Calculating transient rates from surveys
Carbone, Dario; Wijers, Ralph A M J; Rowlinson, Antonia
2016-01-01
We have developed a method to determine the transient surface density and transient rate for any given survey, using Monte-Carlo simulations. This method allows us to determine the transient rate as a function of both the flux and the duration of the transients in the whole flux-duration plane rather than one or a few points as currently available methods do. It is applicable to every survey strategy that is monitoring the same part of the sky, regardless the instrument or wavelength of the survey, or the target sources. We have simulated both top-hat and Fast Rise Exponential Decay light curves, highlighting how the shape of the light curve might affect the detectability of transients. Another application for this method is to estimate the number of transients of a given kind that are expected to be detected by a survey, provided that their rate is known.
Calculating transient rates from surveys
Carbone, D.; van der Horst, A. J.; Wijers, R. A. M. J.; Rowlinson, A.
2017-03-01
We have developed a method to determine the transient surface density and transient rate for any given survey, using Monte Carlo simulations. This method allows us to determine the transient rate as a function of both the flux and the duration of the transients in the whole flux-duration plane rather than one or a few points as currently available methods do. It is applicable to every survey strategy that is monitoring the same part of the sky, regardless the instrument or wavelength of the survey, or the target sources. We have simulated both top-hat and Fast Rise Exponential Decay light curves, highlighting how the shape of the light curve might affect the detectability of transients. Another application for this method is to estimate the number of transients of a given kind that are expected to be detected by a survey, provided that their rate is known.
Zhiming Yang
2016-01-01
Full Text Available The reliability of Very Large Scale Integration (VLSI circuits has become increasingly susceptible to transient faults induced by environmental noise with the scaling of technology. Some commonly used fault tolerance strategies require statistical methods to accurately estimate the fault rate in different parts of the logic circuit, and Monte Carlo (MC simulation is often applied to complete this task. However, the MC method suffers from impractical computation costs due to the size of the circuits. Furthermore, circuit aging effects, such as negative bias temperature instability (NBTI, will change the characteristics of the circuit during its lifetime, leading to a change in the circuit’s noise margin. This change will increase the complexity of transient fault rate estimation tasks. In this paper, an NBTI-aware statistical analysis method based on probability voltage transfer characteristics is proposed for combinational logic circuit. This method can acquire accurate fault rates using a discrete probability density function approximation process, thus resolving the computation cost problem of the MC method. The proposed method can also consider aging effects and analyze statistical changes in the fault rates. Experimental results demonstrate that, compared to the MC simulation, our method can achieve computation times that are two orders of magnitude shorter while maintaining an error rate less than 9%.
Schanstra, JP; Kingma, Jacob; Janssen, DB; Ornstein, RL
1997-01-01
We have studied the rate-determining step(s) in the conversion (k(cat)) of 1,2-dibromoethane by haloalkane dehalogenase, a bacterial enzyme involved in degradation of halogenated aliphatic compounds. Analysis of solvent kinetic isotope effects and stopped-flow fluorescence experiments with enzyme
Transient Error Data Analysis.
1979-05-01
Analysis is 3.2 Graphical Data Analysis 16 3.3 General Statistics and Confidence Intervals 1" 3.4 Goodness of Fit Test 15 4. Conclusions 31 Acknowledgements...MTTF per System Technology Mechanism Processor Processor MT IE . CMUA PDP-10, ECL Parity 44 hrs. 800-1600 hrs. 0.03-0.06 Cm* LSI-1 1, NMOS Diagnostics...OF BAD TIME ERRORS: 6 TOTAL NUMBER OF ENTRIES FOR ALL INPUT FILESs 18445 TIME SPAN: 1542 HRS., FROM: 17-Feb-79 5:3:11 TO: 18-1Mj-79 11:30:99
Computer Aided Transient Stability Analysis
Nihad M. Al-Rawi
2007-01-01
Full Text Available A program for handling and improving the transient stability of the Iraqi Super Grid electrical network was developed. The idea was demonstrated by applying it to the outages of the main generating units. The methodology was built upon a state of increasing power transfer through the healthy portion of network during disturbances. There were three parts concerned; the first part was the developing of the load flow program using fast decoupled method and the transient stability program using Modified Eulers method in the step by step solution, the second part was the engagement between the two programs, the third part was the application of the new program on the Iraqi supper grid network (400 kV.
Prony Analysis for Power System Transient Harmonics
Qi Li
2007-01-01
Full Text Available Proliferation of nonlinear loads in power systems has increased harmonic pollution and deteriorated power quality. Not required to have prior knowledge of existing harmonics, Prony analysis detects frequencies, magnitudes, phases, and especially damping factors of exponential decaying or growing transient harmonics. In this paper, Prony analysis is implemented to supervise power system transient harmonics, or time-varying harmonics. Further, to improve power quality when transient harmonics appear, the dominant harmonics identified from Prony analysis are used as the harmonic reference for harmonic selective active filters. Simulation results of two test systems during transformer energizing and induction motor starting confirm the effectiveness of the Prony analysis in supervising and canceling power system transient harmonics.
Transient loads analysis for space flight applications
Thampi, S. K.; Vidyasagar, N. S.; Ganesan, N.
1992-01-01
A significant part of the flight readiness verification process involves transient analysis of the coupled Shuttle-payload system to determine the low frequency transient loads. This paper describes a methodology for transient loads analysis and its implementation for the Spacelab Life Sciences Mission. The analysis is carried out using two major software tools - NASTRAN and an external FORTRAN code called EZTRAN. This approach is adopted to overcome some of the limitations of NASTRAN's standard transient analysis capabilities. The method uses Data Recovery Matrices (DRM) to improve computational efficiency. The mode acceleration method is fully implemented in the DRM formulation to recover accurate displacements, stresses, and forces. The advantages of the method are demonstrated through a numerical example.
Detecting Seismicity Rate Transients in the Hokkaido Corner
Llenos, A. L.; McGuire, J. J.; Ogata, Y.
2009-12-01
Transient aseismic processes alter the stress state of a region and can cause seismicity rate anomalies in space and time detectable by models such as the Epidemic Type Aftershock Sequence (ETAS) model (Ogata, 1988). The presence of such anomalies in subduction zones can therefore indicate stress changes are occurring due to processes such as afterslip or slow slip events. The Hokkaido corner in northeastern Japan is a good region to investigate these anomalies and their relationship to frictional conditions on the plate interface. This area consists of several asperities that rupture in great earthquakes such as the 2003 M8.3 Tokachi-oki earthquake. The abundance of high quality seismic and geodetic data for that event have led to the development of detailed coseismic and postseismic slip models (e.g., Yamanaka and Kikuchi, 2003; Miyazaki et al., 2004), from which stress changes can be inferred and compared to spatial and temporal variations in seismicity rate behavior. For example, an analysis of central Japan seismicity suggests that high aftershock productivities tend to cluster on the updip boundaries of major asperities (Ogata, 2005). Elevated stressing rates due to afterslip can also cause increased levels of background seismicity on the fault patches where afterslip is occurring. Therefore, mapping where these anomalies occur can lead to a better understanding of where and how stress is accumulating on the megathrust. We have developed a method that can directly map seismicity rate anomalies to the stressing rate changes due to aseismic processes. Because aftershocks often obscure changes in the background seismicity caused by these processes, we combine two models commonly used to estimate the time dependence of underlying driving mechanisms, the stochastic ETAS model and the physically based rate- and state-dependent friction model (Dieterich, 1994), into a single seismicity rate model that can explain both aftershock activity as well as changes in
Power System Transients Analysis by Wavelet Transforms
陈维荣; 宋永华; 赵蔚
2002-01-01
In contrast to Fourier transform, wavelet transform is especially suitable for transient analysis because of its time-frequency characteristics with automatically-adjusted window lengths. Research shows that wavelet transform is one of the most powerful tools for power system transient analysis. The basic ideas of wavelet transform are presented in the paper together with several power system applications. It is clear that wavelet transform has some clear advantages over other transforms in detecting, analyzing, and identifying various types of power system transients.
X33 Transient Liftoff Analysis
Peck, Jeff; Brunty, Joseph
2000-01-01
The successful design of a launch vehicle requires the careful characterization of the various loads the structure will experience over its lifetime. Many of the most demanding load environments occur during the launch/ascent phase of a mission, typically defined as the point of engine start through engine cut off. One of the critical events during the launch phase is the liftoff event. This event imparts high loads on the vehicle due to transient events such as thrust build-up and vehicle release. This paper describes the theory and procedures used to calculate structural loads due to the liftoff event for the Lockheed-Martin X33 technology demonstrator vehicle. These procedures were developed at NASA's Marshall Space Flight Center and verified previously on other advanced launch system concepts and the Space Shuttle system.
Transient Analysis of Hysteresis Queueing Model Using Matrix Geometric Method
Wajiha Shah
2011-10-01
Full Text Available Various analytical methods have been proposed for the transient analysis of a queueing system in the scalar domain. In this paper, a vector domain based transient analysis is proposed for the hysteresis queueing system with internal thresholds for the efficient and numerically stable analysis. In this system arrival rate of customer is controlled through the internal thresholds and the system is analyzed as a quasi-birth and death process through matrix geometric method with the combination of vector form Runge-Kutta numerical procedure which utilizes the special matrices. An arrival and service process of the system follows a Markovian distribution. We analyze the mean number of customers in the system when the system is in transient state against varying time for a Markovian distribution. The results show that the effect of oscillation/hysteresis depends on the difference between the two internal threshold values.
Ignition transient analysis of solid rocket motor
Han, Samuel S.
1991-01-01
Measurement data on the performance of Space Shuttle Solid Rocket Motor show wide variations in the head-end pressure changes and the total thrust build-up during the ignition transient periods. To analyze the flow and thermal behavior in the tested solid rocket motors, a 1-dimensional, ideal gas flow model via the SIMPLE algorithm was developed. Numerical results showed that burning patterns in the star-shaped head-end segment of the propellant and the erosive burning rate are two important factors controlling the ignition transients. The objective of this study is to extend the model to include the effects of aluminum particle commonly used in solid propellants. To treat the effects of aluminum-oxide particles in the combustion gas, conservation of mass, momentum, and energy equations for the particles are added in the numerical formulation and integrated by an inter-phase-slip algorithm.
Rates and singlet/triplet ratios from TADF transients
Nelson, Mitchell C
2016-01-01
Thermally activated delayed fluorescence has been reported in a number of OLED emitter materials engineered to have low singlet-triplet energy gaps. Here we derive closed solutions for steady state and transient behaviors and apply these results to data provided in recent reports. Earlier work has used yields, rates and a supplied forward crossing rate to estimate the reverse crossing rate and then obtain the singlet-triplet energy gap in a log-linear fit. In this work we use only the system relaxation times and obtain all five of the system constants: the singlet and triplet relaxation rates, the forward and reverse crossing rates and the singlet-triplet energy gap. These are then used to calculate the fluorescent/phosphorescent ratio and the singlet/triplet population ratio. Good fits are obtained for data from 4CzIPN and from the excimer m-MTDATA:t-Bu-PBD and the results appear to be consistent with the reported behaviors of OLEDS using these materials.
GTRAN- TRANSIENT ANALYSIS OF GAS PIPING SYSTEMS
TROVILLION T A
1994-01-01
The GTRAN program was developed to solve transient, as well as steady state, problems for gas piping systems. GTRAN capabilities allow for the analysis of a variety of system configurations and components. These include: multiple pipe junctions; valves that change position with time; fixed restrictions (orifices, manual valves, filters, etc.); relief valves; constant pressure sources; and heat transfer for insulated piping and piping subjected to free or forced convection. In addition, boundary conditions can be incorporated to simulate specific components. The governing equations of GTRAN are the one-dimensional transient gas dynamic equations. The three equations for pressure, velocity, and density are reduced to numerical equations using an implicit Crank-Nicholson finite difference technique. Input to GTRAN includes a description of the piping network, the initial conditions, and any events (e.g. valve closings) occuring during the period of analysis. Output includes pressure, velocity, and density versus time. GTRAN is written in FORTRAN 77 for batch execution and has been implemented on a DEC VAX series computer. GTRAN was developed in 1983.
Thermal transient analysis applied to horizontal wells
Duong, A.N. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[ConocoPhillips Canada Resources Corp., Calgary, AB (Canada)
2008-10-15
Steam assisted gravity drainage (SAGD) is a thermal recovery process used to recover bitumen and heavy oil. This paper presented a newly developed model to estimate cooling time and formation thermal diffusivity by using a thermal transient analysis along the horizontal wellbore under a steam heating process. This radial conduction heating model provides information on the heat influx distribution along a horizontal wellbore or elongated steam chamber, and is therefore important for determining the effectiveness of the heating process in the start-up phase in SAGD. Net heat flux estimation in the target formation during start-up can be difficult to measure because of uncertainties regarding heat loss in the vertical section; steam quality along the horizontal segment; distribution of steam along the wellbore; operational conditions; and additional effects of convection heating. The newly presented model can be considered analogous to pressure transient analysis of a buildup after a constant pressure drawdown. The model is based on an assumption of an infinite-acting system. This paper also proposed a new concept of a heating ring to measure the heat storage in the heated bitumen at the time of testing. Field observations were used to demonstrate how the model can be used to save heat energy, conserve steam and enhance bitumen recovery. 18 refs., 14 figs., 2 appendices.
Transient Analysis of a Magnetic Heat Pump
Schroeder, E. A.
1985-01-01
An experimental heat pump that uses a rare earth element as the refrigerant is modeled using NASTRAN. The refrigerant is a ferromagnetic metal whose temperature rises when a magnetic field is applied and falls when the magnetic field is removed. The heat pump is used as a refrigerator to remove heat from a reservoir and discharge it through a heat exchanger. In the NASTRAN model the components modeled are represented by one-dimensional ROD elements. Heat flow in the solids and fluid are analyzed. The problem is mildly nonlinear since the heat capacity of the refrigerant is temperature-dependent. One simulation run consists of a series of transient analyses, each representing one stroke of the heat pump. An auxiliary program was written that uses the results of one NASTRAN analysis to generate data for the next NASTRAN analysis.
Transient flow analysis of integrated valve opening process
Sun, Xinming; Qin, Benke; Bo, Hanliang, E-mail: bohl@tsinghua.edu.cn; Xu, Xingxing
2017-03-15
Highlights: • The control rod hydraulic driving system (CRHDS) is a new type of built-in control rod drive technology and the integrated valve (IV) is the key control component. • The transient flow experiment induced by IV is conducted and the test results are analyzed to get its working mechanism. • The theoretical model of IV opening process is established and applied to get the changing rule of the transient flow characteristic parameters. - Abstract: The control rod hydraulic driving system (CRHDS) is a new type of built-in control rod drive technology and the IV is the key control component. The working principle of integrated valve (IV) is analyzed and the IV hydraulic experiment is conducted. There is transient flow phenomenon in the valve opening process. The theoretical model of IV opening process is established by the loop system control equations and boundary conditions. The valve opening boundary condition equation is established based on the IV three dimensional flow field analysis results and the dynamic analysis of the valve core movement. The model calculation results are in good agreement with the experimental results. On this basis, the model is used to analyze the transient flow under high temperature condition. The peak pressure head is consistent with the one under room temperature and the pressure fluctuation period is longer than the one under room temperature. Furthermore, the changing rule of pressure transients with the fluid and loop structure parameters is analyzed. The peak pressure increases with the flow rate and the peak pressure decreases with the increase of the valve opening time. The pressure fluctuation period increases with the loop pipe length and the fluctuation amplitude remains largely unchanged under different equilibrium pressure conditions. The research results lay the base for the vibration reduction analysis of the CRHDS.
Lopez G, A.; Francois L, J. L. [UNAM, Facultad de Ingenieria, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Nunez C, A., E-mail: angelica.lopez.go24@gmail.com [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)
2012-10-15
The extended operation domain of the map flow-power allows operating to an extended power with a reduced flow in the core, this implies to expand the operation frontier to allow 120% of the original licensed thermal power (OLTP), with a flow in the core so low as 80% of the nominal flow, with a high pattern of control rods. The present work has as objective to study the response to recirculation operational transients of the nuclear power plant of Laguna Verde under conditions of Extended Power Up rate (EPU) and under the extended operation domain of the map flow-power. The content of this work covers the analysis of the thermal-hydraulic uncertainties obtained of the simulation of the recirculation pumps shot, as well as of the transition of high to low speed of these pumps. Both simulations were carried out for EPU conditions (120% of OLTP and 100% of flow in the core) and for the extended operation domain of the map flow-power, (120% of OLTP and 80% of flow in the core), this because the reactor will be situated in a region of high probability of uncertainty. At the present time any plant at world level has operated under EPU conditions under the extended operation domain of the map flow-power, for what the results of this work are innovative in this field, allowing to know the responses to the presented transients, and later on to develop the operative and regulatory conditions necessary for the operation of this domain, with the purpose of guaranteeing the safety. (Author)
Boom or bust? A comparative analysis of transient population dynamics in plants
Stott, Iain; Franco, Miguel; Carslake, David
2010-01-01
researchers as further possible effectors of complicated dynamics. Previously published methods of transient analysis have tended to require knowledge of initial population structure. However, this has been overcome by the recent development of the parametric Kreiss bound (which describes how large...... a population must become before reaching its maximum possible transient amplification following a disturbance) and the extension of this and other transient indices to simultaneously describe both amplified and attenuated transient dynamics. We apply the Kreiss bound and other transient indices to a data base...... worrying artefact of basic model parameterization. Synthesis. Transient indices describe how big or how small plant populations can get, en route to long-term stable rates of increase or decline. The patterns we found in the potential for transient dynamics, across many species of plants, suggest...
Hanine, M. [Laboratoire Electronique Microtechnologie et Instrumentation (LEMI), University of Rouen, 76821 Mont Saint Aignan (France)]. E-mail: Mounir.Hanine@univ-rouen.fr; Masmoudi, M. [Laboratoire Electronique Microtechnologie et Instrumentation (LEMI), University of Rouen, 76821 Mont Saint Aignan (France); Marcon, J. [Laboratoire Electronique Microtechnologie et Instrumentation (LEMI), University of Rouen, 76821 Mont Saint Aignan (France)
2004-12-15
In this paper, a reliable procedure, which allows a fine as well as a robust analysis of the deep defects in semiconductors, is detailed. In this procedure where capacitance transients are considered as multiexponential and corrupted with Gaussian noise, our new method of analysis, the Levenberg-Marquardt deep level transient spectroscopy (LM-DLTS) is associated with two other high-resolution techniques, i.e. the Matrix Pencil which provides an approximation of exponential components contained in the capacitance transients and Prony's method recently revised by Osborne in order to set the initial parameters.
Northam, G. B.
1972-01-01
Instantaneous burning rate data for a polybutadiene acrylic acid propellant, containing 16 weight percent aluminum, were calculated from the pressure histories of a test motor with 96.77 sq cm of burning area and a 5.08-cm-thick propellant web. Additional acceleration tests were conducted with reduced propellant web thicknesses of 3.81, 2.54, and 1.27 cm. The metallic residue collected from the various web thickness tests was characterized by weight and shape and correlated with the instantaneous burning rate measurements. Rapid depressurization extinction tests were conducted in order that surface pitting characteristics due to localized increased burning rate could be correlated with the residue analysis and the instantaneous burning rate data. The acceleration-induced burning rate augmentation was strongly dependent on propellant distance burned, or burning time, and thus was transient in nature. The results from the extinction tests and the residue analyses indicate that the transient rate augmentation was highly dependent on local enhancement of the combustion zone heat feedback to the surface by the growth of molten residue particles on or just above the burning surface. The size, shape, and number density of molten residue particles, rather than the total residue weight, determined the acceleration-induced burning rate augmentation.
Transient Stability Analysis Using Transmission Line Measurement
蔡国伟; 程浩忠; 陈家荣; 王承民
2004-01-01
The novel quantitative assessment method using transmission line measurement was developed. A new style of stability criterion was suggested which is based on the line measurement. The stability indices for lines,cutsets and power system according to features of transient energy in the lines were given, which not only provide a reliable and accurate assessment of the transient stability of power system, but also can be used to assess the effect of lines and cutsets on the transient stability and identify the weak transmission segment. Examples were presented by simulation on the IEEE-39 buses test system.
Lightning transient analysis in wind turbine blades
Candela Garolera, Anna; Holbøll, Joachim; Madsen, Søren Find
2013-01-01
The transient behavior of lightning surges in the lightning protection system of wind turbine blades has been investigated in this paper. The study is based on PSCAD models consisting of electric equivalent circuits with lumped and distributed parameters involving different lightning current...
THE PRESSURE TRANSIENT ANALYSIS OF DEFORMATION OF FRACTAL MEDIUM
ZHANG Yi-gen; TONG Deng-ke
2008-01-01
The assumption of constant rock properties in pressure-transient analysis of stress-sensitive reservoirs can cause significant errors in the estimation of temporal and spatial variation of pressure. In this article, the pressure transient response of the fractal medium in stress-sensitive reservoirs was studied by using the self-similarity solution method and the regular perturbation method. The dependence of permeability on pore pressure makes the flow equation strongly nonlinear. The nonlinearities associated with the governing equation become weaker by using the logarithm transformation. The perturbation solutions for a constant pressure production and a constant rate production of a linear-source well were obtained by using the self-similarity solution method and the regular perturbation method in an infinitely large system, and inquire into the changing rule of pressure when the fractal and deformation parameters change. The plots of typical pressure curves were given in a few cases, and the results can be applied to well test analysis.
Effects of in-stream structures and channel flow rate variation on transient storage
Rana, S. M. Masud; Scott, Durelle T.; Hester, Erich T.
2017-05-01
In-stream structures can potentially enhance surface and subsurface solute retention. They form naturally in small streams and their installation has gained popularity in stream restoration for multiple purposes, including improved water quality. Yet few studies have quantified the cumulative effect of multiple structures on solute transport at the reach scale, nor how this varies with changing stream flow. We built a series of weirs in a small stream to simulate channel spanning structures such as natural debris dams and stream restoration log dams and boulder weirs. We conducted constant rate conservative (NaCl) tracer injections to quantify the effect of the weirs on solute transport at the reach scale. We used a one dimensional solute transport model with transient storage to quantify the change of solute transport parameters with increasing number of weirs. Results indicate that adding weirs significantly increased the cross-sectional area of the surface stream (A) and transient storage zones (As) while exchange with transient storage (α) decreased. The increase in A and As is due to backwater behind weirs and increased hydrostatically driven hyporheic exchange induced by the weirs, while we surmise that the reduction in α is due at least in part to reduced hydrodynamically driven hyporheic exchange in bed ripples drowned by the weir backwater. In order for weir installation to achieve net improvement in solute retention and thus water quality, cumulative reactions in weir backwater and enhanced hydrostatically driven hyporheic exchange would have to overcome the reduced hydrodynamically driven exchange. Analysis of channel flow variation over the course of the experiments indicated that weirs change the relationship between transient storage parameters and flow, for example the trend of increasing α with flow without weirs was reversed in the presence of weirs. Effects of flow variation were substantial, indicating that transient storage measurements at a
Convected transient analysis for large space structures maneuver and deployment
Housner, J.
1984-01-01
Convected-transient analysis techniques in the finite-element method are used to investigate the deployment and maneuver of large spacecraft structures with multiple-member flexible trusses and frames. Numerical results are presented for several sample problems.
Adaptive Nodal Transport Methods for Reactor Transient Analysis
Thomas Downar; E. Lewis
2005-08-31
Develop methods for adaptively treating the angular, spatial, and time dependence of the neutron flux in reactor transient analysis. These methods were demonstrated in the DOE transport nodal code VARIANT and the US NRC spatial kinetics code, PARCS.
Transient Analysis of X-34 Pressurization System
Hedayat, A.; Knight, K. C.; Champion, R. H., Jr.
1998-01-01
Two transient operational modes of the X-34 pressurization system were analyzed using the ROCket Engine Transition Simulation (ROCETS) program. The first operational mode considers the normal operation. For the engine burn period, the required helium mass and pressure of each propellant tank were calculated. In the second case, the possibility of failure of the pressurization system solenoid valves, its consequence on the over-pressurization, and simultaneous operation of pressurization and vent/relief systems were evaluated.
The Research on Transient Burning Rate of Solid Propellant by Digital Image Processing
Xin Peng
2016-01-01
Full Text Available In order to obtain the burn rate of the solid propellant that is the important parameter of transient burning, the new method named digital image processing is presented. In the article , the principle of digital image processing is analysed; The burning face of the sample in the each time is located according the image and the coordinates of the burning face is obtained. In experiment the transient burn rate is measured by digital image processing and the accuracy is acceptable.
A New Adaptive Mother Wavelet for Electromagnetic Transient Analysis
Guillén, Daniel; Idárraga-Ospina, Gina; Cortes, Camilo
2016-01-01
Wavelet Transform (WT) is a powerful technique of signal processing, its applications in power systems have been increasing to evaluate power system conditions, such as faults, switching transients, power quality issues, among others. Electromagnetic transients in power systems are due to changes in the network configuration, producing non-periodic signals, which have to be identified to avoid power outages in normal operation or transient conditions. In this paper a methodology to develop a new adaptive mother wavelet for electromagnetic transient analysis is proposed. Classification is carried out with an innovative technique based on adaptive wavelets, where filter bank coefficients will be adapted until a discriminant criterion is optimized. Then, its corresponding filter coefficients will be used to get the new mother wavelet, named wavelet ET, which allowed to identify and to distinguish the high frequency information produced by different electromagnetic transients.
Transient Temperature Analysis of Slab in Erdemir
(U)nal Camdali; Murat Tunc; Sedat Sisbot
2008-01-01
A transient thermal model was developed for slab furnaces in Eregli Iron and Steel Worlds (Erdemir) in Turkey and the model was solved using the FlexPDE computer program. This program uses the finite element method. Program codes were written to solve the temperature distribution of slabs that are put into furnace at 25℃ and removed at about 1 250℃. To obtain the optimum slab exit temperature variation, the necessary air temperature inside the furnace was calculated to be 1 390℃. The slab temperature versus time and the temperature variation inside the slab were depicted.
Steady and transient sliding under rate-and-state friction
Putelat, Thibaut; Dawes, Jonathan H. P.
2015-05-01
The physics of dry friction is often modelled by assuming that static and kinetic frictional forces can be represented by a pair of coefficients usually referred to as μs and μk, respectively. In this paper we re-examine this discontinuous dichotomy and relate it quantitatively to the more general, and smooth, framework of rate-and-state friction. This is important because it enables us to link the ideas behind the widely used static and dynamic coefficients to the more complex concepts that lie behind the rate-and-state framework. Further, we introduce a generic framework for rate-and-state friction that unifies different approaches found in the literature. We consider specific dynamical models for the motion of a rigid block sliding on an inclined surface. In the Coulomb model with constant dynamic friction coefficient, sliding at constant velocity is not possible. In the rate-and-state formalism steady sliding states exist, and analysing their existence and stability enables us to show that the static friction coefficient μs should be interpreted as the local maximum at very small slip rates of the steady state rate-and-state friction law. Next, we revisit the often-cited experiments of Rabinowicz (J. Appl. Phys., 22:1373-1379, 1951). Rabinowicz further developed the idea of static and kinetic friction by proposing that the friction coefficient maintains its higher and static value μs over a persistence length before dropping to the value μk. We show that there is a natural identification of the persistence length with the distance that the block slips as measured along the stable manifold of the saddle point equilibrium in the phase space of the rate-and-state dynamics. This enables us explicitly to define μs in terms of the rate-and-state variables and hence link Rabinowicz's ideas to rate-and-state friction laws. This stable manifold naturally separates two basins of attraction in the phase space: initial conditions in the first one lead to the block
Nonlinear transient analysis of joint dominated structures
Chapman, J. M.; Shaw, F. H.; Russell, W. C.
1987-01-01
A residual force technique is presented that can perform the transient analyses of large, flexible, and joint dominated structures. The technique permits substantial size reduction in the number of degrees of freedom describing the nonlinear structural models and can account for such nonlinear joint phenomena as free-play and hysteresis. In general, joints can have arbitrary force-state map representations but these are used in the form of residual force maps. One essential feature of the technique is to replace the arbitrary force-state maps describing the nonlinear joints with residual force maps describing the truss links. The main advantage of this replacement is that the incrementally small relative displacements and velocities across a joint are not monitored directly thereby avoiding numerical difficulties. Instead, very small and 'soft' residual forces are defined giving a numerically attractive form for the equations of motion and thereby permitting numerically stable integration algorithms. The technique was successfully applied to the transient analyses of a large 58 bay, 60 meter truss having nonlinear joints. A method to perform link testing is also presented.
Transients from Initial Conditions A Perturbative Analysis
Scoccimarro, R
1998-01-01
The standard procedure to generate initial conditions (IC) in numerical simulations is to use the Zel'dovich approximation (ZA). Although the ZA correctly reproduces the linear growing modes of density and velocity perturbations, non-linear growth is inaccurately represented because of the ZA failure to conserve momentum. This implies that it takes time for the actual dynamics to establish the correct statistical properties of density and velocity fields. We extend perturbation theory (PT) to include transients as non-linear excitations of decaying modes caused by the IC. We focus on higher-order statistics of the density contrast and velocity divergence, characterized by the S_p and T_p parameters. We find that the time-scale of transients is determined, at a given order p, by the spectral index n. The skewness factor S_3 (T_3) attains 10% accuracy only after a=6 (a=15) for n=0, whereas higher (lower) n demands more (less) expansion away from the IC. These requirements become much more stringent as p increas...
Transient Temperature Analysis for Industrial AC Arc Furnace Bottom
(U)nal (C)amdal1; Murat Tun(c)
2004-01-01
Heat losses from the furnaces depend on the design and size. The surface heat loss from the bottom of an industrial AC electric arc furnace (EAF) possesses an important fraction of overall losses. So in this study the transient temperature variation at the bottom of the EAF was investigated. The transient temperature analysis was carried out using MATLAB computer program. T=T(r, t) for different bottom lining layers was depicted.
Effects of the acceleration vector on transient burning rate of an aluminized solid propellant.
Northam, G. B.
1971-01-01
Experimental results concerning the transient burning-rate augmentation of a 16% aluminum polybutadiene acrylic acid (PBAA) propellant burned in a 2-in. web motor at pressure levels from 300 to 1200 psia with centrifugal accelerations from 0 to 140 g. The orientation of the acceleration vector was varied to determine its effect on the transient burning rate. The burning-rate augmentation was strongly dependent on (1) acceleration level, (2) propellant distance burned (or burn time), and (3) orientation of the acceleration vector with respect to the burning surface. This transient rate augmentation resulted from the retention of molten metallic residue on the burning surface by the normal acceleration loading. The presence of the residue altered the combustion zone heat transfer and caused increased localized burning rates, as evidenced by the pitted propellant surfaces that were observed from extinction tests conducted at various acceleration levels.
Alternatives Analysis for the Resumption of Transient Testing Program
Lee Nelson
2013-11-01
An alternatives analysis was performed for resumption of transient testing. The analysis considered eleven alternatives – including both US international facilities. A screening process was used to identify two viable alternatives from the original eleven. In addition, the alternatives analysis includes a no action alternative as required by the National Environmental Policy Act (NEPA). The alternatives considered in this analysis included: 1. Restart the Transient Reactor Test Facility (TREAT) 2. Modify the Annular Core Research Reactor (ACRR) which includes construction of a new hot cell and installation of a new hodoscope. 3. No Action
ECCS flow verification to support transient analysis
Kovach, C.; Jacobs, R.H.; Ballard, J.E. [Commonwealth Edison Co., Chicago, IL (United States). Nuclear Fuel Services Dept.
1994-12-31
The RETRAN code has been used to develop a model of the Emergency Core Cooling System (ECCS). The model was developed in order to provide conservative injection flow data to be used in various LOCA and non-LOCA analyses and evaluations and to ensure that ECCS pump runout does not occur. The analyses were also needed in order to address a number of ECCS performance issues identified by Westinghouse. These issues include how previous analyses modeled miniflow, RCP seal injection, ECCS branch line resistance, pump suction boost during recirculation, injection line flow imbalances, and, of particular importance, ECCS flow measurement inaccuracies. In turn, these issues directly impact pump runout concerns, Technical Specification verification, and ECCS injection flow during transient conditions. The RETRAN ECCS model has proven to be quite versatile, easy to use, and requires only minimal information about the physical construction and performance of the ECCS system.
Transient suppression of heart rate complexity in concussed athletes.
La Fountaine, Michael F; Heffernan, Kevin S; Gossett, James D; Bauman, William A; De Meersman, Ronald E
2009-06-15
Heart rate variability (HRV) and complexity (HRC) were calculated at rest and during an isometric hand grip test (IHGT) within 48-hours (48 h) and two weeks (Week Two) of a concussion in athletes (CG) and control subjects. No differences were present at rest or in HRV during IGHT. HRC was significantly lower in the CG compared to controls at 48 h during IHGT. In CG at Week Two during IHGT, HRC was significantly greater than 48 h observations and not significantly different than controls. The findings suggest that HRC may have utility in detecting efferent cardiac autonomic anomalies within two weeks of concussion.
Analysis of nonlinear transient responses of piezoelectric resonators.
Hagiwara, Manabu; Takahashi, Seita; Hoshina, Takuya; Takeda, Hiroaki; Tsurumi, Takaaki
2011-09-01
The electric transient response method is an effective technique to evaluate material constants of piezoelectric ceramics under high-power driving. In this study, we tried to incorporate nonlinear piezoelectric behaviors in the analysis of transient responses. As a base for handling the nonlinear piezoelectric responses, we proposed an assumption that the electric displacement is proportional to the strain without phase lag, which could be described by a real and constant piezoelectric e-coefficient. Piezoelectric constitutive equations including nonlinear responses were proposed to calculate transient responses of a piezoelectric resonator. The envelopes and waveforms of current and vibration velocity in transient responses observed in some piezoelectric ceramics could be fitted with the calculation including nonlinear responses. The procedure for calculation of mechanical quality factor Q(m) for piezoelectric resonators with nonlinear behaviors was also proposed.
Improvements to the CONTINUE feature in transient analysis
Pamidi, P. R.
1989-01-01
The CONTINUE feature in transient analysis as implemented in the standard release of COSMIC/NASTRAN has inherent errors associated with it. As a consequence, the results obtained by a CONTINUEd restart run do not, in general, match the results that would be obtained in a single run without the CONTINUE feature. These inherent errors were eliminated by improvements to the restart logic that were developed by RPK Corporation and that are available on all RPK-supported versions of COSMIC/NASTRAN. These improvements ensure that the results of a CONTINUEd transient analysis run are the same as those of a non-CONTINUEd run. In addition, the CONTINUE feature was extended to transient analysis involving uncoupled modal equations. The improvements and enhancement were illustrated by examples.
THE WAVELET ANALYSIS METHOD ON THE TRANSIENT SIGNAL
吴淼
1996-01-01
Many dynamic signals of mining machines are transient, such as load signals when roadheader's cutting head being cut-in or cut-out and response signals produced by these loads. For these transient signals, the traditional Fourier analysis method is quite inadequate,The limitations of analysis, resolution by using Short-Time Fourier Transform (STFT) on them were discussed in this paper. Because of wavelet transform having the characteristics of flexible window and multiresolution analysis, we try to apply it to analyse these transientsignal. In order to give a pratical example,using D 18 wavelet and Mallat's tree algorithm with MATLAB, the discrete wavelet transform was calculated for the simulating response signals of a three-degree-of freedom vibration system when it was under impulse and random excitations. The results of the wavelet transform made clear its effectiveness and superiority in analysing transient signals of mining machines.
Code Coupling for Multi-Dimensional Core Transient Analysis
Park, Jin-Woo; Park, Guen-Tae; Park, Min-Ho; Ryu, Seok-Hee; Um, Kil-Sup; Lee Jae-Il [KEPCO NF, Daejeon (Korea, Republic of)
2015-05-15
After the CEA ejection, the nuclear power of the reactor dramatically increases in an exponential behavior until the Doppler effect becomes important and turns the reactivity balance and power down to lower levels. Although this happens in a very short period of time, only few seconds, the energy generated can be very significant and cause fuel failures. The current safety analysis methodology which is based on overly conservative assumptions with the point kinetics model results in quite adverse consequences. Thus, KEPCO Nuclear Fuel(KNF) is developing the multi-dimensional safety analysis methodology to mitigate the consequences of the single CEA ejection accident. For this purpose, three-dimensional core neutron kinetics code ASTRA, sub-channel analysis code THALES, and fuel performance analysis code FROST, which have transient calculation performance, were coupled using message passing interface (MPI). This paper presents the methodology used for code coupling and the preliminary simulation results with the coupled code system (CHASER). Multi-dimensional core transient analysis code system, CHASER, has been developed and it was applied to simulate a single CEA ejection accident. CHASER gave a good prediction of multi-dimensional core transient behaviors during transient. In the near future, the multi-dimension CEA ejection analysis methodology using CHASER is planning to be developed. CHASER is expected to be a useful tool to gain safety margin for reactivity initiated accidents (RIAs), such as a single CEA ejection accident.
Analysis of power transients in a cascade of EDFAs
ZhangyuanChen; GuishengXiong; 等
1997-01-01
Power transients in a cascade of EDFAs are investigated by numerical simulations.The rate of transient response induced by the channel number variation is found to scale with the number of EDFAs and overshoots and relax oscilations are observed after several EDFAs.The slope of 1-dB power change time scales linearly with the number of EDFAs.The influence of pump variation on the output is large for a single EDFA,but small after many EDFAs.The response of power control must be fast enough to limit the power excursion.
Three-dimensional transient mathematical model to predict the heat transfer rate of a heat pipe
S Boothaisong
2015-02-01
Full Text Available A three-dimensional model was developed to simulate the heat transfer rate on a heat pipe in a transient condition. This article presents the details of a calculation domain consisting of a wall, a wick, and a vapor core. The governing equation based on the shape of the pipe was numerically simulated using the finite element method. The developed three-dimensional model attempted to predict the transient temperature, the velocity, and the heat transfer rate profiles at any domain. The values obtained from the model calculation were then compared with the actual results from the experiments. The experiment showed that the time required to attain a steady state (where transient temperature is constant was reasonably consistent with the model. The working fluid r134a (tetrafluoroethane was the quickest to reach the steady state and transferred the greatest amount of heat.
Transient stability analysis of a distribution network with distributed generators
Xyngi, I.; Ishchenko, A.; Popov, M.; Van der Sluis, L.
2009-01-01
This letter describes the transient stability analysis of a 10-kV distribution network with wind generators, microturbines, and CHP plants. The network being modeled in Matlab/Simulink takes into account detailed dynamic models of the generators. Fault simulations at various locations are investigat
Transient Ejector Analysis (TEA) code user's guide
Drummond, Colin K.
1993-01-01
A FORTRAN computer program for the semi analytic prediction of unsteady thrust augmenting ejector performance has been developed, based on a theoretical analysis for ejectors. That analysis blends classic self-similar turbulent jet descriptions with control-volume mixing region elements. Division of the ejector into an inlet, diffuser, and mixing region allowed flexibility in the modeling of the physics for each region. In particular, the inlet and diffuser analyses are simplified by a quasi-steady-analysis, justified by the assumption that pressure is the forcing function in those regions. Only the mixing region is assumed to be dominated by viscous effects. The present work provides an overview of the code structure, a description of the required input and output data file formats, and the results for a test case. Since there are limitations to the code for applications outside the bounds of the test case, the user should consider TEA as a research code (not as a production code), designed specifically as an implementation of the proposed ejector theory. Program error flags are discussed, and some diagnostic routines are presented.
L2-Algebraic Decay Rate for Transient Birth-Death Processes
Lijuan CHENG; Yingzhe WANG
2012-01-01
This paper is a continuation of the study of the algebraic speed for Markov processes.The authors concentrate on algebraic decay rate for the transient birth-death processes.According to the classification of the boundaries,a series of the sufficient conditions for algebraic decay is presented.To illustrate the power of the results,some examples are included.
Improving transient analysis technology for aircraft structures
Melosh, R. J.; Chargin, Mladen
1989-01-01
Aircraft dynamic analyses are demanding of computer simulation capabilities. The modeling complexities of semi-monocoque construction, irregular geometry, high-performance materials, and high-accuracy analysis are present. At issue are the safety of the passengers and the integrity of the structure for a wide variety of flight-operating and emergency conditions. The technology which supports engineering of aircraft structures using computer simulation is examined. Available computer support is briefly described and improvement of accuracy and efficiency are recommended. Improved accuracy of simulation will lead to a more economical structure. Improved efficiency will result in lowering development time and expense.
Time-Frequency Analysis of Rocket Nozzle Wall Pressures During Start-up Transients
Baars, Woutijn J.; Tinney, Charles E.; Ruf, Joseph H.
2011-01-01
Surveys of the fluctuating wall pressure were conducted on a sub-scale, thrust- optimized parabolic nozzle in order to develop a physical intuition for its Fourier-azimuthal mode behavior during fixed and transient start-up conditions. These unsteady signatures are driven by shock wave turbulent boundary layer interactions which depend on the nozzle pressure ratio and nozzle geometry. The focus however, is on the degree of similarity between the spectral footprints of these modes obtained from transient start-ups as opposed to a sequence of fixed nozzle pressure ratio conditions. For the latter, statistically converged spectra are computed using conventional Fourier analyses techniques, whereas the former are investigated by way of time-frequency analysis. The findings suggest that at low nozzle pressure ratios -- where the flow resides in a Free Shock Separation state -- strong spectral similarities occur between fixed and transient conditions. Conversely, at higher nozzle pressure ratios -- where the flow resides in Restricted Shock Separation -- stark differences are observed between the fixed and transient conditions and depends greatly on the ramping rate of the transient period. And so, it appears that an understanding of the dynamics during transient start-up conditions cannot be furnished by a way of fixed flow analysis.
Yan-jie Ni
2016-04-01
Full Text Available A 30 mm electrothermal-chemical (ETC gun experimental system is employed to research the burning rate characteristics of 4/7 high-nitrogen solid propellant. Enhanced gas generation rates (EGGR of propellants during and after electrical discharges are verified in the experiments. A modified 0D internal ballistic model is established to simulate the ETC launch. According to the measured pressure and electrical parameters, a transient burning rate law including the influence of EGGR coefficient by electric power and pressure gradient (dp/dt is added into the model. The EGGR coefficient of 4/7 high-nitrogen solid propellant is equal to 0.005 MW−1. Both simulated breech pressure and projectile muzzle velocity accord with the experimental results well. Compared with Woodley's modified burning rate law, the breech pressure curves acquired by the transient burning rate law are more consistent with test results. Based on the parameters calculated in the model, the relationship among propellant burning rate, pressure gradient (dp/dt and electric power is analyzed. Depending on the transient burning rate law and experimental data, the burning of solid propellant under the condition of plasma is described more accurately.
Yan-jie NI; Yong JIN; Gang WAN; Chun-xia YANG; Hai-yuan LI; Bao-ming LI
2016-01-01
A 30 mm electrothermal-chemical (ETC) gun experimental system is employed to research the burning rate characteristics of 4/7 high-nitrogen solid propellant. Enhanced gas generation rates (EGGR) of propellants during and after electrical discharges are verified in the experiments. A modified 0D internal ballistic model is established to simulate the ETC launch. According to the measured pressure and electrical parameters, a transient burning rate law including the influence of EGGR coefficient by electric power and pressure gradient (dp/dt) is added into the model. The EGGR coefficient of 4/7 high-nitrogen solid propellant is equal to 0.005 MW−1. Both simulated breech pressure and projectile muzzle velocity accord with the experimental results well. Compared with Woodley’s modified burning rate law, the breech pressure curves acquired by the transient burning rate law are more consistent with test results. Based on the parameters calculated in the model, the relationship among propellant burning rate, pressure gradient (dp/dt) and electric power is analyzed. Depending on the transient burning rate law and experimental data, the burning of solid propellant under the condition of plasma is described more accurately.
Asteroid Spin-Rate Study using the Intermediate Palomar Transient Factory
Chang, Chan-Kao; Lin, Hsing-Wen; Cheng, Yu-Chi; Ngeow, Chow-Choong; Yang, Ting-Chang; Waszczak, Adam; Kulkarni, Shrinivas R; Levitan, David; Sesar, Branimir; Laher, Russ; Surace, Jason; Prince, Thomas A
2015-01-01
Two dedicated asteroid rotation-period surveys have been carried out using data taken on January 6-9 and February 20-23 of 2014 by the Intermediate Palomar Transient Factory (iPTF) in the $R$~band with $\\sim 20$-min cadence. The total survey area covered 174~deg$^2$ in the ecliptic plane. Reliable rotation periods for 1,438 asteroids are obtained from a larger data set of 6,551 mostly main-belt asteroids, each with $\\geq 10$~detections. Analysis of 1751, PTF based, reliable rotation periods clearly shows the "spin barrier" at $\\sim 2$~hours for "rubble-pile" asteroids. We also found a new large-sized super-fast rotator, 2005 UW163 (Chang et al., 2014), and other five candidates as well. Our spin-rate distributions of asteroids with $3 < D < 15$~km shows number decrease when frequency greater than 5 rev/day, which is consistent to that of the Asteroid Light Curve Database (LCDB, Warner et al., 2009) and the result of (Masiero et al., 2009). We found the discrepancy in the spin-rate distribution between o...
UNSUPERVISED TRANSIENT LIGHT CURVE ANALYSIS VIA HIERARCHICAL BAYESIAN INFERENCE
Sanders, N. E.; Soderberg, A. M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Betancourt, M., E-mail: nsanders@cfa.harvard.edu [Department of Statistics, University of Warwick, Coventry CV4 7AL (United Kingdom)
2015-02-10
Historically, light curve studies of supernovae (SNe) and other transient classes have focused on individual objects with copious and high signal-to-noise observations. In the nascent era of wide field transient searches, objects with detailed observations are decreasing as a fraction of the overall known SN population, and this strategy sacrifices the majority of the information contained in the data about the underlying population of transients. A population level modeling approach, simultaneously fitting all available observations of objects in a transient sub-class of interest, fully mines the data to infer the properties of the population and avoids certain systematic biases. We present a novel hierarchical Bayesian statistical model for population level modeling of transient light curves, and discuss its implementation using an efficient Hamiltonian Monte Carlo technique. As a test case, we apply this model to the Type IIP SN sample from the Pan-STARRS1 Medium Deep Survey, consisting of 18,837 photometric observations of 76 SNe, corresponding to a joint posterior distribution with 9176 parameters under our model. Our hierarchical model fits provide improved constraints on light curve parameters relevant to the physical properties of their progenitor stars relative to modeling individual light curves alone. Moreover, we directly evaluate the probability for occurrence rates of unseen light curve characteristics from the model hyperparameters, addressing observational biases in survey methodology. We view this modeling framework as an unsupervised machine learning technique with the ability to maximize scientific returns from data to be collected by future wide field transient searches like LSST.
SBWR Model for Steady-State and Transient Analysis
Gilberto Espinosa-Paredes
2008-01-01
Full Text Available This paper presents a model of a simplified boiling water reactor (SBWR to analyze the steady-state and transient behavior. The SBWR model is based on approximations of lumped and distributed parameters to consider neutronics and natural circulation processes. The main components of the model are vessel dome, downcomer, lower plenum, core (channel and fuel, upper plenum, pressure, and level controls. Further consideration of the model is the natural circulation path in the internal circuit of the reactor, which governs the safety performance of the SBWR. To demonstrate the applicability of the model, the predictions were compared with plant data, manufacturer_s predictions, and RELAP5 under steady-state and transient conditions of a typical BWR. In steady-state conditions, the profiles of the main variables of the SBWR core such as superficial velocity, void fraction, temperatures, and convective heat transfer coefficient are presented and analyzed. The transient behavior of SBWR was analyzed during the closure of all main steam line isolation valves (MSIVs. Our results in this transient show that the cooling system due to natural circulation in the SBWR is around 70% of the rated core flow. According to the results shown here, one of the main conclusions of this work is that the simplified model could be very helpful in the licensing process.
A hybrid transfinite element approach for nonlinear transient thermal analysis
Tamma, Kumar K.; Railkar, Sudhir B.
1987-01-01
A new computational approach for transient nonlinear thermal analysis of structures is proposed. It is a hybrid approach which combines the modeling versatility of contemporary finite elements in conjunction with transform methods and classical Bubnov-Galerkin schemes. The present study is limited to nonlinearities due to temperature-dependent thermophysical properties. Numerical test cases attest to the basic capabilities and therein validate the transfinite element approach by means of comparisons with conventional finite element schemes and/or available solutions.
Homborg, A.M.; Westing, E.P.M. van; Tinga, T.; Ferrari, G.M.; Zhang, X.; Wit, J.H.W. de; Mol, J.M.C.
2014-01-01
This study validates the ability of Hilbert spectra to investigate transients in an electrochemical noise signal for an aqueous corrosion inhibition process. The proposed analysis procedure involves the identification and analysis of transients in the electrochemical current noise signal. Their
How does transient storage change as a function of valley position and flow rate?
Ward, A. S.; Gooseff, M. N.; Bencala, K. E.; Payn, R. A.; Wondzell, S. M.; Kelleher, C.; Wagener, T.
2011-12-01
Stream and river networks provide the spatial structure for flow and transport. Relationships of discharge and stream velocity to stream network position have been well-studied. However, we lack understanding of the relationship between transient storage and stream network position. Here we present results of conservative solute tracer studies (sodium chloride slug additions) completed along 2.6-km of stream reach at 100-m intervals. Four series of tracer tests were performed during high, two intermediate, and low baseflow conditions. We used observed solute transport data to calculate net and gross gains and losses for each study reach, and used Monte Carlo methods to characterize transient storage model parameters and uncertainty for 106 individual tracer injections. Stream area and dispersion decreased along the stream network from outlet to headwaters, while transient storage area and exchange coefficient showed no spatial trend. Area was the best resolved parameter, followed by dispersion. Storage area and exchange coefficient parameters were highly uncertain under all flow conditions at all locations, with interquartile ranges for the top 0.5% of parameter sets spanning orders of magnitude. Uncertainty in storage area and exchange rate overwhelms any spatial organization of these parameters. Results demonstrate the disparity between gross exchanges of water across the streambed (i.e., channel water balance, quantified by mass lost) and transient storage of solutes along the stream-hyporheic network (quantified by mass recovered).
Ross, A.B.
1975-06-01
A compilation of rates of reactions of hydrated electrons with other transients and with organic and inorganic solutes in aqueous solution appeared in NSRDS-NBS 43, and covered the literature up to early 1971. This supplement includes additional rates which have been published through July 1973.
ENHANCED SEVERE TRANSIENT ANALYSIS FOR PREVENTION TECHNICAL PROGRAM PLAN
Gougar, Hans [Idaho National Laboratory
2014-09-01
This document outlines the development of a high fidelity, best estimate nuclear power plant severe transient simulation capability that will complement or enhance the integral system codes historically used for licensing and analysis of severe accidents. As with other tools in the Risk Informed Safety Margin Characterization (RISMC) Toolkit, the ultimate user of Enhanced Severe Transient Analysis and Prevention (ESTAP) capability is the plant decision-maker; the deliverable to that customer is a modern, simulation-based safety analysis capability, applicable to a much broader class of safety issues than is traditional Light Water Reactor (LWR) licensing analysis. Currently, the RISMC pathway’s major emphasis is placed on developing RELAP-7, a next-generation safety analysis code, and on showing how to use RELAP-7 to analyze margin from a modern point of view: that is, by characterizing margin in terms of the probabilistic spectra of the “loads” applied to systems, structures, and components (SSCs), and the “capacity” of those SSCs to resist those loads without failing. The first objective of the ESTAP task, and the focus of one task of this effort, is to augment RELAP-7 analyses with user-selected multi-dimensional, multi-phase models of specific plant components to simulate complex phenomena that may lead to, or exacerbate, severe transients and core damage. Such phenomena include: coolant crossflow between PWR assemblies during a severe reactivity transient, stratified single or two-phase coolant flow in primary coolant piping, inhomogeneous mixing of emergency coolant water or boric acid with hot primary coolant, and water hammer. These are well-documented phenomena associated with plant transients but that are generally not captured in system codes. They are, however, generally limited to specific components, structures, and operating conditions. The second ESTAP task is to similarly augment a severe (post-core damage) accident integral analyses code
Transient Current Analysis of Induction Generators for Wind Power Generating System
Senjyu, Tomonobu; Sueyoshi, Norihide; Uezato, Katsumi; Fujita, Hideki
In recent year, non-conventional energy generation is coming up for effective use of natural energy, such as wind energy. Induction generators consisting squirrel-cage rotors are widly used as wind generators because of their salient features like robust rotor design, simple in the construction, maintenance free operation, etc. However these induction generators will draw large transient inrush current, several times as large as the machine rated current, the instant when they are connected to utility grid or restored after the fault clearance. Under such situations, there will be a severe voltage fluctuations in the power system. In this paper, we present transient analysis of induction generators before and after a three-phase fault conditions. Theoretical discission is developed to determine the initial phase angle and the time at which maximum transient currents flow in the system.
Benchmarking Of Improved DPAC Transient Deflagration Analysis Code
Laurinat, James E.; Hensel, Steve J.
2013-03-21
The transient deflagration code DPAC (Deflagration Pressure Analysis Code) has been upgraded for use in modeling hydrogen deflagration transients. The upgraded code is benchmarked using data from vented hydrogen deflagration tests conducted at the HYDRO-SC Test Facility at the University of Pisa. DPAC originally was written to calculate peak deflagration pressures for deflagrations in radioactive waste storage tanks and process facilities at the Savannah River Site. Upgrades include the addition of a laminar flame speed correlation for hydrogen deflagrations and a mechanistic model for turbulent flame propagation, incorporation of inertial effects during venting, and inclusion of the effect of water vapor condensation on vessel walls. In addition, DPAC has been coupled with CEA, a NASA combustion chemistry code. The deflagration tests are modeled as end-to-end deflagrations. The improved DPAC code successfully predicts both the peak pressures during the deflagration tests and the times at which the pressure peaks.
TRANSIENT ANALYSIS OF NONUNIFORM TRANSMISSION LINES WITH NONLINEAR TERMINAL NETWORKS
无
2006-01-01
A semi-analytical method in time domain is presented for analysis of the transient response of nonuniform transmission lines. In this method, the telegraph equations in time domain is differenced in space domain first, and is transformed into a set of first-order differential equations of voltage and current with respect to time. By integrating these differential equations with respect to time, and precise computation, the solution of these differential equations can be obtained. This method can solve the transient response of various kinds of transmission lines with arbitrary terminal networks. Particularly, it can analyze the nonuniform lines with initial conditions, for which there is no existing effective method to analyze the time response so far. The results obtained with this method are stable and accurate. Two examples are given to illustrate the application of this method.
Greensmith, David J
2014-01-01
Here I present an Excel based program for the analysis of intracellular Ca transients recorded using fluorescent indicators. The program can perform all the necessary steps which convert recorded raw voltage changes into meaningful physiological information. The program performs two fundamental processes. (1) It can prepare the raw signal by several methods. (2) It can then be used to analyze the prepared data to provide information such as absolute intracellular Ca levels. Also, the rates of change of Ca can be measured using multiple, simultaneous regression analysis. I demonstrate that this program performs equally well as commercially available software, but has numerous advantages, namely creating a simplified, self-contained analysis workflow.
Limits on the event rates of fast radio transients from the V-FASTR experiment
Wayth, Randall B; Deller, Adam T; Brisken, Walter F; Thompson, David R; Wagstaff, Kiri L; Majid, Walid A
2012-01-01
We present the first results from the V-FASTR experiment, a commensal search for fast transient radio bursts using the Very Long Baseline Array (VLBA). V-FASTR is unique in that the widely spaced VLBA antennas provide a discriminant against non-astronomical signals and a mechanism for the localization and identification of events that is not possible with single dishes or short baseline interferometers. Thus far V-FASTR has accumulated over 1300 hours of observation time with the VLBA, between 90 cm and 3 mm wavelength (327 MHz - 86 GHz), providing the first limits on fast transient event rates at high radio frequencies (>1.4 GHz). V-FASTR has blindly detected bright individual pulses from seven known pulsars but has not detected any single-pulse events that would indicate high redshift impulsive bursts of radio emission. At 1.4 GHz, V-FASTR puts limits on fast transient event rates comparable with the PALFA survey at the Arecibo telescope, but generally at lower sensitivities, and comparable to the "fly's ey...
Transient analysis of chilldown in a cryogenic transfer line
Martin, T.
1990-01-01
A numerical model was developed, with the SINDA'85/FLUINT program, for calculating the thermal and hydrodynamic transients that occur during the chilldown of a cryogenic transfer line, using a well documented test case to validate the modeling process. Using this model, a total of ten cases were analyzed to evaluate the effects of variable inlet valve position, inlet pressures, and the use of an internal flow liner to promote nucleate boiling. It was found that an efficient transfer line cooldown can be achieved if the inlet flow is throttled, to reduce the flow rate and quality, and an internal flow liner such as Teflon is used.
Imbricated slip rate processes during slow slip transients imaged by low-frequency earthquakes
Lengliné, O.; Frank, W. B.; Marsan, D.; Ampuero, J.-P.
2017-10-01
Low Frequency Earthquakes (LFEs) often occur in conjunction with transient strain episodes, or Slow Slip Events (SSEs), in subduction zones. Their focal mechanism and location consistent with shear failure on the plate interface argue for a model where LFEs are discrete dynamic ruptures in an otherwise slowly slipping interface. SSEs are mostly observed by surface geodetic instruments with limited resolution and it is likely that only the largest ones are detected. The time synchronization of LFEs and SSEs suggests that we could use the recorded LFEs to constrain the evolution of SSEs, and notably of the geodetically-undetected small ones. However, inferring slow slip rate from the temporal evolution of LFE activity is complicated by the strong temporal clustering of LFEs. Here we apply dedicated statistical tools to retrieve the temporal evolution of SSE slip rates from the time history of LFE occurrences in two subduction zones, Mexico and Cascadia, and in the deep portion of the San Andreas fault at Parkfield. We find temporal characteristics of LFEs that are similar across these three different regions. The longer term episodic slip transients present in these datasets show a slip rate decay with time after the passage of the SSE front possibly as t - 1 / 4. They are composed of multiple short term transients with steeper slip rate decay as t-α with α between 1.4 and 2. We also find that the maximum slip rate of SSEs has a continuous distribution. Our results indicate that creeping faults host intermittent deformation at various scales resulting from the imbricated occurrence of numerous slow slip events of various amplitudes.
Mukherjee, Puspal; Biswas, Somnath; Sen, Pratik
2015-08-27
Fluorescence quenching studies through steady-state and time-resolved measurements are inadequate to quantify the bimolecular electron transfer rate in bulk homogeneous solution due to constraints from diffusion. To nullify the effect of diffusion, direct evaluation of the rate of formation of a transient intermediate produced upon the electron transfer is essential. Methyl viologen, a well-known electron acceptor, produces a radical cation after accepting an electron, which has a characteristic strong and broad absorption band centered at 600 nm. Hence it is a good choice to evaluate the rate of photoinduced electron transfer reaction employing femtosecond broadband transient absorption spectroscopy. The time constant of the aforementioned process between pyrene and methyl viologen in methanol has been estimated to be 2.5 ± 0.4 ps using the same technique. The time constant for the backward reaction was found to be 14 ± 1 ps. These values did not change with variation of concentration of quencher, i.e., methyl viologen. Hence, we can infer that diffusion has no contribution in the estimation of rate constants. However, on changing the solvent from methanol to ethanol, the time constant of the electron transfer reaction has been found to increase and has accounted for the change in solvent reorganization energy.
NUMERICAL ANALYSIS OF A FEM FOR A TRANSIENT VISCOELASTIC FLOW
穆君; 冯民富
2004-01-01
We present the numerical analysis of a coupled method for the numerical simulation of transient viscoelastic flow obeying a differential constitutive equation with a Newtonian viscosity. The scheme used is based on Euler implicit method in time and maintains at each time step a couple of the velocity u and the viscoelastic part of the stress σ. Approximation in space is made by finite element method. The approximate stress, velocity and pressure are, respectively, P1-continuous, p2-continuous, and p1continuous. Upwinding needed for convection of σ is made by a "Streamline Upwind Petrov Galerkin" method (SUPG).
Transient simulation of regression rate on thrust regulation process in hybrid rocket motor
Tian Hui
2014-12-01
Full Text Available The main goal of this paper is to study the characteristics of regression rate of solid grain during thrust regulation process. For this purpose, an unsteady numerical model of regression rate is established. Gas–solid coupling is considered between the solid grain surface and combustion gas. Dynamic mesh is used to simulate the regression process of the solid fuel surface. Based on this model, numerical simulations on a H2O2/HTPB (hydroxyl-terminated polybutadiene hybrid motor have been performed in the flow control process. The simulation results show that under the step change of the oxidizer mass flow rate condition, the regression rate cannot reach a stable value instantly because the flow field requires a short time period to adjust. The regression rate increases with the linear gain of oxidizer mass flow rate, and has a higher slope than the relative inlet function of oxidizer flow rate. A shorter regulation time can cause a higher regression rate during regulation process. The results also show that transient calculation can better simulate the instantaneous regression rate in the operation process.
Transient simulation of regression rate on thrust regulation process in hybrid rocket motor
Tian Hui; Li Yijie; Zeng Peng
2014-01-01
The main goal of this paper is to study the characteristics of regression rate of solid grain during thrust regulation process. For this purpose, an unsteady numerical model of regression rate is established. Gas–solid coupling is considered between the solid grain surface and combustion gas. Dynamic mesh is used to simulate the regression process of the solid fuel surface. Based on this model, numerical simulations on a H2O2/HTPB (hydroxyl-terminated polybutadiene) hybrid motor have been performed in the flow control process. The simulation results show that under the step change of the oxidizer mass flow rate condition, the regression rate cannot reach a stable value instantly because the flow field requires a short time period to adjust. The regression rate increases with the linear gain of oxidizer mass flow rate, and has a higher slope than the relative inlet function of oxidizer flow rate. A shorter regulation time can cause a higher regression rate during regulation process. The results also show that transient calculation can better simulate the instantaneous regression rate in the operation process.
Provocative radio transients and base rate bias: a Bayesian argument for conservatism
Hair, Thomas W
2012-01-01
Most searches for alien radio transmission have focused on finding omni-directional or purposefully earth-directed beams of enduring duration. However, most of the interesting signals so far detected have been transient and non-repeatable in nature. These signals could very well be the first data points in an ever-growing data base of such signals used to construct a probabilistic argument for the existence of extraterrestrial intelligence. This paper looks at the effect base rate bias could have on deciding which signals to include in such an archive based upon the likely assumption that our ability to discern natural from artificial signals will be less than perfect.
A pilot rating scale for evaluating failure transients in electronic flight control systems
Hindson, William S.; Schroeder, Jeffery A.; Eshow, Michelle M.
1990-01-01
A pilot rating scale was developed to describe the effects of transients in helicopter flight-control systems on safety-of-flight and on pilot recovery action. The scale was applied to the evaluation of hardovers that could potentially occur in the digital flight-control system being designed for a variable-stability UH-60A research helicopter. Tests were conducted in a large moving-base simulator and in flight. The results of the investigation were combined with existing airworthiness criteria to determine quantitative reliability design goals for the control system.
Probabilistic finite elements for transient analysis in nonlinear continua
Liu, W. K.; Belytschko, T.; Mani, A.
1985-01-01
The probabilistic finite element method (PFEM), which is a combination of finite element methods and second-moment analysis, is formulated for linear and nonlinear continua with inhomogeneous random fields. Analogous to the discretization of the displacement field in finite element methods, the random field is also discretized. The formulation is simplified by transforming the correlated variables to a set of uncorrelated variables through an eigenvalue orthogonalization. Furthermore, it is shown that a reduced set of the uncorrelated variables is sufficient for the second-moment analysis. Based on the linear formulation of the PFEM, the method is then extended to transient analysis in nonlinear continua. The accuracy and efficiency of the method is demonstrated by application to a one-dimensional, elastic/plastic wave propagation problem. The moments calculated compare favorably with those obtained by Monte Carlo simulation. Also, the procedure is amenable to implementation in deterministic FEM based computer programs.
Strand, L. D.; Schultz, A. L.; Reedy, G. K.
1972-01-01
A microwave Doppler shift system, with increased resolution over earlier microwave techniques, was developed for the purpose of measuring the regression rates of solid propellants during rapid pressure transients. A continuous microwave beam is transmitted to the base of a burning propellant sample cast in a metal waveguide tube. A portion of the wave is reflected from the regressing propellant-flame zone interface. The phase angle difference between the incident and reflected signals and its time differential are continuously measured using a high resolution microwave network analyzer and related instrumentation. The apparent propellant regression rate is directly proportional to this latter differential measurement. Experiments were conducted to verify the (1) spatial and time resolution of the system, (2) effect of propellant surface irregularities and compressibility on the measurements, and (3) accuracy of the system for quasi-steady-state regression rate measurements. The microwave system was also used in two different transient combustion experiments: in a rapid depressurization bomb, and in the high-frequency acoustic pressure environment of a T-burner.
Li, H.; Zhao, B.; Yang, C.
2011-01-01
Increasing levels of wind energy in modern electrical power system is initiating a need for accurate analysis and estimation of transient stability of wind turbine generation systems. This paper investigates the transient behaviors and possible direct methods for transient stability evaluation...... electromagnetic transient models of a SCIG, the transient behaviors of the wind turbine generation system during a three-phase fault are simulated and compared with the traditional models. Secondly, in order to quickly estimate the transient stability limit of the wind turbine generation system, a direct method...... based on normal form theory is proposed. The transient models of the wind turbine generation system including the flexible drive train model are derived based on the direct transient stability estimation method. A method of critical clearing time (CCT) calculation is developed for the transient...
Bock, Y.; Fang, P.; Moore, A. W.; Kedar, S.; Liu, Z.; Owen, S. E.; Glasscoe, M. T.
2016-12-01
Detection of time-dependent crustal deformation relies on the availability of accurate surface displacements, proper time series analysis to correct for secular motion, coseismic and non-tectonic instrument offsets, periodic signatures at different frequencies, and a realistic estimate of uncertainties for the parameters of interest. As part of the NASA Solid Earth Science ESDR System (SESES) project, daily displacement time series are estimated for about 2500 stations, focused on tectonic plate boundaries and having a global distribution for accessing the terrestrial reference frame. The "combined" time series are optimally estimated from independent JPL GIPSY and SIO GAMIT solutions, using a consistent set of input epoch-date coordinates and metadata. The longest time series began in 1992; more than 30% of the stations have experienced one or more of 35 major earthquakes with significant postseismic deformation. Here we present three examples of time-dependent deformation that have been detected in the SESES displacement time series. (1) Postseismic deformation is a fundamental time-dependent signal that indicates a viscoelastic response of the crust/mantle lithosphere, afterslip, or poroelastic effects at different spatial and temporal scales. It is critical to identify and estimate the extent of postseismic deformation in both space and time not only for insight into the crustal deformation and earthquake cycles and their underlying physical processes, but also to reveal other time-dependent signals. We report on our database of characterized postseismic motions using a principal component analysis to isolate different postseismic processes. (2) Starting with the SESES combined time series and applying a time-dependent Kalman filter, we examine episodic tremor and slow slip (ETS) in the Cascadia subduction zone. We report on subtle slip details, allowing investigation of the spatiotemporal relationship between slow slip transients and tremor and their
Transient Analysis of Air-Core Coils by Moment Method
Fujita, Akira; Kato, Shohei; Hirai, Takao; Okabe, Shigemitu
In electric power system a threat of lighting surge is decreased by using ground wire and arrester, but the risk of failure of transformer is still high. Winding is the most familiar conductor configuration of electromagnetic field components such as transformer, resistors, reactance device etc. Therefore, it is important that we invest the lighting surge how to advance into winding, but the electromagnet coupling in a winding makes lighting surge analysis difficult. In this paper we present transient characteristics analysis of an air-core coils by moment method in frequency domain. We calculate the inductance from time response and impedance in low frequency, and compare them with the analytical equation which is based on Nagaoka factor.
Qualitative diagnosis for transients analysis on nuclear reactors
Lorre, J.P.; Dorlet, E.; Evrard, J.M.
1995-12-31
One of the major aims of an intelligent monitoring system, is the supervision task which assist the operator in understanding what occurs on a process. Failures hypotheses must be located and the inferring process must be explained. This paper demonstrate a second generation expert system (SEXTANT) decided to the transients analysis on PWR nuclear reactors. This system detects failures by simulating the process with a numerical model. A diagnosis module uses an even graph built from a causal graph model of the plant to generate hypotheses, and a numerical model to validate these hypotheses. Hypotheses are stored into scenarios which are concurrent possible interpretations of the process evolution. The approach is illustrated by an application for the analysis of the house load operation on a pressurized water reactor. (authors). 9 refs., 10 figs.
Ferrier, Ken L.; West, Nicole
2017-09-01
Understanding the relationship between chemical erosion rates (W) and physical erosion rates (E) is of wide interest due to their roles in driving landscape evolution, supplying nutrients to soils and streams, and modulating the global carbon cycle. Measured relationships between W and E vary around the globe, with some regions exhibiting positive correlations between W and E, some negative correlations, and others no correlation within uncertainty. Here we use a numerical model for mineral weathering in well-mixed ridgetop regolith to explore how complex W- E relationships can be generated by simple transient perturbations in E. We show that a Gaussian perturbation in E can produce positive or negative responses in W, and can result in a variety of hysteresis loops - clockwise, counterclockwise, or figure-eight - in plots of W against E. The nature of the transient response depends on the shape of the steady-state W- E relationship, which is set by regolith mineralogy, and the ratio of E to the maximum possible regolith production rate. The response time of W is controlled by the response time of soluble mineral concentrations at low E, where soluble mineral concentrations are low, and by the response time of regolith thickness at high E, where regolith thickness is low. These complex W- E relationships arise in the absence of variations in climate and lithology, which suggests that transients may account for some of the observed differences in W- E relationships among field sites, even among sites that share the same climate and lithology.
Computer Models for IRIS Control System Transient Analysis
Gary D. Storrick; Bojan Petrovic; Luca Oriani
2007-01-31
This report presents results of the Westinghouse work performed under Task 3 of this Financial Assistance Award and it satisfies a Level 2 Milestone for the project. Task 3 of the collaborative effort between ORNL, Brazil and Westinghouse for the International Nuclear Energy Research Initiative entitled “Development of Advanced Instrumentation and Control for an Integrated Primary System Reactor” focuses on developing computer models for transient analysis. This report summarizes the work performed under Task 3 on developing control system models. The present state of the IRIS plant design – such as the lack of a detailed secondary system or I&C system designs – makes finalizing models impossible at this time. However, this did not prevent making considerable progress. Westinghouse has several working models in use to further the IRIS design. We expect to continue modifying the models to incorporate the latest design information until the final IRIS unit becomes operational. Section 1.2 outlines the scope of this report. Section 2 describes the approaches we are using for non-safety transient models. It describes the need for non-safety transient analysis and the model characteristics needed to support those analyses. Section 3 presents the RELAP5 model. This is the highest-fidelity model used for benchmark evaluations. However, it is prohibitively slow for routine evaluations and additional lower-fidelity models have been developed. Section 4 discusses the current Matlab/Simulink model. This is a low-fidelity, high-speed model used to quickly evaluate and compare competing control and protection concepts. Section 5 describes the Modelica models developed by POLIMI and Westinghouse. The object-oriented Modelica language provides convenient mechanisms for developing models at several levels of detail. We have used this to develop a high-fidelity model for detailed analyses and a faster-running simplified model to help speed the I&C development process
Simulation and analysis of a WWER-1000 reactor under normal and transient conditions
Baghban Ghonche
2016-01-01
Full Text Available An accurate analysis of the flow transient is very important in safety evaluation of a nuclear power plant. In this study, analysis of a WWER-1000 reactor is investigated. In order to perform this analysis, a model is developed to simulate the coupled kinetics and thermal-hydraulics of the reactor with a simple and accurate numerical algorithm. For thermal-hydraulic calculations, the four-equation drift-flux model is applied. Based on a multi-channel approach, core is divided into some regions. Each region has different characteristics as represented in a single fuel pin with its associated coolant channel. To obtain the core power distribution, point kinetic equations with different feedback effects are utilized. The appropriate initial and boundary conditions are considered and two situations of decreasing the coolant flow rate in a protected and unprotected core are analyzed. In addition to analysis of normal operation condition, a full range of thermal-hydraulic parameters is obtained for transients too. Finally, the data obtained from the model are compared with the calculations conducted using RELAP5/MOD3 code and Bushehr nuclear power plant data. It is shown that the model can provide accurate predictions for both steady-state and transient conditions.
Ishizuka, Masaru; Hatakeyama, Tomoyuki; Funawatashi, Yuichi; Koizumi, katsuhiro
2011-01-01
.... This paper describes an application of the thermal network method to the transient thermal analysis of multichip modules and proposes a simple model for the thermal analysis of multichip modules as a preliminary thermal design tool. On the basis of the result of transient thermal analysis, the validity of the thermal network method and the simple thermal analysis model is confirmed.
Quantum-corrected transient analysis of plasmonic nanostructures
Uysal, Ismail E.
2017-03-08
A time domain surface integral equation (TD-SIE) solver is developed for quantum-corrected analysis of transient electromagnetic field interactions on plasmonic nanostructures with sub-nanometer gaps. “Quantum correction” introduces an auxiliary tunnel to support the current path that is generated by electrons tunneled between the nanostructures. The permittivity of the auxiliary tunnel and the nanostructures is obtained from density functional theory (DFT) computations. Electromagnetic field interactions on the combined structure (nanostructures plus auxiliary tunnel connecting them) are computed using a TD-SIE solver. Time domain samples of the permittivity and the Green function required by this solver are obtained from their frequency domain samples (generated from DFT computations) using a semi-analytical method. Accuracy and applicability of the resulting quantum-corrected solver scheme are demonstrated via numerical examples.
Transient Reliability Analysis Capability Developed for CARES/Life
Nemeth, Noel N.
2001-01-01
The CARES/Life software developed at the NASA Glenn Research Center provides a general-purpose design tool that predicts the probability of the failure of a ceramic component as a function of its time in service. This award-winning software has been widely used by U.S. industry to establish the reliability and life of a brittle material (e.g., ceramic, intermetallic, and graphite) structures in a wide variety of 21st century applications.Present capabilities of the NASA CARES/Life code include probabilistic life prediction of ceramic components subjected to fast fracture, slow crack growth (stress corrosion), and cyclic fatigue failure modes. Currently, this code can compute the time-dependent reliability of ceramic structures subjected to simple time-dependent loading. For example, in slow crack growth failure conditions CARES/Life can handle sustained and linearly increasing time-dependent loads, whereas in cyclic fatigue applications various types of repetitive constant-amplitude loads can be accounted for. However, in real applications applied loads are rarely that simple but vary with time in more complex ways such as engine startup, shutdown, and dynamic and vibrational loads. In addition, when a given component is subjected to transient environmental and or thermal conditions, the material properties also vary with time. A methodology has now been developed to allow the CARES/Life computer code to perform reliability analysis of ceramic components undergoing transient thermal and mechanical loading. This means that CARES/Life will be able to analyze finite element models of ceramic components that simulate dynamic engine operating conditions. The methodology developed is generalized to account for material property variation (on strength distribution and fatigue) as a function of temperature. This allows CARES/Life to analyze components undergoing rapid temperature change in other words, components undergoing thermal shock. In addition, the capability has
BANK RATING. A COMPARATIVE ANALYSIS
Batrancea Ioan
2015-07-01
Full Text Available Banks in Romania offers its customers a wide range of products but which involves both risk taking. Therefore researchers seek to build rating models to help managers of banks to risk of non-recovery of loans and interest. In the following we highlight rating Raiffeisen Bank, BCR-ERSTE Bank and Transilvania Bank, based on the models CAAMPL and Stickney making a comparative analysis of the two rating models.
Improved analysis of transient temperature data from permanent down-hole gauges (PDGs)
Zhang, Yiqun; Zheng, Shiyi; Wang, Qi
2017-08-01
With the installation of permanent down-hole gauges (PDGs) during oil field development, large volumes of high resolution and continuous down-hole information are obtainable. The interpretation of these real-time temperature and pressure data can optimize well performance, provide information about the reservoir and continuously calibrate the reservoir model. Although the dynamic temperature data have been interpreted in practice to predict flow profiling and provide characteristic information of the reservoir, almost all of the approaches rely on established non-isothermal models which depend on thermodynamic parameters. Another problem comes from the temperature transient analysis (TTA), which is underutilized compared with pressure transient analysis (PTA). In this study, several model-independent methods of TTA were performed. The entire set of PDG data consists of many flow events. By utilizing the wavelet transform, the exact points of flow-rate changes can be located. The flow regime changes, for example, from early time linear flow to later time pseudo-radial flow, among every transient period with constant flow-rate. For the early time region (ETR) that is caused by flow-rate change operations, the TTA, along with the PTA can greatly reduce the uncertainties in flow regime diagnosis. Then, the temperature variations during ETR were examined to infer the true reservoir temperature history, and the relationships between the wavelet detailed coefficients and the flow-rate changes were analysed. For the scenarios with constant reservoir-well parameters, the detailed flow-rate history can be generated by calculating the coefficient of relationship in advance. For later times, the flow regime changes to pseudo-radial flow. An analytical solution was introduced to describe the sand-face temperature. The formation parameters, such as permeability and skin factor, were estimated with the previously calculated flow-rate. It is necessary to analyse temperature
Kasahara, Naoto [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center; Jinbo, Masakazu [Toshiba Co., Tokyo (Japan); Hosogai, Hiromi [Joyo Industry Co., Ltd., Tokai, Ibaraki (Japan)
2002-09-01
This study proposes a mitigation method of thermal transient loads in fast reactor components by utilizing relationships among plant system parameters and resulting thermal stresses. Conventional design procedure against thermal transient loads has two independent steps: thermal hydraulic analysis to determine conservative thermal transient conditions considering variation of the system parameters and structural analysis to check structural integrity under given conditions. On the other hand, a total analysis procedure of thermal hydraulic and structural phenomena can grasp the relationship among system parameters and thermal stresses. It enables the mitigation of thermal transient loads by adjusting system parameters. (author)
Mandjes, M.R.H.; Uitert, M.J.G. van
2000-01-01
The first part of the paper is devoted to a transient analysis of traffic generated by bursty sources. These sources are governed by a modulating process, whose state determines the traffic rate at which the source transmits. The class of modulating processes contains e.g. on/off traffic sources wit
Perturbation analysis of transient population dynamics using matrix projection models
Stott, Iain
2016-01-01
Non-stable populations exhibit short-term transient dynamics: size, growth and structure that are unlike predicted long-term asymptotic stable, stationary or equilibrium dynamics. Understanding transient dynamics of non-stable populations is important for designing effective population management...... strategies, predicting the responses of populations to environmental change or disturbance, and understanding population processes and life-history evolution in variable environments. Transient perturbation analyses are vital tools for achieving these aims. They assess how transient dynamics are affected...... of model being analysed, the perturbation structure, the population response of interest, nonlinear response to perturbation, standardization for asymptotic dynamics, the initial population structure, and the time frame of interest. I discuss these with reference to the application of transient...
Unsupervised Transient Light Curve Analysis Via Hierarchical Bayesian Inference
Sanders, Nathan; Soderberg, Alicia
2014-01-01
Historically, light curve studies of supernovae (SNe) and other transient classes have focused on individual objects with copious and high signal-to-noise observations. In the nascent era of wide field transient searches, objects with detailed observations are decreasing as a fraction of the overall known SN population, and this strategy sacrifices the majority of the information contained in the data about the underlying population of transients. A population level modeling approach, simultaneously fitting all available observations of objects in a transient sub-class of interest, fully mines the data to infer the properties of the population and avoids certain systematic biases. We present a novel hierarchical Bayesian statistical model for population level modeling of transient light curves, and discuss its implementation using an efficient Hamiltonian Monte Carlo technique. As a test case, we apply this model to the Type IIP SN sample from the Pan-STARRS1 Medium Deep Survey, consisting of 18,837 photometr...
The pressurization transient analysis for Lungmen advanced boiling water reactor using RETRAN-02
Tsai, C.-W., E-mail: d937121@oz.nthu.edu.t [Department of Engineering and System Science, National Tsing Hua University, No. 101, Sec. 2, Kuang Fu Road, Hsinchu 30013, Taiwan (China); Shih Chunkuan [Department of Engineering and System Science, National Tsing Hua University, No. 101, Sec. 2, Kuang Fu Road, Hsinchu 30013, Taiwan (China); Institute of Nuclear Engineering and Science, National Tsing Hua University, No. 101, Sec. 2, Kuang Fu Road, Hsinchu 30013, Taiwan (China); Wang, J.-R.; Lin, H.-T. [Institute of Nuclear Energy Research, No. 1000, Wenhua Rd., Longtan Township, Taoyuan County 32546, Taiwan (China); Cheng, S.-C. [Department of Nuclear Engineering, Taiwan Power Company, No. 242, Sec. 3, Roosevelt Rd., Taipei City 10016, Taiwan (China)
2010-10-15
A RETRAN-02 model was devised and benchmarked against the preliminary safety analysis report (PSAR) for the Lungmen nuclear power plant roughly 10 years ago. During these years, the fuel design, some of the reactor vessel designs, and control systems have since been revised. The Lungmen RETRAN-02 model has also been modified with updated information when available. This study uses the analytical results of the final safety analysis report (FSAR) to benchmark the Lungmen RETRAN-02 plant model. Five transients, load rejection (LR), turbine trip (TT), main steam line isolation valves closure (MSIVC), loss of feedwater flow (LOFF), and one turbine control valve closure (OTCVC), were utilized to validate the Lungmen RETRAN-02 model. Moreover, due to the strong coupling effect between neutron dynamics and the thermal-hydraulic response during pressurization of transients, the one-dimensional kinetic model with the cross-section data library is used to simulate the coupling effect. The analytical results show good agreement in trends between the RETRAN-02 calculation and the Lungmen FSAR data. Based on the benchmark of these design-basis transients, the modified Lungmen RETRAN-02 model has been adjusted to a level of confidence for analysis of pressure increase transients. Analytical results indicate that the Lungmen advanced boiling water reactor (ABWR) design satisfied design criteria, i.e., vessel pressure and hot shutdown capability. However, a slight difference exists in the simulation of the water level for cases with changes in water levels. The Lungmen RETRAN-02 model tends to predict the change in water level at a slower rate than that in the Lungmen FSAR. There is also a slight difference in void reactivity response toward vessel pressure change in both simulations, which causes the calculated neutron flux before reactor shutdown to differ to some degree when the reactor experiences a rapid pressure increase. Further studies will be performed in the future using
RETRAN analysis results of feedwater pump trip transient for Lungmen ABWR Plant
Ma Shaoshih, E-mail: ssma@iner.gov.tw [Department of Engineering and System Science, National Tsing Hua University, 101, Section 2, Kuang Fu Rd., HsinChu City 30013, Taiwan (China); Institute of Nuclear Energy Research, Atomic Energy Council, ROC, P.O. Box 3-3, Lungtan, Taoyuan 325, Taiwan (China); Shih Chunkuan [Department of Engineering and System Science, National Tsing Hua University, 101, Section 2, Kuang Fu Rd., HsinChu City 30013, Taiwan (China); Yuann Yngruey [Institute of Nuclear Energy Research, Atomic Energy Council, ROC, P.O. Box 3-3, Lungtan, Taoyuan 325, Taiwan (China)
2011-07-15
Highlights: > The RETRAN model was used to predict one feedwater pump trip (FWPT) transient. > The result shows that the margin sustains at least 30 cm above the L3 setpoint. > The unavailable motor driven pump case eventually actuates the low level scram signal. > The lowest load line case without motor driven pump still actuates the L3 scram. - Abstract: The RETRAN model of Lungmen ABWR was used to simulate one feedwater pump trip (FWPT) transient of the Lungmen start-up test program. The purpose of this test is to verify the capability of one surviving Turbine Driven Reactor Feedwater Pump (TDRFP) plus a Motor Driven Feedwater Pump (MDRFP) to continue operating the reactor stably following the incident. There are three major control systems implanted in Lungmen RETRAN model (LRM), which include Recirculation Flow Control System (RFCS), Steam Bypass and Pressure Control System (SBPCS), and Feedwater Control System (FWCS). The reactor water level margin with respect to the low level scram setpoint in the transient is monitored to confirm whether the acceptance criteria has been satisfied, which depends on the responses of the control systems to the FWPT transient. The analysis result of base case at 100% rated power/100% rated core flow with automatic start of MDRFP demonstrates that the acceptance criteria are met, which shows that the water level still sustains ample margin of 30 cm above the low level setpoint, and the reactor does not scram. To get more insight into the function of MDRFP, a set of sensitivity studies with the assumption of unavailable MDRFP, and with a different initial condition which extended to the maximum allowable core flow of 111% rated at rated power, was conducted to verify the superior capability of power coastdown due to the RIPs runback logic under the lowest load line, and also the delay time of the Reactor Internal Pumps (RIPs). Finally, it is concluded that FWPT transient without start of MDRFP eventually actuates the low level
SPECTRAL ANALYSIS OF EXCHANGE RATES
ALEŠA LOTRIČ DOLINAR
2013-06-01
Full Text Available Using spectral analysis is very common in technical areas but rather unusual in economics and finance, where ARIMA and GARCH modeling are much more in use. To show that spectral analysis can be useful in determining hidden periodic components for high-frequency finance data as well, we use the example of foreign exchange rates
An Effective Distributed Model for Power System Transient Stability Analysis
MUTHU, B. M.
2011-08-01
Full Text Available The modern power systems consist of many interconnected synchronous generators having different inertia constants, connected with large transmission network and ever increasing demand for power exchange. The size of the power system grows exponentially due to increase in power demand. The data required for various power system applications have been stored in different formats in a heterogeneous environment. The power system applications themselves have been developed and deployed in different platforms and language paradigms. Interoperability between power system applications becomes a major issue because of the heterogeneous nature. The main aim of the paper is to develop a generalized distributed model for carrying out power system stability analysis. The more flexible and loosely coupled JAX-RPC model has been developed for representing transient stability analysis in large interconnected power systems. The proposed model includes Pre-Fault, During-Fault, Post-Fault and Swing Curve services which are accessible to the remote power system clients when the system is subjected to large disturbances. A generalized XML based model for data representation has also been proposed for exchanging data in order to enhance the interoperability between legacy power system applications. The performance measure, Round Trip Time (RTT is estimated for different power systems using the proposed JAX-RPC model and compared with the results obtained using traditional client-server and Java RMI models.
The Transient Modal Dynamic Analysis of a Coke Tower
XIE Teng-teng; SUN Tie; XING Ling; ZHANG Su-xiang
2012-01-01
Dynamic analysis must be performed when the duration of the applied load is short or if the load is dynamic in nature. Wind load, as a random load, can lead to the vibration of the coke tower. In order to study the influence to the strength of the coke tower by wind, ABAQUS was used to conduct the transient modal dynamic analysis of the wind load. The response of the structure during loading and unloading was mainly observed. The results indicate that, with the effect of wind, the maximal nodal displacement appears at the top of the tower, which is 0.79 mm; while the maximal stress locates at the node around the skirt, the maximum is 3.26 MPa. Both of the displacement and stress cannot cause the failure of the structure. After loading and unloading, the structure engenders vibration along the loading direction. The frequency is 10 Hz, under the effect of external loads, it may easily cause the resonance of the structure, which can cause damage to the structure. So it must be taken into consideration during the process of design and operation.
Rotordynamics on the PC: Transient Analysis With ARDS
Fleming, David P.
1997-01-01
Personal computers can now do many jobs that formerly required a large mainframe computer. An example is NASA Lewis Research Center's program Analysis of RotorDynamic Systems (ARDS), which uses the component mode synthesis method to analyze the dynamic motion of up to five rotating shafts. As originally written in the early 1980's, this program was considered large for the mainframe computers of the time. ARDS, which was written in Fortran 77, has been successfully ported to a 486 personal computer. Plots appear on the computer monitor via calls programmed for the original CALCOMP plotter; plots can also be output on a standard laser printer. The executable code, which uses the full array sizes of the mainframe version, easily fits on a high-density floppy disk. The program runs under DOS with an extended memory manager. In addition to transient analysis of blade loss, step turns, and base acceleration, with simulation of squeeze-film dampers and rubs, ARDS calculates natural frequencies and unbalance response.
Deterministic and Probabilistic Analysis against Anticipated Transient Without Scram
Choi, Sun Mi; Kim, Ji Hwan [KHNP Central Research Institute, Daejeon (Korea, Republic of); Seok, Ho [KEPCO Engineering and Construction, Daejeon (Korea, Republic of)
2016-10-15
An Anticipated Transient Without Scram (ATWS) is an Anticipated Operational Occurrences (AOOs) accompanied by a failure of the reactor trip when required. By a suitable combination of inherent characteristics and diverse systems, the reactor design needs to reduce the probability of the ATWS and to limit any Core Damage and prevent loss of integrity of the reactor coolant pressure boundary if it happens. This study focuses on the deterministic analysis for the ATWS events with respect to Reactor Coolant System (RCS) over-pressure and fuel integrity for the EU-APR. Additionally, this report presents the Probabilistic Safety Assessment (PSA) reflecting those diverse systems. The analysis performed for the ATWS event indicates that the NSSS could be reached to controlled and safe state due to the addition of boron into the core via the EBS pump flow upon the EBAS by DPS. Decay heat is removed through MSADVs and the auxiliary feedwater. During the ATWS event, RCS pressure boundary is maintained by the operation of primary and secondary safety valves. Consequently, the acceptance criteria were satisfied by installing DPS and EBS in addition to the inherent safety characteristics.
Daogang Lu
2014-01-01
Full Text Available The transient behaviors of natural circulation loop (NCL are important for the system reliability under postulated accidents. The heat loss and structure thermal inertia may influence the transient behaviors of NCL greatly, so a transient analysis model with consideration of heat loss was developed based on the MATLAB/Simulink to predict the thermal-hydraulic characteristic of liquid metal NCL. The transient processes including the start-up, the loss of pump, and the shutdown of thermal-hydraulic ADS lead bismuth loop (TALL experimental facility were simulated by using the model. A good agreement is obtained to validate the transient model. The appended structure would provide significant thermal inertia and flatten the temperature distribution in the transients. The oscillations of temperature and flow rate are also weakened. The temperature difference between hot leg and cold leg would increase with the decrease of heat loss, so the flow rate increases as well. However, a significant increase of hot section temperature may cause a failure of facility integrity due to the decrease of heat loss. Hence, the full power of the core tank may also be limited.
Rukes, Lothar; Paschereit, Oliver; Oberleithner, Kilian
2016-01-01
Modal linear stability analysis has proven very successful in the analysis of coherent structures of turbulent flows. Formally, it describes the evolution of a disturbance in the limit of infinite time. In this work we apply modal linear stability analysis to a turbulent swirling jet undergoing a control parameter transient. The flow undergoes a transition from a non-vortex breakdown state to a state with a strong recirculation bubble and the associated global mode. High-speed Particle Image Velocimetry (PIV) measurements are the basis for a local linear stability analysis of the temporarily evolving base flow. This analysis reveals that the onset of the global mode is strongly linked to the formation of the internal stagnation point. Several transition scenarios are discussed and the ability of a frequency selection criterion to predict the wavemaker location, frequency and growth rate of the global mode are evaluated. We find excellent agreement between the linear global mode frequency and the experimental ...
Transient analysis and burnout of high temperature superconducting current leads
Seol, S. Y.; Hull, J. R.
The transient behaviour of high-temperature superconductor (HTS) current leads operated between liquid helium and liquid nitrogen temperatures is analysed for burnout conditions upon transition of the HTS into the normal state. Leads composed of HTS only and of HTS sheathed by pure silver or silver alloy are investigated numerically for temperature-dependent properties and analytically for temperature-independent properties. For lower values of shape factor (current density times length), the lead can be operated indefinitely without burnout. At higher values of shape factor, the lead reaches burnout in a finite time. With high current densities, the leads heat adiabatically. For a fixed shape factor, low current densities are desired to achieve long burnout times. To achieve a low helium boil-off rate in the superconducting state without danger of burnout, there is a preferred temperature dependence for thermal conductivity, and silver alloy sheaths are preferred to pure silver sheaths. However, for a given current density, pure silver sheaths take longer to burn out.
Transient kinetics and rate limiting steps for the processive cellobiohydrolase Cel7A
Cruys-Bagger, Nicolaj; Hirosuke, Tatsumi; Robin Ren, Guilin
2013-01-01
as substrate. Analysis of the pre-steady state regime allowed delineation rate constants for both fast and slow steps in the enzymatic cycle and assessment of how these constants influenced the rate of hydrolysis at quasi-steady state. Processive movement on the cellulose strand advanced with characteristic...
Metzger, Brian D; Berger, Edo
2015-01-01
The impending era of wide-field radio surveys has the potential to revolutionize our understanding of astrophysical transients. Here we evaluate the prospects of a wide range of planned and hypothetical radio surveys using the properties and volumetric rates of known and hypothetical classes of extragalactic synchrotron radio transients (e.g., on- and off-axis gamma-ray bursts [GRB], supernovae, tidal disruption events [TDE], compact object mergers). Utilizing these sources and physically motivated considerations we assess the allowed phase-space of radio luminosity and peak timescale for extragalactic transients. We also include for the first time effects such as redshift evolution of the rates, K-corrections, and non-Euclidean luminosity distance, which affect the detection rates of the most sensitive surveys. The number of detected events is calculated by means of a Monte Carlo method, using the various survey properties (depth, cadence, area) and realistic detection criteria that include a cut on the mini...
Effect of marital status on death rates. Part 2: Transient mortality spikes
Richmond, Peter
2015-01-01
We examine what happens in a population when it experiences an abrupt change in surrounding conditions. Several cases of such "abrupt transitions" for both physical and living social systems are analyzed from which it can be seen that all share a common pattern. First, a steep rising death rate followed by a much slower relaxation process during which the death rate decreases as a power law (with an exponent close to 0.7). This leads us to propose a general principle which can be summarized as follows: "ANY abrupt change in living conditions generates a mortality spike which acts as a kind of selection process." This we term the Transient Shock conjecture. It provides a qualitative model which leads to testable predictions. For example, marriage certainly brings about a major change in environmental and social conditions and according to our conjecture one would expect a mortality spike in the months following marriage. At first sight this may seem an unlikely proposition but we demonstrate (by three differen...
Variations in incidence rates and age of onset of acute and transient psychotic disorders
Castagnini, Augusto; Foldager, Leslie
2013-01-01
Purpose: To determine incidence and age of onset of the ICD-10 category of ‘acute and transient psychotic disorders’ (ATPDs) characterised by subtypes with polymorphic, schizophrenic and predominantly delusional symptoms, pointing out differences from schizophrenia (SZ) and bipolar affective...... to occur in younger males (IRR 1.4; 1.2–1.7). No significant gender difference was found for acute predominantly delusional disorder (IRR 1.0; 0.9–1.2), which had a later onset than any ATPD subtypes. SZ had an incidence twice as high in males (IRR 2.0; 1.9–2.2), and an earlier age of onset than ATPDs...... disorder (BD). Methods: We identified all subjects aged 15–64 years who were listed for the first time in the Danish Psychiatric Register with a diagnosis of ATPDs (n = 3,350), SZ (n = 4,576) and BD (n = 3,200) in 1995–2008. Incidence rates and rate ratios (IRR; 95 % confidence interval) by gender and age...
Variations in incidence rates and age of onset of acute and transient psychotic disorders
Castagnini, Augusto; Foldager, Leslie
2013-01-01
disorder (BD). Methods: We identified all subjects aged 15–64 years who were listed for the first time in the Danish Psychiatric Register with a diagnosis of ATPDs (n = 3,350), SZ (n = 4,576) and BD (n = 3,200) in 1995–2008. Incidence rates and rate ratios (IRR; 95 % confidence interval) by gender and age...... were calculated. Results: The incidence of ATPDs was 6.7 per 100,000 person-years, similarly high for both genders (IRR 1.0; 0.9–1.1). Among the ATPD subtypes, polymorphic psychotic disorder was more common in females (IRR 1.4; 1.2–1.6) as opposed to those featuring schizophrenic symptoms, which tended......Purpose: To determine incidence and age of onset of the ICD-10 category of ‘acute and transient psychotic disorders’ (ATPDs) characterised by subtypes with polymorphic, schizophrenic and predominantly delusional symptoms, pointing out differences from schizophrenia (SZ) and bipolar affective...
Simulating CRN derived erosion rates in a transient Andean catchment using the TTLEM model
Campforts, Benjamin; Vanacker, Veerle; Herman, Frédéric; Schwanghart, Wolfgang; Tenrorio Poma, Gustavo; Govers, Gerard
2017-04-01
Assessing the impact of mountain building and erosion on the earth surface is key to reconstruct and predict terrestrial landscape evolution. Landscape evolution models (LEMs) are an essential tool in this research effort as they allow to integrate our growing understanding of physical processes governing erosion and transport of mass across the surface. The recent development of several LEMs opens up new areas of research in landscape evolution. Here, we want to seize this opportunity by answering a fundamental research question: does a model designed to simulate landscape evolution over geological timescales allows to simulate spatially varying erosion rates at a millennial timescale? We selected the highly transient Paute catchment in the Southeastern Ecuadorian Andes as a study area. We found that our model (TTLEM) is capable to better explain the spatial patterns of ca. 30 Cosmogenic Radio Nuclide (CRN) derived catchment wide erosion rates in comparison to a classical, statistical approach. Thus, the use of process-based landscape evolution models may not only be of great help to understand long-term landscape evolution but also in understanding spatial and temporal variations in sediment fluxes at the millennial time scale.
Homborg, A.M.; Westing, E.P.M. van; Tinga, T.; Ferrari, G.M.; Zhang, X.; Wit, J.H.W. de; Mol, J.M.C.
2014-01-01
This study validates the ability of Hilbert spectra to investigate transients in an electrochemical noise signal for an aqueous corrosion inhibition process. The proposed analysis procedure involves the identification and analysis of transients in the electrochemical current noise signal. Their deco
Homborg, A.M.; Westing, van E.P.M.; Tinga, T.; Ferrari, G.M.; Zhang, X.; Wit, de J.H.W.; Mol, J.M.C.
2013-01-01
This study validates the ability of Hilbert spectra to investigate transients in an electrochemical noise signal for an aqueous corrosion inhibition process. The proposed analysis procedure involves the identification and analysis of transients in the electrochemical current noise signal. Their deco
The Dynamic Monte Carlo Method for Transient Analysis of Nuclear Reactors
Sjenitzer, B.L.
2013-01-01
In this thesis a new method for the analysis of power transients in a nuclear reactor is developed, which is more accurate than the present state-of-the-art methods. Transient analysis is important tool when designing nuclear reactors, since they predict the behaviour of a reactor during changing co
On the feasibility of a transient dynamic design analysis method
Ohara, George J.; Cunniff, Patrick F.
1992-04-01
This Annual Report summarizes the progress that was made during the first year of the two-year grant from the Office of Naval Research. The dynamic behavior of structures subjected to mechanical shock loading provides a continuing problem for design engineers concerned with shipboard foundations supporting critical equipment. There are two particular problems associated with shock response that are currently under investigation. The first topic explores the possibilities of developing a transient design analysis method that does not degrade the current level of the Navy's shock-proofness requirements for heavy shipboard equipment. The second topic examines the prospects of developing scaling rules for the shock response of simple internal equipment of submarines subjected to various attack situations. This effort has been divided into two tasks: chemical explosive scaling for a given hull; and scaling of equipment response across different hull sizes. The computer is used as a surrogate shock machine for these studies. Hence, the results of the research can provide trends, ideas, suggestions, and scaling rules to the Navy. In using these results, the shock-hardening program should use measured data rather than calculated data.
Wang, Yun; Wu, Qiuwei
2014-01-01
This paper analysis the electromagnetic transient response characteristics of DFIG under symmetrical and asymmetrical cascading grid fault conditions considering phaseangel jump of grid. On deriving the dynamic equations of the DFIG with considering multiple constraints on balanced and unbalanced...... conditions, phase angel jumps, interval of cascading fault, electromagnetic transient characteristics, the principle of the DFIG response under cascading voltage fault can be extract. The influence of grid angel jump on the transient characteristic of DFIG is analyzed and electromagnetic response...
邓松圣; 周绍骑; 廖振方; 邱正阳; 曾顺鹏
2004-01-01
Hydraulic transient,which is resulted from sudden increase of inlet pressure for laminar pipeline flow,is studied.The partial differential equation,initial and boundary conditions for transient pressure were constructed,and the theoretical solution was obtained by variable-separation method.The partial differential equation,initial and boundary conditions for flow rate were obtained in accordance with the constraint correlation between flow rate and pressure while the transient flow rate distribution was also solved by variable-separation method.The theoretical solution conforms to numerical solution obtained by method of characteristics(MOC)very well.
Three-dimensional Transient Analysis in the Upper Plenum of MONJU with MARS-LMR
Lee, Kwi-Lim; Jeong, Jae-Ho; Ha, Kwi-Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-10-15
The JAEA had provided a detailed geometrical data of the reactor vessel upper plenum, and time-dependent inlet conditions of the flow rate and temperature at the reactor core top surface for the transient analysis. The KAERI(Korea Atomic Energy Research Institute) had studied a numerical analysis of thermal stratification in an upper plenum of the MONJU using the MARS-LMR code. Three-dimensional analysis results have a good agreement with the experimental data and also show a better estimation than that of the one-dimensional analysis. Three-dimensional thermal hydraulic analyses are implemented in MARS-LMR code to validate the thermal-hydraulic models of the MARS-LMR code and identify important phenomena such as buoyancy effect and thermal stratification. The results of a 3-D analysis show a better estimation than that of a 1-D analysis. In the steady-state calculation, the total flow rate through UFHs is larger than that of the LFHs unlike a result of a 1-D calculation due to a dominant radial-flow instead of an over-flow by a geometrical interruption of an axially located fuel handling system. In the transient calculation, the sodium keeps overflowing an inner barrel during a simulation time of 3600 sec in the 3-D analysis. As a result, sodium over UFHs steadily continues to be cooled in the 3-D analysis. However, a calculated temperature at the 9th node near the top of an inner barrel is lower than an experimental data. It is considered to be caused by a modeling of an over-flow region as one dimensional volume, because the overflow region has a multi-dimensional flow.
The variable spin-down rate of the transient magnetar XTE J1810-197
Pintore, Fabio; Bernardini, Federico; Mereghetti, Sandro; Esposito, Paolo; Turolla, Roberto; Rea, Nanda; Coti Zelati, Francesco; Israel, Gian Luca; Tiengo, Andrea; Zane, Silvia
2016-05-01
We have analysed XMM-Newton and Chandra observations of the transient magnetar XTE J1810-197 spanning more than 11 yr, from the initial phases of the 2003 outburst to the current quiescent level. We investigated the evolution of the pulsar spin period and we found evidence for two distinct regimes: during the outburst decay, dot{ν } was highly variable in the range -(2-4.5) × 10-13 Hz s-1, while during quiescence the spin-down rate was more stable at an average value of -1 × 10-13 Hz s-1. Only during ˜3000 d (from MJD 54165 to MJD 56908) in the quiescent stage it was possible to find a phase-connected timing solution, with dot{ν }=-4.9× 10^{-14} Hz s-1, and a positive second frequency derivative, ddot{ν }=1.8× 10^{-22} Hz s-2. These results are in agreement with the behaviour expected if the outburst of XTE J1810-197 was due to a strong magnetospheric twist.
TREAT Transient Analysis Benchmarking for the HEU Core
Kontogeorgakos, D. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Connaway, H. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Wright, A. E. [Argonne National Lab. (ANL), Argonne, IL (United States)
2014-05-01
This work was performed to support the feasibility study on the potential conversion of the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory from the use of high enriched uranium (HEU) fuel to the use of low enriched uranium (LEU) fuel. The analyses were performed by the GTRI Reactor Conversion staff at the Argonne National Laboratory (ANL). The objective of this study was to benchmark the transient calculations against temperature-limited transients performed in the final operating HEU TREAT core configuration. The MCNP code was used to evaluate steady-state neutronics behavior, and the point kinetics code TREKIN was used to determine core power and energy during transients. The first part of the benchmarking process was to calculate with MCNP all the neutronic parameters required by TREKIN to simulate the transients: the transient rod-bank worth, the prompt neutron generation lifetime, the temperature reactivity feedback as a function of total core energy, and the core-average temperature and peak temperature as a functions of total core energy. The results of these calculations were compared against measurements or against reported values as documented in the available TREAT reports. The heating of the fuel was simulated as an adiabatic process. The reported values were extracted from ANL reports, intra-laboratory memos and experiment logsheets and in some cases it was not clear if the values were based on measurements, on calculations or a combination of both. Therefore, it was decided to use the term “reported” values when referring to such data. The methods and results from the HEU core transient analyses will be used for the potential LEU core configurations to predict the converted (LEU) core’s performance.
Antonopoulos-Domis, M.; Tambouratzis, T. [NCSR, Athens (Greece). Institute of Nuclear Technology-Radiation Protection
1997-12-22
A method is proposed for system identification during a transient, employing wavelet multiresolution analysis and denoising followed by classical (FFT) special analysis. The method has been tested on numerical experiments. (Author).
Antonopoulos-Domis, M.; Tambouratzis, T
1998-05-01
A method is proposed for system identification during a transient, employing wavelet multiresolution analysis and denoising followed by classical (FFT) special analysis. The method has been tested on numerical experiments.
陆靖; 范康年
1999-01-01
A dynamical theory of spectroscopy with femtosecond pulse excitation is developed in Liouville space. By using density matrix formalism, the transient rate equation that can be reduced to the classical KHD expression in CW case is obtained. This theory is applied to the Raman excitation profile of IBr and the results are in agreement with the experiments.
Theoretical analysis of transient heat conduction in sand
梁新刚; 过增元; 徐云生
1996-01-01
A simplified two-phase system model, with the heat transfer between phases considered, is presented and applied to the transient heat conduction in sand. The analytical results show that the one-dimensional Fourier’s law is not applicable to the transient heat conduction at very short time and there is no thermal wave described by C-V equation in sand. The two-phase system model correlates with experimental data well. Each ?phase responds to heating at different speeds in composite material, and consequently results in a temperature difference between phases. This difference will cause heat transfer between phases, which can be regarded as a heat source or sink to other phase. It is certain that Fourier’s law cannot describe the transient heat conduction in sand if a one-dimensional problem with equivalent thermal diffusivity is assumed.
Utility of late summer transient snowline migration rate on Taku Glacier, Alaska
M. Pelto
2011-12-01
Full Text Available On Taku Glacier, Alaska a combination of field observations of snow water equivalent (SWE from snowpits and probing in the vicinity of the transient snowline (TSL are used to quantify the mass balance gradient. The balance gradient derived from the TSL and SWE measured in snowpits at 1000 m from 1998–2010 ranges from 2.6–3.8 mm m^{−1}. Probing transects from 950 m–1100 m directly measure SWE and yield a slightly higher balance gradient of 3.3–3.8 mm m^{−1}. The TSL on Taku Glacier is identified in MODIS and Landsat 4 and 7 Thematic Mapper images for 31 dates during the 2004–2010 period to assess the consistency of its rate of rise and reliability in assessing ablation for mass balance assessment. For example, in 2010, the TSL was 750 m on 28 July, 800 m on 5 August, 875 m on 14 August, 925 m on 30 August, and 975 m on 20 September. The mean observed probing balance gradient was 3.3 mm m^{−1}, combined with the TSL rise of 3.7 m day^{−1} yields an ablation rate of 12.2 mm day^{−1} from mid-July to mid-Sept, 2010. The TSL rise in the region from 750–1100 m on Taku Glacier during eleven periods each covering more than 14 days during the ablation season indicates a mean TSL rise of 3.7 m day^{−1}, the rate of rise is relatively consistent ranging from 3.1 to 4.4 m day^{−1}. This rate is useful for ascertaining the final ELA if images or observations are not available near the end of the ablation season. The mean ablation from 750–1100 m during the July–September period determined from the TSL rise and the observed balance gradient is 11–13 mm day^{−1} on Taku Glacier during the 2004–2010 period. The potential for providing an estimate of b_{n} from TSL observations late in the melt season from satellite images combined with the frequent availability of such images provides a means for efficient mass balance assessment in many years and on many
An Analysis of a Rural Pennsylvania School District's Transient Population and NCLB Scores
Lesisko, Lee J.; Wright, Robert J.
2009-01-01
Pennsylvania System of School Assessment (PSSA) data from one rural school system covering four groups of children for a consecutive three year period was used to study the impact of transient students entering the school system. The analysis compared native children (those on roll since the first year) with transient children added to or deleted…
Analysis of interference in attosecond transient absorption in adiabatic condition
Dong, Wenpu; Wang, Xiaowei; Zhao, Zengxiu
2015-01-01
We simulate the transient absorption of attosecond pulses of infrared laser-dressed atoms by considering a three-level system with the adiabatic approximation. We study the delay-dependent interference features in the transient absorption spectra of helium atoms from the perspective of the coherent interaction processes between the attosecond pulse and the quasi-harmonics, and find that many features of the interference fringes in the absorption spectra of the attosecond pulse can be attributed to the coherence phase difference. And the modulation signals of laser-induced sidebands of the dark state is found related to the dark state with population modulated by the dressing field.
ANALYSIS OF TRANSIENT THERMAL STRESS IN CYLINDRICALLY ORTHOTROPIC TUBES
凌道盛
2003-01-01
The incorrect deduction of equations in the research works devoted to the studies of transient stress in cylindrically orthotropic tubes and done by Kardomateas ( Journal of Applied Mechanics, 1989, 1990) leads to the wrong results. The errata (1991) correct the deduction error, but do not give the right numerical results. All errors are corrected, and the Mathematica is adopted to solve the large argument problem for Bessel function. A theoretical solution of the transient thermal stresses in tubes with uniform form is presented,and a numerical example is studied.
Graham, Matt W; Shi, Su-Fei; Wang, Zenghui; Ralph, Daniel C; Park, Jiwoong; McEuen, Paul L
2013-01-01
Using transient absorption (TA) microscopy as a hot electron thermometer, we show that disorder-assisted acoustic-phonon supercollisions (SCs) best describe the rate-limiting relaxation step in graphene over a wide range of lattice temperatures (Tl = 5-300 K), Fermi energies (E(F) = ± 0.35 eV), and optical probe energies (~0.3-1.1 eV). Comparison with simultaneously collected transient photocurrent, an independent hot electron thermometer, confirms that the rate-limiting optical and electrical response in graphene are best described by the SC-heat dissipation rate model, H = A(T(e)(3) - T(l)(3)). Our data further show that the electron cooling rate in substrate-supported graphene is twice as fast as in suspended graphene sheets, consistent with SC model prediction for disorder.
Sunday J. IBRAHIM
2013-06-01
Full Text Available Safety and transient analyses of a pressurised water reactor (PWR using the Personal Computer Transient Analyzer (PCTRAN simulator was carried out. The analyses presented a synergistic integration of a numerical model; a full scope high fidelity simulation system which adopted point reactor neutron kinetics model and movable boundary two phase fluid models to simplify the calculation of the program, so it could achieve real-time simulation on a personal computer. Various scenarios of transients and accidents likely to occur at any nuclear power plant were simulated. The simulations investigated the change of signals and parameters vis a vis loss of coolant accident, scram, turbine trip, inadvertent control rod insertion and withdrawal, containment failure, fuel handling accident in auxiliary building and containment, moderator dilution as well as a combination of these parameters. Furthermore, statistical analyses of the PCTRAN results were carried out. PCTRAN results for the loss of coolant accident (LOCA caused a rapid drop in coolant pressure at the rate of 21.8KN/m2/sec triggering a shutdown of the reactor protection system (RPS, while the turbine trip accident showed a rapid drop in total plant power at the rate of 14.3 MWe/sec causing a downtime in the plant. Fuel handling accidents mimic results showed release of radioactive materials in unacceptable doses. This work shows the potential classes of nuclear accidents likely to occur during operation in proposed reactor sites. The simulations are very appropriate in the light of Nigeria’s plan to generate nuclear energy in the region of 1000 MWe from reactors by 2017.
Modeling of transient ionizing radiation effects in bipolar devices at high dose-rates
FJELDLY,T.A.; DENG,Y.; SHUR,M.S.; HJALMARSON,HAROLD P.; MUYSHONDT,ARNOLDO
2000-04-25
To optimally design circuits for operation at high intensities of ionizing radiation, and to accurately predict their a behavior under radiation, precise device models are needed that include both stationary and dynamic effects of such radiation. Depending on the type and intensity of the ionizing radiation, different degradation mechanisms, such as photoelectric effect, total dose effect, or single even upset might be dominant. In this paper, the authors consider the photoelectric effect associated with the generation of electron-hole pairs in the semiconductor. The effects of low radiation intensity on p-II diodes and bipolar junction transistors (BJTs) were described by low-injection theory in the classical paper by Wirth and Rogers. However, in BJTs compatible with modem integrated circuit technology, high-resistivity regions are often used to enhance device performance, either as a substrate or as an epitaxial layer such as the low-doped n-type collector region of the device. Using low-injection theory, the transient response of epitaxial BJTs was discussed by Florian et al., who mainly concentrated on the effects of the Hi-Lo (high doping - low doping) epilayer/substrate junction of the collector, and on geometrical effects of realistic devices. For devices with highly resistive regions, the assumption of low-level injection is often inappropriate, even at moderate radiation intensities, and a more complete theory for high-injection levels was needed. In the dynamic photocurrent model by Enlow and Alexander. p-n junctions exposed to high-intensity radiation were considered. In their work, the variation of the minority carrier lifetime with excess carrier density, and the effects of the ohmic electric field in the quasi-neutral (q-n) regions were included in a simplified manner. Later, Wunsch and Axness presented a more comprehensive model for the transient radiation response of p-n and p-i-n diode geometries. A stationary model for high-level injection in p
Numerical analysis of power system transients and dynamics
Ametani, Akihiro
2015-01-01
This book describes the three major power system transient and dynamics simulation tools based on a circuit-theory based approach which are most widely used all over the world (EMTP-ATP, EMTP-RV and EMTDC/PSCAD), together with other powerful simulation tools such as XTAP.
Clinical analysis on neuroprotection of transient ischemic attacks
Dimitar Maslarov; Desislava Drenska
2011-01-01
Transient ischemic attack (TIA) is an acute cerebrovascular incident, and is generally considered the best opportunity for early neuroprotective treatment against cerebral ischemia. This study retrospectively analyzed 80 patients with TIA (38 males and 42 females). Among 61 patients who received neuroprotective cerebrolysin treatment within 24 hours after TIA onset, 13 (21.31%)patients suffered subsequent strokes. Among 19 patients who received neuroprotective
Compositional Abstraction of PEPA Models for Transient Analysis
Smith, Michael James Andrew
2010-01-01
- or interval - Markov chains allow us to aggregate states in such a way as to safely bound transient probabilities of the original Markov chain. Whilst we can apply this technique directly to a PEPA model, it requires us to obtain the CTMC of the model, whose state space may be too large to construct...
Vibrational Analysis of (SCN)2 and the Transient (SCN)2
Jensen, N. H.; Wilbrandt, Robert Walter; Pagsberg, Palle Bjørn
1979-01-01
The vibrational spectra of thiocyanogen and the transient radical anion (SCN)2− are interpreted in detail through molecular orbital and normal coordinate calculations. The results support the assignment of (SCN)2− to the anion of thiocyanogen and indicate a substantial weakening of the S–S and C...
ANALYSIS OF THE TRANSIENT STABILITY LIMIT OF NIGERIA'S ...
user
Keywords: Disturbance, Transient stability, Grid Fragility, Network, Nigerian ... http://dx.doi.org/10.4314/njt.v36i1.26 ..... using generalized regression neural networks” Int. J. Applied .... of the extreme learning machine method; Int. J, Electrical.
Effect analysis of transient scenarios for successful water management strategies
Haasnoot, M.; Middelkoop, H.; Deursen, van W.; Beek, van E.; Beersma, J.; Erdbrink, C.D.; Os, van A.G.
2008-01-01
Recent scenario studies on water management focus on one or two projection years and the effects on the water system and functions. The future is however more complex and dynamic. Therefore, we analyse transient scenarios in order to evaluate the performance of water management strategies. Current a
Transient Stability Performance Analysis of Power System Using Facts Devices
M. Srinivasa Rao
2014-02-01
Full Text Available Transient stability is increasingly important for secure loading. Transient stability evaluation of large scale power systems is an extremely intricate and highly non linear problem. An important function of transient evaluation is to appraise the capability of the power system to with stand serious contingency in time, so that some emergencies or preventive control can be carried out to prevent system breakdown, the fault current so produced is diverted to the capacitor by using dual-STATCOM controller, results proved that voltage is maintained nearly constant, surge currents decreased and oscillations in generator have damped and hence system stability and continuity of supply are enhanced. If for UPFC, replacing series controller with shunt controller, it works as dual STATCOM. It has advantages as series pulse controller is not required and same pulses can be given to both STATCOMs. The shunt controller is so designed to act as low impedance path for short circuit current, thereby surge currents can be diverted to VSC. A general program for transient stability studies to incorporate FACTS devices is developed using MATLAB/SIMULINK.
De Capua, B; De Felice, C; Costantini, D; Bagnoli, F; Passali, D
2003-02-01
Hearing loss can be considered as the most common birth defect. Early detection of hearing loss by screening at, or shortly after, birth and appropriate intervention are critical to speech, language and cognitive development. In the present study, the characteristics of Transient Evoked Otoacoustic Emissions have been evaluated as a function of known pre- and perinatal risk factors for hearing loss. All newborns were screened for hearing loss using a physiologic test of hearing function, the Transient Evoked Otoacoustic Emissions. A total of 532 consecutive newborn infants received binaural Transient Evoked Otoacoustic Emission testing (262 males, 270 females; mean gestational age 39.2 +/- 2.1 weeks, range 26-43; birth weight: 3,240 +/- 550 g, range 910-4,780). The population examined comprised 448 control infants and 84 high-risk for hearing loss infants (Joint Committee on Infant Hearing 1994 criteria). All Transient Evoked Otoacoustic Emission recordings were performed at comparable postconceptional ages. Audiological screening by Transient Evoked Otoacoustic Emission recording showed an overall 100% sensitivity, 99.02% specificity, with negative and positive predictive values of 100% and 62.5%, respectively. As compared to controls, high-risk infants showed: 1. increased rates of Fail-1 (Transient Evoked Otoacoustic Emissions absent at first examination, 21.4% vs 9.8%, p = 0.004), Fail-2 (Transient Evoked Otoacoustic Emissions absent on retesting: 8.64% vs 1.37%, p = 0.0014), false positives (Transient Evoked Otoacoustic Emissions absent/V wave present: 3.7% vs 0.46%, p = 0.029) and true positives (Transient Evoked Otoacoustic Emissions absent, V wave absent: 2.47% or 24.5 per 1,000 live births vs 0.22% or 2.2 per 1,000 live births, p = 0.013); 2. significantly reduced Transient Evoked Otoacoustic Emission intensity in the 0.7-1 kHz (right side) and 1-2 kHz (left side) frequency ranges. Multivariate logistic regression analysis showed a significant positive
Li, H.; Yang, C.; Chen, H.W. [The State Key Laboratory of Equipment and System Safety of Power Transmission and Distribution and New Technology, Electrical Engineering College of Chongqing University, Chongqing 400044 (China); Zhao, B. [The State Key Laboratory of Equipment and System Safety of Power Transmission and Distribution and New Technology, Electrical Engineering College of Chongqing University, Chongqing 400044 (China); Sichuan Electric Vocational and Technical College, Chengdu 610072 (China); Chen, Z. [Institute of Energy Technology, Aalborg University, Aalborg East DK-9220 (Denmark)
2011-05-15
Increasing levels of wind energy in modern electrical power system is initiating a need for accurate analysis and estimation of transient stability of wind turbine generation systems. This paper investigates the transient behaviors and possible direct methods for transient stability evaluation of a grid-connected wind turbine with squirrel cage induction generator (SCIG). Firstly, by using an equivalent lump mass method, a three-mass wind turbine equivalent model is proposed considering both the blades and the shaft flexibility of the wind turbine drive train system. Combined with the detailed electromagnetic transient models of a SCIG, the transient behaviors of the wind turbine generation system during a three-phase fault are simulated and compared with the traditional models. Secondly, in order to quickly estimate the transient stability limit of the wind turbine generation system, a direct method based on normal form theory is proposed. The transient models of the wind turbine generation system including the flexible drive train model are derived based on the direct transient stability estimation method. A method of critical clearing time (CCT) calculation is developed for the transient stability estimation of the wind turbine generation system. Finally, the CCT at various initial mechanical torques for different dynamical models are calculated and compared with the trial and error method by simulation, when the SCIG stator terminal is subjected to a three-phase short-circuit fault. The results have shown the proposed method and models are correct and valid. (author)
Fine analysis on advanced detection of transient electromagnetic method
Wang Bo; Liu Shengdong; Yang Zhen; Wang Zhijun; Huang Lanying
2012-01-01
Fault fracture zones and water-bearing bodies in front of the driving head are the main disasters in mine laneways,thus it is important to perform their advanced detection and prediction in advance in order to provide reliable technical support for the excavation.Based on the electromagnetic induction theory,we analyzed the characteristics of primary and secondary fields with a positive and negative wave form of current,proposed the fine processing of the advanced detection with variation rate of apparent resistivity and introduced in detail the computational formulae and procedures.The result of physical simulation experiments illustrate that the tectonic interface of modules can be judged by first-order rate of apparent resistivity with a boundary error of 5％,and the position of water body determined by the fine analysis method agrees well with the result of borehole drilling.This shows that in terms of distinguishing structure and aqueous anomalies,the first-order rate of apparent resistivity is more sensitive than the secondorder rate of apparent resistivity.However,some remaining problems are suggested for future solutions.
Transient Analysis for the Multimechanism-Deformation Parameters of Several Domal Salts
Munson, Darrell E.
1999-08-16
Use of Gulf Coast salt domes for construction of very large storage caverns by solution mining has grown significantly in the last several decades. In fact, a nationally important Strategic Petroleum Reserve (SPR) storage occurs in large cavern arrays in some of these domes. Although caverns have been operated economically for these many years, these caverns have a range of relatively poorly understood behaviors, involving creep closure fluid loss and damage from salt falls. It is certainly possible to postulate that many of these behaviors stem from geomechanical or deformational aspects of the salt response. As a result, a method of correlating the cavern response to mechanical creep behavior as determined in the laboratory could be of considerable importance. Recently, detailed study of the creep response of domal salts has cast some insight into the influence of different salt origins on cavern behavior. The study used a simple graphical analysis of the limited non-steady state data to give a bound, or an approach to steady state, as an estimate of the steady state behavior of a given domal salt. This permitted the analysis of sparse creep databases for domal salts. It appears that a shortcoming of the steady state analysis was in masking some of the salt material differences. In an attempt to overcome the steady state analysis shortcomings, a method was developed based on the integration of the Multimechanism-Deformation (M-D) creep constitutive model to fit the transient response. This integration process essentially permits definition of the material sensitive parameters of the model, while those parameters that are either constants or material insensitive parameters are fixed independently. The transient analysis method has proven more sensitive to differences in the creep characteristics and has provided a way of defining different behaviors within a given dome. Creep characteristics, as defined by the transient analysis of the creep rate, are related
Transient Solution to an infinite Server Queue with Varying Arrival and Departure Rate
A. A. El-Sherbiny
2010-01-01
Full Text Available Problem statement: In many potential application of queueing theory, the transient solution of queueing system is important. Approach: This study presented the transient solution for infinite server queues with Poisson arrivals and exponential service times when the parameters of both distributions are allowed to vary with time. Based on generating functions technique which results in a simple differential equation. Using the properties of Bessel functions in the solution of this differential equation, the solution of an infinite server queues can be given in simple form. Results: The researcher obtained the transient solution an infinite server queues with Poisson arrivals and exponential service times when the parameters of both distributions are allowed to vary with time and prove that some past results are special case from his results. Conclusion: These results indicated that the probabilities can be extracted in a direct way.
Dynamic remedial action scheme using online transient stability analysis
Shrestha, Arun
Economic pressure and environmental factors have forced the modern power systems to operate closer to their stability limits. However, maintaining transient stability is a fundamental requirement for the operation of interconnected power systems. In North America, power systems are planned and operated to withstand the loss of any single or multiple elements without violating North American Electric Reliability Corporation (NERC) system performance criteria. For a contingency resulting in the loss of multiple elements (Category C), emergency transient stability controls may be necessary to stabilize the power system. Emergency control is designed to sense abnormal conditions and subsequently take pre-determined remedial actions to prevent instability. Commonly known as either Remedial Action Schemes (RAS) or as Special/System Protection Schemes (SPS), these emergency control approaches have been extensively adopted by utilities. RAS are designed to address specific problems, e.g. to increase power transfer, to provide reactive support, to address generator instability, to limit thermal overloads, etc. Possible remedial actions include generator tripping, load shedding, capacitor and reactor switching, static VAR control, etc. Among various RAS types, generation shedding is the most effective and widely used emergency control means for maintaining system stability. In this dissertation, an optimal power flow (OPF)-based generation-shedding RAS is proposed. This scheme uses online transient stability calculation and generator cost function to determine appropriate remedial actions. For transient stability calculation, SIngle Machine Equivalent (SIME) technique is used, which reduces the multimachine power system model to a One-Machine Infinite Bus (OMIB) equivalent and identifies critical machines. Unlike conventional RAS, which are designed using offline simulations, online stability calculations make the proposed RAS dynamic and adapting to any power system
Transient analysis of a capillary pumped loop heat pipe
Kiper, A. M.; Feric, G.; Anjum, M. I.; Swanson, T. D.
1990-01-01
A bench-top Capillary Pumped Loop (CPL) test system has been developed and tested to investigate the transient mode operation of this system by applying a step power input to the evaporators. Tests were conducted at several power input and evaporator inlet subcooling combinations. In addition, a lumped-heat-capacity model of the CPL test system has been presented which is used for predicting qualitatively the transient operation characteristics. Good agreement has been obtained between the predicted and the measured temperature variations. A simple evaporator inlet subcooler model has also been developed to study effects of inlet subcooling on the steady-state evaporator wall temperature. Results were compared with the test data collected.
Pressure Transient Analysis of Arbitrarily Shaped Fractured Reservoirs
Gao Huimei; He Yingfu; Jiang Hanqiao; Chen Minfeng
2007-01-01
Reservoir boundary shape has a great influence on the transient pressure response of oil wells located in arbitrarily shaped reservoirs.Conventional analytical methods can only be used to calculate transient pressure response in regularly shaped reservoirs.Under the assumption that permeability varies exponentially with pressure drop,a mathematical model for well test interpretation of arbitrarily shaped deformable reservoirs was established.By using the regular perturbation method and the boundary element method,the model could be solved.The pressure behavior of wells with wellbore storage and skin effects was obtained by using the Duhamel principle.The type curves were plotted and analyzed by considering the effects of permeability modulus,arbitrary shape and impermeable region.
Fractal analysis of pressure transients in the Geysers Geothermal Field
Acuna, J.A.; Ershaghi, I.; Yortsos, Y.C.
1992-01-01
The conventionally accepted models for the interpretation of pressure transient tests in naturally fractured reservoirs usually involve simplistic assumptions regarding the geometry and transport properties of the fractured medium. Many single well tests in this type of reservoirs fail to show the predicted behavior for dual or triple porosity or permeability systems and cannot be explained by these models. This paper describes the application of a new model based on a fractal interpretation of the fractured medium. The approach, discussed elsewhere [2], [6], is applied to field data from The Geysers Geothermal Field. The objective is to present an alternative interpretation to well tests that characterizes the fractured medium in a manner more consistent with other field evidence. The novel insight gained from fractal geometry allows the identification of important characteristics of the fracture structure that feeds a particular well. Some simple models are also presented that match the field transient results.
1996-01-01
In a continuing in-house program at the NASA Lewis Research Center, analytical and numerical methods are being developed to apply radiative analysis to predict transient temperature distributions and heat flows in partially transmitting materials. Results have been obtained for a single plane layer, and a transient analysis is being developed for a two-layer composite where each layer has a different refractive index. Because the ceramic refractive indices are larger than one, internal reflections are produced at the surfaces and at the internal interface. Reflections tend to distribute energy within a layer, and this affects the transient temperature distributions.
Materials Analysis of Transient Plasma-Wall Interactions
2014-05-13
model showing the importance sputter and re-deposition. plasma, pulsed plasma, directed energy, transient wall interaction, high energy density...each equipped with a 25kV copper- vapor thyratron start switch capable of sub-microsecond triggering resolution. Each start switch is paired with a...sample exposure positions within the plasma jet. The probe utilizes a PCB Piezotronics model 113B21 pressure sensor modified to work in the plasma jet
Guidelines for transient analysis in water transmission and distribution systems
Pothof, Ivo; Karney, Bryan
2012-01-01
All water systems leak, and many supply systems do so considerably, with water losses typically of approximately 20% of the water production. The IWA Water Loss Task Force aims for a significant reduction of annual water losses by drafting documents to assist practitioners and others to prevent, monitor and mitigate water losses in water transmission and distribution systems. One of the causes of water losses are transient phenomena, caused by normal and accidental pump and valve operations. ...
Computational aspects of sensitivity calculations in transient structural analysis
Greene, William H.; Haftka, Raphael T.
1988-01-01
A key step in the application of formal automated design techniques to structures under transient loading is the calculation of sensitivities of response quantities to the design parameters. This paper considers structures with general forms of damping acted on by general transient loading and addresses issues of computational errors and computational efficiency. The equations of motion are reduced using the traditional basis of vibration modes and then integrated using a highly accurate, explicit integration technique. A critical point constraint formulation is used to place constraints on the magnitude of each response quantity as a function of time. Three different techniques for calculating sensitivities of the critical point constraints are presented. The first two are based on the straightforward application of the forward and central difference operators, respectively. The third is based on explicit differentiation of the equations of motion. Condition errors, finite difference truncation errors, and modal convergence errors for the three techniques are compared by applying them to a simple five-span-beam problem. Sensitivity results are presented for two different transient loading conditions and for both damped and undamped cases.
Analysis of an Earthquake-Initiated-Transient in a PBR
A. M. Ougouag; J. Ortensi; H. Hiruta
2009-05-01
One of the Design Basis Accidents (DBA) for a Pebble Bed Reactor has been identified as the “Safe shutdown earthquake with core conduction cooling to passive mode of Reactor Cavity Cooling System.” A new methodology to analyze this particular DBA has been developed at the Idaho National Laboratory (INL). During the seismic event the reactor core experiences the densification of the pebbles, which produce small reactivity insertions due to the effective fuel densification. In addition, a decrease in the active core height results in the relative withdrawal of the control rods, which are assumed to remain stationary during the transient. The methodology relies on the dynamic re-meshing of the core during the transient to capture the local packing fraction changes and their corresponding effects on temperature and reactivity. The core re-meshing methodology is based on the velocity profiles of the pebbles in the core, which were obtained with the INL’s pebble mechanics code PEBBLES. The methodology has been added to the coupled code system CYNOD-THERMIX-KONVEK. The reactor power calculation is further improved with the use of the new advanced TRISO fuel model to better approximate the temperatures in the fuel kernels. During the transient the core is brought back to a safe condition by the strong Doppler feedback from local temperature increases.
TRANSIENT HEAT TRANSFER ANALYSIS FOR SRS RADIOACTIVE TANK OPERATION
Lee, S.
2013-06-27
The primary objective of the present work is to perform a heat balance study for type-I waste tank to assess the impact of using submersible mixer pumps during waste removal. The temperature results calculated by the model will be used to evaluate the temperatures of the slurry waste under various tank operating conditions. A parametric approach was taken to develop a transient model for the heat balance study for type-I waste tanks such as Tank 11, during waste removal by SMP. The tank domain used in the present model consists of two SMP's for sludge mixing, one STP for the waste removal, cooling coil system with 36 coils, and purge gas system. The sludge waste contained in Tank 11 also has a decay heat load of about 43 W/m{sup 3} mainly due to the emission of radioactive gamma rays. All governing equations were established by an overall energy balance for the tank domain, and they were numerically solved. A transient heat balance model used single waste temperature model, which represents one temperature for the entire waste liquid domain contained in the tank at each transient time.
Heiselberg, Per Kvols; Perino, M.
2004-01-01
is assured throughout the test. However, due to the relatively slow response of the gas analysers, none of these procedures can usually be applied to fast transient phenomena that last 15 minutes or less. Moreover in many cases of natural ventilation strategies, the continuous mixing of the indoor air would...
Sweat Rate Prediction Equations for Outdoor Exercise with Transient Solar Radiation
2012-01-01
by either Rsol or ERF (W/m2), and both functions can be quantified during transients in algebraically different, but equivalent heat transfer methods...Shibasaki M, Kondo N, Crandall CG. Non-thermoregulatory modula- tion of sweating in humans. Exerc Sport Sci Rev 31: 34–39, 2003. 44. Tseng YT, Durbin P
Multimechanism-Deformation Parameters of Domal Salts Using Transient Creep Analysis
MUNSON, DARRELL E
1999-09-01
given dome. Characteristics defined by the transient analysis are related quantitatively to the volume loss creep rate of the SPR caverns. This increase in understanding of the domal material creep response already has pointed to the possibility y of delineating the existence of material spines within a specific dome. Further definition of the domal geology and structure seems possible only through expansion of the creep databases for domal salts.
Wave-formed sediment ripples: Transient analysis of ripple spectral development
Davis, Joseph P.; Walker, David J.; Townsend, Murray; Young, Ian R.
2004-07-01
A new method has been developed that models the changes a wave-formed rippled sediment bed undergoes as it is actively evolving between two given equilibrium states due to a change in surface wave conditions. The transient analysis of rippled beds has received very little attention within the literature. Dynamic changes within ripple parameters have implications for the estimation of flow dissipation and sediment transport by changing the bottom roughness height. The method uses the spectral density function of the rippled bed and is based on a series of ripple growth and ripple transition experimental tests. The ripple evolution model was developed from the well-known Logistic Growth Law. Fitting the general solution of the logistic nonlinear differential equation to the experimental data enabled the evolution rate of the bed to be determined for each experimental test. It was concluded that there was no difference between the evolution rate determined from the ripple growth tests and the ripple transition tests. This indicated that the two types of growth are special cases of the same evolution processes, which is adequately modeled by the logistic growth equation. A functional dependence was established between the ripple evolution rate and the Shields parameter. This allows the evolution rate to be estimated from flow and sediment properties. The estimation of the rate at which rippled sediment beds evolve under a variable sea state has the potential to lead to significant improvements to the way ripple transition and hence bottom roughness is approximated in coastal wave models.
An investigation of the transient thermal analysis of spur gears
El-Bayoumy, L. E.; Akin, L. S.; Townsend, D. P.
1984-01-01
A finite element computer program is developed for evaluating the transient behavior of surface temperature in high performance spur gears. The time dimension is implemented using two and three point finite difference schemes. The different schemes are provided for the purpose of numerical stability and convergence studies. A detailed explanation of the gear cooling process leading to the establishment of a modified Blok model is also included. Other conventional models for approximating the heat transfer coefficients are available for comparison. Preliminary results are given showing snap shots of gear temperature contours at the initial stages of tooth engagement.
Finite element approach for transient analysis of multibody systems
Wu, Shih-Chin; Chang, Che-Wei; Housner, Jerrold M.
1992-01-01
A three-dimensional, finite element based formulation for the transient dynamics of constrained multibody systems with trusslike configurations is presented. A convected coordinate system is used to define the rigid-body motion of individual elements in the system. Deformation of each element is defined relative to its convected coordinate system. The formulation is oriented toward joint-dominated structures. Through a series of sequential transformations, the joint degree of freedom is built into the equations of motion of the element to reduce geometric constraints. Based on the derivation, a general-purpose code has been developed. Two examples are presented to illustrate the application of the code.
Analysis of the transient collisional x-ray lasers
Sasaki, Akira; Utsumi, Takayuki; Moribayashi, Kengo; Zhidkov, Alexei; Kawachi, Tetsuya; Kado, Masataka; Tanaka, Momoko; Hasegawa, Noboru; Daido, Hiroyuki [Japan Atomic Energy Research Inst., Kizu, Kyoto (Japan). Kansai Research Establishment
2001-10-01
The spatial and temporal evolution of the gain of a transient collisional x-ray lasers had been investigated using a plasma hydrodynamics code coupled with a detailed atomic kinetics code. The calculated gain of a Ni-like Ag laser pumped by two 100ps laser pulses agrees qualitatively with the experiment. Calculations for a thin foil target irradiated by two 2ps laser pulses shows that a high gain (>50/cm) can be obtained by adjusting the temporal interval between the two pump pulses. (author)
Failure rate analysis using GLIMMIX
Moore, L.M.; Hemphill, G.M.; Martz, H.F.
1998-12-01
This paper illustrates use of a recently developed SAS macro, GLIMMIX, for implementing an analysis suggested by Wolfinger and O`Connell (1993) in modeling failure count data with random as well as fixed factor effects. Interest in this software tool arose from consideration of modernizing the Failure Rate Analysis Code (FRAC), developed at Los Alamos National Laboratory in the early 1980`s by Martz, Beckman and McInteer (1982). FRAC is a FORTRAN program developed to analyze Poisson distributed failure count data as a log-linear model, possibly with random as well as fixed effects. These statistical modeling assumptions are a special case of generalized linear mixed models, identified as GLMM in the current statistics literature. In the nearly 15 years since FRAC was developed, there have been considerable advances in computing capability, statistical methodology and available statistical software tools allowing worthwhile consideration of the tasks of modernizing FRAC. In this paper, the approaches to GLMM estimation implemented in GLIMMIX and in FRAC are described and a comparison of results for the two approaches is made with data on catastrophic time-dependent pump failures from a report by Martz and Whiteman (1984). Additionally, statistical and graphical model diagnostics are suggested and illustrated with the GLIMMIX analysis results.
Sunny Katyara
2015-10-01
Full Text Available In this paper analysis and mitigation methods of capacitor bank switching transients on 132KV Grid station, Qasimabad Hyderabad are simulated through the MATLAB software (Matrix Laboratory. Analysis of transients with and without capacitor bank is made. Mathematical measurements of quantities such as transient voltages and inrush currents for each case are discussed. Reasons for these transients, their impact on utility and customer systems and their mitigation are provided.
Sunny Katyara; Ashfaque Ahmed Hashmani; Bhawani Shankar Chowdhry
2015-01-01
In this paper analysis and mitigation methods of capacitor bank switching transients on 132KV Grid station, Qasimabad Hyderabad are simulated through the MATLAB software (Matrix Laboratory). Analysis of transients with and without capacitor bank is made. Mathematical measurements of quantities such as transient voltages and inrush currents for each case are discussed. Reasons for these transients, their impact on utility and customer systems and their mitigation are provided.
Pressure transient analysis of two-phase flow problems
Chu, W.C.; Reynolds, A.C.; Raghavan, R.
1986-04-01
This paper considers the analysis of pressure drawdown and buildup data for two-phase flow problems. Of primary concern is the analysis of data influenced by saturation gradients that exist within the reservoir. Wellbore storage effects are assumed to be negligible. The pressure data considered are obtained from a two-dimensional (2D) numerical coning model for an oil/water system. The authors consider constant-rate production followed by a buildup period and assume that the top, bottom, and outer boundaries of the reservoir are sealed. First, they consider the case where the producing interval is equal to the total formation thickness. Second, they discuss the effect of partial penetration. In both cases, they show that average pressure can be estimated by the Matthews-Brons-Hazebroek method and consider the computation of the skin factor. They also show that a reservoir limit test can estimate reservoir PV only if the total mobility adjacent to the wellbore does not vary with time.
Compressor Modeling for Transient Analysis of Supercritical CO2 Brayton Cycle by using MARS code
Park, Joo Hyun; Park, Hyun Sun; Kim, Tae Ho; Kwon, Jin Gyu [POSTECH, Pohang (Korea, Republic of); Bae, Sung Won; Cha, Jae Eun [KAERI, Daejeon (Korea, Republic of)
2016-05-15
In this study, SCIEL (Supercritical CO{sub 2} Integral Experimental Loop) was chosen as a reference loop and the MARS code was as the transient cycle analysis code. As a result, the compressor homologous curve was developed from the SCIEL experimental data and MARS analysis was performed and presented in the paper. The advantages attract SCO{sub 2}BC as a promising next generation power cycles. The high thermal efficiency comes from the operation of compressor near the critical point where the properties of SCO{sub 2}. The approaches to those of liquid phase, leading drastically lower the compression work loss. However, the advantage requires precise and smooth operation of the cycle near the critical point. However, it is one of the key technical challenges. The experimental data was steady state at compressor rotating speed of 25,000 rpm. The time, 3133 second, was starting point of steady state. Numerical solutions were well matched with the experimental data. The mass flow rate from the MARS analysis of approximately 0.7 kg/s was close to the experimental result of 0.9 kg/s. It is expected that the difference come from the measurement error in the experiment. In this study, the compressor model was developed and implemented in MARS to study the transient analysis of SCO{sub 2}BC in SCIEL. We obtained the homologous curves for the SCIEL compressor using experimental data and performed nodalization of the compressor model using MARS code. In conclusions, it was found that numerical solutions from the MARS model were well matched with experimental data.
Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA) Users' Guide
Csank, Jeffrey T.; Zinnecker, Alicia M.
2014-01-01
The tool for turbine engine closed-loop transient analysis (TTECTrA) is a semi-automated control design tool for subsonic aircraft engine simulations. At a specific flight condition, TTECTrA produces a basic controller designed to meet user-defined goals and containing only the fundamental limiters that affect the transient performance of the engine. The purpose of this tool is to provide the user a preliminary estimate of the transient performance of an engine model without the need to design a full nonlinear controller.
Fisher, Harvey F
2016-08-01
The transient-state kinetic approach has failed to reach its full potential despite its advantage over the steady-state approach in its ability to observe mechanistic events directly and in real time. This failure has been due in part to the lack of any rigorously derived and readily applicable body of theory corresponding to that which currently characterizes the steady-state approach. In order to clarify the causes of this discrepancy and to suggest a route to its solution we examine the capabilities and limitations of the various forms of transient-state kinetic approaches to the mathematical resolution of enzymatic reaction mechanisms currently available. We document a lack of validity inherent in their basic assumptions and suggest the need for a potentially more rigorous analytic approach.
Yan Wang
2017-01-01
Full Text Available After a postulated design basis accident leads high temperature gas cooled reactor to emergency shutdown, steam generator still remains with high temperature level and needs to be cooled down by a precooling before reactor restarts with clearing of fault. For the large difference of coolant temperature between inlet and outlet of steam generator in normal operation, the temperature distribution on the components of steam generator is very complicated. Therefore, the temperature descending rate of the components in steam generator needs to be limited to avoid the potential damage during the precooling stage. In this paper, a pebble-bed high temperature gas cooled reactor is modeled by thermal-hydraulic system analysis code and several postulated precooling injection transients are simulated and compared to evaluate their effects, which will provide support for the precooling design. The analysis results show that enough precooling injection is necessary to satisfy the precooling requirements, and larger mass flow rate of precooling water injection will accelerate the precooling process. The temperature decrease of steam generator is related to the precooling injection scenarios, and the maximal mass flow rate of the precooling injection should be limited to avoid the excessively quick temperature change of the structures in steam generator.
Carrasco, Juan A.
2004-01-01
Rewarded homogeneous continuous-time Markov chain (CTMC) models can be used to analyze performance, dependability and performability attributes of computer and telecommunication systems. In this paper, we consider rewarded CTMC models with a reward structure including reward rates associated with states and two measures summarizing the behavior in time of the resulting reward rate random variable: the expected transient reward rate at time t and the expected averaged reward rate in the tim...
Mixed time integration schemes for transient conduction forced-convection analysis
Liu, W. K.; Lin, J. I.
1983-01-01
A partition procedure for forced-convection conduction transient problems is presented. Mixed time partitions are defined wherein coupled conduction force-matrix equations are discretized using an implicit integration method, followed by derivation of a mixed time integration technique. Explicit-implicit and explicit-explicit partitions are performed for a stability analysis for transient conditions, e.g., those found in an actively air-cooled engine and airframe structure.
Computational aspects of sensitivity calculations in linear transient structural analysis
Greene, W. H.; Haftka, R. T.
1991-01-01
The calculation of sensitivities of displacements, velocities, accelerations, and stresses in linear, structural, and transient response problems is studied. Several existing sensitivity calculation methods and two new methods are compared for three example problems. Approximation vectors such as vibration mode shapes are used to reduce the dimensionality of the finite model. To be computationally practical in large-order problems, the overall finite difference methods must use the approximation vectors from the original design in the analyses of the perturbed models. This was found to result in poor convergence of stress sensitivities in several cases. Two semianalytical techniques are developed to overcome this poor convergence. Both new methods result in very good convergence of the stress sensitivities; the computational cost is much less than would result if the vibration modes were recalculated and then used in an overall finite difference method.
Analysis of transient saltwater intrusion in costal aquifers
Chang, Y.; Yeh, H.
2009-12-01
In a costal aquifer, the seawater intrusion is a classic environmental and economical problem in groundwater hydrology. For modeling this phenomenon, the Henry’s formulation was usually adopted to describe the coupled system of flow and transport equations with variable density. However, it is an arduous task to solve such a problem due to the complexity of the coupled governing equations. For practical applicability, the mixed boundary condition which differs from the Dirichlet boundary condition at the coastal side in Henry’s problem is considered in this study. A depth of interface between freshwater and seawater is specified at the coast boundary and the Neumann and Dirichlet conditions are used, respectively, to describe the costal boundary. The perturbation method with a small parameter is used to decouple the groundwater flow and transport equations and derive the solution for the transient saltwater intrusion model. The model will be compared with some results obtained from finite element simulations.
PFR fuel cladding transient test results and analysis
Cannon, N. S.; Hunter, C. W.; Kear, K. L.; Wood, M. H.
1986-05-01
Fuel Cladding Transient Tests (FCTT) were performed on M316 cladding specimens obtained from mixed-oxide fuel pins irradiated in the Prototype Fast Reactor (PFR) to burnups of 4 and 9 atom percent. In these tests, specimens of fuel cladding were pressurized and heated until failure occurred. Samples of cladding from PFR fuel pins exhibited generally greater strength and ductility than specimens from Experimental Breeder Reactor-II (EBR-II) mixed-oxide fuel pins tested under similar conditions. Apparently, the PFR cladding properties were not degraded by a fuel adjacency effect (FAE) observed in fuel pin cladding from EBR-II irradiations. A recently developed model of grain boundary cavity growth was used to predict the results of the tests conducted on PFR cladding. It was found that the predicted failure temperatures for the relevant internal pressures were in good agreement with experimental failure temperatures.
Transient pressure analysis in porous and fractured fractal reservoirs
无
2009-01-01
Fluid flow in porous and fractured fractal reservoirs is studied in the paper. The basic formulae of seepage velocity,permeability and porosity in both porous and fractured fractal media are developed. The pressure diffusion equation of slightly compressible fluid in fractal reservoirs is derived. The analytical solutions of the transient pressure are given for the line-source well and the well with well-bore storage and skin factor. The typical curves of pressure and the derivative of pressure are established,along with the interpretation of the well-testing method via type-curve matching. In addition,3-D pressure diffusion equations for anisotropic fractal media are given in both Cartesian coordinates and Cy-lindrical coordinates.
Stability Analysis of the LHC Cables for Transient Heat Depositions
Granieri, P P; Xydi, P; Baudouy, B; Bocian, D; Bottura, L; Breschi, M; Siemko, A
2008-01-01
The commissioning and the exploitation of the LHC require a good knowledge of the stability margins of the superconducting magnets with respect to beam induced heat depositions. Previous studies showed that simple numerical models are suitable to carry out stability calculations of multi-strands cables, and highlighted the relevance of the heat transfer model with the surrounding helium. In this paper we present a systematic scan of the stability margin of all types of LHC cables working at 1.9 Kagainst transient heat depositions. We specifically discuss the dependence of the stability margin on the parameters of the model, which provide an estimate of the uncertainty of the values quoted. The stability margin calculations have been performed using a zero-dimensional (0-D) numerical model, and a cooling model taking into account the relevant helium phases which may appear during a stability experiment: it includes Kapitza thermal resistance in superfluid He, boundary layer formation and heat transfer in He I,...
Proteomic tools for the analysis of transient interactions between metalloproteins.
Martínez-Fábregas, Jonathan; Rubio, Silvia; Díaz-Quintana, Antonio; Díaz-Moreno, Irene; De la Rosa, Miguel Á
2011-05-01
Metalloproteins play major roles in cell metabolism and signalling pathways. In many cases, they show moonlighting behaviour, acting in different processes, depending on the physiological state of the cell. To understand these multitasking proteins, we need to discover the partners with which they carry out such novel functions. Although many technological and methodological tools have recently been reported for the detection of protein interactions, specific approaches to studying the interactions involving metalloproteins are not yet well developed. The task is even more challenging for metalloproteins, because they often form short-lived complexes that are difficult to detect. In this review, we gather the different proteomic techniques and biointeractomic tools reported in the literature. All of them have shown their applicability to the study of transient and weak protein-protein interactions, and are therefore suitable for metalloprotein interactions.
Analysis of Transient Behavior of a Vapor Compression Refrigeration Cycle
Fukushima, Toshihiko; Miyamoto, Seigo
A mathematical model for a vapor compression refrigeration cycle for automotive air conditioner is developed, which basically consists of compressor, condenser, receiver, expansion valve, evaporator, suction pressure control valve and piping. The main purpose of this model is to provide the designer with a tool for improving cooling capacity and investigating capacity control of the refrigeration cycle at transient conditions. A lumped parameter system is used for the mathematical model of the condenser and the evaporator, that is obtained with volume integral of the equation of continuity and energy over a bounded volume region. The compressor model and the piping models are also lumped parameter systems, and heat capacity of their walls are taken into account. The theoretical solutions of this model are in good agreement with the experimental results.
Analysis of tracer and thermal transients during reinjection
Kocabas, I.
1989-10-01
This work studied tracer and thermal transients during reinjection in geothermal reserviors and developed a new technique which combines the results from interwell tracer tests and thermal injection-backflow tests to estimate the thermal breakthrough times. Tracer tests are essential to determine the degree of connectivity between the injection wells and the producing wells. To analyze the tracer return profiles quantitatively, we employed three mathematical models namely, the convection-dispersion (CD) model, matrix diffusion (MD) model, and the Avodnin (AD) model, which were developed to study tracer and heat transport in a single vertical fracture. We considered three types of tracer tests namely, interwell tracer tests without recirculation, interwell tracer tests with recirculation, and injection-backflow tracer tests. To estimate the model parameters, we used a nonlinear regression program to match tracer return profiles to the solutions.
NODAL3 Sensitivity Analysis for NEACRP 3D LWR Core Transient Benchmark (PWR
Surian Pinem
2016-01-01
Full Text Available This paper reports the results of sensitivity analysis of the multidimension, multigroup neutron diffusion NODAL3 code for the NEACRP 3D LWR core transient benchmarks (PWR. The code input parameters covered in the sensitivity analysis are the radial and axial node sizes (the number of radial node per fuel assembly and the number of axial layers, heat conduction node size in the fuel pellet and cladding, and the maximum time step. The output parameters considered in this analysis followed the above-mentioned core transient benchmarks, that is, power peak, time of power peak, power, averaged Doppler temperature, maximum fuel centerline temperature, and coolant outlet temperature at the end of simulation (5 s. The sensitivity analysis results showed that the radial node size and maximum time step give a significant effect on the transient parameters, especially the time of power peak, for the HZP and HFP conditions. The number of ring divisions for fuel pellet and cladding gives negligible effect on the transient solutions. For productive work of the PWR transient analysis, based on the present sensitivity analysis results, we recommend NODAL3 users to use 2×2 radial nodes per assembly, 1×18 axial layers per assembly, the maximum time step of 10 ms, and 9 and 1 ring divisions for fuel pellet and cladding, respectively.
Pressure transient analysis for long homogeneous reservoirs using TDS technique
Escobar, Freddy Humberto [Universidad Surcolombiana, Av. Pastrana - Cra. 1, Neiva, Huila (Colombia); Hernandez, Yuly Andrea [Hocol S.A., Cra. 7 No 114-43, Floor 16, Bogota (Colombia); Hernandez, Claudia Marcela [Weatherford, Cra. 7 No 81-90, Neiva, Huila (Colombia)
2007-08-15
A significant number of well pressure tests are conducted in long, narrow reservoirs with close and open extreme boundaries. It is desirable not only to appropriately identify these types of systems but also to develop an adequate and practical interpretation technique to determine their parameters and size, when possible. An accurate understanding of how the reservoir produces and the magnitude of producible reserves can lead to competent decisions and adequate reservoir management. So far, studies found for identification and determination of parameters for such systems are conducted by conventional techniques (semilog analysis) and semilog and log-log type-curve matching of pressure versus time. Type-curve matching is basically a trial-and-error procedure which may provide inaccurate results. Besides, a limitation in the number of type curves plays a negative role. In this paper, a detailed analysis of pressure derivative behavior for a vertical well in linear reservoirs with open and closed extreme boundaries is presented for the case of constant rate production. We studied independently each flow regime, especially the linear flow regime since it is the most characteristic 'fingerprint' of these systems. We found that when the well is located at one of the extremes of the reservoir, a single linear flow regime develops once radial flow and/or wellbore storage effects have ended. When the well is located at a given distance from both extreme boundaries, the pressure derivative permits the identification of two linear flows toward the well and it has been called that 'dual-linear flow regime'. This is characterized by an increment of the intercept of the 1/2-slope line from {pi}{sup 0.5} to {pi} with a consequent transition between these two straight lines. The identification of intersection points, lines, and characteristic slopes allows us to develop an interpretation technique without employing type-curve matching. This technique uses
2014-01-01
The transient behaviors of natural circulation loop (NCL) are important for the system reliability under postulated accidents. The heat loss and structure thermal inertia may influence the transient behaviors of NCL greatly, so a transient analysis model with consideration of heat loss was developed based on the MATLAB/Simulink to predict the thermal-hydraulic characteristic of liquid metal NCL. The transient processes including the start-up, the loss of pump, and the shutdown of thermal-hydr...
Analysis of ventilation systems subjected to explosive transients: far-field analysis
Tang, P.K.; Andrae, R.W.; Bolstad, J.W.; Duerre, K.H.; Gregory, W.S.
1981-11-01
Progress in developing a far-field explosion simulation computer code is outlined. The term far-field implies that this computer code is suitable for modeling explosive transients in ventilation systems that are far removed from the explosive event and are rather insensitive to the particular characteristics of the explosive event. This type of analysis is useful when little detailed information is available and the explosive event is described parametrically. The code retains all the features of the TVENT code and allows completely compressible flow with inertia and choking effects. Problems that illustrate the capabilities and limitations of the code are described.
Numerical Analysis of Transient Temperature Response of Soap Film
Tanaka, Seiichi; Tatesaku, Akihiro; Dantsuka, Yuki; Fujiwara, Seiji; Kunimine, Kanji
2015-11-01
Measurements of thermophysical properties of thin liquid films are important to understand interfacial phenomena due to film structures composed of amphiphilic molecules in soap film, phospholipid bilayer of biological cell and emulsion. A transient hot-wire technique for liquid films less than 1 \\upmu m thick such as soap film has been proposed to measure the thermal conductivity and diffusivity simultaneously. Two-dimensional heat conduction equations for a solid cylinder with a liquid film have been solved numerically. The temperature of a thin wire with liquid film increases steeply with its own heat generation. The feasibility of this technique is verified through numerical experiments for various thermal conductivities, diffusivities, and film thicknesses. Calculated results indicate that the increase in the volumetric average temperature of the thin wire sufficiently varies with the change of thermal conductivity and diffusivity of the soap film. Therefore, the temperature characteristics could be utilized to evaluate both the thermal conductivity and diffusivity using the Gauss-Newton method.
Transient Thermal Analysis of a Refractive Secondary Solar Concentrator
Geng, Steven M.; Macosko, Robert P.
1999-01-01
A secondary concentrator is an optical device that accepts solar energy from a primary concentrator and further intensifies and directs the solar flux. The refractive secondary is one such device; fabricated from an optically clear solid material that can efficiently transmit the solar energy by way of refraction and total internal reflection. When combined with a large state-of-the-art rigid or inflatable primary concentrator, the refractive secondary enables solar concentration ratios of 10,000 to 1. In support of potential space solar thermal power and propulsion applications, the NASA Glenn Research Center is developing a single-crystal refractive secondary concentrator for use at temperatures exceeding 2000K. Candidate optically clear single-crystal materials like sapphire and zirconia are being evaluated for this application. To support this evaluation, a three-dimensional transient thermal model of a refractive secondary concentrator in a typical solar thermal propulsion application was developed. This paper describes the model and presents thermal predictions for both sapphire and zirconia prototypes. These predictions are then used to establish parameters for analyzing and testing the materials for their ability to survive thermal shock and stress.
Masuzawa, Toru; Ohta, Akiko; Tanaka, Nobuatu; Qian, Yi; Tsukiya, Tomonori
2009-01-01
The effect of the hydraulic force on magnetically levitated (maglev) pumps should be studied carefully to improve the suspension performance and the reliability of the pumps. A maglev centrifugal pump, developed at Ibaraki University, was modeled with 926 376 hexahedral elements for computational fluid dynamics (CFD) analyses. The pump has a fully open six-vane impeller with a diameter of 72.5 mm. A self-bearing motor suspends the impeller in the radial direction. The maximum pressure head and flow rate were 250 mmHg and 14 l/min, respectively. First, a steady-state analysis was performed using commercial code STAR-CD to confirm the model's suitability by comparing the results with the real pump performance. Second, transient analysis was performed to estimate the hydraulic force on the levitated impeller. The impeller was rotated in steps of 1 degrees using a sliding mesh. The force around the impeller was integrated at every step. The transient analysis revealed that the direction of the radial force changed dynamically as the vane's position changed relative to the outlet port during one circulation, and the magnitude of this force was about 1 N. The current maglev pump has sufficient performance to counteract this hydraulic force. Transient CFD analysis is not only useful for observing dynamic flow conditions in a centrifugal pump but is also effective for obtaining information about the levitation dynamics of a maglev pump.
Laycock, Robin; Cross, Alana Jade; Dalle Nogare, Felicity; Crewther, Sheila Gillard
2014-02-01
Autism is usually defined by impairments in the social domain but has also been linked to deficient dorsal visual stream processing. However, inconsistent findings make the nature of this relationship unclear and thus, we examined the role of stimulus-driven transient attention, presumably activated by the dorsal stream in autistic tendency. Contrast thresholds for object discrimination were compared between groups with high and low self-rated autistic tendency utilizing the socially based Autism Spectrum Quotient (AQ). Visual stimuli were presented with either abrupt or with ramped contrast onsets/offsets in order to manipulate the demands of transient attention. Larger impairments in performance of abrupt compared with ramped object presentation were established in the high AQ group. Furthermore, self-reported social skills predicted abrupt task performance, suggesting an important visual perception deficiency in autism-related traits. Autism spectrum disorder may be associated with reduced utilization of the dorsal stream to rapidly activate attention prior to ventral stream processing when stimuli are transient. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.
2016-06-01
due to the highly technical and frequently changing regulations that govern contracting operations. Figure 2. Question 2 Survey Response Chart ...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA JOINT APPLIED PROJECT USMC CONTINGENCY CONTRACTING FORCE: AN ANALYSIS OF...CONTINGENCY CONTRACTING FORCE: AN ANALYSIS OF TRANSIENT OFFICERS IN A RAPIDLY CHANGING ACQUISITION ENVIRONMENT 5. FUNDING NUMBERS 6. AUTHOR(S) Adam
Transient thermal analysis as measurement method for IC package structural integrity
Hanß, Alexander; Schmid, Maximilian; Liu, E.; Elger, Gordon
2015-06-01
Practices of IC package reliability testing are reviewed briefly, and the application of transient thermal analysis is examined in great depth. For the design of light sources based on light emitting diode (LED) efficient and accurate reliability testing is required to realize the potential lifetimes of 105 h. Transient thermal analysis is a standard method to determine the transient thermal impedance of semiconductor devices, e.g. power electronics and LEDs. The temperature of the semiconductor junctions is assessed by time-resolved measurement of their forward voltage (Vf). The thermal path in the IC package is resolved by the transient technique in the time domain. This enables analyzing the structural integrity of the semiconductor package. However, to evaluate thermal resistance, one must also measure the dissipated energy of the device (i.e., the thermal load) and the k-factor. This is time consuming, and measurement errors reduce the accuracy. To overcome these limitations, an innovative approach, the relative thermal resistance method, was developed to reduce the measurement effort, increase accuracy and enable automatic data evaluation. This new way of evaluating data simplifies the thermal transient analysis by eliminating measurement of the k-factor and thermal load, i.e. measurement of the lumen flux for LEDs, by normalizing the transient Vf data. This is especially advantageous for reliability testing where changes in the thermal path, like cracks and delaminations, can be determined without measuring the k-factor and thermal load. Different failure modes can be separated in the time domain. The sensitivity of the method is demonstrated by its application to high-power white InGaN LEDs. For detailed analysis and identification of the failure mode of the LED packages, the transient signals are simulated by time-resolved finite element (FE) simulations. Using the new approach, the transient thermal analysis is enhanced to a powerful tool for reliability
Simões, Rodrigo P; Bonjorno, José C; Beltrame, Thomas; Catai, Aparecida M; Arena, Ross; Borghi-Silva, Audrey
2013-01-01
The analysis of the kinetic responses of heart rate (HR) and oxygen consumption (VO(2)) are an important tool for the evaluation of exercise performance and health status. The purpose of this study was to investigate the effects of aging on the HR and VO(2) kinetics during the rest-exercise transition (on-transient) and the exercise-recovery transition (off-transient), in addition to investigating the influence of exercise intensity (mild and moderate) on these variables. A total of 14 young (23±3 years) and 14 elderly (70±4 years) healthy men performed an incremental exercise testing (ramp protocol) on a cycle-ergometer to determine the maximal power (MP). Discontinuous exercise testing was initiated at 10% of the MP with subsequent increases of 10% until exhaustion. The measurement of HR, ventilatory and metabolic variables and blood lactate were obtained at rest and during the discontinuous exercise. The lactate threshold was determined in each subject and was similar between the groups (30±7% of MP in the young group and 29±5% of MP in the elderly group, p>0.05). The HR and VO(2) kinetics (on- and off-transient) were slower in the elderly group compared to the young group (pexercise intensity. We concluded that the elderly group presented with slower HR and VO(2) kinetics in relation to the young group for both on- and off-transients of the dynamic exercise. Moreover, in the young group, the kinetic responses were slower in the moderate intensity in relation to the mild intensity.
Discovery of mHz QPOs and burst rate evolution in the active Terzan 5 neutron star transient
Linares, M.; Altamirano, D.; Watts, A.; van der Klis, M.; Wijnands, R.; Homan, J.; Casella, P.; Patruno, A.; Armas-Padilla, M.; Cavecchi, Y.; Degenaar, N.; Kalamkar, M.; Kaur, R.; Yang, Y.; Rea, N.
2010-10-01
We report on RXTE observations of the neutron star transient currently active in Terzan 5 (also known as IGR J17480-2446; ATels #2919, #2920, #2922, #2924, #2929, #2932, #2933, #2937, #2939, #2940, #2946), which has recently turned into a Z source (Altamirano et al., ATel #2952). The X-ray burst rate has increased gradually (see also ATels #2939, #2952) from October 13th (recurrence time of at least 55 min) to October 16th (recurrence time of 8 to 6 min), accompanied by a gradual increase in the persistent flux (2-16 keV intensity increasing from ~0.1 Crab to ~0.5 Crab).
Sensitivity of Transient Phenomena Analysis of the Francis Turbine Power Plants
Viktor Iliev
2015-08-01
Full Text Available The accurate definition of the transient phenomena of the hydroelectric power plant (HPP and its units, taking into account various aspects of operation is an essential requirement for design, performances and control of HPPs. Numerical analysis of transient phenomena, such as increase of the rotational speed (runaway of the units, increase of the pressure (turbine inlet head in the hydraulic system (water hammer and water level oscillation in the surge tank is presented. The results of transient phenomena analyses are relied upon for very costly engineering decisions. Because of this, it is important that the researcher understands the effect unknown modeling parameters on the result of transient analysis. Usually, different researchers may choose alternate values for an unknown modeling parameter and this can have significant effects on the results. The main aim in this paper is to investigate of the sensitivity of transient phenomena analysis with variation in modeling parameters such as pipeline friction factor, wave speed, turbine guide vanes closing law, surge tank throttling coefficient and generator inertia.
Stochastic analysis of nucleation rates
Johansson, Jonas
2016-02-01
We show that approximating the Becker-Döring equations with a Langevin equation results in multiplicative noise, which in turn leads to a family of possible Fokker-Planck equations according to the Ito-Stratonovich dilemma. Using a simple and general model for the attachment and detachment rates, we find that the Ito choice approximates the nucleation rate best and also coincides with the Fokker-Planck equation resulting from the common way to Taylor expand the original set of rate equations.
Transient Analysis of Monopile Foundations Partially Embedded in Liquefied Soil
Barari, Amin; Bayat, Mehdi; Meysam, Saadati
2015-01-01
In this study, the authors present a coupled fluid-structures-seabed interaction analysis of a monopile type of wind turbine foundations in liquefiable soils. A two dimensional analysis is performed with a nonlinear stiffness degradation model incorporated in the finite difference program Fast La...
Lee, Kyung-Ho; Lee, Sang-Jin; Kim, Jeong-Mook [Nuclear Engineering and Technology Institute, Daejeon (Korea, Republic of)
2007-07-01
This paper covers the heat transfer analysis in MACSTOR/KN-400 on a basis of transient state. Transient state reflects actual operation conditions such as solar loads, daily temperature variations. The heat transfer analysis has usually been performed under steady state, but transient state would be considered as crucial factor in thermal analysis in the future. Therefore, much attention needs to be paid on how transient effect affects the results of heat transfer. Analysis model includes all parts of concrete module consisting of wall, top slab and storage cylinders.
Transient Safety Analysis of Fast Spectrum TRU Burning LWRs with Internal Blankets
Downar, Thomas [Univ. of Michigan, Ann Arbor, MI (United States); Zazimi, Mujid [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hill, Bob [Argonne National Lab. (ANL), Argonne, IL (United States)
2015-01-31
The objective of this proposal was to perform a detailed transient safety analysis of the Resource-Renewable BWR (RBWR) core designs using the U.S. NRC TRACE/PARCS code system. This project involved the same joint team that has performed the RBWR design evaluation for EPRI and therefore be able to leverage that previous work. And because of their extensive experience with fast spectrum reactors and parfait core designs, ANL was also part the project team. The principal outcome of this project was the development of a state-of-the-art transient analysis capability for GEN-IV reactors based on Monte Carlo generated cross sections and the US NRC coupled code system TRACE/PARCS, and a state-of-the-art coupled code assessment of the transient safety performance of the RBWR.
Transient Voltage Stability Analysis and Improvement of A Network with different HVDC Systems
Liu, Yan; Chen, Zhe
2011-01-01
the theoretical analysis and the improved control method, real time simulation model of a hybrid multi-infeed HVDC system based on western Danish power system is established in RTDS™. Simulation results show that the enhanced transient voltage stability can be achieved.......This paper presents transient voltage stability analysis of an AC system with multi-infeed HVDC links including a traditional LCC HVDC link and a VSC HVDC link. It is found that the voltage supporting capability of the VSC-HVDC link is significantly influenced by the tie-line distance between...... the two links and the size of loads. In order to improve the transient voltage stability, a voltage adjusting method is proposed in this paper. A voltage increment component has been introduced into the outer voltage control loop under emergency situation caused by severe grid faults. In order to verify...
Kalinowski, Kevin F.; Tucker, George E.; Moralez, Ernesto, III
2006-01-01
Engineering development and qualification of a Research Flight Control System (RFCS) for the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A has motivated the development of a pilot rating scale for evaluating failure transients in fly-by-wire flight control systems. The RASCAL RFCS includes a highly-reliable, dual-channel Servo Control Unit (SCU) to command and monitor the performance of the fly-by-wire actuators and protect against the effects of erroneous commands from the flexible, but single-thread Flight Control Computer. During the design phase of the RFCS, two piloted simulations were conducted on the Ames Research Center Vertical Motion Simulator (VMS) to help define the required performance characteristics of the safety monitoring algorithms in the SCU. Simulated failures, including hard-over and slow-over commands, were injected into the command path, and the aircraft response and safety monitor performance were evaluated. A subjective Failure/Recovery Rating (F/RR) scale was developed as a means of quantifying the effects of the injected failures on the aircraft state and the degree of pilot effort required to safely recover the aircraft. A brief evaluation of the rating scale was also conducted on the Army/NASA CH-47B variable stability helicopter to confirm that the rating scale was likely to be equally applicable to in-flight evaluations. Following the initial research flight qualification of the RFCS in 2002, a flight test effort was begun to validate the performance of the safety monitors and to validate their design for the safe conduct of research flight testing. Simulated failures were injected into the SCU, and the F/RR scale was applied to assess the results. The results validate the performance of the monitors, and indicate that the Failure/Recovery Rating scale is a very useful tool for evaluating failure transients in fly-by-wire flight control systems.
Competition Between Transients in the Rate of Approach to a Fixed Point.
Day, Judy; Rubin, Jonathan E; Chow, Carson C
2009-11-20
The goal of this paper is to provide and apply tools for analyzing a specific aspect of transient dynamics not covered by previous theory. The question we address is whether one component of a perturbed solution to a system of differential equations can overtake the corresponding component of a reference solution as both converge to a stable node at the origin, given that the perturbed solution was initially farther away and that both solutions are nonnegative for all time. We call this phenomenon tolerance, for its relation to a biological effect. We show using geometric arguments that tolerance will exist in generic linear systems with a complete set of eigenvectors and in excitable nonlinear systems. We also define a notion of inhibition that may constrain the regions in phase space where the possibility of tolerance arises in general systems. However, these general existence theorems do not not yield an assessment of tolerance for specific initial conditions. To address that issue, we develop some analytical tools for determining if particular perturbed and reference solution initial conditions will exhibit tolerance.
Transient and stability analysis of a BWR core with thorium-uranium fuel
Nunez-Carrera, Alejandro [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan 779 Col. Narvarte, 03020 Mexico, DF (Mexico); Espinosa-Paredes, Gilberto [Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico, DF (Mexico)], E-mail: gepe@xanum.uam.mx; Francois, Juan-Luis [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532, 62550 Jiutepec Mor. (Mexico)
2008-08-15
The kinetic response of a boiling water reactor (BWR) equilibrium core using thorium as a nuclear material, in an integrated blanket-seed assembly, is presented in this work. Additionally an in-house code was developed to evaluate this core under steady state and transient conditions including a stability analysis. The code has two modules: (a) the time domain module for transient analysis and (b) the frequency domain module for stability analysis. The thermal-hydraulic process is modeled by a set of five equations, considering no homogeneous flow with drift-flux approximation and non-equilibrium thermodynamic. The neutronic process is calculated with a point kinetics model. Typical BWR reactivity effects are considered: void fraction, fuel temperature, moderator temperature and control rod density. Collapsed parameters were included in the code to represent the core using an average fuel channel. For the stability analysis, in the frequency domain, the transfer function is determined by applying Laplace-transforming to the calculated pressure drop perturbations in each of the considered regions where a constant total pressure drop was considered. The transfer function was used to study the system response in the frequency domain when an inlet flow perturbation is applied. The results show that the neutronic behavior of the core with thorium uranium fuel is similar to a UO{sub 2} core, even during transient conditions. The stability and transient analysis show that the thorium-uranium fuel can be operated safely in current BWRs.
Pressure transient analysis of two-phase flow problems
Chu, W.C.; Reynolds, A.C.; Raghavan, R.
1981-01-01
This work investigates methods to determine reservoir parameters from pressure drawdown and buildup data in a reservoir in which oil and water flow simultaneously. The authors examine the pressure response at a well located at the center of a cylindrical reservoir and consider the pressure response at fully penetrating and partially penetrating wells. The primary concern of the study is to examine the applicability of classical methods for determining phase mobilities, skin factor, average reservoir pressure and reservoir pore volume. Incidental to this study, the authors discuss a method for treating the rate equation in a finite difference model. this method avoids the problem of correctly allocating a total specified rate among producing blocks in a numerical simulator. 18 refs.
Benchmarking of Modern Data Analysis Tools for a 2nd generation Transient Data Analysis Framework
Goncalves, Nuno
2016-01-01
During the past year of operating the Large Hadron Collider (LHC), the amount of transient accelerator data to be persisted and analysed has been steadily growing. Since the startup of the LHC in 2006, the amount of weekly data storage requirements exceeded what the systems was initially designed to accommodate in a full year of operation. Moreover, it is predicted that the data acquisition rates will continue to increase in the future, due to foreseen improvements in the infrastructure within the scope of the High Luminosity LHC project. Despite the efforts for improving and optimizing the current data storage infrastructures (CERN Accelerator Logging Service and Post Mortem database), some limitations still persist and require a different approach to scale up efficiently to provide efficient services for future machine upgrades. This project aims to explore one of the possibilities among novel solutions proposed to solve the problem of working with large datasets. The configuration is composed of Spark for ...
Effect of transient change in strain rate on plastic flow behaviour of low carbon steel
A Ray; P Barat; P Mukherjee; A Sarkar; S K Bandyopadhyay
2007-02-01
Plastic flow behaviour of low carbon steel has been studied at room temperature during tensile deformation by varying the initial strain rate of 3.3 × 10-4 s-1 to a final strain rate ranging from 1.33 × 10-3 s-1 to 2 × 10-3 s-1 at a fixed engineering strain of 12%. Haasen plot revealed that the mobile dislocation density remained almost invariant at the juncture where there was a sudden increase in stress with a change in strain rate and the plastic flow was solely dependent on the velocity of mobile dislocations. In that critical regime, the variation of stress with time was fitted with a Boltzmann type Sigmoid function. The increase in stress was found to increase with final strain rate and the time elapsed in attaining these stress values showed a decreasing trend. Both of these parameters saturated asymptotically at a higher final strain rate.
4C code analysis of thermal-hydraulic transients in the KSTAR PF1 superconducting coil
Savoldi Richard, L.; Bonifetto, R.; Chu, Y.; Kholia, A.; Park, S. H.; Lee, H. J.; Zanino, R.
2013-01-01
The KSTAR tokamak, in operation since 2008 at the National Fusion Research Institute in Korea, is equipped with a full superconducting magnet system including the central solenoid (CS), which is made of four symmetric pairs of coils PF1L/U-PF4L/U. Each of the CS coils is pancake wound using Nb3Sn cable-in-conduit conductors with a square Incoloy jacket. The coils are cooled with supercritical He in forced circulation at nominal 4.5 K and 5.5 bar inlet conditions. During different test campaigns the measured temperature increase due to AC losses turned out to be higher than expected, which motivates the present study. The 4C code, already validated against and applied to different types of thermal-hydraulic transients in different superconducting coils, is applied here to the thermal-hydraulic analysis of a full set of trapezoidal current pulses in the PF1 coils, with different ramp rates. We find the value of the coupling time constant nτ that best fits, at each current ramp rate, the temperature increase up to the end of the heating at the coil outlet. The agreement between computed results and the whole set of measured data, including temperatures, pressures and mass flow rates, is then shown to be very good both at the inlet and at the outlet of the coil. The nτ values needed to explain the experimental results decrease at increasing current ramp rates, consistently with the results found in the literature.
F. Jager
2007-01-01
Full Text Available We test the hypothesis that different temporal patterns of transient ST segment changes compatible with ischemia (ischemic episodes are a result of different physiologic mechanisms responsible for ischemia. We tested the hypothesis using records of the Long-Term ST Database. Each record was divided into three intervals of records: morning, day, and night intervals; and was inserted into one of three sets according to the temporal pattern of ischemia: salvo, periodic, and sporadic pattern. We derived time- and frequency-domain parameters of the heart rate time series in selected intervals in the neighborhood of ischemic episodes. We used the adaptive autoregressive method with a recursive least-square algorithm for consistent spectral tracking of heart rate time series and to study frequency-domain sympathovagal behavior during ischemia. The results support the hypothesis that there are at least two distinct populations, which differ according to mechanisms and temporal patterns of ischemia.
Calibration of transient groundwater models using time series analysis and moment matching
Bakker, M.; Maas, K.; Von Asmuth, J.R.
2008-01-01
A comprehensive and efficient approach is presented for the calibration of transient groundwater models. The approach starts with the time series analysis of the measured heads in observation wells using all active stresses as input series, which may include rainfall, evaporation, surface water leve
Transient analysis techniques in performing impact and crash dynamic studies
Pifko, A. B.; Winter, R.
1989-01-01
Because of the emphasis being placed on crashworthiness as a design requirement, increasing demands are being made by various organizations to analyze a wide range of complex structures that must perform safely when subjected to severe impact loads, such as those generated in a crash event. The ultimate goal of crashworthiness design and analysis is to produce vehicles with the ability to reduce the dynamic forces experienced by the occupants to specified levels, while maintaining a survivable envelope around them during a specified crash event. DYCAST is a nonlinear structural dynamic finite element computer code that started from the plans systems of a finite element program for static nonlinear structural analysis. The essential features of DYCAST are outlined.
Inverse Transient Analysis for Classification of Wall Thickness Variations in Pipelines
Jeffrey Tuck
2013-12-01
Full Text Available Analysis of transient fluid pressure signals has been investigated as an alternative method of fault detection in pipeline systems and has shown promise in both laboratory and field trials. The advantage of the method is that it can potentially provide a fast and cost effective means of locating faults such as leaks, blockages and pipeline wall degradation within a pipeline while the system remains fully operational. The only requirement is that high speed pressure sensors are placed in contact with the fluid. Further development of the method requires detailed numerical models and enhanced understanding of transient flow within a pipeline where variations in pipeline condition and geometry occur. One such variation commonly encountered is the degradation or thinning of pipe walls, which can increase the susceptible of a pipeline to leak development. This paper aims to improve transient-based fault detection methods by investigating how changes in pipe wall thickness will affect the transient behaviour of a system; this is done through the analysis of laboratory experiments. The laboratory experiments are carried out on a stainless steel pipeline of constant outside diameter, into which a pipe section of variable wall thickness is inserted. In order to detect the location and severity of these changes in wall conditions within the laboratory system an inverse transient analysis procedure is employed which considers independent variations in wavespeed and diameter. Inverse transient analyses are carried out using a genetic algorithm optimisation routine to match the response from a one-dimensional method of characteristics transient model to the experimental time domain pressure responses. The accuracy of the detection technique is evaluated and benefits associated with various simplifying assumptions and simulation run times are investigated. It is found that for the case investigated, changes in the wavespeed and nominal diameter of the
YIN Hong-jun; HE Ying-fu; FU Chun-quan
2005-01-01
The transient flow mathematical model of arbitrary shaped heterogeneous reservoirs with impermeability barrier is proposed in this paper. In order to establish this model, the perturbation method is employed and the solution of model is expanded into a series in powers of perturbation parameter. By using the Boundary Element Method (BEM) and Duhamel principle, wellbore pressure with effects of skins and wellbore storage is obtained. The type curves are plotted and analyzed considering effects of heterogeneity, arbitrary shape and impermeable barriers. Finally, the results obtained by perturbation boundary element method is compared with the analytical solution and is available for the transient pressure analysis of arbitrary shaped reservoirs.
Inverse Transient Analysis for Classification of Wall Thickness Variations in Pipelines
Tuck, Jeffrey; Lee, Pedro
2013-01-01
Analysis of transient fluid pressure signals has been investigated as an alternative method of fault detection in pipeline systems and has shown promise in both laboratory and field trials. The advantage of the method is that it can potentially provide a fast and cost effective means of locating faults such as leaks, blockages and pipeline wall degradation within a pipeline while the system remains fully operational. The only requirement is that high speed pressure sensors are placed in contact with the fluid. Further development of the method requires detailed numerical models and enhanced understanding of transient flow within a pipeline where variations in pipeline condition and geometry occur. One such variation commonly encountered is the degradation or thinning of pipe walls, which can increase the susceptible of a pipeline to leak development. This paper aims to improve transient-based fault detection methods by investigating how changes in pipe wall thickness will affect the transient behaviour of a system; this is done through the analysis of laboratory experiments. The laboratory experiments are carried out on a stainless steel pipeline of constant outside diameter, into which a pipe section of variable wall thickness is inserted. In order to detect the location and severity of these changes in wall conditions within the laboratory system an inverse transient analysis procedure is employed which considers independent variations in wavespeed and diameter. Inverse transient analyses are carried out using a genetic algorithm optimisation routine to match the response from a one-dimensional method of characteristics transient model to the experimental time domain pressure responses. The accuracy of the detection technique is evaluated and benefits associated with various simplifying assumptions and simulation run times are investigated. It is found that for the case investigated, changes in the wavespeed and nominal diameter of the pipeline are both important
Padovan, Joe
1987-01-01
In a three-part series of papers, a generalized finite element analysis scheme is developed to handle the steady and transient response of moving/rolling nonlinear viscoelastic structure. This paper considers the development of the moving/rolling element strategy, including the effects of large deformation kinematics and viscoelasticity modeled by fractional integrodifferential operators. To improve the solution strategy, a special hierarchical constraint procedure is developed for the case of steady rolling/translating, as well as a transient scheme involving the use of a Grunwaldian representation of the fractional operator.
Sellers, J. F.
1973-01-01
The transient performance of two concepts for control of vertical takeoff aircraft remote lift fans is analyzed and discussed. Both concepts employ flow transfer between pairs of lift fans located in separate parts of the aircraft in order to obtain attitude control moments for hover and low-speed flight. The results presented are from a digital computer, dynamic analysis of the YJ97/LF460 remote drive turbofan. The transient responses of the two systems are presented for step demands in lift and moment.
3D TRANSIENT COUPLED THERMO-ELASTIC-PLASTIC CONTACT SEALING ANALYSIS OF REACTOR PRESSURE VESSEL
Du Xuesong; Li Runfang; Lin Tengjiao
2005-01-01
Sealing analysis of sealing system in reactor pressure vessels is relevant with multiple nonlinear coupled-field effects, so even large-scale commercial finite element software cannot finish the complicated analysis. A fmite element method of 3D transient coupled thermo-elastic-plastic contact sealing analysis for reactor pressure vessels is presented, in which the surface nonlinearity,material nonlinearity, transient heat transfer nonlinearity and multiple coupled effect are taken into account and the sealing equation is coupling solved in iterative procedure. At the same time, a computational analysis program is developed, which is applied in the sealing analysis of experimental reactor pressure vessel, and the numerical results are in good coincidence with the experimental results. This program is also successful in analyzing the practical problem in engineering.
Dynamic metabolic flux analysis--tools for probing transient states of metabolic networks.
Antoniewicz, Maciek R
2013-12-01
Computational approaches for analyzing dynamic states of metabolic networks provide a practical framework for design, control, and optimization of biotechnological processes. In recent years, two promising modeling approaches have emerged for characterizing transients in cellular metabolism, dynamic metabolic flux analysis (DMFA), and dynamic flux balance analysis (DFBA). Both approaches combine metabolic network analysis based on pseudo steady-state (PSS) assumption for intracellular metabolism with dynamic models for extracellular environment. One strategy to capture dynamics is by combining network analysis with a kinetic model. Predictive models are thus established that can be used to optimize bioprocessing conditions and identify useful genetic manipulations. Alternatively, by combining network analysis with methods for analyzing extracellular time-series data, transients in intracellular metabolic fluxes can be determined and applied for process monitoring and control.
Masaru Ishizuka
2011-01-01
Full Text Available In recent years, there is a growing demand to have smaller and lighter electronic circuits which have greater complexity, multifunctionality, and reliability. High-density multichip packaging technology has been used in order to meet these requirements. The higher the density scale is, the larger the power dissipation per unit area becomes. Therefore, in the designing process, it has become very important to carry out the thermal analysis. However, the heat transport model in multichip modules is very complex, and its treatment is tedious and time consuming. This paper describes an application of the thermal network method to the transient thermal analysis of multichip modules and proposes a simple model for the thermal analysis of multichip modules as a preliminary thermal design tool. On the basis of the result of transient thermal analysis, the validity of the thermal network method and the simple thermal analysis model is confirmed.
Dynamical analysis of innovative core designs facing unprotected transients with the MAT5 DYN code
Darmet, G.; Massara, S. [EDF R and D, 1 avenue du general de Gaulle, 92140 Clamart (France)
2012-07-01
Since 2007, advanced Sodium-cooled Fast Reactors (SFR) are investigated by CEA, AREVA and EDF in the framework of a joint French collaboration. A prototype called ASTRID, sets out to demonstrate progress made in SFR technology, is due to operate in the years 2020's. The modeling of unprotected transients by computer codes is one of the key safety issues in the design approach to such SFR systems. For that purpose, the activity on CATHARE, which is the reference code for the transient analysis of ASTRID, has been strengthened during last years by CEA. In the meantime, EDF has developed a simplified and multi-channel code, named MAT5 DYN, to analyze and validate innovative core designs facing protected and unprotected transients. First, the paper consists in a description of MAT5 DYN: a code based on the existing code MAT4 DYN including major improvements on geometry description and physical modeling. Second, two core designs based on the CFV core design developed at CEA are presented. Then, the dynamic response of those heterogeneous cores is analyzed during unprotected loss of flow (ULOF) transient and unprotected transient of power (UTOP). The results highlight the importance of the low void core effect specific to the CFV design. Such an effect, when combined with a sufficient primary pump halving time and an optimized cooling group scheme, allows to delay (or, possibly, avoid) the sodium boiling onset during ULOF accidents. (authors)
Nuclear reactor transient analysis via a quasi-static kinetics Monte Carlo method
Jo, YuGwon; Cho, Bumhee; Cho, Nam Zin
2015-12-01
The predictor-corrector quasi-static (PCQS) method is applied to the Monte Carlo (MC) calculation for reactor transient analysis. To solve the transient fixed-source problem of the PCQS method, fission source iteration is used and a linear approximation of fission source distributions during a macro-time step is introduced to provide delayed neutron source. The conventional particle-tracking procedure is modified to solve the transient fixed-source problem via MC calculation. The PCQS method with MC calculation is compared with the direct time-dependent method of characteristics (MOC) on a TWIGL two-group problem for verification of the computer code. Then, the results on a continuous-energy problem are presented.
Nuclear reactor transient analysis via a quasi-static kinetics Monte Carlo method
Jo, YuGwon; Cho, Bumhee; Cho, Nam Zin, E-mail: nzcho@kaist.ac.kr [Korea Advanced Institute of Science and Technology 291 Daehak-ro, Yuseong-gu, Daejeon, Korea 305-701 (Korea, Republic of)
2015-12-31
The predictor-corrector quasi-static (PCQS) method is applied to the Monte Carlo (MC) calculation for reactor transient analysis. To solve the transient fixed-source problem of the PCQS method, fission source iteration is used and a linear approximation of fission source distributions during a macro-time step is introduced to provide delayed neutron source. The conventional particle-tracking procedure is modified to solve the transient fixed-source problem via MC calculation. The PCQS method with MC calculation is compared with the direct time-dependent method of characteristics (MOC) on a TWIGL two-group problem for verification of the computer code. Then, the results on a continuous-energy problem are presented.
Padovan, Joe
1986-01-01
In a three part series of papers, a generalized finite element analysis scheme is developed to handle the steady and transient response of moving/rolling nonlinear viscoelastic structure. This paper considers the development of the moving/rolling element strategy, including the effects of large deformation kinematics and viscoelasticity modelled by fractional integro-differential operators. To improve the solution strategy, a special hierarchical constraint procedure is developed for the case of steady rolling/translating as well as a transient scheme involving the use of a Grunwaldian representation of the fractional operator. In the second and third parts of the paper, 3-D extensions are developed along with transient contact strategies enabling the handling of impacts with obstructions. Overall, the various developments are benchmarked via comprehensive 2- and 3-D simulations. These are correlated with experimental data to define modelling capabilities.
Quantitative numerical analysis of transient IR-experiments on buildings
Maierhofer, Ch.; Wiggenhauser, H.; Brink, A.; Röllig, M.
2004-12-01
Impulse-thermography has been established as a fast and reliable tool in many areas of non-destructive testing. In recent years several investigations have been done to apply active thermography to civil engineering. For quantitative investigations in this area of application, finite difference calculations have been performed for systematic studies on the influence of environmental conditions, heating power and time, defect depth and size and thermal properties of the bulk material (concrete). The comparison of simulated and experimental data enables the quantitative analysis of defects.
New pressure transient analysis methods for naturally fractured reservoirs
Serra, K.; Raghavan, R.; Reynolds, A.C.
1983-10-01
This paper presents new methods for analyzing pressure drawdown and buildup data obtained at wells producing naturally fractured reservoirs. The model used in this study assumes unsteady-state fluid transfer from the matrix system to the fracture system. A new flow regime is identified. The discovery of this flow regime explains field behavior that has been considered unusual. The probability of obtaining data reflecting this flow regime in a field test is higher than that of obtaining the classical responses given in the literature. The identification of this new flow regime provides methods for preparing a complete analysis of pressure data obtained from naturally fractured reservoirs. Applications to field data are discussed.
New pressure transient analysis methods for naturally fractured reservoirs
Serra, K.; Raghavan, R.; Reynolds, A.C.
1983-12-01
This paper presents new methods for analyzing pressure drawdown and buildup data obtained at wells producing naturally fractured reservoirs. The model used in this study assumes unsteady-state fluid transfer from the matrix system to the fracture system. A new flow regime is identified. The discovery of this flow regime explains field behavior that has been considered unusual. The probability of obtaining data reflecting this flow regime in a field test is higher than that of obtaining the classical responses given in the literature. The identification of this new flow regime provides methods for preparing a complete analysis of pressure data obtained from naturally fractured reservoirs. Applications to field data are discussed.
Nonlinear explicit transient finite element analysis on the Intel Delta
Plaskacz, E.J. [Argonne National Lab., IL (United States); Ramirez, M.R.; Gupta, S. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Civil Engineering
1993-03-01
Many large scale finite element problems are intractable on current generation production supercomputers. High-performance computer architectures offer effective avenues to bridge the gap between computational needs and the power of computational hardware. The biggest challenge lies in the substitution of the key algorithms in an application program with redesigned algorithms which exploit the new architectures and use better or more appropriate numerical techniques. A methodology for implementing nonlinear finite element analysis on a homogeneous distributed processing network is discussed. The method can also be extended to heterogeneous networks comprised of different machine architectures provided that they have a mutual communication interface. This unique feature has greatly facilitated the port of the code to the 8-node Intel Touchstone Gamma and then the 512-node Intel Touchstone Delta. The domain is decomposed serially in a preprocessor. Separate input files are written for each subdomain. These files are read in by local copies of the program executable operating in parallel. Communication between processors is addressed utilizing asynchronous and synchronous message passing. The basic kernel of message passing is the internal force exchange which is analogous to the computed interactions between sections of physical bodies in static stress analysis. Benchmarks for the Intel Delta are presented. Performance exceeding 1 gigaflop was attained. Results for two large-scale finite element meshes are presented.
Nonlinear explicit transient finite element analysis on the Intel Delta
Plaskacz, E.J. (Argonne National Lab., IL (United States)); Ramirez, M.R.; Gupta, S. (Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Civil Engineering)
1993-01-01
Many large scale finite element problems are intractable on current generation production supercomputers. High-performance computer architectures offer effective avenues to bridge the gap between computational needs and the power of computational hardware. The biggest challenge lies in the substitution of the key algorithms in an application program with redesigned algorithms which exploit the new architectures and use better or more appropriate numerical techniques. A methodology for implementing nonlinear finite element analysis on a homogeneous distributed processing network is discussed. The method can also be extended to heterogeneous networks comprised of different machine architectures provided that they have a mutual communication interface. This unique feature has greatly facilitated the port of the code to the 8-node Intel Touchstone Gamma and then the 512-node Intel Touchstone Delta. The domain is decomposed serially in a preprocessor. Separate input files are written for each subdomain. These files are read in by local copies of the program executable operating in parallel. Communication between processors is addressed utilizing asynchronous and synchronous message passing. The basic kernel of message passing is the internal force exchange which is analogous to the computed interactions between sections of physical bodies in static stress analysis. Benchmarks for the Intel Delta are presented. Performance exceeding 1 gigaflop was attained. Results for two large-scale finite element meshes are presented.
Analysis Method of Transient Temperature Field for Fuel Tank of High-Altitude Large UAV
Qing Ai; Liang Chen; Xiaojing Xu; Shiyu Liu; Zhenwen Hu; Xinlin Xia
2016-01-01
Based on the analysis of factors affecting transient temperature field of aircraft fuel tank and coupled heat transfer mechanism, a mathematical model of transient coupled heat transfer, including the dynamic change of fuel quality, the internal heat transfer, the external aerodynamic convection and the radiation heat transfer, is established. Taking the aerodynamic convection and radiation heat transfer outside the tank as the third kinds of thermal boundary conditions for the thermal analysis of the fuel tank, calculation of internal and external coupling heat of fuel tank is decoupled. Thermal network method combined with hierarchical dynamic grid is used to deal with the fuel consumption, and carry on the heat transfer analysis of the fuel tank. The numerical method for the transient temperature field of aircraft fuel tank is established. Through the simulation calculation, the transient temperature distribution of the fuel tank under different flight conditions is obtained, and the influence of the fuel mass and the external thermal environment on the temperature field is analyzed.
Pressure transient analysis methods for bounded naturally fractured reservoirs
Chen, C-C; Raghavan, R.; Reynolds, A.C.; Serra, K.
1985-06-01
New methods for analyzing drawdown and buildup pressure data obtained at a well located in an infinite, naturally fractured reservoir were presented recently. In this work, the analysis of both drawdown and buildup data in a bounded, naturally fractured reservoir is considered. For the bounded case, the authors show that five possible flow regimes may be exhibited by drawdown data. They delineate the conditions under which each of these five flow regimes exists and the information that can be obtained from each possible combination of flow regimes. Conditions under which semilog methods can be used to analyze buildup data are discussed for the bounded fractured reservoir case. New Matthews-Brons-Hazebroek (MBH) functions for computing the average reservoir pressure from buildup data are presented.
de Palézieux, Larissa; Loew, Simon; Zwahlen, Peter
2016-04-01
Many mountain slopes in the Alps exhibit large compound rock slides or Deep Seated Gravitational Slope Deformations. Due to the basal rupture plane geometry and the cumulative displacement magnitude such landslide bodies are often strongly deformed, highly fractured and - at least locally - very permeable. This can lead to high infiltration rates and low phreatic groundwater tables. This is also the situation in the studied mountain slopes southwest of Poschiavo, where large suspended rockslides occur, with very little surface runoff at high elevations, and torrents developing only at the elevation of the basal rupture planes. Below the landslide toes, at altitudes below ca. 1700 m a.s.l., groundwater appears forming spring lines or distributed spring clusters. Within the scope of the design of a hydropower pump storage plant in the Poschiavo valley by Lagobianco SA (Repower AG), numerous cored and deep boreholes (of 50 to 300 m depth) have been drilled along the planned pressure tunnel alignement at elevations ranging from 963 to 2538 m a.s.l. in the years 2010 and 2012. In several boreholes Lugeon and transient pressure tests were executed and pore water pressure sensors installed in short monitoring sections at various depths. Most of these boreholes intersect deep rockslides in crystalline rocks and limestones, showing highly fragmented rock masses and cohesionless cataclastic shear zones of several tens of meters thickness. This study explores these borehole observations in landslides and adjacent stable slopes and links them to the general hydrologic and hydrogeologic framework. The analysis of the pore water pressure data shows significant variability in seasonal trends and short-term events (from snow melt and summer rain storms) and remarkable pressure differences over short horizontal and vertical distances. This reflects rock mass damage within landslide bodies and important sealing horizons at their base. Based on water balances, the estimated effective
Rodriguez Pretelin (1), Abelardo; Nowak (1), Wolfgang
2017-04-01
Well head protection areas (WHPAs) are frequently used as safety measures for drinking water wells, preventing them from being polluted by restricting land use activities in their proximities. Two sources of uncertainty are involved during delineation: 1) uncertainty in aquifer parameters and 2) time-varying groundwater flow scenarios and their own inherent uncertainties. The former has been studied by Enzenhoefer et al (2012 [1] and 2014 [2]) as probabilistic risk version of WHPA delineation. The latter is frequently neglected and replaced by steady-state assumptions; thereby ignoring time-variant flow conditions triggered either by anthropogenic causes or climatic conditions. In this study we analyze the influence of transient flow considerations in WHPA delineation, following annual seasonality behavior; with transiency represented by four transient conditions: (I) regional groundwater flow direction, (II) strength of the regional hydraulic gradient, (III) natural recharge to the groundwater and (IV) pumping rate. Addressing WHPA delineation in transient flow scenarios is computationally expensive. Thus, we develop an efficient method using a dynamic superposition of steady-state flow solutions coupled with a reversed formulation of advective-dispersive transport based on a Lagrangian particle tracking with continuous injection. This analysis results in a time-frequency map of pixel-wise membership to the well catchment. Additional to transient flow conditions, we recognize two sources of uncertainty, inexact knowledge of transient drivers and parameters. The uncertainties are accommodated through Monte Carlo simulation. With the help of a global sensitivity analysis, we investigate the impact of transiency in WHPA solutions. In particular, we evaluate: (1) Among all considered transients, which ones are the most influential. (2) How influential in WHPA delineation is the transience-related uncertainty compared to aquifer parameter uncertainty. Literature [1] R
Spatial patterns and controls of soil chemical weathering rates along a transient hillslope
Yoo, K.; Mudd, S.M.; Sanderman, J.; Amundson, Ronald; Blum, A.
2009-01-01
Hillslopes have been intensively studied by both geomorphologists and soil scientists. Whereas geomorphologists have focused on the physical soil production and transport on hillslopes, soil scientists have been concerned with the topographic variation of soil geochemical properties. We combined these differing approaches and quantified soil chemical weathering rates along a grass covered hillslope in Coastal California. The hillslope is comprised of both erosional and depositional sections. In the upper eroding section, soil production is balanced by physical erosion and chemical weathering. The hillslope then transitions to a depositional slope where soil accumulates due to a historical reduction of channel incision at the hillslope's base. Measurements of hillslope morphology and soil thickness were combined with the elemental composition of the soil and saprolite, and interpreted through a process-based model that accounts for both chemical weathering and sediment transport. Chemical weathering of the minerals as they moved downslope via sediment transport imparted spatial variation in the geochemical properties of the soil. Inverse modeling of the field and laboratory data revealed that the long-term soil chemical weathering rates peak at 5 g m- 2 yr- 1 at the downslope end of the eroding section and decrease to 1.5 g m- 2 yr- 1 within the depositional section. In the eroding section, soil chemical weathering rates appear to be primarily controlled by the rate of mineral supply via colluvial input from upslope. In the depositional slope, geochemical equilibrium between soil water and minerals appeared to limit the chemical weathering rate. Soil chemical weathering was responsible for removing 6% of the soil production in the eroding section and 5% of colluvial influx in the depositional slope. These were among the lowest weathering rates reported for actively eroding watersheds, which was attributed to the parent material with low amount of weatherable
Transient-pressure analysis in geothermal steam reservoirs with an immobile vaporizing liquid phase
Moench, A.F.; Atkinson, P.G.
1978-01-01
A finite-difference model for the radial horizontal flow of steam through a porous medium is used to evaluate transient-pressure behavior in the presence of an immobile vaporizing or condensing liquid phase. Graphs of pressure drawdown and buildup in terms of dimensionless pressure and time are obtained for a well discharging steam at a constant mass flow rate for a specified time. The assumptions are made that the steam is in local thermal equilibrium with the reservoir rocks, that temperature changes are due only to phase change, and that effects of vapor-pressure lowering are negligible. Computations show that when a vaporizing liquid phase is present the pressure drawdown exhibits behavior similar to that observed in noncondensable gas reservoirs, but delayed in time. A theoretical analysis allows for the computation of this delay and demonstrates that it is independent of flow geometry. The response that occurs upon pressure buildup is markedly different from that in a noncondensable gas system. This result may provide a diagnostic tool for establishing the existence of phase-change phenomena within a reservoir. ?? 1979.
无
2001-01-01
The accuracy and diagnostic values of transcranial Doppler (TCD) in transient ischemic attack (TIA) caused by the stenosis or occlusion of intracranial or extracranial blood vessels were investigated. Of the 50 TIA patients receiving routine TCD examinations, 39 cases (77 %) were diagnosed as having unilateral or bilateral stenosis or occlusion of MCA, ACA, siphon segment of internal carotid artery, which was furthermore confirmed by digital subtraction angiography (DSA) or MRA, 11 (22 %) cases were normal. An analysis on the TCD findings of the flow patterns and hemodynamic changes of the stenotic or occluded blood vessels was made in comparison with that obtained by angiography. It was showed that angiography demonstrated 17 unilateral MCA stenosis, 47 bilateral multi-stenosis, 1 occlusion of the siphon segment of the internal carotid artery, while TCD revealed 17 unilateral stenosis, 64 bilateral stenosis, 1 occlusion respectively, with an accordance rate of 78.7 %. It was concluded that the hemodynamic changes secondary to the stenosis of the basalcranial arteries, especially the moderate to severe stenosis or occlusion, might be an important risk factor for TIA. TCD examination achieved significant clinic values in the diagnosing of TIA.
Parallel photonic information processing at gigabyte per second data rates using transient states
Brunner, Daniel; Soriano, Miguel C.; Mirasso, Claudio R.; Fischer, Ingo
2013-01-01
The increasing demands on information processing require novel computational concepts and true parallelism. Nevertheless, hardware realizations of unconventional computing approaches never exceeded a marginal existence. While the application of optics in super-computing receives reawakened interest, new concepts, partly neuro-inspired, are being considered and developed. Here we experimentally demonstrate the potential of a simple photonic architecture to process information at unprecedented data rates, implementing a learning-based approach. A semiconductor laser subject to delayed self-feedback and optical data injection is employed to solve computationally hard tasks. We demonstrate simultaneous spoken digit and speaker recognition and chaotic time-series prediction at data rates beyond 1Gbyte/s. We identify all digits with very low classification errors and perform chaotic time-series prediction with 10% error. Our approach bridges the areas of photonic information processing, cognitive and information science.
Transient Burning Rate Model for Solid Rocket Motor Internal Ballistic Simulations
David R. Greatrix
2008-01-01
Full Text Available A general numerical model based on the Zeldovich-Novozhilov solid-phase energy conservation result for unsteady solid-propellant burning is presented in this paper. Unlike past models, the integrated temperature distribution in the solid phase is utilized directly for estimating instantaneous burning rate (rather than the thermal gradient at the burning surface. The burning model is general in the sense that the model may be incorporated for various propellant burning-rate mechanisms. Given the availability of pressure-related experimental data in the open literature, varying static pressure is the principal mechanism of interest in this study. The example predicted results presented in this paper are to a substantial extent consistent with the corresponding experimental firing response data.
Transient Analysis of Axially Moving Materials Interacting with External Dynamic Components
Zhu, Weidong
using the Green's function formulation. It is found that for a disturbance with non-zero initial rate at one boundary of the string, the dynamic contact force is discontinuous for all modeled constraints other than a single spring element. For a rigid constraint, or a flexible constraint with non-zero mass, a discontinuity of constant amplitude exists throughout the contact force history. The contact force history under a harmonic disturbance does not approach a sinusoidal steady-state response. For a flexible massless constraint with a discrete damper, the discontinuities in the contact force decrease with time and eventually vanish. Under a harmonic disturbance, the discontinuous contact force approaches to the closed-form sinusoidal response at the steady state. The analysis provides important design guidelines for magnetic tape drives to minimize the tape vibration. Finally, application of the transient analysis to the classical piano string response under a hammer strike results in a valuable by-product. This new method solves the string-hammer interaction for both the initial contact and all future recontacts in a unified manner for all hammer models, including hard, soft, resistive and nonlinear hammers. It avoids key limitations of the existing standing and traveling wave methods. The treatments for nonlinear hammers and for multiple contacts are the major advances of the current method where formal solution techniques have not been available. (Abstract shortened by UMI.).
M. Juarsa
2014-12-01
Full Text Available The research related to thermal management has been significantly inreased, especially for NPP safety. The use of passive cooling systems both during the accident and operation become reliable in the advanced reactor safety systems. Therefore it should be enhanced through experimental studies to investigate heat transfer phenomenon of the heat decay in transient cooling condition.An investigation has been performed through experiment using an NC-Queen apparatusconstructed with rectangular loop. Piping were consisting of tubes of SS316L with diameter, length, and width of 3/4 inch, 2.7 m, and 0.5 m respectively. The height between heater and cooler was 1.4 m. The experiment used initial water temperature at 70oC, 80oC, and 90oC in heater area. Transient temperature was used as experimental data to calculate water mass flow rate. The results showed that the temperature in heater area and cooler area were decreasing of about 90.6% and 95.7% at initial temperatur of 80oC, and of about 71.1% and 59.4% at initial temperature of 70oC. Those results were at higher initial temperature of 90oC compared with the initial temperature of 90oC. The average of water mass flow rate increased 81.03% from initial temperatur of 70oC. It was shown that the averages of removed heat in every second from water due to heat loss and cooler,were 3.51 watts, 5.06 watts and 6.85 watts respectively. The initial condition of heat stored in the water was quite different, but to the cooler heat removal capacity and heat loss was almost the same.
Liao, L.Y.; Guey, C.N.; Chen, Y.B.; Lee, C.H.
1980-06-01
An analysis has been made with RELAP 4/MOD5 to simulate the system behavior of loss of feedwater transient with safety/relief valve stuck open in Chin Shan BWR. The initial conditions have been established with 105% rated power and 105% flow rate. System variables such as normalized power, steam dome pressure, core inlet flow rate, fuel cladding temperatures, separator mixture level, downcomer mixture level, and core inlet enthalpy have been calculated. A comparison has also been made between the results obtained and those documented in FSAR. It is observed that the general trends of system parameters in both cases are similar, differing slightly only in the timing of the sequence of events postulated to occur. The possibility of idling of ECCS as a result of pool swelling is ruled out. Core uncovery is not observed. In conclusion, the accident analyzed can be accommodated by the design incorporated in the Chin Shan Plant.
Modeling and analysis of single-event transients in charge pumps
Zhao Zhenyu; Li Junfeng; Zhang Minxuan; Li Shaoqing
2009-01-01
It has been shown that charge pumps (CPs) dominate single-event transient (SET) responses of phaselocked loops (PLLs). Using a pulse to represent a single event hit on CPs, the SET analysis model is established and the characteristics of SET generation and propagation in PLLs are revealed. An analysis of single event transients in PLLs demonstrates that the settling time of the voltage-controlled oscillators (VCOs) control voltage after a single event strike is strongly dependent on the peak control voltage deviation, the SET pulse width, and the settling time constant. And the peak control voltage disturbance decreases with the SET strength or the filter resistance. Furthermore, the analysis in the proposed PLL model is confirmed by simulation results using MATLAB and HSPICE,respectively.
Liu, Y.; Rice, J. R.
2005-12-01
In 3D modeling of long tectonic loading and earthquake sequences on a shallow subduction fault [Liu and Rice, 2005], with depth-variable rate and state friction properties, we found that aseismic transient slip episodes emerge spontaneously with only a simplified representation of effects of metamorphic fluid release. That involved assumption of a constant in time but uniformly low effective normal stress in the downdip region. As suggested by observations in several major subduction zones [Obara, 2002; Rogers and Dragert, 2003; Kodaira et al, 2004], the presence of fluids, possibly released from dehydration reactions beneath the seismogenic zone, and their pressurization within the fault zone may play an important role in causing aseismic transients and associated non-volcanic tremors. To investigate the effects of fluids in the subduction zone, particularly on the generation of aseismic transients and their various features, we develop a more complete physical description of the pore pressure evolution (specifically, pore pressure increase due to supply from dehydration reactions and shear heating, decrease due to transport and dilatancy during slip), and incorporate that into the rate and state based 3D modeling. We first incorporated two important factors, dilatancy and shear heating, following Segall and Rice [1995, 2004] and Taylor [1998]. In the 2D simulations (slip varies with depth only), a dilatancy-stabilizing effect is seen which slows down the seismic rupture front and can prevent rapid slip from extending all the way to the trench, similarly to Taylor [1998]. Shear heating increases the pore pressure, and results in faster coseismic rupture propagation and larger final slips. In the 3D simulations, dilatancy also stabilizes the along-strike rupture propagation of both seismic and aseismic slips. That is, aseismic slip transients migrate along the strike faster with a shorter Tp (the characteristic time for pore pressure in the fault core to re
ANALYSIS OF FIRST TRANSIENT PRESSURE OSCILLATION FOR LEAK DETECTION IN A SINGLE PIPELINE
GUO Xin-lei; YANG Kai-lin; LI Fu-tian; WANG Tao; FU hui
2012-01-01
The leak detection is of great importance in the reliable operation and management of a pipeline system.Recently,attention is shifted to the use of the time domain or frequency domain methods based on the transient analysis.These methods sometimes require accurate pressure signals obtained during the transient period or by creating ideal conditions in testing.This paper proposes a method that does not require transient simulations over the whole or an extended period of time,but uses the first transient pressure oscillation to detect leaks.The method considers the propagation of the pressure oscillation wave created from a tast valve closure and the reflected damp wave from the leak.A leak in the pipe gives rise to reflected waves which in turn create discontinuities in the observed signal at the measurement section.The timing of the reflected damp wave and the magnitude represent the location and the size of the leak,respectively.An analytical expression is derived based on the Method Of Characteristic (MOC) for the relationship between the leakage and the reflected magnitude.The leak detection procedure based on the method is also given.Then the reliability of the method is tested on numerically simulated pressure signals and experimental pressure signals with calibrated leak parameters,and the results indicate a successful application and the promising features of the method.
Pressure Transient Analysis of Multi-Fractured Horizontal Well in Tight Gas Reservoirs
Zhao Ermeng
2016-01-01
Full Text Available Multi-fractured horizontal well is applied in tight gas reservoirs due to the low permeability. A new pressure transient model of multi-fractured horizontal well based on discrete-fracture model in which the hydraulic fractures are discretized as 2D entities is built in this paper, The model is divided into hydraulic fracture region and formation region. The model can be solved using the Galerkin finite element method, then the pressure transient type curves are plotted by computer programming. The results show that there are five different flow regimes observed in type curves including early linear flow, early radial flow, elliptical flow, later pseudo-radial flow and boundary response regime. A sensitivity analysis is conducted to study impacts of hydraulic fracture number, hydraulic fracture half-length, hydraulic fracture spacing, and hydraulic fracture conductivity on pressure transient type curves. The new model and obtained results in this paper not only enrich the well testing models, but also play a guiding role in analyzing pressure transient response of multi-fractured horizontal well in tight gas reservoirs.
Analysis of transients in advanced heavy water reactor using lumped parameter models
Manmohan Pandey; Venkata Ramana Eaga; Sankar Sastry, P. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati (India); Gupta, S.K.; Lele, H.G.; Chatterjee, B. [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai (India)
2005-07-01
Full text of publication follows: Analysis of transients occurring in nuclear power plants, arising from the complex interplay between core neutronics and thermal-hydraulics, is important for their operation and safety. Numerical simulations of such transients can be carried out extensively at very low computational cost by using lumped parameter mathematical models. The Advanced Heavy Water Reactor (AHWR), being developed in India, is a vertical pressure tube type reactor cooled by boiling light water under natural circulation, using thorium as fuel and heavy water as moderator. In the present work, nonlinear and linear lumped parameter dynamic models for AHWR have been developed and validated with a distributed parameter model. The nonlinear lumped model is based on point reactor kinetics equations and one-dimensional homogeneous equilibrium model of two-phase flow. The distributed model is built with RELAP5/MOD3.2 code. Various types of transients have been simulated numerically, using the lumped model as well as RELAP5. The results have been compared and parameters tuned to make the lumped model match the distributed model (RELAP5) in terms of steady state as well as dynamic behaviour. The linear model has been derived by linearizing the nonlinear model for small perturbations about the steady state. Numerical simulations of transients using the linear model have been compared with results obtained from the nonlinear model. Thus, the range of validity of the linear model has been determined. Stability characteristics of AHWR have been investigated using the lumped parameter models. (authors)
Galloping comparative analysis for transient main cables of suspension bridge during construction
Li, Shengli; Peng, Gang; Zhang, Haiting; Chen, Huai
2011-04-01
The cross-sectional shapes of two construction projects for the transient main cables are non-circular cross-sections during construction of the long-span suspension bridge, so the transient main cables can experience galloping instabilities. The galloping coefficients of the several representative cases of two construction projects for the transient main cables without wind-resistant measures for the long-span suspension bridge were investigated for the first time by means of the CFD method, referring to an erecting suspension bridge. Results show that for the project 1, at the early stages of the main cables construction, the galloping instabilities can occur, but at the later stages of that, the galloping instabilities cannot occur. For the project 2, there exists a lot of wind attack angles whose galloping coefficients are less than 0 at the whole construction stages. From the perspective for galloping instability the project 1 is better 2.Through the analysis and comparison the galloping performance of two kinds of construction projects for the transient main cables, the advantage and disadvantage for two construction projects is explained theoretically from the perspective for whether can result in the galloping instability.
Ross, F; Ross, A B
1977-01-01
Rates of reactions of OH and HO/sub 2/ with organic and inorganic molecules, ions and transients in aqueous solution have been tabulated, as well as the rates for the corresponding radical ions in aqueous solution (O/sup -/ and O/sub 2//sup -/). Most of the rates have been obtained by radiation chemistry methods, both pulsed and steady-state; data from photochemistry and thermal methods are also included. Rates for over one thousand reactions are listed.
Finite element methodology for transient conduction/forced-convection thermal analysis
Thornton, E. A.; Wieting, A. R.
1979-01-01
Finite element methodology for steady state thermal analysis of convectively cooled structures has been extended for transient analysis. The finite elements are based on representing the fluid passages by fluid bulk-temperature nodes and fluid-solid interface nodes. The formulation of the finite element equations for a typical flow passage is based on the weighted residual method with upwind weighting functions. Computer implementation of the convective finite element methodology using explicit and implicit time integration algorithms is described. Accuracy and efficiency of the methodology is evaluated by comparisons with analytical solutions and finite-difference lumped-parameter analyses. The comparative analyses demonstrate that finite element conduction/conduction methodology may be used to predict transient temperatures with an accuracy equal or superior to the lumped-parameter finite-difference method.
KRISHNA KUMARI.T
2013-04-01
Full Text Available Wind energy plays a prominent role in the generation of power from renewable sources. Generation by permanent magnet synchronous generator (PMSG is recently been popular. But the major concern in using this generator is that the voltage and the power generated are variable due to the intermittent nature of wind energy. Because of the wide use of PMSG the study of the transient stability analysis is very important. In this paper the performance study of PMSG is done by using suitable control strategies to develop a constant voltage and power. The transient stability analysis is also carried out by simulating both the symmetrical and the unsymmetrical faults as network disturbances. This is demonstrated using MATLAB simulations.
K.N. Nwaigwe
2012-08-01
Full Text Available A study aimed at a Transient analysis and performance prediction of passive cooling of a building using long wave nocturnal radiation in Owerri, Nigeria are presented. The system modeled consists of the room of a building with a radiator panel attached to its roof, water storage tank located inside the room, pump to circulate water through the radiator panel at night and through a heat exchanger in the room during the day. The mathematical model is based on the thermal radiation properties of the local atmosphere, the heat exchange equations of the radiator panel with the sky during the night and the equations incorporating the relevant heat transfers within the space to be cooled during the day. The resulting equations were transformed into explicit finite difference forms for easy implementation on a personal computer in MATLAB language. This numerical model permits the evaluation of the rate of heat removal from the water storage tank through the radiator panel surface area, Qwt,out, temperature depression between the ambient and room temperatures (Tamb-Trm and total heat gained by water in the storage tank from the space to be cooled through the action of the convector during the day, Qwt,in. The resulting rate of heat removal from the radiator gave a value of 57.6 W/m2, temperature depression was predicted to within 1-1.5ºC and the rate of heat gain by the storage water was 60 W/m2. A sensitivity analysis of the system parameters to ±25% of the base case input values was carried out and the results given as a percentage variation of the above system performance parameters showed consistency to the base case results. An optimal scheme for the modeled 3.0×3.0×2.5 m3 room showed a radiator area of 18.2 m2, a convector area of 28.62 m2 and a tank volume of 1.57 m3. These results show that passive nocturnal cooling technique is a promising solution to the cooling needs for preservation of food and other agricultural produce. It is also
Xiaoyong, Bai; Yingbo, He; Chengjun, Chen
2010-06-01
In order to make it easier to extend an finite element software framework with contact implementation for transient solid dynamic analysis, we have designed a general-purposed framework-oriented parallel contact class in this article. A parallel contact computation algorithm model has been generated based on contact schemes reported on last two decades. The class is integrated to an open source platform easily without affecting the rest code of the platform.
Han, Samuel S.; Schafer, Charles F.
1988-01-01
A numerical analysis of transient heat and solute transport across a rectangular cavity with combined horizontal temperature and concentration gradients is performed by a numerical method based on the SIMPLE. Numerical results show that the average Nusselt and Sherwood numbers both decrease markedly when the solutal and thermal buoyancy forces act in the opposite directions. When the solutal and thermal buoyancy forces act in the same directions, however, the average Sherwood number increases significantly and yet the average Nusselt number decreases slightly.
Analysis of transient fission gas behaviour in oxide fuel using BISON and TRANSURANUS
Barani, T.; Bruschi, E.; Pizzocri, D.; Pastore, G.; Van Uffelen, P.; Williamson, R. L.; Luzzi, L.
2017-04-01
The modelling of fission gas behaviour is a crucial aspect of nuclear fuel performance analysis in view of the related effects on the thermo-mechanical performance of the fuel rod, which can be particularly significant during transients. In particular, experimental observations indicate that substantial fission gas release (FGR) can occur on a small time scale during transients (burst release). To accurately reproduce the rapid kinetics of the burst release process in fuel performance calculations, a model that accounts for non-diffusional mechanisms such as fuel micro-cracking is needed. In this work, we present and assess a model for transient fission gas behaviour in oxide fuel, which is applied as an extension of conventional diffusion-based models to introduce the burst release effect. The concept and governing equations of the model are presented, and the sensitivity of results to the newly introduced parameters is evaluated through an analytic sensitivity analysis. The model is assessed for application to integral fuel rod analysis by implementation in two structurally different fuel performance codes: BISON (multi-dimensional finite element code) and TRANSURANUS (1.5D code). Model assessment is based on the analysis of 19 light water reactor fuel rod irradiation experiments from the OECD/NEA IFPE (International Fuel Performance Experiments) database, all of which are simulated with both codes. The results point out an improvement in both the quantitative predictions of integral fuel rod FGR and the qualitative representation of the FGR kinetics with the transient model relative to the canonical, purely diffusion-based models of the codes. The overall quantitative improvement of the integral FGR predictions in the two codes is comparable. Moreover, calculated radial profiles of xenon concentration after irradiation are investigated and compared to experimental data, illustrating the underlying representation of the physical mechanisms of burst release.
Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors
Galvez, Cristhian
2011-01-01
The Pebble Bed Advanced High Temperature Reactor (PB-AHTR) is a pebble fueled, liquid salt cooled, high temperature nuclear reactor design that can be used for electricity generation or other applications requiring the availability of heat at elevated temperatures. A stage in the design evolution of this plant requires the analysis of the plant during a variety of potential transients to understand the primary and safety cooling system response. This study focuses on the performance of the pa...
Development of a system code for transient analysis in a HTGR
Lee, Tae Beom
2004-02-15
A GAMMA (GAs Multi-component Multi-dimensional Analysis) code is developed for transient analysis and air ingress analysis in High Temperature Gas-cooled Reactors (HTGR). The PBMR of ESKOM is selected as a reference plant for the High Temperature Gas-cooled Reactor here, which uses a direct helium cycle and pebble fuel. Physical models included in GAMMA are the pebble conduction model, radiation heat transfer model, point kinetics model, decay heat model, and component models for break flow, valve, pump, cooler, power conversion unit model. The temperature distribution and the flow distribution of the PBMR are calculated for initial and accident core in the present study. In the accident analysis, typical design basis accident (DBA), including the load transient accident and depressurization accident into the system are selected and analyzed in detail. The predictions by GAMMA for PBMR at 100% power are compared with those by VSOP and PBR{sub S}IM. It turns out that the temperature in the upper region in the third channel predicted by GAMMA is about 62 .deg. C at maximum higher than that by VSOP, but is pretty close to that by PBR{sub S}IM. The center temperature of the fuel shows that that predicted by considering swelling effect is higher than that without swelling effect by about 10 .deg. C. The net efficiency of direct system is higher than that of indirect system due to an effect of the circulator power. The transient capability of GAMMA is validated through analytical solution and PBR{sub S}IM analyzing the depressurization (Loss Of Coolant Accident, LOCA) and load transient accident. After the LOCA the system pressure decreases dramatically from 8MPa to 0.4MPa within 2 sec. After the PI (Proportional-plus-Integral) controller senses that the power shaft is over the set-point of 3,600 rpm, the bypass valve makes shaft speed back to the set-point.
An improved thermoregulatory model for cooling garment applications with transient metabolic rates
Westin, Johan K.
Current state-of-the-art thermoregulatory models do not predict body temperatures with the accuracies that are required for the development of automatic cooling control in liquid cooling garment (LCG) systems. Automatic cooling control would be beneficial in a variety of space, aviation, military, and industrial environments for optimizing cooling efficiency, for making LCGs as portable and practical as possible, for alleviating the individual from manual cooling control, and for improving thermal comfort and cognitive performance. In this study, we adopt the Fiala thermoregulatory model, which has previously demonstrated state-of-the-art predictive abilities in air environments, for use in LCG environments. We validate the numerical formulation with analytical solutions to the bioheat equation, and find our model to be accurate and stable with a variety of different grid configurations. We then compare the thermoregulatory model's tissue temperature predictions with experimental data where individuals, equipped with an LCG, exercise according to a 700 W rectangular type activity schedule. The root mean square (RMS) deviation between the model response and the mean experimental group response is 0.16°C for the rectal temperature and 0.70°C for the mean skin temperature, which is within state-of-the-art variations. However, with a mean absolute body heat storage error 3¯ BHS of 9.7 W˙h, the model fails to satisfy the +/-6.5 W˙h accuracy that is required for the automatic LCG cooling control development. In order to improve model predictions, we modify the blood flow dynamics of the thermoregulatory model. Instead of using step responses to changing requirements, we introduce exponential responses to the muscle blood flow and the vasoconstriction command. We find that such modifications have an insignificant effect on temperature predictions. However, a new vasoconstriction dependency, i.e. the rate of change of hypothalamus temperature weighted by the
New methods to constrain the radio transient rate: results from a survey of four fields with LOFAR.
Carbone, D; van der Horst, A J; Wijers, R A M J; Swinbank, J D; Rowlinson, A; Broderick, J W; Cendes, Y N; Stewart, A J; Bell, M E; Breton, R P; Corbel, S; Eislöffel, J; Fender, R P; Grießmeier, J-M; Hessels, J W T; Jonker, P; Kramer, M; Law, C J; Miller-Jones, J C A; Pietka, M; Scheers, L H A; Stappers, B W; van Leeuwen, J; Wijnands, R; Wise, M; Zarka, P
2016-07-01
We report on the results of a search for radio transients between 115 and 190 MHz with the LOw-Frequency ARray (LOFAR). Four fields have been monitored with cadences between 15 min and several months. A total of 151 images were obtained, giving a total survey area of 2275 deg(2). We analysed our data using standard LOFAR tools and searched for radio transients using the LOFAR Transients Pipeline. No credible radio transient candidate has been detected; however, we are able to set upper limits on the surface density of radio transient sources at low radio frequencies. We also show that low-frequency radio surveys are more sensitive to steep-spectrum coherent transient sources than GHz radio surveys. We used two new statistical methods to determine the upper limits on the transient surface density. One is free of assumptions on the flux distribution of the sources, while the other assumes a power-law distribution in flux and sets more stringent constraints on the transient surface density. Both of these methods provide better constraints than the approach used in previous works. The best value for the upper limit we can set for the transient surface density, using the method assuming a power-law flux distribution, is 1.3 × 10(-3) deg(-2) for transients brighter than 0.3 Jy with a time-scale of 15 min, at a frequency of 150 MHz. We also calculated for the first time upper limits for the transient surface density for transients of different time-scales. We find that the results can differ by orders of magnitude from previously reported, simplified estimates.
An Efficient Topology-Based Algorithm for Transient Analysis of Power Grid
Yang, Lan
2015-08-10
In the design flow of integrated circuits, chip-level verification is an important step that sanity checks the performance is as expected. Power grid verification is one of the most expensive and time-consuming steps of chip-level verification, due to its extremely large size. Efficient power grid analysis technology is highly demanded as it saves computing resources and enables faster iteration. In this paper, a topology-base power grid transient analysis algorithm is proposed. Nodal analysis is adopted to analyze the topology which is mathematically equivalent to iteratively solving a positive semi-definite linear equation. The convergence of the method is proved.
Nonlocal Elasticity Theory for Transient Analysis of Higher-Order Shear Deformable Nanoscale Plates
Woo-Young Jung
2014-01-01
Full Text Available The small scale effect on the transient analysis of nanoscale plates is studied. The elastic theory of the nano-scale plate is reformulated using Eringen’s nonlocal differential constitutive relations and higher-order shear deformation theory (HSDT. The equations of motion of the nonlocal theories are derived for the nano-scale plates. The Eringen’s nonlocal elasticity of Eringen has ability to capture the small scale effects and the higher-order shear deformation theory has ability to capture the quadratic variation of shear strain and consequently shear stress through the plate thickness. The solutions of transient dynamic analysis of nano-scale plate are presented using these theories to illustrate the effect of nonlocal theory on dynamic response of the nano-scale plates. On the basis of those numerical results, the relations between nonlocal and local theory are investigated and discussed, as are the nonlocal parameter, aspect ratio, side-to-thickness ratio, nano-scale plate size, and time step effects on the dynamic response. In order to validate the present solutions, the reference solutions are employed and examined. The results of nano-scale plates using the nonlocal theory can be used as a benchmark test for the transient analysis.
Iacomini, Christie; Powers, Aaron; Speight, Garland; Padilla, Sebastian; Paul, Heather L.
2009-01-01
A Metabolic heat-regenerated Temperature Swing Adsorption (MTSA) system is being developed for carbon dioxide, water and thermal control in a lunar and martian portable life support system (PLSS). A previous system analysis was performed to evaluate the impact of MTSA on PLSS design. That effort was Mars specific and assumed liquid carbon dioxide (LCO2) coolant made from martian resources. Transient effects were not considered but rather average conditions were used throughout the analysis. This effort takes into further consideration the transient effects inherent in the cycling MTSA system as well as assesses the use of water as coolant. Standard heat transfer, thermodynamic, and heat exchanger methods are presented to conduct the analysis. Assumptions and model verification are discussed. The tool was used to perform various system studies. Coolant selection was explored and takes into account different operational scenarios as the minimum bed temperature is driven by the sublimation temperature of the coolant (water being significantly higher than LCO2). From this, coolant mass is sized coupled with sorbent bed mass because MTSA adsorption performance decreases with increasing sublimation temperature. Reduction in heat exchanger performance and even removal of certain heat exchangers, like a recuperative one between the two sorbent beds, is also investigated. Finally, the coolant flow rate is varied over the cycle to determine if there is a more optimal means of cooling the bed from a mass perspective. Results of these studies and subsequent recommendations for system design are presented.
Current interruption transients calculation
Peelo, David F
2014-01-01
Provides an original, detailed and practical description of current interruption transients, origins, and the circuits involved, and how they can be calculated Current Interruption Transients Calculationis a comprehensive resource for the understanding, calculation and analysis of the transient recovery voltages (TRVs) and related re-ignition or re-striking transients associated with fault current interruption and the switching of inductive and capacitive load currents in circuits. This book provides an original, detailed and practical description of current interruption transients, origins,
Jikai Chen
2016-12-01
Full Text Available In a power system, the analysis of transient signals is the theoretical basis of fault diagnosis and transient protection theory. Shannon wavelet entropy (SWE and Shannon wavelet packet entropy (SWPE are powerful mathematics tools for transient signal analysis. Combined with the recent achievements regarding SWE and SWPE, their applications are summarized in feature extraction of transient signals and transient fault recognition. For wavelet aliasing at adjacent scale of wavelet decomposition, the impact of wavelet aliasing is analyzed for feature extraction accuracy of SWE and SWPE, and their differences are compared. Meanwhile, the analyses mentioned are verified by partial discharge (PD feature extraction of power cable. Finally, some new ideas and further researches are proposed in the wavelet entropy mechanism, operation speed and how to overcome wavelet aliasing.
Lovejoy, Andrew E.; Jegley, Dawn C. (Technical Monitor)
2007-01-01
Structures often comprise smaller substructures that are connected to each other or attached to the ground by a set of finite connections. Under static loading one or more of these connections may exceed allowable limits and be deemed to fail. Of particular interest is the structural response when a connection is severed (failed) while the structure is under static load. A transient failure analysis procedure was developed by which it is possible to examine the dynamic effects that result from introducing a discrete failure while a structure is under static load. The failure is introduced by replacing a connection load history by a time-dependent load set that removes the connection load at the time of failure. The subsequent transient response is examined to determine the importance of the dynamic effects by comparing the structural response with the appropriate allowables. Additionally, this procedure utilizes a standard finite element transient analysis that is readily available in most commercial software, permitting the study of dynamic failures without the need to purchase software specifically for this purpose. The procedure is developed and explained, demonstrated on a simple cantilever box example, and finally demonstrated on a real-world example, the American Airlines Flight 587 (AA587) vertical tail plane (VTP).
Transient Stability Analysis of IEEE 9 Bus System in Power World Simulator x
Transient Stability Analysis of IEEE 9 Bus System in Power World Simulator Ramandeep Kaur,
2016-01-01
Full Text Available It is widely accepted that transient stability is an important aspect in designing and upgrading electric power system. The objective of this paper was to investigate and understand the stability of power system In this paper, modelling and transient stability analysis of IEEE 9 bus system was performed using POWER WORLD SIMULATOR. The load flow studies were performed to determine pre-fault conditions in the system using Newton-Raphson method. With the help of three-phase balanced fault, the variations in power angle and frequency of the system were studied. Frequency is a reliable indicator if deficiency condition in the power systems exists or not. For three-phase balanced fault, fast fault clearing time was analysed to bring back the system to the stability. Further, comparison between Runga method and Euler method for better results was performed. Hence, impact of load switching on system was also computed so as to bring system to steady state.
Data Analysis of Transient Energy Releases in the LHC Superconducting Dipole Magnets
Calvi, M; Bottura, L; Di Castro, M; Masi, A; Siemko, A
2007-01-01
Premature training quenches are caused by transient energy released within the LHC dipole magnet coils while it is energized. Voltage signals recorded across the magnet coils and on the so-called quench antenna carry information about these disturbances. The transitory events correlated to transient energy released are extracted making use of continuous wavelet transform. Several analyses are performed to understand their relevance to the so called training phenomenon. The statistical distribution of the signals amplitude, the number of events occurring at a given current level, the average frequency content of the events are the main parameters on which the analysis have been focalized. Comparisons among different regions of the magnet, among different quenches in the same magnet and among magnets made by different builders are reported. Conclusions about the efficiency of the raw data treatment and the relevance of the parameters developed with respect to the magnet global behavior are finally given.
Analysis of Transient Phenomena Due to a Direct Lightning Strike on a Wind Energy System
João P. S. Catalão
2012-07-01
Full Text Available This paper is concerned with the protection of wind energy systems against the direct effects of lightning. As wind power generation undergoes rapid growth, lightning damages involving wind turbines have come to be regarded as a serious problem. Nevertheless, very few studies exist yet in Portugal regarding lightning protection of wind energy systems using numerical codes. A new case study is presented in this paper, based on a wind turbine with an interconnecting transformer, for the analysis of transient phenomena due to a direct lightning strike to the blade. Comprehensive simulation results are provided by using models of the Restructured Version of the Electro-Magnetic Transients Program (EMTP, and conclusions are duly drawn.
Numerical analysis of transient pressure variation in the condenser of a nuclear power station
Wang, Xinjun; Zhou, Zijie; Song, Zhao [Xi' an Jiaotong University, Xi' an (China); Lu, Qiankui; Li, Jiafu [Dong Fang Turbine Co., Ltd, Deyang (China)
2016-02-15
To research the characteristics of the transient variation of pressure in a nuclear power station condenser under accident condition, a mathematical model was established which simulated the cycling cooling water, heat transfer and pressure in the condenser. The calculation program of transient variation characteristics was established in Fortran language. The pump's parameter, cooling line's organization, check valve's feature and the parameter of siphonic water-collecting well are involved in the cooling water flow's mathematical model. The initial conditions of control volume are determined by the steady state of the condenser. The transient characteristics of a 1000 MW nuclear power station's condenser and cooling water system were examined. The results show that at the condition of plant-power suspension of pump, the cooling water flow rate decreases rapidly and refluxes, then fluctuates to 0. The variation of heat transfer coefficient in the condenser has three stages: at start it decreases sharply, then increases and decreases, and keeps constant in the end. Under three conditions (design, water and summer), the condenser pressure goes up in fluctuation. The time intervals between condenser's pressure signals under three conditions are about 26.4 s, which can fulfill the requirement for safe operation of nuclear power station.
Accuracy of a class of concurrent algorithms for transient finite element analysis
Ortiz, Michael; Sotelino, Elisa D.; Nour-Omid, Bahram
1988-01-01
The accuracy of a new class of concurrent procedures for transient finite element analysis is examined. A phase error analysis is carried out which shows that wave retardation leading to unacceptable loss of accuracy may occur if a Courant condition based on the dimensions of the subdomains is violated. Numerical tests suggest that this Courant condition is conservative for typical structural applications and may lead to a marked increase in accuracy as the number of subdomains is increased. Theoretical speed-up ratios are derived which suggest that the algorithms under consideration can be expected to exhibit a performance superior to that of globally implicit methods when implemented on parallel machines.
Blade loss transient dynamics analysis, volume 1. Task 2: TETRA 2 theoretical development
Gallardo, Vincente C.; Black, Gerald
1986-01-01
The theoretical development of the forced steady state analysis of the structural dynamic response of a turbine engine having nonlinear connecting elements is discussed. Based on modal synthesis, and the principle of harmonic balance, the governing relations are the compatibility of displacements at the nonlinear connecting elements. There are four displacement compatibility equations at each nonlinear connection, which are solved by iteration for the principle harmonic of the excitation frequency. The resulting computer program, TETRA 2, combines the original TETRA transient analysis (with flexible bladed disk) with the steady state capability. A more versatile nonlinear rub or bearing element which contains a hardening (or softening) spring, with or without deadband, is also incorporated.
Gallardo, V. C.; Gaffney, E. F.; Bach, L. J.; Stallone, M. J.
1981-01-01
An analytical technique was developed to predict the behavior of a rotor system subjected to sudden unbalance. The technique is implemented in the Turbine Engine Transient Rotor Analysis (TETRA) computer program using the component element method. The analysis was particularly aimed toward blade-loss phenomena in gas turbine engines. A dual-rotor, casing, and pylon structure can be modeled by the computer program. Blade tip rubs, Coriolis forces, and mechanical clearances are included. The analytical system was verified by modeling and simulating actual test conditions for a rig test as well as a full-engine, blade-release demonstration.
Csank, Jeffrey T.; Zinnecker, Alicia M.
2014-01-01
The aircraft engine design process seeks to achieve the best overall system-level performance, weight, and cost for a given engine design. This is achieved by a complex process known as systems analysis, where steady-state simulations are used to identify trade-offs that should be balanced to optimize the system. The steady-state simulations and data on which systems analysis relies may not adequately capture the true performance trade-offs that exist during transient operation. Dynamic Systems Analysis provides the capability for assessing these trade-offs at an earlier stage of the engine design process. The concept of dynamic systems analysis and the type of information available from this analysis are presented in this paper. To provide this capability, the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) was developed. This tool aids a user in the design of a power management controller to regulate thrust, and a transient limiter to protect the engine model from surge at a single flight condition (defined by an altitude and Mach number). Results from simulation of the closed-loop system may be used to estimate the dynamic performance of the model. This enables evaluation of the trade-off between performance and operability, or safety, in the engine, which could not be done with steady-state data alone. A design study is presented to compare the dynamic performance of two different engine models integrated with the TTECTrA software.
Significance of Dynamic and Transient Analysis in the Design and Operation of Hybrid Energy Systems
Panwar, Mayank; Mohanpurkar, Manish; Hovsapian, Rob; Osorio, Julian D.
2015-02-01
Energy systems were historically designed and operated with a specific energy conversion objective, while managing loads and resources. In the recent years, the increased utilization of non-dispatchable renewable sources such as wind and solar has played a role in power quality and the reliability of power systems. In order to mitigate the risk associated with the non-dispatchable resources an integrated approach, such as Hybrid Energy Systems (HES), has to be taken, integrating the loads and resource management between the traditional thermal power plants and the non-dispatchable resources. As our electric energy becomes more diverse in its generation resources, the HES with its operational control system, its real-time view and its dynamic decisions making will become an essential part of the integrated energy systems and improve the overall grid reliability. The operational constraints of the energy sources on both the thermal power plants and the non-dispatchable resources in HES, plays a vital role in the planning and design stage. It is an established fact that the choice of energy source depends on the available natural resources and possible infrastructure. A critical component of decision-making depends on the complementary nature and controllability of the energy sources to supply the load demands with high reliability. Controllability of complex HES to achieve desired performance and flexibility is implemented via coordinated control systems while simultaneously generating electricity and other useful products such as useful heat or hydrogen. These systems are based on instrumentation, signal processing, control theory, and engineering system design. The entire HES along with the control systems are characterized by widely varying time constants. Hence, for a well-coordinated control and operation, we propose physics based modeling of the subsystems to assist in a dynamic and transient analysis. Dynamic and transient analysis in real and non-real time
Walwyn, David Richard; Huddy, Suzanne M; Rybicki, Edward P
2015-01-01
Despite the advantages of plant-based transient expression systems relative to microbial or mammalian cell systems, the commercial production of recombinant proteins using plants has not yet been achieved to any significant extent. One of the challenges has been the lack of published data on the costs of manufacture for products other than biopharmaceuticals. In this study, we report on the techno-economic analysis of the production of a standard commercial enzyme, namely, horseradish peroxidase (HRP), using a transient expression system in Nicotiana benthamiana. Based on the proven plant yield of 240 mg HRP/kg biomass, a biomass productivity of 15-kg biomass/m(2)/year and a process yield of 54 % (mg HRP product/mg HRP in biomass), it is apparent that HRP can be manufactured economically via transient expression in plants in a large-scale facility (>5 kg HRP/year). At this level, the process is competitive versus the existing technology (extraction of the enzyme from horseradish), and the product is of comparable or improved activity, containing only the preferred isoenzyme C. Production scale, protein yield and biomass productivity are found to be the most important determinants of overall viability.
Lucas R. B. E. Silva
2017-07-01
Full Text Available Objective: To test whether women with metabolic syndrome (MS have impairments in the on- and off-transients during an incremental test and to study whether any of the MS components are independently associated with the observed responses.Research Design and Methods: Thirty-six women aged 35–55 years were divided into a group with MS (MSG, n = 19 and a control group (CG, n = 17. R-R intervals (RRi and heart rate variability (HRV were calculated on a beat-to-beat basis and the heart rate (HR at the on- and off-transient were analyzed during an incremental cardiopulmonary exercise test (CPET.Results: MSG showed lower aerobic capacity and lower parasympathetic cardiac modulation at rest compared with CG. HR values in on-transient phase were significantly lower in MSG compared with CG. The exponential amplitudes “amp” and the parameters “τ” [speed of heart rate recovery (HRR] were lower in MSG. MSG exhibited higher HR values in comparison to CG during the off-transient indicating a slower HRR. In MSG, there was an inverse and significant correlation between fasting plasma vs. ΔF and glucose vs. exponential “τ” of HRR dynamics.Conclusion: MS is associated with poor heart rate kinetics. The altered HR kinetics seems to be related to alterations in cardiac parasympathetic modulation, and glucose metabolism seems to be the major determinant.
Hattiangadi, Ashwin A.
A numerical framework to study multi-physics problem involving coupled thermomechanical analyses for cracks is outlined. Using a thermomechanical cohesive zone model (TM-CZM), load transfer behavior is coupled to heat conduction across a crack. Non-linear effects due to coupling between the mechanical and thermal problem occur through the conductance-separation response between crack faces as well as through the temperature dependence of material constants of the CZM. The TM-CZM is implemented in a convenient framework within the finite element method and applied in the study of: (i) interface crack growth; (ii) crack bridging; and (iii) photo-thermal imaging. Interface fracture in a thermal protection system (TPS) under transient monotonic and cyclic thermal loading is studied using the new TM-CZM and an analytical model. TPS includes an oxidation protection coating (OPC) on a carbon-carbon (C-C) composite substrate. The description of the load transfer behavior uses a traction-separation law with an internal residual property variable that determines the extent of damage caused by mechanical separation. Temperature dependence is incorporated, such that the interfacial strength and therefore the tractions decrease with temperature. The description of thermal transport includes an accurate representation of breakdown of interface conductance with increase in separation. The current state of interface failure, the presence of gas entrapped in the crack as well as radiative heat transfer determines the crack conductance. Coupling between thermal-mechanical analyses affects the interface crack initiation and growth behavior. An analytical model is presented for the uncoupled thermal-mechanical problem to calculate temperature fields and energy release rates. The TM-CZM is also applied in the study of bridged delamination cracks in composite laminates loaded under a temperature gradient. A micromechanism based bridging law is used for load transfer coupled to heat
Ortensi, J.; Brian Boer; Abderrafi M. Ougouag
2010-10-01
A rapid increase of the temperature and the mechanical stress is expected in TRISO coated particle fuel that experiences a fast Total Control Rod Ejection (CRE) transient event. During this event the reactor power in the pebble bed core increases significantly for a short time interval. The power is deposited instantly and locally in the fuel kernel. This could result in a rapid increase of the pressure in the buffer layer of the coated fuel particle and, consequently, in an increase of the coating stresses. These stresses determine the mechanical failure probability of the coatings, which serve as the containment of radioactive fission products in the Pebble Bed Reactor (PBR). A new calculation procedure has been implemented at the Idaho National Laboratory (INL), which analyzes the transient fuel performance behavior of TRISO fuel particles in PBRs. This early capability can easily be extended to prismatic designs, given the availability of neutronic and thermal-fluid solvers. The full-core coupled neutronic and thermal-fluid analysis has been modeled with CYNOD-THERMIX. The temperature fields for the fuel kernel and the particle coatings, as well as the gas pressures in the buffer layer, are calculated with the THETRIS module explicitly during the transient calculation. Results from this module are part of the feedback loop within the neutronic-thermal fluid iterations performed for each time step. The temperature and internal pressure values for each pebble type in each region of the core are then input to the PArticle STress Analysis (PASTA) code, which determines the particle coating stresses and the fraction of failed particles. This paper presents an investigation of a Total Control Rod Ejection (TCRE) incident in the 400 MWth Pebble Bed Modular reactor design using the above described calculation procedure. The transient corresponds to a reactivity insertion of $3 (~2000 pcm) reaching 35 times the nominal power in 0.5 seconds. For each position in the core
Sang Hwan Lee
Full Text Available BACKGROUND: Early discrimination between transient and persistent par-solid ground-glass nodules (PSNs at CT is essential for patient management. The objective of our study was to retrospectively investigate the value of texture analysis in differentiating pulmonary transient and persistent PSNs in addition to clinical and CT features. METHODS: This retrospective study was performed with IRB approval and a waiver of the requirement for patients' informed consent. From January 2007 to October 2009, we identified 77 individuals (39 men and 38 women; mean age, 55 years with 86 PSNs on thin-section chest CT. Thirty-nine PSNs in 31 individuals were transient and 47 PSNs in 46 patients were persistent. The clinical, CT, and texture features of PSNs were evaluated. To investigate the additional value of texture analysis in differentiating transient from persistent PSNs, logistic regression analysis and C-statistics were performed. RESULTS: Between transient and persistent PSNs, there were significant differences in age, gender, smoking history, and eosinophil count among the clinical features. As for thin-section CT features, there were significant differences in lesion size, solid portion size, and lesion multiplicity. In terms of texture features, there were significant differences in mean attenuation, skewness of whole PSN, attenuation ratio of whole PSN to inner solid portion, and 5-, 10-, 25-, 50-percentile CT numbers of whole PSN. Multivariate analysis revealed eosinophilia, lesion size, lesion multiplicity, mean attenuation of whole PSN, skewness of whole PSN, and 5-percentile CT number were significant independent predictors of transient PSNs. (P<0.05 C-statistics revealed that texture analysis incorporating clinical and CT features (AUC, 92.9% showed significantly higher differentiating performance of transient from persistent PSNs compared with the clinical and CT features alone (AUC, 79.0%. (P = 0.004. CONCLUSION: Texture analysis of
Limitations of transient power loads on DEMO and analysis of mitigation techniques
Maviglia, F., E-mail: francesco.maviglia@euro-fusion.org [EUROfusion Consortium, PPPT Department, Boltzmannstr. 2, Garching (Germany); Consorzio CREATE, University Napoli Federico II – DIETI, 80125 Napoli (Italy); Federici, G. [EUROfusion Consortium, PPPT Department, Boltzmannstr. 2, Garching (Germany); Strohmayer, G. [Max-Planck-Institut fur Plasmaphysik, Boltzmannstr. 2, Garching (Germany); Wenninger, R. [EUROfusion Consortium, PPPT Department, Boltzmannstr. 2, Garching (Germany); Max-Planck-Institut fur Plasmaphysik, Boltzmannstr. 2, Garching (Germany); Bachmann, C. [EUROfusion Consortium, PPPT Department, Boltzmannstr. 2, Garching (Germany); Albanese, R. [Consorzio CREATE, University Napoli Federico II – DIETI, 80125 Napoli (Italy); Ambrosino, R. [Consorzio CREATE University Napoli Parthenope, Naples (Italy); Li, M. [Max-Planck-Institut fur Plasmaphysik, Boltzmannstr. 2, Garching (Germany); Loschiavo, V.P. [Consorzio CREATE, University Napoli Federico II – DIETI, 80125 Napoli (Italy); You, J.H. [Max-Planck-Institut fur Plasmaphysik, Boltzmannstr. 2, Garching (Germany); Zani, L. [CEA, IRFM, F-13108 St Paul-Lez-Durance (France)
2016-11-01
Highlights: • A parametric thermo-hydraulic analysis of the candidate DEMO divertor is presented. • The operational space assessment is presented under static and transient heat loads. • Strike points sweeping is analyzed as a divertor power exhaust mitigation technique. • Results are presented on sweeping installed power required, AC losses and thermal fatigue. - Abstract: The present European standard DEMO divertor target technology is based on a water-cooled tungsten mono-block with a copper alloy heat sink. This paper presents the assessment of the operational space of this technology under static and transient heat loads. A transient thermo-hydraulic analysis was performed using the code RACLETTE, which allowed a broad parametric scan of the target geometry and coolant conditions. The limiting factors considered were the coolant critical heat flux (CHF), and the temperature limits of the materials. The second part of the work is devoted to the study of the plasma strike point sweeping as a mitigation technique for the divertor power exhaust. The RACLETTE code was used to evaluate the impact of a large range of sweeping frequencies and amplitudes. A reduced subset of cases, which complied with the constraints, was benchmarked with a 3D FEM model. A reduction of the heat flux to the coolant, up to a factor ∼4, and lower material temperatures were found for an incident heat flux in the range (15–30) MW/m{sup 2}. Finally, preliminary assessments were performed on the installed power required for the sweeping, the AC losses in the superconductors and thermal fatigue analysis. No evident show stoppers were found.
ROMANIAN COUNTY RATING MEASUREMENT. A COMPARATIVE ANALYSIS
Ioan BĂTRÂNCEA
2016-06-01
Full Text Available In the second wave of financial crisis, namely the sovereign debt crisis, the country’s most affected by this phenomenon are Greece, Italy, Spain, Portugal, Ireland and last year Cyprus joined. Future more the crisis in Greece in 2015 requires local authorities to evaluate constantly their rating in order to prevent bankruptcy. In this paper we conducted a comparative analysis using Altman method and the Stickney method and correlate the scores with ratings agencies Standard & Poor's and Moody's.
Guo Yushun
2001-01-01
A new transient analysis method for the transmission line circuits is presented in this paper. Based on the semidiscretization of the telegraph equations, a discretized time domain companion models for the transmission lines which can be conveniently implemented in a general circuit simulator such as SPICE is derived. The computation required for the model is linear with time, equivalent to the recursive convolution-based method. The formulations for both single and coupled lossy transmission lines are given. Numerical experiments are carried out to demonstrate the validity of the method.
Optimization of High-Resolution Continuous Flow Analysis for Transient Climate Signals in Ice Cores
Bigler, Matthias; Svensson, Anders; Kettner, Ernesto
2011-01-01
Over the past two decades, continuous flow analysis (CFA) systems have been refined and widely used to measure aerosol constituents in polar and alpine ice cores in very high-depth resolution. Here we present a newly designed system consisting of sodium, ammonium, dust particles, and electrolytic...... meltwater conductivity detection modules. The system is optimized for high- resolution determination of transient signals in thin layers of deep polar ice cores. Based on standard measurements and by comparing sections of early Holocene and glacial ice from Greenland, we find that the new system features...
Li, Zhongyu; Zhao, Rende; Xin, Zhen
2016-01-01
The Inrush Transient Current (ITC) in the output of the photovoltaic grid-connected inverters is usually generated when grid voltage sag occurs, which can trigger the protection of the grid-connected inverters, and even destroy the semiconductor switches. Then, the grid-connected inverters...... will thus fail to ride through the voltage sag and even further cause more serious grid faults. This paper analyzes the generation principle of ITC and explores its influence factors, upon which, the suppression approaches are presented. Simulation and experimental results validate the theoretical analysis...
Transient Thermal Testing and Analysis of a Thermally Insulating Structural Sandwich Panel
Blosser, Max L.; Daryabeigi, Kamran; Bird, Richard K.; Knutson, Jeffrey R.
2015-01-01
A core configuration was devised for a thermally insulating structural sandwich panel. Two titanium prototype panels were constructed to illustrate the proposed sandwich panel geometry. The core of one of the titanium panels was filled with Saffil(trademark) alumina fibrous insulation and the panel was tested in a series of transient thermal tests. Finite element analysis was used to predict the thermal response of the panel using one- and two-dimensional models. Excellent agreement was obtained between predicted and measured temperature histories.
Consideration of transient heat conduction in a semi-infinite medium using homotopy analysis method
无
2008-01-01
In the current work, transient heat conduction in a semi-infinite medium is considered for its many applications in various heat fields. Hcre, the homotopy analysis method (HAM) is applied to solve this problem and analytical results are compared with those of the exact and integral methods results. The results show that the HAM can give much better approximations than the other approximate methods. Changes in heat fluxes and profiles of temperature are obtained at different times and positions for copper, iron and aluminum.
Le Corre, J.M.; Adamsson, C.; Alvarez, P., E-mail: lecorrjm@westinghouse.com, E-mail: carl.adamsson@psi.ch, E-mail: alvarep@westinghouse.com [Westinghouse Electric Sweden AB (Sweden)
2011-07-01
A benchmark analysis of the transient BFBT data [1], measured in an 8x8 fuel assembly design under typical BWR transient conditions, was performed using the VIPRE-W/MEFISTO-T code package. This is a continuation of the BFBT steady-state benchmark activities documented in [2] and [3]. All available transient void and pressure drop experimental data were considered and the measurements were compared with the predictions of the VIPRE-W sub-channel analysis code using various modeling approaches, including the EPRI drift flux void correlation. Detailed analyses of the code results were performed and it was demonstrated that the VIPRE-W transient predictions are generally reliable over the tested conditions. Available transient dryout data were also considered and the measurements were compared with the predictions of the VIPRE-W/ MEFISTO-T film flow calculations. The code calculates the transient multi-film flowrate distributions in the BFBT bundle, including the effect of spacer grids on drop deposition enhancement, and the dryout criterion corresponds to the total liquid film disappearance. After calibration of the grid enhancement effect with a very small subset of the steady-state critical power database, the code could predict the time and location of transient dryout with very good accuracy. (author)
Pittman, C. M.
1994-01-01
This program performs a one-dimensional numerical analysis of the transient thermal response of multi-layer insulative systems. The analysis can determine the temperature distribution through a system consisting of from one to four layers, one of which can be an air gap. Concentrated heat sinks at any interface can be included. The computer program based on the analysis will determine the thickness of a specified layer that will satisfy a temperature limit criterion at any point in the insulative system. The program will also automatically calculate the thickness at several points on a system and determine the total system mass. This program was developed as a tool for designing thermal protection systems for high-speed aerospace vehicles but could be adapted to many areas of industry involved in thermal insulation systems. In this package, the equations describing the transient thermal response of a system are developed. The governing differential equation for each layer and boundary condition are put in finite-difference form using a Taylor's series expansion. These equations yield an essentially tridiagonal matrix of unknown temperatures. A procedure based on Gauss' elimination method is used to solve the matrix. This program is written in FORTRAN IV for the CDC RUN compiler and has been implemented on a CDC 6000 series machine operating under SCOPE 3.0. This program requires a minimum of 44K (octal) of 60 bit words of memory.
Electromagnetic transient analysis and Novell protective relaying techniques for power transformers
Lin, X; Tian, Q; Weng, H
2015-01-01
This book addresses the technical challenges of transformer malfunction analysis as well as protection. One of the current research directions is the malfunction mechanism analysis due to nonlinearity of transformer core and comprehensive countermeasures on improving the performance of transformer differential protection. Here, the authors summarize their research outcomes and present a set of recent research advances in the electromagnetic transient analysis, the application on power transformer protections, and present a more systematic investigation and review in this field. This research area is still progressing, especially with the fast development of Smart Grid. This book is an important addition to the literature and will enhance significant advancement in research. It is a good reference book for researchers in power transformer protection research and a good text book for graduate and undergraduate students in electrical engineering.
New methods to constrain the radio transient rate: results from a survey of four fields with LOFAR
Carbone, D; Wijers, R A M J; Swinbank, J D; Rowlinson, A; Broderick, J W; Cendes, Y N; Stewart, A J; Bell, M E; Breton, R P; Corbel, S; Eislöffel, J; Fender, R P; Grießmeier, J M; Hessels, J W T; Jonker, P G; Kramer, M; Law, C J; Miller-Jones, J C A; Pietka, M; Scheers, L H A; Stappers, B W; van Leeuwen, J; Wijnands, R; Zarka, P
2014-01-01
We report on the results of a search for radio transients between 115 and 190\\,MHz with the LOw Frequency ARray (LOFAR). Four different fields have been monitored with observational cadences between 15 minutes and several months. These fields have been chosen among the Medium Deep fields observed by the optical survey PanSTARRS. A total of 15 observing runs were performed giving a total survey area of 2275 deg$^2$. We analysed our data using standard LOFAR tools and searched for radio transients using the LOFAR Transient Pipeline (TraP). No credible radio transient candidate has been detected in our survey; however, it enables us to set upper limits on the surface density of radio transient sources at low radio frequencies, where little is yet known compared to frequencies above 1 GHz. To do this we used two new statistical methods. One is free of assumptions on the flux distribution of the sources, while the other assumes a power-law distribution in flux and sets more stringent constraints on the snapshot su...
Uncertainty Analysis for Photovoltaic Degradation Rates (Poster)
Jordan, D.; Kurtz, S.; Hansen, C.
2014-04-01
Dependable and predictable energy production is the key to the long-term success of the PV industry. PV systems show over the lifetime of their exposure a gradual decline that depends on many different factors such as module technology, module type, mounting configuration, climate etc. When degradation rates are determined from continuous data the statistical uncertainty is easily calculated from the regression coefficients. However, total uncertainty that includes measurement uncertainty and instrumentation drift is far more difficult to determine. A Monte Carlo simulation approach was chosen to investigate a comprehensive uncertainty analysis. The most important effect for degradation rates is to avoid instrumentation that changes over time in the field. For instance, a drifting irradiance sensor, which can be achieved through regular calibration, can lead to a substantially erroneous degradation rates. However, the accuracy of the irradiance sensor has negligible impact on degradation rate uncertainty emphasizing that precision (relative accuracy) is more important than absolute accuracy.
Uncertainty Analysis for Photovoltaic Degradation Rates (Poster)
Jordan, D.; Kurtz, S.; Hansen, C.
2014-04-01
Dependable and predictable energy production is the key to the long-term success of the PV industry. PV systems show over the lifetime of their exposure a gradual decline that depends on many different factors such as module technology, module type, mounting configuration, climate etc. When degradation rates are determined from continuous data the statistical uncertainty is easily calculated from the regression coefficients. However, total uncertainty that includes measurement uncertainty and instrumentation drift is far more difficult to determine. A Monte Carlo simulation approach was chosen to investigate a comprehensive uncertainty analysis. The most important effect for degradation rates is to avoid instrumentation that changes over time in the field. For instance, a drifting irradiance sensor, which can be achieved through regular calibration, can lead to a substantially erroneous degradation rates. However, the accuracy of the irradiance sensor has negligible impact on degradation rate uncertainty emphasizing that precision (relative accuracy) is more important than absolute accuracy.
Federici, Gianfranco; Raffray, A. René
1997-04-01
The transient thermal model RACLETTE (acronym of Rate Analysis Code for pLasma Energy Transfer Transient Evaluation) described in part I of this paper is applied here to analyse the heat transfer and erosion effects of various slow (100 ms-10 s) high power energy transients on the actively cooled plasma facing components (PFCs) of the International Thermonuclear Experimental Reactor (ITER). These have a strong bearing on the PFC design and need careful analysis. The relevant parameters affecting the heat transfer during the plasma excursions are established. The temperature variation with time and space is evaluated together with the extent of vaporisation and melting (the latter only for metals) for the different candidate armour materials considered for the design (i.e., Be for the primary first wall, Be and CFCs for the limiter, Be, W, and CFCs for the divertor plates) and including for certain cases low-density vapour shielding effects. The critical heat flux, the change of the coolant parameters and the possible severe degradation of the coolant heat removal capability that could result under certain conditions during these transients, for example for the limiter, are also evaluated. Based on the results, the design implications on the heat removal performance and erosion damage of the variuos ITER PFCs are critically discussed and some recommendations are made for the selection of the most adequate protection materials and optimum armour thickness.
Transient analysis of an HTS DC power cable with an HVDC system
Dinh, Minh-Chau, E-mail: thanchau7787@gmail.com [Department of Electrical Engineering, Changwon National University, 9 Sarim-Dong, Changwon 641-773 (Korea, Republic of); Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon [Department of Electrical Engineering, Changwon National University, 9 Sarim-Dong, Changwon 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@cwnu.ac.kr [Department of Electrical Engineering, Changwon National University, 9 Sarim-Dong, Changwon 641-773 (Korea, Republic of); Yang, Byeongmo [Korea Electric Power Research Institute, 105 Munji-Ro, Yuseong-Gu, Daejon 305-760 (Korea, Republic of)
2013-11-15
Highlights: •A model of an HTS DC power cable was developed using real time digital simulator. •The simulations of the HTS DC power cable in connection with an HVDC system were performed. •The transient analysis results of the HTS DC power cable were presented. -- Abstract: The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system.
Analysis on conducted coupling of electrical fast transient burst in mines
FENG De-wang; LAN Jian-rong
2012-01-01
Under the inflammable or explosive environment,the direct measurement methods by opening up the explosion-proof shell of electrical installations were not adopted.So,it's impossible to have a quantitative analysis on the limit of conducted disturbance for electrical fast transient burst (EFT/B) in such dangerous environments.Transient conducted coupling model,which using EFT/B as its excitation source,can be built based on circuit and electromagnetic field theory.Furthermore,numerical analysis was performed.The results indicate that the capacitive coupling voltage is the same polarity as EFT/B,and is the main disturbance form of conducted coupling in mines.The inductive coupling voltage is reversed polarity with the capacitive coupling voltage,and both peaks appear only in the rising time of EFT/B,which increase with the rising of load resistance.Moreover,the cable coupling voltage on the side of disturbance source is higher than the one on the other side in tunnel.To reduce the common resistance can suppress the resistive coupling disturbance.
Magalhaes, Mardson Alencar de Sa; Lira, Carlos Alberto Brayner de Oliveira; Silva, Mario Augusto Bezerra da, E-mail: cabol@ufpe.b [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Lima, Fernando Roberto de Andrade, E-mail: falima@cnen.gov.b [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil)
2011-07-01
The IRIS project has significantly advanced in the last few years in response to a demand for a new generation reactor, that could fulfill the essential requirements for a future nuclear power plant: better economics, safety-by-design, low proliferation risk and environmental sustainability. IRIS reactor is a integral type PWR in which all primary components are arranged inside the pressure vessel. This configuration involves important changes in relation to a conventional PWR. These changes require several studies to comply with the safe operational limits for the reactor. In this paper, a study has been conducted to develop a dynamic model (named MODIRIS) for transient analysis, implemented in the MATLAB'S software SIMULINK, allowing the analysis of IRIS behavior by considering the neutron point kinetics for power production. The methodology is based on generating a set of differential equations of neutronic and thermal-hydraulic balances which describes the dynamics of the primary circuit, as well as a set of differential equations describing the dynamics of secondary circuit. The equations and initialization parameters at full power were into the SIMULINK and the code was validated by the confrontation with RELAP simulations for a transient of feedwater reduction in the steam generators. (author)
steady state and transient analysis of induction motor driving a pump ...
Dr Obe
The importance of using a digital computer in studying the performance of Induction machine under steady and transient states is presented with computer results which show the transient ... time as against analog-computer, has been realized ...
Mohammed Hussein
2007-01-01
Full Text Available The transient response of erodable surface thermocouples has been numerically assessed by using a two dimensional finite element analysis. Four types of base metal erodable surface thermocouples have been examined in this study, included type-K (alumel-chromel, type-E (chromel-constantan, type-T (copper-constantan, and type-J (iron-constantan with 50 mm thick- ness for each. The practical importance of these types of thermocouples is to be used in internal combustion engine studies and aerodynamics experiments. The step heat flux was applied at the surface of the thermocouple model. The heat flux from the measurements of the surface temperature can be commonly identified by assuming that the heat transfer within these devices is one-dimensional. The surface temperature histories at different positions along the thermocouple are presented. The normalized surface temperature histories at the center of the thermocouple for different types at different response time are also depicted. The thermocouple response to different heat flux variations were considered by using a square heat flux with 2 ms width, a sinusoidal surface heat flux variation width 10 ms period and repeated heat flux variation with 2 ms width. The present results demonstrate that the two dimensional transient heat conduction effects have a significant influence on the surface temperature history measurements made with these devices. It was observed that the surface temperature history and the transient response for thermocouple type-E are higher than that for other types due to the thermal properties of this thermocouple. It was concluded that the thermal properties of the surrounding material do have an impact, but the properties of the thermocouple and the insulation materials also make an important contribution to the net response.
Preliminary Analysis of the Transient Reactor Test Facility (TREAT) with PROTEUS
Connaway, H. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Lee, C. H. [Argonne National Lab. (ANL), Argonne, IL (United States)
2015-11-30
The neutron transport code PROTEUS has been used to perform preliminary simulations of the Transient Reactor Test Facility (TREAT). TREAT is an experimental reactor designed for the testing of nuclear fuels and other materials under transient conditions. It operated from 1959 to 1994, when it was placed on non-operational standby. The restart of TREAT to support the U.S. Department of Energy’s resumption of transient testing is currently underway. Both single assembly and assembly-homogenized full core models have been evaluated. Simulations were performed using a historic set of WIMS-ANL-generated cross-sections as well as a new set of Serpent-generated cross-sections. To support this work, further analyses were also performed using additional codes in order to investigate particular aspects of TREAT modeling. DIF3D and the Monte-Carlo codes MCNP and Serpent were utilized in these studies. MCNP and Serpent were used to evaluate the effect of geometry homogenization on the simulation results and to support code-to-code comparisons. New meshes for the PROTEUS simulations were created using the CUBIT toolkit, with additional meshes generated via conversion of selected DIF3D models to support code-to-code verifications. All current analyses have focused on code-to-code verifications, with additional verification and validation studies planned. The analysis of TREAT with PROTEUS-SN is an ongoing project. This report documents the studies that have been performed thus far, and highlights key challenges to address in future work.
Nordic Symposium on Analysis of Electromagnetic Transient Phenomena Using EMTP, part 2
Jokinen, Tapani
The Electromagnetic Transients Program (EMTP) is a computer program used to simulate electromagnetic, electromechanical, and control system transients on multiphase electric power systems. Section headings in this volume include the following: Case Studies for Electromagnetic Transients; Transformers - Section 6 from EMTP Theory Book, Second Edition; What Is Needed In Transformer Representations; and Transformer Inrush Current, Test Case 1.
Transient and Steady-State Analysis of Nonlinear RF and Microwave Circuits
Zhu Lei(Lana
2006-01-01
Full Text Available This paper offers a review of simulation methods currently available for the transient and steady-state analysis of nonlinear RF and microwave circuits. The most general method continues to be the time-marching approach used in Spice, but more recent methods based on multiple time dimensions are particularly effective for RF and microwave circuits. We derive nodal formulations for the most widely used multiple time dimension methods. We put special emphasis on methods for the analysis of oscillators based in the warped multitime partial differential equations (WaMPDE approach. Case studies of a Colpitts oscillator and a voltage controlled Clapp-Gouriet oscillator are presented and discussed. The accuracy of the amplitude and phase of these methods is investigated. It is shown that the exploitation of frequency-domain latency reduces the computational effort.
Transient Stability Analysis of the SeCRETS Experiment in SULTAN
Bottura, L; Marinucci, C
2002-01-01
We present here the results of the analysis of the stability experiment SeCRETS, performed on two Nb3Sn cable-in-conduit conductors with the same amount of total copper stabilizer, but different degree of segregation. The model used for the analysis, including superconducting strands, conductor jacket and helium, is solved with the code GandalfTM. We obtain a qualitative agreement of simulation results and experimental values. The simulation results confirm that in the operation regime explored in the experiment the segregated copper is not effective for stability. The details of the current sharing and the approximation taken for the transient heat transfer are shown to be critical for the interpretation.
Kiedron, K.; Chian, C. T.
1985-01-01
As a check on structure safety aspects, two approaches in seismic analysis for the large 70-m antennas are presented. The first approach, commonly used by civil engineers, utilizes known recommended design response spectra. The second approach, which is the full transient analysis, is versatile and applicable not only to earthquake loading but also to other dynamic forcing functions. The results obtained at the fundamental structural frequency show that the two approaches are in good agreement with each other and both approaches show a safe design. The results also confirm past 64-m antenna seismic studies done by the Caltech Seismology Staff.
ANALYSIS OF FINANCIAL BALACE USING RATES
SUCIU GHEORGHE
2013-08-01
Full Text Available The analysis of the financial balance is based on the data from the balance sheet and is related to thecorrelation between financial resources and financing needs, the company’s liquidity and solvency, and also tothe rotation speed of assets and liabilities from the balance sheet. If the balance between financial resources andfinancing needs show a static balance, the analysis of rotation rates of fixed assets, stocks, receivables, longterm debts and short term debts signifies a dynamic balance and offers more relevant data than the static one.Consequently, an adequate financial diagnosis will refer to both forms of balance.
Andrzej Rusek
2008-01-01
Full Text Available The mathematical model of cylindrical linear induction motor (C-LIM fed via frequency converter is presented in the paper. The model was developed in order to analyze numerically the transient states. Problems concerning dynamics of ac-machines especially linear induction motor are presented in [1 – 7]. Development of C-LIM mathematical model is based on circuit method and analogy to rotary induction motor. The analogy between both: (a stator and rotor windings of rotary induction motor and (b winding of primary part of C-LIM (inductor and closed current circuits in external secondary part of C-LIM (race is taken into consideration. The equations of C-LIM mathematical model are presented as matrix together with equations expressing each vector separately. A computational analysis of selected transient states of C-LIM fed via frequency converter is presented in the paper. Two typical examples of C-LIM operation are considered for the analysis: (a starting the motor at various static loads and various synchronous velocities and (b reverse of the motor at the same operation conditions. Results of simulation are presented as transient responses including transient electromagnetic force, transient linear velocity and transient phase current.
Wavelet-based analysis of transient electromagnetic wave propagation in photonic crystals.
Shifman, Yair; Leviatan, Yehuda
2004-03-01
Photonic crystals and optical bandgap structures, which facilitate high-precision control of electromagnetic-field propagation, are gaining ever-increasing attention in both scientific and commercial applications. One common photonic device is the distributed Bragg reflector (DBR), which exhibits high reflectivity at certain frequencies. Analysis of the transient interaction of an electromagnetic pulse with such a device can be formulated in terms of the time-domain volume integral equation and, in turn, solved numerically with the method of moments. Owing to the frequency-dependent reflectivity of such devices, the extent of field penetration into deep layers of the device will be different depending on the frequency content of the impinging pulse. We show how this phenomenon can be exploited to reduce the number of basis functions needed for the solution. To this end, we use spatiotemporal wavelet basis functions, which possess the multiresolution property in both spatial and temporal domains. To select the dominant functions in the solution, we use an iterative impedance matrix compression (IMC) procedure, which gradually constructs and solves a compressed version of the matrix equation until the desired degree of accuracy has been achieved. Results show that when the electromagnetic pulse is reflected, the transient IMC omits basis functions defined over the last layers of the DBR, as anticipated.
New Methods for Timing Analysis of Transient Events, Applied to Fermi/GBM Magnetar Bursts
Huppenkothen, Daniela; Uttley, Phil; van der Horst, Alexander J; van der Klis, Michiel; Kouveliotou, Chryssa; Gogus, Ersin; Granot, Jonathan; Vaughan, Simon; Finger, Mark H
2013-01-01
In order to discern the physical nature of many gamma-ray sources in the sky, we must look not only in spectral and spatial dimensions, but also understand their temporal variability. However, timing analysis of sources with a highly transient nature, such as magnetar bursts, is difficult: standard Fourier techniques developed for long-term variability generally observed, for example, from AGN often do not apply. Here, we present newly developed timing methods applicable to transient events of all kinds, and show their successful application to magnetar bursts observed with Fermi/GBM. Magnetars are a prime subject for timing studies, thanks to the detection of quasi-periodicities in magnetar Giant Flares and their potential to help shed light on the structure of neutron stars. Using state-of-the art statistical techniques, we search for quasi-periodicities (QPOs) in a sample of bursts from Soft Gamma Repeater SGR J0501+4516 observed with Fermi/GBM and provide upper limits for potential QPO detections. Additio...
Rayleigh-Taylor instability under curved substrates: An optimal transient growth analysis
Balestra, Gioele; Brun, P.-T.; Gallaire, François
2016-12-01
We investigate the stability of thin viscous films coated on the inside of a horizontal cylindrical substrate. In such a case, gravity acts both as a stabilizing force through the progressive drainage of the film and as a destabilizing force prone to form droplets via the Rayleigh-Taylor instability. The drainage solution, derived from lubrication equations, is found asymptotically stable with respect to infinitesimally small perturbations, although in reality, droplets often form. To resolve this paradox, we perform an optimal transient growth analysis for the first-order perturbations of the liquid's interface, generalizing the results of Trinh et al. [Phys. Fluids 26, 051704 (2014), 10.1063/1.4876476]. We find that the system displays a linear transient growth potential that gives rise to two different scenarios depending on the value of the Bond number (prescribing the relative importance of gravity and surface tension forces). At low Bond numbers, the optimal perturbation of the interface does not generate droplets. In contrast, for higher Bond numbers, perturbations on the upper hemicircle yield gains large enough to potentially form droplets. The gain increases exponentially with the Bond number. In particular, depending on the amplitude of the initial perturbation, we find a critical Bond number above which the short-time linear growth is sufficient to trigger the nonlinear effects required to form dripping droplets. We conclude that the transition to droplets detaching from the substrate is noise and perturbation dependent.
Direct Transient Analysis of a Fuze Assembly by Axisymmetric Solid Elements
Dai, C. C.; Yang, J. C. S.; Titus, J.
1985-01-01
A fuze assembly, which consists of three major parts, nose, collar and sleeve, was designed to survive severe transverse impact giving a maximum base acceleration of 20.000 G. It is shown that hoop failure occurred in the collar after the impact. They also showed that by bonding the collar to the nose, the collar was able to survive the same impact. To find out the effectiveness of the bonding quantitatively, axisymmetric solid elements TRAPAX and TRIAAX were used in modelling the fuze and direct transient analysis was performed. The dynamic stresses in selected elements on the bonded and unbonded collars were compared. The peak hoop stresses in the unbonded collar were found to be up to three times higher than those in the bonded collar. The NASTRAN results explained the observed hoop failure in the unbonded collar. In addition, static and eigenvalue runs were performed as checks on the models prior to the transient runs. The use of the MPCAX cards and the existence and contributors of the calculated first several nearly identical natural frequencies are addressed.
Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2013-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.
Huang Ren; Qiu Zhiping
2013-01-01
To investigate the transient aeroelastic responses and flutter characteristics of a variable-span wing during the morphing process, a novel first-order state-space aeroelastic model is pro-posed. The time-varying structural model of the morphing wing is established based on the Euler-Bernoulli beam theory with time-dependent boundary conditions. A nondimensionalization method is used to translate the time-dependent boundary conditions to be time-independent. The time-domain aerodynamic forces are calculated by the reduced-order unsteady vortex lattice method. The morphing parameters, i.e., wing span length and morphing speed, are of particular interest for understanding the fundamental aeroelastic behavior of variable-span wings. A test case is proposed and numerical results indicate that the flutter characteristics are sensitive to both of the two morphing parameters. It could be noticed that the aeroelastic characteristics during the wing extracting process are more serious than those during the extending process at the same morphing speed by transient aeroelastic response analysis. In addition, a faster morphing process can get bet-ter aeroelastic performance while the mechanism comlexity will arise.
H. P. RANI; G. J. REDDY; C. N. KIM
2013-01-01
The unsteady natural convective couple stress fluid flow over a semi-infinite vertical cylinder is analyzed for the homogeneous first-order chemical reaction effect. The couple stress fluid flow model introduces the length dependent effect based on the material constant and dynamic viscosity. Also, it introduces the biharmonic operator in the Navier-Stokes equations, which is absent in the case of Newtonian fluids. The solution to the time-dependent non-linear and coupled governing equations is carried out with an unconditionally stable Crank-Nicolson type of numerical schemes. Numerical results for the transient flow variables, the average wall shear stress, the Nusselt number, and the Sherwood number are shown graphically for both generative and destructive reactions. The time to reach the temporal maximum increases as the reaction constant K increases. The average values of the wall shear stress and the heat transfer rate decrease as K increases, while increase with the increase in the Sherwood number.
Heart Rate Variability Analysis in General Medicine
Yi Gang
2003-01-01
Full Text Available Autonomic nervous system plays an integral role in homeostasis. Autonomic modulation can frequently be altered in patients with cardiac disorders as well as in patients with other critical illnesses or injuries. Assessment of heart rate variability is based on analysis of consecutive normal R-R intervals and may provide quantitative information on the modulation of cardiac vagal and sympathetic nerve input. The hypothesis that depressed heart rate variability may occur over a broad range of illness and injury, and may inversely correlated with disease severity and outcome has been tested in various clinical settings over the last decade. This article reviews recent literature concerning the potential clinical implications and limitations of heart rate variability assessment in general medicine.
SUN Xian-Jing; DENG Chang-Dong; KANG Wen
2012-01-01
Due to the large cddy currents at the ends of the quadrupole magnets for CSNS/RCS,the magnetic field properties and the heat generation are of great concern.In this paper,we take transient electromagnetic simulation and make use of the eddy current loss from the transient electromagnetic results to perform thermal analysis.Through analysis of the simulated results,the magnetic field dynamic properties of these magnets and a temperature rise are achieved.Finally,the accuracy of the thermal analysis is confirmed by a test of the prototype quadrupole magnet of the RCS.
Chujo, Toshihiro; Kawaguchi, Junichiro
2016-10-01
This study evaluates the transient response of large spinning membrane structures in space - especially spinning solar sails - by two different methods. A flexible sail membrane is easily deformed when a spacecraft changes its attitude, such as when using thrusters, and the control response including membrane vibration must be estimated in advance of operation. In order to estimate the motion of the membrane, numerical simulations using a multi-particle model (MPM) are conducted, where the membrane is modeled with masses, spring, and dampers. Usually, force propagation is calculated directly in this model and the position and velocity of each particle represent the membrane motion, which is referred to as a continuum analysis in this study. This method is useful for the analysis of membrane vibration because it replaces the complex dynamics with simple equations of motion. However, the computational cost is high and the calculations require a considerable amount of time. This study introduces an eigenfunction analysis to solve this problem. In this method, natural vibration modes and natural frequencies for the entire spacecraft are derived and used for dynamics computation, which reduces the computational cost dramatically compared to the conventional continuum analysis. In this study, the transient response of a spinning solar sail is analyzed using both methods, and the advantages and disadvantages are discussed. It is shown that the eigenfunction analysis provides a suitable method for acquiring approximate solutions in a very low computation time.
Ana I Amaral
2011-09-01
Full Text Available Metabolic models have been used to elucidate important aspects of brain metabolism in recent years. This work applies for the first time the concept of isotopic transient 13C metabolic flux analysis (MFA to estimate intracellular fluxes of cultured astrocytes. This methodology comprehensively explores the information provided by 13C labeling time-courses of intracellular metabolites after administration of a 13C labeled substrate. Cells were incubated with medium containing [1-13C]glucose for 24 h and samples of cell supernatant and extracts collected at different time-points were then analyzed by mass spectrometry and/or HPLC. Metabolic fluxes were estimated by fitting a carbon labeling network model to isotopomer profiles experimentally determined. Both the fast isotopic equilibrium of glycolytic metabolite pools and the slow labeling dynamics of TCA cycle intermediates are described well by the model. The large pools of glutamate and aspartate which are linked to the TCA cycle via reversible aminotransferase reactions are likely to be responsible for the observed delay in equilibration of TCA cycle intermediates. Furthermore, it was estimated that 11% of the glucose taken up by astrocytes was diverted to the pentose phosphate pathway. In addition, considerable fluxes through pyruvate carboxylase (PC (PC/pyruvate dehydrogenase (PDH ratio = 0.5, malic enzyme (5% of the total pyruvate production and catabolism of branched-chained amino acids (contributing with ~40% to total acetyl-CoA produced confirmed the significance of these pathways to astrocytic metabolism. Consistent with the need of maintaining cytosolic redox potential, the fluxes through the malate-aspartate shuttle and the PDH pathway were comparable. Finally, the estimated glutamate/α-ketoglutarate exchange rate (~0.7 µmol.mg prot-1.h-1 was similar to the TCA cycle flux. In conclusion, this work demonstrates the potential of isotopic transient MFA for a comprehensive analysis of
Jingjing Guo
2015-01-01
Full Text Available Triple-porosity model is usually adopted to describe reservoirs with multiscaled pore spaces, including matrix pores, natural fractures, and vugs. Multiple fractures created by hydraulic fracturing can effectively improve the connectivity between existing natural fractures and thus increase well deliverability. However, little work has been done on pressure transient behavior of multistage fractured horizontal wells in triple-porosity reservoirs. Based on source/sink function method, this paper presents a triple-porosity model to investigate the transient pressure dynamics and flux distribution for multistage fractured horizontal wells in fractured-vuggy reservoirs with consideration of stress-dependent natural fracture permeability. The model is semianalytically solved by discretizing hydraulic fractures and Pedrosa’s transformation, perturbation theory, and integration transformation method. Type curves of transient pressure dynamics are generated, and flux distribution among hydraulic fractures for a fractured horizontal well with constant production rate is also discussed. Parametric study shows that major influential parameters on transient pressure responses are parameters pertinent to reservoir properties, interporosity mass transfer, and hydraulic fractures. Analysis of flux distribution indicates that flux density gradually increases from the horizontal wellbore to fracture tips, and the flux contribution of outermost fractures is higher than that of inner fractures. The model can also be extended to optimize hydraulic fracture parameters.
Rømer, Daniel; Johansen, Per; Pedersen, Henrik C.
2013-01-01
A fast rotating 1500 rpm radial piston digital displacement motor connected to a 350 bar high pressure manifold is simulated by means of transient 3D CFD analysis of a single pressure chamber. The analysis includes dynamic piston and valve movement, influencing the boundaries of the fluid domain....
Tangential stretching rate (TSR) analysis of non premixed reactive flows
Valorani, Mauro
2016-10-16
We discuss how the Tangential stretching rate (TSR) analysis, originally developed and tested for spatially homogeneous systems (batch reactors), is extended to spatially non homogeneous systems. To illustrate the effectiveness of the TSR diagnostics, we study the ignition transient in a non premixed, reaction–diffusion model in the mixture fraction space, whose dependent variables are temperature and mixture composition. The reactive mixture considered is syngas/air. A detailed H2/CO mechanism with 12 species and 33 chemical reactions is employed. We will discuss two cases, one involving only kinetics as a model of front propagation purely driven by spontaneous ignition, the other as a model of deflagration wave involving kinetics/diffusion coupling. We explore different aspects of the system dynamics such as the relative role of diffusion and kinetics, the evolution of kinetic eigenvalues, and of the tangential stretching rates computed by accounting for the combined action of diffusion and kinetics as well for kinetics only. We propose criteria based on the TSR concept which allow to identify the most ignitable conditions and to discriminate between spontaneous ignition and deflagration front.
FETSIM user's manual and example. [D.C. and transient analysis of MOS circuits
1978-01-01
A batch program written in FORTRAN IV which does D.C. and transient analysis of MOS circuits is presented. Circuits employing N-MOS transistors and/or P-MOS transistors in either a bulk technology or an SOS technology, or almost any combination of R-C elements may be analyzed. The program requires as input data the complete circuit topology, device parameters, process parameters, and control parameters. The user can specify initial node conditions and the input pulse format. For example, pulse rise time, fall time, width and time between succeeding pulses are all independently controllable. The program contains a sophisticated mathematical model that can accurately handle either NMOS, P-MOS, Bulk or SOS devices. Sensitivity to process changes is maintained by requiring such process parameters as threshold voltage and doping level as program inputs.
Su, Zhu; Jin, Guoyong; Ye, Tiangui
2016-06-01
The paper presents a unified solution for free and transient vibration analyses of a functionally graded piezoelectric curved beam with general boundary conditions within the framework of Timoshenko beam theory. The formulation is derived by means of the variational principle in conjunction with a modified Fourier series which consists of standard Fourier cosine series and supplemented functions. The mechanical and electrical properties of functionally graded piezoelectric materials (FGPMs) are assumed to vary continuously in the thickness direction and are estimated by Voigt’s rule of mixture. The convergence, accuracy and reliability of the present formulation are demonstrated by comparing the present solutions with those from the literature and finite element analysis. Numerous results for FGPM beams with different boundary conditions, geometrical parameters as well as material distributions are given. Moreover, forced vibration of the FGPM beams subjected to dynamic loads and general boundary conditions are also investigated.
Sensitivity analysis and numerical experiments on transient test of compact heat exchanger surfaces
Hesheng REN; Lingjun LAI; Yongzheng CUI
2008-01-01
A single-blow transient testing technique con-sidering the effect of longitudinal heat conduction is sug-gested for determining the average convection heat transfer coefficient of compact heat exchanger surface. By matching the measured outlet fluid temperature vari-ation with similar theoretical curves, the dimensionless longitudinal conduction parameter λ1, the time constant of the inlet fluid temperature τ+, and the number of heat transfer units Ntu can be determined simultaneously using the Levenberg-Marquardt nonlinear parameter estima-tion method. Both sensitivity analysis and numerical experiments with simulated measurements containing random errors show that the method in the present invest-igation provides satisfactory accuracy of the estimated parameter Ntu, which characterizes the heat transfer per-formance of compact heat exchanger surfaces.
A multi-node model for transient heat transfer analysis of stratospheric airships
Alam, Mohammad Irfan; Pant, Rajkumar S.
2017-06-01
This paper describes a seven-node thermal model for transient heat transfer analysis of a solar powered stratospheric airship in floating condition. The solar array is modeled as a three node system, viz., outer layer, solar cell and substrate. The envelope is also modeled in three nodes, and the contained gas is considered as the seventh node. The heat transfer equations involving radiative, infra-red and conductive heat are solved simultaneously using a fourth order Runge-Kutta Method. The model can be used to study the effect of solar radiation, ambient wind, altitude and location of deployment of the airship on the temperature of the solar array. The model has been validated against some experimental data and numerical results quoted in literature. The effect of change in the value of some operational parameters on temperature of the solar array, and hence on its power output is also discussed.
Transient analysis of an HTS DC power cable with an HVDC system
Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun; Yang, Byeongmo
2013-11-01
The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system.
Markert, L. C.; Greene, J. E.; Ni, W.-X.; Hansson, G. V.; Sundgren, J.-E.
1991-01-01
Antimony surface segregation during Si(100) molecular beam epitaxy (MBE) was investigated at temperatures T(sub s) = 515 - 800 C using concentration transient analysis (CTA). The dopant surface coverage Theta, bulk fraction gamma, and incorporation probability sigma during MBE were determined from secondary-ion mass spectrometry depth profiles of modulation-doped films. Programmed T(sub s) changes during growth were used to trap the surface-segregated dopant overlayer, producing concentration spikes whose integrated area corresponds to Theta. Thermal antimony doping by coevaporation was found to result in segregation strongly dependent on T(sub s) with Theta(sub Sb) values up to 0.9 monolayers (ML): in films doped with Sb(+) ions accelerated by 100 V, Theta(sub Sb) was less than or equal to 4 x 10(exp -3) ML. Surface segregation of coevaporated antimony was kinematically limited for the film growth conditions in these experiments.
Transient analysis of single stage GM type double inlet pulse tube cryocooler
Gujarati, P. B.; Desai, K. P.; Naik, H. B.; Atrey, M. D.
2015-12-01
Transient analysis of single stage GM type double inlet pulse tube cryocooler is carried out using a one dimensional numerical model based on real gas properties of helium. The model solves continuity, momentum and energy equation for gas and solid to analyse the physical process occurring inside of the pulse tube cryocooler. Finite volume method is applied to discretize the governing equations with realistic initial and boundary conditions. Input data required for solving the model are the design data and operating parameters viz. pressure waveform from the compressor, regenerator matrix data, and system geometry including pulse tube, regenerator size and operating frequency for pulse tube cryocooler. The model investigates the effect of orifice opening, double inlet opening, pressure ratio, system geometry on no load temperature and refrigeration power at various temperatures for different charging pressure. The results are compared with experimental data and reasonable agreement is observed. The model can further be extended for designing two stage pulse tube cryocooler.
Analysis of a transcription factor using transient assay in Arabidopsis protoplasts.
Iwata, Yuji; Lee, Mi-Hyun; Koizumi, Nozomu
2011-01-01
Regulation of gene expression by transcription factors is a fundamental mechanism in essentially all aspects of cellular processes. Transient expression assay of a reporter plasmid containing a reporter gene driven by a promoter of interest and an effector plasmid expressing a transcription factor has been a powerful tool for analyzing transcription factors. Here we present a protocol for polyethylene glycol (PEG)-mediated transformation of Arabidopsis protoplasts. It details preparation of protoplasts from Arabidopsis suspension cultured cells or leaves of soil-grown Arabidopsis plants and subsequent PEG-mediated transformation with reporter and effector plasmids. This protocol can be completed within 24 h from protoplast preparation to reporter assay. As an example, analysis of the membrane-bound transcription factor AtbZIP60 and its target BiP3 promoter is shown.
Optimization of high-resolution continuous flow analysis for transient climate signals in ice cores.
Bigler, Matthias; Svensson, Anders; Kettner, Ernesto; Vallelonga, Paul; Nielsen, Maibritt E; Steffensen, Jørgen Peder
2011-05-15
Over the past two decades, continuous flow analysis (CFA) systems have been refined and widely used to measure aerosol constituents in polar and alpine ice cores in very high-depth resolution. Here we present a newly designed system consisting of sodium, ammonium, dust particles, and electrolytic meltwater conductivity detection modules. The system is optimized for high-resolution determination of transient signals in thin layers of deep polar ice cores. Based on standard measurements and by comparing sections of early Holocene and glacial ice from Greenland, we find that the new system features a depth resolution in the ice of a few millimeters which is considerably better than other CFA systems. Thus, the new system can resolve ice strata down to 10 mm thickness and has the potential of identifying annual layers in both Greenland and Antarctic ice cores throughout the last glacial cycle.
Vinai, P
2007-10-15
For the development, design and licensing of a nuclear power plant (NPP), a sound safety analysis is necessary to study the diverse physical phenomena involved in the system behaviour under operational and transient conditions. Such studies are based on detailed computer simulations. With the progresses achieved in computer technology and the greater availability of experimental and plant data, the use of best estimate codes for safety evaluations has gained increasing acceptance. The application of best estimate safety analysis has raised new problems that need to be addressed: it has become more crucial to assess as to how reliable code predictions are, especially when they need to be compared against safety limits that must not be crossed. It becomes necessary to identify and quantify the various possible sources of uncertainty that affect the reliability of the results. Currently, such uncertainty evaluations are generally based on experts' opinion. In the present research, a novel methodology based on a non-parametric statistical approach has been developed for objective quantification of best-estimate code uncertainties related to the physical models used in the code. The basis is an evaluation of the accuracy of a given physical model achieved by comparing its predictions with experimental data from an appropriate set of separate-effect tests. The differences between measurements and predictions can be considered stochastically distributed, and thus a statistical approach can be employed. The first step was the development of a procedure for investigating the dependence of a given physical model's accuracy on the experimental conditions. Each separate-effect test effectively provides a random sample of discrepancies between measurements and predictions, corresponding to a location in the state space defined by a certain number of independent system variables. As a consequence, the samples of 'errors', achieved from analysis of the entire
Multivariate analysis of longitudinal rates of change.
Bryan, Matthew; Heagerty, Patrick J
2016-12-10
Longitudinal data allow direct comparison of the change in patient outcomes associated with treatment or exposure. Frequently, several longitudinal measures are collected that either reflect a common underlying health status, or characterize processes that are influenced in a similar way by covariates such as exposure or demographic characteristics. Statistical methods that can combine multivariate response variables into common measures of covariate effects have been proposed in the literature. Current methods for characterizing the relationship between covariates and the rate of change in multivariate outcomes are limited to select models. For example, 'accelerated time' methods have been developed which assume that covariates rescale time in longitudinal models for disease progression. In this manuscript, we detail an alternative multivariate model formulation that directly structures longitudinal rates of change and that permits a common covariate effect across multiple outcomes. We detail maximum likelihood estimation for a multivariate longitudinal mixed model. We show via asymptotic calculations the potential gain in power that may be achieved with a common analysis of multiple outcomes. We apply the proposed methods to the analysis of a trivariate outcome for infant growth and compare rates of change for HIV infected and uninfected infants. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Holtappels, Moritz; Glud, Ronnie N.; Donis, Daphne; Liu, Bo; Hume, Andrew; WenzhöFer, Frank; Kuypers, Marcel M. M.
2013-03-01
correlation (EC) measurements in the benthic boundary layer (BBL) allow estimating benthic O2 uptake from a point distant to the sediment surface. This noninvasive approach has clear advantages as it does not disturb natural hydrodynamic conditions, integrates the flux over a large foot-print area and allows many repetitive flux measurements. A drawback is, however, that the measured flux in the bottom water is not necessarily equal to the flux across the sediment-water interface. A fundamental assumption of the EC technique is that mean current velocities and mean O2 concentrations in the bottom water are in steady state, which is seldom the case in highly dynamic environments like coastal waters. Therefore, it is of great importance to estimate the error introduced by nonsteady state conditions. We investigated two cases of transient conditions. First, the case of transient O2 concentrations was examined using the theory of shear flow dispersion. A theoretical relationship between the change of O2 concentrations and the induced vertical O2 flux is introduced and applied to field measurements showing that changes of 5-10 μM O2 h-1 result in transient EC-fluxes of 6-12 mmol O2 m-2 d-1, which is comparable to the O2 uptake of shelf sediments. Second, the case of transient velocities was examined with a 2D k-ɛ turbulence model demonstrating that the vertical flux can be biased by 30-100% for several hours during changing current velocities from 2 to 10 cm s-1. Results are compared to field measurements and possible ways to analyze and correct EC-flux estimates are discussed.
Buchner, Stephen; McMorrow, Dale; Roche, Nicholas; Dusseau, Laurent; Pease, Ron L.
2008-01-01
Shapes of single event transients (SETs) in a linear bipolar circuit (LM124) change with exposure to total ionizing dose (TID) radiation. SETs shape changes are a direct consequence of TID-induced degradation of bipolar transistor gain. A reduction in transistor gain causes a reduction in the drive current of the current sources in the circuit, and it is the lower drive current that most affects the shapes of large amplitude SETs.
Dorrell, David G.; Hermann, Alexander Niels August; Jensen, Bogi Bech
2013-01-01
There has been much literature on unbalanced magnetic pull in various types of electrical machine. This can lead to bearing wear and additional vibrations in the machine. In this paper a wound rotor induction is studied. Finite element analysis studies are conducted when the rotor has 10 % rotor...... eccentricity. The operating conditions are varied so that transient, motoring and doubly-fed induction generator modes are studied. This allows greater understanding of the radial forces involved. Wound rotor induction machines exhibit higher unbalanced magnetic pull than cage induction machines so...
Transient analysis of an FHR coupled to a helium Brayton power cycle
Chen, Minghui [The Ohio State Univ., Columbus, OH (United States). Nuclear Engineering Program; Kim, In Hun [The Ohio State Univ., Columbus, OH (United States). Nuclear Engineering Program; Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States). Nuclear Engineering Program; Christensen, Richard [The Ohio State Univ., Columbus, OH (United States). Nuclear Engineering Program; Utgikar, Vivek [Univ. of Idaho, Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-08-01
The Fluoride salt-cooled High-temperature Reactor (FHR) features a passive decay heat removal system and a high-efficiency Brayton cycle for electricity generation. It typically employs an intermediate loop, consisting of an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX), to couple the primary system with the power conversion unit (PCU). In this study, a preliminary dynamic system model is developed to simulate transient characteristics of a prototypic 20-MW_{th} Fluoride salt-cooled High-temperature Test Reactor (FHTR). The model consists of a series of differential conservation equations that are numerically solved using the MATLAB platform. For the reactor, a point neutron kinetics model is adopted. For the IHX and SHX, a fluted tube heat exchanger and an offset strip-fin heat exchanger are selected, respectively. Detailed geometric parameters of each component in the FHTR are determined based on the FHTR nominal steady-state operating conditions. Three initiating events are simulated in this study, including a positive reactivity insertion, a step increase in the mass flow rate of the PCU helium flow, and a step increase in the PCU helium inlet temperature to the SHX. The simulation results show that the reactor has inherent safety features for those three simulated scenarios. It is observed that the increase in the temperatures of the fuel pebbles and primary coolant is mitigated by the decrease in the reactor power due to negative temperature feedbacks. The results also indicate that the intermediate loop with the two heat exchangers plays a significant role in the transient progression of the integral reactor system.
Transient stability analysis of electric energy systems via a fuzzy ART-ARTMAP neural network
Ferreira, Wagner Peron; Silveira, Maria do Carmo G.; Lotufo, AnnaDiva P.; Minussi, Carlos. R. [Department of Electrical Engineering, Sao Paulo State University (UNESP), P.O. Box 31, 15385-000, Ilha Solteira, SP (Brazil)
2006-04-15
This work presents a methodology to analyze transient stability (first oscillation) of electric energy systems, using a neural network based on ART architecture (adaptive resonance theory), named fuzzy ART-ARTMAP neural network for real time applications. The security margin is used as a stability analysis criterion, considering three-phase short circuit faults with a transmission line outage. The neural network operation consists of two fundamental phases: the training and the analysis. The training phase needs a great quantity of processing for the realization, while the analysis phase is effectuated almost without computation effort. This is, therefore the principal purpose to use neural networks for solving complex problems that need fast solutions, as the applications in real time. The ART neural networks have as primordial characteristics the plasticity and the stability, which are essential qualities to the training execution and to an efficient analysis. The fuzzy ART-ARTMAP neural network is proposed seeking a superior performance, in terms of precision and speed, when compared to conventional ARTMAP, and much more when compared to the neural networks that use the training by backpropagation algorithm, which is a benchmark in neural network area. (author)
Electromechanical coupling model and analysis of transient behavior for inertial vibrating machines
HU Ji-yun; YU Cui-ping; YIN Xue-gang
2004-01-01
A mathematical model of electromechanical coupling system for a planar inertial vibrating machine is built by setting up dynamical equations of discrete systems with a matrix methodology proposed. The substance of the transient behavior of the machine is unveiled by analyzing the results of the computer simulation to the model, and new methods are presented for diminishing the transient amplitude of the vibrating machine and improving the transient behavior. The reliable mathematical model is provided for intelligent control of the transient behavior of the equipment.
Time-variant power spectrum analysis for the detection of transient episodes in HRV signal.
Bianchi, A M; Mainardi, L; Petrucci, E; Signorini, M G; Mainardi, M; Cerutti, S
1993-02-01
A time-variant algorithm of autoregressive (AR) identification is introduced and applied to the heart rate variability (HRV) signal. The power spectrum is calculated from the AR coefficients derived from each single RR interval considered. Time-variant AR coefficients are determined through adaptive parametric identification with a forgetting factor which obtains weighed values on a running temporal window of 50 preceding measurements. Power spectrum density (PSD) is hence obtained at each cardiac cycle, making it possible to follow the dynamics of the spectral parameters on a beat-by-beat basis. These parameters are mainly the LF (low frequency) and the HF (high frequency) powers, and their ratio LF/HF. These together account for the balanced sympatho-vagal control mechanism affecting the heart rate. This method is applied to subjects suffering from transient ischemic attacks. The time variant spectral parameters suggest an early activation of LF component in the HRV power spectrum. It precedes by approximately 1.5-2 min the tachycardia and the ST displacement, generally indicative of the onset of an ischemic episode. The results suggest an arousal of sympathetic system before the acute attack.
Transient analysis of a molten salt central receiver (MSCR) in a solar power plant
Joshi, A.; Wang, C.; Akinjiola, O.; Lou, X.; Neuschaefer, C.; Quinn, J.
2016-05-01
Alstom is developing solar power tower plants utilizing molten salt as the working fluid. In solar power tower, the molten salt central receiver (MSCR) atop of the tower is constructed of banks of tubes arranged in panels creating a heat transfer surface exposed to the solar irradiation from the heliostat field. The molten salt heat transfer fluid (HTF), in this case 60/40%wt NaNO3-KNO3, flows in serpentine flow through the surface collecting sensible heat thus raising the HTF temperature from 290°C to 565°C. The hot molten salt is stored and dispatched to produce superheated steam in a steam generator, which in turn produces electricity in the steam turbine generator. The MSCR based power plant with a thermal energy storage system (TESS) is a fully dispatchable renewable power plant with a number of opportunities for operational and economic optimization. This paper presents operation and controls challenges to the MSCR and the overall power plant, and the use of dynamic model computer simulation based transient analyses applied to molten salt based solar thermal power plant. This study presents the evaluation of the current MSCR design, using a dynamic model, with emphasis on severe events affecting critical process response, such as MS temperature deviations, and recommend MSCR control design improvements based on the results. Cloud events are the scope of the transient analysis presented in this paper. The paper presents results from a comparative study to examine impacts or effects on key process variables related to controls and operation of the MSCR plant.
Mutation rate analysis at 19 autosomal microsatellites.
Qian, Xiao-Qin; Yin, Cai-Yong; Ji, Qiang; Li, Kai; Fan, Han-Ting; Yu, Yan-Fang; Bu, Fan-Li; Hu, Ling-Li; Wang, Jian-Wen; Mu, Hao-Fang; Haigh, Steven; Chen, Feng
2015-07-01
Previous studies have demonstrated that a large sample size is needed to reliably estimate population- and locus-specific microsatellite mutation rates. Therefore, we conducted a long-term collaboration study and performed a comprehensive analysis on the mutation characteristics of 19 autosomal short tandem repeat (STR) loci. The STR loci located on 15 of 22 autosomal chromosomes were analyzed in a total of 21,106 samples (11,468 parent-child meioses) in a Chinese population. This provided 217,892 allele transfers at 19 STR loci. An overall mutation rate of 1.20 × 10(-3) (95% CI, 1.06-1.36 × 10(-3) ) was observed in the populations across 18 of 19 STR loci, except for the TH01 locus with no mutation found. Most STR mutations (97.7%) were single-step mutations, and only a few mutations (2.30%) comprised two and multiple steps. Interestingly, approximately 93% of mutation events occur in the male germline. The mutation ratios increased with the paternal age at child birth (r = 0.99, ptesting, kinship analysis, and population genetics.
Identification of a cis-regulatory element by transient analysis of co-ordinately regulated genes
Allan Andrew C
2008-07-01
Full Text Available Abstract Background Transcription factors (TFs co-ordinately regulate target genes that are dispersed throughout the genome. This co-ordinate regulation is achieved, in part, through the interaction of transcription factors with conserved cis-regulatory motifs that are in close proximity to the target genes. While much is known about the families of transcription factors that regulate gene expression in plants, there are few well characterised cis-regulatory motifs. In Arabidopsis, over-expression of the MYB transcription factor PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT 1 leads to transgenic plants with elevated anthocyanin levels due to the co-ordinated up-regulation of genes in the anthocyanin biosynthetic pathway. In addition to the anthocyanin biosynthetic genes, there are a number of un-associated genes that also change in expression level. This may be a direct or indirect consequence of the over-expression of PAP1. Results Oligo array analysis of PAP1 over-expression Arabidopsis plants identified genes co-ordinately up-regulated in response to the elevated expression of this transcription factor. Transient assays on the promoter regions of 33 of these up-regulated genes identified eight promoter fragments that were transactivated by PAP1. Bioinformatic analysis on these promoters revealed a common cis-regulatory motif that we showed is required for PAP1 dependent transactivation. Conclusion Co-ordinated gene regulation by individual transcription factors is a complex collection of both direct and indirect effects. Transient transactivation assays provide a rapid method to identify direct target genes from indirect target genes. Bioinformatic analysis of the promoters of these direct target genes is able to locate motifs that are common to this sub-set of promoters, which is impossible to identify with the larger set of direct and indirect target genes. While this type of analysis does not prove a direct interaction between protein and DNA
王世强; 周曾铨; 钱洪
2000-01-01
With confocal microscopy, we recorded calcium transients and analyzed calcium removal rate at different temperatures in cardiac myocytes from the rat, a non-hibernator, and the ground squirrel, a hibernator. The results showed a remarkable increase of the diastolic level of calcium transients in the rat but no detectable change in the ground squirrel. Calcium transient of the ground squirrel, compared with that of the rat at the same temperature, had a shorter duration and showed a faster calcium removal. As indicated by the pharmacological effect of cyclopiazonic acid, calcium uptake by sarcoplasmic reticulum (SR) was the major mechanism of calcium removal, and was faster in the ground squirrel than in the rat. Our results confirmed the essential role of SR in hypothermia-tolerant adaptation, and negated the importance of Na-Ca exchange. We postulated the possibility to improve hypothermia-tolerance of the cardiac tissue of non-hibernating mammals.
A Taylor-Galerkin finite element algorithm for transient nonlinear thermal-structural analysis
Thornton, E. A.; Dechaumphai, P.
1986-01-01
A Taylor-Galerkin finite element method for solving large, nonlinear thermal-structural problems is presented. The algorithm is formulated for coupled transient and uncoupled quasistatic thermal-structural problems. Vectorizing strategies ensure computational efficiency. Two applications demonstrate the validity of the approach for analyzing transient and quasistatic thermal-structural problems.
Xue, H.; Popov, M.
2013-01-01
Large transient overvoltages are normally caused by vacuum circuit breaker (VCB) switching operation during disconnection of induction motors. In this paper VCBs, cables, generators, busbars, induction motors and surge arresters are modeled by making use of ATP-EMTP. Switching transient overvoltages
Analysis of transient gas-liquid two-phase natural circulation
Kataoka, Isao; Matsumoto, Tadayoshi; Morita, Yu; Kawashima, Atsushi [Department of Mechanophysics Engineering, Osaka University, Suita, Osaka (Japan); Nakayama, Akio
1999-07-01
Analyses were made on the transient behavior of two-phase natural circulation in annular passage. Drift flux model was used in the analyses and several correlations of drift velocity were used and compared. Transient variation of void fraction, inlet liquid flux and length of two-phase region were predicted based on simplified model. It was revealed that in transient two-phase natural circulation, the condition for pressure difference between inlet and outlet is quite important and difficult to be specified. A simplified model for inlet pressure condition was assumed and transient two-phase natural circulation was reasonably predicted. The correlation of drift velocity was shown to have important effect on the flow behavior particularly for the transient variation of two-phase length. (author)
Rosenberg, G. S.; Schoeberle, D. F.; Valentin, R. A.
1969-01-01
Analysis and solution are presented for transient thermal stresses in a free heat-generating flat plate and a free, hollow-generating cylinder as a result of sudden environmental changes. The technique used and graphical results obtained are of interest to the heat transfer industry.
Hassager, Ole; Westborg, H
1987-01-01
An analysis of the transient rotating cylinder apparatus for the measurement of liquid-liquid interface viscosity is given. An analytical expression that allows the determination of the interfacial viscosity from observations of the interface movement is given. The expression is presented...... in tabular form for selected values of the physical parameters of the two phases, and suggestions for apparatus design are given....
An analytical solution of the Fokker-Planck equation in the phase-locked loop transient analysis
Zhang, Weijian
1987-01-01
A probabilistic approach is used to obtain an analytical solution to the Fokker-Planck equation used in the transient analysis of the phase-locked loop phase error process of the first-order phase-locked loop. The solution procedure, which is based on the Girsanov transformation, is described.
Transient Analysis of Thermal Protection System for X-33 Aircraft using MSC/NASTRAN
Miura, Hirokazu; Chargin, M. K.; Bowles, J.; Tam, T.; Chu, D.; Chainyk, M.; Green, Michael J. (Technical Monitor)
1997-01-01
X-33 is an advanced technology demonstrator vehicle for the Reusable Launch Vehicle (RLV) program. The thermal protection system (TPS) for the X-33 is composed of complex layers of materials to protect internal components, while withstanding severe external temperatures induced by aerodynamic heating during high speed flight. It also serves as the vehicle aeroshell in some regions using a stand-off design. MSC/NASTRAN thermal analysis capability was used to predict transient temperature distribution (within the TPS) throughout a mission, from launch through the cool-off period after landing. In this paper, a typical analysis model, representing a point on the vehicle where the liquid oxygen tank is closest to the outer mold line, is described. The maximum temperature difference between the outer mold line and the internal surface of the liquid oxygen tank can exceed 1500 F. One dimensional thermal models are used to select the materials and determine the thickness of each layer for minimum weight while insuring that all materials remain within the allowable temperature range. The purpose of working with three dimensional (3D) comprehensive models using MSC/NASTRAN is to assess the 3D radiation effects and the thermal conduction heat shorts of the support fixtures.
Transient analysis mode participation for modal survey target mode selection using MSC/NASTRAN DMAP
Barnett, Alan R.; Ibrahim, Omar M.; Sullivan, Timothy L.; Goodnight, Thomas W.
1994-01-01
Many methods have been developed to aid analysts in identifying component modes which contribute significantly to component responses. These modes, typically targeted for dynamic model correlation via a modal survey, are known as target modes. Most methods used to identify target modes are based on component global dynamic behavior. It is sometimes unclear if these methods identify all modes contributing to responses important to the analyst. These responses are usually those in areas of hardware design concerns. One method used to check the completeness of target mode sets and identify modes contributing significantly to important component responses is mode participation. With this method, the participation of component modes in dynamic responses is quantified. Those modes which have high participation are likely modal survey target modes. Mode participation is most beneficial when it is used with responses from analyses simulating actual flight events. For spacecraft, these responses are generated via a structural dynamic coupled loads analysis. Using MSC/NASTRAN DMAP, a method has been developed for calculating mode participation based on transient coupled loads analysis results. The algorithm has been implemented to be compatible with an existing coupled loads methodology and has been used successfully to develop a set of modal survey target modes.
Transient analysis of a queue with queue-length dependent MAP and its application to SS7 network
Bong Dae Choi
1999-01-01
Full Text Available We analyze the transient behavior of a Markovian arrival queue with congestion control based on a double of thresholds, where the arrival process is a queue-length dependent Markovian arrival process. We consider Markov chain embedded at arrival epochs and derive the one-step transition probabilities. From these results, we obtain the mean delay and the loss probability of the nth arrival packet. Before we study this complex model, first we give a transient analysis of an MAP/M/1 queueing system without congestion control at arrival epochs. We apply our result to a signaling system No. 7 network with a congestion control based on thresholds.
Sardar, Partha; Nairooz, Ramez; Chatterjee, Saurav
2014-01-01
Dabigatran is a novel oral anticoagulant and may be useful during atrial fibrillation (AF) ablation for prevention of thromboembolic events. However, the benefits and adverse effects of periprocedural dabigatran therapy have not been thoroughly evaluated. A meta-analysis was performed to evaluate...... with warfarin for AF ablation. A total of 5,513 patients undergoing catheter ablation were included in 17 observational studies and 1 randomized trial. Fourteen events of stroke or transient ischemic attacks were reported in the dabigatran group and 4 in the warfarin group (Peto's odds ratio 3.94, 95...... complications including stroke and transient ischemic attack....
Jeong Soon Park
2016-04-01
Full Text Available The failure probabilities of the reactor pressure vessel (RPV for low temperature over-pressurization (LTOP and cool-down transients are calculated in this study. For the cool-down transient, a pressure–temperature limit curve is generated in accordance with Section XI, Appendix G of the American Society of Mechanical Engineers (ASME code, from which safety margin factors are deliberately removed for the probabilistic fracture mechanics analysis. Then, sensitivity analyses are conducted to understand the effects of some input parameters. For the LTOP transient, the failure of the RPV mostly occurs during the period of the abrupt pressure rise. For the cool-down transient, the decrease of the fracture toughness with temperature and time plays a main role in RPV failure at the end of the cool-down process. As expected, the failure probability increases with increasing fluence, Cu and Ni contents, and initial reference temperature-nil ductility transition (RTNDT. The effect of warm prestressing on the vessel failure probability for LTOP is not significant because most of the failures happen before the stress intensity factor reaches the peak value while its effect reduces the failure probability by more than one order of magnitude for the cool-down transient.
Djukanovic, M. (Inst. ' Nikola Tesla' , Belgrade (Yugoslavia)); Sobajic, D.J.; Yohhan Pao (Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Electrical Engineering and Applied Physics Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Computer Engineering and Science AI WARE inc., Cleveland, OH (United States))
1992-10-01
In heavily stressed power systems, post-fault transient voltage dips can lead to undesired tripping of industrial drives and large induction motors. The lowest transient voltage dips occur when fault clearing times are less than critical ones. In this paper, we propose a new iterative analytical methodology to obtain more accurate estimates of voltage dips at maximum angular swing in direct transient stability analysis. We also propose and demonstrate the possibility of storing the results of these computations in the associative memory (AM) system, which exhibits remarkable generalization capabilities. Feature-based models stored in the AM can be utilized for fast and accurate prediction of the location, duration and the amount of the worst voltage dips, thereby avoiding the need and cost for lengthy time-domain simulations. Numerical results obtained using the example of the New England power system are presented to illustrate our approach. (Author)
PRONTO3D users` instructions: A transient dynamic code for nonlinear structural analysis
Attaway, S.W.; Mello, F.J.; Heinstein, M.W.; Swegle, J.W.; Ratner, J.A. [Sandia National Labs., Albuquerque, NM (United States); Zadoks, R.I. [Univ. of Texas, El Paso, TX (United States)
1998-06-01
This report provides an updated set of users` instructions for PRONTO3D. PRONTO3D is a three-dimensional, transient, solid dynamics code for analyzing large deformations of highly nonlinear materials subjected to extremely high strain rates. This Lagrangian finite element program uses an explicit time integration operator to integrate the equations of motion. Eight-node, uniform strain, hexahedral elements and four-node, quadrilateral, uniform strain shells are used in the finite element formulation. An adaptive time step control algorithm is used to improve stability and performance in plasticity problems. Hourglass distortions can be eliminated without disturbing the finite element solution using either the Flanagan-Belytschko hourglass control scheme or an assumed strain hourglass control scheme. All constitutive models in PRONTO3D are cast in an unrotated configuration defined using the rotation determined from the polar decomposition of the deformation gradient. A robust contact algorithm allows for the impact and interaction of deforming contact surfaces of quite general geometry. The Smooth Particle Hydrodynamics method has been embedded into PRONTO3D using the contact algorithm to couple it with the finite element method.
ULTRAVIOLET SPECTROSCOPIC ANALYSIS OF TRANSIENT MASS FLOW OUTBURST IN U CEPHEI
Tupa, Peter R.; DeLeo, Gary G.; McCluskey, George E. [Physics Department, Lehigh University, Bethlehem, PA 18015 (United States); Kondo, Yoji [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sahade, Jorge [Facultad de Ciencias Astronómicas, Paseo del Bosque s/n, B1900FWA-La Plata (Argentina); Giménez, Alvaro [Centro de Astrobiologia, CSIC/INTA, Carretera de Torrejon a Ajalvir, E-28850 Torrejon de Ardoz (Madrid) (Spain); Caton, Daniel B., E-mail: pet205@lehigh.edu [Appalachian State University, Boone, NC 28608 (United States)
2013-09-20
Spectra from the International Ultraviolet Explorer taken in 1989 September over one full orbital period of U Cephei (U Cep, HD 5796) are analyzed. The TLUSTY and SYNSPEC stellar atmospheric simulation programs are used to generate synthetic spectra to which U Cep continuum levels are normalized. Absorption lines attributed to the photosphere are divided out to isolate mass flow and accretion spectra. A radial velocity curve is constructed for conspicuous gas stream features, and shows evidence for a transient flow during secondary eclipse with outward velocities ranging between 200 and 350 km s{sup –1}, and a number density of (3 ± 2) × 10{sup 10} cm{sup –3}. The validity of C IV 1548 and 1550 and Si IV 1393 and 1402 lines are re-examined in the context of extreme rotational blending effects. A G-star to B-star mass transfer rate of (5 ± 4) × 10{sup –9} M{sub ☉} yr{sup –1} is calculated as an approximate upper limit, and a model system is presented.
Dailey, Brian T.
The observed cutoff in the cosmic ray spectrum leads to a highly motivated expectation of an ultra-high energy (UHE) neutrino flux, coming from interactions between the cosmic rays and cosmic microwave background photons. Although no UHE neutrinos have yet been detected; better background separation and removal will help accelerate the search. Past flights of the ANtarctic Impulsive Transient Antenna (ANITA) experiment have set the strongest limits on the UHE neutrino flux above 1019 eV. Due to the advanced sensitivity of future flights to both signal and anthropogenic backgrounds, the techniques used in the past analyses may not be sufficient to remove backgrounds. Here, we discuss processes developed for this analysis. First, we discuss newly techniques to filter event waveforms in both the amplitude and phase spectra. These new techniques were applied to the ANITA-2 experiment data set. We discuss a new technique developed that uses equal area bins of ice on the Antarctic continent. Further, we define a set of analysis cuts, how the analysis cuts were optimized for maximum sensitivity for UHE neutrinos, how the number of background and neutrino events were estimated. For our search, we used the maximal Kotera et. al. 2010 flux model and optimized based on this model. After optimization, we found zero events from the 10% sample passing all cuts. These techniques will prove useful for future flights of ANITA as the sensitivity of the instrument increases. The optimization procedure can also provide a starting point for future analysis. The filtering technique shown here decreased mis-reconstruction in pointing of events. The HealPix method, while requiring further refinement, shows promise by retaining valuable areas of ice that may have been removed from previous analyses.
Wang, Wen; Zhang, Lu; Liu, Weiming; Zhu, Qin; Lan, Qing; Zhao, Jizong
2016-05-01
Stroke can cause high morbidity and mortality, and ischemic stroke (IS) and transient ischemic attack (TIA) patients have a high stroke recurrence rate. Antiplatelet agents are the standard therapy for these patients, but it is often difficult for clinicians to select the best therapy from among the multiple treatment options. We therefore performed a network meta-analysis to estimate the efficacy of antiplatelet agents for secondary prevention of recurrent stroke. We systematically searched 3 databases (PubMed, Embase, and Cochrane) for relevant studies published through August 2015. The primary end points of this meta-analysis were overall stroke, hemorrhagic stroke, and fatal stroke. A total of 30 trials were included in our network meta-analysis and abstracted data. Among the therapies evaluated in the included trials, the estimates for overall stroke and hemorrhagic stroke for cilostazol (Cilo) were significantly better than those for aspirin (odds ratio [OR] = .64, 95% credibility interval [CrI], .45-.91; OR = .23, 95% CrI, .08-.58). The estimate for fatal stroke was highest for Cilo plus aspirin combination therapy, followed by Cilo therapy. The results of our meta-analysis indicate that Cilo significantly improves overall stroke and hemorrhagic stroke in IS or TIA patients and reduces fatal stroke, but with low statistical significance. Our results also show that Cilo was significantly more efficient than other therapies in Asian patients; therefore, future trials should focus on Cilo treatment for secondary prevention of recurrent stroke in non-Asian patients.
Fleming, R. M.; Seager, C. H.; Lang, D. V.; Campbell, J. M.
2015-07-01
An improved method for measuring the cross sections for carrier trapping at defects in semiconductors is described. This method, a variation of deep level transient spectroscopy (DLTS) used with bipolar transistors, is applied to hot carrier trapping at vacancy-oxygen, carbon-oxygen, and three charge states of divacancy centers (V2) in n- and p-type silicon. Unlike standard DLTS, we fill traps by injecting carriers into the depletion region of a bipolar transistor diode using a pulse of forward bias current applied to the adjacent diode. We show that this technique is capable of accurately measuring a wide range of capture cross sections at varying electric fields due to the control of the carrier density it provides. Because this technique can be applied to a variety of carrier energy distributions, it should be valuable in modeling the effect of radiation-induced generation-recombination currents in bipolar devices.
Giglio, M.J.; Brandan, N.; Leal, T.L.; Bozzini, C.E.
1989-06-15
With the purpose of assessing the effect of uranyl nitrate (UN) on the rate of erythropoiesis, 1 mg/kg of the compound was injected iv to adult female Wistar rats. The dosing vehicle was injected into control animals. A single injection of UN induced a transient depression of the rate of red cell volume /sup 59/Fe uptake, which reached its lowest value (68% depression) by the seventh postinjection day. By 14 days, /sup 59/Fe incorporation had returned to normal. The amount of iron going to erythroid tissue per hour, reticulocyte count, and immunoreactive erythropoietin concentration in both plasma and kidney extracts were also significantly depressed in UN-treated rats in relation to these values in vehicle-injected rats by the seventh postinjection day. Dose-response curves for exogenous erythropoietin (Epo) performed in polycythemic intact and UN-treated rats 7 days after drug injection revealed a significant depression of the response in UN-injected animals. Moreover, bone marrow cells obtained from rats pretreated with UN formed a reduced number of erythroid colonies in vitro in response to Epo. Therefore, possible mechanisms for the observed transient depression in the rate of erythropoiesis associated with acute UN treatment include decreased Epo production and direct or indirect damage of erythroid progenitor cells.
Hernandez, D.; Holt, W. E.; Bennett, R. A.; Dimitrova, L.; Haines, A. J.
2006-12-01
We are continuing work on developing and refining a tool for recognizing strain rate transients as well as for quantifying the magnitude and style of their temporal and spatial variations. We determined time-averaged velocity values in 0.05 year epochs using time-varying velocity estimates for continuous GPS station data from the Southern California Integrated GPS Network (SCIGN) for the time period between October 1999 and February 2004 [Li et al., 2005]. A self-consistent model velocity gradient tensor field solution is determined for each epoch by fitting bi-cubic Bessel interpolation to the GPS velocity vectors and we determine model dilatation strain rates, shear strain rates, and the rotation rates. Departures of the time dependent model strain rate and velocity fields from a master solution, obtained from a time-averaged solution for the period 1999-2004, with imposed plate motion constraints and Quaternary fault data, are evaluated in order to best characterize the time dependent strain rate field. A particular problem in determining the transient strain rate fields is the level of smoothing or damping that is applied. Our current approach is to choose a damping that both maximizes the departure of the transient strain rate field from the long-term master solution and achieves a reduced chi-squared value between model and observed GPS velocities of around 1.0 for all time epochs. We observe several noteworthy time-dependent changes. First, in the Eastern California Shear Zone (ECSZ) region, immediately following the October 1999 Hector Mine earthquake, there occurs a significant spatial increase of relatively high shear strain rate, which encompasses a significant portion of the ECSZ. Second, also following the Hector Mine event, there is a strain rate corridor that extends through the Pinto Mt. fault connecting the ECSZ to the San Andreas fault segment in the Salton Trough region. As this signal slowly decays, shear strain rates on segments of the San
Bahit, M Cecilia; Coppola, Mariano L; Riccio, Patricia M
2016-01-01
BACKGROUND AND PURPOSE: Epidemiological data about stroke are scarce in low- and middle-income Latin-American countries. We investigated annual incidence of first-ever stroke and transient ischemic attack (TIA) and 30-day case-fatality rates in a population-based setting in Tandil, Argentina....... METHODS: We prospectively identified all first-ever stroke and TIA cases from overlapping sources between January 5, 2013, and April 30, 2015, in Tandil, Argentina. We calculated crude and standardized incidence rates. We estimated 30-day case-fatality rates. RESULTS: We identified 334 first-ever strokes.......1% (95% CI, 14.2-36.6) for intracerebral hemorrhage, and 1.9% (95% CI, 0.4-5.8) for TIA. CONCLUSIONS: This study provides the first prospective population-based stroke and TIA incidence and case-fatality estimate in Argentina. First-ever stroke incidence was lower than that reported in previous Latin...
Mahaffy, J. [Pennsylvania State Univ., University Park, PA (United States); Boyack, B.E.; Steinke, R.G. [Los Alamos National Lab., NM (United States)
1998-05-01
The objective of this document is to ease the task of adding new system components to the Transient Reactor Analysis Code (TRAC) or altering old ones. Sufficient information is provided to permit replacement or modification of physical models and correlations. Within TRAC, information is passed at two levels. At the upper level, information is passed by system-wide and component-specific data modules at and above the level of component subroutines. At the lower level, information is passed through a combination of module-based data structures and argument lists. This document describes the basic mechanics involved in the flow of information within the code. The discussion of interfaces in the body of this document has been kept to a general level to highlight key considerations. The appendices cover instructions for obtaining a detailed list of variables used to communicate in each subprogram, definitions and locations of key variables, and proposed improvements to intercomponent interfaces that are not available in the first level of code modernization.
Greene, William H.
1989-01-01
A study has been performed focusing on the calculation of sensitivities of displacements, velocities, accelerations, and stresses in linear, structural, transient response problems. One significant goal was to develop and evaluate sensitivity calculation techniques suitable for large-order finite element analyses. Accordingly, approximation vectors such as vibration mode shapes are used to reduce the dimensionality of the finite element model. Much of the research focused on the accuracy of both response quantities and sensitivities as a function of number of vectors used. Two types of sensitivity calculation techniques were developed and evaluated. The first type of technique is an overall finite difference method where the analysis is repeated for perturbed designs. The second type of technique is termed semianalytical because it involves direct, analytical differentiation of the equations of motion with finite difference approximation of the coefficient matrices. To be computationally practical in large-order problems, the overall finite difference methods must use the approximation vectors from the original design in the analyses of the perturbed models.
Bhagat, Shaum; Bass, Johnnie; Qaddoumi, Ibrahim; Brennan, Rachel; Wilson, Matthew; Wu, Jianrong; Galindo, Carlos-Rodriguez; Paglialonga, Alessia; Tognola, Gabriella
2013-01-01
The aims of this study were to characterize and quantify time-frequency changes in transient-evoked otoacoustic emissions (TEOAEs) recorded in children diagnosed with retinoblastoma who were receiving carboplatin chemotherapy. A signal processing technique, the wavelet transform (WT), was used to analyze TEOAE waveforms in narrow-band frequency components. Ten children (aged 3-72 months) diagnosed with unilateral or bilateral retinoblastoma were enrolled in the study. TEOAEs were acquired from the children with linear sequences of 70 dB peak equivalent SPL clicks. After WT analysis, TEOAE energy, latency and normalized energy in the narrow-band frequency components were compared before and during carboplatin chemotherapy treatment (average dose 1693 mg/m2). On a group basis, no significant differences (p>0.05) in the TEOAE energy, latency or normalized energy before and after carboplatin treatment were observed. There were decreases in normalized energy on an individual basis in 10 out of 18 ears in the sample. Exposure to carboplatin chemotherapy did not cause significant changes in TEOAE energy, latency and normalized energy during treatment. However, long-term monitoring of hearing with measurements of TEOAEs is warranted, given the risks of delayed hearing loss in some children receiving carboplatin chemotherapy.
Transient Thermal Analysis of 3-D Integrated Circuits Packages by the DGTD Method
Li, Ping
2017-03-11
Since accurate thermal analysis plays a critical role in the thermal design and management of the 3-D system-level integration, in this paper, a discontinuous Galerkin time-domain (DGTD) algorithm is proposed to achieve this purpose. Such as the parabolic partial differential equation (PDE), the transient thermal equation cannot be directly solved by the DGTD method. To address this issue, the heat flux, as an auxiliary variable, is introduced to reduce the Laplace operator to a divergence operator. The resulting PDE is hyperbolic, which can be further written into a conservative form. By properly choosing the definition of the numerical flux used for the information exchange between neighboring elements, the hyperbolic thermal PDE can be solved by the DGTD together with the auxiliary differential equation. The proposed algorithm is a kind of element-level domain decomposition method, which is suitable to deal with multiscale geometries in 3-D integrated systems. To verify the accuracy and robustness of the developed DGTD algorithm, several representative examples are benchmarked.
Transient-based analysis for the detection of broken damper bars in synchronous motors
Antonino-Daviu, J. A.; Climente-Alarcón, V.; Pons-Llinares, J.; Puche, R.; Pineda-Sánchez, M.
2013-01-01
Synchronous generators and motors constitute critical elements in power generation plants and certain industrial facilities. Damper bars are crucial components of most of these synchronous machines. They enable, among other functions, the direct-on-line starting of these machines, just as if they were asynchronous. Some recent cases, reported by several authors, have demonstrated that eventual failure of damper bars is possible, mainly due to the currents and stresses rising during their operation. In this context, the development of reliable techniques able to diagnose possible damper breakages has attracted significant interest within the fault diagnosis area. The present paper proposes the application of a novel transient-based methodology to diagnose broken damper bars in synchronous motors. This methodology was previously assessed with success in industrial induction motors with diverse sizes. The approach relies on the analysis of the stator startup current demanded by the machine during a direct-on-line starting. To this end, suitable time-frequency decomposition tools are used. In this particular work, the Discrete Wavelet Transform (DWT) is proposed, due to its simplicity, low computational requirements and easy interpretation of its results. Simulation and experimental results obtained with laboratory synchronous machines confirm the validity of the approach for condition monitoring of such windings.
Discrete homotopy analysis for optimal trading execution with nonlinear transient market impact
Curato, Gianbiagio; Gatheral, Jim; Lillo, Fabrizio
2016-10-01
Optimal execution in financial markets is the problem of how to trade a large quantity of shares incrementally in time in order to minimize the expected cost. In this paper, we study the problem of the optimal execution in the presence of nonlinear transient market impact. Mathematically such problem is equivalent to solve a strongly nonlinear integral equation, which in our model is a weakly singular Urysohn equation of the first kind. We propose an approach based on Homotopy Analysis Method (HAM), whereby a well behaved initial trading strategy is continuously deformed to lower the expected execution cost. Specifically, we propose a discrete version of the HAM, i.e. the DHAM approach, in order to use the method when the integrals to compute have no closed form solution. We find that the optimal solution is front loaded for concave instantaneous impact even when the investor is risk neutral. More important we find that the expected cost of the DHAM strategy is significantly smaller than the cost of conventional strategies.
Prakash, J.; Torzillo, G.; Pushparaj, B.; Carlozzi, P.; Materassi, R. [Consiglio Nazionale delle Ricerche, Florence (Italy). Centro di Studio dei Microhanismi Autotrofi
1995-08-01
A mathematical model to make a transient thermal analysis and to estimate the incident solar energy for two designs of tubular photobioreactor installed outdoors is presented here. In the first photobioreactor design the tubes were arranged in one plane, whereas in the second the tubes were arranged in two planes. The model was validated by comparing the experimental data and predicted values of culture temperature. Both the input solar energy and culture temperature in a tubular photobioreactor may be predicted with a reasonable degree of accuracy by employing the model. The performance of the two photobioreactors for mass culture of Spirulina was also studied in relation to their design and culture temperature. The average biomass yield obtained in one-plane and two-plane photobioreactors were (dry weight) 23.7 g m{sup -2} day{sup -1} and 27.8 g m{sup -2} day{sup -1} respectively. Such biomass yields corresponded to a volumetric productivity of (dry weight) 0.466 g litre{sup -1} day{sup -1} in the one-plane reactor and 1.5 g litre{sup -1} day{sup -1} in the two-plane reactor. We further observed that biomass yield could be increased by about 21% when the culture temperature was maintained at the optimal value of 35{sup o}C compared to another culture in which temperature changed according to the ambient temperature from 20 to 39{sup o}C during the day. (author)
Sona Padma
2011-01-01
Full Text Available Problem statement: FACTS devices play a major role in the efficient operation of the complex power system. FACTS devices such as STATCOM, SSSC and IPFC are in increasing usage. With energy storage systems they have a good control over the real as well as reactive power compensation and transient stability improvement. The design of controller for the SSSC with SMES system is analyzed in this study. Approach: The main variables to be controlled in the power system for efficient operation are the voltage, phase angle and impedance. A SSSC is a series connected converter based FACTS control which can provide a series reactive power compensation for a transmission system. With the addition of energy storage device, in addition to the reactive power compensation the real power exchange is also accomplished. Fuzzy logic controller is designed for the efficient operation of the power system with SSSC integrated with energy storage device. From the power reference the current reference is calculated and the error and change in error in the current are calculated in the controller. Results: A three phase to ground fault is simulated in the test system. A comparative analysis of the PI and fuzzy logic control of SSSC with energy storage system for the rotor angle oscillation damping following the disturbance is done. Conclusion: The fuzzy logic controller works efficiently compared to the conventional PI controller for the SSSC with SMES system. Also with energy storage system in the FACTS devices, the efficient operation of the power system is possible.
Validation and Application of the Thermal Hydraulic System Code TRACE for Analysis of BWR Transients
V. H. Sánchez
2012-01-01
Full Text Available The Karlsruhe Institute of Technology (KIT is participating on (Code Applications and Maintenance Program CAMP of the US Nuclear Regulatory Commission (NRC to validate TRACE code for LWR transient analysis. The application of TRACE for the safety assessment of BWR requires a throughout verification and validation using experimental data from separate effect and integral tests but also using plant data. The validation process is normally focused on safety-relevant phenomena for example, pressure drop, void fraction, heat transfer, and critical power models. The purpose of this paper is to validate selected BWR-relevant TRACE-models using both data of bundle tests such as the (Boiling Water Reactor Full-Size Fine-Mesh Bundle Test BFBT and plant data recorded during a turbine trip event (TUSA occurred in a Type-72 German BWR plant. For the validation, TRACE models of the BFBT bundle and of the BWR plant were developed. The performed investigations have shown that the TRACE code is appropriate to describe main BWR-safety-relevant phenomena (pressure drop, void fraction, and critical power with acceptable accuracy. The comparison of the predicted global BWR plant parameters for the TUSA event with the measured plant data indicates that the code predictions are following the main trends of the measured parameters such as dome pressure and reactor power.
Smith, Clifford B.; Wereley, Norman M.
1996-10-01
The first objective of this paper is to evaluate the performance of damping identification algorithms. The second objective is to determine the feasibility of damping augmentation in rotating composite beams via passive constrained layer damping (PCLD). Damping identification schemes were applied to four rectangular cross-section laminated composite beams with cocured integral damping layers over the span of the beam. The cocured beam consisted of a twenty-ply balanced and symmetric cross-ply Gr/Ep composite host structure, a top and bottom damping layer of viscoelastic material (VEM), and a 2-ply Gr/Ep constraining layer sandwiching the viscoelastic material to the host structure. Four VEM thicknesses were considered: 0, 5, 10, and 15 mils. The cantilevered beams were tested at rotational speeds ranging from 0 to 900 RPM in a vacuum chamber. Excitation in bending was provided using piezo actuators, and the bending response was measured using full strain gauge bridges. Transient data were analysed using logarithmic decrement, a Hilbert transform technique, and an FFT- based moving block analysis. When compared to the beam with no VEM, a 19.2% volume fraction (15 mil layer) of viscoelastic in the beam produced a 400% increase in damping ratio in the non-rotating case, while at 900 RPM, the damping ratio increased only 360%. Overall structural damping was reduced as a function of RPM, due to centrifugal stiffening.
Wavelet transform analysis of transient signals: the seismogram and the electrocardiogram
Anant, K.S.
1997-06-01
In this dissertation I quantitatively demonstrate how the wavelet transform can be an effective mathematical tool for the analysis of transient signals. The two key signal processing applications of the wavelet transform, namely feature identification and representation (i.e., compression), are shown by solving important problems involving the seismogram and the electrocardiogram. The seismic feature identification problem involved locating in time the P and S phase arrivals. Locating these arrivals accurately (particularly the S phase) has been a constant issue in seismic signal processing. In Chapter 3, I show that the wavelet transform can be used to locate both the P as well as the S phase using only information from single station three-component seismograms. This is accomplished by using the basis function (wave-let) of the wavelet transform as a matching filter and by processing information across scales of the wavelet domain decomposition. The `pick` time results are quite promising as compared to analyst picks. The representation application involved the compression of the electrocardiogram which is a recording of the electrical activity of the heart. Compression of the electrocardiogram is an important problem in biomedical signal processing due to transmission and storage limitations. In Chapter 4, I develop an electrocardiogram compression method that applies vector quantization to the wavelet transform coefficients. The best compression results were obtained by using orthogonal wavelets, due to their ability to represent a signal efficiently. Throughout this thesis the importance of choosing wavelets based on the problem at hand is stressed. In Chapter 5, I introduce a wavelet design method that uses linear prediction in order to design wavelets that are geared to the signal or feature being analyzed. The use of these designed wavelets in a test feature identification application led to positive results. The methods developed in this thesis; the
HU Ji-yun; YIN Xue-gang; YU Cui-ping
2005-01-01
The dynamical equations for a inertial reciprocating machine excited by two rotating eccentric weights were built by the matrix methodology for establishing dynamical equations of discrete systems. A mathematical model of electromechanical coupling system for the machine was formed by combining the dynamical equations with the state equations of the two motors. The computer simulation to the model was performed for several values of the damping coefficient or the motor power, respectively. The substance of transient behavior of the machine is unveiled by analyzing the results of the computer simulation, and new methods are presented for diminishing the transient amplitude of the vibrating machine and improving the transient behavior. The reliable mathematical model is provided for intelligent control of the transient behavior and engineering design of the equipment.
Correlation analysis of transient heat transfer characteristics for air precooling aggregate
Guo, Chaohong; Zeng, Miao; Lu, Fei; Tang, Dawei; Guan, Wei; Li, Li; Fu, Tingwu
2017-04-01
In dam works, air precooling of aggregate is a common and effective method to avoid temperature cracks in concrete structure. In order to offer a reliable design theory for the air precooling process to avoid unreasonable energy consumption, the transient heat transfer characteristics of the aggregate are intensively analyzed. The combined structure of the aggregate and the interstitial space in the hopper is treated as a porous structure, and the space-average method is used to simulate the transient heat transfer process. Simulation results show that size of the hopper and the average air velocity in the cross section have great influence on the transient heat transfer process of the aggregate, while the porosity in the range of 0.4‒0.5 has little influence. Nomograms are abstracted from simulation results, and then correlations of the compared excess temperature are precisely fitted to predict the air precooling transient heat transfer process of the aggregate.
Vinck, B M; Van Cauwenberge, P B; Corthals, P; De Vel, E
1998-01-01
Evaluation of cochlear hearing loss by means of transiently evoked otoacoustic emissions is already established in clinical practice. However, accurate prediction of pure-tone thresholds is still questioned and is still regarded as troublesome. Both click- and tone-burst-evoked otoacoustic emissions at several intensity levels were measured and analysed in 157 ears from normally hearing and 432 ears from patients with different degrees of pure sensory hearing loss using the ILO88/92 equipment. Results of otoacoustic emissions (OAE), elicited by clicks and tone-bursts at centre frequencies from 1 to 5 kHz, were analysed using two different statistical methods. Both multivariate discriminant analysis and forward multiple regression analysis were used to determine which OAE variables were most discriminating and best at predicting hearing thresholds. We found that a limited set of variables obtained from both tone-burst and click measurements can accurately predict and categorize hearing loss levels up to a limit of 60 dB HL. We found correct classification scores of pure-tone thresholds between 500 and 4000 Hz up to 100 per cent when using combined click and tone-burst otoacoustic measurements. Prediction of pure-tone thresholds was correct with a maximum estimation error of 10 dB for audiometric octave frequencies between 500 and 4000 Hz. Measurements of multiple tone-bursts OAEs have a significant clinical advantage over the use of clicks alone for clinical applications, and a good classification and prediction of pure-tone thresholds with otoacoustic emissions is possible.
American Society for Testing and Materials. Philadelphia
2008-01-01
1.1 This test method covers the measurement of the heat-transfer rate or the heat flux to the surface of a solid body (test sample) using the measured transient temperature rise of a thermocouple located at the null point of a calorimeter that is installed in the body and is configured to simulate a semi-infinite solid. By definition the null point is a unique position on the axial centerline of a disturbed body which experiences the same transient temperature history as that on the surface of a solid body in the absence of the physical disturbance (hole) for the same heat-flux input. 1.2 Null-point calorimeters have been used to measure high convective or radiant heat-transfer rates to bodies immersed in both flowing and static environments of air, nitrogen, carbon dioxide, helium, hydrogen, and mixtures of these and other gases. Flow velocities have ranged from zero (static) through subsonic to hypersonic, total flow enthalpies from 1.16 to greater than 4.65 × 101 MJ/kg (5 × 102 to greater than 2 × 104 ...
Robinett, Rush D., III; Wilson, David Gerald
2010-11-01
The swing equations for renewable generators connected to the grid are developed and a wind turbine is used as an example. The swing equations for the renewable generators are formulated as a natural Hamiltonian system with externally applied non-conservative forces. A two-step process referred to as Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) is used to analyze and design feedback controllers for the renewable generators system. This formulation extends previous results on the analytical verification of the Potential Energy Boundary Surface (PEBS) method to nonlinear control analysis and design and justifies the decomposition of the system into conservative and non-conservative systems to enable a two-step, serial analysis and design procedure. The first step is to analyze the system as a conservative natural Hamiltonian system with no externally applied non-conservative forces. The Hamiltonian surface of the swing equations is related to the Equal-Area Criterion and the PEBS method to formulate the nonlinear transient stability problem. This formulation demonstrates the effectiveness of proportional feedback control to expand the stability region. The second step is to analyze the system as natural Hamiltonian system with externally applied non-conservative forces. The time derivative of the Hamiltonian produces the work/rate (power flow) equation which is used to ensure balanced power flows from the renewable generators to the loads. The Second Law of Thermodynamics is applied to the power flow equations to determine the stability boundaries (limit cycles) of the renewable generators system and enable design of feedback controllers that meet stability requirements while maximizing the power generation and flow to the load. Necessary and sufficient conditions for stability of renewable generators systems are determined based on the concepts of Hamiltonian systems, power flow, exergy (the maximum work that can be extracted from an energy flow) rate
Anticipated Transient Without SCRAM(ATWS) analysis using the RETRAN code
Youn, Bum soo; Lee, Jong beom; Song, Dong soo; Ha, Sang jun [KHNP-CRI, Daejeon (Korea, Republic of)
2014-10-15
The purpose of this study is to evaluate the Anticipated Transient Without Scram(ATWS) Loss of Load(LOL) and Loss of Normal Feedwater(LOFW) events for the OPR1000 reactor. The analysis calculates the peak RCS and secondary system pressure for the LOL and LOFW ATWS events. The main product of this study is the ATWS evaluation of the OPR1000 reactor LOL and LOFW events. The results include a sequence of events and plots of key output parameters.. This study includes results of Loss of Load and Loss of Feedwater ATWS. The LOL case results in a faster reactor trip than the LOFW since the LOFW does not have the turbine trip at time zero. In addition the LOFW event has the SBCS available and as secondary pressure increase, the steam releases from the SBCS valves provide extra cooling to the secondary system, which also cools the primary system. This additional cooling also delays the DSS trip. For the LOFW event, both the turbine and SBCS are providing additional cooling, hence the primary and secondary system heatups are slower and lower. Thus the RCS and steam generator pressure are higher for the LOL event than the LOFW event. The LOL also has a slower decrease in SG water level than the LOFW event. This is due to loss of condenser vacuum that trips and isolates the turbine and renders the SBCS unavailable for the LOL event. Hence the secondary cooling for the LOL event is due to the steam releases from the MSSVs; whereas the LOFW turbine remains online until a DTT occurs on the DSS. Also the SBCS is available because the condenser is available.
Analysis of Current Redistribution in a CICC under Transient Heat Pulses
Bottura, L; Marinucci, C
2004-01-01
We have performed experiments and simulations of the current distribution process in a CICC with the aim to understand better the coupled thermal, hydraulic and electric process that leads to a stable or unstable transient cable behaviour. The cable, wound from 128 Nb3Sn and pure copper strands, has been tested in the SULTAN facility. A resistive heater, glued on the jacket of the conductor, has been used to start the transient, and the response has been monitored with arrays of Hall plates. In this paper we report the results of simulations, especially the computed Hall signals, and compare them to the experimental data. Based on the experimental results and their interpretation we postulate that large temperature gradients must develop in the helium stream in the cable cross sections during the transient heat pulse.
Blade loss transient dynamics analysis, volume 2. Task 2: TETRA 2 user's manual
Black, Gerald; Gallardo, Vincente C.
1986-01-01
This is the user's manual for the TETRA 2 Computer Code, a program developed in the NASA-Lewis Blade Loss Program. TETRA 2 calculates a turbine engine's dynamic structural response from applied stimuli. The calculation options are: (1) transient response; and (2) steady state forced response. Based on the method of modal syntheses, the program allows the use of linear, as well as nonlinear connecting elements. Both transient and steady state options can include: flexible Bladed Disk Module, and Nonlinear Connecting Elements (including deadband, hardening/softening spring). The transient option has the additional capability to calculate response with a squeeze film bearing module. TETRA 2 output is summarized in a plotfile which permits post processing such as FFT or graphical animation with the proper software and computer equipment.
Sing, Michelle K; Wang, Zhen-Gang; McKinley, Gareth H; Olsen, Bradley D
2015-03-21
Numerical solution of a coupled set of Smoluchowski convection-diffusion equations of associating polymers modelled as finitely extensible dumbbells enables computation of time-dependent end-to-end distributions for bridged, dangling, and looped chains in three dimensions as a function of associating end-group kinetics. Non-monotonic flow curves which can lead to flow instabilities during shear flow result at low equilibrium constant and high association rate from two complementary phenomena: a decrease in the fraction of elastically active chains with increasing shear rate and non-monotonic extension in the population of elastically active chains. Chain tumbling leads to reformation of bridges, resulting in an increased fraction of bridged chains at high Deborah number and significant reduction in the average bridge chain extension. In the start-up of steady shear, force-activated chain dissociation and chain tumbling cause both stress overshoot and stress ringing behaviour prior to reaching steady state stress values. During stress relaxation following steady shear, chain kinetics and extension mediate both the number of relaxations and the length of time required for system relaxation. While at low association rate relaxation is limited by the relaxation of dangling chains and the rate of dangling chain formation, at high association rate coupling of dangling and bridged chains leads to simultaneous relaxation of all chains due to a dynamic equilibrium between dangling and bridged states.
Miroslav M Živković; Aleksandar V Nikolić; Radovan B Slavković; Fatima T Živić
2010-01-01
This paper deals with transient nonlinear heat conduction through the insulation wall of the tank for transportation of liquid aluminum. Tanks designed for this purpose must satisfy certain requirements regarding temperature of loading and unloading, during transport. Basic theoretical equations are presented, which describe the problem of heat conduction finite element (FE) analysis, starting from the differential equation of energy balance, taking into account the initial and boundary condi...
Strand, L. D.; Mcnamara, R. P.
1976-01-01
The feasibility of a system capable of rapidly and directly measuring the low-frequency (motor characteristics length bulk mode) combustion response characteristics of solid propellants has been investigated. The system consists of a variable frequency oscillatory driver device coupled with an improved version of the JPL microwave propellant regression rate measurement system. The ratio of the normalized regression rate and pressure amplitudes and their relative phase are measured as a function of varying pressure level and frequency. Test results with a well-characterized PBAN-AP propellant formulation were found to compare favorably with the results of more conventional stability measurement techniques.
Biswas, Rahul; Burguet-Castell, Jordi; Cannon, Kipp; Clayton, Jessica; Dietz, Alexander; Fotopoulos, Nickolas; Goggin, Lisa M; Keppel, Drew; Pankow, Chris; Price, Larry R; Vaulin, Ruslan
2012-01-01
There is a broad class of astrophysical sources that produce detectable, transient, gravitational waves. Some searches for transient gravitational waves are tailored to known features of these sources. Other searches make few assumptions about the sources. Typically events are observable with multiple search techniques. This work describes how to combine the results of searches that are not independent, treating each search as a classifier for a given event. This will be shown to improve the overall sensitivity to gravitational-wave events while directly addressing the problem of consistent interpretation of multiple trials.
Comparison of simulators for variable-speed wind turbine transient analysis
Seman, S.; Iov, Florin; Niiranen, J.
2006-01-01
This paper presents a comparison of three variable-speed wind turbine simulators used for a 2 MW wind turbine short-term transient behaviour study during a symmetrical network disturbance. The simulator with doubly fed induction generator (DFIG) analytical model, the simulator with a finite element...... method (FEM) DFIG model and the wind turbine simulator with an analytical model of DFIG are compared. The comparison of the simulation results shows the influence of the different modelling approaches on the short-term transient simulation accuracy...
VARIATION ANALYSIS ON NATIONAL STANDARD INTEREST RATE
Michel Ferreira Cardia Haddad
2012-06-01
Full Text Available This study’s main objective is to analyse an econometric model for forecasting purposes concerning the interest rate which is adopted as standard reference within the Brazilian economy, namely, the Actual-Selic rate, so as to verify the feasibility of performing short term predictions as to its variations. Thus the major variables that impact the Actual-Selic rate, such as price variations of agricultural and power commodities, national industrial production level, exchange rate and public sector net debt, are detailed. The modern macroeconomic approach describes the relevance of the Central Bank upon achievement of its goals so as to maintain the economic stability, amongst which lies the convergence of verified interest rates with the Selic rate target, as set forth by the Monetary Policy Committee (COPOM. Furthermore, this study poses to explain the relevance in forecasting, with a reasonable level of accuracy, the benchmark interest rate of Brazilian economy. The proposed model may be used to support decision making concerning investment strategies and as an additional tool for the monitoring of the achievement of macroeconomic policy objectives.
Wagner, Manfred H.; Rolon-Garrido, Victor H.; Nielsen, Jens Kromann
2008-01-01
The transient and steady-state elongational viscosity data of three bidisperse polystyrene blends were investigated recently by Nielsen et al. [J. Rheol. 50, 453-476 (2006)]. The blends contain a monodisperse high molar mass component (M-L= 390 kg/ mol) in a matrix of a monodisperse small molar m...
Transient Stability Analysis of Grid-connected Wind Turbines with Time Domain Simulation
Shuaibing Li
2013-07-01
Full Text Available With an ever-increasing pentration of wind power into power system, the influence to overall system behavior and stability becomes obviously. Therefore, it is so necessary to require wind turbines have good grid adaptability. This paper investigates the effect of directly grid-connected front-end speed controlled wind turbines (FSCWT on transient stability of power system.For this purpose, a voltage based synchronous generator model is used and the drive train model with WinDriver is built. By using a fast excitation control of FSCWT exciter, the FSCWT wind turbines can successfully ride through grid fault and have no problem of angular stability when connected to grid. Simulation studies are carried out to demonstrate and compare the transient performance of the IEEE 5-machine 14-bus system with FSCWT replace by double fed induction generators (DFIG during a three phase fault. Results show that a better transient stability performance is achieved with an intergration of FSCWT in comparsion with DFIG, which can even bring some benefits on power system transient performance and stability.
Escherichia coli is a leading cause of bacterial mastitis in dairy cattle. Typically this infection is transient in nature, causing an infection that lasts 2-3 days. However, in a minority of cases, E. coli has been shown to cause a persistent intramammary infection. The mechanisms that allow for...
Transient analysis of an adaptive system for optimization of design parameters
Bayard, D. S.
1992-01-01
Averaging methods are applied to analyzing and optimizing the transient response associated with the direct adaptive control of an oscillatory second-order minimum-phase system. The analytical design methods developed for a second-order plant can be applied with some approximation to a MIMO flexible structure having a single dominant mode.
Li, H.; Zhao, B.; Han, L.
2010-01-01
In order to analyze correctly the effect of different models for induction generators on the transient performances of large wind power generation, Wind turbine driven squirrel cage induction generator (SCIG) models taking into account both main and leakage flux saturation and skin effect were pr...... mechancical disturbance and a grid voltage sag, respectively. Simulation results have shown that the effect of the flux saturation is obvious on the transient behavious of the wind power generator system, especially for a grid voltage sag studies.......In order to analyze correctly the effect of different models for induction generators on the transient performances of large wind power generation, Wind turbine driven squirrel cage induction generator (SCIG) models taking into account both main and leakage flux saturation and skin effect were...... proposed. A two-mass lump equivalent model of a wind turbine shaft system was also used to considering shaft flexibility. The transient behaviors of the wind generator system with the different models were investigated and compared with the software platform Matlab/Simulink, under conditions of a large...
Peltonen, Joanna
2009-09-15
Analyses of nuclear reactor safety have increasingly required coupling of full three dimensional neutron kinetics (NK) core models with system transient thermal-hydraulics (TH) codes. To produce results 'within a reasonable' computing time, the coupled codes use different spatial description of the reactor core. The TH code uses few, typically 5 to 20 TH channels, which represent the core. The NK code uses explicit node for each fuel assembly. Therefore, a spatial mapping of coarse grid TH and fine grid NK domain is necessary. However, improper mappings may result in loss of valuable information, thus causing inaccurate prediction of safety parameters. The purpose of this thesis is to study the sensitivity of spatial coupling (channel refinement and spatial mapping) and develop recommendations for NK-TH mapping in simulation of safety transients - Control Rod Drop, Turbine Trip, Feedwater Transient combined with stability performance (minimum pump speed of recirculation pumps). The research methodology consists of spatial coupling convergence study, as increasing number of TH channels and different mapping approach the reference case. The reference case consists of one TH channel per one fuel assembly. The comparison of results has been done under steady-state and transient conditions
CIRCUS--A digital computer program for transient analysis of electronic circuits
Moore, W. T.; Steinbert, L. L.
1968-01-01
Computer program simulates the time domain response of an electronic circuit to an arbitrary forcing function. CIRCUS uses a charge-control parameter model to represent each semiconductor device. Given the primary photocurrent, the transient behavior of a circuit in a radiation environment is determined.
D'Alpaos, A.; Mudd, S. M.; Carniello, L.
2012-12-01
Understanding and predicting the response of salt-marsh bio-geomorphic systems to changes in the rate of sea level rise and sediment supply is an issue of paramount importance due to the crucial role exerted by salt marshes within the tidal landscape. Salt-marsh platforms, in fact, buffer coastlines against storms, filter nutrients and pollutants from tidal waters, provide nursery areas for coastal biota, and serve as a sink for organic carbon. Observations of marsh degradation worldwide and the acceleration in the rate of global sea level rise highlight the importance of improving our understanding of the chief processes which control salt-marsh response to current natural climate changes and to the effects of variations in sediment supply. The results of our analytical model of salt-marsh bio-morphodynamic evolution in the vertical plane, accounting for two-way interactions between ecological and geomorphological processes, show that marshes are more resilient to a step decrease in the rate of relative sea level rise rather than to a step increase of the same magnitude. Interestingly, marshes respond more rapidly to an increase in sediment load or vegetation productivity, rather than to a decrease (of the same amount) in sediment load or vegetation productivity. Model results also suggest that marsh stability is positively correlated with tidal range: marshes with high tidal ranges respond more slowly to changes in the environmental forcings and therefore are less likely to be affected by perturbations than their counterparts in low tidal ranges. Finally, the model suggests that, in the case of a oscillating rate of sea level rise, marsh stratigraphy will be unable to fully record short term fluctuations in relative mean sea level, whereas it will be able to capture long term fluctuations particularly in sediment rich, microtidal settings.
Sing, Michelle K.; Wang, Zhen-Gang; McKinley, Gareth H.; Olsen, Bradley D.
2015-01-01
Numerical solution of a coupled set of Smoluchowski convection-diffusion equations of associating polymers modelled as finitely extensible dumbbells enables computation of time-dependent end-to-end distributions for bridged, dangling, and looped chains in three dimensions as a function of associating end-group kinetics. Non-monotonic flow curves which can lead to flow instabilities during shear flow result at low equilibrium constant and high association rate from two complementary phenomena:...
Resistive Plate Chamber Efficiency & Rate Capability Analysis
Candocia, Max
2012-10-01
Bakelite-based resistive plate chambers (RPCs) are particle detectors commonly used in muon trigger systems for high-energy physics experiments. Bakelite RPCs combine fast response, sufficient position resolution and low cost, and they can be operated at instantaneous background rates up to approximately 1.5 kHz/cm^2. Current and future collider experiments will demand operation of trigger RPCs under background rates higher than what is currently achieved. The rate capability is related to the bulk and surface conductivities of the Bakelite material used for the plates bordering the active gas volume in the RPCs. At the LHC and RHIC, these surfaces are coated with linseed oil, which lowers the surface resistivity of the Bakelite, which, to a point, improves the rate capability of the detectors. We have doped our own plates with various concentrations of carbon black. Over the past year we have tested RPCs with Bakelite plates of different resistivity using cosmic ray muons and radioactive Fe55 sources to emulate different levels of background in the detector. Results on the RPC efficiencies at different background rates and for different Bakelite coatings will be presented.
Sünbül, Ayşegül; Kırbaş, Ahmet; Tanrıkulu, Nursen; Sengül, Cihan; Dağdeviren, Bahadır; Işık, Omer
2014-08-29
The formation and collapse of vapor-filled bubbles near a mechanical heart valve is called cavitation. Microbubbles can be detected in vivo by doppler ultrasonography (USG) as HITS (high intensity transient signals) in cranial circulation. We investigated the relationship between exercise induced heart rate increase and HITS formation in cranial circulation. Thirty-nine mechanical heart valve implanted (8 aortic valve replacement (AVR) + mitral valve replacement (MVR), 9 AVR, 22 MVR) patients aged 18-80 years old were included in our study. Microbubbles were counted in the left ventricular cavity via transthoracic echocardiography at rest per cardiac cycle. Afterwards transcranial Doppler USG was performed and HITS were counted in each patient's middle cerebral artery at 5 min duration. Subsequently an exercise test according to the Bruce protocol was performed. After achieving maximal heart rate, microbubbles in the left ventricle and HITS were counted again. Microbubbles in the left ventricle and transcranial HITS increased after exercise significantly compared to resting values (15.79 ±10.91 microbubbles/beat vs. 26.51 ±18.00 microbubbles/beat, p exercise (r = 0.55, p increasing as the heart rate increased and more HITS were propelled to the cerebral circulation. As previously shown, HITS can alter cognitive functions. Therefore heart rate control is essential in mechanical heart valve patients to protect neurocognitive functions.
Roberto, Thiago D., E-mail: thiagodbtr@gmail.com [Instituto de Engenharia Nuclear (IEN/CNEN—RJ), Rua Hélio de Almeida, 75 21941-972, Rio de Janeiro Caixa-Postal: 68550, RJ (Brazil); Silva, Mário A. B. da, E-mail: mabs500@gmail.com [Departamento de Energia Nuclear (CTG/UFPE), Av. Professor Luiz Freire, 1000, Recife 50740-540, PE (Brazil); Lapa, Celso M.F., E-mail: lapa@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN—RJ), Rua Hélio de Almeida, 75 21941-972, Rio de Janeiro Caixa-Postal: 68550, RJ (Brazil)
2016-01-15
The feasibility of performing experiments using water under supercritical conditions is limited by technical and financial difficulties. These difficulties can be overcome by using model fluids that are characterized by feasible supercritical conditions, that is, lower critical pressure and critical temperature. Experimental investigations are normally used to determine the conditions under which model fluids reliably represent supercritical fluids under steady-state conditions. A fluid-to-fluid scaling approach has been proposed to determine the model fluids that represent supercritical fluids in a transient state. Recently, a similar technique known as fractional scaling analysis was developed to establish the conditions under which experiments can be performed using models that represent transients in prototypes. This paper presents a fractional scaling analysis application to determine parameters for a test facility in which transient conditions in supercritical water-cooled reactors are simulated by using carbon dioxide as a model fluid, whose critical point conditions are more feasible than those of water. Similarity is obtained between water (prototype) and carbon dioxide (model) by depressurization in a simple vessel. The main parameters required for the construction of a future test facility are obtained using the proposed method.
Analysis of response rates during stimulus generalization.
Migler, B; Millenson, J R
1969-01-01
In the presence of one click frequency, the presses of two hungry rats on one of two levers were reinforced with food on variable-interval schedules; in the presence of a different click frequency, presses on the other lever were reinforced. In stimulus generalization tests, a variety of click frequencies were presented and reinforcement withheld. The test stimuli were found to exert control over which of the two levers the rats pressed, but not over the rate of pressing the selected lever. The results were interpreted as further evidence that intermediate rates in generalization gradients may be the result of the alternation of several distinct behavior patterns.
Analysis of a Station Black-Out transient in SMR by using the TRACE and RELAP5 code
De Rosa, F.; Lombardo, C.; Mascari, F.; Polidori, M.; Chiovaro, P.; D'Amico, S.; Moscato, I.; Vella, G.
2014-11-01
The present paper deals with the investigation of the evolution and consequences of a Station Black-Out (SBO) initiating event transient in the SPES3 facility [1]. This facility is an integral simulator of a small modular reactor being built at the SIET laboratories, in the framework of the R&D program on nuclear fission funded by the Italian Ministry of Economic Development and led by ENEA. The SBO transient will be simulated by using the RELAP5 and TRACE nodalizations of the SPES3 facility. Moreover, the analysis will contribute to study the differences on the code predictions considering the different modelling approach with one and/or three-dimensional components and to compare the capability of these codes to describe the SPES3 facility behaviour.
Lee, Dongwook; Kim, JongWon
2003-11-01
Streaming media applications over mobile IP networks suffer from playback disruptions resulting from handoff blackout period as well as bandwidth fluctuation. To overcome buffer shortage, pre-buffering technique can be adopted where the client stores sufficient amount of stream in advance. However, under the mobile IP handoff that may take up to several seconds, it is extremely difficult to sustain seamless playback. Inaccurate and conservative choice on the required buffering size can waste limited latency budget, resulting in quality degradation. In this paper, we are extending--from smooth handoff to fast handoff of mobile IPv6--the transient time analysis recently proposed to approximate transient time durations, STP (silent time period) and UTP (unstable time period). The approximated time periods are utilized to estimate the required buffering buffer size accurately. Network simulation result evaluted under simplified buffering strategies shows that the proposed scheme can provide appropriate guideline on the buffer parameters and thus can improve seamless streaming.
Luna, N. [Secretaria de Energia, Direccion de Operacion Petrolera, Mexico DF (Mexico); Mendez, F. [UNAM, Facultad de Ingenieria, Mexico DF (Mexico); Bautista, O. [ITESM, Division de Ingenieria y Arquitectura, Mexico DF (Mexico)
2005-05-01
We treat numerically in this paper, the transient analysis of a conjugated heat transfer process in the thermal entrance region of a circular tube with a fully developed laminar power-law fluid flow. We apply the quasi-steady approximation for the power-law fluid, identifying the suitable time scales of the process. Thus, the energy equation in the fluids is solved analytically using the well-known integral boundary layer technique. This solution is coupled to the transient energy equation for the solid where the transverse and longitudinal heat conduction effects are taken into account. The numerical results for the temporal evolution of the average temperature of the tube wall, {theta}{sub av,} is plotted for different nondimensional parameters such as conduction parameter, {alpha}, the aspect ratios of the tube, {epsilon} and {epsilon}{sub 0} and the index of power-law fluid, n. (orig.)
Non-linear dynamic analysis of the cardiac rhythm during transient myocardial ischemia.
Gomis, Pedro; Caminal, Pere; Vallverdú, Montserrat; Warren, Stafford; Wagner, Galen
2006-10-01
Coronary artery occlusions related to myocardial ischemia drive cardiac control system reactions that may lead to heart failure. The purpose of this study was to assess the autonomic nervous system (ANS) response during prolonged percutaneous transluminal coronary angioplasty (PTCA). Continuous ECG data were acquired from 50 patients before and during PTCA, with occlusions in the left anterior descending, left circumflex or right coronary artery. Heart rate variability (HRV) was analyzed for 3-min segments of the R-R interval signal obtained from ECG data. The ANS behavior was evaluated by HRV analysis using fractal-like indices. The fractal scalar exponent alpha(1) and power-law slope beta decreased considerably during PTCA. This indicates that significant reactions of autonomic control of the heart rate occurred during coronary artery occlusions, with a reduction in complexity of the ANS.
An Analysis of Ratings of Russian Banks
van Soest, A.H.O.; Peresetsky, A.; Karminsky, A.M.
2003-01-01
Since the recent financial crisis, both the Russian business community and foreign investors have started to make more and more use of ratings of the reliability of Russian banks, i.e., their ability to meet interest and repayment commitments to the investors.In response to this, the number of ratin
STRAIGHT-LINE CONVENTIONAL TRANSIENT RATE ANALYSIS FOR LONG HOMOGENEOUS AND HETEROGENEOUS RESERVOIRS
FREDDY HUMBERTO ESCOBAR
2012-01-01
Full Text Available El flujo lineal es un régimen de flujo muy importante que se presenta en pozos fracturados, horizontales y yacimientos alargados. Tanto el análisis de pruebas de presión como de transitorio de caudal podrán verse afectados por la presencia del flujo lineal. Para el caso de producción a caudal variable, la mayor parte del análisis se realiza mediante ajuste de curvas de declinación y poca atención ha recibido el análisis transitorio de caudal. Este artículo presenta las ecuaciones gobernantes usadas para análisis transitorio de caudal en sistemas alargados y proporciona ejemplos mediante el método convencional. La metodología permite la estimación de la permeabilidad, el ancho del yacimiento y los factores de daño geométricos. Si la prueba es lo suficientemente larga se puede estimar el área de drenaje del yacimiento y la posición del pozo dentro del mismo. La metodología se verificó satisfactoriamente mediante su aplicación a pruebas sintéticas.
Mechanism of tension generation in muscle: an analysis of the forward and reverse rate constants.
Davis, Julien S; Epstein, Neal D
2007-04-15
Tension generation in muscle occurs during the attached phase of the ATP-powered cyclic interaction of myosin heads with thin filaments. The transient nature of tension-generating intermediates and the complexity of the mechanochemical cross-bridge cycle have impeded a quantitative description of tension generation. Recent experiments performed under special conditions yielded a sigmoidal dependence of fiber tension on temperature--a unique case that simplifies the system to a two-state transition. We have applied this two-state analysis to kinetic data obtained from biexponential laser temperature-jump tension transients. Here we present the forward and reverse rate constants for de novo tension generation derived from analysis of the kinetics of the fast laser temperature-jump phase tau(2) (equivalent of the length-jump phase 2(slow)). The slow phase tau(3) is temperature-independent indicating coupling to rather than a direct role in, de novo tension generation. Increasing temperature accelerates the forward, and slows the reverse, rate constant for the creation of the tension-generating state. Arrhenius behavior of the forward and anti-Arrhenius behavior of the reverse rate constant is a kinetic signature of multistate multipathway protein-folding reactions. We conclude that locally unfolded tertiary and/or secondary structure of the actomyosin cross-bridge mediates the power stroke.
Transient Growth of Ekman-Couette Flow
Shi, Liang; Tilgner, Andreas
2013-01-01
Coriolis force effects on shear flows are important in geophysical and astrophysical contexts. We here report a study on the linear stability and the transient energy growth of the plane Couette flow with system rotation perpendicular to the shear direction. External rotation causes linear instability. At small rotation rates, the onset of linear instability scales inversely with the rotation rate and the optimal transient growth in the linearly stable region is slightly enhanced, ~Re^2. The corresponding optimal initial perturbations are characterized by roll structures inclined in the streamwise direction and are twisted under external rotation. At large rotation rates, the transient growth is significantly inhibited and hence linear stability analysis is a reliable indicator for instability.
Sicuranza Giovanni L
2007-01-01
Full Text Available The paper provides an analysis of the transient and the steady-state behavior of a filtered-x partial-error affine projection algorithm suitable for multichannel active noise control. The analysis relies on energy conservation arguments, it does not apply the independence theory nor does it impose any restriction to the signal distributions. The paper shows that the partial-error filtered-x affine projection algorithm in presence of stationary input signals converges to a cyclostationary process, that is, the mean value of the coefficient vector, the mean-square error and the mean-square deviation tend to periodic functions of the sample time.
Empirical Analysis of the Online Rating Systems
Lu, Xin-Yi; Guo, Qiang; Liu, Jian-Guo
2015-01-01
This paper is to analyze the properties of evolving bipartite networks from four aspects, the growth of networks, the degree distribution, the popularity of objects and the diversity of user behaviours, leading a deep understanding on the empirical data. By empirical studies of data from the online bookstore Amazon and a question and answer site Stack Overflow, which are both rating bipartite networks, we could reveal the rules for the evolution of bipartite networks. These rules have significant meanings in practice for maintaining the operation of real systems and preparing for their future development. We find that the degree distribution of users follows a power law with an exponential cutoff. Also, according to the evolution of popularity for objects, we find that the large-degree objects tend to receive more new ratings than expected depending on their current degrees while the small-degree objects receive less ratings in terms of their degrees. Moreover, the user behaviours show such a trend that the l...
Kot, C A; Youngdahl, C K
1978-09-01
PTAC was developed to predict pressure transients in nuclear-power-plant piping systems in which the possibility of cavitation must be considered. The program performs linear or nonlinear fluid-hammer calculations, using a fixed-grid method-of-characteristics solution procedure. In addition to pipe friction and elasticity, the program can treat a variety of flow components, pipe junctions, and boundary conditions, including arbitrary pressure sources and a sodium/water reaction. Essential features of transient cavitation are modeled by a modified column-separation technique. Comparisons of calculated results with available experimental data, for a simple piping arrangement, show good agreement and provide validation of the computational cavitation model. Calculations for a variety of piping networks, containing either liquid sodium or water, demonstrate the versatility of PTAC and clearly show that neglecting cavitation leads to erroneous predictions of pressure-time histories.
Transient Analysis of Pressurization and Pneumatic Subsystems of the X-34 Main Propulsion System
Hedayat, A.; Knight, K. C.; Chamption, R. H., Jr.; Kennedy, Jim W. (Technical Monitor)
2000-01-01
Transient models for the pressurization, vent/relief, and pneumatic subsystems of the X-34 Main Propulsion System are presented and simulation of their operation within prescribed requirements are provided. First, using ROCket Engine Transient Simulation (ROCETS) program, pressurization subsystem operation was simulated and helium requirements and the ullage thermodynamic condition within each propellant tank were calculated. Then, Overpressurization scenarios of propellant tanks and the response of vent/relief valves were evaluated using ROCETS simulation of simultaneous operation of the pressurization and vent/relief subsystems by incorporating the valves data into the model. Finally, the ROCETS simulation of in-flight operation of pneumatic subsystem predicted the overall helium consumption, Inter-Propellant Seal (IPS) purge flowrate and thermodynamic conditions, and Spin Start power.
Analysis of single particle diffusion with transient binding using particle filtering.
Bernstein, Jason; Fricks, John
2016-07-21
Diffusion with transient binding occurs in a variety of biophysical processes, including movement of transmembrane proteins, T cell adhesion, and caging in colloidal fluids. We model diffusion with transient binding as a Brownian particle undergoing Markovian switching between free diffusion when unbound and diffusion in a quadratic potential centered around a binding site when bound. Assuming the binding site is the last position of the particle in the unbound state and Gaussian observational error obscures the true position of the particle, we use particle filtering to predict when the particle is bound and to locate the binding sites. Maximum likelihood estimators of diffusion coefficients, state transition probabilities, and the spring constant in the bound state are computed with a stochastic Expectation-Maximization (EM) algorithm.
Design and analysis of ultra-wideband antennas for transient field excitations
Kotzev, Miroslav; Kreitlow, Matthias; Gronwald, Frank
2016-09-01
This work addresses the design of two ultra-wideband antennas for the application of transient field measurements that are characterized by frequency spectra that typically range from a few MHz to several GHz. The motivation for their design is the excitation of high power transient pulses, such as double exponential or damped sinusoidal pulses, within highly resonant metallic enclosures. The antenna design is based on two independent numerical full-wave solvers and it is aimed to achieve a low return loss over a wide range of frequencies together with a high pulse fidelity. It turns out that antennas of the conical and discone type do achieve satisfactory broadband characteristics while limitations towards low frequencies persist. Also the concept of fidelity factor turns out as advantageous to determine whether the proposed antennas allow transmitting certain broadband pulse forms.
Pulse Localization and Fourier Analysis in the Mathematical Model of Acoustic Transient Field
Lukas Koudela
2016-01-01
Full Text Available The numerical model of a semi-cylindrical acoustic diffuser in planar transient acoustic field is discussed. The finite element method was used for the solution of the model. From the computed waveforms the straight and the reflected pulses were automatically extracted using cross-correlation. The harmonic decomposition was performed on the obtained pulses and the results were plotted in the polar pattern.
Hanson, J.M.
1984-12-01
The report evaluates previous investigations of the gas permeability of the rock surrounding emplacement holes at the Nevada Test Site. The discussion sets the framework from which the present uncertainty in gas permeability can be overcome. The usefulness of the barometric pressure testing method has been established. Flow models were used to evaluate barometric pressure transients taken at NTS holes U2fe, U19ac and U20ai. 31 refs., 103 figs., 18 tabs. (ACR)
Cao, Y.; Faghri, A.
1991-01-01
The performance of a thermal energy storage module is simulated numerically. The change of phase of the phase-change material (PCM) and the transient forced convective heat transfer for the transfer fluid with low Prandtl numbers are solved simultaneously as a conjugate problem. A parametric study and a system optimization are conducted. The numerical results show that module geometry is crucial to the design of a space-based thermal energy storage system.
Paulo Antonio Delgado-Arredondo
2015-01-01
Full Text Available Induction motors are critical components for most industries and the condition monitoring has become necessary to detect faults. There are several techniques for fault diagnosis of induction motors and analyzing the startup transient vibration signals is not as widely used as other techniques like motor current signature analysis. Vibration analysis gives a fault diagnosis focused on the location of spectral components associated with faults. Therefore, this paper presents a comparative study of different time-frequency analysis methodologies that can be used for detecting faults in induction motors analyzing vibration signals during the startup transient. The studied methodologies are the time-frequency distribution of Gabor (TFDG, the time-frequency Morlet scalogram (TFMS, multiple signal classification (MUSIC, and fast Fourier transform (FFT. The analyzed vibration signals are one broken rotor bar, two broken bars, unbalance, and bearing defects. The obtained results have shown the feasibility of detecting faults in induction motors using the time-frequency spectral analysis applied to vibration signals, and the proposed methodology is applicable when it does not have current signals and only has vibration signals. Also, the methodology has applications in motors that are not fed directly to the supply line, in such cases the analysis of current signals is not recommended due to poor current signal quality.
Temporal frequency probing for 5D transient analysis of global light transport
O'Toole, Matthew
2014-07-27
We analyze light propagation in an unknown scene using projectors and cameras that operate at transient timescales. In this new photography regime, the projector emits a spatio-temporal 3D signal and the camera receives a transformed version of it, determined by the set of all light transport paths through the scene and the time delays they induce. The underlying 3D-to-3D transformation encodes scene geometry and global transport in great detail, but individual transport components (e.g., direct reflections, inter-reflections, caustics, etc.) are coupled nontrivially in both space and time. To overcome this complexity, we observe that transient light transport is always separable in the temporal frequency domain. This makes it possible to analyze transient transport one temporal frequency at a time by trivially adapting techniques from conventional projector-to-camera transport. We use this idea in a prototype that offers three never-seen-before abilities: (1) acquiring time-of-flight depth images that are robust to general indirect transport, such as interreflections and caustics; (2) distinguishing between direct views of objects and their mirror reflection; and (3) using a photonic mixer device to capture sharp, evolving wavefronts of "light-in-flight".
Transient thermal hydraulic modeling and analysis of ITER divertor plate system
El-Morshedy, Salah El-Din [Argonne National Laboratory, Argonne, IL (United States); Atomic Energy Authority, Cairo (Egypt)], E-mail: selmorshedy@etrr2-aea.org.eg; Hassanein, Ahmed [Purdue University, West Lafayette, IN (United States)], E-mail: hassanein@purdue.edu
2009-12-15
A mathematical model has been developed/updated to simulate the steady state and transient thermal-hydraulics of the International Thermonuclear Experimental Reactor (ITER) divertor module. The model predicts the thermal response of the armour coating, divertor plate structural materials and coolant channels. The selected heat transfer correlations cover all operating conditions of ITER under both normal and off-normal situations. The model also accounts for the melting, vaporization, and solidification of the armour material. The developed model is to provide a quick benchmark of the HEIGHTS multidimensional comprehensive simulation package. The present model divides the coolant channels into a specified axial regions and the divertor plate into a specified radial zones, then a two-dimensional heat conduction calculation is created to predict the temperature distribution for both steady and transient states. The model is benchmarked against experimental data performed at Sandia National Laboratory for both bare and swirl tape coolant channel mockups. The results show very good agreements with the data for steady and transient states. The model is then used to predict the thermal behavior of the ITER plasma facing and structural materials due to plasma instability event where 60 MJ/m{sup 2} plasma energy is deposited over 500 ms. The results for ITER divertor response is analyzed and compared with HEIGHTS results.
Qinglei Jiang
2011-01-01
Full Text Available The current paper studies the influence of annular seal flow on the transient response of centrifugal pump rotors during the start-up period. A single rotor system and three states of annular seal flow were modeled. These models were solved using numerical integration and finite difference methods. A fluid-structure interaction method was developed. In each time step one of the three annular seal models was chosen to simulate the annular seal flow according to the state of rotor systems. The objective was to obtain a transient response of rotor systems under the influence of fluid-induced forces generated by annular seal flow. This method overcomes some shortcomings of the traditional FSI method by improving the data transfer process between two domains. Calculated results were in good agreement with the experimental results. The annular seal was shown to have a supportive effect on rotor systems. Furthermore, decreasing the seal clearance would enhance this supportive effect. In the transient process, vibration amplitude and critical speed largely changed when the acceleration of the rotor system increased.
Analysis of the transient response of nuclear spins in GaAs with/without nuclear magnetic resonance
Rasly, Mahmoud; Lin, Zhichao; Yamamoto, Masafumi; Uemura, Tetsuya
2016-05-01
As an alternative to studying the steady-state responses of nuclear spins in solid state systems, working within a transient-state framework can reveal interesting phenomena. The response of nuclear spins in GaAs to a changing magnetic field was analyzed based on the time evolution of nuclear spin temperature. Simulation results well reproduced our experimental results for the transient oblique Hanle signals observed in an all-electrical spin injection device. The analysis showed that the so called dynamic nuclear polarization can be treated as a cooling tool for the nuclear spins: It works as a provider to exchange spin angular momentum between polarized electron spins and nuclear spins through the hyperfine interaction, leading to an increase in the nuclear polarization. In addition, a time-delay of the nuclear spin temperature with a fast sweep of the external magnetic field produces a possible transient state for the nuclear spin polarization. On the other hand, the nuclear magnetic resonance acts as a heating tool for a nuclear spin system. This causes the nuclear spin temperature to jump to infinity: i.e., the average nuclear spins along with the nuclear field vanish at resonant fields of 75As, 69Ga and 71Ga, showing an interesting step-dip structure in the oblique Hanle signals. These analyses provide a quantitative understanding of nuclear spin dynamics in semiconductors for application in future computation processing.
Analysis of the transient response of nuclear spins in GaAs with/without nuclear magnetic resonance
Mahmoud Rasly
2016-05-01
Full Text Available As an alternative to studying the steady-state responses of nuclear spins in solid state systems, working within a transient-state framework can reveal interesting phenomena. The response of nuclear spins in GaAs to a changing magnetic field was analyzed based on the time evolution of nuclear spin temperature. Simulation results well reproduced our experimental results for the transient oblique Hanle signals observed in an all-electrical spin injection device. The analysis showed that the so called dynamic nuclear polarization can be treated as a cooling tool for the nuclear spins: It works as a provider to exchange spin angular momentum between polarized electron spins and nuclear spins through the hyperfine interaction, leading to an increase in the nuclear polarization. In addition, a time-delay of the nuclear spin temperature with a fast sweep of the external magnetic field produces a possible transient state for the nuclear spin polarization. On the other hand, the nuclear magnetic resonance acts as a heating tool for a nuclear spin system. This causes the nuclear spin temperature to jump to infinity: i.e., the average nuclear spins along with the nuclear field vanish at resonant fields of 75As, 69Ga and 71Ga, showing an interesting step-dip structure in the oblique Hanle signals. These analyses provide a quantitative understanding of nuclear spin dynamics in semiconductors for application in future computation processing.
TAPINS: A THERMAL-HYDRAULIC SYSTEM CODE FOR TRANSIENT ANALYSIS OF A FULLY-PASSIVE INTEGRAL PWR
YEON-GUN LEE
2013-08-01
Full Text Available REX-10 is a fully-passive small modular reactor in which the coolant flow is driven by natural circulation, the RCS is pressurized by a steam-gas pressurizer, and the decay heat is removed by the PRHRS. To confirm design decisions and analyze the transient responses of an integral PWR such as REX-10, a thermal-hydraulic system code named TAPINS (Thermal-hydraulic Analysis Program for INtegral reactor System is developed in this study. Based on a one-dimensional four-equation drift-flux model, TAPINS incorporates mathematical models for the core, the helical-coil steam generator, and the steam-gas pressurizer. The system of difference equations derived from the semi-implicit finite-difference scheme is numerically solved by the Newton Block Gauss Seidel (NBGS method. TAPINS is characterized by applicability to transients with non-equilibrium effects, better prediction of the transient behavior of a pressurizer containing non-condensable gas, and code assessment by using the experimental data from the autonomous integral effect tests in the RTF (REX-10 Test Facility. Details on the hydrodynamic models as well as a part of validation results that reveal the features of TAPINS are presented in this paper.
Miroslav M Živković
2010-01-01
Full Text Available This paper deals with transient nonlinear heat conduction through the insulation wall of the tank for transportation of liquid aluminum. Tanks designed for this purpose must satisfy certain requirements regarding temperature of loading and unloading, during transport. Basic theoretical equations are presented, which describe the problem of heat conduction finite element (FE analysis, starting from the differential equation of energy balance, taking into account the initial and boundary conditions of the problem. General 3D problem for heat conduction is considered, from which solutions for two- and one-dimensional heat conduction can be obtained, as special cases. Forming of the finite element matrices using Galerkin method is briefly described. The procedure for solving equations of energy balance is discussed, by methods of resolving iterative processes of nonlinear transient heat conduction. Solution of this problem illustrates possibilities of PAK-T software package, such as materials properties, given as tabular data, or analytical functions. Software also offers the possibility to solve nonlinear and transient problems with incremental methods. Obtained results for different thicknesses of the tank wall insulation materials enable its comparison in regards to given conditions
Analysis of the Chinese Exchange Rate Stability
Youngrok Cheng
1998-03-01
Full Text Available Asian Financial Crisis now is moving to a relatively stable phase, and at this time, whether Chinese RMB will depreciate is raising the concern of the outside world. If we simply consider economic factors, we will find REER (Real Effective Exchange Rate increased around 10%, where depreciation factors are lurking. However, after Vice Premier Zhu Rongji took the responsibility of economic operation and fixed the fundamental key of developing stably, many foreign departments present good impetus of development. After that, Foreign Exchange Rate Reservation increases and major focus is put on long-term operation for debt structure. On the contrary, If Chinese RMB depreciates dramatically, there will be some uneasiness towards domestic economy and also the burden of paying debt should be increased, people may suffer the loss quite a lot. Especially even we consider the responsibility as the central country in this region and the political & economical factors causing the harmonious atmosphere of Sino-American relationship, it can be predicted that Chinese RMB cannot depreciate dramatically within 1-2 years.
Fang Liu
2014-05-01
Full Text Available A fault diagnosis strategy based on the wayside acoustic monitoring technique is investigated for locomotive bearing fault diagnosis. Inspired by the transient modeling analysis method based on correlation filtering analysis, a so-called Parametric-Mother-Doppler-Wavelet (PMDW is constructed with six parameters, including a center characteristic frequency and five kinematic model parameters. A Doppler effect eliminator containing a PMDW generator, a correlation filtering analysis module, and a signal resampler is invented to eliminate the Doppler effect embedded in the acoustic signal of the recorded bearing. Through the Doppler effect eliminator, the five kinematic model parameters can be identified based on the signal itself. Then, the signal resampler is applied to eliminate the Doppler effect using the identified parameters. With the ability to detect early bearing faults, the transient model analysis method is employed to detect localized bearing faults after the embedded Doppler effect is eliminated. The effectiveness of the proposed fault diagnosis strategy is verified via simulation studies and applications to diagnose locomotive roller bearing defects.
Liu, Fang; Shen, Changqing; He, Qingbo; Zhang, Ao; Liu, Yongbin; Kong, Fanrang
2014-05-05
A fault diagnosis strategy based on the wayside acoustic monitoring technique is investigated for locomotive bearing fault diagnosis. Inspired by the transient modeling analysis method based on correlation filtering analysis, a so-called Parametric-Mother-Doppler-Wavelet (PMDW) is constructed with six parameters, including a center characteristic frequency and five kinematic model parameters. A Doppler effect eliminator containing a PMDW generator, a correlation filtering analysis module, and a signal resampler is invented to eliminate the Doppler effect embedded in the acoustic signal of the recorded bearing. Through the Doppler effect eliminator, the five kinematic model parameters can be identified based on the signal itself. Then, the signal resampler is applied to eliminate the Doppler effect using the identified parameters. With the ability to detect early bearing faults, the transient model analysis method is employed to detect localized bearing faults after the embedded Doppler effect is eliminated. The effectiveness of the proposed fault diagnosis strategy is verified via simulation studies and applications to diagnose locomotive roller bearing defects.
Bae, B. U.; Park, Y. S.; Kim, J. R.; Kang, K. H.; Choi, K. Y. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Sung, H. J. [KEPCO-NF, Daejeon (Korea, Republic of); Hwang, M. J. [E and 2T, Daejeon (Korea, Republic of); Kang, D. H. [SenTECH, Daejeon (Korea, Republic of); Lim, S. G. [KHNP CRI, Daejeon (Korea, Republic of); Jun, S. S. [FNC, Daejeon (Korea, Republic of)
2015-10-15
Participants of DSP-03 were divided in three groups and each group has focused on the specific subject related to the enhancement of the code analysis. The group A tried to investigate scaling capability of ATLAS test data by comparing to the code analysis for a prototype, and the group C studied to investigate effect of various models in the one-dimensional codes. This paper briefly summarizes the code analysis result from the group B participants in the DSP-03 of the ATLAS test facility. The code analysis by Group B focuses highly on investigating the multi-dimensional thermal hydraulic phenomena in the ATLAS facility during the SLB transient. Even though the one-dimensional system analysis code cannot simulate the whole system of the ATLAS facility with a nodalization of the CFD (Computational Fluid Dynamics) scale, a reactor pressure vessel can be considered with multi-dimensional components to reflect the thermal mixing phenomena inside a downcomer and a core. Also, the CFD could give useful information for understanding complex phenomena in specific components such as the reactor pressure vessel. From the analysis activity of Group B in ATLAS DSP-03, participants adopted a multi-dimensional approach to the code analysis for the SLB transient in the ATLAS test facility. The main purpose of the analysis was to investigate prediction capability of multi-dimensional analysis tools for the SLB experiment result. In particular, the asymmetric cooling and thermal mixing phenomena in the reactor pressure vessel could be significantly focused for modeling the multi-dimensional components.
Gerhard Strydom
2011-01-01
The need for a defendable and systematic uncertainty and sensitivity approach that conforms to the Code Scaling, Applicability, and Uncertainty (CSAU) process, and that could be used for a wide variety of software codes, was defined in 2008. The GRS (Gesellschaft für Anlagen und Reaktorsicherheit) company of Germany has developed one type of CSAU approach that is particularly well suited for legacy coupled core analysis codes, and a trial version of their commercial software product SUSA (Software for Uncertainty and Sensitivity Analyses) was acquired on May 12, 2010. This report summarized the results of the initial investigations performed with SUSA, utilizing a typical High Temperature Reactor benchmark (the IAEA CRP-5 PBMR 400MW Exercise 2) and the PEBBED-THERMIX suite of codes. The following steps were performed as part of the uncertainty and sensitivity analysis: 1. Eight PEBBED-THERMIX model input parameters were selected for inclusion in the uncertainty study: the total reactor power, inlet gas temperature, decay heat, and the specific heat capability and thermal conductivity of the fuel, pebble bed and reflector graphite. 2. The input parameters variations and probability density functions were specified, and a total of 800 PEBBED-THERMIX model calculations were performed, divided into 4 sets of 100 and 2 sets of 200 Steady State and Depressurized Loss of Forced Cooling (DLOFC) transient calculations each. 3. The steady state and DLOFC maximum fuel temperature, as well as the daily pebble fuel load rate data, were supplied to SUSA as model output parameters of interest. The 6 data sets were statistically analyzed to determine the 5% and 95% percentile values for each of the 3 output parameters with a 95% confidence level, and typical statistical indictors were also generated (e.g. Kendall, Pearson and Spearman coefficients). 4. A SUSA sensitivity study was performed to obtain correlation data between the input and output parameters, and to identify the
Zheng, Xiaoqing; Cheng, Zeng [Department of Electrical and Computer Engineering, McMaster University (Canada); Deen, M. Jamal, E-mail: jamal@mcmaster.ca [Department of Electrical and Computer Engineering, McMaster University (Canada); School of Biomedical Engineering, McMaster University (Canada); Peng, Hao, E-mail: penghao@mcmaster.ca [Department of Electrical and Computer Engineering, McMaster University (Canada); School of Biomedical Engineering, McMaster University (Canada); Department of Medical Physics, McMaster University, Ontario L8S 4K1, Hamilton (Canada)
2016-02-01
Cadmium Zinc Telluride (CZT) semiconductor detectors are capable of providing superior energy resolution and three-dimensional position information of gamma ray interactions in a large variety of fields, including nuclear physics, gamma-ray imaging and nuclear medicine. Some dedicated Positron Emission Tomography (PET) systems, for example, for breast cancer detection, require higher contrast recovery and more accurate event location compared with a whole-body PET system. The spatial resolution is currently limited by electrode pitch in CZT detectors. A straightforward approach to increase the spatial resolution is by decreasing the detector electrode pitch, but this leads to higher fabrication cost and a larger number of readout channels. In addition, inter-electrode charge spreading can negate any improvement in spatial resolution. In this work, we studied the feasibility of achieving sub-pitch spatial resolution in CZT detectors using two methods: charge sharing effect and transient signal analysis. We noted that their valid ranges of usage were complementary. The dependences of their corresponding valid ranges on electrode design, depth-of-interaction (DOI), voltage bias and signal triggering threshold were investigated. The implementation of these two methods in both pixelated and cross-strip configuration of CZT detectors were discussed. Our results show that the valid range of charge sharing effect increases as a function of DOI, but decreases with increasing gap width and bias voltage. For a CZT detector of 5 mm thickness, 100 µm gap and biased at 400 V, the valid range of charge sharing effect was found to be about 112.3 µm around the gap center. This result complements the valid range of the transient signal analysis within one electrode pitch. For a signal-to-noise ratio (SNR) of ~17 and preliminary measurements, the sub-pitch spatial resolution is expected to be ~30 µm and ~250 µm for the charge sharing and transient signal analysis methods
Zheng, Xiaoqing; Cheng, Zeng; Deen, M. Jamal; Peng, Hao
2016-02-01
Cadmium Zinc Telluride (CZT) semiconductor detectors are capable of providing superior energy resolution and three-dimensional position information of gamma ray interactions in a large variety of fields, including nuclear physics, gamma-ray imaging and nuclear medicine. Some dedicated Positron Emission Tomography (PET) systems, for example, for breast cancer detection, require higher contrast recovery and more accurate event location compared with a whole-body PET system. The spatial resolution is currently limited by electrode pitch in CZT detectors. A straightforward approach to increase the spatial resolution is by decreasing the detector electrode pitch, but this leads to higher fabrication cost and a larger number of readout channels. In addition, inter-electrode charge spreading can negate any improvement in spatial resolution. In this work, we studied the feasibility of achieving sub-pitch spatial resolution in CZT detectors using two methods: charge sharing effect and transient signal analysis. We noted that their valid ranges of usage were complementary. The dependences of their corresponding valid ranges on electrode design, depth-of-interaction (DOI), voltage bias and signal triggering threshold were investigated. The implementation of these two methods in both pixelated and cross-strip configuration of CZT detectors were discussed. Our results show that the valid range of charge sharing effect increases as a function of DOI, but decreases with increasing gap width and bias voltage. For a CZT detector of 5 mm thickness, 100 μm gap and biased at 400 V, the valid range of charge sharing effect was found to be about 112.3 μm around the gap center. This result complements the valid range of the transient signal analysis within one electrode pitch. For a signal-to-noise ratio (SNR) of ~17 and preliminary measurements, the sub-pitch spatial resolution is expected to be ~30 μm and ~250 μm for the charge sharing and transient signal analysis methods
Transient Side Load Analysis of Out-of-Round Film-Cooled Nozzle Extensions
Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike
2012-01-01
There was interest in understanding the impact of out-of-round nozzle extension on the nozzle side load during transient startup operations. The out-of-round nozzle extension could be the result of asymmetric internal stresses, deformation induced by previous tests, and asymmetric loads induced by hardware attached to the nozzle. The objective of this study was therefore to computationally investigate the effect of out-of-round nozzle extension on the nozzle side loads during an engine startup transient. The rocket engine studied encompasses a regeneratively cooled chamber and nozzle, along with a film cooled nozzle extension. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and transient inlet boundary flow properties derived from an engine system simulation. Six three-dimensional cases were performed with the out-of-roundness achieved by three different degrees of ovalization, elongated on lateral y and z axes: one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The results show that the separation line jump was the primary source of the peak side loads. Comparing to the peak side load of the perfectly round nozzle, the peak side loads increased for the slightly and more ovalized nozzle extensions, and either increased or decreased for the two significantly ovalized nozzle extensions. A theory based on the counteraction of the flow destabilizing effect of an exacerbated asymmetrical flow caused by a lower degree of ovalization, and the flow stabilizing effect of a more symmetrical flow, created also by ovalization, is presented to explain the observations obtained in this effort.
Transient Three-Dimensional Side Load Analysis of Out-of-Round Film Cooled Nozzles
Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike
2010-01-01
The objective of this study is to investigate the effect of nozzle out-of-roundness on the transient startup side loads at a high altitude, with an anchored computational methodology. The out-of-roundness could be the result of asymmetric loads induced by hardware attached to the nozzle, asymmetric internal stresses induced by previous tests, and deformation, such as creep, from previous tests. The rocket engine studied encompasses a regeneratively cooled thrust chamber and a film cooled nozzle extension with film coolant distributed from a turbine exhaust manifold. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Transient startup computations were performed with the out-of-roundness achieved by four different degrees of ovalization: one perfectly round, one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The results show that the separation-line-jump is the peak side load physics for the round, slightly our-of-round, and more out-of-round cases, and the peak side load increases as the degree of out-of-roundness increases. For the significantly out-of-round nozzle, however, the peak side load reduces to comparable to that of the round nozzle and the separation line jump is not the peak side load physics. The counter-intuitive result of the significantly out-of-round case is found to be related to a side force reduction mechanism that splits the effect of the separation-line-jump into two parts, not only in the circumferential direction and most importantly in time.
Transient analysis of unbalanced short circuits of the ERDA-NASA 100 kW wind turbine alternator
Hwang, H. H.; Gilbert, L. J.
1976-01-01
Unbalanced short-circuit faults on the alternator of the ERDA-NASA Mod-O100-kW experimental wind turbine are studied. For each case, complete solutions for armature, field, and damper-circuit currents; short-circuit torque; and open-phase voltage are derived directly by a mathematical analysis. Formulated results are tabulated. For the Mod-O wind turbine alternator, numerical calculations are given, and results are presented by graphs. Comparisons for significant points among the more important cases are summarized. For these cases the transients are found to be potentially severe. The effect of the alternator neutral-to-ground impedance is evaluated.
Vincent, P.; Buckley, S. M.; Yang, D.; Carle, S. F.
2011-12-01
Anomalous uplift is observed at the Lop Nor, China nuclear test site using ERS satellite SAR data. Using an InSAR time-series analysis method, we show that an increase in absolute uplift with time is observed between 1997 and 1999. The signal is collocated with past underground nuclear tests. Due to the collocation in space with past underground tests we postulate a nuclear test-related hydrothermal source for the uplift signal. A possible mechanism is presented that can account for the observed transient uplift and is consistent with documented thermal regimes associated with underground nuclear tests conducted at the Nevada National Security Site (NNSS) (formerly the Nevada Test Site).
Transient Analysis of Grid-Connected Wind Turbines with DFIG After an External Short-Circuit Fault
Sun, Tao; Chen, Zhe; Blaabjerg, Frede
2004-01-01
on transient analysis of variable speed wind turbines with doubly fed induction generator (DFIG) after an external short-circuit fault. A simulation model of a MW-level variable speed wind turbine with DFIG developed in PSCAD/EMTDC is presented, and the control and protection schemes are described in detail......The fast development of wind power generation brings new requirements for wind turbine integration to the network. After the clearance of an external short-circuit fault, the grid-connected wind turbine should restore its normal operation with minimized power losses. This paper concentrates...
Sayed, Sadeed Bin
2016-11-02
An explicit marching on-in-time scheme for analyzing transient electromagnetic wave interactions on ferromagnetic scatterers is described. The proposed method solves a coupled system of time domain magnetic field volume integral and Landau-Lifshitz-Gilbert (LLG) equations. The unknown fluxes and fields are discretized using full and half Schaubert-Wilton-Glisson functions in space and bandlimited temporal interpolation functions in time. The coupled system is cast in the form of an ordinary differential equation and integrated in time using a PE(CE)m type linear multistep method to obtain the unknown expansion coefficients. Numerical results demonstrating the stability and accuracy of the proposed scheme are presented.
Interval analysis of transient temperature field with uncertain-but-bounded parameters
Wang, Chong; Qiu, ZhiPing
2014-10-01
Based on the traditional finite volume method, a new numerical technique is presented for the transient temperature field prediction with interval uncertainties in both the physical parameters and initial/boundary conditions. New stability theory applicable to interval discrete schemes is developed. Interval ranges of the uncertain temperature field can be approximately yielded by two kinds of parameter perturbation methods. Different order Neumann series are adopted to approximate the interval matrix inverse. By comparing the results with traditional Monte Carlo simulation, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed model and methods.
Second-order explicit finite-difference methods for transient-flow analysis
Chaudhry, M. H.; Hussaini, M. Y.
1983-01-01
Three second-order accurate numerical methods - MacCormack's method, Lambda scheme and Gabutti scheme - are introduced to solve the quasi-linear, hyperbolic partial differential equations describing transient flows in closed conduits. The details of these methods and the treatment of boundary conditions are presented and the results computed by using these methods for a typical piping system are compared. It is shown that for the same accuracy, second-order methods require considerably lesser number of computational nodes and computer time as compared to those required by the first-order methods.
D'Isanto, Antonio; Brescia, Massimo; Donalek, Ciro; Longo, Giuseppe; Riccio, Giuseppe; Djorgovski, Stanislav G
2016-01-01
The exploitation of present and future synoptic (multi-band and multi-epoch) surveys requires an extensive use of automatic methods for data processing and data interpretation. In this work, using data extracted from the Catalina Real Time Transient Survey (CRTS), we investigate the classification performance of some well tested methods: Random Forest, MLPQNA (Multi Layer Perceptron with Quasi Newton Algorithm) and K-Nearest Neighbors, paying special attention to the feature selection phase. In order to do so, several classification experiments were performed. Namely: identification of cataclysmic variables, separation between galactic and extra-galactic objects and identification of supernovae.
Transient Thermal Model and Analysis of the Lunar Surface and Regolith for Cryogenic Fluid Storage
Christie, Robert J.; Plachta, David W.; Yasan, Mohammad M.
2008-01-01
A transient thermal model of the lunar surface and regolith was developed along with analytical techniques which will be used to evaluate the storage of cryogenic fluids at equatorial and polar landing sites. The model can provide lunar surface and subsurface temperatures as a function of latitude and time throughout the lunar cycle and season. It also accounts for the presence of or lack of the undisturbed fluff layer on the lunar surface. The model was validated with Apollo 15 and Clementine data and shows good agreement with other analytical models.
Numerical analysis of transient keyhole shape in pulsed current plasma arc welding
孙俊华; 武传松
2014-01-01
Based on the characteristics of“one keyhole in a pulse”in pulsed current plasma arc welding (PAW),the transient variation process ofweld pool in a pulse cycle is simulated through the establishment ofcorresponding heat source model.And considering the effects ofgravitational force,plasma arc pressure and surface tension on the weld pool surface,the dynamic change features of the keyhole shape in a pulse cycle are calculated by using surface deformation equation. Experiments are conducted and validate that the calculated weld fusion line is in good agreement with the experimental results.
Polarimetric analysis of mass transfer in the X-ray transient A0538-66
Clayton, Geoffrey C.; Brown, John C.; Thompson, Ian B.; Fox, Geoffrey K.
1989-01-01
Observations of optical polarimetric variations of the recurrent X-ray transient A0538-66 during outbursts 99 and 75 are used to investigate the redistribution of gas in the system during periastron passage. The results are consistent with the polarization arising from light in the primary (Be-star) neighborhood which is scattered off a Be-star type disk and a large gas cloud created near periatron by the neutron star passage. It is suggested that the cloud persists near the periastron direction for longer than the Keplerian rotation time of the inner Be-star disk.
Verification of a neutronic code for transient analysis in reactors with Hex-z geometry
Gonzalez-Pintor, S.; Verdu, G. [Departamento de Ingenieria Quimica Y Nuclear, Universitat Politecnica de Valencia, Cami de Vera, 14, 46022. Valencia (Spain); Ginestar, D. [Departamento de Matematica Aplicada, Universitat Politecnica de Valencia, Cami de Vera, 14, 46022. Valencia (Spain)
2012-07-01
Due to the geometry of the fuel bundles, to simulate reactors such as VVER reactors it is necessary to develop methods that can deal with hexagonal prisms as basic elements of the spatial discretization. The main features of a code based on a high order finite element method for the spatial discretization of the neutron diffusion equation and an implicit difference method for the time discretization of this equation are presented and the performance of the code is tested solving the first exercise of the AER transient benchmark. The obtained results are compared with the reference results of the benchmark and with the results provided by PARCS code. (authors)
An Analysis of Transient Overvoltages during the Energization of Electric Ship Propulsion Systems.
Brenna, Morris; Foiadelli, Federica; Zaninelli, Dario
2015-01-01
This paper addresses the resonance phenomena that can occur in an isolated distribution system during transient events such as repeated energizations or power converter switching. In particular, the aim of this study is to analyze the energization of an onboard radial distribution system installed on an electric ship and to determine how the various leakage parameters that can cause resonance problems such as high peak overvoltages when the circuit breaker is closed are relevant. The paper presents a detailed model of whole distribution system, which is validated using infield measurements that refer to a real case in which these events damaged the ships transformers, causing it to be removed from duty.
An Analysis of Transient Overvoltages during the Energization of Electric Ship Propulsion Systems
Brenna, Morris; Foiadelli, Federica; Zaninelli, Dario
2015-01-01
This paper addresses the resonance phenomena that can occur in an isolated distribution system during transient events such as repeated energizations or power converter switching. In particular, the aim of this study is to analyze the energization of an onboard radial distribution system installed on an electric ship and to determine how the various leakage parameters that can cause resonance problems such as high peak overvoltages when the circuit breaker is closed are relevant. The paper presents a detailed model of whole distribution system, which is validated using infield measurements that refer to a real case in which these events damaged the ships transformers, causing it to be removed from duty. PMID:26240835
Optimization of High-Resolution Continuous Flow Analysis for Transient Climate Signals in Ice Cores
Bigler, Matthias; Svensson, Anders; Kettner, Ernesto
2011-01-01
meltwater conductivity detection modules. The system is optimized for high- resolution determination of transient signals in thin layers of deep polar ice cores. Based on standard measurements and by comparing sections of early Holocene and glacial ice from Greenland, we find that the new system features...... a depth resolution in the ice of a few millimeters which is considerably better than other CFA systems. Thus, the new system can resolve ice strata down to 10 mm thickness and has the potential of identifying annual layers in both Greenland and Antarctic ice cores throughout the last glacial cycle....
Werle, Leandro O.; Steinmacher, Fernanda R.; Marangoni, Cintia; Araujo, Pedro H.H de; Machado, Ricardo A.F.; Sayer, Claudia [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)
2008-07-01
The distillation process is widely used in oil refineries. The non-linear behavior, the coupling between variables and the high time constants, associated to the response delay, result in long transient periods operating out of the desired conditions, obtaining out of specification products. Even with several researches in more and more complex control approaches, few works approached the aspect of transient minimization. Moreover, the control of distillation columns is carried out centralized at the bottom and the top. In the present work the effect of the distributed control is evaluated, through the electric resistance located on an intermediate tray of the column. The objective of the work is reducing the operation transients when a disturbance is applied. For the current study, experiments have been carried out in a pilot distillation unit composed of 13 trays and instrumented in fieldbus, processing an ethanol-water mixture. Step disturbances of 50% in the feeding flow rate of have been carried out. The comparison of the results showed that the introduction of the distributed heating throughout the column allows faster dynamics, revealing itself as a valid option for the transient reduction. (author)
Transient current analysis of a GaN radiation detector by TCAD
Wang, Jinghui; Mulligan, Padhraic L.; Cao, Lei R., E-mail: cao.152@osu.edu
2014-10-11
A gallium nitride (GaN) Schottky diode radiation detector has been fabricated with a successfully demonstrated radiation response to alpha particles and neutrons when using Li as a convertor. In order to understand the charge collection process for further device modification, the Sentaurus TCAD software package is employed to quantitatively study the transient current produced by energetic charge particles. By comparing the simulation and experimental results, especially the capacitance–voltage relationship and charge collection efficiency, the device parameters and physics models used for the simulation are validated. The time behavior of the transient current is studied, and the carrier generation/loss by impact ionization, recombination, and trapping are discussed. The total collected charge contributed by various components, such as drift, funneling, and diffusion are also analyzed. - Highlights: • A TCAD model is established for a GaN Schottky diode radiation detector. • Schottky side mainly collects holes, while ohmic side solely collects electrons. • The funneling region evolution is visualized by carrier current densities. • Carrier generation/loss by impact ionization/trapping is insignificant. • The collected charges are primarily drift carriers in the depletion region.
Transient pressure analysis of fractured well in bi-zonal gas reservoirs
Zhao, Yu-Long; Zhang, Lie-Hui; Liu, Yong-hui; Hu, Shu-Yong; Liu, Qi-Guo
2015-05-01
For hydraulic fractured well, how to evaluate the properties of fracture and formation are always tough jobs and it is very complex to use the conventional method to do that, especially for partially penetrating fractured well. Although the source function is a very powerful tool to analyze the transient pressure for complex structure well, the corresponding reports on gas reservoir are rare. In this paper, the continuous point source functions in anisotropic reservoirs are derived on the basis of source function theory, Laplace transform method and Duhamel principle. Application of construction method, the continuous point source functions in bi-zonal gas reservoir with closed upper and lower boundaries are obtained. Sequentially, the physical models and transient pressure solutions are developed for fully and partially penetrating fractured vertical wells in this reservoir. Type curves of dimensionless pseudo-pressure and its derivative as function of dimensionless time are plotted as well by numerical inversion algorithm, and the flow periods and sensitive factors are also analyzed. The source functions and solutions of fractured well have both theoretical and practical application in well test interpretation for such gas reservoirs, especial for the well with stimulated reservoir volume around the well in unconventional gas reservoir by massive hydraulic fracturing which always can be described with the composite model.
Choi, M H; Park, C H; Kim, S W; Hahn, S H; Seong, D J; Kim, J C
1999-01-01
The thermal diffusivity in a direction perpendicular to an epoxy resin film sandwiched between two identical metal layers was measured not only by using a pulsed transient analysis but also by using AC calorimetry. The pulsed transient analysis utilized the surface-temperature decay of the heating pulse from a Q-switched, 2nd harmonic generated Nd:YAG laser. The temperature decay was measured with a HgCdTe infrared detector. After data collection, a nonlinear least-squares regression was performed to estimate the optimal values of several separate thermal parameters by fitting the data to the solutions. Additionally, the thermal diffusivity of the samples was obtained by using the AC calorimetric method which measured the frequency-dependent phase changes of the samples. The thermal diffusivities obtained by the two methods were in the range of 0.07 approx 0.09 x 10 sup - sup 2 cm sup 2 /s, agreed within 8 %, but were lower than the literature values. To improve the results, the contact heat resistance from t...
Jamison, J. W.
1994-01-01
CFORM was developed by the Kennedy Space Center Robotics Lab to assist in linear control system design and analysis using closed form and transient response mechanisms. The program computes the closed form solution and transient response of a linear (constant coefficient) differential equation. CFORM allows a choice of three input functions: the Unit Step (a unit change in displacement); the Ramp function (step velocity); and the Parabolic function (step acceleration). It is only accurate in cases where the differential equation has distinct roots, and does not handle the case for roots at the origin (s=0). Initial conditions must be zero. Differential equations may be input to CFORM in two forms - polynomial and product of factors. In some linear control analyses, it may be more appropriate to use a related program, Linear Control System Design and Analysis (KSC-11376), which uses root locus and frequency response methods. CFORM was written in VAX FORTRAN for a VAX 11/780 under VAX VMS 4.7. It has a central memory requirement of 30K. CFORM was developed in 1987.
液流通过滑阀的流场结构的数值解析%NUMERICAL ANALYSIS OF FLOW STRUCTURE FOR TRANSIENT FLOW THROUGH A SPOOL VALVE
程平; 程耕国; 李受人
2004-01-01
As a fundamental consideration in hydraulic control valve dynamics, transientflow through a spool valve has been studied by numerical analysis. The time-dependent stream lines for a suddenly imposed pressure gradient have been shown.The numerical results are used to investigate the variations of flow structure andfluid variables. The numerical analysis of transient flow through a spool valverevealed that the step response of the flow is modeled by an exponential functionwith two distinct characteristic time constants. In order to simulate the dynamicbehavior of the flow rate rapidly, this paper gives a simple formula of equivalentinertial length. The theoretical model shows a good agreement with result fromthe numerical analysis.
Frequency domain analysis of power system transients using Welch and Yule-Walker AR methods
Alkan, Ahmet [Department of Computer Engineering, Yasar University, 35500 Izmir (Turkey); Yilmaz, Ahmet S. [Department of Electrical and Electronics Engineering, Kahramanmaras Suetcue Imam University, 46050-9 Kahramanmaras (Turkey)
2007-07-15
In this study, power quality (PQ) signals are analyzed by using Welch (non-parametric) and autoregressive (parametric) spectral estimation methods. The parameters of the autoregressive (AR) model were estimated by using the Yule-Walker method. PQ spectra were then used to compare the applied spectral estimation methods in terms of their frequency resolution and the effects in determination of spectral components. The variations in the shape of the obtained power spectra were examined in order to detect power system transients. Performance of the proposed methods was evaluated by means of power spectral densities (PSDs). Graphical results comparing the performance of the AR method with that of the Welch technique are given. The results demonstrate superior performance of the AR method over the Welch method. (author)
Non-modal stability analysis and transient growth in a magnetized Vlasov plasma
Ratushnaya, Valeria
2014-01-01
Collisionless plasmas, such as those encountered in tokamaks, exhibit a rich variety of instabilities. The physical origin, triggering mechanisms and fundamental understanding of many plasma instabilities, however, are still open problems. We investigate the stability properties of a collisionless Vlasov plasma in a stationary homogeneous magnetic field. We narrow the scope of our investigation to the case of Maxwellian plasma. For the first time using a fully kinetic approach we show the emergence of the local instability, a transient growth, followed by classical Landau damping in a stable magnetized plasma. We show that the linearized Vlasov operator is non-normal leading to the algebraic growth of the perturbations using non-modal stability theory. The typical time scales of the obtained instabilities are of the order of several plasma periods. The first-order distribution function and the corresponding electric field are calculated and the dependence on the magnetic field and perturbation parameters is s...
A multiscale physical model for the transient analysis of PEM water electrolyzer anodes.
Oliveira, Luiz Fernando L; Laref, Slimane; Mayousse, Eric; Jallut, Christian; Franco, Alejandro A
2012-08-07
Polymer electrolyte membrane water electrolyzers (PEMWEs) are electrochemical devices that can be used for the production of hydrogen. In a PEMWE the anode is the most complex electrode to study due to the high overpotential of the oxygen evolution reaction (OER), not widely understood. A physical bottom-up multi-scale transient model describing the operation of a PEMWE anode is proposed here. This model includes a detailed description of the elementary OER kinetics in the anode, a description of the non-equilibrium behavior of the nanoscale catalyst-electrolyte interface, and a microstructural-resolved description of the transport of charges and O(2) at the micro and mesoscales along the whole anode. The impact of different catalyst materials on the performance of the PEMWE anode, and a study of sensitivity to the operation conditions are evaluated from numerical simulations and the results are discussed in comparison with experimental data.
Analysis of transient temperature field of the laminate composite membrane in space environment
无
2007-01-01
The on-orbit transient temperature of reflector laminate film was analyzed by using finite element method (FEM) . Numerical simulation was used by FEM software ANSYS. Results reveal that the temperature levels of the laminate composite membrane alternate greatly in the orbital period, which is about ±80℃. This range exceeds the material's operating temperature level. So it is necessary to put effective thermal control into effect to the laminate composite membrane. There is temperature gradient in the thickness direction of the laminate composite membrane: there is a light change in Kevlar/Epoxy layer. The temperature of the laminate composite membrane is obviously lower than the seam's temperature. Results provide reference to the thermal control of the inflatable reflector with high precision requirement.
Lee, Jun-Ha; Lee, Hoong-Joo [Sangmyung University, Chonan (Korea, Republic of)
2005-02-15
We developed a new systematic calibration procedure which was applied to the prediction of the diffusivity, the segregation, and transient enhanced diffusion (TED) of an indium impurity. The TED of the indium impurity was studied using four different experimental conditions. Although indium is susceptible to TED, rapid thermal annealing (RTA) is effective in suppressing the TED effect and maintaining a steep retrograde profile. Like boron impurities, the indium shows significant oxidation-enhanced diffusion in silicon and has segregation coefficients much less than 1 at the Si/SiO{sub 2} interface. In contrast to boron, the segregation coefficient of indium decreases as the temperature increases. The accuracy of the proposed procedure was validated by using secondary ion mass spectrometry (SIMS) data and by using the 0.13-{mu}m device characteristics, such as V{sub th} and I{sub dsat}, for which the differences between simulation and experiment less than 5 %.
Busy period analysis, rare events and transient behavior in fluid flow models
Søren Asmussen
1994-01-01
Full Text Available We consider a process {(Jt,Vt}t≥0 on E×[0,∞, such that {Jt} is a Markov process with finite state space E, and {Vt} has a linear drift ri on intervals where Jt=i and reflection at 0. Such a process arises as a fluid flow model of current interest in telecommunications engineering for the purpose of modeling ATM technology. We compute the mean of the busy period and related first passage times, show that the probability of buffer overflow within a busy cycle is approximately exponential, and give conditioned limit theorems for the busy cycle with implications for quick simulation. Further, various inequalities and approximations for transient behavior are given. Also explicit expressions for the Laplace transform of the busy period are found. Mathematically, the key tool is first passage probabilities and exponential change of measure for Markov additive processes.
The MELTSPREAD-1 computer code for the analysis of transient spreading in containments
Farmer, M.T.; Sienicki, J.J.; Spencer, B.W.
1990-01-01
Transient spreading of molten core materials is important in the assessment of severe-accident sequences for Mk-I boiling water reactors (BWRs). Of interest is whether core materials are able to spread over the pedestal and drywell floors to contact the containment shell and cause thermally induced shell failure, or whether heat transfer to underlying concrete and overlying water will freeze the melt short of the shell. The development of a computational capability for the assessment of this problem was initiated by Sienicki et al. in the form of MELTSPREAD-O code. Development is continuing in the form of the MELTSPREAD-1 code, which contains new models for phenomena that were ignored in the earlier code. This paper summarizes these new models, provides benchmarking calculations of the relocation model against an analytical solution as well as simulant spreading data, and summarizes the results of a scoping calculation for the full Mk-I system.
Transient Torsional Analysis of a Belt Conveyor Drive with Pneumatic Flexible Shaft Coupling
Kaššay Peter
2017-03-01
Full Text Available Development and application of pneumatic flexible shaft couplings have been in the center of our department research activities for a long time. These couplings are able to change torsional stiffness by changing pressure in their flexible elements – air bellows. Until now we have dealt with the use of pneumatic flexible shaft couplings for tuning mechanical systems working with periodically alternating load torque at steady state. Some mechanical systems, however, operate with a static load torque at constant speed (e.g. hoists, elevators, etc., where it is necessary to consider the suitability of shaft coupling in terms of load torque at transient conditions (run-up and braking. Therefore we decided to analyze the use of pneumatic flexible shaft couplings also in this type of mechanical systems on an example of conveyor belt drive.
Analysis of a Microgrid under Transient Conditions Using Voltage and Frequency Controller
Monika Jain
2012-01-01
Full Text Available This paper presents an investigation of voltage-and-frequency-(VF- based battery energy storage system (BESS controller used in micro grid for analyzing the optimum capability of plant. Microgrid is formed by using three hydropower plants feeding three-phase four-wire load. The proposed controller is used for load balancing, harmonic elimination, load leveling, and neutral current compensation. The proposed BESS controller permits the selection of an optimum voltage level of battery and allows independent current control of each phase. The main emphasis is given on maintaining constant voltage and frequency within the micro grid during transient conditions. Micro grid with power plant and its controller is modeled in MATLAB/Simulink using Power System Blockset (PSB toolboxes.
Edwards, C. L. W.; Meissner, F. T.; Hall, J. B.
1979-01-01
Color computer graphics techniques were investigated as a means of rapidly scanning and interpreting large sets of transient heating data. The data presented were generated to support the conceptual design of a heat-sink thermal protection system (TPS) for a hypersonic research airplane. Color-coded vector and raster displays of the numerical geometry used in the heating calculations were employed to analyze skin thicknesses and surface temperatures of the heat-sink TPS under a variety of trajectory flight profiles. Both vector and raster displays proved to be effective means for rapidly identifying heat-sink mass concentrations, regions of high heating, and potentially adverse thermal gradients. The color-coded (raster) surface displays are a very efficient means for displaying surface-temperature and heating histories, and thereby the more stringent design requirements can quickly be identified. The related hardware and software developments required to implement both the vector and the raster displays for this application are also discussed.
Analysis of Fractional Flow for Transient Two-Phase Flow in Fractal Porous Medium
Lu, Ting; Duan, Yonggang; Fang, Quantang; Dai, Xiaolu; Wu, Jinsui
2016-03-01
Prediction of fractional flow in fractal porous medium is important for reservoir engineering and chemical engineering as well as hydrology. A physical conceptual fractional flow model of transient two-phase flow is developed in fractal porous medium based on the fractal characteristics of pore-size distribution and on the approximation that porous medium consist of a bundle of tortuous capillaries. The analytical expression for fractional flow for wetting phase is presented, and the proposed expression is the function of structural parameters (such as tortuosity fractal dimension, pore fractal dimension, maximum and minimum diameters of capillaries) and fluid properties (such as contact angle, viscosity and interfacial tension) in fractal porous medium. The sensitive parameters that influence fractional flow and its derivative are formulated, and their impacts on fractional flow are discussed.
Analysis and Sizing for Transient Thermal Heating of Insulated Aerospace Vehicle Structures
Blosser, Max L.
2012-01-01
An analytical solution was derived for the transient response of an insulated structure subjected to a simplified heat pulse. The solution is solely a function of two nondimensional parameters. Simpler functions of these two parameters were developed to approximate the maximum structural temperature over a wide range of parameter values. Techniques were developed to choose constant, effective thermal properties to represent the relevant temperature and pressure-dependent properties for the insulator and structure. A technique was also developed to map a time-varying surface temperature history to an equivalent square heat pulse. Equations were also developed for the minimum mass required to maintain the inner, unheated surface below a specified temperature. In the course of the derivation, two figures of merit were identified. Required insulation masses calculated using the approximate equation were shown to typically agree with finite element results within 10%-20% over the relevant range of parameters studied.
Simulation Analysis of Transient Earth Voltages Aroused by Partial Discharge in Switchgear
Man Yuyan
2014-01-01
Full Text Available The authors investigated the properties of Transient Earth Voltages (TEV Aroused by Partial Discharge in Switchgear by Simulation. The mechanism of TEV aroused by partial discharge in switchgears is analyzed. The Finite Integration Theory (FIT was employed to simulate the propagation of TEV in the switchgear. The simulation results show that the pulse width of TEV increases as the pulse width of PD pulse increases and the amplitude of TEV is proportional to the PD pulse amplitude. There are time differences between the TEV signals of different detecting points when the TEV propagating on the switchgear’s surface. Based on the simulation, a method of locating the PD of switchgear is proposed by positioning multi-sensors on the external surface of switchgear.
An Analysis of Transient Overvoltages during the Energization of Electric Ship Propulsion Systems
Morris Brenna
2015-01-01
Full Text Available This paper addresses the resonance phenomena that can occur in an isolated distribution system during transient events such as repeated energizations or power converter switching. In particular, the aim of this study is to analyze the energization of an onboard radial distribution system installed on an electric ship and to determine how the various leakage parameters that can cause resonance problems such as high peak overvoltages when the circuit breaker is closed are relevant. The paper presents a detailed model of whole distribution system, which is validated using infield measurements that refer to a real case in which these events damaged the ships transformers, causing it to be removed from duty.
Younsi Ramdane
2015-01-01
Full Text Available In the present paper, three-dimensional equations for coupled heat and mass conservation equations for wood are solved to study the transient heat and mass transfer during high thermal treatment of wood. The model is based on Luikov’s approach, including pressure. The model equations are solved numerically by the commercial package FEMLfor the temperature and moisture content histories under different treatment conditions. The simulation of the proposed conjugate problem allows the assessment of the effect of the heat and mass transfer within wood. A parametric study was also carried out to determine the effects of several parameters such as initial moisture content and the sample thickness on the temperature, pressure and moisture content distributions within the samples during heat treatment.
Modeling and Analysis of Transient Processes in Open Resonant Structures New Methods and Techniques
Sirenko, Yuriy K; Ström, Staffan
2007-01-01
The principal goal of the book is to describe new accurate and robust algorithms for open resonant structures with substantially increased efficiency. These algorithms allow the extraction of complete information with estimated accuracy concerning the scattering of transient electromagnetic waves by complex objects. The determination and visualization of the electromagnetic fields, developed for realistic models, simplify and significantly speed up the solution to a wide class of fundamental and applied problems of electromagnetic field theory. The book presents a systematic approach to the study of electromagnetic waves scattering which can be introduced in undergraduate/postgraduate education in theoretical and applied radiophysics and different advanced engineering courses on antenna and wave-guide technology. On a broader level, the book should be of interest to scientists in optics, computational physics and applied mathematics.
Korompilias, Anastasios V; Karantanas, Apostolos H; Lykissas, Marios G; Beris, Alexandros E
2008-08-01
Transient osteoporosis is characterized primarily by bone marrow edema. The disease most commonly affects the hip, knee, and ankle in middle-aged men. Its cause remains unknown. The hallmark that separates transient osteoporosis from other conditions presenting with a bone marrow edema pattern is its self-limited nature. Laboratory tests usually do not contribute to the diagnosis. Plain radiographs may reveal regional osseous demineralization. Magnetic resonance imaging is used primarily for early diagnosis and monitoring disease progression. Early differentiation from more aggressive conditions with long-term sequelae is essential to avoid unnecessary treatment. Clinical entities such as transient osteoporosis of the hip and regional migratory osteoporosis are spontaneously resolving conditions. However, early differential diagnosis and surgical treatment are crucial for the patient with osteonecrosis of the hip or knee.
Yadav, Ajay Kumar; Ramgopal, Maddali; Bhattacharyya, Souvik
2017-09-01
Carbon dioxide (CO2) based natural circulation loops (NCLs) has gained attention due to its compactness with higher heat transfer rate. In the present study, experimental investigations have been carried out to capture the transient behaviour of a CO2 based NCL operating under subcritical as well as supercritical conditions. Water is used as the external fluid in cold and hot heat exchangers. Results are obtained for various inlet temperatures (323-353 K) of water in the hot heat exchanger and a fixed inlet temperature (305 K) of cooling water in the cold heat exchanger. Effect of loop operating pressure (50-90 bar) on system performance is also investigated. Effect of loop tilt in two different planes (XY and YZ) is also studied in terms of transient as well as steady state behaviour of the loop. Results show that the time required to attain steady state decreases as operating pressure of the loop increases. It is also observed that the change in temperature of loop fluid (CO2) across hot or cold heat exchanger decreases as operating pressure increases.
Transient Thermo-Mechanical Analysis of the TPSG4 Beam Diluter
Goddard, B; Herrera-Martínez, A; Kadi, Y; Marque, S
2002-01-01
A new extraction channel is being built in the Super Proton Synchrotron (SPS) Long Straight Section 4 (LSS4) to transfer proton beams to the Large Hadron Collider (LHC) and also to the CERN Neutrino to Gran Sasso (CNGS) target. The beam is extracted in a fast mode during a single turn. For this purpose a protection of the MSE copper septum coil, in the form of a beam diluting element placed upstream, will be required to cope with the new failure modes associated with the fast extraction operation. The present analysis focuses on the thermo-mechanical behavior of the proposed TPSG4 diluter element irradiated by a fast extracted beam (up to 4.9 x 10^13 protons per 7.2 mus pulse) from the SPS. The deposited energy densities, estimated from primary and secondary particle simulations using the high-energy particle transport code FLUKA, were converted to internal heat generation rates taken as a thermal load input for the finite-element engineering analyses code ANSYS. According to the time dependence of the extrac...
TACT1- TRANSIENT THERMAL ANALYSIS OF A COOLED TURBINE BLADE OR VANE EQUIPPED WITH A COOLANT INSERT
Gaugler, R. E.
1994-01-01
As turbine-engine core operating conditions become more severe, designers must develop more effective means of cooling blades and vanes. In order to design reliable, cooled turbine blades, advanced transient thermal calculation techniques are required. The TACT1 computer program was developed to perform transient and steady-state heat-transfer and coolant-flow analyses for cooled blades, given the outside hot-gas boundary condition, the coolant inlet conditions, the geometry of the blade shell, and the cooling configuration. TACT1 can analyze turbine blades, or vanes, equipped with a central coolant-plenum insert from which coolant-air impinges on the inner surface of the blade shell. Coolant-side heat-transfer coefficients are calculated with the heat transfer mode at each station being user specified as either impingement with crossflow, forced convection channel flow, or forced convection over pin fins. A limited capability to handle film cooling is also available in the program. The TACT1 program solves for the blade temperature distribution using a transient energy equation for each node. The nodal energy balances are linearized, one-dimensional, heat-conduction equations which are applied at the wall-outer-surface node, at the junction of the cladding and the metal node, and at the wall-inner-surface node. At the mid-metal node a linear, three-dimensional, heat-conduction equation is used. Similarly, the coolant pressure distribution is determined by solving the set of transfer momentum equations for the one-dimensional flow between adjacent fluid nodes. In the coolant channel, energy and momentum equations for one-dimensional compressible flow, including friction and heat transfer, are used for the elemental channel length between two coolant nodes. The TACT1 program first obtains a steady-state solution using iterative calculations to obtain convergence of stable temperatures, pressures, coolant-flow split, and overall coolant mass balance. Transient
Pradhan, Santosh K., E-mail: santosh@aerb.gov.in [Nuclear Safety Analysis Division, Atomic Energy Regulatory Board, Mumbai 400094 (India); Obaidurrahman, K. [Nuclear Safety Analysis Division, Atomic Energy Regulatory Board, Mumbai 400094 (India); Iyer, Kannan N. [Department of Mechanical Engineering, IIT Bombay, Mumbai 400076 (India); Gaikwad, Avinash J. [Nuclear Safety Analysis Division, Atomic Energy Regulatory Board, Mumbai 400094 (India)
2016-04-15
Highlights: • A multi-point kinetics model is developed for RELAP5 system thermal hydraulics code. • Model is validated against extensive 3D kinetics code. • RELAP5 multi-point kinetics formulation is used to investigate critical break for LOCA in PHWR. - Abstract: Point kinetics approach in system code RELAP5 limits its use for many of the reactivity induced transients, which involve asymmetric core behaviour. Development of fully coupled 3D core kinetics code with system thermal-hydraulics is the ultimate requirement in this regard; however coupling and validation of 3D kinetics module with system code is cumbersome and it also requires access to source code. An intermediate approach with multi-point kinetics is appropriate and relatively easy to implement for analysis of several asymmetric transients for large cores. Multi-point kinetics formulation is based on dividing the entire core into several regions and solving ODEs describing kinetics in each region. These regions are interconnected by spatial coupling coefficients which are estimated from diffusion theory approximation. This model offers an advantage that associated ordinary differential equations (ODEs) governing multi-point kinetics formulation can be solved using numerical methods to the desired level of accuracy and thus allows formulation based on user defined control variables, i.e., without disturbing the source code and hence also avoiding associated coupling issues. Euler's method has been used in the present formulation to solve several coupled ODEs internally at each time step. The results have been verified against inbuilt point-kinetics models of RELAP5 and validated against 3D kinetics code TRIKIN. The model was used to identify the critical break in RIH of a typical large PHWR core. The neutronic asymmetry produced in the core due to the system induced transient was effectively handled by the multi-point kinetics model overcoming the limitation of in-built point kinetics model
Belov, O A; Alekseeva, N N; Tavartkiladze, G A
2014-01-01
We have developed the new method for the analysis and visualization of the fine temporal structure of the transient evoked otoacoustic emission signal. The method consists of the presentation of the signal in the form of a set of tone components with a rapidly changing amplitude and relatively stable frequency. It is based on the combination of three spectrograms differing in frequency and temporal resolution by means of fuzzy logic amplitude estimation with subsequent frequency refining with the use of the least square procedure, reduction of the number of the insignificant components, and final re-ordering of the results for the simplification of further data processing. The new method was named Pitch Envelope Analysis (PEA). For data representation, a new type of diagram named componentogram was designed. The proposed method can be used for the real time processing of the continuous data stream especially for speech processing.
Tang, Bin
2008-01-01
A method has been developed for determining the transient response of a beam. The beam is divided into several continuous Timoshenko beam elements. The overall dynamic stiffness matrix is assembled in turn. Using Leung's equation, we derive the overall mass and stiffness matrices which are more suitable for response analysis than the overall dynamic stiffness matrix. The forced vibration of the beam is computed by the precise time integration method. Three illustrative beams are discussed to evaluate the performance of the current method. Solutions calculated by the finite element method and theoretical analysis are also enumerated for comparison. In these examples, we have found that the current method can solve the forced vibration of structures with a higher precision.
LAN Hengxing; ZHOU Chenghu; C.F.Lee; WANG Sijing; WU Faquan
2003-01-01
Transient pore pressure in response to short intense rainfall process plays an important role in shallow landslide occurrence. Using GIS technology, we carry out the rainfall-induced landslide stability analysis in response to transient pore pressure by means of transient and unsaturated rainfall infiltration modeling. A case study is performed on the shallow landslide stability analysis in Hong Kong. Detailed analysis and discussion reached some useful conclusions on the tempo-spatial behavior and characteristics of slope stability response and pore pressure response to typical rainfall process. Comparison analysis is performed on some important issues including landslide stability response in different types of slopes with different hydraulic properties, antecedent rainfall and landslide stability, and the nature of pore pressure response time. These studies might give us an important insight into landslide tringgering mechanism and the hydrological process in response to rainfall, and provide systematic information and evidences for effective risk assessment and warning system establishment.
Chin, Jeffrey C.; Csank, Jeffrey T.
2016-01-01
The Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA ver2) is a control design tool thatenables preliminary estimation of transient performance for models without requiring a full nonlinear controller to bedesigned. The program is compatible with subsonic engine models implemented in the MATLAB/Simulink (TheMathworks, Inc.) environment and Numerical Propulsion System Simulation (NPSS) framework. At a specified flightcondition, TTECTrA will design a closed-loop controller meeting user-defined requirements in a semi or fully automatedfashion. Multiple specifications may be provided, in which case TTECTrA will design one controller for each, producing acollection of controllers in a single run. Each resulting controller contains a setpoint map, a schedule of setpointcontroller gains, and limiters; all contributing to transient characteristics. The goal of the program is to providesteady-state engine designers with more immediate feedback on the transient engine performance earlier in the design cycle.
Tournier, Jean-Michel; El-Genk, Mohamed S.
1995-01-01
A two-dimensional Heat Pipe Transient Analysis Model, 'HPTAM,' was developed to simulate the transient operation of fully-thawed heat pipes and the startup of heat pipes from a frozen state. The model incorporates: (a) sublimation and resolidification of working fluid; (b) melting and freezing of the working fluid in the porous wick; (c) evaporation of thawed working fluid and condensation as a thin liquid film on a frozen substrate; (d) free-molecule, transition, and continuum vapor flow regimes, using the Dusty Gas Model; (e) liquid flow and heat transfer in the porous wick; and (f) thermal and hydrodynamic couplings of phases at their respective interfaces. HPTAM predicts the radius of curvature of the liquid meniscus at the liquid-vapor interface and the radial location of the working fluid level (liquid or solid) in the wick. It also includes the transverse momentum jump condition (capillary relationship of Pascal) at the liquid-vapor interface and geometrically relates the radius of curvature of the liquid meniscus to the volume fraction of vapor in the wick. The present model predicts the capillary limit and partial liquid recess (dryout) in the evaporator wick, and incorporates a liquid pooling submodel, which simulates accumulation of the excess liquid in the vapor core at the condenser end.
Mcgowan, David M.; Bostic, Susan W.; Camarda, Charles J.
1993-01-01
The development of two advanced reduced-basis methods, the force derivative method and the Lanczos method, and two widely used modal methods, the mode displacement method and the mode acceleration method, for transient structural analysis of unconstrained structures is presented. Two example structural problems are studied: an undamped, unconstrained beam subject to a uniformly distributed load which varies as a sinusoidal function of time and an undamped high-speed civil transport aircraft subject to a normal wing tip load which varies as a sinusoidal function of time. These example problems are used to verify the methods and to compare the relative effectiveness of each of the four reduced-basis methods for performing transient structural analyses on unconstrained structures. The methods are verified with a solution obtained by integrating directly the full system of equations of motion, and they are compared using the number of basis vectors required to obtain a desired level of accuracy and the associated computational times as comparison criteria.
Malkinson, Guy; Spira, Micha E
2010-04-01
The use of the sensory-motor (SN-MN) synapse of the Aplysia gill withdrawal reflex has contributed immensely to the understanding of synaptic transmission, learning and memory acquisition processes. Whereas the majority of the studies focused on analysis of the presynaptic mechanisms, recent studies indicated that as in mammalian synapses, long term potentiation (LTP) formed by Aplysia SN-MN synapse depends on elevation of the postsynaptic free intracellular calcium concentration ([Ca2+](i)). Consistently, injection of the fast calcium chelator BAPTA to the MN prevents the formation of serotonin-induced LTP. Nevertheless, currently there are no published reports that directly examine and document whether evoked synaptic transmission is associated with transient increase in the postsynaptic [Ca2+](i). In the present study we imaged, for the first time, alterations in the postsynaptic [Ca2+](i) in response to presynaptic stimulation and analyzed the underlying mechanisms. Using live imaging of the postsynaptic [Ca2+](i) while monitoring the EPSP, we found that evoked transmitter release generates excitatory postsynaptic calcium concentration transients (EPSCaTs) by two mechanisms: (a) activation of DNQX-sensitive postsynaptic receptors-gated calcium influx and (b) calcium influx through nitrendipine-sensitive voltage-gated calcium channels (VGCCs). Concomitant confocal imaging of presynaptic boutons and EPSCaTs revealed that approximately 86% of the presynaptic boutons are associated with functional synapses.
Marion, Jessica; Bach, Lien; Bellec, Yannick; Meyer, Christian; Gissot, Lionel; Faure, Jean-Denis
2008-10-01
The functional genomics approach requires systematic analysis of protein subcellular distribution and interaction networks, preferably by optimizing experimental simplicity and physiological significance. Here, we present an efficient in planta transient transformation system that allows single or multiple expression of constructs containing various fluorescent protein tags in Arabidopsis cotyledons. The optimized protocol is based on vacuum infiltration of agrobacteria directly into young Arabidopsis seedlings. We demonstrate that Arabidopsis epidermal cells show a subcellular distribution of reference markers similar to that in tobacco epidermal cells, and can be used for co-localization or bi-molecular fluorescent complementation studies. We then used this new system to investigate the subcellular distribution of enzymes involved in sphingolipid metabolism. In contrast to transformation systems using tobacco epidermal cells or cultured Arabidopsis cells, our system provides the opportunity to take advantage of the extensive collections of mutant and transgenic lines available in Arabidopsis. The fact that this assay uses conventional binary vectors and a conventional Agrobacterium strain, and is compatible with a large variety of fluorescent tags, makes it a versatile tool for construct screening and characterization before stable transformation. Transient expression in Arabidopsis seedlings is thus a fast and simple method that requires minimum handling and potentially allows medium- to high-throughput analyses of fusion proteins harboring fluorescent tags in a whole-plant cellular context.
Holland, V; Koller, S; Brüggemann, W
2014-07-01
Climate change is one of the major issues nowadays, and Mediterranean broadleaf species have been suggested to fill possible future gaps created by climate change in Central European forests. To provide a scientific-based foundation for such practical strategies, it is important to obtain a general idea about differences and similarities in the physiology of Central European and Mediterranean species. In the present study, we evaluated the onset of leaf senescence of a broad spectrum of oak species under the Central European climate in a common garden experiment. Degradation of the photosynthetic apparatus of evergreen (Quercus ilex, Q. suber), semi-evergreen (Q.×turneri, Q.×hispanica) and deciduous oaks (Q. robur, Q. cerris, Q. frainetto, Q. pubescens) was monitored as chlorophyll content and analysed chlorophyll fluorescence induction transients. In the deciduous species, a significant decline in chlorophyll content was observed during autumn/winter, with Q. pubescens showing the slowest decline. Analysis of fluorescence induction transients revealed a significant decline in quantum efficiency of the primary photochemistry and reaction centre density and later, a decrease in quantum efficiency of end acceptor reduction. Alterations in fluorescence parameters were compared to the decline in chlorophyll content, which occurred much more slowly than expected from the fluorescence data. The evergreen species showed no decline in chlorophyll content, nor different chlorophyll a fluorescence induction behaviour despite temperature falling below 0 °C. The hybrids showed intermediate behaviour between their parental evergreen and deciduous taxa.
Min-Chien, Tsai
2017-04-01
The high precision Global Navigation Satellite System (GNSS) survey technique provides an efficient tool to study active tectonics and geodynamics. The data of more than 400 cGPS stations are processed with the GAMIT/GLOBK 10.6 software. After strictly data control, time series analysis, noise analysis, and common-mode error correction, we can drive a more realistic interseismic ITRF2008 velocity field Taiwan area. This result not only provides high precision GPS data for all of GPS or other users, also can be a basis for the crustal strain rate estimation and analysis of GPS baseline variation. The 2016 Meinong earthquake is the most deadly earthquake occurred in Taiwan after the 1999 Chichi earthquake. This project will focus on characterizing high strain anomalies and transient deformation from time series analysis of cGPS and PS-INSAR to assess the seismic hazards and potential active structures in the SW Taiwan area in terms of the temporal and spatial strain variations.
万秋兰; 单渊达
2001-01-01
基于李雅普诺夫稳定理论，对用于电力系统暂态稳定分析的暂态能量函数法进行了分析，认为可定量分析和快速性是其独特优势，不可靠性是其局限性。提出了暂态能量函数法用于非自治系统所必须满足的条件，包括用临界轨迹确定临界能量，以及用临界轨迹得到的切除时间确定故障清除后的稳定平衡点等。尽管目前暂态能量函数法只作为电力系统暂态稳定分析的辅助工具，但如何提高它的可靠性并将其应用到非自治系统仍是有待深入研究的课题。%Based on the Lyapunov stability theory, this paper analyzes thetransient energy function methods for power system transient stability analysis, and considers the quantitative analysis and fast speed as their advantages, but the unreliability as their limitations. The demands that transient energy function methods must meet for the non-autonomous motion system are also proposed, which include that the critical energy should be determined by the critical trajectory and the post-fault stable equilibrium point should be determined by the critical clearing time. Although the transient energy function methods are only used as the auxiliary tool at present for the power system transient stability analysis, how to improve its reliability and apply it to the non-autonomous motion system is still an attractive topic that needs to be deeply researched.
Dimensional analysis of heart rate variability in heart transplant recipients
Zbilut, J.P.; Mayer-Kress, G.; Geist, K.
1987-01-01
We discuss periodicities in the heart rate in normal and transplanted hearts. We then consider the possibility of dimensional analysis of these periodicities in transplanted hearts and problems associated with the record.
Review of assessment methods discount rate in investment analysis
Yamaletdinova Guzel Hamidullovna
2011-08-01
Full Text Available The article examines the current methods of calculating discount rate in investment analysis and business valuation, as well as analyzes the key problems using various techniques in terms of the Russian economy.
Statistical Analysis of the Exchange Rate of Bitcoin: e0133678
Jeffrey Chu; Saralees Nadarajah; Stephen Chan
2015-01-01
Bitcoin, the first electronic payment system, is becoming a popular currency. We provide a statistical analysis of the log-returns of the exchange rate of Bitcoin versus the United States Dollar...
McNally, Richard J Q; Rankin, Judith; Shirley, Mark D F; Rushton, Stephen P; Pless-Mulloli, Tanja
2008-10-01
Whilst maternal age is an established risk factor for Patau syndrome (trisomy 13), Edwards syndrome (trisomy 18) and Down syndrome (trisomy 21), the aetiology and contribution of genetic and environmental factors remains unclear. We analysed for space-time clustering using high quality fully population-based data from a geographically defined region. The study included all cases of Patau, Edwards and Down syndrome, delivered during 1985-2003 and resident in the former Northern Region of England, including terminations of pregnancy for fetal anomaly. We applied the K-function test for space-time clustering with fixed thresholds of close in space and time using residential addresses at time of delivery. The Knox test was used to indicate the range over which the clustering effect occurred. Tests were repeated using nearest neighbour (NN) thresholds to adjust for variable population density. The study analysed 116 cases of Patau syndrome, 240 cases of Edwards syndrome and 1084 cases of Down syndrome. There was evidence of space-time clustering for Down syndrome (fixed threshold of close in space: P = 0.01, NN threshold: P = 0.02), but little or no clustering for Patau (P = 0.57, P = 0.19) or Edwards (P = 0.37, P = 0.06) syndromes. Clustering of Down syndrome was associated with cases from more densely populated areas and evidence of clustering persisted when cases were restricted to maternal age syndrome suggests an aetiological role for transient environmental factors, such as infections.
Transient heat conduction in a solid slab using multiple-scale analysis
Bautista, O.; Campos, I. [ITESM, Division de Ingenieria y Arquitectura, Mexico, DF (Mexico); Mendez, F. [UNAM, Facultad de Ingenieria, Mexico, DF (Mexico)
2005-12-01
In this paper we study the unsteady heat conduction due to a sudden temperature step in the external surfaces of a solid slab. In order to estimate the temperature profile in the solid, we applied the multiple-scale perturbation technique by identifying the ''early'' and ''late'' transient regimes for small values of the Biot number, Bi. In this sense, we have re-visited the classical lumped method, incorporating this particular case as an asymptotic limit, which is fully described by the ''late'' regime for small values of Bi. Once the temperature distribution is analytically predicted, this solution is compared against the exact solution and with other analytical results obtained by using regular perturbation techniques, for different values of the Biot number Bi. Observing a good agreement between the corresponding comparisons, we obtain a very simple and useful formula to predict the nondimensional temperature of the solid slab. (orig.)
Non-modal stability analysis and transient growth in a magnetized Vlasov plasma
Ratushnaya, V.
2014-12-01
Collisionless plasmas, such as those encountered in tokamaks, exhibit a rich variety of instabilities. The physical origin, triggering mechanisms and fundamental understanding of many plasma instabilities, however, are still open problems. We investigate the stability properties of a 3-dimensional collisionless Vlasov plasma in a stationary homogeneous magnetic field. We narrow the scope of our investigation to the case of Maxwellian plasma and examine its evolution with an electrostatic approximation. For the first time using a fully kinetic approach we show the emergence of the local instability, a transient growth, followed by classical Landau damping in a stable magnetized plasma. We show that the linearized Vlasov operator is non-normal leading to the algebraic growth of the perturbations using non-modal stability theory. The typical time scales of the obtained instabilities are of the order of several plasma periods. The first-order distribution function and the corresponding electric field are calculated and the dependence on the magnetic field and perturbation parameters is studied. Our results offer a new scenario of the emergence and development of plasma instabilities on the kinetic scale.
A thermal-hydraulic code for transient analysis in a channel with a rod bundle
Khodjaev, I.D. [Research & Engineering Centre of Nuclear Plants Safety, Electrogorsk (Russian Federation)
1995-09-01
The paper contains the model of transient vapor-liquid flow in a channel with a rod bundle of core of a nuclear power plant. The computer code has been developed to predict dryout and post-dryout heat transfer in rod bundles of nuclear reactor core under loss-of-coolant accidents. Economizer, bubble, dispersed-annular and dispersed regimes are taken into account. The computer code provides a three-field representation of two-phase flow in the dispersed-annular regime. Continuous vapor, continuous liquid film and entrained liquid drops are three fields. For the description of dispersed flow regime two-temperatures and single-velocity model is used. Relative droplet motion is taken into account for the droplet-to-vapor heat transfer. The conservation equations for each of regimes are solved using an effective numerical technique. This technique makes it possible to determine distribution of the parameters of flows along the perimeter of fuel elements. Comparison of the calculated results with the experimental data shows that the computer code adequately describes complex processes in a channel with a rod bundle during accident.
Transient analysis of counterflowing jet over highly blunt cone in hypersonic flow
Barzegar Gerdroodbary, M.; Bishehsari, Shervin; Hosseinalipour, S. M.; Sedighi, K.
2012-04-01
Understanding the characteristics of various Counterflowing jets exiting from a nose cone is crucial for determining heat load reduction and usage of this device in various conditions. Such jets can undergo several flow regimes during venting, from initial supersonic flow, to transonic, to subsonic flow regimes as the pressure of jet decreases. A bow shock wave is a characteristic flow structure during the initial stage of the jet development, and this paper focuses on the development of the bow shock wave and the jet structure behind it. The transient behavior of a sonic counterflow jet is investigated using unsteady, axisymmetric Navier-Stokes solved with SST turbulence model at free stream Mach number of 5.75. The coolant gas (Carbon Dioxide and Helium) is chosen to inject into the hypersonic air flow at the nose of the model. The gases are considered to be ideal, and the computational domain is axisymmetric. The jet structure, including the shock wave and flow separation due to an adverse pressure gradient at the nose is investigated with a focus on the differences between high diffusivity coolant jet (Helium) and low diffusivity coolant jet (CO2) flow scenarios.
Bronuzzi, J.; Mapelli, A.; Sallese, J. M.
2016-12-01
A silicon wafer bonding technique has been recently proposed for the fabrication of monolithic silicon radiation detectors. This new process would enable direct bonding of a read-out electronic chip wafer on a highly resistive silicon substrate wafer. Therefore, monolithic silicon detectors could be fabricated in this way which would allow the free choice of electronic chips and high resistive silicon bulk, even from different providers. Moreover, a monolithic detector with a high resistive bulk would also be available. Electrical properties of the bonded interface are then critical for this application. Indeed, mobile charges generated by radiation inside the bonded bulk are expected to transit through the interface to be collected by the read-out electronics. In order to characterize this interface, the concept of Transient Current Technique (TCT) has been explored by means of numerical simulations combined with a physics based analytical model. In this work, the analytical model giving insight into the physics behind the TCT dependence upon interface traps is validated using both TCAD simulations and experimental measurements.
Uysal, Ismail E.
2016-08-09
Transient electromagnetic interactions on plasmonic nanostructures are analyzed by solving the Poggio-Miller-Chan-Harrington-Wu-Tsai (PMCHWT) surface integral equation (SIE). Equivalent (unknown) electric and magnetic current densities, which are introduced on the surfaces of the nanostructures, are expanded using Rao-Wilton-Glisson and polynomial basis functions in space and time, respectively. Inserting this expansion into the PMCHWT-SIE and Galerkin testing the resulting equation at discrete times yield a system of equations that is solved for the current expansion coefficients by a marching on-in-time (MOT) scheme. The resulting MOT-PMCHWT-SIE solver calls for computation of additional convolutions between the temporal basis function and the plasmonic medium\\'s permittivity and Green function. This computation is carried out with almost no additional cost and without changing the computational complexity of the solver. Time-domain samples of the permittivity and the Green function required by these convolutions are obtained from their frequency-domain samples using a fast relaxed vector fitting algorithm. Numerical results demonstrate the accuracy and applicability of the proposed MOT-PMCHWT solver. © 2016 Optical Society of America.
Two-fluid model for transient analysis of slug flow in oil wells
Cazarez-Candia, O., E-mail: ocazarez@imp.mx [Instituto Mexicano del Petroleo, Eje central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Mexico D.F. 07730 (Mexico); Instituto Tecnologico de Zacatepec, Depto. de Metal-Mecanica, Calzada Tecnologico, No. 27, Zacatepec, Morelos 62780 (Mexico); Benitez-Centeno, O.C. [Centro Nacional de Investigacion y Desarrollo Tecnologico, Depto. de Mecanica, Interior Internado Palmira s/n, Col. Palmira, Cuernavaca, Morelos 62490 (Mexico); Espinosa-Paredes, G. [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av San Rafael Atlixco No 186, Col. Vicentina 55-534, Mexico D.F. 09340 (Mexico)
2011-06-15
In this work it is presented a transient, one-dimensional, adiabatic model for slug flow simulation, which appears when liquid (mixture of oil and water) and gas flow simultaneously through pipes. The model is formed by space and time averaged conservation equations for mass, momentum and energy for each phase, the numerical solution is based on the finite difference technique in the implicit scheme. Velocity, pressure, volumetric fraction and temperature profiles for both phases were predicted for inclination angles from the horizontal to the vertical position (unified model) and ascendant flow. Predictions from the model were validated using field data and ten correlations commonly used in the oil industry. The effects of gas heating or cooling, due to compression and expansion processes, on the predictions and numerical stability, were studied. It was found that when these effects are taken into account, a good behavior of temperature predictions and numerical stability are obtained. The model presents deviations lower than 14% regarding field data and it presents better predictions than most of the correlations.
Rasch Analysis for Psychometric Improvement of Science Attitude Rating Scales
Oon, Pey-Tee; Fan, Xitao
2017-01-01
Students' attitude towards science (SAS) is often a subject of investigation in science education research. Survey of rating scale is commonly used in the study of SAS. The present study illustrates how Rasch analysis can be used to provide psychometric information of SAS rating scales. The analyses were conducted on a 20-item SAS scale used in an…
Martorell, S.; Villamizar, M.; Sanchez, A. I.; Villanueva, J. F.; Carlos, S.; Serradell, V.; Pelayo, F.; Mendizabal, R.; Sol, I.
2010-07-01
This paper presents the application of regression partial least squares related to principal component regression, principal components analysis, and statistical analysis of the results obtained in the simulation of thermal-hydraulic transients with a code Best Estimate particularly relevant to a scenario LBLOCA (LargeBreak Loss-of Coolant Accident) in a PWR, considering the effect of uncertainties.
Estimating sleep disordered breathing based on heart rate analysis.
Penzel, Thomas; Glos, Martin; Schobel, Christoph; Lal, Sara; Fietze, Ingo
2013-01-01
Heart rate variability and the analysis of the ECG with ECG derived respiration has been used to diagnose sleep disordered breathing. Recently it was possible to distinguish obstructive sleep apnea and central sleep apnea. This can be achieved by analyzing both, heart rate variability and the more mechanically induced ECG derived respiration in parallel. In addition the analysis of cardiopulmonary coupling facilitates to predict the personal risk factor for cardiovascular disorders. The analysis of heart rate, ECG and respiration goes beyond this analysis. Some studies indicate that it is possible to derive sleep stages from these signals. In order to derive sleep stages a more complex analysis of the signals is applied taking into account non-linear properties by using methods of statistical physics. To extract coupling information supports the distinction between sleep stages. Results are reported in this review.
Cynod: A Neutronics Code for Pebble Bed Modular Reactor Coupled Transient Analysis
Hikaru Hiruta; Abderrafi M. Ougouag; Hans D. Gougar; Javier Ortensi
2008-09-01
The Pebble Bed Reactor (PBR) is one of the two concepts currently considered for development into the Next Generation Nuclear Plant (NGNP). This interest is due, in particular, to the concept’s inherent safety characteristics. In order to verify and confirm the design safety characteristics of the PBR computational tools must be developed that treat the range of phenomena that are expected to be important for this type of reactors. This paper presents a recently developed 2D R-Z cylindrical nodal kinetics code and shows some of its capabilities by applying it to a set of known and relevant benchmarks. The new code has been coupled to the thermal hydraulics code THERMIX/KONVEK[1] for application to the simulation of very fast transients in PBRs. The new code, CYNOD, has been written starting with a fixed source solver extracted from the nodal cylindrical geometry solver contained within the PEBBED code. The fixed source solver was then incorporated into a kinetic solver.. The new code inherits the spatial solver characteristics of the nodal solver within PEBBED. Thus, the time-dependent neutron diffusion equation expressed analytically in each node of the R-Z cylindrical geometry sub-domain (or node) is transformed into one-dimensional equations by means of the usual transverse integration procedure. The one-dimensional diffusion equations in each of the directions are then solved using the analytic Green’s function method. The resulting equations for the entire domain are then re-cast in the form of the Direct Coarse Mesh Finite Difference (D-CMFD) for convenience of solution. The implicit Euler method is used for the time variable discretization. In order to correctly treat the cusping effect for nodes that contain a partially inserted control rod a method is used that takes advantage of the Green’s function solution available in the intrinsic method. In this corrected treatment, the nodes are re-homogenized using axial flux shapes reconstructed based on the
Tournier, Jean-Michel; El-Genk, Mohamed S.
1995-01-01
This report describes the user's manual for 'HPTAM,' a two-dimensional Heat Pipe Transient Analysis Model. HPTAM is described in detail in the UNM-ISNPS-3-1995 report which accompanies the present manual. The model offers a menu that lists a number of working fluids and wall and wick materials from which the user can choose. HPTAM is capable of simulating the startup of heat pipes from either a fully-thawed or frozen condition of the working fluid in the wick structure. The manual includes instructions for installing and running HPTAM on either a UNIX, MS-DOS or VMS operating system. Samples for input and output files are also provided to help the user with the code.
The model of double-cage induction motor for the analysis of thermal fields in transient operations
Mróz Jan
2017-06-01
Full Text Available Emergency motor switch-on happens occasionally while operating a doublesquirrel- cage motor at full supply voltage with the rotor blocked (e.g., in coal mills. After releasing the blockage, the by now heated motor is started up again. However, the mechanical stress caused by the increased temperature poses considerable hazards to the squirrel-cage winding. This paper presents a double-cage induction motor model for analysis of thermal fields in transient operation. The thermal field for the rotor of a doublesquirrel- cage motor of soldered or cast structure, operating in the conditions described, has been calculated in the present paper using a thermal network method. Measurement results have been presented for the double-squirrel-cage winding temperature for a soldered cage construction in the blocked rotor state.
Sohel Rana
2014-01-01
Full Text Available Non-Fourier heat conduction model with dual phase lag wave-diffusion model was analyzed by using well-conditioned asymptotic wave evaluation (WCAWE and finite element method (FEM. The non-Fourier heat conduction has been investigated where the maximum likelihood (ML and Tikhonov regularization technique were used successfully to predict the accurate and stable temperature responses without the loss of initial nonlinear/high frequency response. To reduce the increased computational time by Tikhonov WCAWE using ML (TWCAWE-ML, another well-conditioned scheme, called mass effect (ME T-WCAWE, is introduced. TWCAWE with ME (TWCAWE-ME showed more stable and accurate temperature spectrum in comparison to asymptotic wave evaluation (AWE and also partial Pade AWE without sacrificing the computational time. However, the TWCAWE-ML remains as the most stable and hence accurate model to analyze the fast transient thermal analysis of non-Fourier heat conduction model.
Advanced Flow Analysis Tools for Transient Solid Rocket Motor Simulations Project
National Aeronautics and Space Administration — The challenges of designing, developing, and fielding man-rated propulsion systems continue to increase as NASA's mission moves forward with evolving solid...
Greene, William H.
1990-01-01
A study was performed focusing on the calculation of sensitivities of displacements, velocities, accelerations, and stresses in linear, structural, transient response problems. One significant goal of the study was to develop and evaluate sensitivity calculation techniques suitable for large-order finite element analyses. Accordingly, approximation vectors such as vibration mode shapes are used to reduce the dimensionality of the finite element model. Much of the research focused on the accuracy of both response quantities and sensitivities as a function of number of vectors used. Two types of sensitivity calculation techniques were developed and evaluated. The first type of technique is an overall finite difference method where the analysis is repeated for perturbed designs. The second type of technique is termed semi-analytical because it involves direct, analytical differentiation of the equations of motion with finite difference approximation of the coefficient matrices. To be computationally practical in large-order problems, the overall finite difference methods must use the approximation vectors from the original design in the analyses of the perturbed models. In several cases this fixed mode approach resulted in very poor approximations of the stress sensitivities. Almost all of the original modes were required for an accurate sensitivity and for small numbers of modes, the accuracy was extremely poor. To overcome this poor accuracy, two semi-analytical techniques were developed. The first technique accounts for the change in eigenvectors through approximate eigenvector derivatives. The second technique applies the mode acceleration method of transient analysis to the sensitivity calculations. Both result in accurate values of the stress sensitivities with a small number of modes and much lower computational costs than if the vibration modes were recalculated and then used in an overall finite difference method.
Giorgio Baldinelli
2016-07-01
Full Text Available The paper presents a simplified mathematical model to describe the transient heat transfer of a radiant floor heating system. A purpose-built test room has been realized to investigate the actual thermal response of a concrete radiant floor in unsteady-state conditions. Beyond the temperature sensors needed for the standard thermal analysis of the heat transfer inside the chamber, the floor temperature was retrieved by means of an infrared thermography camera, in order to validate more precisely the proposed analytical model. The infrared thermography analysis gives interesting information on the floor temperature distribution during the transient, highlighting the pipes’ layout and, if present, inhomogeneous floor zones. The thermal images have been elaborated in order to set and tune the colour map. A portion of the image has been defined for measuring the surface floor temperatures with a previous evaluation of the parameters dealing with the thermographic technique, in order to perform the quantitative survey. The comparison results show that the calculated air and floor temperatures substantially agree with the temperatures measured by infrared thermography and thermocouples, provided that the boundary conditions obtained by the field measurements are strictly reproduced in the lumped capacitance mathematical model. The difference between the two approaches results in values lower than 4 °C during the entire monitoring period: a satisfactory outcome, considering the approximations of the analytical method. The proposed model and its infrared thermography measurements validation represent a useful tool to understand at first sight the floor radiant panels behaviour in the start-up and switch off period, at the aim of gather useful information for the difficult task of their regulation.
Multivariate Analysis of Blood Transfusion Rates After Shoulder Arthroplasty.
King, Joseph J; Patrick, Matthew R; Schnetzer, Ryan E; Farmer, Kevin W; Struk, Aimee M; Garvan, Cyndi; Wright, Thomas W
A retrospective review was performed of all shoulder arthroplasties with patients grouped on the basis of transfusion protocol time period. Group 1 had transfusions if postoperative hematocrit was multivariate analysis of significant bivariate factors were performed. Protocol change decreased transfusion rates from 16% (group 1, 153 arthroplasties) to 8% (group 2, 149 arthroplasties). Reverse shoulder arthroplasty (RTSA) transfusion rate decreased dramatically (from 24% to 5%). Transfusion rates after total shoulder arthroplasty (TSA) were low (4%) and after revision arthroplasty were high (21% + 27%) in both groups. Age, gender, heart disease, preoperative hematocrit, diagnosis, and estimated blood loss (EBL) were risk factors on bivariate analysis. Failed arthroplasty and fracture diagnoses carried high transfusion rates (25% + 28%). Logistic regression showed that low preoperative hematocrit, increased EBL, revision arthroplasty, and heart disease were transfusion risk factors. Protocol based on symptomatic anemia results in low transfusion rates after primary TSA and RTSA.
Kraetschmer, D.; Roos, E.; Schuler, X. [Materialpruefungsanstalt (MPA) Universitaet Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart (Germany); Herter, K.-H., E-mail: herter@mpa.uni-stuttgart.de [Materialpruefungsanstalt (MPA) Universitaet Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart (Germany)
2012-04-15
For the construction, design and operation of nuclear components and systems the appropriate technical codes and standards provide detailed analysis procedures which guarantee a reliable behaviour of the structural components throughout the specified lifetime. Especially for cyclic stress evaluation the different codes and standards provide different fatigue analyses procedures to be performed considering the various mechanical and thermal loading histories and geometric complexities of the components. To consider effects of light water reactor coolant environments, new design curves included in report NUREG/CR-6909 for austenitic stainless steels and for low alloy steels have been presented. For the usage of these new design curves an environmental fatigue correction factor for incorporating environmental effects has to be calculated and used. The application of this environmental correction factor to a fatigue analysis of a nozzle with transient stratification loads, derived by in-service monitoring, has been performed. The results are used to compare with calculated usage factors, based on design curves without taking environmental effects particularly into account. - Highlights: Black-Right-Pointing-Pointer We model an nozzle for fatigue analysis und mechanical and thermal loading conditions. Black-Right-Pointing-Pointer A simplified as well as a general elastic-plastic fatigue analysis considering environmental effects is performed. Black-Right-Pointing-Pointer The influence of different factors calculating the environmental factor F{sub en} are shown. Black-Right-Pointing-Pointer The presented numerical evaluation methodology allows the consideration of all relevant parameters to assess lifetime.
bz-rates: A Web Tool to Estimate Mutation Rates from Fluctuation Analysis.
Gillet-Markowska, Alexandre; Louvel, Guillaume; Fischer, Gilles
2015-09-02
Fluctuation analysis is the standard experimental method for measuring mutation rates in micro-organisms. The appearance of mutants is classically described by a Luria-Delbrück distribution composed of two parameters: the number of mutations per culture (m) and the differential growth rate between mutant and wild-type cells (b). A precise estimation of these two parameters is a prerequisite to the calculation of the mutation rate. Here, we developed bz-rates, a Web tool to calculate mutation rates that provides three useful advances over existing Web tools. First, it allows taking into account b, the differential growth rate between mutant and wild-type cells, in the estimation of m with the generating function. Second, bz-rates allows the user to take into account a deviation from the Luria-Delbrück distribution called z, the plating efficiency, in the estimation of m. Finally, the Web site provides a graphical visualization of the goodness-of-fit between the experimental data and the model. bz-rates is accessible at http://www.lcqb.upmc.fr/bzrates.
Calvo, Daniel; Durán, Alejandro; Del Valle, Manel
2007-09-26
An electronic tongue based on the transient response of an array of non-specific-response potentiometric sensors was developed. A sequential injection analysis (SIA) system was used in order to automate its training and operation. The use of the transient recording entails the dynamic nature of the sensor's response, which can be of high information content, of primary ions and also of interfering ions; these may better discriminated if the kinetic resolution is added. This work presents the extraction of significant information contained in the transient response of a sensor array formed by five all-solid-state potentiometric sensors. The tool employed was the Fourier transform, from which a number of coefficients were fed into an artificial neural network (ANN) model, used to perform a quantitative multidetermination. The studied case was the analysis of mixtures of calcium, sodium and potassium. Obtained performance is compared with the more traditional automated electronic tongue using final steady-state potentials.