well where the implicit assumption of zero borehole radius is violated. The procedure is demonstrated in one unconfined and two confined aquifer units near the General Separations Area at the Savannah River Site, a federal nuclear facility located in South Carolina. Aquifer hydraulic parameters estimated using this framework provide independent confirmation of parameters obtained from conventional aquifer tests. The sinusoidal approach also resulted in the elimination of investigation-derived wastes.

  19. InRidge program: Preliminary results from the first cruise

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Murthy, K.S.R.; Iyer, S.D.; Rao, M.M.M.; Banerjee, R.; Subrahmanyam, A.S.; Shirodkar, P.V.; Ghose, I.

    The first cruise under India's own Ridge research initiative, InRidge collected new data on bathymetry, free-air gravity and magnetic anomalies across the ridge axis between the Vema and Zhivago transform faults in the Central Indian Ridge...

  20. Water-quality characteristics of quaternary unconsolidated-deposit aquifers and lower tertiary aquifers of the Bighorn Basin, Wyoming and Montana, 1999-2001

    Science.gov (United States)

    Bartos, Timothy T.; Eddy-Miller, Cheryl A.; Norris, Jody R.; Gamper, Merry E.; Hallberg, Laura L.

    2004-01-01

    As part of the Yellowstone River Basin National Water Quality Assessment study, ground-water samples were collected from Quaternary unconsolidated-deposit and lower Tertiary aquifers in the Bighorn Basin of Wyoming and Montana from 1999 to 2001. Samples from 54 wells were analyzed for physical characteristics, major ions, trace elements, nutrients, dissolved organic carbon, radionuclides, pesticide compounds, and volatile organic compounds (VOCs) to evaluate current water-quality conditions in both aquifers. Water-quality samples indicated that waters generally were suitable for most uses, and that natural conditions, rather than the effects of human activities, were more likely to limit uses of the waters. Waters in both types of aquifers generally were highly mineralized, and total dissolved-solids concentrations frequently exceeded the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level (SMCL) of 500 milligrams per liter (mg/L). Because of generally high mineralization, waters from nearly one-half of the samples from Quaternary aquifers and more than one-half of the samples from lower Tertiary aquifers were not classified as fresh (dissolved-solids concentration were not less than 1,000 mg/L). The anions sulfate, fluoride, and chloride were measured in some ground-water samples at concentrations greater than SMCLs. Most waters from the Quaternary aquifers were classified as very hard (hardness greater than 180 mg/L), but hardness varied much more in waters from the lower Tertiary aquifers and ranged from soft (less than 60 mg/L) to very hard (greater than 180 mg/L). Major-ion chemistry varied with dissolved-solids concentrations. In both types of aquifers, the predominant anion changes from bicarbonate to sulfate with increasing dissolved-solids concentrations. Samples from Quaternary aquifers with fresh waters generally were calcium-bicarbonate, calcium-sodium-bicarbonate, and calcium-sodium-sulfate-bicarbonate type waters, whereas

  1. Ground-water quality of the surficial aquifer system and the upper Floridan Aquifer, Ocala National Forest and Lake County, Florida, 1990-99

    Science.gov (United States)

    Adamski, J.C.; Knowles, Leel

    2001-01-01

    Data from 217 ground-water samples were statistically analyzed to assess the water quality of the surficial aquifer system and Upper Floridan aquifer in the Ocala National Forest and Lake County, Florida. Samples were collected from 49 wells tapping the surficial aquifer system, 141 wells tapping the Upper Floridan aquifer, and from 27 springs that discharge water from the Upper Floridan aquifer. A total of 136 samples was collected by the U.S. Geological Survey from 1995 through 1999. These data were supplemented with 81 samples collected by the St. Johns River Water Management District and Lake County Water Resources Management from 1990 through 1998. In general, the surficial aquifer system has low concentrations of total dissolved solids (median was 41 milligrams per liter) and major ions. Water quality of the surficial aquifer system, however, is not homogeneous throughout the study area. Concentrations of total dissolved solids, many major ions, and nutrients are greater in samples from Lake County outside the Ocala National Forest than in samples from within the Forest. These results indicate that the surficial aquifer system in Lake County outside the Ocala National Forest probably is being affected by agricultural and (or) urban land-use practices. High concentrations of dissolved oxygen (less than 0.1 to 8.2 milligrams per liter) in the surficial aquifer system underlying the Ocala National Forest indicate that the aquifer is readily recharged by precipitation and is susceptible to surface contamination. Concentrations of total dissolved solids were significantly greater in the Upper Floridan aquifer (median was 182 milligrams per liter) than in the surficial aquifer system. In general, water quality of the Upper Floridan aquifer was homogeneous, primarily being a calcium or calciummagnesium- bicarbonate water type. Near the St. Johns River, the water type of the Upper Floridan aquifer is sodium-chloride, corresponding to an increase in total dissolved

  2. WTAQ - A computer program for aquifer-test analysis of confined and unconfined aquifers

    Science.gov (United States)

    Barlow, P.M.; Moench, A.F.

    2004-01-01

    Computer program WTAQ was developed to implement a Laplace-transform analytical solution for axial-symmetric flow to a partially penetrating, finite-diameter well in a homogeneous and anisotropic unconfined (water-table) aquifer. The solution accounts for wellbore storage and skin effects at the pumped well, delayed response at an observation well, and delayed or instantaneous drainage from the unsaturated zone. For the particular case of zero drainage from the unsaturated zone, the solution simplifies to that of axial-symmetric flow in a confined aquifer. WTAQ calculates theoretical time-drawdown curves for the pumped well and observation wells and piezometers. The theoretical curves are used with measured time-drawdown data to estimate hydraulic parameters of confined or unconfined aquifers by graphical type-curve methods or by automatic parameter-estimation methods. Parameters that can be estimated are horizontal and vertical hydraulic conductivity, specific storage, and specific yield. A sample application illustrates use of WTAQ for estimating hydraulic parameters of a hypothetical, unconfined aquifer by type-curve methods. Copyright ASCE 2004.

  3. Quality assurance project plan for the Chestnut Ridge Fly Ash Pond Stabilization Project at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-07-01

    The Chestnut Ridge Fly Ash Pond Stabilization (CRFAPS) Project will stabilize a 19-m-high (62-ft-high) earthen embankment across Upper McCoy Branch situated along the southern slope of Chestnut Ridge. This task will be accomplished by raising the crest of the embankment, reinforcing the face of the embankment, removing trees from the face and top of the embankment, and repairing the emergency spillway. The primary responsibilities of the team members are: Lockheed Martin Energy Systems, Inc., (Energy Systems) will be responsible for project integration, technical support, Title 3 field support, environmental oversight, and quality assurance (QA) oversight of the project; Foster Wheeler Environmental Corporation (FWENC) will be responsible for design and home office Title 3 support; MK-Ferguson of Oak Ridge Company (MK-F) will be responsible for health and safety, construction, and procurement of construction materials. Each of the team members has a QA program approved by the US Department of Energy (DOE) Oak Ridge Operations. This project-specific QA project plan (QAPP), which is applicable to all project activities, identifies and integrates the specific QA requirements from the participant's QA programs that are necessary for this project

  4. Volcanism and hydrothermalism on a hotspot-influenced ridge: Comparing Reykjanes Peninsula and Reykjanes Ridge, Iceland

    Science.gov (United States)

    Pałgan, Dominik; Devey, Colin W.; Yeo, Isobel A.

    2017-12-01

    Current estimates indicate that the number of high-temperature vents (one of the primary pathways for the heat extraction from the Earth's mantle) - at least 1 per 100 km of axial length - scales with spreading rate and should scale with crustal thickness. But up to present, shallow ridge axes underlain by thick crust show anomalously low incidences of high-temperature activity. Here we compare the Reykjanes Ridge, an abnormally shallow ridge with thick crust and only one high-temperature vent known over 900 km axial length, to the adjacent subaerial Reykjanes Peninsula (RP), which is characterized by high-temperature geothermal sites confined to four volcanic systems transected by fissure swarms with young (Holocene) volcanic activity, multiple faults, cracks and fissures, and continuous seismic activity. New high-resolution bathymetry (gridded at 60 m) of the Reykjanes Ridge between 62°30‧N and 63°30‧N shows seven Axial Volcanic Ridges (AVR) that, based on their morphology, geometry and tectonic regime, are analogues for the volcanic systems and fissure swarms on land. We investigate in detail the volcano-tectonic features of all mapped AVRs and show that they do not fit with the previously suggested 4-stage evolution model for AVR construction. Instead, we suggest that AVR morphology reflects the robust or weak melt supply to the system and two (or more) eruption mechanisms may co-exist on one AVR (in contrast to 4-stage evolution model). Our interpretations indicate that, unlike on the Reykjanes Peninsula, faults on and around AVRs do not cluster in orientation domains but all are subparallel to the overall strike of AVRs (orthogonal to spreading direction). High abundance of seamounts shows that the region centered at 62°47‧N and 25°04‧W (between AVR-5 and -6) is volcanically robust while the highest fault density implies that AVR-1 and southern part of AVR-6 rather undergo period of melt starvation. Based on our observations and interpretations we

  5. Geochemistry of the Arbuckle-Simpson Aquifer

    Science.gov (United States)

    Christenson, Scott; Hunt, Andrew G.; Parkhurst, David L.; Osborn, Noel I.

    2009-01-01

    The Arbuckle-Simpson aquifer in south-central Oklahoma provides water for public supply, farms, mining, wildlife conservation, recreation, and the scenic beauty of springs, streams, and waterfalls. A new understanding of the aquifer flow system was developed as part of the Arbuckle-Simpson Hydrology Study, done in 2003 through 2008 as a collaborative research project between the State of Oklahoma and the Federal government. The U.S. Geological Survey collected 36 water samples from 32 wells and springs in the Arbuckle-Simpson aquifer in 2004 through 2006 for geochemical analyses of major ions, trace elements, isotopes of oxygen and hydrogen, dissolved gases, and dating tracers. The geochemical analyses were used to characterize the water quality in the aquifer, to describe the origin and movement of ground water from recharge areas to discharge at wells and springs, and to determine the age of water in the aquifer.

  6. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas

    Energy Technology Data Exchange (ETDEWEB)

    Musgrove, M., E-mail: mmusgrov@usgs.gov [U.S. Geological Survey, 1505 Ferguson Lane, Austin, TX 78754 (United States); Opsahl, S.P. [U.S. Geological Survey, 5563 DeZavala, Ste. 290, San Antonio, TX 78249 (United States); Mahler, B.J. [U.S. Geological Survey, 1505 Ferguson Lane, Austin, TX 78754 (United States); Herrington, C. [City of Austin Watershed Protection Department, Austin, TX 78704 (United States); Sample, T.L. [U.S. Geological Survey, 19241 David Memorial Dr., Ste. 180, Conroe, TX 77385 (United States); Banta, J.R. [U.S. Geological Survey, 5563 DeZavala, Ste. 290, San Antonio, TX 78249 (United States)

    2016-10-15

    Many karst regions are undergoing rapid population growth and expansion of urban land accompanied by increases in wastewater generation and changing patterns of nitrate (NO{sub 3}{sup −}) loading to surface and groundwater. We investigate variability and sources of NO{sub 3}{sup −} in a regional karst aquifer system, the Edwards aquifer of central Texas. Samples from streams recharging the aquifer, groundwater wells, and springs were collected during 2008–12 from the Barton Springs and San Antonio segments of the Edwards aquifer and analyzed for nitrogen (N) species concentrations and NO{sub 3}{sup −} stable isotopes (δ{sup 15}N and δ{sup 18}O). These data were augmented by historical data collected from 1937 to 2007. NO{sub 3}{sup −} concentrations and discharge data indicate that short-term variability (days to months) in groundwater NO{sub 3}{sup −} concentrations in the Barton Springs segment is controlled by occurrence of individual storms and multi-annual wet-dry cycles, whereas the lack of short-term variability in groundwater in the San Antonio segment indicates the dominance of transport along regional flow paths. In both segments, longer-term increases (years to decades) in NO{sub 3}{sup −} concentrations cannot be attributed to hydrologic conditions; rather, isotopic ratios and land-use change indicate that septic systems and land application of treated wastewater might be the source of increased loading of NO{sub 3}{sup −}. These results highlight the vulnerability of karst aquifers to NO{sub 3}{sup −} contamination from urban wastewater. An analysis of N-species loading in recharge and discharge for the Barton Springs segment during 2008–10 indicates an overall mass balance in total N, but recharge contains higher concentrations of organic N and lower concentrations of NO{sub 3}{sup −} than does discharge, consistent with nitrification of organic N within the aquifer and consumption of dissolved oxygen. This study demonstrates

  7. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas

    International Nuclear Information System (INIS)

    Musgrove, M.; Opsahl, S.P.; Mahler, B.J.; Herrington, C.; Sample, T.L.; Banta, J.R.

    2016-01-01

    Many karst regions are undergoing rapid population growth and expansion of urban land accompanied by increases in wastewater generation and changing patterns of nitrate (NO 3 − ) loading to surface and groundwater. We investigate variability and sources of NO 3 − in a regional karst aquifer system, the Edwards aquifer of central Texas. Samples from streams recharging the aquifer, groundwater wells, and springs were collected during 2008–12 from the Barton Springs and San Antonio segments of the Edwards aquifer and analyzed for nitrogen (N) species concentrations and NO 3 − stable isotopes (δ 15 N and δ 18 O). These data were augmented by historical data collected from 1937 to 2007. NO 3 − concentrations and discharge data indicate that short-term variability (days to months) in groundwater NO 3 − concentrations in the Barton Springs segment is controlled by occurrence of individual storms and multi-annual wet-dry cycles, whereas the lack of short-term variability in groundwater in the San Antonio segment indicates the dominance of transport along regional flow paths. In both segments, longer-term increases (years to decades) in NO 3 − concentrations cannot be attributed to hydrologic conditions; rather, isotopic ratios and land-use change indicate that septic systems and land application of treated wastewater might be the source of increased loading of NO 3 − . These results highlight the vulnerability of karst aquifers to NO 3 − contamination from urban wastewater. An analysis of N-species loading in recharge and discharge for the Barton Springs segment during 2008–10 indicates an overall mass balance in total N, but recharge contains higher concentrations of organic N and lower concentrations of NO 3 − than does discharge, consistent with nitrification of organic N within the aquifer and consumption of dissolved oxygen. This study demonstrates that subaqueous nitrification of organic N in the aquifer, as opposed to in soils, might be a

  8. Hydrogeology of the Cambrian-Ordovician aquifer system in the northern Midwest: B in Regional aquifer-system analysis

    Science.gov (United States)

    Young, H.L.; Siegel, D.I.

    1992-01-01

    The Cambrian-Ordovician aquifer system contains the most extensive and continuous aquifers in the northern Midwest of the United States. It is the source of water for many municipalities, industries, and rural water users. Since the beginning of ground-water development from the aquifer system in the late 1800's, hydraulic heads have declined hundreds of feet in the heavily pumped Chicago-Milwaukee area and somewhat less in other metropolitan areas. The U.S. Geological Survey has completed a regional assessment of this aquifer system within a 161,000-square-mile area encompassing northern Illinois, northwestern Indiana, Iowa, southeastern Minnesota, northern Missouri, and Wisconsin.

  9. Reliable yields of public water-supply wells in the fractured-rock aquifers of central Maryland, USA

    Science.gov (United States)

    Hammond, Patrick A.

    2018-02-01

    Most studies of fractured-rock aquifers are about analytical models used for evaluating aquifer tests or numerical methods for describing groundwater flow, but there have been few investigations on how to estimate the reliable long-term drought yields of individual hard-rock wells. During the drought period of 1998 to 2002, many municipal water suppliers in the Piedmont/Blue Ridge areas of central Maryland (USA) had to institute water restrictions due to declining well yields. Previous estimates of the yields of those wells were commonly based on extrapolating drawdowns, measured during short-term single-well hydraulic pumping tests, to the first primary water-bearing fracture in a well. The extrapolations were often made from pseudo-equilibrium phases, frequently resulting in substantially over-estimated well yields. The methods developed in the present study to predict yields consist of extrapolating drawdown data from infinite acting radial flow periods or by fitting type curves of other conceptual models to the data, using diagnostic plots, inverse analysis and derivative analysis. Available drawdowns were determined by the positions of transition zones in crystalline rocks or thin-bedded consolidated sandstone/limestone layers (reservoir rocks). Aquifer dewatering effects were detected by type-curve matching of step-test data or by breaks in the drawdown curves constructed from hydraulic tests. Operational data were then used to confirm the predicted yields and compared to regional groundwater levels to determine seasonal variations in well yields. Such well yield estimates are needed by hydrogeologists and water engineers for the engineering design of water systems, but should be verified by the collection of long-term monitoring data.

  10. Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges

    Science.gov (United States)

    Langmuir, Charles H.; Klein, Emily M.; Plank, Terry

    Mid-ocean ridge basalts (MORB) are a consequence of pressure-release melting beneath ocean ridges, and contain much information concerning melt formation, melt migration and heterogeneity within the upper mantle. MORB major element chemical systematics can be divided into global and local aspects, once they have been corrected for low pressure fractionation and interlaboratory biases. Regional average compositions for ridges unaffected by hot spots ("normal" ridges) can be used to define the global correlations among normalized Na2O, FeO, TiO2 and SiO2 contents, CaO/Al2O3 ratios, axial depth and crustal thickness. Back-arc basins show similar correlations, but are offset to lower FeO and TiO2 contents. Some hot spots, such as the Azores and Galapagos, disrupt the systematics of nearby ridges and have the opposite relationships between FeO, Na2O and depth over distances of 1000 km. Local variations in basalt chemistry from slow- and fast-spreading ridges are distinct from one another. On slow-spreading ridges, correlations among the elements cross the global vector of variability at a high angle. On the fast-spreading East Pacific Rise (EPR), correlations among the elements are distinct from both global and slow-spreading compositional vectors, and involve two components of variation. Spreading rate does not control the global correlations, but influences the standard deviations of axial depth, crustal thickness, and MgO contents of basalts. Global correlations are not found in very incompatible trace elements, even for samples far from hot spots. Moderately compatible trace elements for normal ridges, however, correlate with the major elements. Trace element systematics are significantly different for the EPR and the mid-Atlantic Ridge (MAR). Normal portions of the MAR are very depleted in REE, with little variability; hot spots cause large long wavelength variations in REE abundances. Normal EPR basalts are significantly more enriched than MAR basalts from normal

  11. Preliminary hydrogeologic assessment and study plan for a regional ground-water resource investigation of the Blue Ridge and Piedmont provinces of North Carolina

    Science.gov (United States)

    Daniel, Charles C.; Dahlen, Paul R.

    2002-01-01

    Prolonged drought, allocation of surface-water flow, and increased demands on ground-water supplies resulting from population growth are focuses for the need to evaluate ground-water resources in the Blue Ridge and Piedmont Provinces of North Carolina. Urbanization and certain aspects of agricultural production also have caused increased concerns about protecting the quality of ground water in this region.More than 75 percent of the State's population resides in the Blue Ridge and Piedmont Provinces in an area that covers 30,544 square miles and 65 counties. Between 1940 and 2000, the population in the Piedmont and Blue Ridge Provinces increased from 2.66 to 6.11 million; most of this increase occurred in the Piedmont. Of the total population, an estimated 1.97 million people, or 32.3 percent (based on the 1990 census), relied on ground water for a variety of uses, including commercial, industrial, and most importantly, potable supplies.Ground water in the Blue Ridge and Piedmont traditionally has not been considered as a source for large supplies, primarily because of readily available and seemingly limitless surface-water supplies, and the perception that ground water in the Blue Ridge and Piedmont Provinces occurs in a complex, generally heterogeneous geologic environment. Some reluctance to use ground water for large supplies derives from the reputation of aquifers in these provinces for producing low yields to wells, and the few high-yield wells that are drilled seem to be scattered in areas distant from where they are needed. Because the aquifers in these provinces are shallow, they also are susceptible to contamination by activities on the land surface.In response to these issues, the North Carolina Legislature supported the creation of a Resource Evaluation Program to ensure the long-term availability, sustainability, and quality of ground water in the State. As part of the Resource Evaluation Program, the North Carolina Division of Water Quality

  12. Aquifer geochemistry at potential aquifer storage and recovery sites in coastal plain aquifers in the New York city area, USA

    Science.gov (United States)

    Brown, C.J.; Misut, P.E.

    2010-01-01

    The effects of injecting oxic water from the New York city (NYC) drinking-water supply and distribution system into a nearby anoxic coastal plain aquifer for later recovery during periods of water shortage (aquifer storage and recovery, or ASR) were simulated by a 3-dimensional, reactive-solute transport model. The Cretaceous aquifer system in the NYC area of New York and New Jersey, USA contains pyrite, goethite, locally occurring siderite, lignite, and locally varying amounts of dissolved Fe and salinity. Sediment from cores drilled on Staten Island and western Long Island had high extractable concentrations of Fe, Mn, and acid volatile sulfides (AVS) plus chromium-reducible sulfides (CRS) and low concentrations of As, Pb, Cd, Cr, Cu and U. Similarly, water samples from the Lloyd aquifer (Cretaceous) in western Long Island generally contained high concentrations of Fe and Mn and low concentrations of other trace elements such as As, Pb, Cd, Cr, Cu and U, all of which were below US Environmental Protection Agency (USEPA) and NY maximum contaminant levels (MCLs). In such aquifer settings, ASR operations can be complicated by the oxidative dissolution of pyrite, low pH, and high concentrations of dissolved Fe in extracted water.The simulated injection of buffered, oxic city water into a hypothetical ASR well increased the hydraulic head at the well, displaced the ambient groundwater, and formed a spheroid of injected water with lower concentrations of Fe, Mn and major ions in water surrounding the ASR well, than in ambient water. Both the dissolved O2 concentrations and the pH of water near the well generally increased in magnitude during the simulated 5-a injection phase. The resultant oxidation of Fe2+ and attendant precipitation of goethite during injection provided a substrate for sorption of dissolved Fe during the 8-a extraction phase. The baseline scenario with a low (0.001M) concentration of pyrite in aquifer sediments, indicated that nearly 190% more water

  13. An aerial radiological survey of the Oak Ridge Reservation and surrounding area, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Maurer, R.J.

    1989-09-01

    An aerial radiological survey of the Oak Ridge Reservation (ORR) and surrounding area in Oak Ridge, Tennessee, was conducted from September 12--29, 1989. The purpose of the survey was to measure and document the site's terrestrial radiological environment for use in effective environmental management and emergency response planning. The aerial survey was flown at an altitude of 91 meters (300 feet) along a series of parallel lines 152 meters (500 feet) apart. The survey encompassed an area of 440 square kilometers (170 square miles) as defined by the Tennessee Valley Authority Map S-16A of the entire Oak Ridge Reservation and adjacent area. The results of the aerial survey are reported as inferred exposure rates at 1 meter above ground level (AGL) in the form of a radiation contour map. Typical background exposure rates were found to vary from 5 to 14 microroentgens per hour (μR/h). The man-made radionuclides, cobalt-60, cesium-137, and protactinium-234m (a radioisotope indicative of depleted uranium), were detected at several facilities on the site. In support of the aerial survey, ground-based exposure rate and soil sample measurements were obtained at several locations within the survey boundary. In addition to the large scale aerial survey, two special flyovers were requested by the Department of Energy. The first request was to conduct a survey of a 1-mile x 2-mile area in south Knoxville, Tennessee. The area had been used previously to store contaminated scrap metals from operations at the Oak Ridge site. The second request was to fly several passes over a 5-mile length of railroad tracks leading from the Oak Ridge Y-12 Plant, north through the city of Oak Ridge. The railroad tracks had been previously used in the transport of cesium-137

  14. Oak Ridge Reservation environmental report for 1991

    International Nuclear Information System (INIS)

    Mucke, P.C.

    1992-10-01

    The Oak Ridge Reservation Environmental Report for 1991 is the 21st in a series that began in 1971. The report documents the annual results of a comprehensive program to estimate the impact of the US Department of Energy (DOE) Oak Ridge operations upon human health and the environment. The report is organized into ten sections that address various aspects of effluent monitoring, environmental surveillance, dose assessment, waste management, and quality assurance. A compliance summary gives a synopsis of the status of each facility relative to applicable state and federal regulations. Data are included for the following: Oak Ridge Y-12 Plant; Oak Ridge National Laboratory (ORNL); and Oak Ridge K-25 Site. Effluent monitoring and environmental surveillance programs are intended to serve as effective indicators of contaminant releases and ambient contaminant concentrations that have the potential to result in adverse impacts to human health and the environment

  15. Hydrology of the shallow aquifer and uppermost semiconfined aquifer near El Paso, Texas

    Science.gov (United States)

    White, D.E.; Baker, E.T.; Sperka, Roger

    1997-01-01

    The availability of fresh ground water in El Paso and adjacent areas that is needed to meet increased demand for water supply concerns local, State, and Federal agencies. The Hueco bolson is the principal aquifer in the El Paso area. Starting in the early 1900s and continuing to the 1950s, most of the municipal and industrial water supply in El Paso was pumped from the Hueco bolson aquifer from wells in and near the Rio Grande Valley and the international border. The Rio Grande is the principal surface-water feature in the El Paso area, and a major source of recharge to the shallow aquifer (Rio Grande alluvium) within the study area is leakage of flow from the Rio Grande.

  16. Behaviour and fate of nine recycled water trace organics during managed aquifer recharge in an aerobic aquifer

    Science.gov (United States)

    Patterson, B. M.; Shackleton, M.; Furness, A. J.; Bekele, E.; Pearce, J.; Linge, K. L.; Busetti, F.; Spadek, T.; Toze, S.

    2011-03-01

    The fate of nine trace organic compounds was evaluated during a 12 month large-scale laboratory column experiment. The columns were packed with aquifer sediment and evaluated under natural aerobic and artificial anaerobic geochemical conditions, to assess the potential for natural attenuation of these compounds during aquifer passage associated with managed aquifer recharge (MAR). The nine trace organic compounds were bisphenol A (BPA), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMOR), carbamazepine, oxazepam, iohexol and iodipamide. In the low organic carbon content Spearwood sediment, all trace organics were non-retarded with retardation coefficients between 1.0 and 1.2, indicating that these compounds would travel at near groundwater velocities within the aquifer. The natural aerobic geochemical conditions provided a suitable environment for the rapid degradation for BPA, E2, iohexol (half life NDMA and NMOR) did not degrade under either aerobic or anaerobic aquifer geochemical conditions (half life > 50 days). Field-based validation experiments with carbamazepine and oxazepam also showed no degradation. If persistent trace organics are present in recycled waters at concentrations in excess of their intended use, natural attenuation during aquifer passage alone may not result in extracted water meeting regulatory requirements. Additional pre treatment of the recycled water would therefore be required.

  17. Behaviour and fate of nine recycled water trace organics during managed aquifer recharge in an aerobic aquifer.

    Science.gov (United States)

    Patterson, B M; Shackleton, M; Furness, A J; Bekele, E; Pearce, J; Linge, K L; Busetti, F; Spadek, T; Toze, S

    2011-03-25

    The fate of nine trace organic compounds was evaluated during a 12month large-scale laboratory column experiment. The columns were packed with aquifer sediment and evaluated under natural aerobic and artificial anaerobic geochemical conditions, to assess the potential for natural attenuation of these compounds during aquifer passage associated with managed aquifer recharge (MAR). The nine trace organic compounds were bisphenol A (BPA), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMOR), carbamazepine, oxazepam, iohexol and iodipamide. In the low organic carbon content Spearwood sediment, all trace organics were non-retarded with retardation coefficients between 1.0 and 1.2, indicating that these compounds would travel at near groundwater velocities within the aquifer. The natural aerobic geochemical conditions provided a suitable environment for the rapid degradation for BPA, E2, iohexol (half life aquifer geochemical conditions (half life >50days). Field-based validation experiments with carbamazepine and oxazepam also showed no degradation. If persistent trace organics are present in recycled waters at concentrations in excess of their intended use, natural attenuation during aquifer passage alone may not result in extracted water meeting regulatory requirements. Additional pre treatment of the recycled water would therefore be required. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  18. Dynamical instability produces transform faults at mid-ocean ridges.

    Science.gov (United States)

    Gerya, Taras

    2010-08-27

    Transform faults at mid-ocean ridges--one of the most striking, yet enigmatic features of terrestrial plate tectonics--are considered to be the inherited product of preexisting fault structures. Ridge offsets along these faults therefore should remain constant with time. Here, numerical models suggest that transform faults are actively developing and result from dynamical instability of constructive plate boundaries, irrespective of previous structure. Boundary instability from asymmetric plate growth can spontaneously start in alternate directions along successive ridge sections; the resultant curved ridges become transform faults within a few million years. Fracture-related rheological weakening stabilizes ridge-parallel detachment faults. Offsets along the transform faults change continuously with time by asymmetric plate growth and discontinuously by ridge jumps.

  19. Hydrochemical processes in a shallow coal seam gas aquifer and its overlying stream–alluvial system: implications for recharge and inter-aquifer connectivity

    International Nuclear Information System (INIS)

    Duvert, Clément; Raiber, Matthias; Owen, Daniel D.R.; Cendón, Dioni I.; Batiot-Guilhe, Christelle; Cox, Malcolm E.

    2015-01-01

    Highlights: • Major ions and isotopes used to study inter-aquifer mixing in a shallow CSG setting. • Considerable heterogeneity in the water composition of the coal-bearing aquifer. • Rapid recharge of the coal-bearing aquifer through highly fractured igneous rocks. • Potential mixing between the coal-bearing aquifer and downstream alluvial aquifer. • Need to consider the seasonal influences on inter-aquifer mixing in CSG settings. - Abstract: In areas of potential coal seam gas (CSG) development, understanding interactions between coal-bearing strata and adjacent aquifers and streams is of highest importance, particularly where CSG formations occur at shallow depth. This study tests a combination of hydrochemical and isotopic tracers to investigate the transient nature of hydrochemical processes, inter-aquifer mixing and recharge in a catchment where the coal-bearing aquifer is in direct contact with the alluvial aquifer and surface drainage network. A strong connection was observed between the main stream and underlying alluvium, marked by a similar evolution from fresh Ca–Mg–HCO 3 waters in the headwaters towards brackish Ca–Na–Cl composition near the outlet of the catchment, driven by evaporation and transpiration. In the coal-bearing aquifer, by contrast, considerable site-to-site variations were observed, although waters generally had a Na–HCO 3 –Cl facies and high residual alkalinity values. Increased salinity was controlled by several coexisting processes, including transpiration by plants, mineral weathering and possibly degradation of coal organic matter. Longer residence times and relatively enriched carbon isotopic signatures of the downstream alluvial waters were suggestive of potential interactions with the shallow coal-bearing aquifer. The examination of temporal variations in deuterium excess enabled detection of rapid recharge of the coal-bearing aquifer through highly fractured igneous rocks, particularly at the catchment

  20. Isotopic study of the Continental Intercalaire aquifer and its relationship with other aquifers of the northern Sahara

    International Nuclear Information System (INIS)

    Gonfiantini, R.; Sauzay, G.; Payne, B.R.; Conrad, G.; Fontes, J.Ch.

    1974-01-01

    The Northern Sahara contains several aquifers, the largest of which is that of the Continental Intercalaire formations. In its eastern part the aquifer is confined and presents a very homogeneous isotopic composition. The 14 C activity is low or zero except in the outcrop zones of the north (Saharan Atlas), the east (Dahar) and the south (Tinrhert), all of which are recharge zones. In these areas the isotopic composition does not differ appreciably from that of the old water in the confined part of the aquifer. In the western part, where the reservoir outcrops widely, the 14 C activities show the extent of the local recharge. The heavy isotope content indicates the overflow of the surface aquifer of the western Grand Erg into the Continental Intercalaire over the whole Gourara front. The mixtures thus formed pass under the Tademait and drain towards the Touat. In the resurgence zone of the Gulf of G abes in Tunisia the heavy-isotope content confirms the recharging of the aquifer of the Complex terminal by drainage of water from the Continental Intercalaire through the El-Hamma fault system. The water then runs eastwards, mixing with local contributions. The marine Miocene confined aquifer of Zarzis-Djerba in the Gulf of Gabes receives no contribution from the Continental Intercalaire. The water in the aquifer of the western Grand Erg indicates an evaporation mechanism, probably peculiar to the dune systems, which gives rise to heavy-isotope enrichment compared with the recharge of other types of formations. (author) [fr

  1. Population Characteristics and Seasonal Movement Patterns of the Rattlesnake Hills Elk Herd - Status Report 2000

    Energy Technology Data Exchange (ETDEWEB)

    Tiller, B.L.; Zufelt, R.K.; Turner, S.; Cadwell, L.L.; Bender, L.; Turner, G.K.

    2000-10-10

    Population characteristics of the Rattlesnake Hills elk herd indicate reduced herd growth rates from the 1980s compared to the 1990s (McCorquodale 1988; Eberhardt 1996). However, the population continued to grow approximately 25% annually through the 1990s, reaching a high of 838 animals in summer 1999. Calf recruitment rates appear to be cyclic and are likely related to reduced calf survival during the first weeks of life; however, late-term abortions may also have occurred. The cause(s) could be predator-related and/or a function of shifts in nutritional condition (age-class distributions, assuming older-age cows are less likely to recruit calves, major climate shifts) or changes in the human-related disturbances during gestation, and/or calf rearing periods. In fall 1999 and spring 2000, the population was reduced from 838 individuals to 660 individuals. The primary controlling factors were modified hunting seasons on private and state lands and the large-scale roundup conducted in spring 2000. Continued removal of animals (particularly females) within the population will be pivotal to maintain the population at a level that minimizes land damage complaints, animal-vehicle collisions, use of central Hanford areas, and deterioration of natural resources.

  2. AQUIFER IN AJAOKUTA, SOUTHWESTERN NIGERIA

    African Journals Online (AJOL)

    2005-03-08

    Mar 8, 2005 ... To establish the feasibility of water supply in a basement complex area ofAjaokuta, Southwestern Nigeria, pumping test results were used to investigate the storage properties and groundwater potential of the aquifer. The aquifer system consists of weathered and weathered/fractured zone of decomposed ...

  3. Wrinkle Ridges and Young Fresh Crater

    Science.gov (United States)

    2002-01-01

    (Released 10 May 2002) The Science Wrinkle ridges are a very common landform on Mars, Mercury, Venus, and the Moon. These ridges are linear to arcuate asymmetric topographic highs commonly found on smooth plains. The origin of wrinkle ridges is not certain and two leading hypotheses have been put forth by scientists over the past 40 years. The volcanic model calls for the extrusion of high viscosity lavas along linear conduits. This thick lava accumulated over these conduits and formed the ridges. The other model is tectonic and advocates that the ridges are formed by compressional faulting and folding. Today's THEMIS image is of the ridged plains of Lunae Planum located between Kasei Valles and Valles Marineris in the northern hemisphere of the planet. Wrinkle ridges are found mostly along the eastern side of the image. The broadest wrinkle ridges in this image are up to 2 km wide. A 3 km diameter young fresh crater is located near the bottom of the image. The crater's ejecta blanket is also clearly seen surrounding the sharp well-defined crater rim. These features are indicative of a very young crater that has not been subjected to erosional processes. The Story The great thing about the solar system is that planets are both alike and different. They're all foreign enough to be mysterious and intriguing, and yet familiar enough to be seen as planetary 'cousins.' By comparing them, we can learn a lot about how planets form and then evolve geologically over time. Crinkled over smooth plains, the long, wavy raised landforms seen here are called 'wrinkle ridges,' and they've been found on Mars, Mercury, Venus, and the Moon - that is, on rocky bodies that are a part of our inner solar system. We know from this observation that planets (and large-enough moons) follow similar processes. What we don't know for sure is HOW these processes work. Scientists have been trying to understand how wrinkle ridges form for 40 years, and they still haven't reached a conclusion. That

  4. Hydrological controls on transient aquifer storage in a karst watershed

    Science.gov (United States)

    Spellman, P.; Martin, J.; Gulley, J. D.

    2017-12-01

    While surface storage of floodwaters is well-known to attenuate flood peaks, transient storage of floodwaters in aquifers is a less recognized mechanism of flood peak attenuation. The hydraulic gradient from aquifer to river controls the magnitude of transient aquifer storage and is ultimately a function of aquifer hydraulic conductivity, and effective porosity. Because bedrock and granular aquifers tend to have lower hydraulic conductivities and porosities, their ability to attenuate flood peaks is generally small. In karst aquifers, however, extensive cave systems create high hydraulic conductivities and porosities that create low antecedent hydraulic gradients between aquifers and rivers. Cave springs can reverse flow during high discharges in rivers, temporarily storing floodwaters in the aquifer thus reducing the magnitude of flood discharge downstream. To date however, very few studies have quantified the magnitude or controls of transient aquifer storage in karst watersheds. We therefore investigate controls on transient aquifer storage by using 10 years of river and groundwater data from the Suwannee River Basin, which flows over the karstic upper Floridan aquifer in north-central Florida. We use multiple linear regression to compare the effects of three hydrological controls on the magnitude of transient aquifer storage: antecedent stage, recharge and slope of hydrograph rise. We show the dominant control on transient aquifer storage is antecedent stage, whereby lower stages result in greater magnitudes of transient aquifer storage. Our results suggest that measures of groundwater levels prior to an event can be useful in determining whether transient aquifer storage will occur and may provide a useful metric for improving predictions of flood magnitudes.

  5. Oak Ridge Reservation environmental report for 1989

    International Nuclear Information System (INIS)

    Jacobs, V.A.; Wilson, A.R.

    1990-10-01

    This two-volume report, the Oak Ridge Reservation Environmental Report for 1989, is the nineteenth in an annual series that began in 1971. It reports the results of a comprehensive, year-round program to monitor the impact of operations at the three major US Department of Energy (DOE) production and research installations in Oak Ridge on the immediate areas' and surrounding region's groundwater and surface waters, soil, air quality, vegetation and wildlife, and through these multiple and varied pathways, the resident human population. Information is presented for the environmental monitoring Quality Assurance (QA) Program, audits and reviews, waste management activities, land special environmental studies. Data are included for the Oak Ridge Y-12 Plant, Oak Ridge National Laboratory (ORNL), and Oak Ridge Gaseous Diffusion Plant (ORGDP). Volume 1 presents narratives, summaries, and conclusions based on environmental monitoring at the three DOE installations and in the surrounding environs during calendar year (CY) 1989. Volume 1 is intended to be a ''stand-alone'' report about the Oak Ridge Reservation (ORR) for the reader who does not want an in-depth review of 1989 data. Volume 2 presents the detailed data from which these conclusions have been drawn and should be used in conjunction with Volume 1

  6. Oak Ridge Reservation environmental report for 1989

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, V.A.; Wilson, A.R. (eds.)

    1990-10-01

    This two-volume report, the Oak Ridge Reservation Environmental Report for 1989, is the nineteenth in an annual series that began in 1971. It reports the results of a comprehensive, year-round program to monitor the impact of operations at the three major US Department of Energy (DOE) production and research installations in Oak Ridge on the immediate areas' and surrounding region's groundwater and surface waters, soil, air quality, vegetation and wildlife, and through these multiple and varied pathways, the resident human population. Information is presented for the environmental monitoring Quality Assurance (QA) Program, audits and reviews, waste management activities, land special environmental studies. Data are included for the Oak Ridge Y-12 Plant, Oak Ridge National Laboratory (ORNL), and Oak Ridge Gaseous Diffusion Plant (ORGDP). Volume 1 presents narratives, summaries, and conclusions based on environmental monitoring at the three DOE installations and in the surrounding environs during calendar year (CY) 1989. Volume 1 is intended to be a stand-alone'' report about the Oak Ridge Reservation (ORR) for the reader who does not want an in-depth review of 1989 data. Volume 2 presents the detailed data from which these conclusions have been drawn and should be used in conjunction with Volume 1.

  7. Hydrogeology - AQUIFER_SYSTEMS_BEDROCK_IDNR_IN: Bedrock Aquifer Systems of Indiana (Indiana Department of Natural Resources, 1:500,000, Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — AQUIFER_SYSTEMS_BEDROCK_IDNR_IN is a polygon shapefile that shows bedrock aquifer systems of the State of Indiana. The source scale of the map depicting the aquifers...

  8. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas.

    Science.gov (United States)

    Musgrove, MaryLynn; Opsahl, Stephen P.; Mahler, Barbara J.; Herrington, Chris; Sample, Thomas; Banta, John

    2016-01-01

    Many karst regions are undergoing rapid population growth and expansion of urban land accompanied by increases in wastewater generation and changing patterns of nitrate (NO3−) loading to surface and groundwater. We investigate variability and sources of NO3− in a regional karst aquifer system, the Edwards aquifer of central Texas. Samples from streams recharging the aquifer, groundwater wells, and springs were collected during 2008–12 from the Barton Springs and San Antonio segments of the Edwards aquifer and analyzed for nitrogen (N) species concentrations and NO3− stable isotopes (δ15N and δ18O). These data were augmented by historical data collected from 1937 to 2007. NO3− concentrations and discharge data indicate that short-term variability (days to months) in groundwater NO3− concentrations in the Barton Springs segment is controlled by occurrence of individual storms and multi-annual wet-dry cycles, whereas the lack of short-term variability in groundwater in the San Antonio segment indicates the dominance of transport along regional flow paths. In both segments, longer-term increases (years to decades) in NO3− concentrations cannot be attributed to hydrologic conditions; rather, isotopic ratios and land-use change indicate that septic systems and land application of treated wastewater might be the source of increased loading of NO3−. These results highlight the vulnerability of karst aquifers to NO3− contamination from urban wastewater. An analysis of N-species loading in recharge and discharge for the Barton Springs segment during 2008–10 indicates an overall mass balance in total N, but recharge contains higher concentrations of organic N and lower concentrations of NO3−than does discharge, consistent with nitrification of organic N within the aquifer and consumption of dissolved oxygen. This study demonstrates that subaqueous nitrification of organic N in the aquifer, as opposed to in soils, might be a previously

  9. Alveolar ridge rehabilitation to increase full denture retention and stability

    Directory of Open Access Journals (Sweden)

    Mefina Kuntjoro

    2010-12-01

    Full Text Available Background: Atrophic mandibular alveolar ridge generally complicates prostetic restoration expecially full denture. Low residual alveolar ridge and basal seat can cause unstable denture, permanent ulcer, pain, neuralgia, and mastication difficulty. Pre-proshetic surgery is needed to improve denture retention and stability. Augmentation is a major surgery to increase vertical height of the atrophic mandible while vestibuloplasty is aimed to increase the denture bearing area. Purpose: The augmentation and vestibuloplasty was aimed to provide stability and retentive denture atrophic mandibular alveolar ridge. Case: A 65 years old woman patient complained about uncomfortable denture. Clinical evaluate showed flat ridge in the anterior mandible, flabby tissue and candidiasis, while residual ridge height was classified into class IV. Case management: Augmentation using autograph was conducted as the mandible vertical height is less than 15 mm. Autograph was used to achieve better bone quantity and quality. Separated alveolar ridge was conducted from left to right canine region and was elevated 0.5 mm from the previous position to get new ridge in the anterior region. The separated alveolar ridge was fixated by using T-plate and ligature wire. Three months after augmentation fixation appliances was removed vestibuloplasty was performed to increase denture bearing area that can make a stable and retentive denture. Conclusion: Augmentation and vestibuloplasty can improve flat ridge to become prominent.Latar belakang: Ridge mandibula yang atrofi pada umumnya mempersulit pembuatan restorasi prostetik terutama gigi tiruan lengkap (GTL. Residual alveolar ridge dan basal seat yang rendah menyebabkan gigi tiruan menjadi tidak stabil, menimbulkan ulser permanen, nyeri, neuralgia, dan kesulitan mengunyah. Tujuan: Augmentasi dan vestibuloplasti pada ridge mandibula yang atrofi dilakukan untuk menciptakan gigi tiruan yang stabil dan retentive. Kasus: Pasien wanita

  10. Ground-water flow directions and estimation of aquifer hydraulic properties in the lower Great Miami River Buried Valley aquifer system, Hamilton Area, Ohio

    Science.gov (United States)

    Sheets, Rodney A.; Bossenbroek, Karen E.

    2005-01-01

    The Great Miami River Buried Valley Aquifer System is one of the most productive sources of potable water in the Midwest, yielding as much as 3,000 gallons per minute to wells. Many water-supply wells tapping this aquifer system are purposely placed near rivers to take advantage of induced infiltration from the rivers. The City of Hamilton's North Well Field consists of 10 wells near the Great Miami River, all completed in the lower Great Miami River Buried Valley Aquifer System. A well-drilling program and a multiple-well aquifer test were done to investigate ground-water flow directions and to estimate aquifer hydraulic properties in the lower part of the Great Miami River Buried Valley Aquifer System. Descriptions of lithology from 10 well borings indicate varying amounts and thickness of clay or till, and therefore, varying levels of potential aquifer confinement. Borings also indicate that the aquifer properties can change dramatically over relatively short distances. Grain-size analyses indicate an average bulk hydraulic conductivity value of aquifer materials of 240 feet per day; the geometric mean of hydraulic conductivity values of aquifer material was 89 feet per day. Median grain sizes of aquifer material and clay units were 1.3 millimeters and 0.1 millimeters, respectively. Water levels in the Hamilton North Well Field are affected by stream stage in the Great Miami River and barometric pressure. Bank storage in response to stream stage is evident. Results from a multiple-well aquifer test at the well field indicate, as do the lithologic descriptions, that the aquifer is semiconfined in some areas and unconfined in others. Transmissivity and storage coefficient of the semiconfined part of the aquifer were 50,000 feet squared per day and 5x10-4, respectively. The average hydraulic conductivity (450 feet per day) based on the aquifer test is reasonable for glacial outwash but is higher than calculated from grain-size analyses, implying a scale effect

  11. Ridge and Furrow Fields

    DEFF Research Database (Denmark)

    Møller, Per Grau

    2016-01-01

    Ridge and furrow is a specific way of ploughing which makes fields of systematic ridges and furrows like a rubbing washboard. They are part of an overall openfield system, but the focus in this paper is on the functionality of the fields. There are many indications that agro-technological reasons...... systems and the establishment of basic structures like villages (with churches) and townships and states (in northern Europe). The fields can be considered as a resilient structure lasting for 800 years, along with the same basic physical structures in society....

  12. Distribution of anthropogenic fill material within the Y-12 plant area, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Sutton, G.E. Jr.; Field, S.M.

    1995-10-01

    Widespread groundwater contamination in the vicinity of the Oak Ridge Y-12 Plant has been documented through a variety of monitoring efforts since the late 1970s. Various contaminants, most notably volatile organic compounds (VOCs), have migrated through the subsurface and formed extensive contaminant plumes within the Knox Aquifer/Maynardville Limestone, the primary exit pathway for groundwater transport within the Bear Creek Valley. In 1991, an integrated, comprehensive effort (Upper East Fork Poplar Creek [UEFPC] Phase I monitoring network) was initiated in order to (1) identify contaminant source areas within the industrialized portions of the plant and (2) define contamination migration pathways existing between the source areas and the Knox Aquifer/Maynardville Limestone. Data obtained during previous studies have indicated that extensive zones of fill and buried utility trenches may serve as preferred migration pathways. In addition, portions of UEFPC were rerouted, with several of its tributaries being filled during the initial construction of the plant. These filled surface drainage features are also believed to serve as preferred migration pathways. The identification of preferred contaminant migration pathways within the Y-12 Plant area is essential and required to refine the current Bear Creek Valley groundwater conceptual model and to assist in the selection of technically feasible and cost effective remedial strategies. This report presents the results of an initial investigation of the occurrence of manmade (anthropogenic) fill and its effect upon groundwater movement within the plant area. These interpretations are subject to revision and improvement as further investigation of the effects of the fill upon contaminant migration progresses

  13. Aquifers in coastal reclaimed lands - real world assessments

    Science.gov (United States)

    Saha, A.; Bironne, A.; Vonhögen-Peeters, L.; Lee, W. K.; Babovic, V. M.; Vermeulen, P.; van Baaren, E.; Karaoulis, M.; Blanchais, F.; Nguyen, M.; Pauw, P.; Doornenbal, P.

    2017-12-01

    Climate change and population growth are significant concerns in coastal regions around the world, where more than 30% of the world's population reside. The numbers continue to rise as coastal areas are increasingly urbanized. Urbanization creates land shortages along the coasts, which has spurred coastal reclamation activities as a viable solution. In this study, we focus on these reclamation areas; reclaimed areas in Singapore, and in the Netherlands, and investigate the potential of these reclaimed bodies as artificial aquifers that could attenuate water shortage problems in addition to their original purpose. We compare how the reclamation methods determine the hydrogeological characteristics of these manmade aquifers. We highlight similarities in freshwater lens development in the artificial shallow aquifers under natural recharge under diverse conditions, i.e. tropical and temperate zones, using numerical models. The characteristics and responses of these aquifers with dynamic freshwater-saltwater interface are contrasted against naturally occurring coastal aquifers where equilibrium was disturbed by anthropogenic activities. Finally, we assess the risks associated with subsidence and saltwater intrusion, combining measurements and numerical models, in case these aquifers are planned for Aquifer Storage and Recovery (ASR) or Managed Aquifer Recharge (MAR) strategies. Relative performances of some ASR schemes are simulated and compared in the reclaimed lands.

  14. Geology along the Blue Ridge Parkway in Virginia

    Science.gov (United States)

    Carter, Mark W.; Southworth, C. Scott; Tollo, Richard P.; Merschat, Arthur J.; Wagner, Sara; Lazor, Ava; Aleinikoff, John N.

    2017-01-01

    Detailed geologic mapping and new SHRIMP (sensitive high-resolution ion microprobe) U-Pb zircon, Ar/Ar, Lu-Hf, 14C, luminescence (optically stimulated), thermochronology (fission-track), and palynology reveal the complex Mesoproterozoic to Quaternary geology along the ~350 km length of the Blue Ridge Parkway in Virginia. Traversing the boundary of the central and southern Appalachians, rocks along the parkway showcase the transition from the para-autochthonous Blue Ridge anticlinorium of northern and central Virginia to the allochthonous eastern Blue Ridge in southern Virginia. From mile post (MP) 0 near Waynesboro, Virginia, to ~MP 124 at Roanoke, the parkway crosses the unconformable to faulted boundary between Mesoproterozoic basement in the core of the Blue Ridge anticlinorium and Neoproterozoic to Cambrian metasedimentary and metavolcanic cover rocks on the western limb of the structure. Mesoproterozoic basement rocks comprise two groups based on SHRIMP U-Pb zircon geochronology: Group I rocks (1.2-1.14 Ga) are strongly foliated orthogneisses, and Group II rocks (1.08-1.00 Ga) are granitoids that mostly lack obvious Mesoproterozoic deformational features.Neoproterozoic to Cambrian cover rocks on the west limb of the anticlinorium include the Swift Run and Catoctin Formations, and constituent formations of the Chilhowee Group. These rocks unconformably overlie basement, or abut basement along steep reverse faults. Rocks of the Chilhowee Group are juxtaposed against Cambrian rocks of the Valley and Ridge province along southeast- and northwest-dipping, high-angle reverse faults. South of the James River (MP 64), Chilhowee Group and basement rocks occupy the hanging wall of the nearly flat-lying Blue Ridge thrust fault and associated splays.South of the Red Valley high-strain zone (MP 144.5), the parkway crosses into the wholly allochthonous eastern Blue Ridge, comprising metasedimentary and meta-igneous rocks assigned to the Wills Ridge, Ashe, and Alligator

  15. Hydrogeology and Aquifer Storage and Recovery Performance in the Upper Floridan Aquifer, Southern Florida

    Science.gov (United States)

    Reese, Ronald S.; Alvarez-Zarikian, Carlos A.

    2007-01-01

    Well construction, hydraulic well test, ambient water-quality, and cycle test data were inventoried and compiled for 30 aquifer storage and recovery facilities constructed in the Floridan aquifer system in southern Florida. Most of the facilities are operated by local municipalities or counties in coastal areas, but five sites are currently being evaluated as part of the Comprehensive Everglades Restoration Plan. The relative performance of all sites with adequate cycle test data was determined, and compared with four hydrogeologic and design factors that may affect recovery efficiency. Testing or operational cycles include recharge, storage, and recovery periods that each last days or months. Cycle test data calculations were made including the potable water (chloride concentration of less than 250 milligrams per liter) recovery efficiency per cycle, total recovery efficiency per cycle, and cumulative potable water recovery efficiencies for all of the cycles at each site. The potable water recovery efficiency is the percentage of the total amount of potable water recharged for each cycle that is recovered; potable water recovery efficiency calculations (per cycle and cumulative) were the primary measures used to evaluate site performance in this study. Total recovery efficiency, which is the percent recovery at the end of each cycle, however, can be substantially higher and is the performance measure normally used in the operation of water-treatment plants. The Upper Floridan aquifer of the Floridan aquifer system currently is being used, or planned for use, at 29 of the aquifer storage and recovery sites. The Upper Floridan aquifer is continuous throughout southern Florida, and its overlying confinement is generally good; however, the aquifer contains brackish to saline ground water that can greatly affect freshwater storage and recovery due to dispersive mixing within the aquifer. The hydrogeology of the Upper Floridan varies in southern Florida; confinement

  16. Factors affecting public-supply well vulnerability in two karst aquifers.

    Science.gov (United States)

    Musgrove, MaryLynn; Katz, Brian G; Fahlquist, Lynne S; Crandall, Christy A; Lindgren, Richard J

    2014-09-01

    Karst aquifers occur in a range of climatic and geologic settings. Nonetheless, they are commonly characterized by their vulnerability to water-quality impairment. Two karst aquifers, the Edwards aquifer in south-central Texas and the Upper Floridan aquifer in western Florida, were investigated to assess factors that control the movement of contaminants to public-supply wells (PSWs). The geochemistry of samples from a selected PSW or wellfield in each aquifer was compared with that from nearby monitoring wells and regional PSWs. Geochemistry results were integrated with age tracers, flow modeling, and depth-dependent data to refine aquifer conceptual models and to identify factors that affect contaminant movement to PSWs. The oxic Edwards aquifer is vertically well mixed at the selected PSW/wellfield, although regionally the aquifer is geochemically variable downdip. The mostly anoxic Upper Floridan aquifer is affected by denitrification and also is geochemically variable with depth. In spite of considerable differences in geology and hydrogeology, the two aquifers are similarly vulnerable to anthropogenic contamination. Vulnerability in studied PSWs in both aquifers is strongly influenced by rapid karst flowpaths and the dominance of young (aquifers (nitrate, atrazine, deethylatrazine, tetrachloroethene, and chloroform). Specific consideration of water-quality protection efforts, well construction and placement, and aquifer response times to land-use changes and contaminant loading are discussed, with implications for karst groundwater management. © 2014 The Authors. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.

  17. Glacial modulation of mid-ocean ridge magmatism and anomalous Pacific Antarctic Ridge volcanism during Termination II

    Science.gov (United States)

    Asimow, P. D.; Lewis, M.; Lund, D. C.; Seeley, E.; McCart, S.; Mudahy, A.

    2017-12-01

    Glacially-driven sea level rise and fall may modulate submarine volcanism by superposing pressure changes on the tectonic decompression that causes melt production in the mantle below mid-ocean ridges. A number of recent studies have considered whether this effect is recorded in the periodicity of ridge flank bathymetry (Tolstoy, 2015; Crowley et al., 2015) but interpretation of the bathymetric data remains controversial (Goff, 2016; Olive et al., 2016). We have pursued an independent approach using hydrothermal metals in well-dated near-ridge sediment cores. Along the full length of the East Pacific Rise, in areas of the ocean with widely variable biologic productivity, there are large and consistent rises in Fe, Mn, and As concentrations during the last two glacial terminations. We interpret these cores as records of excess hydrothermal flux due to delayed delivery to the axis of excess melt generated by the preceding falls in sea level. Here we discuss the potentially related discovery, in a core near the Pacific Antarctic Ridge (PAR), of a 10 cm thick layer of basaltic ash shards up to 250 mm in size, coincident with the penultimate deglaciation (Termination II). Although the site was 8 km off-axis at the time, the glasses have major element, volatile, and trace element composition consistent with more evolved members of the axial MORB suite from the nearby ridge axis. Their morphologies are typical of pyroclastic deposits created by explosive submarine volcanism (Clague et al., 2009). We propose that a period of low magmatic flux following a sea-level rise caused cooling of crustal magmatic systems, more advanced fractionation in the axial magma chamber, and increases in viscosity and volatile concentration. We hypothesize subsequent arrival of high magmatic flux during Termination II then reactivated the system and triggered an unusually vigorous series of explosive eruptions along this segment of the PAR. Ash layers recording large eruptions such as this one

  18. Ozark Aquifer

    Data.gov (United States)

    Kansas Data Access and Support Center — These digital maps contain information on the altitude of the base and top, the extent, and the potentiometric surface of the Ozark aquifer in Kansas. The Ozark...

  19. Ridge Orientations of the Ridge-Forming Unit, Sinus Meridiani, Mars-A Fluvial Explanation

    Science.gov (United States)

    Wilkinson, M. Justin; Herridge, A.

    2013-01-01

    Imagery and MOLA data were used in an analysis of the ridge-forming rock unit (RFU) exposed in Sinus Meridiani (SM). This unit shows parallels at different scales with fluvial sedimentary bodies. We propose the terrestrial megafan as the prime analog for the RFU, and likely for other members of the layered units. Megafans are partial cones of fluvial sediment, with radii up to hundreds of km. Although recent reviews of hypotheses for the RFU units exclude fluvial hypotheses [1], inverted ridges in the deserts of Oman have been suggested as putative analogs for some ridges [2], apparently without appreciating The wider context in which these ridges have formed is a series of megafans [3], a relatively unappreciated geomorphic feature. It has been argued that these units conform to the megafan model at the regional, subregional and local scales [4]. At the regional scale suites of terrestrial megafans are known to cover large areas at the foot of uplands on all continents - a close parallel with the setting of the Meridiani sediments at the foot of the southern uplands of Mars, with its incised fluvial systems leading down the regional NW slope [2, 3] towards the sedimentary units. At the subregional scale the layering and internal discontinuities of the Meridiani rocks are consistent, inter alia, with stacked fluvial units [4]. Although poorly recognized as such, the prime geomorphic environment in which stream channel networks cover large areas, without intervening hillslopes, is the megafan [see e.g. 4]. Single megafans can reach 200,000 km2 [5]. Megafans thus supply an analog for areas where channel-like ridges (as a palimpsest of a prior landscape) cover the intercrater plains of Meridiani [6]. At the local, or river-reach scale, the numerous sinuous features of the RFU are suggestive of fluvial channels. Cross-cutting relationships, a common feature of channels on terrestrial megafans, are ubiquitous. Desert megafans show cemented paleo-channels as inverted

  20. Bedrock aquifers of eastern San Juan County, Utah

    Science.gov (United States)

    Avery, Charles

    1986-01-01

    This study is one of a series of studies appraising the waterbearing properties of the Navajo Sandstone and associated formations in southern Utah.  The study area is about 4,600 square miles, extending from the Utah-Arizona State line northward to the San Juan-Grand County line and westward from the Utah-Colorado State line to the longitude of about 109°50'.Some of the water-yielding formations are grouped into aquifer systems. The C aquifer is comprised of the DeChelly Sandstone Member of the Cutler Formation.  The P aquifer is comprised of the Cedar Mesa Member of the Cutler Formation and the undifferentiated Cutler Formation. The N aquifer is comprised of the sedimentary section that includes the Wingate Sandstone, Kayenta Formation, Navajo Sandstone, Carmel Formation, and Entrada sandstone.  The M aquifer is comprised of the Bluff Sandstone Member and other sandstone units of the Morrison Formation.  The D aquifer is comprised of the Burro Canyon Formation and Dakota Sandstone.  Discharge from the ground-water reservoir to the San Juan River between gaging stations at Four Corners and Mexican Hat is about 66 cubic feet per second.The N aquifer is the main aquifer in the study area. Recharge by infiltration of precipitation is estimated to be 25,000 acre-feet per year.  A major ground-water divide exists under the broad area east of Monticello.  The thickness of the N aquifer, where the sedimentary section is fully preserved and saturated, generally is 750 to 1,250 feet.   Hydraulic conductivity values obtained from aquifer tests range from 0.02 to 0.34 foot per day.  The total volume of water in transient storage is about 11 million acre-feet. Well discharge somewhat exceeded 2,340 acre-feet during 1981.  Discharge to the San Juan River from the N aquifer is estimated to be 6.9 cubic feet per second. Water quality ranges from a calcium bicarbonate to sodium chloride type water

  1. Ogallala Aquifer Mapping Program

    International Nuclear Information System (INIS)

    1984-10-01

    A computerized data file has been established which can be used efficiently by the contour-plotting program SURFACE II to produce maps of the Ogallala aquifer in 17 counties of the Texas Panhandle. The data collected have been evaluated and compiled into three sets, from which SURFACE II can generate maps of well control, aquifer thickness, saturated thickness, water level, and the difference between virgin (pre-1942) and recent (1979 to 1981) water levels. 29 figures, 1 table

  2. Aerodynamic roughness length related to non-aggregated tillage ridges

    Directory of Open Access Journals (Sweden)

    M. Kardous

    2005-11-01

    Full Text Available Wind erosion in agricultural soils is dependent, in part, on the aerodynamic roughness length (z0 produced by tillage ridges. Although previous studies have related z0 to ridge characteristics (ridge height (RH and spacing (RS, these relationships have not been tested for tillage ridges observed in the North African agricultural fields. In these regions, due to climate and soil conditions, small plowing tools are largely used. Most of these tools produce non-aggregated and closely-spaced small ridges. Thus, experiments were conducted in a 7-m long wind tunnel to measure z0 for 11 ridge types covering the range of geometric characteristics frequently observed in south Tunisia. Experimental results suggest that RH2/RS is the first order parameter controlling z0. A strong relationship between z0 and RH2/RS is proposed for a wide range of ridge characteristics.

  3. Calendar year 1995 groundwater quality report for the Chestnut Ridge Hydrogeological Regime, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. 1995 Groundwater quality data and calculated rate of contaminant migration

    International Nuclear Information System (INIS)

    1996-02-01

    This annual groundwater quality report (GWQR) contains groundwater quality data obtained during the 1995 calendar year (CY) at several hazardous and nonhazardous waste management facilities associated with the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The U.S. Environmental Protection Agency (EPA) identification number for the Y-12 Plant is TN

  4. A Case Report of Ridge Augmentation using Onlay Interpositional Graft: An Approach to Improve Prosthetic Prognosis of a Deficit Ridge

    Directory of Open Access Journals (Sweden)

    Devanand Shetty

    2014-01-01

    Full Text Available Background: Periodontal therapy has developed beyond the scope of the treatment of periodontal pathoses. Periodontal plastic surgery consists of the reconstructive procedures designed to enhance the both function and esthetics. Deficient ridges pose a severe problem to the restorative dentist in restoring the natural form, function and esthetics of the prosthesis replacing the natural dentition. Depending upon the severity, location of these defects and the prosthetic option chosen, hard and soft tissue ridge augmentation or non-surgical approach or a combination may help to address them. The present clinical report describes a soft tissue ridge augmentation of a localized ridge defect in maxillary aesthetic region using onlay interpositional graft followed by fixed partial denture.

  5. ENVIRONMENTAL BASELINE SURVEY REPORT FOR WEST BLACK OAK RIDGE, EAST BLACK OAK RIDGE, MCKINNEY RIDGE, WEST PINE RIDGE, AND PARCEL 21D IN THE VICINITY OF THE EAST TENNESSEE TECHNOLOGY PARK, OAK RIDGE, TENNESSEE

    Energy Technology Data Exchange (ETDEWEB)

    David A. King

    2012-11-29

    This environmental baseline survey (EBS) report documents the baseline environmental conditions of five land parcels located near the U.S. Department of Energy’s (DOE’s) East Tennessee Technology Park (ETTP), including West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge, and Parcel 21d. The goal is to obtain all media no-further-investigation (NFI) determinations for the subject parcels considering existing soils. To augment the existing soils-only NFI determinations, samples of groundwater, surface water, soil, and sediment were collected to support all media NFI decisions. The only updates presented here are those that were made after the original issuance of the NFI documents. In the subject parcel where the soils NFI determination was not completed for approval (Parcel 21d), the full process has been performed to address the soils as well. Preparation of this report included the detailed search of federal government records, title documents, aerial photos that may reflect prior uses, and visual inspections of the property and adjacent properties. Interviews with current employees involved in, or familiar with, operations on the real property were also conducted to identify any areas on the property where hazardous substances and petroleum products, or their derivatives, and acutely hazardous wastes may have been released or disposed. In addition, a search was made of reasonably obtainable federal, state, and local government records of each adjacent facility where there has been a release of any hazardous substance or any petroleum product or their derivatives, including aviation fuel and motor oil, and which is likely to cause or contribute to a release of any hazardous substance or any petroleum product or its derivatives, including aviation fuel or motor oil, on the real property. A radiological survey and soil/sediment sampling was conducted to assess baseline conditions of Parcel 21d that were not addressed by the soils-only NFI

  6. A deep structural ridge beneath central India

    Science.gov (United States)

    Agrawal, P. K.; Thakur, N. K.; Negi, J. G.

    A joint-inversion of magnetic satellite (MAGSAT) and free air gravity data has been conducted to quantitatively investigate the cause for Bouguer gravity anomaly over Central Indian plateaus and possible fold consequences beside Himalayan zone in the Indian sub-continent due to collision between Indian and Eurasian plates. The appropriate inversion with 40 km crustal depth model has delineated after discriminating high density and magnetisation models, for the first time, about 1500 km long hidden ridge structure trending NW-SE. The structure is parallel to Himalayan fold axis and the Indian Ocean ridge in the Arabian Sea. A quantitative relief model across a representative anomaly profile confirms the ridge structure with its highest point nearly 6 km higher than the surrounding crustal level in peninsular India. The ridge structure finds visible support from the astro-geoidal contours.

  7. Microbiological risks of recycling urban stormwater via aquifers.

    Science.gov (United States)

    Page, D; Gonzalez, D; Dillon, P

    2012-01-01

    With the release of the Australian Guidelines for Water Recycling: Managed Aquifer Recharge (MAR), aquifers are now being included as a treatment barrier when assessing risk of recycled water systems. A MAR research site recharging urban stormwater in a confined aquifer was used in conjunction with a Quantitative Microbial Risk Assessment to assess the microbial pathogen risk in the recovered water for different end uses. The assessment involved undertaking a detailed assessment of the treatment steps and exposure controls, including the aquifer, to achieve the microbial health-based targets.

  8. Risk assessment and management of an oil contaminated aquifer

    International Nuclear Information System (INIS)

    Braxein, A.; Daniels, H.; Rouve, G.; Rubin, H.

    1991-01-01

    This paper concerns the provision of the basic information needed for the decision making process regarding the remedial measures leading to reutilization of an oil contaminated aquifer. The study refers to the case history of jet fuel contamination of an aquifer comprising part of the coastal aquifer of Israel. Due to that contamination two major water supply wells were abandoned. This study examines the use of numerical simulations in order to restore the contamination history of the aquifer. Such simulations also provide quantitative information needed for the decision making process regarding the future management of the contaminated aquifer

  9. Microbe-mediated transformations of marine dissolved organic matter during 2,100 years of natural incubation in the cold, oxic crust of the Mid-Atlantic Ridge.

    Science.gov (United States)

    Shah Walter, S. R.; Jaekel, U.; Huber, J. A.; Dittmar, T.; Girguis, P. R.

    2015-12-01

    On the western flank of the Mid-Atlantic Ridge, oxic seawater from the deep ocean is downwelled into the basaltic crust, supplying the crustal aquifer with an initial inoculum of organic matter and electron acceptors. Studies have shown that fluids circulating within the crust are minimally altered from original seawater, making this subsurface environment a unique natural experiment in which the fate of marine organic matter and the limitations of microbial adaptability in the context of reduced carbon supply can be examined. To make the subsurface crustal aquifer accessible, two CORK (Circulation Obviation Retrofit Kit) observatories have been installed at North Pond, a sediment-filled depression beneath the oligotrophic Sargasso Sea. Radiocarbon analysis of dissolved inorganic (DIC) and organic carbon (DOC) in samples recovered from these observatories show uncoupled aging between DOC and DIC with Δ14C values of DOC as low as -933‰ despite isolation from the open ocean for, at most, 2,100 years. This extreme value is part of a general trend of decreasing DOC δ13C and Δ14C values with increasing incubation time within the aquifer. Combined with reduced concentrations of DOC, our results argue for selective microbial oxidation of the youngest, most 13C-enriched components of downwelled DOC, possibly identifying these as characteristics of the more bioavailable fractions of deep-ocean dissolved organic matter. They also suggest that microbial oxidation during low-temperature hydrothermal circulation could be an important sink for aged marine dissolved organic matter.

  10. Groundwater vulnerability mapping of Qatar aquifers

    Science.gov (United States)

    Baalousha, Husam Musa

    2016-12-01

    Qatar is one of the most arid countries in the world with limited water resources. With little rainfall and no surface water, groundwater is the only natural source of fresh water in the country. Whilst the country relies mainly on desalination of seawater to secure water supply, groundwater has extensively been used for irrigation over the last three decades, which caused adverse environmental impact. Vulnerability assessment is a widely used tool for groundwater protection and land-use management. Aquifers in Qatar are carbonate with lots of fractures, depressions and cavities. Karst aquifers are generally more vulnerable to contamination than other aquifers as any anthropogenic-sourced contaminant, especially above a highly fractured zone, can infiltrate quickly into the aquifer and spread over a wide area. The vulnerability assessment method presented in this study is based on two approaches: DRASTIC and EPIK, within the framework of Geographical Information System (GIS). Results of this study show that DRASTIC vulnerability method suits Qatar hydrogeological settings more than EPIK. The produced vulnerability map using DRASTIC shows coastal and karst areas have the highest vulnerability class. The southern part of the country is located in the low vulnerability class due to occurrence of shale formation within aquifer media, which averts downward movement of contaminants.

  11. Metallogenesis along the Indian Ocean Ridge System

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.; Ray, Dwijesh

    including India. Among these studies majority were concentrated around the Central Indian Ridge and the Southwest Indian Ridge areas, while a few observations were made around the rest of the areas in the IORS. The findings of these studies are discussed...

  12. Ridge Waveguide Structures in Magnesium-Doped Lithium Niobate

    Science.gov (United States)

    Himmer, Phillip; Battle, Philip; Suckow, William; Switzer, Greg

    2011-01-01

    This work proposes to establish the feasibility of fabricating isolated ridge waveguides in 5% MgO:LN. Ridge waveguides in MgO:LN will significantly improve power handling and conversion efficiency, increase photonic component integration, and be well suited to spacebased applications. The key innovation in this effort is to combine recently available large, high-photorefractive-damage-threshold, z-cut 5% MgO:LN with novel ridge fabrication techniques to achieve high-optical power, low-cost, high-volume manufacturing of frequency conversion structures. The proposed ridge waveguide structure should maintain the characteristics of the periodically poled bulk substrate, allowing for the efficient frequency conversion typical of waveguides and the high optical damage threshold and long lifetimes typical of the 5% doped bulk substrate. The low cost and large area of 5% MgO:LN wafers, and the improved performance of the proposed ridge waveguide structure, will enhance existing measurement capabilities as well as reduce the resources required to achieve high-performance specifications. The purpose of the ridge waveguides in MgO:LN is to provide platform technology that will improve optical power handling and conversion efficiency compared to existing waveguide technology. The proposed ridge waveguide is produced using standard microfabrication techniques. The approach is enabled by recent advances in inductively coupled plasma etchers and chemical mechanical planarization techniques. In conjunction with wafer bonding, this fabrication methodology can be used to create arbitrarily shaped waveguides allowing complex optical circuits to be engineered in nonlinear optical materials such as magnesium doped lithium niobate. Researchers here have identified NLO (nonlinear optical) ridge waveguide structures as having suitable value to be the leading frequency conversion structures. Its value is based on having the low-cost fabrication necessary to satisfy the challenging pricing

  13. Aquifers Characterization and Productivity in Ellala Catchment ...

    African Journals Online (AJOL)

    user

    Aquifers Characterization and Productivity in Ellala Catchment, Tigray, ... using geological and hydrogeological methods in Ellala catchment (296.5km. 2. ) ... Current estimates put the available groundwater ... Aquifer characterization takes into.

  14. Some improved classification-based ridge parameter of Hoerl and ...

    African Journals Online (AJOL)

    Some improved classification-based ridge parameter of Hoerl and Kennard estimation techniques. ... This assumption is often violated and Ridge Regression estimator introduced by [2]has been identified to be more efficient than ordinary least square (OLS) in handling it. However, it requires a ridge parameter, K, of which ...

  15. Transient well flow in leaky multiple-aquifer systems

    Science.gov (United States)

    Hemker, C. J.

    1985-10-01

    A previously developed eigenvalue analysis approach to groundwater flow in leaky multiple aquifers is used to derive exact solutions for transient well flow problems in leaky and confined systems comprising any number of aquifers. Equations are presented for the drawdown distribution in systems of infinite extent, caused by wells penetrating one or more of the aquifers completely and discharging each layer at a constant rate. Since the solution obtained may be regarded as a combined analytical-numerical technique, a type of one-dimensional modelling can be applied to find approximate solutions for several complicating conditions. Numerical evaluations are presented as time-drawdown curves and include effects of storage in the aquitard, unconfined conditions, partially penetrating wells and stratified aquifers. The outcome of calculations for relatively simple systems compares very well with published corresponding results. The proposed multilayer solution can be a valuable tool in aquifer test evaluation, as it provides the analytical expression required to enable the application of existing computer methods to the determination of aquifer characteristics.

  16. Design assessment for the Bethel Valley FFA Upgrades at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-09-01

    This report describes the proposed upgrades to Building 3025 and the Evaporator Area at Oak Ridge National Laboratory. Design assessments, specifications and drawings are provided. Building 3025 is a general purpose research facility utilized by the Materials and Ceramics Division to conduct research on irradiated materials. The Evaporator Area, building 2531, serves as the collection point for all low-level liquid wastes generated at the Oak Ridge National Laboratory

  17. Factors Affecting Public-Supply Well Vulnerability in Two Karst Aquifers

    OpenAIRE

    Musgrove, MaryLynn; Katz, Brian G; Fahlquist, Lynne S; Crandall, Christy A; Lindgren, Richard J

    2014-01-01

    Karst aquifers occur in a range of climatic and geologic settings. Nonetheless, they are commonly characterized by their vulnerability to water-quality impairment. Two karst aquifers, the Edwards aquifer in south-central Texas and the Upper Floridan aquifer in western Florida, were investigated to assess factors that control the movement of contaminants to public-supply wells (PSWs). The geochemistry of samples from a selected PSW or wellfield in each aquifer was compared with that from nearb...

  18. Remediation of a contaminated thin aquifer by horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Breh, W.; Suttheimer, J.; Hoetzl, H. [Univ. of Karlsruhe (Germany); Frank, K. [GEO-Service GmbH, Rheinmuenster (Germany)

    1997-12-31

    At an industrial site in Bruchsal (Germany) a huge trichloroethene contamination was found. After common remedial actions proved to be widely ineffective, new investigations led to a highly contaminated thin aquifer above the main aquifer. The investigation and the beginning of the remediation of the thin aquifer by two horizontal wells is described in this paper. Special attention was given to the dependence between precipitation and the flow direction in the thin aquifer and to hydraulic connections between the thin and the main aquifer. Also a short introduction into a new remedial technique by horizontal wells and first results of the test phase of the horizontal wells are given.

  19. Geomorphological investigation of multiphase glacitectonic composite ridge systems in Svalbard

    Science.gov (United States)

    Lovell, Harold; Benn, Douglas I.; Lukas, Sven; Spagnolo, Matteo; Cook, Simon J.; Swift, Darrel A.; Clark, Chris D.; Yde, Jacob C.; Watts, Tom

    2018-01-01

    Some surge-type glaciers on the High-Arctic archipelago of Svalbard have large glacitectonic composite ridge systems at their terrestrial margins. These have formed by rapid glacier advance into proglacial sediments during the active surge phase, creating multicrested moraine complexes. Such complexes can be formed during single surge advances or multiple surges to successively less-extensive positions. The few existing studies of composite ridge systems have largely relied on detailed information on internal structure and sedimentology to reconstruct their formation and links to surge processes. However, natural exposures of internal structure are commonly unavailable, and the creation of artificial exposures is often problematic in fragile Arctic environments. To compensate for these issues, we investigate the potential for reconstructing composite ridge system formation based on geomorphological evidence alone, focusing on clear morphostratigraphic relationships between ridges within the moraine complex and relict meltwater channels/outwash fans. Based on mapping at the margins of Finsterwalderbreen (in Van Keulenfjorden) and Grønfjordbreen (in Grønfjorden), we show that relict meltwater channels that breach outer parts of the composite ridge systems are in most cases truncated upstream within the ridge complex by an inner pushed ridge or ridges at their ice-proximal extents. Our interpretation of this relationship is that the entire composite ridge system is unlikely to have formed during the same glacier advance but is instead the product of multiple advances to successively less-extensive positions, whereby younger ridges are emplaced on the ice-proximal side of older ridges. This indicates that the Finsterwalderbreen composite ridge system has been formed by multiple separate advances, consistent with the cyclicity of surges. Being able to identify the frequency and magnitude of former surges is important as it provides insight into the past behaviour of

  20. Oak Ridge reservation land-use plan

    Energy Technology Data Exchange (ETDEWEB)

    Bibb, W. R.; Hardin, T. H.; Hawkins, C. C.; Johnson, W. A.; Peitzsch, F. C.; Scott, T. H.; Theisen, M. R.; Tuck, S. C.

    1980-03-01

    This study establishes a basis for long-range land-use planning to accommodate both present and projected DOE program requirements in Oak Ridge. In addition to technological requirements, this land-use plan incorporates in-depth ecological concepts that recognize multiple uses of land as a viable option. Neither environmental research nor technological operations need to be mutually exclusive in all instances. Unique biological areas, as well as rare and endangered species, need to be protected, and human and environmental health and safety must be maintained. The plan is based on the concept that the primary use of DOE land resources must be to implement the overall DOE mission in Oak Ridge. This document, along with the base map and overlay maps, provides a reasonably detailed description of the DOE Oak Ridge land resources and of the current and potential uses of the land. A description of the land characteristics, including geomorphology, agricultural productivity and soils, water courses, vegetation, and terrestrial and aquatic animal habitats, is presented to serve as a resource document. Essentially all DOE land in the Oak Ridge area is being fully used for ongoing DOE programs or has been set aside as protected areas.

  1. Calendar year 1993 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-02-01

    This annual groundwater report contains groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual groundwater report for the Chestnut Ridge Regime is completed in two-parts; Part 1 (this report) containing the groundwater quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference for the groundwater quality data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, this report is submitted to the Tennessee Department of Health and Environment (TDEC) by the RCRA reporting deadline

  2. 40 CFR 147.502 - Aquifer exemptions. [Reserved

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Aquifer exemptions. [Reserved] 147.502... (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL PROGRAMS Florida § 147.502 Aquifer exemptions. [Reserved] ...

  3. Uranium series geochemistry in aquifers: quantification of transport mechanisms of uranium and daughter products: the chalk aquifer (Champagne, France)

    International Nuclear Information System (INIS)

    Hubert, A.

    2005-09-01

    With the increase of contaminant flux of radionuclides in surface environment (soil, river, aquifer...), there is a need to understand and model the processes that control the distribution of uranium and its daughter products during transport within aquifers. We have used U-series disequilibria as an analogue for the transport of uranium and its daughter products in aquifer to understand such mechanisms. The measurements of uranium ( 234 U et 238 U), thorium ( 230 Th et 232 Th), 226 Ra and 222 Rn isotopes in the solid and liquid phases of the chalk aquifer in Champagne (East of France) allows us to understand the processes responsible for fractionation within the uranium decay chain. Fractionations are induced by physical and chemical properties of the elements (leaching, adsorption) but also by radioactive properties (recoil effect during α-decay). For the first time a comprehensive sampling of the solid phase has been performed, allowing quantifying mechanisms responsible for the long term evolution of the aquifer. A non steady state 1D model has been developed which takes into account leaching, adsorption processes as well as radioactive filiation and α-recoil effect. Retardation coefficients have been calculated for uranium, thorium and radium. The aquifer is characterised by a double porosity, and the contribution of fracture and matrix porosity on the water/rock interaction processes has been estimated. (author)

  4. Oak Ridge low-level waste disposal facility designs

    International Nuclear Information System (INIS)

    Van Hoesen, S.D.; Jones, L.S.

    1991-01-01

    The strategic planning process that culuminates in the identification, selection, construction, and ultimate operation of treatment, storage, and disposal facilities for all types of low-level waste (LLW) generated on the Oak Ridge Reservation (ORR) was conducted under the Low-Level Waste Disposal Development and Demonstration (LLWDDD) Program. This program considered management of various concentrations of short half-life radionuclides generated principally at Oak Ridge National Laboratory (ORNL) and long half-life radionuclides (principally uranium) generated at the Oak Ridge Y-12 Plant and the Oak Ridge K-25 Plant. The LLWDDD Program is still ongoing and involves four phases: (1) alternative identification and evaluation, (2) technology demonstration, (3) limited operational implementation, and (4) full operational implementation. This document provides a discussion of these phases

  5. Influência da temperatura corporal de cascavéis (Crotalus durissus submetidas à anestesia com cetamina Influence of body temperature on rattlesnakes (Crotalus durissus anesthetized with ketamine

    Directory of Open Access Journals (Sweden)

    Adriano B. Carregaro

    2009-12-01

    Full Text Available O estudo objetivou verificar a influência da temperatura corporal nos parâmetros fisiológicos e nos períodos de indução e recuperação anestésicos de cascavéis (Crotalus durissus anestesiadas com cetamina. Os animais foram previamente submetidos à hipotermia (HIPO (The aim of the study was to verify the influence of the body temperature under physiological values and latency and recovery times on rattlesnakes anesthetized with ketamine. The animals were previously submitted to hypothermia (HYPO (<22°C and normothermia (30°C (NORMO and then, anesthetized with 80 mg/kg IM of ketamine. Latency and recovery times were evaluated by head tonus, muscular tonus and righting reflex. Heart rate (HR, time of apnea and body temperature were measured before and 5, 10, 15, 30, 60, 90 and 120 minutes after ketamine administration. Blood gases parameters were measured before, 30 and 60 minutes. It was not observed difference on latency time in both groups. The recovery time was higher on HYPO (5,5 hours compared to NORMO (3,5 hours. HR was higher on NORMO compared to HYPO. Time of apnea was the same pattern on both groups. Compared to basal levels, time of apnea was shorter between 5 to 30 min on both groups. Respiratory acidosis was observed only at 0 min in NORMO. SvO2 was higher after 30 min, the same as with PvO2 in both groups. PvCO2 reduced after 30 min in both groups. It was evident that body temperature exerts intense influence on the recovery time on rattlesnakes anesthetized with ketamine.

  6. A Generalized Perturbation Theory Solver In Rattlesnake Based On PETSc With Application To TREAT Steady State Uncertainty Quantification

    Energy Technology Data Exchange (ETDEWEB)

    Schunert, Sebastian; Wang, Congjian; Wang, Yaqi; Kong, Fande; Ortensi, Javier; Baker, Benjamin; Gleicher, Frederick; DeHart, Mark; Martineau, Richard

    2017-04-01

    Rattlesnake and MAMMOTH are the designated TREAT analysis tools currently being developed at the Idaho National Laboratory. Concurrent with development of the multi-physics, multi-scale capabilities, sensitivity analysis and uncertainty quantification (SA/UQ) capabilities are required for predicitive modeling of the TREAT reactor. For steady-state SA/UQ, that is essential for setting initial conditions for the transients, generalized perturbation theory (GPT) will be used. This work describes the implementation of a PETSc based solver for the generalized adjoint equations that constitute a inhomogeneous, rank deficient problem. The standard approach is to use an outer iteration strategy with repeated removal of the fundamental mode contamination. The described GPT algorithm directly solves the GPT equations without the need of an outer iteration procedure by using Krylov subspaces that are orthogonal to the operator’s nullspace. Three test problems are solved and provide sufficient verification for the Rattlesnake’s GPT capability. We conclude with a preliminary example evaluating the impact of the Boron distribution in the TREAT reactor using perturbation theory.

  7. Lateral ridge split and immediate implant placement in moderately resorbed alveolar ridges: How much is the added width?

    Directory of Open Access Journals (Sweden)

    Amin Rahpeyma

    2013-01-01

    Full Text Available Background: Lateral ridge split technique is a way to solve the problem of the width in narrow ridges with adequate height. Simultaneous insertion of dental implants will considerably reduce the edentulism time. Materials and Methods: Twenty-five patients who were managed with ridge splitting technique were enrolled. Thirty-eight locations in both jaws with near equal distribution in quadrants received 82 dental fixtures. Beta Tricalcium phosphate (Cerasorb® was used as biomaterial to fill the intercortical space. Submerged implants were used and 3 months later healing caps were placed. Direct bone measurements before and after split were done with a Collis. Patients were clinically re-evaluated at least 6 months after implant loading. All the data were analyzed by Statistical Package for Social Sciences (SPSS software version 11.5 (SPSS Inc, Chicago Illinois, USA. Frequency of edentulous spaces and pre/post operative bone width was analyzed. Paired t-test was used for statistical analysis. Difference was considered significant if P value was less than 0.05. Results: Mean value for presplit width was 3.2 ± 0.34 mm while post-split mean width was 5.57 ± 0.49 mm. Mean gain in crest ridge after ridge splitting was 2 ± 0.3 mm. Statistical analysis showed significant differences in width before and after operation ((P < 0.05. All implants (n = 82 survived and were in full function at follow up (at least 6 months after implant loading. Conclusion: Ridge splitting technique in both jaws showed the predictable outcomes, if appropriate cases selected and special attention paid to details; then the waiting time between surgery and beginning of prosthodontic treatment can be reduced to 3 month.

  8. Bioremediation of a diesel fuel contaminated aquifer: simulation studies in laboratory aquifer columns

    Science.gov (United States)

    Hess, A.; Höhener, P.; Hunkeler, D.; Zeyer, J.

    1996-08-01

    The in situ bioremediation of aquifers contaminated with petroleum hydrocarbons is commonly based on the infiltration of groundwater supplemented with oxidants (e.g., O 2, NO 3-) and nutrients (e.g., NH 4+, PO 43-). These additions stimulate the microbial activity in the aquifer and several field studies describing the resulting processes have been published. However, due to the heterogeneity of the subsurface and due to the limited number of observation wells usually available, these field data do not offer a sufficient spatial and temporal resolution. In this study, flow-through columns of 47-cm length equipped with 17 sampling ports were filled with homogeneously contaminated aquifer material from a diesel fuel contaminated in situ bioremediation site. The columns were operated over 96 days at 12°C with artificial groundwater supplemented with O 2, NO 3- and PO 43-. Concentration profiles of O 2, NO 3-, NO 2-, dissolved inorganic and organic carbon (DIC and DOC, respectively), protein, microbial cells and total residual hydrocarbons were measured. Within the first 12 cm, corresponding to a mean groundwater residence time of < 3.6 h, a steep O 2 decrease from 4.6 to < 0.3 mg l -1, denitrification, a production of DIC and DOC, high microbial cell numbers and a high removal of hydrocarbons were observed. Within a distance of 24 to 40.5 cm from the infiltration, O 2 was below 0.1 mg l -1 and a denitrifying activity was found. In the presence and in the absence of O 2, n-alkanes were preferentially degraded compared to branched alkanes. The results demonstrate that: (1) infiltration of aerobic groundwater into columns filled with aquifer material contaminated with hydrocarbons leads to a rapid depletion of O 2; (2) O 2 and NO 3- can serve as oxidants for the mineralization of hydrocarbons; and (3) the modelling of redox processes in aquifers has to consider denitrifying activity in presence of O 2.

  9. Aquifer recharging in South Carolina: radiocarbon in environmental hydrogeology

    International Nuclear Information System (INIS)

    Stone, P.A.; Knox, R.L.; Mathews, T.D.

    1985-01-01

    Radiocarbon activities of dissolved inorganic carbon (and tritium activities where infiltration rates are rapid and aquifers shallow) provide relatively unambiguous and inexpensive evidence for identification of significant recharge areas. Such evidence is for the actual occurrence of modern recharge in the aquifer and thus is less inferential than stratigraphic or potentiometric evidence. These underutilized isotopic techniques are neither arcane nor complex and have been more-or-less standardized by earlier researchers. In South Carolina, isotopic evidence has been used from both calcareous and siliceous sedimentary aquifers and fractured crystalline rock aquifers. The Tertiary limestone aquifer is shown not to be principally recharged in its subcrop area, unlike conditions assumed for many other sedimentary aquifers in southeastern United States, and instead receives considerable lateral recharge from interfingering updip Tertiary sand aquifers in the middle coastal plain. Induced recharging at Hilton Head Island is mixing ancient relict water and modern recharge water. Recharging to deeper portions of the Cretaceous Middendorf basal sand aquifer occurs at least as far coastward as the middle coastal plain, near sampling sites that stratigraphically appear to be confined. Pronounced mineralization of water in fractured rocks cannot be considered as evidence of ancient or relict ground water that is isolated from modern contaminants, some of these waters contain considerable radiocarbon and hydrogen-bomb tritium

  10. Remedial investigation work plan for Chestnut Ridge Operable Unit 4 (Rogers Quarry/Lower McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Oak Ridge Y-12 Plant includes - 800 acres near the northeast comer of the reservation and adjacent to the city of Oak Ridge (Fig. 1-1). The plant is a manufacturing and developmental engineering facility that produced components for various nuclear weapons systems and provides engineering support to other Energy Systems facilities. More than 200 contaminated sites have been identified at the Y-12 Plant that resulted from past waste management practices. Many of the sites have operable units (OUs) based on priority and on investigative and remediation requirements. This Remedial Investigation RI work plan specifically addresses Chestnut Ridge OU 4. Chestnut Ridge OU 4 consists of Rogers Quarry and Lower McCoy Branch (MCB). Rogers Quarry, which is also known as Old Rogers Quarry or Bethel Valley Quarry was used for quarrying from the late 1940s or early 1950s until about 1960. Since that time, the quarry has been used for disposal of coal ash and materials from Y-12 production operations, including classified materials. Disposal of coal ash ended in July 1993. An RI is being conducted at this site in response to CERCLA regulations. The overall objectives of the RI are to collect data necessary to evaluate the nature and extent of contaminants of concern, support an Ecological Risk Assessment and a Human Health Risk Assessment, support the evaluation of remedial alternatives, and ultimately develop a Record of Decision for the site. The purpose of this work plan is to outline RI activities necessary to define the nature and extent of suspected contaminants at Chestnut Ridge OU 4. Potential migration pathways also will be investigated. Data collected during the RI will be used to evaluate the risk posed to human health and the environment by OU 4.

  11. Managed Aquifer Recharge Using Treated Wastewater: An Option to Manage a Coastal Aquifer In Oman For Better Domestic Water Supply

    Science.gov (United States)

    Al-Maktoumi, Ali; Zekri, Slim; ElRawy, Mustafa

    2016-04-01

    Arid countries, such as the Sultanate of Oman, are facing challenges of water shortages threatening economic development and social stability. Most of those countries are vulnerable to the potential adverse impacts of climate change, the most significant of which are increased average temperatures, less and more erratic precipitation, sea level rise, and desertification. The combined effect of existing adverse conditions and likely impacts of future climate change will make water management even more difficult than what it is today. Tremendous efforts have been devoted to augment the water resources. Managed Aquifer Recharge (MAR) is practiced widely to store water during periods of surpluses and withdraw during deficits from an aquifer. In Muscat, there will be a surplus of >100,000 m3/day of TWW during winter months in the coming few years. The aquifer along the northern coast of Oman (Al-Khawd Aquifer) is conducive for MAR. Data show that TWW volumes will increase from 7.6 Mm3 in 2003 to 70.9 Mm3 in 2035 in Muscat city only. This study assesses, using MODFLOW 2005 numerical code, the impact of MAR using TWW on better management of the Al-Khawd unconfined coastal aquifer for better urban water supply. Specifically, aiming to maximize withdrawals from the domestic wells with minimize adverse effect of seawater intrusion. The model operates under a number of constrains that minimize the loss to the sea and the injected TWW must not migrates upstream (due to developed mound) and reach the wellfields used for domestic supply. The hypothetical injection wells are located downstream the domestic wellfield zone. The results of different managerial scenarios show that MAR produces a hydraulic barrier that decelerates the seawater intrusion which allows higher abstraction of pristine water from the upstream part of the aquifer. MAR along with redistribution/relocation of public wells allows abstraction of 2 times the current abstraction rate (around 6 Mm3/year to 12 Mm3

  12. Accounting for the Decreasing Reaction Potential of Heterogeneous Aquifers in a Stochastic Framework of Aquifer-Scale Reactive Transport

    Science.gov (United States)

    Loschko, Matthias; Wöhling, Thomas; Rudolph, David L.; Cirpka, Olaf A.

    2018-01-01

    Many groundwater contaminants react with components of the aquifer matrix, causing a depletion of the aquifer's reactivity with time. We discuss conceptual simplifications of reactive transport that allow the implementation of a decreasing reaction potential in reactive-transport simulations in chemically and hydraulically heterogeneous aquifers without relying on a fully explicit description. We replace spatial coordinates by travel-times and use the concept of relative reactivity, which represents the reaction-partner supply from the matrix relative to a reference. Microorganisms facilitating the reactions are not explicitly modeled. Solute mixing is neglected. Streamlines, obtained by particle tracking, are discretized in travel-time increments with variable content of reaction partners in the matrix. As exemplary reactive system, we consider aerobic respiration and denitrification with simplified reaction equations: Dissolved oxygen undergoes conditional zero-order decay, nitrate follows first-order decay, which is inhibited in the presence of dissolved oxygen. Both reactions deplete the bioavailable organic carbon of the matrix, which in turn determines the relative reactivity. These simplifications reduce the computational effort, facilitating stochastic simulations of reactive transport on the aquifer scale. In a one-dimensional test case with a more detailed description of the reactions, we derive a potential relationship between the bioavailable organic-carbon content and the relative reactivity. In a three-dimensional steady-state test case, we use the simplified model to calculate the decreasing denitrification potential of an artificial aquifer over 200 years in an ensemble of 200 members. We demonstrate that the uncertainty in predicting the nitrate breakthrough in a heterogeneous aquifer decreases with increasing scale of observation.

  13. Orientationally ordered ridge structures of aluminum films on hydrogen terminated silicon

    DEFF Research Database (Denmark)

    Quaade, Ulrich; Pantleon, Karen

    2006-01-01

    Films of aluminum deposited onto Si(100) substrates show a surface structure of parallel ridges. On films deposited on oxidized silicon substrates the direction of the ridges is arbitrary, but on films deposited on hydrogen-terminated Si(100) the ridges are oriented parallel to the < 110 > direct......Films of aluminum deposited onto Si(100) substrates show a surface structure of parallel ridges. On films deposited on oxidized silicon substrates the direction of the ridges is arbitrary, but on films deposited on hydrogen-terminated Si(100) the ridges are oriented parallel to the ... > directions on the silicon substrate. The ridge structure appears when the film thickness is above 500 nm, and increasing the film thickness makes the structure more distinct. Anodic oxidation enhances the structure even further. X-ray diffraction indicates that grains in the film have mostly (110) facets...

  14. Tectonics of ridge-transform intersections at the Kane fracture zone

    Science.gov (United States)

    Karson, J. A.; Dick, H. J. B.

    1983-03-01

    The Kane Transform offsets spreading-center segments of the Mid-Atlantic Ridge by about 150 km at 24° N latitude. In terms of its first-order morphological, geological, and geophysical characteristics it appears to be typical of long-offset (>100 km), slow-slipping (2 cm yr-1) ridge-ridge transform faults. High-resolution geological observations were made from deep-towed ANGUS photographs and the manned submersible ALVIN at the ridge-transform intersections and indicate similar relationships in these two regions. These data indicate that over a distance of about 20 km as the spreading axes approach the fracture zone, the two flanks of each ridge axis behave in very different ways. Along the flanks that intersect the active transform zone the rift valley floor deepens and the surface expression of volcanism becomes increasingly narrow and eventually absent at the intersection where only a sediment-covered ‘nodal basin’ exists. The adjacent median valley walls have structural trends that are oblique to both the ridge and the transform and have as much as 4 km of relief. These are tectonically active regions that have only a thin (young volcanics passes laterally into median valley walls with a simple block-faulted character where only volcanic rocks have been found. Along strike toward the fracture zone, the youngest volcanics form linear constructional volcanic ridges that transect the entire width of the fracture zone valley. These volcanics are continuous with the older-looking, slightly faulted volcanic terrain that floors the non-transform fracture zone valleys. These observations document the asymmetric nature of seafloor spreading near ridge-transform intersections. An important implication is that the crust and lithosphere across different portions of the fracture zone will have different geological characteristics. Across the active transform zone two lithosphere plate edges formed at ridge-transform corners are faulted against one another. In the non

  15. A novel analytical solution for estimating aquifer properties within a horizontally anisotropic aquifer bounded by a stream

    Science.gov (United States)

    Huang, Yibin; Zhan, Hongbin; Knappett, Peter S. K.

    2018-04-01

    Past studies modeling stream-aquifer interaction commonly account for vertical anisotropy in hydraulic conductivity, but rarely address horizontal anisotropy, which may exist in certain sedimentary environments. If present, horizontal anisotropy will greatly impact stream depletion and the amount of recharge a pumped aquifer captures from the river. This scenario requires a different and somewhat more sophisticated mathematical approach to model and interpret pumping test results than previous models used to describe captured recharge from rivers. In this study, a new mathematical model is developed to describe the spatiotemporal distribution of drawdown from stream-bank pumping with a well screened across a horizontally anisotropic, confined aquifer, laterally bounded by a river. This new model is used to estimate four aquifer parameters including the magnitude and directions of major and minor principal transmissivities and storativity based on the observed drawdown-time curves within a minimum of three non-collinear observation wells. In order to approve the efficacy of the new model, a MATLAB script file is programmed to conduct a four-parameter inversion to estimate the four parameters of concern. By comparing the results of analytical and numerical inversions, the accuracy of estimated results from both inversions is acceptable, but the MATLAB program sometimes becomes problematic because of the difficulty of separating the local minima from the global minima. It appears that the new analytical model of this study is applicable and robust in estimating parameter values for a horizontally anisotropic aquifer laterally bounded by a stream. Besides that, the new model calculates stream depletion rate as a function of stream-bank pumping. Unique to horizontally anisotropic and homogeneous aquifers, the stream depletion rate at any given pumping rate depends closely on the horizontal anisotropy ratio and the direction of the principle transmissivities relative to

  16. Internal doses in Oak Ridge. The Internet beams

    International Nuclear Information System (INIS)

    Passchier, W.F.

    1997-01-01

    A brief overview is given of the information, presented by the Radiation Internal Dose Information Center (RIDIC) of the Oak Ridge Associated Universities in Oak Ridge, TN, USA, via Internet (www.orau.gov/ehsd/ridic.htm)

  17. Optical dating of dune ridges on Rømø

    DEFF Research Database (Denmark)

    Madsen, Anni Tindahl; Murray, A. S.; Andersen, Thorbjørn Joest

    2007-01-01

    The application of optically stimulated luminescence (OSL) to the dating of recent aeolian sand ridges on Rømø, an island off the southwest coast of Denmark, is tested. These sand ridges began to form approximately 300 years ago, and estimates of the ages are available from historical records....... Samples for OSL dating were taken ~0.5 m below the crests of four different dune ridges; at least five samples were recovered from each ridge to test the internal consistency of the ages. Additional samples were recovered from the low lying areas in the swales and from the scattered dune formations......-defined building phases separated by inactive periods and the first major ridge formed ~235 years ago. This study demonstrates that optical dating can be successfully applied to these young aeolian sand deposits, and we conclude that OSL dating is a powerful chronological tool in studies of coastal change....

  18. A Novel Analytical Solution for Estimating Aquifer Properties and Predicting Stream Depletion Rates by Pumping from a Horizontally Anisotropic Aquifer

    Science.gov (United States)

    Huang, Y.; Zhan, H.; Knappett, P.

    2017-12-01

    Past studies modeling stream-aquifer interactions commonly account for vertical anisotropy, but rarely address horizontal anisotropy, which does exist in certain geological settings. Horizontal anisotropy is impacted by sediment deposition rates, orientation of sediment particles and orientations of fractures etc. We hypothesize that horizontal anisotropy controls the volume of recharge a pumped aquifer captures from the river. To test this hypothesis, a new mathematical model was developed to describe the distribution of drawdown from stream-bank pumping with a well screened across a horizontally anisotropic, confined aquifer, laterally bounded by a river. This new model was used to determine four aquifer parameters including the magnitude and directions of major and minor principal transmissivities and storativity based on the observed drawdown-time curves within a minimum of three non-collinear observation wells. By comparing the aquifer parameters values estimated from drawdown data generated known values, the discrepancies of the major and minor transmissivities, horizontal anisotropy ratio, storativity and the direction of major transmissivity were 13.1, 8.8, 4, 0 and managers to exploit groundwater resource reasonably while protecting stream ecosystem.

  19. Normalization Ridge Regression in Practice I: Comparisons Between Ordinary Least Squares, Ridge Regression and Normalization Ridge Regression.

    Science.gov (United States)

    Bulcock, J. W.

    The problem of model estimation when the data are collinear was examined. Though the ridge regression (RR) outperforms ordinary least squares (OLS) regression in the presence of acute multicollinearity, it is not a problem free technique for reducing the variance of the estimates. It is a stochastic procedure when it should be nonstochastic and it…

  20. Hydrodynamic role of longitudinal ridges in a leatherback turtle swimming

    Science.gov (United States)

    Bang, Kyeongtae; Kim, Jooha; Lee, Sang-Im; Choi, Haecheon

    2015-11-01

    The leatherback sea turtle (Dermochelys coriacea), the fastest swimmer and the deepest diver among marine turtles, has five longitudinal ridges on its carapace. These ridges are the most remarkable morphological features distinguished from other marine turtles. To investigate the hydrodynamic role of these ridges in the leatherback turtle swimming, we model a carapace with and without ridges by using three dimensional surface data of a stuffed leatherback turtle in the National Science Museum, Korea. The experiment is conducted in a wind tunnel in the ranges of the real leatherback turtle's Reynolds number (Re) and angle of attack (α). The longitudinal ridges function differently according to the flow condition (i.e. Re and α). At low Re and negative α that represent the swimming condition of hatchlings and juveniles, the ridges significantly decrease the drag by generating streamwise vortices and delaying the main separation. On the other hand, at high Re and positive α that represent the swimming condition of adults, the ridges suppress the laminar separation bubble near the front part by generating streamwise vortices and enhance the lift and lift-to-drag ratio. Supported by the NRF program (2011-0028032).

  1. Sustainable Capture: Concepts for Managing Stream-Aquifer Systems.

    Science.gov (United States)

    Davids, Jeffrey C; Mehl, Steffen W

    2015-01-01

    Most surface water bodies (i.e., streams, lakes, etc.) are connected to the groundwater system to some degree so that changes to surface water bodies (either diversions or importations) can change flows in aquifer systems, and pumping from an aquifer can reduce discharge to, or induce additional recharge from streams, springs, and lakes. The timescales of these interactions are often very long (decades), making sustainable management of these systems difficult if relying only on observations of system responses. Instead, management scenarios are often analyzed based on numerical modeling. In this paper we propose a framework and metrics that can be used to relate the Theis concepts of capture to sustainable measures of stream-aquifer systems. We introduce four concepts: Sustainable Capture Fractions, Sustainable Capture Thresholds, Capture Efficiency, and Sustainable Groundwater Storage that can be used as the basis for developing metrics for sustainable management of stream-aquifer systems. We demonstrate their utility on a hypothetical stream-aquifer system where pumping captures both streamflow and discharge to phreatophytes at different amounts based on pumping location. In particular, Capture Efficiency (CE) can be easily understood by both scientists and non-scientist alike, and readily identifies vulnerabilities to sustainable stream-aquifer management when its value exceeds 100%. © 2014, National Ground Water Association.

  2. Equatorial segment of the mid-atlantic ridge

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The Equatorial Segment of the Mid-Atlantic Ridge is a part of this mid-oceanic ridge limited by a cluster of fracture zones - Cape Verde, Marathon, Mercury, Vema, Doldrums, Vernadsky and Sierra Leone - in the North, and a similar cluster of fracture zones - St Paul, Romanche and Chain - in the South. During recent decades, following the publication of the 5. edition of the General Bathymetric Chart of the Oceans (GEBCO), there has been a great deal of geological-geophysical research and mapping of the World Ocean. The results have led to the development of a number of theories concerning the essential heterogeneity of the structure of the ocean floor and, in particular, the heterogeneity of the structure and segmentation of mid-oceanic ridges. Research on the nature of such segmentation is of great importance for an understanding of the processes of development of such ridges and oceanic basins as a whole. Chapter 20 is dedicated to the study of the atlantic ocean mantle by using (Th.U)Th, (Th/U)pb and K/Ti systematics 380 refs.

  3. Equatorial segment of the mid-atlantic ridge

    International Nuclear Information System (INIS)

    1996-01-01

    The Equatorial Segment of the Mid-Atlantic Ridge is a part of this mid-oceanic ridge limited by a cluster of fracture zones - Cape Verde, Marathon, Mercury, Vema, Doldrums, Vernadsky and Sierra Leone - in the North, and a similar cluster of fracture zones - St Paul, Romanche and Chain - in the South. During recent decades, following the publication of the 5. edition of the General Bathymetric Chart of the Oceans (GEBCO), there has been a great deal of geological-geophysical research and mapping of the World Ocean. The results have led to the development of a number of theories concerning the essential heterogeneity of the structure of the ocean floor and, in particular, the heterogeneity of the structure and segmentation of mid-oceanic ridges. Research on the nature of such segmentation is of great importance for an understanding of the processes of development of such ridges and oceanic basins as a whole. Chapter 20 is dedicated to the study of the atlantic ocean mantle by using (Th.U)Th, (Th/U)pb and K/Ti systematics

  4. Equatorial segment of the mid-atlantic ridge

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Equatorial Segment of the Mid-Atlantic Ridge is a part of this mid-oceanic ridge limited by a cluster of fracture zones - Cape Verde, Marathon, Mercury, Vema, Doldrums, Vernadsky and Sierra Leone - in the North, and a similar cluster of fracture zones - St Paul, Romanche and Chain - in the South. During recent decades, following the publication of the 5. edition of the General Bathymetric Chart of the Oceans (GEBCO), there has been a great deal of geological-geophysical research and mapping of the World Ocean. The results have led to the development of a number of theories concerning the essential heterogeneity of the structure of the ocean floor and, in particular, the heterogeneity of the structure and segmentation of mid-oceanic ridges. Research on the nature of such segmentation is of great importance for an understanding of the processes of development of such ridges and oceanic basins as a whole. Chapter 20 is dedicated to the study of the atlantic ocean mantle by using (Th.U)Th, (Th/U)pb and K/Ti systematics 380 refs.

  5. Aquifer thermal energy storage. International symposium: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste or by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.

  6. Does the lateral intercondylar ridge disappear in ACL deficient patients?

    NARCIS (Netherlands)

    van Eck, C.F.; Martins, C.A.Q.; Vyas, S.M.; Celentano, U.; van Dijk, C.N.; Fu, F.H.

    2010-01-01

    The aim of this study was to determine whether there is a difference in the presence of the lateral intercondylar ridge and the lateral bifurcate ridge between patients with sub-acute and chronic ACL injuries. We hypothesized that the ridges would be present less often with chronic ACL deficiency.

  7. Mantle Convection beneath the Aegir Ridge, a Shadow in the Iceland Hotspot

    Science.gov (United States)

    Howell, S. M.; Ito, G.; Breivik, A. J.; Hanan, B. B.; Mjelde, R.; Sayit, K.; Vogt, P. R.

    2012-12-01

    The Iceland Hotspot has produced extensive volcanism spanning much of the ocean basin between Greenland and Norway, forming one of the world's largest igneous provinces. However, an apparent igneous "shadow" in hotspot activity is located at the fossil Aegir Ridge, which formed anomalously thin crust, despite this ridge being near the Iceland hotspot when it was active. The Aegir Ridge accommodated seafloor spreading northeast of present-day Iceland from the time of continental breakup at ~55 Ma until ~25 Ma, at which point spreading shifted west to the Kolbeinsey Ridge. To address the cause of the anomalously thin crust produced by the Aegir Ridge, we use three-dimensional numerical models to simulate the interaction between a mantle plume beneath the Iceland hotspot, rifting continental lithosphere, and the time-evolving North Atlantic ridge system. Two end-member hypotheses were investigated: (1) Material emanating from the Iceland mantle plume was blocked from reaching the Aegir Ridge by the thick lithosphere of the Jan Mayen Microcontinent as the Kolbeinsey Ridge began rifting it from Greenland at ~30 Ma, just east of the plume center; (2) Plume material was not blocked and did reach the Aegir Ridge, but had already experienced partial melting closer to the hotspot. This material was then unable to produce melt volumes at the Aegir Ridge comparable to those of pristine mantle. To test these hypotheses, we vary the volume flux and viscosity of the plume, and identify which conditions do and do not lead to the Aegir Ridge forming anomalously thin crust. Results show that the combination of plume material being drawn into the lithospheric channels beneath the Reykjanes Ridge and Kolbeinsey Ridge after their respective openings, and the impedance of plume flow by the Jan Mayen Microcontinent (hypothesis 1), can deprive the Aegir Ridge of plume influence. This leads to low crustal thicknesses that are comparable to those observed. We have yet to produce a model

  8. Sex Determination from Fingerprint Ridge Density | Gungadin ...

    African Journals Online (AJOL)

    This study was conducted with an aim to establish a relationship between sex and fingerprint ridge density. The fingerprints were taken from 500 subjects (250 males and 250 females) in the age group of 18-60 years. After taking fingerprints, the ridges were counted in the upper portion of the radial border of each print for all ...

  9. Bioinspired design of a ridging shovel with anti-adhesive and drag reducing

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2015-03-01

    Full Text Available Learning from the microstructure of the convex (concave and ridging (triangle and arc-shaped shapes of fresh lotus leaves and shark skin, bionic ridging shovels was designed with the characteristics of adhesion and resistance reduction. Ten ridging shovel models were established, and the interaction process with the soil by ANSYS is discussed. Stress analysis results showed that the bionic ridging shovel was more obvious in visbreaking and in the resistance reduction effect. An indoor soil bin experiment with the bionic ridging shovel and the prototype ridging shovel was operated as follows: the ridging resistance of the three types of ridging shovel was tested under the condition of two soil moistures (18.61% and 20.9% and three different ridging speeds (0.68, 0.87, and 1.11 m/s. In this article, the structure, the mechanism, and their relationship to the functions are discussed. The results of this study will be useful in practical application in the field of agricultural machinery toward practical use and industrialization.

  10. Calendar year 1996 annual groundwater monitoring report for the Chestnut Ridge Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-02-01

    This annual monitoring report contains groundwater and surface water monitoring data obtained in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) during calendar year (CY) 1996. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge west of Scarboro Road and east of an unnamed drainage feature southwest of the US Department of Energy (DOE) Oak Ridge Y-12 Plant (unless otherwise noted, directions are in reference to the Y-12 Plant administrative grid). The Chestnut Ridge Regime contains several sites used for management of hazardous and nonhazardous wastes associated with plant operations. Groundwater and surface water quality monitoring associated with these waste management sites is performed under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). Included in this annual monitoring report are the groundwater monitoring data obtained in compliance with the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit for the Chestnut Ridge Regime (post-closure permit) issued by the Tennessee Department of Environment and Conservation (TDEC) in June 1996. Besides the signed certification statement and the RCRA facility information summarized below, condition II.C.6 of the post-closure permit requires annual reporting of groundwater monitoring activities, inclusive of the analytical data and results of applicable data evaluations, performed at three RCRA hazardous waste treatment, storage, or disposal (TSD) units: the Chestnut Ridge Sediment Disposal Basin (Sediment Disposal Basin), the Chestnut Ridge Security Pits (Security Pits), and Kerr Hollow Quarry

  11. The Evolutionary Implications of Hemipenial Morphology of Rattlesnake Crotalus durissus terrificus (Laurent, 1768 (Serpentes: Viperidae: Crotalinae.

    Directory of Open Access Journals (Sweden)

    Marcovan Porto

    Full Text Available Most amniotes vertebrates have an intromittent organ to deliver semen. The reptile Sphenodon and most birds lost the ancestral penis and developed a cloaca-cloaca mating. Known as hemipenises, the copulatory organ of Squamata shows unique features between the amniotes intromittent organ. They are the only paired intromittent organs across amniotes and are fully inverted and encapsulated in the tail when not in use. The histology and ultrastructure of the hemipenes of Crotalus durissus rattlesnake is described as the evolutionary implications of the main features discussed. The organization of hemipenis of Crotalus durissus terrificus in two concentric corpora cavernosa is similar to other Squamata but differ markedly from the organization of the penis found in crocodilians, testudinata, birds and mammals. Based on the available data, the penis of the ancestral amniotes was made of connective tissue and the incorporation of smooth muscle in the framework of the sinusoids occurred independently in mammals and Crotalus durissus. The propulsor action of the muscle retractor penis basalis was confirmed and therefore the named should be changed to musculus hemipenis propulsor.The retractor penis magnus found in Squamata has no homology to the retractor penis of mammals, although both are responsible for the retraction of the copulatory organ.

  12. Global assessment of coastal aquifer state and its vulnerability respect to Sea Water Intrusion. Application to several Mediterranean Coastal Aquifers.

    Science.gov (United States)

    Baena, Leticia; Pulido-Velazquez, David; Renau-Pruñonosa, Arianna; Morell, Ignacio

    2017-04-01

    In this research we propose a method for a global assessment of coastal aquifer state and its vulnerability to Sea Water Intrusion (SWI). It is based on two indices, the MART index, which summarize the global significance of the SWI phenomenon, and the L_GALDIT for a lumped assessment of the vulnerability to SWI. Both of them can be useful as a tool to assess coastal groundwater bodies in risk of not achieving good status in accordance with the Water Framework Directive (WFD, 2000) and to identify possible management alternative to reduce existing impacts. They can be obtained even from a reduced number of data (in the MART case only depend on the geometry and available aquifer state data) with simple calculations, which have been implemented in a general GIS tool that can be easily applied to other case studies. The MART index in an aquifer is related with the total mass of chloride in the aquifer due to sea water intrusion and can be obtained by simple linear operations of volume and concentrations that can be deduced from a schematic conceptual cross-section approach (orthogonal to the shore line) defined to summarize the intrusion volume in the aquifer. At a certain historical time, this representative aquifer cross-section can be defined in a systhematic way from the aquifer geometry, the specific yield, and the hydraulic head and chloride concentration fields that can be deduced from the available information by using appropriate interpolation methods. Following the proposed procedure we will finally obtain a summary of the historical significance of the SWI in an aquifer at different spatial resolution: 3D salinity concentration maps, 2D representative conceptual cross-section of intrusion and the MART lumped significance index. The historical evolution of the MART can be employed to perform a global assessment of the resilience and trends of global significance of the SWI in an aquifer. It can be useful to compare the significance of intrusion problems in

  13. Comparison of groundwater flow in Southern California coastal aquifers

    Science.gov (United States)

    Hanson, Randall T.; Izbicki, John A.; Reichard, Eric G.; Edwards, Brian D.; Land, Michael; Martin, Peter

    2009-01-01

    Development of the coastal aquifer systems of Southern California has resulted in overdraft, changes in streamflow, seawater intrusion, land subsidence, increased vertical flow between aquifers, and a redirection of regional flow toward pumping centers. These water-management challenges can be more effectively addressed by incorporating new understanding of the geologic, hydrologic, and geochemical setting of these aquifers.

  14. Aquifer test at well SMW-1 near Moenkopi, Arizona

    Science.gov (United States)

    Carruth, Rob; Bills, Donald J.

    2012-01-01

    The Hopi villages of Lower Moencopi and Upper Moenkopi are on the Hopi Indian Reservation south of Tuba City in northern Arizona. These adjacent Hopi villages, located west and north of the confluence of Pasture Canyon Wash and Moenkopi Wash, are dependent on groundwater withdrawals from three wells that penetrate the N aquifer and from two springs that discharge from the N aquifer. The N aquifer is the principal aquifer in this region of northern Arizona and is composed of thick beds of sandstone between less permeable layers of siltstone and mudstone. The fine-grained character of the N aquifer inhibits rapid movement of water and large yields to wells; however, the aquifer is moderately productive at yields generally less than 25 gallons per minute in the study area. In recent years, the water level has declined in the three public-supply wells and the flow from the springs has decreased, causing concern that the current water supply will not be able to accommodate peak demand and allow for residential and economic growth. In addition to the challenge imposed by declining groundwater levels, the water-supply wells and springs are located about 2 miles downgradient from the Tuba City Landfill site where studies are ongoing to determine if uranium and other metals in groundwater beneath the landfill are higher than regional concentrations in the N aquifer. In August 2008, the U.S. Geological Survey, in cooperation with the Hopi Tribe, conducted an aquifer test on well SMW-1, designed to help the Hopi Tribe determine the potential yield and water quality of the N aquifer south of Moenkopi Wash as a possible source of additional water supply. Well SMW-1 was drilled south of Moenkopi Wash to a depth of 760 feet below land surface before being backfilled and cased to about 300 feet. The well penetrates, in descending order, the Navajo Sandstone and the Kayenta Formation, both units of the N aquifer. The pre-test water level in the well was 99.15 feet below land

  15. Europan double ridge morphometry as a test of formation models

    Science.gov (United States)

    Dameron, Ashley C.; Burr, Devon M.

    2018-05-01

    Double ridges on the Jovian satellite Europa consist of two parallel ridges with a central trough. Although these features are nearly ubiquitous on Europa, their formation mechanism(s) is (are) not yet well-understood. Previous hypotheses for their formation can be divided into two groups based on 1) the expected interior slope angles and 2) the magnitude of interior/exterior slope symmetry. The published hypotheses in the first ("fracture") group entail brittle deformation of the crust, either by diapirism, shear heating, or buckling due to compression. Because these mechanisms imply uplift of near-vertical fractures, their predicted interior slopes are steeper than the angle of repose (AOR) with shallower exterior slopes. The second ("flow") group includes cryosedimentary and cryovolcanic processes - explosive or effusive cryovolcanism and tidal squeezing -, which are predicted to form ridge slopes at or below the AOR. Explosive cryovolcanism would form self-symmetric ridges, whereas effusive cryolavas and cryo-sediments deposited during tidal squeezing would likely not exhibit slope symmetry. To distinguish between these two groups of hypothesized formation mechanisms, we derived measurements of interior slope angle and interior/exterior slope symmetry at multiple locations on Europa through analysis of data from the Galileo Solid State Imaging (SSI) camera. Two types of data were used: i) elevation data from five stereo-pair digital elevation models (DEMs) covering four ridges (580 individual measurements), and ii) ridge shadow length measurements taken on individual images over 40 ridges (200 individual measurements). Our results shows that slopes measured on our DEMs, located in the Cilix and Banded Plains regions, typically fall below the AOR, and slope symmetry is dominant. Two different shadow measurement techniques implemented to calculate interior slopes yielded slope angles that also fall below the AOR. The shallow interior slopes derived from both

  16. Occurrence, frequency, and significance of cavities in fractured-rock aquifers near Oak Ridge National Laboratory, Tennessee

    International Nuclear Information System (INIS)

    Moore, G.K.

    1988-01-01

    Virtually all wells drilled into bedrock intercept a water-bearing fracture, but cavities occur only in areas underlaid by limy rocks. Multiple cavities are common in wells in the Conasauga and Knox Groups but are rare in the Rome Formation and the Chickamauga Group. The geometric mean height (vertical dimension) of the cavities is 0.59 m, the geometric mean depth is 14 m, the average lateral spatial frequency is 0.16, and the average vertical spatial frequency is 0.019. Differences in cavity parameter values are caused partly by geologic factors such as lithology, bed thickness, and spatial fracture frequency. However, hydrologic factors such as percolation rate, recharge amount, aquifer storage capacity, and differences between lateral and vertical permeability may also be important. Tracer tests show that groundwater velocity in some cavities is in the range 20-300 m/d, and relatively rapid flow rates occur near springs. In contrast, wells that intercept cavities have about the same range in hydraulic conductivity as wells in regolith and fractured rock. The hydraulic conductivity data indicate a flow rate of less than 1.0 m/d. This difference cannot be adequately explained, but rapid groundwater movement may be much more common above the water table than below. Rapid groundwater flows below the water table might be rare except near springs in the Knox Group. 10 refs., 3 figs., 4 tabs

  17. Regeneration of a confined aquifer after redevelopment and decommission of artesian wells, example from Grafendorf aquifer (Styria, Austria)

    Science.gov (United States)

    Mehmedovski, Nudzejma; Winkler, Gerfried

    2016-04-01

    Water is essential for life and it is therefore necessary to protect drinking water sustainably. Compared to shallow groundwater, deeper groundwater is especially important due to its characteristic tendency to remain extensively unaffected by environmental impacts. Thus, the uncontrolled waste of this valuable resource has to be avoided. A lot of artesian wells have been established in Grafendorf bei Hartberg (Styria, Austria). Almost all wells were not state-of-the art. As a result the different aquifer horizons began to intermix. Additionally some of the artesian wells had a permanent free overflow and the water was not even used. Consequently, since 1950, where the mean discharge of 37 wells was 0,334 l/s per well, the discharge has decreased to 0,090 l/s until 2013, which means a decline of about 75 %. As a reaction to these declines a decommissioning campaign was conducted where 69 artesian wells have been closed by injecting a cement-bentonite suspension (ratio 3:1). The Grafendorf aquifer is situated in the Styrian Basin and consists of 5 separated artesian horizons in Neogene sediments. These artesian horizons range from 42 m (1st horizon) to 176 m (5th horizon) and mostly consist of sand, partly of fine/medium/coarse gravel and partially with minor clay content. In order to analyse the reaction of the Grafendorf aquifer to these redevelopments, 5 monitoring wells could be used for the analysis. Some monitoring wells include different aquifer horizons and hydraulically short cut them. Thus, in this work the analysis focus on the general trend of the whole aquifer system neglecting the individual interactions between the different aquifers. In a first investigation step the hydraulic properties of the aquifer system has been determined using pumping tests which were analysed with different analytical solutions with the software AQTESOLV. Overall the pumping test solutions hardly differ in the transmissivity and hydraulic conductivity. On the contrary the

  18. The thermal structure of a wind-driven Reynolds ridge

    Energy Technology Data Exchange (ETDEWEB)

    Phongikaroon, Supathorn; Peter Judd, K.; Smith, Geoffrey B.; Handler, Robert A. [Remote Sensing Division, Naval Research Laboratory, 20375, Washington, DC (United States)

    2004-08-01

    In this study, we investigate the nature of a Reynolds ridge formed by wind shear. We have simultaneously imaged the water surface, with a deposit of a monolayer of the surfactant, oleyl alcohol, subject to different wind shears, by using a high-resolution infrared (IR) detector and a high-speed (HS) digital camera. The results reveal that the regions around the wind-driven Reynolds ridge, which have subtle manifestations in visual imagery, possess surprisingly complex hydrodynamical and thermal structures when observed in the infrared. The IR measurements reveal a warm, clean region upstream of the ridge, which is composed of the so called fishscale structures observed in earlier investigations. The region downstream of the ridge is composed of colder fluid which forms two counter-rotating cells. A region of intermediate temperature, which we call the mixing (wake) region, forms immediately downstream of the ridge near the channel centerline. By measuring the velocity of the advected fishscales, we have determined a surface drift speed of about 2% of the wind speed. The spanwise length-scale of the structures has also been used to estimate the wind shear. In addition, a comparison of IR and visual imagery shows that the thermal field is a very sensitive indicator of the exact position of the ridge itself. (orig.)

  19. Transient well flow in vertically heterogeneous aquifers

    Science.gov (United States)

    Hemker, C. J.

    1999-11-01

    A solution for the general problem of computing well flow in vertically heterogeneous aquifers is found by an integration of both analytical and numerical techniques. The radial component of flow is treated analytically; the drawdown is a continuous function of the distance to the well. The finite-difference technique is used for the vertical flow component only. The aquifer is discretized in the vertical dimension and the heterogeneous aquifer is considered to be a layered (stratified) formation with a finite number of homogeneous sublayers, where each sublayer may have different properties. The transient part of the differential equation is solved with Stehfest's algorithm, a numerical inversion technique of the Laplace transform. The well is of constant discharge and penetrates one or more of the sublayers. The effect of wellbore storage on early drawdown data is taken into account. In this way drawdowns are found for a finite number of sublayers as a continuous function of radial distance to the well and of time since the pumping started. The model is verified by comparing results with published analytical and numerical solutions for well flow in homogeneous and heterogeneous, confined and unconfined aquifers. Instantaneous and delayed drainage of water from above the water table are considered, combined with the effects of partially penetrating and finite-diameter wells. The model is applied to demonstrate that the transient effects of wellbore storage in unconfined aquifers are less pronounced than previous numerical experiments suggest. Other applications of the presented solution technique are given for partially penetrating wells in heterogeneous formations, including a demonstration of the effect of decreasing specific storage values with depth in an otherwise homogeneous aquifer. The presented solution can be a powerful tool for the analysis of drawdown from pumping tests, because hydraulic properties of layered heterogeneous aquifer systems with

  20. Strongly coupled interaction between a ridge of fluid and an inviscid airflow

    KAUST Repository

    Paterson, C.

    2015-07-01

    © 2015 AIP Publishing LLC. The behaviour of a steady thin sessile or pendent ridge of fluid on an inclined planar substrate which is strongly coupled to the external pressure gradient arising from an inviscid airflow parallel to the substrate far from the ridge is described. When the substrate is nearly horizontal, a very wide ridge can be supported against gravity by capillary and/or external pressure forces; otherwise, only a narrower (but still wide) ridge can be supported. Classical thin-aerofoil theory is adapted to obtain the governing singular integro-differential equation for the profile of the ridge in each case. Attention is focused mainly on the case of a very wide sessile ridge. The effect of strengthening the airflow is to push a pinned ridge down near to its edges and to pull it up near to its middle. At a critical airflow strength, the upslope contact angle reaches the receding contact angle at which the upslope contact line de-pins, and continuing to increase the airflow strength beyond this critical value results in the de-pinned ridge becoming narrower, thicker, and closer to being symmetric in the limit of a strong airflow. The effect of tilting the substrate is to skew a pinned ridge in the downslope direction. Depending on the values of the advancing and receding contact angles, the ridge may first de-pin at either the upslope or the downslope contact line but, in general, eventually both contact lines de-pin. The special cases in which only one of the contact lines de-pins are also considered. It is also shown that the behaviour of a very wide pendent ridge is qualitatively similar to that of a very wide sessile ridge, while the important qualitative difference between the behaviour of a very wide ridge and a narrower ridge is that, in general, for the latter one or both of the contact lines may never de-pin.

  1. Site descriptions of environmental restoration units at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Kuhaida, A.J. Jr.; Parker, A.F.

    1997-02-01

    This report provides summary information on Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) sites as listed in the Oak Ridge Reservation Federal Facility Agreement (FFA), dated January 1, 1992, Appendix C. The Oak Ridge National Laboratory was built in 1943 as part of the World War II Manhattan Project. The original mission of ORNL was to produce and chemically separate the first gram-quantities of plutonium as part of the national effort to produce the atomic bomb. The current mission of ORNL is to provide applied research and development in support of the U.S. Department of Energy (DOE) programs in nuclear fusion and fission, energy conservation, fossil fuels, and other energy technologies and to perform basic scientific research in selected areas of the physical, life, and environmental sciences. ER is also tasked with clean up or mitigation of environmental impacts resulting from past waste management practices on portions of the approximately 37,000 acres within the Oak Ridge Reservation (ORR). Other installations located within the ORR are the Gaseous Diffusion Plant (K-25) and the Y-12 plant. The remedial action strategy currently integrates state and federal regulations for efficient compliance and approaches for both investigations and remediation efforts on a Waste Area Grouping (WAG) basis. As defined in the ORR FFA Quarterly Report July - September 1995, a WAG is a grouping of potentially contaminated sites based on drainage area and similar waste characteristics. These contaminated sites are further divided into four categories based on existing information concerning whether the data are generated for scoping or remedial investigation (RI) purposes. These areas are as follows: (1) Operable Units (OU); (2) Characterization Areas (CA); (3) Remedial Site Evaluation (RSE) Areas; and (4) Removal Site Evaluation (RmSE) Areas.

  2. Unravelling aquifer-wetland interaction using CSAMT and gravity methods: the Mollina-Camorra aquifer and the Fuente de Piedra playa-lake, southern Spain

    Science.gov (United States)

    Pedrera, A.; Martos-Rosillo, S.; Galindo-Zaldívar, J.; Rodríguez-Rodríguez, M.; Benavente, J.; Martín-Rodríguez, J. F.; Zúñiga-López, M. I.

    2016-06-01

    The hydrological regime of Fuente de Piedra playa-lake (Málaga, southern Spain) has been significantly affected by the intensive exploitation of groundwater in the area. The playa-lake is situated above clays, marls, and gypsum, and under unaltered conditions received surface-subsurface runoff within the watershed as well as groundwater discharge from two carbonate aquifers. We have analyzed the structure of the main one, the Mollina-Camorra carbonate aquifer, by combining controlled source audio magnetotellurics (CSAMT), gravity prospecting, and time-domain electromagnetic (TDEM) soundings. This geophysical information, together with new structural and hydrogeological data, was gathered to develop a new conceptual hydrogeological model. This model allows the hydrological linkage of the carbonate aquifer with the playa-lake system to be established. Moreover, the intensive exploitation in the carbonate aquifer, even outside the watershed of the playa-lake, has affected the hydrological regime of the system. This multidisciplinary work demonstrates the potential of geophysical methods for understanding wetland-aquifer interaction, having important groundwater management implications.

  3. Maxillary anterior ridge augmentation with recombinant human bone morphogenetic protein 2.

    Science.gov (United States)

    Edmunds, Ryan K; Mealey, Brian L; Mills, Michael P; Thoma, Daniel S; Schoolfield, John; Cochran, David L; Mellonig, Jim

    2014-01-01

    No human studies exist on the use of recombinant human bone morphogenetic protein 2 (rhBMP-2) on an absorbable collagen sponge (ACS) as a sole graft material for lateral ridge augmentation in large ridge defect sites. This series evaluates the treatment outcome of maxillary anterior lateral ridge augmentation with rhBMP-2/ACS. Twenty patients were treated with rhBMP-2/ACS and fixation screws for space maintenance. Cone beam volumetric tomography measurements were used to determine gain in ridge width, and a bone core biopsy was obtained. The mean horizontal ridge gain was 1.2 mm across sites, and every site gained width.

  4. The effects of ridging, row-spacing and seeding rate on carrot yield

    Directory of Open Access Journals (Sweden)

    S. TAIVALMAA

    2008-12-01

    Full Text Available Cool, wet spring weather often delays the early growth of carrots (Daucus carota L. in northern Europe. This effect may be partly obviated by sowing in ridges. Many types of ridges are used, but the most suitable for carrot cultivation under the conditions prevailing in northern Europe has yet to be determined. The effects of ridging, seeding rate and sowing system on the yield and visible quality of carrots were therefore studied in the field during three years. The highest yields were recorded for carrots sown in double rows on a narrow ridge. The effect of sowing system on mean root weight differed depending on the ridging regime. The mean weight of roots was higher for carrots cultivated on broad ridges than in other systems. Seeding rate had the most significant effect on mean root weight. For industrial purposes it is recommended that carrots be cultivated on broad ridges in double rows at low seeding rates with irrigation. The optimal cultivation technique for carrots destined for the fresh vegetable market would be narrow ridges sown in double rows at high seeding rates. The ridging system, seeding rate and row spacing did not appear to affect the external quality of roots. More detailed studies should be carried out to establish the effects of abiotic growth factors under different ridging regimes.;

  5. The effects of ridging, row-spacing and seeding rate on carrot yield

    Directory of Open Access Journals (Sweden)

    Sanna-Liisa Taivalmaa

    1997-12-01

    Full Text Available Cool, wet spring weather often delays the early growth of carrots (Daucus carota L. in northern Europe. This effect may be partly obviated by sowing in ridges. Many types of ridges are used, but the most suitable for carrot cultivation under the conditions prevailing in northern Europe has yet to be determined. The effects of ridging, seeding rate and sowing system on the yield and visible quality of carrots were therefore studied in the field during three years. The highest yields were recorded for carrots sown in double rows on a narrow ridge. The effect of sowing system on mean root weight differed depending on the ridging regime. The mean weight of roots was higher for carrots cultivated on broad ridges than in other systems. Seeding rate had the most significant effect on mean root weight. For industrial purposes it is recommended that carrots be cultivated on broad ridges in double rows at low seeding rates with irrigation. The optimal cultivation technique for carrots destined for the fresh vegetable market would be narrow ridges sown in double rows at high seeding rates. The ridging system, seeding rate and row spacing did not appear to affect the external quality of roots. More detailed studies should be carried out to establish the effects of abiotic growth factors under different ridging regimes.

  6. Unfaulting the Sardarapat Ridge, Southwest Armenia

    Science.gov (United States)

    Wetmore, P.; Connor, C.; Connor, L. J.; Savov, I. P.; Karakhanyan, A.

    2012-12-01

    Armenia is located near the core of contractional deformation associated with the collision between the Arabian and Eurasian tectonic plates. Several studies of this region, including portions of adjacent Georgia, Iran, and Turkey, have indicated that 1-2 mm/yr of intra-plate, north-south shortening is primarily accommodated by a network of E-W trending thrust faults, and NW-trending (dextral) and NE-trending (sinistral) strike-slip faults. One proposed fault in this network, the Sardarapat Fault (SF), was investigated as part of a regional seismic hazard assessment ahead of the installation of a replacement reactor at the Armenian Nuclear Power Plant (ANPP). The SF is primarily defined by the Sardarapat Ridge (SR), which is a WNW-trending, 40-70 m high topographic feature located just north of the Arax River and the Turkey-Armenia border. The stratigraphy comprising this ridge includes alluvium overlying several meters of lacustrine deposits above a crystal-rich basaltic lava flow that yields an Ar-Ar age of 0.9 +/- 0.02 Ma. The alluvial sediments on the ridge contain early Bronze age (3832-3470 BP) artifacts at an elevation 25 m above those of the surrounding alluvial plane. This has lead to the suggestion that the SR is bound to the south (the steepest side) by the SF, which is uplifting the ridge at a rate of 0.7 mm/yr. However, despite the prominence and trend of the ridge there are no unequivocal observations, such as scarps or exposures of fault rocks, to support the existence of the SF. The goal of the investigation of the SR area was to test various models for the formation of the ridge including faulting and combined volcanic and erosional processes. We therefore collected gravimetric, magnetic, magneto-tellurics (MT), and transient electromagnetic (TEM) data across an area of ~400 km2, and used correlations of stratigraphic data from coreholes drilled proximal to the study area to define the geometry of the contact between the basement and basin fill to

  7. Hydrogeology - AQUIFER_SYSTEMS_UNCONSOLIDATED_IDNR_IN: Unconsolidated Aquifer Systems of Indiana (Indiana Department of Natural Resources, 1:48,000, Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — AQUIFER_SYSTEMS_UNCONSOLIDATED_IDNR_IN is a polygon shapefile that shows unconsolidated aquifer systems of the state of Indiana at a scale of 1:48,000. The following...

  8. Hydrogeology of the Umm Er Radhuma Aquifer (Arabian peninsula)

    Science.gov (United States)

    Dirks, Heiko; Al Ajmi, Hussain; Kienast, Peter; Rausch, Randolf

    2018-03-01

    The aim of this article is to enhance the understanding of the Umm Er Radhuma aquifer's genesis, and its hydraulic and hydrochemical development over time. This is a prerequisite for wise use of the fossil groundwater resources contained within. The Umm Er Radhuma is a karstified limestone aquifer, extending over 1.6 Mio. km2 in the eastern part of the Arabian Peninsula. Both epigene and hypogene karstification contributed to the genesis of what is today the most prolific aquifer in the region. Besides man-made abstractions, even the natural outflows are higher than the small recharge (natural storage depletion). The Umm Er Radhuma shows that large aquifers in arid regions are never in "steady state" (where inflows equal outflows), considering Quaternary climate history. The aquifer's adaption to climate changes (precipitation, sea level) can be traced even after thousands of years, and is slower than the climate changes themselves.

  9. Simple method for quick estimation of aquifer hydrogeological parameters

    Science.gov (United States)

    Ma, C.; Li, Y. Y.

    2017-08-01

    Development of simple and accurate methods to determine the aquifer hydrogeological parameters was of importance for groundwater resources assessment and management. Aiming at the present issue of estimating aquifer parameters based on some data of the unsteady pumping test, a fitting function of Theis well function was proposed using fitting optimization method and then a unitary linear regression equation was established. The aquifer parameters could be obtained by solving coefficients of the regression equation. The application of the proposed method was illustrated, using two published data sets. By the error statistics and analysis on the pumping drawdown, it showed that the method proposed in this paper yielded quick and accurate estimates of the aquifer parameters. The proposed method could reliably identify the aquifer parameters from long distance observed drawdowns and early drawdowns. It was hoped that the proposed method in this paper would be helpful for practicing hydrogeologists and hydrologists.

  10. Groundwater vulnerability mapping in Guadalajara aquifers system (Western Mexico)

    Science.gov (United States)

    Rizo-Decelis, L. David; Marín, Ana I.; Andreo, Bartolomé

    2016-04-01

    Groundwater vulnerability mapping is a practical tool to implement strategies for land-use planning and sustainable socioeconomic development coherent with groundwater protection. The objective of vulnerability mapping is to identify the most vulnerable zones of catchment areas and to provide criteria for protecting the groundwater used for drinking water supply. The delineation of protection zones in fractured aquifers is a challenging task due to the heterogeneity and anisotropy of hydraulic conductivities, which makes difficult prediction of groundwater flow organization and flow velocities. Different methods of intrinsic groundwater vulnerability mapping were applied in the Atemajac-Toluquilla groundwater body, an aquifers system that covers around 1300 km2. The aquifer supplies the 30% of urban water resources of the metropolitan area of Guadalajara (Mexico), where over 4.6 million people reside. Study area is located in a complex neotectonic active volcanic region in the Santiago River Basin (Western Mexico), which influences the aquifer system underneath the city. Previous works have defined the flow dynamics and identified the origin of recharge. In addition, the mixture of fresh groundwater with hydrothermal and polluted waters have been estimated. Two main aquifers compose the multilayer system. The upper aquifer is unconfined and consists of sediments and pyroclastic materials. Recharge of this aquifer comes from rainwater and ascending vertical fluids from the lower aquifer. The lower aquifer consists of fractured basalts of Pliocene age. Formerly, the main water source has been the upper unit, which is a porous and unconsolidated unit, which acts as a semi-isotropic aquifer. Intense groundwater usage has resulted in lowering the water table in the upper aquifer. Therefore, the current groundwater extraction is carried out from the deeper aquifer and underlying bedrock units, where fracture flow predominates. Pollution indicators have been reported in

  11. Microgravity survey of the Oak Ridge K-25 Site, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Kaufmann, R.D.

    1996-05-01

    Karst features are known to exist within the carbonate bedrock of the Oak Ridge K-25 Site and may play an important role in groundwater flow and contaminant migration. This report discusses the results of a microgravity survey of the Oak Ridge K-25 Site. The main objective of the survey is to identify areas containing bedrock cavities. Secondary objectives included correlating the observed gravity to the geology and to variations in overburden thickness. The analysis includes 11 profile lines that are oriented perpendicular to the geologic strike and major structures throughout the K-25 Site. The profile lines are modeled in an effort to relate gravity anomalies to karst features such as concentrations of mud-filled cavities. Regolith thickness and density data provided by boreholes constrain the models. Areally distributed points are added to the profile lines to produce a gravity contour map of the site. In addition, data from the K-901 area are combined with data from previous surveys to produce a high resolution map of that site. The K-25 Site is located in an area of folded and faulted sedimentary rocks within the Appalachian Valley and Ridge physiographic province. Paleozoic age rocks of the Rome Formation, Knox Group, and Chickamauga Supergroup underlie the K-25 Site and contain structures that include the Whiteoak Mountain Fault, the K-25 Fault, a syncline, and an anticline. The mapped locations of the rock units and complex structures are currently derived from outcrop and well log analysis

  12. A Geochemical Reaction Model for Titration of Contaminated Soil and Groundwater at the Oak Ridge Reservation

    Science.gov (United States)

    Zhang, F.; Parker, J. C.; Gu, B.; Luo, W.; Brooks, S. C.; Spalding, B. P.; Jardine, P. M.; Watson, D. B.

    2007-12-01

    This study investigates geochemical reactions during titration of contaminated soil and groundwater at the Oak Ridge Reservation in eastern Tennessee. The soils and groundwater exhibits low pH and high concentrations of aluminum, calcium, magnesium, manganese, various trace metals such as nickel and cobalt, and radionuclides such as uranium and technetium. The mobility of many of the contaminant species diminishes with increasing pH. However, base additions to increase pH are strongly buffered by various precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior and associated geochemical effects is thus critical to evaluate remediation performance of pH manipulation strategies. This study was undertaken to develop a practical but generally applicable geochemical model to predict aqueous and solid-phase speciation during soil and groundwater titration. To model titration in the presence of aquifer solids, an approach proposed by Spalding and Spalding (2001) was utilized, which treats aquifer solids as a polyprotic acid. Previous studies have shown that Fe and Al-oxyhydroxides strongly sorb dissolved Ni, U and Tc species. In this study, since the total Fe concentration is much smaller than that of Al, only ion exchange reactions associated with Al hydroxides are considered. An equilibrium reaction model that includes aqueous complexation, precipitation, ion exchange, and soil buffering reactions was developed and implemented in the code HydroGeoChem 5.0 (HGC5). Comparison of model results with experimental titration curves for contaminated groundwater alone and for soil- water systems indicated close agreement. This study is expected to facilitate field-scale modeling of geochemical processes under conditions with highly variable pH to develop practical methods to control contaminant mobility at geochemically complex sites.

  13. isotopic characteristics of aquifers in sinai

    International Nuclear Information System (INIS)

    Al-Gamal, S.A.

    2004-01-01

    the environmental isotopes data (expressed as δ 2 d and δ 18 O) of different aquifers in sinai were treated using correlation and regression techniques. whereas, rain water isotopic data were treated using empirical orthogonal functions (EOF) techniques. environmental isotopes for different aquifers expressed in terms of O-18 and H-2, were taken to represent the isotopic characteristics. regression equations using the highly correlated variables of δ 2 d and δ 18 O were constructed for each aquifer. the latitudinal variations (of rainwater in sinai and selected climatic stations east mediterranean ) versus rainwater isotopic compositions were analyzed using the normalized variables. it was found that the latitudinal variations of the rainwater isotopic compositions ( δ 2 D, δ 18 O), vapor pressure, and surface temperature occurred in parallel and decreased with latitude. in the east mediterranean, empirical linear relationship between altitude and δ 2 D has indicted that the rate of change of δ 2 D with height is comparable with the dry lapse rate in the atmosphere.The obtained regression equations of environmental isotopes data have impacted on different slopes and different constants expressing the non-homogeneity in the isotopic composition of rainwater recharging the aquifers of sinai , due to the presence of different air masses

  14. Drought-sensitive aquifer settings in southeastern Pennsylvania

    Science.gov (United States)

    Zimmerman, Tammy M.; Risser, Dennis W.

    2005-01-01

    This report describes the results of a study conducted by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Conservation and Natural Resources, Bureau of Topographic and Geologic Survey, to determine drought-sensitive aquifer settings in southeastern Pennsylvania. Because all or parts of southeastern Pennsylvania have been in drought-warning or drought-emergency status during 6 of the past 10 years from 1994 through 2004, this information should aid well owners, drillers, and water-resource managers in guiding appropriate well construction and sustainable use of Pennsylvania's water resources. 'Drought-sensitive' aquifer settings are defined for this study as areas unable to supply adequate quantities of water to wells during drought. Using information from previous investigations and a knowledge of the hydrogeology and topography of the study area, drought-sensitive aquifer settings in southeastern Pennsylvania were hypothesized as being associated with two factors - a water-table decline (WTD) index and topographic setting. The WTD index is an estimate of the theoretical water-table decline at the ground-water divide for a hypothetical aquifer with idealized geometry. The index shows the magnitude of ground-water decline after cessation of recharge is a function of (1) distance from stream to divide, (2) ground-water recharge rate, (3) transmissivity, (4) specific yield, and (5) duration of the drought. WTD indices were developed for 39 aquifers that were subsequently grouped into categories of high, moderate, and low WTD index. Drought-sensitive settings determined from the hypothesized factors were compared to locations of wells known to have been affected (gone dry, replaced, or deepened) during recent droughts. Information collected from well owners, drillers, and public agencies identified 2,016 wells affected by drought during 1998-2002. Most of the available data on the location of drought-affected wells in the study area were

  15. Removal action report on the Building 3001 canal at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-05-01

    Oak Ridge National Laboratory (ORNL) is a federal facility managed by Lockheed Martin C, Energy Research, Inc., for the U.S. Department of Energy (DOE). ORNL on the Oak Ridge Reservation in East Tennessee at the Anderson and Roane County lines, approximately 38 km (24 miles) west of Knoxville, Tennessee, and 18 km (11 miles) southwest of downtown Oak Ridge. The Oak Ridge Graphite Reactor and its storage and transfer canal are located in Bldg. 3001 in the approximate center of Waste Area Grouping I in the ORNL main complex. 4:1 The Bldg. 3001 Storage Canal is an L-shaped, underground, reinforced-concrete structure running from the back and below the Graphite Reactor in Bldg. 3001 to a location beneath a hot cell in the adjacent Bldg. 3019. The Graphite Reactor was built in 1943 to produce small quantities of plutonium and was subsequently used to produce other isotopes for medical research before it was finally shut down in 1963. The associated canal was used to transport, under water, spent fuel slugs and other isotopes from the back of the reactor to the adjacent Bldg. 31319 hot cell for further processing. During its operation and years subsequent to operation, the canal's concrete walls and floor became contaminated with radioisotopes from the water.This report documents the activities involved with replacing the canal water with a solid, controlled, low-strength material (CLSM) in response to a Comprehensive Environmental Response, Compensation, and Liability Act non-time-critical removal action

  16. Intensively exploited Mediterranean aquifers: resilience and proximity to critical points of seawater intrusion

    Science.gov (United States)

    Mazi, K.; Koussis, A. D.; Destouni, G.

    2013-11-01

    We investigate here seawater intrusion in three prominent Mediterranean aquifers that are subject to intensive exploitation and modified hydrologic regimes by human activities: the Nile Delta Aquifer, the Israel Coastal Aquifer and the Cyprus Akrotiri Aquifer. Using a generalized analytical sharp-interface model, we review the salinization history and current status of these aquifers, and quantify their resilience/vulnerability to current and future sea intrusion forcings. We identify two different critical limits of sea intrusion under groundwater exploitation and/or climatic stress: a limit of well intrusion, at which intruded seawater reaches key locations of groundwater pumping, and a tipping point of complete sea intrusion upto the prevailing groundwater divide of a coastal aquifer. Either limit can be reached, and ultimately crossed, under intensive aquifer exploitation and/or climate-driven change. We show that sea intrusion vulnerability for different aquifer cases can be directly compared in terms of normalized intrusion performance curves. The site-specific assessments show that the advance of seawater currently seriously threatens the Nile Delta Aquifer and the Israel Coastal Aquifer. The Cyprus Akrotiri Aquifer is currently somewhat less threatened by increased seawater intrusion.

  17. Transitions in axial morphology along the Southeast Indian Ridge

    Science.gov (United States)

    Ma, Ying; Cochran, James R.

    1996-07-01

    Shipboard bathymetric and magnetic profiles across the Southeast Indian Ridge (SEIR) were analyzed in order to examine the nature of along-axis variations in axial morphology at this intermediate spreading rate ridge. Three types of axial morphology are observed along the SEIR: an axial high, a shallow (200-700 m deep) axial valley and a deep (>1000 m deep) axial valley. An axial high is found to the east of the Australian-Antarctic Discordance (AAD) (east of 128°E) and between 82°E and 104°E. A shallow rift valley is found from 104°E to 114°E and from 82°E westward past the Amerstdam/St. Paul hotspot (ASP) to about 30°S, 75°E. Deep rift valleys are found from 114°E to 128°E in the vicinity of the AAD and from the Indian Ocean Triple Junction (IOTJ) at 25°S, 70°E to about 30°S, 75°E. The transition near 30°S occurs in an area of constant zero-age depth and does not appear to result from an increase in mantle temperature. It could be the result of the rapid increase in spreading rate along that portion of the SEIR. The most likely cause of the other transitions in axial morphology is variations in mantle temperature. The transitions between the different types of axial morphology are well defined and occur over a limited distance. Transitions in axial morphology are accompanied by significant changes in ridge flank topographic roughness. The transitions from axial valleys to axial highs are also accompanied by changes in the amplitude of the seafloor magnetic anomalies. Our observations suggest that there are distinct modes rather than a continuum of axial morphology on the SEIR and that there appears to be a "threshold" mechanism for a rapid change between different states of axial morphology. The ASP has only a limited influence on the SEIR. The ridge axis is marked by an axial valley for the entire distance from the IOTJ up to and past the ASP. The ridge axis becomes shallower as the ASP is approached from the northwest but only by about 300 m over

  18. Optimal Aquifer Pumping Policy to Reduce Contaminant Concentration

    Directory of Open Access Journals (Sweden)

    Ali Abaei

    2012-01-01

    Full Text Available Different sources of ground water contamination lead to non-uniform distribution of contaminant concentration in the aquifer. If elimination or containment of pollution sources was not possible, the distribution of contaminant concentrations could be modified in order to eliminate peak concentrations using optimal water pumping discharge plan. In the present investigation Visual MODFLOW model was used to simulate the flow and transport in a hypothetic aquifer. Genetic Algorithm (GA also was applied to optimize the location and pumping flow rate of wells in order to reduce contaminants peak concentrations in aquifer.

  19. Accretion mode of oceanic ridges governed by axial mechanical strength

    Science.gov (United States)

    Sibrant, A. L. R.; Mittelstaedt, E.; Davaille, A.; Pauchard, L.; Aubertin, A.; Auffray, L.; Pidoux, R.

    2018-04-01

    Oceanic spreading ridges exhibit structural changes as a function of spreading rate, mantle temperature and the balance of tectonic and magmatic accretion. The role that these or other processes have in governing the overall shape of oceanic ridges is unclear. Here, we use laboratory experiments to simulate ridge spreading in colloidal aqueous dispersions whose rheology evolves from purely viscous to elastic and brittle when placed in contact with a saline water solution. We find that ridge shape becomes increasingly linear with spreading rate until reaching a minimum tortuosity. This behaviour is predicted by the axial failure parameter ΠF, a dimensionless number describing the balance of brittle and plastic failure of axial lithosphere. Slow-spreading, fault-dominated and fast-spreading, fluid intrusion-dominated ridges on Earth and in the laboratory are separated by the same critical ΠF value, suggesting that the axial failure mode governs ridge geometry. Values of ΠF can also be calculated for different mantle temperatures and applied to other planets or the early Earth. For higher mantle temperatures during the Archaean, our results preclude the predicted formation of large tectonic plates at high spreading velocity.

  20. Alveolar Ridge Split Technique Using Piezosurgery with Specially Designed Tips

    Directory of Open Access Journals (Sweden)

    Alessandro Moro

    2017-01-01

    Full Text Available The treatment of patients with atrophic ridge who need prosthetic rehabilitation is a common problem in oral and maxillofacial surgery. Among the various techniques introduced for the expansion of alveolar ridges with a horizontal bone deficit is the alveolar ridge split technique. The aim of this article is to give a description of some new tips that have been specifically designed for the treatment of atrophic ridges with transversal bone deficit. A two-step piezosurgical split technique is also described, based on specific osteotomies of the vestibular cortex and the use of a mandibular ramus graft as interpositional graft. A total of 15 patients were treated with the proposed new tips by our department. All the expanded areas were successful in providing an adequate width and height to insert implants according to the prosthetic plan and the proposed tips allowed obtaining the most from the alveolar ridge split technique and piezosurgery. These tips have made alveolar ridge split technique simple, safe, and effective for the treatment of horizontal and vertical bone defects. Furthermore the proposed piezosurgical split technique allows obtaining horizontal and vertical bone augmentation.

  1. Alveolar Ridge Split Technique Using Piezosurgery with Specially Designed Tips.

    Science.gov (United States)

    Moro, Alessandro; Gasparini, Giulio; Foresta, Enrico; Saponaro, Gianmarco; Falchi, Marco; Cardarelli, Lorenzo; De Angelis, Paolo; Forcione, Mario; Garagiola, Umberto; D'Amato, Giuseppe; Pelo, Sandro

    2017-01-01

    The treatment of patients with atrophic ridge who need prosthetic rehabilitation is a common problem in oral and maxillofacial surgery. Among the various techniques introduced for the expansion of alveolar ridges with a horizontal bone deficit is the alveolar ridge split technique. The aim of this article is to give a description of some new tips that have been specifically designed for the treatment of atrophic ridges with transversal bone deficit. A two-step piezosurgical split technique is also described, based on specific osteotomies of the vestibular cortex and the use of a mandibular ramus graft as interpositional graft. A total of 15 patients were treated with the proposed new tips by our department. All the expanded areas were successful in providing an adequate width and height to insert implants according to the prosthetic plan and the proposed tips allowed obtaining the most from the alveolar ridge split technique and piezosurgery. These tips have made alveolar ridge split technique simple, safe, and effective for the treatment of horizontal and vertical bone defects. Furthermore the proposed piezosurgical split technique allows obtaining horizontal and vertical bone augmentation.

  2. Sedimentological analysis of a contaminated groundwater aquifer

    International Nuclear Information System (INIS)

    Towse, D.

    1991-01-01

    The use of sedimentological reservoir analysis techniques adapted from standard oilfield practice can improve the efficiency and reduce the costs of the evaluation of groundwater aquifers and the design of restoration programs. An evaluation/restoration program at a site in California drilled over 200 test wells in about 750 ac. All wells were logged lithologically and with wireline. The shallow aquifer is a complex braided alluvial floodplain deposit of Late Quaternary age. Analysis demonstrates depositional and erosional responses to periodic hinterland uplifts and to changing climatic conditions. Channel, overbank, lacustrine, and minor deltaic deposits can be recognized. The aquifer architecture has been interpreted to explain the movement of fuel and halogenated hydrocarbon solvents in the sediments and water. Routine engineering geology techniques and hydrologic tests were used to evaluate contamination and to design experimental restoration processes. As demonstrated here, sedimentological techniques show promise in reducing the costs and time required for this type of study. The abundant detailed data will be used in an attempt to develop a microcomputer-based expert system for rapid preliminary analyses of similar aquifers or reservoirs

  3. Disposal of carbon dioxide in aquifers in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Winter, E.M.; Bergman, P.D.

    1995-11-01

    Deep saline aquifers were investigated as potential disposal sites for CO{sub 2}. The capacity of deep aquifers for CO{sub 2} disposal in the U.S. is highly uncertain. A rough estimate, derived from global estimates, is 5,500 Gt of CO{sub 2}. Saline aquifers underlie the regions in the U.S. where most utility power plants are situated. Therefore, approximately 65 percent of CO{sub 2} from power plants could possibly be injected directly into deep saline aquifers below these plants, without the need for long pipelines.

  4. The Tunisian Jurassic aquifer in the North African Sahara aquifer system: information derived from two-dimensional seismic reflection and well logs

    Science.gov (United States)

    Ben Lasmar, Rafika; Guellala, Rihab; Garrach, Mohamed; Mahroug, Ali; Sarsar Naouali, Benen; Inoubli, Mohamed Hédi

    2017-12-01

    Southern Tunisia is an arid area where socio-economic activities are dependent on groundwater resources. The presented study aims to better characterize the Jurassic aquifer based on geological and geophysical data, with a view to develop a rational exploitation program. Well logs are used to precisely determine the position and composition of the known Jurassic aquifer layers and to identify others able to produce good quality water. The logs show that limestones, sandstones and dolomites of the Krachoua, Techout and Foum Tataouine formations are the main Jurassic aquifers. Sixty-eight seismic-reflection sections are integrated within this study. The interpolation between the interpreted sections leads to the construction of isochronous isopach maps and geoseismic sections, and their analysis finds that compressive and extensive tectonic deformations have influenced the Jurassic aquifer geometry. The Hercynian orogeny phase manifestation is remarkable in that there are several stratigraphic gaps in the Jurassic sequence. The E-W, NW-SE, and NNW-SSE accidents, reactivated in normal faults since the Permian to Lower Cretaceous epochs, have generated the structures found in the Jurassic series, such as subsided and raised blocks. Their syn-sedimentary activity has controlled the thickness and facies of these series. The Cretaceous, Tortonian and Post-Villafranchian compressions are responsible for the Jurassic-deposits folding in some localities. The highlighted tectonic and sedimentary events have an important impact on the Jurassic aquifer function by favoring the Jurassic aquifer interconnections and their connections with the Triassic and Cretaceous permeable series.

  5. Alveolar Ridge Carcinoma. Two Cases Report

    International Nuclear Information System (INIS)

    Pupo Triguero, Raul J; Vivar Bauza, Miriam; Alvarez Infante, Elisa

    2008-01-01

    Two cases with alveolar ridge carcinoma due to prosthetist traumatism are discussed in this paper, after 9 and 10 years of using dental prosthesis. Both patients began with disturbance in the alveolar ridge. The clinical examination and biopsy showed a well differenced carcinoma. The treatment was radical surgery and radiotherapy in the first patient, and conservative surgery with radiotherapy in the second case .The patients had xerostomia after radiotherapy and the woman had difficulties with mastication. The advantages and disadvantages of the treatment were discussed, focused on the prevention and treatment for oral

  6. ORLANDO - Oak Ridge Large Neutrino Detector

    International Nuclear Information System (INIS)

    Bugg, W.; Cohn, H.; Efremenko, Yu.; Fazely, A.; Gabriel, T.; Kamyshkov, Yu.; Plasil, F.; Svoboda, R.

    1999-01-01

    We discuss a proposal for construction of an Oak Ridge LArge Neutrino DetectOr (ORLANDO) to search for neutrino oscillations at the Spallation Neutron Source (SNS). A 4 MW SNS is proposed to be built at the Oak Ridge National Laboratory with the first stage to be operative around 2006. It will have two target stations, which makes it possible with a single detector to perform a neutrino oscillation search at two different distances. Initial plans for the placement of the detector and the discovery potential of such a detector are discussed

  7. Upper Basalt-Confined Aquifer System in the Southern Hanford Site

    International Nuclear Information System (INIS)

    Thorne, P.

    1999-01-01

    The 1990 DOE Tiger Team Finding GW/CF-202 found that the hydrogeologic regime at the Hanford Site was inadequately characterized. This finding also identified the need for completing a study of the confined aquifer in the central and southern portions of the Hanford Site. The southern portion of the site is of particular interest because hydraulic-head patterns in the upper basalt-confined aquifer system indicate that groundwater from the Hanford central plateau area, where contaminants have been found in the aquifer, flows southeast toward the southern site boundary. This results in a potential for offsite migration of contaminants through the upper basalt-confined aquifer system. Based on the review presented in this report, available hydrogeologic characterization information for the upper basalt-confined aquifer system in this area is considered adequate to close the action item. Recently drilled offsite wells have provided additional information on the structure of the aquifer system in and near the southern part of the Hanford Site. Information on hydraulic properties, hydrochemistry, hydraulic heads and flow directions for the upper basalt-confined aquifer system has been re-examined and compiled in recent reports including Spane and Raymond (1993), Spane and Vermeul ( 1994), and Spane and Webber (1995)

  8. CO2/Brine transport into shallow aquifers along fault zones.

    Science.gov (United States)

    Keating, Elizabeth H; Newell, Dennis L; Viswanathan, Hari; Carey, J W; Zyvoloski, G; Pawar, Rajesh

    2013-01-02

    Unintended release of CO(2) from carbon sequestration reservoirs poses a well-recognized risk to groundwater quality. Research has largely focused on in situ CO(2)-induced pH depression and subsequent trace metal mobilization. In this paper we focus on a second mechanism: upward intrusion of displaced brine or brackish-water into a shallow aquifer as a result of CO(2) injection. Studies of two natural analog sites provide insights into physical and chemical mechanisms controlling both brackish water and CO(2) intrusion into shallow aquifers along fault zones. At the Chimayó, New Mexico site, shallow groundwater near the fault is enriched in CO(2) and, in some places, salinity is significantly elevated. In contrast, at the Springerville, Arizona site CO(2) is leaking upward through brine aquifers but does not appear to be increasing salinity in the shallow aquifer. Using multiphase transport simulations we show conditions under which significant CO(2) can be transported through deep brine aquifers into shallow layers. Only a subset of these conditions favor entrainment of salinity into the shallow aquifer: high aspect-ratio leakage pathways and viscous coupling between the fluid phases. Recognition of the conditions under which salinity is favored to be cotransported with CO(2) into shallow aquifers will be important in environmental risk assessments.

  9. Ground-water levels in aquifers used for residential supply, Campton Township, Kane County, Illinois

    Science.gov (United States)

    Kay, Robert T.; Kraske, Kurt A.

    1996-01-01

    The U.S. Geological Survey, in cooperation with the Campton Township Board of Trustees, measured water levels in the aquifers used for residential supply in Campton Township, Kane County, Illinois. Aquifers used for residential supply are the shallow and deep aquifers in the glacial drift, composed of unconsolidated sand and gravels; the Alexandrian-Maquoketa aquifer, composed of dolomite and shale of the Alexandrian Series and the Maquoketa Group; the Galena-Platteville aquifer, composed of dolomite of the Platteville and Galena Groups; and the Ancell aquifer, composed of sandstones of the Glenwood Formation and the St. Peter Sanstone. Water-level altitudes in the shallow drift aquifers generally follow surface topography. Analysis of water-level data does not clearly indicate overutilization of these aquifers. Water-level altitudes in the deep drift aquifers decrease from west to east. Comparison of historical depth to water measurements with current (1995) measurements indicates large decreases in water levels in some areas. The deep drift aquifers may be overutilized at these locations. Water-level altitudes in the Alexandrian-Maquoketa aquifer generally decrease from west to east. The potentiometric surface of the aquifer follows the bedrock-surface topography in some locations. Localized low water-level altitudes and large decreases in water levels indicate the Alexandrian-Maquoketa aquifer is overutilized in several areas. Water-level altitudes in the wells finished in the Galena- Platteville aquifer vary by more than 300 feet. Large decreases in water levels in wells finished in the Galena-Platteville aquifer indicate the Galena-Platteville and Alexandrian-Maquoketa aquifers are overutilized in the northern part of the township. Water-level altitudes in the wells finished in the Ancell aquifer are also highly variable. There is no indication that the Ancell aquifer is overutilized.

  10. San Pedro River Aquifer Binational Report

    Science.gov (United States)

    Callegary, James B.; Minjárez Sosa, Ismael; Tapia Villaseñor, Elia María; dos Santos, Placido; Monreal Saavedra, Rogelio; Grijalva Noriega, Franciso Javier; Huth, A. K.; Gray, Floyd; Scott, C. A.; Megdal, Sharon; Oroz Ramos, L. A.; Rangel Medina, Miguel; Leenhouts, James M.

    2016-01-01

    The United States and Mexico share waters in a number of hydrological basins and aquifers that cross the international boundary. Both countries recognize that, in a region of scarce water resources and expanding populations, a greater scientific understanding of these aquifer systems would be beneficial. In light of this, the Mexican and U.S. Principal Engineers of the International Boundary and Water Commission (IBWC) signed the “Joint Report of the Principal Engineers Regarding the Joint Cooperative Process United States-Mexico for the Transboundary Aquifer Assessment Program" on August 19, 2009 (IBWC-CILA, 2009). This IBWC “Joint Report” serves as the framework for U.S.-Mexico coordination and dialogue to implement transboundary aquifer studies. The document clarifies several details about the program such as background, roles, responsibilities, funding, relevance of the international water treaties, and the use of information collected or compiled as part of the program. In the document, it was agreed by the parties involved, which included the IBWC, the Mexican National Water Commission (CONAGUA), the U.S. Geological Survey (USGS), and the Universities of Arizona and Sonora, to study two priority binational aquifers, one in the San Pedro River basin and the other in the Santa Cruz River basin. This report focuses on the Binational San Pedro Basin (BSPB). Reasons for the focus on and interest in this aquifer include the fact that it is shared by the two countries, that the San Pedro River has an elevated ecological value because of the riparian ecosystem that it sustains, and that water resources are needed to sustain the river, existing communities, and continued development. This study describes the aquifer’s characteristics in its binational context; however, most of the scientific work has been undertaken for many years by each country without full knowledge of the conditions on the other side of the border. The general objective of this study is to

  11. Identifying Stream/Aquifer Exchange by Temperature Gradient in a Guarani Aquifer System Outcrop Zone

    Science.gov (United States)

    Wendland, E.; Rosa, D. M. S.; Anache, J. A. A.; Lowry, C.; Lin, Y. F. F.

    2017-12-01

    Recharge of the Guarani Aquifer System (GAS) in South America is supposed to occur mainly in the outcrop zones, where the GAS appears as an unconfined aquifer (10% of the 1.2 Million km2 aquifer extension). Previous evaluations of recharge are based essentially on water balance estimates for the whole aquifer area or water table fluctuations in monitoring wells. To gain a more detailed understanding of the recharge mechanisms the present work aimed to study the stream aquifer interaction in a watershed (Ribeirão da Onça) at an outcrop zone. Two Parshall flumes were installed 1.3 km apart for discharge measurement in the stream. Along this distance an optic fiber cable was deployed to identify stretches with gaining and losing behavior. In order to estimate groundwater discharge in specific locations, 8 temperature sticks were set up along the stream reach to measure continuously the vertical temperature gradient. A temperature probe with 4 thermistors was also used to map the shallow streambed temperature gradient manually along the whole distance. The obtained results show a discharge difference of 250 m3/h between both flumes. Since the last significant rainfall (15 mm) in the watershed occurred 3 months ago, this value can be interpreted as the base flow contribution to the stream during the dry season. Given the temperature difference between groundwater ( 24oC) and surface water ( 17oC) the fiber-optic distributed temperature sensing (FO-DTS) allowed the identification of stretches with gaining behavior. Temperature gradients observed at the streambed varied between 0.67 and 14.33 oC/m. The study demonstrated that heat may be used as natural tracer even in tropical conditions, where the groundwater temperature is higher than the surface water temperature during the winter. The obtained results show that the discharge difference between both flumes can not be extrapolated without detailed analysis. Gaining and loosing stretches have to be identified on order

  12. Estimating aquifer transmissivity from geo-electrical sounding ...

    African Journals Online (AJOL)

    Aquifer resistivity range from 4.26 ohm-m to 755.3 ohm-m with maximum thickness of 52.25m. A maximum 55.52m depth- tobasement was obtained in the study area. Based on the model obtained, aquifer Transmissivity was calculated and was used to delineate the study area into prospective low and high groundwater ...

  13. Managed aquifer recharge: rediscovering nature as a leading edge technology.

    Science.gov (United States)

    Dillon, P; Toze, S; Page, D; Vanderzalm, J; Bekele, E; Sidhu, J; Rinck-Pfeiffer, S

    2010-01-01

    Use of Managed Aquifer Recharge (MAR) has rapidly increased in Australia, USA, and Europe in recent years as an efficient means of recycling stormwater or treated sewage effluent for non-potable and indirect potable reuse in urban and rural areas. Yet aquifers have been relied on knowingly for water storage and unwittingly for water treatment for millennia. Hence if 'leading edge' is defined as 'the foremost part of a trend; a vanguard', it would be misleading to claim managed aquifer recharge as a leading edge technology. However it has taken a significant investment in scientific research in recent years to demonstrate the effectiveness of aquifers as sustainable treatment systems to enable managed aquifer recharge to be recognised along side engineered treatment systems in water recycling. It is a 'cross-over' technology that is applicable to water and wastewater treatment and makes use of passive low energy processes to spectacularly reduce the energy requirements for water supply. It is robust within limits, has low cost, is suitable from village to city scale supplies, and offers as yet almost untapped opportunities for producing safe drinking water supplies where they do not yet exist. It will have an increasingly valued role in securing water supplies to sustain cities affected by climate change and population growth. However it is not a universal panacea and relies on the presence of suitable aquifers and sources of water together with effective governance to ensure human health and environment protection and water resources planning and management. This paper describes managed aquifer recharge, illustrates its use in Australia, outlining economics, guidelines and policies, and presents some of the knowledge about aquifer treatment processes that are revealing the latent value of aquifers as urban water infrastructure and provide a driver to improving our understanding of urban hydrogeology.

  14. Decision Support System for Aquifer Recharge (AR) and Aquifer Storage and Recovery (ASR) Planning, Design, and Evaluation - Principles and Technical Basis

    Science.gov (United States)

    Aquifer recharge (AR) is a technical method being utilized to enhance groundwater resources through man-made replenishment means, such as infiltration basins and injections wells. Aquifer storage and recovery (ASR) furthers the AR techniques by withdrawal of stored groundwater at...

  15. The Mozambique Ridge: a document of massive multistage magmatism

    Science.gov (United States)

    Fischer, Maximilian D.; Uenzelmann-Neben, Gabriele; Jacques, Guillaume; Werner, Reinhard

    2017-01-01

    The Mozambique Ridge, a prominent basement high in the southwestern Indian Ocean, consists of four major geomorphological segments associated with numerous phases of volcanic activity in the Lower Cretaceous. The nature and origin of the Mozambique Ridge have been intensely debated with one hypothesis suggesting a Large Igneous Province origin. High-resolution seismic reflection data reveal a large number of extrusion centres with a random distribution throughout the southern Mozambique Ridge and the nearby Transkei Rise. Intrabasement reflections emerge from the extrusion centres and are interpreted to represent massive lava flow sequences. Such lava flow sequences are characteristic of eruptions leading to the formation of continental and oceanic flood basalt provinces, hence supporting a Large Igneous Province origin of the Mozambique Ridge. We observe evidence for widespread post-sedimentary magmatic activity that we correlate with a southward propagation of the East African Rift System. Based on our volumetric analysis of the southern Mozambique Ridge we infer a rapid sequential emplacement between ˜131 and ˜125 Ma, which is similar to the short formation periods of other Large Igneous Provinces like the Agulhas Plateau.

  16. Radial flow towards well in leaky unconfined aquifer

    Science.gov (United States)

    Mishra, P. K.; Kuhlman, K. L.

    2012-12-01

    An analytical solution is developed for three-dimensional flow towards a partially penetrating large- diameter well in an unconfined aquifer bounded below by a leaky aquitard of finite or semi-infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone following an assumption of instantaneous drainage due to Neuman. We extend the theory of leakage in unconfined aquifers by (1) including water flow and storage in the unsaturated zone above the water table, and (2) allowing the finite-diameter pumping well to partially penetrate the aquifer. The investigation of model-predicted results shows that aquitard leakage leads to significant departure from the unconfined solution without leakage. The investigation of dimensionless time-drawdown relationships shows that the aquitard drawdown also depends on unsaturated zone properties and the pumping-well wellbore storage effects.

  17. Simulation of the water-table altitude in the Biscayne Aquifer, southern Dade County, Florida, water years 1945-89

    Science.gov (United States)

    Merritt, M.L.

    1995-01-01

    -table altitudes, and modifications to the simulator permitted the specification of time- varying pressures at boundary grid cells. Rainfall data from a station in Homestead generally were used as an areally uniform rainfall specification throughout the modeled region. Maximum evapotranspiration rates ranged seasonally from a minimum of 0.08 inch per day in January to a maximum of 0.21 inch per day between June and October. Shallow-root and deep-root zone depths for the evaportranspiration calculation were 3 and 20 feet in the coastal ridge and were 0.10 and 5 feet in the glades regions where peat and marl covers occurred. Results of sensitivity analyses indicated that the simulations of stages and water levels were relatively unresponsive to 50 percent changes in aquifer hydraulic conductivity, porosity, and the equivalent hydraulic conductivity of overland flow. However, 20 percent changes in rainfall and maximum evapotranspiration rates produced significantly different water levels, as did interchange of coastal ridge and glades deep-root zone (extinction) depths. Water levels were simulated very well at most measurement sites. Sensitivity analyses illustrated the significant influence of the uncontrolled agricultural drainage canals on pre- 1968 regional water levels and the further influence of Black Creek Canal in draining a region of high water after 1961. Other analyses indicated that the flood-control system of 1968-82 lowered peak water levels in the affected region by as much as 1.5 feet in the wet summers of 1968, 1969, and 1981, and that Levee 67 Extended channeled flows from the S-12 spillway structures and raised overland flow stages in Shark River Slough. Hypothetical scenarios of well-field pumping in the vicinity of Levee 31N indicated that the pumping induced a significant amount of recharge from the adjacent borrow canal, the degree of which depended on the distance between the canal and the well field. The computed ratio of evapotranspiration to ra

  18. Beach ridge sedimentology: field observation and palaeoenvironmental interpretation for Anegada Island, British Virgin Islands.

    Science.gov (United States)

    Cescon, Anna Lisa; Cooper, J. Andrew G.; Jackson, Derek W. T.

    2014-05-01

    Beach ridge landforms have been observed in different environments and in settings that range from polar to tropical. Their stratigraphy and sedimentology has received a limited amount of discussion in the literature (Tamura, 2012). In coastal geomorphology a beach ridge can be seen as a transitional deposit between onshore and offshore environments. They are regarded as representing high level wave action along a coastline. In the Caribbean the origin of beach ridges has been variously attributed to one of three extreme wave events: extreme swell, extreme storm or tsunami waves. Beach ridges are arranged in beach ridge plains where there is succession of the landforms and can be several kilometres long. Beach ridge accumulation is not continuous and the coast shows alternating accretion and erosion periods. The use of beach ridges as palaeostorm archives is therefore not straightforward. The temporal continuity of beach ridge formation is being assessed on the beach ridge plains of Anegada, British Virgin Islands (Lesser Antilles). This carbonate platform surrounded by a fringing reef contains two beach ridge plains. There are more than 30 ridges in the Atlantic facing- coast and around 10 in the south, Caribbean- facing coast. The sediments of the modern beaches are dominated by the sand fraction and are 100% biogenic origin due to the isolation of Anegada from terrestrial sediment sources. The beach ridge sections have been studied in different area of Anegada beach ridge plains and present low angle seaward-dipping bedding. The sand fraction is dominant in the stratigraphy with a few intact shells. At only one site were coral pebbles deposited in association with the sand fraction. Aeolian deposits represent the upper part of the beach ridges and reflect the stabilization of the beach ridges with ongoing accretion. The sedimentology of the contemporary beach and dunes will be discussed in terms of their implications for understanding beach ridge genesis and its

  19. Restoration of Wadi Aquifers by Artificial Recharge with Treated Waste Water

    KAUST Repository

    Missimer, Thomas M.; Drewes, Jö rg E.; Amy, Gary L.; Maliva,, Robert G.; Keller, Stephanie

    2012-01-01

    , such as damage to sensitive nearshore marine environments and creation of high-salinity interior surface water areas. An investigation of the hydrogeology of wadi aquifers in Saudi Arabia revealed that these aquifers can be used to develop aquifer recharge

  20. Ridge Distance Estimation in Fingerprint Images: Algorithm and Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Tian Jie

    2004-01-01

    Full Text Available It is important to estimate the ridge distance accurately, an intrinsic texture property of a fingerprint image. Up to now, only several articles have touched directly upon ridge distance estimation. Little has been published providing detailed evaluation of methods for ridge distance estimation, in particular, the traditional spectral analysis method applied in the frequency field. In this paper, a novel method on nonoverlap blocks, called the statistical method, is presented to estimate the ridge distance. Direct estimation ratio (DER and estimation accuracy (EA are defined and used as parameters along with time consumption (TC to evaluate performance of these two methods for ridge distance estimation. Based on comparison of performances of these two methods, a third hybrid method is developed to combine the merits of both methods. Experimental results indicate that DER is 44.7%, 63.8%, and 80.6%; EA is 84%, 93%, and 91%; and TC is , , and seconds, with the spectral analysis method, statistical method, and hybrid method, respectively.

  1. One Piece Orbitozygomatic Approach Based on the Sphenoid Ridge Keyhole

    DEFF Research Database (Denmark)

    Spiriev, Toma; Poulsgaard, Lars; Fugleholm, Kåre

    2016-01-01

    The one-piece orbitozygomatic (OZ) approach is traditionally based on the McCarty keyhole. Here, we present the use of the sphenoid ridge keyhole and its possible advantages as a keyhole for the one-piece OZ approach. Using transillumination technique the osteology of the sphenoid ridge...... was examined on 20 anatomical dry skull specimens. The results were applied to one-piece OZ approaches performed on freshly frozen cadaver heads. We defined the center of the sphenoid ridge keyhole as a superficial projection on the lateral skull surface of the most anterior and thickest part of the sphenoid...... ridge. It was located 22 mm (standard deviation [SD], 0.22 mm) from the superior temporal line; 10.7 mm (SD, 0.08 mm) posterior and 7.1 mm (SD, 0.22 mm) inferior to the frontozygomatic suture. The sphenoid ridge burr hole provides exposure of frontal, temporal dura as well as periorbita, which...

  2. Significance testing in ridge regression for genetic data

    Directory of Open Access Journals (Sweden)

    De Iorio Maria

    2011-09-01

    Full Text Available Abstract Background Technological developments have increased the feasibility of large scale genetic association studies. Densely typed genetic markers are obtained using SNP arrays, next-generation sequencing technologies and imputation. However, SNPs typed using these methods can be highly correlated due to linkage disequilibrium among them, and standard multiple regression techniques fail with these data sets due to their high dimensionality and correlation structure. There has been increasing interest in using penalised regression in the analysis of high dimensional data. Ridge regression is one such penalised regression technique which does not perform variable selection, instead estimating a regression coefficient for each predictor variable. It is therefore desirable to obtain an estimate of the significance of each ridge regression coefficient. Results We develop and evaluate a test of significance for ridge regression coefficients. Using simulation studies, we demonstrate that the performance of the test is comparable to that of a permutation test, with the advantage of a much-reduced computational cost. We introduce the p-value trace, a plot of the negative logarithm of the p-values of ridge regression coefficients with increasing shrinkage parameter, which enables the visualisation of the change in p-value of the regression coefficients with increasing penalisation. We apply the proposed method to a lung cancer case-control data set from EPIC, the European Prospective Investigation into Cancer and Nutrition. Conclusions The proposed test is a useful alternative to a permutation test for the estimation of the significance of ridge regression coefficients, at a much-reduced computational cost. The p-value trace is an informative graphical tool for evaluating the results of a test of significance of ridge regression coefficients as the shrinkage parameter increases, and the proposed test makes its production computationally feasible.

  3. Efficiency of local surface plasmon polariton excitation on ridges

    DEFF Research Database (Denmark)

    Radko, Ilya; Bozhevolnyi, Sergey I.; Boltasseva, Alexandra

    2008-01-01

    We investigate experimentally and numerically the efficiency of surface plasmon polariton excitation by a focused laser beam using gold ridges. The dependence of the efficiency on geometrical parameters of ridges and wavelength dependence are examined. The experimental measurements accomplished...

  4. Storminess-related rhythmic ridge patterns on the coasts of Estonia

    Directory of Open Access Journals (Sweden)

    Ülo Suursaar

    2017-11-01

    Full Text Available Buried or elevated coastal ridges may serve as archives of past variations in sea level and climate conditions. Sometimes such ridges or coastal scarps appear in patterns, particularly on uplifting coasts with adequate sediment supply. Along the seacoasts of Estonia, where relative-to-geoid postglacial uplift can vary between 1.7 and 3.4 mm/yr, at least 27 areas with rhythmic geomorphic patterns have been identified from LiDAR images and elevation data. Such patterns were mainly found on faster emerging and well-exposed, tideless coasts. These are mostly located at heights between 1 and 21 m above sea level, the formation of which corresponds to a period of up to 7500 years. Up to approximately 150 individual ridges were counted on some cross-shore sections. Ten of these ridge patterns that formed less than 4500 years ago were chosen for detailed characterization and analysis in search of possible forcing mechanisms. Among these more closely studied cases, the mean ridge spacing varied between 19 and 28 m. Using land uplift rates from the late Holocene period, the timespans of the corresponding cross sections were calculated. The average temporal periodicity of the ridges was between 23 and 39 years with a gross mean value of 31 years. Considering the regular nature of the ridges, they mostly do not reflect single extreme events, but rather a decadal-scale periodicity in storminess in the region of the Baltic Sea. Although a contribution from some kind of self-organization process is possible, the rhythmicity in ancient coastal ridge patterns is likely linked to quasi-periodic 25−40-year variability, which can be traced to Estonian long-term sea level records and wave hindcasts, as well as in regional storminess data and the North Atlantic Oscillation index.

  5. Geophysical logging and hydrologic testing of deep basalt flows in the Rattlesnake Hills Well Number One

    International Nuclear Information System (INIS)

    Gephart, R.E.; Eddy, P.A.; Deju, R.A.

    1979-01-01

    Geophysical logging and hydrologic testing were conducted in the Rattlesnake Hills Well Number One located along the western boundary of the Hanford Site in south-central Washington. Three-dimensional velocity, Seisviewer and caliper logging were completed across 2,000 feet of basalt rock within the Wanapum and Grande Ronde formations. Drillstem testing focused along a 250-foot interval of the Grande Ronde Formation. Individual high- (approx. 2.7-2.9 grams per cubic centimeter) and low-density (approx. 2.3-2.6 grams per cubic centimeter) basalt zones within the Wanapum Formation are generally less than 50 feet thick. Within the estimated thickness of the Grande Ronde Formation, 85 percent of the low-density zones are less than 50 feet thick, compared to 55 percent of those of higher density. The Grande Ronde Formation has 13 high-density zones varying in thickness from 51 to 230 feet. Logging data suggest the thicknesses of low-density are independent of the thicknesses of the associated and underlying higher density columnar basalts. Eleven drillstem tests were conducted across selected intervals within the Grande Ronde Formation. Hydraulic conductivity values calculated for the low-density basalt zones ranged between 1.7 x 10 -7 and 3.8 x 10 -9 centimeters per second; those for high-density zones were between 1.1 x 10 -8 and 4.7 x 10 -9 centimeters per second

  6. EPA Sole Source Aquifers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Information on sole source aquifers (SSAs) is widely used in assessments under the National Environmental Policy Act and at the state and local level. A national...

  7. Melton Valley Storage Tanks Capacity Increase Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-04-01

    The US Department of Energy (DOE) proposes to construct and maintain additional storage capacity at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, for liquid low-level radioactive waste (LLLW). New capacity would be provided by a facility partitioned into six individual tank vaults containing one 100,000 gallon LLLW storage tank each. The storage tanks would be located within the existing Melton Valley Storage Tank (MVST) facility. This action would require the extension of a potable water line approximately one mile from the High Flux Isotope Reactor (HFIR) area to the proposed site to provide the necessary potable water for the facility including fire protection. Alternatives considered include no-action, cease generation, storage at other ORR storage facilities, source treatment, pretreatment, and storage at other DOE facilities

  8. The Effects of Ridge Axis Width on Mantle Melting at Mid-Ocean Ridges

    Science.gov (United States)

    Montesi, L.; Magni, V.; Gaina, C.

    2017-12-01

    Mantle upwelling in response to plate divergence produces melt at mid-ocean ridges. Melt starts when the solidus is crossed and stops when conductive cooling overcomes heat advection associated with the upwelling. Most mid-ocean ridge models assume that divergence takes place only in a narrow zone that defines the ridge axis, resulting in a single upwelling. However, more complex patterns of divergence are occasionally observed. The rift axis can be 20 km wide at ultraslow spreading center. Overlapping spreading center contain two parallel axes. Rifting in backarc basins is sometimes organized as a series of parallel spreading centers. Distributing plate divergence over several rifts reduces the intensity of upwelling and limits melting. Can this have a significant effect on the expected crustal thickness and on the mode of melt delivery at the seafloor? We address this question by modeling mantle flow and melting underneath two spreading centers separated by a rigid block. We adopt a non-linear rheology that includes dislocation creep, diffusion creep and yielding and include hydrothermal cooling by enhancing thermal conductivity where yielding takes place. The crustal thickness decreases if the rifts are separated by 30 km or more but only if the half spreading rate is between 1 and 2 cm/yr. At melting depth, a single upwelling remains the norm until the separation of the rifts exceeds a critical value ranging from 15 km in the fastest ridges to more than 50 km at ultraslow spreading centers. The stability of the central upwelling is due to hydrothermal cooling, which prevents hot mantle from reaching the surface at each spreading center. When hydrothermal cooling is suppressed, or the spreading centers are sufficiently separated, the rigid block becomes extremely cold and separates two distinct, highly asymmetric upwellings that may focus melt beyond the spreading center. In that case, melt delivery might drive further and further the divergence centers, whereas

  9. Hydrologic analysis of data for the Lost Lake Aquifer Zone of the Steel Pond Aquifer at recovery well RWM-16

    International Nuclear Information System (INIS)

    Wells, D.G.; Cook, J.W.; Hiergesell, R.A.

    1993-04-01

    This report presents the results of an analysis of data obtained from a large-scale, multiple-well aquifer test of the sandy unit referred to as the Lost Lake Aquifer Zone of the Steed Pond Aquifer in an area just south of the A and M Areas. Pumping was conducted at recovery well RWM-16, which is located near the MSB-40 well cluster, approximately 4000 feet south of the M-Area Basin. RWM-16 is located in the lower left portion of Figure 1, which also illustrates the general relationship of the testing site to the A and M Areas and other monitor wells. The data generated from testing RWM-16 was used to calculate estimates of transmissivity and storage for the aquifer system within which RWM-16 is screened. These parameters are related to hydraulic conductivity and storativity of the aquifer system by the vertical thickness of the unit. The leakage coefficient for the overlying confining unit is also estimated. This information is needed to refine conceptual understanding of the groundwater flow system beneath the A and M Areas. The refined conceptual model will more adequately describe the pattern of groundwater flow, and will contribute to updating the open-quotes Zone of Captureclose quotes model that has been used in the initial phases of designing a groundwater remediation system in the A and M Areas

  10. Heat flow, morphology, pore fluids and hydrothermal circulation in a typical Mid-Atlantic Ridge flank near Oceanographer Fracture Zone

    Science.gov (United States)

    Le Gal, V.; Lucazeau, F.; Cannat, M.; Poort, J.; Monnin, C.; Battani, A.; Fontaine, F.; Goutorbe, B.; Rolandone, F.; Poitou, C.; Blanc-Valleron, M.-M.; Piedade, A.; Hipólito, A.

    2018-01-01

    Hydrothermal circulation affects heat and mass transfers in the oceanic lithosphere, not only at the ridge axis but also on their flanks, where the magnitude of this process has been related to sediment blanket and seamounts density. This was documented in several areas of the Pacific Ocean by heat flow measurements and pore water analysis. However, as the morphology of Atlantic and Indian ridge flanks is generally rougher than in the Pacific, these regions of slow and ultra-slow accretion may be affected by hydrothermal processes of different regimes. We carried out a survey of two regions on the eastern and western flanks of the Mid-Atlantic Ridge between Oceanographer and Hayes fracture zones. Two hundred and eight new heat flow measurements were obtained along six seismic profiles, on 5 to 14 Ma old seafloor. Thirty sediment cores (from which porewaters have been extracted) have been collected with a Kullenberg corer equipped with thermistors thus allowing simultaneous heat flow measurement. Most heat flow values are lower than those predicted by purely conductive cooling models, with some local variations and exceptions: heat flow values on the eastern flank of the study area are more variable than on the western flank, where they tend to increase westward as the sedimentary cover in the basins becomes thicker and more continuous. Heat flow is also higher, on average, on the northern sides of both the western and eastern field regions and includes values close to conductive predictions near the Oceanographer Fracture Zone. All the sediment porewaters have a chemical composition similar to that of bottom seawater (no anomaly linked to fluid circulation has been detected). Heat flow values and pore fluid compositions are consistent with fluid circulation in volcanic rocks below the sediment. The short distances between seamounts and short fluid pathways explain that fluids flowing in the basaltic aquifer below the sediment have remained cool and unaltered

  11. Characterising Bedrock Aquifer Systems in Korea Using Paired Water-Level Monitoring Data

    Directory of Open Access Journals (Sweden)

    Jae Min Lee

    2017-06-01

    Full Text Available This study focused on characterising aquifer systems based on water-level changes observed systematically at 159 paired groundwater monitoring wells throughout Korea. Using spectral analysis, principal component analysis (PCA, and cross-correlation analysis with linear regression, aquifer conditions were identified from the comparison of water-level changes in shallow alluvial and deep bedrock monitoring wells. The spectral analysis could identify the aquifer conditions (i.e., unconfined, semi-confined and confined of 58.5% of bedrock wells and 42.8% of alluvial wells: 93 and 68 wells out of 159 wells, respectively. Even among the bedrock wells, 50 wells (53.7% exhibited characteristics of the unconfined condition, implying significant vulnerability of the aquifer to contaminants from the land surface and shallow depths. It appears to be better approach for deep bedrock aquifers than shallow alluvial aquifers. However, significant portions of the water-level changes remained unclear for categorising aquifer conditions due to disturbances in data continuity. For different aquifer conditions, PCA could show typical pattern and factor scores of principal components. Principal component 1 due to wet-and-dry seasonal changes and water-level response time was dominant covering about 55% of total variances of each aquifer conditions, implying the usefulness of supplementary method of aquifer characterisation. Cross-correlation and time-lag analysis in the water-level responses to precipitations clearly show how the water levels in shallow and deep wells correspond in time scale. No significant differences in time-lags was found between shallow and deep wells. However, clear time-lags were found to be increasing from unconfined to confined conditions: from 1.47 to 2.75 days and from 1.78 to 2.75 days for both shallow alluvial and deep bedrock wells, respectively. In combination of various statistical methods, three types of water-level fluctuation

  12. Determining shallow aquifer vulnerability by the DRASTIC model ...

    Indian Academy of Sciences (India)

    Shallow aquifer vulnerability has been assessed using GIS-based DRASTIC model by incorporating the major geological and hydrogeological factors that affect and control the groundwater contamination in a granitic terrain. It provides a relative indication of aquifer vulnerability to the contamination. Further, it has been ...

  13. Oak Ridge Reservation Site Management Plan for the Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This site management plan for the Oak Ridge Reservation (ORR) describes the overall approach for addressing environmental contamination problems at the ORR Superfund site located in eastern Tennessee. The ORR consists of three major US Department of Energy (DOE) installations constructed in the early to mid 1940s as research, development, and process facilities in support of the Manhattan Project. In addition to the three installations -- Oak Ridge National Laboratory (ORNL), the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site (formerly the Oak Ridge Gaseous Diffusion Plant) -- the ORR Superfund Site also includes areas outside the installations, land used by the Oak Ridge Associated Universities and waterways that have been contaminated by releases from the DOE installations. To date, {approximately} 400 areas (Appendix A) requiring evaluation have been identified. Cleanup of the ORR is expected to take two to three decades and cost several billion dollars. This site management plan provides a blueprint to guide this complex effort to ensure that the investigation and cleanup activities are carried out in an efficient and cost-effective manner.

  14. Oak Ridge Reservation Site Management Plan for the Environmental Restoration Program

    International Nuclear Information System (INIS)

    1994-06-01

    This site management plan for the Oak Ridge Reservation (ORR) describes the overall approach for addressing environmental contamination problems at the ORR Superfund site located in eastern Tennessee. The ORR consists of three major US Department of Energy (DOE) installations constructed in the early to mid 1940s as research, development, and process facilities in support of the Manhattan Project. In addition to the three installations -- Oak Ridge National Laboratory (ORNL), the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site (formerly the Oak Ridge Gaseous Diffusion Plant) -- the ORR Superfund Site also includes areas outside the installations, land used by the Oak Ridge Associated Universities and waterways that have been contaminated by releases from the DOE installations. To date, ∼ 400 areas (Appendix A) requiring evaluation have been identified. Cleanup of the ORR is expected to take two to three decades and cost several billion dollars. This site management plan provides a blueprint to guide this complex effort to ensure that the investigation and cleanup activities are carried out in an efficient and cost-effective manner

  15. Tracers Detect Aquifer Contamination

    National Research Council Canada - National Science Library

    Enfield, Carl

    1995-01-01

    The EPA's National Laboratory (NRMRL) at Ada, OK, along with the University of Florida and the University of Texas, have developed a tracer procedure to detect the amount of contamination in aquifer formations...

  16. VULNERABILITY AND RISK OF CONTAMINATION KARSTIC AQUIFERS

    Directory of Open Access Journals (Sweden)

    Yameli Aguilar

    2013-08-01

    Full Text Available Karstic systems occupy nearly 20% of the surface of the earth and are inhabited by numerous human communities. Karstic aquifers are the most exposed to pollution from human activities. Pollution of karstic aquifers is a severe environmental problem worldwide.  In order to face the vulnerability of karstic aquifers to pollution, researchers have created a diversity of study approaches and models, each one having their own strengths and weaknesses depending on the discipline from which they were originated, thus requiring a thorough discussion within the required multidisciplinary character. The objective of this article was to analyze the theoretical and methodological approaches applied to the pollution of karstic aquifers. The European hydrogeological, land evaluation, hydropedological and a geographic approach were analyzed. The relevance of a geomorphological analysis as a cartographic basis for the analysis of vulnerability and risks were emphasized. From the analysis of models, approaches and methodologies discussed the following recommendation is made: to form an interdisciplinary work team, to elaborate a conceptual model according to the site and the working scale and to e, apply and validate the model.

  17. Geophysical investigations over a segment of the Central Indian Ridge, Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    KameshRaju, K.A.; Ramprasad, T.; Subrahmanyam, C.

    Swath bathymetric, gravity, and magnetic studies were carried out over a 55 km long segment of the Central Indian Ridge. The ridge is characterized by 12 to 15 km wide rift valley bounded by steep walls and prominent volcanic constructional ridges...

  18. FEWA: a Finite Element model of Water flow through Aquifers

    International Nuclear Information System (INIS)

    Yeh, G.T.; Huff, D.D.

    1983-11-01

    This report documents the implementation and demonstration of a Finite Element model of Water flow through Aquifers (FEWA). The particular features of FEWA are its versatility and flexibility to deal with as many real-world problems as possible. Point as well as distributed sources/sinks are included to represent recharges/pumpings and rainfall infiltrations. All sources/sinks can be transient or steady state. Prescribed hydraulic head on the Dirichlet boundaries and fluxes on Neumann or Cauchy boundaries can be time-dependent or constant. Source/sink strength over each element and node, hydraulic head at each Dirichlet boundary node, and flux at each boundary segment can vary independently of each other. Either completely confined or completely unconfined aquifers, or partially confined and partially unconfined aquifers can be dealt with effectively. Discretization of a compound region with very irregular curved boundaries is made easy by including both quadrilateral and triangular elements in the formulation. Large-field problems can be solved efficiently by including a pointwise iterative solution strategy as an optional alternative to the direct elimination solution method for the matrix equation approximating the partial differential equation of groundwater flow. FEWA also includes transient flow through confining leaky aquifers lying above and/or below the aquifer of interest. The model is verified against three simple cases to which analytical solutions are available. It is then demonstrated by two examples of how the model can be applied to heterogeneous and anisotropic aquifers with transient boundary conditions, time-dependent sources/sinks, and confining aquitards for a confined aquifer of variable thickness and for a free surface problem in an unconfined aquifer, respectively. 20 references, 25 figures, 8 tables

  19. FEWA: a Finite Element model of Water flow through Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.; Huff, D.D.

    1983-11-01

    This report documents the implementation and demonstration of a Finite Element model of Water flow through Aquifers (FEWA). The particular features of FEWA are its versatility and flexibility to deal with as many real-world problems as possible. Point as well as distributed sources/sinks are included to represent recharges/pumpings and rainfall infiltrations. All sources/sinks can be transient or steady state. Prescribed hydraulic head on the Dirichlet boundaries and fluxes on Neumann or Cauchy boundaries can be time-dependent or constant. Source/sink strength over each element and node, hydraulic head at each Dirichlet boundary node, and flux at each boundary segment can vary independently of each other. Either completely confined or completely unconfined aquifers, or partially confined and partially unconfined aquifers can be dealt with effectively. Discretization of a compound region with very irregular curved boundaries is made easy by including both quadrilateral and triangular elements in the formulation. Large-field problems can be solved efficiently by including a pointwise iterative solution strategy as an optional alternative to the direct elimination solution method for the matrix equation approximating the partial differential equation of groundwater flow. FEWA also includes transient flow through confining leaky aquifers lying above and/or below the aquifer of interest. The model is verified against three simple cases to which analytical solutions are available. It is then demonstrated by two examples of how the model can be applied to heterogeneous and anisotropic aquifers with transient boundary conditions, time-dependent sources/sinks, and confining aquitards for a confined aquifer of variable thickness and for a free surface problem in an unconfined aquifer, respectively. 20 references, 25 figures, 8 tables.

  20. The quality of our Nation's waters: water quality in the Upper Floridan aquifer and overlying surficial aquifers, southeastern United States, 1993-2010

    Science.gov (United States)

    Berndt, Marian P.; Katz, Brian G.; Kingsbury, James A.; Crandall, Christy A.

    2015-01-01

    About 10 million people rely on groundwater from the Upper Floridan and surficial aquifers for drinking water. The Upper Floridan aquifer also is of primary importance to the region as a source of water for irrigation and as a source of crystal clear water that discharges to springs and streams providing recreational and tourist destinations and unique aquatic habitats. The reliance of the region on the Upper Floridan aquifer for drinking water and for the tourism and agricultural economies highlights the importance of long-term management to sustain the availability and quality of these resources.

  1. Nonlinear Forecasting With Many Predictors Using Kernel Ridge Regression

    DEFF Research Database (Denmark)

    Exterkate, Peter; Groenen, Patrick J.F.; Heij, Christiaan

    This paper puts forward kernel ridge regression as an approach for forecasting with many predictors that are related nonlinearly to the target variable. In kernel ridge regression, the observed predictor variables are mapped nonlinearly into a high-dimensional space, where estimation of the predi...

  2. Arsenic release during managed aquifer recharge (MAR)

    Science.gov (United States)

    Pichler, T.; Lazareva, O.; Druschel, G.

    2013-12-01

    The mobilization and addition of geogenic trace metals to groundwater is typically caused by anthropogenic perturbations of the physicochemical conditions in the aquifer. This can add dangerously high levels of toxins to groundwater, thus compromising its use as a source of drinking water. In several regions world-wide, aquifer storage and recovery (ASR), a form of managed aquifer recharge (MAR), faces the problem of arsenic release due to the injection of oxygenated storage water. To better understand this process we coupled geochemical reactive transport modeling to bench-scale leaching experiments to investigate and verify the mobilization of geogenic arsenic (As) under a range of redox conditions from an arsenic-rich pyrite bearing limestone aquifer in Central Florida. Modeling and experimental observations showed similar results and confirmed the following: (1) native groundwater and aquifer matrix, including pyrite, were in chemical equilibrium, thus preventing the release of As due to pyrite dissolution under ambient conditions; (2) mixing of oxygen-rich surface water with oxygen-depleted native groundwater changed the redox conditions and promoted the dissolution of pyrite, and (3) the behavior of As along a flow path was controlled by a complex series of interconnected reactions. This included the oxidative dissolution of pyrite and simultaneous sorption of As onto neo-formed hydrous ferric oxides (HFO), followed by the reductive dissolution of HFO and secondary release of adsorbed As under reducing conditions. Arsenic contamination of drinking water in these systems is thus controlled by the re-equilibration of the system to more reducing conditions rather than a purely oxidative process.

  3. Site characterization of the West Chestnut Ridge site

    International Nuclear Information System (INIS)

    Ketelle, R.H.; Huff, D.D.

    1984-09-01

    This report summarizes the results of investigations performed to date on the West Chestnut Ridge Site, on the Department of Energy (DOE) Oak Ridge Reservation. The investigations performed include geomorphic observations, areal geologic mapping, surficial soil mapping, subsurface investigations, soil geochemical and mineralogical analyses, geohydrologic testing, groundwater fluctuation monitoring, and surface water discharge and precipitation monitoring. 33 references, 32 figures, 24 tables

  4. The contribution of environmental isotopes to studies of large aquifers in Morocco

    International Nuclear Information System (INIS)

    Kabbaj, A.; Zeryouhi, I.; Carlier, Ph.

    1979-01-01

    The geochemistry of environmental isotopes has been used for the study of various aquifers in Morocco, some of which are large, such as the Charf el Akab in the Tangiers area, the Oum er Rbia basin and the Turonian aquifer of the Tadla, the free groundwater of the Quaternary lacustrine limestones of the Sais Plain and the Lias limestone aquifer. These isotope studies take hydrogeochemical data into account and have made it possible to determine the conditions of recharge of the aquifers, to distinguish waters of different origin from the Atlas Mountains or from the Phosphate Plateau in the Tadla Basin and the Sais plain, to estimate the recharge of one aquifer by another - for example groundwater of the Lias limestones passing via the folds of the Sais Plain into the lacustrine limestone aquifer - and to test the homogeneity or heterogeneity of these aquifers and their tightness (e.g. the Turonian aquifer of the Tadla and the special case of the Charf el Akab in relation to the marine environment). Altogether, these results made it possible to test the value of the techniques used and to specify the general conditions in which they can profitably be used. (author)

  5. Multimode Interference: Identifying Channels and Ridges in Quantum Probability Distributions

    OpenAIRE

    O'Connell, Ross C.; Loinaz, Will

    2004-01-01

    The multimode interference technique is a simple way to study the interference patterns found in many quantum probability distributions. We demonstrate that this analysis not only explains the existence of so-called "quantum carpets," but can explain the spatial distribution of channels and ridges in the carpets. With an understanding of the factors that govern these channels and ridges we have a limited ability to produce a particular pattern of channels and ridges by carefully choosing the ...

  6. Theoretical analysis of ridge gratings for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Bozhevolnyi, Sergey I.; Boltasseva, Alexandra

    2006-01-01

    Optical properties of ridge gratings for long-range surface plasmon polaritons (LRSPPs) are analyzed theoretically in a two-dimensional configuration via the Lippmann-Schwinger integral equation method. LRSPPs being supported by a thin planar gold film embedded in dielectric are considered...... to be scattered by an array of equidistant gold ridges on each side of the film designed for in-plane Bragg scattering of LRSPPs at the wavelength ~1550 nm. Out-of-plane scattering (OUPS), LRSPP transmission, reflection, and absorption are investigated with respect to the wavelength, the height of the ridges...... peak it is preferable to use longer gratings with smaller ridges compared to gratings with larger ridges, because the former result in a smaller OUPS from the grating facets than the latter. The theoretical analysis and its conclusions are supported with experimental results on the LRSPP reflection...

  7. The University of Minnesota aquifer thermal energy storage (ATES) field test facility -- system description, aquifer characterization, and results of short-term test cycles

    Energy Technology Data Exchange (ETDEWEB)

    Walton, M.; Hoyer, M.C.; Eisenreich, S.J.; Holm, N.L.; Holm, T.R.; Kanivetsky, R.; Jirsa, M.A.; Lee, H.C.; Lauer, J.L.; Miller, R.T.; Norton, J.L.; Runke, H. (Minnesota Geological Survey, St. Paul, MN (United States))

    1991-06-01

    Phase 1 of the Aquifer Thermal Energy Storage (ATES) Project at the University of Minnesota was to test the feasibility, and model, the ATES concept at temperatures above 100{degrees}C using a confined aquifer for the storage and recovery of hot water. Phase 1 included design, construction, and operation of a 5-MW thermal input/output field test facility (FTF) for four short-term ATES cycles (8 days each of heat injection, storage, and heat recover). Phase 1 was conducted from May 1980 to December 1983. This report describes the FTF, the Franconia-Ironton-Galesville (FIG) aquifer used for the test, and the four short-term ATES cycles. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic effects are all included. The FTF consists of monitoring wells and the source and storage well doublet completed in the FIG aquifer with heat exchangers and a fixed-bed precipitator between the wells of the doublet. The FIG aquifer is highly layered and a really anisotropic. The upper Franconia and Ironton-Galesville parts of the aquifer, those parts screened, have hydraulic conductivities of {approximately}0.6 and {approximately}1.0 m/d, respectively. Primary ions in the ambient ground water are calcium and magnesium bicarbonate. Ambient temperature FIG ground water is saturated with respect to calcium/magnesium bicarbonate. Heating the ground water caused most of the dissolved calcium to precipitate out as calcium carbonate in the heat exchanger and precipitator. Silica, calcium, and magnesium were significantly higher in recovered water than in injected water, suggesting dissolution of some constituents of the aquifer during the cycles. Further work on the ground water chemistry is required to understand water-rock interactions.

  8. Unconsolidated Aquifers in Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.

    2000-01-01

    Unconsolidated aquifers consisting of saturated sand and gravel are capable of supplying large quantities of good-quality water to wells in Tompkins County, but little published geohydrologic inform ation on such aquifers is available. In 1986, the U.S.Geological Survey (USGS) began collecting geohydrologic information and well data to construct an aquifer map showing the extent of unconsolidated aquifers in Tompkins county. Data sources included (1) water-well drillers. logs; (2) highway and other construction test-boring logs; (3) well data gathered by the Tompkins County Department of Health, (4) test-well logs from geohydrologic consultants that conducted projects for site-specific studies, and (5) well data that had been collected during past investigations by the USGS and entered into the National Water Information System (NWIS) database. In 1999, the USGS, in cooperation with the Tompkins County Department of Planning, compiled these data to construct this map. More than 600 well records were entered into the NWIS database in 1999 to supplement the 350 well records already in the database; this provided a total of 950 well records. The data were digitized and imported into a geographic information system (GIS) coverage so that well locations could be plotted on a map, and well data could be tabulated in a digital data base through ARC/INFO software. Data on the surficial geology were used with geohydrologic data from well records and previous studies to delineate the extent of aquifers on this map. This map depicts (1) the extent of unconsolidated aquifers in Tompkins County, and (2) locations of wells whose records were entered into the USGS NWIS database and made into a GIS digital coverage. The hydrologic information presented here is generalized and is not intended for detailed site evaluations. Precise locations of geohydrologic-unit boundaries, and a description of the hydrologic conditions within the units, would require additional detailed, site

  9. Effect of Short-Circuit Pathways on Water Quality in Selected Confined Aquifers (Invited)

    Science.gov (United States)

    McMahon, P. B.

    2010-12-01

    Confined aquifers in the United States generally contain fewer anthropogenic contaminants than unconfined aquifers because confined aquifers often contain water recharged prior to substantial human development and redox conditions are more reducing, which favors degradation of common contaminants like nitrate and chlorinated solvents. Groundwater in a confined part of the High Plains aquifer near York, Nebraska had an adjusted radiocarbon age of about 2,000 years, and groundwater in a confined part of the Floridan aquifer near Tampa, Florida had apparent ages greater than 60 years on the basis of tritium measurements. Yet compounds introduced more recently into the environment (anthropogenic nitrate and volatile organic compounds) were detected in selected public-supply wells completed in both aquifers. Depth-dependent measurements of flow and chemistry in the pumping supply wells, groundwater age dating, numerical modeling of groundwater flow, and other monitoring data indicated that the confined aquifers sampled by the supply wells were connected to contaminated unconfined aquifers by short-circuit pathways. In the High Plains aquifer, the primary pathways appeared to be inactive irrigation wells screened in both the unconfined and confined aquifers. In the Floridan aquifer, the primary pathways were karst sinkholes and conduits. Heavy pumping in both confined systems exacerbated the problem by reducing the potentiometric surface and increasing groundwater velocities, thus enhancing downward gradients and reducing reaction times for processes like denitrification. From a broader perspective, several confined aquifers in the U.S. have experienced large declines in their potentiometric surfaces because of groundwater pumping and this could increase the potential for contamination in those aquifers, particularly where short-circuit pathways connect them to shallower, contaminated sources of water, such as was observed in York and Tampa.

  10. Simulation of seawater intrusion in coastal aquifers: Some typical ...

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    Seawater intrusion; coastal aquifers; density-dependent flow and ... The seawater intrusion mechanism in coastal aquifers generally causes the occurrence of ... (4) The dynamic viscosity of the fluid does not change with respect to salinity and.

  11. Wind tunnel experiments on the effects of tillage ridge features on wind erosion horizontal fluxes

    Directory of Open Access Journals (Sweden)

    M. Kardous

    2005-11-01

    Full Text Available In addition to the well-known soil factors which control wind erosion on flat, unridged surfaces, two specific processes affect the susceptibility of tillage ridged surfaces to wind erosion: ridge-induced roughness and ridge- trapping efficiency. In order to parameterize horizontal soil fluxes produced by wind over tillage ridges, eight-ridge configurations composed of sandy soil and exhibiting ridge heights to ridge spacing (RH/RS ratios ranging from 0.18 to 0.38 were experimented in a wind tunnel. These experiments are used to develop a parameterization of the horizontal fluxes over tillage ridged surfaces based only on the geometric characteristics of the ridges. Indeed, the key parameters controlling the horizontal flux, namely the friction velocity, threshold friction velocity and the adjustment coefficient, are derived through specific expressions, from ridge heights (RH and ridge spacing (RS. This parameterization was evaluated by comparing the results of the simulations to an additional experimental data set and to the data set obtained by Hagen and Armbrust (1992. In both cases, predicted and measured values are found to be in a satisfying agreement. This parameterization was used to evaluate the efficiency of ridges in reducing wind erosion. The results show that ridged surfaces, when compared to a loose, unridged soil surface, lead to an important reduction in the horizontal fluxes (exceeding 60%. Moreover, the effect of ridges in trapping particles contributes for more than 90% in the flux reduction while the ridge roughness effect is weak and decreases when the wind velocity increases.

  12. Magnetic Anomalies over the Mid-Atlantic Ridge near 27{degrees}N.

    Science.gov (United States)

    Phillips, J D

    1967-08-25

    Ten magnetic profiles across the mid-Atlantic ridge near 27 degrees N show trends that are parallel to the ridge axis and symmetrical about the ridge axis. The configuration of magnetic bodies that could account for the pattern supports the Vine and Matthews hypothesis for the origin of magnetic anomalies over oceanic ridges. A polarity-reversal time scale inferred from models for sea-floor spreading in the Pacific-Antarctic ridge and radiometrically dated reversals of the geomagnetic field indicates a spreading rate of 1.25 centimeters per year during the last 6 million years and a rate of 1.65 centimeters per year between 6 and 10 million years ago. A similar analysis of more limited data over the mid-Atlantic ridge near 22 degrees N also indicates a change in the spreading rate. Here a rate of 1.4 centimeters per year appears to have been in effect during the last 5 million years; between 5 and 9 million years ago, an increased rate of 1.7 centimeters per year is indicated. The time of occurrence and relative magnitude of these changes in the spreading rate, about 5 to 6 million years ago and 18 to 27 percent, respectively, accords with the spreading rate change implied for the Juan de Fuca ridge in the northeast Pacific.

  13. Simulated effects of groundwater withdrawals from the Kirkwood-Cohansey aquifer system and Piney Point aquifer, Maurice and Cohansey River Basins, Cumberland County and vicinity, New Jersey

    Science.gov (United States)

    Gordon, Alison D.; Buxton, Debra E.

    2018-05-10

    The U.S. Geological Survey, in cooperation with the New Jersey Department of Environmental Protection, conducted a study to simulate the effects of withdrawals from the Kirkwood-Cohansey aquifer system on streamflow and groundwater flow and from the Piney Point aquifer on water levels in the Cohansey and Maurice River Basins in Cumberland County and surrounding areas. The aquifer system consists of gravel, sand, silt, and clay sediments of the Cohansey Sand and Kirkwood Formation that dip and thicken to the southeast. The aquifer system is generally an unconfined aquifer, but semi-confined and confined conditions exist within the Cumberland County study area. The Kirkwood-Cohansey aquifer system is present throughout Cumberland County and is the principal source of groundwater for public, domestic, agricultural-irrigation, industrial, and commercial water uses. In 2008, reported groundwater withdrawals from the Kirkwood-Cohansey aquifer system in the study area totaled about 21,700 million gallons—about 36 percent for public supply; about 49 percent for agricultural irrigation; and about 15 percent for industrial, commercial, mining by sand and gravel companies, and non-agricultural irrigation uses. A transient numerical groundwater-flow model of the Kirkwood-Cohansey aquifer system was developed and calibrated by incorporating monthly recharge, base-flow estimates, water-level data, surface-water diversions and discharges, and groundwater withdrawals from 1998 to 2008.The groundwater-flow model was used to simulate five withdrawal scenarios to observe the effects of additional groundwater withdrawals on the Kirkwood-Cohansey aquifer system and streams. These scenarios include (1) average 1998 to 2008 monthly groundwater withdrawals (baseline scenario); (2) monthly full-allocation groundwater withdrawals, but agricultural-irrigation withdrawals were decreased for October through March; (3) monthly full-allocation groundwater withdrawals; (4) estimated monthly

  14. Site characterization plan for groundwater in Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R.R.; Curtis, A.H.; Houlberg, L.M.; Purucker, S.T.; Singer, M.L.; Tardiff, M.F.; Wolf, D.A.

    1994-07-01

    The Waste Area Grouping (WAG) 1 Groundwater Operable Unit (OU) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is undergoing a site characterization to identify environmental contamination that may be present. This document, Site Characterization Report for Groundwater in Waste Area Grouping I at Oak Ridge National Laboratory, Oak Ridge, Tennessee, identifies areas of concern with respect to WAG 1 groundwater and presents the rationale, justification, and objectives for conducting this continuing site characterization. This report summarizes the operations that have taken place at each of the areas of concern in WAG 1, summarizes previous characterization studies that have been performed, presents interpretations of previously collected data and information, identifies contaminants of concern, and presents an action plan for further site investigations and early actions that will lead to identification of contaminant sources, their major groundwater pathways, and reduced off-site migration of contaminated groundwater to surface water. Site characterization Activities performed to date at WAG I have indicated that groundwater contamination, principally radiological contamination, is widespread. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to an unknown extent. The general absence of radiological contamination in surface water at the perimeter of WAG 1 is attributed to the presence of pipelines and underground waste storage tank sumps and dry wells distributed throughout WAG 1 which remove more than about 40 million gal of contaminated groundwater per year.

  15. Site characterization plan for groundwater in Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Lee, R.R.; Curtis, A.H.; Houlberg, L.M.; Purucker, S.T.; Singer, M.L.; Tardiff, M.F.; Wolf, D.A.

    1994-07-01

    The Waste Area Grouping (WAG) 1 Groundwater Operable Unit (OU) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is undergoing a site characterization to identify environmental contamination that may be present. This document, Site Characterization Report for Groundwater in Waste Area Grouping I at Oak Ridge National Laboratory, Oak Ridge, Tennessee, identifies areas of concern with respect to WAG 1 groundwater and presents the rationale, justification, and objectives for conducting this continuing site characterization. This report summarizes the operations that have taken place at each of the areas of concern in WAG 1, summarizes previous characterization studies that have been performed, presents interpretations of previously collected data and information, identifies contaminants of concern, and presents an action plan for further site investigations and early actions that will lead to identification of contaminant sources, their major groundwater pathways, and reduced off-site migration of contaminated groundwater to surface water. Site characterization Activities performed to date at WAG I have indicated that groundwater contamination, principally radiological contamination, is widespread. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to an unknown extent. The general absence of radiological contamination in surface water at the perimeter of WAG 1 is attributed to the presence of pipelines and underground waste storage tank sumps and dry wells distributed throughout WAG 1 which remove more than about 40 million gal of contaminated groundwater per year

  16. Groundwater level responses to precipitation variability in Mediterranean insular aquifers

    Science.gov (United States)

    Lorenzo-Lacruz, Jorge; Garcia, Celso; Morán-Tejeda, Enrique

    2017-09-01

    Groundwater is one of the largest and most important sources of fresh water on many regions under Mediterranean climate conditions, which are exposed to large precipitation variability that includes frequent meteorological drought episodes, and present high evapotranspiration rates and water demand during the dry season. The dependence on groundwater increases in those areas with predominant permeable lithologies, contributing to aquifer recharge and the abundance of ephemeral streams. The increasing pressure of tourism on water resources in many Mediterranean coastal areas, and uncertainty related to future precipitation and water availability, make it urgent to understand the spatio-temporal response of groundwater bodies to precipitation variability, if sustainable use of the resource is to be achieved. We present an assessment of the response of aquifers to precipitation variability based on correlations between the Standardized Precipitation Index (SPI) at various time scales and the Standardized Groundwater Index (SGI) across a Mediterranean island. We detected three main responses of aquifers to accumulated precipitation anomalies: (i) at short time scales of the SPI (24 months). The differing responses were mainly explained by differences in lithology and the percentage of highly permeable rock strata in the aquifer recharge areas. We also identified differences in the months and seasons when aquifer storages are more dependent on precipitation; these were related to climate seasonality and the degree of aquifer exploitation or underground water extraction. The recharge of some aquifers, especially in mountainous areas, is related to precipitation variability within a limited spatial extent, whereas for aquifers located in the plains, precipitation variability influence much larger areas; the topography and geological structure of the island explain these differences. Results indicate large spatial variability in the response of aquifers to precipitation in

  17. A New Boundary for the High Plains - Ogallala Aquifer Complex

    Science.gov (United States)

    Haacker, E. M.; Nozari, S.; Kendall, A. D.

    2017-12-01

    In the semi-arid Great Plains, water is the key ingredient for crop growth: the difference between meager yields for many crops and an agricultural bonanza. The High Plains-Ogallala Aquifer complex (HPA) underlies 452,000 square kilometers of the region, and over 95% of water withdrawn from the aquifer is used for irrigation. Much of the HPA is being pumped unsustainably, and since the region is heavily reliant on this resource for its social and economic health, the High Plains has been a leader in groundwater management planning. However, the geographic boundary of the High Plains region fails to reflect the hydrogeological realities of the aquifer. The current boundary, recognizable from countless textbooks and news articles, is only slightly modified from a version from the 1980's, and largely follows the physiographic borders of the High Plains - defined by surface features such as escarpments and rivers - rather than the edges of water-bearing sediment sufficient for high-volume pumping. This is supported by three lines of evidence: hydrogeological observations from the original aquifer boundary determination; the extent of irrigated land, as estimated by MODIS-MIrAD data; and statistical estimates of saturated thickness, incorporating improved maps of the aquifer base and an additional 35 years of water table measurements. In this project, new maps of saturated thickness are used to create an updated aquifer boundary, which conforms with the standard definition of an aquifer as a package of sediment that yields enough water to be economically pumped. This has major implications for social and physical models, as well as water planning and estimates of sustainability for the HPA. Much of the area of the HPA that has been labeled `sustainable' based upon estimates of recharge relative to pumping estimates falls outside the updated aquifer boundary. In reality, the sustainably-pumped area of this updated aquifer boundary is far smaller—a fact that if more

  18. Conceptual and numerical modeling approach of the Guarani Aquifer System

    Science.gov (United States)

    Rodríguez, L.; Vives, L.; Gomez, A.

    2013-01-01

    In large aquifers, relevant for their considerable size, regional groundwater modeling remains challenging given geologic complexity and data scarcity in space and time. Yet, it may be conjectured that regional scale groundwater flow models can help in understanding the flow system functioning and the relative magnitude of water budget components, which are important for aquifer management. The Guaraní Aquifer System is the largest transboundary aquifer in South America. It contains an enormous volume of water; however, it is not well known, being difficult to assess the impact of exploitation currently used to supply over 25 million inhabitants. This is a sensitive issue because the aquifer is shared by four countries. Moreover, an integrated groundwater model, and therefore a global water balance, were not available. In this work, a transient regional scale model for the entire aquifer based upon five simplified, equally plausible conceptual models represented by different hydraulic conductivity parametrizations is used to analyze the flow system and water balance components. Combining an increasing number of hydraulic conductivity zones and an appropriate set of boundary conditions, the hypothesis of a continuous sedimentary unit yielded errors within the calibration target in a regional sense. The magnitude of the water budget terms resulted very similar for all parametrizations. Recharge and stream/aquifer fluxes were the dominant components representing, on average, 84.2% of total inflows and 61.4% of total outflows, respectively. However, leakage was small compared to stream discharges of main rivers. For instance, the simulated average leakage for the Uruguay River was 8 m3 s-1 while the observed absolute minimum discharge was 382 m3 s-1. Streams located in heavily pumped regions switched from a gaining condition in early years to a losing condition over time. Water is discharged through the aquifer boundaries, except at the eastern boundary. On average

  19. Toward an Economic Definition of Sustainable Yield for Coastal Aquifers

    Science.gov (United States)

    Jenson, J. W.; Habana, N. C.; Lander, M.

    2016-12-01

    The concept of aquifer sustainable yield has long been criticized, debated, and even disparaged among groundwater hydrologists, but policy-makers and professional water resource managers inevitably ask them for unequivocal answers to such questions as "What is the absolute maximum volume of water that could be sustainably withdrawn from this aquifer?" We submit that it is therefore incumbent upon hydrologists to develop and offer valid practical definitions of sustainable yield that can be usefully applied to given conditions and types of aquifers. In coastal aquifers, water quality—in terms of salinity—is affected by changes in the natural water budget and the volume rate of artificial extraction. In principle, one can identify a family of assay curves for a given aquifer, showing the specific relationships between the quantity and quality of the water extracted under given conditions of recharge. The concept of the assay curve, borrowed from the literature of natural-resource extraction economics, has to our knowledge not yet found its way into the literature of applied hydrology. The relationships between recharge, extraction, and water quality that define the assay curve can be determined empirically from sufficient observations of groundwater response to recharge and extraction and can be estimated from models that have been reliably history-matched ("calibrated") to such data. We thus propose a working definition of sustainable yield for coastal aquifers in terms of the capacity that ultimately could be achieved by an ideal production system, given what is known or can be assumed about the natural limiting conditions. Accordingly, we also offer an approach for defining an ideal production system for a given aquifer, and demonstrate how observational data and/or modeling results can be used to develop assay curves of quality vs. quantity extracted, which can serve as reliable predictive tools for engineers, managers, regulators, and policy

  20. Characterization of Groundwater Quality Based on Regional Geologic Setting in the Piedmont and Blue Ridge Physiographic Provinces, North Carolina

    Science.gov (United States)

    Harden, Stephen L.; Chapman, Melinda J.; Harned, Douglas A.

    2009-01-01

    A compilation of groundwater-quality data collected as part of two U.S. Geological Survey studies provides a basis for understanding the ambient geochemistry related to geologic setting in the Piedmont and Blue Ridge Physiographic Provinces (hereafter referred to as Piedmont and Mountains Provinces) of North Carolina. Although the geology is complex, a grouping of the sampled wells into assemblages of geologic units described as 'geozones' provides a basis for comparison across the region. Analyses of these two data sets provide a description of water-quality conditions in bedrock aquifers of the Piedmont and Mountains Provinces of North Carolina. Analyzed data were collected between 1997 and 2008 from a network of 79 wells representing 8 regional geozones distributed throughout the Piedmont and Mountains Provinces. This area has experienced high rates of population growth and an increased demand for water resources. Groundwater was used by about 34 percent of the population in the 65 counties of this region in 2005. An improved understanding of the quality and quantity of available groundwater resources is needed to plan effectively for future growth and development. The use of regional geologic setting to characterize groundwater-quality conditions in the Piedmont and Mountains Provinces is the focus of this investigation. Data evaluation included an examination of selected properties and the ionic composition of groundwater in the geozones. No major differences in overall ionic chemistry of groundwater among the geozones were evident with the data examined. Variability in the cationic and anionic composition of groundwater within a particular geozone appeared to reflect local differences in lithologic setting, hydrologic and geochemical conditions, and(or) land-use effects. The most common exceedances of the drinking-water criteria (in accordance with Federal and State water-quality standards) occurred for radon, pH, manganese, iron, and zinc. Radon had the most

  1. Extraction of lead and ridge characteristics from SAR images of sea ice

    Science.gov (United States)

    Vesecky, John F.; Smith, Martha P.; Samadani, Ramin

    1990-01-01

    Image-processing techniques for extracting the characteristics of lead and pressure ridge features in SAR images of sea ice are reported. The methods are applied to a SAR image of the Beaufort Sea collected from the Seasat satellite on October 3, 1978. Estimates of lead and ridge statistics are made, e.g., lead and ridge density (number of lead or ridge pixels per unit area of image) and the distribution of lead area and orientation as well as ridge length and orientation. The information derived is useful in both ice science and polar operations for such applications as albedo and heat and momentum transfer estimates, as well as ship routing and offshore engineering.

  2. Water Quality and Evaluation of Pesticides in Lakes in the Ridge Citrus Region of Central Florida

    Science.gov (United States)

    Choquette, Anne F.; Kroening, Sharon E.

    2009-01-01

    Water chemistry, including major inorganic constituents, nutrients, and pesticide compounds, was compared between seven lakes surrounded by citrus agriculture and an undeveloped lake on the Lake Wales Ridge (herein referred to as the Ridge) in central Florida. The region has been recognized for its vulnerability to the leaching of agricultural chemicals into the subsurface due to factors including soils, climate, and land use. About 40 percent of Florida's citrus cultivation occurs in 'ridge citrus' areas characterized by sandy well drained soils, with the remainder in 'flatwoods citrus' characterized by high water tables and poorly drained soils. The lakes on the Ridge are typically flow-through lakes that exchange water with adjacent and underlying aquifer systems. This study is the first to evaluate the occurrence of pesticides in lakes on the Ridge, and also represents one of the first monitoring efforts nationally to focus on regional-scale assessment of current-use pesticides in small- to moderate-sized lakes (5 to 393 acres). The samples were collected between December 2003 and September 2005. The lakes in citrus areas contained elevated concentrations of major inorganic constituents (including alkalinity, total dissolved solids, calcium, magnesium, sodium, potassium, chloride, and sulfate), total nitrogen, pH, and pesticides compared to the undeveloped lake. Nitrate (as N) and total nitrogen concentrations were typically elevated in the citrus lakes, with maximum values of 4.70 and 5.19 mg/L (milligrams per liter), respectively. Elevated concentrations of potassium, nitrate, and other inorganic constituents in the citrus lakes likely reflect inputs from the surficial ground-water system that originated predominantly from agricultural fertilizers, soil amendments, and inorganic pesticides. A total of 20 pesticide compounds were detected in the lakes, of which 12 compounds exceeded the standardized reporting level of 0.06 ug/L (microgram per liter). Those

  3. The Cocos Ridge hydrothermal system revealed by microthermometry of fluid and melt inclusions

    Science.gov (United States)

    Brandstätter, J.; Kurz, W.; Krenn, K.

    2017-12-01

    ). The microthermometric data indicate a seawater/pore water like fluid source in communication with a deeper sourced, up to 400 °C hot fluid. This implies that seawater within the Cocos Ridge aquifer communicated with high-temperature fluids and/or were modified by heat advection.

  4. Modelling stream aquifer seepage in an alluvial aquifer: an improved loosing-stream package for MODFLOW

    Science.gov (United States)

    Osman, Yassin Z.; Bruen, Michael P.

    2002-07-01

    Seepage from a stream, which partially penetrates an unconfined alluvial aquifer, is studied for the case when the water table falls below the streambed level. Inadequacies are identified in current modelling approaches to this situation. A simple and improved method of incorporating such seepage into groundwater models is presented. This considers the effect on seepage flow of suction in the unsaturated part of the aquifer below a disconnected stream and allows for the variation of seepage with water table fluctuations. The suggested technique is incorporated into the saturated code MODFLOW and is tested by comparing its predictions with those of a widely used variably saturated model, SWMS_2D simulating water flow and solute transport in two-dimensional variably saturated media. Comparisons are made of both seepage flows and local mounding of the water table. The suggested technique compares very well with the results of variably saturated model simulations. Most currently used approaches are shown to underestimate the seepage and associated local water table mounding, sometimes substantially. The proposed method is simple, easy to implement and requires only a small amount of additional data about the aquifer hydraulic properties.

  5. Water-level altitudes 2013 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973--2012 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Johnson, Michaela R.; Ramage, Jason K.

    2013-01-01

    Most of the subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction mostly in the clay and silt layers of the aquifer sediments. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains maps depicting approximate water-level altitudes for 2013 (represented by measurements made during December 2012-February 2013) for the Chicot, Evangeline, and Jasper aquifers; maps depicting 1-year (2012-13) water-level changes for each aquifer; maps depicting 5-year (2008--13) water-level changes for each aquifer; maps depicting long-term (1990-2013 and 1977-2013) water-level changes for the Chicot and Evangeline aquifers; a map depicting long-term (2000-13) water-level changes for the Jasper aquifer; a map depicting locations of borehole-extensometer sites; and graphs depicting measured compaction of subsurface sediments at the extensometers during 1973-2012. Tables listing the data used to construct each water-level map for each aquifer and the compaction graphs are included.

  6. Bear Creek Valley Floodplain Hot Spot Removal Action Project Plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-01-01

    The Bear Creek Valley Floodplain Hot Spot Removal Action Project Plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (Y/ER-301) was prepared (1) to safely, cost-effectively, and efficiently evaluate the environmental impact of solid material in the two debris areas in the context of industrial land uses (as defined in the Bear Creek Valley Feasibility Study) to support the Engineering Evaluation/Cost Assessment and (2) to evaluate, define, and implement the actions to mitigate these impacts. This work was performed under Work Breakdown Structure 1.x.01.20.01.08

  7. Submarine sand ridges and sand waves in the eastern part of the China Sea

    Science.gov (United States)

    Wu, Ziyin; Li, Shoujun; Shang, Jihong; Zhou, Jieqiong; Zhao, Dineng; Liang, Yuyang

    2016-04-01

    Integrated with multi-beam and single-beam echo sounding data, as well as historical bathymetric data, submarine bathymetric maps of the eastern part of the China Sea, including the Bohai Sea, Huanghai Sea, and East China Sea, are constructed to systematically study submarine sand ridges and sand waves in the eastern part of the China Sea, combined with high-resolution seismic, sub-bottom profile and borehole data. Submarine sand ridges are extraordinarily developed in the eastern part of the China Sea, and 7 sand ridge areas can be divided from north to south, that is, the Laotieshan Channel sand ridge area in the Bohai Sea, the Korea Bay sand ridge area in the southern Huanghai Sea, the sand ridge area in the eastern Huanghai islands and the Huanghai Troughs, the Jianggang sand ridge area in the western Huanghai Sea, the sand ridge area in the East China Sea shelf, and the sand ridge and sand wave area in the Taiwan Strait and Taiwan Banks. The distribution area of the sand ridges and sand waves covers more than 450,000 km2, wherein ~10,000 km2 in the Bohai Bay, ~200,000 km2 in the Huanghai Sea, ~200,000 km2 in the East China Sea shelf, and ~40,000 km2 in the Taiwan Strait and Taiwan Banks, respectively. The great mass of sand ridges are distributed within water depth of 5-160 m, with a total length of over 160 km and a main width of 5-10 km. The inner structure of the sand ridges presents features of high-angle inclined beddings, with main lithology of sands, sand-mud alternations partly visible, and a small number of mud cores. Dating results indicate that the sand ridges in the eastern part of the China Sea are mainly developed in the Holocene. Sea-level variation dominates the sand ridge evolution in the eastern part of the China Sea since the LGM, and the sand ridges developed in the area of < 60m water depth are appeared in bad activity, meanwhile sand ridges with good activity are still developed in large scale.

  8. Intensively exploited Mediterranean aquifers: resilience to seawater intrusion and proximity to critical thresholds

    Science.gov (United States)

    Mazi, K.; Koussis, A. D.; Destouni, G.

    2014-05-01

    We investigate seawater intrusion in three prominent Mediterranean aquifers that are subject to intensive exploitation and modified hydrologic regimes by human activities: the Nile Delta, Israel Coastal and Cyprus Akrotiri aquifers. Using a generalized analytical sharp interface model, we review the salinization history and current status of these aquifers, and quantify their resilience/vulnerability to current and future seawater intrusion forcings. We identify two different critical limits of seawater intrusion under groundwater exploitation and/or climatic stress: a limit of well intrusion, at which intruded seawater reaches key locations of groundwater pumping, and a tipping point of complete seawater intrusion up to the prevailing groundwater divide of a coastal aquifer. Either limit can be reached, and ultimately crossed, under intensive aquifer exploitation and/or climate-driven change. We show that seawater intrusion vulnerability for different aquifer cases can be directly compared in terms of normalized intrusion performance curves. The site-specific assessments show that (a) the intruding seawater currently seriously threatens the Nile Delta aquifer, (b) in the Israel Coastal aquifer the sharp interface toe approaches the well location and (c) the Cyprus Akrotiri aquifer is currently somewhat less threatened by increased seawater intrusion.

  9. Wind tunnel experiments on the effects of tillage ridge features on wind erosion horizontal fluxes

    Directory of Open Access Journals (Sweden)

    M. Kardous

    2005-11-01

    Full Text Available In addition to the well-known soil factors which control wind erosion on flat, unridged surfaces, two specific processes affect the susceptibility of tillage ridged surfaces to wind erosion: ridge-induced roughness and ridge- trapping efficiency.

    In order to parameterize horizontal soil fluxes produced by wind over tillage ridges, eight-ridge configurations composed of sandy soil and exhibiting ridge heights to ridge spacing (RH/RS ratios ranging from 0.18 to 0.38 were experimented in a wind tunnel. These experiments are used to develop a parameterization of the horizontal fluxes over tillage ridged surfaces based only on the geometric characteristics of the ridges. Indeed, the key parameters controlling the horizontal flux, namely the friction velocity, threshold friction velocity and the adjustment coefficient, are derived through specific expressions, from ridge heights (RH and ridge spacing (RS. This parameterization was evaluated by comparing the results of the simulations to an additional experimental data set and to the data set obtained by Hagen and Armbrust (1992. In both cases, predicted and measured values are found to be in a satisfying agreement.

    This parameterization was used to evaluate the efficiency of ridges in reducing wind erosion. The results show that ridged surfaces, when compared to a loose, unridged soil surface, lead to an important reduction in the horizontal fluxes (exceeding 60%. Moreover, the effect of ridges in trapping particles contributes for more than 90% in the flux reduction while the ridge roughness effect is weak and decreases when the wind velocity increases.

  10. Sources of high-chloride water and managed aquifer recharge in an alluvial aquifer in California, USA

    Science.gov (United States)

    O'Leary, David R.; Izbicki, John A.; Metzger, Loren F.

    2015-11-01

    As a result of pumping in excess of recharge, water levels in alluvial aquifers within the Eastern San Joaquin Groundwater Subbasin, 130 km east of San Francisco (California, USA), declined below sea level in the early 1950s and have remained so to the present. Chloride concentrations in some wells increased during that time and exceeded the US Environmental Protection Agency's secondary maximum contaminant level of 250 mg/L, resulting in removal of some wells from service. Sources of high-chloride water include irrigation return in 16 % of sampled wells and water from delta sediments and deeper groundwater in 50 % of sampled wells. Chloride concentrations resulting from irrigation return commonly did not exceed 100 mg/L, although nitrate concentrations were as high as 25 mg/L as nitrogen. Chloride concentrations ranged from less than 100-2,050 mg/L in wells affected by water from delta sediments and deeper groundwater. Sequential electromagnetic logs show movement of high-chloride water from delta sediments to pumping wells through permeable interconnected aquifer layers. δD and δ18O data show most groundwater originated as recharge along the front of the Sierra Nevada, but tritium and carbon-14 data suggest recharge rates in this area are low and have decreased over recent geologic time. Managed aquifer recharge at two sites show differences in water-level responses to recharge and in the physical movement of recharged water with depth related to subsurface geology. Well-bore flow logs also show rapid movement of water from recharge sites through permeable interconnected aquifer layers to pumping wells.

  11. Sources of high-chloride water and managed aquifer recharge in an alluvial aquifer in California, USA

    Science.gov (United States)

    O'Leary, David; Izbicki, John A.; Metzger, Loren F.

    2015-01-01

    As a result of pumping in excess of recharge, water levels in alluvial aquifers within the Eastern San Joaquin Groundwater Subbasin, 130 km east of San Francisco (California, USA), declined below sea level in the early 1950s and have remained so to the present. Chloride concentrations in some wells increased during that time and exceeded the US Environmental Protection Agency’s secondary maximum contaminant level of 250 mg/L, resulting in removal of some wells from service. Sources of high-chloride water include irrigation return in 16 % of sampled wells and water from delta sediments and deeper groundwater in 50 % of sampled wells. Chloride concentrations resulting from irrigation return commonly did not exceed 100 mg/L, although nitrate concentrations were as high as 25 mg/L as nitrogen. Chloride concentrations ranged from less than 100–2,050 mg/L in wells affected by water from delta sediments and deeper groundwater. Sequential electromagnetic logs show movement of high-chloride water from delta sediments to pumping wells through permeable interconnected aquifer layers. δD and δ18O data show most groundwater originated as recharge along the front of the Sierra Nevada, but tritium and carbon-14 data suggest recharge rates in this area are low and have decreased over recent geologic time. Managed aquifer recharge at two sites show differences in water-level responses to recharge and in the physical movement of recharged water with depth related to subsurface geology. Well-bore flow logs also show rapid movement of water from recharge sites through permeable interconnected aquifer layers to pumping wells.

  12. Geophysical survey work plan for White Wing Scrap Yard (Waste Area Grouping 11) at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-02-01

    The White Wing Scrap Yard, located on the U.S. Department of Energy's Oak Ridge Reservation, served as an aboveground storage and disposal area for contaminated debris and scrap from the Oak Ridge K-25 Site, the Oak Ridge Y-12 Plant, and the Oak Ridge National laboratory. The site is believed to have been active from the early 1950s until the mid-1960s. A variety of materials were disposed of at the site, including contaminated steel tanks and vehicles. As an interim corrective action, a surface debris removal effort was initiated in November 1993 to reduce the potential threat to human health and the environment from the radionuclide-contaminated debris. Following this removal effort, a geophysical survey will be conducted across the site to locate and determine the lateral extent of buried nonindigenous materials. This survey will provide the data necessary to prepare a map showing areas of conductivity and magnetic intensity that vary from measured background values. These anomalies represent potential buried materials and therefore can be targeted for further evaluation. This work plan outlines the activities necessary to conduct the geophysical survey

  13. Modeling of drainage and hay production over the Crau aquifer for analyzing the impact of global change on aquifer recharge

    Science.gov (United States)

    Olioso, Albert; Lecerf, Rémi; Baillieux, Antoine; Chanzy, André; Ruget, Françoise; Banton, Olivier; Lecharpentier, Patrice; Alkassem Alosman, Mohamed; Ruy, Stéphane; Gallego Elvira, Belen

    2013-04-01

    The recharge of the aquifer in the Crau plain (550 km2, Southern Rhone Valley, France) depends on the irrigation of 15000 ha of meadow using water withdrawn from the River Durance through a dense network of channels. Traditional irrigation practice, since the XVIth century, has consisted in flooding the grassland fields with a large amount of water, the excess being infiltrated toward the water table. Today, the Crau aquifer holds the main resource in water in the area (300 000 inhabitants) but changes in the agricultural practices and progressive replacement of the irrigated meadows by urbanized area threaten the sustainability of groundwater. The distributed modeling of irrigated meadows together with the modeling of groundwater has been undertaken for quantifying the contribution of the irrigation to the recharge of the aquifer and to investigate possible evolution of hay production, water drainage, evapotranspiration and water table under scenarios of climate and land-use changes. The model combines a crop model (STICS) that simulates hay production, evapotranspiration and water drainage, a multisimulation tool (MultiSimLib) that allows to run STICS over each agricultural field in the aquifer perimeter, a groundwater model MODFLOW to simulate the water table from recharge data (simulated drainage). Specific models were developed for simulating the spatial distribution of climate, including scenario of changes for the 2025 - 2035 time period, soil properties (influenced by irrigation), and agricultural practices (calendar and amount), in particular irrigation and hay cutting. This step was crucial for correctly simulating hay production level and amount of water used for irrigation. Model results were evaluated thanks to plot experiments and information from farmers (biomass production, downward water flow, quantity of irrigated water, cutting calendar...), a network of piezometers and remote sensing maps of evapotranspiration. Main results included: - the

  14. Circulation in the region of the Reykjanes Ridge in June-July 2015

    Science.gov (United States)

    Tillys, Petit; Herle, Mercier; Virginie, Thierry

    2017-04-01

    The Reykjanes Ridge is a major topographic feature of the North-Atlantic Ocean lying south of Iceland that strongly influences the pathways of the upper and lower limbs of the meridional overturning cell. The circulation in the vicinity of the Reykjanes Ridge is anticyclonic and characterized by a southwestward flow (the East Reykjanes Ridge Current, ERRC) along the eastern flank and a northeastward flow (the Irminger Current, IC) along the western flank. Even if it is admitted that the ERRC feeds the IC through a cross-ridge flow, details and magnitude of this circulation remain unclear. In this study, the circulation in the region of the Reykjanes Ridge was investigated based on ADCP and CTDO2 measurements carried out from the R/V Thalassa during the RREX cruise, which provided a snapshot of the water mass distribution and circulation during summer 2015. One hydrographic section followed the top of the Reykjanes Ridge between Iceland and 50˚ N and three other sections were carried out perpendicularly to the ridge at 62˚ N, 58.5˚ N and 56˚ N. Geostrophic transports were estimated by combining ADCP and hydrographic data. Those observations were used to provide an estimate of the circulation around the Ridge and to discuss the meridional evolutions of the ERRC and IC transports along the Ridge and their connection to the cross-Ridge flows. The section along the top of the Reykjanes Ridge allowed us to describe the cross ridge exchanges. A westward flow crossed the Ridge between Iceland and 53˚ N. Its top to bottom integrated transport was estimated at 17.7 Sv. Two main passages were identified for the westward crossing. A first passage is located near 57˚ N (Bight Fracture Zone, BFZ) in agreement with previous studies. More surprisingly, a second passage is located near 59˚ N. The top-to-bottom transports of those two main flows were estimated at 6.5 and 8 Sv respectively. The IC and ERRC top-to-bottom integrated transports were maximum at 58.5˚ N and

  15. Contribution of environmental isotopes to the study of large aquifers in Morocco

    International Nuclear Information System (INIS)

    Kabbaj, A.; Zeryouhi, I.; Carlier, P.

    1978-01-01

    The geochemistry of environmental isotopes has been applied to several aquifers in Maroc, some of them quite large: Charf el Akab in the Tanger region, the Oum er Rbia basin and the Tadla aquifer, the free nappe of limnic limes tone in the Sais plane, and the lias limestone aquifer. The isotopic investigations on the basis of hydrogeochemical data have given more precise information on the supply conditions of these aquifers. The types of water of different origin from the Atlas or the phosphate plateau in the Sais plane and the Tadla basin have been distinguished, the supply from one aquifer to another Lias nappe which, via the flexures of the Sais plane, supplies the nappe of limic limestone has been assessed, the homogeneity or heterogeneity of these aquifers has been investigated as well as their impermeability, the Tadla aquifer and the special case of Charf el Akab compared with the marine region. The findings have proved the usefulness of these techniques and permitted a specification of the general conditions for their application. (orig.) [de

  16. Prediction of Groundwater Quality Trends Resulting from Anthropogenic Changes in Southeast Florida.

    Science.gov (United States)

    Yi, Quanghee; Stewart, Mark

    2018-01-01

    The effects of surface water flow system changes caused by constructing water-conservation areas and canals in southeast Florida on groundwater quality under the Atlantic Coastal Ridge was investigated with numerical modeling. Water quality data were used to delineate a zone of groundwater with low total dissolved solids (TDS) within the Biscayne aquifer under the ridge. The delineated zone has the following characteristics. Its location generally coincides with an area where the Biscayne aquifer has high transmissivities, corresponds to a high recharge area of the ridge, and underlies a part of the groundwater mound formed under the ridge prior to completion of the canals. This low TDS groundwater appears to be the result of pre-development conditions rather than seepage from the canals constructed after the 1950s. Numerical simulation results indicate that the time for low TDS groundwater under the ridge to reach equilibrium with high TDS surface water in the water-conservation areas and Everglades National Park are approximately 70 and 60 years, respectively. The high TDS groundwater would be restricted to the water-conservation areas and the park due to its slow eastward movement caused by small hydraulic gradients in Rocky Glades and its mixing with the low TDS groundwater under the high-recharge area of the ridge. The flow or physical boundary conditions such as high recharge rates or low hydraulic conductivity layers may affect how the spatial distribution of groundwater quality in an aquifer will change when a groundwater flow system reaches equilibrium with an associated surface water flow system. © 2017, National Ground Water Association.

  17. Some Improved Classification-Based Ridge Parameter Of Hoerl And ...

    African Journals Online (AJOL)

    Of Hoerl And Kennard Estimation Techniques. 1Adewale F. Lukmanand 1Kayode Ayinde. 1 Department of Statistics, ... ordinary least square (OLS) in handling it. However, it requires a ridge parameter, K, of which many have ... handle the problem of multicollinearity. They suggested the addition of ridge parameter K to the ...

  18. Surface radiological investigation of Trench 5 in Waste Area Grouping 7 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Goff, D.D.

    1991-08-01

    A surface radiological investigation of areas encompassing Trench 5 on the Oak Ridge Reservation (ORR) was conducted from May 1990 through November 1990. This survey was led by the author, assisted by various members of the Measurement Applications and Development (MAD) group of the Health and Safety Research Division (HASRD) of Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The purpose of the investigation was to determine the presence, nature, and extent of surface radiological contamination at Trench 5, the Homogeneous Reactor Experiment fuel wells, and surrounding areas. Based on the data obtained in the field, interim corrective measures were recommended to limit human exposure to radioactivity and to minimize insult to the environment. It should be stressed that this project was not intended to be a complete site characterization but rather to be a preliminary investigation into the potential contamination problem that might exist as a result of past operations at Trench 5

  19. Morphotectonic and petrological variations along the southern Central Indian Ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Iyer, S.D.; Ray, Dwijesh; Karisiddaiah, S.M.; Drolia, R.K.

    above the DM and Enriched Mantle (EM2) end member and resemble a linear mixing with Indian Ocean pelagic sediments (Fig. 4a, b). By contrast, the isotope data of IOTJ-MORB occupy a distinct field in the radiogenic Pb-Pb and Sr-Pb binary plots... EM, Karsten JL, 1995 Ocean-ridge basalts with convergent-margin geochemical affinities from the Chile Ridge. Nature 374:52-57 Klein EM, Langmuir CH, 1987 Global correlations of ocean ridge basalt chemistry with axial depth and crustal chemistry...

  20. Hydrology of aquifer systems in the Memphis area, Tennessee

    Science.gov (United States)

    Criner, James H.; Sun, P-C. P.; Nyman, Dale J.

    1964-01-01

    The Memphis area as described in .this report comprises about 1,300 square miles of the Mississippi embayment part of the Gulf Coastal Plain. The area is underlain by as much as 3,000 feet of sediments ranging in age from Cretaceous through Quaternary. In 1960, 150 mgd (million gallons per day) of water was pumped from the principal aquifers. Municipal pumpage accounted for almost half of this amount, and industrial pumpage a little more than half. About 90 percent of the water used in the area is derived from the '500-foot' sand, and most of the remainder is from the ?400-foot' sand; both sands are of Eocene age. A small amount of water for domestic use is pumped from the terrace deposits of Pliocene and Pleistocene age. Both the '500-foot' and the '1,400-foot' sands are artesian aquifers except in the southeastern part of the area; there the water level in wells in the '500-foot' sand is now below the overlying confining clay. Water levels in both aquifers have declined almost continuously since pumping began, but the rate of decline has increased rapidly since 1940. Water-level decline in the '1,400-foot' sand has been less pronounced since 1956. The cones of depression in both aquifers have expanded and deepened as a result of the annual increases in pumping, and an increase in hydraulic gradients has induced a greater flow of water into the area. Approximately 135 mgd entered the Memphis area through the '500-foot' sand aquifer in 1960, and, of this amount, 60 mgd originated as inflow from the east and about 75 mgd was derived from leakage from the terrace deposits, from the north, south, and west and from other sources. Of the water entering the '1,400-foot' sand, about 5 mgd was inflow from the east, and about half that amount was from each of the north, south, and west directions. The average rate of movement of water outside the area of heavy withdrawals is about 70 feet per year in the '500-foot' sand and about 40 feet per year in the '1,400-foot' sand

  1. Water-level altitudes 2014 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2013 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Johnson, Michaela R.; Ramage, Jason K.

    2014-01-01

    Most of the land-surface subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction of the aquifer sediments, mostly in the fine-grained clay and silt layers. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains maps depicting approximate 2014 water-level altitudes (represented by measurements made during December 2013–March 2014) for the Chicot, Evangeline, and Jasper aquifers; maps depicting 1-year (2013–14) water-level changes for each aquifer; maps depicting contoured 5-year (2009–14) water-level changes for each aquifer; maps depicting contoured long-term (1990–2014 and 1977–2014) water-level changes for the Chicot and Evangeline aquifers; a map depicting contoured long-term (2000–14) water-level changes for the Jasper aquifer; a map depicting locations of borehole-extensometer sites; and graphs depicting measured cumulative compaction of subsurface sediments at the borehole extensometers during 1973–2013. Tables listing the data used to construct each water-level map for each aquifer and the compaction graphs are included.

  2. Water-level altitudes 2012 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2011 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Johnson, Michaela R.; Ramage, Jason K.

    2012-01-01

    Most of the subsidence in the Houston–Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers and caused compaction of the clay layers of the aquifer sediments. This report—prepared by the U.S. Geological Survey in cooperation with the Harris– Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District—is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction in the Chicot and Evangeline aquifers in the Houston–Galveston region. The report contains maps showing approximate water-level altitudes for 2012 (calculated from measurements of water levels in wells made during December 2011–February 2012) for the Chicot, Evangeline, and Jasper aquifers; maps showing 1-year (2011–12) water-level-altitude changes for each aquifer; maps showing 5-year (2007–12) water-levelaltitude changes for each aquifer; maps showing long-term (1990–2012 and 1977–2012) water-level-altitude changes for the Chicot and Evangeline aquifers; a map showing long-term (2000–12) water-level-altitude change for the Jasper aquifer; a map showing locations of borehole extensometer sites; and graphs showing measured compaction of subsurface sediments at the extensometers from 1973 (or later) through 2011. Tables listing the data that were used to construct each water-level map for each aquifer and the cumulative compaction graphs are included.

  3. Ground Water movement in crystalline rock aquifers

    International Nuclear Information System (INIS)

    Serejo, A.N.C.; Freire, C.; Siqueira, H.B. de; Frischkorn, H.; Torquato, J.R.F.; Santiago, M.M.F.; Barbosa, P.C.

    1984-01-01

    Ground water movement studies were performed in crystalline rock aquifers from the upper Acarau River hydrographic basin, state of Ceara, Brazil. The studies included carbon-14, 18 O/ 16 O and tritium measurements as well as chemical analysis. A total of 35 wells were surveyed during drought seasons. Carbon-14 values displayed little variation which implied that the water use was adequate despite of the slower recharge conditions. Fairly constant isotopic 18 O/ 16 O ratio values in the wells and their similarity with rainwater values indicated that the recharge is done exclusively by pluvial waters. A decreasing tendency within the tritium concentration values were interpreted as a periodic rainwater renewal for these aquifers. The chemical analysis demonstrated that there is in fact no correlation between salinity and the time the water remains in the aquifer itself. (D.J.M.) [pt

  4. Water-level altitudes 2009 and water-level changes in the Chicot, Evangeline, and Jasper Aquifers and compaction 1973-2008 in the Chicot and Evangeline Aquifers, Houston-Galveston Region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Houston, Natalie A.; Ramage, Jason K.

    2009-01-01

    This report, done in cooperation with the Harris-Galveston Subsidence District, the City of Houston, the Fort Bend Subsidence District, and the Lone Star Groundwater Conservation District, is one in an annual series of reports that depicts water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers, and compaction in the Chicot and Evangeline aquifers in the Houston-Galveston region, Texas. The report (excluding appendixes) contains 16 sheets and 15 tables: 3 sheets are maps showing current-year (2009) water-level altitudes for each aquifer, respectively; 3 sheets are maps showing 1-year (2008-09) water-level changes for each aquifer, respectively; 3 sheets are maps showing 5-year (2004-09) water-level changes for each aquifer, respectively; 4 sheets are maps showing long-term (1990-2009 and 1977-2009) water-level changes for the Chicot and Evangeline aquifers, respectively; 1 sheet is a map showing long-term (2000-2009) water-level change for the Jasper aquifer; 1 sheet is a map showing site locations of borehole extensometers; and 1 sheet comprises graphs showing measured compaction of subsurface material at the sites from 1973 or later through 2008, respectively. Tables listing the data used to construct the aquifer-data maps and the compaction graphs are included.

  5. Testing models for the formation of the equatorial ridge on Iapetus via crater counting

    Science.gov (United States)

    Damptz, Amanda L.; Dombard, Andrew J.; Kirchoff, Michelle R.

    2018-03-01

    Iapetus's equatorial ridge, visible in global views of the moon, is unique in the Solar System. The formation of this feature is likely attributed to a key event in the evolution of Iapetus, and various models have been proposed as the source of the ridge. By surveying imagery from the Cassini and Voyager missions, this study aims to compile a database of the impact crater population on and around Iapetus's equatorial ridge, assess the relative age of the ridge from differences in cratering between on ridge and off ridge, and test the various models of ridge formation. This work presents a database that contains 7748 craters ranging from 0.83 km to 591 km in diameter. The database includes the study area in which the crater is located, the latitude and longitude of the crater, the major and minor axis lengths, and the azimuthal angle of orientation of the major axis. Analysis of crater orientation over the entire study area reveals that there is no preference for long-axis orientation, particularly in the area with the highest resolution. Comparison of the crater size-frequency distributions show that the crater distribution on the ridge appears to be depleted in craters larger than 16 km with an abruptly enhanced crater population less than 16 km in diameter up to saturation. One possible interpretation is that the ridge is a relatively younger surface with an enhanced small impactor population. Finally, the compiled results are used to examine each ridge formation hypothesis. Based on these results, a model of ridge formation via a tidally disrupted sub-satellite appears most consistent with our interpretation of a younger ridge with an enhanced small impactor population.

  6. Karst connections between unconfined aquifers and the Upper Floridan aquifer in south Georgia: geophysical evidence and hydrogeological models

    Science.gov (United States)

    Thieme, D. M.; Denizman, C.

    2011-12-01

    Buried karst features in sedimentary rocks of the south Georgia Coastal Plain present a challenge for hydrogeological models of recharge and confined flow within the underlying Upper Floridan aquifer. The Withlacoochee River, the trunk stream for the area, frequently disappears into subsurface caverns as it makes its way south to join the Suwannee River in northern Florida. The Withlacoochee also receives inputs from small ponds and bays which in turn receive spring and seep groundwater inputs. We have mapped karst topography at the "top of rock" using ground-penetrating radar (GPR). Up to seven meters of relief is indicated for the paleotopography on Miocene to Pliocene rocks, contrasting with the more subdued relief of the modern landscape. Current stratigraphic and hydrogeological reconstructions do not incorporate this amount of relief or lateral variation in the confining beds. One "pipe" which is approximately four meters in diameter is being mapped in detail. We have field evidence at this location for rapid movement of surficial pond and river water with a meteoric signature through several separate strata of sedimentary rock into an aquifer in the Hawthorn formation. We use our geophysical and hydrological field evidence to constrain quantitative hydrogeological models for the flow rates into and out of both this upper aquifer and the underlying Upper Floridan aquifer, which is generally considered to be confined by the clays of the Hawthorn.

  7. Benzene dynamics and biodegradation in alluvial aquifers affected by river fluctuations.

    Science.gov (United States)

    Batlle-Aguilar, J; Morasch, B; Hunkeler, D; Brouyère, S

    2014-01-01

    The spatial distribution and temporal dynamics of a benzene plume in an alluvial aquifer strongly affected by river fluctuations was studied. Benzene concentrations, aquifer geochemistry datasets, past river morphology, and benzene degradation rates estimated in situ using stable carbon isotope enrichment were analyzed in concert with aquifer heterogeneity and river fluctuations. Geochemistry data demonstrated that benzene biodegradation was on-going under sulfate reducing conditions. Long-term monitoring of hydraulic heads and characterization of the alluvial aquifer formed the basis of a detailed modeled image of aquifer heterogeneity. Hydraulic conductivity was found to strongly correlate with benzene degradation, indicating that low hydraulic conductivity areas are capable of sustaining benzene anaerobic biodegradation provided the electron acceptor (SO4 (2-) ) does not become rate limiting. Modeling results demonstrated that the groundwater flux direction is reversed on annual basis when the river level rises up to 2 m, thereby forcing the infiltration of oxygenated surface water into the aquifer. The mobilization state of metal trace elements such as Zn, Cd, and As present in the aquifer predominantly depended on the strong potential gradient within the plume. However, infiltration of oxygenated water was found to trigger a change from strongly reducing to oxic conditions near the river, causing mobilization of previously immobile metal species and vice versa. MNA appears to be an appropriate remediation strategy in this type of dynamic environment provided that aquifer characterization and targeted monitoring of redox conditions are adequate and electron acceptors remain available until concentrations of toxic compounds reduce to acceptable levels. © 2013, National Ground Water Association.

  8. Continental hydrosystem modelling: the concept of nested stream-aquifer interfaces

    Science.gov (United States)

    Flipo, N.; Mouhri, A.; Labarthe, B.; Biancamaria, S.; Rivière, A.; Weill, P.

    2014-08-01

    Coupled hydrological-hydrogeological models, emphasising the importance of the stream-aquifer interface, are more and more used in hydrological sciences for pluri-disciplinary studies aiming at investigating environmental issues. Based on an extensive literature review, stream-aquifer interfaces are described at five different scales: local [10 cm-~10 m], intermediate [~10 m-~1 km], watershed [10 km2-~1000 km2], regional [10 000 km2-~1 M km2] and continental scales [>10 M km2]. This led us to develop the concept of nested stream-aquifer interfaces, which extends the well-known vision of nested groundwater pathways towards the surface, where the mixing of low frequency processes and high frequency processes coupled with the complexity of geomorphological features and heterogeneities creates hydrological spiralling. This conceptual framework allows the identification of a hierarchical order of the multi-scale control factors of stream-aquifer hydrological exchanges, from the larger scale to the finer scale. The hyporheic corridor, which couples the river to its 3-D hyporheic zone, is then identified as the key component for scaling hydrological processes occurring at the interface. The identification of the hyporheic corridor as the support of the hydrological processes scaling is an important step for the development of regional studies, which is one of the main concerns for water practitioners and resources managers. In a second part, the modelling of the stream-aquifer interface at various scales is investigated with the help of the conductance model. Although the usage of the temperature as a tracer of the flow is a robust method for the assessment of stream-aquifer exchanges at the local scale, there is a crucial need to develop innovative methodologies for assessing stream-aquifer exchanges at the regional scale. After formulating the conductance model at the regional and intermediate scales, we address this challenging issue with the development of an

  9. Arsenic levels in groundwater aquifer

    African Journals Online (AJOL)

    Miodrag Jelic

    resistance (ρ); dielectric constant (ε); magnetic permeability (η); electrochemical activity ..... comprises grey sands of different particle size distribution ..... groundwater: testing pollution mechanisms for sedimentary aquifers in. Bangladesh.

  10. Regional modelling of the confined aquifers below the Boom clay in NE-Belgium

    International Nuclear Information System (INIS)

    Vandersteen, K.; Gedeon, M.; Marivoet, J.; Wouters, L.

    2012-01-01

    Document available in extended abstract form only. In the framework of the Belgian research program on the long term management of high-level and/or long-lived radioactive waste coordinated by ONDRAF/NIRAS, the Boom Clay is considered as a reference host rock for the geological disposal of high-level radioactive waste in NE-Belgium (Campine area). The hydrogeological program at SCK.CEN supports the long-term performance assessments of the geological disposal of radioactive waste by performing a phenomenological research of the aquifer systems surrounding the studied disposal system. One of the important components of this programme is the regional hydrogeological modelling. The regional hydrogeology is studied using two main models - the steady state Neogene aquifer model (NAM) and the transient deep aquifer pumping model (DAP), developed to characterize and quantify the regional groundwater flow in, respectively, the aquifers lying above the Boom Clay in the Nete catchment area (NAM), and the aquifers lying below the Boom Clay in the Campine area (DAP). This paper describes the most recent update of the DAP model. The DAP model represents the confined part of the groundwater system located stratigraphically below the Boom Clay. This includes the parts of the Oligocene aquifer, the Bartoon aquitard system and the Ledo-Paniselian-Brusselian aquifer buried under the Boom Clay. Due to the considerable pumping from these aquifers in combination with a limited recharge, a gradual decrease in groundwater levels has been observed in more than 30-year piezometric records. In the DAP model, the shallow aquifer system overlying the Boom Clay is replaced by fixed head boundaries: this aquifer system is dominated by close-to-surface hydrological processes and the heads fluctuate seasonally without any apparent long-term trend. In the horizontal direction, the model extends to the south as far as the outcrops of the major aquitards: the Maldegem Formation confining the Ledo

  11. Landfill leachate effects on sorption of organic micropollutants onto aquifer materials

    DEFF Research Database (Denmark)

    Larsen, Thomas; Christensen, Thomas Højlund; Pfeffer, Fred M.

    1992-01-01

    The effect of dissolved organic carbon as present in landfill leachate, on the sorption of organic micropollutants in aquifer materials was studied by laboratory batch and column experiments involving 15 non-polar organic chemicals, 5 landfill leachates and 4 aquifer materials of low organic carbon......, the effect of landfill leachate on retardation of organic micropollutants in aquifer material seems limited....... content. The experiments showed that hydrophobic organic micropollutants do partition into dissolved organic carbon found in landfill leachate potentially increasing their mobility. However, landfill leachate interacted with aquifer materials apparently increases the sorbent affinity for the hydrophobic...

  12. Saturated-unsaturated flow in a compressible leaky-unconfined aquifer

    Science.gov (United States)

    Mishra, Phoolendra K.; Vesselinov, Velimir V.; Kuhlman, Kristopher L.

    2012-06-01

    An analytical solution is developed for three-dimensional flow towards a partially penetrating large-diameter well in an unconfined aquifer bounded below by a leaky aquitard of finite or semi-infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone following an assumption of instantaneous drainage due to Neuman. We extend the theory of leakage in unconfined aquifers by (1) including water flow and storage in the unsaturated zone above the water table, and (2) allowing the finite-diameter pumping well to partially penetrate the aquifer. The investigation of model-predicted results shows that aquitard leakage leads to significant departure from the unconfined solution without leakage. The investigation of dimensionless time-drawdown relationships shows that the aquitard drawdown also depends on unsaturated zone properties and the pumping-well wellbore storage effects.

  13. Identification of the microbes mediating Fe reduction in a deep saline aquifer and their influence during managed aquifer recharge.

    Science.gov (United States)

    Ko, Myoung-Soo; Cho, Kyungjin; Jeong, Dawoon; Lee, Seunghak

    2016-03-01

    In this study, indigenous microbes enabling Fe reduction under saline groundwater conditions were identified, and their potential contribution to Fe release from aquifer sediments during managed aquifer recharge (MAR) was evaluated. Sediment and groundwater samples were collected from a MAR feasibility test site in Korea, where adjacent river water will be injected into the confined aquifer. The residual groundwater had a high salinity over 26.0 psu, as well as strong reducing conditions (dissolved oxygen, DOaquifer were found to be Citrobacter sp. However, column experiments to simulate field operation scenarios indicated that additional Fe release would be limited during MAR, as the dominant microbial community in the sediment would shift from Citrobacter sp. to Pseudomonas sp. and Limnohabitans sp. as river water injection alters the pore water chemistry. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Hydrogeochemical study of water in some aquifers of the Estado de Mexico

    International Nuclear Information System (INIS)

    Pena, P.; Lopez, A.; Balcazar, M.; Flores, J.H.; Cardenas, S.; Schubert, M.

    2005-01-01

    The National Institute of Nuclear Research of Mexico (ININ), has developed a technique that allows to study the association of recharge mechanisms, residence times of the water in the aquifers, as well as the local lithology and the geochemical parameters. The viability of this technique was proven on November 2004 in the aquifers (La Perita, El Tunel y El Pedregal) located in the Asuncion Tepexoyuca, Estado de Mexico. It was observed that so much the aquifer El Tunel like La Perita are used for the human consumption, the aquifer of El Pedregal is used for the fish cultivation. The studies were carried out during March 2003 to November 2004. In the aquifer La Perita the maximum values of the radon concentration (0.76 Bq L -1 ) they were observed in the summertime time (December). In the spring El Tunel the maximum values of the radon concentration (4.08 Bq L -1 ) they were observed in the rainy season (September) this increment can be due to the contributions of the recharge of aquifers that it allows the haulage of the radon of other alternating roads of infiltration of the rain water. Of the physicochemical and radiochemical analyses carried out in the water samples of the studied aquifers, it is deduced that they are waters of good quality since for the human consumption since that they are inside on the maximum permissible limits as for their potability according to national and international standards. Likewise it was observed that the water of the aquifers is a single aquifer, since that its differences they due to the time of permanency of the water inside the aquifer. The classification of the underground water deduced that it is calcic and/or magnesic bi carbonated water belonging to the type of meteoric waters of recent infiltration. (Author)

  15. Three-Dimensional Flow Generated by a Partially Penetrating Well in a Two-Aquifer System

    Science.gov (United States)

    Sepulveda, N.

    2007-12-01

    An analytical solution is presented for three-dimensional (3D) flow in a confined aquifer and the overlying storative semiconfining layer and unconfined aquifer. The equation describing flow caused by a partially penetrating production well is solved analytically to provide a method to accurately determine the hydraulic parameters in the confined aquifer, semiconfining layer, and unconfined aquifer from aquifer-test data. Previous solutions for a partially penetrating well did not account for 3D flow or storativity in the semiconfining unit. The 3D and two- dimensional (2D) flow solutions in the semiconfining layer are compared for various hydraulic conductivity ratios between the aquifer and the semiconfining layer. Analysis of the drawdown data from an aquifer test in central Florida showed that the 3D solution in the semiconfining layer provides a more unique identification of the hydraulic parameters than the 2D solution. The analytical solution could be used to analyze, with higher accuracy, the effect that pumping water from the lower aquifer in a two-aquifer system has on wetlands.

  16. Aquifer restoration at uranium in situ leach sites

    International Nuclear Information System (INIS)

    Anastasi, F.S.; Williams, R.E.

    1985-01-01

    In situ mining of uranium involves injection of a leaching solution (lixiviant) into an ore-bearing aquifer. Frequently, the ground water in the mined aquifer is a domestic or livestock water supply. As the lixiviant migrates through the ore body, uranium and various associated elements such as arsenic, selenium, molybdenum, vanadium and radium-226 are mobilized in the ground water. Aquifer restoration after in situ mining is not fully understood. Several methods have been developed to restore mined aquifers to pre-mining (baseline) quality. Commonly used methods include ground water sweeping, clean water injection, and treatment by ion exchange and reverse osmosis technologies. Ammonium carbonate lixiviant was used at one RandD in situ mine. Attempts were made to restore the aquifer using a variety of methods. Efforts were successful in reducing concentrations of the majority of contaminants to baseline levels. Concentrations of certain parameters, however, remained at levels above baseline six months after restoration ceased. Relatively large quantities of ground water were processed in the restoration attempt considering the small size of the project (1.25 acre). More thorough characterization of the hydrogeology of the site may have enhanced the effectiveness of restoration and reduced potential environmental impacts associated with the project. This paper presents some of the findings of a research project conducted by the Mineral Resources Waste Management Team at the University of Idaho in Moscow, Idaho. Views contained herein do not reflect U.S. Nuclear Regulatory Commission policy

  17. Water levels of the Ozark aquifer in northern Arkansas, 2013

    Science.gov (United States)

    Schrader, Tony P.

    2015-07-13

    The Ozark aquifer is the largest aquifer, both in area of outcrop and thickness, and the most important source of freshwater in the Ozark Plateaus physiographic province, supplying water to northern Arkansas, southeastern Kansas, southern Missouri, and northeastern Oklahoma. The study area includes 16 Arkansas counties lying completely or partially within the Ozark Plateaus of the Interior Highlands major physiographic division. The U.S. Geological Survey, in cooperation with the Arkansas Natural Resources Commission and the Arkansas Geological Survey, conducted a study of water levels in the Ozark aquifer within Arkansas. This report presents a potentiometric-surface map of the Ozark aquifer within the Ozark Plateaus of northern Arkansas, representing water-level conditions for the early spring of 2013 and selected water-level hydrographs.

  18. ZVI (Fe0) desalination: catalytic partial desalination of saline aquifers

    Science.gov (United States)

    Antia, David D. J.

    2018-05-01

    Globally, salinization affects between 100 and 1000 billion m3 a-1 of irrigation water. The discovery that zero valent iron (ZVI, Fe0) could be used to desalinate water (using intra-particle catalysis in a diffusion environment) raises the possibility that large-scale in situ desalination of aquifers could be undertaken to support agriculture. ZVI desalination removes NaCl by an adsorption-desorption process in a multi-stage cross-coupled catalytic process. This study considers the potential application of two ZVI desalination catalyst types for in situ aquifer desalination. The feasibility of using ZVI catalysts when placed in situ within an aquifer to produce 100 m3 d-1 of partially desalinated water from a saline aquifer is considered.

  19. Conceptual and numerical modeling approach of the Guarani Aquifer System

    Directory of Open Access Journals (Sweden)

    L. Rodríguez

    2013-01-01

    Full Text Available In large aquifers, relevant for their considerable size, regional groundwater modeling remains challenging given geologic complexity and data scarcity in space and time. Yet, it may be conjectured that regional scale groundwater flow models can help in understanding the flow system functioning and the relative magnitude of water budget components, which are important for aquifer management. The Guaraní Aquifer System is the largest transboundary aquifer in South America. It contains an enormous volume of water; however, it is not well known, being difficult to assess the impact of exploitation currently used to supply over 25 million inhabitants. This is a sensitive issue because the aquifer is shared by four countries. Moreover, an integrated groundwater model, and therefore a global water balance, were not available. In this work, a transient regional scale model for the entire aquifer based upon five simplified, equally plausible conceptual models represented by different hydraulic conductivity parametrizations is used to analyze the flow system and water balance components. Combining an increasing number of hydraulic conductivity zones and an appropriate set of boundary conditions, the hypothesis of a continuous sedimentary unit yielded errors within the calibration target in a regional sense. The magnitude of the water budget terms resulted very similar for all parametrizations. Recharge and stream/aquifer fluxes were the dominant components representing, on average, 84.2% of total inflows and 61.4% of total outflows, respectively. However, leakage was small compared to stream discharges of main rivers. For instance, the simulated average leakage for the Uruguay River was 8 m3 s−1 while the observed absolute minimum discharge was 382 m3 s−1. Streams located in heavily pumped regions switched from a gaining condition in early years to a losing condition over time. Water is discharged through

  20. Seismic imaging of the Formosa Ridge cold seep site offshore of southwestern Taiwan

    Science.gov (United States)

    Hsu, Ho-Han; Liu, Char-Shine; Morita, Sumito; Tu, Shu-Lin; Lin, Saulwood; Machiyama, Hideaki; Azuma, Wataru; Ku, Chia-Yen; Chen, Song-Chuen

    2017-12-01

    Multi-scale reflection seismic data, from deep-penetration to high-resolution, have been analyzed and integrated with near-surface geophysical and geochemical data to investigate the structures and gas hydrate system of the Formosa Ridge offshore of southwestern Taiwan. In 2007, dense and large chemosynthetic communities were discovered on top of the Formosa Ridge at water depth of 1125 m by the ROV Hyper-Dolphin. A continuous and strong BSR has been observed on seismic profiles from 300 to 500 ms two-way-travel-time below the seafloor of this ridge. Sedimentary strata of the Formosa Ridge are generally flat lying which suggests that this ridge was formed by submarine erosion processes of down-slope canyon development. In addition, some sediment waves and mass wasting features are present on the ridge. Beneath the cold seep site, a vertical blanking zone, or seismic chimney, is clearly observed on seismic profiles, and it is interpreted to be a fluid conduit. A thick low velocity zone beneath BSR suggests the presence of a gas reservoir there. This "gas reservoir" is shallower than the surrounding canyon floors along the ridge; therefore as warm methane-rich fluids inside the ridge migrate upward, sulfate carried by cold sea water can flow into the fluid system from both flanks of the ridge. This process may drive a fluid circulation system and the active cold seep site which emits both hydrogen sulfide and methane to feed the chemosynthetic communities.

  1. Global Models of Ridge-Push Force, Geoid, and Lithospheric Strength of Oceanic plates

    Science.gov (United States)

    Mahatsente, Rezene

    2017-12-01

    An understanding of the transmission of ridge-push related stresses in the interior of oceanic plates is important because ridge-push force is one of the principal forces driving plate motion. Here, I assess the transmission of ridge-push related stresses in oceanic plates by comparing the magnitude of the ridge-push force to the integrated strength of oceanic plates. The strength is determined based on plate cooling and rheological models. The strength analysis includes low-temperature plasticity (LTP) in the upper mantle and assumes a range of possible tectonic conditions and rheology in the plates. The ridge-push force has been derived from the thermal state of oceanic lithosphere, seafloor depth and crustal age data. The results of modeling show that the transmission of ridge-push related stresses in oceanic plates mainly depends on rheology and predominant tectonic conditions. If a lithosphere has dry rheology, the estimated strength is higher than the ridge-push force at all ages for compressional tectonics and at old ages (>75 Ma) for extension. Therefore, under such conditions, oceanic plates may not respond to ridge-push force by intraplate deformation. Instead, the plates may transmit the ridge-push related stress in their interior. For a wet rheology, however, the strength of young lithosphere (stress may dissipate in the interior of oceanic plates and diffuses by intraplate deformation. The state of stress within a plate depends on the balance of far-field and intraplate forces.

  2. THE STATISTICAL MODEL OF PRESSURE RIDGE MORPHOMETRY ON THE NORTHEAST SHELF OF SAKHALIN ISLAND

    Directory of Open Access Journals (Sweden)

    E. U. Mironov

    2012-01-01

    Full Text Available The work presents characteristics on geometry and inner structure of ice ridges investigated at offshore the northeast coast of SakhalinIsland. A formula was obtained which allows one to calculate the ice ridge keel depth by the height of its sail. Plots of the probability distribution density for ice ridge characteristics are given. A model of morphometry of a mean statistical ice ridge was constructed, and its mass is determined. Factors influencing the hydrostatic ice ridge equilibrium are considered.

  3. Summary of hydrologic testing of the Floridan aquifer system at Fort Stewart, coastal Georgia, 2009-2010

    Science.gov (United States)

    Gonthier, Gerald J.

    2011-01-01

    Two test wells were completed at Fort Stewart, coastal Georgia, to investigate the potential for using the Lower Floridan aquifer as a source of water to satisfy anticipated, increased water needs. The U.S. Geological Survey, in cooperation with the U.S. Department of the Army, completed hydrologic testing of the Floridan aquifer system at the study site, including flowmeter surveys, slug tests, and 24- and 72-hour aquifer tests by mid-March 2010. Analytical approaches and model simulation were applied to aquifer-test results to provide estimates of transmissivity and hydraulic conductivity of the multilayered Floridan aquifer system. Data from a 24-hour aquifer test of the Upper Floridan aquifer were evaluated by using the straight-line Cooper-Jacob analytical method. Data from a 72-hour aquifer test of the Lower Floridan aquifer were simulated by using axisymmetric model simulations. Results of aquifer testing indicated that the Upper Floridan aquifer has a transmissivity of 100,000 feet-squared per day, and the Lower Floridan aquifer has a transmissivity of 7,000 feet-squared per day. A specific storage for the Floridan aquifer system as a result of model calibration was 3E-06 ft–1. Additionally, during a 72-hour aquifer test of the Lower Floridan aquifer, a drawdown response was observed in two Upper Floridan aquifer wells, one of which was more than 1 mile away from the pumped well.

  4. Groundwater reorganization in the Floridan aquifer following Holocene sea-level rise

    Science.gov (United States)

    Morrissey, Sheila K.; Clark, Jordan F.; Bennett, Michael; Richardson, Emily; Stute, Martin

    2010-10-01

    Sea-level fluctuations, particularly those associated with glacial-interglacial cycles, can have profound impacts on the flow and circulation of coastal groundwater: the water found at present in many coastal aquifers may have been recharged during the last glacial period, when sea level was over 100m lower than present, and thus is not in equilibrium with present recharge conditions. Here we show that the geochemistry of the groundwater found in the Floridan Aquifer System in south Florida is best explained by a reorganization of groundwater flow following the sea-level rise at the end of the Last Glacial Maximum approximately 18,000 years ago. We find that the geochemistry of the fresh water found in the upper aquifers at present is consistent with recharge from meteoric water during the last glacial period. The lower aquifer, however, consists of post-sea-level-rise salt water that is most similar to that of the Straits of Florida, though with some dilution from the residual fresh water from the last glacial period circulation. We therefore suggest that during the last glacial period, the entire Floridan Aquifer System was recharged with meteoric waters. After sea level rose, the increased hydraulic head reduced the velocity of the groundwater flow. This velocity reduction trapped the fresh water in the upper aquifers and initiated saltwater circulation in the lower aquifer.

  5. Active spreading processes at ultraslow mid-ocean ridges: The 1999-2001 seismo-volcanic episode at 85°E Gakkel ridge, Arctic Ocean

    Science.gov (United States)

    Schlindwein, Vera; Riedel, Carsten; Korger, Edith; Läderach, Christine

    2010-05-01

    The rate of magma and crustal production at mid-ocean ridges is thought to decrease with decreasing spreading rate. At ultraslow spreading rates below 10-20 mm/y full rate, heat loss by conduction greatly reduces melt production with less melt produced at increasingly greater depths. Gakkel Ridge, the actively spreading mid-ocean ridge in the Arctic Ocean, opens at rates of 14 mm/y in the west decreasing to less than 6 mm/y at its eastern termination and demonstrates that magma production is not only a function of spreading rate. Whereas amagmatic spreading takes place at rates of about 12-10 mm/y, focussed melt production occurs at even lower spreading rates in long-lived discrete volcanic centres. One such centre is the 85°E volcanic complex at eastern Gakkel ridge where in 1999 a teleseismically recorded earthquake swarm consisting of more than 250 earthquakes over 9 months signalled the onset of an active spreading episode. The earthquake swarm is believed to be associated with volcanic activity although no concurrent lava effusion was found. We analysed the teleseismic earthquake swarm together with visual observation and microseismic data recorded at this site in 2001 and 2007 and noted the following characteristics which may be indicative for volcanic spreading events at the still poorly explored ultraslow spreading ridges: - unusual duration: The 1999 earthquake swarm lasted over 9 months rather than a few weeks as observed on faster spreading ridges. In addition, in 2001 seismoacoustic sounds which we interpret as gas discharge in Strombolian eruptions and a giant event plume maintained over more than one year indicate waxing and waning volcanic activity since 1999. - unusual strength: The earthquake swarm was detected at teleseismic distances of more than 1000 km and included 11 events with a magnitude >5. No other confirmed mid-ocean ridge eruption released a comparable seismic moment. Rather than focussing in a narrow area or showing pronounced

  6. The Compartment Syndrome Associated with Deep Vein Thrombosis due to Rattlesnake Bite: A Case Report

    Directory of Open Access Journals (Sweden)

    Radu Ciprian Tincu

    2017-08-01

    Full Text Available Background: Snakebite is a health issue specific to some parts of the world, especially in the tropical area, where it produces many victims. The main clinical damage caused by snake bite involves hemotoxic, neurotoxic and myotoxic reactions. It is also established that the importance of systemic impairment varies according to individual factors and are related to organ dysfunction, shock or hypotension. We report the case of a young woman suffering from snakebite who developed deep vein thrombosis and compartment syndrome. Case Report: We present the case of a 32-year-old Romanian woman who was injured by her own Crotalinae snake (also known as pit viper or rattlesnake on her left forearm. When admitted to our Emergency Department, she was conscious with a Glasgow coma scale of 12/15, somnolent, febrile, suffering of headache, tachypnea; the marks of the snakebite were located in the distal part of the anterior left forearm; she had pain and bleeding at the bite site and swelling of the left upper limb with lymphangitis up to the axilla. She experienced fasciotomy-requiring compartment syndrome of the upper limb and required unfractionated heparin and closed monitored using activated partial thromboplastin time evolution due micro-thrombosis in the brachial vein. Local improvement was achieved in the next 4 days with progressive diminish of local tenderness and swelling. Conclusion: Limb deep vein thrombosis might be induced by snakebite, despite pro-hemorrhagic general condition induced by the envenomation. High index of clinical suspicion is needed for early diagnosis and timely management which can improve survival of these patients

  7. Hot subduction: Magmatism along the Hunter Ridge, SW Pacific

    International Nuclear Information System (INIS)

    Crawford, A.J.; Verbeeten, A.; Danyushevsky, L.V.; Sigurdsson, I.A.; Maillet, P.; Monzier, M.

    1997-01-01

    The Hunter 'fracture zone' is generally regarded as a transform plate boundary linking the oppositely dipping Tongan and Vanuatu subduction systems. Dredging along the Hunter Ridge and sampling of its northernmost extent, exposed as the island of Kadavu in Fiji, has yielded a diversity of magmatic suites, including arc tholeiites and high-Ca boninites, high-Mg lavas with some affinities to boninites and some affinities to adakites, and true adakitic lavas associated with remarkable low-Fe, high-Na basalts with 8-16 ppm Nb (herein high-Nb basalts). Lavas which show clear evidence of slab melt involvement in their petrogenesis occur at either end of the Hunter Ridge, whereas the arc tholeiites and high-Ca boninites appear to be restricted to the south central part of the ridge. Mineralogical and whole rock geochemical data for each of these suites are summarized, and a tectono-magmatic model for their genesis and distribution is suggested. Trace element features and radiogenic isotope data for the Hunter Ridge lavas indicate compositions analogue to Pacific MORB-like mantle

  8. Crustal structure and tectonics of the Ninetyeast Ridge from seismic and gravity studies

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Neprochnov, Y.P.; Rao, D.G.; Grinko, B.N.

    Seismic reflection and refraction, gravity, and bathymetric data across and along the central part of the Ninetyeast Ridge were analyzed to determine the crustal structure of the ridge and to understand its tectonics. The ridge in the study area...

  9. Water-level altitudes 2015 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2014 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Ramage, Jason K.; Houston, Natalie A.; Johnson, Michaela R.; Schmidt, Tiffany S.

    2015-01-01

    Most of the land-surface subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction of the aquifer sediments, mostly in the fine-grained silt and clay layers. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured cumulative compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains regional-scale maps depicting approximate 2015 water-level altitudes (represented by measurements made during December 2014–March 2015) for the Chicot, Evangeline, and Jasper aquifers; maps depicting 1-year (2014–15) water-level changes for each aquifer; maps depicting approximate contoured 5-year (2010–15) water-level changes for each aquifer; maps depicting approximate contoured long-term (1990–2015 and 1977–2015) water-level changes for the Chicot and Evangeline aquifers; a map depicting approximate contoured long-term (2000–15) water-level changes for the Jasper aquifer; a map depicting locations of borehole-extensometer sites; and graphs depicting measured cumulative compaction of subsurface sediments at the borehole extensometers during 1973–2014. Three tables listing the water-level data used to construct each water-level map for each aquifer and a table listing the measured cumulative compaction data for each extensometer site and graphs are included.

  10. Comparative venomics of the Prairie Rattlesnake (Crotalus viridis viridis) from Colorado: Identification of a novel pattern of ontogenetic changes in venom composition and assessment of the immunoreactivity of the commercial antivenom CroFab®.

    Science.gov (United States)

    Saviola, Anthony J; Pla, Davinia; Sanz, Libia; Castoe, Todd A; Calvete, Juan J; Mackessy, Stephen P

    2015-05-21

    Here we describe and compare the venomic and antivenomic characteristics of both neonate and adult Prairie Rattlesnake (Crotalus viridis viridis) venoms. Although both neonate and adult venoms contain unique components, similarities among protein family content were seen. Both neonate and adult venoms consisted of myotoxin, bradykinin-potentiating peptide (BPP), phospholipase A2 (PLA2), Zn(2+)-dependent metalloproteinase (SVMP), serine proteinase, L-amino acid oxidase (LAAO), cysteine-rich secretory protein (CRISP) and disintegrin families. Quantitative differences, however, were observed, with venoms of adults containing significantly higher concentrations of the non-enzymatic toxic compounds and venoms of neonates containing higher concentrations of pre-digestive enzymatic proteins such as SVMPs. To assess the relevance of this venom variation in the context of snakebite and snakebite treatment, we tested the efficacy of the common antivenom CroFab® for recognition of both adult and neonate venoms in vitro. This comparison revealed that many of the major protein families (SVMPs, CRISP, PLA2, serine proteases, and LAAO) in both neonate and adult venoms were immunodepleted by the antivenom, whereas myotoxins, one of the major toxic components of C. v. viridis venom, in addition to many of the small peptides, were not efficiently depleted by CroFab®. These results therefore provide a comprehensive catalog of the venom compounds present in C. v. viridis venom and new molecular insight into the potential efficacy of CroFab® against human envenomations by one of the most widely distributed rattlesnake species in North America. Comparative proteomic analysis of venoms of neonate and adult Prairie Rattlesnake (Crotalus viridis viridis) from a discrete population in Colorado revealed a novel pattern of ontogenetic shifts in toxin composition for viperid snakes. The observed stage-dependent decrease of the relative content of disintegrins, catalytically active D49-PLA2s

  11. Semi-analytical solutions for flow to a well in an unconfined-fractured aquifer system

    Science.gov (United States)

    Sedghi, Mohammad M.; Samani, Nozar

    2015-09-01

    Semi-analytical solutions of flow to a well in an unconfined single porosity aquifer underlain by a fractured double porosity aquifer, both of infinite radial extent, are obtained. The upper aquifer is pumped at a constant rate from a pumping well of infinitesimal radius. The solutions are obtained via Laplace and Hankel transforms and are then numerically inverted to time domain solutions using the de Hoog et al. algorithm and Gaussian quadrature. The results are presented in the form of dimensionless type curves. The solution takes into account the effects of pumping well partial penetration, water table with instantaneous drainage, leakage with storage in the lower aquifer into the upper aquifer, and storativity and hydraulic conductivity of both fractures and matrix blocks. Both spheres and slab-shaped matrix blocks are considered. The effects of the underlying fractured aquifer hydraulic parameters on the dimensionless drawdown produced by the pumping well in the overlying unconfined aquifer are examined. The presented solution can be used to estimate hydraulic parameters of the unconfined and the underlying fractured aquifer by type curve matching techniques or with automated optimization algorithms. Errors arising from ignoring the underlying fractured aquifer in the drawdown distribution in the unconfined aquifer are also investigated.

  12. Perched aquifers - their potential impact on contaminant transport in the southern High Plains, Texas

    International Nuclear Information System (INIS)

    Mullican, W.F. III; Fryar, A.E.; Johns, N.D.

    1993-01-01

    Understanding the hydrogeology and hydrochemistry of perched aquifers at potential and known contaminated waste sites has become increasingly important because of the impact these aquifers may have on contaminant transport independent of regional aquifer processes. Investigations of a perched aquifer above the Ogallala aquifer are being conducted in the region of the U.S. Department of Energy's Pantex Plant, a proposed Superfund site, located approximately 20 mi northeast of Amarillo, Texas. Since the early 1950s, a small playa basin located on the Pantex Plant has been used as a waste-water discharge pond with daily discharge rates ranging from 400,000 to 1 million gal. The focus of this investigation is an unconfined, perched aquifer that overlies a thick silty clay sequence within the upper, mostly unsaturated part of the Ogallala Formation (Neogene). In the area of the Pantex Plant, measured depths to the perched aquifer range from 200 to 300 ft below land surface, whereas depth to the regional Ogallala aquifer ranges from 375 to 500 ft. The potentiometric surface of the perched aquifer typically represents groundwater mounds proximal to the playas and thins into trough in the interplaya areas. Hydrologic gradients of the primary mound under investigation are relatively high, ranging from 28 to 45 ft/mi. Calculated transmissivities have a geometric mean of 54 ft 2 /day, with saturated thicknesses ranging from 4 to 1000 ft. Modeling of the perched aquifer was designed to determine how much, if any, discharge to the small playa basin has enhanced recharge to the perched aquifers and increased the vertical and lateral extent of the perched aquifer. Preliminary results indicate that measurements of vertical conductance through the perching silty-clay sequence and recharge rates through playas are critical for calibrating the model. Accurate delineation of rates and flow directions in the perched aquifer is critical to any successful remediation effort

  13. Holifield Heavy-Ion Research Facility at Oak Ridge

    International Nuclear Information System (INIS)

    Jones, C.M.

    1977-01-01

    A new heavy-ion accelerator facility is now under construction at the Oak Ridge National Laboratory. A brief description of the scope and schedule of this project is given, and the new large tandem accelerator, which will be a major element of the facility is discussed in some detail. Several studies which have been made or are in progress in Oak Ridge in preparation for operation of the tandem accelerator are briefly described

  14. Mid Ocean Ridge Processes at Very Low Melt Supply : Submersible Exploration of Smooth Ultramafic Seafloor at the Southwest Indian Ridge, 64 degree E

    Science.gov (United States)

    Cannat, M.; Agrinier, P.; Bickert, M.; Brunelli, D.; Hamelin, C.; Lecoeuvre, A.; Lie Onstad, S.; Maia, M.; Prampolini, M.; Rouméjon, S.; Vitale Brovarone, A.; Besançon, S.; Assaoui, E. M.

    2017-12-01

    Mid-ocean ridges are the Earth's most extensive and active volcanic chains. They are also, particularly at slow spreading rates, rift zones, where plate divergence is in part accommodated by faults. Large offset normal faults, also called detachments, are characteristic of slow-spreading ridges, where they account for the widespread emplacement of mantle-derived rocks at the seafloor. In most cases, these detachments occur together with ridge magmatism, with melt injection and faulting interacting to shape the newly formed oceanic lithosphere. Here, we seek to better understand these interactions and their effects on oceanic accretion by studying the end-member case of a ridge where magmatism is locally almost absent. The portion of the Southwest Indian ridge we are studying has an overal low melt supply, focused to discrete axial volcanoes, leaving almost zero melt to intervening sections of the axial valley. One of these nearly amagmatic section of the ridge, located at 64°E, has been the focus of several past cruises (sampling, mapping and seismic experiments). Here we report on the most recent cruise to the area (RV Pourquoi Pas? with ROV Victor; dec-jan 2017), during which we performed high resolution mapping, submersible exploration and sampling of the ultramafic seafloor and of sparse volcanic formations. Our findings are consistent with the flip-flop detachment hypothesis proposed for this area by Sauter et al. (Nature Geosciences, 2013; ultramafic seafloor forming in the footwall of successive detachment faults, each cutting into the footwall of the previous fault, with an opposite polarity). Our observations also document the extent and geometry of deformation in the footwall of a young axial detachment, the role of mass-wasting for the evolution of this detachment, and provide spectacular evidence for serpentinization-related hydrothermal circulation and for spatial links between faults and volcanic eruptions.

  15. Assessing aquifer storage and recovery feasibility in the Gulf Coastal Plains of Texas

    Directory of Open Access Journals (Sweden)

    W. Benjamin Smith

    2017-12-01

    Full Text Available Study region: The Gulf Coast and Carrizo-Wilcox aquifer systems in the Gulf Coastal Plains of Texas. Study focus: Aquifer storage and recovery is a water storage alternative that is underutilized in Texas, a state with both long periods of drought and high intensity storms. Future water storage plans in Texas almost exclusively rely on surface reservoirs, subject to high evaporative losses. This study seeks to identify sites where aquifer storage and recovery (ASR may be successful, especially in recovery of injected waters, by analyzing publicly-available hydrogeologic data. Transmissivity, hydraulic gradient, well density, depth to aquifer, and depth to groundwater are used in a GIS-based index to determine feasibility of implementing an ASR system in the Gulf Coast and Carrizo-Wilcox aquifer systems. New hydrological insights for the region: Large regions of the central and northern Gulf Coast and the central and southern Carrizo-Wilcox aquifer systems are expected to be hydrologically feasible regions for ASR. Corpus Christi, Victoria, San Antonio, Bryan, and College Station are identified as possible cities where ASR would be a useful water storage strategy. Keywords: Aquifer storage and recovery (ASR, GIS, Gulf coast, Carrizo-Wilcox, Managed aquifer recharge (MAR

  16. Fate of N-nitrosomorpholine in an anaerobic aquifer used for managed aquifer recharge: a column study.

    Science.gov (United States)

    Pitoi, M M; Patterson, B M; Furness, A J; Bastow, T P; McKinley, A J

    2011-04-01

    The fate of N-nitrosomorpholine (NMOR) was evaluated at microgram and nanogram per litre concentrations. Experiments were undertaken to simulate the passage of groundwater contaminants through a deep anaerobic pyritic aquifer system, as part of a managed aquifer recharge (MAR) strategy. Sorption studies demonstrated the high mobility of NMOR in the Leederville aquifer system, with retardation coefficients between 1.2 and 1.6. Degradation studies from a 351 day column experiment and a 506 day stop-flow column experiment showed an anaerobic biologically induced reductive degradation process which followed first order kinetics. A biological lag-time of less than 3 months and a transient accumulation of morpholine (MOR) were also noted during the degradation. Comparable half-life degradation rates of 40-45 days were observed over three orders of magnitude in concentration (200 ng L(-1) to 650 μg L(-1)). An inhibitory effect on microorganism responsible to the biodegradation of NMOR at 650 μg L(-1) or a threshold effect at 200 ng L(-1) was not observed during these experiments. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  17. Hydrologic and isotopic study of the Quito aquifer

    International Nuclear Information System (INIS)

    Villalba, Fabio; Benalcazar, Julio; Garcia, Marco; Altamirano, Cesar; Altamirano, Homero; Sarasti, Santiago; Mancero, Maria; Leiva, Eduardo; Pino, Jose; Alulema, Rafael; Cedeno, Alberto; Burbano, Napoleon; Paquel, Efren; Becerra, Simon; Andrade, Graciela

    2000-10-01

    The dynamics of the Quito basin and surrounding area aquifers were determined through the use of stable and radioactive isotopes, and the monitoring of the freatic levels and of the bacteriological and physico-chemical quality of the water. A conceptual hydrodynamic model of the Quito aquifer was also proposed in order to establish in the future a sustainable management system

  18. Hydrogeology and water-quality characteristics of the Lower Floridan aquifer in east-central Florida

    Science.gov (United States)

    O'Reilly, Andrew M.; Spechler, Rick M.; McGurk, Brian E.

    2002-01-01

    The hydrogeology and water-quality characteristics of the Lower Floridan aquifer and the relation of the Lower Floridan aquifer to the framework of the Floridan aquifer system were evaluated during a 6-year (1995-2001) study. The study area, a 7,500 square-mile area of east-central Florida, is underlain by three principal hydrogeologic units: the surficial aquifer system, the intermediate confining unit, and the Floridan aquifer system. The Floridan aquifer system, a carbonate-rock aquifer system composed of the Upper Floridan aquifer, a middle semiconfining unit, a middle confining unit, and the Lower Floridan aquifer, is the major source of water supply to east-central Florida. The Upper Floridan aquifer provides much of the water required to meet the current (2002) demand; however, the Lower Floridan aquifer is being used increasingly as a source of freshwater, particularly for municipal needs. For this reason, a better understanding of the aquifer is needed. The Lower Floridan aquifer is present throughout east-central Florida. The aquifer is composed of alternating beds of limestone and dolomite, and is characterized by abundant fractured dolomite zones and solution cavities. The altitude of the top of the Lower Floridan aquifer ranges from less than 600 feet below sea level in the northern part of the study area to more than 1,600 feet below sea level in the southwestern part. Thickness of the unit ranges from about 910 to 1,180 feet. The top of the Lower Floridan aquifer generally is marked by an increase in formation resistivity and by an increase in the occurrence of fractures and solution cavities within the carbonates. Also, a noticeable increase in borehole flow often marks the top of the unit. The bottom of the Lower Floridan aquifer is based on the first occurrence of evaporites. Ground-water in the Lower Floridan aquifer generally moves in a southwest-to-northeast direction across the study area. In September 1998, the altitude of the potentiometric

  19. Groundwater Dynamics in Fossil Fractured Carbonate Aquifers in Eastern Arabian Peninsula

    Science.gov (United States)

    Farag, A. Z. A.; Heggy, E.; Helal, M.; Thirunavukkarasu, D.; Scabbia, G.; Palmer, E. M.

    2017-12-01

    The Eastern Arabian Peninsula, notably the Qatar Peninsula, represents one of the highest natural groundwater discharge areas for the Arabian platform fossil aquifer system. Groundwater flow dynamics in these aquifers trace the paleoclimatic conditions that have prevailed the Arabian Peninsula during the Quaternary. In such settings, connections between aquifers strongly affect the flow dynamics, water quality and availability as well as karst formation and landscape evolution. Geological structures such as folds, faults and fractures are central to aquifer connectivity, yet their role on groundwater flow is poorly understood. Herein, we performed a detailed mapping of exposed and buried structural features in Qatar using Landsat, Sentinel and ALOS-PalSAR scenes, correlated with field and laboratory measurements to understand their role in aquifer connectivity and groundwater dynamics. Our results suggest that E-W oriented fold-related faults act as vertical conduits along which artesian upward leakages from the deep aquifers (e.g. Aruma and Umm er Radhuma) take place into the shallower aquifers (e.g. Rus and Dammam). Evidence includes: (1) the high potentiometric surfaces of deep aquifers (6 to 25 m amsl) compare to the shallower aquifers (2-3 m amsl for the same region); (2) anomalous elevation of groundwater levels and steeper hydraulic gradients in densely faulted regions; (3) mixed isotopic composition in shallow aquifers (δ18O: -5 to -2 ‰, δ2H: -40 to -10 ‰) between reported deep fossil waters (δ18O: -6.3 ‰, δ2H: -55 ‰) and modern meteoric waters (weighted average: δ18O: -0.6 ‰, δ2H: 4 ‰); (4) abundant meso-crystalline fibrous gypsum veins along fault zones in the Dammam Formation (up to 28 m amsl) in southern Qatar where the anhydritic member of the Rus Formation predominates the subsurface leading to gypsum oversaturation of groundwater. The similarity of crystal morphology (platy crystals under SEM), mineralogical compositions from XRD

  20. Confined aquifer vulnerability induced by a pumping well in a leakage area

    Directory of Open Access Journals (Sweden)

    X. Meng

    2015-05-01

    Full Text Available Due to the pollution of shallow groundwater and the rapid development of society and economy which consume more freshwater, the exploitation of confined groundwater is steadily increasing in north China. Therefore, the rapid decline of the confined groundwater head increases the risk of confined aquifer pollution by leaky recharge from shallow aquifers. In this paper, a quantitative method for assessing confined aquifer vulnerability to contamination due to pumping has been developed. This method is based on the shallow and confined groundwater flow model and the advection and dispersion in the aquitard, including sorption. The cumulative time for the pollutant concentration at the top boundary of confined aquifer exceeding the maximum allowable level is defined as the confined aquifer vulnerability index, which can be obtained by numerically solving the solute transport equation. A hypothetical example is chosen as a case study to illustrate the whole process. The results indicate that the proposed method is a practical and reasonable assessment method of confined aquifer vulnerability.

  1. An aerial radiological survey of the White Oak Creek Floodplain, Oak Ridge Reservation, Oak Ridge, Tennessee: Date of survey: September-October 1986

    International Nuclear Information System (INIS)

    Fritzsche, A.E.

    1987-06-01

    An aerial radiological survey was conducted over the White Oak Creek Floodplain of the Oak Ridge Reservation during the period 30 September through 3 October 1986. The survey was performed at the request of the United States Department of Energy (DOE), Oak Ridge Operations Office, by EG and G Energy Measurements, Inc. (EG and G/EM), a contractor of the DOE. The survey results will be utilized in support of the Remedial Action Program being conducted at the site by Martin Marietta Energy Systems, Inc., operator of the Oak Ridge National Laboratory (ORNL). A flight line spacing of 37 meters (120 feet) and a survey altitude of 46 meters (150 feet) yielded the maximum data density and sensitivity achievable by the aerial system, which was greater than that achieved from prior surveys of the entire Oak Ridge Reservation. Isopleth maps of Cs-137, Co-60, Ti-208 implied concentrations, and exposure rates provided an estimate of the location and magnitude of the man-made activity. These maps, overlaid on a current photograph of the area, combine to yield a view of the radiological condition of the White Oak Creek Floodplain. 5 refs., 40 figs., 3 tabs

  2. The Northern Central Indian Ridge: Geology and tectonics of fracture zones-dominated spreading ridge segments

    Digital Repository Service at National Institute of Oceanography (India)

    Drolia, R.K.; Iyer, S.D.; Chakraborty, B.; Kodagali, V.N.; Ray, Dwijesh; Misra, S.; Andrade, R.; Sarma, K.V.L.N.S.; Rajasekhar, R.P.; Mukhopadhyay, R.

    Multi-beam and single-beam bathymetric, gravity and magnetic data, across seven ridge segments (length varying between 37 and 84 km), offset by six transform discontinuities (ranging in dislocation length between 48 and 344 km) of the Northern...

  3. Results of 1995 characterization of Gunite and Associated Tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    This technical memorandum (TM) documents the 1995 characterization of eight underground radioactive waste tanks at Oak Ridge National Laboratory (ORNL). These tanks belong to the Gunite and Associated Tanks (GAAT) operable unit, and the characterization is part of the ongoing GAAT remedial investigation/feasibility study (RI/FS) process. This TM reports both field observations and analytical results; analytical results are also available from the Oak Ridge Environmental Information System (OREIS) data base under the project name GAAT (PROJ-NAME = GAAT). This characterization effort (Phase II) was a follow-up to the {open_quotes}Phase I{close_quotes} sampling campaign reported in Results of Fall 1994 Sampling of Gunite and Associated Tanks at the Oak Ridge National Laboratory, Oak Ridge, Tennessee, ORNL/ER/Sub/87-99053/74, June 1995. The information contained here should be used in conjunction with that in the previous TM. The sampling plan is documented in ORNL Inactive Waste Tanks Sampling and Analysis Plan, ORNL/RAP/LTR-88/24, dated April 1988, as amended by Addendum 1, Revision 2: ORNL Inactive Tanks Sampling and Analysis Plan, DOE/OR/02-1354&D2, dated February 1995. Field team instructions are found in ORNL RI/FS Project Field Work Guides 01-WG-20, Field Work Guide for Sampling of Gunite and Associated Tanks, and 01-WG-21, Field Work Guide for Tank Characterization System Operations at ORNL. The field effort was conducted under the programmatic and procedural umbrella of the ORNL RI/FS Program, and the analysis was in accordance with ORNL Chemical and Analytical Sciences Division (CASD) procedures. The characterization campaign is intended to provide data for criticality safety, engineering design, and waste management as they apply to the GAAT treatability study and remediation. The Department of Energy (DOE) Carlsbad office was interested in results of this sampling campaign and provided funding for certain additional sample collection and analysis.

  4. Unconfined aquifer response to infiltration basins and shallow pump tests

    Science.gov (United States)

    Ostendorf, David W.; DeGroot, Don J.; Hinlein, Erich S.

    2007-05-01

    SummaryWe measure and model the unsteady, axisymmetric response of an unconfined aquifer to delayed, arbitrary recharge. Water table drainage follows the initial elastic aquifer response, as modeled for uniform, instantaneous recharge by Zlotnik and Ledder [Zlotnik, V., Ledder, G., 1992. Groundwater flow in a compressible unconfined aquifer with uniform circular recharge. Water Resources Research 28(6), 1619-1630] and delayed drainage by Moench [Moench, A.F., 1995. Combining the Neuman and Boulton models for flow to a well in an unconfined aquifer. Ground Water 33(3), 378-384]. We extend their analyses with a convolution integral that models the delayed response of an aquifer to infiltration from a circular infiltration basin. The basin routes the hydrograph to the water table with a decay constant dependent on a Brooks and Corey [Brooks, R.H., Corey, A.T., 1966. Properties of porous media affecting fluid flow. Journal of the Irrigation and Drainage Division ASCE 92(2), 61-88] unsaturated permeability exponent. The resulting closed form model approaches Neuman's [Neuman, S.P., 1972. Theory of flow in unconfined aquifers considering delayed response of the water table. Water Resources Research 8(4), 1031-1045] partially penetrating pump test equation for a small source radius, instantaneous, uniform drainage and a shallow screen section. Irrigation pump data at a well characterized part of the Plymouth-Carver Aquifer in southeastern Massachusetts calibrate the small source model, while infiltration data from the closed drainage system of State Route 25 calibrate the infiltration basin model. The calibrated permeability, elasticity, specific yield, and permeability exponent are plausible and consistent for the pump and infiltration data sets.

  5. Integrated and sustainable management of the shared aquifer systems in the Sahel region

    International Nuclear Information System (INIS)

    Edwerd, Mickel

    2012-01-01

    It highlights the project Justification, the long term objective, the specific objectives and the project implementation strategy. The countries which participate to this project are the following: Algeria, Benin, Burkina Faso, Cameroon, central African Republic, Chad, Gambia, Guinea-Bissau, Mali, Mauritania, Niger, Nigeria and Senegal. Regarding Aquifer System we have: Chad Basin, Liptako-Gourma Aquifer, Iullemeden Aquifer, Senegalo-Mauritanian Aquifer and Taoudeni/Tanezrouft Basin.

  6. ALOPEX stochastic optimization for pumping management in fresh water coastal aquifers

    International Nuclear Information System (INIS)

    Stratis, P N; Saridakis, Y G; Zakynthinaki, M S; Papadopoulou, E P

    2014-01-01

    Saltwater intrusion in freshwater aquifers is a problem of increasing significance in areas nearby the coastline. Apart from natural disastrous phenomena, such as earthquakes or floods, intense pumping human activities over the aquifer areas may change the chemical composition of the freshwater aquifer. Working towards the direction of real time management of freshwater pumping from coastal aquifers, we have considered the deployment of the stochastic optimization Algorithm of Pattern Extraction (ALOPEX), coupled with several penalty strategies that produce convenient management policies. The present study, which further extents recently derived results, considers the analytical solution of a classical model for underground flow and the ALOPEX stochastic optimization technique to produce an efficient approach for pumping management over coastal aquifers. Numerical experimentation also includes a case study at Vathi area on the Greek island of Kalymnos, to compare with known results in the literature as well as to demonstrate different management strategies

  7. Natural and EDTA-complexed lanthanides used as a geochemical probe for aquifers: a case study of Orleans valley's alluvial and karstic aquifers

    International Nuclear Information System (INIS)

    Le Borgne, F.; Treuil, M.; Joron, J.L.; Lepiller, M.

    2005-01-01

    The transit of chemical elements within the different parts of Orleans valley's aquifer is studied by two complementary methods. Those methods rely on the fractionation of lanthanides (Ln) during their migration in natural waters. The first method consists in studying natural lanthanides patterns within the watershed, at its entries and exits. second one lies on multi-tracer experiments with Ln-EDTA complexes. This work is completed through an observation network consisting of 52 piezometers set on a sand and gravel quarry, and the natural entries and exits of the aquifer. Orleans valley's aquifer, which is made of an alluvial watershed lying on a karstic aquifer, is mainly fed by Loire river via a large karstic network. At the entries of the aquifer (Loire river at Jargeau), the Ln concentrations in the dissolved fraction ( heavy Ln. On the other hand, the filtration of alluvial groundwater with high colloids content induces no significant Ln fractionation when the solution contains no strong chelating agent. Hence, the transit of natural and artificial Ln in Orleans valley aquifer can be explained by two complementary processes. (I) Decanting/filtering or, on the opposite, stirring of colloids. Those processes induce no important Ln fractionation. (2) Exchanges of Ln between solute complexes, colloids and sediments due to the presence of strong chelating agents. Those exchanges fractionate the Ln in the order of their stability constants. Considering the natural Ln fractionation that occurs in the Loire river and in the studied aquifer, the carbonates, the stability constants of which follow the order light Ln < heavy Ln, are the best candidates as natural strong chelating agents. From the hydrodynamic point of view, both tracer experiments and natural Ln concentrations show that the transfer of elements within the alluvial watershed is pulsed by the Loire river movements. During an ascent phase, the elements migrate away from and perpendicularly to the karstic

  8. Environmental isotopic study of the Korama aquifers, south of Zinder (Niger)

    International Nuclear Information System (INIS)

    Zakara, Z.; Karbo, A.; Aranyossy, J.F.

    1993-01-01

    A first environmental isotope study has been carried out on the ''Korama'' aquifers located in the southern part of the city of Zinder (Niger). Preliminary interpretation confirms that most of the aquifers are presently recharged by direct infiltration of rainwater. Structural fractures seem to play an important role in the water circulation allowing vertical drainage of oldest water coming from deeper aquifers and facilitating the recharge by surface water in the prheatic zone. It does not appear any difference between the so-called ''superficial Korama'' and the ''Deep Korama'' aquifers on the basis of the isotopic compositions. (author). 11 refs, 7 figs, 2 tabs

  9. Mapping Greenland's Firn Aquifer using L-band Microwave Radiometry

    Science.gov (United States)

    Miller, J.; Bringer, A.; Jezek, K. C.; Johnson, J. T.; Scambos, T. A.; Long, D. G.

    2016-12-01

    Greenland's recently discovered firn aquifer is one of the most interesting, yet still mysterious, components of the ice sheet system. Many open questions remain regarding timescales of refreezing and/or englacial drainage of liquid meltwater, and the connections of firn aquifers to the subglacial hydrological system. If liquid meltwater production at the surface of the Greenland ice sheet continues to increase, subsequent increases in the volume of mobile liquid meltwater retained within Greenland's firn aquifer may increase the possibility of crevasse-deepening via hydrofracture. Hydrofracture is an important component of supraglacial lake drainage leading to at least temporary accelerated flow velocities and ice sheet mass balance changes. Firn aquifers may also support hydrofracture-induced drainage and thus are potentially capable of significantly influencing ice sheet mass balance and sea level rise. Spaceborne L-band microwave radiometers provide an innovative tool for ice-sheet wide mapping of the spatiotemporal variability of Greenland's firn aquifer. Both refreezing and englacial drainage may be observable given the sensitivity of the microwave response to the upper surface of liquid meltwater retained within snow and firn pore space as well as the ability of L band instruments to probe the ice sheet from the surface to the firn-ice transition at pore close-off depth. Here we combine L-band (1.4 GHz) brightness temperature observations from multiple sources to demonstrate the potential of mapping firn aquifers on ice sheets using L-band microwave radiometry. Data sources include the interferometric MIRAS instrument aboard ESA's Soil Moisture and Ocean Salinity (SMOS) satellite mission and the radiometer aboard NASA's Soil Moisture Active Passive (SMAP) satellite mission. We will also present mulit-frequency L-band brightness temperature data (0.5-2 GHz) that will be collected over several firn aquifer areas on the Greenland ice sheet by the Ohio State

  10. Arsenic control during aquifer storage recovery cycle tests in the Floridan Aquifer.

    Science.gov (United States)

    Mirecki, June E; Bennett, Michael W; López-Baláez, Marie C

    2013-01-01

    Implementation of aquifer storage recovery (ASR) for water resource management in Florida is impeded by arsenic mobilization. Arsenic, released by pyrite oxidation during the recharge phase, sometimes results in groundwater concentrations that exceed the 10 µg/L criterion defined in the Safe Drinking Water Act. ASR was proposed as a major storage component for the Comprehensive Everglades Restoration Plan (CERP), in which excess surface water is stored during the wet season, and then distributed during the dry season for ecosystem restoration. To evaluate ASR system performance for CERP goals, three cycle tests were conducted, with extensive water-quality monitoring in the Upper Floridan Aquifer (UFA) at the Kissimmee River ASR (KRASR) pilot system. During each cycle test, redox evolution from sub-oxic to sulfate-reducing conditions occurs in the UFA storage zone, as indicated by decreasing Fe(2+) /H2 S mass ratios. Arsenic, released by pyrite oxidation during recharge, is sequestered during storage and recovery by co-precipitation with iron sulfide. Mineral saturation indices indicate that amorphous iron oxide (a sorption surface for arsenic) is stable only during oxic and sub-oxic conditions of the recharge phase, but iron sulfide (which co-precipitates arsenic) is stable during the sulfate-reducing conditions of the storage and recovery phases. Resultant arsenic concentrations in recovered water are below the 10 µg/L regulatory criterion during cycle tests 2 and 3. The arsenic sequestration process is appropriate for other ASR systems that recharge treated surface water into a sulfate-reducing aquifer. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  11. A method to investigate inter-aquifer leakage using hydraulics and multiple environmental tracers

    Science.gov (United States)

    Priestley, Stacey; Love, Andrew; Wohling, Daniel; Post, Vincent; Shand, Paul; Kipfer, Rolf; Tyroller, Lina

    2016-04-01

    Informed aquifer management decisions regarding sustainable yields or potential exploitation require an understanding of the groundwater system (Alley et al. 2002, Cherry and Parker 2004). Recently, the increase in coal seam gas (CSG) or shale gas production has highlighted the need for a better understanding of inter-aquifer leakage and contaminant migration. In most groundwater systems, the quantity or location of inter-aquifer leakage is unknown. Not taking into account leakage rates in the analysis of large scale flow systems can also lead to significant errors in the estimates of groundwater flow rates in aquifers (Love et al. 1993, Toth 2009). There is an urgent need for robust methods to investigate inter-aquifer leakage at a regional scale. This study builds on previous groundwater flow and inter-aquifer leakage studies to provide a methodology to investigate inter-aquifer leakage in a regional sedimentary basin using hydraulics and a multi-tracer approach. The methodology incorporates geological, hydrogeological and hydrochemical information in the basin to determine the likelihood and location of inter-aquifer leakage. Of particular benefit is the analysis of hydraulic heads and environmental tracers at nested piezometers, or where these are unavailable bore couplets comprising bores above and below the aquitard of interest within a localised geographical area. The proposed methodology has been successful in investigating inter-aquifer leakage in the Arckaringa Basin, South Australia. The suite of environmental tracers and isotopes used to analyse inter-aquifer leakage included the stable isotopes of water, radiocarbon, chloride-36, 87Sr/86Sr and helium isotopes. There is evidence for inter-aquifer leakage in the centre of the basin ~40 km along the regional flow path. This inter-aquifer leakage has been identified by a slight draw-down in the upper aquifer during pumping in the lower aquifer, overlap in Sr isotopes, δ2H, δ18O and chloride

  12. Distribution of aquifers, liquid-waste impoundments, and municipal water-supply sources, Massachusetts

    Science.gov (United States)

    Delaney, David F.; Maevsky, Anthony

    1980-01-01

    Impoundments of liquid waste are potential sources of ground-water contamination in Massachusetts. The map report, at a scale of 1 inch equals 4 miles, shows the idstribution of aquifers and the locations of municipal water-supply sources and known liquid-waste impoundments. Ground water, an important source of municipal water supply, is produced from shallow sand and gravel aquifers that are generally unconfined, less than 200 feet thick, and yield less than 2,000 gallons per minute to individual wells. These aquifers commonly occupy lowlands and stream valleys and are most extensive in eastern Massachusetts. Surface impoundments of liquid waste are commonly located over these aquifers. These impoundments may leak and allow waste to infiltrate underlying aquifers and alter their water quality. (USGS)

  13. Site descriptions of environmental restoration units at the Oak Ridge K-25 Site, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Goddard, P.L.; Legeay, A.J.; Pesce, D.S.; Stanley, A.M.

    1995-11-01

    This report, Site Descriptions of Environmental Restoration Units at the Oak Ridge K-25 Site, Oak Ridge, Tennessee, is being prepared to assimilate information on sites included in the Environmental Restoration (ER) Program of the K-25 Site, one of three major installations on the Oak Ridge Reservation (ORR) built during World War III as part of the Manhattan Project. The information included in this report will be used to establish program priorities so that resources allotted to the K-25 ER Program can be best used to decrease any risk to humans or the environment, and to determine the sequence in which any remedial activities should be conducted. This document will be updated periodically in both paper and Internet versions. Units within this report are described in individual data sheets arranged alphanumerically. Each data sheet includes entries on project status, unit location, dimensions and capacity, dates operated, present function, lifecycle operation, waste characteristics, site status, media of concern, comments, and references. Each data sheet is accompanied by a photograph of the unit, and each unit is located on one of 13 area maps. These areas, along with the sub-area, unit, and sub-unit breakdowns within them, are outlined in Appendix A. Appendix B is a summary of information on remote aerial sensing and its applicability to the ER program

  14. Site descriptions of environmental restoration units at the Oak Ridge K-25 Site, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, P.L.; Legeay, A.J.; Pesce, D.S.; Stanley, A.M.

    1995-11-01

    This report, Site Descriptions of Environmental Restoration Units at the Oak Ridge K-25 Site, Oak Ridge, Tennessee, is being prepared to assimilate information on sites included in the Environmental Restoration (ER) Program of the K-25 Site, one of three major installations on the Oak Ridge Reservation (ORR) built during World War III as part of the Manhattan Project. The information included in this report will be used to establish program priorities so that resources allotted to the K-25 ER Program can be best used to decrease any risk to humans or the environment, and to determine the sequence in which any remedial activities should be conducted. This document will be updated periodically in both paper and Internet versions. Units within this report are described in individual data sheets arranged alphanumerically. Each data sheet includes entries on project status, unit location, dimensions and capacity, dates operated, present function, lifecycle operation, waste characteristics, site status, media of concern, comments, and references. Each data sheet is accompanied by a photograph of the unit, and each unit is located on one of 13 area maps. These areas, along with the sub-area, unit, and sub-unit breakdowns within them, are outlined in Appendix A. Appendix B is a summary of information on remote aerial sensing and its applicability to the ER program.

  15. Source document for waste area groupings at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Osborne, P.L.; Kuhaida, A.J., Jr.

    1996-09-01

    This document serves as a source document for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and other types of documents developed for and pertaining to Environmental Restoration (ER) Program activities at Oak Ridge National Laboratory (ORNL). It contains descriptions of the (1) regulatory requirements for the ORR ER Program, (2) Oak Ridge Reservation (ORR) ER Program, (3) ORNL site history and characterization, and (4) history and characterization of Waste Area Groupings (WAGS) 1-20. This document was created to save time, effort, and money for persons and organizations drafting documents for the ER Program and to improve consistency in the documents prepared for the program. By eliminating the repetitious use of selected information about the program, this document will help reduce the time and costs associated with producing program documents. By serving as a benchmark for selected information about the ER Program, this reference will help ensure that information presented in future documents is accurate and complete

  16. Oak Ridge Health Studies phase 1 report, Volume 1: Oak Ridge Phase 1 overview

    International Nuclear Information System (INIS)

    Yarbrough, M.I.; Van Cleave, M.L.; Turri, P.; Daniel, J.

    1993-09-01

    In July 1991, the State of Tennessee initiated the Health Studies Agreement with the United States Department of Energy to carry out independent studies of possible adverse health effects in people living in the vicinity of the Oak Ridge Reservation. The health studies focus on those effects that could have resulted or could result from exposures to chemicals and radioactivity released at the Reservation since 1942. The major focus of the first phase was to complete a Dose Reconstruction Feasibility Study. This study was designed to find out if enough data exist about chemical and radionuclide releases from the Oak Ridge Reservation to conduct a second phase. The second phase will lead to estimates of the actual amounts or the ''doses'' of various contaminants received by people as a result of off-site releases. Once the doses of various contaminants have been estimated, scientists and physicians will be better able to evaluate whether adverse health effects could have resulted from the releases

  17. Oak Ridge Health Studies phase 1 report, Volume 1: Oak Ridge Phase 1 overview

    Energy Technology Data Exchange (ETDEWEB)

    Yarbrough, M.I.; Van Cleave, M.L.; Turri, P.; Daniel, J.

    1993-09-01

    In July 1991, the State of Tennessee initiated the Health Studies Agreement with the United States Department of Energy to carry out independent studies of possible adverse health effects in people living in the vicinity of the Oak Ridge Reservation. The health studies focus on those effects that could have resulted or could result from exposures to chemicals and radioactivity released at the Reservation since 1942. The major focus of the first phase was to complete a Dose Reconstruction Feasibility Study. This study was designed to find out if enough data exist about chemical and radionuclide releases from the Oak Ridge Reservation to conduct a second phase. The second phase will lead to estimates of the actual amounts or the ``doses`` of various contaminants received by people as a result of off-site releases. Once the doses of various contaminants have been estimated, scientists and physicians will be better able to evaluate whether adverse health effects could have resulted from the releases.

  18. Oak Ridge Reservation Physical Characteristics and Natural Resources

    Energy Technology Data Exchange (ETDEWEB)

    Parr, P.D.; Hughes, J.F.

    2006-09-19

    The topography, geology, hydrology, vegetation, and wildlife of the Oak Ridge Reservation (ORR) provide a complex and intricate array of resources that directly impact land stewardship and use decisions (Fig. 1). The purpose of this document is to consolidate general information regarding the natural resources and physical characteristics of the ORR. The ORR, encompassing 33,114 acres (13,401 ha) of federally owned land and three Department of Energy (DOE) installations, is located in Roane and Anderson Counties in east Tennessee, mostly within the corporate limits of the city of Oak Ridge and southwest of the population center of Oak Ridge. The ORR is bordered on the north and east by the population center of the city of Oak Ridge and on the south and west by the Clinch River/Melton Hill Lake impoundment. All areas of the ORR are relatively pristine when compared with the surrounding region, especially in the Valley and Ridge Physiographic Province (Fig. 2). From the air, the ORR is clearly a large and nearly continuous island of forest within a landscape that is fragmented by urban development and agriculture. Satellite imagery from 2006 was used to develop a land-use/land-cover cover map of the ORR and surrounding lands (Fig. 3). Following the acquisition of the land comprising the ORR in the early 1940s, much of the Reservation served as a buffer for the three primary facilities: the X-10 nuclear research facility (now known as the Oak Ridge National Laboratory [ORNL]), the first uranium enrichment facility or Y-12 (now known as the Y-12 National Security Complex [Y-12 Complex]), and a gaseous diffusion enrichment facility (now known as the East Tennessee Technology Park [ETTP]). Over the past 60 years, this relatively undisturbed area has evolved into a rich and diverse eastern deciduous forest ecosystem of streams and reservoirs, hardwood forests, and extensive upland mixed forests. The combination of a large land area with complex physical characteristics

  19. Oak Ridge Y-12 Plant groundwater protection program management plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The Oak Ridge Y- 1 2 Plant (Y-12 Plant) is owned by the United States Department of Energy (DOE) and managed by Lockheed Martin Energy Systems, Inc. (Energy Systems) under contract No. DE-AC05-84OR21400. The Y-12 Plant Groundwater Protection Program (GWPP), which was initiated in 1975, provides for the protection of groundwater resources consistent with Federal, State, and local regulations, and in accordance with DOE orders and Energy Systems policies and procedures. The Y-12 Plant is located in Anderson County, Tennessee, and is within the corporate limits of the City of Oak Ridge. The Y-12 Plant is one of three major DOE complexes that comprise the 37,000-acre Oak Ridge Reservation (ORR) located in Anderson and Roane counties. The Y-12 Plant is located in Bear Creek Valley at an elevation of about 950 feet (ft) above sea level. Bear Creek Valley is bounded on the northwest and southeast, and is isolated from populated areas of Oak Ridge, by parallel ridges that rise about 300 ft above the valley floor. The Y-12 Plant and its fenced buffer area are about 0.6 mile wide by 3.2 miles long and cover approximately 4,900 acres. The main industrialized section encompasses approximately 800 acres.

  20. Oak Ridge Y-12 Plant groundwater protection program management plan

    International Nuclear Information System (INIS)

    1996-06-01

    The Oak Ridge Y- 1 2 Plant (Y-12 Plant) is owned by the United States Department of Energy (DOE) and managed by Lockheed Martin Energy Systems, Inc. (Energy Systems) under contract No. DE-AC05-84OR21400. The Y-12 Plant Groundwater Protection Program (GWPP), which was initiated in 1975, provides for the protection of groundwater resources consistent with Federal, State, and local regulations, and in accordance with DOE orders and Energy Systems policies and procedures. The Y-12 Plant is located in Anderson County, Tennessee, and is within the corporate limits of the City of Oak Ridge. The Y-12 Plant is one of three major DOE complexes that comprise the 37,000-acre Oak Ridge Reservation (ORR) located in Anderson and Roane counties. The Y-12 Plant is located in Bear Creek Valley at an elevation of about 950 feet (ft) above sea level. Bear Creek Valley is bounded on the northwest and southeast, and is isolated from populated areas of Oak Ridge, by parallel ridges that rise about 300 ft above the valley floor. The Y-12 Plant and its fenced buffer area are about 0.6 mile wide by 3.2 miles long and cover approximately 4,900 acres. The main industrialized section encompasses approximately 800 acres

  1. Estimating Poromechanical and Hydraulic Properties of Fractured Media Aquifers Using a Model of the Aquifer at Ploemeur France: Broad Applications and Future Uses

    Science.gov (United States)

    Wilson, M. W.; Burbey, T. J.

    2017-12-01

    Aquifers in fractured crystalline bedrock are located over half of the earth's surface and are vital civil and economic resources particularly in places where ample, safe surface water is not available. With fractured media aquifers providing large percentages of water for municipal, industrial, and agricultural use in many regions of the world. Distinguishing sustainable quantities of extraction is of paramount importance to the continuing viability of these important resources and the communities they serve. The fractured and faulted crystalline-rock aquifer system supporting the community of Ploemeur France has been providing one million cubic meters of water annually, resulting in a modest long-term drawdown of about 15m. To understand the sources and mechanisms of recharge that support this aquifer system, a three-dimensional ABAQUS model was developed using known geologic, water-level and geodetic (tiltmeters and GPS) data to simulate the natural aquifer system that is dominated by a permeable sub-vertical fault and an intersecting semi-horizontal contact zone. The model is used to constrain the poromechanical properties of the fault and contact zones relative to the host crystalline rocks and overlying saprolite by taking advantage of the tilt and seasonal GPS responses caused by municipal pumping along with water-level data for the area. A chief goal in this modeling effort is to assess the sources of recharge to this aquifer system that is atypically productive for a crystalline-rock setting. Preliminary results suggest that the source of water supplying this community is a combination of rapid localized recharge through the saprolite and fault zone and recharge along the contact zone, both from the north (older water) and where it is exposed to the south (younger water). The modeling effort also shows the importance of combining GPS and surface tiltmeter data with water-level measurements for constraining the properties of this complex aquifer system and

  2. Variation of uranium isotopes in some carbonate aquifers

    International Nuclear Information System (INIS)

    Cowart, J.B.

    1980-01-01

    The 234 U/ 238 U alpha activity ratio (AR) and uranium concentrations are reported for 83 springs that issue from carbonate aquifers in Florida, Texas, Nevada-California, and Israel. Data for each aquifer fall within more or less mutually exclusive fields. In general, the spring in a humid climate have AR's approaching secular equilibrium, whereas those in more arid climates have AR's differing greatly from equilibrium

  3. Oak Ridge Reservation Annual Site environmental report summary for 1994

    International Nuclear Information System (INIS)

    1995-09-01

    This document presents a summary of the information collected for the Oak Ridge Reservation 1994 site environmental report. Topics discussed include: Oak Ridge Reservation mission; ecology; environmental laws; community participation; environmental restoration; waste management; radiation effects; chemical effects; risk to public; environmental monitoring; and radionuclide migration

  4. Microbiological and environmental effects of aquifer thermal energy storage - studies at the Stuttgart man-made aquifer and a large-scale model system

    International Nuclear Information System (INIS)

    Adinolfi, M.; Ruck, W.

    1993-01-01

    The storage of thermal energy, either heat or cold, in natural or artificial aquifers creates local perturbations of the indigenous microflora and the environmental properties. Within an international working group of the International Energy Agency (IEA Annex VI) possible environmental impacts of ATES-systems were recognized and investigated. Investigations of storage systems on natural sites, man-made aquifers and large-scale models of impounded aquifers showed changes in microbial populations, but until now no adverse microbiological processes associated with ATES-systems could be documented. However, examinations with a model system indicate an increased risk of environmental impact. Therefore, the operation of ATES-systems should be accompanied by chemical and biological investigations. (orig.) [de

  5. Estimation of Hydraulic Parameters and Aquifer Properties for a Managed Aquifer Recharge Pilot Study in The Lower Mississippi River Basin

    Science.gov (United States)

    Ozeren, Y.; Rigby, J.; Holt, R. M.

    2017-12-01

    Mississippi River Valley Alluvial Aquifer (MRVAA) is the major irrigation water resource in the in the lower Mississippi River basin. MRVAA has been significantly depleted in the last two decades due to excessive pumping. A wide range of measures to ensure sustainable groundwater supply in the region is currently under investigation. One of the possible solution under consideration is to use Managed Aquifer Recharge (MAR) by artificial recharge. The proposed artificial recharge technique in this study is to collect water through bank filtration, transfer water via pipeline to the critically low groundwater areas by a set of injection wells. A pilot study in the area is underway to investigate the possibility of artificial recharge in the area. As part of this study, a pumping test was carried out on an existing irrigation well along banks of Tallahatchie River near Money, MS. Geophysical surveys were also carried out in the pilot study area. Hydraulic response of the observation wells was used to determine stream bed conductance and aquifer parameters. The collected hydraulic parameters and aquifer properties will provide inputs for small-scale, high-resolution engineering model for abstraction-injection hydraulics along river. Here, preliminary results of the pilot study is presented.

  6. Aquifer thermal energy storage - A feasibility study for large scale demonstration

    Science.gov (United States)

    Skinner, W. V.; Supkow, D. J.

    Engineering procedures necessary for aquifer thermal energy storage (ATES), based on studies of the Magothy Aquifer on Long Island, NY, are presented, with chilled winter water pumped into the aquifer and reclaimed in summer months for air conditioning. The choice of aquifer involves necessary volume, flow rate, efficiency of thermal recovery, and avoidance of conflict with other users; utilization depends on choice of appropriate piping, heat exchangers, and well construction to prevent degradation of the aquifer. The methods employed to probe the Magothy for suitability are described, including drilling an asymmetric well cluster for observation, and 48 hr pumping and 8 hr recovery. Transmissivity was found to vary from 8,000 to 29,000 sq ft/day. A doublet well was then drilled and water withdrawn, chilled, and returned. Later withdrawal indicated a 46% thermal recovery, with computer models projecting 80% with additional cycling. The study verified the feasibility of ATES, which can be expanded with additional demand.

  7. Hydraulic properties of the Midville Aquifer at the Savannah River Site, South Carolina

    International Nuclear Information System (INIS)

    Hodges, R.A.; Snipes, D.S.; Benson, S.M.; Daggett, J.S.; Temples, T.; Harrelson, L.

    1994-01-01

    Aquifer performance tests of the Midville Aquifer System were conducted at the Savannah River Site (SRS) in South Carolina. The stratigraphic section of interest consists of Late Cretaceous Coastal Plain sediments. Within the study area, the Midville Aquifer System is composed of sand aquifers separated by discontinuous clay lenses. The Midville is underlain by the Appleton Confining Unit which is separated from underlying Triassic sediments and Paleozoic crystallines by a regional unconformity. This unconformable surface has a dip of 10 m/km to the southeast. The Midville is overlain by the Allendale Confining Unit which separates the Midville from the Dublin Aquifer System. The tests were performed at B and P Areas within the SRS using production wells screened in the Midville Aquifer and monitor well clusters screened in the Midville, Dublin, and Gordon (Eocene) Aquifers. The B Area is located 13 km updip from P Area. The Midville is about 50 meters thick at B Area and 80 meters thick at P Area. The transmissivity of the Midville is 0.0095 m 2 /s at B Area and 0.017 m 2 /s at P Area. The storativity at both areas is about 10 -4 . Vertical leakance of the Midville is greater updip as the stratigraphic section thins. During the B Area test, pumping induced water level changes were detected in aquifers above the Midville. At P Area, no pumping induced water level changes were detected above the Midville Aquifer System

  8. Oak Ridge National Laboratory site data for safety-analysis report

    International Nuclear Information System (INIS)

    Fitzpatrick, F.C.

    1982-12-01

    The Oak Ridge National Laboratory site data contained herein were compiled in support of the United States Department of Energy (USDOE) Oak Ridge Operations Office Order OR 5481.1. That order sets forth assignment of responsibilities for safety analysis and review responsibilities and provides guidance relative to the content and format of safety analysis reports. The information presented in this document is intended for use by reference in individual safety analysis reports where applicable to support accident analyses or the establishment of design bases of significance to safety, and it is applicable only to Oak Ridge National Laboratory facilities in Bethel and Melton Valleys. This information includes broad descriptions of the site characteristics, radioactive waste handling and monitoring practices, and the organization and operating policies at Oak Ridge National Laboratory. The historical background of the Laboratory is discussed briefly and the overall physical situation of the facilities is described in the following paragraphs

  9. Oak Ridge National Laboratory site data for safety-analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, F.C.

    1982-12-01

    The Oak Ridge National Laboratory site data contained herein were compiled in support of the United States Department of Energy (USDOE) Oak Ridge Operations Office Order OR 5481.1. That order sets forth assignment of responsibilities for safety analysis and review responsibilities and provides guidance relative to the content and format of safety analysis reports. The information presented in this document is intended for use by reference in individual safety analysis reports where applicable to support accident analyses or the establishment of design bases of significance to safety, and it is applicable only to Oak Ridge National Laboratory facilities in Bethel and Melton Valleys. This information includes broad descriptions of the site characteristics, radioactive waste handling and monitoring practices, and the organization and operating policies at Oak Ridge National Laboratory. The historical background of the Laboratory is discussed briefly and the overall physical situation of the facilities is described in the following paragraphs.

  10. The origin of methanethiol in midocean ridge hydrothermal fluids.

    Science.gov (United States)

    Reeves, Eoghan P; McDermott, Jill M; Seewald, Jeffrey S

    2014-04-15

    Simple alkyl thiols such as methanethiol (CH3SH) are widely speculated to form in seafloor hot spring fluids. Putative CH3SH synthesis by abiotic (nonbiological) reduction of inorganic carbon (CO2 or CO) has been invoked as an initiation reaction for the emergence of protometabolism and microbial life in primordial hydrothermal settings. Thiols are also presumptive ligands for hydrothermal trace metals and potential fuels for associated microbial communities. In an effort to constrain sources and sinks of CH3SH in seafloor hydrothermal systems, we determined for the first time its abundance in diverse hydrothermal fluids emanating from ultramafic, mafic, and sediment-covered midocean ridge settings. Our data demonstrate that the distribution of CH3SH is inconsistent with metastable equilibrium with inorganic carbon, indicating that production by abiotic carbon reduction is more limited than previously proposed. CH3SH concentrations are uniformly low (∼10(-8) M) in high-temperature fluids (>200 °C) from all unsedimented systems and, in many cases, suggestive of metastable equilibrium with CH4 instead. Associated low-temperature fluids (<200 °C) formed by admixing of seawater, however, are invariably enriched in CH3SH (up to ∼10(-6) M) along with NH4(+) and low-molecular-weight hydrocarbons relative to high-temperature source fluids, resembling our observations from a sediment-hosted system. This strongly implicates thermogenic interactions between upwelling fluids and microbial biomass or associated dissolved organic matter during subsurface mixing in crustal aquifers. Widespread thermal degradation of subsurface organic matter may be an important source of organic production in unsedimented hydrothermal systems and may influence microbial metabolic strategies in cooler near-seafloor and plume habitats.

  11. Calendar Year 1997 Annual Groundwater Monitoring Report For The Chestnut Ridge Hydrogeologic Regime At The U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.B.

    1998-02-01

    This report contains the groundwater monitoring data obtained during calendar year (CY) 1997 in compliance with the Resource Conservation and Recovery Act (RCRA) post-closure permit (PCP) for the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). In July 1997, the Tennessee Department of Environment and Conservation (TDEC) approved modifications to several of the permit conditions that address RCRA pow-closure corrective action groundwater monitoring at the Chestnut Ridge Security Pits (Security Pits), and RCIU4 post-closure detection groundwater monitoring at the Chestnut Ridge Sediment Disposal Basin (Sediment Disposal Basin) and Kerr Hollow Quarry. This report has been prepared in accordance with these modified permit requirements. Also included in this report are the groundwater and surface water monitoring data obtained during CY 1997 for the purposes ofi (1) detection monitoring at nonhazardous solid waste disposal facilities (SWDFS) in accordance with operating permits and applicable regulations, (2) monitoring in accordance with Comprehensive Environmental Response, Compensation, and Recove~ Act Records of Decision (now pefiormed under the Integrated Water Quality Program for the Oak Ridge Reservation), and (3) monitoring needed to comply with U.S. Department of Energy Order 5400.1.

  12. Sandy berm and beach-ridge formation in relation to extreme sea-levels

    DEFF Research Database (Denmark)

    Bendixen, Mette; Clemmensen, Lars B; Kroon, Aart

    2013-01-01

    The formation of berms and their transformation into beach ridges in a micro-tidal environment is coupled to wave run-up and overtopping during extreme sea levels. A straight-forward comparison between extreme sea levels due to storm-surges and active berm levels is impossible in the semi...... prograding spit on the south-eastern Baltic shores of Zealand, Denmark. The modern, sandy beach at this location consists of a beachface with a shallow incipient berm, a mature berm, and a dune-covered beach ridge. It borders a beach-ridge plain to the west, where more than 20 N–S oriented beach ridges...... and swales are present. Measured water-level data from 1991 to 2012 and topographical observations, carried out during fair weather period and during a storm event, provided the basis for a conceptual model exhibiting berm formation and transformation into the local beach-ridge system. The character...

  13. An enhanced structure tensor method for sea ice ridge detection from GF-3 SAR imagery

    Science.gov (United States)

    Zhu, T.; Li, F.; Zhang, Y.; Zhang, S.; Spreen, G.; Dierking, W.; Heygster, G.

    2017-12-01

    In SAR imagery, ridges or leads are shown as the curvilinear features. The proposed ridge detection method is facilitated by their curvilinear shapes. The bright curvilinear features are recognized as the ridges while the dark curvilinear features are classified as the leads. In dual-polarization HH or HV channel of C-band SAR imagery, the bright curvilinear feature may be false alarm because the frost flowers of young leads may show as bright pixels associated with changes in the surface salinity under calm surface conditions. Wind roughened leads also trigger the backscatter increasing that can be misclassified as ridges [1]. Thus the width limitation is considered in this proposed structure tensor method [2], since only shape feature based method is not enough for detecting ridges. The ridge detection algorithm is based on the hypothesis that the bright pixels are ridges with curvilinear shapes and the ridge width is less 30 meters. Benefited from GF-3 with high spatial resolution of 3 meters, we provide an enhanced structure tensor method for detecting the significant ridge. The preprocessing procedures including the calibration and incidence angle normalization are also investigated. The bright pixels will have strong response to the bandpass filtering. The ridge training samples are delineated from the SAR imagery in the Log-Gabor filters to construct structure tensor. From the tensor, the dominant orientation of the pixel representing the ridge is determined by the dominant eigenvector. For the post-processing of structure tensor, the elongated kernel is desired to enhance the ridge curvilinear shape. Since ridge presents along a certain direction, the ratio of the dominant eigenvector will be used to measure the intensity of local anisotropy. The convolution filter has been utilized in the constructed structure tensor is used to model spatial contextual information. Ridge detection results from GF-3 show the proposed method performs better compared to the

  14. Water-level altitudes 2011 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2010 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Johnson, Michaela R.; Ramage, Jason K.; Kasmarek, Mark C.

    2011-01-01

    Most of the subsidence in the Houston–Galveston region has occurred as a direct result of groundwater withdrawals for municipal supply, industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers causing compaction of the clay layers of the aquifer sediments. This report, prepared by the U.S. Geological Survey, in cooperation with the Harris–Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, and Lone Star Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction in the Chicot and Evangeline aquifers in the Houston–Galveston region. The report contains maps showing 2011 water-level altitudes for the Chicot, Evangeline, and Jasper aquifers; maps showing 1-year (2010–11) water-level-altitude changes for each aquifer; maps showing 5-year (2006–11) water-level-altitude changes for each aquifer; maps showing long-term (1990–2011 and 1977–2011) water-level-altitude changes for the Chicot and Evangeline aquifers; a map showing long-term (2000–11) water-level-altitude change for the Jasper aquifer; a map showing locations of borehole extensometer sites; and graphs showing measured compaction of subsurface material at the extensometers from 1973, or later, through 2010. Tables listing the data used to construct each aquifer-data map and the compaction graphs are included.Water levels in the Chicot, Evangeline, and Jasper aquifers were measured during December 2010–February 2011. In 2011, water-level-altitude contours for the Chicot aquifer ranged from 200 feet below North American Vertical Datum of 1988 (hereinafter, datum) in a small area in southwestern Harris County to 200 feet above datum in central to southwestern Montgomery County. Water-level-altitude changes in the Chicot aquifer ranged from a 40-foot decline to a 33-foot rise (2010–11), from a 10-foot

  15. Water-level altitudes 2010 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2009 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Johnson, Michaela R.; Ramage, Jason K.

    2010-01-01

    Most of the subsidence in the Houston-Galveston region has occurred as a direct result of groundwater withdrawals for municipal supply, industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers causing compaction of the clay layers of the aquifer sediments. This report, prepared by the U.S. Geological Survey, in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, and Lone Star Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains maps showing 2010 water-level altitudes for the Chicot, Evangeline, and Jasper aquifers, respectively; maps showing 1-year (2009-10) water-level-altitude changes for each aquifer; maps showing 5-year (2005-10) water-level-altitude changes for each aquifer; maps showing long-term (1990-2010 and 1977-2010) water-level-altitude changes for the Chicot and Evangeline aquifers; a map showing long-term (2000-10) water-level-altitude change for the Jasper aquifer; a map showing locations of borehole extensometer sites; and graphs showing measured compaction of subsurface material at the extensometers from 1973, or later, through 2009. Tables listing the data used to construct each aquifer-data map and the compaction graphs are included. Water levels in the Chicot, Evangeline, and Jasper aquifers were measured during December 2009-March 2010. In 2010, water-level-altitude contours for the Chicot aquifer ranged from 200 feet below National Geodetic Vertical Datum of 1929 or North American Vertical Datum of 1988 (hereinafter, datum) in a small area in southwestern Harris County to 200 feet above datum in central to southwestern Montgomery County. Water-level-altitude changes in the Chicot aquifer ranged from a 49-foot decline to a 67

  16. Microbial diversity in subseafloor fluids from Explorer Ridge, Northeast Pacific

    Science.gov (United States)

    Bolton, S.; Huber, J. A.; Embley, R.; Butterfield, D. A.; Baross, J. A.

    2003-12-01

    The Gorda, Juan de Fuca and Explorer Ridges are first order spreading centers located in the northeast Pacific. While the Gorda and Juan de Fuca Ridges have been extensively sampled for chemical and microbiological analyses, what little is known about the Explorer Ridge is from preliminary observations made in the mid-1980's. A cruise in 2002 revisited the area and discovered vigorous hydrothermal activity at Magic Mountain, a site located outside the primary rift valley. Explorer Ridge is an important site to compare with other well-described vent sites on the Juan de Fuca Ridge. Our research has focused on describing the phylogenetic and physiological diversity of bacteria and archaea in low temperature hydrothermal fluids in an effort to identify subseafloor indicator organisms and to use the physiological characteristics of these organisms to help constrain subseafloor habitat characteristics. We have previously established that there are microbial taxa that are unique to subseafloor habitats associated with diffuse flow fluids at Axial Seamount and at Endeavour both located on the Juan de Fuca Ridge. These included cultured anaerobic, thermophilic and hyperthermophilic heterotrophs, methanogens and sulfur metabolizers. Moreover, results from molecular phylogeny analyses using the 16S rRNA sequences identified a phylogenetically diverse group of bacteria belonging to the epsilon-proteobacteria. While anaerobic hyperthermophiles were cultured from some diffuse-flow vent sites at Explorer, they were less abundant than at Axial Volcano and Endeavour, and curiously, no methanogens were cultured or detected in 16S rRNA clonal libraries. Like Axial, a diverse group of epsilon-proteobacterial clones were found with many similar to those identified from Axial Seamount and other hydrothermal vent sites, although there appears to be some unique species. The overall bacterial diversity at Explorer appears different than at Axial, possibly linked to temperature or chemical

  17. Direct Evidence of Meltwater Flow Within a Firn Aquifer in Southeast Greenland

    Science.gov (United States)

    Miller, Olivia; Solomon, D. Kip; Miège, Clément; Koenig, Lora; Forster, Richard; Schmerr, Nicholas; Ligtenberg, Stefan R. M.; Montgomery, Lynn

    2018-01-01

    Within the lower percolation zone of the southeastern Greenland ice sheet, meltwater has accumulated within the firn pore space, forming extensive firn aquifers. Previously, it was unclear if these aquifers stored or facilitated meltwater runoff. Following mixing of a saline solution into boreholes within the aquifer, we observe that specific conductance measurements decreased over time as flowing freshwater diluted the saline mixture in the borehole. These tests indicate that water flows through the aquifer with an average specific discharge of 4.3 × 10-6 m/s (σ = 2.5 × 10-6 m/s). The specific discharge decreases dramatically to 0 m/s, defining the bottom of the aquifer between 30 to 50 m depth. The observed flow indicates that the firn pore space is a short-term (ocean.

  18. Laboratory evidence of MTBE biodegradation in Borden aquifer material

    Science.gov (United States)

    Schirmer, Mario; Butler, Barbara J.; Church, Clinton D.; Barker, James F.; Nadarajah, Nalina

    2003-02-01

    Mainly due to intrinsic biodegradation, monitored natural attenuation can be an effective and inexpensive remediation strategy at petroleum release sites. However, gasoline additives such as methyl tert-butyl ether (MTBE) can jeopardize this strategy because these compounds often degrade, if at all, at a slower rate than the collectively benzene, toluene, ethylbenzene and the xylene (BTEX) compounds. Investigation of whether a compound degrades under certain conditions, and at what rate, is therefore important to the assessment of the intrinsic remediation potential of aquifers. A natural gradient experiment with dissolved MTBE-containing gasoline in the shallow, aerobic sand aquifer at Canadian Forces Base (CFB) Borden (Ontario, Canada) from 1988 to 1996 suggested that biodegradation was the main cause of attenuation for MTBE within the aquifer. This laboratory study demonstrates biologically catalyzed MTBE degradation in Borden aquifer-like environments, and so supports the idea that attenuation due to biodegradation may have occurred in the natural gradient experiment. In an experiment with batch microcosms of aquifer material, three of the microcosms ultimately degraded MTBE to below detection, although this required more than 189 days (or >300 days in one case). Failure to detect the daughter product tert-butyl alcohol (TBA) in the field and the batch experiments could be because TBA was more readily degradable than MTBE under Borden conditions.

  19. Geochemical Triggers of Arsenic Mobilization during Managed Aquifer Recharge.

    Science.gov (United States)

    Fakhreddine, Sarah; Dittmar, Jessica; Phipps, Don; Dadakis, Jason; Fendorf, Scott

    2015-07-07

    Mobilization of arsenic and other trace metal contaminants during managed aquifer recharge (MAR) poses a challenge to maintaining local groundwater quality and to ensuring the viability of aquifer storage and recovery techniques. Arsenic release from sediments into solution has occurred during purified recycled water recharge of shallow aquifers within Orange County, CA. Accordingly, we examine the geochemical processes controlling As desorption and mobilization from shallow, aerated sediments underlying MAR infiltration basins. Further, we conducted a series of batch and column experiments to evaluate recharge water chemistries that minimize the propensity of As desorption from the aquifer sediments. Within the shallow Orange County Groundwater Basin sediments, the divalent cations Ca(2+) and Mg(2+) are critical for limiting arsenic desorption; they promote As (as arsenate) adsorption to the phyllosilicate clay minerals of the aquifer. While native groundwater contains adequate concentrations of dissolved Ca(2+) and Mg(2+), these cations are not present at sufficient concentrations during recharge of highly purified recycled water. Subsequently, the absence of dissolved Ca(2+) and Mg(2+) displaces As from the sediments into solution. Increasing the dosages of common water treatment amendments including quicklime (Ca(OH)2) and dolomitic lime (CaO·MgO) provides recharge water with higher concentrations of Ca(2+) and Mg(2+) ions and subsequently decreases the release of As during infiltration.

  20. Use of static Quantitative Microbial Risk Assessment to determine pathogen risks in an unconfined carbonate aquifer used for Managed Aquifer Recharge.

    Science.gov (United States)

    Toze, Simon; Bekele, Elise; Page, Declan; Sidhu, Jatinder; Shackleton, Mark

    2010-02-01

    Managed Aquifer Recharge (MAR) is becoming a mechanism used for recycling treated wastewater and captured urban stormwater and is being used as a treatment barrier to remove contaminants such as pathogens from the recharged water. There is still a need, however, to demonstrate the effectiveness of MAR to reduce any residual risk of pathogens in the recovered water. A MAR research site recharging secondary treated wastewater in an unconfined carbonate aquifer was used in conjunction with a static Quantitative Microbial Risk Assessment (QMRA) to assess the microbial pathogen risk in the recovered water following infiltration and aquifer passage. The research involved undertaking a detailed hydrogeological assessment of the aquifer at the MAR site and determining the decay rates of reference pathogens from an in-situ decay study. These variables along with literature data were then used in the static QMRA which demonstrated that the recovered water at this site did not meet the Australian Guidelines for recycled water when used for differing private green space irrigation scenarios. The results also confirmed the importance of obtaining local hydrogeological data as local heterogeneity can influence of residence time in the aquifer which, in turn, influences the outcomes. The research demonstrated that a static QMRA can be used to determine the residual risk from pathogens in recovered water and showed that it can be a valuable tool in the preliminary design and operation of MAR systems and the incorporation of complementary engineered treatment processes to ensure that there is acceptable health risk from the recovered water. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.

  1. Data Sharing Report Characterization of Isotope Row Facilities Oak Ridge National Laboratory Oak Ridge TN

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Phyllis C. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)

    2013-12-12

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using funds provided by the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a survey approach, focused on characterizing the Isotope Row Facilities located at the Oak Ridge National Laboratory (ORNL) for future determination of an appropriate disposition pathway for building debris and systems, should the buildings be demolished. The characterization effort was designed to identify and quantify radiological and chemical contamination associated with building structures and process systems. The Isotope Row Facilities discussed in this report include Bldgs. 3030, 3031, 3032, 3033, 3033A, 3034, 3036, 3093, and 3118, and are located in the northeast quadrant of the main ORNL campus area, between Hillside and Central Avenues. Construction of the isotope production facilities was initiated in the late 1940s, with the exception of Bldgs. 3033A and 3118, which were enclosed in the early 1960s. The Isotope Row facilities were intended for the purpose of light industrial use for the processing, assemblage, and storage of radionuclides used for a variety of applications (ORNL 1952 and ORAU 2013). The Isotope Row Facilities provided laboratory and support services as part of the Isotopes Production and Distribution Program until 1989 when DOE mandated their shutdown (ORNL 1990). These facilities performed diverse research and developmental experiments in support of isotopes production. As a result of the many years of operations, various projects, and final cessation of operations, production was followed by inclusion into the surveillance and maintenance (S&M) project for eventual decontamination and decommissioning (D&D). The

  2. FEMA: a Finite Element Model of Material Transport through Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.; Huff, D.D.

    1985-01-01

    This report documents the construction, verification, and demonstration of a Finite Element Model of Material Transport through Aquifers (FEMA). The particular features of FEMA are its versatility and flexibility to deal with as many real-world problems as possible. Mechanisms included in FEMA are: carrier fluid advection, hydrodynamic dispersion and molecular diffusion, radioactive decay, sorption, source/sinks, and degradation due to biological, chemical as well as physical processes. Three optional sorption models are embodied in FEMA. These are linear isotherm and Freundlich and Langmuir nonlinear isotherms. Point as well as distributed source/sinks are included to represent artificial injection/withdrawals and natural infiltration of precipitation. All source/sinks can be transient or steady state. Prescribed concentration on the Dirichlet boundary, given gradient on the Neumann boundary segment, and flux at each Cauchy boundary segment can vary independently of each other. The aquifer may consist of as many formations as desired. Either completely confined or completely unconfined or partially confined and partially unconfined aquifers can be dealt with effectively. FEMA also includes transient leakage to or from the aquifer of interest through confining beds from or to aquifers lying below and/or above.

  3. FEMA: a Finite Element Model of Material Transport through Aquifers

    International Nuclear Information System (INIS)

    Yeh, G.T.; Huff, D.D.

    1985-01-01

    This report documents the construction, verification, and demonstration of a Finite Element Model of Material Transport through Aquifers (FEMA). The particular features of FEMA are its versatility and flexibility to deal with as many real-world problems as possible. Mechanisms included in FEMA are: carrier fluid advection, hydrodynamic dispersion and molecular diffusion, radioactive decay, sorption, source/sinks, and degradation due to biological, chemical as well as physical processes. Three optional sorption models are embodied in FEMA. These are linear isotherm and Freundlich and Langmuir nonlinear isotherms. Point as well as distributed source/sinks are included to represent artificial injection/withdrawals and natural infiltration of precipitation. All source/sinks can be transient or steady state. Prescribed concentration on the Dirichlet boundary, given gradient on the Neumann boundary segment, and flux at each Cauchy boundary segment can vary independently of each other. The aquifer may consist of as many formations as desired. Either completely confined or completely unconfined or partially confined and partially unconfined aquifers can be dealt with effectively. FEMA also includes transient leakage to or from the aquifer of interest through confining beds from or to aquifers lying below and/or above

  4. Geospatializing The Klang Gate Quartz Ridge in Malaysia: A Technological Perspective

    Science.gov (United States)

    Azahari Razak, Khamarrul; Mohamad, Zakaria; Zaki Ibrahim, Mohd; Azad Rosle, Qalam; Hattanajmie Abd Wahab, Mohd; Abu Bakar, Rabieahtul; Mohd Akib, Wan Abdul Aziz Wan

    2015-04-01

    Establishment of inventories on geological heritage, or geoheritage resources is a step forward for a comprehensive geoheritage management leading to a better conservation at national and global levels. Compiling and updating inventory of geoheritage is a tedious process and even so in a tropical environment. Malaysia has a tremendous list of geodiversity and generating its national database is a multi-institutional effort and worthwhile investment. However, producing accurate and reliable characteristics of such landform and spectacular geological features remained elusive. The advanced and modern mapping techniques have revolutionized the mapping, monitoring and modelling of the earth surface processes and landforms. Yet the methods for quantification of geodiversity physical features are not fully utilized in Malaysia for a better understanding its processes and activity. This study provides a better insight into the use of advanced active remote sensing technology for characterizing the forested Quartz Ridge in Malaysia. We have developed the novel method and tested in the Klang Gates Quartz Ridge, Selangor. The granitic country rock made up by quartz mineral is known as the longest quartz ridge in Malaysia and characterized by rugged topography, steep slopes, densely vegetated terrain and also rich-biodiversity area. This study presents an integrated field methodological framework and processing scheme by taking into account the climatic, topographic, geologic, and anthropogenic challenges in an equatorial region. Advanced terrestrial laser scanning system was used to accurately capture, map and model the ridge carried out within a relatively stringent time period. The high frequency Global Navigation Satellite System and modern Total Station coupled with the optical satellite and radar imageries and also advanced spatial analysis were fully utilized in the field campaign and data assessment performed during the recent monsoon season. As a result, the mapping

  5. Oak Ridge Reservation, annual site environmental report for 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    The US DOE currently oversees activities on the Oak Ridge Reservation, a government-owned, contractor-operated facility. Three sites compose the reservation; Y-12, Oak Ridge National Laboratory, and K-25. This document contains a summary of environmental monitoring activities on the Oak Ridge Reservation (ORR) and its surroundings. The results summarized in this report are based on the data collected during calendar year (CY) 1993 and compiled in; Environmental Monitoring in the Oak Ridge Reservation: CY 1993 Results. Annual environmental monitoring on the ORR consists of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring is the collection and analysis of samples or measurements of liquid, gaseous, or airborne effluents for the purpose of characterizing and quantifying contaminants and process stream characteristics, assessing radiation and chemical exposures to members of the public, and demonstrating compliance with applicable standards. Environmental surveillance is the collection and analysis of samples of air, water, soil, foodstuffs, biota, and other media from DOE sites and their environs and the measurement of external radiation for purposes of demonstrating compliance with applicable standards, assessing radiation and chemical exposures to members of the public, and assessing effects, if any, on the local environment.

  6. Oak Ridge Reservation, annual site environmental report for 1993

    International Nuclear Information System (INIS)

    1994-11-01

    The US DOE currently oversees activities on the Oak Ridge Reservation, a government-owned, contractor-operated facility. Three sites compose the reservation; Y-12, Oak Ridge National Laboratory, and K-25. This document contains a summary of environmental monitoring activities on the Oak Ridge Reservation (ORR) and its surroundings. The results summarized in this report are based on the data collected during calendar year (CY) 1993 and compiled in; Environmental Monitoring in the Oak Ridge Reservation: CY 1993 Results. Annual environmental monitoring on the ORR consists of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring is the collection and analysis of samples or measurements of liquid, gaseous, or airborne effluents for the purpose of characterizing and quantifying contaminants and process stream characteristics, assessing radiation and chemical exposures to members of the public, and demonstrating compliance with applicable standards. Environmental surveillance is the collection and analysis of samples of air, water, soil, foodstuffs, biota, and other media from DOE sites and their environs and the measurement of external radiation for purposes of demonstrating compliance with applicable standards, assessing radiation and chemical exposures to members of the public, and assessing effects, if any, on the local environment

  7. Proposed plan for the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-03-01

    The US Department of Energy (DOE) in compliance with Section 117(a) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, as amended by the Superfund Amendments and Reauthorization Act (SARA) of 1986, is releasing the proposed plan for remedial action at the United Nuclear Corporation (UNC) Disposal Site located at the DOE Oak Ridge Operations (ORO) Y-12 Plant, Oak Ridge, Tennessee. The purpose of this document is to present and solicit for comment to the public and all interested parties the ''preferred plan'' to remediate the UNC Disposal Site. However, comments on all alternatives are invited

  8. Surface radiological investigations along State Highway 95, Lagoon Road, and Melton Valley Drive, Oak Ridge Reservation, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Tiner, P.F.; Uziel, M.S.; Rice, D.E.; Williams, J.K.

    1995-08-01

    The surface radiological investigation along State Highway 95, Lagoon Road, and Melton Valley Drive at the Oak Ridge Reservation was conducted as part of the Oak Ridge National Laboratory Environmental Restoration Program Surveillance and Maintenance activities. This report was prepared to document results of the investigation and subsequent remedial actions. The report details surface gamma radiation levels including gamma anomalies; surface beta radiation levels including beta anomalies; results of analysis of soil, water, and vegetation samples and smear samples collected from paved surfaces; remediation activities conducted as a result of the survey; and recommendations for further corrective measures

  9. Hydrogeology and water quality of the Floridan aquifer system and effects of Lower Floridan aquifer pumping on the Upper Floridan aquifer at Fort Stewart, Georgia

    Science.gov (United States)

    Clarke, John S.; Cherry, Gregory C.; Gonthier, Gerard

    2011-01-01

    Test drilling, field investigations, and digital modeling were completed at Fort Stewart, GA, during 2009?2010, to assess the geologic, hydraulic, and water-quality characteristics of the Floridan aquifer system and evaluate the effect of Lower Floridan aquifer (LFA) pumping on the Upper Floridan aquifer (UFA). This work was performed pursuant to the Georgia Environmental Protection Division interim permitting strategy for new wells completed in the LFA that requires simulation to (1) quantify pumping-induced aquifer leakage from the UFA to LFA, and (2) identify the equivalent rate of UFA pumping that would produce the same maximum drawdown in the UFA that anticipated pumping from LFA well would induce. Field investigation activities included (1) constructing a 1,300-foot (ft) test boring and well completed in the LFA (well 33P028), (2) constructing an observation well in the UFA (well 33P029), (3) collecting drill cuttings and borehole geophysical logs, (4) collecting core samples for analysis of vertical hydraulic conductivity and porosity, (5) conducting flowmeter and packer tests in the open borehole within the UFA and LFA, (6) collecting depth-integrated water samples to assess basic ionic chemistry of various water-bearing zones, and (7) conducting aquifer tests in new LFA and UFA wells to determine hydraulic properties and assess interaquifer leakage. Using data collected at the site and in nearby areas, model simulation was used to assess the effects of LFA pumping on the UFA. Borehole-geophysical and flowmeter data indicate the LFA at Fort Stewart consists of limestone and dolomitic limestone between depths of 912 and 1,250 ft. Flowmeter data indicate the presence of three permeable zones at depth intervals of 912-947, 1,090-1,139, and 1,211?1,250 ft. LFA well 33P028 received 50 percent of the pumped volume from the uppermost permeable zone, and about 18 and 32 percent of the pumped volume from the middle and lowest permeable zones, respectively. Chemical

  10. State Aquifer Recharge Atlas Plates, Geographic NAD83, LDEQ (1999) [aquifer_recharge_potential_LDEQ_1988

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a polygon dataset depicting the boundaries of aquifer systems in the state of Louisiana and adjacent areas of Texas, Arkansas and a portion of Mississippi....

  11. Distribution of sulphur isotopes of sulphates in groundwaters from the principal artesian aquifer of Florida and the Edwards aquifer of Texas, United States of America

    International Nuclear Information System (INIS)

    Rightmire, C.T.; Pearson, F.J. Jr.; Back, W.; Rye, R.O.; Hanshaw, B.B.

    1974-01-01

    New information on the sources of sulphate dissolved in groundwater is obtainable from the measurement of the sulphur isotope composition of sulphates. Field studies in the Floridan aquifer, Florida, and the Edwards aquifer, Texas, show that the use of sulphur isotope data in conjunction with hydrologic and geochemical techniques permits refinements of interpretation. In the Floridan the interpretation of the chemical data, particularly the SO 4 2- concentration and the SO 4 2- /Cl - ratio, leads to the conclusion that recharging maritime rainfall, solution of intraformational gypsum, and mixing with ocean-like saline waters are the sources of sulphate in the groundwater. Sulphur isotope data substantiate this interpretation. The Edwards in the area studied can be separated into two hydrologie units on the basis of water chemistry and aquifer characteristics. The sulphide-free waters in the part of the aquifer upgradient from a distinct sulphide boundary are low in sulphate (less than 100 mg/1) and contain no sulphide. The waters downgradient from that boundary contain greater than 150 mg/1 sulphate and all contain measurable quantities of sulphide. Interpretation of the SO 4 2- concentration and SO 4 2- /Cl ratio on the basis of the Florida study leads to the erroneous conclusion that the solution of intraformational gypsum is again a major source of sulphate in the sulphide-free part of the aquifer. Isotope analyses, however, show that the gypsum is likely to be Permian in age and introduced into the aquifer by the recharge water. The absence of evidence for enrichment in 34 S in the sulphate in the sulphide-bearing portion of the aquifer leads to the possibility of H 2 S migration upgradient from downdip oil fields. (author)

  12. Modelling contaminant transport in saturated aquifers

    International Nuclear Information System (INIS)

    Lakshminarayana, V.; Nayak, T.R.

    1990-01-01

    With the increase in population and industrialization the problem of pollution of groundwater has become critical. The present study deals with modelling of pollutant transport through saturated aquifers. Using this model it is possible to predict the concentration distribution, spatial as well as temporal, in the aquifer. The paper also deals with one of the methods of controlling the pollutant movement, namely by pumping wells. A simulation model is developed to determine the number, location and rate of pumping of a number of wells near the source of pollution so that the concentration is within acceptable limits at the point of interest. (Author) (18 refs., 14 figs., tab.)

  13. Hysteresis, regime shifts, and non-stationarity in aquifer recharge-storage-discharge systems

    Science.gov (United States)

    Klammler, Harald; Jawitz, James; Annable, Michael; Hatfield, Kirk; Rao, Suresh

    2016-04-01

    Based on physical principles and geological information we develop a parsimonious aquifer model for Silver Springs, one of the largest karst springs in Florida. The model structure is linear and time-invariant with recharge, aquifer head (storage) and spring discharge as dynamic variables at the springshed (landscape) scale. Aquifer recharge is the hydrological driver with trends over a range of time scales from seasonal to multi-decadal. The freshwater-saltwater interaction is considered as a dynamic storage mechanism. Model results and observed time series show that aquifer storage causes significant rate-dependent hysteretic behavior between aquifer recharge and discharge. This leads to variable discharge per unit recharge over time scales up to decades, which may be interpreted as a gradual and cyclic regime shift in the aquifer drainage behavior. Based on field observations, we further amend the aquifer model by assuming vegetation growth in the spring run to be inversely proportional to stream velocity and to hinder stream flow. This simple modification introduces non-linearity into the dynamic system, for which we investigate the occurrence of rate-independent hysteresis and of different possible steady states with respective regime shifts between them. Results may contribute towards explaining observed non-stationary behavior potentially due to hydrological regime shifts (e.g., triggered by gradual, long-term changes in recharge or single extreme events) or long-term hysteresis (e.g., caused by aquifer storage). This improved understanding of the springshed hydrologic response dynamics is fundamental for managing the ecological, economic and social aspects at the landscape scale.

  14. Field Investigation of Stream-Aquifer Interactions: A Case Study in Coastal California

    Science.gov (United States)

    Pritchard-Peterson, D.; Malama, B.

    2017-12-01

    We report here results of a detailed investigation of the dynamic interaction between a stream and an alluvial aquifer at Swanton Pacific Ranch in the Scotts Creek watershed, Santa Cruz County, California. The aquifer is an important source of groundwater for cropland irrigation and for aquatic ecosystem support. Low summer base flows in Scotts Creek are a source of serious concern for land managers, fisheries biologists, and regulatory agencies due to the presence of federally protected steelhead trout and coho salmon. An understanding of the interaction between the stream and pumped aquifer will allow for assessment of the impacts of groundwater extraction on stream flows and is essential to establishing minimum flow requirements. This will aid in the development of sustainable riparian groundwater pumping practices that meet agricultural and ecological needs. Results of extensive direct-push sampling of the subsurface, laboratory falling-head permeameter tests and particle size analysis of aquifer sediments, multi-day pumping tests, long-term passive monitoring of aquifer hydraulic heads and stream stage and discharge, and electrical resistivity interrogation of the subsurface are reported here. Findings indicate that the permeable subsurface formation tapped by irrigation wells is a leaky semi-confined aquifer, overlain by a thin low permeability layer of silt and clay above which lies Scotts Creek. These results are particularly useful to land managers responsible for groundwater abstraction from wells that tap into the aquifer. Additionally, an index of stream-aquifer connectivity is proposed that would allow land managers to conveniently modify groundwater abstraction practices, minimizing concerns of stream depletion.

  15. Isotopes to Study the coastal aquifer plain, Cap Bon, Tunisia

    International Nuclear Information System (INIS)

    Ben Hamouda, M. F.; Zouari, Kamel; Tarhouni, J.; Gaye, C.B.; Oueslati, M.N.

    2005-01-01

    The study area is located in the northeastern part of Tunisia about 60 km south of the Tunis city. It is bounded by the Gulf of Haematite in the East, Djebel Sidi Aberahmane in the West, The town of Nabeul in the south and the area of the town Kelibia in the north. The landscape is a coastal plain slightly sloping (3%) towards the sea. The groundwater of the Oriental coast aquifer system occurs mainly at two levels, a shallow aquifer up to depths of about 50 m whose reservoir is consisted by sediments of the Plio quaternary and a deep aquifer between about 150 and 400 m located in the sand stone formations of Miocene of the anticline of Djebel Sidi Abderrahmene. The climate of the region is semi-arid to sub-humid and of Mediterranean type. There are no perennial rivers in this region; but intense storms occasionally cause surface runoff, which is discharged by the oueds. The study is related to a technical cooperation project with the International Atomic Energy Agency, Vienna, Austria, aimed at the use of isotope techniques to study the seawater intrusion into the coastal aquifers of Cap Bon in Tunisia. In this regard, a better understanding of the recharge and flow regime as well as the origin or salinity of the groundwater was required. To reach this goal, isotope and geochemical investigations were carried out. Water samples were taken from wells, boreholes from deep and shallow aquifer of the Oriental coastal aquifer located between Beni Khiar in the south and Kelibia in the north. The samples were analysed for their chemical and isotopic compositions (18O, 2H, 3H, 13C, 14C, 34S). In the following, the results of these analyses are presented and discussed in terms of the recharge and flow regime of the groundwater and the origin and evolution of its salinity. The results of geochemical and isotopic studies have shown that the groundwater is very eterogeneous and suggest the aquifer is replenished by recent water coming from direct infiltration from rain. At

  16. Dual Pump Recovery (DPR System to Extract Freshwater in Coastal Aquifers

    Directory of Open Access Journals (Sweden)

    C. Otto

    2002-06-01

    Full Text Available The paper describes the hydraulic theory of recovering a dense plume using a newly devised dual pump recover system (DPR and its feasibility to half the remediation time of a contaminated unconfined aquifer in a coastal urban environment. Although the DPR system was successfully applied to clean up the polluted aquifer, the hydraulic principles and techniques are also applicable to extract fresh groundwater from coastal aquifers without the risk of saltwater incursion.

  17. Aquifer/aquitard interfaces: mixing zones that enhance biogeochemical reactions

    Science.gov (United States)

    McMahon, P. B.

    2001-01-01

    Several important biogeochemical reactions are known to occur near the interface between aquifer and aquitard sediments. These reactions include O2 reduction; denitrification; and Fe3+, SO42-, and CO2 (methanogenesis) reduction. In some settings, these reactions occur on the aquitard side of the interface as electron acceptors move from the aquifer into the electron-donor-enriched aquitard. In other settings, these reactions occur on the aquifer side of the interface as electron donors move from the aquitard into the electron-acceptor-enriched, or microorganism-enriched, aquifer. Thus, the aquifer/aquitard interface represents a mixing zone capable of supporting greater microbial activity than either hydrogeologic unit alone. The extent to which biogeochemical reactions proceed in the mixing zone and the width of the mixing zone depend on several factors, including the abundance and solubility of electron acceptors and donors on either side of the interface and the rate at which electron acceptors and donors react and move across the interface. Biogeochemical reactions near the aquifer/aquitard interface can have a substantial influence on the chemistry of water in aquifers and on the chemistry of sediments near the interface. Résumé. Il se produit au voisinage de l'interface entre les aquifères et les imperméables plusieurs réactions biogéochimiques importantes. Il s'agit des réactions de réduction de l'oxygène, de la dénitrification et de la réduction de Fe3+, SO42- et CO2 (méthanogenèse). Dans certaines situations, ces réactions se produisent du côté imperméable de l'interface, avec des accepteurs d'électrons qui vont de l'aquifère vers l'imperméable riche en donneurs d'électrons. Dans d'autres situations, ces réactions se produisent du côté aquifère de l'interface, avec des donneurs d'électrons qui se déplacent de l'imperméable vers l'aquifère riche en accepteurs d'électrons ou en microorganismes. Ainsi, l'interface aquif

  18. Hydrochemistry of New Zealand's aquifers

    International Nuclear Information System (INIS)

    Rosen, M.R.

    2001-01-01

    Groundwater chemistry on a national scale has never been studied in New Zealand apart from a few studies on nitrate concentrations and pesticides. These studies are covered in Chapter 8 of this book. However general studies of groundwater chemistry, groundwater-rock interaction and regional characteristics of water quality have not been previously addressed in much detail. This is partly because New Zealand aquifers are relatively small on a world scale and are geologically and tectonically diverse (see Chapter 3). But New Zealand has also recently lacked a centralised agency responsible for groundwater quality, and therefore, no national assessments have been undertaken. In recent years, the Institute of Geological and Nuclear Sciences has managed a programme of collecting and analysing the groundwater chemistry of key New Zealand aquifers. This programme is called the National Groundwater Monitoring Programme (NGMP) and is funded by the New Zealand Public Good Science Fund. The programme started in 1990 using only 22 wells, with four regional authorities of the country participating. The NGMP now includes all 15 regional and unitary authorities that use groundwater and over 100 monitoring sites. The NGMP is considered a nationally significant database by the New Zealand Foundation for Research Science and Technology. The NGMP allows a national comparison of aquifer chemistries because the samples are all analysed at one laboratory in a consistent manner and undergo stringent quality control checks. Poor quality analyses are thus minimised. In addition, samples are collected quarterly so that long-term seasonal trends in water quality can be analysed, and the effects of changes in land use and the vulnerability of aquifers to contaminant leaching can be assessed. This chapter summarises the water quality data collected for the NGMP over the past 10 years. Some records are much shorter than others, but most are greater than three years. Additional information is

  19. Magdalena Ridge Observatory Interferometer: Status Update

    National Research Council Canada - National Science Library

    Creech-Eakman, M. J; Bakker, E. J; Buscher, D. F; Coleman, T. A; Haniff, C. A; Jurgenson, C. A; Klinglesmith, III, D. A; Parameswariah, C. B; Romero, V. D; Shtromberg, A. V; Young, J. S

    2006-01-01

    The Magdalena Ridge Observatory Interferometer (MROI) is a ten element optical and near-infrared imaging interferometer being built in the Magdalena mountains west of Socorro, NM at an altitude of 3230 m...

  20. a comparative study of some robust ridge and liu estimators

    African Journals Online (AJOL)

    Dr A.B.Ahmed

    estimation techniques such as Ridge and Liu Estimators are preferable to Ordinary Least Square. On the other hand, when outliers exist in the data, robust estimators like M, MM, LTS and S. Estimators, are preferred. To handle these two problems jointly, the study combines the Ridge and Liu Estimators with Robust.

  1. Studying the Indian Ocean Ridge System: Agenda for the new century

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Iyer, S.D.; Banerjee, R.; Drolia, R.K.

    Studies on the Indian Ocean Ridge System, though sporadic, was aimed to map the complete IORS petrologically and tectonically. Three areas are placed for immediate investigation; one in the slow spreading Carlsberg Ridge area, the second, along...

  2. Localized sulfate-reducing zones in a coastal plain aquifer

    Science.gov (United States)

    Brown, C.J.; Coates, J.D.; Schoonen, M.A.A.

    1999-01-01

    High concentrations of dissolved iron in ground water of coastal plain or alluvial aquifers contribute to the biofouling of public supply wells for which treatment and remediation is costly. Many of these aquifers, however, contain zones in which microbial sulfate reduction and the associated precipitation of iron-sulfide minerals decreases iron mobility. The principal water-bearing aquifer (Magothy Aquifer of Cretaceous age) in Suffolk County, New York, contains localized sulfate-reducing zones in and near lignite deposits, which generally are associated with clay lenses. Microbial analyses of core samples amended with [14C]-acetate indicate that microbial sulfate reduction is the predominant terminal-electron-accepting process (TEAP) in poorly permeable, lignite-rich sediments at shallow depths and near the ground water divide. The sulfate-reducing zones are characterized by abundant lignite and iron-sulfide minerals, low concentrations of Fe(III) oxyhydroxides, and by proximity to clay lenses that contain pore water with relatively high concentrations of sulfate and dissolved organic carbon. The low permeability of these zones and, hence, the long residence time of ground water within them, permit the preservation and (or) allow the formation of iron-sulfide minerals, including pyrite and marcasite. Both sulfate-reducing bacteria (SRB) and iron-reducing bacteria (IRB) are present beneath and beyond the shallow sulfate-reducing zones. A unique Fe(III)-reducing organism, MD-612, was found in core sediments from a depth of 187 m near the southern shore of Long Island. The distribution of poorly permeable, lignite-rich, sulfate-reducing zones with decreased iron concentration is varied within the principal aquifer and accounts for the observed distribution of dissolved sulfate, iron, and iron sulfides in the aquifer. Locating such zones for the placement of production wells would be difficult, however, because these zones are of limited aerial extent.

  3. Geothermal characterization of the coastal aquifer near Ravenna (Italy

    Directory of Open Access Journals (Sweden)

    M. Antonellini

    2012-12-01

    Full Text Available The coastal aquifer near Ravenna (Italy contains a large volume of groundwater (2,5x109 m3 whose quality has been compromised by sea-water intrusion. Today, the phreatic groundwater is mostly brackish with some lenses of freshwater floating on top of more saline water. This water, although impossible to use as drink-water or for irrigation, is still important to guarantee the health of wetland habitats and especially of the roman historical and coastal pine forests of Ravenna. With the objective of defining the flow pattern within the aquifer and the exchange between surface and ground water, we characterized the temperature distribution in the shallow subsurface by means of a dense network of piezometers. At the same time we had the opportunity to characterize the phreatic aquifer from the geothermal point of view, so that it could eventually be considered for use as a “low enthalpy” heat source. Heat pumps are able to extract heat during the winter and dissipate it during the summer. The temperature of the groundwater in the top layer of the aquifer (surficial zone is sensitive to the changes in atmospheric temperature throughout the year whereas the temperature of the deeper groundwater follows the geothermal gradient (geothermal zone. One of the scopes of the project is to discover at what depth is located the geothermal zone, so that the aquifer has a constant temperature throughout the year. A constant temperature is needed for storage of heat at low enthalpy. The thickness of the surficial zone and the temperature at the top of the geothermal zone are essentially related to land use, distance from the sea, sediment type, and amount of interaction between surface and groundwater. A knowledge of these factors allows to better exploit the geothermal potential of the aquifer when choosing the optimal placement of the heat pumps.

  4. Development of A Mississippi River Alluvial Aquifer Groundwater Model

    Science.gov (United States)

    Karakullukcu, R. E.; Tsai, F. T. C.; Bhatta, D.; Paudel, K.; Kao, S. C.

    2017-12-01

    The Mississippi River Alluvial Aquifer (MRAA) underlies the Mississippi River Valley of the northeastern Louisiana, extending from the north border of Louisiana and Arkansas to south central of Louisiana. The MRAA has direct contact with the Mississippi River. However, the interaction between the Mississippi River and the alluvial aquifer is largely unknown. The MRAA is the second most used groundwater source in Louisiana's aquifers with about 390 million gallons per day, which is about 25% of all groundwater withdrawals in Louisiana. MRAA is the major water source to agriculture in the northeastern Louisiana. The groundwater withdrawals from the MRAA increases annually for irrigation. High groundwater pumping has caused significant groundwater level decline and elevated salinity in the aquifer. Therefore, dealing with agricultural irrigation is the primary purpose for managing the MRAA. The main objective of this study is to develop a groundwater model as a tool for the MRAA groundwater management. To do so, a hydrostratigraphy model of the MRAA was constructed by using nearly 8,000 drillers' logs and electric logs collected from Louisiana Department of Natural Resources. The hydrostratigraphy model clearly shows that the Mississippi River cuts into the alluvial aquifer. A grid generation technique was developed to convert the hydrostratigraphy model into a MODFLOW model with 12 layers. A GIS-based method was used to estimate groundwater withdrawals for irrigation wells based on the crop location and acreage from the USDACropScape - Cropland Data Layer. Results from the Variable Infiltration Capacity (VIC) model were used to determine potential recharge. NHDPlusV2 data was used to determine water level for major streams for the MODFLOW River Package. The groundwater model was calibrated using groundwater data between 2004 and 2015 to estimate aquifer hydraulic conductivity, specific yield, specific storage, river conductance, and surficial recharge.

  5. Soil sampling and analysis plan for the Bear Creek Valley Floodplain at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This Sampling and Analysis Plan (SAP) for the Bear Creek Valley (BCV) Floodplain presents the approach and rationale for characterizing potentially contaminated soils and sediments of the Bear Creek floodplain and the impact of any contaminants on the floodplain ecosystem. In addition to this SAP, the Remedial Investigation Work Plan for Bear Creek (Y02-S600) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (ES/ER-19&D2) presents background information pertaining to this floodplain investigation.

  6. In-Process Analysis Program for the Isolock sampler at the Gunite and Associated Tanks, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-05-01

    The In-Process Analysis Program documents the requirements for handling, transporting, and analyzing waste slurry samples gathered by the Bristol Isolock slurry sampler from the Gunite and Associated Tanks at Oak Ridge National Laboratory in Oak Ridge, Tennessee. Composite samples will be gathered during sludge retrieval operations, labeled, transported to the appropriate laboratory, and analyzed for physical and radiological characteristics. Analysis results will be used to support occupational exposure issues, basic process control management issues, and prediction of radionuclide flow

  7. Soil sampling and analysis plan for the Bear Creek Valley Floodplain at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-03-01

    This Sampling and Analysis Plan (SAP) for the Bear Creek Valley (BCV) Floodplain presents the approach and rationale for characterizing potentially contaminated soils and sediments of the Bear Creek floodplain and the impact of any contaminants on the floodplain ecosystem. In addition to this SAP, the Remedial Investigation Work Plan for Bear Creek (Y02-S600) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (ES/ER-19 ampersand D2) presents background information pertaining to this floodplain investigation

  8. Artificial Intelligence-Based Models for the Optimal and Sustainable Use of Groundwater in Coastal Aquifers

    Science.gov (United States)

    Sreekanth, J.; Datta, Bithin

    2011-07-01

    Overexploitation of the coastal aquifers results in saltwater intrusion. Once saltwater intrusion occurs, it involves huge cost and long-term remediation measures to remediate these contaminated aquifers. Hence, it is important to have strategies for the sustainable use of coastal aquifers. This study develops a methodology for the optimal management of saltwater intrusion prone aquifers. A linked simulation-optimization-based management strategy is developed. The methodology uses genetic-programming-based models for simulating the aquifer processes, which is then linked to a multi-objective genetic algorithm to obtain optimal management strategies in terms of groundwater extraction from potential well locations in the aquifer.

  9. Hydrochemistry and hydrogeologic conditions within the Hanford Site upper basalt confined aquifer system

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.; Webber, W.D.

    1995-09-01

    As part of the Hanford Site Ground-Water Surveillance Project, Flow System Characterization Task. Pacific Northwest Laboratory examines the potential for offsite migration of contamination within the upper basalt confined aquifer system for the US Department of Energy (DOE). As part of this activity, groundwater samples were collected over the past 2 years from selected wells completed in the upper Saddle Mountains Basalt. The hydrochemical and isotopic information obtained from these groundwater samples provides hydrologic information concerning the aquifer-flow system. Ideally, when combined with other hydrologic property information, hydrochemical and isotopic data can be used to evaluate the origin and source of groundwater, areal groundwater-flow patterns, residence and groundwater travel time, rock/groundwater reactions, and aquifer intercommunication for the upper basalt confined aquifer system. This report presents the first comprehensive Hanford Site-wide summary of hydrochemical properties for the upper basalt confined aquifer system. This report provides the hydrogeologic characteristics (Section 2.0) and hydrochemical properties (Section 3.0) for groundwater within this system. A detailed description of the range of the identified hydrochemical parameter subgroups for groundwater in the upper basalt confined aquifer system is also presented in Section 3.0. Evidence that is indicative of aquifer contamination/aquifer intercommunication and an assessment of the potential for offsite migration of contaminants in groundwater within the upper basalt aquifer is provided in Section 4.0. The references cited throughout the report are given in Section 5.0. Tables that summarize groundwater sample analysis results for individual test interval/well sites are included in the Appendix

  10. Contaminated scrap metal management on the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Hayden, H.W.; Stephenson, M.J.; Bailey, J.K.; Weir, J.R.; Gilbert, W.C.

    1993-01-01

    Large quantities of scrap metal are accumulating at the various Department of Energy (DOE) installations across the country as a result of ongoing DOE programs and missions in concert with present day waste management practices. DOE Oak Ridge alone is presently storing around 500,000 tons of scrap metal. The local generation rate, currently estimated at 1,400 tons/yr, is expected to increase sharply over the next couple of years as numerous environmental restoration and decommissioning programs gain momentum. Projections show that 775,000 tons of scrap metal could be generated at the K-25 Site over the next ten years. The Y-12 Plant and Oak Ridge National Laboratory (ORNL) have similar potentials. The history of scrap metal management at Oak Ridge and future challenges and opportunities are discussed

  11. Ridge-like lava tube systems in southeast Tharsis, Mars

    Science.gov (United States)

    Zhao, Jiannan; Huang, Jun; Kraft, Michael D.; Xiao, Long; Jiang, Yun

    2017-10-01

    Lava tubes are widely distributed in volcanic fields on a planetary surface and they are important means of lava transportation. We have identified 38 sinuous ridges with a lava-tube origin in southeast Tharsis. The lengths vary between 14 and 740 km, and most of them occur in areas with slopes rate, low lava viscosity, and sustained magma supply during a long period. Besides, lava flow inflation is also important in the formation of the ridge-like lava tubes and some associated features. These lava tubes provide efficient lateral pathways for magma transportation over the relatively low topographic slopes in southeast Tharsis, and they are important for the formation of long lava flows in this region. The findings of this study provide an alternative formation mechanism for sinuous ridges on the martian surface.

  12. 76 FR 48927 - RidgeWorth Funds and RidgeWorth Capital Management, Inc.; Notice of Application

    Science.gov (United States)

    2011-08-09

    ... the best interests of the Fund and its shareholders, and does not involve a conflict of interest from... enter into and materially amend subadvisory agreements without shareholder approval. Applicants: Ridge... hearing. Interested persons may request a hearing by writing to the Commission's Secretary and serving...

  13. Implementation Plan for Liquid Low-Level Radioactive Waste tank systems at Oak Ridge National Laboratory under the Federal Facility Agreement, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-09-01

    This document summarizes the progress that has been made to date in implementing the plans and schedules for meeting the Federal Facility Agreement (FFA) commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL). These commitments were initially submitted in ES/ER-17 ampersand Dl, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Information presented in this document provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present plans and schedules associated with remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service. ORNL has a comprehensive program underway to upgrade the LLLW system as necessary to meet the FFA requirements. The tank systems that are removed from service are being investigated and remediated through the CERCLA process. Waste and risk characterizations have been submitted. Additional data will be prepared and submitted to EPA/TDEC as tanks are taken out of service and as required by the remedial investigation/feasibility study (RI/FS) process. The plans and schedules for implementing the FFA compliance program that were submitted in ES/ER-17 ampersand Dl, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste tanks Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee, are updated in this document. Chapter 1 provides general background information and philosophies that lead to the plans and schedules that appear in Chaps. 2 through 5

  14. aquifer in ajaokuta, southwestern nigeria

    African Journals Online (AJOL)

    2005-03-08

    Mar 8, 2005 ... (1969) straight line method (observation well) of draw-down analysis in an unconfined aquifer (B=1) yield ... April) and a short wet season (May-September). .... DECOMPOSED. GRANITIC ROCK WITH. QUARTZ VEINS. 13.

  15. Degradation of herbicides in shallow Danish aquifers - an integrated laboratory and field study

    DEFF Research Database (Denmark)

    Albrechtsen, Hans-Jørgen; Mills, M.; Aamand, J.

    2001-01-01

    Degradation of pesticides in aquifers has been evaluated based on a number of co-ordinated field and laboratory studies carried out in Danish aquifers. These studies included investigations of vertical and horizontal variability in degradation rates from the vadose zone to an aquifer, the effects...

  16. Modeling groundwater flow to elliptical lakes and through multi-aquifer elliptical inhomogeneities

    Science.gov (United States)

    Bakker, Mark

    2004-05-01

    Two new analytic element solutions are presented for steady flow problems with elliptical boundaries. The first solution concerns groundwater flow to shallow elliptical lakes with leaky lake beds in a single-aquifer. The second solution concerns groundwater flow through elliptical cylinder inhomogeneities in a multi-aquifer system. Both the transmissivity of each aquifer and the resistance of each leaky layer may differ between the inside and the outside of an inhomogeneity. The elliptical inhomogeneity may be bounded on top by a shallow elliptical lake with a leaky lake bed. Analytic element solutions are obtained for both problems through separation of variables of the Laplace and modified-Helmholtz differential equations in elliptical coordinates. The resulting equations for the discharge potential consist of infinite sums of products of exponentials, trigonometric functions, and modified-Mathieu functions. The series are truncated but still fulfill the differential equation exactly; boundary conditions are met approximately, but up to machine accuracy provided enough terms are used. The head and flow may be computed analytically at any point in the aquifer. Examples are given of uniform flow through an elliptical lake, a well pumping near two elliptical lakes, and uniform flow through three elliptical inhomogeneities in a multi-aquifer system. Mathieu functions may be applied in a similar fashion to solve other groundwater flow problems in semi-confined aquifers and leaky aquifer systems with elliptical internal or external boundaries.

  17. Chemical and Mineralogical Characterization of a Hematite-bearing Ridge on Mauna Kea, Hawaii: A Potential Mineralogical Process Analog for the Mount Sharp Hematite Ridge

    Science.gov (United States)

    Graff, T. G.; Morris, R. V.; Ming, D. W.; Hamilton, J. C.; Adams, M.; Fraeman, A. A.; Arvidson, R. E.; Catalano, J. G.; Mertzman, S. A.

    2014-01-01

    The Mars Science Laboratory (MSL) rover Curiosity landed in Gale Crater in August 2012 and is currently roving towards the layered central mound known as Mount Sharp [1]. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) hyperspectral data indicate Mount Sharp contains an 5 km stratigraphic sequence including Fe-Mg smectites, hematite, and hydrated sulfates in the lower layers separated by an unconformity from the overlying anhydrous strata [1,2,3]. Hematite was initially detected in CRISM data to occur in the lower sulfate layers on the north side of the mound [2]. [3] further mapped a distinct hematite detection occurring as part of a 200 m wide ridge that extends 6.5 km NE-SW, approximately parallel with the base of Mount Sharp. It is likely a target for in-situ analyses by Curiosity. We document here the occurrence of a stratum of hematite-bearing breccia that is exposed on the Puu Poliahu cinder cone near the summit of Mauna Kea volcano (Hawaii) (Fig.1). The stratum is more resistant to weathering than surrounding material, giving it the appearance of a ridge. The Mauna Kea hematite ridge is thus arguably a potential terrestrial mineralogical and process analog for the Gale Crater hematite ridge. We are acquiring a variety of chemical and mineralogical data on the Mauna Kea samples, with a focus on the chemical and mineralogical information already available or planned for the Gale hematite ridge.

  18. Estimating aquifer properties from the water level response to Earth tides.

    Science.gov (United States)

    Cutillo, Paula A; Bredehoeft, John D

    2011-01-01

    Water level fluctuations induced by tidal strains can be analyzed to estimate the elastic properties, porosity, and transmissivity of the surrounding aquifer material. We review underutilized methods for estimating aquifer properties from the confined response to earth tides. The earth tide analyses are applied to an open well penetrating a confined carbonate aquifer. The resulting range of elastic and hydraulic aquifer properties are in general agreement with that determined by other investigators for the area of the well. The analyses indicate that passive monitoring data from wells completed in sufficiently stiff, low porosity formations can provide useful information on the properties of the surrounding formation. Journal compilation © 2010 National Ground Water Association. No claim to original US government works.

  19. Improved voltage performance of the Oak Ridge 25URC tandem accelerator

    International Nuclear Information System (INIS)

    Meigs, M.J.; Jones, C.M.; Haynes, D.L.; Juras, R.C.; Ziegler, N.F.; Roatz, J.E.; Rathmell, R.D.

    1989-01-01

    This paper reports on the Oak Ridge 25URC tandem electrostatic accelerator one of two accelerators operated by the Holifield Heavy Ion Research Facility (HHIRF) at the Oak Ridge National Laboratory. Placed into routine service in 1982, the accelerator has provided a wide range of heavy ion beams for research in nuclear and atomic physics. These beams have been provided both directly and after further acceleration by the Oak Ridge Isochronous Cyclotron (ORIC). Show schematically in this paper, the tandem accelerator is a model 25URC Pelletron accelerator

  20. Redox Conditions in Selected Principal Aquifers of the United States

    Science.gov (United States)

    McMahon, P.B.; Cowdery, T.K.; Chapelle, F.H.; Jurgens, B.C.

    2009-01-01

    Reduction/oxidation (redox) processes affect the quality of groundwater in all aquifer systems. Redox processes can alternately mobilize or immobilize potentially toxic metals associated with naturally occurring aquifer materials, contribute to the degradation or preservation of anthropogenic contami-nants, and generate undesirable byproducts, such as dissolved manganese (Mn2+), ferrous iron (Fe2+), hydrogen sulfide (H2S), and methane (CH4). Determining the kinds of redox processes that occur in an aquifer system, documenting their spatial distribution, and understanding how they affect concentrations of natural or anthropogenic contaminants are central to assessing and predicting the chemical quality of groundwater. This Fact Sheet extends the analysis of U.S. Geological Survey authors to additional principal aquifer systems by applying a framework developed by the USGS to a larger set of water-quality data from the USGS national water databases. For a detailed explanation, see the 'Introduction' in the Fact Sheet.

  1. Calendar year 1993 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime Y-12 Plant, Oak Ridge, Tennessee. 1993 Groundwater quality data interpretations and proposed program modifications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste management facilities associated with the US DOE Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. The groundwater quality data are presented in Part 1 of the GWQR submitted by Martin Marietta Energy Systems, Inc. to the Tennessee Department of Environment and Conservation (TDEC) in February 1994. Groundwater quality data evaluated in this report were obtained at several hazardous and non-hazardous waste management sites located within the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Chestnut Ridge Regime encompasses a section of Chestnut Ridge south of the Y-12 Plant and is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual GWQR for the Chestnut Ridge Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, the Part 1 GWQR is submitted to the TDEC by the RCRA reporting deadline (March 1 of the following CY). Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality, presents the findings and status of ongoing hydrogeologic studies, describes changes in monitoring priorities, and presents planned modifications to the groundwater sampling and analysis activities.

  2. Calendar year 1993 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime Y-12 Plant, Oak Ridge, Tennessee. 1993 Groundwater quality data interpretations and proposed program modifications

    International Nuclear Information System (INIS)

    1994-09-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste management facilities associated with the US DOE Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. The groundwater quality data are presented in Part 1 of the GWQR submitted by Martin Marietta Energy Systems, Inc. to the Tennessee Department of Environment and Conservation (TDEC) in February 1994. Groundwater quality data evaluated in this report were obtained at several hazardous and non-hazardous waste management sites located within the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Chestnut Ridge Regime encompasses a section of Chestnut Ridge south of the Y-12 Plant and is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual GWQR for the Chestnut Ridge Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, the Part 1 GWQR is submitted to the TDEC by the RCRA reporting deadline (March 1 of the following CY). Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality, presents the findings and status of ongoing hydrogeologic studies, describes changes in monitoring priorities, and presents planned modifications to the groundwater sampling and analysis activities

  3. Dendrogeomorphic Assessment of the Rattlesnake Gulf Landslide in the Tully Valley, Onondaga County, New York

    Science.gov (United States)

    Tamulonis, Kathryn L.; Kappel, William M.

    2009-01-01

    Dendrogeomorphic techniques were used to assess soil movement within the Rattlesnake Gulf landslide in the Tully Valley of central New York during the last century. This landslide is a postglacial, slow-moving earth slide that covers 23 acres and consists primarily of rotated, laminated, glaciolacustrine silt and clay. Sixty-two increment cores were obtained from 30 hemlock (Tsuga canadensis) trees across the active part of the landslide and from 3 control sites to interpret the soil-displacement history. Annual growth rings were measured and reaction wood was identified to indicate years in which ring growth changed from concentric to eccentric, on the premise that soil movement triggered compensatory growth in displaced trees. These data provided a basis for an 'event index' to identify years of landslide activity over the 108 years of record represented by the oldest trees. Event-index values and total annual precipitation increased during this time, but years with sudden event-index increases did not necessarily correspond to years with above-average precipitation. Multiple-regression and residual-values analyses indicated a possible correlation between precipitation and movement within the landslide and a possible cyclic (decades-long) tree-ring response to displacement within the landslide area from the toe upward to, and possibly beyond, previously formed landslide features. The soil movement is triggered by a sequence of factors that include (1) periods of several months with below-average precipitation followed by persistent above-average precipitation, (2) the attendant increase in streamflow, which erodes the landslide toe and results in an upslope propagation of slumping, and (3) the harvesting of mature trees within this landslide during the last century and continuing to the present.

  4. Summary review of the chemical characterization of liquid and sludge contained in the Old Hydrofracture tanks, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Francis, C.W.; Herbes, S.E.

    1997-02-01

    This report presents analytical data developed from samples collected from the five inactive tanks located at the Old Hydrofracture Facility (OHF) at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The samples were collected during December 1995 and January 1996. The purpose of the sampling and analysis project was (1) to determine whether the tank contents meet ORNL waste acceptance criteria, as specified in the Oak Ridge National Laboratory, Liquid Waste Treatment Systems, Waste Evaluation Criteria; (2) to determine various physical properties of the tank contents that would affect the design of a sludge mobilization system; and (3) to gather information to support a baseline risk assessment. The report focuses on the analytical results used to evaluate the tank contents with regard to nuclear criticality safety requirements and to regulatory waste characterization

  5. Nowhere to Go but Up: Impacts of Climate Change on Demographics of a Short-Range Endemic (Crotalus willardi obscurus) in the Sky-Islands of Southwestern North America.

    Science.gov (United States)

    Davis, Mark A; Douglas, Marlis R; Webb, Colleen T; Collyer, Michael L; Holycross, Andrew T; Painter, Charles W; Kamees, Larry K; Douglas, Michael E

    2015-01-01

    Biodiversity elements with narrow niches and restricted distributions (i.e., 'short range endemics,' SREs) are particularly vulnerable to climate change. The New Mexico Ridge-nosed Rattlesnake (Crotalus willardi obscurus, CWO), an SRE listed under the U.S. Endangered Species Act within three sky islands of southwestern North America, is constrained at low elevation by drought and at high elevation by wildfire. We combined long-term recapture and molecular data with demographic and niche modeling to gauge its climate-driven status, distribution, and projected longevity. The largest population (Animas) is numerically constricted (N = 151), with few breeding adults (Nb = 24) and an elevated inbreeding coefficient (ΔF = 0.77; 100 years). Mean home range (0.07 km2) is significantly smaller compared to other North American rattlesnakes, and movements are within, not among sky islands. Demographic values, when gauged against those displayed by other endangered/Red-Listed reptiles [e.g., Loggerhead Sea Turtle (Caretta caretta)], are either comparable or markedly lower. Survival rate differs significantly between genders (femalesky islands. CWO is a rare organism in a unique environment, with a conserved niche and a predisposition towards extinction. It is a bellwether for the eventual climate-driven collapse of the Madrean pine-oak ecosystem, one of Earth's three recognized megadiversity centers.

  6. An evaluation of slug interference tests for aquifer characterization at the Hanford Site

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.; Thorne, P.D.

    1992-01-01

    Slug interference tests are conducted by instantaneously changing the water level in a well and monitoring the aquifer response at one or more observation wells. The applicability of this method for hydraulic characterization of a high permeability unconfined aquifer at the Hanford Site was evaluated. Analytical techniques were used to predict slug interference responses over a range of aquifer hydraulic conditions and observation well distances. This was followed by a field test of the proposed technique. The results showed that slug interference testing can be used to characterize aquifers having transmissivities up to 10 -1 m 2 /s compared to a maximum transmissivity of about 10 -3 m 2 /s for single-well slug tests. The amplitude of the pressure response measured at the observation well is primarily determined by aquifer storativity, while the time-lag of the pressure peak is mainly controlled by the transmissivity. Several recommendations are made optimizing the results of slug interference tests in higher permeability, unconfined to semiconfined aquifers

  7. Geochemistry and origins of mineralized waters in the Floridan aquifer system, northeastern Florida

    Science.gov (United States)

    Phelps, G.G.

    2001-01-01

    Increases in chloride concentration have been observed in water from numerous wells tapping the Floridan aquifer system in northeastern Florida. Although most increases have been in the eastern part of Duval County, Florida, no spatial pattern in elevated chloride concentrations is discernible. Possible sources of the mineralized water include modern seawater intrusion; unflushed Miocene-to-Pleistocene-age seawater or connate water in aquifer sediments; or mineralized water from deeper zones of the aquifer system or from formations beneath the Floridan aquifer system. The purpose of this study was to document the chemical and isotopic characteristics of water samples from various aquifer zones, and from geochemical and hydrogeologic data, to infer the source of the increased mineralization. Water samples were collected from 53 wells in northeastern Florida during 1997-1999. Wells tapped various zones of the aquifer including: the Fernandina permeable zone (FPZ), the upper zone of the Lower Floridan aquifer (UZLF), the Upper Floridan aquifer (UFA), and both the UFA and the UZLF. Water samples were analyzed for major ions and trace constituents and for isotopes of carbon, oxygen, hydrogen, sulfur, strontium, chlorine, and boron. Samples of rock from the aquifer were analyzed for isotopes of oxygen, carbon, and strontium. In general, water from various aquifer zones cannot be differentiated based on chemistry, except for water from FPZ wells. Major-ion concentrations vary as much within the upper zone of the Lower Floridan aquifer and the Upper Floridan aquifer as between these two zones. Simple models of mixing between fresh ground water and either modern seawater or water from the FPZ as a mineralized end member show that many water samples from the UZLF aquifer and the UFA are enriched in bicarbonate, calcium, magnesium, sulfate, fluoride, and silica and are depleted in sodium and potassium (as compared to concentrations predicted by simple mixing). Chemical mass

  8. Characterizing flow pathways in a sandstone aquifer: Tectonic vs sedimentary heterogeneities

    Science.gov (United States)

    Medici, G.; West, L. J.; Mountney, N. P.

    2016-11-01

    Sandstone aquifers are commonly assumed to represent porous media characterized by a permeable matrix. However, such aquifers may be heavy fractured when rock properties and timing of deformation favour brittle failure and crack opening. In many aquifer types, fractures associated with faults, bedding planes and stratabound joints represent preferential pathways for fluids and contaminants. In this paper, well test and outcrop-scale studies reveal how strongly lithified siliciclastic rocks may be entirely dominated by fracture flow at shallow depths (≤ 180 m), similar to limestone and crystalline aquifers. However, sedimentary heterogeneities can primarily control fluid flow where fracture apertures are reduced by overburden pressures or mineral infills at greater depths. The Triassic St Bees Sandstone Formation (UK) of the East Irish Sea Basin represents an optimum example for study of the influence of both sedimentary and tectonic aquifer heterogeneities in a strongly lithified sandstone aquifer-type. This fluvial sedimentary succession accumulated in rapidly subsiding basins, which typically favours preservation of complete depositional cycles including fine grained layers (mudstone and silty sandstone) interbedded in sandstone fluvial channels. Additionally, vertical joints in the St Bees Sandstone Formation form a pervasive stratabound system whereby joints terminate at bedding discontinuities. Additionally, normal faults are present through the succession showing particular development of open-fractures. Here, the shallow aquifer (depth ≤ 180 m) was characterized using hydro-geophysics. Fluid temperature, conductivity and flow-velocity logs record inflows and outflows from normal faults, as well as from pervasive bed-parallel fractures. Quantitative flow logging analyses in boreholes that cut fault planes indicate that zones of fault-related open fractures characterize 50% of water flow. The remaining flow component is dominated by bed-parallel fractures

  9. Model selection in kernel ridge regression

    DEFF Research Database (Denmark)

    Exterkate, Peter

    2013-01-01

    Kernel ridge regression is a technique to perform ridge regression with a potentially infinite number of nonlinear transformations of the independent variables as regressors. This method is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable in many different contexts....... The influence of the choice of kernel and the setting of tuning parameters on forecast accuracy is investigated. Several popular kernels are reviewed, including polynomial kernels, the Gaussian kernel, and the Sinc kernel. The latter two kernels are interpreted in terms of their smoothing properties......, and the tuning parameters associated to all these kernels are related to smoothness measures of the prediction function and to the signal-to-noise ratio. Based on these interpretations, guidelines are provided for selecting the tuning parameters from small grids using cross-validation. A Monte Carlo study...

  10. Observation of pressure ridges in SAR images of sea ice: Scattering theory and comparison with observations

    Science.gov (United States)

    Vesecky, J. F.; Daida, J. M.; Shuchman, R. A.; Onstott, R. H.; Camiso, J. C.

    1993-01-01

    Ridges and keels (hummocks and bummocks) in sea ice flows are important in sea ice research for both scientific and practical reasons. Sea ice movement and deformation is driven by internal and external stresses on the ice. Ridges and keels play important roles in both cases because they determine the external wind and current stresses via drag coefficients. For example, the drag coefficient over sea ice can vary by a factor of several depending on the fluid mechanical roughness length of the surface. This roughness length is thought to be strongly dependent on the ridge structures present. Thus, variations in ridge and keel structure can cause gradients in external stresses which must be balanced by internal stresses and possibly fracture of the ice. Ridging in sea ice is also a sign of fracture. In a practical sense, large ridges form the biggest impediment to surface travel over the ice or penetration through sea ice by ice-strengthened ships. Ridges also play an important role in the damage caused by sea ice to off-shore structures. Hence, observation and measurement of sea ice ridges is an important component of sea ice remote sensing. The research reported here builds on previous work, estimating the characteristics of ridges and leads in sea ice from SAR images. Our objective is to develop methods for quantitative measurement of sea ice ridges from SAR images. To make further progress, in particular, to estimate ridge height, a scattering model for ridges is needed. Our research approach for a ridge scattering model begins with a survey of the geometrical properties of ridges and a comparison with the characteristics of the surrounding ice. For this purpose we have used airborne optical laser (AOL) data collected during the 1987 Greenland Sea Experiment. These data were used to generate a spatial wavenumber spectrum for height variance for a typical ridge - the typical ridge is the average over 10 large ridges. Our first-order model radar scattering includes

  11. Geochemical processes in a calcareous sandstone aquifer during managed aquifer recharge with desalinated seawater

    Science.gov (United States)

    Ganot, Yonatan; Russak, Amos; Siebner, Hagar; Bernstein, Anat; Katz, Yoram; Guttman, Jospeh; Kurtzman, Daniel

    2017-04-01

    In the last three years we monitor Managed Aquifer Recharge (MAR) of post-treated desalinated seawater (PTDES) in an infiltration pond, at the Menashe site that overlies the northern part of the Israeli Coastal Aquifer. The PTDES are stabilized with CaCO3 during post-treatment in the desalination plant and their chemical composition differs from those of any other water recharged to the aquifer and of the natural groundwater. We use suction cups in the unsaturated zone, shallow observation wells within the pond and production wells that encircles the MAR Menashe site, to study the geochemical processes during MAR with PTDES. Ion-enrichment (remineralization) of the recharged water was observed in both unsaturated zone and shallow observation wells samples. Enrichment occurs mainly in the first few meters below the pond surface by ion-exchange processes. Mg2+ enrichment is most prominent due to its deficiency in the PTDES. It is explained by ion-exchange with Ca2+, as the PTDES (enriched with Ca2+) infiltrates through a calcareous-sandstone aquifer with various amount of adsorbed Mg2+ (3-27 meq/kg). Hence, the higher concentration of Ca+2 in the PTDES together with its higher affinity to the sediments promotes the release of Mg2+ ions to the recharged water. Water isotopes analysis of the production wells were used to estimate residence time and mixing with local groundwater. At the end of 2016, it was found that the percentage of PTDES in adjacent down-gradient production wells was around 10%, while more distant or up-gradient wells show no mixing with PTDES. The distinct isotope contrast between the recharged desalinated seawater (δ2H=+11.2±0.2‰) and the local groundwater (δ2H ranged from -22.7 to -16.7‰) is a promising tool to evaluate future mixing processes at the Menshae MAR site. Using the Menashe MAR system for remineralization could be beneficial as a primary or complementary post-treatment technique. However, the sustainability of this process is

  12. Wetland Survey of Selected Areas in the Oak Ridge Y-12 Plant Area of Responsibilty, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Rosensteel.

    1997-01-01

    This document was prepared to summarize wetland surveys performed in the Y- 1 2 Plant area of responsibility in June and July 1994. Wetland surveys were conducted in three areas within the Oak Ridge Y- 12 Plant area of responsibility in June and July 1994: the Upper East Fork Poplar Creek (UEFPC) Operable Unit (OU), part of the Bear Creek Valley OU (the upper watershed of Bear Creek from the culvert under Bear Creek Road upstream through the Y-12 West End Environmental Management Area, and the catchment of Bear Creek North Tributary 1), and part of Chestnut Ridge OU 2 (the McCoy Branch area south of Bethel Valley Road). Using the criteria and methods set forth in the Wetlands Delineation Manual, 18 wetland areas were identified in the 3 areas surveyed; these areas were classified according to the system developed by Cowardin. Fourteen wetlands and one wetland/pond area that are associated with disturbed or remnant stream channels and seeps were identified in the UEFPC OU. Three wetlands were identified in the Bear Creek Valley OU portion of the survey area. One wetland was identified in the riparian zone of McCoy Branch in the southern portion of Chestnut Ridge OU 2

  13. Effects of ridge and furrow rainfall harvesting system on Elymus ...

    African Journals Online (AJOL)

    ARL

    2012-05-10

    May 10, 2012 ... A ridge-furrow rainfall harvesting system (RFRHS) was designed to increase the available soil water for .... The solar energy passed through the plastic-film and heated up the air and the surface soil of ridge and then the heat was trapped by the greenhouse effect (Zhou et al., 2009). Meanwhile, the.

  14. Retrospective success and survival rates of dental implants placed after a ridge preservation procedure.

    Science.gov (United States)

    Apostolopoulos, Peter; Darby, Ivan

    2017-04-01

    Ridge preservation is any procedure that takes place at the time of, or shortly after an extraction, to minimise resorption of the ridge and maximise bone formation within the socket. The aim of this project is to investigate the outcome of implant treatment following ridge preservation and compare it to an ungrafted implant control group. Following ethics approval, an electronic and manual search of patient records was conducted, and appropriate cases of implant placement following a ridge preservation procedure were identified. Forty-two patients with 51 implants at ridge-preserved sites were examined by one author (PA) with the following parameters assessed at each implant: pocket probing depth, bleeding on probing, presence/absence of plaque and radiographic bone loss. Clinical and radiographic findings were compared to an ungrafted implant control group and analysed by years in function. There was a 100% survival rate of implants in ridge-preserved sites. In the majority of cases, ridge preservation was performed in the anterior maxilla with a flap raised and the use of deproteinised bovine bone mineral and collagen membrane materials. The mean time in function was 31 (±24) months with a range of 2-102 months. Differences in the mean PPD, BOP, plaque index and radiographic bone loss were not statistically significant between implants at ridge-preserved or ungrafted sites. The overall success rate was around 58% for ungrafted implants and around 51% for implants in ridge-preserved sites. However, this difference was not statistically significant. In this retrospective study, implant placement at ridge-preserved sites was a predictable procedure that led to very high survival rates and similar success rates to implant placement at ungrafted sites. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Curvilinear ridges and related features in southwest Cydonia Mensae, Mars

    Science.gov (United States)

    Parker, Timothy J.; Schneeberger, Dale M.; Pieri, David C.; Saunders, R. Stephen

    1987-01-01

    Examined is a region on Mars in southwest Cydonia Mensae (32 deg lat., 17 deg long.) just northwest of the lowland/upland boundary escarpment. The dominant morphological features in this region are the clusters of large massifs and plateau outliers (PI), knobby material (K), and smooth lowland plains (Ps). Surrounding the clusters and linking many isolated knobs is a system of curvilinear ridges and arcuate terrain boundaries which tend to separate the massifs and knobs from the smooth plains. Curvilinear ridges are arcuate to nearly linear and smoother in plan than wrinkle ridges and show no apparent correlation with regional structural grain. They are typically 5 to 10 km long but can range from as little as 2 or 3 km to greater than 50 km long. The widths vary from about 100 m to as much as 2 km. Curvilinear ridges are most numerous within 100 km of the lowland/upland boundary escarpment and are associated with massifs and knobby terrain. Arcuate terrain boundaries appear between units of different apparent albedo or arcuate breaks in slope.

  16. Ridge Width Correlations between Inked Prints and Powdered Latent Fingerprints.

    Science.gov (United States)

    De Alcaraz-Fossoul, Josep; Barrot-Feixat, Carme; Zapico, Sara C; Mancenido, Michelle; Broatch, Jennifer; Roberts, Katherine A; Carreras-Marin, Clara; Tasker, Jack

    2017-10-03

    A methodology to estimate the time of latent fingerprint deposition would be of great value to law enforcement and courts. It has been observed that ridge topography changes as latent prints age, including the widths of ridges that could be measured as a function of time. Crime suspects are commonly identified using fingerprint databases that contain reference inked tenprints (flat and rolled impressions). These can be of interest in aging studies as they provide baseline information relating to the original (nonaged) ridges' widths. In practice, the age of latent fingerprints could be estimated following a comparison process between the evidentiary aged print and the corresponding reference inked print. The present article explores possible correlations between inked and fresh latent fingerprints deposited on different substrates and visualized with TiO 2 . The results indicate that the ridge width of flat inked prints is most similar to fresh latent fingerprints , and these should be used as the comparison standard for future aging studies. © 2017 American Academy of Forensic Sciences.

  17. Department of Energy Environmental Management Plan for Oak Ridge Reservation

    International Nuclear Information System (INIS)

    1984-01-01

    The Environmental Program Management Plan for the Oak Ridge Complex was prepared in response to recommendations made at the Congressional hearing held in Oak Ridge on July 11, 1983, to discuss the extent and impact of mercury and other pollutants from DOE's Oak Ridge facilities. While this is a planning document and not a commitment of funds, this effort will help to focus DOE resources toward resolving environmental problems at Oak Ridge in a timely and cost-effective manner. The plan includes: (1) an environmental planning basis; (2) a brief description of the problems and proposed resolutions for each plant; (3) research and development requirements and funding schedules; (4) funding schedule summaries; and (5) continuing analyses and unresolved issues. The planning basis provides the foundation for identifying the environmental problems and their potential resolutions. While applicable environmental standards must be met, there is considerable latitude for interpretation of existing regulations and projection of future requirements. This latitude can have a significant impact on funding and scheduling. 11 figures, 8 tables

  18. Work plan for the Oak Ridge Reservation ecological monitoring and assessment program

    International Nuclear Information System (INIS)

    Ashwood, T.L.; Sample, B.E.; Suter, G.W. II; Turner, M.G.; Loar, J.M.; Barnthouse, L.W.

    1994-08-01

    This plan describes an approach for developing an ecological monitoring and assessment program (EMAP) for the US Department of Energy's (DOE's) Oak Ridge Reservation (ORR). Such a program is required to assess existing ecological risks, to predict changes in those ecological risks from proposed remedial actions, and to monitor the effectiveness of remedial actions in reducing ecological risks. Ecological risk assessments must be based on Reservation-level data for those widespread or wide-ranging plant and animal species that occupy the entire ORR. In recognition of this need, Region 4 of the US Environmental Protection Agency has specifically requested that DOE develop a Reservation-wide monitoring and assessment program. The current strategy distinguishes four types of potentially contaminated areas: (1) source operable units (OUs), which may contain waste disposal areas, (2) groundwater aquifers that are potentially contaminated by source OUs, (3) aquatic integrator OUs which are streams and associated floodplains that drain source OUs, and (4) the terrestrial integrator, which encompasses the Reservation. Source OUs may contain sources of contamination that potentially impact local plant and animal population and communities that are restricted to the areal extent of the OU. Such local impacts must be assessed for each OU. However, these source OUs also contribute to risks within the aquatic OUs and within the Reservation-wide terrestrial ecosystem. Therefore, remedial investigations at source OUs must provide data necessary to support ecological risk assessments at the larger scales

  19. Water-quality observations of the San Antonio segment of the Edwards aquifer, Texas, with an emphasis on processes influencing nutrient and pesticide geochemistry and factors affecting aquifer vulnerability, 2010–16

    Science.gov (United States)

    Opsahl, Stephen P.; Musgrove, MaryLynn; Mahler, Barbara J.; Lambert, Rebecca B.

    2018-06-07

    As questions regarding the influence of increasing urbanization on water quality in the Edwards aquifer are raised, a better understanding of the sources, fate, and transport of compounds of concern in the aquifer—in particular, nutrients and pesticides—is needed to improve water management decision-making capabilities. The U.S. Geological Survey, in cooperation with the San Antonio Water System, performed a study from 2010 to 2016 to better understand how water quality changes under a range of hydrologic conditions and in contrasting land-cover settings (rural and urban) in the Edwards aquifer. The study design included continuous hydrologic monitoring, continuous water-quality monitoring, and discrete sample collection for a detailed characterization of water quality at a network of sites throughout the aquifer system. The sites were selected to encompass a “source-to-sink” (that is, from aquifer recharge to aquifer discharge) approach. Network sites were selected to characterize rainfall, recharging surface water, and groundwater; groundwater sites included wells in the unconfined part of the aquifer (unconfined wells) and in the confined part of the aquifer (confined wells) and a major discharging spring. Storm-related samples—including rainfall samples, stormwater-runoff (surface-water) samples, and groundwater samples—were collected to characterize the aquifer response to recharge.Elevated nitrate concentrations relative to national background values and the widespread detection of pesticides indicate that the Edwards aquifer is vulnerable to contamination and that vulnerability is affected by factors such as land cover, aquifer hydrogeology, and changes in hydrologic conditions. Greater vulnerability of groundwater in urban areas relative to rural areas was evident from results for urban groundwater sites, which generally had higher nitrate concentrations, elevated δ15N-nitrate values, a greater diversity of pesticides, and higher pesticide

  20. Detailed analysis of a RCRA landfill for the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-04-01

    The purpose of this detailed analysis is to provide a preliminary compilation of data, information, and estimated costs associated with a RCRA landfill alternative for UNC Disposal Site. This is in response to Environmental Protection Agency (EPA) comment No. 6 from their review of a open-quotes Feasibility Study for the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee.close quotes

  1. Similar sediment provenance of low and high arsenic aquifers in Bangladesh

    Science.gov (United States)

    Zheng, Y.; Yang, Q.; Li, S.; Hemming, S. R.; Zhang, Y.; Rasbury, T.; Hemming, G.

    2017-12-01

    Geogenic arsenic (As) in drinking water, especially in groundwater, is estimated to have affected the health of over 100 million people worldwide, with nearly half of the total at risk population in Bangladesh. Sluggish flow and reducing biogeochemical environment in sedimentary aquifers have been shown as the primary controls for the release of As from sediment to the shallower groundwater in the Holocene aquifer. In contrast, deeper groundwater in the Pleistocene aquifer is depleted in groundwater As and sediment-extractable As. This study assesses the origin of the sediment in two aquifers of Bangladesh that contain distinctly different As levels to ascertain whether the source of the sediment is a factor in this difference through measurements of detrital mica Ar-Ar age, detrital zircon U-Pb age, as well as sediment silicate Sr and Nd isotopes. Whole rock geochemical data were also used to illuminate the extent of chemical weathering. Detrital mica 40Ar/39Ar cooling ages and detrital zircon U-Pb ages show no statistical difference between high-As Holocene sediment and low-As Pleistocene sediment, but suggest an aquifer sediment source of both the Brahmaputra and the Ganges rivers. Silicate 87Sr/86Sr and 143Nd/144Nd further depict a major sediment source from the Brahmaputra river, which is supported by a two end member mixing model using 87Sr/86Sr and Sr concentrations. Pleistocene and Holocene sediments show little difference in weathering of mobile elements including As, while coarser sediments and a longer history of the Pleistocene aquifer suggest that sorting and flushing play more important roles in regulating the contrast of As occurrence between these two aquifers.

  2. Environmental Compliance and Protection Program Description Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Jacobs

    2009-02-26

    The objective of the Environmental Compliance and Protection (EC and P) Program Description (PD) is to establish minimum environmental compliance requirements and natural resources protection goals for the Bechtel Jacobs Company LLC (BJC) Oak Ridge Environmental Management Cleanup Contract (EMCC) Contract Number DE-AC05-98OR22700-M198. This PD establishes the work practices necessary to ensure protection of the environment during the performance of EMCC work activities on the US Department of Energy's (DOE's) Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee, by BJC employees and subcontractor personnel. Both BJC and subcontractor personnel are required to implement this PD. A majority of the decontamination and demolition (D and D) activities and media (e.g., soil and groundwater) remediation response actions at DOE sites on the ORR are conducted under the authority of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). CERCLA activities are governed by individual CERCLA decision documents (e.g., Record of Decision [ROD] or Action Memorandum) and according to requirements stated in the Federal Facility Agreement for the Oak Ridge Reservation (DOE 1992). Applicable or relevant and appropriate requirements (ARARs) for the selected remedy are the requirements for environmental remediation responses (e.g., removal actions and remedial actions) conducted under CERCLA.

  3. Phase 2 Sampling Plan for Chestnut Ridge Operable Unit 2 (Filled Coal Ash Pond/Upper McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-08-01

    CDM Federal Programs Corporation (CDM Federal) was contracted by Martin Marietta Energy Systems, Inc. to prepare a Phase H Sampling Plan to describe field investigation work necessary to address regulatory agency review comments on the Remedial Investigation of Filled Coal Ash Pond (FCAP)/Upper McCoy Branch, Chestnut Ridge Operable Unit 2 at the Y-12 Plant, conducted by CH2M Hill in 1990. The scope and approach of the field investigation described in this plan specifically focus on deficiencies noted by the regulators in discussions at the comment resolution meeting of May 8, 1992, in Oak Ridge, Tennessee. This Phase II Sampling Plan includes a field sampling plan, a field and laboratory quality assurance project plan, a health and safety plan, a waste management plan, and appendixes providing an update to applicable or relevant and appropriate requirements for this site and field and laboratory testing methods and procedures. To address deficiencies noted by the regulators, the following activities will be conducted: Background surface soil and surface water/sediment samples will be collected based on statistical considerations for comparison to site data. Existing and new data to be collected will be used to support a human health risk assessment that includes the future homesteader scenario. Biological surveys, samples, and measurements will be collected/conducted to augment existing data and support an ecological risk assessment. Another round of groundwater sampling will be conducted, including on-site wells and the wells on Chestnut Ridge downgradient of the Security Pits. Borings will be completed in the FCAP to collect samples from below the surface depth to describe the chemical characteristics and volume of the ash. The volume of ash associated with sluice channel on Chestnut Ridge will be determined. Soil samples will be corrected below the coal ash in the FCAP and adjacent to sluice channel to evaluate soil contamination and migration of contaminants

  4. Origin and structures of groundwater humic substances from three Danish aquifers

    DEFF Research Database (Denmark)

    Grøn, C.; Wassenaar, L.; Krog, M.

    1996-01-01

    and halogens, hydrolyzable amino acids and carbohydrates, carbon isotopes) applied to aquatic humic and fulvic acids led to consistent structural interpretations for each of the three aquifers studied. For humic substances in two-aquifers, the analyses suggested source rocks in agreement with geological......Structural, chemical, and isotopic parameters were used to identify the origins of groundwater humic substances from three Danish aquifers. A variety of analytical techniques (visible light absorption, molecular weight distribution, C-13-NMR spectroscopy, elemental composition with major elements...

  5. Site characterization summary report for dry weather surface water sampling upper East Fork Poplar Creek characterization area Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This report describes activities associated with conducting dry weather surface water sampling of Upper East Fork Poplar Creek (UEFPC) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. This activity is a portion of the work to be performed at UEFPC Operable Unit (OU) 1 [now known as the UEFPC Characterization Area (CA)], as described in the RCRA Facility Investigation Plan for Group 4 at the Oak- Ridge Y-12 Plant, Oak Ridge, Tennessee and in the Response to Comments and Recommendations on RCRA Facility Investigation Plan for Group 4 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Volume 1, Operable Unit 1. Because these documents contained sensitive information, they were labeled as unclassified controlled nuclear information and as such are not readily available for public review. To address this issue the U.S. Department of Energy (DOE) published an unclassified, nonsensitive version of the initial plan, text and appendixes, of this Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) Plan in early 1994. These documents describe a program for collecting four rounds of wet weather and dry weather surface water samples and one round of sediment samples from UEFPC. They provide the strategy for the overall sample collection program including dry weather sampling, wet weather sampling, and sediment sampling. Figure 1.1 is a schematic flowchart of the overall sampling strategy and other associated activities. A Quality Assurance Project Plan (QAPJP) was prepared to specifically address four rounds of dry weather surface water sampling and one round of sediment sampling. For a variety of reasons, sediment sampling has not been conducted and has been deferred to the UEFPC CA Remedial Investigation (RI), as has wet weather sampling.

  6. The Oak Ridge Reservation Annual Site Environmental Report, 2007

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Joan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thompson, Sharon [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Page, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2008-09-30

    The Oak Ridge Reservation (ORR) consists of three major government-owned, contractor-operated facilities: the Y-12 National Security Complex, Oak Ridge National Laboratory, and East Tennessee Technology Park. The ORR was established in the early 1940s as part of the Manhattan Project, a secret undertaking that produced materials for the first atomic bombs. The reservation’s role has evolved over the years, and it continues to adapt to meet the changing defense, energy, and research needs of the United States. Both the work carried out for the war effort and subsequent research, development, and production activities have involved, and continue to involve, the use of radiological and hazardous materials. The Oak Ridge Reservation Annual Site Environmental Report and supporting data are available at Http://www.ornl.gov/sci/env_rpt or from the project director.

  7. Use of computer programs STLK1 and STWT1 for analysis of stream-aquifer hydraulic interaction

    Science.gov (United States)

    Desimone, Leslie A.; Barlow, Paul M.

    1999-01-01

    Quantifying the hydraulic interaction of aquifers and streams is important in the analysis of stream base fow, flood-wave effects, and contaminant transport between surface- and ground-water systems. This report describes the use of two computer programs, STLK1 and STWT1, to analyze the hydraulic interaction of streams with confined, leaky, and water-table aquifers during periods of stream-stage fuctuations and uniform, areal recharge. The computer programs are based on analytical solutions to the ground-water-flow equation in stream-aquifer settings and calculate ground-water levels, seepage rates across the stream-aquifer boundary, and bank storage that result from arbitrarily varying stream stage or recharge. Analysis of idealized, hypothetical stream-aquifer systems is used to show how aquifer type, aquifer boundaries, and aquifer and streambank hydraulic properties affect aquifer response to stresses. Published data from alluvial and stratifed-drift aquifers in Kentucky, Massachusetts, and Iowa are used to demonstrate application of the programs to field settings. Analytical models of these three stream-aquifer systems are developed on the basis of available hydrogeologic information. Stream-stage fluctuations and recharge are applied to the systems as hydraulic stresses. The models are calibrated by matching ground-water levels calculated with computer program STLK1 or STWT1 to measured ground-water levels. The analytical models are used to estimate hydraulic properties of the aquifer, aquitard, and streambank; to evaluate hydrologic conditions in the aquifer; and to estimate seepage rates and bank-storage volumes resulting from flood waves and recharge. Analysis of field examples demonstrates the accuracy and limitations of the analytical solutions and programs when applied to actual ground-water systems and the potential uses of the analytical methods as alternatives to numerical modeling for quantifying stream-aquifer interactions.

  8. Quantification of the reactions in heat storage systems in the Malm aquifer

    Science.gov (United States)

    Ueckert, Martina; Baumann, Thomas

    2017-04-01

    Combined heat and power plants (CHP) are efficient and environmentally friendly because excess heat produced during power generation is used for heating purposes. While the power demand remains rather constant throughout the year, the heat demand shows seasonal variations. In a worst-case scenario, the heat production in winter is not sufficient, and the power production in summer has to be ramped down because the excess heat cannot be released to the environment. Therefore, storage of excess heat of CHP is highly beneficial from an economic and an ecological point of view. Aquifer thermal energy storage (ATES) is considered as a promising technology for energy storage. In a typical setting, water from an aquifer is produced, heated up by excess heat from the CHP and injected through a second borehole back into the aquifer. The carbonate rocks of the upper Jurrasic in the Molasse Basin seem to be promising sites for aquifer heat storage because of their high transmissivity combined with a typical geological setting with tight caprock. However, reactions in the aquifer cannot be neglected and may become the limiting process of the whole operation. While there have been several studies performed in clastic aquifers and for temperatures below 100°C, the knowledge about high injection temperatures and storage into a carbonatic aquifer matrix is still limited. Within a research project funded by the Bavarian State Ministry for Economic Affairs and the BMW Group, the storage and recuperation of excess heat energy into the Bavarian Malm aquifer with flow rates of 15 L/s and temperatures of up to 110°C was investigated. The addition of {CO_2} was used to prevent precipitations. Data from the field site was backed up by autoclave experiments and used to verify a conceptional hydrogeochemical model with PhreeqC for the heat storage operation. The model allows to parametrize the operation and to predict possible reactions in the aquifer.

  9. Quality of groundwater in the Denver Basin aquifer system, Colorado, 2003-5

    Science.gov (United States)

    Musgrove, MaryLynn; Beck, Jennifer A.; Paschke, Suzanne; Bauch, Nancy J.; Mashburn, Shana L.

    2014-01-01

    Groundwater resources from alluvial and bedrock aquifers of the Denver Basin are critical for municipal, domestic, and agricultural uses in Colorado along the eastern front of the Rocky Mountains. Rapid and widespread urban development, primarily along the western boundary of the Denver Basin, has approximately doubled the population since about 1970, and much of the population depends on groundwater for water supply. As part of the National Water-Quality Assessment Program, the U.S. Geological Survey conducted groundwater-quality studies during 2003–5 in the Denver Basin aquifer system to characterize water quality of shallow groundwater at the water table and of the bedrock aquifers, which are important drinking-water resources. For the Denver Basin, water-quality constituents of concern for human health or because they might otherwise limit use of water include total dissolved solids, fluoride, sulfate, nitrate, iron, manganese, selenium, radon, uranium, arsenic, pesticides, and volatile organic compounds. For the water-table studies, two monitoring-well networks were installed and sampled beneath agricultural (31 wells) and urban (29 wells) land uses at or just below the water table in either alluvial material or near-surface bedrock. For the bedrock-aquifer studies, domestic- and municipal-supply wells completed in the bedrock aquifers were sampled. The bedrock aquifers, stratigraphically from youngest (shallowest) to oldest (deepest), are the Dawson, Denver, Arapahoe, and Laramie-Fox Hills aquifers. The extensive dataset collected from wells completed in the bedrock aquifers (79 samples) provides the opportunity to evaluate factors and processes affecting water quality and to establish a baseline that can be used to characterize future changes in groundwater quality. Groundwater samples were analyzed for inorganic, organic, isotopic, and age-dating constituents and tracers. This report discusses spatial and statistical distributions of chemical constituents

  10. Characteristics of Southern California coastal aquifer systems

    Science.gov (United States)

    Edwards, B.D.; Hanson, R.T.; Reichard, E.G.; Johnson, T.A.

    2009-01-01

    Most groundwater produced within coastal Southern California occurs within three main types of siliciclastic basins: (1) deep (>600 m), elongate basins of the Transverse Ranges Physiographic Province, where basin axes and related fluvial systems strike parallel to tectonic structure, (2) deep (>6000 m), broad basins of the Los Angeles and Orange County coastal plains in the northern part of the Peninsular Ranges Physiographic Province, where fluvial systems cut across tectonic structure at high angles, and (3) shallow (75-350 m), relatively narrow fluvial valleys of the generally mountainous southern part of the Peninsular Ranges Physiographic Province in San Diego County. Groundwater pumped for agricultural, industrial, municipal, and private use from coastal aquifers within these basins increased with population growth since the mid-1850s. Despite a significant influx of imported water into the region in recent times, groundwater, although reduced as a component of total consumption, still constitutes a significant component of water supply. Historically, overdraft from the aquifers has caused land surface subsidence, flow between water basins with related migration of groundwater contaminants, as well as seawater intrusion into many shallow coastal aquifers. Although these effects have impacted water quality, most basins, particularly those with deeper aquifer systems, meet or exceed state and national primary and secondary drinking water standards. Municipalities, academicians, and local water and governmental agencies have studied the stratigraphy of these basins intensely since the early 1900s with the goals of understanding and better managing the important groundwater resource. Lack of a coordinated effort, due in part to jurisdictional issues, combined with the application of lithostratigraphic correlation techniques (based primarily on well cuttings coupled with limited borehole geophysics) have produced an often confusing, and occasionally conflicting

  11. Hydraulic conductivities of fractures and matrix in Slovenian carbonate aquifers

    Directory of Open Access Journals (Sweden)

    Timotej Verbovšek

    2008-12-01

    Full Text Available Hydraulic conductivities and specific storage coefficients of fractures and matrix in Slovenian carbonate aquifers were determined by Barker’s method for pumping test analysis, based on fractional flow dimension. Values are presented for limestones and mainly for dolomites, and additionally for separate aquifers, divided by age andlithology in several groups. Data was obtained from hydrogeological reports for 397 water wells, and among these, 79 pumping tests were reinterpreted. Hydraulic conductivities of fractures are higher than the hydraulic conductivities of matrix, and the differences are highly statistically significant. Likewise, differences are significant for specific storage, and the values of these coefficients are higher in the matrix. Values of all coefficients vary in separate aquifers, and the differences can be explained by diagenetic effects, crystal size, degree of fracturing, andcarbonate purity. Comparison of the methods, used in the reports, and the Barker’s method (being more suitable for karstic and fractured aquifers, shows that the latter fits real data better.

  12. Geohydrologic units and water-level conditions in the Terrace alluvial aquifer and Paluxy Aquifer, May 1993 and February 1994, near Air Force Plant 4, Fort Worth area, Texas

    Science.gov (United States)

    Rivers, Glen A.; Baker, Ernest T.; Coplin, L.S.

    1996-01-01

    The terrace alluvial aquifer underlying Air Force Plant 4 and the adjacent Naval Air Station (formerly Carswell Air Force Base) in the Fort Worth area, Texas, is contaminated locally with organic and metal compounds. Residents south and west of Air Force Plant 4 and the Naval Air Station are concerned that contaminants might enter the underlying Paluxy aquifer, which provides water to the city of White Settlement, south of Air Force Plant 4, and to residents west of Air Force Plant 4. The U.S. Environmental Protection Agency has qualified Air Force Plant 4 for Superfund cleanup. The pertinent geologic units include -A~rom oldest to youngest the Glen Rose, Paluxy, and Walnut Formations, Goodland Limestone, and terrace alluvial deposits. Except for the Glen Rose Formation, all units crop out at or near Air Force Plant 4 and the Naval Air Station. The terrace alluvial deposits, which nearly everywhere form the land surface, range from 0 to about 60 feet thick. These deposits comprise a mostly unconsolidated mixture of gravel, sand, silt, and clay. Mudstone and sandstone of the Paluxy Formation crop out north, west, and southwest of Lake Worth and total between about 130 and about 175 feet thick. The terrace alluvial deposits and the Paluxy Formation comprise the terrace alluvial aquifer and the Paluxy aquifer, respectively. These aquifers are separated by the Goodland-Walnut confining unit, composed of the Goodland Limestone and (or) Walnut Formation. Below the Paluxy aquifer, the Glen Rose Formation forms the Glen Rose confining unit. Water-level measurements during May 1993 and February 1994 from wells in the terrace alluvial aquifer indicate that, regionally, ground water flows toward the east-southeast beneath Air Force Plant 4 and the Naval Air Station. Locally, water appears to flow outward from ground-water mounds maintained by the localized infiltration of precipitation and reportedly by leaking water pipes and sanitary and (or) storm sewer lines beneath the

  13. Modeling the potential impact of seasonal and inactive multi-aquifer wells on contaminant movement to public water-supply wells

    Science.gov (United States)

    Johnson, R.L.; Clark, B.R.; Landon, M.K.; Kauffman, L.J.; Eberts, S.M.

    2011-01-01

    Wells screened across multiple aquifers can provide pathways for the movement of surprisingly large volumes of groundwater to confined aquifers used for public water supply (PWS). Using a simple numerical model, we examine the impact of several pumping scenarios on leakage from an unconfined aquifer to a confined aquifer and conclude that a single inactive multi-aquifer well can contribute nearly 10% of total PWS well flow over a wide range of pumping rates. This leakage can occur even when the multi-aquifer well is more than a kilometer from the PWS well. The contribution from multi-aquifer wells may be greater under conditions where seasonal pumping (e.g., irrigation) creates large, widespread downward hydraulic gradients between aquifers. Under those conditions, water can continue to leak down a multi-aquifer well from an unconfined aquifer to a confined aquifer even when those multi-aquifer wells are actively pumped. An important implication is that, if an unconfined aquifer is contaminated, multi-aquifer wells can increase the vulnerability of a confined-aquifer PWS well.

  14. The quality of our Nation's waters: water quality in the Mississippi embayment-Texas coastal uplands aquifer system and Mississippi River Valley alluvial aquifer, south-central United States, 1994-2008

    Science.gov (United States)

    Kingsbury, James A.; Barlow, Jeannie R.; Katz, Brian G.; Welch, Heather L.; Tollett, Roland W.; Fahlquist, Lynne S.

    2015-01-01

    About 8 million people rely on groundwater from the Mississippi embayment—Texas coastal uplands aquifer system for drinking water. The Mississippi River Valley alluvial aquifer also provides drinking water for domestic use in rural areas but is of primary importance to the region as a source of water for irrigation. Irrigation withdrawals from this aquifer are among the largest in the Nation and play a key role in the economy of the area, where annual crop sales total more than $7 billion. The reliance of the region on both aquifers for drinking water and irrigation highlights the importance of long-term management to sustain the availability and quality of these resources.

  15. On the migration of uranium isotopes in sandstone aquifers

    International Nuclear Information System (INIS)

    Froehlich, K.; Gellermann, R.

    1982-01-01

    Measurements of natural 238 U and 234 U activity in groundwater of sandstone aquifers have been used to study the migration of these uranium isotopes. Regarding the uranium exchange between liquid phase and rock surface during migration, two different models were applied for evaluating the experimental results. Values of corresponding parameters (retardation factor K, removal rate R) reflecting different behaviour concerning this exchange were determined. For example, the values obtained for 238 U in a Triassic sandstone aquifer of the GDR are K = 8.6 x 10 6 and R = 1.3 x 10 -3 a -1 , respectively. It was found that, under the conditions of the sandstone aquifer concerned, the removal rate model is better suited for calculating uranium-isotope migration in groundwater. (author)

  16. Water quality management of aquifer recharge using advanced tools.

    Science.gov (United States)

    Lazarova, Valentina; Emsellem, Yves; Paille, Julie; Glucina, Karl; Gislette, Philippe

    2011-01-01

    Managed aquifer recharge (MAR) with recycled water or other alternative resources is one of the most rapidly growing techniques that is viewed as a necessity in water-short areas. In order to better control health and environmental effects of MAR, this paper presents two case studies demonstrating how to improve water quality, enable reliable tracing of injected water and better control and manage MAR operation in the case of indirect and direct aquifer recharge. Two water quality management strategies are illustrated on two full-scale case studies, including the results of the combination of non conventional and advanced technologies for water quality improvement, comprehensive sampling and monitoring programs including emerging pollutants, tracer studies using boron isotopes and integrative aquifer 3D GIS hydraulic and hydrodispersive modelling.

  17. Implementation plan for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory under the Federal Facility Agreement, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-06-01

    Plans and schedules for meeting the Federal Facility Agreement (FFA) commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL) were initially submitted in ES/ER-17 ampersand D1, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. The information presented in the current document summarizes the progress that has been made to date and provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present the plans and schedules associated with the remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service. A comprehensive program is under way at ORNL to upgrade the LLLW system as necessary to meet the FFA requirements. The tank systems that are removed from service are being investigated and remediated through the CERCLA process. Waste and risk characterizations have been submitted. Additional data will be submitted to the US Environmental Protection Agency and the Tennessee Department of Environment and Conservation (EPA/TDEC) as tanks are taken out of service and as required by the remedial investigation/feasibility study (RI/FS) process. The plans and schedules for implementing the FFA compliance program that were originally submitted in ES/ER-17 ampersand D 1, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste tanks Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee, are updated in the present document. Chapter I provides general background information and philosophies that lead to the plans and schedules that appear in Chaps. 2 through 5

  18. Multi-scale nitrate transport in a sandstone aquifer system under intensive agriculture

    Science.gov (United States)

    Paradis, Daniel; Ballard, Jean-Marc; Lefebvre, René; Savard, Martine M.

    2018-03-01

    Nitrate transport in heterogeneous bedrock aquifers is influenced by mechanisms that operate at different spatial and temporal scales. To understand these mechanisms in a fractured sandstone aquifer with high porosity, a groundwater-flow and nitrate transport model—reproducing multiple hydraulic and chemical targets—was developed to explain the actual nitrate contamination observed in groundwater and surface water in a study area on Prince Edward Island, Canada. Simulations show that nitrate is leached to the aquifer year-round, with 61% coming from untransformed and transformed organic sources originating from fertilizers and manure. This nitrate reaches the more permeable shallow aquifer through fractures in weathered sandstone that represent only 1% of the total porosity (17%). Some of the nitrate reaches the underlying aquifer, which is less active in terms of groundwater flow, but most of it is drained to the main river. The river-water quality is controlled by the nitrate input from the shallow aquifer. Groundwater in the underlying aquifer, which has long residence times, is also largely influenced by the diffusion of nitrate in the porous sandstone matrix. Consequently, following a change of fertilizer application practices, water quality in domestic wells and the river would change rapidly due to the level of nitrate found in fractures, but a lag time of up to 20 years would be necessary to reach a steady level due to diffusion. This demonstrates the importance of understanding nitrate transport mechanisms when designing effective agricultural and water management plans to improve water quality.

  19. Resource Management Plan for the Oak Ridge Reservation: Volume 22, Resource information and site analysis for planning on the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Chance, W.W.

    1986-12-01

    The Department of Energy's (DOE's) Oak Ridge Reservation (ORR) consists of approximately 15,000 ha (37,000 acres) of federally owned lands; it contains three major facilities (Oak Ridge Gaseous Diffusion Plant, Oak Ridge National Laboratory, and the Oak Ridge Y-12 Plant) operated by a single contractor and a number of other facilities operated either by DOE or under contract to others. This report documents the various land use elements, land use constraints (physical, programmatic, and geopolitical), and site potential capabilities and provides current documentation of related data for making land use and site development decisions. The ORR has physical, programmatic, and geopolitical constraints that have been identified, measured, and mapped. The constraints and opportunities map was used to identify developable land areas. Many of these sites have only remote potential for meeting any planned needs for expansion of existing facilities. However, stand-alone research functions or other facilities are possible on these sites. These studied and measured findings lead to the conclusion that extreme care must be taken in the evaluation of future use or disposition of available land. Furthermore, it is time to consider and evaluate the feasibility for renewal. The potential for recycling lands formerly used by programs and functions that have been completed or terminated is very real, considering the age, condition, and obsolescence of these facilities.

  20. Oak Ridge Dose Reconstruction Project Summary Report; Reports of the Oak Ridge Dose Reconstruction, Vol. 7

    International Nuclear Information System (INIS)

    Widner, Thomas E.; email = twidner@jajoneses.com

    1999-01-01

    In the early 1990s, concern about the Oak Ridge Reservation's past releases of contaminants to the environment prompted Tennessee's public health officials to pursue an in-depth study of potential off-site health effects at Oak Ridge. This study, the Oak Ridge dose reconstruction, was supported by an agreement between the U.S. Department of Energy (DOE) and the State of Tennessee, and was overseen by a 12-member panel of individuals appointed by Tennessee's Commissioner of Health. The panel requested that the principal investigator for the project prepare the following report, ''Oak Ridge Dose Reconstruction Project Summary Report,'' to serve the following purposes: (1) summarize in a single, less technical report, the methods and results of the various investigations that comprised the Phase II of the dose reconstruction; (2) describe the systematic searching of classified and unclassified historical records that was a vital component of the project; and (3) summarize the less detailed, screening-level assessments that were performed to evaluate the potential health significance of a number of materials, such a uranium, whose priority did not require a complete dose reconstruction effort. This report describes each major step of the dose reconstruction study: (1) the review of thousands of historical records to obtain information relating to past operations at each facility; (2) estimation of the quantity and timing of releases of radioiodines from X-10, of mercury from Y-12, of PCB's from all facilities, and of cesium-137 and other radionuclides from White Oak Creek; (3) evaluation of the routes taken by these contaminants through the environment to nearby populations; and (4) estimation of doses and health risks to exposed groups. Calculations found the highest excess cancer risks for a female born in 1952 who drank goat milk; the highest non-cancer health risk was for children in a farm family exposed to PCBs in and near East Fork Poplar Creek. More detailed