WorldWideScience

Sample records for ratchet type dielectrophoretic

  1. Assessment methods for Bree-type ratcheting without the necessity of linearization of stresses and strains

    International Nuclear Information System (INIS)

    Fujioka, Terutaka

    2015-01-01

    This paper proposes methods for assessing Bree-type ratcheting in a cylinder subjected to constant internal pressure and cyclic thermal loading. The proposed methods are elastic analysis-route and elastic–plastic analysis-route. The former is based on the polynomial approximation of the elastic stress distributions for thermal stresses and the reference stress concept for estimating primary stress. The latter elastic–plastic route method is based on the concept of relative elastic core size. The methods proposed were validated by performing elastic–plastic finite element analyses of a smooth cylinder that exhibited Bree-type ratcheting. - Highlights: • Rationalization of the ratcheting assessment has been made. • The proposed methods include both elastic and elastic-plastic routes. • The elastic route method is based on skeletal point stress by elastic FEA. • The elastic-plastic route is based on elastic core size in elastic-plastic FEA. • These have been validated by elastic-plastic FEA causing Bree-type ratcheting

  2. Ratchetting strain prediction

    International Nuclear Information System (INIS)

    Noban, Mohammad; Jahed, Hamid

    2007-01-01

    A time-efficient method for predicting ratchetting strain is proposed. The ratchetting strain at any cycle is determined by finding the ratchetting rate at only a few cycles. This determination is done by first defining the trajectory of the origin of stress in the deviatoric stress space and then incorporating this moving origin into a cyclic plasticity model. It is shown that at the beginning of the loading, the starting point of this trajectory coincides with the initial stress origin and approaches the mean stress, displaying a power-law relationship with the number of loading cycles. The method of obtaining this trajectory from a standard uniaxial asymmetric cyclic loading is presented. Ratchetting rates are calculated with the help of this trajectory and through the use of a constitutive cyclic plasticity model which incorporates deviatoric stresses and back stresses that are measured with respect to this moving frame. The proposed model is used to predict the ratchetting strain of two types of steels under single- and multi-step loadings. Results obtained agree well with the available experimental measurements

  3. Quantum ratchets

    OpenAIRE

    Grifoni, Milena

    1997-01-01

    In this thesis, ratchet systems operating in the quantum regime are investigated. Ratchet systems, also known as Brownian motors, are periodic systems presenting an intrinsic asymmetry which can be exploited to extract work out of unbiased forces. As a model for ratchet systems, we consider the motion of a particle in a one-dimensional periodic and asymmetric potential, interacting with a thermal environment, and subject to an unbiased driving force. In quantum ratchets, intrinsic quantum flu...

  4. Ratchetting behavior of type 304 stainless steel at room and elevated temperatures

    International Nuclear Information System (INIS)

    Ruggles, M.; Krempl, E.

    1988-01-01

    The zero-to-tension ratchetting behavior was investigated under uniaxial loading at room temperature and at 550, 600 and 650/degree/ C. In History I the maximum stress level of ratchetting was equal to the stress reached in a tensile test at one percent strain. For History II the maximum stress level was established as the stress reached after a 2100 s relaxation at one percent strain. Significant ratchetting was observed for History I at room temperature but not at the elevated temperatures. The accumulated ratchet strain increases with decreasing stress rate. Independent of the stress rates used insignificant ratchet strain was observed at room temperature for History II. This observation is explained in the context of the viscoplasticity theory based on overstress by the exhaustion of the viscous contribution to the stress during relaxation. The viscous part of the stress is the driving force for the ratchetting in History I. Strain aging is presumably responsible for the lack of short-time inelastic deformation resulting in a nearly rate-independent behavior at the elevated temperatures. 26 refs., 7 figs., 1 tab

  5. Design methods for structures under thermal ratchet

    International Nuclear Information System (INIS)

    Branca, T.R.; McLean, J.L.

    1975-01-01

    Previous work on the thermal ratchet analysis of a simple pipe is extended to the case of an intersection of a pipe with a spherical shell. The chosen nozzle configuration is subjected to an internal pressure which remains constant, and a cyclic thermal transient which is representative of the type of transient that might be expected for components of a LMFBR. A number of cross-sections through the nozzle were examined, each yielding a different combination of elastic primary and secondary stress. These stresses, together with their associated cyclic strain growth, as determined from an elastic-plastic-creep analysis of the nozzle, were then plotted on a Miller or Bree-type diagram. Thus, a number of points, one for each cross-section considered, were available for comparison with the data obtained from the ratchet analysis of simple pipe sections. Both the elastic and inelastic analyses on the nozzle were performed using the finite element method of structural analysis of the ANSYS computer code. The pipe ratchetting cases were computed using the Oak Ridge National Laboratory PLACRE code. For a simple pipe ratchet case, a brief comparison is given between the version of ANSYS used in this study, the ANSYS version used in previous work and PLACRE code. The three programs did not yield identical results. Further study is needed to resolve the discrepancies that were observed. The results of the comparison between the nozzle ratchet and pipe ratchet solutions indicate that reasonable predictions can be made for the nozzle ratchet strains based on elastic parameters and design curves developed from pipe ratchetting solutions. (author)

  6. Magnus-induced ratchet effects for skyrmions interacting with asymmetric substrates

    Science.gov (United States)

    Reichhardt, C.; Ray, D.; Olson Reichhardt, C. J.

    2015-07-01

    We show using numerical simulations that pronounced ratchet effects can occur for ac driven skyrmions moving over asymmetric quasi-one-dimensional substrates. We find a new type of ratchet effect called a Magnus-induced transverse ratchet that arises when the ac driving force is applied perpendicular rather than parallel to the asymmetry direction of the substrate. This transverse ratchet effect only occurs when the Magnus term is finite, and the threshold ac amplitude needed to induce it decreases as the Magnus term becomes more prominent. Ratcheting skyrmions follow ordered orbits in which the net displacement parallel to the substrate asymmetry direction is quantized. Skyrmion ratchets represent a new ac current-based method for controlling skyrmion positions and motion for spintronic applications.

  7. Ratchet due to broken friction symmetry

    DEFF Research Database (Denmark)

    Norden, Bengt; Zolotaryuk, Yaroslav; Christiansen, Peter Leth

    2002-01-01

    A ratchet mechanism that occurs due to asymmetric dependence of the friction of a moving system on its velocity or a driving force is reported. For this kind of ratchet, instead of a particle moving in a periodic potential, the dynamics of which have broken space-time symmetry, the system must...... be provided with sonic internal structure realizing such a velocity- or force-friction dependence. For demonstration of a ratchet mechanism of this type, an experimental setup (gadget) that converts longitudinal oscillating or fluctuating motion into a unidirectional rotation has been built and experiments...... with it have been carried out. In this device, an asymmetry of friction dependence on an applied force appears, resulting in rectification of rotary motion, In experiments, our setup is observed to rotate only in one direction, which is in accordance with given theoretical arguments, Despite the setup being...

  8. Modelling of ratchetting

    International Nuclear Information System (INIS)

    Geyer, P.; Proix, J.M.; Shoenberger, P.; Taheri, S.

    1993-09-01

    The normal or abnormal operating subjects the nuclear power plant's components to cyclic loading (pressure, temperature gradient). So, we can have a progressive strain accumulation on every cyclic loading. This ratchet (cyclic strain accumulation) can produce excessive deformation or increase some damages as thermal fatigue. For some components, a fine modelling of the material's behaviour is necessary to study their mechanical strength. The modelling of cyclic plasticity made great progress during the past 20 years. The ratchet is one of the last phenomena for which numerical models have to be improved. We give in this paper the present state of research to model the description of ratcheting effects. Then we use the experimental results on the austenitic stainless steel 316L at 20 deg C and 300 deg C to study the TAHERI and the BURLET and CAILLETAUD model's capabilities. The cyclic constitutive law with a discrete memory variable developed by TAHERI leads to a satisfying description of ratcheting phenomena in uniaxial loadings. With the modification of kinematic hardening proposed by Burlet and Cailletaud in the Chaboche model we get a good modelling of ratchet in biaxial loadings. These two models have been integrated into a 3D structural mechanics software, the F.E. code ASTER. We present here the calculation of a tubular structure with a thickness transition subjected to thermal cycling. (authors). 11 figs., 3 tabs., 22 refs

  9. Ratcheting failure of pressurised straight pipes and elbows under reversed bending

    International Nuclear Information System (INIS)

    Vishnuvardhan, S.; Raghava, G.; Gandhi, P.; Saravanan, M.; Goyal, Sumit; Arora, Punit; Gupta, Suneel K.; Bhasin, Vivek

    2013-01-01

    Ratcheting studies were carried out on Type 304LN stainless steel straight pipes and elbows subjected to steady internal pressure and cyclic bending load. The internal pressure for all the straight pipes was 35 MPa and in the case of elbows the internal pressure was varied for different elbows, ranging from 27.6 MPa to 39.2 MPa. Cyclic bending load was applied on the specimens by subjecting them to different levels of load-line displacement. The specimens have undergone significant ratchet swelling (ballooning), ovalization and consequent thinning of the cross-section during ratcheting. The straight pipes failed either by occurrence of through-wall crack accompanied by simultaneous ballooning, or bursting with simultaneous ballooning. All the elbows failed by occurrence of through-wall crack accompanied by simultaneous ballooning. Ratcheting behaviour of straight pipes and elbows were compared and it was generally inferred that ratcheting was more pronounced in straight pipes than in elbows. -- Graphical abstract: Strain history for the specimen QCE-RAT-6-L1. Highlights: • Studies were carried out under combined internal pressure and cyclic bending. • Ratcheting strains were measured at critical locations of the specimens. • Quantified the percentage of ballooning, ovalization and reduction in thickness. • Modes of ratcheting failure of straight pipes and elbows are studied. • Inferred that ratcheting is more pronounced in straight pipes than in elbows

  10. Analytical Formulation of the Electric Field Induced by Electrode Arrays: Towards Automated Dielectrophoretic Cell Sorting

    Directory of Open Access Journals (Sweden)

    Vladimir Gauthier

    2017-08-01

    Full Text Available Dielectrophoresis is defined as the motion of an electrically polarisable particle in a non-uniform electric field. Current dielectrophoretic devices enabling sorting of cells are mostly controlled in open-loop applying a predefined voltage on micro-electrodes. Closed-loop control of these devices would enable to get advanced functionalities and also more robust behavior. Currently, the numerical models of dielectrophoretic force are too complex to be used in real-time closed-loop control. The aim of this paper is to propose a new type of models usable in this framework. We propose an analytical model of the electric field based on Fourier series to compute the dielectrophoretic force produced by parallel electrode arrays. Indeed, this method provides an analytical expression of the electric potential which decouples the geometrical factors (parameter of our system, the voltages applied on electrodes (input of our system, and the position of the cells (output of our system. Considering the Newton laws on each cell, it enables to generate easily a dynamic model of the cell positions (output function of the voltages on electrodes (input. This dynamic model of our system is required to design the future closed-loop control law. The predicted dielectrophoretic forces are compared to a numerical simulation based on finite element model using COMSOL software. The model presented in this paper enables to compute the dielectrophoretic force applied to a cell by an electrode array in a few tenths of milliseconds. This model could be consequently used in future works for closed-loop control of dielectrophoretic devices.

  11. Ratcheting of pressurized piping subjected to seismic loading

    International Nuclear Information System (INIS)

    Scavuzzo, R.J.; Lam, P.C.; Gau, J.S.

    1992-01-01

    The ABAQUS finite element code was used to model a pressurized pipe and subjected to cyclic bending loads to investigate ratcheting. A 1-in. schedule 40 pipe was loaded with a slow (static) cyclic load. The pipe internal pressure was varied from 0 to 6000 psi. In this paper, two types of materials were considered: an elastic perfectly plastic and a bilinear elastic-plastic material. Two types of finite elements of the ABAQUS program were compared to analytical solutions to evaluate the element accuracy in the plastic regime. Depending upon loading conditions and specified material properties, three different responses were observed from the finite element analyses: cyclic plasticity, ratcheting of the hoop strain, or shakedown. These analytical results are compared to some experimental measurements

  12. Experimental quantum ratchets based on solid state nanostructures

    International Nuclear Information System (INIS)

    Linke, H.

    1999-01-01

    Ratchets are spatially asymmetric devices in which particles can move on average in one direction in the absence of external net forces or gradients. This is made possible by the rectification of fluctuations, which also provide the energy for the process. Interest in the physics of ratchets was revived in recent years when it emerged that the ratchet principle may be a suitable physical model for 'molecular motors', which are central to many fundamental biological processes, such as intracellular transport or muscle contraction. Most ratchets studied so far have relied on classical effects, but recently 'quantum ratchets', involving quantum effects, have also been studied. In the present article it is pointed out that semiconductor or metal nanostructures are very suitable systems for the realisation of experimental quantum ratchets. Recent experimental studies of a quantum ratchet based on an asymmetric quantum dot are reviewed. Copyright (1999) CSIRO Australia

  13. Seismic ratchet-fatigue failure of piping systems

    International Nuclear Information System (INIS)

    Severud, L.K.; Anderson, M.J.; Lindquist, M.R.; Weiner, E.O.

    1986-01-01

    Failures of piping systems during earthquakes have been rare. Those that have failed were either made of brittle material such as cast iron, were rigid systems between major components where component relative seismic motions tore the pipe out of the component, or were high pressure systems where a ratchet-fatigue fracture followed a local bulging of the pipe diameter. Tests to failure of an unpressurized 3-in. and a pressurized 6-in. diameter carbon steel nuclear pipe systems subjected to high level shaking have been accomplished. Failure analyses of these tests are presented and correlated to the test results. It was found that failure of the unpressurized system could be correlated well with standard ASME type fatigue analysis predictions. Moreover, the pressurized system failure occurred in significantly less load cycles than predicted by standard fatigue analysis. However, a ratchet-fatigue and ductility exhaustion analysis of the pressurized system did correlate very well. These findings indicate modifications to design analysis methods and the present ASME Code piping design rules may be appropriate to cover the ratchet-fatigue failure mode

  14. Experimental quantum ratchets based on nanostructures

    International Nuclear Information System (INIS)

    Linke, H.; Loefgren, A.; Sheng, W.; Xu, H.; Svensson, A.; Omling, P.; Lindelof, P.E.

    1999-01-01

    Full text: A number of biological processes, for instance muscular contraction and intracellular transport, are based on a fascinating physical principle: In periodic, asymmetric potentials, so-called ratchets, the random motion of Brownian particles can be put to use by extracting energy from nonequilibrium fluctuations. These findings have recently revived interest in physics to explore the general principles of ratchet effects. So far, most ratchet systems studied assumed or used classical systems. In extension of this previous work, highly interesting and new physics can also be expected from ratchet mechanisms that rely on quantum processes. In this contribution, the requirements for experimental studies of quantum ratchet effects will be discussed, and it will be pointed out that these prerequisites are ideally fulfilled in semiconductor- and metal-nanostructures. As an example, experimental and theoretical results will be presented showing that phase-coherent, asymmetric (triangular) electron cavities can partially rectify an applied AC voltage. Using this effect, which is related to electron wave interference, an electron current can be generated without applied net field

  15. Dielectrophoresis and dielectrophoretic impedance detection of adenovirus and rotavirus

    Science.gov (United States)

    Nakano, Michihiko; Ding, Zhenhao; Suehiro, Junya

    2016-01-01

    The aim of this study is the electrical detection of pathogenic viruses, namely, adenovirus and rotavirus, using dielectrophoretic impedance measurement (DEPIM). DEPIM consists of two simultaneous processes: dielectrophoretic trapping of the target and measurement of the impedance change and increase in conductance with the number of trapped targets. This is the first study of applying DEPIM, which was originally developed to detect bacteria suspended in aqueous solutions, to virus detection. The dielectric properties of the viruses were also investigated in terms of their dielectrophoretic behavior. Although their estimated dielectric properties were different from those of bacteria, the trapped viruses increased the conductance of the microelectrode in a manner similar to that in bacteria detection. We demonstrated the electrical detection of viruses within 60 s at concentrations as low as 70 ng/ml for adenovirus and 50 ng/ml for rotavirus.

  16. Dielectrophoretic assembly of carbon nanotube devices

    DEFF Research Database (Denmark)

    Dimaki, Maria

    The purpose of this project has been to assemble single-walled carbon nanotubes on electrodes at the tip of a biocompatible cantilever and use these for chemical species sensing in air and liquid, for example in order to measure the local activity from ion channels in the cell membrane....... The electrical resistance of carbon nanotubes has been shown to be extremely sensitive to gas molecules. Dielectrophoresis is a method capable of quickly attracting nanotubes on microelectrodes by using an electric field, thus enabling nanotube integration in microsystems. Dielectrophoresis offers also....... A model for the dielectrophoretic assembly of carbon nanotubes on microelectrodes was developed and several simulations were conducted using values from the available literature for the various key parameters. The model can give qualitative results regarding the parameters dominating the dielectrophoretic...

  17. Electrodynamic ratchet motor.

    Science.gov (United States)

    Lim, Jiufu; Sader, John E; Mulvaney, Paul

    2009-03-01

    Brownian ratchets produce directed motion through rectification of thermal fluctuations and have been used for separation processes and colloidal transport. We propose a flashing ratchet motor that enables the transduction of electrical energy into rotary micromechanical work. This is achieved through torque generation provided by boundary shaping of equipotential surfaces. The present device contrasts to previous implementations that focus on translational motion. Stochastic simulations elucidate the performance characteristics of this device as a function of its geometry. Miniaturization to nanoscale dimensions yields rotational speeds in excess of 1 kHz, which is comparable to biomolecular motors of similar size.

  18. Investigations on the ratchetting behaviour of austenitic pipes

    International Nuclear Information System (INIS)

    Kraemer, D.; Krolop, S.; Scheffold, A.; Stegmeyer, R.

    1994-01-01

    Reversed bending tests at room temperature with pipes with and without internal pressure were carried out. The pipes were manufactured from the austenitic steel X10 CrNiNb 18 9. Under internal pressure ratchetting was observed in circumferential direction. The component tests were accompanied by numerical computations using a nonlinear kinematic hardening rule and superposed isotropic hardening. In total the constitutive model needed 13 parameters to be fitted when isotropic hardening resulted in a cyclic saturation. Uniaxial monotonic and cyclic loading tests served for characterizing the material. A reasonable parameter fitting with respect to describe ratchetting required load controlled nonzero mean-stress tests. On condition, that the loading will lead to cyclic saturation, ratchetting could be well predicted in the pipe with the found set of parameters. An extension of the isotropic hardening rule in the constitutive model was proposed allowing to describe various types of isotropic hardening. In a first step it was shown that under uniaxial conditions the extension reproduces continuous isotropic hardening up to incipient cracking quite well. (orig.)

  19. Uniaxial ratcheting behavior of Zircaloy-4 tubes at room temperature

    International Nuclear Information System (INIS)

    Wen, Mingjian; Li, Hua; Yu, Dunji; Chen, Gang; Chen, Xu

    2013-01-01

    In this study, a series of uniaxial tensile, strain cycling and uniaxial ratcheting tests were conducted at room temperature on Zircaloy-4 (Zr-4) tubes used as nuclear fuel cladding in Pressurized Water Reactors (PWRs) for the purpose to investigate the uniaxial ratcheting behavior of Zr-4 and the factors which may influence it. The experimental results show that at room temperature this material features cyclic softening remarkably within the strain range of 1.6%, and former cycling under larger strain amplitude cannot retard cyclic softening of later cycling under lower strain amplitude. Uniaxial ratcheting strain accumulates in the direction of mean stress, and the ratcheting stain level is larger under tensile mean stress than that under compressive mean stress. Uniaxial ratcheting strain level increases with the increase of mean stress and stress amplitude, and decreases with the increase of loading rate. The sequence of loading rate appears to have no effects on the final ratcheting strain accumulation. Loading history has great influence on the uniaxial ratcheting behavior. Lower stress level after loading history with higher stress level leads to the shakedown of ratcheting. Higher loading rate after loading history with lower loading rate brings down the ratcheting strain rate. Uniaxial ratcheting behavior is sensitive to compressive pre-strain, and the decay rate of the ratcheting strain rate is slowed down by pre-compression

  20. Dielectrophoretic Microfluidic Device for in Vitro Fertilization

    Directory of Open Access Journals (Sweden)

    Hong-Yuan Huang

    2018-03-01

    Full Text Available The aim of this work was to create a microfluidic platform that uses in vitro fertilization (IVF and avoids unnecessary damage to oocytes due to the dielectrophoretic force manipulation of the sperms and oocytes that occurs in a traditional IVF operation. The device from this research can serve also to decrease medium volumes, as well as the cost of cell culture under evaporation, and to prevent unnecessary risk in intracytoplasmic sperm injection (ICSI. To decrease the impact and destruction of the oocyte and the sperm, we adopted a positive dielectrophoretic force to manipulate both the sperms and the oocyte. The mouse oocytes were trapped with a positive dielectrophoretic (p-DEP force by using Indium Tin Oxide (ITO-glass electrodes; the ITO-glass electrode chip was fabricated by wet etching the ITO-glass. The polydimethylsiloxane (PDMS flow-focusing microfluidic device was used to generate microdroplets of micrometer size to contain the zygotes. The volume of the microdroplets was controlled by adjusting the flow rates of both inlets for oil and the DEP buffer. As a result, the rate of fertilization was increased by about 5% beyond that of the DEP treatment in traditional IVF, and more than 20% developed to the blastocyst stage with a low sperm-oocyte ratio.

  1. Experimental tests on ratchet of structural elements diagrams for primary tension and secondary twist

    International Nuclear Information System (INIS)

    Lebey, J.; Roche, R.L.; Cousseran, P.

    1980-05-01

    Design by analysis of pressure vessels is not complete without an appraisal of failure by progressive distortion or stress ratchet. Ratchet tests under constant axial stress associated with cyclic torsion deformation have been carried out on 304 L and 316 L thin tubular specimens, at room temperature. Results are given in the form of iso-deformation curves ranging from 0.1% to 2.5%, in the field definite by the primary and secondary stress intensities (Bree's diagram type). The use of an effective primary stress is proposed, as a practical way, to assess the elongation due to the ratchet effect

  2. Seismic ratchet-fatigue failure of piping systems

    International Nuclear Information System (INIS)

    Severud, L.K.; Anderson, M.J.; Lindquist, M.R.; Weiner, E.O.

    1987-01-01

    Failures of piping systems during earthquakes have been rare. Those that have failed were either made of brittle material such as cast iron, were rigid systems between major components where component relative seismic motions tore the pipe out of the component, or were high pressure systems where a ratchet-fatigue fracture followed a local bulging of the pipe diameter. Tests to failure of an unpressurized 3-inch and a pressurized 6-inch diameter carbon steel nuclear pipe systems subjected to high-level shaking have been accomplished. The high-level shaking loads needed to cause failure were much higher than ASME Code rules would permit with present design limits. Failure analyses of these tests are presented and correlated to the test results. It was found that failure of the unpressurized system could be correlated well with standard ASME type fatigue analysis predictions. Moreover, the pressurized system failure occured in significantly less load cycles than predicted by standard fatigue analysis. However, a ratchet-fatigue and ductility exhaustion analysis of the pressurized system did correlate reasonably well. These findings indicate modifications to design analysis methods and the present ASME Code piping design rules to reduce unneeded conservatisms and to cover the ratchet-fatigue failure mode may be appropriate

  3. Impedance technique for measuring dielectrophoretic collection of microbiological particles

    CERN Document Server

    Allsopp, D W E; Brown, A P; Betts, W B

    1999-01-01

    Measurement of the impedance change resulting from the collection of microbiological particles at coplanar electrodes is shown to be an effective and potentially quantitative method of detecting dielectrophoresis. Strong correlations between the frequency-dependent dielectrophoretic collection characteristics measured by impedance change and those observed using an established counting method based on image analysis have been obtained for Escherichia coli. In addition it is shown that the new electrical method can be used to sense dielectrophoretic collection of 19 nm diameter latex beads, particles too small to be resolved by conventional optical detection systems. (author)

  4. Quantum ratchets reroute electrons

    International Nuclear Information System (INIS)

    Haenggi, P.; Reimann, P.

    1999-01-01

    Is it possible to extract energy from random fluctuations and put it to use? This challenging question has provoked discussion ever since the early days of Brownian-motion theory. For large-scale or macroscopic fluctuations, the answer is ''yes'' - the principle is demonstrated, for example, in the self-winding wristwatch. Much subtler is the issue of whether microscopic random fluctuations, such as thermal Brownian motion or even the haphazard motion of quantum particles, acting as a random energy source can cause the particles to flow in one direction only. In recent years this field has been the scene of remarkable activity, motivated by the prospect of potentially high-profile technological and biological applications, such as molecular motors. In particular the directed transport of particles in an asymmetric potential known as a ratchet has received a lot of attention. This research, however, has focused on ''thermal ratchets'' in which the particles undergo thermal Brownian motion: the next challenge is to move from the classical world and account for quantum mechanical effects. Recently a collaboration between physicists at Lund University in Sweden and the Niels Bohr Institute in Copenhagen has taken a significant step forward and built a quantum ratchet (H Linke et al. 1998 Europhys. Lett. 44 341 and 45 406). The device is based on an aluminium-doped gallium arsenide (GaAs/AlGaAs) quantum dot with a ratchet-like, triangular-shaped cavity. In this article the authors discuss the implications of this work. (UK)

  5. Investigations into the ratchetting behaviour of austenitic pipes

    International Nuclear Information System (INIS)

    Kraemer, D.; Krolop, S.; Scheffold, A.; Stegmeyer, R.

    1997-01-01

    In technical components subjected to cyclic loading, inelastic deformations cannot be excluded. In such cases, under certain conditions, small amounts of non-reversed plastic strain per cycle can accumulate to large strains, an effect commonly called ratchetting. The proof of ratchetting in complex structures is often possible by numerical methods only, e.g. the finite-element method. Describing cyclic plasticity and predicting ratchetting necessitate a suitable constitutive law. This paper describes the investigation of the ratchetting behaviour of thin-walled tubes under cyclic loading. Tests were performed and accompanied by finite-element computations using a non-linear kinematic hardening rule with superposed isotropic cyclic hardening. The constitutive law applied used a set of 13 material parameters. This paper discusses the requirements for uniaxial tests which meet the determination of a suitable set of parameters for describing ratchetting. To describe different kinds of isotropic hardening, an extension of the isotropic hardening rule is proposed. Under uniaxial conditions, continuous cyclic hardening is well reproduced with this extension. (orig.)

  6. Modeling of uniaxial ratchetting behavior of SA333 carbon manganese steel

    International Nuclear Information System (INIS)

    Shit, J.; Dhar, S.; Acharyya, S.K.; Goyal, S.

    2012-01-01

    The paper deals with uniaxial ratcheting phenomenon of cyclic plasticity behavior of the materials SA333 carbon Manganese steel. A mechanistic model for the ratcheting phenomenon has been proposed. It is observed that von Mises yield criterion together with Chaboche’s kinematic hardening rules are not sufficient to model ratcheting phenomenon. Other associated phenomena like plastic strain memory surface, back stress memory points and over all the extra hardening behavior have to be incorporated to get a complete material model for ratcheting. The proposed model assembled all these ideas together with von Mises yield criterion and Chabache’s kinematic hardening rule. Low cycle fatigue tests and uniaxial ratcheting tests have been conducted for the materials. The material constants are identified and derived from experimental results. The ratcheting coefficients have been properly calibrated with these material constants. The material model, as mentioned above, for the ratcheting phenomenon has been implemented in an elastic plastic finite element code. The ratcheting results for different stress controlled ratcheting loads have been computed. The good feature of this model is that it reduces to symmetric low cycle fatigue model when loop closes. - Highlights: ► A common material model to simulate symmetric LCF and ratcheting. ► Extra hardening to take care the shift of plastic strain centre. ► Material parameters from tensile and LCF tests. ► Saturated loop in LCF and ratcheting strain rate is compared with experiment. ► Consideration of loading path, memory path and their directions.

  7. Mixed motion in deterministic ratchets due to anisotropic permeability

    NARCIS (Netherlands)

    Kulrattanarak, T.; Sman, van der R.G.M.; Lubbersen, Y.S.; Schroën, C.G.P.H.; Pham, H.T.M.; Sarro, P.M.; Boom, R.M.

    2011-01-01

    Nowadays microfluidic devices are becoming popular for cell/DNA sorting and fractionation. One class of these devices, namely deterministic ratchets, seems most promising for continuous fractionation applications of suspensions (Kulrattanarak et al., 2008 [1]). Next to the two main types of particle

  8. Dielectrophoretic separation of gaseous isotopes

    International Nuclear Information System (INIS)

    McConnell, D.B.

    1975-01-01

    Gaseous isotopes are separated from a mixture in a vertically elongated chamber by subjecting the mixture to a nonuniform transverse electric field. Dielectrophoretic separation of the isotopes is effected, producing a transverse temperature gradient in the chamber, thereby enhancing the separation by convective countercurrent flow. In the example given, the process and apparatus are applied to the production of heavy water from steam

  9. Molecular wires acting as quantum heat ratchets.

    Science.gov (United States)

    Zhan, Fei; Li, Nianbei; Kohler, Sigmund; Hänggi, Peter

    2009-12-01

    We explore heat transfer in molecular junctions between two leads in the absence of a finite net thermal bias. The application of an unbiased time-periodic temperature modulation of the leads entails a dynamical breaking of reflection symmetry, such that a directed heat current may emerge (ratchet effect). In particular, we consider two cases of adiabatically slow driving, namely, (i) periodic temperature modulation of only one lead and (ii) temperature modulation of both leads with an ac driving that contains a second harmonic, thus, generating harmonic mixing. Both scenarios yield sizable directed heat currents, which should be detectable with present techniques. Adding a static thermal bias allows one to compute the heat current-thermal load characteristics, which includes the ratchet effect of negative thermal bias with positive-valued heat flow against the thermal bias, up to the thermal stop load. The ratchet heat flow in turn generates also an electric current. An applied electric stop voltage, yielding effective zero electric current flow, then mimics a solely heat-ratchet-induced thermopower ("ratchet Seebeck effect"), although no net thermal bias is acting. Moreover, we find that the relative phase between the two harmonics in scenario (ii) enables steering the net heat current into a direction of choice.

  10. ASME code and ratcheting in piping components. Final technical report

    International Nuclear Information System (INIS)

    Hassan, T.; Matzen, V.C.

    1999-01-01

    The main objective of this research is to develop an analysis program which can accurately simulate ratcheting in piping components subjected to seismic or other cyclic loads. Ratcheting is defined as the accumulation of deformation in structures and materials with cycles. This phenomenon has been demonstrated to cause failure to piping components (known as ratcheting-fatigue failure) and is yet to be understood clearly. The design and analysis methods in the ASME Boiler and Pressure Vessel Code for ratcheting of piping components are not well accepted by the practicing engineering community. This research project attempts to understand the ratcheting-fatigue failure mechanisms and improve analysis methods for ratcheting predictions. In the first step a state-of-the-art testing facility is developed for quasi-static cyclic and seismic testing of straight and elbow piping components. A systematic testing program to study ratcheting is developed. Some tests have already been performed and the rest will be completed by summer'99. Significant progress has been made in the area of constitutive modeling. A number of sophisticated constitutive models have been evaluated in terms of their simulations for a broad class of ratcheting responses. From the knowledge gained from this evaluation study two improved models are developed. These models are demonstrated to have promise in simulating ratcheting responses in piping components. Hence, implementation of these improved models in widely used finite element programs, ANSYS and/or ABAQUS, is in progress. Upon achieving improved finite element programs for simulation of ratcheting, the ASME Code provisions for ratcheting of piping components will be reviewed and more rational methods will be suggested. Also, simplified analysis methods will be developed for operability studies of piping components and systems. Some of the future works will be performed under the auspices of the Center for Nuclear Power Plant Structures

  11. High temperature viscoplastic ratchetting: Material response or modeling artifact

    International Nuclear Information System (INIS)

    Freed, A.D.

    1991-01-01

    Ratchetting, the net accumulation of strain over a loading cycle, is a deformation mechanism that leads to distortions in shape, often resulting in a loss of function that culminates in structural failure. Viscoplastic ratchetting is prevalent at high homologous temperatures where viscous characteristics are prominent in material response. This deformation mechanism is accentuated by the presence of a mean stress; a consequence of interaction between thermal gradients and structural constraints. Favorable conditions for viscoplastic ratchetting exist in the Stirling engines being developed by the National Aeronautics and Space Administration (NASA) and the Department of Energy (DOE) for space and terrestrial power applications. To assess the potential for ratchetting and its effect on durability of high temperature structures requires a viscoplastic analysis of the design. But ratchetting is a very difficult phenomenon to accurately model. One must therefore ask whether the results from such an analysis are indicative of actual material behavior, or if they are artifacts of the theory being used in the analysis. There are several subtle aspects in a viscoplastic model that must be dealt with in order to accurately model ratchetting behavior, and therefore obtain meaningful predictions from it. In this paper, some of these subtlties and the necessary ratchet experiments needed to obtain an accurate viscoplastic representation of a material are discussed

  12. Brownian ratchets from statistical physics to bio and nano-motors

    CERN Document Server

    Cubero, David

    2016-01-01

    Illustrating the development of Brownian ratchets, from their foundations, to their role in the description of life at the molecular scale and in the design of artificial nano-machinery, this text will appeal to both advanced graduates and researchers entering the field. Providing a self-contained introduction to Brownian ratchets, devices which rectify microscopic fluctuations, Part I avoids technicalities and sets out the broad range of physical systems where the concept of ratchets is relevant. Part II supplies a single source for a complete and modern theoretical analysis of ratchets in regimes such as classical vs quantum and stochastic vs deterministic, and in Part III readers are guided through experimental developments in different physical systems, each highlighting a specific unique feature of ratchets. The thorough and systematic approach to the topic ensures that this book provides a complete guide to Brownian ratchets for newcomers and established researchers in physics, biology and biochemistry.

  13. Ratchet device with broken friction symmetry

    DEFF Research Database (Denmark)

    Norden, Bengt; Zolotaryuk, Yaroslav; Christiansen, Peter Leth

    2002-01-01

    An experimental setup (gadget) has been made for demonstration of a ratchet mechanism induced by broken symmetry of a dependence of dry friction on external forcing. This gadget converts longitudinal oscillating or fluctuating motion into a unidirectional rotation, the direction of which is in ac......An experimental setup (gadget) has been made for demonstration of a ratchet mechanism induced by broken symmetry of a dependence of dry friction on external forcing. This gadget converts longitudinal oscillating or fluctuating motion into a unidirectional rotation, the direction of which...... is in accordance with given theoretical arguments. Despite the setup being three dimensional, the ratchet rotary motion is proved to be described by one simple dynamic equation. This kind of motion is a result of the interplay of friction and inertia....

  14. Ratchet effect on a relativistic particle driven by external forces

    Energy Technology Data Exchange (ETDEWEB)

    Quintero, Niurka R [Departamento de Fisica Aplicada I, Escuela Universitaria Politecnica, Universidad de Sevilla, Calle Virgen de Africa 7, E-41011 Sevilla (Spain); Alvarez-Nodarse, Renato [Departamento de Analisis Matematico, Facultad de Matematicas, Universidad de Sevilla, Apdo 1160, E-41080 Sevilla (Spain); Cuesta, Jose A, E-mail: niurka@us.es, E-mail: ran@us.es, E-mail: cuesta@math.uc3m.es [Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matematicas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, E-28911 Leganes, Madrid (Spain)

    2011-10-21

    We study the ratchet effect of a damped relativistic particle driven by both asymmetric temporal bi-harmonic and time-periodic piecewise constant forces. This system can be formally solved for any external force, providing the ratchet velocity as a nonlinear functional of the driving force. This allows us to explicitly illustrate the functional Taylor expansion formalism recently proposed for this kind of systems. The Taylor expansion reveals particularly useful to obtain the shape of the current when the force is periodic, piecewise constant. We also illustrate the somewhat counterintuitive effect that introducing damping may induce a ratchet effect. When the force is symmetric under time-reversal and the system is undamped, under symmetry principles no ratchet effect is possible. In this situation increasing damping generates a ratchet current which, upon increasing the damping coefficient eventually reaches a maximum and decreases toward zero. We argue that this effect is not specific of this example and should appear in any ratchet system with tunable damping driven by a time-reversible external force. (paper)

  15. Ratchet effect on a relativistic particle driven by external forces

    International Nuclear Information System (INIS)

    Quintero, Niurka R; Alvarez-Nodarse, Renato; Cuesta, Jose A

    2011-01-01

    We study the ratchet effect of a damped relativistic particle driven by both asymmetric temporal bi-harmonic and time-periodic piecewise constant forces. This system can be formally solved for any external force, providing the ratchet velocity as a nonlinear functional of the driving force. This allows us to explicitly illustrate the functional Taylor expansion formalism recently proposed for this kind of systems. The Taylor expansion reveals particularly useful to obtain the shape of the current when the force is periodic, piecewise constant. We also illustrate the somewhat counterintuitive effect that introducing damping may induce a ratchet effect. When the force is symmetric under time-reversal and the system is undamped, under symmetry principles no ratchet effect is possible. In this situation increasing damping generates a ratchet current which, upon increasing the damping coefficient eventually reaches a maximum and decreases toward zero. We argue that this effect is not specific of this example and should appear in any ratchet system with tunable damping driven by a time-reversible external force. (paper)

  16. Granular Segregation by an Oscillating Ratchet Mechanism

    International Nuclear Information System (INIS)

    Igarashi, A.; Horiuchi, Ch.

    2004-01-01

    We report on a method to segregate granular mixtures which consist of two kinds of particles by an oscillating ''ratchet'' mechanism. The segregation system has an asymmetrical sawtooth-shaped base which is vertically oscillating. Such a ratchet base produces a directional current of particles owing to its transport property. It is a counterintuitive and interesting phenomenon that a vertically vibrated base transports particles horizontally. This system is studied with numerical simulations, and it is found that we can apply such a system to segregation of mixtures of particles with different properties (radius or mass). Furthermore, we find out that an appropriate inclination of the ratchet-base makes the quality of segregation high. (author)

  17. Clarification of strain limits considering the ratcheting fatigue strength of 316FR steel

    International Nuclear Information System (INIS)

    Isobe, Nobuhiro; Sukekawa, Masayuki; Nakayama, Yasunari; Date, Shingo; Ohtani, Tomomi; Takahashi, Yukio; Kasahara, Naoto; Shibamoto, Hiroshi; Nagashima, Hideaki; Inoue, Kazuhiko

    2008-01-01

    The effect of ratcheting on fatigue strength was investigated in order to rationalize the strain limit as a design criterion of commercialized fast reactor systems. Ratcheting fatigue tests were conducted at 550 deg. Duration of the ratchet straining was set for a certain number of strain cycles taking the loading condition of fast reactors into account, and the number of cycles for strain accumulation was defined as the ratchet-expired cycle. Fatigue lives decrease as the accumulated strain by ratcheting increases. Mean stress increased during the ratcheting cycle and its maximum value depended on the accumulated strain and the ratchet-expired cycle. Fatigue life reduction was negligible when the maximum mean stress was less than 25 MPa, corresponding to an accumulated strain of 2.2%. Accumulated strain is limited to 2% in the present design guidelines and this strain limit is considered effective to avoid reducing fatigue life by ratcheting. Microcrack growth behaviors were also investigated in these tests in order to discuss the life reduction mechanisms in ratcheting conditions

  18. Analysis and application of ratcheting evaluation procedure of Japanese high temperature design code DDS

    International Nuclear Information System (INIS)

    Lee, H. Y.; Kim, J. B.; Lee, J. H.

    2002-01-01

    In this study, the evaluation procedure of Japanese DDS code which was recently developed to assess the progressive inelastic deformation occurring under repetition of secondary stresses was analyzed and the evaluation results according to DDS was compared those of the thermal ratchet structural test carried out by KAERI to analyze the conservativeness of the code. The existing high temperature codes of US ASME-NH and French RCC-MR suggest the limited ratcheting procedures for only the load cases of cyclic secondary stresses under primary stresses. So they are improper to apply to the actual ratcheting problem which can occur under cyclic secondary membrane stresses due to the movement of hot free surface for the pool type LMR. DDS provides explicitly an analysis procedure of ratcheting due to moving thermal gradients near hot free surface. A comparison study was carried out between the results by the design code of DDS and by the structural test to investigate the conservativeness of DDS code, which showed that the evaluation results by DDS were in good agreement with those of the structural test

  19. Quantum ratchet effect in a time non-uniform double-kicked model

    Science.gov (United States)

    Chen, Lei; Wang, Zhen-Yu; Hui, Wu; Chu, Cheng-Yu; Chai, Ji-Min; Xiao, Jin; Zhao, Yu; Ma, Jin-Xiang

    2017-07-01

    The quantum ratchet effect means that the directed transport emerges in a quantum system without a net force. The delta-kicked model is a quantum Hamiltonian model for the quantum ratchet effect. This paper investigates the quantum ratchet effect based on a time non-uniform double-kicked model, in which two flashing potentials alternately act on a particle with a homogeneous initial state of zero momentum, while the intervals between adjacent actions are not equal. The evolution equation of the state of the particle is derived from its Schrödinger equation, and the numerical method to solve the evolution equation is pointed out. The results show that quantum resonances can induce the ratchet effect in this time non-uniform double-kicked model under certain conditions; some quantum resonances, which cannot induce the ratchet effect in previous models, can induce the ratchet effect in this model, and the strengths of the ratchet effect in this model are stronger than those in previous models under certain conditions. These results enrich people’s understanding of the delta-kicked model, and provides a new optional scheme to control the quantum transport of cold atoms in experiment.

  20. Near-Field, On-Chip Optical Brownian Ratchets.

    Science.gov (United States)

    Wu, Shao-Hua; Huang, Ningfeng; Jaquay, Eric; Povinelli, Michelle L

    2016-08-10

    Nanoparticles in aqueous solution are subject to collisions with solvent molecules, resulting in random, Brownian motion. By breaking the spatiotemporal symmetry of the system, the motion can be rectified. In nature, Brownian ratchets leverage thermal fluctuations to provide directional motion of proteins and enzymes. In man-made systems, Brownian ratchets have been used for nanoparticle sorting and manipulation. Implementations based on optical traps provide a high degree of tunability along with precise spatiotemporal control. Here, we demonstrate an optical Brownian ratchet based on the near-field traps of an asymmetrically patterned photonic crystal. The system yields over 25 times greater trap stiffness than conventional optical tweezers. Our technique opens up new possibilities for particle manipulation in a microfluidic, lab-on-chip environment.

  1. Polymer deformation in Brownian ratchets: theory and molecular dynamics simulations.

    Science.gov (United States)

    Kenward, Martin; Slater, Gary W

    2008-11-01

    We examine polymers in the presence of an applied asymmetric sawtooth (ratchet) potential which is periodically switched on and off, using molecular dynamics (MD) simulations with an explicit Lennard-Jones solvent. We show that the distribution of the center of mass for a polymer in a ratchet is relatively wide for potential well depths U0 on the order of several kBT. The application of the ratchet potential also deforms the polymer chains. With increasing U0 the Flory exponent varies from that for a free three-dimensional (3D) chain, nu=35 (U0=0), to that corresponding to a 2D compressed (pancake-shaped) polymer with a value of nu=34 for moderate U0. This has the added effect of decreasing a polymer's diffusion coefficient from its 3D value D3D to that of a pancaked-shaped polymer moving parallel to its minor axis D2D. The result is that a polymer then has a time-dependent diffusion coefficient D(t) during the ratchet off time. We further show that this suggests a different method to operate a ratchet, where the off time of the ratchet, toff, is defined in terms of the relaxation time of the polymer, tauR. We also derive a modified version of the Bader ratchet model [Bader, Proc. Natl. Acad. Sci. U.S.A. 96, 13165 (1999)] which accounts for this deformation and we present a simple expression to describe the time dependent diffusion coefficient D(t). Using this model we then illustrate that polymer deformation can be used to modulate polymer migration in a ratchet potential.

  2. Shock initiation experiments on ratchet grown PBX 9502

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsen, Richard L [Los Alamos National Laboratory; Thompson, Darla G [Los Alamos National Laboratory; Olinger, Barton W [Los Alamos National Laboratory; Deluca, Racci [Los Alamos National Laboratory; Bartram, Brian D [Los Alamos National Laboratory; Pierce, Timothy H [Los Alamos National Laboratory; Sanchez, Nathaniel J [Los Alamos National Laboratory

    2010-01-01

    This study compares the shock initiation behavior of PBX 9502 pressed to less than nominal density (nominal density is 1.890 {+-} 0.005 g/cm{sup 3}) with PBX 9502 pressed to nominal density and then ''ratchet grown'' to low density. PBX 9502 is an insensitive plastic bonded explosive consisting of 95 weight % dry-aminated tri-amino-tri-nitro-benzene (TATB) and 5 weight % Kel-F 800 plastic binder. ''Ratchet growth'' - an irreversible increase in specific volume - occurs when an explosive based on TATB is temperature cycled. The design of our study is as follows: PBX 9502, all from the same lot, received the following four treatments. Samples in the first group were pressed to less than nominal density. These were not ratchet grown and used as a baseline. Samples in the second group were pressed to nominal density and then ratchet grown by temperature cycling 30 times between -54 C and +80 C. Samples in the final group were pressed to nominal density and cut into 100 mm by 25.4 mm diameter cylinders. During thermal cycling the cylinders were axially constrained by a 100 psi load. Samples for shock initiation experiments were cut perpendicular (disks) and parallel (slabs) to the axial load. The four sample groups can be summarized with the terms pressed low, ratchet grown/no load, axial load/disks, and axial load/slabs. All samples were shock initiated with nearly identical inputs in plate impact experiments carried out on a gas gun. Wave profiles were measured after propagation through 3, 4, 5, and 6 mm of explosive. Side by side comparison of wave profiles from different samples is used as a measure of relative sensitivity. All reduced density samples were more shock sensitive than nominal density PBX 9502. Differences in shock sensitivity between ratchet grown and pressed to low density PBX 9502 were small, but the low density pressings are slightly more sensitive than the ratchet grown samples.

  3. Experimental study on ratcheting of a cylinder subjected to axially moving temperature distribution

    International Nuclear Information System (INIS)

    Igari, T.; Yamauchi, M.; Wada, H.

    1989-01-01

    Development of a design of cylinder subjected to axially moving temperature distribution is very important in the design of the reactor vessel of fast breeder reactor containing high-temperature sodium. So far, however, a mechanism and a prediction method for this ratcheting have not been clarified. This paper proposes the ratcheting mechanism as well as the predictive equations of the ratcheting strain for the representative two temperature distributions. The proposed ratcheting mechanism was based on the hoop-membrane stress-strain behavior of the cylinder, and the movement of the temperature distribution was regarded as a driving force of this ratcheting. This paper describes the results of the experimental study on the proposed ratcheting mechanism and the predictive equations

  4. Solution of the ratchet-shakedown Bree problem with an extra orthogonal primary load

    International Nuclear Information System (INIS)

    Bradford, R.A.W.

    2015-01-01

    The complete shakedown and ratcheting solution is derived analytically for a flat plate subject to unequal biaxial primary membrane stresses and a cyclic secondary bending stress in one in-plane direction (x). The Tresca yield condition and elastic-perfectly plastic behaviour are assumed. It is shown that the results can be expressed in the form of a “universal” ratchet diagram applicable for all magnitudes of orthogonal load. For sufficiently large cyclic bending stresses, tensile ratcheting can occur in the x direction if the x direction primary membrane stress exceeds half that in the orthogonal direction. Conversely, for sufficiently large cyclic bending stresses ratcheting in the x direction will be compressive if the x direction primary membrane stress is less than half that in the orthogonal direction. When the x direction primary membrane stress is exactly half that in the orthogonal direction ratcheting cannot occur however large the cyclic secondary bending stress. - Highlights: • A complete shakedown and ratcheting solution is derived analytically. • The problem is Bree-like but with an extra orthogonal primary load. • The ratchet diagram can be expressed in a form applicable to any orthogonal load. • Tensile ratcheting can occur if the primary load exceeds half the orthogonal load. • Compressive ratcheting can occur for smaller primary loads

  5. Multiaxial ratcheting behavior of zirconium alloy tubes under combined cyclic axial load and internal pressure

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G.; Zhang, X. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Xu, D.K. [Environmental Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, D.H. [Hunan Taohuajiang Nuclear Power Co., Ltd, Yiyang, 413000 (China); Chen, X. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zhang, Z., E-mail: zhe.zhang@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2017-06-15

    In this study, a series of uniaxial and multiaxial ratcheting tests were conducted at room temperature on zirconium alloy tubes. The experimental results showed that for uniaxial symmetrical cyclic test, the axial ratcheting strain ɛ{sub x} did not accumulate obviously in initial stage, but gradually increased up to 1% with increasing stress amplitude σ{sub xa}. For multiaxial ratcheting tests, the zirconium alloy tube was highly sensitive to both the axial stress amplitude σ{sub xa} and the internal pressure p{sub i}. The hoop ratcheting strain ɛ{sub θ} increased continuously with the increase of axial stress amplitude, whereas the evolution of axial ratcheting strain ɛ{sub x} was related to the axial stress amplitude. The internal pressure restricted the ratcheting accumulation in the axial direction, but promoted the hoop ratcheting strain on the contrary. The prior loading history greatly restrained the ratcheting behavior of subsequent cycling with a small internal pressure. - Highlights: •Uniaxial and multiaxial ratcheting behavior of the zirconium alloy tubes are investigated at room temperature. •The ratcheting depends greatly on the stress amplitude or internal pressure. •The interaction between the axial and hoop ratcheting mechanisms is greatly dependent on the internal pressure level. •The ratcheting is influenced significantly by the loading history of internal pressure.

  6. Multiaxial ratcheting behavior of zirconium alloy tubes under combined cyclic axial load and internal pressure

    International Nuclear Information System (INIS)

    Chen, G.; Zhang, X.; Xu, D.K.; Li, D.H.; Chen, X.; Zhang, Z.

    2017-01-01

    In this study, a series of uniaxial and multiaxial ratcheting tests were conducted at room temperature on zirconium alloy tubes. The experimental results showed that for uniaxial symmetrical cyclic test, the axial ratcheting strain ɛ x did not accumulate obviously in initial stage, but gradually increased up to 1% with increasing stress amplitude σ xa . For multiaxial ratcheting tests, the zirconium alloy tube was highly sensitive to both the axial stress amplitude σ xa and the internal pressure p i . The hoop ratcheting strain ɛ θ increased continuously with the increase of axial stress amplitude, whereas the evolution of axial ratcheting strain ɛ x was related to the axial stress amplitude. The internal pressure restricted the ratcheting accumulation in the axial direction, but promoted the hoop ratcheting strain on the contrary. The prior loading history greatly restrained the ratcheting behavior of subsequent cycling with a small internal pressure. - Highlights: •Uniaxial and multiaxial ratcheting behavior of the zirconium alloy tubes are investigated at room temperature. •The ratcheting depends greatly on the stress amplitude or internal pressure. •The interaction between the axial and hoop ratcheting mechanisms is greatly dependent on the internal pressure level. •The ratcheting is influenced significantly by the loading history of internal pressure.

  7. Regional Atmospheric Transport Code for Hanford Emission Tracking, Version 2 (RATCHET2)

    International Nuclear Information System (INIS)

    Ramsdell, James V.; Rishel, Jeremy P.

    2006-01-01

    This manual describes the atmospheric model and computer code for the Atmospheric Transport Module within SAC. The Atmospheric Transport Module, called RATCHET2, calculates the time-integrated air concentration and surface deposition of airborne contaminants to the soil. The RATCHET2 code is an adaptation of the Regional Atmospheric Transport Code for Hanford Emissions Tracking (RATCHET). The original RATCHET code was developed to perform the atmospheric transport for the Hanford Environmental Dose Reconstruction Project. Fundamentally, the two sets of codes are identical; no capabilities have been deleted from the original version of RATCHET. Most modifications are generally limited to revision of the run-specification file to streamline the simulation process for SAC.

  8. Regional Atmospheric Transport Code for Hanford Emission Tracking, Version 2(RATCHET2)

    Energy Technology Data Exchange (ETDEWEB)

    Ramsdell, James V.; Rishel, Jeremy P.

    2006-07-01

    This manual describes the atmospheric model and computer code for the Atmospheric Transport Module within SAC. The Atmospheric Transport Module, called RATCHET2, calculates the time-integrated air concentration and surface deposition of airborne contaminants to the soil. The RATCHET2 code is an adaptation of the Regional Atmospheric Transport Code for Hanford Emissions Tracking (RATCHET). The original RATCHET code was developed to perform the atmospheric transport for the Hanford Environmental Dose Reconstruction Project. Fundamentally, the two sets of codes are identical; no capabilities have been deleted from the original version of RATCHET. Most modifications are generally limited to revision of the run-specification file to streamline the simulation process for SAC.

  9. Harmonic ratcheting for fast acceleration

    Science.gov (United States)

    Cook, N.; Brennan, J. M.; Peggs, S.

    2014-04-01

    A major challenge in the design of rf cavities for the acceleration of medium-energy charged ions is the need to rapidly sweep the radio frequency over a large range. From low-power medical synchrotrons to high-power accelerator driven subcritical reactor systems, and from fixed focus alternating gradient accelerators to rapid cycling synchrotrons, there is a strong need for more efficient, and faster, acceleration of protons and light ions in the semirelativistic range of hundreds of MeV/u. A conventional way to achieve a large, rapid frequency sweep (perhaps over a range of a factor of 6) is to use custom-designed ferrite-loaded cavities. Ferrite rings enable the precise tuning of the resonant frequency of a cavity, through the control of the incremental permeability that is possible by introducing a pseudoconstant azimuthal magnetic field. However, rapid changes over large permeability ranges incur anomalous behavior such as the "Q-loss" and "f-dot" loss phenomena that limit performance while requiring high bias currents. Notwithstanding the incomplete understanding of these phenomena, they can be ameliorated by introducing a "harmonic ratcheting" acceleration scheme in which two or more rf cavities take turns accelerating the beam—one turns on when the other turns off, at different harmonics—so that the radio frequency can be constrained to remain in a smaller range. Harmonic ratcheting also has straightforward performance advantages, depending on the particular parameter set at hand. In some typical cases it is possible to halve the length of the cavities, or to double the effective gap voltage, or to double the repetition rate. This paper discusses and quantifies the advantages of harmonic ratcheting in general. Simulation results for the particular case of a rapid cycling medical synchrotron ratcheting from harmonic number 9 to 2 show that stability and performance criteria are met even when realistic engineering details are taken into consideration.

  10. Ratcheting fatigue behavior of Zircaloy-2 at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Rajpurohit, R.S., E-mail: rsrajpurohit.rs.met13@iitbhu.ac.in [Department of Metallurgical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005 (India); Sudhakar Rao, G. [Nuclear Energy and Safety Department, Paul Scherrer Institute, Villigen, CH-5232 (Switzerland); Chattopadhyay, K.; Santhi Srinivas, N.C.; Singh, Vakil [Department of Metallurgical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005 (India)

    2016-08-15

    Nuclear core components of zirconium alloys experience asymmetric stress or strain cycling during service which leads to plastic strain accumulation and drastic reduction in fatigue life as well as dimensional instability of the component. Variables like loading rate, mean stress, and stress amplitude affect the influence of asymmetric loading. In the present investigation asymmetric stress controlled fatigue tests were conducted with mean stress from 80 to 150 MPa, stress amplitude from 270 to 340 MPa and stress rate from 30 to 750 MPa/s to study the process of plastic strain accumulation and its effect on fatigue life of Zircaloy-2 at room temperature. It was observed that with increase in mean stress and stress amplitude accumulation of ratcheting strain was increased and fatigue life was reduced. However, increase in stress rate led to improvement in fatigue life due to less accumulation of ratcheting strain. - Highlights: • Ratcheting strain accumulation occurred due to asymmetric cyclic loading. • Accumulation of ratcheting strain increased with mean stress and stress amplitude. • Ratcheting strain accumulation decreased with increase in stress rate. • With increase in mean stress and stress amplitude there was reduction in fatigue life. • Fatigue life is improved with increase in stress rate.

  11. Ratcheting deformation of advanced 316 steel under creep-plasticity condition

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, Fumiko; Ishikawa, Akiyoshi; Asada, Yasuhide [Tokai Univ., Tokyo (Japan). Dept. of Mechanical Engineering

    1998-11-01

    Tension-torsion biaxial ratcheting tests have been conducted with Advanced 316 Steel (316FR Steel) at 650 C under a cyclic strain rate of 10{sup -3} to 10{sup -5} s{sup -1}. Accumulation of ratcheting strain has been measured. Accumulated ratchet strain has shown to be much larger than predicted based on a usual method of the linear superposition of strains due to creep and plasticity. The result shows there observed the creep-plasticity interaction in the observation. (orig.)

  12. A study on thermal ratcheting structure test of 316L test cylinder

    International Nuclear Information System (INIS)

    Lee, H. Y.; Kim, J. B.; Koo, G. H.

    2001-01-01

    In this study, the progressive inelastic deformation, so called, thermal ratchet phenomenon which can occur in high temperature liquid metal reactor was simulated with thermal ratchet structural test facility and 316L stainless steel test cylinder. The inelastic deformation of the reactor baffle cylinder can occur due to the moving temperature distribution along the axial direction as the hot free surface moves up and down under the cyclic heat-up and cool-down of reactor operations. The ratchet deformations were measured with the laser displacement sensor and LVDTs after cooling the structural specimen which experiences thermal load up to 550 .deg. C and the temperature differences of about 500 .deg. C. During structural thermal ratchet test, the temperature distribution of the test cylinder along the axial direction was measured from 28 channels of thermocouples and the temperatures were used for the ratchet analysis. The thermal ratchet deformation analysis was performed with the NONSTA code whose constitutive model is nonlinear combined kinematic and isotropic hardening model and the test results were compared with those of the analysis. Thermal ratchet test was carried out with respect to 9 cycles of thermal loading and the maximum residual displacements were measured to be 1.8mm. It was shown that thermal ratchet load can cause a progressive deformation to the reactor structure. The analysis results with the combined hardening model were in reasonable agreement with those of the tests

  13. Polarizability of Six-Helix Bundle and Triangle DNA Origami and Their Escape Characteristics from a Dielectrophoretic Trap.

    Science.gov (United States)

    Gan, Lin; Camacho-Alanis, Fernanda; Ros, Alexandra

    2015-12-15

    DNA nanoassemblies, such as DNA origamis, hold promise in biosensing, drug delivery, nanoelectronic circuits, and biological computing, which require suitable methods for migration and precision positioning. Insulator-based dielectrophoresis (iDEP) has been demonstrated as a powerful migration and trapping tool for μm- and nm-sized colloids as well as DNA origamis. However, little is known about the polarizability of origami species, which is responsible for their dielectrophoretic migration. Here, we report the experimentally determined polarizabilities of the six-helix bundle origami (6HxB) and triangle origami by measuring the migration times through a potential landscape exhibiting dielectrophoretic barriers. The resulting migration times correlate to the depth of the dielectrophoretic potential barrier and the escape characteristics of the origami according to an adapted Kramer's rate model, allowing their polarizabilities to be determined. We found that the 6HxB polarizability is larger than that of the triangle origami, which correlates with the variations in charge density of both origamis. Further, we discuss the orientation of both origami species in the dielectrophoretic trap and discuss the influence of diffusion during the escape process. Our study provides detailed insight into the factors contributing to the migration through dielectrophoretic potential landscapes, which can be exploited for applications with DNA and other nanoassemblies based on dielectrophoresis.

  14. Reversible Vector Ratchet Effect in Skyrmion Systems

    Science.gov (United States)

    Ma, Xiaoyu; Reichhardt, Charles; Reichhardt, Cynthia

    Magnetic skyrmions are topological non-trivial spin textures found in several magnetic materials. Since their motion can be controlled using ultralow current densities, skyrmions are appealing for potential applications in spintronics as information carriers and processing devices. In this work, we studied the collective transport properties of driven skyrmions based on a particle-like model with molecular dynamics (MD) simulation. Our results show that ac driven skyrmions interacting with an asymmetric substrate provide a realization of a new class of ratchet system, which we call a vector ratchet, that arises due to the effect of the Magnus term on the skyrmion dynamics. In a vector ratchet, the dc motion induced by the ac drive can be described as a vector that can be rotated up to 360 degrees relative to the substrate asymmetry direction. This could represent a new method for controlling skyrmion motion for spintronic applications.

  15. Continuous particle separation in a serpentine microchannel via negative and positive dielectrophoretic focusing

    International Nuclear Information System (INIS)

    Church, Christopher; Zhu, Junjie; Nieto, Juan; Keten, Gyunay; Ibarra, Erl; Xuan, Xiangchun

    2010-01-01

    Dielectrophoresis (DEP) has been widely used to focus and separate cells and particles in microfluidic devices. This work first demonstrates negative and positive dielectrophoretic focusing of particles in a serpentine microchannel by changing only the electric conductivity of the suspending fluid. Due to the channel turn-induced dielectrophoretic force, particles are focused to either the centerline or the sidewalls of the channel when their electric conductivity is lower (i.e. negative DEP) or higher (i.e. positive DEP) than that of the fluid. These distinctive dielectrophoretic focusing phenomena in a serpentine microchannel are then combined to implement a continuous separation between particles of different sizes and electric conductivities. Such separation eliminates the fabrication of in-channel microelectrodes or micro-insulators that are typically required in DEP-based separation techniques. A numerical model is also developed to predict the particle motion, and the simulation results agree reasonably with the observed particle focusing and separation behaviors.

  16. Active Brownian motion models and applications to ratchets

    Science.gov (United States)

    Fiasconaro, A.; Ebeling, W.; Gudowska-Nowak, E.

    2008-10-01

    We give an overview over recent studies on the model of Active Brownian Motion (ABM) coupled to reservoirs providing free energy which may be converted into kinetic energy of motion. First, we present an introduction to a general concept of active Brownian particles which are capable to take up energy from the source and transform part of it in order to perform various activities. In the second part of our presentation we consider applications of ABM to ratchet systems with different forms of differentiable potentials. Both analytical and numerical evaluations are discussed for three cases of sinusoidal, staircaselike and Mateos ratchet potentials, also with the additional loads modelled by tilted potential structure. In addition, stochastic character of the kinetics is investigated by considering perturbation by Gaussian white noise which is shown to be responsible for driving the directionality of the asymptotic flux in the ratchet. This stochastically driven directionality effect is visualized as a strong nonmonotonic dependence of the statistics of the right versus left trajectories of motion leading to a net current of particles. Possible applications of the ratchet systems to molecular motors are also briefly discussed.

  17. Thermal stress ratcheting analysis of a time-hardening structure

    International Nuclear Information System (INIS)

    Hada, Kazuhiko

    1999-01-01

    Thermal stress ratcheting and shakedown is analyzed for a time-hardening structure: the yield stress increases as time goes on under exposure to neutron irradiation or thermal aging. New three modes of ratcheting and shakedown are identified as transition to other deformation modes. Stress regimes and thermal ratchet strains are formulated as a function of time-increasing yield stress. Moreover, a new model of trouble occurrence frequency as a modification to a bath-tube curve is proposed for calculating a time period of a thermal cycle. Application of the proposed formulation tells us a benefit of taking into account the time hardening due to neutron irradiation. (author)

  18. Dislocation based controlling of kinematic hardening contribution to simulate primary and secondary stages of uniaxial ratcheting

    Science.gov (United States)

    Bhattacharjee, S.; Dhar, S.; Acharyya, S. K.

    2017-07-01

    The primary and secondary stages of the uniaxial ratcheting curve for the C-Mn steel SA333 have been investigated. Stress controlled uniaxial ratcheting experiments were conducted with different mean stresses and stress amplitudes to obtain curves showing the evolution of ratcheting strain with number of cycles. In stage-I of the ratcheting curve, a large accumulation of ratcheting strain occurs, but at a decreasing rate. In contrast, in stage-II a smaller accumulation of ratcheting strain is found and the ratcheting rate becomes almost constant. Transmission electron microscope observations reveal that no specific dislocation structures are developed during the early stages of ratcheting. Rather, compared with the case of low cycle fatigue, it is observed that sub-cell formation is delayed in the case of ratcheting. The increase in dislocation density as a result of the ratcheting strain is obtained using the Orowan equation. The ratcheting strain is obtained from the shift of the plastic strain memory surface. The dislocation rearrangement is incorporated in a functional form of dislocation density, which is used to calibrate the parameters of a kinematic hardening law. The observations are formulated in a material model, plugged into the ABAQUS finite element (FE) platform as a user material subroutine. Finally the FE-simulated ratcheting curves are compared with the experimental curves.

  19. Implementing Demons and Ratchets

    Directory of Open Access Journals (Sweden)

    Peter M. Orem

    2017-01-01

    Full Text Available Experimental results show that ratchets may be implemented in semiconductor and chemical systems, bypassing the second law and opening up huge gains in energy production. This paper summarizes or describes experiments and results on systems that effect demons and ratchets operating in chemical or electrical domains. One creates temperature differences that can be harvested by a heat engine. A second produces light with only heat input. A third produces harvestable electrical potential directly. These systems share creating particles in one location, destroying them in another and moving them between locations by diffusion (Brownian motion. All absorb ambient heat as they produce other energy forms. None requires an external hot and cold side. The economic and social impacts of these conversions of ambient heat to work are, of course, well-understood and huge. The experimental results beg for serious work on the chance that they are valid.

  20. Constitutive modeling for uniaxial time-dependent ratcheting of SS304 stainless steel

    International Nuclear Information System (INIS)

    Kan Qianhua; Kang Guozheng; Zhang Juan

    2007-01-01

    Based on the experimental results of uniaxial time-dependent ratcheting behavior of SS304 stainless steel at room temperature and 973K, a new time-dependent constitutive model was proposed. The model describes the time-dependent ratcheting by adding a static/thermal recovery into the Abdel-Karim-Ohno non-linear kinematic hardening rule. The capability of the model to describe the time-dependent ratcheting was discussed by comparing the simulations with the corresponding experimental results. It is shown that the revised unified viscoplastic model can simulate the time-dependent ratcheting reasonably both at room and high temperatures. (authors)

  1. Evaluation of thermal ratcheting of reactor vessel wall near the sodium surface

    International Nuclear Information System (INIS)

    Take, Kohji; Fujioka, Terutaka; Yano, Kazutaka

    1989-01-01

    Plastic ratcheting of reactor vessels may occur by an axially moving thermal gradient without primary stress. So there is a need to establish a proper prediction method for the plastic ratcheting. In this study, inelastic FEM analyses of reactor vessel model by using an advanced constitutive equation were carried out in order to comprehend plastic ratcheting behaviour of cylinder which subject to an axially moving thermal gradient. As a result of analyses, a basic mechanism of this ratcheting was found. And it also indicated that cyclic hardening behaviour will became important for development of evaluation method. (author)

  2. Cyclic mechanical behavior of 316L: Uniaxial LCF and strain-controlled ratcheting tests

    International Nuclear Information System (INIS)

    Facheris, G.; Janssens, K.G.F.

    2013-01-01

    Highlights: ► Characterization of cyclic plastic deformation behavior of plate and tubular 316L. ► Strain-controlled ratcheting response between room temperature and 200 °C. ► Isotropic cyclic hardening is dependent on the yield criterion used. ► Ratcheting induced hardening mostly affects the kinematic hardening component. ► Ratcheting induced hardening is related to the mean strain and the ratcheting rate. -- Abstract: With the purpose of analyzing the fatigue behavior under loading conditions relevant for the primary cooling circuit of a light water nuclear reactor, a set of uniaxial low cycle fatigue and strain-controlled ratcheting tests (also named ‘cyclic tension tests’) has been performed at room temperature and at 200 °C on specimens manufactured from two different batches of stainless steel grade 316L. The experiments have been repeated varying strain amplitude, cyclic ratcheting rate and ratcheting direction in order to investigate the influence on the cyclic deformation behavior. In strain-controlled ratcheting tests, the stress response is found to be a superposition of two hardening mechanisms: the first one due to the zero mean strain cycling and the second one linked with the monotonic drifting of mean plastic strain. An approach is proposed to distinguish the effect of each mechanism and the influence of the test parameters on the hardening mechanisms is discussed

  3. Modelization of ratcheting in biaxial experiments

    International Nuclear Information System (INIS)

    Guionnet, C.

    1989-08-01

    A new unified viscoplastic constitutive equation has been developed in order to interpret ratcheting experiments on mechanical structures of fast reactors. The model is based essentially on a generalized Armstrong Frederick equation for the kinematic variable; the coefficients of the dynamic recovery term in this equation is a function of both instantaneous and accumulated inelastic strain which is allowed to vary in an appropriate manner in order to reproduce the experimental ratcheting rate. The validity of the model is verified by comparing predictions with experimental results for austenitic stainless steel (17-12 SPH) tubular specimens subjected to cyclic torsional loading under constant tensile stress at 600 0 C [fr

  4. Viability of dielectrophoretically trapped neuronal cortical cells in culture

    NARCIS (Netherlands)

    Heida, Tjitske; Vulto, P; Rutten, Wim; Marani, Enrico

    2001-01-01

    Negative dielectrophoretic trapping of neural cells is an efficient way to position neural cells on the electrode sites of planar micro-electrode arrays. The preservation of viability of the neural cells is essential for this approach. This study investigates the viability of postnatal cortical rat

  5. Control-oriented approaches to anticipating synchronization of chaotic deterministic ratchets

    Energy Technology Data Exchange (ETDEWEB)

    Xu Shiyun [State Key Lab for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 (China)], E-mail: xushiyun@pku.edu.cn; Yang Ying [State Key Lab for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 (China)], E-mail: yy@mech.pku.edu.cn; Song Lei [State Key Lab for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2009-06-15

    In virtue of techniques derived from nonlinear control system theory, we establish conditions under which one could obtain anticipating synchronization between two periodically driven deterministic ratchets that are able to exhibit directed transport with a finite velocity. Criteria are established in order to guarantee the anticipating synchronization property of such systems as well as characterize phase space dynamics of the ratchet transporting behaviors. These results allow one to predict the chaotic direct transport features of particles on a ratchet potential using a copy of the same system that performs as a slave, which are verified through numerical simulation.

  6. Thermo-mechanical ratcheting in jointed rock masses

    KAUST Repository

    Pasten, C.

    2015-09-01

    Thermo-mechanical coupling takes place in jointed rock masses subjected to large thermal oscillations. Examples range from exposed surfaces under daily and seasonal thermal fluctuations to subsurface rock masses affected by engineered systems such as geothermal operations. Experimental, numerical and analytical results show that thermo-mechanical coupling can lead to wedging and ratcheting mechanisms that result in deformation accumulation when the rock mass is subjected to a biased static-force condition. Analytical and numerical models help in identifying the parameter domain where thermo-mechanical ratcheting can take place.

  7. Thermo-mechanical ratcheting in jointed rock masses

    KAUST Repository

    Pasten, C.; Garcí a, M.; Santamarina, Carlos

    2015-01-01

    Thermo-mechanical coupling takes place in jointed rock masses subjected to large thermal oscillations. Examples range from exposed surfaces under daily and seasonal thermal fluctuations to subsurface rock masses affected by engineered systems such as geothermal operations. Experimental, numerical and analytical results show that thermo-mechanical coupling can lead to wedging and ratcheting mechanisms that result in deformation accumulation when the rock mass is subjected to a biased static-force condition. Analytical and numerical models help in identifying the parameter domain where thermo-mechanical ratcheting can take place.

  8. Direct current dielectrophoretic manipulation of the ionic liquid droplets in water.

    Science.gov (United States)

    Zhao, Kai; Li, Dongqing

    2018-07-13

    The ionic liquids (ILs) as the environmentally benign solvents show great potentials in microemulsion carrier systems and have been widely used in the biochemical and pharmaceutical fields. In the work, the ionic liquid-in-water microemulsions were fabricated by using two kinds of hydrophobic ionic liquid, 1-Butyl-3-methylimidazolium hexafluorophosphate [Bmim][PF 6 ] and 1-Hexyl-3-methylimidazolium hexafluorophosphate [Hmim][PF 6 ] with Tween 20. The ionic liquid droplets in water experience the dielectrophoretic (DEP) forces induced by applying electrical field via a nano-orifice and a micron orifice on the opposite channel walls of a microchannel. The dielectrophoretic behaviors of the ionic liquid-in-water emulsion droplets were investigated under direct current (DC) electric field. The positive and negative DEP behaviors of the ionic liquid-in-water droplets varying with the electrical conductivity of the suspending medium were investigated and two kinds of the ionic liquid droplets of similar sizes were separated by their different DEP behaviors. In addition, the separation of the ionic liquid-in-water droplets by size was conducted. This paper, for the first time to our knowledge, presents the DC-DEP manipulation of the ionic liquid-in-water emulsion droplets by size and by type. This method provides a platform to manipulate the ionic liquid droplets individually. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Engineering Autonomous Chemomechanical Nanomachines Using Brownian Ratchets

    Science.gov (United States)

    Lavella, Gabriel

    Nanoscale machines which directly convert chemical energy into mechanical work are ubiquitous in nature and are employed to perform a diverse set of tasks such as transporting molecules, maintaining molecular gradients, and providing motion to organisms. Their widespread use in nature suggests that large technological rewards can be obtained by designing synthetic machines that use similar mechanisms. This thesis addresses the technological adaptation of a specific mechanism known as the Brownian ratchet for the design of synthetic autonomous nanomachines. My efforts were focused more specifically on synthetic chemomechanical ratchets which I deem will be broadly applicable in the life sciences. In my work I have theoretically explored the biophysical mechanisms and energy landscapes that give rise to the ratcheting phenomena and devised devices that operate off these principles. I demonstrate two generations of devices that produce mechanical force/deformation in response to a user specified ligand. The first generation devices, fabricatied using a combination nanoscale lithographic processes and bioconjugation techniques, were used to provide evidence that the proposed ratcheting phenomena can be exploited in synthetic architectures. Second generation devices fabricated using self-assembled DNA/hapten motifs were constructed to gain a precise understanding of ratcheting dynamics and design constraints. In addition, the self-assembled devices enabled fabrication en masse, which I feel will alleviate future experimental hurdles in analysis and facilitate its adaptation to technologies. The product of these efforts is an architecture that has the potential to enable numerous technologies in biosensing and drug delivery. For example, the coupling of molecule-specific actuation to the release of drugs or signaling molecules from nanocapsules or porous materials could be transformative. Such architectures could provide possible avenues to pressing issues in biology and

  10. Cell Patterning for Liver Tissue Engineering via Dielectrophoretic Mechanisms

    Directory of Open Access Journals (Sweden)

    Wan Nurlina Wan Yahya

    2014-07-01

    Full Text Available Liver transplantation is the most common treatment for patients with end-stage liver failure. However, liver transplantation is greatly limited by a shortage of donors. Liver tissue engineering may offer an alternative by providing an implantable engineered liver. Currently, diverse types of engineering approaches for in vitro liver cell culture are available, including scaffold-based methods, microfluidic platforms, and micropatterning techniques. Active cell patterning via dielectrophoretic (DEP force showed some advantages over other methods, including high speed, ease of handling, high precision and being label-free. This article summarizes liver function and regenerative mechanisms for better understanding in developing engineered liver. We then review recent advances in liver tissue engineering techniques and focus on DEP-based cell patterning, including microelectrode design and patterning configuration.

  11. Ratchetting deformation behavior of modified 9Cr-1Mo steel and applicability of existing constitutive models

    International Nuclear Information System (INIS)

    Yaguchi, Masatsugu; Takahashi, Yukio

    2001-01-01

    A series of ratchetting deformation tests was conducted on modified 9Cr-1Mo steel at 550degC under uniaxial and multiaxial stress conditions. Ratchetting behavior depended on various parameters such as mean stress, stress/strain rate and those range, hold time and prior cyclic deformation. Under uniaxial conditions, untraditional ratchetting behavior was observed; the ratchetting deformation rate was the fastest when the stress ratio was equal to -1, while no ratchetting deformation was predicted by conventional constitutive models. In order to discuss the reason for this untraditional ratchetting behavior, a lot of monotonic compression tests were conducted and compared with tension data. The material showed a difference of deformation resistance of about 30 MPa between tension and compression at high strain rates. Furthermore, the authors' previous model and Ohno-Wang model were applied to the test conditions to evaluate their description capability for ratchetting behavior of the material. It was shown that the authors' model has a tendency to overestimate the ratchetting deformation and that the Ohno-Wang model has a tendency to underestimate the uniaxial ratchetting deformation at small stress rates. (author)

  12. Test and analysis of thermal ratcheting deformation for 316L stainless steel cylindrical structure

    International Nuclear Information System (INIS)

    Lee, Hyeong Yeon; Kim, Jong Bum; Lee, Jae Han

    2002-01-01

    In this study, the progressive inelastic deformation, so called, thermal ratchet phenomenon which can occur in high temperature structures of liquid metal simulated with thermal ratchet structural test facility and 316L stainless steel test cylinder. The thermal ratchet deformation at the reactor baffle cylinder of the liquid metal reactor can occur due to the moving temperature distribution along the axial direction as the sodium free surface moves up and down under the cyclic heat-up and cool-down transients. The ratchet deformation was measured with the laser displacement sensor and LVDTs after cooling the structural specimen which is heated up to 550 degree C with steep temperature gradients along the axial direction. The temperature distribution of the test cylinder along the axial direction was measured with 28 channels of thermocouples and was used for the ratchet analysis. The thermal ratchet deformation was analyzed with the constitutive equation of nonlinear combined hardening model which was implemented as ABAQUS user subroutine and the analysis results were compared with those of the test. Thermal ratchet load was applied 9 times and the residual displacement after 9 cycles of thermal load was measured to be 1.79 mm. The ratcheting deformation shapes obtained by the analysis with the combined hardening model were in reasonable agreement with those of the structural tests

  13. Thermal ratcheting and creep damage

    International Nuclear Information System (INIS)

    Clement, G.; Cousseran, P.; Roche, R.L.

    1983-01-01

    Several proposals have been made to assist adesigners with thermal ratcheting in the creep range, the more known has been made by O'DONNELL and POROWSKY. Unfortunately these methods are not validated by experiments, and they take only inelastic distortion into consideration as creep effects. The aim of the work presented here is to correct these deficiencies - in providing an experimental basis to ratcheting analysis rules in the creep range, - in considering the effect of cyclic straining (like cyclic thermal stresses) on the time to rupture by creep. Experimental tests have been performed on austenitic stainless steel at 650 0 C for the first item. Results of these tests and results available in the open literature have been used to built a practical rule of ratcheting analysis. This rule giving a conservative value of the creep distortion, is based on the concept of effective primary stress which is an amplification of the primary stress really applied. Concerning the second point (time to rupture), it was necessary to obtain real creep rupture and not instability. According to the proposal of Pr LECKIE, tests were performed on specimens made out of copper, and of aluminium alloys at temperatures between 150 0 C and 300 0 C. With such materials creep rupture is obtained without necking. Experimental tests show that cyclic straining reduces the time to creep rupture under load controlled stress. Caution must be given to the designer: cyclic thermal stress can lead to premature creep rupture. (orig./GL)

  14. Effects of kinematic hardening rules on thermal ratchetting analysis of cylinders subjected to cyclically moving temperature distribution

    International Nuclear Information System (INIS)

    Ohno, N.; Kobayashi, M.

    1995-01-01

    In the present work, thermal ratchetting in a cylinder subjected to a cyclically moving temperature front (i.e. liquid surface induced thermal ratchetting) was analyzed by implementing in a finite element method the four kinds of plasticity models with different kinematic hardening rules. The following findings were thus obtained concerning effects of the kinematic hardening rules on the analysis. (1) If transition nonlinear hardening after yielding is disregarded, the thermal ratchetting becomes significant, as seen in the results of the PP and LKH models. Especially the PP model, which does not express any strain hardening, predicts steady development of the thermal ratchetting. (2) If significant mechanical ratchetting is allowed in the modeling of kinematic hardening, the thermal ratchetting becomes marked, as seen in the results of the AF model. (3) Model dependence of the thermal ratchetting is more noticeable when the difference of temperature at the temperature front, ΔT, is smaller. (4) The OW model makes the thermal ratchetting stop at a smaller number of cycles when ΔT is smaller. On the other hand, the LKH and AF models allow that the thermal ratchetting to develop more constantly when ΔT is smaller. As seen from the above findings, the analysis of liquid surface induced thermal ratchetting has great dependence on the kinematic hardening rules employed. Especially the PP model, which has been used often to analyze the thermal ratchetting so far, gives too large development of the thermal ratchetting. Thus we may say that in order to improve the analysis it is necessary to use an appropriate kinematic hardening model which is capable of expressing appropriately both mechanical ratchetting and transient nonlinear hardening after yielding. (author)

  15. Punchets: nonlinear transport in Hamiltonian pump-ratchet hybrids

    Science.gov (United States)

    Dittrich, Thomas; Medina Sánchez, Nicolás

    2018-02-01

    ‘Punchets’ are hybrids between ratchets and pumps, combining a spatially periodic static potential, typically asymmetric under space inversion, with a local driving that breaks time-reversal invariance, and are intended to model metal or semiconductor surfaces irradiated by a collimated laser beam. Their crucial feature is irregular driven scattering between asymptotic regions supporting periodic (as opposed to free) motion. With all binary spatio-temporal symmetries broken, scattering in punchets typically generates directed currents. We here study the underlying nonlinear transport mechanisms, from chaotic scattering to the parameter dependence of the currents, in three types of Hamiltonian models, (i) with spatially periodic potentials where only in the driven scattering region, spatial and temporal symmetries are broken, and (ii), spatially asymmetric (ratchet) potentials with a driving that only breaks time-reversal invariance. As more realistic models of laser-irradiated surfaces, we consider (iii), a driving in the form of a running wave confined to a compact region by a static envelope. In this case, the induced current can even run against the direction of wave propagation, drastically evidencing its nonlinear nature. Quantizing punchets is indicated as a viable research perspective.

  16. Quantum ratchets for quantum communication with optical superlattices

    International Nuclear Information System (INIS)

    Romero-Isart, Oriol; Garcia-Ripoll, Juan Jose

    2007-01-01

    We propose to use a quantum ratchet to transport quantum information in a chain of atoms trapped in an optical superlattice. The quantum ratchet is created by a continuous modulation of the optical superlattice which is periodic in time and in space. Though there is zero average force acting on the atoms, we show that indeed the ratchet effect permits atoms on even and odd sites to move along opposite directions. By loading the optical lattice with two-level bosonic atoms, this scheme permits us to perfectly transport a qubit or entangled state imprinted in one or more atoms to any desired position in the lattice. From the quantum computation point of view, the transport is achieved by a smooth concatenation of perfect swap gates. We analyze setups with noninteracting and interacting particles and in the latter case we use the tools of optimal control to design optimal modulations. We also discuss the feasibility of this method in current experiments

  17. Ratcheting study in pressurized piping components under cyclic loading at room temperature

    International Nuclear Information System (INIS)

    Ravi Kiran, A.; Agrawal, M.K.; Reddy, G.R.; Vaze, K.K.; Ghosh, A.K.; Kushwaha, H.S.

    2006-07-01

    The nuclear power plant piping components and systems are often subjected to reversing cyclic loading conditions due to various process transients, seismic and other events. Earlier the design of piping subjected to seismic excitation was based on the principle of plastic collapse. It is believed that during such events, fatigue-ratcheting is likely mode of failure of piping components. The 1995 ASME Boiler and Pressure Vessel code, Section-III, has incorporated the reverse dynamic loading and ratcheting into the code. Experimental and analytical studies are carried out to understand this failure mechanism. The biaxial ratcheting characteristics of SA 333, Gr. 6 steel and SS 304 stainless steel at room temperature are investigated in the present work. Experiments are carried out on straight pipes subjected to internal pressure and cyclic bending load applied in a three point and four point bend test configurations. A shake table test is also carried out on a pressurized elbow by applying sinusoidal base excitation. Analytical simulation of ratcheting in the piping elements is carried out. Chaboche nonlinear kinematic hardening model is used for ratcheting simulation. (author)

  18. Performance Estimation for Two-Dimensional Brownian Rotary Ratchet Systems

    Science.gov (United States)

    Tutu, Hiroki; Horita, Takehiko; Ouchi, Katsuya

    2015-04-01

    Within the context of the Brownian ratchet model, a molecular rotary system that can perform unidirectional rotations induced by linearly polarized ac fields and produce positive work under loads was studied. The model is based on the Langevin equation for a particle in a two-dimensional (2D) three-tooth ratchet potential of threefold symmetry. The performance of the system is characterized by the coercive torque, i.e., the strength of the load competing with the torque induced by the ac driving field, and the energy efficiency in force conversion from the driving field to the torque. We propose a master equation for coarse-grained states, which takes into account the boundary motion between states, and develop a kinetic description to estimate the mean angular momentum (MAM) and powers relevant to the energy balance equation. The framework of analysis incorporates several 2D characteristics and is applicable to a wide class of models of smooth 2D ratchet potential. We confirm that the obtained expressions for MAM, power, and efficiency of the model can enable us to predict qualitative behaviors. We also discuss the usefulness of the torque/power relationship for experimental analyses, and propose a characteristic for 2D ratchet systems.

  19. Dielectrophoretic assay of bacterial resistance to antibiotics

    International Nuclear Information System (INIS)

    Johari, Juliana; Huebner, Yvonne; Hull, Judith C; Dale, Jeremy W; Hughes, Michael P

    2003-01-01

    The dielectrophoretic collection spectra of antibiotic-sensitive and antibiotic-resistant strains of Staphylococcus epidermidis have been determined. These indicate that in the absence of antibiotic treatment there is a strong similarity between the dielectric properties of sensitive and resistant strains, and that there is a significant difference between the sensitive strains before and after treatment with the antibiotic streptomycin after 24 h exposure. This method offers possibilities for the assessment of bacterial resistance to antibiotics. (note)

  20. Ratcheting problems for ITER [International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Majumdar, S.

    1991-01-01

    Because of the presence of high cyclic thermal stress, pressure-induced primary stress, and disruption-induced high cyclic primary stress, ratcheting of the first wall poses a serious challenge to the designers of ITER (International Thermonuclear Experimental Reactor). Existing design tools such as the Bree diagram in the ASME Boiler and Pressure Vessels Code, are not directly applicable to ITER, because of important differences in geometry and loading modes. Available alternative models for ratcheting are discussed and new Bree diagrams, that are more relevant for fusion reactor applications, are proposed. 9 refs., 17 figs

  1. Phase synchronization for two Brownian motors with bistable coupling on a ratchet

    International Nuclear Information System (INIS)

    Mateos, Jose L.; Alatriste, F.R.

    2010-01-01

    Graphical abstract: We study phase synchronization for a walker with two Brownian motors with bistable coupling on a ratchet and show a connection between synchronization and optimal transport. - Abstract: We study phase synchronization for a walker on a ratchet potential. The walker consist of two particles coupled by a bistable potential that allow the interchange of the order of the particles while moving through a one-dimensional asymmetric periodic ratchet potential. We consider the deterministic and the stochastic dynamics of the center of mass of the walker in a tilted ratchet potential with an external periodic forcing, in the overdamped case. The ratchet potential has to be tilted in order to obtain a rotator or self-sustained nonlinear oscillator in the absence of external periodic forcing. This oscillator has an intrinsic frequency that can be entrained with the frequency of the external driving. We introduced a linear phase through a set of discrete time events and the associated average frequency, and show that this frequency can be synchronized with the frequency of the external driving. In this way, we can properly characterize the phenomenon of synchronization through Arnold tongues and show that the local maxima in the average velocity of the center of mass of the walker, both in the deterministic case and in the presence of noise, correspond to the borders of these Arnold tongues. In this way, we established a connection between optimal transport in ratchets and the phenomenon of phase synchronization.

  2. Self assembly of organic nanostructures and dielectrophoretic assembly of inorganic nanowires.

    Science.gov (United States)

    Dholakia, Geetha; Kuo, Steven; Allen, E. L.

    2007-03-01

    Self assembly techniques enable the organization of organic molecules into nanostructures. Currently engineering strategies for efficient assembly and routine integration of inorganic nanoscale objects into functional devices is very limited. AC Dielectrophoresis is an efficient technique to manipulate inorganic nanomaterials into higher dimensional structures. We used an alumina template based sol-gel synthesis method for the growth of various metal oxide nanowires with typical diameters of 100-150 nm, ranging in length from 3-10 μm. Here we report the dielectrophoretic assembly of TiO2 nanowires, an important material for photocatalysis and photovoltaics, onto interdigitated devices. Self assembly in organic nanostructures and its dependence on structure and stereochemistry of the molecule and dielectrophoretic field dependence in the assembly of inorganic nanowires will be compared and contrasted. Tunneling spectroscopy and DOS of these nanoscale systems will also be discussed.

  3. Monte Carlo simulations of interacting particle mixtures in ratchet potentials

    International Nuclear Information System (INIS)

    Fendrik, A J; Romanelli, L

    2012-01-01

    There are different models of devices for achieving a separation of mixtures of particles by using the ratchet effect. On the other hand, it has been proposed that one could also control the separation by means of appropriate interactions. Through Monte Carlo simulations, we show that inclusion of simple interactions leads to a decrease of the ratchet effect and therefore also a separation of the mixtures.

  4. Thermal ratcheting and creep damage

    International Nuclear Information System (INIS)

    Clement, G.; Cousseran, P.; Roche, R.L.

    1983-08-01

    Creep is a cause of deformation; it may also result in rupture in time. Although LMFBR structures are not heavily loaded, they are subjected to large thermal transients. Can structure lifetime be shortened by such transients. Several proposals have been made to assist adesigners with thermal ratcheting in the creep range. Unfortunately these methods are not validated by experiments, and they take only inelastic distorsion into consideration as creep effects. The aim of the work presented here is to correct these deficiencies in providing an experimental basis to ratcheting analysis rules in the creep range, and in considering the effect of cyclic straining (like cyclic thermal stresses) on the time to rupture by creep. Experimental tests have been performed on austenitic stainless steel at 650 0 C for the first item. Results of these tests and results available in the open literature have been used to built a practical rule of ratcheting analysis. This rule giving a conservative value of the creep distortion, is based on the concept of effective primary stress which is an amplification of the primary stress really applied. Concerning the second point (time to rupture), it was necessary to obtain real creep rupture and not instability. According to the proposal of Pr LECKIE, tests were performed on specimen made out of copper, and of aluminium alloys at temperatures between 150 0 C and 300 0 C. With such materials creep rupture is obtained without necking. Experimental tests show that cyclic straining reduces the time to creep rupture under load controlled stress. Caution must be given to the designer: cyclic thermal stress can lead to premature creep rupture

  5. Cantilever-type electrode array-based high-throughput microparticle sorting platform driven by gravitation and negative dielectrophoretic force

    International Nuclear Information System (INIS)

    Kim, Youngho; Kim, Byungkyu; Lee, Junghun; Kim, Younggeun; Shin, Sang-Mo

    2011-01-01

    In this paper, we describe a cantilever-type electrode (CE) array-based high-throughput sorting platform, which is a tool used to separate microparticles using gravitation and negative dielectrophoretic (n-DEP) force. This platform consists of meso-size channels and a CE array, which is designed to separate a large number of target particles by differences in their dielectric material properties (DMP) and the weight of the particles. We employ a two-step separation process, with sedimentation as the first step and n-DEP as the second step. In order to differentiate the weight and the DMP of each particle, we employ the sedimentation phenomena in a vertical channel and the CE-based n-DEP in an inclined channel. By using three kinds of polystyrene beads with diameters of 10, 25 and 50 µm, the optimal population (10 7 beads ml −1 ) of particles and the appropriate length (25 mm) of the vertical channel for high performance were determined experimentally. Conclusively, by combining sedimentation and n-DEP schemes, we achieve 74.5, 94.7 and 100% separation efficiency for sorting microparticles with a diameter of 10, 25 and 50 µm, respectively.

  6. A Ratchet Lens: Black Queer Youth, Agency, Hip Hop, and the Black Ratchet Imagination

    Science.gov (United States)

    Love, Bettina L.

    2017-01-01

    This article explores the utilization of the theory of a Black ratchet imagination as a methodological perspective to examine the multiple intersections of Black and queer identity constructions within the space of hip hop. In particular, I argue for the need of a methodological lens that recognizes, appreciates, and struggles with the fluidity,…

  7. Effective Brownian ratchet separation by a combination of molecular filtering and a self-spreading lipid bilayer system.

    Science.gov (United States)

    Motegi, Toshinori; Nabika, Hideki; Fu, Yingqiang; Chen, Lili; Sun, Yinlu; Zhao, Jianwei; Murakoshi, Kei

    2014-07-01

    A new molecular manipulation method in the self-spreading lipid bilayer membrane by combining Brownian ratchet and molecular filtering effects is reported. The newly designed ratchet obstacle was developed to effectively separate dye-lipid molecules. The self-spreading lipid bilayer acted as both a molecular transport system and a manipulation medium. By controlling the size and shape of ratchet obstacles, we achieved a significant increase in the separation angle for dye-lipid molecules compared to that with the previous ratchet obstacle. A clear difference was observed between the experimental results and the simple random walk simulation that takes into consideration only the geometrical effect of the ratchet obstacles. This difference was explained by considering an obstacle-dependent local decrease in molecular diffusivity near the obstacles, known as the molecular filtering effect at nanospace. Our experimental findings open up a novel controlling factor in the Brownian ratchet manipulation that allow the efficient separation of molecules in the lipid bilayer based on the combination of Brownian ratchet and molecular filtering effects.

  8. Evaluation of fatigue-ratcheting damage of a pressurised elbow undergoing damage seismic inputs

    International Nuclear Information System (INIS)

    Dang Van, K.

    2000-01-01

    We present a simplified method to calculate the plastic ratchet of elbow-shaped pipes submitted to seismic loading and an internal pressure. This method is simplified in the sense that the value of the ratchet is obtained without the use of finite element method (FEM) calculations. Here we derive a formula and use it to evaluate the fatigue-ratcheting damage of an elbow. This approach is applicable to complex plastic response appropriately described by non-linear kinematics hardening, which is more realistic for stainless steel such as 316-L. (orig.)

  9. The Leverage Ratchet Effect

    OpenAIRE

    Anat R. Admati; Peter M. DeMarzo; Martin F. Hellwig; Paul Pfleiderer

    2013-01-01

    Shareholder-creditor conflicts can create leverage ratchet effects, resulting in inefficient capital structures. Once debt is in place, shareholders may inefficiently increase leverage but avoid reducing it no matter how beneficial leverage reduction might be to total firm value. We present conditions for an irrelevance result under which shareholders view asset sales, pure recapitalization and asset expansion with new equity as equally undesirable. We then analyze how seniority, asset hetero...

  10. Shakedown and ratchetting below the creep range

    International Nuclear Information System (INIS)

    Ponter, A.R.S.

    1983-01-01

    The report reviews current understanding of the behaviour of structure subject to variable mechanical and thermal loading below the creep range through a comparison of theoretical solutions and experimental studies. The particular characteristics of the austenitic stainless steels are emphasized in components subject to moderate primary loads and large thermal loads. The review shows that a clear classification of types of thermal loading is required in design. Two main classes, termed category A and B, exist which arise not from the magnitude of the thermal stresses but their extent through the material volume of the structure. In category A situations, the Bree plate problem being the prime example, the maximum thermal stresses occur over a volume of the structure which does not contain a mechanism of failure. As a result very large thermal stresses may be withstood without ratchetting occurring for sufficiently small mechanical loads. For category B situations, the maximum thermal stress occur within a volume of material which contains a mechanism of deformation. In such cases, the capacity of the structure to withstand thermal loading is limited by a variation of the maximum thermal stress at a material point of 2σsub(γ) where σsub(γ) is a suitably defined yield stress. This situation seems to be the most typical problem of the Liquid Metal Fast Reactor and the ''3Sm'' limit in the ASME III code restriction on secondary stress cannot be exceeded if ratchetting is to be prevented

  11. A new approach for primary overloads allowance in ratcheting evaluation

    International Nuclear Information System (INIS)

    Cabrillat, M.T.; Gatt, J.M.; Lejeail, Y.

    1995-01-01

    Seismic loading must be taken into account in ratchetting design analysis. In LMFBR structures it mainly produces primary overloads, which are characterised by severe magnitudes but a generally low number of occurrences. Other cases of several primary overloads can also observed in pipes during emptying operations for instance. In the RCC-MR design code rule, the maximum primary stress supported by a structure is considered as permanent. No allowance is made for temporary load. Experimental ratchetting tests conducted on different structures with and without overloads clearly point out that temporary overloads lead to less ratchetting effect. A method using the RCC-MR efficiency diagram framework is proposed. A general theoretical approach allows to extend its field of application of various cases of primary loading: constant or null primary loading or overloads. Experimental results are then used to check the validity of this new approach. (author). 2 refs., 2 figs., 2 tabs

  12. A three-bar model for ratcheting of fusion reactor first wall

    International Nuclear Information System (INIS)

    Wolters, J.; Majumdar, S.

    1994-12-01

    First wall structures of fusion reactors are subjected to cyclic bending stresses caused by inhomogeneous temperature distribution during plasma burn cycles and by electromagnetically induced impact loads during plasma disruptions. Such a combination of loading can potentially lead to ratcheting or incremental accumulation of plastic strain with cycles. An elastic-plastic three-bar model is developed to investigate the ratcheting behavior of the first wall

  13. Controlled dielectrophoretic nanowire self-assembly using atomic layer deposition and suspended microfabricated electrodes

    International Nuclear Information System (INIS)

    Baca, Alicia I; Brown, Joseph J; Bright, Victor M; Bertness, Kris A

    2012-01-01

    Effects of design and materials on the dielectrophoretic self-assembly of individual gallium nitride nanowires (GaN NWs) onto microfabricated electrodes have been experimentally investigated. The use of TiO 2 surface coating generated by atomic layer deposition (ALD) improves dielectrophoretic assembly yield of individual GaN nanowires on microfabricated structures by as much as 67%. With a titanium dioxide coating, individual nanowires were placed across suspended electrode pairs in 46% of tests (147 out of 320 total), versus 28% of tests (88 out of 320 total tests) that used uncoated GaN NWs. An additional result from these tests was that suspending the electrodes 2.75 μm above the substrate corresponded with up to 15.8% improvement in overall assembly yield over that of electrodes fabricated directly on the substrate. (paper)

  14. Experimental study on uniaxial ratcheting deformation and failure behavior of 304 stainless steel

    International Nuclear Information System (INIS)

    Yang Xianjie; Gao Qing; Cai Lixun; Liu Yujie

    2004-01-01

    In the paper, the tests of cyclic strain ratcheting and low cycle fatigue for 304 stainless steel under uniaxial cyclic straining were carried out to systematically explore the deformation and failure behavior of the material. The experimental study shows that the cyclic strain ratcheting deformation behavior of the material is different from either the uniaxial monotonic tensile one or the cyclic deformation one under the symmetrical cyclic straining with the same strain amplitude, and the strain ratcheting deformation and failure behaviors depend on both the plastic strain amplitude and the strain increment at the cyclic maximum strain. Some significant results were observed

  15. Collective ratchet effects and reversals for active matter particles on quasi-one-dimensional asymmetric substrates.

    Science.gov (United States)

    McDermott, Danielle; Olson Reichhardt, Cynthia J; Reichhardt, Charles

    2016-10-19

    Using computer simulations, we study a two-dimensional system of sterically interacting self-mobile run-and-tumble disk-shaped particles with an underlying periodic quasi-one-dimensional asymmetric substrate, and show that a rich variety of collective active ratchet behaviors arise as a function of particle density, activity, substrate period, and the maximum force exerted by the substrate. The net dc drift, or ratchet transport flux, is nonmonotonic since it increases with increased activity but is diminished by the onset of self-clustering of the active particles. Increasing the particle density decreases the ratchet transport flux for shallow substrates but increases the ratchet transport flux for deep substrates due to collective hopping events. At the highest particle densities, the ratchet motion is destroyed by a self-jamming effect. We show that it is possible to realize reversals of the direction of the net dc drift in the deep substrate limit when multiple rows of active particles can be confined in each substrate minimum, permitting emergent particle-like excitations to appear that experience an inverted effective substrate potential. We map out a phase diagram of the forward and reverse ratchet effects as a function of the particle density, activity, and substrate properties.

  16. A design rule about thermal ratcheting

    International Nuclear Information System (INIS)

    Clement, G.; Lebey, J.; Roche, R.L.

    1984-01-01

    The purpose of this paper is to present an analysis of thermal ratcheting, and to give a practical design rule aimed at avoiding its detrimental effects. A practical method will thus be available to designers for dealing with one of the adverse effects of computed thermal stresses

  17. Transverse ratchet effect and superconducting vortices: simulation and experiment

    International Nuclear Information System (INIS)

    Dinis, L; Parrondo, J M R; Perez de Lara, D; Gonzalez, E M; Vicent, J L; Anguita, J V

    2009-01-01

    A transverse ratchet effect has been measured in magnetic/superconducting hybrid films fabricated by electron beam lithography and magnetron sputtering techniques. The samples are Nb films grown on top of an array of Ni nanotriangles. Injecting an ac current parallel to the triangle reflection symmetry axis yields an output dc voltage perpendicular to the current, due to a net motion of flux vortices in the superconductor. The effect is reproduced by numerical simulations of vortices as Langevin particles with realistic parameters. Simulations provide an intuitive picture of the ratchet mechanism, revealing the fundamental role played by the random intrinsic pinning of the superconductor.

  18. Segregation of granular binary mixtures by a ratchet mechanism.

    Science.gov (United States)

    Farkas, Zénó; Szalai, Ferenc; Wolf, Dietrich E; Vicsek, Tamás

    2002-02-01

    We report on a segregation scheme for granular binary mixtures, where the segregation is performed by a ratchet mechanism realized by a vertically shaken asymmetric sawtooth-shaped base in a quasi-two-dimensional box. We have studied this system by computer simulations and found that most binary mixtures can be segregated using an appropriately chosen ratchet, even when the particles in the two components have the same size and differ only in their normal restitution coefficient or friction coefficient. These results suggest that the components of otherwise nonsegregating granular mixtures may be separated using our method.

  19. Shaping of Rack Cutter Original Profile for Fine-module Ratchet Teeth Cutting

    Science.gov (United States)

    Sharkov, O. V.; Koryagin, S. I.; Velikanov, N. L.

    2018-05-01

    The design models and the process of shaping the cutting edges of the rack cutter for cutting fine-module ratchet teeth are considered in the article. The use of fine-module ratchet teeth can reduce the noise and impact loads during operation of the freewheel mechanisms. Mathematical dependencies for calculating the coordinates determining the geometric position of the points of the front and back edges of the cutting profile of the rack cutter, the workpiece angle of rotation during cutting the ratchet teeth were obtained. When applying the developed method, the initial data are: the radii of the workpiece circumferences passing through the dedendum of the external and internal cut teeth; gradient angles of the front and back edges of the rail.

  20. The Bree problem with different yield stresses on-load and off-load and application to creep ratcheting

    International Nuclear Information System (INIS)

    Bradford, R.A.W.; Ure, J.; Chen, H.F.

    2014-01-01

    The ratchet boundaries and ratchet strains are derived for the Bree problem and an elastic-perfectly plastic material with different yield stresses on-load and off-load. The Bree problem consists of a constant uniaxial primary membrane stress and a cycling thermal bending stress. The ratchet problem with differing yield stresses is also solved for a modified loading in which both the primary membrane and thermal bending stresses cycle in-phase. The analytic solutions for the ratchet boundaries are compared with the results of deploying the linear matching method (LMM) and excellent agreement is found. Whilst these results are of potential utility for purely elastic–plastic behaviour, since yield stresses will often differ at the two ends of the cycle, the solution is also proposed as a means of assessing creep ratcheting via a creep ductility exhaustion approach. -- Highlights: • The Bree problem is solved for differing yield stresses on and off load. • The modified Bree problem with cycling primary load is also solved. • These solutions can be applied to creep ratcheting using a pseudo-yield stress

  1. Quasi-static and ratcheting properties of trabecular bone under uniaxial and cyclic compression.

    Science.gov (United States)

    Gao, Li-Lan; Wei, Chao-Lei; Zhang, Chun-Qiu; Gao, Hong; Yang, Nan; Dong, Li-Min

    2017-08-01

    The quasi-static and ratcheting properties of trabecular bone were investigated by experiments and theoretical predictions. The creep tests with different stress levels were completed and it is found that both the creep strain and creep compliance increase rapidly at first and then increase slowly as the creep time goes by. With increase of compressive stress the creep strain increases and the creep compliance decreases. The uniaxial compressive tests show that the applied stress rate makes remarkable influence on the compressive behaviors of trabecular bone. The Young's modulus of trabecular bone increases with increase of stress rate. The stress-strain hysteresis loops of trabecular bone under cyclic load change from sparse to dense with increase of number of cycles, which agrees with the change trend of ratcheting strain. The ratcheting strain rate rapidly decreases at first, and then exhibits a relatively stable and small value after 50cycles. Both the ratcheting strain and ratcheting strain rate increase with increase of stress amplitude or with decrease of stress rate. The creep model and the nonlinear viscoelastic constitutive model of trabecular bone were proposed and used to predict its creep property and rate-dependent compressive property. The results show that there are good agreements between the experimental data and predictions. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Firm Innovation and the Ratchet Effect Among Consumer Packaged Goods Firms

    OpenAIRE

    Christine Moorman; Simone Wies; Natalie Mizik; Fredrika J. Spencer

    2012-01-01

    We consider how public firms influence their stock market valuations by timing the introduction of innovative new products. Our focus is on innovation ratchet strategy --firms timing the introduction of innovations in order to demonstrate an improvement in the number of introductions over time. We document that public firms use an innovation ratchet strategy more often than do private firms and that the stock market rewards public firms for doing so. These rewards from the stock market, howev...

  3. Ratcheting and low cycle fatigue behavior of SA333 steel and their life prediction

    International Nuclear Information System (INIS)

    Paul, Surajit Kumar; Sivaprasad, S.; Dhar, S.; Tarafder, S.

    2010-01-01

    Ratcheting and low cycle fatigue (LCF) experiments have been conducted at 25 o C temperature in laboratory environment under different loading conditions. SA333 steel exhibits cyclic hardening throughout its life during LCF. It is found that ratcheting strain increases with both increasing mean stress and stress amplitude. It has also been noticed that plastic strain amplitude and plastic strain energy decrease with increase in mean stress at constant stress amplitude. Ratcheting and LCF life in the range of 10 2 -10 5 cycles have been predicted with the help of a mean stress-based fatigue lifing equation.

  4. Uniaxial ratcheting behavior of sintered nanosilver joint for electronic packaging

    International Nuclear Information System (INIS)

    Chen, Gang; Yu, Lin; Mei, Yunhui; Li, Xin; Chen, Xu; Lu, Guo-Quan

    2014-01-01

    Uniaxial ratcheting behavior and the fatigue life of sintered nanosilver joint were investigated at room temperature. All tests were carried out under stress-controlled mode. Force–displacement data were recorded during the entire fatigue lifespan by a non-contact displacement detecting system. Effects of stress amplitude, mean stress, stress rate, and stress ratio on the uniaxial ratcheting behavior of the sintered nanosilver joint were discussed. Stress-life (S–N) curves of the sintered joints were also obtained. The Smith–Watson–Topper (SWT) model, the Gerber model and the modified Goodman model, all of which took effect of mean stress into consideration, were compared for predicting the fatigue life of the sintered joint. Both the ratcheting strain and its rate increased with increasing stress amplitude or mean stress. The increase in stress amplitude and mean stress both reduced the fatigue life of the sintered joint, while the fatigue life prolonged with the increase in stress rate and stress ratio. The modified Goodman model predicted the fatigue life of the sintered joints well

  5. Dielectrophoretic capture of low abundance cell population using thick electrodes

    OpenAIRE

    Marchalot, Julien; Chateaux, Jean-François; Faivre, Magalie; Mertani, Hichem C.; Ferrigno, Rosaria; Deman, Anne-Laure

    2015-01-01

    Enrichment of rare cell populations such as Circulating Tumor Cells (CTCs) is a critical step before performing analysis. This paper presents a polymeric microfluidic device with integrated thick Carbon-PolyDimethylSiloxane composite (C-PDMS) electrodes designed to carry out dielectrophoretic (DEP) trapping of low abundance biological cells. Such conductive composite material presents advantages over metallic structures. Indeed, as it combines properties of both the matrix and doping particle...

  6. Prediction method for thermal ratcheting of a cylinder subjected to axially moving temperature distribution

    International Nuclear Information System (INIS)

    Wada, Hiroshi; Igari, Toshihide; Kitade, Shoji.

    1989-01-01

    A prediction method was proposed for plastic ratcheting of a cylinder, which was subjected to axially moving temperature distribution without primary stress. First, a mechanism of this ratcheting was proposed, which considered the movement of temperature distribution as a driving force of this phenomenon. Predictive equations of the ratcheting strain for two representative temperature distributions were proposed based on this mechanism by assuming the elastic-perfectly-plastic material behavior. Secondly, an elastic-plastic analysis was made on a cylinder subjected to the representative two temperature distributions. Analytical results coincided well with the predicted results, and the applicability of the proposed equations was confirmed. (author)

  7. A simplified approach for ratcheting analysis in structures with elastic follow-up

    International Nuclear Information System (INIS)

    Berton, M.N.; Cabrillat, M.T.

    1991-01-01

    In the framework of an elastic analysis, the RCC-MR design code uses the concept of the efficiency diagram to assess the behaviour of a structure relatively to ratcheting. This diagram was obtained from a lot of experimental results and allows to cover many reactor situations. However this approach needs to classify stresses between primary and secondary stresses and for a few cases, in particular for structures with significant elastic follow-up, this classification is not obvious. After a recall of elastic follow-up definition and a few considerations on the way to evaluate it, an approach is proposed to take it into account in an elastic analysis verifying the avoidance of ratcheting. An experimental program has been developed to study this interaction between elastic follow-up and ratcheting. The first results are presented together with interpretations with the proposed method. (author)

  8. Prediction of ratcheting behaviour of 304 SS cylindrical shell using the Chaboche model

    International Nuclear Information System (INIS)

    Lee, Hyeong-Yeon; Kim, Jong Bum; Lee, Jae-Han; Yoo, Bong

    1997-01-01

    Ratcheting, that is, a progressive cyclic inelastic deformation can occur in a component subjected to thermal secondary stress, mechanical stress or both in the presence of a primary stress. The circumferential plastic strain may be accumulated with the increase of the number of cycles when a cylinder is subjected to a temperature front moving cyclically in the axial direction. This phenomenon of liquid surface induced thermal ratcheting is important in the design of liquid metal reactor. The ratcheting behaviour of a thin-walled 304 stainless steel cylinder under axially moving temperature distribution was analyzed using the constitutive theory of Chaboche. The constitutive model was implemented as a user subroutine of ABAQUS and it was verified through the comparison with the exact solutions for the uniaxial cyclic loading and test results available in the literature for the cylinder. In addition, ratcheting in pressurized push-pull pipes under loading conditions of ± 1% axial strain with steady hoop stress was analyzed with Chaboche model. It is shown that the elastic-plastic analysis using Chaboche model can evaluate properly the progressive strain accumulation under secondary cyclic loads. (author). 10 refs, 11 figs., 1 tab

  9. Dielectrophoretic self-assembly of polarized light emitting poly(9,9-dioctylfluorene) nanofibre arrays

    International Nuclear Information System (INIS)

    O'Riordan, A; Iacopino, D; Lovera, P; Floyd, L; Reynolds, K; Redmond, G

    2011-01-01

    Conjugated polymer based 1D nanostructures are attractive building blocks for future opto-electronic nanoscale devices and systems. However, a critical challenge remains the lack of manipulation methods that enable controlled and reliable positioning and orientation of organic nanostructures in a fast, reliable and scalable manner. To address this challenge, we explore dielectrophoretic assembly of discrete poly(9,9-dioctylfluorene) nanofibres and demonstrate site selective assembly and orientation of these fibres. Nanofibre arrays were assembled preferentially at receptor electrode edges, being aligned parallel to the applied electric field with a high order parameter fit (∼0.9) and exhibiting an emission dichroic ratio of ∼ 4.0. As such, the dielectrophoretic method represents a fast, reliable and scalable self-assembly approach for manipulation of 1D organic nanostructures. The ability to fabricate nanofibre arrays in this manner could be potentially important for exploration and development of future nanoscale opto-electronic devices and systems.

  10. Analysis of thermal ratchetting of a cylinder subjected to axially moving temperature front. Effect of kinematic hardening rule

    International Nuclear Information System (INIS)

    Ohno, Nobutada; Yari, Takashi; Kobayashi, Mineo

    1995-01-01

    When a cylinder is subjected to a temperature front moving cyclically in the axial direction, the circumferential plastic strain may accumulate with the increase of the number of cycles. This is a thermal ratchetting problem induced by a liquid surface moving in a cylinder, and it is important especially in designing fast breeder reactors. In the present paper, the effect of kinematic hardening rule on the thermal ratchetting analysis is discussed by implementing the following four kinds of kinematic hardening rules in a finite element analysis; the perfectly plastic model (PP), the linear kinematic hardening rule (LKH), the classical nonlinear kinematic hardening rule of Armstrong and Frederick (AF), and the rule proposed recently by Ohno and Wang (OW). It is shown that disregard of transient hardening after yielding leads to overestimating the thermal ratchetting, that a rule predicting larger mechanical ratchetting under uniaxial cyclic loading makes the thermal ratchetting more serious, and that the Ohno and Wang rule can render the analysis most realistic among them. (author)

  11. Polymer cantilever platform for dielectrophoretic assembly of carbon nanotubes

    DEFF Research Database (Denmark)

    Johansson, Alicia; Calleja, M.; Dimaki, Maria

    2004-01-01

    A polymer cantilever platform for dielectrophoretic assembly of carbon nanotubes has been designed and realized. Multi-walled carbon nanotubes from aqueous solution have been assembled between two metal electrodes that are separated by 2 mu m and embedded in the polymer cantilever. The entire chip......, except for the metallic electrodes and wiring, was fabricated in the photoresist SU-8. SU-8 allows for an inexpensive, flexible and fast fabrication method, and the cantilever platform provides a hydrophobic surface that should be well suited for nanotube assembly. The device can be integrated in a micro...

  12. Effect of moving distance of temperature distribution on thermal ratchetting behavior of a FBR reactor vessel

    International Nuclear Information System (INIS)

    Ueta, Masahiro; Douzaki, Kouji; Takahashi, Yukio; Ooka, Yuji; Osaki, Toshio; Take, Kouji.

    1992-01-01

    It should be considered in a FBR reactor vessel design that thermal ratchetting might be caused by moving axial thermal gradient, in other words, moving sodium level. The behavior and the mechanism of ratchetting have almost become clear by studies for the past several years. A simplified evaluation method for ratchetting behavior has been proposed. However, the evaluation method has been shown to be excessively conservative by testing results. In this paper, the effect of moving distance of axial temperature distributions, which is one of main factors to be considered in precise estimation of ratchetting behavior, is studied by inelastic analyses. Based on the study, it is proposed to introduce a strain reducing factor taking account of residual stresses in the region of moving axial temperature distribution to the original evaluation method. The new method has been validated by comparing the prediction with results of both testing and the original method. (author)

  13. Dielectrophoretic trapping of DNA-coated gold nanoparticles on silicon based vertical nanogap devices.

    Science.gov (United States)

    Strobel, Sebastian; Sperling, Ralph A; Fenk, Bernhard; Parak, Wolfgang J; Tornow, Marc

    2011-06-07

    We report on the successful dielectrophoretic trapping and electrical characterization of DNA-coated gold nanoparticles on vertical nanogap devices (VNDs). The nanogap devices with an electrode distance of 13 nm were fabricated from Silicon-on-Insulator (SOI) material using a combination of anisotropic reactive ion etching (RIE), selective wet chemical etching and metal thin-film deposition. Au nanoparticles (diameter 40 nm) coated with a monolayer of dithiolated 8 base pairs double stranded DNA were dielectrophoretically trapped into the nanogap from electrolyte buffer solution at MHz frequencies as verified by scanning and transmission electron microscopy (SEM/TEM) analysis. First electrical transport measurements through the formed DNA-Au-DNA junctions partially revealed an approximately linear current-voltage characteristic with resistance in the range of 2-4 GΩ when measured in solution. Our findings point to the importance of strong covalent bonding to the electrodes in order to observe DNA conductance, both in solution and in the dry state. We propose our setup for novel applications in biosensing, addressing the direct interaction of biomolecular species with DNA in aqueous electrolyte media.

  14. Forespore engulfment mediated by a ratchet-like mechanism.

    Science.gov (United States)

    Broder, Dan H; Pogliano, Kit

    2006-09-08

    A key step in bacterial endospore formation is engulfment, during which one bacterial cell engulfs another in a phagocytosis-like process that normally requires SpoIID, SpoIIM, and SpoIIP (DMP). We here describe a second mechanism involving the zipper-like interaction between the forespore protein SpoIIQ and its mother cell ligand SpoIIIAH, which are essential for engulfment when DMP activity is reduced or SpoIIB is absent. They are also required for the rapid engulfment observed during the enzymatic removal of peptidoglycan, a process that does not require DMP. These results suggest the existence of two separate engulfment machineries that compensate for one another in intact cells, thereby rendering engulfment robust. Photobleaching analysis demonstrates that SpoIIQ assembles a stationary structure, suggesting that SpoIIQ and SpoIIIAH function as a ratchet that renders forward membrane movement irreversible. We suggest that ratchet-mediated engulfment minimizes the utilization of chemical energy during this dramatic cellular reorganization, which occurs during starvation.

  15. Pattern formation in plastic liquid films on elastomers by ratcheting.

    Science.gov (United States)

    Huang, Jiangshui; Yang, Jiawei; Jin, Lihua; Clarke, David R; Suo, Zhigang

    2016-04-20

    Plastic liquids, also known as Bingham liquids, retain their shape when loads are small, but flow when loads exceed a threshold. We discovered that plastic liquid films coated on elastomers develop wavy patterns under cyclic loads. As the number of cycles increases, the wavelength of the patterns remains unchanged, but the amplitude of the patterns increases and then saturates. Because the patterns develop progressively under cyclic loads, we call this phenomenon as "patterning by ratcheting". We observe the phenomenon in plastic liquids of several kinds, and studied the effects of thickness, the cyclic frequency of the stretch, and the range of the stretch. Finite element simulations show that the ratcheting phenomenon can occur in materials described by a commonly used model of elastic-plastic deformation.

  16. Dielectrophoretic focusing integrated pulsed laser activated cell sorting

    Science.gov (United States)

    Zhu, Xiongfeng; Kung, Yu-Chun; Wu, Ting-Hsiang; Teitell, Michael A.; Chiou, Pei-Yu

    2017-08-01

    We present a pulsed laser activated cell sorter (PLACS) integrated with novel sheathless size-independent dielectrophoretic (DEP) focusing. Microfluidic fluorescence activated cell sorting (μFACS) systems aim to provide a fully enclosed environment for sterile cell sorting and integration with upstream and downstream microfluidic modules. Among them, PLACS has shown a great potential in achieving comparable performance to commercial aerosol-based FACS (>90% purity at 25,000 cells sec-1). However conventional sheath flow focusing method suffers a severe sample dilution issue. Here we demonstrate a novel dielectrophoresis-integrated pulsed laser activated cell sorter (DEP-PLACS). It consists of a microfluidic channel with 3D electrodes laid out to provide a tunnel-shaped electric field profile along a 4cmlong channel for sheathlessly focusing microparticles/cells into a single stream in high-speed microfluidic flows. All focused particles pass through the fluorescence detection zone along the same streamline regardless of their sizes and types. Upon detection of target fluorescent particles, a nanosecond laser pulse is triggered and focused in a neighboring channel to generate a rapidly expanding cavitation bubble for precise sorting. DEP-PLACS has achieved a sorting purity of 91% for polystyrene beads at a throughput of 1,500 particle/sec.

  17. Hubble Space Telescope EVA Power Ratchet Tool redesign

    Science.gov (United States)

    Richards, Paul W.; Park, Chan; Brown, Lee

    The Power Ratchet Tool (PRT) is a self contained, power-driven, 3/8 inch drive ratchet wrench which will be used by astronauts during Extravehicular Activities (EVA). This battery-powered tool is controlled by a dedicated electonic controller. The PRT was flown during the Hubble Space Telescope (HST) Deployment Mission STS-31 to deploy the solar arrays if the automatic mechanisms failed. The PRT is currently intended for use during the first HST Servicing Mission STS-61 as a general purpose power tool. The PRT consists of three major components; the wrench, the controller, and the battery module. Fourteen discrete combinations of torque, turns, and speed may be programmed into the controller before the EVA. The crewmember selects the desired parameter profile by a switch mounted on the controller. The tool may also be used in the manual mode as a non-powered ratchet wrench. The power is provided by a silver-zinc battery module, which fits into the controller and is replaceable during an EVA. The original PRT did not meet the design specification of torque output and hours of operation. To increase efficiency and reliability the PRT underwent a redesign effort. The majority of this effort focused on the wrench. The original PRT drive train consisted of a low torque, high speed brushless DC motor, a face gear set, and a planocentric gear assembly. The total gear reduction was 300:1. The new PRT wrench consists of a low speed, high torque brushless DC motor, two planetary gear sets and a bevel gear set. The total gear reduction is now 75:1. A spline clutch has also been added to disengage the drive train in the manual mode. The design changes to the controller will consist of only those modifications necessary to accomodate the redesigned wrench.

  18. Thermal ratchetting in pipes subjected to intermittent thermal downshocks at elevated temperatures

    International Nuclear Information System (INIS)

    Corum, J.M.; Young, H.C.; Grindell, A.G.

    1974-01-01

    The results of two thermal ratchetting tests on straight sections of pipe are presented. The pipes, each of which was machined from a well-characterized heat of type 304 stainless steel, were subjected to a series of thermal downshocks on their inner surface, followed by sustained periods under an internal pressure loading at a temperature of 1100 0 F. Testing was carried out in a special sodium test facility built for the purpose, and the outer surface strain histories were measured using high-temperature capacitive strain gages. The circumferential strain responses, which typify the inelastic behaviors, are presented. 7 references. (U.S.)

  19. Motional dispersions and ratchet effect in inertial systems

    Indian Academy of Sciences (India)

    without the application of any time-averaged external field is termed as ratchet effect [1]. This is necessarily a ... The effect can also be obtained if the system is driven periodically but time asymmetrically in such a way that the ..... Govt. of India for financial assistance (SR/FTP/PS-33/2004). References. [1] P Reimann, Phys.

  20. Cooperation and competition between two symmetry breakings in a coupled ratchet

    Science.gov (United States)

    Li, Chen-Pu; Chen, Hong-Bin; Fan, Hong; Xie, Ge-Ying; Zheng, Zhi-Gang

    2018-03-01

    We investigate the collective mechanism of coupled Brownian motors in a flashing ratchet in the presence of coupling symmetry breaking and space symmetry breaking. The dependences of directed current on various parameters are extensively studied in terms of numerical simulations and theoretical analysis. Reversed motion can be achieved by modulating multiple parameters including the spatial asymmetry coefficient, the coupling asymmetry coefficient, the coupling free length and the coupling strength. The dynamical mechanism of these transport properties can be reasonably explained by the effective potential theory and the cooperation or competition between two symmetry breakings. Moreover, adjusting the Gaussian white noise intensity, which can induce weak reversed motion under certain condition, can optimize and manipulate the directed transport of the ratchet system.

  1. Ratcheting Strain and Microstructure Evolution of AZ31B Magnesium Alloy under a Tensile-Tensile Cyclic Loading.

    Science.gov (United States)

    Yan, Zhifeng; Wang, Denghui; Wang, Wenxian; Zhou, Jun; He, Xiuli; Dong, Peng; Zhang, Hongxia; Sun, Liyong

    2018-03-28

    In this paper, studies were conducted to investigate the deformation behavior and microstructure change in a hot-rolled AZ31B magnesium alloy during a tensile-tensile cyclic loading. The relationship between ratcheting effect and microstructure change was discussed. The ratcheting effect in the material during current tensile-tensile fatigue loading exceeds the material's fatigue limit and the development of ratcheting strain in the material experienced three stages: initial sharp increase stage (Stage I); steady stage (Stage II); and final abrupt increase stage (Stage III). Microstructure changes in Stage I and Stage II are mainly caused by activation of basal slip system. The Extra Geometrically Necessary Dislocations (GNDs) were also calculated to discuss the relationship between the dislocation caused by the basal slip system and the ratcheting strain during the cyclic loading. In Stage III, both the basal slip and the {11-20} twins are found active during the crack propagation. The fatigue crack initiation in the AZ31B magnesium alloy is found due to the basal slip and the {11-20} tensile twins.

  2. Ratcheting up the ratchet: on the evolution of cumulative culture

    Science.gov (United States)

    Tennie, Claudio; Call, Josep; Tomasello, Michael

    2009-01-01

    Some researchers have claimed that chimpanzee and human culture rest on homologous cognitive and learning mechanisms. While clearly there are some homologous mechanisms, we argue here that there are some different mechanisms at work as well. Chimpanzee cultural traditions represent behavioural biases of different populations, all within the species’ existing cognitive repertoire (what we call the ‘zone of latent solutions’) that are generated by founder effects, individual learning and mostly product-oriented (rather than process-oriented) copying. Human culture, in contrast, has the distinctive characteristic that it accumulates modifications over time (what we call the ‘ratchet effect’). This difference results from the facts that (i) human social learning is more oriented towards process than product and (ii) unique forms of human cooperation lead to active teaching, social motivations for conformity and normative sanctions against non-conformity. Together, these unique processes of social learning and cooperation lead to humans’ unique form of cumulative cultural evolution. PMID:19620111

  3. Ratcheting up the ratchet: on the evolution of cumulative culture.

    Science.gov (United States)

    Tennie, Claudio; Call, Josep; Tomasello, Michael

    2009-08-27

    Some researchers have claimed that chimpanzee and human culture rest on homologous cognitive and learning mechanisms. While clearly there are some homologous mechanisms, we argue here that there are some different mechanisms at work as well. Chimpanzee cultural traditions represent behavioural biases of different populations, all within the species' existing cognitive repertoire (what we call the 'zone of latent solutions') that are generated by founder effects, individual learning and mostly product-oriented (rather than process-oriented) copying. Human culture, in contrast, has the distinctive characteristic that it accumulates modifications over time (what we call the 'ratchet effect'). This difference results from the facts that (i) human social learning is more oriented towards process than product and (ii) unique forms of human cooperation lead to active teaching, social motivations for conformity and normative sanctions against non-conformity. Together, these unique processes of social learning and cooperation lead to humans' unique form of cumulative cultural evolution.

  4. Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET)

    International Nuclear Information System (INIS)

    Ramsdell, J.V. Jr.; Simonen, C.A.; Burk, K.W.

    1994-02-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses that individuals may have received from operations at the Hanford Site since 1944. This report deals specifically with the atmospheric transport model, Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET). RATCHET is a major rework of the MESOILT2 model used in the first phase of the HEDR Project; only the bookkeeping framework escaped major changes. Changes to the code include (1) significant changes in the representation of atmospheric processes and (2) incorporation of Monte Carlo methods for representing uncertainty in input data, model parameters, and coefficients. To a large extent, the revisions to the model are based on recommendations of a peer working group that met in March 1991. Technical bases for other portions of the atmospheric transport model are addressed in two other documents. This report has three major sections: a description of the model, a user's guide, and a programmer's guide. These sections discuss RATCHET from three different perspectives. The first provides a technical description of the code with emphasis on details such as the representation of the model domain, the data required by the model, and the equations used to make the model calculations. The technical description is followed by a user's guide to the model with emphasis on running the code. The user's guide contains information about the model input and output. The third section is a programmer's guide to the code. It discusses the hardware and software required to run the code. The programmer's guide also discusses program structure and each of the program elements

  5. Thermal ratcheting and progressive buckling

    International Nuclear Information System (INIS)

    Lebey, J.; Brouard, D.; Roche, R.L.

    1983-01-01

    Pure elastic buckling is not a frequent mode of failure and plastic deformations often occurs before buckling - like instability does. Elastic-plastic buckling is very difficult to analyse. The most important difficulty is the material modeling. In the elastic plastic buckling phenomena, small modifications of the material constitutive equation used are of great influence on the final result. When buckling cannot occurs, it is well known that distortion due to applied loads is greatly amplified when there is also some cyclic straining (like thermal stresses). This effect is called ratcheting - and thermal ratcheting when caused by cyclic thermal transients. As cyclic thermal stresses can be applied in addition of load able to cause buckling failure of a component, the question arise of the effect of cyclic thermal stresses on the critical buckling load. The aim of the work presented here is to answer that question: 'Is the critical buckling load reduced when cyclic straining is added'. It seems sensible to avoid premature computation based only on arbitrary assumptions and to prefer obtaining a sound experimental basis for analysis. Sufficient experimental knowledge is needed in order to check the validity of the material modeling (and imperfections) used in analysis. Experimental tests on buckling of compressed columns subjected to cyclic straining have been performed. These experiments are described and results are given. The most important result is cyclic straining reduces the critical buckling load. It appears that distortion can be increasing progressively during cyclic straining and that buckling can happen at last at compressive loads too small to cause buckling in the absence of cyclic straining. (orig./RW)

  6. Off-Axis Ratcheting Behavior of Unidirectional Carbon/Epoxy Laminate under Asymmetric Cyclic Loading at High Temperature

    Science.gov (United States)

    2011-11-01

    ply unidirectional carbon/epoxy laminates [0]12 were fabricated from the prepreg tape of P3252-20 (TORAY). They were laid up by hand and cured in...Off-Axis Ratcheting Behavior of Unidirectional Carbon/Epoxy Laminate under Asymmetric Cyclic Loading at High Temperature Takafumi Suzuki 1 and...Development of an engineering model for predicting the off-axis ratcheting behavior of a unidirectional CFRP laminate has been attempted. For this purpose

  7. Quantifying the threat of extinction from Muller's ratchet in the diploid Amazon molly (Poecilia formosa

    Directory of Open Access Journals (Sweden)

    Loewe Laurence

    2008-03-01

    Full Text Available Abstract Background The Amazon molly (Poecilia formosa is a small unisexual fish that has been suspected of being threatened by extinction from the stochastic accumulation of slightly deleterious mutations that is caused by Muller's ratchet in non-recombining populations. However, no detailed quantification of the extent of this threat is available. Results Here we quantify genomic decay in this fish by using a simple model of Muller's ratchet with the most realistic parameter combinations available employing the evolution@home global computing system. We also describe simple extensions of the standard model of Muller's ratchet that allow us to deal with selfing diploids, triploids and mitotic recombination. We show that Muller's ratchet creates a threat of extinction for the Amazon molly for many biologically realistic parameter combinations. In most cases, extinction is expected to occur within a time frame that is less than previous estimates of the age of the species, leading to a genomic decay paradox. Conclusion How then does the Amazon molly survive? Several biological processes could individually or in combination solve this genomic decay paradox, including paternal leakage of undamaged DNA from sexual sister species, compensatory mutations and many others. More research is needed to quantify the contribution of these potential solutions towards the survival of the Amazon molly and other (ancient asexual species.

  8. Atomistic study of a nanometer-scale pump based on the thermal ratchet concept

    DEFF Research Database (Denmark)

    Oyarzua, Elton; Walther, J. H.; Zambrano, Harvey

    In this study, a novel concept of nanoscale pump fabricated using Carbon Nanotubes (CNTs) is presented. The development of nanofluidic systems provides unprecedented possibilities for the control of biology and chemistry at the molecular level with potential applications in low energy cost devices...... dynamics simulations, we explore the possibility to design thermophoretic pumping devices fabricated of CNTs for water transport in nanoconduits. The design of the nanopumps is based on the concept of the Feynman-Smoluchowski ratchet....... of great interest in nanofluidics. Thermophoresisis the phenomenon observed when a mixture of two or more types of motile objects experience a force induced by a thermal gradient and the different types of objects respond to it differently, inducing a motion and segregation of the objects. Using molecular...

  9. Molecular wires acting as quantum heat ratchets

    OpenAIRE

    Zhan, Fei; Li, Nianbei; Kohler, Sigmund; Hänggi, Peter

    2009-01-01

    We explore heat transfer in molecular junctions between two leads in the absence of a finite net thermal bias. The application of an unbiased, time-periodic temperature modulation of the leads entails a dynamical breaking of reflection symmetry, such that a directed heat current may emerge (ratchet effect). In particular, we consider two cases of adiabatically slow driving, namely (i) periodic temperature modulation of only one lead and (ii) temperature modulation of both leads with an ac dri...

  10. A new approach to quantify the additional effect of primary overloads on ratcheting

    International Nuclear Information System (INIS)

    Waeckel, N.; Faure, O.; Sperandio, M.; Cousin, M.; Taleb, L.

    1991-01-01

    Taking into account the temporary nature of overloads reduces the conservatism of the current RCC-MR rules for prevention of ratcheting. An empirical K factor determined by the BITUBE tests carried out at INSA LYON, permits to quantify the influence of short-term mechanical overloads by comparison with the case without overload. The prediction of ratcheting risks by the RCC-MR efficiency diagram using a fictitious increased primary load by a K-factor is more fitted to the design of structures submitted to seisms. From then on, taking advantage of the workability of the experimental device BITUBE a new tests program has begun to confirm the results expressed above. (author)

  11. Ratchet baryogenesis and an analogy with the forced pendulum

    Science.gov (United States)

    Bamba, Kazuharu; Barrie, Neil D.; Sugamoto, Akio; Takeuchi, Tatsu; Yamashita, Kimiko

    2018-06-01

    A new scenario of baryogenesis via the ratchet mechanism is proposed based on an analogy with the forced pendulum. The oscillation of the inflaton field during the reheating epoch after inflation plays the role of the driving force, while the phase 𝜃 of a scalar baryon field (a complex scalar field with baryon number) plays the role of the angle of the pendulum. When the inflaton is coupled to the scalar baryon, the behavior of the phase 𝜃 can be analogous to that of the angle of the forced pendulum. If the oscillation of the driving force is adjusted to the pendulum’s motion, a directed rotation of the pendulum is obtained with a nonvanishing value of 𝜃˙, which models successful baryogenesis since 𝜃˙ is proportional to the baryon number density. Similar ratchet models which lead to directed motion have been used in the study of molecular motors in biology. There, the driving force is supplied by chemical reactions, while in our scenario this role is played by the inflaton during the reheating epoch.

  12. Electric generation and ratcheted transport of contact-charged drops

    Science.gov (United States)

    Cartier, Charles A.; Graybill, Jason R.; Bishop, Kyle J. M.

    2017-10-01

    We describe a simple microfluidic system that enables the steady generation and efficient transport of aqueous drops using only a constant voltage input. Drop generation is achieved through an electrohydrodynamic dripping mechanism by which conductive drops grow and detach from a grounded nozzle in response to an electric field. The now-charged drops are transported down a ratcheted channel by contact charge electrophoresis powered by the same voltage input used for drop generation. We investigate how the drop size, generation frequency, and transport velocity depend on system parameters such as the liquid viscosity, interfacial tension, applied voltage, and channel dimensions. The observed trends are well explained by a series of scaling analyses that provide insight into the dominant physical mechanisms underlying drop generation and ratcheted transport. We identify the conditions necessary for achieving reliable operation and discuss the various modes of failure that can arise when these conditions are violated. Our results demonstrate that simple electric inputs can power increasingly complex droplet operations with potential opportunities for inexpensive and portable microfluidic systems.

  13. Effect of ratchet strain on fatigue and creep–fatigue strength of Mod.9Cr–1Mo steel

    International Nuclear Information System (INIS)

    Ando, Masanori; Isobe, Nobuhiro; Kikuchi, Koichi; Enuma, Yasuhiro

    2012-01-01

    Highlights: ► Uniaxial fatigue and creep–fatigue tests with superimposed strain were performed. ► Variety of superimposed strain were applied as ratchet strain in the tests. ► Effect of superimposed strain on fatigue and creep–fatigue life is negligible. ► A cyclic softening character reducing the effect of superimposed strain. - Abstract: The effect of ratcheting deformation on fatigue and creep–fatigue life in Mod.9Cr–1Mo steel was investigated. Uniaxial fatigue and creep–fatigue testing with superimposed strain were performed to evaluate the effect of ratcheting deformation on the failure cycle. In a series of tests, a specific amount of superimposed strain was accumulated in each cycle. The accumulated strain as ratcheting deformation, cycles to reach the accumulated strain, and test temperatures were varied in the tests. In the fatigue tests with superimposed strain at 550 °C, slight reductions of failure lives were observed. All of the numbers of cycles to failure in the fatigue tests with superimposed strain were within a factor of 1.5 of that of the fatigue test without superimposed strain at 550 °C. The apparent relationship between failure cycles and testing parameters was not observed. In fatigue tests with superimposed strain at 550 °C, maximum mean stress was insignificant and generated in early cycles because Mod.9Cr–1Mo steel exhibits cyclic softening characteristics. It was assumed that suppression of mean stress generation by cyclic softening reduces the effect of ratcheting strain. Conversely, failure lives were increased by accumulated strain in the test conducted at 450 °C because of stress–strain hysteresis loop shrinkage caused by cyclic softening induced by the accumulated strain. In the creep–fatigue tests with superimposed strain, test results indicated that the accumulated stain was negligible. It was concluded that the effect of ratcheting deformation on fatigue and creep–fatigue life is negligible as long

  14. Dielectrophoretic Manipulation and Separation of Microparticles Using Microarray Dot Electrodes

    Directory of Open Access Journals (Sweden)

    Bashar Yafouz

    2014-04-01

    Full Text Available This paper introduces a dielectrophoretic system for the manipulation and separation of microparticles. The system is composed of five layers and utilizes microarray dot electrodes. We validated our system by conducting size-dependent manipulation and separation experiments on 1, 5 and 15 μm polystyrene particles. Our findings confirm the capability of the proposed device to rapidly and efficiently manipulate and separate microparticles of various dimensions, utilizing positive and negative dielectrophoresis (DEP effects. Larger size particles were repelled and concentrated in the center of the dot by negative DEP, while the smaller sizes were attracted and collected by the edge of the dot by positive DEP.

  15. Pinning, flux diodes and ratchets for vortices interacting with conformal pinning arrays

    International Nuclear Information System (INIS)

    Olson Reichhardt, C. J.; Wang, Y. L.; Argonne National Laboratory; Xiao, Z. L.; Northern Illinois University, DeKalb, IL

    2016-01-01

    A conformal pinning array can be created by conformally transforming a uniform triangular pinning lattice to produce a new structure in which the six-fold ordering of the original lattice is conserved but where there is a spatial gradient in the density of pinning sites. Here we examine several aspects of vortices interacting with conformal pinning arrays and how they can be used to create a flux flow diode effect for driving vortices in different directions across the arrays. Under the application of an ac drive, a pronounced vortex ratchet effect occurs where the vortices flow in the easy direction of the array asymmetry. When the ac drive is applied perpendicular to the asymmetry direction of the array, it is possible to realize a transverse vortex ratchet effect where there is a generation of a dc flow of vortices perpendicular to the ac drive due to the creation of a noise correlation ratchet by the plastic motion of the vortices. We also examine vortex transport in experiments and compare the pinning effectiveness of conformal arrays to uniform triangular pinning arrays. In conclusion, we find that a triangular array generally pins the vortices more effectively at the first matching field and below, while the conformal array is more effective at higher fields where interstitial vortex flow occurs.

  16. Simulation of ratcheting in straight pipes using ANSYS with an improved cyclic plasticity model

    International Nuclear Information System (INIS)

    Hassan, T.; Zhu, Y.; Matzen, V.C.

    1996-01-01

    Ratcheting has been shown to be a contributing cause of failure in several seismic experiments on piping components and systems. Most commercial finite element codes have been unable to simulate the ratcheting in those tests accurately. The reason for this can be traced to inadequate plasticity constitutive models in the analysis codes. The authors have incorporated an improved cyclic plasticity model, based on an Armstrong-Frederick kinematic hardening rule in conjunction with the Drucker-Palgen plastic modulus equation, into an ANSYS user subroutine. This modified analysis code has been able to simulate quite accurately the ratcheting behavior of a tube subjected to a constant internal pressure and axially strain controlled cycling. This paper describes simulations obtained form this modified ANSYS code for two additional tests: (1) a tube subjected to constant axial stress and prescribed torsional cycling, and (2) a straight pipe subjected to constant internal pressure and quasi-static cyclic bending. The analysis results from the modified ANSYS code are compared to the experimental data, as well as results from ABAQUS and the original ANSYS code. The resulting correlation shows a significant improvement over the original ANSYS and the ABAQUS codes

  17. Dielectrophoretic sample preparation for environmental monitoring of microorganisms: Soil particle removal.

    Science.gov (United States)

    Fatoyinbo, Henry O; McDonnell, Martin C; Hughes, Michael P

    2014-07-01

    Detection of pathogens from environmental samples is often hampered by sensors interacting with environmental particles such as soot, pollen, or environmental dust such as soil or clay. These particles may be of similar size to the target bacterium, preventing removal by filtration, but may non-specifically bind to sensor surfaces, fouling them and causing artefactual results. In this paper, we report the selective manipulation of soil particles using an AC electrokinetic microfluidic system. Four heterogeneous soil samples (smectic clay, kaolinitic clay, peaty loam, and sandy loam) were characterised using dielectrophoresis to identify the electrical difference to a target organism. A flow-cell device was then constructed to evaluate dielectrophoretic separation of bacteria and clay in a continous flow through mode. The average separation efficiency of the system across all soil types was found to be 68.7% with a maximal separation efficiency for kaolinitic clay at 87.6%. This represents the first attempt to separate soil particles from bacteria using dielectrophoresis and indicate that the technique shows significant promise; with appropriate system optimisation, we believe that this preliminary study represents an opportunity to develop a simple yet highly effective sample processing system.

  18. Dielectrophoretic capture of low abundance cell population using thick electrodes.

    Science.gov (United States)

    Marchalot, Julien; Chateaux, Jean-François; Faivre, Magalie; Mertani, Hichem C; Ferrigno, Rosaria; Deman, Anne-Laure

    2015-09-01

    Enrichment of rare cell populations such as Circulating Tumor Cells (CTCs) is a critical step before performing analysis. This paper presents a polymeric microfluidic device with integrated thick Carbon-PolyDimethylSiloxane composite (C-PDMS) electrodes designed to carry out dielectrophoretic (DEP) trapping of low abundance biological cells. Such conductive composite material presents advantages over metallic structures. Indeed, as it combines properties of both the matrix and doping particles, C-PDMS allows the easy and fast integration of conductive microstructures using a soft-lithography approach while preserving O2 plasma bonding properties of PDMS substrate and avoiding a cumbersome alignment procedure. Here, we first performed numerical simulations to demonstrate the advantage of such thick C-PDMS electrodes over a coplanar electrode configuration. It is well established that dielectrophoretic force ([Formula: see text]) decreases quickly as the distance from the electrode surface increases resulting in coplanar configuration to a low trapping efficiency at high flow rate. Here, we showed quantitatively that by using electrodes as thick as a microchannel height, it is possible to extend the DEP force influence in the whole volume of the channel compared to coplanar electrode configuration and maintaining high trapping efficiency while increasing the throughput. This model was then used to numerically optimize a thick C-PDMS electrode configuration in terms of trapping efficiency. Then, optimized microfluidic configurations were fabricated and tested at various flow rates for the trapping of MDA-MB-231 breast cancer cell line. We reached trapping efficiencies of 97% at 20 μl/h and 78.7% at 80 μl/h, for 100 μm thick electrodes. Finally, we applied our device to the separation and localized trapping of CTCs (MDA-MB-231) from a red blood cells sample (concentration ratio of 1:10).

  19. Dynamical analysis of an optical rocking ratchet: Theory and experiment

    Czech Academy of Sciences Publication Activity Database

    Arzola, Alejandro V.; Volke-Sepúlveda, K.; Mateos, J.L.

    2013-01-01

    Roč. 87, č. 6 (2013), 062910:1-9 ISSN 1539-3755 R&D Projects: GA MŠk LH12018; GA MŠk EE2.4.31.0016 Institutional support: RVO:68081731 Keywords : deterministic optical rocking ratchet * analysis of the dynamics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.326, year: 2013

  20. Brownian Ratchet Mechanism for Faithful Segregation of Low-Copy-Number Plasmids.

    Science.gov (United States)

    Hu, Longhua; Vecchiarelli, Anthony G; Mizuuchi, Kiyoshi; Neuman, Keir C; Liu, Jian

    2017-04-11

    Bacterial plasmids are extrachromosomal DNA that provides selective advantages for bacterial survival. Plasmid partitioning can be remarkably robust. For high-copy-number plasmids, diffusion ensures that both daughter cells inherit plasmids after cell division. In contrast, most low-copy-number plasmids need to be actively partitioned by a conserved tripartite ParA-type system. ParA is an ATPase that binds to chromosomal DNA; ParB is the stimulator of the ParA ATPase and specifically binds to the plasmid at a centromere-like site, parS. ParB stimulation of the ParA ATPase releases ParA from the bacterial chromosome, after which it takes a long time to reset its DNA-binding affinity. We previously demonstrated in vitro that the ParA system can exploit this biochemical asymmetry for directed cargo transport. Multiple ParA-ParB bonds can bridge a parS-coated cargo to a DNA carpet, and they can work collectively as a Brownian ratchet that directs persistent cargo movement with a ParA-depletion zone trailing behind. By extending this model, we suggest that a similar Brownian ratchet mechanism recapitulates the full range of actively segregated plasmid motilities observed in vivo. We demonstrate that plasmid motility is tuned as the replenishment rate of the ParA-depletion zone progressively increases relative to the cargo speed, evolving from diffusion to pole-to-pole oscillation, local excursions, and, finally, immobility. When the plasmid replicates, the daughters largely display motilities similar to that of their mother, except that when the single-focus progenitor is locally excursive, the daughter foci undergo directed segregation. We show that directed segregation maximizes the fidelity of plasmid partition. Given that local excursion and directed segregation are the most commonly observed modes of plasmid motility in vivo, we suggest that the operation of the ParA-type partition system has been shaped by evolution for high fidelity of plasmid segregation

  1. Ratchetting behavior of primary heat transport (PHT) piping material SA-333 carbon steel subjected to cyclic loads at room temperature

    International Nuclear Information System (INIS)

    Kulkarni, S.; Desai, Y.M.; Kant, T.; Reddy, G.R.; Gupta, C.; Chakravarthy, J.K.

    2004-01-01

    Ratchetting behavior of SA-333 Gr. 6 carbon steel used as primary heat transport (PHT) piping material has been investigated with three constitutive models proposed by Armstrong-Frederick, Chaboche and Ohno-Wang involving different hardening rules. Performance of the above mentioned models have been evaluated for a broad set of uniaxial and biaxial loading histories. The uniaxial ratchetting simulations have been performed for a range of stress ratios (R) by imposing different stress amplitudes and mean stress conditions. Numerical simulations indicated significant ratchetting and opening of hysteresis loop for negative stress ratio with constant mean stress. Application of cyclic stress without mean stress (R = -1.0) has been observed to produce negligible ratchet-strain accumulation in the material. Simulation under the biaxial stress condition was based on modeling of an internally pressurized thin walled pipe subjected to cyclic bending load. Numerical results have been validated with the experiments as per simulation conditions. All three models have been found to predict the observed accumulation of circumferential strain with increasing number of cycles. However, the Armstrong Frederick (A-F) model was found to be inadequate in simulating the ratchetting response for both uniaxial as well as biaxial loading cases. The A-F model actually over-predicted the ratchetting strain in comparison with the experimental strain values. On the other hand, results obtained with the Chaboche and the Ohno-Wang models for both the uniaxial as well as biaxial loading histories have been observed to closely simulate the experimental results. The Ohno-Wang model resulted in better simulation for the presents sets of experimental results in comparison with the Chaboche model. It can be concluded that the Ohno-Wang model suited well compared to the Chaboche model for above sets of uniaxial and biaxial loading histories. (authors)

  2. Microfabricated ratchet structures for concentrating and patterning motile bacterial cells

    International Nuclear Information System (INIS)

    Kim, Sang Yub; Lee, Eun Se; Lee, Ho Jae; Lee, Se Yeon; Lee, Sung Kuk; Kim, Taesung

    2010-01-01

    We present a novel microfabricated concentrator for Escherichia coli that can be a stand-alone and self-contained microfluidic device because it utilizes the motility of cells. First of all, we characterize the motility of E. coli cells and various ratcheting structures that can guide cells to move in a desired direction in straight and circular channels. Then, we combine these ratcheting microstructures with the intrinsic tendency of cells to swim on the right side in microchannels to enhance the concentration rates up to 180 fold until the concentrators are fully filled with cells. Furthermore, we demonstrate that cells can be positioned and concentrated with a constant spacing distance on a surface, allowing spatial patterning of motile cells. These results can be applied to biosorption or biosensor devices that are powered by motile cells because they can be highly concentrated without any external mechanical and electrical energy sources. Hence, we believe that the concentrator design holds considerable potential to be applied for concentrating and patterning other motile microbes and providing a versatile structure for motility study of bacterial cells.

  3. Vortex ratchet effect in a niobium film with spacing-graded density

    Czech Academy of Sciences Publication Activity Database

    Wu, T.C.; Horng, L.; Wu, J.C.; Cao, R.; Koláček, Jan; Yang, T.-J.

    2007-01-01

    Roč. 102, č. 3 (2007), 033918/1-033918/4 ISSN 0021-8979 R&D Projects: GA ČR GA202/05/0173 Institutional research plan: CEZ:AV0Z10100521 Keywords : vortex ratchet effect * niobium film Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.171, year: 2007

  4. Incremental elongation or ratchetting - Experimental tests and practical method of analysis (on stainless steel 304L and 306L)

    International Nuclear Information System (INIS)

    Cousseran, Pierre; Lebey, Jacques; Roche, Roland; Clement, Gerard; Moulin, Didier.

    1980-12-01

    Ratchetting, or incremental elongation can be considered as a creep enhancement when cyclic deformations are added to a primary constant load. Under examination, it appears that theoretical models proposed till now do not fit correctly the actual behavior of materials. From experimental tests results performed in Saclay, a simplified method for prevention of ratcheting is proposed. A validation was made by using experimental data from various sources [fr

  5. Collective coordinates theory for discrete soliton ratchets in the sine-Gordon model

    Science.gov (United States)

    Sánchez-Rey, Bernardo; Quintero, Niurka R.; Cuevas-Maraver, Jesús; Alejo, Miguel A.

    2014-10-01

    A collective coordinate theory is developed for soliton ratchets in the damped discrete sine-Gordon model driven by a biharmonic force. An ansatz with two collective coordinates, namely the center and the width of the soliton, is assumed as an approximated solution of the discrete nonlinear equation. The dynamical equations of these two collective coordinates, obtained by means of the generalized travelling wave method, explain the mechanism underlying the soliton ratchet and capture qualitatively all the main features of this phenomenon. The numerical simulation of these equations accounts for the existence of a nonzero depinning threshold, the nonsinusoidal behavior of the average velocity as a function of the relative phase between the harmonics of the driver, the nonmonotonic dependence of the average velocity on the damping, and the existence of nontransporting regimes beyond the depinning threshold. In particular, it provides a good description of the intriguing and complex pattern of subspaces corresponding to different dynamical regimes in parameter space.

  6. Numerical convergence in simulations of multiaxial ratcheting with directional distortional hardening

    Czech Academy of Sciences Publication Activity Database

    Welling, CH.A.; Marek, René; Feigenbaum, H. P.; Dafalias, Y.F.; Plešek, Jiří; Hrubý, Zbyněk; Parma, Slavomír

    2017-01-01

    Roč. 126, November (2017), s. 105-121 ISSN 0020-7683 R&D Projects: GA MŠk(CZ) EF15_003/0000493; GA MŠk LH14018 Keywords : plastic ity * yield * ratcheting * yield surface distortion * directional distortional hardening Subject RIV: JG - Metallurgy OBOR OECD: Materials engineering Impact factor: 2.760, year: 2016 http://www.sciencedirect.com/science/article/pii/S0020768317303499

  7. Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect

    NARCIS (Netherlands)

    Mochizuki, M.; Yu, X.Z.; Seki, S.; Kanazawa, N.; Koshibae, W.; Zang, J.; Mostovoy, M.; Tokura, Y.; Nagaosa, N.

    2014-01-01

    Spontaneously emergent chirality is an issue of fundamental importance across the natural sciences. It has been argued that a unidirectional (chiral) rotation of a mechanical ratchet is forbidden in thermal equilibrium, but becomes possible in systems out of equilibrium. Here we report our finding

  8. Clonal interference and Muller's ratchet in spatial habitats

    International Nuclear Information System (INIS)

    Otwinowski, Jakub; Krug, Joachim

    2014-01-01

    Competition between independently arising beneficial mutations is enhanced in spatial populations due to the linear rather than exponential growth of clones. Recent theoretical studies have pointed out that the resulting fitness dynamics is analogous to a surface growth process, where new layers nucleate and spread stochastically, leading to the build up of scale-invariant roughness. This scenario differs qualitatively from the standard view of adaptation in that the speed of adaptation becomes independent of population size while the fitness variance does not. Here we exploit recent progress in the understanding of surface growth processes to obtain precise predictions for the universal, non-Gaussian shape of the fitness distribution for one-dimensional habitats, which are verified by simulations. When the mutations are deleterious rather than beneficial the problem becomes a spatial version of Muller's ratchet. In contrast to the case of well-mixed populations, the rate of fitness decline remains finite even in the limit of an infinite habitat, provided the ratio U d /s 2 between the deleterious mutation rate and the square of the (negative) selection coefficient is sufficiently large. Using, again, an analogy to surface growth models we show that the transition between the stationary and the moving state of the ratchet is governed by directed percolation. (paper)

  9. Analytical investigation of the applicability of simplified ratchetting and creep-fatigue rules to a nozzle-to-sphere geometry

    International Nuclear Information System (INIS)

    Gwaltney, R.C.

    1982-01-01

    This paper presents an analysis of a nozzle-to-spherical-shell attachment and explores the applicability of simplified ratchetting and creep-fatigue rules to this attachment. A five-cycle inelastic analysis and creep-fatigue damage evaluation was carried out on this component. An elastic analysis also was done to provide input parameters required to apply the various rules and procedures of simplified analysis methods. Ten lines, or critical sections, were chosen for postprocessing to determine the ratchetting strain and creep-fatigue damage at both the inside and outside surfaces. At many of the 20 surface points analyzed, the inelastic analysis results did not develop a constant or decreasing pattern for the incremental strain or damage even after 5 cycles were analyzed. Failure to develop a constant or decreasing pattern was especially prevalent for creep damage. The results of the detailed inelastic analyses at the ten critical sections are compared with the results of elastic evaluations of ratchetting and creep-fatigue damage calculated according to American Society of Mechanical Engineers Boiler and Pressure Vessel Code Case N-47-13

  10. A three dimensional elastoplastic cyclic constitutive law with a semi discrete variable and a ratchetting stress

    International Nuclear Information System (INIS)

    Geyer, P.; Proix, J.M.; Jayet-Gendrot, S.; Schoenberger, P.; Taheri, S.

    1995-01-01

    The study of cyclic elastoplastic constitutive law is, at the moment, focused on non proportional loadings, but for uniaxial loadings some problems remain, as for example the ability for a law to describe simultaneously ratcheting (constant increment of strain) in non symmetrical ones. We propose a law with a discrete memory variable, the plastic strain at the last unloading, and a ratchetting stress which, in addition to previous phenomena, describes the other hand the choice of all macroscopic variables is justified by a microscopic analysis. The extension to 3D situations of this law is proposed. The discrete nature of the memory leads to discontinuity problems for some loading paths, a modification is then proposed which uses a differential evolution law. For large enough uniaxial cycles, the uniaxial law is nevertheless recovered. An incremental form of he implicit evolution problem is given, and we describe the implementation of this model in the Code Aster a thermomechanical structural software using the f.e.m. developed at Electricite de France. For a 316 stainless steel we present comparisons between experiments and numerical results in uniaxial and biaxial ratchetting and non proportional strain controlled test (circular, square, stair loading). (authors). 13 refs., 10 figs

  11. Cyclic creep, mechanical ratchetting and amplitude history dependence of modified 9Cr-1Mo steel and evaluation of unified constitutive models

    International Nuclear Information System (INIS)

    Tanaka, Eiichi; Yamada, Hiroshi

    1993-01-01

    The purpose of the present paper is to elucidate inelastic behavior of modified 9Cr-1Mo steel as a candidate material for the next-generation fast breeder reactor and to provide the information for the formulation of a unified constitutive model. For this purpose, cyclic creep, mechanical ratchetting and amplitude history dependence of cyclic hardening were first examined at 550degC. As a result, systematic cyclic creep and mechanical ratchetting behavior were observed under various loading conditions, and little amplitude history dependence was found. Then these results were simulated by three unified constitutive models, i.e. the Chaboche, Bodner-Partom and modified Chaboche models. The simulated results show that these models cannot describe the cyclic creep and mechanical ratchetting behavior with high accuracy, but succeed in describing the inelastic behavior of amplitude variation experiments. (author)

  12. Ductility, strength and hardness relation after prior incremental deformation (ratcheting) of austenitic steel

    International Nuclear Information System (INIS)

    Kussmaul, K.; Diem, H.K.; Wachter, O.

    1993-01-01

    Experimental investigations into the stress/strain behavior of the niobium stabilized austenitic material with the German notation X6 CrNiNb 18 10 proved that a limited incrementally applied prior deformation will reduce the total deformation capability only by the amount of the prior deformation. It could especially be determined on the little changes in the reduction of area that the basically ductile deformation behavior will not be changed by the type of the prior loading. There is a correlation between the amount of deformation and the increase in hardness. It is possible to correlate both the changes in hardness and the material properties. In the case of low cycle fatigue tests with alternating temperature an incremental increase in total strain (ratcheting) was noted to depend on the strain range applied

  13. Ratchet Effects, Negative Mobility, and Phase Locking for Skyrmions on Periodic Substrates

    Science.gov (United States)

    Reichhardt, Charles; Ray, Dipanjan; Olson Reichhardt, Cynthia

    We examine the dynamics of skyrmions interacting with 1D and 2D periodic substrates in the presence of dc and ac drives. We find that the Magnus term strongly affects the skyrmion dynamics and that new kinds of phenomena can occur which are absent for overdamped ac and dc driven particles interacting with similar substrates. We show that it is possible to realize a Magnus induced ratchet for skyrmions interacting with an asymmetric potential, where the application of an ac drive can produce quantized dc motion of the skyrmions even when the ac force is perpendicular to the substrate asymmetry direction. For symmetric substrates it is also possible to achieve a negative mobility effect where the net skyrmion motion runs counter to an applied dc drive. Here, as a function of increasing dc drive, the velocity-force curves show a series of locking phases that have different features from the classic Shapiro steps found in overdamped systems. In the phase locking and ratcheting states, the skyrmions undergo intricate 2D orbits induced by the Magnus term.

  14. Ratchetting and creep-fatigue evaluation for nozzle-to-cylinder intersection

    International Nuclear Information System (INIS)

    Barsoum, R.S.; Loomis, R.W.; Stewart, B.D.

    1976-01-01

    The study is part of an analytical investigation on the applicability of the simplified ratchetting and creep-fatigue rules to LMFBR component geometry. Both the detailed inelastic rules and the simplified elastic rules are applied to the results obtained from a three-dimensional finite element analysis of the nozzle-to-cylinder intersection. The results of both evaluations are compared at several locations on the surface, and an assessment of the degree of conservatism of the simplified methods is discussed

  15. Giant transversal particle diffusion in a longitudinal magnetic ratchet.

    Science.gov (United States)

    Tierno, Pietro; Reimann, Peter; Johansen, Tom H; Sagués, Francesc

    2010-12-03

    We study the transversal motion of paramagnetic particles on a uniaxial garnet film, exhibiting a longitudinal ratchet effect in the presence of an oscillating magnetic field. Without the field, the thermal diffusion coefficient obtained by video microscopy is D(0) ≈ 3 × 10(-4)  μm2/s. With the field, the transversal diffusion exhibits a giant enhancement by almost four decades and a pronounced maximum as a function of the driving frequency. We explain the experimental findings with a theoretical interpretation in terms of random disorder effects within the magnetic film.

  16. Entropic Ratchet transport of interacting active Brownian particles

    Energy Technology Data Exchange (ETDEWEB)

    Ai, Bao-Quan, E-mail: aibq@hotmail.com [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, 510006 Guangzhou (China); He, Ya-Feng [College of Physics Science and Technology, Hebei University, 071002 Baoding (China); Zhong, Wei-Rong, E-mail: wrzhong@jnu.edu.cn [Department of Physics and Siyuan Laboratory, College of Science and Engineering, Jinan University, 510632 Guangzhou (China)

    2014-11-21

    Directed transport of interacting active (self-propelled) Brownian particles is numerically investigated in confined geometries (entropic barriers). The self-propelled velocity can break thermodynamical equilibrium and induce the directed transport. It is found that the interaction between active particles can greatly affect the ratchet transport. For attractive particles, on increasing the interaction strength, the average velocity first decreases to its minima, then increases, and finally decreases to zero. For repulsive particles, when the interaction is very weak, there exists a critical interaction at which the average velocity is minimal, nearly tends to zero, however, for the strong interaction, the average velocity is independent of the interaction.

  17. Entropic Ratchet transport of interacting active Brownian particles

    International Nuclear Information System (INIS)

    Ai, Bao-Quan; He, Ya-Feng; Zhong, Wei-Rong

    2014-01-01

    Directed transport of interacting active (self-propelled) Brownian particles is numerically investigated in confined geometries (entropic barriers). The self-propelled velocity can break thermodynamical equilibrium and induce the directed transport. It is found that the interaction between active particles can greatly affect the ratchet transport. For attractive particles, on increasing the interaction strength, the average velocity first decreases to its minima, then increases, and finally decreases to zero. For repulsive particles, when the interaction is very weak, there exists a critical interaction at which the average velocity is minimal, nearly tends to zero, however, for the strong interaction, the average velocity is independent of the interaction

  18. Ratchet effect for nanoparticle transport in hair follicles.

    Science.gov (United States)

    Radtke, Matthias; Patzelt, Alexa; Knorr, Fanny; Lademann, Jürgen; Netz, Roland R

    2017-07-01

    The motion of a single rigid nanoparticle inside a hair follicle is investigated by means of Brownian dynamics simulations. The cuticular hair structure is modeled as a periodic asymmetric ratchet-shaped surface. Induced by oscillating radial hair motion we find directed nanoparticle transport into the hair follicle with maximal velocity at a specific optimal frequency and an optimal particle size. We observe flow reversal when switching from radial to axial oscillatory hair motion. We also study the diffusion behavior and find strongly enhanced diffusion for axial motion with a diffusivity significantly larger than for free diffusion. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Dielectrophoretic manipulation of human chromosomes in microfluidic channels: extracting chromosome dielectric properties

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Dimaki, Maria; Buckley, Sonia

    2011-01-01

    An investigation of the dielectric properties of polyamine buffer prepared human chromosomes is presented in this paper. Chromosomes prepared in this buffer are only a few micrometers in size and shaped roughly like spherical discs. Dielectrophoresis was therefore chosen as the method...... of manipulation combined with a custom designed microfluidic system containing the required electrodes for dielectrophoresis experiments. Our results show that although this system is presently not able to distinguish between the different chromosomes, it can provide average data for the dielectric properties...... of human chromosomes in polyamine buffer. These can then be used to optimize system designs for further characterization and even sorting. The experimental data from the dielectrophoretic manipulation were combined with theoretical calculations to extract a range of values for the permittivity...

  20. Controlling heat transport and flow structures in thermal turbulence using ratchet surfaces

    Science.gov (United States)

    Sun, Chao; Jiang, Hechuan; Zhu, Xiaojue; Mathai, Varghese; Verzicco, Roberto; Lohse, Detlef

    2017-11-01

    In this combined experimental and numerical study on thermally driven turbulence in a rectangular cell, the global heat transport and the coherent flow structures are controlled with an asymmetric ratchet-like roughness on the top and bottom plates. We show that, by means of symmetry breaking due to the presence of the ratchet structures on the conducting plates, the orientation of the Large Scale Circulation Roll (LSCR) can be locked to a preferred direction even when the cell is perfectly leveled out. By introducing a small tilt to the system, we show that the LSCR orientation can be tuned and controlled. The two different orientations of LSCR give two quite different heat transport efficiencies, indicating that heat transport is sensitive to the LSCR direction over the asymmetric roughness structure. Through analysis of the dynamics of thermal plume emissions and the orientation of the LSCR over the asymmetric structure, we provide a physical explanation for these findings. This work is financially supported by the Natural Science Foundation of China under Grant No. 11672156, the Dutch Foundation for Fundamental Research on Matter (FOM), the Dutch Technology Foundation (STW) and a VIDI Grant.

  1. Can vocal conditioning trigger a semiotic ratchet in marmosets?

    Directory of Open Access Journals (Sweden)

    Hjalmar Kosmos Turesson

    2015-10-01

    Full Text Available The complexity of human communication has often been taken as evidence that our language reflects a true evolutionary leap, bearing little resemblance to any other animal communication system. The putative uniqueness of the human language poses serious evolutionary and ethological challenges to a rational explanation of human communication. Here we review ethological, anatomical, molecular and computational results across several species to set boundaries for these challenges. Results from animal behavior, cognitive psychology, neurobiology, and semiotics indicate that human language shares multiple features with other primate communication systems, such as specialized brain circuits for sensorimotor processing, the capability for indexical (pointing and symbolic (referential signaling, the importance of shared intentionality for associative learning, affective conditioning and parental scaffolding of vocal production. The most substantial differences lie in the higher human capacity for symbolic compositionality, fast vertical transmission of new symbols across generations, and irreversible accumulation of novel adaptive behaviors (cultural ratchet. We hypothesize that increasingly-complex vocal conditioning of an appropriate animal model may be sufficient to trigger a semiotic ratchet, evidenced by progressive sign complexification, as spontaneous contact calls become indexes, then symbols and finally arguments (strings of symbols. To test this hypothesis, we outline a series of conditioning experiments in the common marmoset (Callithrix jacchus. The experiments are designed to probe the limits of vocal communication in a prosocial, highly vocal primate 35 million years far from the human lineage, so as to shed light on the mechanisms of semiotic complexification and cultural transmission, and serve as a naturalistic behavioral setting for the investigation of language disorders.

  2. Can vocal conditioning trigger a semiotic ratchet in marmosets?

    Science.gov (United States)

    Turesson, Hjalmar K; Ribeiro, Sidarta

    2015-01-01

    The complexity of human communication has often been taken as evidence that our language reflects a true evolutionary leap, bearing little resemblance to any other animal communication system. The putative uniqueness of the human language poses serious evolutionary and ethological challenges to a rational explanation of human communication. Here we review ethological, anatomical, molecular, and computational results across several species to set boundaries for these challenges. Results from animal behavior, cognitive psychology, neurobiology, and semiotics indicate that human language shares multiple features with other primate communication systems, such as specialized brain circuits for sensorimotor processing, the capability for indexical (pointing) and symbolic (referential) signaling, the importance of shared intentionality for associative learning, affective conditioning and parental scaffolding of vocal production. The most substantial differences lie in the higher human capacity for symbolic compositionality, fast vertical transmission of new symbols across generations, and irreversible accumulation of novel adaptive behaviors (cultural ratchet). We hypothesize that increasingly-complex vocal conditioning of an appropriate animal model may be sufficient to trigger a semiotic ratchet, evidenced by progressive sign complexification, as spontaneous contact calls become indexes, then symbols and finally arguments (strings of symbols). To test this hypothesis, we outline a series of conditioning experiments in the common marmoset (Callithrix jacchus). The experiments are designed to probe the limits of vocal communication in a prosocial, highly vocal primate 35 million years far from the human lineage, so as to shed light on the mechanisms of semiotic complexification and cultural transmission, and serve as a naturalistic behavioral setting for the investigation of language disorders.

  3. Simulation study of dielectrophoretic assembly of nanowire between electrode pairs

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Quan, E-mail: taq3@pitt.edu; Lan, Fei; Jiang, Minlin [University of Pittsburgh, The Department of Electrical and Computer Engineering (United States); Wei, Fanan [Chinese Academy of Sciences, State Key Laboratory of Robotics, Shenyang Institute of Automation (China); Li, Guangyong, E-mail: gul6@pitt.edu [University of Pittsburgh, The Department of Electrical and Computer Engineering (United States)

    2015-07-15

    Dielectrophoresis (DEP) of rod-shaped nanostructures is attractive because of its exceptional capability to fabricate nanowire-based electronic devices. This efficient manipulation method, however, has a common side effect of assembling a certain number of nanowires at undesired positions. It is therefore essential to understand the underlying physics of DEP of nanowires in order to better guide the assembly. In this work, we propose theoretical methods to characterize the dielectrophoretic force and torque as well as the hydrodynamic drag force and torque on the nanowire (typical length: 10 μm). The trajectory of the nanowire is then simulated based on rigid body dynamics. The nanowire is predicted to either bridge the electrodes or attach on the surface of one electrode. A neighborhood in which the nanowire is more likely to bridge electrodes is found, which is conducive to successful assembly. The simulation study in this work provides us not only a better understanding of the underlying physics but also practical guidance on nanowire assembly by DEP.

  4. A 3-D Microelectrode System for Dielectrophoretic Manipulation of Microparticles

    International Nuclear Information System (INIS)

    Chen, D F; Du, H; Gong, H Q; Li, W H

    2006-01-01

    This paper presents a microfluidic system for manipulation and separation of micron-sized particles based on the combined use of negative dielectrophoresis (DEP) and hydrodynamic forces. A 3-D microelectrode structure (so called paired electrode array) are constructed face to face on the top and bottom sides of the microchannel and driven with highfrequency AC voltage to generate dielectrophoretic gates. Depending on the relative strengths of the two forces, particles such as polystyrene beads or cells carrying by a laminar flow can either penetrate the gate or settle there. This gives rise to certain applications including selectively concentrating particles from the flow, separating particles depending on their sizes or dielectric properties, and automatically positioning particles to selective locations. For this purpose, a microfluidic device consisting of the paired electrode array sitting on the channel has been fabricated using microfabrication techniques. Polystyrene beads were used to study the performance of the device. Experimental results including the concentration and separation of particles are presented

  5. Magnetic quantum ratchet effect in Si-MOSFETs

    International Nuclear Information System (INIS)

    Ganichev, S D; Karch, J; Kamann, J; Tarasenko, S A; Kvon, Z D

    2014-01-01

    We report on the observation of magnetic quantum ratchet effect in metal-oxide-semiconductor field-effect-transistors on silicon surface (Si-MOSFETs). We show that the excitation of an unbiased transistor by ac electric field of terahertz radiation at normal incidence leads to a direct electric current between the source and drain contacts if the transistor is subjected to an in-plane magnetic field. The current rises linearly with the magnetic field strength and quadratically with the ac electric field amplitude. It depends on the polarization state of the ac field and can be induced by both linearly and circularly polarized radiation. We present the quasi-classical and quantum theories of the observed effect and show that the current originates from the Lorentz force acting upon carriers in asymmetric inversion channels of the transistors. (paper)

  6. Many-Body Quantum Chaos and Entanglement in a Quantum Ratchet

    Science.gov (United States)

    Valdez, Marc Andrew; Shchedrin, Gavriil; Heimsoth, Martin; Creffield, Charles E.; Sols, Fernando; Carr, Lincoln D.

    2018-06-01

    We uncover signatures of quantum chaos in the many-body dynamics of a Bose-Einstein condensate-based quantum ratchet in a toroidal trap. We propose measures including entanglement, condensate depletion, and spreading over a fixed basis in many-body Hilbert space, which quantitatively identify the region in which quantum chaotic many-body dynamics occurs, where random matrix theory is limited or inaccessible. With these tools, we show that many-body quantum chaos is neither highly entangled nor delocalized in the Hilbert space, contrary to conventionally expected signatures of quantum chaos.

  7. Quantitative Magnetic Separation of Particles and Cells Using Gradient Magnetic Ratcheting.

    Science.gov (United States)

    Murray, Coleman; Pao, Edward; Tseng, Peter; Aftab, Shayan; Kulkarni, Rajan; Rettig, Matthew; Di Carlo, Dino

    2016-04-13

    Extraction of rare target cells from biosamples is enabling for life science research. Traditional rare cell separation techniques, such as magnetic activated cell sorting, are robust but perform coarse, qualitative separations based on surface antigen expression. A quantitative magnetic separation technology is reported using high-force magnetic ratcheting over arrays of magnetically soft micropillars with gradient spacing, and the system is used to separate and concentrate magnetic beads based on iron oxide content (IOC) and cells based on surface expression. The system consists of a microchip of permalloy micropillar arrays with increasing lateral pitch and a mechatronic device to generate a cycling magnetic field. Particles with higher IOC separate and equilibrate along the miropillar array at larger pitches. A semi-analytical model is developed that predicts behavior for particles and cells. Using the system, LNCaP cells are separated based on the bound quantity of 1 μm anti-epithelial cell adhesion molecule (EpCAM) particles as a metric for expression. The ratcheting cytometry system is able to resolve a ±13 bound particle differential, successfully distinguishing LNCaP from PC3 populations based on EpCAM expression, correlating with flow cytometry analysis. As a proof-of-concept, EpCAM-labeled cells from patient blood are isolated with 74% purity, demonstrating potential toward a quantitative magnetic separation instrument. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. CERN Library | Roy Calne presents: "The Ratchet of Science - Curiosity killed the cat" | 26 October

    CERN Multimedia

    CERN Library

    2015-01-01

    Sir Roy Calne will discuss his most recent book: “The Ratchet of Science - Curiosity killed the cat. Can human nature cope with the rapid and accelerated advances of science?”   Monday, 26 October - 4.30 p.m. CERN Filtration plant, Room 222-R-001 There is a limited number of seats. Please register here. The book’s premise is that huge scientific advances throughout history occur in spurts or “ratchets”. It reflects on the good and the evil consequences of discoveries. Due to the worrying nature of human beings, each ratchet in our knowledge is too often accompanied by dangerous applications. Knowledge, once established by a reliable scientific method, cannot be unlearned. The cat is out of the bag and the curiosity may kill the cat – so to speak. Professor Roy Calne illustrates this with the example of the young physicist known to all at CERN: Lise Meitner, who discovered and named nucle...

  9. Simplified design rule for ratcheting analysis

    International Nuclear Information System (INIS)

    Cousseran, P.; Clement, G.; Lebey, J.; Roche, R.L.

    1982-07-01

    Ratcheting in the creep range is the magnification of primary stress effects caused by cyclic straining. Computation results do not agree with experimental results due to the complexity of the real material behavior. From the results of experimental tests a design rule based on the concept of effective primary stress Psub(eff) is proposed. The effective primary stress is a fictitious primary stress giving the same effect that the real loading i.e. the same effect that the combination of an applied primary stress P and a cyclic straining quoted by the range Qsub(R) of secondary stress variation. Determination of an upper bound value of Psub(eff) is made with the help of an efficiency diagram. More precisely the efficiency diagram include a curve giving a conservative value of an efficiency index V = P/Psub(eff) as a function of the secondarity quotient SQ = Qsub(R)/P. Finally limitation of Psub(eff) intensity is discussed in regard with the current practice

  10. Electric field and dielectrophoretic force on a dielectric particle chain in a parallel-plate electrode system

    International Nuclear Information System (INIS)

    Techaumnat, B; Eua-arporn, B; Takuma, T

    2004-01-01

    This paper presents results of calculations of the electric field and dielectrophoretic force on a dielectric particle chain suspended in a host liquid lying between parallel-plate electrodes. The method of calculation is based on the method of multipole images using the multipole re-expansion technique. We have investigated the effect of the particle permittivity, the tilt angle (between the chain and the applied field) and the chain arrangement on the electric field and force. The results show that the electric field intensification rises in accordance with the increase in the ratio of the particle-to-liquid permittivity, Γ ε . The electric field at the contact point between the particles decreases with increasing tilt angle, while the maximal field at the contact point between the particles and the plate electrodes is almost unchanged. The maximal field can be approximated by a simple formula, which is a quadratic function of Γ ε . The dielectrophoretic force depends significantly on the distance from other particles or an electrode. However, for the tilt angles in this paper, the horizontal force on the upper particle of the chain always has the direction opposite to the shear direction. The maximal horizontal force of a chain varies proportional to (Γ ε - 1) 1.7 if the particles in the chain are still in contact with each other. The approximated force, based on the force on an isolated chain, has been compared with our calculation results. The comparison shows that no approximation model agrees well with our results throughout the range of permittivity ratios

  11. Micro rectennas: Brownian ratchets for thermal-energy harvesting

    International Nuclear Information System (INIS)

    Pan, Y.; Powell, C. V.; Balocco, C.; Song, A. M.

    2014-01-01

    We experimentally demonstrated the operation of a rectenna for harvesting thermal (blackbody) radiation and converting it into dc electric power. The device integrates an ultrafast rectifier, the self-switching nanodiode, with a wideband log-periodic spiral microantenna. The radiation from the thermal source drives the rectenna out of thermal equilibrium, permitting the rectification of the excess thermal fluctuations from the antenna. The power conversion efficiency increases with the source temperatures up to 0.02% at 973 K. The low efficiency is attributed mainly to the impedance mismatch between antenna and rectifier, and partially to the large field of view of the antenna. Our device not only opens a potential solution for harvesting thermal energy but also provides a platform for experimenting with Brownian ratchets

  12. Micro rectennas: Brownian ratchets for thermal-energy harvesting

    Science.gov (United States)

    Pan, Y.; Powell, C. V.; Song, A. M.; Balocco, C.

    2014-12-01

    We experimentally demonstrated the operation of a rectenna for harvesting thermal (blackbody) radiation and converting it into dc electric power. The device integrates an ultrafast rectifier, the self-switching nanodiode, with a wideband log-periodic spiral microantenna. The radiation from the thermal source drives the rectenna out of thermal equilibrium, permitting the rectification of the excess thermal fluctuations from the antenna. The power conversion efficiency increases with the source temperatures up to 0.02% at 973 K. The low efficiency is attributed mainly to the impedance mismatch between antenna and rectifier, and partially to the large field of view of the antenna. Our device not only opens a potential solution for harvesting thermal energy but also provides a platform for experimenting with Brownian ratchets.

  13. Micro rectennas: Brownian ratchets for thermal-energy harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Y.; Powell, C. V.; Balocco, C., E-mail: claudio.balocco@durham.ac.uk [School of Engineering and Computing Sciences, Durham University, Durham DH1 3LE (United Kingdom); Song, A. M. [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom)

    2014-12-22

    We experimentally demonstrated the operation of a rectenna for harvesting thermal (blackbody) radiation and converting it into dc electric power. The device integrates an ultrafast rectifier, the self-switching nanodiode, with a wideband log-periodic spiral microantenna. The radiation from the thermal source drives the rectenna out of thermal equilibrium, permitting the rectification of the excess thermal fluctuations from the antenna. The power conversion efficiency increases with the source temperatures up to 0.02% at 973 K. The low efficiency is attributed mainly to the impedance mismatch between antenna and rectifier, and partially to the large field of view of the antenna. Our device not only opens a potential solution for harvesting thermal energy but also provides a platform for experimenting with Brownian ratchets.

  14. Modelling of ratchetting with the Chaboche elastoplastic model modified by Burlet and Cailletaud; Modelisation des phenomenes de deformation progressive par le modele elastoplastique de Chaboche modifie par Burlet et Cailletaud

    Energy Technology Data Exchange (ETDEWEB)

    Geyer, P

    1994-01-01

    A fine modelling of the material`s behaviour can be necessary to study the mechanical strength of nuclear power plant`s components under cyclic loads. The modelling of cyclic plasticity made great progress during the past 20 years. Ratchetting is one of the last phenomena for which numerical models have to be improved. We give in this document a state of the art report on research in this field. We notably show the basically different character of ratchetting in uniaxial and biaxial loading tests, usually distinguished as 1D and 2D ratchetting. On the basis of this overview, we selected the kinematic hardening formulation proposed by Burlet and Cailletaud, which we coupled with the Chaboche elastoplastic model with two non linear kinematic hardening variables to improve the modelling of 2D ratchetting. We use the experimental results on the austenitic steel 316L at 20 and 300 deg C under uniaxial loadings (low cycle fatigue) and biaxial loadings (traction-torsion) to study the new model capabilities. We get a good modelling of ratchetting in biaxial loadings. The model has been installed in the ASTER code under the name of UBRLET. It now has to be qualified by component analysis calculations. (author). 25 refs., 30 figs., 11 tabs., 3 annexes.

  15. Monitoring microstructural evolution of alloy 617 with non-linear acoustics for remaining useful life prediction; multiaxial creep-fatigue and creep-ratcheting

    International Nuclear Information System (INIS)

    Lissenden, Cliff; Hassan, Tasnin; Rangari, Vijaya

    2014-01-01

    The research built upon a prior investigation to develop a unified constitutive model for design-@by-@analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-@fatigue and creep-@ratcheting tests were conducted on the nickel base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-@controlled cycling, are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-@fatigue and creep-@ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-@fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-@ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched application of the

  16. Towards Computing Ratcheting and Training in Superconducting Magnets

    International Nuclear Information System (INIS)

    Ferracin, Paolo; Caspi, Shlomo; Lietzke, A.F.

    2007-01-01

    The Superconducting Magnet Group at Lawrence Berkeley National Laboratory (LBNL) has been developing 3D finite element models to predict the behavior of high field Nb 3 Sn superconducting magnets. The models track the coil response during assembly, cool-down, and excitation, with particular interest on displacements when frictional forces arise. As Lorentz forces were cycled, irreversible displacements were computed and compared with strain gauge measurements. Additional analysis was done on the local frictional energy released during magnet excitation, and the resulting temperature rise. Magnet quenching and training was correlated to the level of energy release during such mechanical displacements under frictional forces. We report in this paper the computational results of the ratcheting process, the impact of friction, and the path-dependent energy release leading to a computed magnet training curve

  17. Analysis of the role of elution buffers on the separation capabilities of dielectrophoretic devices

    Directory of Open Access Journals (Sweden)

    Rossana Di Martino

    2016-03-01

    Full Text Available Field flow fractionation dielectrophoretic (FFF-DEP devices are currently used, among the others, for the separation of tumor cells from healthy blood cells. To this end specific suspension/elution buffers (EBs, with reduced conductivity (with respect to that of the cell cytoplasm are generally used. In this paper we investigate the long-term alterations of the cells and elution buffers. We find that the EB conductivity is critically modified within few minutes after cells suspension. In turn, this modification results in a change the ideal separation frequency of the FFF-DEP device. On the other hand we prove that DEP manipulation is preserved for more than three hours for cells suspended in the considered EBs. Keywords: Dielectrophoresis, Elution buffer, Circulating tumor cells, Cell motility

  18. Experimental analysis of ratchetting in elbows

    International Nuclear Information System (INIS)

    Acker, D.; Touboul, F.; Brouard, D.

    1991-01-01

    Despite of their apparent simplicity, elbows or curved tubes are one of the most tested and analyzed structures to the last years when a large effort has been done by CEA in the framework of the European Structural Integrity Working Group in order to reassess the RCC-MR (1985) piping design rules for elbows and straight parts (TOUBOUL (1988-1989)). It is impossible to mention all the authors and an extensive bibliography has been done by BENDJEDIDIA (1987). But nobody in our knowledge has taken care in experimental validation of design rules against ratcheting. With such objectives, an experimental test program has been performed at CEA, in order to appraise the design methods based on shakedown model like 3 S m rule used by ASME section III (1989) in USA or RCC-M (1988) in FRANCE, or based on the efficiency Diagram used by the french design code for Fast Breeder reactors RCC-MR (1985). The first results were published by M. BENDJEDIDIA (1987). They have been completed by additional tests and improved by a better material characterisation

  19. Hydrodynamic interactions induce movement against an external load in a ratchet dimer Brownian motor.

    Science.gov (United States)

    Fornés, José A

    2010-01-15

    We use the Brownian dynamics with hydrodynamic interactions simulation in order to describe the movement of a elastically coupled dimer Brownian motor in a ratchet potential. The only external forces considered in our system were the load, the random thermal noise and an unbiased thermal fluctuation. For a given set of parameters we observe direct movement against the load force if hydrodynamic interactions were considered.

  20. Modified Feynman ratchet with velocity-dependent fluctuations

    Directory of Open Access Journals (Sweden)

    Jack Denur

    2004-03-01

    Full Text Available Abstract: The randomness of Brownian motion at thermodynamic equilibrium can be spontaneously broken by velocity-dependence of fluctuations, i.e., by dependence of values or probability distributions of fluctuating properties on Brownian-motional velocity. Such randomness-breaking can spontaneously obtain via interaction between Brownian-motional Doppler effects --- which manifest the required velocity-dependence --- and system geometrical asymmetry. A non random walk is thereby spontaneously superposed on Brownian motion, resulting in a systematic net drift velocity despite thermodynamic equilibrium. The time evolution of this systematic net drift velocity --- and of velocity probability density, force, and power output --- is derived for a velocity-dependent modification of Feynman's ratchet. We show that said spontaneous randomness-breaking, and consequent systematic net drift velocity, imply: bias from the Maxwellian of the system's velocity probability density, the force that tends to accelerate it, and its power output. Maximization, especially of power output, is discussed. Uncompensated decreases in total entropy, challenging the second law of thermodynamics, are thereby implied.

  1. Nanoscale magnetic ratchets based on shape anisotropy

    Science.gov (United States)

    Cui, Jizhai; Keller, Scott M.; Liang, Cheng-Yen; Carman, Gregory P.; Lynch, Christopher S.

    2017-02-01

    Controlling magnetization using piezoelectric strain through the magnetoelectric effect offers several orders of magnitude reduction in energy consumption for spintronic applications. However strain is a uniaxial effect and, unlike directional magnetic field or spin-polarized current, cannot induce a full 180° reorientation of the magnetization vector when acting alone. We have engineered novel ‘peanut’ and ‘cat-eye’ shaped nanomagnets on piezoelectric substrates that undergo repeated deterministic 180° magnetization rotations in response to individual electric-field-induced strain pulses by breaking the uniaxial symmetry using shape anisotropy. This behavior can be likened to a magnetic ratchet, advancing magnetization clockwise with each piezostrain trigger. The results were validated using micromagnetics implemented in a multiphysics finite elements code to simulate the engineered spatial and temporal magnetic behavior. The engineering principles start from a target device function and proceed to the identification of shapes that produce the desired function. This approach opens a broad design space for next generation magnetoelectric spintronic devices.

  2. "Artificial micro organs"--a microfluidic device for dielectrophoretic assembly of liver sinusoids.

    Science.gov (United States)

    Schütte, Julia; Hagmeyer, Britta; Holzner, Felix; Kubon, Massimo; Werner, Simon; Freudigmann, Christian; Benz, Karin; Böttger, Jan; Gebhardt, Rolf; Becker, Holger; Stelzle, Martin

    2011-06-01

    In order to study possible toxic side effects of potential drug compounds in vitro a reliable test system is needed. Predicting liver toxicity presents a major challenge of particular importance as liver cells grown in a cell culture suffer from a rapid loss of their liver specific functions. Therefore we are developing a new microfluidic test system for liver toxicity. This test system is based on an organ-like liver 3D co-culture of hepatocytes and endothelial cells. We devised a microfluidic chip featuring cell culture chambers with integrated electrodes for the assembly of liver sinusoids by dielectrophoresis. Fluid channels enable an organ-like perfusion with culture media and test compounds. Different chamber designs were studied and optimized with regard to dielectrophoretic force distribution, hydrodynamic flow profile, and cell trapping rate using numeric simulations. Based on simulation results a microchip was injection-moulded from COP. This chip allowed the assembly of viable hepatocytes and endothelial cells in a sinusoid-like fashion.

  3. Monitoring microstructural evolution of alloy 617 with non-linear acoustics for remaining useful life prediction; multiaxial creep-fatigue and creep-ratcheting

    Energy Technology Data Exchange (ETDEWEB)

    Lissenden, Cliff [Pennsylvania State Univ., State College, PA (United States); Hassan, Tasnin [North Carolina State Univ., Raleigh, NC (United States); Rangari, Vijaya [Tuskegee Univ., Tuskegee, AL (United States)

    2014-10-30

    The research built upon a prior investigation to develop a unified constitutive model for design-­by-­analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-­fatigue and creep-­ratcheting tests were conducted on the nickel-­base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-­controlled cycling, are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-­fatigue and creep-­ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-­fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-­ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched

  4. How does a scanning ribosomal particle move along the 5'-untranslated region of eukaryotic mRNA? Brownian Ratchet model.

    Science.gov (United States)

    Spirin, Alexander S

    2009-11-17

    A model of the ATP-dependent unidirectional movement of the 43S ribosomal initiation complex (=40S ribosomal subunit + eIF1 + eIF1A + eIF2.GTP.Met-tRNA(i) + eIF3) during scanning of the 5'-untranslated region of eukaryotic mRNA is proposed. The model is based on the principles of molecular Brownian ratchet machines and explains several enigmatic data concerning the scanning complex. In this model, the one-dimensional diffusion of the ribosomal initiation complex along the mRNA chain is rectified into the net-unidirectional 5'-to-3' movement by the Feynman ratchet-and-pawl mechanism. The proposed mechanism is organized by the heterotrimeric protein eIF4F (=eIF4A + eIF4E + eIF4G), attached to the scanning ribosomal particle via eIF3, and the RNA-binding protein eIF4B that is postulated to play the role of the pawl. The energy for the useful work of the ratchet-and-pawl mechanism is supplied from ATP hydrolysis induced by the eIF4A subunit: ATP binding and its hydrolysis alternately change the affinities of eIF4A for eIF4B and for mRNA, resulting in the restriction of backward diffusional sliding of the 43S ribosomal complex along the mRNA chain, while stochastic movements ahead are allowed.

  5. Flashing subdiffusive ratchets in viscoelastic media

    International Nuclear Information System (INIS)

    Kharchenko, Vasyl; Goychuk, Igor

    2012-01-01

    We study subdiffusive ratchet transport in periodically and randomly flashing potentials. A central Brownian particle is elastically coupled to the surrounding auxiliary Brownian quasi-particles, which account for the influence of the viscoelastic environment. Similar to standard dynamical modeling of Brownian motion, the external force influences only the motion of the central particle, not affecting directly the environmental degrees of freedom. Just a handful of auxiliary Brownian particles suffices to model subdiffusion over many temporal decades. Time modulation of the potential violates the symmetry of thermal detailed balance and induces an anomalous subdiffusive current which exhibits a remarkably small dispersion at low temperatures, as well as a number of other surprising features such as saturation at low temperatures, and multiple inversions of the transport direction upon a change of the driving frequency in the non-adiabatic regime. It is shown that the subdiffusive current is finite at zero temperature for random flashing and can be finite for periodic flashing for a certain frequency window. Our study generalizes classical Brownian motors towards operating in sticky viscoelastic environments such as the cytosol of biological cells or dense polymer solutions. (paper)

  6. Experimental study on uniaxial cyclic ratcheting behavior of 304 stainless steel at room temperature

    International Nuclear Information System (INIS)

    Yang Xianjie; Gao Qing; Cai Lixun; Liu Yujie

    2004-01-01

    The cyclic tests for 304 stainless steel with solution heat treatment under uni-axial cyclic straining and stressing were carried out systematically. The effects of the cyclic engineering stress amplitude history with constant mean stress, the mean engineering stress history with constant cyclic stress amplitude and the stress amplitude histories with the specific mean stress increment per cycle on the uni-axial ratcheting deformation behavior were investigated. Some significant results are obtained

  7. Quantum ratchets for periodically kicked cold atoms and Bose-Einstein condensates

    Energy Technology Data Exchange (ETDEWEB)

    Casati, Giulio [Center for Nonlinear and Complex Systems, Universita degli Studi dell' Insubria and Istituto Nazionale per la Fisica della Materia, Unita di Como, Via Valleggio 11, 22100 Como (Italy); Poletti, Dario [Center for Nonlinear and Complex Systems, Universita degli Studi dell' Insubria and Istituto Nazionale per la Fisica della Materia, Unita di Como, Via Valleggio 11, 22100 Como (Italy)

    2007-05-15

    We study cold atoms and Bose-Einstein condensates exposed to time-dependent standing waves of light. We first discuss a quantum chaotic dissipative ratchet using the method of quantum trajectories. This system is characterized by directed transport emerging from a quantum strange attractor. We then present a very simple model of directed transport with cold atoms in a pair of periodically flashed optical lattices. Finally we study the dynamics of a dilute Bose-Einstein condensate confined in a toroidal trap and exposed to a pair of periodically flashed optical lattices. We show that the many-body atom-atom interactions, treated within the mean-field approximation, can generate directed transport.

  8. Nanotip analysis for dielectrophoretic concentration of nanosized viral particles.

    Science.gov (United States)

    Yeo, Woon-Hong; Lee, Hyun-Boo; Kim, Jong-Hoon; Lee, Kyong-Hoon; Chung, Jae-Hyun

    2013-05-10

    Rapid and sensitive detection of low-abundance viral particles is strongly demanded in health care, environmental control, military defense, and homeland security. Current detection methods, however, lack either assay speed or sensitivity, mainly due to the nanosized viral particles. In this paper, we compare a dendritic, multi-terminal nanotip ('dendritic nanotip') with a single terminal nanotip ('single nanotip') for dielectrophoretic (DEP) concentration of viral particles. The numerical computation studies the concentration efficiency of viral particles ranging from 25 to 100 nm in radius for both nanotips. With DEP and Brownian motion considered, when the particle radius decreases by two times, the concentration time for both nanotips increases by 4-5 times. In the computational study, a dendritic nanotip shows about 1.5 times faster concentration than a single nanotip for the viral particles because the dendritic structure increases the DEP-effective area to overcome the Brownian motion. For the qualitative support of the numerical results, the comparison experiment of a dendritic nanotip and a single nanotip is conducted. Under 1 min of concentration time, a dendritic nanotip shows a higher sensitivity than a single nanotip. When the concentration time is 5 min, the sensitivity of a dendritic nanotip for T7 phage is 10(4) particles ml(-1). The dendritic nanotip-based concentrator has the potential for rapid identification of viral particles.

  9. Nanotip analysis for dielectrophoretic concentration of nanosized viral particles

    International Nuclear Information System (INIS)

    Yeo, Woon-Hong; Lee, Hyun-Boo; Kim, Jong-Hoon; Chung, Jae-Hyun; Lee, Kyong-Hoon

    2013-01-01

    Rapid and sensitive detection of low-abundance viral particles is strongly demanded in health care, environmental control, military defense, and homeland security. Current detection methods, however, lack either assay speed or sensitivity, mainly due to the nanosized viral particles. In this paper, we compare a dendritic, multi-terminal nanotip (‘dendritic nanotip’) with a single terminal nanotip (‘single nanotip’) for dielectrophoretic (DEP) concentration of viral particles. The numerical computation studies the concentration efficiency of viral particles ranging from 25 to 100 nm in radius for both nanotips. With DEP and Brownian motion considered, when the particle radius decreases by two times, the concentration time for both nanotips increases by 4–5 times. In the computational study, a dendritic nanotip shows about 1.5 times faster concentration than a single nanotip for the viral particles because the dendritic structure increases the DEP-effective area to overcome the Brownian motion. For the qualitative support of the numerical results, the comparison experiment of a dendritic nanotip and a single nanotip is conducted. Under 1 min of concentration time, a dendritic nanotip shows a higher sensitivity than a single nanotip. When the concentration time is 5 min, the sensitivity of a dendritic nanotip for T7 phage is 10 4 particles ml −1 . The dendritic nanotip-based concentrator has the potential for rapid identification of viral particles. (paper)

  10. Iterative Dipole Moment Method for the Dielectrophoretic Particle-Particle Interaction in a DC Electric Field

    Directory of Open Access Journals (Sweden)

    Qing Zhang

    2018-01-01

    Full Text Available Electric force is the most popular technique for bioparticle transportation and manipulation in microfluidic systems. In this paper, the iterative dipole moment (IDM method was used to calculate the dielectrophoretic (DEP forces of particle-particle interactions in a two-dimensional DC electric field, and the Lagrangian method was used to solve the transportation of particles. It was found that the DEP properties and whether the connection line between initial positions of particles perpendicular or parallel to the electric field greatly affect the chain patterns. In addition, the dependence of the DEP particle interaction upon the particle diameters, initial particle positions, and the DEP properties have been studied in detail. The conclusions are advantageous in elelctrokinetic microfluidic systems where it may be desirable to control, manipulate, and assemble bioparticles.

  11. Escherichia coli Fiber Sensors Using Concentrated Dielectrophoretic Force with Optical Defocusing Method.

    Science.gov (United States)

    Tai, Yi-Hsin; Lee, Chia-Wei; Chang, Dao-Ming; Lai, Yu-Sheng; Huang, Ding-Wei; Wei, Pei-Kuen

    2018-05-25

    A sensitive tapered optical fiber tip combined with dielectrophoretic (DEP) trapping was used for rapid and label-free detection of bacteria in water. The angular spectrum of the optical field at the fiber tip was changed with the surrounding refractive index (RI). By measuring far-field intensity change at the defocus plane, the intensity sensitivity was up to 95 200%/RIU (RI unit), and the detection limit was 5.2 × 10 -6 RIU at 0.5% intensity stability. By applying an AC voltage to a Ti/Al coated fiber tip and an indium-tin-oxide glass, the DEP force effectively trapped the Escherichia coli ( E. coli) near the fiber tip. Those bacteria can be directly measured from optical intensity change due to the increase of surrounding RI. By immobilizing the antibody on the Ti/Al fiber tip, the tests for specific K12 bacteria and nonspecific BL21 bacteria verified the specificity. The antibody-immobilized Ti/Al coated fiber tip with DEP trapping can detect bacteria at a concentration about 100 CFU/mL.

  12. Ratchet Effects and Domain Wall Energy Landscapes in Amorphous Magnetic Films with 2D Arrays of Asymmetric Holes

    Science.gov (United States)

    Martin, J. I.; Alija, A.; Sobrado, I.; Perez-Junquera, A.; Rodriguez-Rodriguez, G.; Velez, M.; Alameda, J. M.; Marconi, V. I.; Kolton, A. B.; Parrondo, J. M. R.

    2009-03-01

    The driven motion of domain walls in extended magnetic films patterned with 2D arrays of asymmetric holes has been found to be subject to two different crossed ratchet effects [1] which results in an inversion of the sign of domain wall motion rectification as a function of the applied magnetic field. This effect can be understood in terms of the competition between drive, elasticity and asymmetric pinning as revealed by a simple 4̂-model. In order to optimize the asymmetric hole design, the relevant energy landscapes for domain wall motion across the array of asymmetric holes have been calculated by micromagnetic simulations as a function of array geometrical characteristics. The effects of a transverse magnetic field on these two crossed ratchet effects will also be discussed in terms of the decrease in domain wall energy per unit area and of the modifications in the magnetostatic barriers for domain wall pinning at the asymmetric inclusions. Work supported by Spanish MICINN.[1] A. Perez-Junquera et al, Phys. Rev. Lett. 100 (2008) 037203

  13. Shaping Cutter Original Profile for Fine-module Ratchet Teeth Cutting

    Science.gov (United States)

    Sharkov, O. V.; Koryagin, S. I.; Velikanov, N. L.

    2018-03-01

    The methods for determining geometric characteristics of a theoretical original profile of the cutter for cutting ratchet teeth with a module of 0.3–1.0 mm are considered in the article. Design models describing the shaping process of cutting edges of cutter teeth are developed. Systems of expressions for determining coordinates of the points of front and back edges of cutter teeth; the workpiece angles of rotation during the cutting process; the minimum cutter radius are received. The basic data when using the proposed technique are: radii of circumferences passing through cavities of cutter teeth and external cut teeth; the gradient angle and length of straight section of the front edge of a cut tooth; angles of rotation of the cutter and the workpiece at the moment of shaping.

  14. Quantum ratchets, the orbital Josephson effect, and chaos in Bose-Einstein condensates

    Science.gov (United States)

    Carr, Lincoln D.; Heimsoth, Martin; Creffield, Charles E.; Sols, Fernando

    2014-03-01

    In a system of ac-driven condensed bosons we study a new type of Josephson effect occurring between states sharing the same region of space and the same internal atom structure. We first develop a technique to calculate the long-time dynamics of a driven interacting many-body system. For resonant frequencies, this dynamics can be shown to derive from an effective time-independent Hamiltonian which is expressed in terms of standard creation and annihilation operators. Within the subspace of resonant states, and if the undriven states are plane waves, a locally repulsive interaction between bosons translates into an effective attraction. We apply the method to study the effect of interactions on the coherent ratchet current of an asymmetrically driven boson system. We find a wealth of dynamical regimes which includes Rabi oscillations, self-trapping and chaotic behavior. In the latter case, a full quantum many-body calculation deviates from the mean-field results by predicting large quantum fluctuations of the relative particle number. Moreover, we find that chaos and entanglement, as defined by a variety of widely used and accepted measures, are overlapping but distinct notions. Funded by Spanish MINECO, the Ramon y Cajal program (CEC), the Comunidad de Madrid through Grant Microseres, the Heidelberg Center for Quantum Dynamics, and the NSF.

  15. Rare beneficial mutations can halt Muller's ratchet

    Science.gov (United States)

    Balick, Daniel; Goyal, Sidhartha; Jerison, Elizabeth; Neher, Richard; Shraiman, Boris; Desai, Michael

    2012-02-01

    In viral, bacterial, and other asexual populations, the vast majority of non-neutral mutations are deleterious. This motivates the application of models without beneficial mutations. Here we show that the presence of surprisingly few compensatory mutations halts fitness decay in these models. Production of deleterious mutations is balanced by purifying selection, stabilizing the fitness distribution. However, stochastic vanishing of fitness classes can lead to slow fitness decay (i.e. Muller's ratchet). For weakly deleterious mutations, production overwhelms purification, rapidly decreasing population fitness. We show that when beneficial mutations are introduced, a stable steady state emerges in the form of a dynamic mutation-selection balance. We argue this state is generic for all mutation rates and population sizes, and is reached as an end state as genomes become saturated by either beneficial or deleterious mutations. Assuming all mutations have the same magnitude selective effect, we calculate the fraction of beneficial mutations necessary to maintain the dynamic balance. This may explain the unexpected maintenance of asexual genomes, as in mitochondria, in the presence of selection. This will affect in the statistics of genetic diversity in these populations.

  16. The westward drift of the lithosphere: A tidal ratchet?

    Directory of Open Access Journals (Sweden)

    A. Carcaterra

    2018-03-01

    Full Text Available Is the westerly rotation of the lithosphere an ephemeral accidental recent phenomenon or is it a stable process of Earth's geodynamics? The reason why the tidal drag has been questioned as the mechanism determining the lithospheric shift relative to the underlying mantle is the apparent too high viscosity of the asthenosphere. However, plate boundaries asymmetries are a robust indication of the ‘westerly’ decoupling of the entire Earth's outer lithospheric shell and new studies support lower viscosities in the low-velocity layer (LVZ atop the asthenosphere. Since the solid Earth tide oscillation is longer in one side relative to the other due to the contemporaneous Moon's revolution, we demonstrate that a non-linear rheological behavior is expected in the lithosphere mantle interplay. This may provide a sort of ratchet favoring lowering of the LVZ viscosity under shear, allowing decoupling in the LVZ and triggering the westerly motion of the lithosphere relative to the mantle.

  17. Multiaxial Creep-Fatigue and Creep-Ratcheting Failures of Grade 91 and Haynes 230 Alloys Toward Addressing Design Issues of Gen IV Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Tasnim [North Carolina State Univ., Raleigh, NC (United States); Lissenden, Cliff [Penn State Univ., University Park, PA (United States); Carroll, Laura [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The proposed research will develop systematic sets of uniaxial and multiaxial experimental data at a very high temperature (850-950°C) for Alloy 617. The loading histories to be prescribed in the experiments will induce creep-fatigue and creep-ratcheting failure mechanisms. These experimental responses will be scrutinized in order to quantify the influences of temperature and creep on fatigue and ratcheting failures. A unified constitutive model (UCM) will be developed and validated against these experimental responses. The improved UCM will be incorporated into the widely used finite element commercial software packages ANSYS. The modified ANSYS will be validated so that it can be used for evaluating the very high temperature ASME-NH design-by-analysis methodology for Alloy 617 and thereby addressing the ASME-NH design code issues.

  18. Multiaxial Creep-Fatigue and Creep-Ratcheting Failures of Grade 91 and Haynes 230 Alloys Toward Addressing Design Issues of Gen IV Nuclear Power Plants

    International Nuclear Information System (INIS)

    Hassan, Tasnim; Lissenden, Cliff; Carroll, Laura

    2015-01-01

    The proposed research will develop systematic sets of uniaxial and multiaxial experimental data at a very high temperature (850-950°C) for Alloy 617. The loading histories to be prescribed in the experiments will induce creep-fatigue and creep-ratcheting failure mechanisms. These experimental responses will be scrutinized in order to quantify the influences of temperature and creep on fatigue and ratcheting failures. A unified constitutive model (UCM) will be developed and validated against these experimental responses. The improved UCM will be incorporated into the widely used finite element commercial software packages ANSYS. The modified ANSYS will be validated so that it can be used for evaluating the very high temperature ASME-NH design-by-analysis methodology for Alloy 617 and thereby addressing the ASME-NH design code issues.

  19. A cyclic constitutive law for metals with a semi-discrete memory variable for description of ratcheting phenomena

    International Nuclear Information System (INIS)

    Andrieux, S.; Schoenberger, P.; Taheri, S.

    1993-01-01

    The study of cyclic elastoplastic constitutive laws is, at the moment, focused on non proportional loadings, but for uniaxial loadings some problems remain, as for example the ability for a law to describe simultaneously ratcheting in non symmetrical load-controlled test, elastic and plastic shakedown in symmetrical and non symmetrical ones. We have proposed in a law with a discrete memory variable which, in addition to previous phenomena, describes the cyclic hardening in a pushpull test, and the cyclic softening after overloading. A modified law has been proposed to take into account the dependence of cyclic strain stress curve on the history of loading. The extension to 3D situations of this law is proposed. The discrete nature of the memory leads to discontinuity problems for some loading paths, a modification is then proposed which uses a differential evolution law. For large enough uniaxial cycles, the uniaxial law is nevertheless recovered. In this paper, an incremental form of the implicit evolution problem is given, and we describe the implementation of this model in the Code Aster - a thermomechanical structural software using the finite element method (f.e.m) developed at Electricite de France. Comparison between experiment and numerical results is given for uniaxial ratcheting, non proportional strain controlled test

  20. High-throughput particle manipulation by hydrodynamic, electrokinetic, and dielectrophoretic effects in an integrated microfluidic chip

    KAUST Repository

    Li, Shunbo; Li, Ming; Bougot-Robin, Kristelle; Cao, Wenbin; Yeung Yeung Chau, Irene; Li, Weihua; Wen, Weijia

    2013-01-01

    Integrating different steps on a chip for cell manipulations and sample preparation is of foremost importance to fully take advantage of microfluidic possibilities, and therefore make tests faster, cheaper and more accurate. We demonstrated particle manipulation in an integrated microfluidic device by applying hydrodynamic, electroosmotic (EO), electrophoretic (EP), and dielectrophoretic (DEP) forces. The process involves generation of fluid flow by pressure difference, particle trapping by DEP force, and particle redirect by EO and EP forces. Both DC and AC signals were applied, taking advantages of DC EP, EO and AC DEP for on-chip particle manipulation. Since different types of particles respond differently to these signals, variations of DC and AC signals are capable to handle complex and highly variable colloidal and biological samples. The proposed technique can operate in a high-throughput manner with thirteen independent channels in radial directions for enrichment and separation in microfluidic chip. We evaluated our approach by collecting Polystyrene particles, yeast cells, and E. coli bacteria, which respond differently to electric field gradient. Live and dead yeast cells were separated successfully, validating the capability of our device to separate highly similar cells. Our results showed that this technique could achieve fast pre-concentration of colloidal particles and cells and separation of cells depending on their vitality. Hydrodynamic, DC electrophoretic and DC electroosmotic forces were used together instead of syringe pump to achieve sufficient fluid flow and particle mobility for particle trapping and sorting. By eliminating bulky mechanical pumps, this new technique has wide applications for in situ detection and analysis.

  1. High-throughput particle manipulation by hydrodynamic, electrokinetic, and dielectrophoretic effects in an integrated microfluidic chip

    KAUST Repository

    Li, Shunbo

    2013-03-20

    Integrating different steps on a chip for cell manipulations and sample preparation is of foremost importance to fully take advantage of microfluidic possibilities, and therefore make tests faster, cheaper and more accurate. We demonstrated particle manipulation in an integrated microfluidic device by applying hydrodynamic, electroosmotic (EO), electrophoretic (EP), and dielectrophoretic (DEP) forces. The process involves generation of fluid flow by pressure difference, particle trapping by DEP force, and particle redirect by EO and EP forces. Both DC and AC signals were applied, taking advantages of DC EP, EO and AC DEP for on-chip particle manipulation. Since different types of particles respond differently to these signals, variations of DC and AC signals are capable to handle complex and highly variable colloidal and biological samples. The proposed technique can operate in a high-throughput manner with thirteen independent channels in radial directions for enrichment and separation in microfluidic chip. We evaluated our approach by collecting Polystyrene particles, yeast cells, and E. coli bacteria, which respond differently to electric field gradient. Live and dead yeast cells were separated successfully, validating the capability of our device to separate highly similar cells. Our results showed that this technique could achieve fast pre-concentration of colloidal particles and cells and separation of cells depending on their vitality. Hydrodynamic, DC electrophoretic and DC electroosmotic forces were used together instead of syringe pump to achieve sufficient fluid flow and particle mobility for particle trapping and sorting. By eliminating bulky mechanical pumps, this new technique has wide applications for in situ detection and analysis.

  2. Inelastic Cyclic Deformation Behaviors of Type 316H Stainless Steel for Reactor Pressure Vessel of Sodium-Cooled Fast Reactor at Elevated Temperatures

    International Nuclear Information System (INIS)

    Yoon, Ji-Hyun; Hong, Seokmin; Koo, Gyeong-Hoi; Lee, Bong-Sang; Kim, Young-Chun

    2015-01-01

    Type 316H stainless steel is a primary candidate material for a reactor pressure vessel of a sodium-cooled fast (SFR) reactor which is under development in Korea. The reactor pressure vessel for a SFR is subjected to inelastic deformation induced by cyclic thermal stress. Fully reversed cyclic testing and ratcheting testing at elevated temperatures were performed to characterize the inelastic cyclic deformation behaviors of Type 316H stainless steel at the SFR operating temperature. It was found that cyclic hardening of Type 316H stainless steel was enhanced, and the accumulation of ratcheting deformation of Type 316H stainless steel was retarded at around the SFR operating temperature. The results of the tensile testing and the microstructural investigation for dislocated structures after the inelastic deformation testing showed that dynamic strain aging affected the inelastic cyclic deformation behavior of Type 316 stainless steel at around the SFR operating temperature.

  3. Asymmetric step-like characteristics in a tilted rocking ratchet potential

    International Nuclear Information System (INIS)

    Lee, A. Khangjune; Lee, Jong-Rim; Lee, K.H.

    2012-01-01

    The overdamped Langevin dynamics has been employed to study the directional transport of particles driven in a tilted rocking ratchet potential. The system subjected to a constant direct force undergoes an asymmetrical dynamic transition from a static state to a sliding state at two different critical forces that are consistent with the predicted values. When an additional alternating force is applied to the system, the time-averaged velocity shows several steps of equal height as the direct force increases. These steps are similar to the Shapiro steps in an rf-driven Josephson junction, and appear whenever the system's natural frequency given by the direct force matches an integer multiple of the applied frequency. When the alternating force exceeds a certain critical value which can be also estimated for a slow rocking, a directional motion known as the rectification effect occurs even at zero direct force.

  4. Double-temperature ratchet model and current reversal of coupled Brownian motors

    Science.gov (United States)

    Li, Chen-Pu; Chen, Hong-Bin; Zheng, Zhi-Gang

    2017-12-01

    On the basis of the transport features and experimental phenomena observed in studies of molecular motors, we propose a double-temperature ratchet model of coupled motors to reveal the dynamical mechanism of cooperative transport of motors with two heads, where the interactions and asynchrony between two motor heads are taken into account. We investigate the collective unidirectional transport of coupled system and find that the direction of motion can be reversed under certain conditions. Reverse motion can be achieved by modulating the coupling strength, coupling free length, and asymmetric coefficient of the periodic potential, which is understood in terms of the effective potential theory. The dependence of the directed current on various parameters is studied systematically. Directed transport of coupled Brownian motors can be manipulated and optimized by adjusting the pulsation period or the phase shift of the pulsation temperature.

  5. Terahertz electric field driven electric currents and ratchet effects in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ganichev, Sergey D.; Weiss, Dieter; Eroms, Jonathan [Terahertz Center, University of Regensburg (Germany)

    2017-11-15

    Terahertz field induced photocurrents in graphene were studied experimentally and by microscopic modeling. Currents were generated by cw and pulsed laser radiation in large area as well as small-size exfoliated graphene samples. We review general symmetry considerations leading to photocurrents depending on linear and circular polarized radiation and then present a number of situations where photocurrents were detected. Starting with the photon drag effect under oblique incidence, we proceed to the photogalvanic effect enhancement in the reststrahlen band of SiC and edge-generated currents in graphene. Ratchet effects were considered for in-plane magnetic fields and a structure inversion asymmetry as well as for graphene with non-symmetric patterned top gates. Lastly, we demonstrate that graphene can be used as a fast, broadband detector of terahertz radiation. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Ratchetting in the creep range

    International Nuclear Information System (INIS)

    Ponter, A.R.S.; Cocks, A.C.F.; Clement, G.; Roche, R.; Corradi, L.; Franchi, A.

    1985-01-01

    This report attempts to present a ''State of the Art'' of this problem from three contracting and complementary points of view which reflect separate traditions within the discipline of structural analysis. Part I gives a brief summary of the essential elements of the three constitutive parts and a set of conclusions and recommendations are then formulated. Part II is an attempt by a group at CEA Saclay, France, to distil from available experimental data a set of rules expressed in terms of the stress classifications of the ASME codes, which will ensure the prevention of excessive creep ratchetting. The resulting stresses to an effective (or reference) stress and the creep assessment is then made in terms of the creep produced by the effective stress. They aim at analytical procedures for LMFBR components that operate in the creep region and are subject to considerable thermal transients. Part III by Ponter and Cocks of the University of Leicester is a theoretical study of the problem using bounding and other approximate techniques. The problem is studied in a sequence of increasingly complex problems commencing with an isothermal structure subjected to constant load and terminating in a structure subjected to arbitrary cyclic thermal loading. The results are expressed in terms of a reference stress derived from a plastic shakedown solution, and a reference history of temperature. These techniques are capable of providing assessment of the creep deformation of a structure when the plastic shakedown properties of the structures are known. The particular circumstances which occur in a LMFBR are emphasized. Part IV by Corradi and Franchi discusses the methods by which finite element solution may be calculated. These are surveyed with particular reference to the numerical problems involved and the relationship between computational procedure and the form of the constitutive equation. 162 refs

  7. Dielectrophoretic capture and genetic analysis of single neuroblastoma tumor cells

    Directory of Open Access Journals (Sweden)

    Erica L Carpenter

    2014-07-01

    Full Text Available Our understanding of the diversity of cells that escape the primary tumor and seed micrometastases remains rudimentary, and approaches for studying circulating and disseminated tumor cells have been limited by low throughput and sensitivity, reliance on single parameter sorting, and a focus on enumeration rather than phenotypic and genetic characterization. Here we utilize a highly sensitive microfluidic and dielectrophoretic approach for the isolation and genetic analysis of individual tumor cells. We employed fluorescence labeling to isolate 208 single cells from spiking experiments conducted with 11 cell lines, including 8 neuroblastoma cell lines, and achieved a capture sensitivity of 1 tumor cell per 106 white blood cells. Sample fixation or freezing had no detectable effect on cell capture. Point mutations were accurately detected in the whole genome amplification product of captured single tumor cells but not in negative control white blood cells. We applied this approach to capture 144 single tumor cells from 10 bone marrow samples from patients suffering from neuroblastoma. In this pediatric malignancy, high-risk patients often exhibit wide-spread hematogenous metastasis, but access to primary tumor can be difficult or impossible. Here we used flow-based sorting to pre-enrich samples with tumor involvement below 0.02%. For all patients for whom a mutation in the Anaplastic Lymphoma Kinase gene had already been detected in their primary tumor, the same mutation was detected in single cells from their marrow. These findings demonstrate a novel, non-invasive, and adaptable method for the capture and genetic analysis of single tumor cells from cancer patients.

  8. Experimental tests on ratchet of 304 austenitic steel, at room temperature

    International Nuclear Information System (INIS)

    Boulais, Jacques; Brouard, Daniel; Lebey, Jacques; Roche, Roland.

    1978-09-01

    Most of the studies on ratcheting are theoretical and use very rough constitutive equations for the material behavior (perfect plasticity for instance). Most of the available experimental results concern tests on complex structures, and are difficult to interpret. So there is a need for experimental tests on basic structures easy to use to determine the material characteristics. Tests on thin tubular specimen are very interesting because stress, strain and temperature fields are uniform. The primary stress P is an axial tensile one (dead weight), the secondary stress, with ΔQ range, is due to a cyclic angle controled twist. The incremental elongation is obtained as a function of the number of cycles N for different values of P and ΔQ. Diagrams representing the isocurves of cumulated elongation (for a given number of cycles) as a function of P and ΔQ are shown [fr

  9. Numerical comparison between Maxwell stress method and equivalent multipole approach for calculation of the dielectrophoretic force in single-cell traps.

    Science.gov (United States)

    Rosales, Carlos; Lim, Kian Meng

    2005-06-01

    This paper presents detailed numerical calculations of the dielectrophoretic force in traps designed for single-cell trapping. A trap with eight planar electrodes is studied for spherical and ellipsoidal particles using the boundary element method (BEM). Multipolar approximations of orders one to three are compared with the full Maxwell stress tensor (MST) calculation of the electrical force on spherical particles. Ellipsoidal particles are also studied, but in their case only the dipolar approximation is available for comparison with the MST solution. The results show that a small number of multipolar terms need to be considered in order to obtain accurate results for spheres, even in the proximity of the electrodes, and that the full MST calculation is only required in the study of non-spherical particles.

  10. Zeeman ratchets: pure spin current generation in mesoscopic conductors with non-uniform magnetic fields

    International Nuclear Information System (INIS)

    Scheid, Matthias; Bercioux, Dario; Richter, Klaus

    2007-01-01

    We consider the possibility to employ a quantum wire realized in a two-dimensional electron gas (2DEG) as a spin ratchet. We show that a net spin current without accompanying net charge transport can be induced in the nonlinear regime by an unbiased external driving via an ac voltage applied between the contacts at the ends of the quantum wire. To achieve this, we make use of the coupling of the electron spin to inhomogeneous magnetic fields created by ferromagnetic stripes patterned on the semiconductor heterostructure that harbors the 2DEG. Using recursive Green function techniques, we numerically study two different set-ups, consisting of one and two ferromagnetic stripes, respectively

  11. Peptide Probes Reveal a Hydrophobic Steric Ratchet in the Anthrax Toxin Protective Antigen Translocase.

    Science.gov (United States)

    Colby, Jennifer M; Krantz, Bryan A

    2015-11-06

    Anthrax toxin is a tripartite virulence factor produced by Bacillus anthracis during infection. Under acidic endosomal pH conditions, the toxin's protective antigen (PA) component forms a transmembrane channel in host cells. The PA channel then translocates its two enzyme components, lethal factor and edema factor, into the host cytosol under the proton motive force. Protein translocation under a proton motive force is catalyzed by a series of nonspecific polypeptide binding sites, called clamps. A 10-residue guest/host peptide model system, KKKKKXXSXX, was used to functionally probe polypeptide-clamp interactions within wild-type PA channels. The guest residues were Thr, Ala, Leu, Phe, Tyr, and Trp. In steady-state translocation experiments, the channel blocked most tightly with peptides that had increasing amounts of nonpolar surface area. Cooperative peptide binding was observed in the Trp-containing peptide sequence but not the other tested sequences. Trp substitutions into a flexible, uncharged linker between the lethal factor amino-terminal domain and diphtheria toxin A chain expedited translocation. Therefore, peptide-clamp sites in translocase channels can sense large steric features (like tryptophan) in peptides, and while these steric interactions may make a peptide translocate poorly, in the context of folded domains, they can make the protein translocate more rapidly presumably via a hydrophobic steric ratchet mechanism. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. A Simple Method to Measure Nematodes' Propulsive Thrust and the Nematode Ratchet.

    Science.gov (United States)

    Bau, Haim; Yuan, Jinzhou; Raizen, David

    2015-11-01

    Since the propulsive thrust of micro organisms provides a more sensitive indicator of the animal's health and response to drugs than motility, a simple, high throughput, direct measurement of the thrust is desired. Taking advantage of the nematode C. elegans being heavier than water, we devised a simple method to determine the propulsive thrust of the animals by monitoring their velocity when swimming along an inclined plane. We find that the swimming velocity is a linear function of the sin of the inclination angle. This method allows us to determine, among other things, the animas' propulsive thrust as a function of genotype, drugs, and age. Furthermore, taking advantage of the animals' inability to swim over a stiff incline, we constructed a sawteeth ratchet-like track that restricts the animals to swim in a predetermined direction. This research was supported, in part, by NIH NIA Grant 5R03AG042690-02.

  13. Dielectrophoretic Separation of Live and Dead Monocytes Using 3D Carbon-Electrodes

    Directory of Open Access Journals (Sweden)

    Yagmur Yildizhan

    2017-11-01

    Full Text Available Blood has been the most reliable body fluid commonly used for the diagnosis of diseases. Although there have been promising investigations for the development of novel lab-on-a-chip devices to utilize other body fluids such as urine and sweat samples in diagnosis, their stability remains a problem that limits the reliability and accuracy of readouts. Hence, accurate and quantitative separation and characterization of blood cells are still crucial. The first step in achieving high-resolution characteristics for specific cell subpopulations from the whole blood is the isolation of pure cell populations from a mixture of cell suspensions. Second, live cells need to be purified from dead cells; otherwise, dead cells might introduce biases in the measurements. In addition, the separation and characterization methods being used must preserve the genetic and phenotypic properties of the cells. Among the characterization and separation approaches, dielectrophoresis (DEP is one of the oldest and most efficient label-free quantification methods, which directly purifies and characterizes cells using their intrinsic, physical properties. In this study, we present the dielectrophoretic separation and characterization of live and dead monocytes using 3D carbon-electrodes. Our approach successfully removed the dead monocytes while preserving the viability of the live monocytes. Therefore, when blood analyses and disease diagnosis are performed with enriched, live monocyte populations, this approach will reduce the dead-cell contamination risk and achieve more reliable and accurate test results.

  14. Comparisons of ratchetting analysis methods using RCC-M, RCC-MR and ASME codes

    International Nuclear Information System (INIS)

    Yang Yu; Cabrillat, M.T.

    2005-01-01

    The present paper compares the simplified ratcheting analysis methods used in RCC-M, RCC-MR and ASME with some examples. Firstly, comparisons of the methods in RCC-M and efficiency diagram in RCC-MR are investigated. A special method is used to describe these two methods with curves in one coordinate, and the different conservation is demonstrated. RCC-M method is also be interpreted by SR (second ratio) and v (efficiency index) which is used in RCC-MR. Hence, we can easily compare the previous two methods by defining SR as abscissa and v as ordinate and plotting two curves of them. Secondly, comparisons of the efficiency curve in RCC-MR and methods in ASME-NH APPENDIX T are investigated, with significant creep. At last, two practical evaluations are performed to show the comparisons of aforementioned methods. (authors)

  15. Discrete numerical investigation of the ratcheting phenomenon in granular materials

    Science.gov (United States)

    Calvetti, Francesco; di Prisco, Claudio

    2010-10-01

    Several relevant geotechnical works, such as railway and road embankments, offshore foundations and vibrating machine foundations, are affected by the progressive accumulation of irreversible settlements. These latter represent the macroscopic evidence of the progressive rearrangement of particles under cycling loading, which is commonly referred to, in the literature, as ratcheting. This phenomenon is well known, but it is quite difficult to describe it by means of an appropriate constitutive model. As a consequence, the evaluation of durability of the aforementioned structures remains an open problem. In this article, the phenomenon will be approached by employing a Distinct Element model capable of describing the evolution of the microstructure induced by cyclic mechanical perturbations. Several analyses are performed in order to stress the influence of both the stress level and loading history on the mechanical response of a numerical model of a sand specimen. The numerical analyses are intended to provide an experimental background for conceiving a simplified macro approach based on generalised plasticity theory. In particular by means of probe test the plastic potential and the hardening parameters will be defined as a function of the current stress state and loading history.

  16. Chaotic Dynamics of a Josephson Junction with a Ratchet Potential and Current-Modulating Damping

    Science.gov (United States)

    Li, Fei; Li, Wenwu; Xu, Lan

    2018-04-01

    The chaotic dynamics of a Josephson junction with a ratchet potential and current-modulating damping are studied. Under the first-order approximation, we construct the general solution of the first-order equation whose boundedness condition contains the famous Melnikov chaotic criterion. Based on the general solution, the incomputability and unpredictability of the system's chaotic behavior are discussed. For the case beyond perturbation conditions, the evolution of stroboscopic Poincaré sections shows that the system undergoes a quasi-periodic transition to chaos with an increasing intensity of the rf-current. Through a suitable feedback controlling strategy, the chaos can be effectively suppressed and the intensity of the controller can vary in a large range. It is also found that the current between the two separated superconductors increases monotonously in some specific parameter spaces.

  17. Continuous-flow system and monitoring tools for the dielectrophoretic integration of nanowires in light sensor arrays.

    Science.gov (United States)

    Marín, A García; Núñez, C García; Rodríguez, P; Shen, G; Kim, S M; Kung, P; Piqueras, J; Pau, J L

    2015-03-20

    Although nanowires (NWs) may improve the performance of many optoelectronic devices such as light emitters and photodetectors, the mass commercialization of these devices is limited by the difficult task of finding reliable and reproducible methods to integrate the NWs on foreign substrates. This work shows the fabrication of zinc oxide NWs photodetectors on conventional glass using transparent conductive electrodes to effectively integrate the NWs at specific locations by dielectrophoresis (DEP). The paper describes the careful preparation of NW dispersions by sedimentation and the dielectrophoretic alignment of NWs in a home-made system. This system includes an impedance technique for the assessment of the alignment quality in real time. Following this procedure, ultraviolet photodetectors based on the electrical contacts formed by the DEP process on the transparent electrodes are fabricated. This cost-effective mean of contacting NWs enables front-and back-illumination operation modes, the latter eliminating shadowing effects caused by the deposition of metals. The electro-optical characterization of the devices shows uniform responsivities in the order of 106 A W(-1) below 390 nm under both modes, as well as, time responses of a few seconds.

  18. A review of microfabrication techniques and dielectrophoretic microdevices for particle manipulation and separation

    International Nuclear Information System (INIS)

    Li, M; Li, W H; Zhang, J; Alici, G; Wen, W

    2014-01-01

    The development of lab-on-a-chip (LOC) devices over the past decade has attracted growing interest. LOC devices aim to achieve the miniaturization, integration, automation and parallelization of biological and chemical assays. One of the applications, the ability to effectively and accurately manipulate and separate micro- and nano-scale particles in an aqueous solution, is particularly appealing in biological, chemical and medical fields. Among the technologies that have been developed and implemented in microfluidic microsystems for particle manipulation and separation (such as mechanical, inertial, hydrodynamic, acoustic, optical, magnetic and electrical methodologies), dielectrophoresis (DEP) may prove to be the most popular because of its label-free nature, ability to manipulate neutral bioparticles, analyse with high selectivity and sensitivity, compatibility with LOC devices, and easy and direct interface with electronics. The required spatial electric non-uniformities for the DEP effect can be generated by patterning microelectrode arrays within microchannels, or placing insulating obstacles within a microchannel and curving the microchannels. A wide variety of electrode- and insulator-based DEP microdevices have been developed, fabricated, and successfully employed to manipulate and separate bioparticles (i.e. DNA, proteins, bacteria, viruses, mammalian and yeast cells). This review provides an overview of the state-of-the-art of microfabrication techniques and of the structures of dielectrophoretic microdevices aimed towards different applications. The techniques used for particle manipulation and separation based on microfluidics are provided in this paper. In addition, we also present the theoretical background of DEP. (topical review)

  19. Controlling Heat Transport and Flow Structures in Thermal Turbulence Using Ratchet Surfaces

    Science.gov (United States)

    Jiang, Hechuan; Zhu, Xiaojue; Mathai, Varghese; Verzicco, Roberto; Lohse, Detlef; Sun, Chao

    2018-01-01

    In this combined experimental and numerical study on thermally driven turbulence in a rectangular cell, the global heat transport and the coherent flow structures are controlled with an asymmetric ratchetlike roughness on the top and bottom plates. We show that, by means of symmetry breaking due to the presence of the ratchet structures on the conducting plates, the orientation of the large scale circulation roll (LSCR) can be locked to a preferred direction even when the cell is perfectly leveled out. By introducing a small tilt to the system, we show that the LSCR orientation can be tuned and controlled. The two different orientations of LSCR give two quite different heat transport efficiencies, indicating that heat transport is sensitive to the LSCR direction over the asymmetric roughness structure. Through a quantitative analysis of the dynamics of thermal plume emissions and the orientation of the LSCR over the asymmetric structure, we provide a physical explanation for these findings. The current work has important implications for passive and active flow control in engineering, biofluid dynamics, and geophysical flows.

  20. On-chip concentration of bacteria using a 3D dielectrophoretic chip and subsequent laser-based DNA extraction in the same chip

    International Nuclear Information System (INIS)

    Cho, Yoon-Kyoung; Kim, Tae-hyeong; Lee, Jeong-Gun

    2010-01-01

    We report the on-chip concentration of bacteria using a dielectrophoretic (DEP) chip with 3D electrodes and subsequent laser-based DNA extraction in the same chip. The DEP chip has a set of interdigitated Au post electrodes with 50 µm height to generate a network of non-uniform electric fields for the efficient trapping by DEP. The metal post array was fabricated by photolithography and subsequent Ni and Au electroplating. Three model bacteria samples (Escherichia coli, Staphylococcus epidermidis, Streptococcus mutans) were tested and over 80-fold concentrations were achieved within 2 min. Subsequently, on-chip DNA extraction from the concentrated bacteria in the 3D DEP chip was performed by laser irradiation using the laser-irradiated magnetic bead system (LIMBS) in the same chip. The extracted DNA was analyzed with silicon chip-based real-time polymerase chain reaction (PCR). The total process of on-chip bacteria concentration and the subsequent DNA extraction can be completed within 10 min including the manual operation time.

  1. Deformation behaviour of type 316 steel at 400 deg. C

    International Nuclear Information System (INIS)

    Wood, D.S.; Williamson, K.

    A variety of type 316 steel deformation tests at 400 deg. C involving a study of strain rate, stress increment, stress cycling and strain cycling effects are reported. It is concluded that very small ratchet strains may occur, but these are unlikely to be of engineering significance. It is also shown that in the absence of reversed plasticity the upper stress bound is represented by the monotonic stress-strain curve. Under reversed plasticity, significant cyclic hardening can occur and in this case the upper bound may be represented by the cyclic stress-strain curve

  2. On use of radial evanescence remain term in kinematic hardening

    International Nuclear Information System (INIS)

    Geyer, P.

    1995-01-01

    This paper presents the interest which lies in non-linear kinematic hardening rule with radial evanescence remain term as proposed for modelling multiaxial ratchetting. From analytical calculations in the case of the tension/torsion test, this ratchetting is compared with that proposed by Armstrong and Frederick. A modification is then proposed for Chaboche's elastoplastic model with two non-linear kinematic variables, by coupling the two types of hardening by means of two scalar parameters. Identification of these two parameters returns to speculate on the directions of strain in order to adjust the ratchetting to experimental observations. Using biaxial ratchetting tests on stainless steel 316 L specimens at ambient temperature, it is shown that satisfactory modelling of multiaxial ratchetting is obtained. (author). 4 refs., 5 figs

  3. The effect of creep ratchetting on thin shells

    International Nuclear Information System (INIS)

    Hibbeler, R.C.; Wang, P.Y.

    1975-01-01

    The behavior of thin shells, in particular, cylindrical and spherical shells, which are subjected to a long-time cyclic thermal gradient is discussed. Like many reactor components (shells) which are subjected to start-up and shut-down conditions, provided the temperature is high enough, the shell will exhibit a progressive growth with each cycle of temperature. This phenomena is often referred to as ratchetting and is caused by inelastic strains developed by creep. Although the thermal stress distribution is biaxial it is possible to represent the material behavior using a simple uniaxial-stress model. Assuming thermal stress interaction occurs, the equations which determine the solution of the strain growth and stress per cycle are presented. The flexibility of the analysis provides a means for including the effects of an arbitrary temperature-cycle time and temperature dependence of material properties. A step temperature variation is considered. During each part of the temperature cycle it is necessary to satisfy the equilibrium and compatibility conditions for the model. At any instant, the total strain will depend upon elastic, thermal, and creep strain components in addition to prior inelastic creep strains accumulated during previous temperature cycles. Accounting for all these conditions, the relations describing the behavior of the material can be determined during an arbitrary jth cycle of temperature. In particular, the cases of material properties are considered which are used for reactor components. Where possible, a closed form solution is given for appropriate values of the creep law exponents n and m. For the general case, an algorithm for the computer-solution to the problem is given. Using the general solution, the analysis appears to offer a suitable compromise between accurate behavior description and analytical complexity

  4. Microscopic analysis of the influence of ratcheting on the evolution of dislocation structures observed in AISI 316L stainless steel during low cycle fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Facheris, G., E-mail: giacomo.facheris@psi.ch [Laboratory for Nuclear Materials, Nuclear Energy and Safety Research Department, Paul Scherrer Institute, Villigen PSI (Switzerland); Pham, M.-S. [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); High Temperature Integrity Group, Mechanics for Modelling and Simulation, Swiss Federal Laboratories for Materials Science and Technology, EMPA, Dübendorf (Switzerland); Janssens, K.G.F., E-mail: koen.janssens@psi.ch [Laboratory for Nuclear Materials, Nuclear Energy and Safety Research Department, Paul Scherrer Institute, Villigen PSI (Switzerland); Holdsworth, S.R. [High Temperature Integrity Group, Mechanics for Modelling and Simulation, Swiss Federal Laboratories for Materials Science and Technology, EMPA, Dübendorf (Switzerland)

    2013-12-10

    When subjected to controlled cyclic deformation, the response of austenitic stainless steel typically involves primary hardening followed by softening, and eventually cyclic stabilization with or without secondary hardening. If a continuously drifting mean strain is superposed to an alternating strain path (i.e. strain controlled ratcheting), the response in terms of mean stress and strain amplitude is significantly different. A series of low cycle fatigue and ratcheting experiments are performed at room temperature on round specimens extracted from a batch of AISI 316L hot rolled plate. The experiments are interrupted at cycle numbers selected to correspond with the different strain controlled cycle response stages. The as-received material and the fatigued specimens are analyzed by means of transmission electron microscopy to characterize the microstructure and its evolution with cyclic loading. The low cycle fatigue experiments, performed to establish a reference point for the zero mean strain loading condition, are in line with observations reported for AISI 316L stainless steel by other authors. The continuously increasing mean strain is found to induce higher dislocation densities in the channels of the evolving microstructure, being responsible for the macroscopically observed additional hardening. The observed polarized dislocation walls at least partially accommodate the continuously drifting mean strain and play a role in the non-zero mean stress response.

  5. Modeling and characterization of dielectrophoretically structured piezoelectric composites using piezoceramic particle inclusions with high aspect ratios

    Science.gov (United States)

    van den Ende, D. A.; Maier, R. A.; van Neer, P. L. M. J.; van der Zwaag, S.; Randall, C. A.; Groen, W. A.

    2013-01-01

    In this work, the piezoelectric properties at high electric fields of dielectrophoretically aligned PZT—polymer composites containing high aspect ratio particles (such as short fibers) are presented. Polarization and strain as a function of electric field are evaluated. The properties of the composites are compared to those of PZT-polymer composites with equiaxed particles, continuous PZT fiber-polymer composites, and bulk PZT ceramics. From high-field polarization and strain measurements, the effective field dependent permittivity and piezoelectric charge constant in the poling direction are determined for dielectrophoresis structured PZT-polymer composites, continuous PZT fiber-polymer composites, and bulk PZT ceramics. The changes in dielectric properties of the inclusions and the matrix at high fields influence the dielectric and piezoelectric properties of the composites. It is found that the permittivity and piezoelectric charge constants increase towards a maximum at an applied field of around 2.5-5 kV/mm. The electric field at which the maximum occurs depends on the aspect ratio and degree of alignment of the inclusions. Experimental values of d33 at low and high applied fields are compared to a model describing the composites as a continuous polymer matrix containing PZT particles of various aspect ratios arranged into chains. Thickness mode coupling factors were determined from measured impedance data using fitted equivalent circuit model simulations. The relatively high piezoelectric strain constants, voltage constants, and thickness coupling factors indicate that such aligned short fiber composites could be useful as flexible large area transducers.

  6. Asymmetric ratchet effect for directional transport of fog drops on static and dynamic butterfly wings.

    Science.gov (United States)

    Liu, Chengcheng; Ju, Jie; Zheng, Yongmei; Jiang, Lei

    2014-02-25

    Inspired by novel creatures, researchers have developed varieties of fog drop transport systems and made significant contributions to the fields of heat transferring, water collecting, antifogging, and so on. Up to now, most of the efforts in directional fog drop transport have been focused on static surfaces. Considering it is not practical to keep surfaces still all the time in reality, conducting investigations on surfaces that can transport fog drops in both static and dynamic states has become more and more important. Here we report the wings of Morpho deidamia butterflies can directionally transport fog drops in both static and dynamic states. This directional drop transport ability results from the micro/nano ratchet-like structure of butterfly wings: the surface of butterfly wings is composed of overlapped scales, and the scales are covered with porous asymmetric ridges. Influenced by this special structure, fog drops on static wings are transported directionally as a result of the fog drops' asymmetric growth and coalescence. Fog drops on vibrating wings are propelled directionally due to the fog drops' asymmetric dewetting from the wings.

  7. Current-driven domain wall motion based memory devices: Application to a ratchet ferromagnetic strip

    Science.gov (United States)

    Sánchez-Tejerina, Luis; Martínez, Eduardo; Raposo, Víctor; Alejos, Óscar

    2018-04-01

    Ratchet memories, where perpendicular magnetocristalline anisotropy is tailored so as to precisely control the magnetic transitions, has been recently proven to be a feasible device to store and manipulate data bits. For such devices, it has been shown that the current-driven regime of domain walls can improve their performances with respect to the field-driven one. However, the relaxing time required by the traveling domain walls constitutes a certain drawback if the former regime is considered, since it results in longer device latencies. In order to speed up the bit shifting procedure, it is demonstrated here that the application of a current of inverse polarity during the DW relaxing time may reduce such latencies. The reverse current must be sufficiently high as to drive the DW to the equilibrium position faster than the anisotropy slope itself, but with an amplitude sufficiently low as to avoid DW backward shifting. Alternatively, it is possible to use such a reverse current to increase the proper range of operation for a given relaxing time, i.e., the pair of values of the current amplitude and pulse time that ensures single DW jumps for a certain latency time.

  8. Stochastic Stokes' Drift, Homogenized Functional Inequalities, and Large Time Behavior of Brownian Ratchets

    KAUST Repository

    Blanchet, Adrien

    2009-01-01

    A periodic perturbation of a Gaussian measure modifies the sharp constants in Poincarae and logarithmic Sobolev inequalities in the homogeniz ation limit, that is, when the period of a periodic perturbation converges to zero. We use variational techniques to determine the homogenized constants and get optimal convergence rates toward s equilibrium of the solutions of the perturbed diffusion equations. The study of these sharp constants is motivated by the study of the stochastic Stokes\\' drift. It also applies to Brownian ratchets and molecular motors in biology. We first establish a transport phenomenon. Asymptotically, the center of mass of the solution moves with a constant velocity, which is determined by a doubly periodic problem. In the reference frame attached to the center of mass, the behavior of the solution is governed at large scale by a diffusion with a modified diffusion coefficient. Using the homogenized logarithmic Sobolev inequality, we prove that the solution converges in self-similar variables attached to t he center of mass to a stationary solution of a Fokker-Planck equation modulated by a periodic perturbation with fast oscillations, with an explicit rate. We also give an asymptotic expansion of the traveling diffusion front corresponding to the stochastic Stokes\\' drift with given potential flow. © 2009 Society for Industrial and Applied Mathematics.

  9. Two-way communication between SecY and SecA suggests a Brownian ratchet mechanism for protein translocation.

    Science.gov (United States)

    Allen, William John; Corey, Robin Adam; Oatley, Peter; Sessions, Richard Barry; Baldwin, Steve A; Radford, Sheena E; Tuma, Roman; Collinson, Ian

    2016-05-16

    The essential process of protein secretion is achieved by the ubiquitous Sec machinery. In prokaryotes, the drive for translocation comes from ATP hydrolysis by the cytosolic motor-protein SecA, in concert with the proton motive force (PMF). However, the mechanism through which ATP hydrolysis by SecA is coupled to directional movement through SecYEG is unclear. Here, we combine all-atom molecular dynamics (MD) simulations with single molecule FRET and biochemical assays. We show that ATP binding by SecA causes opening of the SecY-channel at long range, while substrates at the SecY-channel entrance feed back to regulate nucleotide exchange by SecA. This two-way communication suggests a new, unifying 'Brownian ratchet' mechanism, whereby ATP binding and hydrolysis bias the direction of polypeptide diffusion. The model represents a solution to the problem of transporting inherently variable substrates such as polypeptides, and may underlie mechanisms of other motors that translocate proteins and nucleic acids.

  10. Experimental observations on uniaxial whole-life transformation ratchetting and low-cycle stress fatigue of super-elastic NiTi shape memory alloy micro-tubes

    Science.gov (United States)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-07-01

    In this work, the low-cycle fatigue failure of super-elastic NiTi shape memory alloy micro-tubes with a wall thickness of 150 μm is investigated by uniaxial stress-controlled cyclic tests at human body temperature 310 K. The effects of mean stress, peak stress, and stress amplitude on the uniaxial whole-life transformation ratchetting and fatigue failure of the NiTi alloy are observed. It is concluded that the fatigue life depends significantly on the stress levels, and the extent of martensite transformation and its reverse play an important role in determining the fatigue life. High peak stress or complete martensite transformation shortens the fatigue life.

  11. Experimental observations on uniaxial whole-life transformation ratchetting and low-cycle stress fatigue of super-elastic NiTi shape memory alloy micro-tubes

    International Nuclear Information System (INIS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-01-01

    In this work, the low-cycle fatigue failure of super-elastic NiTi shape memory alloy micro-tubes with a wall thickness of 150 μm is investigated by uniaxial stress-controlled cyclic tests at human body temperature 310 K. The effects of mean stress, peak stress, and stress amplitude on the uniaxial whole-life transformation ratchetting and fatigue failure of the NiTi alloy are observed. It is concluded that the fatigue life depends significantly on the stress levels, and the extent of martensite transformation and its reverse play an important role in determining the fatigue life. High peak stress or complete martensite transformation shortens the fatigue life. (paper)

  12. Ion pump as Brownian motor: theory of electroconformational coupling and proof of ratchet mechanism for Na,K-ATPase action

    Science.gov (United States)

    Tsong, Tian Yow; Chang, Cheng-Hung

    2003-04-01

    This article reviews some concepts of the Brownian Ratchet which are relevant to our discussion of mechanisms of action of Na,K-ATPase, a universal ion pump and an elemental motor protein of the biological cell. Under wide ranges of ionic compositions it can hydrolyze an ATP and use the γ-phosphorous bond energy of ATP to pump 3 Na + out of, and 2 K + into the cell, both being uphill transport. During the ATP-dependent pump cycle, the enzyme oscillates between E1 and E2 states. Our experiment replaces ATP with externally applied electric field of various waveforms, amplitudes, and frequencies. The field enforced-oscillation, or fluctuation of E1 and E2 states enables the enzyme to harvest energy from the applied field and convert it to the chemical gradient energy of cations. A theory of electroconformational coupling (TEC), which embodies all the essential features of the Brownian Ratchet, successfully simulates these experimental results. Our analysis based on a four-state TEC model indicates that the equilibrium and the rate constants of the transport system define the frequency and the amplitude of the field for the optimal activation. Waveform, frequency, and amplitude are three elements of signal. Thus, electric signal of the ion pump is found by TEC analysis of the experimental data. Electric noise (white) superimposed on an electric signal changes the pump efficiency and produces effects similar to the stochastic resonance reported in other biological systems. The TEC concept is compared with the most commonly used Michaelis-Menten enzyme mechanism (MME) for similarities and differences. Both MME and TEC are catalytic wheels, which recycle the catalyst in each turnover. However, a MME can only catalyze reaction of descending free energy while a TEC enzyme can catalyze reaction of ascending free energy by harvesting needed energy from an off-equilibrium electric noise. The TEC mechanism is shown to be applicable to other biological motors and engines, as

  13. Tethering sockets and wrenches

    Science.gov (United States)

    Johnson, E. P.

    1990-01-01

    The tethering of sockets and wrenches was accomplished to improve the safety of working over motor segments. To accomplish the tethering of the sockets to the ratchets, a special design was implemented in which a groove was machined into each socket. Each socket was then fitted with a snap ring that can spin around the machined groove. The snap ring is tethered to the handle of the ratchet. All open end wrenches are also tethered to the ratchet or to the operator, depending upon the type. Tests were run to ensure that the modified tools meet torque requirements. The design was subsequently approved by Space Safety.

  14. Tethering sockets and wrenches

    Science.gov (United States)

    Johnson, E. P.

    1990-07-01

    The tethering of sockets and wrenches was accomplished to improve the safety of working over motor segments. To accomplish the tethering of the sockets to the ratchets, a special design was implemented in which a groove was machined into each socket. Each socket was then fitted with a snap ring that can spin around the machined groove. The snap ring is tethered to the handle of the ratchet. All open end wrenches are also tethered to the ratchet or to the operator, depending upon the type. Tests were run to ensure that the modified tools meet torque requirements. The design was subsequently approved by Space Safety.

  15. Study of interaction of fatigue damage and ratcheting. Effect of a tensile primary load on torsion fatigue resistance of stainless steel 304 L at ambient temperature

    International Nuclear Information System (INIS)

    Hakem, N.S.

    1987-01-01

    Effect of ratcheting on fatigue resistance of a stainless steel 304 L, used for reactor vessels, is studied experimentally. Lifetime of samples is reduced if a static constant tensile load (primary loading) is superimposed to cyclic torsion deformations (secondary loading). An equivalent deformation concept is developed to express a criterion of fatigue rupture under primary loading. No effect is noted on the curve of cyclic strain hardening. This fatigue analysis gives no information on cumulated axial deformation. Progressive elongation, observed during testing, is dependent of primary and secondary loading. Rupture is produced by fatigue because cumulated axial deformation is limited ( 4 cycles at rupture cumulated deformation is [fr

  16. On use of radial evanescence remain term in kinematic hardening

    International Nuclear Information System (INIS)

    Geyer, P.

    1995-10-01

    A fine modelling of the material' behaviour can be necessary to study the mechanical strength of nuclear power plant' components under cyclic loads. Ratchetting is one of the last phenomena for which numerical models have to be improved. We discuss in this paper on use of radial evanescence remain term in kinematic hardening to improve the description of ratchetting in biaxial loading tests. It's well known that Chaboche elastoplastic model with two non linear kinematic hardening variables initially proposed by Armstrong and Frederick, usually over-predicts accumulation of ratchetting strain. Burlet and Cailletaud proposed in 1987 a non linear kinematic rule with a radial evanescence remain term. The two models lead to identical formulation for proportional loadings. In the case of a biaxial loading test (primary+secondary loading), Burlet and Cailletaud model leads to accommodation, when Chaboche one's leads to ratchetting with a constant increment of strain. So we can have an under-estimate with the first model and an over-estimate with the second. An easy method to improve the description of ratchetting is to combine the two kinematic rules. Such an idea is already used by Delobelle in his model. With analytical results in the case of tension-torsion tests, we show in a first part of the paper, the interest of radial evanescence remain term in the non linear kinematic rule to describe ratchetting: we give the conditions to get adaptation, accommodation or ratchetting and the value of the strain increment in the last case. In the second part of the paper, we propose to modify the elastoplastic Chaboche model by coupling the two types of hardening by means of two scalar parameters which can be identified independently on biaxial loading tests. Identification of these two parameters returns to speculate on the directions of strain in order to adjust the ratchetting to experimental observations. We use the experimental results on the austenitic steel 316L at room

  17. Cyclic loading of thick vessels based on the Prager and Armstrong-Frederick kinematic hardening models

    International Nuclear Information System (INIS)

    Mahbadi, H.; Eslami, M.R.

    2006-01-01

    The aim of this paper is to relate the type of stress category in cyclic loading to ratcheting or shakedown behaviour of the structure. The kinematic hardening theory of plasticity based on the Prager and Armstrong-Frederick models is used to evaluate the cyclic loading behaviour of thick spherical and cylindrical vessels under load and deformation controlled stresses. It is concluded that kinematic hardening based on the Prager model under load and deformation controlled conditions, excluding creep, results in shakedown or reversed plasticity for spherical and cylindrical vessels with the isotropy assumption of the tension/compression curve. Under an anisotropy assumption of the tension/compression curve, this model predicts ratcheting. On the other hand, the Armstrong-Frederick model predicts ratcheting under load controlled cyclic loading and reversed plasticity for deformation controlled stress. The interesting conclusion is that the Armstrong-Frederick model is well capable to predict the experimental data under the assumed type of stresses, wherever experimental data are available

  18. Design rules of mechanical structure of reactors. Damage due to cyclic loading. Progressive distortion. Practical analysis of ratcheting

    International Nuclear Information System (INIS)

    Clement, Gerard; Cousseran, Pierre; Lebey, Jacques; Moulin, Didier; Roche, Roland; Tremblais, Andre.

    1982-08-01

    At first is given a definition of what is ratcheting. A short discussion shows that computation results do not agree with experimental results. This is attributed to the complexity of the real material behavior. These considerations lead to try to build a design rule mainly based on the results of experimental tests. A large experimental program is in progress at CEN-Saclay. Using these results and the results available in open litterature, it was possible to propose a rule based on the concept of effective primary stress Psub(eff). The effective primary stress is a fictitious primary stress giving the same effects that the real loading (it is to say the same effect that the combination of an applied primary stress P and a cyclic straining). Determination of an upper bound value of Psub(eff) is made with the help of an efficiency diagram. More precisely the efficiency diagram include a curve giving a conservative value of an efficiency index V=P/Psub(eff) as a function of the secondary quotient SQ=ΔQ/P. Finally limitation of Psub(eff) intensity is discussed in regard with the current practice [fr

  19. Assessment of Sub-Micron Particles by Exploiting Charge Differences with Dielectrophoresis

    Directory of Open Access Journals (Sweden)

    Maria F. Romero-Creel

    2017-08-01

    Full Text Available The analysis, separation, and enrichment of submicron particles are critical steps in many applications, ranging from bio-sensing to disease diagnostics. Microfluidic electrokinetic techniques, such as dielectrophoresis (DEP have proved to be excellent platforms for assessment of submicron particles. DEP is the motion of polarizable particles under the presence of a non-uniform electric field. In this work, the polarization and dielectrophoretic behavior of polystyrene particles with diameters ranging for 100 nm to 1 μm were studied employing microchannels for insulator based DEP (iDEP and low frequency (<1000 Hz AC and DC electric potentials. In particular, the effects of particle surface charge, in terms of magnitude and type of functionalization, were examined. It was found that the magnitude of particle surface charge has a significant impact on the polarization and dielectrophoretic response of the particles, allowing for successful particle assessment. Traditionally, charge differences are exploited employing electrophoretic techniques and particle separation is achieved by differential migration. The present study demonstrates that differences in the particle’s surface charge can also be exploited by means of iDEP; and that distinct types of nanoparticles can be identified by their polarization and dielectrophoretic behavior. These findings open the possibility for iDEP to be employed as a technique for the analysis of submicron biological particles, where subtle differences in surface charge could allow for rapid particle identification and separation.

  20. Bio-field array: a dielectrophoretic electromagnetic toroidal excitation to restore and maintain the golden ratio in human erythrocytes.

    Science.gov (United States)

    Purnell, Marcy C; Butawan, Matthew B A; Ramsey, Risa D

    2018-06-01

    Erythrocytes must maintain a biconcave discoid shape in order to efficiently deliver oxygen (O 2 ) molecules and to recycle carbon dioxide (CO 2 ) molecules. The erythrocyte is a small toroidal dielectrophoretic (DEP) electromagnetic field (EMF) driven cell that maintains its zeta potential (ζ) with a dielectric constant (ԑ) between a negatively charged plasma membrane surface and the positively charged adjacent Stern layer. Here, we propose that zeta potential is also driven by both ferroelectric influences (chloride ion) and ferromagnetic influences (serum iron driven). The Golden Ratio, a function of Phi φ, offers a geometrical mathematical measure within the distinct and desired curvature of the red blood cell that is governed by this zeta potential and is required for the efficient recycling of CO 2 in our bodies. The Bio-Field Array (BFA) shows potential to both drive/fuel the zeta potential and restore the Golden Ratio in human erythrocytes thereby leading to more efficient recycling of CO 2 . Live Blood Analyses and serum CO 2 levels from twenty human subjects that participated in immersion therapy sessions with the BFA for 2 weeks (six sessions) were analyzed. Live Blood Analyses (LBA) and serum blood analyses performed before and after the BFA immersion therapy sessions in the BFA pilot study participants showed reversal of erythrocyte rheological alterations (per RBC metric; P = 0.00000075), a morphological return to the Golden Ratio and a significant decrease in serum CO 2 (P = 0.017) in these participants. Immersion therapy sessions with the BFA show potential to modulate zeta potential, restore this newly defined Golden Ratio and reduce rheological alterations in human erythrocytes. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  1. Effect of island shape on dielectrophoretic assembly of metal nanoparticle chains in a conductive-island-based microelectrode system

    International Nuclear Information System (INIS)

    Ding, Haitao; Shao, Jinyou; Ding, Yucheng; Liu, Weiyu; Li, Xiangming; Tian, Hongmiao; Zhou, Yaopei

    2015-01-01

    Highlights: • Conductive island shape influences the dynamic process occurring in DEP assembly of 10 nm gold nanoparticles in a conductive-island-based microelectrode system. • The DEP-assembled nanoparticle wires form a straighter conduction path with the increase in the geometric angle of conductive island tip. • The different island shapes distort the DEP force distribution and increase the local electrothermally induced fluid flow to different extents, which is important for the morphology and electrical conductance quality of the DEP-assembled metal nanoparticle chains. - Abstract: The electrical conduction quality of an electric circuit connection formed by dielectrophoretic (DEP)-assembled metal nanoparticle wires between small conductive elements plays a significant role in electronic devices. One of the major challenges for improving the electrical conductance of nanowires is optimizing their geometric morphology. So far, the electrical conduction quality has been enhanced by optimizing the AC frequency and conductivity of nanoparticle suspensions. Herein, the effect of the conductive island shapes on the dynamic process occurring in a DEP assembly of 10 nm gold nanoparticles was investigated in a conductive-island-based microelectrode system. The nanoparticle wires between the microelectrodes were assembled in situ from colloidal suspensions. The wires were grown in a much straighter route by increasing the geometric angle of the conductive-island tip. To validate the experiments, the effects of mutual DEP interactions and electrothermally induced fluid flow on the dynamic behavior of particle motion for different island geometric configurations in the conductive-island-based microelectrode system were determined by numerical simulations. The simulation results are consistent with those of experiments. This indicates that different conductive island shapes change the distribution of DEP force and increase the electrothermally induced fluid flow to

  2. Contribution to the validation of thermal ratchetting prevision methods in metallic structures

    International Nuclear Information System (INIS)

    Rakotovelo, A.M.

    1998-03-01

    This work concerns the steady state assessment in the metallic structures subjected to thermomechanical cyclic loadings in biaxial stress state. The effect of the short time mechanical overloads is also investigated. The first chapter is devoted to a bibliographic research concerning the behaviour of the materials and the structures in the cyclic plasticity. Some works relate to the experimental aspect as well as the numerical one for the steady state assessment of such structures are presented. The experimental part of the study is presented in the second chapter. The experimental device was carried out in order to prescribe tension and torsion forces combined with cyclic thermal loading. Some tests was then carried out, among these tests certain include some overloads in tension or torsion. The last chapter describes the numerical calculations using different models (linear isotropic hardening, linear kinematic hardening and elasto-viscoplastic Chaboche's model) and the application of some simplified methods for the ratchetting assessment in the structures. We have considered two categories of methods. The first one is based on an elastic analysis (Bree's diagram, 3 Sm rule, efficiency rule) and the second one combines elastic analysis and elastoplastic analysis of the first cycle (Gatt's and Taleb's methods). The results of this study have enabled: to validate in the biaxial stress state an expression which takes into account the effect of mechanical short time overloads; to test the performances of considered models to describe the evolution of the structure during the first cycle and to take into account the effect of short time overloads. Among the considered models, the elastoplastic Chaboche's model seems to be the most accurate to describe the structure's behaviour during the first cycles; to validate some simplified methods. Certain methods based only on elastic analysis (Bee's diagram and efficiency rule) seem not suitable for the considered kind of

  3. Double-lock ratchet mechanism revealing the role of  SER-344 in FoF1 ATP synthase

    KAUST Repository

    Beke-Somfai, T.

    2011-03-07

    In a majority of living organisms, FoF1 ATP synthase performs the fundamental process of ATP synthesis. Despite the simple net reaction formula, ADP+Pi→ATP+H2O, the detailed step-by-step mechanism of the reaction yet remains to be resolved owing to the complexity of this multisubunit enzyme. Based on quantum mechanical computations using recent high resolution X-ray structures, we propose that during ATP synthesis the enzyme first prepares the inorganic phosphate for the γP-OADP bond-forming step via a double-proton transfer. At this step, the highly conserved αS344 side chain plays a catalytic role. The reaction thereafter progresses through another transition state (TS) having a planar ion configuration to finally form ATP. These two TSs are concluded crucial for ATP synthesis. Using stepwise scans and several models of the nucleotide-bound active site, some of the most important conformational changes were traced toward direction of synthesis. Interestingly, as the active site geometry progresses toward the ATP-favoring tight binding site, at both of these TSs, a dramatic increase in barrier heights is observed for the reverse direction, i.e., hydrolysis of ATP. This change could indicate a "ratchet" mechanism for the enzyme to ensure efficacy of ATP synthesis by shifting residue conformation and thus locking access to the crucial TSs.

  4. Effects of the Reynolds number on two-dimensional dielectrophoretic motions of a pair of particles under a uniform electric field

    International Nuclear Information System (INIS)

    Kang, Sang Mo; Mannoor, Madhusoodanan; Maniyeri, Ranjith Maniyeri

    2016-01-01

    This paper presents two-dimensional direct numerical simulations to explore the effect of the Reynolds number on the Dielectrophoretic (DEP) motion of a pair of freely suspended particles in an unbounded viscous fluid under an external uniform electric field. Accordingly, the electric potential is obtained by solving the Maxwell'00s equation with a great sudden change in the electric conductivity at the particle-fluid interface and then the Maxwell stress tensor is integrated to determine the DEP force exerted on each particle. The fluid flow and particle movement, on the other hand, are predicted by solving the continuity and Navier-Stokes equations together with the kinetic equations. Numerical simulations are carried out using a finite volume approach, composed of a sharp interface method for the electric potential and a direct-forcing immersed-boundary method for the fluid flow. Through the simulations, it is found that both particles with the same sign of the conductivity revolve and eventually align themselves in a line with the electric field. With different signs, to the contrary, they revolve in the reverse way and eventually become lined up at a right angle with the electric field. The DEP motion also depends significantly on the Reynolds number defined based on the external electric field for all the combinations of the conductivity signs. When the Reynolds number is approximately below Re cr ≈ 0.1, the DEP motion becomes independent of the Reynolds number and thus can be exactly predicted by the no-inertia solver that neglects all the inertial and convective effects. With increasing Reynolds number above the critical number, on the other hand, the particles trace larger trajectories and thus take longer time during their revolution to the eventual in-line alignment.

  5. Effects of the Reynolds number on two-dimensional dielectrophoretic motions of a pair of particles under a uniform electric field

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sang Mo; Mannoor, Madhusoodanan [Dong-A University, Busan (Korea, Republic of); Maniyeri, Ranjith Maniyeri [National Institute of Technology Karnataka, Mangalore (India)

    2016-07-15

    This paper presents two-dimensional direct numerical simulations to explore the effect of the Reynolds number on the Dielectrophoretic (DEP) motion of a pair of freely suspended particles in an unbounded viscous fluid under an external uniform electric field. Accordingly, the electric potential is obtained by solving the Maxwell'00s equation with a great sudden change in the electric conductivity at the particle-fluid interface and then the Maxwell stress tensor is integrated to determine the DEP force exerted on each particle. The fluid flow and particle movement, on the other hand, are predicted by solving the continuity and Navier-Stokes equations together with the kinetic equations. Numerical simulations are carried out using a finite volume approach, composed of a sharp interface method for the electric potential and a direct-forcing immersed-boundary method for the fluid flow. Through the simulations, it is found that both particles with the same sign of the conductivity revolve and eventually align themselves in a line with the electric field. With different signs, to the contrary, they revolve in the reverse way and eventually become lined up at a right angle with the electric field. The DEP motion also depends significantly on the Reynolds number defined based on the external electric field for all the combinations of the conductivity signs. When the Reynolds number is approximately below Re{sub cr} ≈ 0.1, the DEP motion becomes independent of the Reynolds number and thus can be exactly predicted by the no-inertia solver that neglects all the inertial and convective effects. With increasing Reynolds number above the critical number, on the other hand, the particles trace larger trajectories and thus take longer time during their revolution to the eventual in-line alignment.

  6. FBR type reactor

    International Nuclear Information System (INIS)

    Jinbo, Masakazu; Kawakami, Hiroto; Nagaoka, Kazuhito.

    1996-01-01

    In a LMFBR type reactor, a liquid level control means is disposed for lowering a level of liquid metal present in an annular gap along with temperature elevation of the liquid metal after the level is once elevated upon start-up of the reactor. In addition, a liquid level measuring means is disposed for measuring the level of the liquid metal present in the annular gap so as to intermittently lower the liquid level. Thus, temperature gradient in the vertical direction of the container can be moderated compared with the case where the liquid level is not changed or the case where temperature is changed together with the elevation of the liquid level. As a result, the change of difference of thermal expansion is decreased to reduce stresses generated in the circumferential direction thereby preventing occurrence of a liquid level heat ratchet phenomenon. Even if the liquid level control means should stop during operation, the liquid level lowers and does not cause a sharp heat gradient as in the case where the liquid level is elevated, and since the temperature of the liquid level is lowered even after shut down of the reactor, generated stresses are not increased. Safety of an intermediate heat exchanger vessel is ensured and observation from a control chamber is enabled. (N.H.)

  7. Dislocation structure evolution in 304L stainless steel and weld joint during cyclic plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao; Jing, Hongyang; Zhao, Lei; Han, Yongdian; Lv, Xiaoqing [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300072 (China); Xu, Lianyong, E-mail: xulianyong@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300072 (China)

    2017-04-06

    Dislocation structures and their evolution of 304L stainless steel and weld metal made with ER308L stainless steel welding wire subjected to uniaxial symmetric strain-controlled loading and stress-controlled ratcheting loading were observed by transmission electron microscopy (TEM). The correlation between the cyclic response and the dislocation structure has been studied. The experiment results show that the cyclic behaviour of base metal and weld metal are different. The cyclic behaviour of the base metal consists of primary hardening, slight softening and secondary hardening, while the weld metal shows a short hardening within several cycles followed by the cyclic softening behaviour. The microscopic observations indicate that in base metal, the dislocation structures evolve from low density patterns to those with higher dislocation density during both strain cycling and ratcheting deformation. However, the dislocation structures of weld metal change oppositely form initial complicated structures to simple patterns and the dislocation density gradually decrease. The dislocation evolution presented during the strain cycling and ratcheting deformation is summarized, which can qualitatively explain the cyclic behaviour and the uniaxial ratcheting behaviour of two materials. Moreover, the dislocation evolution in the two types of tests is compared, which shows that the mean stress has an effect on the rate of dislocation evolution during the cyclic loading.

  8. Techniques to control and position laser targets. Final report

    International Nuclear Information System (INIS)

    Jones, T.B.

    1978-06-01

    The purpose of the work was to investigate the potential role of various electrohydrodynamic phenomena in the fabrication of small spherical particles and shells for laser target applications. A number of topics were considered. These included charged droplet levitation, specifically the combined effects of the Rayleigh limit and droplet elongation in the presence of electric fields. Two new levitation schemes for uncharged dielectric particles were studied. A dynamic dielectrophoretic levitation scheme was proposed and unsuccessful attempts were made to observe levitation with it. Another static dielectrophoretic levitation scheme was studied and used extensively. A theory was developed for this type of levitation, and a dielectric constant measurement scheme proposed. A charged droplet generator for the production of single droplets ( 4 /O 2 bubbles in Viscasil silicone fluid were conducted to learn about the possibility of using silane to form SiO 2 microballons from bubbles

  9. Ion pump as molecular ratchet and effects of noise: electric activation of cation pumping by Na,K-ATPase

    Science.gov (United States)

    Tsong, T. Y.; Xie, T. D.

    2002-08-01

    Na,K-ATPase is a universal ion pump of the biological cell. Under physiological conditions, it uses the γ-phosphorus bond energy of ATP during hydrolysis to pump 2 K+ inward and 3 Na+ outward; both being uphill transports. The experiment presented here demonstrates that the protein transporter can also use electric energy to fuel its pump activity. A theory of electroconformational coupling (TEC) is described and an experiment performed to verify several predictions of the model. Analysis based on the TEC model suggests that Na,K-ATPase is a Brownian ratchet. The enzyme harvests energy from the applied field by means of the field-induced conformational oscillation or fluctuation. However, high efficiency of energy transduction can only be achieved with an electric field of certain intensities, frequencies and waveforms. This property of the enzyme allows us to define an electric signal and differentiate it from electric noise on the basis of the analysis by the TEC model. Data show that electric noise alone does not induce pump activity. However, an appropriate power level of noise imposed on a signal can enhance the pump efficiency. The effect of noise on the signal transduction of Na,K-ATPase is reminiscent of the stochastic resonance phenomenon reported in other biological systems [3, 35]. The TEC model embodies many common features of enzymes and biological motors. It is potentially energy-efficient, much more so than models based on the ion-rectification mechanism.

  10. Stochastic Ratcheting on a Funneled Energy Landscape Is Necessary for Highly Efficient Contractility of Actomyosin Force Dipoles

    Science.gov (United States)

    Komianos, James E.; Papoian, Garegin A.

    2018-04-01

    Current understanding of how contractility emerges in disordered actomyosin networks of nonmuscle cells is still largely based on the intuition derived from earlier works on muscle contractility. In addition, in disordered networks, passive cross-linkers have been hypothesized to percolate force chains in the network, hence, establishing large-scale connectivity between local contractile clusters. This view, however, largely overlooks the free energy of cross-linker binding at the microscale, which, even in the absence of active fluctuations, provides a thermodynamic drive towards highly overlapping filamentous states. In this work, we use stochastic simulations and mean-field theory to shed light on the dynamics of a single actomyosin force dipole—a pair of antiparallel actin filaments interacting with active myosin II motors and passive cross-linkers. We first show that while passive cross-linking without motor activity can produce significant contraction between a pair of actin filaments, driven by thermodynamic favorability of cross-linker binding, a sharp onset of kinetic arrest exists at large cross-link binding energies, greatly diminishing the effectiveness of this contractility mechanism. Then, when considering an active force dipole containing nonmuscle myosin II, we find that cross-linkers can also serve as a structural ratchet when the motor dissociates stochastically from the actin filaments, resulting in significant force amplification when both molecules are present. Our results provide predictions of how actomyosin force dipoles behave at the molecular level with respect to filament boundary conditions, passive cross-linking, and motor activity, which can explicitly be tested using an optical trapping experiment.

  11. Stochastic Ratcheting on a Funneled Energy Landscape Is Necessary for Highly Efficient Contractility of Actomyosin Force Dipoles

    Directory of Open Access Journals (Sweden)

    James E. Komianos

    2018-04-01

    Full Text Available Current understanding of how contractility emerges in disordered actomyosin networks of nonmuscle cells is still largely based on the intuition derived from earlier works on muscle contractility. In addition, in disordered networks, passive cross-linkers have been hypothesized to percolate force chains in the network, hence, establishing large-scale connectivity between local contractile clusters. This view, however, largely overlooks the free energy of cross-linker binding at the microscale, which, even in the absence of active fluctuations, provides a thermodynamic drive towards highly overlapping filamentous states. In this work, we use stochastic simulations and mean-field theory to shed light on the dynamics of a single actomyosin force dipole—a pair of antiparallel actin filaments interacting with active myosin II motors and passive cross-linkers. We first show that while passive cross-linking without motor activity can produce significant contraction between a pair of actin filaments, driven by thermodynamic favorability of cross-linker binding, a sharp onset of kinetic arrest exists at large cross-link binding energies, greatly diminishing the effectiveness of this contractility mechanism. Then, when considering an active force dipole containing nonmuscle myosin II, we find that cross-linkers can also serve as a structural ratchet when the motor dissociates stochastically from the actin filaments, resulting in significant force amplification when both molecules are present. Our results provide predictions of how actomyosin force dipoles behave at the molecular level with respect to filament boundary conditions, passive cross-linking, and motor activity, which can explicitly be tested using an optical trapping experiment.

  12. Leveraging Environmental Correlations: The Thermodynamics of Requisite Variety

    Science.gov (United States)

    Boyd, Alexander B.; Mandal, Dibyendu; Crutchfield, James P.

    2017-06-01

    Key to biological success, the requisite variety that confronts an adaptive organism is the set of detectable, accessible, and controllable states in its environment. We analyze its role in the thermodynamic functioning of information ratchets—a form of autonomous Maxwellian Demon capable of exploiting fluctuations in an external information reservoir to harvest useful work from a thermal bath. This establishes a quantitative paradigm for understanding how adaptive agents leverage structured thermal environments for their own thermodynamic benefit. General ratchets behave as memoryful communication channels, interacting with their environment sequentially and storing results to an output. The bulk of thermal ratchets analyzed to date, however, assume memoryless environments that generate input signals without temporal correlations. Employing computational mechanics and a new information-processing Second Law of Thermodynamics (IPSL) we remove these restrictions, analyzing general finite-state ratchets interacting with structured environments that generate correlated input signals. On the one hand, we demonstrate that a ratchet need not have memory to exploit an uncorrelated environment. On the other, and more appropriate to biological adaptation, we show that a ratchet must have memory to most effectively leverage structure and correlation in its environment. The lesson is that to optimally harvest work a ratchet's memory must reflect the input generator's memory. Finally, we investigate achieving the IPSL bounds on the amount of work a ratchet can extract from its environment, discovering that finite-state, optimal ratchets are unable to reach these bounds. In contrast, we show that infinite-state ratchets can go well beyond these bounds by utilizing their own infinite "negentropy". We conclude with an outline of the collective thermodynamics of information-ratchet swarms.

  13. Pragmatic setup for bioparticle responses by dielectrophoresis for resource limited environment application

    Science.gov (United States)

    Ali, Mohd Anuar Md; Yeop Majlis, Burhanuddin; Kayani, Aminuddin Ahmad

    2017-12-01

    Various dielectrophoretic responses of bioparticles, including cell-chain, spinning, rotation and clustering, are of high interest in the field due to their benefit into application for biomedical and clinical implementation potential. Numerous attempts using sophisticated equipment setup have been studied to perform those dielectrophoretic responses, however, for development into resource limited environment application, such as portable, sustainable and environmental friendly diagnostic tools, establishment of pragmatic setup using standard, non-sophisticated and low-cost equipment is of important task. Here we show the advantages in the judicious design optimization of tip microelectrode, also with selection of suspending medium and optimization of electric signal configuration in establishing setup that can promote the aforementioned dielectrophoretic responses within standard equipments, i.e. pragmatic setup.

  14. The ratchet–shakedown diagram for a thin pressurised pipe subject to additional axial load and cyclic secondary global bending

    International Nuclear Information System (INIS)

    Bradford, R.A.W.; Tipping, D.J.

    2015-01-01

    The ratchet and shakedown boundaries are derived analytically for a thin cylinder composed of elastic-perfectly plastic Tresca material subject to constant internal pressure with capped ends, plus an additional constant axial load, F, and a cycling secondary global bending load. The analytic solution is in good agreement with solutions found using the linear matching method. When F is tensile, ratcheting can occur for sufficiently large cyclic bending loads in which the pipe gets longer and thinner but its diameter remains the same. When F is compressive, ratcheting can occur in which the pipe diameter increases and the pipe gets shorter, but its wall thickness remains the same. When subject to internal pressure and cyclic bending alone (F = 0), no ratcheting is possible, even for arbitrarily large bending loads, despite the presence of the axial pressure load. The reason is that the case with a primary axial membrane stress exactly equal to half the primary hoop membrane stress is equipoised between tensile and compressive axial ratcheting, and hence does not ratchet at all. This remarkable result appears to have escaped previous attention. - Highlights: • A thin cylinder is subject to pressure and cyclic global bending and additional axial load. • Ratchet and shakedown boundaries are derived analytically and using LMM. • Good agreement is found. • No ratcheting occurs for zero additional axial load.

  15. Vortex dynamics in two-dimensional Josephson junction arrays with asymmetrically bimodulated potential

    International Nuclear Information System (INIS)

    Nie, Qing-Miao; Zhang, Sha-Sha; Chen, Qing-Hu; Zhou, Wei

    2012-01-01

    On the basis of resistively-shunted junction dynamics, we study vortex dynamics in two-dimensional Josephson junction arrays with asymmetrically single and bimodulated periodic pinning potential for the full range of vortex density f. The ratchet effect occurring at a certain range of temperature, current, and f, is observed in our simulation. We explain the microscopic behavior behind this effect by analyzing the vortex distribution and interaction. The reversal of the ratchet effect can be observed at several f values for a small driven current. This effect is stronger when the asymmetric potential is simultaneously introduced in two directions. -- Highlights: ► The ratchet effect in Josephson junction arrays strongly depends on vortex density. ► The reversed ratchet effect can be observed at several f for a small current. ► The interaction between vortices can explain the reversed ratchet effect. ► The ratchet effect is enhanced by injecting the bimodulated asymmetric potential.

  16. Finite element analysis of the biaxial cyclic tensile loading of the elastoplastic plate with the central hole: asymptotic regimes

    Science.gov (United States)

    Turkova, Vera; Stepanova, Larisa

    2018-03-01

    For elastistoplastic structure elements under cyclic loading three types of asymptotic behavior are well known: shakedown, cyclic plasticity or ratcheting. In structure elements operating in real conditions ratcheting must always be excluded since it caused the incremental fracture of structure by means of the accumulation of plastic strains. In the present study results of finite-element (FEM) calculations of the asymptotical behavior of an elastoplastic plate with the central circular and elliptic holes under the biaxial cyclic loading for three different materials are presented. Incremental cyclic loading of the sample with stress concentrator (the central hole) is performed in the multifunctional finite-element package SIMULIA Abaqus. The ranges of loads found for shakedown, cyclic plasticity and ratcheting are presented. The results obtained are generalized and analyzed. Convenient normalization is suggested. The chosen normalization allows us to present all computed results, corresponding to separate materials, within one common curve with minimum scattering of the points. Convenience of the generalized diagram consists in a possibility to find an asymptotical behavior of an inelastic structure for materials for which computer calculations were not made.

  17. Thermal and mechanical cyclic loading of thick spherical vessels made of transversely isotropic materials

    International Nuclear Information System (INIS)

    Komijani, M.; Mahbadi, H.; Eslami, M.R.

    2013-01-01

    The aim of this paper is to obtain the dependency of the ratcheting, reversed plasticity, or shakedown behavior of spherical vessels made of some anisotropic materials to the stress category of imposed cyclic loading. The Hill anisotropic yield criterion with the kinematic hardening theories of plasticity based on the Prager and Armstrong–Frederick models are used to predict the yield of the vessel and obtain the plastic strains. An iterative numerical method is used to simulate the cyclic loading behavior of the structure. The effect of mean and amplitude of the mechanical and thermal loads on cyclic behavior and ratcheting rate of the vessel is investigated respectively. The ratcheting rate for the vessels made of transversely isotropic material is evaluated for the various ratios of anisotropy. -- Highlights: ► Cyclic loading analysis of anisotropic spheres is assessed. ► Using the Prager model results in ratcheting. ► Armstrong-Frederick model predicts ratcheting for load controlled cyclic loadings. ► The A-F model predicts ratcheting to a stabilized cycle for thermal loadings

  18. Thermometry in dielectrophoresis chips for contact-free cell handling

    International Nuclear Information System (INIS)

    Jaeger, M S; Mueller, T; Schnelle, T

    2007-01-01

    Cell biology applications, protocols in immunology and stem cell research, require that individual cells are handled under strict control of their contacts to other cells or synthetic surfaces. Dielectrophoresis (DEP) in microfluidic chips is an established technique to investigate, group, wash, cultivate and sort cells contact-free under physiological conditions: microelectrode octode cages, versatile dielectrophoretic elements energized with radio frequency electric fields, stably trap single cells or cellular aggregates. For medical applications and cell cultivation, possible side effects of the dielectrophoretic manipulation, such as membrane polarization and Joule heating, have to be quantified. Therefore, we characterized the electric field-induced warming in dielectrophoretic cages using ohmic resistance measurements, fluorometry, liquid crystal beads, infra-red thermography and bubble size thermometry. We compare the results of these techniques with respect to the influences of voltage, electric conductivity of buffer, frequency, cage size and electrode surface. We conclude that in the culture medium thermal effects may be neglected if low voltages and an electric field-reducing phase pattern are used. Our experimental results provide explicit values for estimating the thermal effect on dielectrophoretically caged cells and show that Joule heating is best minimized by optimizing the cage geometry and reducing the buffer conductivity. The results may additionally serve to evaluate and improve theoretical predictions on field-induced effects. Based on present-day chip processing possibilities, DEP is well suited for the manipulation of cells

  19. Lifetime enhancement for multiphoton absorption in intermediate band solar cells

    International Nuclear Information System (INIS)

    Bezerra, Anibal T; Studart, Nelson

    2017-01-01

    A semiconductor structure consisting of two coupled quantum wells embedded into the intrinsic region of a p – i–n junction is proposed as an intermediate band solar cell with a photon ratchet state, which would lead to increasing the cell efficiency. The conduction subband of the right-hand side quantum well works as the intermediated band, whereas the excited conduction subband of the left-hand side quantum well operates as the ratchet state. The photoelectrons in the intermediate band are scattered through the thin wells barrier and accumulated into the ratchet subband. A rate equation model for describing the charge transport properties is presented. The efficiency of the current generation is analyzed by studying the occupation of the wells subbands, taking into account the charge dynamic behavior provided by the electrical contacts connected to the cell. The current generation efficiency depends essentially from the relations between the generation, recombination rates and the scattering rate to the ratchet state. The inclusion of the ratchet states led to both an increase and a decrease in the cell current depending on the transition rates. This suggests that the coupling between the intermediate band and the ratchet state is a key point in developing an efficient solar cell. (paper)

  20. Lifetime enhancement for multiphoton absorption in intermediate band solar cells

    Science.gov (United States)

    Bezerra, Anibal T.; Studart, Nelson

    2017-08-01

    A semiconductor structure consisting of two coupled quantum wells embedded into the intrinsic region of a p-i-n junction is proposed as an intermediate band solar cell with a photon ratchet state, which would lead to increasing the cell efficiency. The conduction subband of the right-hand side quantum well works as the intermediated band, whereas the excited conduction subband of the left-hand side quantum well operates as the ratchet state. The photoelectrons in the intermediate band are scattered through the thin wells barrier and accumulated into the ratchet subband. A rate equation model for describing the charge transport properties is presented. The efficiency of the current generation is analyzed by studying the occupation of the wells subbands, taking into account the charge dynamic behavior provided by the electrical contacts connected to the cell. The current generation efficiency depends essentially from the relations between the generation, recombination rates and the scattering rate to the ratchet state. The inclusion of the ratchet states led to both an increase and a decrease in the cell current depending on the transition rates. This suggests that the coupling between the intermediate band and the ratchet state is a key point in developing an efficient solar cell.

  1. Flag beat

    DEFF Research Database (Denmark)

    Trento, Stefano; Serafin, Stefania

    2013-01-01

    This paper describes the development of a prototype of a sonic toy for pre-scholar kids. The device, which is a modified version of a football ratchet, is based on the spinning gesture and it allows to experience four different types of auditory feedback. These algorithms let a kid play with music...

  2. Scenario analysis of energy saving and CO_2 emissions reduction potentials to ratchet up Japanese mitigation target in 2030 in the residential sector

    International Nuclear Information System (INIS)

    Wakiyama, Takako; Kuramochi, Takeshi

    2017-01-01

    This paper assesses to what extent CO_2 emissions from electricity in the residential sector can be further reduced in Japan beyond its post-2020 mitigation target (known as “Intended Nationally Determined Contribution (INDC)”). The paper examines the reduction potential of electricity demand and CO_2 emissions in the residential sector by conducting a scenario analysis. Electricity consumption scenarios are set up using a time-series regression model, and used to forecast the electricity consumption patterns to 2030. The scenario analysis also includes scenarios that reduce electricity consumption through enhanced energy efficiency and energy saving measures. The obtained results show that Japan can reduce electricity consumption and CO_2 emissions in the residential sector in 2030 more than the Japanese post-2020 mitigation target indicates. At the maximum, the electricity consumption could be reduced by 35 TWh, which contributes to 55.4 MtCO_2 of emissions reduction in 2030 compared to 2013 if the voluntarily targeted CO_2 intensity of electricity is achieved. The result implies that Japan has the potential to ratchet up post-2020 mitigation targets discussed under the Paris Agreement of the United Nations Framework Convention on Climate Change (UNFCCC). - Highlights: • Further reduction of electricity consumption is possible beyond Japan's post-2020 mitigation target. • Energy saving efforts by households and incentives to reduce electricity demands are required. • Improvement of CO_2 intensity from electricity is a key factor in the reduction of CO_2 emissions.

  3. Reversible rectification of vortex motion in magnetic and non-magnetic asymmetric pinning potentials

    International Nuclear Information System (INIS)

    Gonzalez, E.M.; Gonzalez, M.P.; Nunez, N.O.; Villegas, J.E.; Anguita, J.V.; Jaafa, M.; Asenjo, A.; Vicent, J.L.

    2006-01-01

    Nb films have been grown on arrays of asymmetric pinning centers. The lattice vortex dynamics could be modified, almost at will, by periodic pinning potentials. In the case of asymmetric pinning potentials a vortex ratchet effect occurs: the vortex lattice motion is rectified. That is, an injected ac current yields an output dc voltage, which polarity could be tuned. The output signal polarity could be switched with the applied magnetic field and the ac current strength. Ratchet effect occurs when asymmetric potentials induce outward particles flow under external fluctuations in the lack of driven direct outward forces. The output signal is similar using magnetic or non-magnetic submicrometric array of pinning centers. This device works as an adiabatic rocking ratchet. This superconducting ratchet could be a model to study biological motors

  4. Fuel assembly for a nuclear reactor

    International Nuclear Information System (INIS)

    Gjertsen, R.K.

    1982-01-01

    A fuel assembly in a nuclear reactor comprises a locking mechanism that is capable of locking the fuel assembly to the core plate of a nuclear reactor to prevent inadvertent movement of the fuel assembly. The locking mechanism comprises a ratchet mechanism 108 that allows the fuel assembly to be easily locked to the core plate but prevents unlocking except when the ratchet is disengaged. The ratchet mechanism is coupled to the locking mechanism by a rotatable guide tube for a control rod or water displacer rod. (author)

  5. In-Situ Monitoring of the Microstructure of TATB-based Explosive Formulations During Temperature Cycling using Ultra-small Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Willey, T M; Hoffman, D M; van Buuren, T; Lauderbach, L; Ilavsky, J; Gee, R H; Maiti, A; Overturf, G; Fried, L

    2008-02-06

    TATB (1,3,5 triamino-2,4,6-trinitrobenzene), an extremely insensitive explosive, is used both in plastic-bonded explosives (PBXs) and as an ultra-fine pressed powder (UFTATB). With both PBXs and UFTATB, an irreversible expansion occurs with temperature cycling known as ratchet growth. In TATB-based explosives using Kel-F 800 as binder (LX-17 and PBX-9502), additional voids, sizes hundreds of nanometers to a few microns account for much of the volume expansion caused by temperature cycling. These voids are in the predicted size regime for hot-spot formation during ignition and detonation, and thus an experimental measure of these voids is important feedback for hot-spot theory and for determining the relationship between void size distributions and detonation properties. Also, understanding the mechanism of ratchet growth allows future choice of explosive/binder mixtures to minimize these types of changes to explosives, further extending PBX shelf life. This paper presents the void size distributions of LX-17, UFTATB, and PBXs using commercially available Cytop M, Cytop A, and Hyflon AD60 binders during temperature cycling between -55 C and 70 C. These void size distributions are derived from ultra-small angle x-ray scattering (USAXS), a technique sensitive to structures from about 10 nm to about 2 mm. Structures with these sizes do not appreciably change in UFTATB, indicating voids or cracks larger than a few microns appear in UFTATB during temperature cycling. Compared to Kel-F 800 binders, Cytop M and Cytop A show relatively small increases in void volume from 0.9% to 1.3% and 0.6% to 1.1%, respectively, while Hyflon fails to prevent irreversible volume expansion (1.2% to 4.6%). Computational mesoscale models of ratchet growth and binder wetting and adhesion properties point to mechanisms of ratchet growth, and are discussed in combination with the experimental results.

  6. Sensitivity of polycrystal plasticity to slip system kinematic hardening laws for Al 7075-T6

    International Nuclear Information System (INIS)

    Hennessey, Conor; Castelluccio, Gustavo M.; McDowell, David L.

    2017-01-01

    The prediction of formation and early growth of microstructurally small fatigue cracks requires use of constitutive models that accurately estimate local states of stress, strain, and cyclic plastic strain. However, few research efforts have attempted to systematically consider the sensitivity of overall cyclic stress-strain hysteresis and higher order mean stress relaxation and plastic strain ratcheting responses introduced by the slip system back-stress formulation in crystal plasticity, even for face centered cubic (FCC) crystal systems. This paper explores the performance of two slip system level kinematic hardening models using a finite element crystal plasticity implementation as a User Material Subroutine (UMAT) within ABAQUS, with fully implicit numerical integration. The two kinematic hardening formulations aim to reproduce the cyclic deformation of polycrystalline Al 7075-T6 in terms of both macroscopic cyclic stress-strain hysteresis loop shape, as well as ratcheting and mean stress relaxation under strain- or stress-controlled loading with mean strain or stress, respectively. The first formulation is an Armstrong-Frederick type hardening-dynamic recovery law for evolution of the back stress. This approach is capable of reproducing observed deformation under completely reversed uniaxial loading conditions, but overpredicts the rate of cyclic ratcheting and associated mean stress relaxation. The second formulation corresponds to a multiple back stress Ohno-Wang type hardening law with nonlinear dynamic recovery. The adoption of this back stress evolution law greatly improves the capability to model experimental results for polycrystalline specimens subjected to cycling with mean stress or strain. As a result, the relation of such nonlinear dynamic recovery effects are related to slip system interactions with dislocation substructures.

  7. Tests on mechanical behavior of 304 L stainless steel under constant stress associated with cyclic strain

    International Nuclear Information System (INIS)

    Lebey, J.; Roche, R.

    1979-01-01

    Mechanical analyses of structures, to be efficient, must incorporate materials behavior data. Among the mechanisms liable to cause collapse, progressive distortion (or ratcheting) has been the subject of only a few basic experiments, most of the investigations being theoretical. In order to get meaningful results to characterize materials behavior, an experimental study on ratcheting of austenitic steels has been undertaken at the C.E.A. This paper gives the first results of tests at room temperature on thin tubes of 304L steel submitted to an axial constant stress (primary stress) to which is added a cyclic shearing strain (secondary stress). The tests cover a large combination of the two loading modes. The main results consist of curves of cumulative iso-deformation in the primary and secondary stress field (Bree type diagrams). Results are given for plastic deformations ranging from 0.1 to 2.5% up to N=100 cycles

  8. Pendulum as a model system for driven rotation in molecular nanoscale machines

    DEFF Research Database (Denmark)

    Zolotaryuk, Yaroslav; Christiansen, Peter Leth; Nordén, B.

    2000-01-01

    We suggest a ratchet mechanism of rotatory (or translatory) motion of a Brownian rotator (or a particle) in a spatially symmetric periodic potential. The asymmetry that drives the ratchet motion is due to a special sequence of activation of catalytic sites arranged in space circularly and periodi...

  9. Dielectrophoresis of gold nanoparticles conjugated to DNA origami structures

    Directory of Open Access Journals (Sweden)

    Anja Henning-Knechtel

    2016-07-01

    Full Text Available DNA nanostructures are promising construction materials to bridge the gap between self-assembly of functional molecules and conventional top-down fabrication methods in nanotechnology. Their positioning onto specific locations of a microstructured substrate is an important task towards this aim. Here we study manipulation and positioning of pristine and of gold nanoparticle-conjugated tubular DNA origami structures using ac dielectrophoresis. The dielectrophoretic behavior was investigated employing fluorescence microscopy. For the pristine origami, a significant dielectrophoretic response was found to take place in the megahertz range, whereas, due to the higher polarizability of the metallic nanoparticles, the nanoparticle/DNA hybrid structures required a lower electrical field strength and frequency for a comparable trapping at the edges of the electrode structure. The nanoparticle conjugation additionally resulted in a remarkable alteration of the DNA structure arrangement. The growth of linear, chain-like structures in between electrodes at applied frequencies in the megahertz range was observed. The long-range chain formation is caused by a local, gold nanoparticle-induced field concentration along the DNA nanostructures, which in turn, creates dielectrophoretic forces that enable the observed self-alignment of the hybrid structures.

  10. Using a Microfluidic-Microelectric Device to Directly Separate Serum/Blood Cells from a Continuous Whole Bloodstream Flow

    Science.gov (United States)

    Wang, Ming-Wen; Jeng, Kuo-Shyang; Yu, Ming-Che; Su, Jui-Chih

    2012-03-01

    To make the rapid separation of serum/blood cells possible in a whole bloodstream flow without centrifugation and Pasteur pipette suction, the first step is to use a microchannel to transport the whole bloodstream into a microdevice. Subsequently, the resulting serum/blood cell is separated from the whole bloodstream by applying other technologies. Creating the serum makes this subsequent separation possible. To perform the actual separation, a microchannel with multiple symmetric curvilinear microelectrodes has been designed on a glass substrate and fabricated with micro-electromechanical system technology. The blood cells can be observed clearly by black-field microscopy imaging. A local dielectrophoretic (DEP) force, obtained from nonuniform electric fields, was used for manipulating and separating the blood cells from a continuous whole bloodstream. The experimental studies show that the blood cells incur a local dielectrophoretic field when they are suspended in a continuous flow (v = 0.02-0.1 cm/s) and exposed to AC fields at a frequency of 200 kHz. Using this device, the symmetric curvilinear microelectrodes provide a local dielectrophoretic field that is sufficiently strong for separating nearby blood cells and purifying the serum in a continuous whole bloodstream flow.

  11. Frequency-Modulated Wave Dielectrophoresis of Vesicles And Cells: Periodic U-Turns at the Crossover Frequency

    Science.gov (United States)

    Frusawa, Hiroshi

    2018-06-01

    We have formulated the dielectrophoretic force exerted on micro/nanoparticles upon the application of frequency-modulated (FM) electric fields. By adjusting the frequency range of an FM wave to cover the crossover frequency f X in the real part of the Clausius-Mossotti factor, our theory predicts the reversal of the dielectrophoretic force each time the instantaneous frequency periodically traverses f X . In fact, we observed periodic U-turns of vesicles, leukemia cells, and red blood cells that undergo FM wave dielectrophoresis (FM-DEP). It is also suggested by our theory that the video tracking of the U-turns due to FM-DEP is available for the agile and accurate measurement of f X . The FM-DEP method requires a short duration, less than 30 s, while applying the FM wave to observe several U-turns, and the agility in measuring f X is of much use for not only salty cell suspensions but also nanoparticles because the electric-field-induced solvent flow is suppressed as much as possible. The accuracy of f X has been verified using two types of experiment. First, we measured the attractive force exerted on a single vesicle experiencing alternating-current dielectrophoresis (AC-DEP) at various frequencies of sinusoidal electric fields. The frequency dependence of the dielectrophoretic force yields f X as a characteristic frequency at which the force vanishes. Comparing the AC-DEP result of f X with that obtained from the FM-DEP method, both results of f X were found to coincide with each other. Second, we investigated the conductivity dependencies of f X for three kinds of cell by changing the surrounding electrolytes. From the experimental results, we evaluated simultaneously both of the cytoplasmic conductivities and the membrane capacitances using an elaborate theory on the single-shell model of biological cells. While the cytoplasmic conductivities, similar for these cells, were slightly lower than the range of previous reports, the membrane capacitances obtained

  12. Et almindeligt kondom kan anvendes til at fjerne fastsiddende metalringe omkring penis

    DEFF Research Database (Denmark)

    Schou-Jensen, Katrine; Marker Jensen, Søren; Jørgensen, Amy Patel

    2016-01-01

    We describe a new method for removing encircling objects from penis. A 69-year-old male was admitted with a ratchet spanner stuck at the penile base. A condom was applied to the penile shaft and manoeuvred in between the ratchet spanner and the penis. A lot of lubrication was applied, and the rat...

  13. Synthesis of Carbon–Metal Multi-Strand Nanocomposites by Discharges in Heptane Between Two Metallic Electrodes

    KAUST Repository

    Hamdan, Ahmad

    2017-04-26

    We studied composite wires assembled from electric field-driven nanoparticles in a dielectric liquid (heptane) to elucidate the exact processes and controlling factors involved in the synthesis of the multi-phase nanocomposites. Filamentary wires are synthesized by a two-step process: (1) abundant nanoparticle production, mostly of carbonaceous types, from heptane decomposition by spark discharge and of metal nanoparticles by electrode erosion and (2) assembly of hydrogenated amorphous carbonaceous nano-clusters with incorporated metal nanoparticles forming wires by dielectrophoretic transport while maintaining a high electric field between electrodes kept sufficiently separated to avoid breakdown. Four types of nanocomposites products are identified to form at different steps in distinctive zones of the setup. The black carbonaceous agglomerates with metal spherules made by electrode erosion represent the pyrolytic residues of heptane decomposition by spark discharge during step 1. The filamentary wires grown in the interelectrode gap during step 2 get assembled by dielectrophoretic transport and chaining forces. Their great stability is shown to express the concurrent effect of polymerization favoured by the abundance of metal catalysts. The nature, abundance, and transformation of solid particles from the source materials versus discharge conditions control the morphological and compositional diversity of the wires. The production of mineral and metal nano-particles traces the efficiency of dielectrophoresis to separate compound particle mixtures by size and to co-synthesize nanostructured microcrystals and nanocomposites. The link between impurities and the variability from nano- to micro-scales of the synthesized products provides an innovative contribution to the knowledge of nanocomposite synthesis triggered by electric field.

  14. A microfluidic device for continuous manipulation of biological cells using dielectrophoresis.

    Science.gov (United States)

    Das, Debanjan; Biswas, Karabi; Das, Soumen

    2014-06-01

    The present study demonstrates the design, simulation, fabrication and testing of a label-free continuous manipulation and separation micro-device of particles/biological cells suspended on medium based on conventional dielectrophoresis. The current dielectrophoretic device uses three planner electrodes to generate non-uniform electric field and induces both p-DEP and n-DEP force simultaneously depending on the dielectric properties of the particles and thus influencing at least two types of particles at a time. Numerical simulations were performed to predict the distribution of non-uniform electric field, DEP force and particle trajectories. The device is fabricated utilizing the advantage of bonding between PDMS and SU8 polymer. The p-DEP particles move away from the center of the streamline, while the n-DEP particles will follow the central streamline along the channel length. Dielectrophoretic effects were initially tested using polystyrene beads followed by manipulation of HeLa cells. In the experiment, it was observed that polystyrene beads in DI water always response as n-DEP up to 1MHz frequency, whereas HeLa cells in PBS medium response as n-DEP up to 400kHz frequency and then it experiences p-DEP up to 1MHz. Further, the microscopic observations of DEP responses of HeLa cells were verified by performing trapping experiment at static condition. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. Manipulation and Investigation of Uniformly-Spaced Nanowire Array on a Substrate via Dielectrophoresis and Electrostatic Interaction

    Directory of Open Access Journals (Sweden)

    U Hyeok Choi

    2018-06-01

    Full Text Available Directed-assembly of nanowires on the dielectrics-covered parallel electrode structure is capable of producing uniformly-spaced nanowire array at the electrode gap due to dielectrophoretic nanowire attraction and electrostatic nanowire repulsion. Beyond uniformly-spaced nanowire array formation, the control of spacing in the array is beneficial in that it should be the experimental basis of the precise positioning of functional nanowires on a circuit. Here, we investigate the material parameters and bias conditions to modulate the nanowire spacing in the ordered array, where the nanowire array formation is readily attained due to the electrostatic nanowire interaction. A theoretical model for the force calculation and the simulation of the induced charge in the assembled nanowire verifies that the longer nanowires on thicker dielectric layer tend to be assembled with a larger pitch due to the stronger nanowire-nanowire electrostatic repulsion, which is consistent with the experimental results. It was claimed that the stronger dielectrophoretic force is likely to attract more nanowires that are suspended in solution at the electrode gap, causing them to be less-spaced. Thus, we propose a generic mechanism, competition of dielectrophoretic and electrostatic force, to determine the nanowire pitch in an ordered array. Furthermore, this spacing-controlled nanowire array offers a way to fabricate the high-density nanodevice array without nanowire registration.

  16. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Muratore, Massimo, E-mail: M.Muratore@ed.ac.uk [Institute of Integrated Micro and Nano System, School of Engineering, The University of Edinburgh, Edinburgh EH9 3JF (United Kingdom); Mitchell, Steve [Institute of Molecular Plant Science, School of Biological Science, The University of Edinburgh, Edinburgh EH9 3JF (United Kingdom); Waterfall, Martin [Institute of Immunology and Infection Research, School of Biological Science, The University of Edinburgh, Edinburgh EH9 3JT (United Kingdom)

    2013-09-06

    Highlights: •Dielectrophoretic separation/sorting of multipotent cells. •Plasma membrane microvilli structure of C2C12 and fibroblasts by SEM microscopy. •Cell cycle determination by Ki-67 in DEP-sorted cells. •Plasma membrane differences responsible for changes in membrane capacitance. -- Abstract: Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy.

  17. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis

    International Nuclear Information System (INIS)

    Muratore, Massimo; Mitchell, Steve; Waterfall, Martin

    2013-01-01

    Highlights: •Dielectrophoretic separation/sorting of multipotent cells. •Plasma membrane microvilli structure of C2C12 and fibroblasts by SEM microscopy. •Cell cycle determination by Ki-67 in DEP-sorted cells. •Plasma membrane differences responsible for changes in membrane capacitance. -- Abstract: Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy

  18. Efficiency of Energy Transduction in a Molecular Chemical Engine

    OpenAIRE

    Sasaki, Kazuo; Kanada, Ryo; Amari, Satoshi

    2006-01-01

    A simple model of the two-state ratchet type is proposed for molecular chemical engines that convert chemical free energy into mechanical work and vice versa. The engine works by catalyzing a chemical reaction and turning a rotor. Analytical expressions are obtained for the dependences of rotation and reaction rates on the concentrations of reactant and product molecules, from which the performance of the engine is analyzed. In particular, the efficiency of energy transduction is discussed in...

  19. Progressive buckling analysis for a cylindrical shell structure with the free edge subjected to moving thermal cycles

    International Nuclear Information System (INIS)

    Koo, Gyeong-Hoi; Lee, Jae-Han

    2004-01-01

    In the KALIMER (Korea Advanced Liquid Metal Reactor) design, the reactor baffle structure is adopted to prevent the hot pool sodium from directly contacting the reactor vessel and to guide the hot sodium overflow in severe transient operating conditions. The parts in the vicinity of the hot pool free surface region could be repeatedly subjected to a moving axial temperature gradient and this might result in thermal ratcheting deformation. In this paper, the progressive thermal buckling behaviour following thermal ratcheting due to the moving axial temperature gradients in a cylindrical shell structure with an open free edge is investigated using numerical inelastic analysis with Chaboche's model. To do this, the analyses of the moving temperature distribution are carried out with a simple model and the severe moving axial temperature gradients are assumed to be sufficient for the evolution of thermal ratcheting

  20. The role of the experimental data base used to identify material parameters in predicting the cyclic plastic response of an austenitic steel

    International Nuclear Information System (INIS)

    Djimli, Lynda; Taleb, Lakhdar; Meziani, Salim

    2010-01-01

    The first objective of this paper investigates the influence of the previous strain history on ratcheting. New tests were performed where different strain-controlled histories have been applied prior to ratcheting tests. It is demonstrated that under the same conditions, one can observe ratcheting, plastic shakedown or elasticity according to the prior strain-controlled history. The second objective points out the correlation between the experimental data base devoted to the identification of the material parameters and the quality of the predictions in cyclic plasticity. The results suggest that the choice of the tests should be closely linked to the capabilities of the model. In particular, the presence of non proportional strain-controlled tests in the data base may be not a good choice if the model itself is not able to represent explicitly such a character. All tests considered here were performed on 304L SS at room temperature.

  1. Mathematical interpretation of Brownian motor model: Limit cycles and directed transport phenomena

    Science.gov (United States)

    Yang, Jianqiang; Ma, Hong; Zhong, Suchuang

    2018-03-01

    In this article, we first suggest that the attractor of Brownian motor model is one of the reasons for the directed transport phenomenon of Brownian particle. We take the classical Smoluchowski-Feynman (SF) ratchet model as an example to investigate the relationship between limit cycles and directed transport phenomenon of the Brownian particle. We study the existence and variation rule of limit cycles of SF ratchet model at changing parameters through mathematical methods. The influences of these parameters on the directed transport phenomenon of a Brownian particle are then analyzed through numerical simulations. Reasonable mathematical explanations for the directed transport phenomenon of Brownian particle in SF ratchet model are also formulated on the basis of the existence and variation rule of the limit cycles and numerical simulations. These mathematical explanations provide a theoretical basis for applying these theories in physics, biology, chemistry, and engineering.

  2. Alternating current dielectrophoresis of core-shell nanoparticles: Experiments and comparison with theory

    Science.gov (United States)

    Yang, Chungja

    Nanoparticles are fascinating where physical and optical properties are related to size. Highly controllable synthesis methods and nanoparticle assembly are essential for highly innovative technological applications. Well-defined shaped and sized nanoparticles enable comparisons between experiments, theory and subsequent new models to explain experimentally observed phenomena. Among nanoparticles, nonhomogeneous core-shell nanoparticles (CSnp) have new properties that arise when varying the relative dimensions of the core and the shell. This CSnp structure enables various optical resonances, and engineered energy barriers, in addition to the high charge to surface ratio. Assembly of homogeneous nanoparticles into functional structures has become ubiquitous in biosensors (i.e. optical labeling), nanocoatings, and electrical circuits. Limited nonhomogenous nanoparticle assembly has only been explored. Many conventional nanoparticle assembly methods exist, but this work explores dielectrophoresis (DEP) as a new method. DEP is particle polarization via non-uniform electric fields while suspended in conductive fluids. Most prior DEP efforts involve microscale particles. Prior work on core-shell nanoparticle assemblies and separately, nanoparticle characterizations with dielectrophoresis and electrorotation, did not systematically explore particle size, dielectric properties (permittivity and electrical conductivity), shell thickness, particle concentration, medium conductivity, and frequency. This work is the first, to the best of our knowledge, to systematically examine these dielectrophoretic properties for core-shell nanoparticles. Further, we conduct a parametric fitting to traditional core-shell models. These biocompatible core-shell nanoparticles were studied to fill a knowledge gap in the DEP field. Experimental results (chapter 5) first examine medium conductivity, size and shell material dependencies of dielectrophoretic behaviors of spherical CSnp into 2D and

  3. Dielectrophoretic separation of gaseous isotopes

    International Nuclear Information System (INIS)

    McConnell, D.B.

    1976-01-01

    This invention relates to a process for the separation of gaseous isotopes by electrophoresis assisted by convective countercurrent flow and to an apparatus for use in the process. The invention is especially applicable to heavy water separation from steam; however, it is to be understood that the invention is broadly applicable to the separation of gaseous isotopes having different dipole moments and/or different molecular weights. (author)

  4. Fatigue check of nuclear safety class 1 reactor coolant pipe

    International Nuclear Information System (INIS)

    Wang Qing; Fang Yonggang; Chu Qibao; Xu Yu; Li Hailong

    2015-01-01

    Fatigue and thermal ratcheting analyses of nuclear safety Class 1 reactor coolant pipe in a nuclear power plant were independently carried out in this paper. The software used for calculation is ROCOCO, which is based on RCC-M code. The difference of nuclear safety Class 1 pipe fatigue evaluation between RCC-M code and ASME code was compared. The main aspects of comparison include the calculation scoping of fatigue design, the calculation method of primary plus secondary stress intensity, the elastic-plastic correction coefficient calculation, and the dynamic load combination method etc. By correcting inconsistent algorithm of ASME code within ROCOCO, the fatigue usage factor and thermal ratcheting design margin of 65 mm and 55 mm wall thickness of the pipe were obtained. The results show that the minimum wall thickness of the pipe must exceed 55 mm and the design value of the thermal ratcheting of 55 mm wall thickness reaches 95% of the allowable value. (authors)

  5. Nanopattern formation using localized plasma for growth of single-standing carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Javadi, Mohammad; Abdi, Yaser, E-mail: y.abdi@ut.ac.ir [University of Tehran, Nanophysics Research Laboratory, Department of Physics (Iran, Islamic Republic of)

    2017-01-15

    We report a novel method for formation of self-organized single-standing carbon nanotubes by customizing a plasma-based process. The growth of carbon nanotubes by plasma-enhanced chemical vapor deposition provides suitable grounds to utilize plasma–solid interactions for nanopatterning. The bulk plasma is utilized to fabricate carbon nanotubes on the prepatterned Ni catalyst which in turn can confine the plasma to the growth region. The plasma localization leads to a dielectrophoretic force exerted on Ni atoms and can be engineered in order to grow a specific pattern of self-organized single-standing carbon nanotubes. Numerical simulations based on the plasma localization and dielectrophoretic force confirmed the experimental results. This method provides a simple and cost-effective approach to obtain nanopatterned arrays of carbon nanotubes which can be used for fabrication of photonic and phononic crystals, self-gated field emission-based transistors and displays.

  6. Modeling and Simulation of a Wave Energy Converter INWAVE

    Directory of Open Access Journals (Sweden)

    Seung Kwan Song

    2017-01-01

    Full Text Available INGINE Inc. developed its own wave energy converter (WEC named INWAVE and has currently installed three prototype modules in Jeju Island, Korea. This device is an on-shore-type WEC that consists of a buoy, pulleys fixed to the sea-floor and a power take off module (PTO. Three ropes are moored tightly on the bottom of the buoy and connected to the PTO via the pulleys, which are moving back and forth according to the motion of the buoy. Since the device can harness wave energy from all six degrees of movement of the buoy, it is possible to extract energy efficiently even under low energy density conditions provided in the coastal areas. In the PTO module, the ratchet gears convert the reciprocating movement of the rope drum into a uni-directional rotation and determine the transmission of power from the relation of the angular velocities between the rope drum and the generator. In this process, the discontinuity of the power transmission occurs and causes the modeling divergence. Therefore, we introduce the concept of the virtual torsion spring in order to prevent the impact error in the ratchet gear module, thereby completing the PTO modeling. In this paper, we deal with dynamic analysis in the time domain, based on Newtonian mechanics and linear wave theory. We derive the combined dynamics of the buoy and PTO modules via geometric relation between the buoy and mooring ropes, then suggest the ratchet gear mechanism with the virtual torsion spring element to reduce the dynamic errors during the phase transitions. Time domain simulation is carried out under irregular waves that reflect the actual wave states of the installation area, and we evaluate the theoretical performance using the capture width ratio.

  7. Pipe closing device

    International Nuclear Information System (INIS)

    Klahn, F.C.; Nolan, J.H.; Wills, C.

    1979-01-01

    The closing device closes the upper end of a support tube for monitoring samples. It meshes with the upper connecting piece of the monitorung sample capsule, and loads the capsule within the bore of the support tube, so that it is fixed but can be released. The closing device consists of an interlocking component with a chamber and several ratchets which hang down. The interlocking component surrounds the actuating component for positioning the ratchets. The interlocking and actuating components are movable axially relative to each other. (DG) [de

  8. Dynamic Actuation of Single-Crystal Diamond Nanobeams

    OpenAIRE

    Sohn, Young-Ik; Burek, Michael J.; Kara, Vural; Kearns, Ryan; Lončar, Marko

    2014-01-01

    We show the dielectrophoretic actuation of single-crystal diamond nanomechanical devices. Gradient radio-frequency electromagnetic forces are used to achieve actuation of both cantilever and doubly clamped beam structures, with operation frequencies ranging from a few MHz to ~50MHz. Frequency tuning and parametric actuation are also studied.

  9. Hybrid immersed interface-immersed boundary methods for AC dielectrophoresis

    International Nuclear Information System (INIS)

    Hossan, Mohammad Robiul; Dillon, Robert; Dutta, Prashanta

    2014-01-01

    Dielectrophoresis, a nonlinear electrokinetic transport mechanism, has become popular in many engineering applications including manipulation, characterization and actuation of biomaterials, particles and biological cells. In this paper, we present a hybrid immersed interface–immersed boundary method to study AC dielectrophoresis where an algorithm is developed to solve the complex Poisson equation using a real variable formulation. An immersed interface method is employed to obtain the AC electric field in a fluid media with suspended particles and an immersed boundary method is used for the fluid equations and particle transport. The convergence of the proposed algorithm as well as validation of the hybrid scheme with experimental results is presented. In this paper, the Maxwell stress tensor is used to calculate the dielectrophoretic force acting on particles by considering the physical effect of particles in the computational domain. Thus, this study eliminates the approximations used in point dipole methods for calculating dielectrophoretic force. A comparative study between Maxwell stress tensor and point dipole methods for computing dielectrophoretic forces are presented. The hybrid method is used to investigate the physics of dielectrophoresis in microfluidic devices using an AC electric field. The numerical results show that with proper design and appropriate selection of applied potential and frequency, global electric field minima can be obtained to facilitate multiple particle trapping by exploiting the mechanism of negative dielectrophoresis. Our numerical results also show that electrically neutral particles form a chain parallel to the applied electric field irrespective of their initial orientation when an AC electric field is applied. This proposed hybrid numerical scheme will help to better understand dielectrophoresis and to design and optimize microfluidic devices

  10. High temperature structural integrity evaluation method and application studies by ASME-NH for the next generation reactor design

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Lee, Jae Han

    2006-01-01

    The main purpose of this paper is to establish the high temperature structural integrity evaluating procedures for the next generation reactors, which are to be operated at over 500 .deg. C and for 60 years. To do this, comparison studies of the high temperature structural design codes and assessment procedures such as the ASME-NH (USA), RCC-MR (France), DDS (Japan), and R5 (UK) are carried out in view of the accumulated inelastic strain and the creep-fatigue damage evaluations. Also the application procedures of the ASME-NH rules with the actual thermal and structural analysis results are described in detail. To overcome the complexity and the engineering costs arising from a real application of the ASME-NH rules by hand, all the procedures established in this study such as the time-dependent primary stress limits, total accumulated creep ratcheting strain limits, and the creep-fatigue damage limits are computerized and implemented into the SIE ASME-NH program. Using this program, the selected high temperature structures subjected to two cycle types are evaluated and the parametric studies for the effects of the time step size, primary load, number of cycles, normal temperature for the creep damage evaluations and the effects of the load history on the creep ratcheting strain calculations are investigated

  11. Contribution to the validation of thermal ratchetting prevision methods in metallic structures; Contribution a la validation des methodes de prevision du rochet thermique dans les structures metalliques

    Energy Technology Data Exchange (ETDEWEB)

    Rakotovelo, A.M

    1998-03-01

    This work concerns the steady state assessment in the metallic structures subjected to thermomechanical cyclic loadings in biaxial stress state. The effect of the short time mechanical overloads is also investigated. The first chapter is devoted to a bibliographic research concerning the behaviour of the materials and the structures in the cyclic plasticity. Some works relate to the experimental aspect as well as the numerical one for the steady state assessment of such structures are presented. The experimental part of the study is presented in the second chapter. The experimental device was carried out in order to prescribe tension and torsion forces combined with cyclic thermal loading. Some tests was then carried out, among these tests certain include some overloads in tension or torsion. The last chapter describes the numerical calculations using different models (linear isotropic hardening, linear kinematic hardening and elasto-viscoplastic Chaboche's model) and the application of some simplified methods for the ratchetting assessment in the structures. We have considered two categories of methods. The first one is based on an elastic analysis (Bree's diagram, 3 Sm rule, efficiency rule) and the second one combines elastic analysis and elastoplastic analysis of the first cycle (Gatt's and Taleb's methods). The results of this study have enabled: to validate in the biaxial stress state an expression which takes into account the effect of mechanical short time overloads; to test the performances of considered models to describe the evolution of the structure during the first cycle and to take into account the effect of short time overloads. Among the considered models, the elastoplastic Chaboche's model seems to be the most accurate to describe the structure's behaviour during the first cycles; to validate some simplified methods. Certain methods based only on elastic analysis (Bee's diagram and efficiency rule) seem not

  12. Quantification of the electrostatic forces involved in the directed assembly of colloidal nanoparticles by AFM nanoxerography.

    Science.gov (United States)

    Palleau, E; Sangeetha, N M; Ressier, L

    2011-08-12

    Directed assembly of 10 nm dodecanethiol stabilized silver nanoparticles in hexane and 14 nm citrate stabilized gold nanoparticles in ethanol was performed by AFM nanoxerography onto charge patterns of both polarities written into poly(methylmethacrylate) thin films. The quasi-neutral silver nanoparticles were grafted on both positive and negative charge patterns while the negatively charged gold nanoparticles were selectively deposited on positive charge patterns only. Numerical simulations were conducted to quantify the magnitude, direction and spatial range of the electrophoretic and dielectrophoretic forces exerted by the charge patterns on these two types of nanoparticles in suspension taken as models. The simulations indicate that the directed assembly of silver nanoparticles on both charge patterns is due to the predominant dielectrophoretic forces, while the selective assembly of gold nanoparticles only on positive charge patterns is due to the predominant electrophoretic forces. The study also suggests that the minimum surface potential of charge patterns required for obtaining effective nanoparticle assembly depends strongly on the charge and polarizability of the nanoparticles and also on the nature of the dispersing solvent. Attractive electrostatic forces of about 2 × 10( - 2) pN in magnitude just above the charged surface appear to be sufficient to trap silver nanoparticles in hexane onto charge patterns and the value is about 2 pN for gold nanoparticles in ethanol, under the present experimental conditions. The numerical simulations used in this work to quantify the electrostatic forces operating in the directed assembly of nanoparticles from suspensions onto charge patterns can easily be extended to any kind of colloid and serve as an effective tool for a better comprehension and prediction of liquid-phase nanoxerography processes.

  13. Quantification of the electrostatic forces involved in the directed assembly of colloidal nanoparticles by AFM nanoxerography

    International Nuclear Information System (INIS)

    Palleau, E; Sangeetha, N M; Ressier, L

    2011-01-01

    Directed assembly of 10 nm dodecanethiol stabilized silver nanoparticles in hexane and 14 nm citrate stabilized gold nanoparticles in ethanol was performed by AFM nanoxerography onto charge patterns of both polarities written into poly(methylmethacrylate) thin films. The quasi-neutral silver nanoparticles were grafted on both positive and negative charge patterns while the negatively charged gold nanoparticles were selectively deposited on positive charge patterns only. Numerical simulations were conducted to quantify the magnitude, direction and spatial range of the electrophoretic and dielectrophoretic forces exerted by the charge patterns on these two types of nanoparticles in suspension taken as models. The simulations indicate that the directed assembly of silver nanoparticles on both charge patterns is due to the predominant dielectrophoretic forces, while the selective assembly of gold nanoparticles only on positive charge patterns is due to the predominant electrophoretic forces. The study also suggests that the minimum surface potential of charge patterns required for obtaining effective nanoparticle assembly depends strongly on the charge and polarizability of the nanoparticles and also on the nature of the dispersing solvent. Attractive electrostatic forces of about 2 x 10 -2 pN in magnitude just above the charged surface appear to be sufficient to trap silver nanoparticles in hexane onto charge patterns and the value is about 2 pN for gold nanoparticles in ethanol, under the present experimental conditions. The numerical simulations used in this work to quantify the electrostatic forces operating in the directed assembly of nanoparticles from suspensions onto charge patterns can easily be extended to any kind of colloid and serve as an effective tool for a better comprehension and prediction of liquid-phase nanoxerography processes.

  14. The RCC-MR design code for LMFBR components. A useful basis for fusion reactor design tools development

    International Nuclear Information System (INIS)

    Acker, D.; Chevereau, G.

    1986-01-01

    LMFBR and fusion reactors exhibit common features with regard to structural materials, temperature service level, loading types. So, design and construction rules used in France for LMFBR, that is to say RCC-MR Code, can constitute a good basis for fusion reactors design. Some original aspects of RCC-MR design rules are described, relating to unsignificant creep, ratchetting effect, fatigue and creep damage limits, creep damage evaluation, fatigue damage evaluation, buckling. The main originality of RCC-MR consists to propose comprehensive simplified rules based on elastic calculations and extended from classical cold temperatures to the elevated temperature domain. (author)

  15. Inelastic constitutive models for the simulation of a cyclic softening behavior of modified 9Cr-lMo steel at elevated temperatures

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Lee, Jae Han

    2007-01-01

    In this paper, the inelastic constitutive models for the simulations of the cyclic softening behavior of the modified 9Cr-1Mo steel, which has a significant cyclic softening characteristic especially in elevated temperature regions, are investigated in detail. To do this, the plastic modulus, which primarily governs the calculation scheme of the plasticity, is formulated for the inelastic constitutive models such as the Armstrong-Frederick model, Chaboche model, and Ohno-Wang model. By implementing the extracted plastic modulus and the consistency conditions into the computer program, the inelastic constitutive parameters are identified to present the best fit of the uniaxial cyclic test data by strain-controlled simulations. From the computer simulations by using the obtained constitutive parameters, it is found that the Armstrong-Frederick model is simple to use but it causes significant overestimated strain results when compared with the Chaboche and the Ohno-Wang models. And from the ratcheting simulation results, it is found that the cyclic softening behavior of the modified 9Cr-1Mo steel can invoke a ratcheting instability when the applied cyclic loads exceed a certain level of the ratchet loading condition

  16. Retinitis Pigmentosa Mutations in Bad Response to Refrigeration 2 (Brr2) Impair ATPase and Helicase Activity.

    Science.gov (United States)

    Ledoux, Sarah; Guthrie, Christine

    2016-06-03

    Brr2 is an RNA-dependent ATPase required to unwind the U4/U6 snRNA duplex during spliceosome assembly. Mutations within the ratchet helix of the Brr2 RNA binding channel result in a form of degenerative human blindness known as retinitis pigmentosa (RP). The biochemical consequences of these mutations on Brr2's RNA binding, helicase, and ATPase activity have not yet been characterized. Therefore, we identified the largest construct of Brr2 that is soluble in vitro, which truncates the first 247 amino acids of the N terminus (Δ247-Brr2), to characterize the effects of the RP mutations on Brr2 activity. The Δ247-Brr2 RP mutants exhibit a gradient of severity of weakened RNA binding, reduced helicase activity, and reduced ATPase activity compared with wild type Δ247-Brr2. The globular C-terminal Jab1/Mpn1-like domain of Prp8 increases the ability of Δ247-Brr2 to bind the U4/U6 snRNA duplex at high pH and increases Δ247-Brr2's RNA-dependent ATPase activity and the extent of RNA unwinding. However, this domain of Prp8 does not differentially affect the Δ247-Brr2 RP mutants compared with the wild type Δ247-Brr2. When stimulated by Prp8, wild type Δ247-Brr2 is able to unwind long stable duplexes in vitro, and even the RP mutants capable of binding RNA with tight affinity are incapable of fully unwinding short duplex RNAs. Our data suggest that the RP mutations within the ratchet helix impair Brr2 translocation through RNA helices. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Experimental study under uniaxial cyclic behavior at room and high temperature of 316L stainless steel

    International Nuclear Information System (INIS)

    Kang Guozheng; Gao Qing; Yang Xianjie; Sun Yafang

    2001-01-01

    An experimental study was carried out of the cyclic properties of 316L stainless steel subjected to uniaxial strain and stress at room and high temperature. The effects of cyclic strain amplitude, temperature and their histories on the cyclic deformation behavior of 316L stainless steel are investigated. And, the influences of stress amplitude, mean stress, temperature and their histories on ratcheting are also analyzed. It is shown that either uniaxial cyclic property under cyclic strain or ratcheting under asymmetric uniaxial cyclic stress depends not only on the current temperature and loading state, but also on the previous temperature and loading history. Some significant results are obtained

  18. Continuous particle focusing in a waved microchannel using negative dc dielectrophoresis

    KAUST Repository

    Li, Ming

    2012-07-26

    We present a waved microchannel for continuous focusing of microparticles and cells using negative direct current (dc) dielectrophoresis. The waved channel is composed of consecutive s-shaped curved channels in series to generate an electric field gradient required for the dielectrophoretic effect. When particles move electrokinetically through the channel, the experienced negative dielectrophoretic forces alternate directions within two adjacent semicircular microchannels, leading to a focused continuous-flow stream along the channel centerline. Both the experimentally observed and numerically simulated results of the focusing performance are reported, which coincide acceptably in proportion to the specified dimensions (i.e. inlet and outlet of the waved channel). How the applied electric field, particle size and medium concentration affect the performance was studied by focusing polystyrene microparticles of varying sizes. As an application in the field of biology, the focusing of yeast cells in the waved mcirochannel was tested. This waved microchannel shows a great potential for microflow cytometry applications and is expected to be widely used before different processing steps in lab-on-A-chip devices with integrated functions. © 2012 IOP Publishing Ltd.

  19. Analysis of partially pulsating fatigue process on carbon steel with microstructural observation

    International Nuclear Information System (INIS)

    Shimano, Hiroyuki; Faiz, M. Khairi; Hara, Asato; Yoshizumi, Kyoko; Yoshida, Makoto; Horibe, Susumu

    2016-01-01

    Pulsating low-cycle fatigue processes, up to the present, have been divided into three states: the transient state, steady state, and accelerating state of ratcheting. In our previous work, we suggested that fatigue behavior of pulsating fatigue process should be classified into five stages in which the plastic strain amplitude and the ratcheting strain rate are plotted on the X and Y axis, respectively. In this study, at the condition of R=−0.3 (partially pulsating fatigue), the change in the plastic strain amplitude and ratcheting strain rate for each cycle to failure was examined on AISI 1025 carbon steel. The dislocation substructure was examined using transmission electron microscopy (TEM) for each stage, except for stage I. It was also demonstrated that the fatigue process can be divided into five stages: stage I corresponds to the un-pinning of dislocations from the Cottrell atmosphere and propagation of the Luders band. Stage II corresponds to the restriction of dislocation movement by dislocation tangles. Stage III corresponds to the formation of dislocation cells. Stage IV corresponds to the promotion of the to-and-fro (back-and-forth) motion of dislocations by a re-arrangement of the dislocations in the cells. Stage V corresponds to the release of dislocation movement by the collapse of dislocation cells.

  20. Analysis of partially pulsating fatigue process on carbon steel with microstructural observation

    Energy Technology Data Exchange (ETDEWEB)

    Shimano, Hiroyuki, E-mail: tales-of-destiny@akane.waseda.jp [Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shinjyuku-ku Okubo, Tokyo 169-8555 (Japan); Faiz, M. Khairi; Hara, Asato; Yoshizumi, Kyoko [Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shinjyuku-ku Okubo, Tokyo 169-8555 (Japan); Yoshida, Makoto [Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shinjyuku-ku Okubo, Tokyo 169-8555 (Japan); Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26, Nishi-Waseda, Shinjyuku-ku, Tokyo 169-0051 (Japan); Horibe, Susumu [Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shinjyuku-ku Okubo, Tokyo 169-8555 (Japan)

    2016-01-10

    Pulsating low-cycle fatigue processes, up to the present, have been divided into three states: the transient state, steady state, and accelerating state of ratcheting. In our previous work, we suggested that fatigue behavior of pulsating fatigue process should be classified into five stages in which the plastic strain amplitude and the ratcheting strain rate are plotted on the X and Y axis, respectively. In this study, at the condition of R=−0.3 (partially pulsating fatigue), the change in the plastic strain amplitude and ratcheting strain rate for each cycle to failure was examined on AISI 1025 carbon steel. The dislocation substructure was examined using transmission electron microscopy (TEM) for each stage, except for stage I. It was also demonstrated that the fatigue process can be divided into five stages: stage I corresponds to the un-pinning of dislocations from the Cottrell atmosphere and propagation of the Luders band. Stage II corresponds to the restriction of dislocation movement by dislocation tangles. Stage III corresponds to the formation of dislocation cells. Stage IV corresponds to the promotion of the to-and-fro (back-and-forth) motion of dislocations by a re-arrangement of the dislocations in the cells. Stage V corresponds to the release of dislocation movement by the collapse of dislocation cells.

  1. Topological protection of multiparticle dissipative transport

    Science.gov (United States)

    Loehr, Johannes; Loenne, Michael; Ernst, Adrian; de Las Heras, Daniel; Fischer, Thomas M.

    2016-06-01

    Topological protection allows robust transport of localized phenomena such as quantum information, solitons and dislocations. The transport can be either dissipative or non-dissipative. Here, we experimentally demonstrate and theoretically explain the topologically protected dissipative motion of colloidal particles above a periodic hexagonal magnetic pattern. By driving the system with periodic modulation loops of an external and spatially homogeneous magnetic field, we achieve total control over the motion of diamagnetic and paramagnetic colloids. We can transport simultaneously and independently each type of colloid along any of the six crystallographic directions of the pattern via adiabatic or deterministic ratchet motion. Both types of motion are topologically protected. As an application, we implement an automatic topologically protected quality control of a chemical reaction between functionalized colloids. Our results are relevant to other systems with the same symmetry.

  2. The RCC-MR design code for LMFBR components. A useful basic for fusion reactor design tools development

    International Nuclear Information System (INIS)

    Acker, D.; Chevereau, G.

    1985-11-01

    LMFBR and fusion reactors exhibit common features with regard to structural materials (Stainless steels), temperature service level (550-600 0 C), loading types. So, design and construction rules used in France for LMFBR, that is to say RCC-MR Code, can constitute a good basis for fusion reactors design. Some original aspects of RCC-MR design rules are described, relating to unsignificant creep, ratchetting effect, fatigue and creep damage limits, creep damage evaluation, fatigue damage evaluation, buckling. The main originality of RCC-MR consists to propose comprehensive simplified rules based on elastic calculations and extended from classical cold temperatures to the elevated temperature domain

  3. Fiber dielectrophoresis

    International Nuclear Information System (INIS)

    Lipowicz, P.J.; Yeh, H.C.

    1988-01-01

    Dielectrophoresis is the motion of uncharged particles in nonuniform electric fields. We find that the theoretical dielectrophoretic velocity of a conducting fiber in an insulating medium is proportional to the square of the fiber length, and is virtually independent of fiber diameter. This prediction has been verified experimentally. The results point to the development of a fiber length classifier based on dielectrophoresis. (author)

  4. Deterministic ratchets for suspension fractionation

    NARCIS (Netherlands)

    Kulrattanarak, T.

    2010-01-01

    Driven by the current insights in sustainability and technological development in
    biorefining natural renewable resources, the food industry has taken an interest in
    fractionation of agrofood materials, like milk and cereal crops. The purpose of fractionation
    is to split the raw

  5. Two-Dimensional Algal Collection and Assembly by Combining AC-Dielectrophoresis with Fluorescence Detection for Contaminant-Induced Oxidative Stress Sensing

    Directory of Open Access Journals (Sweden)

    Coralie Siebman

    2015-06-01

    Full Text Available An alternative current (AC dielectrophoretic lab-on-chip setup was evaluated as a rapid tool of capture and assembly of microalga Chlamydomonas reinhardtii in two-dimensional (2D close-packed arrays. An electric field of 100 V·cm−1, 100 Hz applied for 30 min was found optimal to collect and assemble the algae into single-layer structures of closely packed cells without inducing cellular oxidative stress. Combined with oxidative stress specific staining and fluorescence microscopy detection, the capability of using the 2D whole-cell assembly on-chip to follow the reactive oxygen species (ROS production and oxidative stress during short-term exposure to several environmental contaminants, including mercury, methylmercury, copper, copper oxide nanoparticles (CuO-NPs, and diuron was explored. The results showed significant increase of the cellular ROS when C. reinhardtii was exposed to high concentrations of methylmercury, CuO-NPs, and 10−5 M Cu. Overall, this study demonstrates the potential of combining AC-dielectrophoretically assembled two-dimensional algal structures with cell metabolic analysis using fluorescence staining, as a rapid analytical tool for probing the effect of contaminants in highly impacted environment.

  6. Massive ordering and alignment of cylindrical micro-objects by photovoltaic optoelectronic tweezers.

    Science.gov (United States)

    Elvira, Iris; Muñoz-Martínez, Juan F; Barroso, Álvaro; Denz, Cornelia; Ramiro, José B; García-Cabañes, Angel; Agulló-López, Fernando; Carrascosa, Mercedes

    2018-01-01

    Optical tools for manipulation and trapping of micro- and nano-objects are a fundamental issue for many applications in nano- and biotechnology. This work reports on the use of one such method, known as photovoltaic optoelectronics tweezers, to orientate and organize cylindrical microcrystals, specifically elongated zeolite L, on the surface of Fe-doped LiNbO 3 crystal plates. Patterns of aligned zeolites have been achieved through the forces and torques generated by the bulk photovoltaic effect. The alignment patterns with zeolites parallel or perpendicular to the substrate surface are highly dependent on the features of light distribution and crystal configuration. Moreover, dielectrophoretic chains of zeolites with lengths up to 100 μm have often been observed. The experimental results of zeolite trapping and alignment have been discussed and compared together with theoretical simulations of the evanescent photovoltaic electric field and the dielectrophoretic potential. They demonstrate the remarkable capabilities of the optoelectronic photovoltaic method to orientate and pattern anisotropic microcrystals. The combined action of patterning and alignment offers a unique tool to prepare functional nanostructures with potential applications in a variety of fields such as nonlinear optics or plasmonics.

  7. Computation of shakedown loads feasibility study

    International Nuclear Information System (INIS)

    Save, M.; Saxce, G. de; Borkowski, A.

    1991-01-01

    Structures submitted to variable loads and temperature fields may enter in a regime of ratcheting where strains and hence structural deflections increase cycle by cycle. It is important to demonstrate that ratcheting is avoided. This happens of course if the structure remains entirely in the elastic regime. However, for more severe loadings, plastic deformations occur and the analyst must then demonstrate that the structure shakes down or adapts. Shakedown may be elastic if after a transient period all strain variations become elastic, or plastic when alternating plasticity occurs. This report addresses plastic shakedown. The problem is treated from the theoretical point of view but also - and this is a very important part of the work - from the numerical and software point of view

  8. Applying PCI in Combination Swivel Head Wrench

    Science.gov (United States)

    Chen, Tsang-Chiang; Yang, Chun-Ming; Hsu, Chang-Hsien; Hung, Hsiang-Wen

    2017-09-01

    Taiwan’s traditional industries are subject to competition in the era of globalization and environmental change, the industry is facing economic pressure and shock, and now sustainable business can only continue to improve production efficiency and quality of technology, in order to stabilize the market, to obtain high occupancy. The use of process capability indices to monitor the quality of the ratchet wrench to find the key function of the dual-use ratchet wrench, the actual measurement data, The use of process capability Cpk index analysis, and draw Process Capability Analysis Chart model. Finally, this study explores the current situation of this case and proposes a lack of improvement and improvement methods to improve the overall quality and thereby enhance the overall industry.

  9. Eccentric Mounting and Adjustment System for Belt Driven Devices

    National Research Council Canada - National Science Library

    Hansen, David N

    2008-01-01

    .... The system includes a housing fixed to the engine, a socket rotatable in pawl-and-ratchet fashion within the housing, and a socket aperture eccentrically disposed relative to the socket's axis...

  10. Bioaerosol collection and concentration for microseparations-based detectors.

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, Eric B. (Sandia National Laboratories, Livermore, CA); Ellis, C. R. Bowe (Sandia National Laboratories, Livermore, CA); Kanouff, Michael P. (Sandia National Laboratories, Livermore, CA); Rader, Daniel John; Wally, Karl (Sandia National Laboratories, Livermore, CA)

    2005-03-01

    The ability to detect Weapons of Mass Destruction biological agents rapidly and sensitively is vital to homeland security, spurring development of compact detection systems at Sandia and elsewhere. One such system is Sandia's microseparations-based pChemLab. Many bio-agents are serious health threats even at extremely low concentrations. Therefore, a universal challenge for detection systems is the efficient collection and selective transport of highly diffuse bio-agents against the enormous background of benign particles and species ever present in the ambient environment. We have investigated development of a ''front end'' system for the collection, preconcentration, and selective transport of aerosolized biological agents from dilute (1-10 active particles per liter of air) atmospheric samples, to ultimate concentrations of {approx}20 active particles per microliter of liquid, for interface with microfluidic-based analyses and detection systems. Our approach employs a Sandia-developed aerosol particle-focusing microseparator array to focus size-selected particles into a mating microimpinger array of open microfluidic transport channels. Upon collection (i.e., impingement, submergence, and liquid suspension), microfluidic dielectrophoretic particle concentrators and sorters can be employed to further concentrate and selectively transport bio-agent particles to the sample preparation stages of microfluidic analyses and detection systems. This report documents results in experimental testing, modeling and analysis, component design, and materials fabrication critical to establishing proof-of-principle for this collection ''front end''. Outstanding results have been achieved for the aerodynamic microseparator, and for the post-collection dielectrophoretic concentrator and sorter. Results have been obtained for the microimpinger, too, but issues of particle-trapping by surface tension in liquid surfaces have proven

  11. Incremental-hinge piping analysis methods for inelastic seismic response prediction

    International Nuclear Information System (INIS)

    Jaquay, K.R.; Castle, W.R.; Larson, J.E.

    1989-01-01

    This paper proposes nonlinear seismic response prediction methods for nuclear piping systems based on simplified plastic hinge analyses. The simplified plastic hinge analyses utilize an incremental series of flat response spectrum loadings and replace yielded components with hinge elements when a predefined hinge moment is reached. These hinge moment values, developed by Rodabaugh, result in inelastic energy dissipation of the same magnitude as observed in seismic tests of piping components. Two definitions of design level equivalent loads are employed: one conservatively based on the peaks of the design acceleration response spectra, the other based on inelastic frequencies determined by the method of Krylov and Bogolyuboff recently extended by Lazzeri to piping. Both definitions account for piping system inelastic energy dissipation using Newmark-Hall inelastic response spectrum reduction factors and the displacement ductility results of the incremental-hinge analysis. Two ratchet-fatigue damage models are used: one developed by Rodabaugh that conservatively correlates Markl static fatigue expressions to seismic tests to failure of piping components; the other developed by Severud that uses the ratchet expression of Bree for elbows and Edmunds and Beer for straights, and defines ratchet-fatigue interaction using Coffin's ductility based fatigue equation. Comparisons of predicted behavior versus experimental results are provided for a high-level seismic test of a segment of a representative nuclear plant piping system. (orig.)

  12. Elasto-plastic behavior of pipe subjected to steady axial load and cyclic bending

    International Nuclear Information System (INIS)

    Yao Yanping; Lu Mingwan; Zhang Xiong

    2004-01-01

    The elasto-plastic behavior of a pipe subjected to a steady axial force and a cyclic bending moment is studied. By using two parameters c and d, which describe the elasto-plastic interfaces of beam cross-section, the boundary curve equations between various types of elasto-plastic behavior, such as shakedown, plastic fatigue, ratcheting, and plastic collapse, are derived. The results are applicable for beams of any cross-section with two orthogonal axes of symmetry. As a result, the load regime diagram for a pipe is obtained, which gives an intuitive picture of the elasto-plastic behavior of the pipe under a given combination of constant axial load and cyclic bending moment

  13. Nonlinear piping damping and response predictions

    International Nuclear Information System (INIS)

    Severud, L.K.; Weiner, E.O.; Lindquist, M.R.; Anderson, M.J.; Wagner, S.E.

    1986-10-01

    The high level dynamic testing of four prototypic piping systems, used to provide benchmarks for analytical prediction comparisons, is overviewed. The size of pipe tested ranged from one-inch to six-inches in diameter and consisted of carbon steel or stainless steel material. Failure of the tested systems included progressive gross deformation or some combination of ratchetting-fatigue. Pretest failure predictions and post test comparisons using simplified elastic and elasto-plastic methods are presented. Detailed non-linear inelastic analyses are also shown, along with a typical ratchet-fatigue failure calculation. A simplified method for calculating modal equivalent viscous damping for snubbers and plastic hinges is also described. Conclusions are made regarding the applicability of the various analytical failure predictive methods and recommendations are made for future analytic and test efforts

  14. Ratchet Transport of Chiral Particles Caused by the Transversal Asymmetry: Current Reversals and Particle Separation

    Science.gov (United States)

    Liu, Jian-li; Lu, Shi-cai; Ai, Bao-quan

    2018-06-01

    Due to the chirality of active particles, the transversal asymmetry can induce the the longitudinal directed transport. The transport of chiral active particles in a periodic channel is investigated in the presence of two types of the transversal asymmetry, the transverse force and the transverse rigid half-circle obstacles. For all cases, the counterclockwise and clockwise particles move to the opposite directions. For the case of the only transverse force, the chiral active particles can reverse their directions when increasing the transverse force. When the transverse rigid half-circle obstacles are introduced, the transport behavior of particles becomes more complex and multiple current reversals occur. The direction of the transport is determined by the competition between two types of the transversal asymmetry. For a given chirality, by suitably tailoring parameters, particles with different self-propulsion speed can move in different directions and can be separated.

  15. AgrAbility Project

    Science.gov (United States)

    ... Cordless Ratchet Wrench ClampTite Wire Clamping Tool iBlue Smart Gate/Door Opener Full Toolbox AT Database Extranet ... in-person NTW - March 19-22, Portland, Maine House and Senate Appropriations Committees recommend restoring AgrAbility funding... ...

  16. HCF + LCF Interactions at Elevated Temperature

    National Research Council Canada - National Science Library

    Byrne, James; Hall, R. F; Ding, J

    2005-01-01

    ...) crack propagation in Ti- 6Al-4V will be studied under combined HCF/low cycle fatigue (LCF) loading conditions at elevated temperatures up to 350 deg C where creep stress ratcheting and environmental effects may arise...

  17. Rapid determination of nanowires electrical properties using a dielectrophoresis-well based system

    Science.gov (United States)

    Constantinou, Marios; Hoettges, Kai F.; Krylyuk, Sergiy; Katz, Michael B.; Davydov, Albert; Rigas, Grigorios-Panagiotis; Stolojan, Vlad; Hughes, Michael P.; Shkunov, Maxim

    2017-03-01

    The use of high quality semiconducting nanomaterials for advanced device applications has been hampered by the unavoidable growth variability of electrical properties of one-dimensional nanomaterials, such as nanowires and nanotubes, thus highlighting the need for the characterization of efficient semiconducting nanomaterials. In this study, we demonstrate a low-cost, industrially scalable dielectrophoretic (DEP) nanowire assembly method for the rapid analysis of the electrical properties of inorganic single crystalline nanowires, by identifying key features in the DEP frequency response spectrum from 1 kHz to 20 MHz in just 60 s. Nanowires dispersed in anisole were characterized using a three-dimensional DEP chip (3DEP), and the resultant spectrum demonstrated a sharp change in nanowire response to DEP signal in 1-20 MHz frequency range. The 3DEP analysis, directly confirmed by field-effect transistor data, indicates that nanowires of higher quality are collected at high DEP signal frequency range above 10 MHz, whereas lower quality nanowires, with two orders of magnitude lower current per nanowire, are collected at lower DEP signal frequencies. These results show that the 3DEP platform can be used as a very efficient characterization tool of the electrical properties of rod-shaped nanoparticles to enable dielectrophoretic selective deposition of nanomaterials with superior conductivity properties.

  18. In-situ poling and structurization of piezoelectric particulate composites.

    Science.gov (United States)

    Khanbareh, H; van der Zwaag, S; Groen, W A

    2017-11-01

    Composites of lead zirconate titanate particles in an epoxy matrix are prepared in the form of 0-3 and quasi 1-3 with different ceramic volume contents from 10% to 50%. Two different processing routes are tested. Firstly a conventional dielectrophoretic structuring is used to induce a chain-like particle configuration, followed by curing the matrix and poling at a high temperature and under a high voltage. Secondly a simultaneous combination of dielectrophoresis and poling is applied at room temperature while the polymer is in the liquid state followed by subsequent curing. This new processing route is practiced in an uncured thermoset system while the polymer matrix still possess a relatively high electrical conductivity. Composites with different degrees of alignment are produced by altering the magnitude of the applied electric field. A significant improvement in piezoelectric properties of quasi 1-3 composites can be achieved by a combination of dielectrophoretic alignment of the ceramic particles and poling process. It has been observed that the degree of structuring as well as the functional properties of the in-situ structured and poled composites enhance significantly compared to those of the conventionally manufactured structured composites. Improving the alignment quality enhances the piezoelectric properties of the particulate composites.

  19. Fabrication of dielectrophoretic microfluidic chips using a facile screen-printing technique for microparticle trapping

    International Nuclear Information System (INIS)

    Wee, Wei Hong; Kadri, Nahrizul Adib; Pingguan-Murphy, Belinda; Li, Zedong; Hu, Jie; Xu, Feng; Li, Fei

    2015-01-01

    Trapping of microparticles finds wide applications in numerous fields. Microfluidic chips based on a dielectrophoresis (DEP) technique hold several advantages for trapping microparticles, such as fast result processing, a small amount of sample required, high spatial resolution, and high accuracy of target selection. There is an unmet need to develop DEP microfluidic chips on different substrates for different applications in a low cost, facile, and rapid way. This study develops a new facile method based on a screen-printing technique for fabrication of electrodes of DEP chips on three types of substrates (i.e. polymethyl-methacrylate (PMMA), poly(ethylene terephthalate) and A4 paper). The fabricated PMMA-based DEP microfluidic chip was selected as an example and successfully used to trap and align polystyrene microparticles in a suspension and cardiac fibroblasts in a cell culture solution. The developed electrode fabrication method is compatible with different kinds of DEP substrates, which could expand the future application field of DEP microfluidic chips, including new forms of point-of care diagnostics and trapping circulating tumor cells. (paper)

  20. Mesoscopic model of actin-based propulsion.

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    Full Text Available Two theoretical models dominate current understanding of actin-based propulsion: microscopic polymerization ratchet model predicts that growing and writhing actin filaments generate forces and movements, while macroscopic elastic propulsion model suggests that deformation and stress of growing actin gel are responsible for the propulsion. We examine both experimentally and computationally the 2D movement of ellipsoidal beads propelled by actin tails and show that neither of the two models can explain the observed bistability of the orientation of the beads. To explain the data, we develop a 2D hybrid mesoscopic model by reconciling these two models such that individual actin filaments undergoing nucleation, elongation, attachment, detachment and capping are embedded into the boundary of a node-spring viscoelastic network representing the macroscopic actin gel. Stochastic simulations of this 'in silico' actin network show that the combined effects of the macroscopic elastic deformation and microscopic ratchets can explain the observed bistable orientation of the actin-propelled ellipsoidal beads. To test the theory further, we analyze observed distribution of the curvatures of the trajectories and show that the hybrid model's predictions fit the data. Finally, we demonstrate that the model can explain both concave-up and concave-down force-velocity relations for growing actin networks depending on the characteristic time scale and network recoil. To summarize, we propose that both microscopic polymerization ratchets and macroscopic stresses of the deformable actin network are responsible for the force and movement generation.

  1. Rectification of light refraction in curved waveguide arrays.

    Science.gov (United States)

    Longhi, Stefano

    2009-02-15

    An "optical ratchet" for discretized light in photonic lattices, which enables observing rectification of light refraction at any input beam conditions, is theoretically presented, and a possible experimental implementation based on periodically curved zigzag waveguide arrays is proposed.

  2. Gaussian white noise as a resource for work extraction.

    Science.gov (United States)

    Dechant, Andreas; Baule, Adrian; Sasa, Shin-Ichi

    2017-03-01

    We show that uncorrelated Gaussian noise can drive a system out of equilibrium and can serve as a resource from which work can be extracted. We consider an overdamped particle in a periodic potential with an internal degree of freedom and a state-dependent friction, coupled to an equilibrium bath. Applying additional Gaussian white noise drives the system into a nonequilibrium steady state and causes a finite current if the potential is spatially asymmetric. The model thus operates as a Brownian ratchet, whose current we calculate explicitly in three complementary limits. Since the particle current is driven solely by additive Gaussian white noise, this shows that the latter can potentially perform work against an external load. By comparing the extracted power to the energy injection due to the noise, we discuss the efficiency of such a ratchet.

  3. “土地财政”内在生成逻辑、棘轮效应与自主债融资架构%The Inherent Logic, Ratchet Effect and Independent Debt Financing Structure of "Land finance"

    Institute of Scientific and Technical Information of China (English)

    夏梁省

    2012-01-01

    伴随分税制改革,在财政扩张的驱使下,“土地财政”发展成为地方政府财政资金的重要来源。但是,“土地财政”内在的棘轮效应带来一系列发展问题,具有不可持续性,并倒逼地方政府减少对“土地财政”的依赖程度,寻求融资机制的创新。财政部试行的地方政府自行发债举措,为地方政府未来的融资方式创新提供了方向性导引,地方政府应该在自主债融资框架下积极探索新的融资机制,改善财政资金的结构比例。%With the reform of tax system, "Land finance" had become an important fund source of local govern- ments driven by fiscal expansion. But, the internal ratchet effects of "Land finance" has brought a series of problems in the development, which are unsustainable, and force the local governments to reduce the dependence on "land fi- nance" through innovations of financing mechanisms. The trial of Ministry of Finance that the local governments can initiate treasury bonds on their own provides a directional guidance for the future financing innovation of local govern- ments. Local governments should positively explore new financing mechanisms in the framework of self-debt finan- cing, to improve the mix of financial resources.

  4. Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation

    OpenAIRE

    Piacentini, Niccolò; Mernier, Guillaume; Tornay, Raphaël; Renaud, Philippe

    2011-01-01

    We present a microfluidic device capable of separating platelets from other blood cells in continuous flow using dielectrophoresis field-flow-fractionation. The use of hydrodynamic focusing in combination with the application of a dielectrophoretic force allows the separation of platelets from red blood cells due to their size difference. The theoretical cell trajectory has been calculated by numerical simulations of the electrical field and flow speed, and is in agreement with the experiment...

  5. Rectification of light refraction in curved waveguide arrays

    OpenAIRE

    Longhi, S.

    2010-01-01

    An 'optical ratchet' for discretized light in photonic lattices, which enables to observe rectification of light refraction at any input beam conditions, is theoretically presented, and a possible experimental implementation based on periodically-curved zigzag waveguide arrays is proposed.

  6. FY17 Status Report on Testing Supporting the Inclusion of Grade 91 Steel as an Acceptable Material for Application of the EPP Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Messner, Mark C. [Argonne National Lab. (ANL), Argonne, IL (United States); Sham, Sam [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Yanli [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    This report summarizes the experiments performed in FY17 on Gr. 91 steels. The testing of Gr. 91 has technical significance because, currently, it is the only approved material for Class A construction that is strongly cyclic softening. Specific FY17 testing includes the following activities for Gr. 91 steel. First, two types of key feature testing have been initiated, including two-bar thermal ratcheting and Simplified Model Testing (SMT). The goal is to qualify the Elastic – Perfectly Plastic (EPP) design methodologies and to support incorporation of these rules for Gr. 91 into the ASME Division 5 Code. The preliminary SMT test results show that Gr. 91 is most damaging when tested with compression hold mode under the SMT creep fatigue testing condition. Two-bar thermal ratcheting test results at a temperature range between 350 to 650o C were compared with the EPP strain limits code case evaluation, and the results show that the EPP strain limits code case is conservative. The material information obtained from these key feature tests can also be used to verify its material model. Second, to provide experimental data in support of the viscoplastic material model development at Argonne National Laboratory, selective tests were performed to evaluate the effect of cyclic softening on strain rate sensitivity and creep rates. The results show the prior cyclic loading history decreases the strain rate sensitivity and increases creep rates. In addition, isothermal cyclic stress-strain curves were generated at six different temperatures, and a nonisothermal thermomechanical testing was also performed to provide data to calibrate the viscoplastic material model.

  7. Interaction of solitons and the formation of bound states in the generalized Lugiato-Lefever equation

    Science.gov (United States)

    Parra-Rivas, Pedro; Gomila, Damia; Colet, Pere; Gelens, Lendert

    2017-07-01

    Bound states, also called soliton molecules, can form as a result of the interaction between individual solitons. This interaction is mediated through the tails of each soliton that overlap with one another. When such soliton tails have spatial oscillations, locking or pinning between two solitons can occur at fixed distances related with the wavelength of these oscillations, thus forming a bound state. In this work, we study the formation and stability of various types of bound states in the Lugiato-Lefever equation by computing their interaction potential and by analyzing the properties of the oscillatory tails. Moreover, we study the effect of higher order dispersion and noise in the pump intensity on the dynamics of bound states. In doing so, we reveal that perturbations to the Lugiato-Lefever equation that maintain reversibility, such as fourth order dispersion, lead to bound states that tend to separate from one another in time when noise is added. This separation force is determined by the shape of the envelope of the interaction potential, as well as an additional Brownian ratchet effect. In systems with broken reversibility, such as third order dispersion, this ratchet effect continues to push solitons within a bound state apart. However, the force generated by the envelope of the potential is now such that it pushes the solitons towards each other, leading to a null net drift of the solitons. Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

  8. A study on plastic strain accumulation caused by traveling of temperature distribution synchronizing with temperature rise

    International Nuclear Information System (INIS)

    Okajima, Satoshi

    2016-01-01

    The prevention of excessive deformation by thermal ratcheting is important in the design of high-temperature components of fast breeder reactors (FBR). This includes evaluation methods for a new type of thermal ratcheting caused by an axial traveling of temperature distribution, which corresponds to moving-up of liquid sodium surface in startup phase. Long range traveling of the axial temperature distribution brings flat plastic deformation profile in wide range. Therefore, at the center of this range, residual stress that brings shakedown behavior does not accumulate. As a result, repeating of this temperature traveling brings continuous accumulation of the plastic strain, even if there is no primary stress. In contrast, in the case with short range traveling, residual stress is caused by constraint against elastic part, and finally it results in shakedown. Because of this mechanism, we supposed that limit for the shakedown behavior depends on distance from the elastic part (i.e. half length of region with plastic deformation). In this paper, we examined characteristics of the accumulation of the plastic strain caused by realistic heat transients, namely, traveling of temperature distribution synchronizing with temperature rise. This examination was based on finite element analyses using elastic-perfectly plastic material. As a result, we confirmed that the shakedown limit depends not on the traveling range of the temperature distribution but the plastic deformation range, which was predicted by the elastic analysis. In the actual application, we can control the plastic deformation range by changing rate of the moving-up of liquid sodium surface. (author)

  9. 77 FR 30048 - Petition for Waiver of Compliance

    Science.gov (United States)

    2012-05-21

    ... built as 40-foot steel frame cars to carry logs. Their exact ages are unknown but they are thought to... only be manually applied when the cars are at rest, using a ratchet lever at the end of the frame. CASS...

  10. Calcium-Driven Folding of RTX Domain beta-Rolls Ratchets Translocation of RTX Proteins through Type I Secretion Ducts

    Czech Academy of Sciences Publication Activity Database

    Bumba, Ladislav; Mašín, Jiří; Macek, Pavel; Wald, Tomáš; Motlová, Lucia; Bíbová, Ilona; Klímová, Nela; Bednárová, Lucie; Veverka, Václav; Kachala, M.; Svergun, D. I.; Bařinka, Cyril; Šebo, Peter

    2016-01-01

    Roč. 62, č. 1 (2016), s. 47-62 ISSN 1097-2765 R&D Projects: GA MŠk(CZ) LK11205; GA MŠk(CZ) LO1304; GA ČR(CZ) GA15-11851S; GA ČR GA13-14547S; GA ČR GAP302/12/0460; GA ČR(CZ) GAP207/11/0717; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 ; RVO:61388963 ; RVO:86652036 Keywords : ADENYLATE-CYCLASE TOXIN * GRAM-NEGATIVE BACTERIA * BORDETELLA-PERTUSSIS Subject RIV: CE - Biochemistry ; EB - Genetics ; Molecular Biology (BTO-N); CE - Biochemistry (UOCHB-X) Impact factor: 14.714, year: 2016

  11. Graphene-edge dielectrophoretic tweezers for trapping of biomolecules.

    Science.gov (United States)

    Barik, Avijit; Zhang, Yao; Grassi, Roberto; Nadappuram, Binoy Paulose; Edel, Joshua B; Low, Tony; Koester, Steven J; Oh, Sang-Hyun

    2017-11-30

    The many unique properties of graphene, such as the tunable optical, electrical, and plasmonic response make it ideally suited for applications such as biosensing. As with other surface-based biosensors, however, the performance is limited by the diffusive transport of target molecules to the surface. Here we show that atomically sharp edges of monolayer graphene can generate singular electrical field gradients for trapping biomolecules via dielectrophoresis. Graphene-edge dielectrophoresis pushes the physical limit of gradient-force-based trapping by creating atomically sharp tweezers. We have fabricated locally backgated devices with an 8-nm-thick HfO 2 dielectric layer and chemical-vapor-deposited graphene to generate 10× higher gradient forces as compared to metal electrodes. We further demonstrate near-100% position-controlled particle trapping at voltages as low as 0.45 V with nanodiamonds, nanobeads, and DNA from bulk solution within seconds. This trapping scheme can be seamlessly integrated with sensors utilizing graphene as well as other two-dimensional materials.

  12. Compact and tunable size-based dielectrophoretic flow fractionation

    International Nuclear Information System (INIS)

    Chuang, Han-Sheng; Chung, Tien-Yu; Li, Yun

    2014-01-01

    A compact and tunable size-based flow fractionation microchip using negative dielectrophoresis (DEP) is presented in this paper. In the microchip, a sample containing a mixture of particles is hydrodynamically focused in a contraction section and then sorted by size after flowing over planar interdigitated electrodes. The electrodes and flow chamber were aligned at an angle of 45° to produce effective sorting. 1, 2.5 and 4.8 µm polystyrene (PS) particles were successfully separated into three distinct streams in a short distance (1 mm) and collected in different outlet channels. The sorting was subjected to flow rates and electric potential. The experimental sorting efficiencies of 1, 2.5 and 4.8 µm particles reached 97.2%, 79.6% and 99.8%, respectively. With the same device, lipid vesicle sorting was demonstrated. 86.9% of vesicles larger than 10 µm were effectively extracted from the sample stream. Likewise, sorting of other biological particles can be achieved in the same fashion. (paper)

  13. Sieve-based lateral displacement technology for suspension separation

    NARCIS (Netherlands)

    Dijkshoorn, J.P.; Wagterveld, R.M.; Boom, R.M.; Schutyser, M.A.I.

    2017-01-01

    Sparse lateral displacement arrays are easier to scale up than full deterministic lateral displacement arrays or deterministic ratchets, because they require lower pressure drop and simplify the construction of the device. However, the asymmetry of sparse arrays leads to a non-homogeneous pressure

  14. The promise of nanotechnology for separation devices - from a top-down approach to nature-inspired separation devices

    NARCIS (Netherlands)

    Eijkel, Jan C.T.; van den Berg, Albert

    An overview is given of the possible applications of nanotechnology to optimise existing separation methods and to enable new methods. Attention is paid to nanotechnological contributions in the fields of HPLC, CEC, sieves, Brownian ratchets and preconcentration units. A brief description is also

  15. Continuous separation of submicron particles using Angled electrodes

    International Nuclear Information System (INIS)

    Yunus, Nurul A Md; Green, Nicolas G

    2008-01-01

    Dielectrophoretic separation of particles is achieved by the generation of electric forces on the particles by non-uniform electric fields. This paper presents a technique based on negative dielectrophoresis in a novel design of electrode array for the non-contact separation of polarisable particles. Angled electrodes are used to generate a lateral force in a microfluidic channel separating a mixed stream of particles into distinct streams of constituent components and achieving a high degree of spatial separation.

  16. Amnioserosa cell constriction but not epidermal actin cable tension autonomously drives dorsal closure.

    Science.gov (United States)

    Pasakarnis, Laurynas; Frei, Erich; Caussinus, Emmanuel; Affolter, Markus; Brunner, Damian

    2016-11-01

    Tissue morphogenesis requires coordination of multiple force-producing components. During dorsal closure in fly embryogenesis, an epidermis opening closes. A tensioned epidermal actin/MyosinII cable, which surrounds the opening, produces a force that is thought to combine with another MyosinII force mediating apical constriction of the amnioserosa cells that fill the opening. A model proposing that each force could autonomously drive dorsal closure was recently challenged by a model in which the two forces combine in a ratchet mechanism. Acute force elimination via selective MyosinII depletion in one or the other tissue shows that the amnioserosa tissue autonomously drives dorsal closure while the actin/MyosinII cable cannot. These findings exclude both previous models, although a contribution of the ratchet mechanism at dorsal closure onset remains likely. This shifts the current view of dorsal closure being a combinatorial force-component system to a single tissue-driven closure event.

  17. Chaotic transport of a matter-wave soliton in a biperiodically driven optical superlattice

    International Nuclear Information System (INIS)

    Zhou Zheng; Hai Wenhua; Deng Yan; Xie Qiongtao

    2012-01-01

    Under the effective particle approximation, we study the temporal ratchet effect for chaotic transport of a matter-wave soliton consisting of an attractive Bose–Einstein condensate held in a quasi-one-dimensional symmetric optical superlattice with biperiodic driving. It is known that chaos can substitute for disorder in Anderson’s scenario [Wimberger S, Krug A, Buchleitner A. Phys Rev Lett 2002;89:263601] and only a higher level of disorder can induce Anderson localization for some special systems [Schwartz T, Bartal G, Fishman S, Segev M. Nature 2007;46:52], and a matter-wave soliton can transit to chaos with high or low probability in a high- or low-chaoticity region [Zhu Q, Hai W, Rong S. Phys Rev E 2009;80:016203]. Here we demonstrate that varying the driving phase to break the time reversal symmetry of the system can increase the size of the high-chaoticity region for low- and moderate-frequency regions. Consequently, the parameter region of the exponential spatial localization increases to the same size, and the low-chaoticity and delocalization region, which includes subregions of the ratchet effect and its inverse effect, correspondingly decreases. The positive dependence of the localization on the driving frequency is also revealed. The results indicate that a high-chaoticity region could replace higher disorder and assists in Anderson localization. From the results we suggest a method for controlling directed motion of a matter-wave soliton by adjusting the driving frequency and amplitude to strengthen or suppress, or even reverse, the temporal ratchet effect.

  18. Essays on habit formation and inflation hedging

    NARCIS (Netherlands)

    Zhou, Y.

    2014-01-01

    The thesis consists of four chapters. Chapter 1 reviews recent contributions on habit formation in the literature and investigates its implications for investors. Chapter 2 revisits the “Floor-Leverage” rule for investors with ratchet consumption preference proposed by Scott and Watson (2011). It

  19. Indian Academy of Sciences Conference Series | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Indian Academy of Sciences Conference Series. F FAMILY. Articles written in Indian Academy of Sciences Conference Series. Volume 1 Issue 1 December 2017 pp 221-224 Proceedings of the Conference on Perspectives in Nonlinear Dynamics - 2016. Transport in ratchets with single-file constraint.

  20. Thermal convection in dielectric liquids in a cylindrical annulus

    Science.gov (United States)

    Mutabazi, Innocent; Kang, Changwoo; Meyer, Antoine; Meier, Martin; Egbers, Christoph

    2017-11-01

    Thermal convection is investigated in a dielectric liquid of thermal expansion coefficient α, kinematic viscosity ν, thermal diffusivity κ and electric permittivity ɛ in a cylindrical annulus of inner radius a and outer radius bwith a radial temperature gradient and a high-frequency electric tension. The coupling between the electric field and the gradient of the permittivity yields the dielectrophoretic force. The control parameters are η = a/b, Pr = ν / κ, the classic Rayleigh number Ra = αΔ T gd3 / νκ , and the electric Rayleigh number L = αΔ T ged3 / νκ The electric gravity ge is the gradient of the electric energy in the condenser. Linear stability analysis shows that for infinite annulus, depending on values of η, Ra and L, critical modes are either hydrodynamic or thermal modes, helical electric modes or columnar vortices. Experiments in an annulus of aspect ratio Γ = 19.6 during parabolic flight campaigns indicate the existence of columns. Columnar vortices result from the competition between Archimedean buoyancy and dielectrophoretic force. Direct numerical simulations in the annulus of Γ = 20 show that the columnar vortices occupy the central part of the annulus, while near the end-zones the flow is laminar and dominated by an azimuthal vorticity. This work was supported by CNRS (LIA ISTROF), CNES and DLR.

  1. Stochastic resonance in underdamped periodic potential systems with alpha stable Lévy noise

    Science.gov (United States)

    Liu, Ruo-Nan; Kang, Yan-Mei

    2018-06-01

    In this paper, we investigate the effect of alpha stable Lévy noise with alpha stability index α (0 noise (0 noise has a more notable impact on the resonant effect of the asymmetric ratchet potential than that of the symmetric sinusoidal potential because of symmetry breaking.

  2. Thin circular cylinder under axisymmetrical thermal and mechanical loading

    International Nuclear Information System (INIS)

    Arnaudeau, F.; Zarka, J.; Gerij, J.

    1977-01-01

    To assess structural integrity of components subjected to cyclic thermal loadings one must look at thermal ratchetting as a possible failure mode. Considering a thin circular cylinder subjected to constant internal pressure and cyclically varying thermal gradient through the thickness Bree, J. Strain Analysis 2 (1967) No.3, obtained a diagram that serves as a foundation for many design rules (e.g.: ASME code). The upper part of the french LMFBR main vessel is subjected to an axisymmetrical axial thermal loading and an axial load (own weight). Operation of the reactor leads to cyclic variations of the axial thermal loading. The question that arises is whether or not the Bree diagram is realistic for such loading conditions. A special purpose computer code (Ratch) was developed to analyse a thin circular cylinder subjected to axisymmetrical mechanical and thermal loadings. The Mendelson's approach of this problem is followed. Classical Kirchoff-Love hypothesis of thin shells is used and a state of plane stress is assumed. Space integrations are performed by Gaussian quadrature in the axial direction and by Simpson's one third rule throughout the thickness. Thermoelastic-plastic constitutive equations are solved with an implicit scheme (Nguyen). Thermovisco-plastic constitutive equations are solved with an explicit time integration scheme (Treanor's algorithm especially fitted). A Bree type diagram is obtained for an axial step of temperature which varies cyclically and a sustained constant axial load. The material behavior is assumed perfectly plastic and creep effect is not considered. Results show that the domain where no ratchetting occurs is reduced when compared with the domain predicted by the Bree diagram

  3. Advanced latent heat of fusion thermal energy storage for solar power systems

    Science.gov (United States)

    Phillips, W. M.; Stearns, J. W.

    1985-01-01

    The use of solar thermal power systems coupled with thermal energy storage (TES) is being studied for both terrestrial and space applications. In the case of terrestrial applications, it was found that one or two hours of TES could shift the insolation peak (solar noon) to coincide with user peak loads. The use of a phase change material (PCM) is attractive because of the higher energy storage density which can be achieved. However, the use of PCM has also certain disadvantages which must be addressed. Proof of concept testing was undertaken to evaluate corrosive effects and thermal ratcheting effects in a slurry system. It is concluded that the considered alkali metal/alkali salt slurry approach to TES appears to be very viable, taking into account an elimination of thermal ratcheting in storage systems and the reduction of corrosive effects. The approach appears to be useful for an employment involving temperatures applicable to Brayton or Stirling cycles.

  4. Experiment and numerical analysis of the NPP pressurizer auxiliary spray line submitted to large thermal shocks

    International Nuclear Information System (INIS)

    Couterot, C.; Geyer, P.; Proix, J.M.

    1994-03-01

    The pressurizer auxiliary spray line of PWR nuclear power plants may be submitted to severe temperature transients during upset conditions: a 325 deg C cold thermal shock in one second is followed by a 200 deg C hot thermal shock. For such transients, the RCC-M French design code rules that prevent the ratcheting deformation hazard are not respected for the components with thickness transition. Consequently, Electricite de France has realized twenty thermal cycles under pressure on a representative mock-up. During these tests, many temperature, strain and diametral variations were measured. No significant ratcheting deformation was detected on all components, except on the 6'' x 2'' x 6'' T-piece, where a weak progressive diameter increase was observed during a few cycles. Moreover, computations of a 2'' socket welding were made with the non linear kinematic hardening Chaboche model which also showed a weak progressive deformation behaviour. (authors). 7 figs., 7 refs

  5. DOES CURRENCY SUBSTITUTION AFFECT EXCHANGE RATE VOLATILITY?

    Directory of Open Access Journals (Sweden)

    Hisao Kumamoto

    2014-10-01

    Full Text Available This study investigates the impacts of the degree of currency substitution on nominal exchange rate volatility in seven countries (Indonesia, the Philippines, the Czech Republic, Hungary, Poland, Argentina, and Peru. We use the Threshold ARCH model to consider the ratchet effect of currency substitution and sample periods in the 2000s, during which time the economies of the sample countries stabilized, while the U.S. dollar and euro depreciated against other major currencies following the recent global financial crisis. The presented empirical analyses show that the degree of currency substitution has significant positive effects on the conditional variance of the depreciation rate of the nominal exchange rate in most sample countries. Moreover, a shock to the depreciation rate of the nominal exchange rate has asymmetric effects on the conditional variance, depending on the sign. One possible explanation for these differential effects is the existence of the ratchet effect of currency substitution.

  6. A simplified tether model for molecular motor transporting cargo

    International Nuclear Information System (INIS)

    Fang-Zhen, Li; Li-Chun, Jiang

    2010-01-01

    Molecular motors are proteins or protein complexes which function as transporting engines in biological cells. This paper models the tether between motor and its cargo as a symmetric linear potential. Different from Elston and Peskin's work for which performance of the system was discussed only in some limiting cases, this study produces analytic solutions of the problem for general cases by simplifying the transport system into two physical states, which makes it possible to discuss the dynamics of the motor–cargo system in detail. It turns out that the tether strength between motor and cargo should be greater than a threshold or the motor will fail to transport the cargo, which was not discussed by former researchers yet. Value of the threshold depends on the diffusion coefficients of cargo and motor and also on the strength of the Brownian ratchets dragging the system. The threshold approaches a finite constant when the strength of the ratchet tends to infinity. (general)

  7. A vibration sieve

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, S.A.; Denisenko, V.V.; Dzhalalov, M.G.; Kirichek, F.P.; Pitatel, Yu.A.; Prokopov, L.I.; Tikhonov, Yu.P.

    1982-01-01

    A vibration sieve is proposed which includes a vibration drive, a body and a screen installed on shock absorbers, a device for washing out the screen, and a subassembly for loading the material. To increase the operational reliability and effectiveness of the vibration sieve by improving the cleaning of the screen, the loading subassembly is equipped with a baffle with a lever which is hinged to it. The device for washing out the screen is made in the form of an electromagnet with a connecting rod, a switch and an eccentric, a friction ratchet mechanism and sprinkling systems. Here, the latter are interconnected, using a connecting rod, while the sprinkling system is installed on rollers under the screen. The electromagnetic switch is installed under the lever. The body is made with grooves for installing the sprinkling system. The vibration sieve is equipped with a switch which interacts with the connecting rod. The friction ratchet mechanism is equipped with a lug.

  8. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    We obtain ratchet effect in inertial structureless systems in symmetric periodic potentials where the asymmetry comes from the non-uniform friction offered by the medium and driven by symmetric ... In the transient time scales the system shows dispersionless behaviour as reported earlier when a constant force is applied.

  9. Direct observation of rectified motion of vortices by Lorentz microscopy

    Indian Academy of Sciences (India)

    We have investigated the vortex dynamics for the `ratchet' operation in a niobium superconductor via a direct imaging of Lorentz microscopy. We directly observe one-directional selective motion of field-gradient-driven vortices along fabricated channels. This results from the rectification of vortices in a spatially asymmetric ...

  10. Tubing cutter for tight spaces

    Science.gov (United States)

    Girala, A. S.

    1980-01-01

    Cutter requires few short swings of handle to rotate its cutting edge full 360 around tube. It will cut tubing installed in confined space that prevents free movement of conventional cutter. Cutter is snapped onto tube and held in place by spring-loaded clamp. Screw ratchet advances cutting wheel.

  11. The political economy of redistribution in the US in the aftermath of World War II and the delayed impacts of the Great Depression: evidence and theory

    NARCIS (Netherlands)

    Beetsma, R.M.W.J.; Cukierman, A.; Giuliodori, M.

    2012-01-01

    The paper presents evidence of an substantial upward ratchet in transfers and taxes in the U.S. around World-War II. This finding is explained within a political-economy framework involving an executive who sets defense spending and the median voter in the population who interacts with a (richer)

  12. Jacks--A Study of Simple Machines.

    Science.gov (United States)

    Parsons, Ralph

    This vocational physics individualized student instructional module on jacks (simple machines used to lift heavy objects) contains student prerequisites and objectives, an introduction, and sections on the ratchet bumper jack, the hydraulic jack, the screw jack, and load limitations. Designed with a laboratory orientation, each section consists of…

  13. Stochastic mechano-chemical kinetics of molecular motors: A multidisciplinary enterprise from a physicist’s perspective

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Debashish, E-mail: debchg@gmail.com

    2013-08-01

    A molecular motor is made of either a single macromolecule or a macromolecular complex. Just like their macroscopic counterparts, molecular motors “transduce” input energy into mechanical work. All the nano-motors considered here operate under isothermal conditions far from equilibrium. Moreover, one of the possible mechanisms of energy transduction, called Brownian ratchet, does not even have any macroscopic counterpart. But, molecular motor is not synonymous with Brownian ratchet; a large number of molecular motors execute a noisy power stroke, rather than operating as Brownian ratchet. We review not only the structural design and stochastic kinetics of individual single motors, but also their coordination, cooperation and competition as well as the assembly of multi-module motors in various intracellular kinetic processes. Although all the motors considered here execute mechanical movements, efficiency and power output are not necessarily good measures of performance of some motors. Among the intracellular nano-motors, we consider the porters, sliders and rowers, pistons and hooks, exporters, importers, packers and movers as well as those that also synthesize, manipulate and degrade “macromolecules of life”. We review mostly the quantitative models for the kinetics of these motors. We also describe several of those motor-driven intracellular stochastic processes for which quantitative models are yet to be developed. In part I, we discuss mainly the methodology and the generic models of various important classes of molecular motors. In part II, we review many specific examples emphasizing the unity of the basic mechanisms as well as diversity of operations arising from the differences in their detailed structure and kinetics. Multi-disciplinary research is presented here from the perspective of physicists.

  14. The political economy of redistribution in the U.S. in the aftermath of World War II and the delayed impacts of the Great Depression - Evidence and theory

    NARCIS (Netherlands)

    Beetsma, R.; Cukierman, A.; Giuliodori, M.

    2009-01-01

    The paper presents evidence of an upward ratchet in transfers and taxes in the U.S. around World-War II. This finding is explained within a political-economy framework involving an executive who sets defense spending and the median voter in the population who interacts with a (richer) agenda setter

  15. Separation and sorting of cells in microsystems using physical principles

    Science.gov (United States)

    Lee, Gi-Hun; Kim, Sung-Hwan; Ahn, Kihoon; Lee, Sang-Hoon; Park, Joong Yull

    2016-01-01

    In the last decade, microfabrication techniques have been combined with microfluidics and applied to cell biology. Utilizing such new techniques, various cell studies have been performed for the research of stem cells, immune cells, cancer, neurons, etc. Among the various biological applications of microtechnology-based platforms, cell separation technology has been highly regarded in biological and clinical fields for sorting different types of cells, finding circulating tumor cells (CTCs), and blood cell separation, amongst other things. Many cell separation methods have been created using various physical principles. Representatively, these include hydrodynamic, acoustic, dielectrophoretic, magnetic, optical, and filtering methods. In this review, each of these methods will be introduced, and their physical principles and sample applications described. Each physical principle has its own advantages and disadvantages. The engineers who design the systems and the biologists who use them should understand the pros and cons of each method or principle, to broaden the use of microsystems for cell separation. Continuous development of microsystems for cell separation will lead to new opportunities for diagnosing CTCs and cancer metastasis, as well as other elements in the bloodstream.

  16. Dielectrophoresis Aligned Single-Walled Carbon Nanotubes as pH Sensors.

    Science.gov (United States)

    Li, Pengfei; Martin, Caleb M; Yeung, Kan Kan; Xue, Wei

    2011-01-31

    Here we report the fabrication and characterization of pH sensors using aligned single-walled carbon nanotubes (SWNTs). The SWNTs are dispersed in deionized (DI) water after chemical functionalization and filtration. They are deposited and organized on silicon substrates with the dielectrophoresis process. Electrodes with "teeth"-like patterns-fabricated with photolithography and wet etching-are used to generate concentrated electric fields and strong dielectrophoretic forces for the SWNTs to deposit and align in desired locations. The device fabrication is inexpensive, solution-based, and conducted at room temperature. The devices are used as pH sensors with the electrodes as the testing pads and the dielectrophoretically captured SWNTs as the sensing elements. When exposed to aqueous solutions with various pH values, the SWNTs change their resistance accordingly. The SWNT-based sensors demonstrate a linear relationship between the sensor resistance and the pH values in the range of 5-9. The characterization of multiple sensors proves that their pH sensitivity is highly repeatable. The real-time data acquisition shows that the sensor response time depends on the pH value, ranging from 2.26 s for the pH-5 solution to 23.82 s for the pH-9 solution. The long-term stability tests illustrate that the sensors can maintain their original sensitivity for a long period of time. The simple fabrication process, high sensitivity, and fast response of the SWNT-based sensors facilitate their applications in a wide range of areas.

  17. Ratcheting Up The Search for Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, Samuel Dylan [Univ. of Michigan, Ann Arbor, MI (United States)

    2014-01-01

    The last several years have included remarkable advances in two of the primary areas of fundamental particle physics: the search for dark matter and the discovery of the Higgs boson. This dissertation will highlight some contributions made on the forefront of these exciting fields. Although the circumstantial evidence supporting the dark matter hypothesis is now almost undeniably significant, indisputable direct proof is still lacking. As the direct searches for dark matter continue, we can maximize our prospects of discovery by using theoretical techniques complementary to the observational searches to rule out additional, otherwise accessible parameter space. In this dissertation, I report bounds on a wide range of dark matter theories. The models considered here cover the spectrum from the canonical case of self-conjugate dark matter with weak-scale interactions, to electrically charged dark matter, to non-annihilating, non-fermionic dark matter. These bounds are obtained from considerations of astrophysical and cosmological data, including, respectively: diffuse gamma ray photon observations; structure formation considerations, along with an explication of the novel local dark matter structure due to galactic astrophysics; and the existence of old pulsars in dark-matter-rich environments. I also consider the prospects for a model of neutrino dark matter which has been motivated by a wide set of seemingly contradictory experimental results. In addition, I include a study that provides the tools to begin solving the speculative ``inverse'' problem of extracting dark matter properties solely from hypothetical nuclear energy spectra, which we may face if dark matter is discovered with multiple direct detection experiments. In contrast to the null searches for dark matter, we have the example of the recent discovery of the Higgs boson. The Higgs boson is the first fundamental scalar particle ever observed, and precision measurements of the production and decay of the Higgs boson represent a unique entry p! oint to searches for new kinds of physics. Continuing to refine our understanding of the Higgs boson will also allow us to learn about a vast array of possible new physics. This dissertation includes work parameterizing some of the scenarios that are most likely to be discovered with future Higgs data.

  18. Identifying functional thermodynamics in autonomous Maxwellian ratchets

    Science.gov (United States)

    Boyd, Alexander B.; Mandal, Dibyendu; Crutchfield, James P.

    2016-02-01

    We introduce a family of Maxwellian Demons for which correlations among information bearing degrees of freedom can be calculated exactly and in compact analytical form. This allows one to precisely determine Demon functional thermodynamic operating regimes, when previous methods either misclassify or simply fail due to approximations they invoke. This reveals that these Demons are more functional than previous candidates. They too behave either as engines, lifting a mass against gravity by extracting energy from a single heat reservoir, or as Landauer erasers, consuming external work to remove information from a sequence of binary symbols by decreasing their individual uncertainty. Going beyond these, our Demon exhibits a new functionality that erases bits not by simply decreasing individual-symbol uncertainty, but by increasing inter-bit correlations (that is, by adding temporal order) while increasing single-symbol uncertainty. In all cases, but especially in the new erasure regime, exactly accounting for informational correlations leads to tight bounds on Demon performance, expressed as a refined Second Law of thermodynamics that relies on the Kolmogorov-Sinai entropy for dynamical processes and not on changes purely in system configurational entropy, as previously employed. We rigorously derive the refined Second Law under minimal assumptions and so it applies quite broadly—for Demons with and without memory and input sequences that are correlated or not. We note that general Maxwellian Demons readily violate previously proposed, alternative such bounds, while the current bound still holds. As such, it broadly describes the minimal energetic cost of any computation by a thermodynamic system.

  19. Transport in ratchets with single-file constraint

    Indian Academy of Sciences (India)

    file diffusion” in the literature. Anomaly in protein molecule diffusion on a cell ... tic media [20]. The rectification effect vanishes in the adiabatically slow modulation limit and optimizes in a driving frequency range. In other related work on flash-.

  20. TEMPLATE-ASSISTED FABRICATION AND DIELECTROPHORETIC MANIPULATION OF PZT MICROTUBES

    Directory of Open Access Journals (Sweden)

    VLADIMÍR KOVAĽ

    2012-09-01

    Full Text Available Mesoscopic high aspect ratio ferroelectric tube structures of a diverse range of compositions with tailored physical properties can be used as key components in miniaturized flexible electronics, nano- and micro-electro-mechanical systems, nonvolatile FeRAM memories, and tunable photonic applications. They are usually produced through advanced “bottom-up” or “topdown” fabrication techniques. In this study, a template wetting approach is employed for fabrication of Pb(Zr0.52Ti0.48O3 (PZT microtubes. The method is based on repeated infiltration of precursor solution into macroporous silicon (Si templates at a sub-atmospheric pressure. Prior to crystallization at 750°C, free-standing tubes of a 2-μm outer diameter, extending to over 30 μm in length were released from the Si template using a selective isotropic-pulsed XeF2 reactive ion etching. To facilitate rapid electrical characterization and enable future integration process, directed positioning and aligning of the PZT tubes was performed by dielectrophoresis. The electric field-assisted technique involves an alternating electric voltage that is applied through pre-patterned microelectrodes to a colloidal suspension of PZT tubes dispersed in isopropyl alcohol. The most efficient biasing for the assembly of tubes across the electrode gap of 12 μm was a square wave signal of 5 Vrms and 10 Hz. By varying the applied frequency in between 1 and 10 Hz, an enhancement in tube alignment was obtained.

  1. Ultrathin nanoporous membranes for insulator-based dielectrophoresis

    Science.gov (United States)

    Mukaibo, Hitomi; Wang, Tonghui; Perez-Gonzalez, Victor H.; Getpreecharsawas, Jirachai; Wurzer, Jack; Lapizco-Encinas, Blanca H.; McGrath, James L.

    2018-06-01

    Insulator-based dielectrophoresis (iDEP) is a simple, scalable mechanism that can be used for directly manipulating particle trajectories in pore-based filtration and separation processes. However, iDEP manipulation of nanoparticles presents unique challenges as the dielectrophoretic force ({F}{{D}{{E}}{{P}}}) exerted on the nanoparticles can easily be overshadowed by opposing kinetic forces. In this study, a molecularly thin, SiN-based nanoporous membrane (NPN) is explored as a breakthrough technology that enhances {F}{{D}{{E}}{{P}}}. By numerically assessing the gradient of the electric field square ({{\

  2. Water droplets' internal fluidity during horizontal motion on a superhydrophobic surface with an external electric field.

    Science.gov (United States)

    Sakai, Munetoshi; Kono, Hiroki; Nakajima, Akira; Sakai, Hideki; Abe, Masahiko; Fujishima, Akira

    2010-02-02

    On a superhydrophobic surface, the internal fluidity of water droplets with different volumes (15, 30 microL) and their horizontal motion in an external electric field were evaluated using particle image velocimetry (PIV). For driving of water droplets on a superhydrophobic coating between parallel electrodes, it was important to place them at appropriate positions. Droplets moved with slipping. Small droplets showed deformation that is more remarkable. Results show that the dielectrophoretic force induced the initial droplet motion and that the surface potential gradient drove the droplets after reaching the middle point between electrodes.

  3. Autonomous Agent-Based Systems and Their Applications in Fluid Dynamics, Particle Separation, and Co-evolving Networks

    Science.gov (United States)

    Graeser, Oliver

    This thesis comprises three parts, reporting research results in Fluid Dynamics (Part I), Particle Separation (Part II) and Co-evolving Networks (Part III). Part I deals with the simulation of fluid dynamics using the lattice-Boltzmann method. Microfluidic devices often feature two-dimensional, repetitive arrays. Flows through such devices are pressure-driven and confined by solid walls. We have defined new adaptive generalised periodic boundary conditions to represent the effects of outer solid walls, and are thus able to exploit the periodicity of the array by simulating the flow through one unit cell in lieu of the entire device. The so-calculated fully developed flow describes the flow through the entire array accurately, but with computational requirements that are reduced according to the dimensions of the array. Part II discusses the problem of separating macromolecules like proteins or DNA coils. The reliable separation of such molecules is a crucial task in molecular biology. The use of Brownian ratchets as mechanisms for the separation of such particles has been proposed and discussed during the last decade. Pressure-driven flows have so far been dismissed as possible driving forces for Brownian ratchets, as they do not generate ratchet asymmetry. We propose a microfluidic design that uses pressure-driven flows to create asymmetry and hence allows particle separation. The dependence of the asymmetry on various factors of the microfluidic geometry is discussed. We further exemplify the feasibility of our approach using Brownian dynamics simulations of particles of different sizes in such a device. The results show that ratchet-based particle separation using flows as the driving force is possible. Simulation results and ratchet theory predictions are in excellent agreement. Part III deals with the co-evolution of networks and dynamic models. A group of agents occupies the nodes of a network, which defines the relationship between these agents. The

  4. Modelling of cyclic plasticity for austenitic stainless steels 304L, 316L, 316L(N)-IG

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Palma, Mauro, E-mail: mauro.dallapalma@igi.cnr.it

    2016-11-01

    Highlights: • Stress-strain amplitudes of cyclic stress strain curves defined by design codes are provided as reference data. • A macroinstruction simulating cyclic plasticity and producing hardening parameters of constitutive models is developed. • Hardening parameters of the nonlinear Chaboche model are provided for stainless steels 316l-N, 316L, 304L at different temperatures. • Ratcheting is simulated by using the produced hardening parameters. - Abstract: The integrity assessment of structures subjected to cyclic loading must be verified with regard to cyclic type damage including time-independent fatigue and progressive deformation or ratcheting. Cyclic damage is verified simulating the material elastic-plastic loop and looking at the accumulated net plastic strain during each cycle at all points of the structure subjected to the complete time history of loadings. This work deals with the development of a numerical model producing the Chaboche hardening parameters starting from stress-strain data produced by testing of materials. Then, the total plastic strain can be simulated using the Chaboche inelastic constitutive model requested for finite element analyses. This is particularly demanding for pressure vessels, pressurised piping, boilers, and mechanical components of nuclear installations made of stainless steels. A design optimisation by iterative analyses is developed to approach the stress-strain test data with the Chaboche model. The parameters treated as design variables are the Chaboche parameters and the objective function to be minimised is a combination of the deviations from test data. The optimiser calls a macroinstruction simulating cyclic loading of a sample for different material temperatures. The numerical model can be used to produce hardening parameters of materials for inelastic finite element verifications of structures with complex joints like elbows subjected to a combination of steady sustained and cyclic loads.

  5. Evolution of colloidal dispersions in novel time-varying optical potentials

    Science.gov (United States)

    Koss, Brian Alan

    Optical traps use forces exerted by a tightly focused light beam to trap objects from tens of nanometers to tens of micrometers in size. Since their introduction in 1986, optical tweezers have become very useful to biology, chemistry, and soft condensed-matter physics. Work presented here, promises to advance optical tweezers not only in fundamental scientific research, but also in applications outside of the laboratory and into the mainstream of miniaturized manufacturing and diagnostics. By providing unprecedented access to the mesoscopic world, a new generation of optical traps, called Dynamic Holographic Optical Tweezers (HOTs) offers revolutionary new opportunities for fundamental and applied research. To demonstrate this technique, HOTs will be used to pump particles via a new method of transport called Optical Peristalsis (OP). OP is efficient method for transporting mesoscopic objects in three dimensions using short repetitive sequences of holographic optical trapping patterns. Transport in this process is analogous to peristaltic pumping, with the configurations of optical traps mimicking states of a peristaltic pump. While not limited to the deterministic particle transport, OP, can also be a platform to investigate the stochastic limit of particle transport. Advances in recent years have demonstrated that a variety of time-varying perturbations can induce drift in a diffusive system without exerting an overall force. Among these, are thermal ratchet models in which the system is subjected to time-varying energy landscapes that break spatiotemporal symmetry and thereby induce drift. Typically, the potential energy landscape is chosen to be the sawtooth potential. This work describes an alternate class of symmetric thermal ratchet models, that are not sawtooth, and demonstrates their efficacy in biasing the diffusion of colloidal spheres in both the stochastic and deterministic limits. Unlike previous models, each state in this thermal ratchet consists of

  6. Atmospheric dispersion and deposition of 131I released from the Hanford Site

    International Nuclear Information System (INIS)

    Ramsdell, J.V. Jr.; Simonen, C.A.; Burk, K.W.; Stage, S.A.

    1996-01-01

    Approximately 2.6 x 10 4 TBq (700,000 Ci) of 131 I were released to the air from reactor fuel processing plants on the Hanford Site in southcentral Washington State from December 1944 through December 1949. The Hanford Environmental Dose Reconstruction Project developed a suite of codes to estimate the doses that might have resulted from these releases. The Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET) computer code is part of this suite. The RATCHET code implements a Lagrangian-trajectory, Gaussian-puff dispersion model that uses hourly meterological and release rate data to estimate daily time-integrated air concentrations and surface contamination for use, in dose estimates. In this model, iodine is treated as a mixture of three species (inorganic gases, organic gases, and particles). Model deposition parameters are functions of the mixture and meterological conditions. A resistance model is used to calculate dry deposition velocities. Equilibrium between concentrations in the precipitation and the air near the ground is assumed in calculating wet deposition of gases, and irreversible washout of the particles is assumed. RATCHET explicitly treats the uncertainties in model parameters and meteorological conditions. Uncertainties in 131 I release rates and partitioning among the nominal species are treated by varying model input. The results of 100 model runs for December 1944 through December 1949 indicate that monthly average air concentrations and deposition have uncertainties ranging from a factor of two near the center of the time-integrated plume to more than an order of magnitude near the edge. These results indicate that ∼10% of the 131 I released to the atmosphere decayed during transit in the study area, ∼56% was deposited within the study area, and the remaining 34% was transported out of the study area while still in the air

  7. Inelastic Deformation of Metals and Structures under Dynamic and Quasi-Static Cyclic Loading.

    Science.gov (United States)

    1983-05-01

    the above inequa - lities is denoted by *. Note that ratchetting limits p corresponding to perfect plasticity material (Figo4b) can be generated from the...due to the employment of the kinematic hardening rule. In the intermediate regime R1 +R2, the behaviour changes from R1 to R2 when sufficient hardening

  8. Sands subjected to repetitive vertical loading under zero lateral strain: accumulation models, terminal densities, and settlement

    KAUST Repository

    Chong, Song Hun

    2016-08-09

    Geosystems often experience numerous loading cycles. Plastic strain accumulation during repetitive mechanical loads can lead to shear shakedown or continued shear ratcheting; in all cases, volumetric strains diminish as the specimen evolves towards terminal density. Previously suggested models and new functions are identified to fit plastic strain accumulation data. All accumulation models are formulated to capture terminal density (volumetric strain) and either shakedown or ratcheting (shear strain). Repetitive vertical loading tests under zero lateral strain conditions are conducted using three different sands packed at initially low and high densities. Test results show that plastic strain accumulation for all sands and density conditions can be captured in the same dimensionless plot defined in terms of the initial relative density, terminal density, and ratio between the amplitude of the repetitive load and the initial static load. This observation allows us to advance a simple but robust procedure to estimate the maximum one-dimensional settlement that a foundation could experience if subjected to repetitive loads. © 2016, Canadian Science Publishing. All rights reserved.

  9. A development report on the inelastic analysis program for the high temperature structures

    International Nuclear Information System (INIS)

    Kim, Jong Bum; Lee, H. Y.; Lee, J. H.

    2001-04-01

    LMR high temperature structures such as reactor vessel and reactor internal structures are subject to high temperature operating loads thus they can undergo damage due to creep, creep-fatigue, and ratcheting behavior. In this project, NONSTA-EP program implementing combined isotropic and kinematic hardening behavior and NONSTA-VP program implementing Chaboche model, which is so called viscoplasticity model, have been developed and have been continuously improved. In the year of 2000, NONSTA-OW program implementing Ohno-Wang model which can simulate progressive plasticity (that is ratcheting) more precisely compared to other models. One of the characteristics of inelastic constitutive equations is to have various numbers of material parameters to simulate complex material behaviors realistically and it is very important to obtain these material parameters. In this project, the improved method to obtain these material parameters has been studied with the optimal technique and by conducting material characteristic tests under high temperature conditions. The feasibility of the developed program with Ohno-Wang model, which contains 9 isotropic constitutive equations, has been studied through the example problem

  10. A uniaxial cyclic elastoplastic constitutive law with a discrete memory variable

    International Nuclear Information System (INIS)

    Taheri, S.

    1991-01-01

    At present, the study on cyclic elastoplastic constitutive laws is focused on nonproportional loading, but for uniaxial loading, some problems still exist. For example, the possibility for a law to describe simultaneously the ratcheting in nonsymmetrical load-controlled test, elastic and plastic shakedown in symmetrical and nonsymmetrical ones. Here a law is presented, which in addition to previous phenomena, describes the cyclic hardening in a pushpull test, the cyclic softening after overloading and also the dependence of cyclic strain-stress curves on the history of loading. These are the usual properties of 316 stainless steel at room temperature. This law uses an internal discrete memory variable: the plastic strain at the last unloading. On the other hand, the choice of all macroscopic variables is justified by a microscopic analysis. This law has been also extended to a three-dimensional case. Regarding the microstructure under cyclic loading, plastic shakedown and ratcheting are discussed. The definition of macroscopic variables taking account of microstructure and uniaxial constitutive law are described. (K.I.)

  11. Design and Simulation of an Electrothermal Actuator Based Rotational Drive

    Science.gov (United States)

    Beeson, Sterling; Dallas, Tim

    2008-10-01

    As a participant in the Micro and Nano Device Engineering (MANDE) Research Experience for Undergraduates program at Texas Tech University, I learned how MEMS devices operate and the limits of their operation. Using specialized AutoCAD-based design software and the ANSYS simulation program, I learned the MEMS fabrication process used at Sandia National Labs, the design limitations of this process, the abilities and drawbacks of micro devices, and finally, I redesigned a MEMS device called the Chevron Torsional Ratcheting Actuator (CTRA). Motion is achieved through electrothermal actuation. The chevron (bent-beam) actuators cause a ratcheting motion on top of a hub-less gear so that as voltage is applied the CTRA spins. The voltage applied needs to be pulsed and the frequency of the pulses determine the angular frequency of the device. The main objective was to design electromechanical structures capable of transforming the electrical signals into mechanical motion without overheating. The design was optimized using finite element analysis in ANSYS allowing multi-physics simulations of our model system.

  12. Development of the RANCOR Rotary-Percussive Coring System for Mars Sample Return

    Science.gov (United States)

    Paulsen, Gale; Indyk, Stephen; Zacny, Kris

    2014-01-01

    A RANCOR drill was designed to fit a Mars Exploration Rover (MER) class vehicle. The low mass of 3 kg was achieved by using the same actuator for three functions: rotation, percussions, and core break-off. Initial testing of the drill exposed an unexpected behavior of an off-the-shelf sprag clutch used to couple and decouple rotary-percussive function from the core break off function. Failure of the sprag was due to the vibration induced during percussive drilling. The sprag clutch would back drive in conditions where it was expected to hold position. Although this did not affect the performance of the drill, it nevertheless reduced the quality of the cores produced. Ultimately, the sprag clutch was replaced with a custom ratchet system that allowed for some angular displacement without advancing in either direction. Replacing the sprag with the ratchet improved the collected core quality. Also, premature failure of a 300-series stainless steel percussion spring was observed. The 300-series percussion spring was ultimately replaced with a music wire spring based on performances of previously designed rotary-percussive drill systems.

  13. How ticks get under your skin: insertion mechanics of the feeding apparatus of Ixodes ricinus ticks

    Science.gov (United States)

    Richter, Dania; Matuschka, Franz-Rainer; Spielman, Andrew; Mahadevan, L.

    2013-01-01

    The tick Ixodes ricinus uses its mouthparts to penetrate the skin of its host and to remain attached for about a week, during which time Lyme disease spirochaetes may pass from the tick to the host. To understand how the tick achieves both tasks, penetration and attachment, with the same set of implements, we recorded the insertion events by cinematography, interpreted the mouthparts’ function by scanning electron microscopy and identified their points of articulation by confocal microscopy. Our structural dynamic observations suggest that the process of insertion and attachment occurs via a ratchet-like mechanism with two distinct stages. Initially, the two telescoping chelicerae pierce the skin and, by moving alternately, generate a toehold. Subsequently, a breaststroke-like motion, effected by simultaneous flexure and retraction of both chelicerae, pulls in the barbed hypostome. This combination of a flexible, dynamic mechanical ratchet and a static holdfast thus allows the tick to solve the problem of how to penetrate skin and also remain stuck for long periods of time. PMID:24174106

  14. Strain accumulation in a prototypic lmfbr nozzle: Experimental and analytical correlation

    International Nuclear Information System (INIS)

    Woodward, W.S.; Dhalia, A.K.; Berton, P.A.

    1986-01-01

    At an early stage in the design of the primary inlet nozzle for the Intermediate Heat Exchanger (IHX) of the Fast Flux Test Facility (FFTF), it was predicted that the inelastic strain accumulation during elevated temperature operation (1050 0 F/566 0 C) would exceed the ASME Code design allowables. Therefore, a proof test of a prototypic FFTF IHX nozzle was performed in the Westinghouse Creep Ratcheting Test Facility (CRTF) to measure the ratchet strain increments during the most severe postulated FFTF plant thermal transients. In addition, analytical procedures similar to those used in the plant design, were used to predict strain accumulation in the CRTF nozzle. This paper describes how the proof test was successfully completed, and it shows that both the test measurements and analytical predictions confirm that the FFTF IHX nozzle, subjected to postulated thermal and mechanical loadings, complies with the ASME Code strain limits. Also, these results provide a measure of validation for the analytical procedures used in the design of FFTF as well as demonstrate the structural adequacy of the FFTF IHX primary inlet nozzle

  15. Screening of antibiotic susceptibility to β-lactam-induced elongation of Gram-negative bacteria based on dielectrophoresis.

    Science.gov (United States)

    Chung, Cheng-Che; Cheng, I-Fang; Chen, Hung-Mo; Kan, Heng-Chuan; Yang, Wen-Horng; Chang, Hsien-Chang

    2012-04-03

    We demonstrate a rapid antibiotic susceptibility test (AST) based on the changes in dielectrophoretic (DEP) behaviors related to the β-lactam-induced elongation of Gram-negative bacteria (GNB) on a quadruple electrode array (QEA). The minimum inhibitory concentration (MIC) can be determined within 2 h by observing the changes in the positive-DEP frequency (pdf) and cell length of GNB under the cefazolin (CEZ) treatment. Escherichia coli and Klebsiella pneumoniae and the CEZ are used as the sample bacteria and antibiotic respectively. The bacteria became filamentous due to the inhibition of cell wall synthesis and cell division and cell lysis occurred for the higher antibiotic dose. According to the results, the pdfs of wild type bacteria decrease to hundreds of kHz and the cell length is more than 10 μm when the bacterial growth is inhibited by the CEZ treatment. In addition, the growth of wild type bacteria and drug resistant bacteria differ significantly. There is an obvious decrease in the number of wild type bacteria but not in the number of drug resistant bacteria. Thus, the drug resistance of GNB to β-lactam antibiotics can be rapidly assessed. Furthermore, the MIC determined using dielectrophoresis-based AST (d-AST) was consistent with the results of the broth dilution method. Utilizing this approach could reduce the time needed for bacteria growth from days to hours, help physicians to administer appropriate antibiotic dosages, and reduce the possibility of the occurrence of multidrug resistant (MDR) bacteria.

  16. Refinement Types for TypeScript

    OpenAIRE

    Vekris, Panagiotis; Cosman, Benjamin; Jhala, Ranjit

    2016-01-01

    We present Refined TypeScript (RSC), a lightweight refinement type system for TypeScript, that enables static verification of higher-order, imperative programs. We develop a formal core of RSC that delineates the interaction between refinement types and mutability. Next, we extend the core to account for the imperative and dynamic features of TypeScript. Finally, we evaluate RSC on a set of real world benchmarks, including parts of the Octane benchmarks, D3, Transducers, and the TypeScript co...

  17. Refining types using type guards in TypeScript

    NARCIS (Netherlands)

    de Wolff, Ivo Gabe; Hage, J.

    2017-01-01

    We discuss two adaptations of the implementation of type guards and narrowing in the TypeScript compiler. The first is an improvement on the original syntax-directed implementation, and has now replaced the original one in the TypeScript compiler. It is specifically suited for the scenario in which

  18. Type Classes for Lightweight Substructural Types

    Directory of Open Access Journals (Sweden)

    Edward Gan

    2015-02-01

    Full Text Available Linear and substructural types are powerful tools, but adding them to standard functional programming languages often means introducing extra annotations and typing machinery. We propose a lightweight substructural type system design that recasts the structural rules of weakening and contraction as type classes; we demonstrate this design in a prototype language, Clamp. Clamp supports polymorphic substructural types as well as an expressive system of mutable references. At the same time, it adds little additional overhead to a standard Damas-Hindley-Milner type system enriched with type classes. We have established type safety for the core model and implemented a type checker with type inference in Haskell.

  19. From bioseparation to artificial micro-organs: microfluidic chip based particle manipulation techniques

    Science.gov (United States)

    Stelzle, Martin

    2010-02-01

    Microfluidic device technology provides unique physical phenomena which are not available in the macroscopic world. These may be exploited towards a diverse array of applications in biotechnology and biomedicine ranging from bioseparation of particulate samples to the assembly of cells into structures that resemble the smallest functional unit of an organ. In this paper a general overview of chip-based particle manipulation and separation is given. In the state of the art electric, magnetic, optical and gravitational field effects are utilized. Also, mechanical obstacles often in combination with force fields and laminar flow are employed to achieve separation of particles or molecules. In addition, three applications based on dielectrophoretic forces for particle manipulation in microfluidic systems are discussed in more detail. Firstly, a virus assay is demonstrated. There, antibody-loaded microbeads are used to bind virus particles from a sample and subsequently are accumulated to form a pico-liter sized aggregate located at a predefined position in the chip thus enabling highly sensitive fluorescence detection. Secondly, subcellular fractionation of mitochondria from cell homogenate yields pure samples as was demonstrated by Western Blot and 2D PAGE analysis. Robust long-term operation with complex cell homogenate samples while avoiding electrode fouling is achieved by a set of dedicated technical means. Finally, a chip intended for the dielectrophoretic assembly of hepatocytes and endothelial cells into a structure resembling a liver sinusoid is presented. Such "artificial micro organs" are envisioned as substance screening test systems providing significantly higher predictability with respect to the in vivo response towards a substance under test.

  20. Dielectrophoresis Aligned Single-Walled Carbon Nanotubes as pH Sensors

    Directory of Open Access Journals (Sweden)

    Wei Xue

    2011-01-01

    Full Text Available Here we report the fabrication and characterization of pH sensors using aligned single-walled carbon nanotubes (SWNTs. The SWNTs are dispersed in deionized (DI water after chemical functionalization and filtration. They are deposited and organized on silicon substrates with the dielectrophoresis process. Electrodes with “teeth”-like patterns—fabricated with photolithography and wet etching—are used to generate concentrated electric fields and strong dielectrophoretic forces for the SWNTs to deposit and align in desired locations. The device fabrication is inexpensive, solution-based, and conducted at room temperature. The devices are used as pH sensors with the electrodes as the testing pads and the dielectrophoretically captured SWNTs as the sensing elements. When exposed to aqueous solutions with various pH values, the SWNTs change their resistance accordingly. The SWNT-based sensors demonstrate a linear relationship between the sensor resistance and the pH values in the range of 5–9. The characterization of multiple sensors proves that their pH sensitivity is highly repeatable. The real-time data acquisition shows that the sensor response time depends on the pH value, ranging from 2.26 s for the pH-5 solution to 23.82 s for the pH-9 solution. The long-term stability tests illustrate that the sensors can maintain their original sensitivity for a long period of time. The simple fabrication process, high sensitivity, and fast response of the SWNT-based sensors facilitate their applications in a wide range of areas.

  1. Influences of the Canadian Armed Forces on the revision of US Army Field Manual 3-24

    Science.gov (United States)

    2017-05-25

    to explore how doctrine matured throughout its collective history. Four Schools, Positivism and Anti-Positivism The history of Western doctrine...approach recognize that complexity, human emotions , and subjective beliefs influence human interactions and must be accounted for. Unlike doctrine of...also down played the impacts of a population’s preferences and emotions . Ultimately, the introduction of ratcheted escalation and marginal costs

  2. Application of SBRA Method in Mechanics of Continetal Plates

    Directory of Open Access Journals (Sweden)

    Ivo WANDROL

    2012-06-01

    Full Text Available This paper shows the probabilistic SBRA Method application to the model of the behaviour of the lithosphere of the Earth. The method extends our initial work where we created the geomechanical model of the lithosphere. The basic idea was about the generation of thermoelastic waves due to thermal expansion of the rock mass and the ratcheting mechanisms.

  3. An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures.

    Science.gov (United States)

    Schwamb, Timo; Burg, Brian R; Schirmer, Niklas C; Poulikakos, Dimos

    2009-10-07

    This paper introduces an electrical four-point measurement method enabling thermal and electrical conductivity measurements of nanoscale materials. The method was applied to determine the thermal and electrical conductivity of reduced graphene oxide flakes. The dielectrophoretically deposited samples exhibited thermal conductivities in the range of 0.14-2.87 W m(-1) K(-1) and electrical conductivities in the range of 6.2 x 10(2)-6.2 x 10(3) Omega(-1) m(-1). The measured properties of each flake were found to be dependent on the duration of the thermal reduction and are in this sense controllable.

  4. Knotless single-row rotator cuff repair: a comparative biomechanical study of 2 knotless suture anchors.

    Science.gov (United States)

    Efird, Chad; Traub, Shaun; Baldini, Todd; Rioux-Forker, Dana; Spalazzi, Jeffrey P; Davisson, Twana; Hawkins, Monica; McCarty, Eric

    2013-08-01

    The purpose of this study was to compare the gap formation during cyclic loading, maximum repair strength, and failure mode of single-row full-thickness supraspinatus repairs performed using 2 knotless suture anchors with differing internal suture-retention mechanisms in a human cadaver model. Nine matched pairs of cadaver shoulders were used. Full-thickness tears were induced by detaching the supraspinatus tendon from the greater tuberosity. Single-row repairs were performed with either type I (Opus Magnum PI; ArthroCare, Austin, Texas) or type II (ReelX STT; Stryker, Mahwah, New Jersey) knotless suture anchors. The repaired tendon was cycled from 10 to 90 N for 500 cycles, followed by load to failure. Gap formation was measured at 5, 100, 200, 300, 400, and 500 cycles with a video digitizing system. Anchor type or location (anterior or posterior) had no effect on gap formation during cyclic loading regardless of position (anterior, P=.385; posterior, P=.389). Maximum load to failure was significantly greater (P=.018) for repairs performed with type II anchors (288±62 N) compared with type I anchors (179±39 N). Primary failure modes were anchor pullout and tendon tearing for type II anchors and suture slippage through the anchor for type I anchors. The internal ratcheting suture-retention mechanism of type II anchors may have helped this anchor outperform the suture-cinching mechanism of type I anchors by supporting significantly higher loads before failure and minimizing suture slippage, potentially leading to stronger repairs clinically. Copyright 2013, SLACK Incorporated.

  5. Type inference for correspondence types

    DEFF Research Database (Denmark)

    Hüttel, Hans; Gordon, Andy; Hansen, Rene Rydhof

    2009-01-01

    We present a correspondence type/effect system for authenticity in a π-calculus with polarized channels, dependent pair types and effect terms and show how one may, given a process P and an a priori type environment E, generate constraints that are formulae in the Alternating Least Fixed......-Point (ALFP) logic. We then show how a reasonable model of the generated constraints yields a type/effect assignment such that P becomes well-typed with respect to E if and only if this is possible. The formulae generated satisfy a finite model property; a system of constraints is satisfiable if and only...... if it has a finite model. As a consequence, we obtain the result that type/effect inference in our system is polynomial-time decidable....

  6. Understanding molecular motor walking along a microtubule: a themosensitive asymmetric Brownian motor driven by bubble formation.

    Science.gov (United States)

    Arai, Noriyoshi; Yasuoka, Kenji; Koishi, Takahiro; Ebisuzaki, Toshikazu; Zeng, Xiao Cheng

    2013-06-12

    The "asymmetric Brownian ratchet model", a variation of Feynman's ratchet and pawl system, is invoked to understand the kinesin walking behavior along a microtubule. The model system, consisting of a motor and a rail, can exhibit two distinct binding states, namely, the random Brownian state and the asymmetric potential state. When the system is transformed back and forth between the two states, the motor can be driven to "walk" in one direction. Previously, we suggested a fundamental mechanism, that is, bubble formation in a nanosized channel surrounded by hydrophobic atoms, to explain the transition between the two states. In this study, we propose a more realistic and viable switching method in our computer simulation of molecular motor walking. Specifically, we propose a thermosensitive polymer model with which the transition between the two states can be controlled by temperature pulses. Based on this new motor system, the stepping size and stepping time of the motor can be recorded. Remarkably, the "walking" behavior observed in the newly proposed model resembles that of the realistic motor protein. The bubble formation based motor not only can be highly efficient but also offers new insights into the physical mechanism of realistic biomolecule motors.

  7. Transmission fidelity is the key to the build-up of cumulative culture.

    Science.gov (United States)

    Lewis, Hannah M; Laland, Kevin N

    2012-08-05

    Many animals have socially transmitted behavioural traditions, but human culture appears unique in that it is cumulative, i.e. human cultural traits increase in diversity and complexity over time. It is often suggested that high-fidelity cultural transmission is necessary for cumulative culture to occur through refinement, a process known as 'ratcheting', but this hypothesis has never been formally evaluated. We discuss processes of information transmission and loss of traits from a cognitive viewpoint alongside other cultural processes of novel invention (generation of entirely new traits), modification (refinement of existing traits) and combination (bringing together two established traits to generate a new trait). We develop a simple cultural transmission model that does not assume major evolutionary changes (e.g. in brain architecture) and show that small changes in the fidelity with which information is passed between individuals can lead to cumulative culture. In comparison, modification and combination have a lesser influence on, and novel invention appears unimportant to, the ratcheting process. Our findings support the idea that high-fidelity transmission is the key driver of human cumulative culture, and that progress in cumulative culture depends more on trait combination than novel invention or trait modification.

  8. Probabilistic modeling of material resistance to crack initiation due to hydrided region overloads in CANDU Zr-2.5%Nb pressure tubes

    International Nuclear Information System (INIS)

    Gutkin, L.; Scarth, D.A.

    2014-01-01

    Zr-2.5%Nb pressure tubes in CANDU nuclear reactors are susceptible to hydride-assisted cracking at the locations of stress concentration, such as in-service flaws. Probabilistic methodology is being developed to evaluate such flaws for crack initiation due to hydrided region overloads, which occur when the applied stress acting on a flaw with an existing hydrided region at its tip exceeds the stress at which the hydrided region is formed. As part of this development, probabilistic modeling of pressure tube material resistance to overload crack initiation has been performed on the basis of a set of test data specifically designed to study the effects of non-ratcheting hydride formation conditions and load reduction prior to hydride formation. In the modeling framework, the overload resistance is represented as a power-law function of the material resistance to initiation of delayed hydride cracking under constant loading, where both the overload crack initiation coefficient and the overload crack initiation exponent vary with the flaw geometry. In addition, the overload crack initiation coefficient varies with the extent of load reduction prior to hydride formation as well as the number of non-ratcheting hydride formation thermal cycles. (author)

  9. Structural evaluation method for class 1 vessels by using elastic-plastic finite element analysis in code case of JSME rules on design and construction

    International Nuclear Information System (INIS)

    Asada, Seiji; Hirano, Takashi; Nagata, Tetsuya; Kasahara, Naoto

    2008-01-01

    A structural evaluation method by using elastic-plastic finite element analysis has been developed and published as a code case of Rules on Design and Construction for Nuclear Power Plants (The First Part: Light Water Reactor Structural Design Standard) in the JSME Codes for Nuclear Power Generation Facilities. Its title is 'Alternative Structural Evaluation Criteria for Class 1 Vessels Based on Elastic-Plastic Finite Element Analysis' (NC-CC-005). This code case applies elastic-plastic analysis to evaluation of such failure modes as plastic collapse, thermal ratchet, fatigue and so on. Advantage of this evaluation method is free from stress classification, consistently use of Mises stress and applicability to complex 3-dimensional structures which are hard to be treated by the conventional stress classification method. The evaluation method for plastic collapse has such variation as the Lower Bound Approach Method, Twice-Elastic-Slope Method and Elastic Compensation Method. Cyclic Yield Area (CYA) based on elastic analysis is applied to screening evaluation of thermal ratchet instead of secondary stress evaluation, and elastic-plastic analysis is performed when the CYA screening criteria is not satisfied. Strain concentration factors can be directly calculated based on elastic-plastic analysis. (author)

  10. Probabilistic modeling of material resistance to crack initiation due to hydrided region overloads in CANDU Zr-2.5%Nb pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Gutkin, L.; Scarth, D.A. [Kinectrics Inc., Toronto, ON (Canada)

    2014-07-01

    Zr-2.5%Nb pressure tubes in CANDU nuclear reactors are susceptible to hydride-assisted cracking at the locations of stress concentration, such as in-service flaws. Probabilistic methodology is being developed to evaluate such flaws for crack initiation due to hydrided region overloads, which occur when the applied stress acting on a flaw with an existing hydrided region at its tip exceeds the stress at which the hydrided region is formed. As part of this development, probabilistic modeling of pressure tube material resistance to overload crack initiation has been performed on the basis of a set of test data specifically designed to study the effects of non-ratcheting hydride formation conditions and load reduction prior to hydride formation. In the modeling framework, the overload resistance is represented as a power-law function of the material resistance to initiation of delayed hydride cracking under constant loading, where both the overload crack initiation coefficient and the overload crack initiation exponent vary with the flaw geometry. In addition, the overload crack initiation coefficient varies with the extent of load reduction prior to hydride formation as well as the number of non-ratcheting hydride formation thermal cycles. (author)

  11. Evaluation of atmospheric transport models for use in Phase II of the historical public exposures studies at the Rocky Flats Plant

    Energy Technology Data Exchange (ETDEWEB)

    Rood, A.S.; Killough, G.G.; Till, J.E.

    1999-08-01

    Five atmospheric transport models were evaluated for use in Phase II of the Historical Public Exposures Studies at the Rocky Flats Plant. Models included a simple straight-line Gaussian plume model (ISCST2), several integrated puff models (RATCHET, TRIAD, and INPUFF2), and a complex terrain model (TRAC). Evaluations were based on how well model predictions compared with sulfur hexafluoride tracer measurements taken in the vicinity of Rocky Flats in February 1991. Twelve separate tracer experiments were conducted, each lasting 9 hr and measured at 140 samplers in arcs 8 and 16 km from the release point at Rocky Flats. Four modeling objectives were defined based on the endpoints of the overall study: (1) the unpaired maximum hourly average concentration, (2) paired time-averaged concentration, (3) unpaired time-averaged concentration, and (4) arc-integrated concentration. Performance measures were used to evaluate models and focused on the geometric mean and standard deviation of the predicted-to-observed ratio and the correlation coefficient between predicted and observed concentrations. No one model consistently outperformed the others in all modeling objectives and performance measures. The overall performance of the RATCHET model was somewhat better than the other models.

  12. Dielectrophoretic trapping of multilayer DNA origami nanostructures and DNA origami-induced local destruction of silicon dioxide.

    Science.gov (United States)

    Shen, Boxuan; Linko, Veikko; Dietz, Hendrik; Toppari, J Jussi

    2015-01-01

    DNA origami is a widely used method for fabrication of custom-shaped nanostructures. However, to utilize such structures, one needs to controllably position them on nanoscale. Here we demonstrate how different types of 3D scaffolded multilayer origamis can be accurately anchored to lithographically fabricated nanoelectrodes on a silicon dioxide substrate by DEP. Straight brick-like origami structures, constructed both in square (SQL) and honeycomb lattices, as well as curved "C"-shaped and angular "L"-shaped origamis were trapped with nanoscale precision and single-structure accuracy. We show that the positioning and immobilization of all these structures can be realized with or without thiol-linkers. In general, structural deformations of the origami during the DEP trapping are highly dependent on the shape and the construction of the structure. The SQL brick turned out to be the most robust structure under the high DEP forces, and accordingly, its single-structure trapping yield was also highest. In addition, the electrical conductivity of single immobilized plain brick-like structures was characterized. The electrical measurements revealed that the conductivity is negligible (insulating behavior). However, we observed that the trapping process of the SQL brick equipped with thiol-linkers tended to induce an etched "nanocanyon" in the silicon dioxide substrate. The nanocanyon was formed exactly between the electrodes, that is, at the location of the DEP-trapped origami. The results show that the demonstrated DEP-trapping technique can be readily exploited in assembling and arranging complex multilayered origami geometries. In addition, DNA origamis could be utilized in DEP-assisted deformation of the substrates onto which they are attached. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. High Voltage Dielectrophoretic and Magnetophoretic Hybrid Integrated Circuit / Microfluidic Chip

    Science.gov (United States)

    Issadore, David; Franke, Thomas; Brown, Keith A.; Hunt, Thomas P.; Westervelt, Robert M.

    2010-01-01

    A hybrid integrated circuit (IC) / microfluidic chip is presented that independently and simultaneously traps and moves microscopic objects suspended in fluid using both electric and magnetic fields. This hybrid chip controls the location of dielectric objects, such as living cells and drops of fluid, on a 60 × 61 array of pixels that are 30 × 38 μm2 in size, each of which can be individually addressed with a 50 V peak-to-peak, DC to 10 MHz radio frequency voltage. These high voltage pixels produce electric fields above the chip’s surface with a magnitude , resulting in strong dielectrophoresis (DEP) forces . Underneath the array of DEP pixels there is a magnetic matrix that consists of two perpendicular sets of 60 metal wires running across the chip. Each wire can be sourced with 120 mA to trap and move magnetically susceptible objects using magnetophoresis (MP). The DEP pixel array and magnetic matrix can be used simultaneously to apply forces to microscopic objects, such as living cells or lipid vesicles, that are tagged with magnetic nanoparticles. The capabilities of the hybrid IC / microfluidic chip demonstrated in this paper provide important building blocks for a platform for biological and chemical applications. PMID:20625468

  14. Dielectrophoretic immobilisation of nanoparticles as isolated singles in regular arrays

    Science.gov (United States)

    Knigge, Xenia; Wenger, Christian; Bier, Frank F.; Hölzel, Ralph

    2018-02-01

    We demonstrate the immobilisation of polystyrene nanoparticles on vertical nano-electrodes by means of dielectrophoresis. The electrodes have diameters of 500 nm or 50 nm, respectively, and are arranged in arrays of several thousand electrodes, allowing many thousands of experiments in parallel. At a frequency of 15 kHz, which is found favourable for polystyrene, several occupation patterns are observed, and both temporary and permanent immobilisation is achieved. In addition, a histogram method is applied, which allows to determine the number of particles occupying the electrodes. These results are validated with scanning electron microscopy images. Immobilising exactly one particle at each electrode tip is achieved for electrode tip diameters with half the particle size. Extension of this system down to the level of single molecules is envisaged, which will avoid ensemble averaging at still statistically large sample sizes.

  15. Forespore Engulfment Mediated by a Ratchet-Like Mechanism

    OpenAIRE

    Broder, Dan H.; Pogliano, Kit

    2006-01-01

    A key step in bacterial endospore formation is engulfment, during which one bacterial cell engulfs another in a phagocytosis-like process that normally requires SpoIID, SpoIIM, and SpoIIP (DMP). We here describe a second mechanism involving the zipper-like interaction between the forespore protein SpoIIQ and its mother cell ligand SpoIIIAH, which are essential for engulfment when DMP activity is reduced or SpoIIB is absent. They are also required for the rapid engulfment observed during the e...

  16. Dielectric spectroscopy studies of low-disorder and low-dimensional materials

    OpenAIRE

    Tripathi, Pragya

    2016-01-01

    In this thesis we employ dielectric spectroscopy (in different implementations) to study the dielectric properties of different materials ranging from completely disordered supercooled liquids to low-disorder solids with only ratcheting reorientational motions, to low-dimensional systems such as thin films or needle-like crystals. The probed material properties include the electrical conductivity, the space-charge processes due to sample heterogeneities, molecular dynamics, hydrogen-bond dyna...

  17. Guarded dependent type theory with coinductive types

    DEFF Research Database (Denmark)

    Bizjak, Aleš; Grathwohl, Hans Bugge; Clouston, Ranald

    2016-01-01

    We present guarded dependent type theory, gDTT, an extensional dependent type theory with a later' modality and clock quantifiers for programming and proving with guarded recursive and coinductive types. The later modality is used to ensure the productivity of recursive definitions in a modular......, type based, way. Clock quantifiers are used for controlled elimination of the later modality and for encoding coinductive types using guarded recursive types. Key to the development of gDTT are novel type and term formers involving what we call delayed substitutions’. These generalise the applicative...... functor rules for the later modality considered in earlier work, and are crucial for programming and proving with dependent types. We show soundness of the type theory with respect to a denotational model....

  18. Effect of ac electric field on the dynamics of a vesicle under shear flow in the small deformation regime

    Science.gov (United States)

    Sinha, Kumari Priti; Thaokar, Rochish M.

    2018-03-01

    Vesicles or biological cells under simultaneous shear and electric field can be encountered in dielectrophoretic devices or designs used for continuous flow electrofusion or electroporation. In this work, the dynamics of a vesicle subjected to simultaneous shear and uniform alternating current (ac) electric field is investigated in the small deformation limit. The coupled equations for vesicle orientation and shape evolution are derived theoretically, and the resulting nonlinear equations are handled numerically to generate relevant phase diagrams that demonstrate the effect of electrical parameters on the different dynamical regimes such as tank treading (TT), vacillating breathing (VB) [called trembling (TR) in this work], and tumbling (TU). It is found that while the electric Mason number (Mn), which represents the relative strength of the electrical forces to the shear forces, promotes the TT regime, the response itself is found to be sensitive to the applied frequency as well as the conductivity ratio. While higher outer conductivity promotes orientation along the flow axis, orientation along the electric field is favored when the inner conductivity is higher. Similarly a switch of orientation from the direction of the electric field to the direction of flow is possible by a mere change of frequency when the outer conductivity is higher. Interestingly, in some cases, a coupling between electric field-induced deformation and shear can result in the system admitting an intermediate TU regime while attaining the TT regime at high Mn. The results could enable designing better dielectrophoretic devices wherein the residence time as well as the dynamical states of the vesicular suspension can be controlled as per the application.

  19. Micro-hole array fluorescent sensor based on AC-Dielectrophoresis (DEP) for simultaneous analysis of nano-molecules

    Science.gov (United States)

    Kim, Hye Jin; Kang, Dong-Hoon; Lee, Eunji; Hwang, Kyo Seon; Shin, Hyun-Joon; Kim, Jinsik

    2018-02-01

    We propose a simple fluorescent bio-chip based on two types of alternative current-dielectrophoretic (AC-DEP) force, attractive (positive DEP) and repulsive (negative DEP) force, for simultaneous nano-molecules analysis. Various radius of micro-holes on the bio-chip are designed to apply the different AC-DEP forces, and the nano-molecules are concentrated inside the micro-hole arrays according to the intensity of the DEP force. The bio-chip was fabricated by Micro Electro Mechanical system (MEMS) technique, and was composed of two layers; a SiO2 layer and Ta/Pt layer were accomplished for an insulation layer and a top electrode with micro-hole arrays to apply electric fields for DEP force, respectively. Each SiO2 and Ta/Pt layers were deposited by thermal oxidation and sputtering, and micro-hole arrays were fabricated with Inductively Coupled Plasma (ICP) etching process. For generation of each positive and negative DEP at micro-holes, we applied two types of sine-wave AC voltage with different frequency range alternately. The intensity of the DEP force was controlled by the radius of the micro-hole and size of nano-molecule, and calculated with COMSOL multi-physics. Three types of nano-molecules labelled with different fluorescent dye were used and the intensity of nano-molecules was examined by the fluorescent optical analysis after applying the DEP force. By analyzing the fluorescent intensities of the nano-molecules, we verify the various nano-molecules in analyte are located successfully inside corresponding micro-holes with different radius according to their size.

  20. Evaluation of thermal ratchetting on axisymmetric thin shells at the free level of sodium: Experimental results and elastic analysis

    International Nuclear Information System (INIS)

    Cabrillat, M.T.; Gatt, J.M.; Schoulguine, P.; Skiara, A.

    1993-01-01

    Startup operations and load variations for a FBR reactor (Fast Breeder Reactor) cause sodium level variations in the vessels which exert stresses on the emergent shells in the free level area. The loading of these shells is mainly linked to the axial thermal gradient, primary stresses being generally low or negligible as are the radial thermal gradients. Under the effect of these variable axial thermal gradients, there is a risk of progressive deformation even in the absence of primary type stresses. The simplified methods of analysis (Bree diagram, efficiency diagram) proposed in the design codes (Code Case and RCCMR) are not applicable in this specific case where primary type stresses are negligible. In recent years, many studies and experimental programmes have been undertaken in order to propose more reliable methods of analysis for these structures. This paper describes the experimental program, called VINIL, developed at the CEA at Cadarache. After a brief description of the experimental facility and of the experimental results, this paper proposes an evaluation of the risk of progressive deformation on an elastic basis: various simplified methods of analysis were used and are compared with experimental results

  1. Coaxial atomic force microscope probes for dielectrophoresis of DNA under different buffer conditions

    Science.gov (United States)

    Tao, Yinglei; Kumar Wickramasinghe, H.

    2017-02-01

    We demonstrate a coaxial AFM nanoprobe device for dielectrophoretic (DEP) trapping of DNA molecules in Tris-EDTA (TE) and phosphate-buffered saline (PBS) buffers. The DEP properties of 20 nm polystyrene beads were studied with coaxial probes in media with different conductivities. Due to the special geometry of our DEP probe device, sufficiently high electric fields were generated at the probe end to focus DNA molecules with positive DEP. DEP trapping for both polystyrene beads and DNA molecules was quantitatively analyzed over the frequency range from 100 kHz to 50 MHz and compared with the Clausius-Mossotti theory. Finally, we discussed the negative effect of medium salinity during DEP trapping.

  2. Discrete Element Modeling (DEM) of Triboelectrically Charged Particles: Revised Experiments

    Science.gov (United States)

    Hogue, Michael D.; Calle, Carlos I.; Curry, D. R.; Weitzman, P. S.

    2008-01-01

    In a previous work, the addition of basic screened Coulombic electrostatic forces to an existing commercial discrete element modeling (DEM) software was reported. Triboelectric experiments were performed to charge glass spheres rolling on inclined planes of various materials. Charge generation constants and the Q/m ratios for the test materials were calculated from the experimental data and compared to the simulation output of the DEM software. In this paper, we will discuss new values of the charge generation constants calculated from improved experimental procedures and data. Also, planned work to include dielectrophoretic, Van der Waals forces, and advanced mechanical forces into the software will be discussed.

  3. Instant live-cell super-resolution imaging of cellular structures by nanoinjection of fluorescent probes.

    Science.gov (United States)

    Hennig, Simon; van de Linde, Sebastian; Lummer, Martina; Simonis, Matthias; Huser, Thomas; Sauer, Markus

    2015-02-11

    Labeling internal structures within living cells with standard fluorescent probes is a challenging problem. Here, we introduce a novel intracellular staining method that enables us to carefully control the labeling process and provides instant access to the inner structures of living cells. Using a hollow glass capillary with a diameter of <100 nm, we deliver functionalized fluorescent probes directly into the cells by (di)electrophoretic forces. The label density can be adjusted and traced directly during the staining process by fluorescence microscopy. We demonstrate the potential of this technique by delivering and imaging a range of commercially available cell-permeable and nonpermeable fluorescent probes to cells.

  4. Type Families with Class, Type Classes with Family

    DEFF Research Database (Denmark)

    Serrano, Alejandro; Hage, Jurriaan; Bahr, Patrick

    2015-01-01

    Type classes and type families are key ingredients in Haskell programming. Type classes were introduced to deal with ad-hoc polymorphism, although with the introduction of functional dependencies, their use expanded to type-level programming. Type families also allow encoding type-level functions......, now as rewrite rules. This paper looks at the interplay of type classes and type families, and how to deal with shortcomings in both of them. Furthermore, we show how to use families to simulate classes at the type level. However, type families alone are not enough for simulating a central feature...... of type classes: elaboration, that is, generating code from the derivation of a rewriting. We look at ways to solve this problem in current Haskell, and propose an extension to allow elaboration during the rewriting phase....

  5. Biomarker-free dielectrophoretic sorting of differentiating myoblast multipotent progenitor cells and their membrane analysis by Raman spectroscopy.

    Science.gov (United States)

    Muratore, Massimo; Srsen, Vlastimil; Waterfall, Martin; Downes, Andrew; Pethig, Ronald

    2012-09-01

    Myoblasts are muscle derived mesenchymal stem cell progenitors that have great potential for use in regenerative medicine, especially for cardiomyogenesis grafts and intracardiac cell transplantation. To utilise such cells for pre-clinical and clinical applications, and especially for personalized medicine, it is essential to generate a synchronised, homogenous, population of cells that display phenotypic and genotypic homogeneity within a population of cells. We demonstrate that the biomarker-free technique of dielectrophoresis (DEP) can be used to discriminate cells between stages of differentiation in the C2C12 myoblast multipotent mouse model. Terminally differentiated myotubes were separated from C2C12 myoblasts to better than 96% purity, a result validated by flow cytometry and Western blotting. To determine the extent to which cell membrane capacitance, rather than cell size, determined the DEP response of a cell, C2C12 myoblasts were co-cultured with GFP-expressing MRC-5 fibroblasts of comparable size distributions (mean diameter ∼10 μm). A DEP sorting efficiency greater than 98% was achieved for these two cell types, a result concluded to arise from the fibroblasts possessing a larger membrane capacitance than the myoblasts. It is currently assumed that differences in membrane capacitance primarily reflect differences in the extent of folding or surface features of the membrane. However, our finding by Raman spectroscopy that the fibroblast membranes contained a smaller proportion of saturated lipids than those of the myoblasts suggests that the membrane chemistry should also be taken into account.

  6. Concrete Types for TypeScript

    OpenAIRE

    Richards, Gregor; Zappa Nardelli, Francesco; Vitek, Jan

    2015-01-01

    Typescript extends JavaScript with optional type annotations that are, by design, unsound and, that the Typescript compiler discards as it emits code. This design point preserves programming idioms developers are familiar with, and allows them to leave their legacy code unchanged, while offering a measure of static error checking in parts of the program that have type annotations. We present an alternative design for TypeScript, one where it is possible to support the same degree of dynamism,...

  7. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis.

    Science.gov (United States)

    Muratore, Massimo; Mitchell, Steve; Waterfall, Martin

    2013-09-06

    Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Mitigating Mitochondrial Genome Erosion Without Recombination.

    Science.gov (United States)

    Radzvilavicius, Arunas L; Kokko, Hanna; Christie, Joshua R

    2017-11-01

    Mitochondria are ATP-producing organelles of bacterial ancestry that played a key role in the origin and early evolution of complex eukaryotic cells. Most modern eukaryotes transmit mitochondrial genes uniparentally, often without recombination among genetically divergent organelles. While this asymmetric inheritance maintains the efficacy of purifying selection at the level of the cell, the absence of recombination could also make the genome susceptible to Muller's ratchet. How mitochondria escape this irreversible defect accumulation is a fundamental unsolved question. Occasional paternal leakage could in principle promote recombination, but it would also compromise the purifying selection benefits of uniparental inheritance. We assess this tradeoff using a stochastic population-genetic model. In the absence of recombination, uniparental inheritance of freely-segregating genomes mitigates mutational erosion, while paternal leakage exacerbates the ratchet effect. Mitochondrial fusion-fission cycles ensure independent genome segregation, improving purifying selection. Paternal leakage provides opportunity for recombination to slow down the mutation accumulation, but always at a cost of increased steady-state mutation load. Our findings indicate that random segregation of mitochondrial genomes under uniparental inheritance can effectively combat the mutational meltdown, and that homologous recombination under paternal leakage might not be needed. Copyright © 2017 by the Genetics Society of America.

  9. Precipitation of γ-zirconium hydride in zirconium

    International Nuclear Information System (INIS)

    Carpenter, G.J.C.

    1978-01-01

    A mechanism for the precipitation of γ-zirconium hydride in zirconium is presented which does not require the diffusion of zirconium. The transformation is completed by shears caused by 1/3 (10 anti 10) Shockley partial dislocations on alternate zirconium basal planes, either by homogeneous nucleation or at lattice imperfections. Homogeneous nucleation is considered least likely in view of the large nucleation barrier involved. Hydrides may form at dislocations by the generation of partials by means of either a pole or ratchet mechanism. The former requires dislocations with a component of Burgers vector along the c-axis, but contrast experiments show that these are not normally observed in annealed zirconium. It is therefore most likely that intragranular hydrides form at the regular 1/3 (11 anti 20) dislocations, possibly by means of a ratchet mechanism. Contrast experiments in the electron microscope show that the precipitates have a shear character consistent with the mechanism suggested. The possibility that the shear dislocations associated with the hydrides are emissary dislocations is considered and a model suggested in which this function is satisfied together with the partial relief of misfit stresses. The large shear strains associated with the precipitation mechanism may play an important role in the preferential orientation of hydrides under stress

  10. The effect of martensite plasticity on the cyclic deformation of super-elastic NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2014-01-01

    Based on stress-controlled cyclic tension–unloading experiments with different peak stresses, the effect of martensite plasticity on the cyclic deformation of super-elastic NiTi shape memory alloy micro-tubes is investigated and discussed. The experimental results show that the reverse transformation from the induced martensite phase to the austenite phase is gradually restricted by the plastic deformation of the induced martensite phase caused by an applied peak stress that is sufficiently high (higher than 900 MPa), and the extent of such restriction increases with further increasing the peak stress. The residual and peak strains of super-elastic NiTi shape memory alloy accumulate progressively, i.e., transformation ratchetting occurs during the cyclic tension–unloading with peak stresses from 600 to 900 MPa, and the transformation ratchetting strain increases with the increase of the peak stress. When the peak stress is higher than 900 MPa, the peak strain becomes almost unchanged, but the residual strain accumulates and the dissipation energy per cycle decreases very quickly with the increasing number of cycles due to the restricted reverse transformation by the martensite plasticity. Furthermore, a quantitative relationship between the applied stress and the stabilized residual strain is obtained to reasonably predict the evolution of the peak strain and the residual strain. (paper)

  11. Comprehensive Characterization of Voids and Microstructure in TATB-based Explosives from 10 nm to 1 cm: Effects of Temperature Cycling and Compressive Creep

    Energy Technology Data Exchange (ETDEWEB)

    Willey, T M; Lauderbach, L; Gagliardi, F; Cunningham, B; Lorenz, K T; Lee, J I; van Buuren, T; Call, R; Landt, L; Overturf, G

    2010-02-26

    This paper outlines the characterization of voids and Microstructure in TATB-based Explosives over several orders of magnitude, from sizes on the order of 10 nm to about 1 cm. This is accomplished using ultra small angle x-ray scattering to investigate voids from a few nm to a few microns, ultra small angle neutron scattering for voids from 100 nm to 10 microns, and x-ray computed microtomography to investigate microstructure from a few microns to a few centimeters. The void distributions of LX-17 are outlined, and the microstructure of LX-17 is presented. Temperature cycling and compressive creep cause drastically different damage to the microstructure. Temperature cycling leads to a volume expansion (ratchet growth) in TATB-based explosives, and x-ray scattering techniques that are sensitive to sizes up to a few microns indicated changes to the void volume distribution that had previously accounted for most, but not all of the change in density. This paper presents the microstructural damage larger than a few microns caused by ratchet growth. Temperature cycling leads to void creation in the binder poor regions associated with the interior portion of formulated prills. Conversely, compressive creep causes characteristically different changes to microstructure; fissures form at binder-rich prill boundaries prior to mechanical failure.

  12. Klebsiella Typing

    DEFF Research Database (Denmark)

    Hansen, D S; Skov, R; Benedí, J.V.

    2002-01-01

    OBJECTIVE: To compare pulsed-field gel electrophoresis (PFGE) typing and O:K-serotyping of Klebsiella in two different epidemiological settings. METHODS: One hundred and four bacteremia isolates without known epidemiological relation and 47 isolates from an outbreak in a neonatal intensive care...... unit (NICU) were K-typed by countercurrent immunoelectrophoresis (CCIE), O-typed by an inhibition enzyme-linked immunosorbent assay method, and typed by pulsed-field gel electrophoresis (PFGE) using the restriction enzyme XbaI. RESULTS: Typing data for the 104 bacteremia isolates were compared...... with regard to typability, number of types, maximum number of isolates per type, and the Discriminative Index (DI). O-typing combined with K-typing (DI 0.98) as O:K-serotyping (DI 0.99) gave a very discriminative typing system, whereas O-typing alone was not very discriminative (DI 0.76). PFGE (DI 1...

  13. Racheting - experimental tests and practical method of analysis

    International Nuclear Information System (INIS)

    Cousseran, P.; Lebey, J.; Moulin, D.; Roche, R.; Clement, G.

    1980-09-01

    Ratcheting is the acceleration of deformation, under controlled load, due to imposed cyclic deformations. Attention is given to the increase of creep elongation in presence of cyclic deformations, such as thermal straining. Tests on stainless steel-304L and 316L are described. The aim of this paper is to bring a contribution for the establishment of a conservative design rule, with a wide field of application and an easy mode of utilization

  14. A Guttman-Based Approach to Identifying Cumulativeness Applied to Chimpanzee Culture

    OpenAIRE

    Graber, RB; de Cock, DR; Burton, ML

    2012-01-01

    Human culture appears to build on itself-that is, to be to some extent cumulative. Whether this property is shared by culture in the common chimpanzee is controversial. The question previously has been approached, qualitatively (and inconclusively), by debating whether any chimpanzee culture traits have resulted from individuals building on one another's work ("ratcheting"). The fact that the chimpanzees at different sites have distinctive repertoires of traits affords a different avenue of a...

  15. Preventing droplet deformation during dielectrophoretic centering of a compound emulsion droplet

    Science.gov (United States)

    Randall, Greg; Blue, Brent

    2012-11-01

    Compound droplets, or droplets-within-droplets, are traditionally key components in applications ranging from drug delivery to the food industry. Presently, millimeter-sized compound droplets are precursors for shell targets in inertial fusion energy work. However, a key constraint in target fabrication is a uniform shell wall thickness, which in turn requires a centered core droplet in the compound droplet precursor. Previously, Bei et al. (2009, 2010) have shown that compound droplets could be centered in a static fluid using an electric field of 0.7 kV/cm at 20 MHz. Randall et al. (2012) developed a process to center the core of a moving compound droplet, though the ~kV/cm field induced small (fluid mechanics and interfacial rheology perspective and we discuss the effective interfacial charge from an emulsifier and its impact on centering. Work funded by General Atomics Internal R&D.

  16. Dimensional analysis and prediction of dielectrophoretic crossover frequency of spherical particles

    Directory of Open Access Journals (Sweden)

    Che-Kai Yeh

    2017-06-01

    Full Text Available The manipulation of biological cells and micrometer-scale particles using dielectrophoresis (DEP is an indispensable technique for lab-on-a-chip systems for many biological and colloidal science applications. However, existing models, including the dipole model and numerical simulations based on Maxwell stress tensor (MST, cannot achieve high accuracy and high computation efficiency at the same time. The dipole model is widely used and provides adequate predictions on the crossover frequency of submicron particles, but cannot predict the crossover frequency for larger particles accurately; on the other hand, the MST method offers high accuracy for a wide variety of particle sizes and shapes, but is time-consuming and may lack predictive understanding of the interplay between key parameters. Here we present a mathematical model, using dimensional analysis and the Buckingham pi theorem, that permits high accuracy and efficiency in predicting the crossover frequency of spherical particles. The curve fitting and calculation are performed using commercial packages OriginLab and MATLAB, respectively. In addition, through this model we also can predict the conditions in which no crossover frequency exists. Also, we propose a pair of dimensionless parameters, forming a functional relation, that provide physical insights into the dependency of the crossover frequency on five key parameters. The model is verified under several scenarios using comprehensive MST simulations by COMSOL Multiphysics software (COMSOL, Inc. and some published experimental data.

  17. Focused ion beam patterning to dielectrophoretically assemble single nanowire based devices

    International Nuclear Information System (INIS)

    La Ferrara, V; Massera, E; Francia, G Di; Alfano, B

    2010-01-01

    Direct-write processing is increasingly taking place in nanodevice fabrication. In this work, Focused Ion Beam (FIB), a powerful tool in maskless micromachining, is used for electrode patterning onto a silicon/silicon nitride substrate. Then a single palladium nanowire is assembled between electrodes by means of dielectrophoresis (DEP). The nanowire morphology depends on the electrode pattern when DEP conditions are fixed. FIB/DEP combination overcomes the problem of nanowire electrical contamination due to gallium ion bombardment and the as-grown nanowire retains its basic electrical properties. Single nanowire based devices have been fabricated with this novel approach and have been tested as hydrogen sensors, confirming the reliability of this technology.

  18. Quantification of pH gradients and implications in insulator-based dielectrophoresis of biomolecules.

    Science.gov (United States)

    Gencoglu, Aytug; Camacho-Alanis, Fernanda; Nguyen, Vi Thanh; Nakano, Asuka; Ros, Alexandra; Minerick, Adrienne R

    2011-09-01

    Direct current (DC) insulator-based dielectrophoretic (iDEP) microdevices have the potential to replace traditional alternating current dielectrophoretic devices for many cellular and biomolecular separation applications. The use of large DC fields suggest that electrode reactions and ion transport mechanisms can become important and impact ion distributions in the nanoliters of fluid in iDEP microchannels. This work tracked natural pH gradient formation in a 100 μm wide, 1 cm-long microchannel under applicable iDEP protein manipulation conditions. Using fluorescence microscopy with the pH-sensitive dye FITC Isomer I and the pH-insensitive dye TRITC as a reference, pH was observed to drop drastically in the microchannels within 1 min in a 3000 V/cm electric field; pH drops were observed in the range of 6-10 min within a 100 V/cm electric field and varied based on the buffer conductivity. To address concerns of dye transport impacting intensity data, electrokinetic mobilities of FITC were carefully examined and found to be (i) toward the anode and (ii) 1 to 2 orders of magnitude smaller than H⁺ transport which is responsible for pH drops from the anode toward the cathode. COMSOL simulations of ion transport showed qualitative agreement with experimental results. The results indicate that pH changes are severe enough and rapid enough to influence the net charge of a protein or cause aggregation during iDEP experiments. The results also elucidate reasonable time periods over which the phosphate buffering capacity can counter increases in H⁺ and OH⁻ for unperturbed iDEP manipulations. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Typing is writing: Linguistic properties modulate typing execution.

    Science.gov (United States)

    Pinet, Svetlana; Ziegler, Johannes C; Alario, F-Xavier

    2016-12-01

    Typing is becoming our preferred way of writing. Perhaps because of the relative recency of this change, very few studies have investigated typing from a psycholinguistic perspective. In addition, and despite obvious similarities between typing and handwriting, typing research has remained rather disconnected from handwriting research. The current study aimed at bridging this gap by evaluating how typing is affected by a number of psycholinguistic variables defined at the word, syllable, and letter levels. In a writing-to-dictation task, we assessed typing performance by measuring response accuracy, onset latencies - an index of response preparation and initiation - and interkeystroke intervals (IKIs) - an index of response execution processes. The lexical and sublexical factors revealed a composite pattern of effects. Lexical frequency improved response latencies and accuracy, while bigram frequency speeded up IKIs. Sound-spelling consistency improved latencies, but had an inhibitory effect on IKI. IKIs were also longer at syllable boundaries. Together, our findings can be fit within a framework for typed production that combines the previously developed theories of spelling and typing execution. At their interface, we highlight the need for an intermediate hierarchical stage, perhaps in the form of a graphemic buffer for typing.

  20. Omnidirectional Transport in Fully Reconfigurable Two Dimensional Optical Ratchets

    Czech Academy of Sciences Publication Activity Database

    Arzola, A. V.; Villasante-Barahona, M.; Volke-Sepulveda, K.; Jákl, Petr; Zemánek, Pavel

    2017-01-01

    Roč. 118, č. 13 (2017), s. 1-5, č. článku 138002. ISSN 0031-9007 R&D Projects: GA ČR GB14-36681G; GA MŠk(CZ) LO1212; GA MŠk(CZ) LD14069 Institutional support: RVO:68081731 Keywords : separation * motion Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 8.462, year: 2016

  1. Spatial propagation of excitonic coherence enables ratcheted energy transfer

    OpenAIRE

    Hoyer, Stephan; Ishizaki, Akihito; Whaley, K. Birgitta

    2011-01-01

    Experimental evidence shows that a variety of photosynthetic systems can preserve quantum beats in the process of electronic energy transfer, even at room temperature. However, whether this quantum coherence arises in vivo and whether it has any biological function have remained unclear. Here we present a theoretical model that suggests that the creation and recreation of coherence under natural conditions is ubiquitous. Our model allows us to theoretically demonstrate a mechanism for a ratch...

  2. Experimental adiabatic vortex ratchet effect in Nb films with ...

    Indian Academy of Sciences (India)

    tuned at will with the value of the applied magnetic field. Acknowledgments. We want to thank Spanish Ministerio de Educacion y Ciencia for grants MAT2002-. 04543 and MAT2002-12385-E and CAM GR/MAT/0617/2004. E M Gonzalez and. N O Nunez want to thank Spanish Ministerio de Educacion y Ciencia for ramon y.

  3. A model of film boiling in the presence of electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Carrica, P.M.; Masson, V.; Clausse, A. [Centro Atomico Bariloche and Instituto Balseiro, Barilochi (Argentina)

    1995-09-01

    Recently it was found that, when a strong electric field is applied around a heated wire, two distinct film boiling heat transfer regimes are observed. In this paper, a semi-empirical model is derived to analyze the pool boiling process in the presence of non uniform electric field. The model takes into account the dielectrophoretic force acting on the bubbles as they grow and the effect of the electric field on the most dangerous wavelength. It is shown how the transition between the two film boiling regimes is possible for high strength electric fields. The threshold voltage for transition, transition heat fluxes and hysteresis values are compared with experimental outcomes showing a satisfactory agreement.

  4. Precise mass detector based on carbon nanooscillator

    Energy Technology Data Exchange (ETDEWEB)

    Lukashenko, S., E-mail: lukashenko13@mail.ru; Golubok, A. [Department of Nanotechnology and Material Science, ITMO University, Kronverskiy av. 49, 192000, St. Petersburg (Russian Federation); Institute for Analytical Instrumentation of RAS, Rizhsky pr 26, St. Petersburg, 190103 (Russian Federation); Komissarenko, F. [Department of Nanotechnology and Material Science, ITMO University, Kronverskiy av. 49, 192000, St. Petersburg (Russian Federation); Academic University, Russian Academy of Sciences, ul. Khlopina 8/3, 194021, St. Petersburg (Russian Federation); Mukhin, I. [Academic University, Russian Academy of Sciences, ul. Khlopina 8/3, 194021, St. Petersburg (Russian Federation); Sapozhnikov, I. [Institute for Analytical Instrumentation of RAS, Rizhsky pr 26, St. Petersburg, 190103 (Russian Federation); Veniaminov, A. [Centre for Information Optical Technologies, ITMO University, Birzhevaya ln. 14-16, 199034, St. Petersburg (Russian Federation); Lysak, V. [Department of Nanotechnology and Material Science, ITMO University, Kronverskiy av. 49, 192000, St. Petersburg (Russian Federation)

    2016-06-17

    Precise mass detectors based on an amorphous carbon nanowires, which localized on the top of a tungsten tip were fabricated and investigated. The nanowires were grown in the scanning electron microscope (SEM) chamber using focused electron beam technique. The movement trajectories and amplitude-frequency characteristics of the carbon nanowire oscillators were visualized at low and ambient pressure using SEM and confocal laser scanning microscope (CLSM), respectevely. The SiO{sub 2} and TiO{sub 2} nanospheres were clamped on the top of the carbon nanowires. The manipulations of nanospheres were provided by means of dielectrophoretic force in SEM. The sensitivity of the mass detector based on the carbon nanowire oscillator was estimated.

  5. Type Inference for Session Types in the Pi-Calculus

    DEFF Research Database (Denmark)

    Graversen, Eva Fajstrup; Harbo, Jacob Buchreitz; Huttel, Hans

    2014-01-01

    In this paper we present a direct algorithm for session type inference for the π-calculus. Type inference for session types has previously been achieved by either imposing limitations and restriction on the π-calculus, or by reducing the type inference problem to that for linear types. Our approach...

  6. Tourniquet pressures: strap width and tensioning system widths.

    Science.gov (United States)

    Wall, Piper L; Coughlin, Ohmar; Rometti, Mary; Birkholz, Sarah; Gildemaster, Yvonne; Grulke, Lisa; Sahr, Sheryl; Buising, Charisse M

    2014-01-01

    Pressure distribution over tourniquet width is a determinant of pressure needed for arterial occlusion. Different width tensioning systems could result in arterial occlusion pressure differences among nonelastic strap designs of equal width. Ratcheting Medical Tourniquets (RMTs; m2 inc., http://www.ratcheting buckles.com) with a 1.9 cm-wide (Tactical RMT) or 2.3 cm-wide (Mass Casualty RMT) ladder were directly compared (16 recipients, 16 thighs and 16 upper arms for each tourniquetx2). Then, RMTs were retrospectively compared with the windlass Combat Application Tourniquet (C-A-T ["CAT"], http://combattourniquet.com) with a 2.5 cm-wide internal tensioning strap. Pressure was measured with an air-filled No. 1 neonatal blood pressure cuff under each 3.8 cm-wide tourniquet. RMT circumferential pressure distribution was not uniform. Tactical RMT pressures were not higher, and there were no differences between the RMTs in the effectiveness, ease of use ("97% easy"), or discomfort. However, a difference did occur regarding tooth skipping of the pawl during ratchet advancement: it occurred in 1 of 64 Tactical RMT applications versus 27 of 64 Mass Casualty RMT applications. CAT and RMT occlusion pressures were frequently over 300 mmHg. RMT arm occlusion pressures (175-397 mmHg), however, were lower than RMT thigh occlusion pressures (197-562 mmHg). RMT effectiveness was better with 99% reached occlusion and 1% lost occlusion over 1 minute versus the CAT with 95% reached occlusion and 28% lost occlusion over 1 minute. RMT muscle tension changes (up to 232 mmHg) and pressure losses over 1 minute (24±11 mmHg arm under strap to 40±12 mmHg thigh under ladder) suggest more occlusion losses may have occurred if tourniquet duration was extended. The narrower tensioning system Tactical RMT has better performance characteristics than the Mass Casualty RMT. The 3.8 cm-wide RMTs have some pressure and effectiveness similarities and differences compared with the CAT. Clinically

  7. Codification of LMFBR rules and comparison of codes

    International Nuclear Information System (INIS)

    Faure, O.; Debaene, J.P.

    1993-01-01

    The first part of this report presents the basic RCC-MR (regles de conception et de construction des materiels mecaniques des ilots nucleaires, reacteurs a neutrons rapides) design rules and their purpose. The second part is a qualitative comparison between RCC-MR, Code case N47 (ASME) and ETSDG Guide (MONJU Guide), made on the following topics: negligible creep test, ratcheting, creep fatigue, buckling, piping rules. An outline is given on improvements to RCC-MR rules now in progress

  8. Transcription elongation. Heterogeneous tracking of RNA polymerase and its biological implications.

    Science.gov (United States)

    Imashimizu, Masahiko; Shimamoto, Nobuo; Oshima, Taku; Kashlev, Mikhail

    2014-01-01

    Regulation of transcription elongation via pausing of RNA polymerase has multiple physiological roles. The pausing mechanism depends on the sequence heterogeneity of the DNA being transcribed, as well as on certain interactions of polymerase with specific DNA sequences. In order to describe the mechanism of regulation, we introduce the concept of heterogeneity into the previously proposed alternative models of elongation, power stroke and Brownian ratchet. We also discuss molecular origins and physiological significances of the heterogeneity.

  9. Type checking with open type functions

    DEFF Research Database (Denmark)

    Schrijvers, Tom; Jones, Simon Peyton; Chakravarty, Manual

    2008-01-01

    We report on an extension of Haskell with open type-level functions and equality constraints that unifies earlier work on GADTs, functional dependencies, and associated types. The contribution of the paper is that we identify and characterise the key technical challenge of entailment checking; an...

  10. Updating signal typing in voice: addition of type 4 signals.

    Science.gov (United States)

    Sprecher, Alicia; Olszewski, Aleksandra; Jiang, Jack J; Zhang, Yu

    2010-06-01

    The addition of a fourth type of voice to Titze's voice classification scheme is proposed. This fourth voice type is characterized by primarily stochastic noise behavior and is therefore unsuitable for both perturbation and correlation dimension analysis. Forty voice samples were classified into the proposed four types using narrowband spectrograms. Acoustic, perceptual, and correlation dimension analyses were completed for all voice samples. Perturbation measures tended to increase with voice type. Based on reliability cutoffs, the type 1 and type 2 voices were considered suitable for perturbation analysis. Measures of unreliability were higher for type 3 and 4 voices. Correlation dimension analyses increased significantly with signal type as indicated by a one-way analysis of variance. Notably, correlation dimension analysis could not quantify the type 4 voices. The proposed fourth voice type represents a subset of voices dominated by noise behavior. Current measures capable of evaluating type 4 voices provide only qualitative data (spectrograms, perceptual analysis, and an infinite correlation dimension). Type 4 voices are highly complex and the development of objective measures capable of analyzing these voices remains a topic of future investigation.

  11. Is type-D personality trait(s or state? An examination of type-D temporal stability in older Israeli adults in the community

    Directory of Open Access Journals (Sweden)

    Ada H. Zohar

    2016-02-01

    Full Text Available Background. Type D personality was suggested as a marker of poorer prognosis for patients of cardiovascular disease. It is defined by having a score of 10 or more on both sub-scales of the DS14 questionnaire, Social Inhibition (SI and Negative Affectivity (NA. As Type D was designed to predict risk, its temporal stability is of prime importance. Methods. Participants in the current study were 285 community volunteers, who completed the DS14, and other personality scales, at a mean interval of six years. Results. The prevalence of Type D did not change. The component traits of Type D showed rank order stability. Type D caseness temporal stability was improved by using the sub-scales product as a criterion. Logistic hierarchical regression predicting Type D classification from Time1 demonstrated that the best predictors were Time1 scores on NA and SI, with the character trait of Cooperation, and the alexithymia score adding some predictive power. Conclusions. The temporal stability of the component traits, and of the prevalence of Type D were excellent. Temporal stability of Type D caseness may be improved by using a product threshold, rather than the current rule. Research is required in order to formulate the optimal timing for Type D measurement for predictive purposes.

  12. Report on FY17 testing in support of integrated EPP-SMT design methods development

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanli . [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jetter, Robert I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sham, T. -L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    The goal of the proposed integrated Elastic Perfectly-Plastic (EPP) and Simplified Model Test (SMT) methodology is to incorporate a SMT data-based approach for creep-fatigue damage evaluation into the EPP methodology to avoid the separate evaluation of creep and fatigue damage and eliminate the requirement for stress classification in current methods; thus greatly simplifying evaluation of elevated temperature cyclic service. The purpose of this methodology is to minimize over-conservatism while properly accounting for localized defects and stress risers. To support the implementation of the proposed methodology and to verify the applicability of the code rules, thermomechanical tests continued in FY17. This report presents the recent test results for Type 1 SMT specimens on Alloy 617 with long hold times, pressurization SMT on Alloy 617, and two-bar thermal ratcheting test results on SS316H at the temperature range of 405 °C to 705 °C. Preliminary EPP strain range analysis on the two-bar tests are critically evaluated and compared with the experimental results.

  13. Experimental verification of a discrete memory constitutive model for 316 stainless steel

    International Nuclear Information System (INIS)

    Elleuch, M.N.; Han, S.; Wack, B.F.

    1983-01-01

    To identify the behaviour of high strength material, like metals, the torsion test of a circular tube is the most efficient: it allows a three-dimensional path to be followed, in the stress space for example, by adding an axial force and an internal pressure to the torque. The quality of identification depends on the quality of the experimental tests and the quality of the test deformation description: this is important since the application of a torque implies that the tube will follow a rotational solicitation path. Theoretical studies of finite deformations indicate that the torsion is accompagnied by second order effects, and particularly by an axial displacement (Pointing effect). The material behaviour description by a hereditary type constitutive model of discrete memory (M.D. model) show that these second order effects can cumulate and give ratchet phenomena. We consider only the essential features of 316 L stainless steel, i.e. the mechanical hysteresis and strain hardening; we will neglect here-in the viscosity effect, and the experimental tests were conducted at low rate. (orig./RW)

  14. Integrated structural analysis tool using the linear matching method part 1 – Software development

    International Nuclear Information System (INIS)

    Ure, James; Chen, Haofeng; Tipping, David

    2014-01-01

    A number of direct methods based upon the Linear Matching Method (LMM) framework have been developed to address structural integrity issues for components subjected to cyclic thermal and mechanical load conditions. This paper presents a new integrated structural analysis tool using the LMM framework for the assessment of load carrying capacity, shakedown limit, ratchet limit and steady state cyclic response of structures. First, the development of the LMM for the evaluation of design limits in plasticity is introduced. Second, preliminary considerations for the development of the LMM into a tool which can be used on a regular basis by engineers are discussed. After the re-structuring of the LMM subroutines for multiple central processing unit (CPU) solution, the LMM software tool for the assessment of design limits in plasticity is implemented by developing an Abaqus CAE plug-in with graphical user interfaces. Further demonstration of this new LMM analysis tool including practical application and verification is presented in an accompanying paper. - Highlights: • A new structural analysis tool using the Linear Matching Method (LMM) is developed. • The software tool is able to evaluate the design limits in plasticity. • Able to assess limit load, shakedown, ratchet limit and steady state cyclic response. • Re-structuring of the LMM subroutines for multiple CPU solution is conducted. • The software tool is implemented by developing an Abaqus CAE plug-in with GUI

  15. Blood typing

    Science.gov (United States)

    ... detect these minor antigens. It is done before transfusions, except in emergency situations. Alternative Names Cross matching; Rh typing; ABO blood typing; Blood group; Anemia - immune hemolytic blood type; ...

  16. Molecular typing of methicillin-resistant Staphylococcus aureus: Comparison of PCR-based open reading frame typing, multilocus sequence typing, and Staphylococcus protein A gene typing.

    Science.gov (United States)

    Ogihara, Shinji; Saito, Ryoichi; Sawabe, Etsuko; Kozakai, Takahiro; Shima, Mari; Aiso, Yoshibumi; Fujie, Toshihide; Nukui, Yoko; Koike, Ryuji; Hagihara, Michio; Tohda, Shuji

    2018-04-01

    The recently developed PCR-based open reading frame typing (POT) method is a useful molecular typing tool. Here, we evaluated the performance of POT for molecular typing of methicillin-resistant Staphylococcus aureus (MRSA) isolates and compared its performance to those of multilocus sequence typing (MLST) and Staphylococcus protein A gene typing (spa typing). Thirty-seven MRSA isolates were collected between July 2012 and May 2015. MLST, spa typing, and POT were performed, and their discriminatory powers were evaluated using Simpson's index analysis. The MRSA isolates were classified into 11, 18, and 33 types by MLST, spa typing, and POT, respectively. The predominant strains identified by MLST, spa typing, and POT were ST8 and ST764, t002, and 93-191-127, respectively. The discriminatory power of MLST, spa typing, and POT was 0.853, 0.875, and 0.992, respectively, indicating that POT had the highest discriminatory power. Moreover, the results of MLST and spa were available after 2 days, whereas that of POT was available in 5 h. Furthermore, POT is rapid and easy to perform and interpret. Therefore, POT is a superior molecular typing tool for monitoring nosocomial transmission of MRSA. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  17. Type classes for mathematics in type theory

    OpenAIRE

    Spitters, Bas; Van der Weegen, Eelis

    2011-01-01

    The introduction of first-class type classes in the Coq system calls for re-examination of the basic interfaces used for mathematical formalization in type theory. We present a new set of type classes for mathematics and take full advantage of their unique features to make practical a particularly flexible approach formerly thought infeasible. Thus, we address both traditional proof engineering challenges as well as new ones resulting from our ambition to build upon this development a library...

  18. Luminescence dynamics in type-II GaAs/AlAs superlattices near the type-I to type-II crossover

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Kalt, H.; Hvam, Jørn Märcher

    1996-01-01

    We report on a study of the time-resolved luminescence of type-II GaAs/AlAs superlattices near the type-I to type-II crossover. In spite of the slight type-II band alignment, the luminescence is dominated by the type-I transition. This is due to the inhomogeneous broadening of the type-I transiti...

  19. Several types of types in programming languages

    OpenAIRE

    Martini, Simone

    2015-01-01

    Part 2: Regular Submissions; International audience; Types are an important part of any modern programming language, but we often forget that the concept of type we understand nowadays is not the same it was perceived in the sixties. Moreover, we conflate the concept of " type " in programming languages with the concept of the same name in mathematical logic, an identification that is only the result of the convergence of two different paths, which started apart with different aims. The paper...

  20. “Time for a Change”: Loan conditions and bank behavior when firms switch banks

    OpenAIRE

    Ongena, Steven; Ioannidou, Vasso

    2010-01-01

    This paper studies loan conditions when firms switch banks. Recent theoretical work on bank–firm relationships motivates our matching models. The dynamic cycle of the loan rate that we uncover is as follows: a loan granted by a new (outside) bank carries a loan rate that is significantly lower than the rates on comparable new loans from the firm's current (inside) banks. The new bank initially decreases the loan rate further but eventually ratchets it up sharply. Other loan conditions follow ...

  1. Efficient and accurate log-Lévy approximations to Lévy driven LIBOR models

    DEFF Research Database (Denmark)

    Papapantoleon, Antonis; Schoenmakers, John; Skovmand, David

    2011-01-01

    The LIBOR market model is very popular for pricing interest rate derivatives, but is known to have several pitfalls. In addition, if the model is driven by a jump process, then the complexity of the drift term is growing exponentially fast (as a function of the tenor length). In this work, we con...... ratchet caps show that the approximations perform very well. In addition, we also consider the log-L\\'evy approximation of annuities, which offers good approximations for high volatility regimes....

  2. Efficient and Accurate Log-Levy Approximations of Levy-Driven LIBOR Models

    DEFF Research Database (Denmark)

    Papapantoleon, Antonis; Schoenmakers, John; Skovmand, David

    2012-01-01

    The LIBOR market model is very popular for pricing interest rate derivatives but is known to have several pitfalls. In addition, if the model is driven by a jump process, then the complexity of the drift term grows exponentially fast (as a function of the tenor length). We consider a Lévy-driven ...... ratchet caps show that the approximations perform very well. In addition, we also consider the log-Lévy approximation of annuities, which offers good approximations for high-volatility regimes....

  3. Types and Automata

    DEFF Research Database (Denmark)

    Schwartzbach, Michael Ignatieff; Meineche Smidt, Erik

    A hierarchical type system for imperative programming languages gives rise to various computational problems, such as type equivalence, type ordering, etc. We present a particular class of finite automata which are shown to be isomorphic to type equations. All the relevant type concepts turn out...... to have well-known automata analogues, such as language equality, language inclusion, etc. This provides optimal or best known algorithms for the type system, by a process of translating type equations to automata, solving the analogous problem, and translating the result back to type equations. Apart...

  4. IL-10 dependent suppression of type 1, type 2 and type 17 cytokines in active pulmonary tuberculosis.

    Directory of Open Access Journals (Sweden)

    Nathella Pavan Kumar

    Full Text Available Although Type 1 cytokine responses are considered protective in pulmonary tuberculosis (PTB, their role as well as those of Type 2, 17 and immunoregulatory cytokines in tuberculous lymphadenitis (TBL and latent tuberculosis (LTB have not been well studied.To identify cytokine responses associated with pulmonary tuberculosis (TB, TB lymphadenitits and latent TB, we examined mycobacterial antigen-specific immune responses of PTB, TBL and LTB individuals. More specifically, we examined ESAT-6 and CFP-10 induced Type 1, Type 2 and Type 17 cytokine production and their regulation using multiplex ELISA.PTB individuals exhibited a significantly lower baseline as well as antigen-specific production of Type 1 (IFNγ, TNFα and IL-2; Type 2 (IL-4 and Type 17 (IL-17A and IL-17F cytokines in comparison to both TBL and LTB individuals. TBL individuals exhibited significantly lower antigen-specific IFNγ responses alone in comparison to LTB individuals. Although, IL-10 levels were not significantly higher, neutralization of IL-10 during antigen stimulation resulted in significantly enhanced production of IFNγ, IL-4 and IL-17A in PTB individuals, indicating that IL-10 mediates (at least partially the suppression of cytokine responses in PTB.Pulmonary TB is characterized by an IL-10 dependent antigen-specific suppression of Type 1, Type 2 and Type 17 cytokines, reflecting an important association of these cytokines in the pathogenesis of active TB.

  5. Hand functions in type 1 and type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Akpinar Pinar

    2017-01-01

    Full Text Available Introduction/Objective. Hand functions have an enormous impact on activities of daily living in patients with diabetes mellitus (DM, such as self-care, administering insulin injections, and preparing and eating meals. The aim of the study was to evaluate hand functions and grip strength in patients with type 1 and type 2 DM. Methods. This was an observational case-control study investigating the hand functions and grip strength in patients with type 1 and type 2 DM. The study comprised 41 patients with type 1 DM aged 25–50 years sex- and age-matched, 40 non-diabetic controls, and 91 patients with type 2 DM aged 40–65 years sex- and age-matched 60 non-diabetic controls. Patients with documented history of diabetic sensorimotor neuropathy and adhesive capsulitis were excluded. The Duruoz Hand Index was used to assess the functional hand disability. Grip strength was tested with a calibrated Jamar dynamometer. Results. The Duruoz Hand Index scores in patients with type 2 DM were significantly higher than in persons in the control group (p 0.05. Grip strength values of patients with type 1 DM were significantly lower compared to those in the control group (p < 0.05, whereas there was no significant difference between patients with type 2 DM and their control group. There was a negatively significant correlation between grip strength and the Duruoz Hand Index scores in patients with both type 1 and type 2 DM (p < 0.05. Conclusion. Patients with type 1 DM and type 2 DM have different degrees of hand disability as compared to healthy control groups.

  6. Precise Placement of Metallic Nanowires on a Substrate by Localized Electric Fields and Inter-Nanowire Electrostatic Interaction

    Directory of Open Access Journals (Sweden)

    U Hyeok Choi

    2017-10-01

    Full Text Available Placing nanowires at the predetermined locations on a substrate represents one of the significant hurdles to be tackled for realization of heterogeneous nanowire systems. Here, we demonstrate spatially-controlled assembly of a single nanowire at the photolithographically recessed region at the electrode gap with high integration yield (~90%. Two popular routes, such as protruding electrode tips and recessed wells, for spatially-controlled nanowire alignment, are compared to investigate long-range dielectrophoretic nanowire attraction and short-range nanowire-nanowire electrostatic interaction for determining the final alignment of attracted nanowires. Furthermore, the post-assembly process has been developed and tested to make a robust electrical contact to the assembled nanowires, which removes any misaligned ones and connects the nanowires to the underlying electrodes of circuit.

  7. Control of colloids with gravity, temperature gradients, and electric fields

    CERN Document Server

    Sullivan, M; Harrison, C; Austin, R H; Megens, M; Hollingsworth, A; Russel, W B; Cheng Zhen; Mason, T; Chaikin, P M

    2003-01-01

    We have used a variety of different applied fields to control the density, growth, and structure of colloidal crystals. Gravity exerts a body force proportional to the buoyant mass and in equilibrium produces a height-dependent concentration profile. A similar body force can be obtained with electric fields on charged particles (electrophoresis), a temperature gradient on all particles, or an electric field gradient on uncharged particles (dielectrophoresis). The last is particularly interesting since its magnitude and sign can be changed by tuning the applied frequency. We study these effects in bulk (making 'dielectrophoretic bottles' or traps), to control concentration profiles during nucleation and growth and near surfaces. We also study control of non-spherical and optically anisotropic particles with the light field from laser tweezers.

  8. DNA-decorated carbon-nanotube-based chemical sensors on complementary metal oxide semiconductor circuitry

    International Nuclear Information System (INIS)

    Chen, Chia-Ling; Yang, Chih-Feng; Dokmeci, Mehmet R; Agarwal, Vinay; Sonkusale, Sameer; Kim, Taehoon; Busnaina, Ahmed; Chen, Michelle

    2010-01-01

    We present integration of single-stranded DNA (ss-DNA)-decorated single-walled carbon nanotubes (SWNTs) onto complementary metal oxide semiconductor (CMOS) circuitry as nanoscale chemical sensors. SWNTs were assembled onto CMOS circuitry via a low voltage dielectrophoretic (DEP) process. Besides, bare SWNTs are reported to be sensitive to various chemicals, and functionalization of SWNTs with biomolecular complexes further enhances the sensing specificity and sensitivity. After decorating ss-DNA on SWNTs, we have found that the sensing response of the gas sensor was enhanced (up to ∼ 300% and ∼ 250% for methanol vapor and isopropanol alcohol vapor, respectively) compared with bare SWNTs. The SWNTs coupled with ss-DNA and their integration on CMOS circuitry demonstrates a step towards realizing ultra-sensitive electronic nose applications.

  9. Stretching of red blood cells using an electro-optics trap.

    Science.gov (United States)

    Haque, Md Mozzammel; Moisescu, Mihaela G; Valkai, Sándor; Dér, András; Savopol, Tudor

    2015-01-01

    The stretching stiffness of Red Blood Cells (RBCs) was investigated using a combination of an AC dielectrophoretic apparatus and a single-beam optical tweezer. The experiments were performed at 10 MHz, a frequency high enough to avoid conductivity losses, but below the second turnover point between positive and negative dielectrophoresis. By measuring the geometrical parameters of single healthy human RBCs as a function of the applied voltage, the elastic modulus of RBCs was determined (µ = 1.80 ± 0.5 µN/m) and compared with similar values of the literature got by other techniques. The method is expected to be an easy-to-use, alternative tool to determine the mechano-elastic properties of living cells, and, on this basis, to distinguish healthy and diseased cells.

  10. Control of colloids with gravity, temperature gradients, and electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Matt [Department of Physics, Princeton University, Princeton, NJ (United States); Zhao Kun [Department of Physics, Princeton University, Princeton, NJ (United States); Harrison, Christopher [Department of Physics, Princeton University, Princeton, NJ (United States); Austin, Robert H [Department of Physics, Princeton University, Princeton, NJ (United States); Megens, Mischa [Department of Physics, Princeton University, Princeton, NJ (United States); Hollingsworth, Andrew [Department of Chemical Engineering, Princeton University, Princeton, NJ (United States); Russel, William B [Department of Chemical Engineering, Princeton University, Princeton, NJ (United States); Cheng Zhengdong [ExxonMobil Research, Annandale, NJ (United States); Mason, Thomas [ExxonMobil Research, Annandale, NJ (United States); Chaikin, P M [Department of Physics, Princeton University, Princeton, NJ (United States)

    2003-01-15

    We have used a variety of different applied fields to control the density, growth, and structure of colloidal crystals. Gravity exerts a body force proportional to the buoyant mass and in equilibrium produces a height-dependent concentration profile. A similar body force can be obtained with electric fields on charged particles (electrophoresis), a temperature gradient on all particles, or an electric field gradient on uncharged particles (dielectrophoresis). The last is particularly interesting since its magnitude and sign can be changed by tuning the applied frequency. We study these effects in bulk (making 'dielectrophoretic bottles' or traps), to control concentration profiles during nucleation and growth and near surfaces. We also study control of non-spherical and optically anisotropic particles with the light field from laser tweezers.

  11. Method for using magnetic particles in droplet microfluidics

    Science.gov (United States)

    Shah, Gaurav Jitendra (Inventor); Kim, Chang-Jin (Inventor)

    2012-01-01

    Methods of utilizing magnetic particles or beads (MBs) in droplet-based (or digital) microfluidics are disclosed. The methods may be used in enrichment or separation processes. A first method employs the droplet meniscus to assist in the magnetic collection and positioning of MBs during droplet microfluidic operations. The sweeping movement of the meniscus lifts the MBs off the solid surface and frees them from various surface forces acting on the MBs. A second method uses chemical additives to reduce the adhesion of MBs to surfaces. Both methods allow the MBs on a solid surface to be effectively moved by magnetic force. Droplets may be driven by various methods or techniques including, for example, electrowetting, electrostatic, electromechanical, electrophoretic, dielectrophoretic, electroosmotic, thermocapillary, surface acoustic, and pressure.

  12. The efficiency of different search strategies in estimating parsimony jackknife, bootstrap, and Bremer support

    Directory of Open Access Journals (Sweden)

    Müller Kai F

    2005-10-01

    Full Text Available Abstract Background For parsimony analyses, the most common way to estimate confidence is by resampling plans (nonparametric bootstrap, jackknife, and Bremer support (Decay indices. The recent literature reveals that parameter settings that are quite commonly employed are not those that are recommended by theoretical considerations and by previous empirical studies. The optimal search strategy to be applied during resampling was previously addressed solely via standard search strategies available in PAUP*. The question of a compromise between search extensiveness and improved support accuracy for Bremer support received even less attention. A set of experiments was conducted on different datasets to find an empirical cut-off point at which increased search extensiveness does not significantly change Bremer support and jackknife or bootstrap proportions any more. Results For the number of replicates needed for accurate estimates of support in resampling plans, a diagram is provided that helps to address the question whether apparently different support values really differ significantly. It is shown that the use of random addition cycles and parsimony ratchet iterations during bootstrapping does not translate into higher support, nor does any extension of the search extensiveness beyond the rather moderate effort of TBR (tree bisection and reconnection branch swapping plus saving one tree per replicate. Instead, in case of very large matrices, saving more than one shortest tree per iteration and using a strict consensus tree of these yields decreased support compared to saving only one tree. This can be interpreted as a small risk of overestimating support but should be more than compensated by other factors that counteract an enhanced type I error. With regard to Bremer support, a rule of thumb can be derived stating that not much is gained relative to the surplus computational effort when searches are extended beyond 20 ratchet iterations per

  13. Phage typing or CRISPR typing for epidemiological surveillance of Salmonella Typhimurium?

    Science.gov (United States)

    Mohammed, Manal

    2017-11-07

    Salmonella Typhimurium is the most dominant Salmonella serovar around the world. It is associated with foodborne gastroenteritis outbreaks but has recently been associated with invasive illness and deaths. Characterization of S. Typhimurium is therefore very crucial for epidemiological surveillance. Phage typing has been used for decades for subtyping of S. Typhimurium to determine the epidemiological relation among isolates. Recent studies however have suggested that high throughput clustered regular interspaced short palindromic repeats (CRISPR) typing has the potential to replace phage typing. This study aimed to determine the efficacy of high-throughput CRISPR typing over conventional phage typing in epidemiological surveillance and outbreak investigation of S. Typhimurium. In silico analysis of whole genome sequences (WGS) of well-documented phage types of S. Typhimurium reveals the presence of different CRISPR type among strains belong to the same phage type. Furthermore, different phage types of S. Typhimurium share identical CRISPR type. Interestingly, identical spacers were detected among outbreak and non-outbreak associated DT8 strains of S. Typhimurium. Therefore, CRISPR typing is not useful for the epidemiological surveillance and outbreak investigation of S. Typhimurium and phage typing, until it is replaced by WGS, is still the gold standard method for epidemiological surveillance of S. Typhimurium.

  14. Dual-cycle dielectrophoretic collection rates for probing the dielectric properties of nanoparticles.

    Science.gov (United States)

    Bakewell, David J; Holmes, David

    2013-04-01

    A new DEP spectroscopy method and supporting theoretical model is developed to systematically quantify the dielectric properties of nanoparticles using continuously pulsed DEP collection rates. Initial DEP collection rates, that are dependent on the nanoparticle dielectric properties, are an attractive alternative to the crossover frequency method for determining dielectric properties. The new method introduces dual-cycle amplitude modulated and frequency-switched DEP (dual-cycle DEP) where the first collection rate with a fixed frequency acts as a control, and the second collection rate frequency is switched to a chosen value, such that, it can effectively probe the dielectric properties of the nanoparticles. The application of the control means that measurement variation between DEP collection experiments is reduced so that the frequency-switched probe collection is more effective. A mathematical model of the dual-cycle method is developed that simulates the temporal dynamics of the dual-cycle DEP nanoparticle collection system. A new statistical method is also developed that enables systematic bivariate fitting of the multifrequency DEP collection rates to the Clausius-Mossotti function, and is instrumental for determining dielectric properties. A Monte-Carlo simulation validates that collection rates improve estimation of the dielectric properties, compared with the crossover method, by exploiting a larger number of independent samples. Experiments using 200 nm diameter latex nanospheres suspended in 0.2 mS/m KCl buffer yield a nanoparticle conductivity of 26 mS/m that lies within 8% of the expected value. The results show that the dual-frequency method has considerable promise particularly for automated DEP investigations and associated technologies. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Investigation of parameters controlling the dielectrophoretic assembly of carbon nanotubes on microelectrodes

    DEFF Research Database (Denmark)

    Dimaki, Maria; Bøggild, Peter

    2008-01-01

    Networks of single-walled carbon nanotubes were assembled onto microelectrodes by dielectrophoresis. The dependence of the obtained networks on several assembly parameters such as bias voltage, field application time, frequency, electrode geometry and the nanotube solvent were investigated both s...

  16. Solar Type II Radio Bursts and IP Type II Events

    Science.gov (United States)

    Cane, H. V.; Erickson, W. C.

    2005-01-01

    We have examined radio data from the WAVES experiment on the Wind spacecraft in conjunction with ground-based data in order to investigate the relationship between the shocks responsible for metric type II radio bursts and the shocks in front of coronal mass ejections (CMEs). The bow shocks of fast, large CMEs are strong interplanetary (IP) shocks, and the associated radio emissions often consist of single broad bands starting below approx. 4 MHz; such emissions were previously called IP type II events. In contrast, metric type II bursts are usually narrowbanded and display two harmonically related bands. In addition to displaying complete dynamic spectra for a number of events, we also analyze the 135 WAVES 1 - 14 MHz slow-drift time periods in 2001-2003. We find that most of the periods contain multiple phenomena, which we divide into three groups: metric type II extensions, IP type II events, and blobs and bands. About half of the WAVES listings include probable extensions of metric type II radio bursts, but in more than half of these events, there were also other slow-drift features. In the 3 yr study period, there were 31 IP type II events; these were associated with the very fastest CMEs. The most common form of activity in the WAVES events, blobs and bands in the frequency range between 1 and 8 MHz, fall below an envelope consistent with the early signatures of an IP type II event. However, most of this activity lasts only a few tens of minutes, whereas IP type II events last for many hours. In this study we find many examples in the radio data of two shock-like phenomena with different characteristics that occur simultaneously in the metric and decametric/hectometric bands, and no clear example of a metric type II burst that extends continuously down in frequency to become an IP type II event. The simplest interpretation is that metric type II bursts, unlike IP type II events, are not caused by shocks driven in front of CMEs.

  17. Tension Type Headache: Evaluation of Chronic Type

    Directory of Open Access Journals (Sweden)

    Ömer Karadaş

    2013-11-01

    Full Text Available Tension type headache(TTH which is a primary headache has episodic and chronic forms. Episodic TTH (ETTH can also be frequent-type and non-frequent-type. According to population-based studies, annual prevalence rates are 38.3% for ETTH and 2.2% for chronic TTH (CTTH. Patients can shift between the sub-groups of TTH. In particular, patients with ETTH are at risk of developing CTTH. Peripheral and central nociceptive mechanism are thought to be responsible in occurrence of TTH. Psychiatric disorders are frequently associated with TTH. Although basic and combined analgesics are used in acute treatment and antidepresants are used in prophylaxis, new treatment modalities are needed.

  18. True stress control asymmetric cyclic plastic behavior in SA333 C-Mn steel

    International Nuclear Information System (INIS)

    Paul, Surajit Kumar; Sivaprasad, S.; Dhar, S.; Tarafder, S.

    2010-01-01

    Asymmetric cyclic loading in the plastic region can leads to progressive accumulation of permanent strain. True stress controlled uniaxial asymmetric cycling on SA333 steel is conducted at various combinations of mean stress and stress amplitude in laboratory environment. It is investigated that fatigue life increases in the presence of mean stress. Plastic strain amplitude and hysteresis loop area are found to decrease with increasing mean stress. A huge difference of life and ratcheting strain accumulation is found in engineering and true stress controlled tests.

  19. Differing causes of pregnancy loss in type 1 and type 2 diabetes.

    Science.gov (United States)

    Cundy, Tim; Gamble, Greg; Neale, Leonie; Elder, Rose; McPherson, Paul; Henley, Patrick; Rowan, Janet

    2007-10-01

    Women with type 2 and type 1 diabetes have differing risk factors for pregnancy loss. We compared the rates and causes of pregnancy loss in women with type 1 and type 2 diabetes. We utilized prospectively collected data on all pregnancies in a 20-year period (1986-2005) from a single center with a high prevalence of type 2 diabetes. Pregnancy losses included terminations for medical reasons and deaths up to 1 month postpartum but not spontaneous pregnancy losses pregnancies in women with known diabetes (330 with type 1 and 540 with type 2 diabetes) and 325 in women with diabetes diagnosed in pregnancy but persisting postpartum (97% type 2 diabetes). The rate of pregnancy loss was similar in type 1 and type 2 diabetes (2.6 vs. 3.7%, P = 0.39), but the causes of pregnancy loss differed. In type 1 diabetes >75% were attributable to major congenital anomalies or prematurity; in type 2 diabetes >75% were attributable to stillbirth or chorioamnionitis (P = 0.017). Women with type 2 and type 1 diabetes had similar A1C at presentation and near term, but the former were older (P causes of pregnancy loss in women with type 1 and type 2 diabetes. The higher rates of stillbirth in women with type 2 diabetes, suggest that other features, such as obesity, contribute significantly to pregnancy losses.

  20. Innate-Type and Acquired-Type Allergy Regulated by IL-33

    Directory of Open Access Journals (Sweden)

    Tomohiro Yoshimoto

    2014-01-01

    Full Text Available We propose two types of allergic response: IgE-dependent and IgE-independent, and designate these as 'acquired-type allergy' and 'innate-type allergy', respectively. IL-33 stimulates both innate (basophils, mast cells, or group 2 innate lymphoid cells and acquired (Th2 cells allergy-related cells to induce and/or augment Th2 cytokine production, which leads to eosinophilic inflammation in vivo. Thus, IL-33 is an essential regulator for both 'innate-type allergy' and 'acquired-type allergy', and might be an attractive therapeutic target for allergic diseases.

  1. Type 1 or Type 2 Diabetes and Pregnancy

    Science.gov (United States)

    ... and Pregnancy Articles Type 1 or Type 2 Diabetes and Pregnancy Language: English (US) Español (Spanish) Recommend on Facebook Tweet Share Compartir Problems of Diabetes in Pregnancy Blood sugar that is not well ...

  2. Discriminating the reaction types of plant type III polyketide synthases.

    Science.gov (United States)

    Shimizu, Yugo; Ogata, Hiroyuki; Goto, Susumu

    2017-07-01

    Functional prediction of paralogs is challenging in bioinformatics because of rapid functional diversification after gene duplication events combined with parallel acquisitions of similar functions by different paralogs. Plant type III polyketide synthases (PKSs), producing various secondary metabolites, represent a paralogous family that has undergone gene duplication and functional alteration. Currently, there is no computational method available for the functional prediction of type III PKSs. We developed a plant type III PKS reaction predictor, pPAP, based on the recently proposed classification of type III PKSs. pPAP combines two kinds of similarity measures: one calculated by profile hidden Markov models (pHMMs) built from functionally and structurally important partial sequence regions, and the other based on mutual information between residue positions. pPAP targets PKSs acting on ring-type starter substrates, and classifies their functions into four reaction types. The pHMM approach discriminated two reaction types with high accuracy (97.5%, 39/40), but its accuracy decreased when discriminating three reaction types (87.8%, 43/49). When combined with a correlation-based approach, all 49 PKSs were correctly discriminated, and pPAP was still highly accurate (91.4%, 64/70) even after adding other reaction types. These results suggest pPAP, which is based on linear discriminant analyses of similarity measures, is effective for plant type III PKS function prediction. pPAP is freely available at ftp://ftp.genome.jp/pub/tools/ppap/. goto@kuicr.kyoto-u.ac.jp. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  3. Greenberger-Horne-Zeilinger-type and W-type entangled coherent states: Generation and Bell-type inequality tests without photon counting

    International Nuclear Information System (INIS)

    Jeong, Hyunseok; Nguyen Ba An

    2006-01-01

    We study Greenberger-Horne-Zeilinger-type (GHZ-type) and W-type three-mode entangled coherent states. Both types of entangled coherent states violate Mermin's version of the Bell inequality with threshold photon detection (i.e., without photon counting). Such an experiment can be performed using linear optics elements and threshold detectors with significant Bell violations for GHZ-type entangled coherent states. However, to demonstrate Bell-type inequality violations for W-type entangled coherent states, additional nonlinear interactions are needed. We also propose an optical scheme to generate W-type entangled coherent states in free-traveling optical fields. The required resources for the generation are a single-photon source, a coherent state source, beam splitters, phase shifters, photodetectors, and Kerr nonlinearities. Our scheme does not necessarily require strong Kerr nonlinear interactions; i.e., weak nonlinearities can be used for the generation of the W-type entangled coherent states. Furthermore, it is also robust against inefficiencies of the single-photon source and the photon detectors

  4. Types of intersections.

    NARCIS (Netherlands)

    2015-01-01

    There are many types of intersections in the Netherlands. In an inherently safe road traffic system, however, the number of intersection types needs to be limited, depending on the road types that intersect. The desired types of intersections do not always correspond with the recommendations in the

  5. Equational type logic

    NARCIS (Netherlands)

    Manca, V.; Salibra, A.; Scollo, Giuseppe

    1990-01-01

    Equational type logic is an extension of (conditional) equational logic, that enables one to deal in a single, unified framework with diverse phenomena such as partiality, type polymorphism and dependent types. In this logic, terms may denote types as well as elements, and atomic formulae are either

  6. Isolation of Circulating Tumor Cells by Dielectrophoresis

    Directory of Open Access Journals (Sweden)

    Peter R. C. Gascoyne

    2014-03-01

    Full Text Available Dielectrophoresis (DEP is an electrokinetic method that allows intrinsic dielectric properties of suspended cells to be exploited for discrimination and separation. It has emerged as a promising method for isolating circulation tumor cells (CTCs from blood. DEP-isolation of CTCs is independent of cell surface markers. Furthermore, isolated CTCs are viable and can be maintained in culture, suggesting that DEP methods should be more generally applicable than antibody-based approaches. The aim of this article is to review and synthesize for both oncologists and biomedical engineers interested in CTC isolation the pertinent characteristics of DEP and CTCs. The aim is to promote an understanding of the factors involved in realizing DEP-based instruments having both sufficient discrimination and throughput to allow routine analysis of CTCs in clinical practice. The article brings together: (a the principles of DEP; (b the biological basis for the dielectric differences between CTCs and blood cells; (c why such differences are expected to be present for all types of tumors; and (d instrumentation requirements to process 10 mL blood specimens in less than 1 h to enable routine clinical analysis. The force equilibrium method of dielectrophoretic field-flow fractionation (DEP-FFF is shown to offer higher discrimination and throughput than earlier DEP trapping methods and to be applicable to clinical studies.

  7. Isolation of Circulating Tumor Cells by Dielectrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, Peter R. C., E-mail: pgascoyn@mdanderson.org [Department of Imaging Physics Research, The University of Texas M.D. Anderson Cancer Center Unit 951, 1515 Holcombe Boulevard, Houston, TX 77030 (United States); Shim, Sangjo [Department of Imaging Physics Research, The University of Texas M.D. Anderson Cancer Center Unit 951, 1515 Holcombe Boulevard, Houston, TX 77030 (United States); Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, C0800, Austin, TX 78712 (United States); Present address: Micro & Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, 208 North Wright Street, Urbana, IL 61801 (United States)

    2014-03-12

    Dielectrophoresis (DEP) is an electrokinetic method that allows intrinsic dielectric properties of suspended cells to be exploited for discrimination and separation. It has emerged as a promising method for isolating circulation tumor cells (CTCs) from blood. DEP-isolation of CTCs is independent of cell surface markers. Furthermore, isolated CTCs are viable and can be maintained in culture, suggesting that DEP methods should be more generally applicable than antibody-based approaches. The aim of this article is to review and synthesize for both oncologists and biomedical engineers interested in CTC isolation the pertinent characteristics of DEP and CTCs. The aim is to promote an understanding of the factors involved in realizing DEP-based instruments having both sufficient discrimination and throughput to allow routine analysis of CTCs in clinical practice. The article brings together: (a) the principles of DEP; (b) the biological basis for the dielectric differences between CTCs and blood cells; (c) why such differences are expected to be present for all types of tumors; and (d) instrumentation requirements to process 10 mL blood specimens in less than 1 h to enable routine clinical analysis. The force equilibrium method of dielectrophoretic field-flow fractionation (DEP-FFF) is shown to offer higher discrimination and throughput than earlier DEP trapping methods and to be applicable to clinical studies.

  8. Isolation of Circulating Tumor Cells by Dielectrophoresis

    International Nuclear Information System (INIS)

    Gascoyne, Peter R. C.; Shim, Sangjo

    2014-01-01

    Dielectrophoresis (DEP) is an electrokinetic method that allows intrinsic dielectric properties of suspended cells to be exploited for discrimination and separation. It has emerged as a promising method for isolating circulation tumor cells (CTCs) from blood. DEP-isolation of CTCs is independent of cell surface markers. Furthermore, isolated CTCs are viable and can be maintained in culture, suggesting that DEP methods should be more generally applicable than antibody-based approaches. The aim of this article is to review and synthesize for both oncologists and biomedical engineers interested in CTC isolation the pertinent characteristics of DEP and CTCs. The aim is to promote an understanding of the factors involved in realizing DEP-based instruments having both sufficient discrimination and throughput to allow routine analysis of CTCs in clinical practice. The article brings together: (a) the principles of DEP; (b) the biological basis for the dielectric differences between CTCs and blood cells; (c) why such differences are expected to be present for all types of tumors; and (d) instrumentation requirements to process 10 mL blood specimens in less than 1 h to enable routine clinical analysis. The force equilibrium method of dielectrophoretic field-flow fractionation (DEP-FFF) is shown to offer higher discrimination and throughput than earlier DEP trapping methods and to be applicable to clinical studies

  9. CT findings of muscular dystrophy; Limb girdle type (LG), myotonic type (MYD) and Duchenne type (DMD)

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, Hiroshi (Tokushima Univ. (Japan). School of Medicine)

    1991-07-01

    CT scans of muscles in patients with limb girdle type (LG), myotonic type (MYD) and Duchenne type (DMD) dystrophies were obtained at five different body levels: the neck, L3 vertebral body, pelvic girdle, thigh and lower leg. CT numbers, cross sectional areas (CSA) and %CSA of muscle or fat were evaluated in each muscle. The characteristic CT patterns for each type of muscular dystrophy were obtained. Compared with DMD, the gracilis and soleus were more severely damaged in LG and the biceps femoris remained relatively preserved among the hamstrings. In addition, the multifidus of the neck and sternocleidomastoid also were more severely damaged in MYD. This study suggests that CT scan will be useful in the differential diagnosis of these types of muscular dystrophy as well as in planning appropriate rehabilitation and detecting damaged muscles. (author).

  10. Multiaxial ratcheting with advanced kinematic and directional distortional hardening rules

    Czech Academy of Sciences Publication Activity Database

    Feigenbaum, H. P.; Dugdale, J.; Dafalias, Y.F.; Kourousis, K. I.; Plešek, Jiří

    2012-01-01

    Roč. 49, č. 22 (2012), s. 3063-3076 ISSN 0020-7683 R&D Projects: GA MŠk(CZ) ME10024 Institutional research plan: CEZ:AV0Z20760514 Keywords : plasticity * directional distortional hardening * thermodynamics Subject RIV: JJ - Other Materials Impact factor: 1.871, year: 2012 http://www.sciencedirect.com/science/article/pii/S0020768312002612

  11. Ratcheting tests on stainless steel 316 L at room temperature

    International Nuclear Information System (INIS)

    Cousseran, Pierre; Lebey, Jacques; Roche, Roland; Corbel, P.

    1980-06-01

    An experimental study on progressive distortion (tension-torsion) of simple structures (thin tubes) has been undertaken at the CEA. Results of tests performed on 316 L steel at room temperature are reported in this paper. There are chiefly: - plastic iso-deformation curves in the field of the 2 loadings applied to the specimen, i.e. the constant primary loading P (tension) and the secondary loading ΔQ (cyclic torsion at controled deformation); - indications on the evolution of torque and of torsion plastic deformation, during the cycling; - a convenient rule for evaluation of the progressive distortion is proposed. It is based on the use of an effective stress Psub(eff), which is determined from the tensile characteristics of the material, of when creep occurs, from creep curves [fr

  12. Thinking about gender types: cognitive organization of female and male types.

    Science.gov (United States)

    Vonk, Roos; Ashmore, Richard D

    2003-06-01

    We examined the content and dimensional structure of a large and representative sample of gender types. In Study 1, using an open-ended procedure, participants generated 306 different labels for female types (e.g. housewife, feminist, femme fatale, secretary, slob) and 310 for male types (e.g. workaholic, family man, sissy, womanizer, labourer). In Study 2A, a multidimensional configuration of 229 of these male and female types was derived from a free sorting task among a new set of participants. In Study 2B, a subset of types was judged on several dimensions of meaning, which were then fitted into the configuration of types. The most important dimensions in describing the structure of gender types were: young-old, masculine-feminine and traditional-modern. The masculine-feminine dimension showed that the male and female types were largely separated from each other; within each gender category, the types were ordered by their position on the masculine-feminine dimension. Several other aspects of current thinking about men and women are discussed.

  13. Spacesuit Soft Upper Torso Sizing Systems

    Science.gov (United States)

    Graziosi, David; Splawn, Keith

    2011-01-01

    The passive sizing system consists of a series of low-profile pulleys attached to the front and back of the shoulder bearings on a spacesuit soft upper torso (SUT), textile cord or stainless steel cable, and a modified commercial ratchet mechanism. The cord/cable is routed through the pulleys and attached to the ratchet mechanism mounted on the front of the spacesuit within reach of the suited subject. Upon actuating the ratchet mechanism, the shoulder bearing breadth is changed, providing variable upper torso sizing. The active system consists of a series of pressurizable nastic cells embedded into the fabric layers of a spacesuit SUT. These cells are integrated to the front and back of the SUT and are connected to an air source with a variable regulator. When inflated, the nastic cells provide a change in the overall shoulder bearing breadth of the spacesuit and thus, torso sizing. The research focused on the development of a high-performance sizing and actuation system. This technology has application as a suit-sizing mechanism to allow easier suit entry and more accurate suit fit with fewer torso sizes than the existing EMU (Extravehicular Mobility Unit) suit system. This advanced SUT will support NASA s Advanced EMU Evolutionary Concept of a two-sizes-fit-all upper torso for replacement of the current EMU hard upper torso (HUT). Both the passive and nastic sizing system approaches provide astronauts with real-time upper torso sizing, which translates into a more comfortable suit, providing enhanced fit resulting in improved crewmember performance during extravehicular activity. These systems will also benefit NASA by reducing flight logistics as well as overall suit system cost. The nastic sizing system approach provides additional structural redundancy over existing SUT designs by embedding additional coated fabric and uncoated fabric layers. Two sizing systems were selected to build into a prototype SUT: one active and one passive. From manned testing, it

  14. The influence of cell morphology on the compressive fatigue behavior of Ti-6Al-4V meshes fabricated by electron beam melting.

    Science.gov (United States)

    Zhao, S; Li, S J; Hou, W T; Hao, Y L; Yang, R; Misra, R D K

    2016-06-01

    Additive manufacturing technique is a promising approach for fabricating cellular bone substitutes such as trabecular and cortical bones because of the ability to adjust process parameters to fabricate different shapes and inner structures. Considering the long term safe application in human body, the metallic cellular implants are expected to exhibit superior fatigue property. The objective of the study was to study the influence of cell shape on the compressive fatigue behavior of Ti-6Al-4V mesh arrays fabricated by electron beam melting. The results indicated that the underlying fatigue mechanism for the three kinds of meshes (cubic, G7 and rhombic dodecahedron) is the interaction of cyclic ratcheting and fatigue crack growth on the struts, which is closely related to cumulative effect of buckling and bending deformation of the strut. By increasing the buckling deformation on the struts through cell shape design, the cyclic ratcheting rate of the meshes during cyclic deformation was decreased and accordingly, the compressive fatigue strength was increased. With increasing bending deformation of struts, fatigue crack growth in struts contributed more to the fatigue damage of meshes. Rough surface and pores contained in the struts significantly deteriorated the compressive fatigue strength of the struts. By optimizing the buckling and bending deformation through cell shape design, Ti-6Al-4V alloy cellular solids with high fatigue strength and low modulus can be fabricated by the EBM technique. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Guarded Cubical Type Theory

    DEFF Research Database (Denmark)

    Birkedal, Lars; Bizjak, Aleš; Clouston, Ranald

    2016-01-01

    This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning...... with coinductive types. We wish to implement GDTT with decidable type-checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-L\\"of type theory in which the identity type is replaced by abstract paths between...... terms. CTT provides a computational interpretation of functional extensionality, is conjectured to have decidable type checking, and has an implemented type-checker. Our new type theory, called guarded cubical type theory, provides a computational interpretation of extensionality for guarded recursive...

  16. Guarded Cubical Type Theory

    DEFF Research Database (Denmark)

    Birkedal, Lars; Bizjak, Aleš; Clouston, Ranald

    2016-01-01

    This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning...... with coinductive types. We wish to implement GDTT with decidable type checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-L\\"of type theory in which the identity type is replaced by abstract paths between...... terms. CTT provides a computational interpretation of functional extensionality, enjoys canonicity for the natural numbers type, and is conjectured to support decidable type-checking. Our new type theory, guarded cubical type theory (GCTT), provides a computational interpretation of extensionality...

  17. A Type System For Certified Runtime Type Analysis

    Science.gov (United States)

    2002-12-01

    1999 ACM SIGPLAN International Conf. on Functional Pro- gramming (ICFP’99), pages 183–196. ACM Press, September 1999. [Min97] Yasuhiko Minamide. Full...lifting of type parameters. Technical report, RIMS, Kyoto University, 1997. [MMH96] Yasuhiko Minamide, Greg Morrisett, and Robert Harper. Typed

  18. Guarded Type Promotion

    DEFF Research Database (Denmark)

    Winther, Johnni

    2011-01-01

    conditional using the instanceof operator and thus the cast type is redundantly mentioned twice. We propose a new typing rule for Java called Guarded Type Promotion aimed at eliminating the need for the explicit casts when guarded. This new typing rule is backward compatible and has been fully implemented...... in a Java 6 compiler. Through our extensive testing of real-life code we show that guarded casts account for approximately one fourth of all casts and that Guarded Type Promotion can eliminate the need for 95 percent of these guarded casts....

  19. Facts about Type 2

    Medline Plus

    Full Text Available ... Alert Day Diabetes Basics Home Symptoms Diagnosis America's Diabetes Challenge Type 1 Type 2 Facts About Type 2 Enroll in ... Where Do I Begin With Type2? Living With Type 1 Diabetes Enroll in the Living WIth Type 2 Diabetes ...

  20. Type 2 diabetes

    Science.gov (United States)

    ... type 2 diabetes; Oral hypoglycemic - type 2 diabetes; High blood sugar - type 2 diabetes ... your kidneys are working well ( microalbuminuria and serum creatinine ). Visit your eye doctor at least once a ...

  1. Ceramide content is higher in type I compared to type II fibers in obesity and type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Kristensen, Ditte Bech; Prats Gavalda, Clara; Larsen, Steen

    2012-01-01

    This study investigated fiber-type-specific muscle ceramide content in obese subjects and type 2 diabetes patients. Two substudies, one which compared type 2 diabetes patients to both lean- and obese BMI-matched subjects and the other study which compared lean body-matched post-obese, obese......, and control subjects, were performed. A fasting blood sample was obtained and plasma insulin and glucose determined. A muscle biopsy was obtained from deltoideus and vastus lateralis, and fiber-type ceramide content was determined by fluorescence immunohistochemistry. Insulin sensitivity estimated by Quicki...... index was higher in lean compared to type 2 diabetes patients and obese controls. Also in control and post-obese subjects, a higher insulin sensitivity was observed compared to obese subjects. Ceramide content was consistently higher in type I than in type II muscle fibers and higher in deltoideus than...

  2. Hybrid type I-type II superconducting behavior in magnesium diboride

    International Nuclear Information System (INIS)

    Kunchur, M.N.; Saracila, G.; Arcos, D.A.; Cui, Y.; Pogrebnyakov, A.; Orgiani, P.; Xi, X.X.

    2006-01-01

    In traditional type-II superconductors, an applied magnetic field depresses the transition temperature and introduces magnetic flux vortices that cause resistive losses accompanied by a broadening of the transition. High-field high-pulsed-current measurements have revealed a new hybrid behavior in disordered magnesium diboride films: The superconductivity survives high magnetic fields by entering a mixed state with vortices (like a type II superconductor) but holds its vortices nearly motionless and avoids dissipation (like a type I superconductor). A study of this phenomenon in magnesium diboride films with varying degrees of scattering indicate that the hybrid type I-type II behavior arises from the two-band nature of the superconductivity and the different degrees of influence that disorder exerts on its different bands. (author)

  3. Multiaxial creep-fatigue life analysis using strainrange partitioning

    International Nuclear Information System (INIS)

    Manson, S.S.; Halford, G.R.

    1976-01-01

    Strain-Range Partitioning is a recently developed method for treating creep-fatigue interaction at elevated temperature. Most of the work to date has been on uniaxially loaded specimens, whereas practical applications often involve load multiaxiality. This paper shows how the method can be extended to treat multiaxiality through a set of rules for combining the strain components in the three principal directions. Closed hysteresis loops, as well as plastic and creep strain ratcheting, are included. An application to hold-time tests in torsion is used to illustrate the approach

  4. Some Recent Developments in the Endochronic Theory with Application to Cyclic Histories

    Science.gov (United States)

    Valanis, K. C.; Lee, C. F.

    1983-01-01

    Constitutive equations with only two easily determined material constants predict the stress (strain) response of normalized mild steel to a variety of general strain (stress) histories, without a need for special unloading-reloading rules. The equations are derived from the endochronic theory of plasticity of isotropic materials with an intrinsic time scale defined in the plastic strain space. Agreement between theoretical predictions and experiments are are excellent quantitatively in cases of various uniaxial constant amplitude histories, variable uniaxial strain amplitude histories and cyclic relaxation. The cyclic ratcheting phenomenon is predicted by the present theory.

  5. Statistical properties of the energy exchanged between two heat baths coupled by thermal fluctuations

    DEFF Research Database (Denmark)

    Ciliberto, S.; Imparato, A.; Naert, A.

    2013-01-01

    Brownian particles kept at different temperatures and coupled by an elastic force. We measure the heat flowing between the two reservoirs and the thermodynamic work done by one part of the system on the other. We show that these quantities exhibit a long-time fluctuation theorem. Furthermore, we evaluate...... the fluctuating entropy, which satisfies a conservation law. These experimental results are fully justified by the theoretical analysis. Our results give more insight into the energy transfer in the famous Feynman ratchet, widely studied theoretically but never in an experiment....

  6. Development of PARA-ID Code to Simulate Inelastic Constitutive Equations and Their Parameter Identifications for the Next Generation Reactor Designs

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Lee, J. H.

    2006-03-01

    The establishment of the inelastic analysis technology is essential issue for a development of the next generation reactors subjected to elevated temperature operations. In this report, the peer investigation of constitutive equations in points of a ratcheting and creep-fatigue analysis is carried out and the methods extracting the constitutive parameters from experimental data are established. To perform simulations for each constitutive model, the PARA-ID (PARAmeter-IDentification) computer program is developed. By using this code, various simulations related with the parameter identification of the constitutive models are carried out

  7. Blood Types

    Science.gov (United States)

    ... blood, safe blood transfusions depend on careful blood typing and cross-matching. There are four major blood ... cause exceptions to the above patterns. ABO blood typing is not sufficient to prove or disprove paternity ...

  8. Identification of type II and type III pyoverdine receptors from Pseudomonas aeruginosa.

    Science.gov (United States)

    de Chial, Magaly; Ghysels, Bart; Beatson, Scott A; Geoffroy, Valérie; Meyer, Jean Marie; Pattery, Theresa; Baysse, Christine; Chablain, Patrice; Parsons, Yasmin N; Winstanley, Craig; Cordwell, Stuart J; Cornelis, Pierre

    2003-04-01

    Pseudomonas aeruginosa produces, under conditions of iron limitation, a high-affinity siderophore, pyoverdine (PVD), which is recognized at the level of the outer membrane by a specific TonB-dependent receptor, FpvA. So far, for P. aeruginosa, three different PVDs, differing in their peptide chain, have been described (types I-III), but only the FpvA receptor for type I is known. Two PVD-producing P. aeruginosa strains, one type II and one type III, were mutagenized by a mini-TnphoA3 transposon. In each case, one mutant unable to grow in the presence of the strong iron chelator ethylenediaminedihydroxyphenylacetic acid (EDDHA) and the cognate PVD was selected. The first mutant, which had an insertion in the pvdE gene, upstream of fpvA, was unable to take up type II PVD and showed resistance to pyocin S3, which is known to use type II FpvA as receptor. The second mutant was unable to take up type III PVD and had the transposon insertion in fpvA. Cosmid libraries of the respective type II and type III PVD wild-type strains were constructed and screened for clones restoring the capacity to grow in the presence of PVD. From the respective complementing genomic fragments, type II and type III fpvA sequences were determined. When in trans, type II and type III fpvA restored PVD production, uptake, growth in the presence of EDDHA and, in the case of type II fpvA, pyocin S3 sensitivity. Complementation of fpvA mutants obtained by allelic exchange was achieved by the presence of cognate fpvA in trans. All three receptors posses an N-terminal extension of about 70 amino acids, similar to FecA of Escherichia coli, but only FpvAI has a TAT export sequence at its N-terminal end.

  9. Types of Diabetes

    Science.gov (United States)

    ... Diabetes, Sexual, & Bladder Problems Clinical Trials What is Diabetes? Diabetes is a disease that occurs when your ... is serious. What are the different types of diabetes? The most common types of diabetes are type ...

  10. Extending Dylan's type system for better type inference and error detection

    DEFF Research Database (Denmark)

    Mehnert, Hannes

    2010-01-01

    a dynamically typed language. Dylan poses several special challenges for gradual typing, such as multiple return values, variable-arity methods and generic functions (multiple dispatch). In this paper Dylan is extended with function types and parametric polymorphism. We implemented the type system...... and aunification-based type inference algorithm in the mainstream Dylan compiler. As case study we use the Dylan standard library (roughly 32000 lines of code), which witnesses that the implementation generates faster code with fewer errors. Some previously undiscovered errors in the Dylan library were revealed....

  11. Types of Dementia

    Science.gov (United States)

    ... Kids For Teens For Parents & Teachers Resolving Family Conflicts The Holidays and Alzheimer's Glossary Virtual Library Online ... Use Map Selector Search Alzheimer’s Association Alzheimer's & Dementia Types of Dementia Types of Dementia Types of Dementia ...

  12. Chemical-free n-type and p-type multilayer-graphene transistors

    Energy Technology Data Exchange (ETDEWEB)

    Dissanayake, D. M. N. M., E-mail: nandithad@voxtel-inc.com [Voxtel Inc, Lockey Laboratories, University of Oregon, Eugene Oregon 97402 (United States); Eisaman, M. D. [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, New York 11794 (United States); Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794 (United States)

    2016-08-01

    A single-step doping method to fabricate n- and p-type multilayer graphene (MG) top-gate field effect transistors (GFETs) is demonstrated. The transistors are fabricated on soda-lime glass substrates, with the n-type doping of MG caused by the sodium in the substrate without the addition of external chemicals. Placing a hydrogen silsesquioxane (HSQ) barrier layer between the MG and the substrate blocks the n-doping, resulting in p-type doping of the MG above regions patterned with HSQ. The HSQ is deposited in a single fabrication step using electron beam lithography, allowing the patterning of arbitrary sub-micron spatial patterns of n- and p-type doping. When a MG channel is deposited partially on the barrier and partially on the glass substrate, a p-type and n-type doping profile is created, which is used for fabricating complementary transistors pairs. Unlike chemically doped GFETs in which the external dopants are typically introduced from the top, these substrate doped GFETs allow for a top gate which gives a stronger electrostatic coupling to the channel, reducing the operating gate bias. Overall, this method enables scalable fabrication of n- and p-type complementary top-gated GFETs with high spatial resolution for graphene microelectronic applications.

  13. Type 1 diabetes

    Science.gov (United States)

    Insulin-dependent diabetes; Juvenile onset diabetes; Diabetes - type 1; High blood sugar - type 1 diabetes ... Type 1 diabetes can occur at any age. It is most often diagnosed in children, adolescents, or young adults. Insulin is ...

  14. Type D (distressed) personality in primary care patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Nefs, Giesje; Pouwer, Francois; Pop, Victor J M

    2012-01-01

    D Scale-14 (DS14) in type 2 diabetes patients. METHODS: 1553 primary care patients with type 2 diabetes were assessed for demographic, clinical, lifestyle and psychological characteristics in 2007. A subgroup (n=1012) completed the DS14 again 1 year later. RESULTS: The two-factor model of the Type D...... or physiological risk factors, but Type D women had a more sedentary lifestyle (p=.003). Type D patients experienced less social support and more stressful life events, loneliness, and more depressed mood, anhedonia and anxiety (p0......OBJECTIVE: In cardiovascular research, Type D personality (high negative affectivity and social inhibition) has been associated with a more than 3-fold increased risk of adverse health outcomes. This study examined the validity and clinical correlates of the Type D construct as assessed by the Type...

  15. Product shape selectivity of MFI-type, MEL-type, and BEA-type zeolites in the catalytic hydroconversion of heptane

    NARCIS (Netherlands)

    Poursaeidesfahani, A.; de Lange, M.F.; Khodadadian, F.; Dubbeldam, D.; Rigutto, Marcello; Nair, Nitish; Vlugt, T.J.H.

    2017-01-01

    The influence of product shape selectivity on the bifunctional conversion of n-C7 by zeolite catalysts is investigated. Three different zeolite catalysts with different pore sizes (MFI-type, MEL-type, and BEA-type zeolites) have been investigated experimentally. For all three

  16. Accelerated Detection of Viral Particles by Combining AC Electric Field Effects and Micro-Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Matthew Robert Tomkins

    2015-01-01

    Full Text Available A detection method that combines electric field-assisted virus capture on antibody-decorated surfaces with the “fingerprinting” capabilities of micro-Raman spectroscopy is demonstrated for the case of M13 virus in water. The proof-of-principle surface mapping of model bioparticles (protein coated polystyrene spheres captured by an AC electric field between planar microelectrodes is presented with a methodology for analyzing the resulting spectra by comparing relative peak intensities. The same principle is applied to dielectrophoretically captured M13 phage particles whose presence is indirectly confirmed with micro-Raman spectroscopy using NeutrAvidin-Cy3 as a labeling molecule. It is concluded that the combination of electrokinetically driven virus sampling and micro-Raman based signal transduction provides a promising approach for time-efficient and in situ detection of viruses.

  17. Accelerated detection of viral particles by combining AC electric field effects and micro-Raman spectroscopy.

    Science.gov (United States)

    Tomkins, Matthew Robert; Liao, David Shiqi; Docoslis, Aristides

    2015-01-08

    A detection method that combines electric field-assisted virus capture on antibody-decorated surfaces with the "fingerprinting" capabilities of micro-Raman spectroscopy is demonstrated for the case of M13 virus in water. The proof-of-principle surface mapping of model bioparticles (protein coated polystyrene spheres) captured by an AC electric field between planar microelectrodes is presented with a methodology for analyzing the resulting spectra by comparing relative peak intensities. The same principle is applied to dielectrophoretically captured M13 phage particles whose presence is indirectly confirmed with micro-Raman spectroscopy using NeutrAvidin-Cy3 as a labeling molecule. It is concluded that the combination of electrokinetically driven virus sampling and micro-Raman based signal transduction provides a promising approach for time-efficient and in situ detection of viruses.

  18. Numerical and Experimental Study of Optoelectronic Trapping on Iron-Doped Lithium Niobate Substrate

    Directory of Open Access Journals (Sweden)

    Michela Gazzetto

    2016-09-01

    Full Text Available Optoelectronic tweezers (OET are a promising technique for the realization of reconfigurable systems suitable to trap and manipulate microparticles. In particular, dielectrophoretic (DEP forces produced by OET represent a valid alternative to micro-fabricated metal electrodes, as strong and spatially reconfigurable electrical fields can be induced in a photoconductive layer by means of light-driven phenomena. In this paper we report, and compare with the experimental data, the results obtained by analyzing the spatial configurations of the DEP-forces produced by a 532 nm laser beam, with Gaussian intensity distribution, impinging on a Fe-doped Lithium Niobate substrate. Furthermore, we also present a promising preliminary result for water-droplets trapping, which could open the way to the application of this technique to biological samples manipulation.

  19. Formation of nanogaps in InAs nanowires by selectively etching embedded InP segments.

    Science.gov (United States)

    Schukfeh, M I; Storm, K; Hansen, A; Thelander, C; Hinze, P; Beyer, A; Weimann, T; Samuelson, L; Tornow, M

    2014-11-21

    We present a method to fabricate nanometer scale gaps within InAs nanowires by selectively etching InAs/InP heterostructure nanowires. We used vapor-liquid-solid grown InAs nanowires with embedded InP segments of 10-60 nm length and developed an etching recipe to selectively remove the InP segment. A photo-assisted wet etching process in a mixture of acetic acid and hydrobromic acid gave high selectivity, with accurate removal of InP segments down to 20 nm, leaving the InAs wire largely unattacked, as verified using scanning electron and transmission electron microscopy. The obtained nanogaps in InAs wires have potential as semiconducting electrodes to investigate electronic transport in nanoscale objects. We demonstrate this functionality by dielectrophoretically trapping 30 nm diameter gold nanoparticles into the gap.

  20. Formation of nanogaps in InAs nanowires by selectively etching embedded InP segments

    International Nuclear Information System (INIS)

    Schukfeh, M I; Hansen, A; Tornow, M; Storm, K; Thelander, C; Samuelson, L; Hinze, P; Weimann, T; Beyer, A

    2014-01-01

    We present a method to fabricate nanometer scale gaps within InAs nanowires by selectively etching InAs/InP heterostructure nanowires. We used vapor–liquid–solid grown InAs nanowires with embedded InP segments of 10–60 nm length and developed an etching recipe to selectively remove the InP segment. A photo-assisted wet etching process in a mixture of acetic acid and hydrobromic acid gave high selectivity, with accurate removal of InP segments down to 20 nm, leaving the InAs wire largely unattacked, as verified using scanning electron and transmission electron microscopy. The obtained nanogaps in InAs wires have potential as semiconducting electrodes to investigate electronic transport in nanoscale objects. We demonstrate this functionality by dielectrophoretically trapping 30 nm diameter gold nanoparticles into the gap. (paper)