WorldWideScience

Sample records for rat single-pass cerebral

  1. Intestinal permeability of forskolin by in situ single pass perfusion in rats.

    Science.gov (United States)

    Liu, Zhen-Jun; Jiang, Dong-bo; Tian, Lu-Lu; Yin, Jia-Jun; Huang, Jian-Ming; Weng, Wei-Yu

    2012-05-01

    The intestinal permeability of forskolin was investigated using a single pass intestinal perfusion (SPIP) technique in rats. SPIP was performed in different intestinal segments (duodenum, jejunum, ileum, and colon) with three concentrations of forskolin (11.90, 29.75, and 59.90 µg/mL). The investigations of adsorption and stability were performed to ensure that the disappearance of forskolin from the perfusate was due to intestinal absorption. The results of the SPIP study indicated that forskolin could be absorbed in all segments of the intestine. The effective permeability (P (eff)) of forskolin was in the range of drugs with high intestinal permeability. The P (eff) was highest in the duodenum as compared to other intestinal segments. The decreases of P (eff) in the duodenum and ileum at the highest forskolin concentration suggested a saturable transport process. The addition of verapamil, a P-glycoprotein inhibitor, significantly enhanced the permeability of forskolin across the rat jejunum. The absorbed fraction of dissolved forskolin after oral administration in humans was estimated to be 100 % calculated from rat P (eff). In conclusion, dissolved forskolin can be absorbed readily in the intestine. The low aqueous solubility of forskolin might be a crucial factor for its poor oral bioavailability. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Comparison of the gravimetric, phenol red, and 14C-PEG-3350 methods to determine water absorption in the rat single-pass intestinal perfusion model

    OpenAIRE

    Sutton, Steven C.; Rinaldi, M. T. S.; Vukovinsky, K. E.

    2001-01-01

    This study was undertaken to determine whether the gravimetric method provided an accurate measure of water flux correction and to compare the gravimetric method with methods that employ nonabsorbed markers (eg, phenol red and 14C-PEG-3350). Phenol red, 14C-PEG-3350, and 4-[2-[[2-(6-amino-3-pyridinyl)-2-hydroxyethyl]amino]ethoxy]-methyl ester, (R)-benzene acetic acid (Compound I) were co-perfused in situ through the jejunum of 9 anesthetized rats (single-pass intestinal perfusion [SPIP]). Wat...

  3. Segmental-dependent membrane permeability along the intestine following oral drug administration: Evaluation of a triple single-pass intestinal perfusion (TSPIP) approach in the rat.

    Science.gov (United States)

    Dahan, Arik; West, Brady T; Amidon, Gordon L

    2009-02-15

    In this paper we evaluate a modified approach to the traditional single-pass intestinal perfusion (SPIP) rat model in investigating segmental-dependent permeability along the intestine following oral drug administration. Whereas in the traditional model one single segment of the intestine is perfused, we have simultaneously perfused three individual segments of each rat intestine: proximal jejunum, mid-small intestine and distal ileum, enabling to obtain tripled data from each rat compared to the traditional model. Three drugs, with different permeabilities, were utilized to evaluate the model: metoprolol, propranolol and cimetidine. Data was evaluated in comparison to the traditional method. Metoprolol and propranolol showed similar P(eff) values in the modified model in all segments. Segmental-dependent permeability was obtained for cimetidine, with lower P(eff) in the distal parts. Similar P(eff) values for all drugs were obtained in the traditional method, illustrating that the modified model is as accurate as the traditional, throughout a wide range of permeability characteristics, whether the permeability is constant or segment-dependent along the intestine. Three-fold higher statistical power to detect segmental-dependency was obtained in the modified approach, as each subject serves as his own control. In conclusion, the Triple SPIP model can reduce the number of animals utilized in segmental-dependent permeability research without compromising the quality of the data obtained.

  4. Comparison of the gravimetric, phenol red, and 14C-PEG-3350 methods to determine water absorption in the rat single-pass intestinal perfusion model.

    Science.gov (United States)

    Sutton, S C; Rinaldi, M T; Vukovinsky, K E

    2001-01-01

    This study was undertaken to determine whether the gravimetric method provided an accurate measure of water flux correction and to compare the gravimetric method with methods that employ nonabsorbed markers (eg, phenol red and 14C-PEG-3350). Phenol red,14C-PEG-3350, and 4-[2-[[2-(6-amino-3-pyridinyl)-2-hydroxyethyl]amino]ethoxy]-, methyl ester, (R)-benzene acetic acid (Compound I) were co-perfused in situ through the jejunum of 9 anesthetized rats (single-pass intestinal perfusion [SPIP]). Water absorption was determined from the phenol red,14C-PEG-3350, and gravimetric methods. The absorption rate constant (ka) for Compound I was calculated. Both phenol red and 14C-PEG-3350 were appreciably absorbed, underestimating the extent of water flux in the SPIP model. The average +/- SD water flux microg/h/cm) for the 3 methods were 68.9 +/- 28.2 (gravimetric), 26.8 +/- 49.2 (phenol red), and 34.9 +/- 21.9 (14C-PEG-3350). The (average +/- SD) ka for Compound I (uncorrected for water flux) was 0.024 +/- 0.005 min(-1). For the corrected, gravimetric method, the average +/- SD was 0.031 +/- 0.001 min(-1). The gravimetric method for correcting water flux was as accurate as the 2 "nonabsorbed" marker methods.

  5. Single Pass Albumin Dialysis in Hepatorenal Syndrome

    Directory of Open Access Journals (Sweden)

    Rahman Ebadur

    2008-01-01

    Full Text Available Hepatorenal syndrome (HRS is the most appalling complication of acute or chronic liver disease with 90% mortality rate. Single pass albumin dialysis (SPAD can be considered as a noble liver support technique in HRS. Here, we present a case of a young healthy patient who developed hyperacute fulminant liver failure that progressed to HRS. The patient was offered SPAD as a bridge to liver transplantation, however, it resulted in an excellent recovery.

  6. Study of Absorption Characteristics of the Total Saponins from Radix Ilicis Pubescentis in an In Situ Single-Pass Intestinal Perfusion (SPIP Rat Model by Using Ultra Performance Liquid Chromatography (UPLC

    Directory of Open Access Journals (Sweden)

    Guojun Kuang

    2017-11-01

    Full Text Available In contrast to the extensively reported therapeutic activities, far less attention has been paid to the intestinal absorption of the total saponins from Radix Ilicis Pubescentis (in Chinese Mao-Dong-Qing, MDQ. This study aimed to investigate the intestinal absorption characteristics of ilexgenin A (C1, ilexsaponin A1 (C2, ilexsaponin B1 (C3, ilexsaponin B2 (C4, ilexsaponin B3 (DC1, and ilexoside O (DC2 when administrated with the total saponins from MDQ (MDQ-TS. An UPLC method for simultaneous determination of C1, C2, C3, C4, DC1, and DC2 in intestinal outflow perfusate was developed and validated. The absorption characteristics of MDQ-TS were investigated by evaluating the effects of intestinal segments, drug concentration, P-glycoprotein (P-gp inhibitor (verapomil, endocytosis inhibitor (amantadine and ethylene diamine tetraacetic acid (EDTA, tight junction modulator on the intestinal transportation of MDQ-TS by using a single-pass intestinal perfusion (SPIP rat model, and the influence of co-existing components on the intestinal transport of the six saponins was discussed. The results showed that effective apparent permeability (Papp of C1, C2, C3, C4, and DC2 administrated in MDQ-TS form had no segment-dependent changes at low and middle dosage levels. C1, C2, C3, D4, DC1, and DC2 administrated in MDQ-TS form all exhibited excellent transmembrane permeability with Papp > 0.12 × 10−2 cm·min−1. Meanwhile, Papp and effective absorption rate constant (Ka values for the most saponins showed concentration dependence and saturation characteristics. After combining with P-gp inhibitor of verapamil, Papp of C2, C3, and DC1 in MDQ-TS group was significantly increased up to about 2.3-fold, 1.4-fold, and 3.4-fold, respectively in comparison to that of non-verapamil added group. Verapamil was found to improve the absorption of C2, C3, and DC1, indicating the involvement of an active transport mechanism in the absorption process. Compared with the

  7. Cerebral microbleeds in a neonatal rat model.

    Directory of Open Access Journals (Sweden)

    Brianna Carusillo Theriault

    Full Text Available In adult humans, cerebral microbleeds play important roles in neurodegenerative diseases but in neonates, the consequences of cerebral microbleeds are unknown. In rats, a single pro-angiogenic stimulus in utero predisposes to cerebral microbleeds after birth at term, a time when late oligodendrocyte progenitors (pre-oligodendrocytes dominate in the rat brain. We hypothesized that two independent pro-angiogenic stimuli in utero would be associated with a high likelihood of perinatal microbleeds that would be severely damaging to white matter.Pregnant Wistar rats were subjected to intrauterine ischemia (IUI and low-dose maternal lipopolysaccharide (mLPS at embryonic day (E 19. Pups were born vaginally or abdominally at E21-22. Brains were evaluated for angiogenic markers, microhemorrhages, myelination and axonal development. Neurological function was assessed out to 6 weeks.mRNA (Vegf, Cd31, Mmp2, Mmp9, Timp1, Timp2 and protein (CD31, MMP2, MMP9 for angiogenic markers, in situ proteolytic activity, and collagen IV immunoreactivity were altered, consistent with an angiogenic response. Vaginally delivered pups exposed to prenatal IUI+mLPS had spontaneous cerebral microbleeds, abnormal neurological function, and dysmorphic, hypomyelinated white matter and axonopathy. Pups exposed to the same pro-angiogenic stimuli in utero but delivered abdominally had minimal cerebral microbleeds, preserved myelination and axonal development, and neurological function similar to naïve controls.In rats, pro-angiogenic stimuli in utero can predispose to vascular fragility and lead to cerebral microbleeds. The study of microbleeds in the neonatal rat brain at full gestation may give insights into the consequences of microbleeds in human preterm infants during critical periods of white matter development.

  8. Opiates and cerebral functional activity in rats

    International Nuclear Information System (INIS)

    Trusk, T.C.

    1986-01-01

    Cerebral activity was measured using the free-fatty acid [1- 14 C] octanoate as a fast functional tracer in conscious, unrestrained rats 5 minutes after intravenous injection of heroin, cocaine or saline vehicle. Regional changes of octanoate labeling density in the autoradiograms relative to saline-injected animals were used to determine the functional activity effects of each drug. Heroin and cocaine each produced a distinctive pattern of activity increases and suppression throughout the rat brain. Similar regional changes induced by both drugs were found in limbic brain regions implicated in drug reinforcement. Labeled octanoate autoradiography was used to measure the cerebral functional response to a tone that had previously been paired to heroin injections. Rats were trained in groups of three consisting of one heroin self-administration animal, and two animals receiving yoked infusion of heroin or saline. A tone was paired with each infusion during training. Behavioral experiments in similarly trained rats demonstrated that these training conditions impart secondary reinforcing properties to the tone in animals previously self-administering heroin, while the tone remains behaviorally neutral in yoked-infusion rats. Cerebral functional activity was measured during presentation of the tone without drug infusion. Octanoate labeling density changed in fifteen brain areas in response to the tone previously paired to heroin without response contingency. Labeling density was significantly modified in sixteen regions as a result of previously pairing the tone to response-contingent heroin infusions

  9. Opiates and cerebral functional activity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Trusk, T.C.

    1986-01-01

    Cerebral activity was measured using the free-fatty acid (1-/sup 14/C) octanoate as a fast functional tracer in conscious, unrestrained rats 5 minutes after intravenous injection of heroin, cocaine or saline vehicle. Regional changes of octanoate labeling density in the autoradiograms relative to saline-injected animals were used to determine the functional activity effects of each drug. Heroin and cocaine each produced a distinctive pattern of activity increases and suppression throughout the rat brain. Similar regional changes induced by both drugs were found in limbic brain regions implicated in drug reinforcement. Labeled octanoate autoradiography was used to measure the cerebral functional response to a tone that had previously been paired to heroin injections. Rats were trained in groups of three consisting of one heroin self-administration animal, and two animals receiving yoked infusion of heroin or saline. A tone was paired with each infusion during training. Behavioral experiments in similarly trained rats demonstrated that these training conditions impart secondary reinforcing properties to the tone in animals previously self-administering heroin, while the tone remains behaviorally neutral in yoked-infusion rats. Cerebral functional activity was measured during presentation of the tone without drug infusion. Octanoate labeling density changed in fifteen brain areas in response to the tone previously paired to heroin without response contingency. Labeling density was significantly modified in sixteen regions as a result of previously pairing the tone to response-contingent heroin infusions.

  10. Axioms for behavioural congruence of single-pass instruction sequences

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2017-01-01

    In program algebra, an algebraic theory of single-pass instruction sequences, three congruences on instruction sequences are paid attention to: instruction sequence congruence, structural congruence, and behavioural congruence. Sound and complete axiom systems for the first two congruences were

  11. N-isopropyl-[123I]p-iodoamphetamine: single-pass brain uptake and washout; binding to brain synaptosomes; and localization in dog and monkey brain

    International Nuclear Information System (INIS)

    Winchell, H.S.; Horst, W.D.; Braun, L.; Oldendorf, W.H.; Hattner, R.; Parker, H.

    1980-01-01

    The kinetics of N-isopropyl-p-[ 123 I]iodoamphetamine in rat brains were determined by serial measurements of brain uptake index (BUI) after intracarotid injection; also studied were its effects on amine uptake and release in rat's brain cortical synaptosomes; and its in vivo distribution in the dog and monkey. No specific localization in brain nuclei of the dog was seen, but there was progressive accumulation in the eyes. Rapid initial brain uptake in the ketamine-sedated monkey was noted, and further slow brain uptake occurred during the next 20 min but without retinal localization. High levels of brain activity were maintained for several hours. The quantitative initial single-pass clearance of the agent in the brain suggests its use in evaluation of regional brain perfusion. Its interaction with brain amine-binding sites suggests its possible application in studies of cerebral amine metabolism

  12. Cerebral ammonia metabolism in hyperammonemic rats

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, A J; Mora, S N; Cruz, N F; Gelbard, A S

    1985-06-01

    The short-term metabolic fate of blood-borne (/sup 13/N)ammonia was determined in the brains of chronically (8- or 14-week portacaval-shunted rats) or acutely (urease-treated) hyperammonemic rats. Using a freeze-blowing technique it was shown that the overwhelming route for metabolism of blood-borne (/sup 13/N)ammonia in normal, chronically hyperammonemic and acutely hyperammonemic rat brain was incorporation into glutamine (amide). However, the rate of turnover of (/sup 13/N)ammonia to L-(amide-/sup 13/N)glutamine was slower in the hyperammonemic rat brain than in the normal rat brain. The activities of several enzymes involved in cerebral ammonia and glutamate metabolism were also measured in the brains of 14-week portacaval-shunted rats. The rat brain appears to have little capacity to adapt to chronic hyperammonemia because there were no differences in activity compared with those of weight-matched controls for the following brain enzymes involved in glutamate/ammonia metabolism: glutamine synthetase, glutamate dehydrogenase, aspartate aminotransferase, glutamine transaminase, glutaminase, and glutamate decarboxylase. The present findings are discussed in the context of the known deleterious effects on the CNS of high ammonia levels in a variety of diseases.

  13. Forest Analysis by Single-Pass Millimeterwave SAR Tomography

    OpenAIRE

    Schmitt, Michael; Zhu, Xiao Xiang

    2016-01-01

    Recent investigations show that millimeterwave SAR tomography provides an interesting means for the analysis of forested areas, especially if single-pass systems are employed. Providing very high resolutions in the decimeter domain and highly coherent data also for slightly windy conditions, even individual trees can be considered. Besides, it has been shown that a certain amount of canopy penetration is possible in spite of the short wavelength.

  14. Milestone experiments for single pass UV/X-ray FELs

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1994-01-01

    In the past decade, significant advances have been made in the theory and technology of high brightness electron beams and single pass FELS. These developments facilitate the construction of practical UV and X-ray FELs and has prompted proposals to the DOE for the construction of such facilities. There are several important experiments to be performed before committing to the construction of dedicated user facilities. Two experiments are under construction in the IR, the UCLA Self Amplified Spontaneous Emission experiment and the BNL laser seeded Harmonic Generation experiment. A multi-institution collaboration is being organized about a 210 MeV electron linac available at BNL and the 10 meter tong NISUS wiggler. This experiment will be done in the UV and will test various experimental aspects of electron beam dynamics, FEL exponential regime with gain guiding, start up from noise, seeding and harmonic generation. These experiments will advance the state of FEL research and lead towards future dedicated users' facilities

  15. Milestone experiments for single pass UV/X-ray FELs

    Science.gov (United States)

    Ben-Zvi, Ilan

    1995-04-01

    In the past decade, significant advances have been made in the theory and technology of high brightness electron beams and single pass FELs. These developments facilitate the construction of practical UV and X-ray FELs and has prompted proposals to the DOE for the construction of such facilities. There are several important experiments to be performed before committing to the construction of dedicated user facilities. Two experiments are under construction in the IR, the UCLA self-amplified spontaneous emission experiment and the BNL laser seeded harmonic generation experiment. A multi-institution collaboration is being organized about a 210 MeV electron linac available at BNL and the 10 m long NISUS wiggler. This experiment will be done in the UV and will test various experimental aspects of electron beam dynamics, FEL exponential regime with gain guiding, start-up from noise, seeding and harmonic generation. These experiments will advance the state of FEL research and lead towards future dedicated users' facilities.

  16. Single Pass Stripline Beam Position Monitor Design, Fabrication and Commissioning

    Directory of Open Access Journals (Sweden)

    McKinlay J.

    2012-10-01

    Full Text Available To monitor the position of the electron beam during transport from the Booster Synchrotron to the Storage Ring at the Australian Synchrotron, a stripline Beam Position Monitor (BPM has been designed, fabricated and installed in-house. The design was based on an existing stripline in the Booster and modified for the transfer line with a particular emphasis on ensuring the line impedance is properly matched to the detector system. The initial bench tests of a prototype stripline showed that the fabrication of the four individual striplines in the BPM was made precisely, each with a measured standing wave ratio (SWR of 1.8 at 500 MHz. Further optimization for impedance matching will be done for new stripline BPMs. The linearity and gain factor was measured with the detector system. The detector system that digitizes the signals is an Instrumentation Technologies Brilliance Single Pass [1]. The results show an error of 1 mm at an offset (from the electrical centre of 10 mm when a linear gain factor is assumed and an RMS noise of ~150 um that decreases to < 10 um with increasing signal intensity. The results were under our requirements for the transport line. The commissioning results of the stripline will also be presented showing a strong signal for an electron beam with an estimated integrated charge of ~50 nC with a position stability of 28 um (horizontal and 75 um (vertical.

  17. Single Pass Stripline Beam Position Monitor Design, Fabrication and Commissioning

    Science.gov (United States)

    Tan, Y.-R. E.; Wang, D.; Van Garderen, E.; McKinlay, J.

    2012-10-01

    To monitor the position of the electron beam during transport from the Booster Synchrotron to the Storage Ring at the Australian Synchrotron, a stripline Beam Position Monitor (BPM) has been designed, fabricated and installed in-house. The design was based on an existing stripline in the Booster and modified for the transfer line with a particular emphasis on ensuring the line impedance is properly matched to the detector system. The initial bench tests of a prototype stripline showed that the fabrication of the four individual striplines in the BPM was made precisely, each with a measured standing wave ratio (SWR) of 1.8 at 500 MHz. Further optimization for impedance matching will be done for new stripline BPMs. The linearity and gain factor was measured with the detector system. The detector system that digitizes the signals is an Instrumentation Technologies Brilliance Single Pass [1]. The results show an error of 1 mm at an offset (from the electrical centre) of 10 mm when a linear gain factor is assumed and an RMS noise of ~150 um that decreases to < 10 um with increasing signal intensity. The results were under our requirements for the transport line. The commissioning results of the stripline will also be presented showing a strong signal for an electron beam with an estimated integrated charge of ~50 nC with a position stability of 28 um (horizontal) and 75 um (vertical).

  18. The Single Pass RF Driver: Final beam compression

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Robert, E-mail: rjburke@fusionpowercorporation.com

    2014-01-01

    The Single Pass RF Driver (SPRFD) compacts the beam from the linac without storage rings by manipulations that take advantage of the multiplicity of isotopes (16), the preserved µbunch structure, and increased total linac current. Magnetic switches on a first set of delay lines rearrange the internal structure of the various isotopic beams. A second set of delay lines sets the relative timing of the 16 isotopic beam sections so they will telescope at the pellet, in one of multiple fusion chambers, e.g. 10. Shortening each isotopic beam section uses preservation of the µbunch structure up to the final ∼2 km drift before final focus. Just before the final drift, differential acceleration of the µbunches in each isotopic beam section (128 total) launches an axial collapse, referred to as the “Slick”. The µbunches interpenetrate as their centers of mass move toward each other and individual µbunches lengthen due to their momentum spread. In longitudinal phase space they slide over one another as they lengthen in time and slim down in instantaneous energy spread. The permissible amount of µbunch lengthening is set by the design pulse shape at the pellet, which varies for different groups of isotopes. In narrow bands of ranges according to the role for each isotope group in the pellet, the ranges extend from 1 to 10 g/cm{sup 2} to drive the cylinder barrel and thin hemispherical end caps, to heat the ∼0.5 g/cm{sup 2}ρR fast ignition zone, and to improve the quasi-sphericity of the compression of the fast ignition zones at the pellet's ends. Because the µbunch–µbunch momentum differences are correlated, time-ramped beamline transport elements close after the differential accelerator are used to correct the associated shifts of focal point. Beam neutralization is needed after the differential acceleration until adjacent bunches begin to overlap. Concurrent collapse of each isotope and telescoping of the 16 isotopes cause the current in each beamline

  19. The Single Pass RF Driver: Final beam compression

    International Nuclear Information System (INIS)

    Burke, Robert

    2014-01-01

    The Single Pass RF Driver (SPRFD) compacts the beam from the linac without storage rings by manipulations that take advantage of the multiplicity of isotopes (16), the preserved µbunch structure, and increased total linac current. Magnetic switches on a first set of delay lines rearrange the internal structure of the various isotopic beams. A second set of delay lines sets the relative timing of the 16 isotopic beam sections so they will telescope at the pellet, in one of multiple fusion chambers, e.g. 10. Shortening each isotopic beam section uses preservation of the µbunch structure up to the final ∼2 km drift before final focus. Just before the final drift, differential acceleration of the µbunches in each isotopic beam section (128 total) launches an axial collapse, referred to as the “Slick”. The µbunches interpenetrate as their centers of mass move toward each other and individual µbunches lengthen due to their momentum spread. In longitudinal phase space they slide over one another as they lengthen in time and slim down in instantaneous energy spread. The permissible amount of µbunch lengthening is set by the design pulse shape at the pellet, which varies for different groups of isotopes. In narrow bands of ranges according to the role for each isotope group in the pellet, the ranges extend from 1 to 10 g/cm 2 to drive the cylinder barrel and thin hemispherical end caps, to heat the ∼0.5 g/cm 2 ρR fast ignition zone, and to improve the quasi-sphericity of the compression of the fast ignition zones at the pellet's ends. Because the µbunch–µbunch momentum differences are correlated, time-ramped beamline transport elements close after the differential accelerator are used to correct the associated shifts of focal point. Beam neutralization is needed after the differential acceleration until adjacent bunches begin to overlap. Concurrent collapse of each isotope and telescoping of the 16 isotopes cause the current in each beamline to rise

  20. Effect of thuringiensin on adenylate cyclase in rat cerebral cortex

    International Nuclear Information System (INIS)

    Tsai, S.-F.; Yang Chi; Wang, S.-C.; Wang, J.-S.; Hwang, J.-S.; Ho, S.-P.

    2004-01-01

    The purpose of this work is to evaluate the effect of thuringiensin on the adenylate cyclase activity in rat cerebral cortex. The cyclic adenosine 3'5'-monophosphate (cAMP) levels were shown to be dose-dependently elevated 17-450% or 54-377% by thuringiensin at concentrations of 10 μM-100 mM or 0.5-4 mM, due to the activation of basal adenylate cyclase activity of rat cerebral cortical membrane preparation. Thuringiensin also activated basal activity of a commercial adenylate cyclase from Escherichia coli. However, the forskolin-stimulated adenylate cyclase activity in rat cerebral cortex was inhibited by thuringiensin at concentrations of 1-100 μM, thus cAMP production decreased. Furthermore, thuringiensin or adenylate cyclase inhibitor (MDL-12330A) reduced the forskolin (10 μM)-stimulated adenylate cyclase activity at concentrations of 10 μM, 49% or 43% inhibition, respectively. In conclusion, this study demonstrated that thuringiensin could activate basal adenylate cyclase activity and increase cAMP concentrations in rat cerebral cortex or in a commercial adenylate cyclase. Comparing the dose-dependent effects of thuringiensin on the basal and forskolin-stimulated adenylate cyclase activity, thuringiensin can be regarded as a weak activator of adenylate cyclase or an inhibitor of forskolin-stimulated adenylate cyclase

  1. Induction of interleukin-1β mRNA after focal cerebral ischaemia in the rat

    NARCIS (Netherlands)

    Buttini, M.; Sauter, A.; Boddeke, H.W.G.M.

    1994-01-01

    The expression of interleukin-1β (IL-1β) mRNA in the brain in response to cerebral ischaemia in rats was examined using in situ hybridization histochemistry. Focal cerebral ischaemia was induced in spontaneously hypertensive rats by permanent occlusion of the left middle cerebral artery (MCAO).

  2. INDUCTION OF INTERLEUKIN-1-BETA MESSENGER-RNA AFTER FOCAL CEREBRAL-ISCHEMIA IN THE RAT

    NARCIS (Netherlands)

    BUTTINI, M; SAUTER, A; BODDEKE, HWGM

    The expression of interleukin-1beta (IL-1beta) mRNA in the brain in response to cerebral ischaemia in rats was examined using in situ hybridization histochemistry. Focal cerebral ischaemia was induced in spontaneously hypertensive rats by permanent occlusion of the left middle cerebral artery

  3. Metabolite changes in the ipsilateral and contralateral cerebral hemispheres in rats with middle cerebral artery occlusion

    Directory of Open Access Journals (Sweden)

    Lei Ruan

    2017-01-01

    Full Text Available Cerebral ischemia not only causes pathological changes in the ischemic areas but also induces a series of secondary changes in more distal brain regions (such as the contralateral cerebral hemisphere. The impact of supratentorial lesions, which are the most common type of lesion, on the contralateral cerebellum has been studied in patients by positron emission tomography, single photon emission computed tomography, magnetic resonance imaging and diffusion tensor imaging. In the present study, we investigated metabolite changes in the contralateral cerebral hemisphere after supratentorial unilateral ischemia using nuclear magnetic resonance spectroscopy-based metabonomics. The permanent middle cerebral artery occlusion model of ischemic stroke was established in rats. Rats were randomly divided into the middle cerebral artery occlusion 1-, 3-, 9- and 24-hour groups and the sham group. 1H nuclear magnetic resonance spectroscopy was used to detect metabolites in the left and right cerebral hemispheres. Compared with the sham group, the concentrations of lactate, alanine, γ-aminobutyric acid, choline and glycine in the ischemic cerebral hemisphere were increased in the acute stage, while the concentrations of N-acetyl aspartate, creatinine, glutamate and aspartate were decreased. This demonstrates that there is an upregulation of anaerobic glycolysis (shown by the increase in lactate, a perturbation of choline metabolism (suggested by the increase in choline, neuronal cell damage (shown by the decrease in N-acetyl aspartate and neurotransmitter imbalance (evidenced by the increase in γ-aminobutyric acid and glycine and by the decrease in glutamate and aspartate in the acute stage of cerebral ischemia. In the contralateral hemisphere, the concentrations of lactate, alanine, glycine, choline and aspartate were increased, while the concentrations of γ-aminobutyric acid, glutamate and creatinine were decreased. This suggests that there is a

  4. Enhanced vasomotion of cerebral arterioles in spontaneously hypertensive rats

    Science.gov (United States)

    Lefer, D. J.; Lynch, C. D.; Lapinski, K. C.; Hutchins, P. M.

    1990-01-01

    Intrinsic rhythmic changes in the diameter of pial cerebral arterioles (30-70 microns) in anesthetized normotensive and hypertensive rats were assessed in vivo to determine if any significant differences exist between the two strains. All diameter measurements were analyzed using a traditional graphic analysis technique and a new frequency spectrum analysis technique known as the Prony Spectral Line Estimator. Graphic analysis of the data revealed that spontaneously hypertensive rats (SHR) possess a significantly greater fundamental frequency (5.57 +/- 0.28 cycles/min) of vasomotion compared to the control Wistar-Kyoto normotensive rats (WKY) (1.95 +/- 0.37 cycles/min). Furthermore, the SHR cerebral arterioles exhibited a significantly greater amplitude of vasomotion (10.07 +/- 0.70 microns) when compared to the WKY cerebral arterioles of the same diameter (8.10 +/- 0.70 microns). Diameter measurements processed with the Prony technique revealed that the fundamental frequency of vasomotion in SHR cerebral arterioles (6.14 +/- 0.39 cycles/min) was also significantly greater than that of the WKY cerebral arterioles (2.99 +/- 0.42 cycles/min). The mean amplitudes of vasomotion in the SHR and WKY strains obtained by the Prony analysis were found not to be statistically significant in contrast to the graphic analysis of the vasomotion amplitude of the arterioles. In addition, the Prony system was able to consistently uncover a very low frequency of vasomotion in both strains of rats that was typically less than 1 cycle/min and was not significantly different between the two strains. The amplitude of this slow frequency was also not significantly different between the two strains. The amplitude of the slow frequency of vasomotion (less than 1 cycle/min) was not different from the amplitude of the higher frequency (2-6 cycles/min) vasomotion by Prony or graphic analysis. These data suggest that a fundamental intrinsic defect exists in the spontaneously hypertensive rat

  5. Effect of chronic (-)-nicotine treatment on rat cerebral benzodiazepine receptors

    International Nuclear Information System (INIS)

    Magata, Yasuhiro; Kitano, Haruhiro; Shiozaki, Toshiki; Iida, Yasuhiko; Nishizawa, Sadahiko; Saji, Hideo; Konishi, Junji

    2000-01-01

    The purpose of this study was to clarify the effect of (-)-nicotine on cerebral benzodiazepine receptors (BzR) with radiotracer methods. The effect of (-)-nicotine on BzR was examined in in vitro studies using chronic (-)-nicotine-treated rats using 3 H-diazepam. The in vitro radioreceptor assay showed a 14% increase in the maximum number of binding sites of BzR in chronic (-)-nicotine-treated rats in comparison with the control rats. Moreover, a convenient in vivo uptake index of 125 I-iomazenil was calculated and a higher uptake of the radioactivity was observed in the chronic (-)-nicotine-treated group than in the control group. Although further studies of the mechanism of (-)-nicotine on such BzR changes are required, an increase in the amount of BzR in the cerebral cortex was found in rats that underwent chronic (-)-nicotine treatment, and this result contributed to the understanding of the effects of (-)-nicotine and smoking on neural functions

  6. The effect of S. pneumoniae bacteremia on cerebral blood flow autoregulation in rats

    DEFF Research Database (Denmark)

    Pedersen, Michael; Brandt, Christian T.; Knudsen, Gitte Moos

    2008-01-01

    during incremental reductions in cerebral perfusion pressure (CPP) by controlled hemorrhage. Autoregulation was preserved in all rats without meningitis (groups A and E) and was lost in 24 of 25 meningitis rats (groups B, C, and D) (P

  7. Pharmacokinetic Study of Piracetam in Focal Cerebral Ischemic Rats.

    Science.gov (United States)

    Paliwal, Pankaj; Dash, Debabrata; Krishnamurthy, Sairam

    2018-04-01

    Cerebral ischemia affects hepatic enzymes and brain permeability extensively. Piracetam was investigated up to phase III of clinical trials and there is lack of data on brain penetration in cerebral ischemic condition. Thus, knowledge of the pharmacokinetics and brain penetration of piracetam during ischemic condition would aid to improve pharmacotherapeutics in ischemic stroke. Focal cerebral ischemia was induced by middle cerebral artery occlusion for 2 h in male Wistar rats followed by reperfusion. After 24 h of middle cerebral artery occlusion or 22 h of reperfusion, piracetam was administered for pharmacokinetic, brain penetration, and pharmacological experiments. In pharmacokinetic study, blood samples were collected at different time points after 200-mg/kg (oral) and 75-mg/kg (intravenous) administration of piracetam through right external jugular vein cannulation. In brain penetration study, the cerebrospinal fluid, systemic blood, portal blood, and brain samples were collected at pre-designated time points after 200-mg/kg oral administration of piracetam. In a separate experiment, the pharmacological effect of the single oral dose of piracetam in middle cerebral artery occlusion was assessed at a dose of 200 mg/kg. All the pharmacokinetic parameters of piracetam including area under curve (AUC 0-24 ), maximum plasma concentration (C max ), time to reach the maximum plasma concentration (t max ), elimination half-life (t 1/2 ), volume of distribution (V z ), total body clearance, mean residence time, and bioavailability were found to be similar in ischemic stroke condition except for brain penetration. Piracetam exposure (AUC 0-2 ) in brain and CSF were found to be 2.4- and 3.1-fold higher, respectively, in ischemic stroke compared to control rats. Piracetam significantly reduced infarct volume by 35.77% caused by middle cerebral artery occlusion. There was no change in the pharmacokinetic parameters of piracetam in the ischemic stroke model except for

  8. Model for Estimation of Thermal History Produced by a Single Pass Underwater Wet Weld

    National Research Council Canada - National Science Library

    Dill, Jay

    1997-01-01

    Thermal history calculations for single pass underwater wet weldments were made by solving the appropriate beat transfer equations using the three-dimensional Crank-Nicholson finite difference method...

  9. Hydrogen sulfide intervention in focal cerebral ischemia/reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Xin-juan Li

    2015-01-01

    Full Text Available The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusion model in rats via the suture method. Ten minutes after middle cerebral artery occlusion, the animals were intraperitoneally injected with hydrogen sulfide donor compound sodium hydrosulfide. Immunofluorescence revealed that the immunoreactivity of P2X 7 in the cerebral cortex and hippocampal CA1 region in rats with cerebral ischemia/reperfusion injury decreased with hydrogen sulfide treatment. Furthermore, treatment of these rats with hydrogen sulfide significantly lowered mortality, the Longa neurological deficit scores, and infarct volume. These results indicate that hydrogen sulfide may be protective in rats with local cerebral ischemia/reperfusion injury by down-regulating the expression of P2X 7 receptors.

  10. Reperfusion promotes mitochondrial dysfunction following focal cerebral ischemia in rats.

    Directory of Open Access Journals (Sweden)

    Jun Li

    Full Text Available BACKGROUND AND PURPOSE: Mitochondrial dysfunction has been implicated in the cell death observed after cerebral ischemia, and several mechanisms for this dysfunction have been proposed. Reperfusion after transient cerebral ischemia may cause continued and even more severe damage to the brain. Many lines of evidence have shown that mitochondria suffer severe damage in response to ischemic injury. The purpose of this study was to observe the features of mitochondrial dysfunction in isolated mitochondria during the reperfusion period following focal cerebral ischemia. METHODS: Male Wistar rats were subjected to focal cerebral ischemia. Mitochondria were isolated using Percoll density gradient centrifugation. The isolated mitochondria were fixed for electron microscopic examination; calcium-induced mitochondrial swelling was quantified using spectrophotometry. Cyclophilin D was detected by Western blotting. Fluorescent probes were used to selectively stain mitochondria to measure their membrane potential and to measure reactive oxidative species production using flow cytometric analysis. RESULTS: Signs of damage were observed in the mitochondrial morphology after exposure to reperfusion. The mitochondrial swelling induced by Ca(2+ increased gradually with the increasing calcium concentration, and this tendency was exacerbated as the reperfusion time was extended. Cyclophilin D protein expression peaked after 24 hours of reperfusion. The mitochondrial membrane potential was decreased significantly during the reperfusion period, with the greatest decrease observed after 24 hours of reperfusion. The surge in mitochondrial reactive oxidative species occurred after 2 hours of reperfusion and was maintained at a high level during the reperfusion period. CONCLUSIONS: Reperfusion following focal cerebral ischemia induced significant mitochondrial morphological damage and Ca(2+-induced mitochondrial swelling. The mechanism of this swelling may be mediated by

  11. Effects of CDP-choline on neurologic deficits and cerebral glucose metabolism in a rat model of cerebral ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Kakihana, M.; Fukuda, N.; Suno, M.; Nagaoka, A.

    1988-02-01

    The effects of cytidine 5'-diphosphocholine (CDP-choline) on neurologic deficits and cerebral glucose metabolism were studied in a rat model of transient cerebral ischemia. Cerebral ischemia was induced by occluding both common carotid arteries for 20 or 30 minutes 24 hours after the vertebral arteries were permanently occluded by electrocautery. CDP-choline was administered intraperitoneally twice daily for 4 days after reestablishing carotid blood flow. CDP-choline at two dosages (50 and 250 mg/kg) shortened the time required for recovery of spontaneous motor activity in a dose-related manner; recovery time was measured early after reperfusion. Neurologic signs were observed for 10 days. High-dose CDP-choline improved neurologic signs in the rats within 20-30 minutes of ischemia. When cerebral glucose metabolism was assessed on Day 4, increases in the levels of glucose and pyruvate were accompanied by decreases in the synthesis of labeled acetylcholine from uniformly labeled (/sup 14/C)glucose measured in the cerebral cortex of rats with 30 minutes of ischemia. High-dose CDP-choline also attenuated changes in these variables. CDP-(1,2-/sup 14/C)choline injected intravenously 10 minutes after reperfusion was used for membrane lipid biosynthesis. These results indicate that CDP-choline has beneficial effects on brain dysfunction induced by cerebral ischemia, which may be due in part to the restorative effects of CDP-choline on disturbed cerebral glucose metabolism, probably by stimulating phospholipid biosynthesis.

  12. Effects of CDP-choline on neurologic deficits and cerebral glucose metabolism in a rat model of cerebral ischemia

    International Nuclear Information System (INIS)

    Kakihana, M.; Fukuda, N.; Suno, M.; Nagaoka, A.

    1988-01-01

    The effects of cytidine 5'-diphosphocholine (CDP-choline) on neurologic deficits and cerebral glucose metabolism were studied in a rat model of transient cerebral ischemia. Cerebral ischemia was induced by occluding both common carotid arteries for 20 or 30 minutes 24 hours after the vertebral arteries were permanently occluded by electrocautery. CDP-choline was administered intraperitoneally twice daily for 4 days after reestablishing carotid blood flow. CDP-choline at two dosages (50 and 250 mg/kg) shortened the time required for recovery of spontaneous motor activity in a dose-related manner; recovery time was measured early after reperfusion. Neurologic signs were observed for 10 days. High-dose CDP-choline improved neurologic signs in the rats within 20-30 minutes of ischemia. When cerebral glucose metabolism was assessed on Day 4, increases in the levels of glucose and pyruvate were accompanied by decreases in the synthesis of labeled acetylcholine from uniformly labeled [ 14 C]glucose measured in the cerebral cortex of rats with 30 minutes of ischemia. High-dose CDP-choline also attenuated changes in these variables. CDP-[1,2- 14 C]choline injected intravenously 10 minutes after reperfusion was used for membrane lipid biosynthesis. These results indicate that CDP-choline has beneficial effects on brain dysfunction induced by cerebral ischemia, which may be due in part to the restorative effects of CDP-choline on disturbed cerebral glucose metabolism, probably by stimulating phospholipid biosynthesis

  13. MRI of cerebral ischaemia in rats with occlusion of the middle cerebral artery

    International Nuclear Information System (INIS)

    Thuomas, K.AA.; Kotwica, Z.; Bergstroem, K.; Bolander, H.; Hillered, L.; Olsson, Y.; Ponten, U.; Persson, L.

    1991-01-01

    The development of ischaemic brain oedema caused by middle cerebral artery (MCA) occlusion was studied by serial magnetic resonance imaging (MRI) in rats. Multiple spin echo sequences were used with TR = 1500 ms and TE = 30-240 ms (8 echos). Substraction images were obtained by subtracting the last three echos from the first echo. Fourteen rats were studied 3, 6, and 12 h and 1, 1.5, 3, 4, 6, and 8 days after MCA occlusion, and 2 of them also 3 and 6 weeks later. Two T2 components could be separated, a fast one representing bound water and a slow one representing free bulk water. MR showed T2 prolongation even on the first examination, and the highest values were observed 24 h after occlusion. The subsequent examinations showed a slow reduction in oedema. MR studies 3 and 6 weeks after occlusion revealed an area of very long T2, which correlated well with infarction shown by histology. The substraction images demonstrated both the infarct location and the oedematous changes in the surrounding uninfarcted tissue. MRI imaging employing T2 components and subtraction images appears to be a valuable method for observing the time course of the development and resolution of oedema in cerebral infarction. (orig.)

  14. Increased radiosensitivity of cerebral capillaries in neonatal Gunn rats as compared to Sprague-Dawley rats

    International Nuclear Information System (INIS)

    Landolt, R.; Arn, D.

    1979-01-01

    The extent of petechial haemorrhages of the cerebral cortex examined between 14 hours and 4 days after X-irradiation to the head was compared in Sprague-Dawley and homozygous Gunn rats with congenital hyperbilirubinaemia. Animals 1 to 2 days old received single doses of either 250, 500 or 750 rad. By means of a special scoring scale the degree of the damage to the micro vasculature was semi-quantitatively estimated. In both strains a significant difference in effect was obtained between 250 and 500 rad, but not between 500 and 750 rad. The shape of the dose-effect curve in Gunn rats was similar to that of Sprague-Dawley rats, but displaced upwards. In Gunn rats the effect of 250 rad was greater that that of 750 rad in Sprague-Dawley rats. Possible radiosensitizing mechanisms are discussed with reference to the literature and these results. (author)

  15. Effect of growth hormone on glycogenesis in rat cerebral cortical slices

    International Nuclear Information System (INIS)

    Visweswaran, P.; Binod Kumar; Azad, V.S.S.; Brahamchari, A.K.; Singh, S.P.

    1994-01-01

    Incubation of cerebral cortical slices of growth hormone treated diabetic and normal rats with U- 14 C glucose showed a two-fold increase in glycogenesis in diabetic rats. Glucose-6-phosphatase activity was lowered while the activities of phosphoglucomutase and phosphorylase were elevated in the cerebral cortex of diabetic rats treated with growth hormone. However, glycogen synthetase activity was slightly depressed. (author). 13 refs., 2 tabs

  16. Activation-induced resetting of cerebral oxygen and glucose uptake in the rat

    DEFF Research Database (Denmark)

    Madsen, P L; Linde, R; Hasselbalch, S G

    1998-01-01

    In the clinical setting it has been shown that activation will increase cerebral glucose uptake in excess of cerebral oxygen uptake. To study this phenomenon further, this study presents an experimental setup that enables precise determination of the ratio between cerebral uptake of glucose...... and oxygen in the awake rat. Global CBF was measured by the Kety-Schmidt technique, and the ratio between cerebral uptake rates for oxygen, glucose, and lactate was calculated from cerebral arterial-venous differences. During baseline conditions, rats were kept in a closed box designed to minimize...... interference. During baseline conditions CBF was 1.08 +/- 0.25 mL x g(-1) x minute(-1), and the cerebral oxygen to glucose uptake ratio was 5.5. Activation was induced by opening the sheltering box for 6 minutes. Activation increased CBF to 1.81 mL x g(-1) x minute(-1). During activation cerebral glucose...

  17. Ultrastructure of rat cerebral vessels 4 months after gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Iwanowski, L; Ostenda, M

    1975-01-01

    The purpose of this paper was to check the current opinion that one of the late postirradiation changes is early senility (Maxwell, Kruger, 1964). The postirradiation changes of the brain parenchyma are well known from the literature; therefore our investigation is limited to brain capillaries and their closest vicinity. This paper constitutes a fragment of a larger work on the role of connective tissue in the aging brain. Six Wistar male rats of the same brood, about 3 months old, were irradiated over the whole body with gamma rays. Three rats were exposed to a dose of 400 R and three to 800 R. The chosen doses were the lowest and the highest, provoking brain edema but still not lethal. Four months after the exposure the rats were perfused with 4% glutaraldehyde intracardiacly and decapitated. Brain specimens were taken from frontoparietal cortex, lateral ventricle wall, from corpus callosum and griseum pontis. The samples were routinely handled for ultrastructural studies. Observations were performed under electron microscopes showed that the cerebral vessels of both groups of animals were similar.

  18. Pharmacological and molecular comparison of K(ATP) channels in rat basilar and middle cerebral arteries

    DEFF Research Database (Denmark)

    Ploug, Kenneth Beri; Edvinsson, Lars; Olesen, Jes

    2006-01-01

    , we studied the possible involvement of endothelial K(ATP) channels by pressurized arteriography after luminal administration of synthetic K(ATP) channel openers to rat basilar and middle cerebral arteries. Furthermore, we examined the mRNA and protein expression profile of K(ATP) channels to rat...... basilar and middle cerebral arteries using quantitative real-time PCR (Polymerase Chain Reaction) and Western blotting, respectively. In the perfusion system, we found no significant responses after luminal application of three K(ATP) channel openers to rat basilar and middle cerebral arteries...

  19. INVESTIGATION OF SINGLE-PASS/DOUBLE-PASS TECHNIQUES ON FRICTION STIR WELDING OF ALUMINIUM

    Directory of Open Access Journals (Sweden)

    N.A.A. Sathari

    2014-12-01

    Full Text Available The aim of this research is to study the effects of single-pass/ double-pass techniques on friction stir welding of aluminium. Two pieces of AA1100 with a thickness of 6.0 mm were friction stir welded using a CNC milling machine at rotational speeds of 1400 rpm, 1600 rpm and 1800 rpm respectively for single-pass and double-pass. Microstructure observations of the welded area were studied using an optical microscope. The specimens were tested by using a tensile test and Vickers hardness test to evaluate their mechanical properties. The results indicated that, at low rotational speed, defects such as ‘surface lack of fill’ and tunnels in the welded area contributed to a decrease in mechanical properties. Welded specimens using double-pass techniques show increasing values of tensile strength and hardness. From this investigation it is found that the best parameters of FSW welded aluminium AA1100 plate were those using double-pass techniques that produce mechanically sound joints with a hardness of 56.38 HV and 108 MPa strength at 1800 rpm compared to the single-pass technique. Friction stir welding, single-pass/ double-pass techniques, AA1100, microstructure, mechanical properties.

  20. Fuel-element failures in Hanford single-pass reactors 1944--1971

    Energy Technology Data Exchange (ETDEWEB)

    Gydesen, S.P.

    1993-07-01

    The primary objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emissions since 1944 from the US Department of Energy`s (DOE) Hanford Site near Richland, Washington. To estimate the doses, the staff of the Source Terms Task use operating information from historical documents to approximate the radioactive emissions. One source of radioactive emissions to the Columbia River came from leaks in the aluminum cladding of the uranium metal fuel elements in single-pass reactors. The purpose of this letter report is to provide photocopies of the documents that recorded these failures. The data from these documents will be used by the Source Terms Task to determine the contribution of single-pass reactor fuel-element failures to the radioactivity of the reactor effluent from 1944 through 1971. Each referenced fuel-element failure occurring in the Hanford single-pass reactors is addressed. The first recorded failure was in 1948, the last in 1970. No records of fuel-element failures were found in documents prior to 1948. Data on the approximately 2000 failures which occurred during the 28 years (1944--1971) of Hanford single-pass reactor operations are provided in this report.

  1. Characterization of α2-adrenergic receptors in rat cerebral cortex

    International Nuclear Information System (INIS)

    Nasseri, A.

    1987-01-01

    The properties of 3 H-RX 781094 binding sites and the receptors inhibiting norepinephrine (NE) release and cyclic AMP accumulation in rat cerebral cortex were compared. 3 H-RX 781094, a new α 2 -adrenergic receptor antagonist radioligand, labelled a homogeneous population of binding sites at 37 0 C with the pharmacological specificity expected of α 2 -adrenergic receptors. Gpp(NH)p and NaCl decreased the potencies of agonists at 3 H-RX 781094 binding sites 3-22 fold. Antagonists blocked the inhibition of potassium-evoked tritium release from cortical slices preloaded with 3 H-NE by exogenous NE with potencies similar to those observed in competition for specific 3 H-RX 781094 binding sites. EEDQ, an irreversible α 2 -adrenergic receptors and determine whether there was a receptor reserve for the inhibition of tritium release

  2. Effect of baicalin on the autophagy and Beclin-1 expression in rats with cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Xiang-Long Hong

    2016-07-01

    Full Text Available Objective: To explore the effect of baicalin on the autophagy and Beclin-1 expression in rats with cerebral ischemia, and the role of autophagy in the cerebral ischemia injury. Methods: The healthy male SD rats were randomized into the sham operation group, the ischemia model group, baicalin treatment group (100 mg/kg, and 3MA group (15 mg/kg, with 10 rats in each group. Transient focal cerebral ischemia injury model in rats was induced by occlusion of middle cerebral artery (MCA for 180 min. The rats were given the corresponding drugs through the tail veins 30 min before molding. Half of the specimens were used for TTC staining to analyze the cerebral infarction volume. The others were used to determine the expression of Beclin-1 in the brain tissues by Western-blot. Results: When compared with the ischemia model group, the cerebral infarction volume in 3MA group was significantly increased, while that in baicalin treatment group was significantly reduced, and the comparison among the groups was statistically significant. When compared with the ischemia model group, Beclin-1 expression level in baicalin treatment group was significantly elevated, while Beclin-1 expression level in 3MA group was significantly higher than that in the sham-operation group but lower than that in the ischemia model group. Conclusions: The autophagy level of brain tissues in normal rats is low. The cerebral ischemia can activate autophagy. The activated autophagy is probably involved in the neuroprotection of cerebral ischemia injury. Application of 3MA to inhibit the occurrence of autophagy can aggravate the cerebral injury. Baicalin can significantly improve the cerebral ischemia injury and promote the occurrence of autophagy, whose mechanism is probably associated with the up-regulation of Beclin-1 expression to promote the activation of type III PI3K signal transduction pathway.

  3. Anti-inflammatory and neuroprotective effects of sanguinarine following cerebral ischemia in rats

    OpenAIRE

    Wang, Qin; Dai, Peng; Bao, Han; Liang, Ping; Wang, Wei; Xing, An; Sun, Jianbin

    2016-01-01

    Stroke is one of the leading causes of mortality worldwide. Protective agents that can diminish injuries caused by cerebral ischemia-reperfusion (I/R) are important in alleviating the harmful outcomes of stroke. The aim of the present study was to investigate the protective role of sanguinarine in cerebral I/R injury. A rat middle cerebral artery occlusion model was used to assess the clinical effect of sanguinarine, and inflammatory cytokines in the serum were detected by ELISA. Western blot...

  4. Reduction of cerebral injury in stroke-prone spontaneously hypertensive rats by amlodipine

    NARCIS (Netherlands)

    Blezer, E.L.A.; Nicolaij, K.; Goldschmeding, R.C.; Koomans, H.A.; Joles, Jaap

    2002-01-01

    Dihydropyridine Ca2+ channel antagonists, initiated together with high salt intake, prevent the development of hypertension and subsequent cerebral damage in stroke-prone spontaneously hypertensive rats (SHRSP). We hypothesized that the dihydropyridine Ca2+ channel antagonist amlodipine

  5. Expression of tumor necrosis factor alpha after focal cerebral ischaemia in the rat

    NARCIS (Netherlands)

    Buttini, M; Appel, K; Sauter, A; GebickeHaerter, PJ; Boddeke, HWGM

    Induction of tumor necrosis factor alpha was studied in the brain of rats after focal cerebral ischaemia by occlusion of the left middle cerebral artery. Using a specific antisense riboprobe for in situ hybridization histochemistry, cells positive for tumor necrosis factor alpha messenger RNA were

  6. Microangiographic study of the normal anatomy of the cerebral venous system in rats

    International Nuclear Information System (INIS)

    Schumacher, M.

    1984-01-01

    Microangiographic serial cuts were performed in 20 Sprague-Dawley rats for a systematic study of the normal anatomy of the cerebral veins. The draining pathways of the cerebral and cerebellar cortex, basal ganglia, hypothalamus, hippocampus and the midbrain are described and discussed with regard to their different functions. (orig.)

  7. Rutin protects against cognitive deficits and brain damage in rats with chronic cerebral hypoperfusion.

    Science.gov (United States)

    Qu, Jie; Zhou, Qiong; Du, Ying; Zhang, Wei; Bai, Miao; Zhang, Zhuo; Xi, Ye; Li, Zhuyi; Miao, Jianting

    2014-08-01

    Chronic cerebral hypoperfusion is a critical causative factor for the development of cognitive decline and dementia in the elderly, which involves many pathophysiological processes. Consequently, inhibition of several pathophysiological pathways is an attractive therapeutic strategy for this disorder. Rutin, a biologically active flavonoid, protects the brain against several insults through its antioxidant and anti-inflammatory properties, but its effect on cognitive deficits and brain damage caused by chronic cerebral hypoperfusion remains unknown. Here, we investigated the neuroprotective effect of rutin on cognitive impairments and the potential mechanisms underlying its action in rats with chronic cerebral hypoperfusion. We used Sprague-Dawley rats with permanent bilateral common carotid artery occlusion (BCCAO), a well-established model of chronic cerebral hypoperfusion. After rutin treatment for 12 weeks, the neuroprotective effect of rutin in rats was evaluated by behavioural tests, biochemical and histopathological analyses. BCCAO rats showed marked cognitive deficits, which were improved by rutin treatment. Moreover, BCCAO rats exhibited central cholinergic dysfunction, oxidative damage, inflammatory responses and neuronal damage in the cerebral cortex and hippocampus, compared with sham-operated rats. All these effects were significantly alleviated by treatment with rutin. Our results provide new insights into the pharmacological actions of rutin and suggest that rutin has multi-targeted therapeutical potential on cognitive deficits associated with conditions with chronic cerebral hypoperfusion such as vascular dementia and Alzheimer's disease. © 2014 The British Pharmacological Society.

  8. Proteomic analysis of rat cerebral cortex following subchronic acrolein toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Rashedinia, Marzieh; Lari, Parisa [Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Abnous, Khalil, E-mail: Abnouskh@mums.ac.r [Pharmaceutical Research Center, Department of Medicinal Chemistry, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Hosseinzadeh, Hossein, E-mail: Hosseinzadehh@mums.ac.ir [Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of)

    2013-10-01

    Acrolein, a member of reactive α,β-unsaturated aldehydes, is a major environmental pollutant. Acrolein is also produced endogenously as a toxic by-product of lipid peroxidation. Because of high reactivity, acrolein may mediate oxidative damages to cells and tissues. It has been shown to be involved in a wide variety of pathological states including pulmonary, atherosclerosis and neurodegenerative diseases. In this study we employed proteomics approach to investigate the effects of subchronic oral exposures to 3 mg/kg of acrolein on protein expression profile in the brain of rats. Moreover effects of acrolein on malondialdehyde (MDA) levels and reduced glutathione (GSH) content were investigated. Our results revealed that treatment with acrolein changed levels of several proteins in diverse physiological process including energy metabolism, cell communication and transport, response to stimulus and metabolic process. Interestingly, several differentially over-expressed proteins, including β-synuclein, enolase and calcineurin, are known to be associated with human neurodegenerative diseases. Changes in the levels of some proteins were confirmed by Western blot. Moreover, acrolein increases the level of MDA, as a lipid peroxidation biomarker and decreased GSH concentrations, as a non-enzyme antioxidant in the brain of acrolein treated rats. These findings suggested that acrolein induces the oxidative stress and lipid peroxidation in the brain, and so that may contribute to the pathophysiology of neurological disorders. - Highlights: • Acrolein intoxication increased lipid peroxidation and deplete GSH in rat brain. • Effect of acrolein on protein levels of cerebral cortex was analyzed by 2DE-PAGE. • Levels of a number of proteins with different biological functions were increased.

  9. Proteomic analysis of rat cerebral cortex following subchronic acrolein toxicity

    International Nuclear Information System (INIS)

    Rashedinia, Marzieh; Lari, Parisa; Abnous, Khalil; Hosseinzadeh, Hossein

    2013-01-01

    Acrolein, a member of reactive α,β-unsaturated aldehydes, is a major environmental pollutant. Acrolein is also produced endogenously as a toxic by-product of lipid peroxidation. Because of high reactivity, acrolein may mediate oxidative damages to cells and tissues. It has been shown to be involved in a wide variety of pathological states including pulmonary, atherosclerosis and neurodegenerative diseases. In this study we employed proteomics approach to investigate the effects of subchronic oral exposures to 3 mg/kg of acrolein on protein expression profile in the brain of rats. Moreover effects of acrolein on malondialdehyde (MDA) levels and reduced glutathione (GSH) content were investigated. Our results revealed that treatment with acrolein changed levels of several proteins in diverse physiological process including energy metabolism, cell communication and transport, response to stimulus and metabolic process. Interestingly, several differentially over-expressed proteins, including β-synuclein, enolase and calcineurin, are known to be associated with human neurodegenerative diseases. Changes in the levels of some proteins were confirmed by Western blot. Moreover, acrolein increases the level of MDA, as a lipid peroxidation biomarker and decreased GSH concentrations, as a non-enzyme antioxidant in the brain of acrolein treated rats. These findings suggested that acrolein induces the oxidative stress and lipid peroxidation in the brain, and so that may contribute to the pathophysiology of neurological disorders. - Highlights: • Acrolein intoxication increased lipid peroxidation and deplete GSH in rat brain. • Effect of acrolein on protein levels of cerebral cortex was analyzed by 2DE-PAGE. • Levels of a number of proteins with different biological functions were increased

  10. Highly efficient single-pass sum frequency generation by cascaded nonlinear crystals

    DEFF Research Database (Denmark)

    Hansen, Anders Kragh; Andersen, Peter E.; Jensen, Ole Bjarlin

    2015-01-01

    , despite differences in the phase relations of the involved fields. An unprecedented 5.5 W of continuous-wave diffraction-limited green light is generated from the single-pass sum frequency mixing of two diode lasers in two periodically poled nonlinear crystals (conversion efficiency 50%). The technique......The cascading of nonlinear crystals has been established as a simple method to greatly increase the conversion efficiency of single-pass second-harmonic generation compared to a single-crystal scheme. Here, we show for the first time that the technique can be extended to sum frequency generation...... is generally applicable and can be applied to any combination of fundamental wavelengths and nonlinear crystals....

  11. Dragon's blood dropping pills have protective effects on focal cerebral ischemia rats model.

    Science.gov (United States)

    Xin, Nian; Yang, Fang-Ju; Li, Yan; Li, Yu-Juan; Dai, Rong-Ji; Meng, Wei-Wei; Chen, Yan; Deng, Yu-Lin

    2013-12-15

    Dragon's blood is a bright red resin obtained from Dracaena cochinchinensis (Lour.) S.C.Chen (Yunnan, China). As a traditional Chinese medicinal herb, it has great traditional medicinal value and is used for wound healing and to stop bleeding. Its main biological activity comes from phenolic compounds. In this study, phenolic compounds were made into dropping pills and their protective effects were examined by establishing focal cerebral ischemia rats model used method of Middle Cerebral Artery Occlusion (MCAO), and by investigating indexes of neurological scores, infarct volume, cerebral index, cerebral water content and oxidation stress. Compared to model group, high, middle and low groups of Dragon's blood dropping pills could improve the neurological function significantly (ppills had protective effects on focal cerebral ischemia rats. Copyright © 2013 Elsevier GmbH. All rights reserved.

  12. Effects of Mercury Chloride on the Cerebral Cortex of Adult Wistar Rats

    African Journals Online (AJOL)

    Mercury is among the heavy metals that have been reported to cause devastating health problem worldwide. The primary site of action of mercury chloride is the central nervous system. This study investigated the effect of mercury chloride on the cerebral cortex of adult wistar rats. Twenty-four (24) adult wistar rats were used ...

  13. Comparative studies of D2 receptors and cerebral blood flow in hemi-Parkinsonism rats

    International Nuclear Information System (INIS)

    Lin Yansong; Lin Xiangtong

    2000-01-01

    Objective: To study the relationship between dopamine D 2 receptors and cerebral blood flow in hemi-Parkinsonism rats. Methods: Hemi-Parkinsonism rats were made by stereotaxic 6-hydroxy dopamine (6-OH-DA) lesions in substantia nigra and ventral tegmental area, apomorphine (Apo) which could induce the successful model rat to rotate toward the intact side was used to select the rat models, 125 I-IBZM in vivo autoradiography and 99 Tc m -HMPAO regional cerebral biodistribution analysis were used to study D 2 receptors and cerebral blood flow. The HPLC-ECD was used to measure striatum DA and its metabolite content . Results: the lesioned side striatum DA and its metabolites homovanillic acid (HVA) 3,4-dihyroxy-phenylacetic acid (DOPAC) reduced significantly than that of the intact side and pseudo-operated group, striatum/cerebellum 125 I-IBZM uptake ratio was 8.04 +- 0.71 in lesioned side of hemi-Parkinsonism rats, significantly increased compared with the intact side and the pseudo-operated group (P 0.05). Conclusions: the 6-OH-DA lesioned side DA content decreased significantly and thus induced a compensative up-regulation of striatum D 2 receptor binding sites in hemi-Parkinsonism rats, which show good correlation with rotation behavior induced by Apo. Comparing with cerebral blood flow, D 2 receptor reflected by IBZM seems to be more specific and earlier to detect the cerebral functional impairment in experimental hemi-Parkinsonism

  14. Preliminary EEG study of protective effects of Tebonin in transient global cerebral ischemia in rats

    DEFF Research Database (Denmark)

    Zagrean, L; Vatasescu, R; Munteanu, A M

    2000-01-01

    and metabolism. The objective of this study was to investigate the effects of preventive treatment with Ginkgo biloba extract (EGb 761--Tebonin) in cerebral global ischemia and reperfusion in rats using computerized EEG analysis. Ginkgo biloba extract, known to be, in vitro, a free radicals scavanger and a PAF......--antagonist, was administrated in dose of 100 mg/kg over 24 hours, for 5 days before and 5 days after cerebral ischemia--reperfusion. The apparition of isoelectric EEG (flat-line) following 4-vessel occlusion was observed after a mean time of 25 sec. in Ginkgo biloba treated rats and after 18 sec. in control rats (p

  15. Distribution of catecholamines and serotonin in the rat cerebral cortex:

    International Nuclear Information System (INIS)

    Reader, T.A.

    1981-01-01

    The rat cerebral cortex was dissected in five regions and analyzed for the catecholamines noradrenaline, adrenaline and dopamine, and for the indoleamine seroton in using sensitive radioenzymatic assay methods with thin-layer-chromatography. The noradrenaline concentration was highest in the ventral cortex, lateral to the hypothalamus, had intermediate values for the prefrontal, frontal and parietal cortical areas and was lowest in the occipital cortex. Dopamine levels were also highest in the cortex lateral to the hypothalamus, and moderate in the prefrontal and frontal cortical areas, with the lowest values measured for the occipital cortex. The ratios dopamine/noradrenaline further support the hypothesis that they are independent transmitters. Traces of adrenaline were measured in all regions examined. The serotonin distribution was found to be non-homogeneous, with the highest values for the prefrontal cortex and ventral cortex lateral to the hypothalamus. The functional significance of these amines and their ratios are discussed in relation to their role as putative modulators of cortical neuronal excitability. (author)

  16. [Focal cerebral ischemia in rats with estrogen deficiency and endothelial dysfunction].

    Science.gov (United States)

    Litvinov, A A; Volotova, E V; Kurkin, D V; Logvinova, E O; Darmanyan, A P; Tyurenkov, I N

    2017-01-01

    To assess an effect of ovariectomy (OE) on the cerebral blood flow, endothelium-dependent vasodilation, neurological, cognitive and locomotor deficit as markers of brain damage after focal ischemia in rats. The study was conducted in 48 female Wistar rats. Ovariectomy was performed with ovaries and uterine body extirpation, cerebral ischemia was performed by middle cerebral artery occlusion (MCAO) in rats. To assess brain damage, Combs and Garcia scores, 'open field' test (OFT), 'extrapolatory escape test' (EET), 'passive avoidance test' (PAT), 'beam-walking test' were used. Cerebral blood flow was measured using ultrasonic flowmetry. After 7 days of MCAO, the cerebral blood flow in ovarioectomized animals was reduced by 20% compared to sham-ovariectomized animals. Ovariectomized animals with MCAO showed a three-fold endothelium-dependent vasodilation reduction (the reaction of cerebral vessels to the introduction of acetylcholine and N-L-arginine), indicating the presence of severe endothelial dysfunction. In ovarioectomized animals, the cerebral blood flow was reduced by 34% compared to sham-operated animals. MCAO and OE taken together resulted in more than 2-fold increase in neurological, motor disturbances, 3-fold decrease in motor activity of the animals in the OP test. Focal ischemia in ovarioectomized animals with endothelial dysfunction led to memory decrease by 1/5 fold in PAT and by 2-fold in EET.

  17. Single-pass BPM system of the Photon Factory storage ring.

    Science.gov (United States)

    Honda, T; Katoh, M; Mitsuhashi, T; Ueda, A; Tadano, M; Kobayashi, Y

    1998-05-01

    At the 2.5 GeV ring of the Photon Factory, a single-pass beam-position monitor (BPM) system is being prepared for the storage ring and the beam transport line. In the storage ring, the injected beam position during the first several turns can be measured with a single injection pulse. The BPM system has an adequate performance, useful for the commissioning of the new low-emittance lattice. Several stripline BPMs are being installed in the beam transport line. The continuous monitoring of the orbit in the beam transport line will be useful for the stabilization of the injection energy as well as the injection beam orbit.

  18. Protein metabolism in the rat cerebral cortex in vivo and in vitro as affected by the acquisition enhancing drug piracetam

    NARCIS (Netherlands)

    Nickolson, V.J.; Wolthuis, O.L.

    1976-01-01

    The effect of Piracetam on rat cerebral protein metabolism in vivo and in vitro was studied. It was found that the drug stimulates the uptake of labelled leucine by cerebral cortex slices, has no effect on the incorporation of leucine into cerebral protein, neither in slices nor in vivo, but

  19. Protective effect of estrogen in endothelin-induced middle cerebral artery occlusion in female rats

    OpenAIRE

    Glendenning, Michele L.; Lovekamp-Swan, Tara; Schreihofer, Derek A.

    2008-01-01

    Estrogen is a powerful endogenous and exogenous neuroprotective agent in animal models of brain injury, including focal cerebral ischemia. Although this protection has been demonstrated in several different treatment and injury paradigms, it has not been demonstrated in focal cerebral ischemia induced by intraparenchymal endothelin-1 injection, a model with many advantages over other models of experimental focal ischemia. Reproductively mature female Sprague-Dawley rats were ovariectomized an...

  20. Long-term evolution of cerebral hemodynamics after brain irradiation in the rat

    International Nuclear Information System (INIS)

    Keyeux, A.; Ochrymowicz-Bemelmans, D.

    1985-01-01

    Long-term evolution of radioisotope indices, evaluating respectively the cerebral blood flow (CBF), the cerebral blood volume (CBV) and the cephalic specific distribution space of iodoantipyrine (ΔIAP) of rat, was studied after brain irradiation at 20 Gy. Radioinduced hemodynamic alterations evidenced by this approach are biphasic and support the prominent role of circulation impairment in the genesis of delayed brain radionecrosis [fr

  1. Generic, network schema agnostic sparse tensor factorization for single-pass clustering of heterogeneous information networks.

    Science.gov (United States)

    Wu, Jibing; Meng, Qinggang; Deng, Su; Huang, Hongbin; Wu, Yahui; Badii, Atta

    2017-01-01

    Heterogeneous information networks (e.g. bibliographic networks and social media networks) that consist of multiple interconnected objects are ubiquitous. Clustering analysis is an effective method to understand the semantic information and interpretable structure of the heterogeneous information networks, and it has attracted the attention of many researchers in recent years. However, most studies assume that heterogeneous information networks usually follow some simple schemas, such as bi-typed networks or star network schema, and they can only cluster one type of object in the network each time. In this paper, a novel clustering framework is proposed based on sparse tensor factorization for heterogeneous information networks, which can cluster multiple types of objects simultaneously in a single pass without any network schema information. The types of objects and the relations between them in the heterogeneous information networks are modeled as a sparse tensor. The clustering issue is modeled as an optimization problem, which is similar to the well-known Tucker decomposition. Then, an Alternating Least Squares (ALS) algorithm and a feasible initialization method are proposed to solve the optimization problem. Based on the tensor factorization, we simultaneously partition different types of objects into different clusters. The experimental results on both synthetic and real-world datasets have demonstrated that our proposed clustering framework, STFClus, can model heterogeneous information networks efficiently and can outperform state-of-the-art clustering algorithms as a generally applicable single-pass clustering method for heterogeneous network which is network schema agnostic.

  2. Anti-inflammatory and neuroprotective effects of sanguinarine following cerebral ischemia in rats.

    Science.gov (United States)

    Wang, Qin; Dai, Peng; Bao, Han; Liang, Ping; Wang, Wei; Xing, An; Sun, Jianbin

    2017-01-01

    Stroke is one of the leading causes of mortality worldwide. Protective agents that can diminish injuries caused by cerebral ischemia-reperfusion (I/R) are important in alleviating the harmful outcomes of stroke. The aim of the present study was to investigate the protective role of sanguinarine in cerebral I/R injury. A rat middle cerebral artery occlusion model was used to assess the clinical effect of sanguinarine, and inflammatory cytokines in the serum were detected by ELISA. Western blotting was performed to examine the change in levels of apoptosis-associated proteins in the injured brains. The results suggested that sanguinarine, an anti-inflammatory agent derived from the roots of Sanguinaria canadensis , improved the state of cerebral ischemia in a rat model. The data demonstrated that when rats were treated with sanguinarine prior to middle cerebral artery occlusion, the infarct volume was reduced significantly. The inflammatory factors tumor necrosis factor-α, interleukin (IL)-6 and IL-1β were measured in sanguinarine and vehicle-treated groups using an enzyme-linked immunosorbent assay, and the expression levels of the three factors were significantly reduced following treatment with sanguinarine (Pprotective effect in cerebral ischemia, and that this effect is associated with the anti-inflammatory and anti-apoptotic properties of sanguinarine.

  3. Characterization of beta-adrenergic receptors in synaptic membranes from rat cerebral cortex and cerebellum

    International Nuclear Information System (INIS)

    Lautens, L.

    1986-01-01

    Beta-adrenergic receptor ligand binding sites have been characterized in synaptic membranes from rat cerebral cortex and cerebellum using radioligand binding techniques. The equilibrium and kinetic properties of binding were assessed. The binding sites were non-interacting and exhibited two states of agonist binding which were sensitive to guanyl nucleotide. Synaptic membranes from cerebral cortex contained an equal number of beta 1 - and beta 2 -receptors; membranes from cerebellum possessed more beta 2 -than beta 1 -receptors. Photoaffinity labeling experiments revealed two different beta-adrenergic receptor polypeptides, R 1 and R 2 (and possibly a third, R 3 ) in synaptic membranes. The ratios of incorporation of photoaffinity label into R 1 : 2 were approximately 1:1 (cerebral cortex) and 5:1 (cerebellum). Photoaffinity labeling of R 1 and R 2 was inhibited equally well by both agonist and antagonist in synaptic membranes from cerebellum; whereas agonist was a less potent inhibitor in membranes from cerebral cortex. Both subtypes of beta-adrenergic receptors exhibited the same apparent molecular weight in synaptic membranes from cerebral cortex. The beta-adrenergic receptors in synaptic membranes from cerebral cortex and cerebellum were glycoproteins which exhibited the same apparent molecular weight after exposure to endoglycosidase F. The partial proteolytic digest maps of photoaffinity labeled beta-adrenergic receptors from rat cerebral cortex, cerebellum, lung and heart were compared

  4. Protective effects of beef decoction rich in carnosine on cerebral ischemia injury by permanent middle cerebral artery occlusion in rats.

    Science.gov (United States)

    Wang, Ai-Hong; Ma, Qian; Wang, Xin; Xu, Gui-Hua

    2018-02-01

    Inflammation has a role in the cerebral injury induced by ischemia and the present study aimed to determine the mechanism of the protective effect of beef decoction (BD) with carnosine against it. A rat model of permanent middle cerebral artery occlusion was established using a suture method in the vehicle and each of the BD groups. In experiment 1, 72 Sprague Dawley (SD) rats were randomly divided into three groups: Sham, vehicle and BD-treated group. Rats in the BD group were given 600 mg/kg BD by oral gavage for 1, 3 and 7 days. The sham and vehicle group rats received an equivalent amount of normal saline. In experiment 2, 60 SD rats were randomly divided into six groups: Sham-operated I, sham-operated II, vehicle, low-dose BD, medium-dose BD and high-dose BD group. Rats in the low-, medium- and high-dose BD groups were given BD at the dose of 200, 400 and 600 mg/kg, respectively, by oral gavage for 7 days. Rats in the sham-operated II group were given 600 mg/kg BD. Rats in the sham-operated I group and vehicle group were given the same volume of normal saline by oral gavage. The body weight, neurological deficits and infarct volume were recorded at 1, 3 and 7 days after the operation. Furthermore, the effect of different doses of BD on interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and interleukin-4 (IL-4) levels in peripheral blood was measured at 7 days. BD-treated rats showed less neurological deficits and a smaller infarct volume at 7 days. BD at 400 and 600 mg/kg significantly decreased the infarct volume in rats. At 600 mg/kg BD, a decline in IL-6, TNF-α, IFN-γ and an increase in IL-4 expression was observed in the BD groups, while no difference in body weight and neurological dysfunction was detected. In conclusion, BD is a neuroprotective agent that may be used as a supplement treatment of ischemic stroke.

  5. Morphologic changes of cerebral veins in hypertensive rats: venous collagenosis is associated with hypertension.

    Science.gov (United States)

    Zhou, Min; Mao, Lijuan; Wang, Ying; Wang, Qian; Yang, Zhiyun; Li, Shurong; Li, Ling

    2015-03-01

    The aims of this study were to determine whether arterial hypertension could affect the venous system of brain and to find out the consequent pathologic changes of cerebral veins. Thirty male Sprague-Dawley rats were divided into 2 groups: a sham-clipped group and a stroke-prone renovascular hypertensive rat group. A 2-kidney 2-clip rat model was used to induce renovascular hypertension in the hypertensive group. Systolic blood pressure was measured by tail cuff once each week. Susceptibility-weighted imaging (SWI) was performed at 12, 16, and 20 weeks after surgery. All the rats were sacrificed after the SWI examination at 20 weeks after surgery. The brains were extracted and embedded in paraffin for histologic examination. Masson trichrome staining was performed to identify venous collagenosis. The sham group demonstrated less prominence of cerebral veins compared with hypertensive groups (P veins on SWI as a sign of venous hypertension and the thickened cerebral venous walls (venous collagenosis), which may play a role in cerebral ischemia and/or infarction, are both consequences of long-term hypertension in hypertensive rats. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  6. Point application with Angong Niuhuang sticker protects hippocampal and cortical neurons in rats with cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Dong-shu Zhang

    2015-01-01

    Full Text Available Angong Niuhuang pill, a Chinese materia medica preparation, can improve neurological functions after acute ischemic stroke. Because of its inconvenient application and toxic components (Cinnabaris and Realgar, we used transdermal enhancers to deliver Angong Niuhuang pill by modern technology, which expanded the safe dose range and clinical indications. In this study, Angong Niuhuang stickers administered at different point application doses (1.35, 2.7, and 5.4 g/kg were administered to the Dazhui (DU14, Qihai (RN6 and Mingmen (DU4 of rats with chronic cerebral ischemia, for 4 weeks. The Morris water maze was used to determine the learning and memory ability of rats. Hematoxylin-eosin staining and Nissl staining were used to observe neuronal damage of the cortex and hippocampal CA1 region in rats with chronic cerebral ischemia. The middle- and high-dose point application of Angong Niuhuang stickers attenuated neuronal damage in the cortex and hippocampal CA1 region, and improved the memory of rats with chronic cerebral ischemia with an efficacy similar to interventions by electroacupuncture at Dazhui (DU14, Qihai (RN6 and Mingmen (DU4. Our experimental findings indicate that point application with Angong Niuhuang stickers can improve cognitive function after chronic cerebral ischemia in rats and is neuroprotective with an equivalent efficacy to acupuncture.

  7. Ultrastructural evaluation of multiple pass low energy versus single pass high energy radio-frequency treatment.

    Science.gov (United States)

    Kist, David; Burns, A Jay; Sanner, Roth; Counters, Jeff; Zelickson, Brian

    2006-02-01

    The radio-frequency (RF) device is a system capable of volumetric heating of the mid to deep dermis and selective heating of the fibrous septa strands and fascia layer. Clinically, these effects promote dermal collagen production, and tightening of these deep subcutaneous structures. A new technique of using multiple low energy passes has been described which results in lower patient discomfort and fewer side effects. This technique has also been anecdotally described as giving more reproducible and reliable clinical results of tissue tightening and contouring. This study will compare ultrastructural changes in collagen between a single pass high energy versus up to five passes of a multiple pass lower energy treatment. Three subjects were consented and treated in the preauricular region with the RF device using single or multiple passes (three or five) in the same 1.5 cm(2) treatment area with a slight delay between passes to allow tissue cooling. Biopsies from each treatment region and a control biopsy were taken immediately, 24 hours or 6 months post treatment for electron microscopic examination of the 0-1 mm and 1-2 mm levels. Sections of tissue 1 mm x 1 mm x 80 nm were examined with an RCA EMU-4 Transmission Electron Microscope. Twenty sections from 6 blocks from each 1 mm depth were examined by 2 blinded observers. The morphology and degree of collagen change in relation to area examined was compared to the control tissue, and estimated using a quantitative scale. Ultrastructural examination of tissue showed that an increased amount of collagen fibril changes with increasing passes at energies of 97 J (three passes) and 122 J (five passes), respectively. The changes seen after five multiple passes were similar to those detected after much more painful single pass high-energy treatments. This ultrastructural study shows changes in collagen fibril morphology with an increased effect demonstrated at greater depths of the skin with multiple low-fluence passes

  8. Imaging of rat cerebral ischemia-reperfusion injury using99mTc-labeled duramycin

    International Nuclear Information System (INIS)

    Zhang Yuqing; Stevenson, Gail D.; Barber, Christy; Furenlid, Lars R.; Barrett, Harrison H.; Woolfenden, James M.; Zhao Ming; Liu Zhonglin

    2013-01-01

    Objectives: Prompt identification of necrosis and apoptosis in the infarct core and penumbra region is critical in acute stroke for delineating the underlying ischemic/reperfusion molecular pathologic events and defining therapeutic alternatives. The objective of this study was to investigate the capability of 99m Tc-labeled duramycin in detecting ischemia-reperfusion injury in rat brain after middle cerebral artery (MCA) occlusion. Methods: Ischemic cerebral injury was induced in ten rats by vascular insertion of a nylon suture in the left MCA for 3 hr followed by 21–24 hr reperfusion. After i.v. injection of 99m Tc-duramycin (1.0-3.5 mCi), dynamic cerebral images were acquired for 1 hr in six rats using a small-animal SPECT imager. Four other rats were imaged at 2 hr post-injection. Ex vivo images were obtained by autoradiography after sacrifice. Histologic analyses were performed to assess cerebral infarction and apoptosis. Results: SPECT images showed that 99m Tc-duramycin uptake in the left cerebral hemisphere was significantly higher than that in the right at 1 and 2 hr post-injection. The level of radioactive uptake in the ischemic brain varied based on ischemic severity. The average ratio of left cerebral hot-spot uptake to right hemisphere radioactivity, as determined by computerized ROI analysis, was 4.92 ± 0.79. Fractional washout at 1 hr was 38.2 ± 4.5% of peak activity for left cerebral hot-spot areas and 80.9 ± 2.0% for remote control areas (P 99m Tc-duramycin SPECT imaging may be useful for detecting and quantifying ongoing apoptotic neuronal cell loss induced by ischemia-reperfusion injury.

  9. Hemopexin induces neuroprotection in the rat subjected to focal cerebral ischemia.

    Science.gov (United States)

    Dong, Beibei; Cai, Min; Fang, Zongping; Wei, Haidong; Zhu, Fangyun; Li, Guochao; Dong, Hailong; Xiong, Lize

    2013-06-10

    The plasma protein hemopexin (HPX) exhibits the highest binding affinity to free heme. In vitro experiments and gene-knock out technique have suggested that HPX may have a neuroprotective effect. However, the expression of HPX in the brain was not well elucidated and its expression after cerebral ischemia-reperfusion injury was also poorly studied. Furthermore, no in vivo data were available on the effect of HPX given centrally on the prognosis of focal cerebral ischemia. In the present study, we systematically investigated expression of HPX in normal rat brain by immunofluorescent staining. The results showed that HPX was mainly expressed in vascular system and neurons, as well as in a small portion of astrocytes adjacent to the vessels in normal rat brain. Further, we determined the role of HPX in the process of focal cerebral ischemic injury and explored the effects of HPX treatment in a rat model of transient focal cerebral ischemia. After 2 h' middle cerebral artery occlusion (MCAO) followed by 24 h' reperfusion, the expression of HPX was increased in the neurons and astrocytes in the penumbra area, as demonstrated by immunohistochemistry and Western blot techniques. Intracerebroventricular injection of HPX at the onset of reperfusion dose-dependently reduced the infarct volumes and improved measurements of neurological function of the rat subjected to transient focal cerebral ischemia. The neuroprotective effects of HPX sustained for up to 7 days after experiments. Our study provides a new insight into the potential neuroprotective role of HPX as a contributing factor of endogenous protective mechanisms against focal cerebral ischemia injury, and HPX might be developed as a potential agent for treatment of ischemic stroke.

  10. Effects of Mild Blast Traumatic Brain Injury on Cerebral Vascular, Histopathological, and Behavioral Outcomes in Rats

    Science.gov (United States)

    Zeng, Yaping; Deyo, Donald; Parsley, Margaret A.; Hawkins, Bridget E.; Prough, Donald S.; DeWitt, Douglas S.

    2018-01-01

    Abstract To determine the effects of mild blast-induced traumatic brain injury (bTBI), several groups of rats were subjected to blast injury or sham injury in a compressed air-driven shock tube. The effects of bTBI on relative cerebral perfusion (laser Doppler flowmetry [LDF]), and mean arterial blood pressure (MAP) cerebral vascular resistance were measured for 2 h post-bTBI. Dilator responses to reduced intravascular pressure were measured in isolated middle cerebral arterial (MCA) segments, ex vivo, 30 and 60 min post-bTBI. Neuronal injury was assessed (Fluoro-Jade C [FJC]) 24 and 48 h post-bTBI. Neurological outcomes (beam balance and walking tests) and working memory (Morris water maze [MWM]) were assessed 2 weeks post-bTBI. Because impact TBI (i.e., non-blast TBI) is often associated with reduced cerebral perfusion and impaired cerebrovascular function in part because of the generation of reactive oxygen and nitrogen species such as peroxynitrite (ONOO−), the effects of the administration of the ONOO− scavenger, penicillamine methyl ester (PenME), on cerebral perfusion and cerebral vascular resistance were measured for 2 h post-bTBI. Mild bTBI resulted in reduced relative cerebral perfusion and MCA dilator responses to reduced intravascular pressure, increases in cerebral vascular resistance and in the numbers of FJC-positive cells in the brain, and significantly impaired working memory. PenME administration resulted in significant reductions in cerebral vascular resistance and a trend toward increased cerebral perfusion, suggesting that ONOO− may contribute to blast-induced cerebral vascular dysfunction. PMID:29160141

  11. Effect of a ballast zone on the hydraulic stability of a single-pass steam generator

    International Nuclear Information System (INIS)

    Belyakov, I.I.; Kvetnyj, M.A.; Loginov, D.A.

    1985-01-01

    A new mechanism of hydraulic instability of boiling channels with convection heating which reveals in the presence of a developed ballast zone at decreased loads of a counterflan steam generator operation is considered. It is shown that for the certain combinations of thermal and technical parameters pulsation regimes caused by the ballast zone displacement over the heating surface are possible. The parameter relation at which the ballast zone position becomes unstable is obtained. The effect of the ballast zone on the statis steam generator stability is established. A mechanism of whole-circuit pulsations revealed when developing start regimes of single-pass steam generator heated with liquid sodium is explained from the positions of the instability

  12. Experimental and simulation studies on a single pass, double duct solar air heater

    Energy Technology Data Exchange (ETDEWEB)

    Forson, F.K. [Kwame Nkrumah Univ. of Science and Technology, Dept. of Mechanical Engineering, Kumasi (Ghana); Rajakaruna, H. [De Montfort Univ., School of Engineering and Technology, Leicester (United Kingdom)

    2003-05-01

    A mathematical model of a single pass, double duct solar air heater (SPDDSAH) is described. The model provides a design tool capable of predicting: incident solar radiation, heat transfer coefficients, mean air flow rates, mean air temperature and relative humidity at the exit. Results from the simulation are presented and compared with experimental ones obtained on a full scale air heater and a small scale laboratory one. Reasonable agreement between the predicted and measured values is demonstrated. Predicted results from a parametric study are also presented. It is shown that significant improvement in the SPDDSAH performance can be obtained with an appropriate choice of the collector parameters and the top to bottom channel depth ratio of the two ducts. The air mass flow rate is shown to be the dominant factor in determining the overall efficiency of the heater. (Author)

  13. High-Accuracy Elevation Data at Large Scales from Airborne Single-Pass SAR Interferometry

    Directory of Open Access Journals (Sweden)

    Guy Jean-Pierre Schumann

    2016-01-01

    Full Text Available Digital elevation models (DEMs are essential data sets for disaster risk management and humanitarian relief services as well as many environmental process models. At present, on the hand, globally available DEMs only meet the basic requirements and for many services and modeling studies are not of high enough spatial resolution and lack accuracy in the vertical. On the other hand, LiDAR-DEMs are of very high spatial resolution and great vertical accuracy but acquisition operations can be very costly for spatial scales larger than a couple of hundred square km and also have severe limitations in wetland areas and under cloudy and rainy conditions. The ideal situation would thus be to have a DEM technology that allows larger spatial coverage than LiDAR but without compromising resolution and vertical accuracy and still performing under some adverse weather conditions and at a reasonable cost. In this paper, we present a novel single pass In-SAR technology for airborne vehicles that is cost-effective and can generate DEMs with a vertical error of around 0.3 m for an average spatial resolution of 3 m. To demonstrate this capability, we compare a sample single-pass In-SAR Ka-band DEM of the California Central Valley from the NASA/JPL airborne GLISTIN-A to a high-resolution LiDAR DEM. We also perform a simple sensitivity analysis to floodplain inundation. Based on the findings of our analysis, we argue that this type of technology can and should be used to replace large regions of globally available lower resolution DEMs, particularly in coastal, delta and floodplain areas where a high number of assets, habitats and lives are at risk from natural disasters. We conclude with a discussion on requirements, advantages and caveats in terms of instrument and data processing.

  14. Protective effect of Kombucha tea on brain damage induced by transient cerebral ischemia and reperfusion in rat

    OpenAIRE

    Najmeh Kabiri; Mahbubeh Setorki

    2016-01-01

    The aim of study was to investigate the potential neuroprotective effects of Kombucha on cerebral damage induced by ischemia in rats (n=99). Cerebral infarct volume in the ischemic rats received Kombucha solution showed no significance alteration. However, the permeability of blood-brain barrier significantly decreased in both ischemic rats received 15 mg/kg Kombucha tea and Sham group. In addition, brain water content in the ischemic groups treated with Kombucha solution was significantly hi...

  15. Asymmetry in the brain influenced the neurological deficits and infarction volume following the middle cerebral artery occlusion in rats

    OpenAIRE

    Zhang Meizeng; Gao Huanmin

    2008-01-01

    Abstract Background Paw preference in rats is similar to human handedness, which may result from dominant hemisphere of rat brain. However, given that lateralization is the uniqueness of the humans, many researchers neglect the differences between the left and right hemispheres when selecting the middle cerebral artery occlusion (MCAO) in rats. The aim of this study was to evaluate the effect of ischemia in the dominant hemisphere on neurobehavioral function and on the cerebral infarction vol...

  16. VIP/PACAP receptors in cerebral arteries of rat

    DEFF Research Database (Denmark)

    Erdling, André; Sheykhzade, Majid; Maddahi, Aida

    2013-01-01

    BACKGROUND: Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating peptide (PACAP)-containing nerves surround cerebral blood vessels. The peptides have potent vasodilator properties via smooth muscle cell receptors and activation of adenylate cyclase. The purpose of this s......BACKGROUND: Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating peptide (PACAP)-containing nerves surround cerebral blood vessels. The peptides have potent vasodilator properties via smooth muscle cell receptors and activation of adenylate cyclase. The purpose...

  17. Comparative studies of D2 receptors and cerebral blood flow in hemi-parkinsonism rats

    International Nuclear Information System (INIS)

    Lin, Y.; Lin, X.

    2000-01-01

    To study the relationship between dopamine (DA) D 2 receptors and cerebral blood flow in hemiparkinsonism rats. Hemi-parkinsonism rats were made by stereotaxic 6-hydroxy dopamine (6-OH-DA) lesions in substantia nigra and ventral tegmental area, apomorphine (Apo) which could induce the successful model rat rotates toward the intact side was used to screen that rats, 125 I-IBZM in vivo autoradiography and 99m Tc-HM-PAO regional brain biodistribution were used to study D 2 receptors and cerebral blood flow. The HPLC-ECD were used to measure the concentration of DA and it metabolites homovanillic acid (HVA), 3,4-dehydroxyphenyl acetic acid (DOPAC) in bilateral striatum (ST). The lesioned side ST DA and its metabolites HVA DOPAC reduced significantly than that of the intact side and pseudo-operated control group, ST/cerebellum (CB) 125 I-IBZM uptake ratio was 8.04 ±0.71 in lesioned side of hemi-parkinsonism rats, significantly increased compared with the intact side and the pseudo-operated group (p 99m Tc 30.1±4.53% enhancement as compared to the intact side, and also show good correlation with 30 min Apo induced rotation numbers (r=0.98), the regional cerebral blood flow study didn't show significant difference between bilateral brain cortex area (p>0.05). The DA content decreased significantly and induced an up-regulation of ST D 2 receptor binding sites in 6-OH-DA lesioned side in hemi-parkinsonism rats, the increased percentage of lesioned-intact side ST/CB 125 I-IBZM uptake ratio showed good correlation with rotation behavior induced by Apo. Compare with cerebral blood flow, D 2 receptor reflected by IBZM seems to be more specific and earlier to detect the cerebral functional impairment in experimental hemi-parkinsonism

  18. Radial extracorporeal shock wave therapy improves cerebral blood flow and neurological function in a rat model of cerebral ischemia.

    Science.gov (United States)

    Kang, Nan; Zhang, Jing; Yu, Xiaotong; Ma, Yuewen

    2017-01-01

    We performed middle cerebral artery occlusion (MCAO) in rats to investigate the effect and some of the underlying mechanisms of radial extracorporeal shock wave therapy (rESWT) in cerebral ischemia rats. We measured neurological function and cerebral blood flow (CBF) using a full-field laser perfusion imager and brain infarct volume on days 3, 12, and 30. Immunofluorescence, western blot, and real-time polymerase chain reaction (PCR) techniques were used to detect the expression of vascular endothelial growth factor (VEGF), neuron-specific enolase (NSE), nestin, Wnt3a, and β-catenin in the ischemic hemisphere. The dose of rESWT used on the head revealed remarkable advantages over sham rESWT, as demonstrated by improved neurological function scores, increased CBF, and reduced brain infarct volume. Furthermore, applying rESWT to the head and limbs enhanced short-term neurological function. Our results confirmed that rESWT can induce VEGF expression over an extended period with a profound effect, which may be the primary reason for CBF recovery. High NSE and nestin expression levels suggest that rESWT enhanced the number of neurons and neural stem cells (NSCs). Wnt3a and β-catenin expression were up-regulated in the ischemic hemisphere, indicating that rESWT promoted NSC proliferation and differentiation via the Wnt/β-catenin pathway. Overall, our findings suggest that an appropriate rESWT dose delivered to the head of rats helps restore neurological function and CBF, and additional application of rESWT to the limbs is more effective than treating the head alone.

  19. Higher density of serotonin-1A receptors in the hippocampus and cerebral cortex of alcohol-preferring P rats

    International Nuclear Information System (INIS)

    Wong, D.T.; Threlkeld, P.G.; Lumeng, L.; Li, Ting-Kai

    1990-01-01

    Saturable [ 3 H]-80HDPAT binding to 5HT-1A receptors in membranes prepared from hippocampus and frontal cerebral cortex of alcohol-preferring (P) rats and of alcohol-nonpreferring (NP) rats has been compared. The B max values or densities of recognition sites for 5HT-1A receptors in both brain areas of the P rats are 38 and 44 percent lower in the P rats than in the NP rats. The corresponding K D values are 38 and 44 percent lower in the P rats than in the NP rats, indicating higher affinities of the recognition sites for the 5HT-1A receptors in hippocampus and cerebral cortex of the P rats. These findings indicate either an enrichment of 5HT-1A receptor density during selective breeding for alcohol preference or an upregulation of 5HT-1A receptors of 5HT found in these brain areas of P rats as compared with the NP rats

  20. Co-60 and Ca-45 autoradiography in cerebral ischemia in the rat

    NARCIS (Netherlands)

    Stevens, H; Krop-van Gastel, W; Korf, J

    1998-01-01

    Radioisotopes of divalent Co (Co-57 in Single photon emission tomography (SPECT)and Co-55 in positron emission tomography (PET) have clinically been applied to visualize Ca related brain damage. The cerebral uptake of Ca-45 and Co-60 in a unilateral stroke model in the rat was compared; 100 mu Ci

  1. CRYOPRESERVATION OF FRESHLY ISOLATED SYNAPTOSOMES PREPARED FROM THE CEREBRAL-CORTEX OF RATS

    NARCIS (Netherlands)

    GLEITZ, J; BEILE, A; WILFFERT, B; TEGTMEIER, F

    In the present study, we established a cryopreservation method for freshly isolated synaptosomes prepared from the cerebral cortex of rats. Freshly prepared synaptosomes were either shock-frozen or frozen under temperature-controlled conditions using a programmable temperature controller. Each group

  2. Proteinuria precedes cerebral edema in stroke-prone rats : a magnetic resonance imaging study

    NARCIS (Netherlands)

    Blezer, E.L.A.; Schurink, M.; Nicolaij, K.; Dop Bär, P.R.; Jansen, G.H.; Koomans, H.A.; Joles, Jaap

    1998-01-01

    Background and Purpose: Stroke-prone spontaneously hypertensive rats (SHRSP) subjected to high sodium intake develop severe hypertension, cerebral edema, and proteinuria, culminating in organ damage and early death. MRI, which can be applied serially, provides the unique opportunity to study

  3. Gene expression and molecular changes in cerebral arteries following subarachnoid hemorrhage in the rat

    DEFF Research Database (Denmark)

    Vikman, Petter; Beg, Saema; Khurana, Tejvir S

    2006-01-01

    OBJECT: The authors investigated early changes in the cerebral arteries of rats that occur after subarachnoid hemorrhage (SAH). METHODS: Messenger RNA was investigated by performing microarray and quantitative real-time polymerase chain reaction (PCR) analyses, and protein expression was shown...

  4. Brain scan in cerebral ischemia. An experimental model in the rat

    International Nuclear Information System (INIS)

    Turner, J.H.

    1975-01-01

    A rapid embolic method for consistent induction of stroke in the rat is described. Brain scans were performed using a micro-pinhole collimator system, and the value of the model for studies in localization of radiopharmaceuticals in cerebral ischemia is demonstrated

  5. Nimodipine Effects on Cerebral Microvessels and Sciatic Nerve in Aging Rats

    NARCIS (Netherlands)

    de Jong, Giena; Jansen, Arthur; Horvath, E.; Gispen, W.H.; Luiten, P.G.M.

    1992-01-01

    At the ultrastructural level different anomalies of the cerebral microvasculature were encountered in the brains of aged rats. These aberrations can either be attributed to degeneration processes or to the perivascular deposition of, e.g., collagen fibrils and other, unidentified, proteinous debris.

  6. Therapeutic effects of different durations of acupuncture on rats with middle cerebral artery occlusion

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2015-01-01

    Full Text Available Acupuncture is regarded as an effective therapy for cerebral ischemia. Different acupuncture manipulations and durations may result in different therapeutic effects. In the present study, the Neiguan (PC6 acupoint of rats with occluded middle cerebral arteries was needled at a fixed frequency (3 Hz with different durations, i.e., 5, 60 and 180 seconds under a twisting-rotating acupuncture method. Results showed that different durations of acupuncture had different therapeutic effects, with 60 seconds yielding a better therapeutic effect than the other two groups. This duration of treatment demonstrated rapid cerebral blood flow, encouraging recovery of neurological function, and small cerebral infarct volume. Experimental findings indicated that under 3 Hz frequency, the treatment of needling Neiguan for 60 seconds is effective for ischemic stroke

  7. Correlation between synaptic plasticity, associated proteins, and rehabilitation training in a rat model of cerebral infarction

    Institute of Scientific and Technical Information of China (English)

    Dan Yang; Qian Yu

    2008-01-01

    All motions provide sensory, motoric, and reflexive input to the central nervous system, as well as playing an important role in cerebral functional plasticity and compensation. Cerebral plasticity has become the theoretical basis of neurorehabilitation. Studies of cerebrovascular disease, in particular, demonstrate that regeneration is accompanied by multiple forms of plasticity, such as functional and structural, in different phases of stroke rehabilitation. This study was designed to measure synaptic plasticity and expression of associated proteins to analyze the effect of rehabilitation training on learning and memory in a rat model of cerebral infarction. Results suggest that rehabilitation training increases expression of nerve growth factor associated protein 43, brain-derived neurotrophic factor, and neural cell adhesion molecules, and also promotes cerebral functional plasticity.

  8. Effects of MK-801 upon local cerebral glucose utilization in conscious rats and in rats anaesthetised with halothane

    International Nuclear Information System (INIS)

    Kurumaji, A.; McCulloch, J.

    1989-01-01

    The effects of MK-801 (0.5 mg/kg i.v.), a non-competitive N-methyl-D-aspartate (NMDA) antagonist, upon local cerebral glucose utilization were examined in conscious, lightly restrained rats and in rats anaesthetised with halothane in nitrous oxide by means of the quantitative autoradiographic [14C]-2-deoxyglucose technique. In the conscious rats, MK-801 produced a heterogenous pattern of altered cerebral glucose utilization with significant increases being observed in 12 of the 28 regions of gray matter examined and significant decreases in 6 of the 28 regions. Pronounced increases in glucose use were observed after MK-801 in the olfactory areas and in a number of brain areas in the limbic system (e.g., hippocampus molecular layer, dentate gyrus, subicular complex, posterior cingulate cortex, and mammillary body). In the cerebral cortices, large reductions in glucose use were observed after administration of MK-801, whereas in the extrapyramidal and sensory-motor areas, glucose use remained unchanged after MK-801 administration in conscious rats. In the halothane-anaesthetised rats, the pattern of altered glucose use after MK-801 differed qualitatively and quantitatively from that observed in conscious rats. In anaesthetised rats, significant reductions in glucose use were noted after MK-801 in 10 of the 28 regions examined, with no area displaying significantly increased glucose use after administration of the drug. In halothane-anaesthetised rats, MK-801 failed to change the rates of glucose use in the olfactory areas, the hippocampus molecular layer, and the dentate gyrus

  9. Hemorrhagic Transformation After Large Cerebral Infarction in Rats Pretreated With Dabigatran or Warfarin.

    Science.gov (United States)

    Kwon, Il; An, Sunho; Kim, Jayoung; Yang, Seung-Hee; Yoo, Joonsang; Baek, Jang-Hyun; Nam, Hyo Suk; Kim, Young Dae; Lee, Hye Sun; Choi, Hyun-Jung; Heo, Ji Hoe

    2017-10-01

    It is uncertain whether hemorrhagic transformation (HT) after large cerebral infarction is less frequent in dabigatran users than warfarin users. We compared the occurrence of HT after large cerebral infarction among rats pretreated with dabigatran, warfarin, or placebo. This was a triple-blind, randomized, and placebo-controlled experiment. After treatment with warfarin (0.2 mg/kg), dabigatran (20 mg/kg), or saline for 7 days, Wistar rats were subjected to transient middle cerebral artery occlusion. As the primary outcome, HT was determined by gradient-recalled echo imaging. For the secondary outcome, intracranial hemorrhage was assessed via gradient-recalled echo imaging in surviving rats and via autopsy for dead rats. Of 62 rats, there were 33 deaths (53.2%, 17 technical reasons). Of the intention-to-treat population, 33 rats underwent brain imaging. HT was less frequent in the dabigatran group than the warfarin group (placebo 2/14 [14%], dabigatran 0/10 [0%], and warfarin 9/9 [100%]; dabigatran versus warfarin; P warfarin group (19/29 [65.5%]; P =0.003), but not in the dabigatran group (6/19 [31.6%]; P =0.420). Mortality was significantly higher in the warfarin group than the dabigatran group (79.3% versus 47.4%; P =0.022), but not related to the hemorrhage frequency. The risk of HT after a large cerebral infarction was significantly increased in rats pretreated with warfarin than those with dabigatran. However, the results here may not have an exact clinical translation. © 2017 American Heart Association, Inc.

  10. Edaravone, a free radical scavenger, attenuates cerebral infarction and hemorrhagic infarction in rats with hyperglycemia.

    Science.gov (United States)

    Okamura, Koichi; Tsubokawa, Tamiji; Johshita, Hiroo; Miyazaki, Hiroshi; Shiokawa, Yoshiaki

    2014-01-01

    Thrombolysis due to acute ischemic stroke is associated with the risk of hemorrhagic infarction, especially after reperfusion. Recent experimental studies suggest that the main mechanism contributing to hemorrhagic infarction is oxidative stress caused by disruption of the blood-brain barrier. Edaravone, a free radical scavenger, decreases oxidative stress, thereby preventing hemorrhagic infarction during ischemia and reperfusion. In this study, we investigated the effects of edaravone on hemorrhagic infarction in a rat model of hemorrhagic transformation. We used a previously established hemorrhagic transformation model of rats with hyperglycemia. Hyperglycemia was induced by intraperitoneal injection of glucose to all rats (n  =  20). The rats with hyperglycemia showed a high incidence of hemorrhagic infarction. Middle cerebral artery occlusion (MCAO) for 1.5 hours followed by reperfusion for 24 hours was performed in edaravone-treated rats (n  =  10) and control rats (n  =  10). Upon completion of reperfusion, both groups were evaluated for infarct size and hemorrhage volume and the results obtained were compared. Edaravone significantly decreased infarct volume, with the average infarct volume in the edaravone-treated rats (227.6 mm(3)) being significantly lower than that in the control rats (264.0 mm(3)). Edaravone treatment also decreased the postischemic hemorrhage volumes (53.4 mm(3) in edaravone-treated rats vs 176.4 mm(3) in controls). In addition, the ratio of hemorrhage volume to infarct volume was lower in the edaravone-treated rats (23.5%) than in the untreated rats (63.2%). Edaravone attenuates cerebral infarction and hemorrhagic infarction in rats with hyperglycemia.

  11. LXW7 ameliorates focal cerebral ischemia injury and attenuates inflammatory responses in activated microglia in rats

    International Nuclear Information System (INIS)

    Fang, T.; Zhou, D.; Lu, L.; Tong, X.; Wu, J.; Yi, L.

    2016-01-01

    Inflammation plays a pivotal role in ischemic stroke, when activated microglia release excessive pro-inflammatory mediators. The inhibition of integrin αvβ3 improves outcomes in rat focal cerebral ischemia models. However, the mechanisms by which microglia are neuroprotective remain unclear. This study evaluated whether post-ischemic treatment with another integrin αvβ3 inhibitor, the cyclic arginine-glycine-aspartic acid (RGD) peptide-cGRGDdvc (LXW7), alleviates cerebral ischemic injury. The anti-inflammatory effect of LXW7 in activated microglia within rat focal cerebral ischemia models was examined. A total of 108 Sprague-Dawley rats (250–280 g) were subjected to middle cerebral artery occlusion (MCAO). After 2 h, the rats were given an intravenous injection of LXW7 (100 μg/kg) or phosphate-buffered saline (PBS). Neurological scores, infarct volumes, brain water content (BWC) and histology alterations were determined. The expressions of pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β)], and Iba1-positive activated microglia, within peri-ischemic brain tissue, were assessed with ELISA, western blot and immunofluorescence staining. Infarct volumes and BWC were significantly lower in LXW7-treated rats compared to those in the MCAO + PBS (control) group. The LXW7 treatment lowered the expression of pro-inflammatory cytokines. There was a reduction of Iba1-positive activated microglia, and the TNF-α and IL-1β expressions were attenuated. However, there was no difference in the Zea Longa scores between the ischemia and LXW7 groups. The results suggest that LXW7 protected against focal cerebral ischemia and attenuated inflammation in activated microglia. LXW7 may be neuroprotective during acute MCAO-induced brain damage and microglia-related neurodegenerative diseases

  12. LXW7 ameliorates focal cerebral ischemia injury and attenuates inflammatory responses in activated microglia in rats

    Energy Technology Data Exchange (ETDEWEB)

    Fang, T.; Zhou, D.; Lu, L.; Tong, X.; Wu, J.; Yi, L. [Department of Neurology, Shenzhen Hospital, Peking University, Shenzhen (China)

    2016-08-01

    Inflammation plays a pivotal role in ischemic stroke, when activated microglia release excessive pro-inflammatory mediators. The inhibition of integrin αvβ3 improves outcomes in rat focal cerebral ischemia models. However, the mechanisms by which microglia are neuroprotective remain unclear. This study evaluated whether post-ischemic treatment with another integrin αvβ3 inhibitor, the cyclic arginine-glycine-aspartic acid (RGD) peptide-cGRGDdvc (LXW7), alleviates cerebral ischemic injury. The anti-inflammatory effect of LXW7 in activated microglia within rat focal cerebral ischemia models was examined. A total of 108 Sprague-Dawley rats (250–280 g) were subjected to middle cerebral artery occlusion (MCAO). After 2 h, the rats were given an intravenous injection of LXW7 (100 μg/kg) or phosphate-buffered saline (PBS). Neurological scores, infarct volumes, brain water content (BWC) and histology alterations were determined. The expressions of pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β)], and Iba1-positive activated microglia, within peri-ischemic brain tissue, were assessed with ELISA, western blot and immunofluorescence staining. Infarct volumes and BWC were significantly lower in LXW7-treated rats compared to those in the MCAO + PBS (control) group. The LXW7 treatment lowered the expression of pro-inflammatory cytokines. There was a reduction of Iba1-positive activated microglia, and the TNF-α and IL-1β expressions were attenuated. However, there was no difference in the Zea Longa scores between the ischemia and LXW7 groups. The results suggest that LXW7 protected against focal cerebral ischemia and attenuated inflammation in activated microglia. LXW7 may be neuroprotective during acute MCAO-induced brain damage and microglia-related neurodegenerative diseases.

  13. Combined administration of hyperbaric oxygen and hydroxocobalamin improves cerebral metabolism after acute cyanide poisoning in rats

    DEFF Research Database (Denmark)

    Hansen, M B; Olsen, Niels Vidiendal; Hyldegaard, O

    2013-01-01

    -to-pyruvate ratio in rat brain by means of microdialysis during acute CN poisoning. Anesthetized rats were allocated to three groups: 1) vehicle (1.2 ml isotonic NaCl intra-arterially); 2) potassium CN (5.4 mg/kg intra-arterially); 3) potassium CN, OHCob (100 mg/kg intra-arterially) and subsequent HBOT (284 k......Pa in 90 min). OHCob and HBOT significantly attenuated the acute surges in interstitial cerebral lactate, glucose, and glycerol concentrations compared with the intoxicated rats given no treatment. Furthermore, the combined treatment resulted in consistent low lactate, glucose, and glycerol concentrations...

  14. Cerebral ischemia produced by four-vessel occlusion in the rat: a quantitative evaluation of cerebral blood flow

    International Nuclear Information System (INIS)

    Furlow, T.W. Jr.

    1982-01-01

    Cerebral ischemia was produced in the rat by simultaneous occlusion of the vertebral and carotid arteries according to the method of Pulsinelli and Brierley (Stroke 10: 267, 1979). Local cerebral blood flow (CBF) was determined by polarographic and autoradiographic techniques. Hydrogen-clearance measurements showed that mean CBF fell in four monitored regions of the hemispheres to between 0.11 and 0.18 ml/g/min, being least in deep rostal gray, intermediate in superficial gray, and greatest in deep caudal gray. However, individual animals had local CBF in excess of 0.20 and even 0.30 ml/g/min, and no animal showed zero CBF. When animals were rendered hypotensive (MABP of 50 Torr) during vascular occlusion, mean CBF ranged between 0.03 and 0.10 ml/g/min in the same regional order. With hypotension, total arrest of flow occurred. Autoradiographic data confirmed the above findings and indicated adequate CBF to the lower brainstem. During vascular occlusion, sufficient CBF may be present ot sustain cerebral tissue as in animals with a well developed spinal circulation or an inadvertently patent vertebral artery

  15. Alterations in the Cerebral Microvascular Proteome Expression Profile After Transient Global Cerebral Ischemia in Rat

    DEFF Research Database (Denmark)

    Spray, Stine; Johansson, Sara E; Edwards, Alistair V G

    2017-01-01

    . The proteomic profile of the isolated cerebral microvasculature 72 h after GCI (compared to sham) indicated that the main expressional changes could be divided into nine categories: (1) cellular respiration, (2) remodelling of the extracellular matrix, (3) decreased contractile phenotype, (4) clathrin...

  16. Pomegranate extract protects against cerebral ischemia/reperfusion injury and preserves brain DNA integrity in rats.

    Science.gov (United States)

    Ahmed, Maha A E; El Morsy, Engy M; Ahmed, Amany A E

    2014-08-21

    Interruption to blood flow causes ischemia and infarction of brain tissues with consequent neuronal damage and brain dysfunction. Pomegranate extract is well tolerated, and safely consumed all over the world. Interestingly, pomegranate extract has shown remarkable antioxidant and anti-inflammatory effects in experimental models. Many investigators consider natural extracts as novel therapies for neurodegenerative disorders. Therefore, this study was carried out to investigate the protective effects of standardized pomegranate extract against cerebral ischemia/reperfusion-induced brain injury in rats. Adult male albino rats were randomly divided into sham-operated control group, ischemia/reperfusion (I/R) group, and two other groups that received standardized pomegranate extract at two dose levels (250, 500 mg/kg) for 15 days prior to ischemia/reperfusion (PMG250+I/R, and PMG500+I/R groups). After I/R or sham operation, all rats were sacrificed and brains were harvested for subsequent biochemical analysis. Results showed reduction in brain contents of MDA (malondialdehyde), and NO (nitric oxide), in addition to enhancement of SOD (superoxide dismutase), GPX (glutathione peroxidase), and GRD (glutathione reductase) activities in rats treated with pomegranate extract prior to cerebral I/R. Moreover, pomegranate extract decreased brain levels of NF-κB p65 (nuclear factor kappa B p65), TNF-α (tumor necrosis factor-alpha), caspase-3 and increased brain levels of IL-10 (interleukin-10), and cerebral ATP (adenosine triphosphate) production. Comet assay showed less brain DNA (deoxyribonucleic acid) damage in rats protected with pomegranate extract. The present study showed, for the first time, that pre-administration of pomegranate extract to rats, can offer a significant dose-dependent neuroprotective activity against cerebral I/R brain injury and DNA damage via antioxidant, anti-inflammatory, anti-apoptotic and ATP-replenishing effects. Copyright © 2014 Elsevier Inc

  17. Cerebral energy metabolism in streptozotocin-diabetic rats

    NARCIS (Netherlands)

    Biessels, G.J.; Braun, K.P.J.; Graaf, de R.A.; Eijsden, van P.; Gispen, W.H.; Nicolaij, K.

    2001-01-01

    Aims/hypothesis. It is increasingly evident that the brain is another site of diabetic end-organ damage. The pathogenesis has not been fully explained, but seems to involve an interplay between aberrant glucose metabolism and vascular changes. Vascular changes, such as deficits in cerebral blood

  18. Zingiber officinale Mitigates Brain Damage and Improves Memory Impairment in Focal Cerebral Ischemic Rat

    Science.gov (United States)

    Wattanathorn, Jintanaporn; Jittiwat, Jinatta; Tongun, Terdthai; Muchimapura, Supaporn; Ingkaninan, Kornkanok

    2011-01-01

    Cerebral ischemia is known to produce brain damage and related behavioral deficits including memory. Recently, accumulating lines of evidence showed that dietary enrichment with nutritional antioxidants could reduce brain damage and improve cognitive function. In this study, possible protective effect of Zingiber officinale, a medicinal plant reputed for neuroprotective effect against oxidative stress-related brain damage, on brain damage and memory deficit induced by focal cerebral ischemia was elucidated. Male adult Wistar rats were administrated an alcoholic extract of ginger rhizome orally 14 days before and 21 days after the permanent occlusion of right middle cerebral artery (MCAO). Cognitive function assessment was performed at 7, 14, and 21 days after MCAO using the Morris water maze test. The brain infarct volume and density of neurons in hippocampus were also determined. Furthermore, the level of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in cerebral cortex, striatum, and hippocampus was also quantified at the end of experiment. The results showed that cognitive function and neurons density in hippocampus of rats receiving ginger rhizome extract were improved while the brain infarct volume was decreased. The cognitive enhancing effect and neuroprotective effect occurred partly via the antioxidant activity of the extract. In conclusion, our study demonstrated the beneficial effect of ginger rhizome to protect against focal cerebral ischemia. PMID:21197427

  19. Zingiber officinale Mitigates Brain Damage and Improves Memory Impairment in Focal Cerebral Ischemic Rat

    Directory of Open Access Journals (Sweden)

    Jintanaporn Wattanathorn

    2011-01-01

    Full Text Available Cerebral ischemia is known to produce brain damage and related behavioral deficits including memory. Recently, accumulating lines of evidence showed that dietary enrichment with nutritional antioxidants could reduce brain damage and improve cognitive function. In this study, possible protective effect of Zingiber officinale, a medicinal plant reputed for neuroprotective effect against oxidative stress-related brain damage, on brain damage and memory deficit induced by focal cerebral ischemia was elucidated. Male adult Wistar rats were administrated an alcoholic extract of ginger rhizome orally 14 days before and 21 days after the permanent occlusion of right middle cerebral artery (MCAO. Cognitive function assessment was performed at 7, 14, and 21 days after MCAO using the Morris water maze test. The brain infarct volume and density of neurons in hippocampus were also determined. Furthermore, the level of malondialdehyde (MDA, superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GSH-Px in cerebral cortex, striatum, and hippocampus was also quantified at the end of experiment. The results showed that cognitive function and neurons density in hippocampus of rats receiving ginger rhizome extract were improved while the brain infarct volume was decreased. The cognitive enhancing effect and neuroprotective effect occurred partly via the antioxidant activity of the extract. In conclusion, our study demonstrated the beneficial effect of ginger rhizome to protect against focal cerebral ischemia.

  20. Carvacrol Exerts Neuroprotective Effects Via Suppression of the Inflammatory Response in Middle Cerebral Artery Occlusion Rats.

    Science.gov (United States)

    Li, Zhenlan; Hua, Cong; Pan, Xiaoqiang; Fu, Xijia; Wu, Wei

    2016-08-01

    Increasing evidence demonstrates that inflammation plays an important role in cerebral ischemia. Carvacrol, a monoterpenic phenol, is naturally occurring in various plants belonging to the family Lamiaceae and exerts protective effects in a mice model of focal cerebral ischemia/reperfusion injury by reducing infarct volume and decreasing the expression of cleaved caspase-3. However, the anti-inflammatory mechanisms by which carvacrol protect the brain have yet to be fully elucidated. We investigated the effects of carvacrol on inflammatory reaction and inflammatory mediators in middle cerebral artery occlusion rats. The results of the present study showed that carvacrol inhibited the levels of inflammatory cytokines and myeloperoxidase (MPO) activity, as well as the expression of iNOS and COX-2. It also increased SOD activity and decreased MDA level in ischemic cortical tissues. In addition, carvacrol treatment suppressed the ischemia/reperfusion-induced increase in the protein expression of nuclear NF-kB p65. In conclusion, we have shown that carvacrol inhibits the inflammatory response via inhibition of the NF-kB signaling pathway in a rat model of focal cerebral ischemia. Therefore, carvacrol may be a potential therapeutic agent for the treatment of cerebral ischemia injury.

  1. Protective effect of estrogen in endothelin-induced middle cerebral artery occlusion in female rats.

    Science.gov (United States)

    Glendenning, Michele L; Lovekamp-Swan, Tara; Schreihofer, Derek A

    2008-11-14

    Estrogen is a powerful endogenous and exogenous neuroprotective agent in animal models of brain injury, including focal cerebral ischemia. Although this protection has been demonstrated in several different treatment and injury paradigms, it has not been demonstrated in focal cerebral ischemia induced by intraparenchymal endothelin-1 injection, a model with many advantages over other models of experimental focal ischemia. Reproductively mature female Sprague-Dawley rats were ovariectomized and divided into placebo and estradiol-treated groups. Two weeks later, halothane-anesthetized rats underwent middle cerebral artery (MCA) occlusion by interparenchymal stereotactic injection of the potent vasoconstrictor endothelin 1 (180pmoles/2microl) near the middle cerebral artery. Laser-Doppler flowmetry (LDF) revealed similar reductions in cerebral blood flow in both groups. Animals were behaviorally evaluated before, and 2 days after, stroke induction, and infarct size was evaluated. In agreement with other models, estrogen treatment significantly reduced infarct size evaluated by both TTC and Fluoro-Jade staining and behavioral deficits associated with stroke. Stroke size was significantly correlated with LDF in both groups, suggesting that cranial perfusion measures can enhance success in this model.

  2. Arctigenin protects focal cerebral ischemia-reperfusion rats through inhibiting neuroinflammation.

    Science.gov (United States)

    Fan, Tao; Jiang, Wei Long; Zhu, Jian; Feng Zhang, Yu

    2012-01-01

    Stroke is the third leading cause of death in industrialized countries and the most important cause of acquired adult disability. Many evidences suggest that inflammation accounts for the progression of cerebral ischemic injury. Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignin isolated from certain plants, has shown anti-inflammatory activity against diabetes and Alzheimer's disease. In this study, we tested whether arctigenin can protect middle cerebral artery occluded (MCAO) rats. Male Sprague-Dawley rats were pretreated with arctigenin or vehicle for 7 d before being subjected to transient occlusion of middle cerebral artery and reperfusion. Rats were evaluated at 24 h after MCAO for neurological deficit scoring. Furthermore, the mechanism of the anti-inflammatory effect of arctigenin was investigated with a focus on inflammatory cells, proinflammatory cytokines, and transcriptional factors. Arctigenin significantly reduced cerebral infarction and improved neurological outcome. Arctigenin suppressed the activation of microglia and decreased the expression of interleukin (IL)- 1β and tumor necrosis factor (TNF)-α. These results revealed that arctigenin has a promising therapeutic effect in ischemic stroke treatment through an anti-inflammatory mechanism.

  3. Chronic photoperiod disruption does not increase vulnerability to focal cerebral ischemia in young normotensive rats.

    Science.gov (United States)

    Ku Mohd Noor, Ku Mastura; Wyse, Cathy; Roy, Lisa A; Biello, Stephany M; McCabe, Christopher; Dewar, Deborah

    2017-11-01

    Photoperiod disruption, which occurs during shift work, is associated with changes in metabolism or physiology (e.g. hypertension and hyperglycaemia) that have the potential to adversely affect stroke outcome. We sought to investigate if photoperiod disruption affects vulnerability to stroke by determining the impact of photoperiod disruption on infarct size following permanent middle cerebral artery occlusion. Adult male Wistar rats (210-290 g) were housed singly under two different light/dark cycle conditions ( n = 12 each). Controls were maintained on a standard 12:12 light/dark cycle for nine weeks. For rats exposed to photoperiod disruption, every three days for nine weeks, the lights were switched on 6 h earlier than in the previous photoperiod. T 2 -weighted magnetic resonance imaging was performed at 48 h after middle cerebral artery occlusion. Disruption of photoperiod in young healthy rats for nine weeks did not alter key physiological variables that can impact on ischaemic damage, e.g. blood pressure and blood glucose immediately prior to middle cerebral artery occlusion. There was no effect of photoperiod disruption on infarct size after middle cerebral artery occlusion. We conclude that any potentially adverse effect of photoperiod disruption on stroke outcome may require additional factors such as high fat/high sugar diet or pre-existing co-morbidities.

  4. Subarachnoid hemorrhage enhances endothelin receptor expression and function in rat cerebral arteries

    DEFF Research Database (Denmark)

    Hansen-Schwartz, Jacob; Hoel, Natalie Løvland; Zhou, Mingfang

    2003-01-01

    OBJECTIVE: Inspired by organ culture-induced changes in the vascular endothelin (ET) receptor population, we investigated whether such changes occur in cerebral arteries in a rat subarachnoid hemorrhage (SAH) model. METHODS: SAH was induced with injection of 250 microl of blood into the prechiasm......OBJECTIVE: Inspired by organ culture-induced changes in the vascular endothelin (ET) receptor population, we investigated whether such changes occur in cerebral arteries in a rat subarachnoid hemorrhage (SAH) model. METHODS: SAH was induced with injection of 250 microl of blood...... into the prechiasmatic cistern. After 2 days, the middle cerebral artery, basilar artery, and posterior communicating artery were harvested. Pharmacological studies were performed in vitro, and levels of messenger ribonucleic acid (mRNA) were quantified in real-time reverse transcriptase-polymerase chain reaction assays....... RESULTS: In the middle cerebral artery and basilar artery from rats with induced SAH, enhanced biphasic responses to ET-1 were observed. The -log(50% effective concentration) value for the high-affinity phase was approximately 12, compared with approximately 8.5 for sham-operated animals...

  5. Nicardipine reduces calcium accumulation and electrolyte derangements in regional cerebral ischemia in rats

    International Nuclear Information System (INIS)

    Hadani, M.; Young, W.; Flamm, E.S.

    1988-01-01

    We studied the effects of the calcium channel blocker nicardipine on regional tissue Ca 2+ , Na + , K + , and water shifts in the brains of seven Sprague-Dawley rats after permanent occlusions of the middle cerebral artery. We also assessed the entry of [ 14 C]nicardipine into the brains of five rats; the highest concentrations of [ 14 C]nicardipine were in the infarcted area. Nicardipine treatment significantly reduced Ca 2+ accumulation in the middle cerebral artery territory by 60% compared with six untreated rats 6 hours after arterial occlusion. Eight 125-micrograms/kg boluses of nicardipine given every 30 minutes starting 5 minutes after arterial occlusion also significantly reduced the Na + and K + shifts in the middle cerebral artery territory by 40% and 50%, respectively, 6 hours after arterial occlusion. Nicardipine appears to reduce Ca 2+ accumulation more than it reduces Na + and water accumulation and K + loss. Our results suggest that a calcium channel blocker can protect brain tissues in a model of focal cerebral infarction by directly reducing Ca 2+ entry into ischemic cells

  6. Uranium Release from Acidic Weathered Hanford Sediments: Single-Pass Flow-Through and Column Experiments.

    Science.gov (United States)

    Wang, Guohui; Um, Wooyong; Wang, Zheming; Reinoso-Maset, Estela; Washton, Nancy M; Mueller, Karl T; Perdrial, Nicolas; O'Day, Peggy A; Chorover, Jon

    2017-10-03

    The reaction of acidic radioactive waste with sediments can induce mineral transformation reactions that, in turn, control contaminant fate. Here, sediment weathering by synthetic uranium-containing acid solutions was investigated using bench-scale experiments to simulate waste disposal conditions at Hanford's cribs (Hanford, WA). During acid weathering, the presence of phosphate exerted a strong influence over uranium mineralogy and a rapidly precipitated, crystalline uranium phosphate phase (meta-ankoleite [K(UO 2 )(PO 4 )·3H 2 O]) was identified using spectroscopic and diffraction-based techniques. In phosphate-free system, uranium oxyhydroxide minerals such as K-compreignacite [K 2 (UO 2 ) 6 O 4 (OH) 6 ·7H 2 O] were formed. Single-pass flow-through (SPFT) and column leaching experiments using synthetic Hanford pore water showed that uranium precipitated as meta-ankoleite during acid weathering was strongly retained in the sediments, with an average release rate of 2.67 × 10 -12 mol g -1 s -1 . In the absence of phosphate, uranium release was controlled by dissolution of uranium oxyhydroxide (compreignacite-type) mineral with a release rate of 1.05-2.42 × 10 -10 mol g -1 s -1 . The uranium mineralogy and release rates determined for both systems in this study support the development of accurate U-release models for the prediction of contaminant transport. These results suggest that phosphate minerals may be a good candidate for uranium remediation approaches at contaminated sites.

  7. Parametric analysis of plastic strain and force distribution in single pass metal spinning

    International Nuclear Information System (INIS)

    Choudhary, Shashank; Tejesh, Chiruvolu Mohan; Regalla, Srinivasa Prakash; Suresh, Kurra

    2013-01-01

    Metal spinning also known as spin forming is one of the sheet metal working processes by which an axis-symmetric part can be formed from a flat sheet metal blank. Parts are produced by pressing a blunt edged tool or roller on to the blank which in turn is mounted on a rotating mandrel. This paper discusses about the setting up a 3-D finite element simulation of single pass metal spinning in LS-Dyna. Four parameters were considered namely blank thickness, roller nose radius, feed ratio and mandrel speed and the variation in forces and plastic strain were analysed using the full-factorial design of experiments (DOE) method of simulation experiments. For some of these DOE runs, physical experiments on extra deep drawing (EDD) sheet metal were carried out using En31 tool on a lathe machine. Simulation results are able to predict the zone of unsafe thinning in the sheet and high forming forces that are hint to the necessity for less-expensive and semi-automated machine tools to help the household and small scale spinning workers widely prevalent in India

  8. Parametric analysis of plastic strain and force distribution in single pass metal spinning

    Science.gov (United States)

    Choudhary, Shashank; Tejesh, Chiruvolu Mohan; Regalla, Srinivasa Prakash; Suresh, Kurra

    2013-12-01

    Metal spinning also known as spin forming is one of the sheet metal working processes by which an axis-symmetric part can be formed from a flat sheet metal blank. Parts are produced by pressing a blunt edged tool or roller on to the blank which in turn is mounted on a rotating mandrel. This paper discusses about the setting up a 3-D finite element simulation of single pass metal spinning in LS-Dyna. Four parameters were considered namely blank thickness, roller nose radius, feed ratio and mandrel speed and the variation in forces and plastic strain were analysed using the full-factorial design of experiments (DOE) method of simulation experiments. For some of these DOE runs, physical experiments on extra deep drawing (EDD) sheet metal were carried out using En31 tool on a lathe machine. Simulation results are able to predict the zone of unsafe thinning in the sheet and high forming forces that are hint to the necessity for less-expensive and semi-automated machine tools to help the household and small scale spinning workers widely prevalent in India.

  9. Capacitive deionization of arsenic-contaminated groundwater in a single-pass mode.

    Science.gov (United States)

    Fan, Chen-Shiuan; Liou, Sofia Ya Hsuan; Hou, Chia-Hung

    2017-10-01

    A single-pass-mode capacitive deionization (CDI) reactor was used to remove arsenic from groundwater in the presence of multiple ions. The CDI reactor involved an applied voltage of 1.2 V and six cell pairs of activated carbon electrodes, each of which was 20 × 30 cm 2 . The results indicate that this method achieved an effluent arsenic concentration of 0.03 mg L -1 , which is lower than the arsenic concentration standard for drinking water and irrigation sources in Taiwan, during the charging stage. Additionally, the ability of the CDI to remove other coexisting ions was studied. The presence of other ions has a significant influence on the removal of arsenic from groundwater. From the analysis of the electrosorption selectivity, the preference for anion removal could be ordered as follows: NO 3 -  > SO 4 2-  > F -  > Cl - >As. The electrosorption selectivity for cations could be ordered as follows: Ca 2+  > Mg 2+  > Na +  ∼ K + . Moreover, monovalent cations can be replaced by divalent cations at the electrode surface in the later period of the electrosorption stage. Consequently, activated carbon-based capacitive deionization is demonstrated to be a high-potential technology for remediation of arsenic-contaminated groundwater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Optical performance of multifocal soft contact lenses via a single-pass method.

    Science.gov (United States)

    Bakaraju, Ravi C; Ehrmann, Klaus; Falk, Darrin; Ho, Arthur; Papas, Eric

    2012-08-01

    A physical model eye capable of carrying soft contact lenses (CLs) was used as a platform to evaluate optical performance of several commercial multifocals (MFCLs) with high- and low-add powers and a single-vision control. Optical performance was evaluated at three pupil sizes, six target vergences, and five CL-correcting positions using a spatially filtered monochromatic (632.8 nm) light source. The various target vergences were achieved by using negative trial lenses. A photosensor in the retinal plane recorded the image point-spread that enabled the computation of visual Strehl ratios. The centration of CLs was monitored by an additional integrated en face camera. Hydration of the correcting lens was maintained using a humidity chamber and repeated instillations of rewetting saline drops. All the MFCLs reduced performance for distance but considerably improved performance along the range of distance to near target vergences, relative to the single-vision CL. Performance was dependent on add power, design, pupil, and centration of the correcting CLs. Proclear (D) design produced good performance for intermediate vision, whereas Proclear (N) design performed well at near vision (p 4 mm in diameter. Acuvue Oasys bifocal produced performance comparable with single-vision CL for most vergences. Direct measurement of single-pass images at the retinal plane of a physical model eye used in conjunction with various MFCLs is demonstrated. This method may have utility in evaluating the relative effectiveness of commercial and prototype designs.

  11. Parametric analysis of plastic strain and force distribution in single pass metal spinning

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Shashank, E-mail: shashankbit08@gmail.com, E-mail: mohantejesh93@gmail.com, E-mail: regalla@hyderabad.bits-pilani.ac.in, E-mail: ksuresh@hyderabad.bits-pilani.ac.in; Tejesh, Chiruvolu Mohan, E-mail: shashankbit08@gmail.com, E-mail: mohantejesh93@gmail.com, E-mail: regalla@hyderabad.bits-pilani.ac.in, E-mail: ksuresh@hyderabad.bits-pilani.ac.in; Regalla, Srinivasa Prakash, E-mail: shashankbit08@gmail.com, E-mail: mohantejesh93@gmail.com, E-mail: regalla@hyderabad.bits-pilani.ac.in, E-mail: ksuresh@hyderabad.bits-pilani.ac.in; Suresh, Kurra, E-mail: shashankbit08@gmail.com, E-mail: mohantejesh93@gmail.com, E-mail: regalla@hyderabad.bits-pilani.ac.in, E-mail: ksuresh@hyderabad.bits-pilani.ac.in [Department of Mechanical Engineering, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, Andhra Pradesh (India)

    2013-12-16

    Metal spinning also known as spin forming is one of the sheet metal working processes by which an axis-symmetric part can be formed from a flat sheet metal blank. Parts are produced by pressing a blunt edged tool or roller on to the blank which in turn is mounted on a rotating mandrel. This paper discusses about the setting up a 3-D finite element simulation of single pass metal spinning in LS-Dyna. Four parameters were considered namely blank thickness, roller nose radius, feed ratio and mandrel speed and the variation in forces and plastic strain were analysed using the full-factorial design of experiments (DOE) method of simulation experiments. For some of these DOE runs, physical experiments on extra deep drawing (EDD) sheet metal were carried out using En31 tool on a lathe machine. Simulation results are able to predict the zone of unsafe thinning in the sheet and high forming forces that are hint to the necessity for less-expensive and semi-automated machine tools to help the household and small scale spinning workers widely prevalent in India.

  12. Double-Sided Single-Pass Submerged Arc Welding for 2205 Duplex Stainless Steel

    Science.gov (United States)

    Luo, Jian; Yuan, Yi; Wang, Xiaoming; Yao, Zongxiang

    2013-09-01

    The duplex stainless steel (DSS), which combines the characteristics of ferritic steel and austenitic steel, is used widely. The submerged arc welding (SAW) method is usually applied to join thick plates of DSS. However, an effective welding procedure is needed in order to obtain ideal DSS welds with an appropriate proportion of ferrite (δ) and austenite (γ) in the weld zone, particularly in the melted zone and heat-affected zone. This study evaluated the effectiveness of a high efficiency double-sided single-pass (DSSP) SAW joining method for thick DSS plates. The effectiveness of the converse welding procedure, characterizations of weld zone, and mechanical properties of welded joint are analyzed. The results show an increasing appearance and continuous distribution feature of the σ phase in the fusion zone of the leading welded seam. The converse welding procedure promotes the σ phase to precipitate in the fusion zone of leading welded side. The microhardness appears to significantly increase in the center of leading welded side. Ductile fracture mode is observed in the weld zone. A mixture fracture feature appears with a shear lip and tears in the fusion zone near the fusion line. The ductility, plasticity, and microhardness of the joints have a significant relationship with σ phase and heat treatment effect influenced by the converse welding step. An available heat input controlling technology of the DSSP formation method is discussed for SAW of thick DSS plates.

  13. Uranium Release from Acidic Weathered Hanford Sediments: Single-Pass Flow-Through and Column Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Um, Wooyong [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Pohang University of Science and Technology (POSTECH), Pohang, South Korea; Wang, Zheming [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Reinoso-Maset, Estela [Sierra; Washton, Nancy M. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Mueller, Karl T. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Perdrial, Nicolas [Department; Department; O’Day, Peggy A. [Sierra; Chorover, Jon [Department

    2017-09-21

    The reaction of acidic radioactive waste with sediments can induce mineral transformation reactions that, in turn, control contaminant fate. Here, sediment weathering by synthetic uranium-containing acid solutions was investigated using bench-scale experiments to simulate waste disposal conditions at Hanford’s cribs, USA. During acid weathering, the presence of phosphate exerted a strong influence over uranium mineralogy and a rapidly precipitated, crystalline uranium phosphate phase (meta-ankoleite [K(UO2)(PO4)·3H2O]) was identified using spectroscopic and diffraction-based techniques. In phosphate-free system, uranium oxyhydroxide minerals such as K-compreignacite [K2(UO2)6O4(OH)6·7H2O] were formed. Single-pass flow-through (SPFT) and column leaching experiments using synthetic Hanford pore water showed that uranium precipitated as meta-ankoleite during acid weathering was strongly retained in the sediments, with an average release rate of 2.67E-12 mol g-1 s-1. In the absence of phosphate, uranium release was controlled by dissolution of uranium oxyhydroxide (compreignacite-type) mineral with a release rate of 1.05-2.42E-10 mol g-1 s-1. The uranium mineralogy and release rates determined for both systems in this study support the development of accurate U-release models for prediction of contaminant transport. These results suggest that phosphate minerals may be a good candidate for uranium remediation approaches at contaminated sites.

  14. Dynamics of enhanced mitochondrial respiration in female compared with male rat cerebral arteries.

    Science.gov (United States)

    Rutkai, Ibolya; Dutta, Somhrita; Katakam, Prasad V; Busija, David W

    2015-11-01

    Mitochondrial respiration has never been directly examined in intact cerebral arteries. We tested the hypothesis that mitochondrial energetics of large cerebral arteries ex vivo are sex dependent. The Seahorse XFe24 analyzer was used to examine mitochondrial respiration in isolated cerebral arteries from adult male and female Sprague-Dawley rats. We examined the role of nitric oxide (NO) on mitochondrial respiration under basal conditions, using N(ω)-nitro-l-arginine methyl ester, and following pharmacological challenge using diazoxide (DZ), and also determined levels of mitochondrial and nonmitochondrial proteins using Western blot, and vascular diameter responses to DZ. The components of mitochondrial respiration including basal respiration, ATP production, proton leak, maximal respiration, and spare respiratory capacity were elevated in females compared with males, but increased in both male and female arteries in the presence of the NOS inhibitor. Although acute DZ treatment had little effect on mitochondrial respiration of male arteries, it decreased the respiration in female arteries. Levels of mitochondrial proteins in Complexes I-V and the voltage-dependent anion channel protein were elevated in female compared with male cerebral arteries. The DZ-induced vasodilation was greater in females than in males. Our findings show that substantial sex differences in mitochondrial respiratory dynamics exist in large cerebral arteries and may provide the mechanistic basis for observations that the female cerebral vasculature is more adaptable after injury. Copyright © 2015 the American Physiological Society.

  15. Effects of captopril on cerebral blood flow in normotensive and hypertensive rats

    International Nuclear Information System (INIS)

    Barry, D.I.; Paulson, O.B.; Jarden, J.O.; Juhler, M.; Graham, D.I.; Strandgaard, S.

    1984-01-01

    Cerebrovascular effects of the angiotensin converting enzyme inhibitor captopril were examined in normotensive and hypertensive rats. Cerebral blood flow was measured with the intracarotid 133 xenon injection method in halothane-anesthetized animals. The blood-brain barrier permeability of captopril (determined with an integral-uptake method) was negligible, the permeability-surface area product in most brain regions being 1 X 10(-5) cm3/g per second, that is, three to four times lower than that of sodium ion. When administered into the cerebral ventricles to bypass the blood-brain barrier, captopril had no effect on cerebral blood flow: furthermore, cerebral blood flow autoregulation (studied by raising and lowering blood pressure) was identical to that in controls. In contrast, when given intravenously, captopril had a marked effect on cerebral blood flow autoregulation--both the lower and upper limits of autoregulation being shifted to a lower pressure (by about 20 to 30 and 50 to 60 mm Hg, respectively), and the autoregulatory range was shortened by about 40 mm Hg. This effect may be ascribed to inhibition of converting enzyme in the cerebral blood vessels rather than within the brain

  16. Sulforaphane exerts neuroprotective effects via suppression of the inflammatory response in a rat model of focal cerebral ischemia

    OpenAIRE

    Ma, Li-Li; Xing, Guo-Ping; Yu, Yin; Liang, Hui; Yu, Tian-Xia; Zheng, Wei-Hong; Lai, Tian-Bao

    2015-01-01

    Inflammatory damage plays an important role in cerebral ischemic pathogenesis and may represent a promising target for treatment. Sulforaphane exerts protective effects in a rat model of focal cerebral ischemia/reperfusion injury by alleviating brain edema. However, the possible mechanisms of sulforaphane after cerebral ischemia/reperfusion injury have not been fully elucidated. Therefore, in the present study, we investigated the effect of sulforaphane on inflammatory reaction and the potent...

  17. Evaluation of regional pulmonary blood flow in mitral valvular heart disease using single-pass radionuclide angiocardiography

    International Nuclear Information System (INIS)

    Chang-Soon Koh; Byung Tae Kim; Myung Chul Lee; Bo Yeon Cho

    1982-01-01

    Pulmonary hypertension in mitral valvular cardiac disease has been evaluated in 122 patients by a modified upper lung/lower count ratio using single-pass radionuclide angiocardiography. The mean upper lung/lower lung radio correlates well with pulmonary artery mean (r=0.483) and wedge pressure (r=0.804). After correction surgery of the cardiac valve, the ratio decreases and returns to normal range in patients judged clinically to have good surgical benifit. This modified method using single-pass technique provides additional simple, reproducible and nontraumatic results of regional pulmonary blood flow and appears to be correlated with the degree of pulmonary hypertension in mitral heart disease

  18. Sequential changes in ischemic edema following transient focal cerebral ischemia in rats; Magnetic resonance imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Nagahiro, Shinji; Goto, Satoshi; Kogo, Kasei; Sumi, Minako; Takahashi, Mutsumasa; Ushio, Yukitaka [Kumamoto Univ. (Japan). School of Medicine

    1994-07-01

    Sequential and regional changes in ischemic edema following various durations of focal cerebral ischemia were studied by magnetic resonance (MR) imaging in a rat unilateral intraluminal middle cerebral artery occlusion model. Occlusion was performed from 5 minutes to 5 hours. T[sub 2]-weighted images were obtained chronologically 6 hours after onset of ischemia, on day 1 and day 7. An immunohistochemical study using antibodies to calcineurin and glial fibrillary acidic protein was performed to observe histological changes in the ischemic brain. The T[sub 2] high-signal-intensity areas representing ischemic edema were observed in the lateral striatum and/or the cerebral cortex by day 1 in all rats with 1- to 5-hour ischemia, and the areas were larger and detected earlier with longer durations of ischemia. In three of six rats with 15-minute ischemia and five of six rats with 30-minute ischemia, the T[sub 2] high-signal-intensity areas appeared transiently on day 1 in the dorsolateral striatum where loss of neurons expressing calcineurin immunoreactivity and associated gliosis were found. MR imaging in animal models of reversible focal ischemia can achieve sequential and noninvasive evaluation of dynamic regional changes in ischemic edema. (author).

  19. Investigation of Epidermal Growth Factor, Tumor Necrosis Factor-alpha and Thioredoxin System in Rats Exposed to Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Erol-Demirbilek Melike

    2016-09-01

    Full Text Available Background: Thioredoxin reductase (TrxR, epidermal growth factor (EGF and tumor necrosis factor-α (TNF-α have neuroprotective/neurotoxic effects in cerebral ischemia. We aimed to investigate the TrxR activity, EGF and TNF-α levels in cerebral ischemic, sham-operated and non-ischemic rat brains.

  20. Changes of cerebral contents of neuropeptides in rat models of multiple ischemic dementia (MID)

    International Nuclear Information System (INIS)

    Zheng Xianghong; Guo Jingcai; Song Changyi; Wang Shejiao; Chen Wei

    2005-01-01

    Objective: To investigate the significance of changes of cerebral contents of the neuropeptides somatostatin (SS), arginine vasopressin (AVP) and substance P in rat models of MID. Methods: The rat models consisted of 15 rats undergoing intracarotid injection of autogenous thrombus powder. Another group of 15 rats undergoing sham operation served as controls. Learning and memory ability in these rats was assessed with daily passive avoidance task testing for 10 consecutive days. The animals were sacrificed on 30d and contents of the neuropeptides in tissue homogenate from different areas of brain (frontal cortex, temporal cortex, hippocampus, thalamus and corpus striatum) were measured with (RIA). Results: On the first day of passive avoidance task testing, the frequency of errors in the MID group and the control group was about the same. From the third day on, the frequency of errors in the MID group was significantly higher than that in the control group (P<0.05). The neuropeptides contents of all these cerebral areas in the MID group were significantly higher than those in the control group (P<0.05 or P<0.01) with the only exception of the contents of substance P in thalamus (no significant difference between the contents in the two groups). Conclusion: The impairment of learning and memory in rat models with MID was possibly related to the lowered contents of SS, AVP and substance P in the brain tissue. (authors)

  1. The Effect of Photoluminescence of Bioceramic Irradiation on Middle Cerebral Arterial Occlusion in Rats

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2016-01-01

    Full Text Available The purpose of this study is to determine the possible effect of photoluminescence of bioceramic (PLB on ischemic cerebral infarction (stroke, by using an animal model of transient middle cerebral artery occlusion (MCAO. Sprague-Dawley rats were used to induce MCAO to block the origin of the left MCAO; three months later, the positive chronic stroke rats were selected by running tunnel maze; the MCAO rats with significant chronic stroke and neurological defects were used for treadmill experiments with varying speed settings to test their capability for restoration after muscular fatigue under conditions of with and without PLB irradiation. As a result, PLB irradiation could improve exercise completion rate and average running speed during slow and fast treadmill settings. After PLB irradiation, the selected MCAO rats successfully completed all the second-round treadmill exercises at the maximum speed setting, and they had better restoration from muscular fatigue. An in vitro cell study on astrocytes of rats by bioceramic irradiation further demonstrated increased intracellular nitric oxide. To explain these results, we suggest that cortical brain stimulation of microcirculation and enhancement of peripheral muscular activity are the main causes of the improved exercise performance in MCAO rats by PLB.

  2. Effects of Edaravone, a Free Radical Scavenger, on Photochemically Induced Cerebral Infarction in a Rat Hemiplegic Model

    OpenAIRE

    Ikeda, Satoshi; Harada, Katsuhiro; Ohwatashi, Akihiko; Kamikawa, Yurie

    2013-01-01

    Edaravone is a free radical scavenger that protects the adjacent cortex during cerebral infarction. We created a hemiparetic model of cerebral thrombosis from a photochemically induced infarction with the photosensitive dye, rose bengal, in rats. We examined the effects of edaravone on recovery in the model. A total of 36 adult Wistar rats were used. The right sensorimotor area was irradiated with green light with a wavelength of 533?nm (10?mm diameter), and the rose bengal was injected intra...

  3. Antenatal taurine reduces cerebral cell apoptosis in fetal rats with intrauterine growth restriction.

    Science.gov (United States)

    Liu, Jing; Wang, Xiaofeng; Liu, Ying; Yang, Na; Xu, Jing; Ren, Xiaotun

    2013-08-15

    From pregnancy to parturition, Sprague-Dawley rats were daily administered a low protein diet to establish a model of intrauterine growth restriction. From the 12(th) day of pregnancy, 300 mg/kg rine was daily added to food until spontaneous delivery occurred. Brain tissues from normal neonatal rats at 6 hours after delivery, neonatal rats with intrauterine growth restriction, and neonatal rats with intrauterine growth restriction undergoing taurine supplement were obtained for further experiments. The terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling assay revealed that the number of apoptotic cells in the brain tissue of neonatal rats with intrauterine growth restriction significantly increased. Taurine supplement in pregnant rats reduced cell apoptosis in brain tissue from neonatal rats with intrauterine growth restriction. nohistochemical staining revealed that taurine supplement increased glial cell line-derived neurotrophic factor expression and decreased caspase-3 expression in the cerebral cortex of intrauterine growth-restricted fetal rats. These results indicate that taurine supplement reduces cell apoptosis through the glial cell line-derived neurotrophic factor-caspase-3 signaling pathway, resulting in a protective effect on the intrauterine growth-restricted fetal rat brain.

  4. Impact of treatment with melatonin on cerebral circulation in old rats

    Science.gov (United States)

    Dupuis, François; Régrigny, Olivier; Atkinson, Jeffrey; Limiñana, Patrick; Delagrange, Philippe; Scalbert, Elizabeth; Chillon, Jean-Marc

    2004-01-01

    Melatonin deprival in young rats induces alterations in cerebral arteriolar wall similar to those observed during aging: atrophy and a decrease in distensibility. In this study, we examined the effects of melatonin treatment on cerebral arteriolar structure and distensibility and on the lower limit of cerebral blood flow autoregulation (LLCBF) in old rats. We measured cerebral blood flow (arbitrary unit, laser Doppler, open skull preparation) prior to and during stepwise hypotension (SH) in adult (12/13 months) and old (24/25 months) IcoWI and WAG/Rij male rats. Old rats were untreated or treated for 3 months with melatonin (0.39 (IcoWi) and 0.44 (Wag/Rij) mg kg−1 day−1, drinking water). Stress–strain relationships were determined using cross-sectional area (CSA, μm2, histometry) and values of arteriolar internal diameter (μm) obtained during a second SH following arteriolar deactivation (EDTA, 67 mmol l−1). Aging induced (a) atrophy of the arteriolar wall in IcoWI (616±20 vs 500±27 μm2, P<0.05) but not in WAG/Rij rats (328±25 vs 341±20 μm2), (b) a decrease in arteriolar wall distensibility and (c) an increase in the LLCBF in both strains (67±10 mmHg in 12-month-old vs 95±6 mmHg in 24-month-old IcoWi, P<0.05 and 53±2 mmHg in 13-month-old vs 67±6 mmHg in 25-month-old WAG/Rij). Melatonin treatment induced in IcoWI and WAG/Rij rats (a) hypertrophy of the arteriolar wall (643±34 and 435±25 μm2, respectively), (b) an increase in arteriolar wall distensibility and (c) a decrease in the LLCBF (64±6 and 45±4 mmHg, respectively). Melatonin treatment of old rats induced hypertrophy of the arteriolar wall, prevented the age-linked decrease in cerebral arteriolar distensibility and decreased the LLCBF. PMID:14718260

  5. FY2016 ILAW Glass Corrosion Testing with the Single-Pass Flow-Through Method

    Energy Technology Data Exchange (ETDEWEB)

    Neeway, James J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Asmussen, Robert M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Parruzot, Benjamin PG [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cordova, Elsa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Benjamin D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leavy, Ian I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stephenson, John R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McElroy, Erin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-04-21

    The inventory of immobilized low-activity waste (ILAW) produced at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) will be disposed of at the near-surface, on-site Integrated Disposal Facility (IDF). When groundwater comes into contact with the waste form, the glass will corrode and radionuclides will be released into the near-field environment. Because the release of the radionuclides is dependent on the dissolution rate of the glass, it is important that the performance assessment (PA) model accounts for the dissolution rate of the glass as a function of various chemical conditions. To accomplish this, an IDF PA model based on Transition State Theory (TST) can be employed. The model is able to account for changes in temperature, exposed surface area, and pH of the contacting solution as well as the effect of silicon concentrations in solution, specifically the activity of orthosilicic acid (H4SiO4), whose concentration is directly linked to the glass dissolution rate. In addition, the IDF PA model accounts for the alkali-ion exchange process as sodium is leached from the glass and into solution. The effect of temperature, pH, H4SiO4 activity, and the rate of ion-exchange can be parameterized and implemented directly into the PA rate law model. The rate law parameters are derived from laboratory tests with the single-pass flow-through (SPFT) method. To date, rate law parameters have been determined for seven ILAW glass compositions, thus additional rate law parameters on a wider range of compositions will supplement the existing body of data for PA maintenance activities. The data provided in this report can be used by ILAW glass scientists to further the understanding of ILAW glass behavior, by IDF PA modelers to use the rate law parameters in PA modeling efforts, and by Department of Energy (DOE) contractors and decision makers as they assess the IDF PA program.

  6. Hemin offers neuroprotection through inducing exogenous neuroglobin in focal cerebral hypoxic-ischemia in rats

    Science.gov (United States)

    Song, Xue; Xu, Rui; Xie, Fei; Zhu, Haiyuan; Zhu, Ji; Wang, Xin

    2014-01-01

    Objective: To investigate the inducible effect of hemin on exogenous neuroglobin (Ngb) in focal cerebral hypoxic-ischemia in rats. Methods: 125 healthy SD rats were randomly divided into five groups: sham-operation control group, operation group, hemin treatment group, exogenous Ngb treatment group, and hemin and exogenous Ngb joint treatment group. Twenty-four hours after focal cerebral hypoxic-ischemia, Ngb expression was evaluated by immunocytochemistry, RT-PCR, and western blot analyses, while the brain water content and infarct volume were examined. Results: Immunocytochemistry, RT-PCR, and western blot analyses showed more pronounced Ngb expression in the hemin and exogenous Ngb joint operation group than in the hemin or exogenous Ngb individual treatment groups, thus producing significant differences in brain water content and infarct volume (p exogenous Ngb. PMID:24966924

  7. The effects of low dose ionizing radiation on the development of rat cerebral cortex, (2)

    International Nuclear Information System (INIS)

    Matsushita, Koji

    1993-01-01

    In order to study the molecular mechanisms of neuronal migration on developing rat cerebral cortex, we need a tissue culture system in which neuronal migration can be observed. We prepared a tissue culture system of embryonic rat cerebral cortex starting on embryonic day 16 and cultivating it for 48 hours. The autoradiographic study in this system revealed not only the migration of 3 H-thymidine labeled neurons but also neuronal migration delays from low doses of ionizing radiation of more than 10 cGy. In addition, on immunohistochemical study, cell-cell adhesion molecule N-CAM staining was remarkably decreased in the matrix cell layer. In the tissue culture system where monoclonal anti-N-CAM antibodies were added, neuronal migration delay comparable to that of 20 cGy radiation was found. In conclusion, it was speculated that neuronal migration delay might be caused by disturbed N-CAM synthesis in matrix cells after low dose ionizing radiation. (author)

  8. Cerebral circulation, metabolism, and blood-brain barrier of rats in hypocapnic hypoxia

    International Nuclear Information System (INIS)

    Beck, T.; Krieglstein, J.

    1987-01-01

    The effects of hypoxic hypoxia on physiological variables, cerebral circulation, cerebral metabolism, and blood-brain barrier were investigated in conscious, spontaneously breathing rats by exposing them to an atmosphere containing 7% O 2 . Hypoxia affected a marked hypotension, hypocapnia and alkalosis. Cortical tissue high-energy phosphates and glucose content were not affected by hypoxia, glucose 6-phosphate lactate, and pyruvate levels were significantly increased. Blood-brain barrier permeability, regional brain glucose content and lumped constant were not changed by hypoxia. Local cerebral glucose utilization (LCGU) rose by 40-70% of control values in gray matter and by 80-90% in white matter. Under hypoxia, columns of increased and decreased LCGU and were detectable in cortical gray matter. Color-coded [ 14 C]2-deoxy-D-glucose autoradiograms of rat brain are shown. Local cerebral blood flow (LCBF) increased by 50-90% in gray matter and by up to 180% in white matter. Coupling between LCGU and LCBF in hypoxia remained unchanged. The data suggests a stimulation of glycolysis, increased glucose transport into the cell, and increased hexokinase activity. The physiological response of gray and white matter to hypoxia obviously differs. Uncoupling of the relation between LCGU and LCBF does not occur

  9. Effect of camphor essential oil on rat cerebral cortex activity as manifested by fractal dimension changes

    Directory of Open Access Journals (Sweden)

    Grbić G.

    2008-01-01

    Full Text Available The aim of our study was to investigate the effect of camphor essential oil on rat cerebral cortex activity by fractal analysis. Fractal dimension (FD values of the parietal electrocortical activity were calculated before and after intra-peritoneal administration of camphor essential oil (450-675 μl/kg in anesthetized rats. Camphor oil induced seizure-like activity with single and multiple spiking of high amplitudes in the parietal electrocorticogram and occasional clonic limb convulsions. The FD values of cortical activity after camphor oil administration increased on the average. Only FD values of cortical ECoG sequences were lower than those before camphor oil administration.

  10. The neuroprotective efficacy of MK-801 in focal cerebral ischemia varies with rat strain and vendor.

    Science.gov (United States)

    Oliff, H S; Marek, P; Miyazaki, B; Weber, E

    1996-08-26

    The present study was designed to evaluate whether the neuroprotective efficacy of MK-801 in focal cerebral ischemia was dependent on strain and/or vendor differences. MK-801 (0.12 mg/kg i.v. bolus followed by 0.108 mg/kg/h infusion or 0.60 mg/kg i.v. bolus followed by 0.540 mg/kg/h infusion) or saline was administered just after intraluminal middle cerebral artery occlusion. Administration of 0.540 mg/kg/h MK-801 provided strain/line-dependent neuroprotection in the following rank order: Simonsen Laboratories Sprague-Dawley rats > Simonsen Laboratories Wistar rats > Taconic Laboratories Sprague-Dawley rats. After 0.108 mg/kg/h MK-801 treatment, Simonsen Laboratories Wistar rats were the only strain/line that were significantly neuroprotected. These results indicate that the neuroprotective effect of an experimental drug may be influenced by rat strain and vendor differences.

  11. Nylon filament coated with paraffin for intraluminal permanent middle cerebral artery occlusion in rats.

    Science.gov (United States)

    Zuo, Xia-Lin; Wu, Ping; Ji, Ai-Min

    2012-06-21

    A variety of intraluminal nylon filament has been used in rat middle cerebral artery occlusion (MCAO) models. However the lesion extent and its reproducibility vary among laboratories. The properties of nylon filament play a part of reasons for these variations. In the present study, we used paraffin-coated nylon filament for rat MCAO model, tested the effects and advanced improvement for making the rat MCAO. Forty male Sprague-Dawley (SD) rats were randomized into two groups, MCAO with traditional uncoated nylon filament (uMCAO) and MCAO with paraffin-coated nylon filament (cMCAO), three rats as normal group and sham group respectively. Assessment included mortality rates, model success rates, neurological deficit evaluation, and infarct volume. The study showed two rats died in uMCAO group, no rat died in cMCAO group within the 12h. The model success rate of uMCAO was 100%, while the uMCAO group was 55% (n=20, two died within 12h, seven rats were excluded as the brain slices showed no TTC staining due to subarachanoid hemorrhage). Neurological evaluation demonstrated group cMCAO had more worse neurological outcomes than group uMCAO, and the difference was statistically signification (pparaffin-coated nylon filament intraluminal occlusion provide better occlusion of middle cerebral artery than the uncoated nylon filament, improve the consistent of model, and raise the success rate to reduce the number of experimental animals. These positive results are much encouraging and interesting. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Effect of Panax notoginseng saponins on the content of IL-8 in serum after cerebral ischemia-reperfusion in rat

    International Nuclear Information System (INIS)

    He Wei; Zhu Zunping

    2002-01-01

    Objective: To investigate the effect of Panax notoginseng saponins (Pns) against cerebral ischemia-reperfusion injury. Methods: Focal cerebral ischemia-reperal ischemia-reperfusion model in rat was established by occlusion the middle cerebral artery for 2 h, after 3 h reperfusion. The serum concentration of IL-8 was detected with radioimmunoassay (RIA). Results: Png 50 mg·kg -1 ip, qd x 7d before MCAO decreased the serum content of IL-8 after ischemia-reperfusion. Conclusion: Pns has protective effect against cerebral ischemia-reperfusion injury by decreased the serum content of IL-8

  13. Cerebral blood flow and oxygen consumption during ethanol withdrawal in the rat.

    Science.gov (United States)

    Hemmingsen, R; Barry, D I; Hertz, M M; Klinken, L

    1979-09-14

    The ethanol withdrawal syndrome in man and animals is characterized by signs of CNS hyperactivity although a direct measurement of a physiological variable reflecting this CNS hyperactivity has never been performed in untreated man or in animals. We induced ethanol dependence in the rat by means of intragastric intubation with a 20% w/v ethanol solution, thus keeping the animals in a state of continuous severe intoxication for 3--4 days; during the subsequent state of withdrawal characterized by tremor, rigidity, stereotyped movements and general seizures a 25% increase in cerebral oxygen consumption (CMRO2) could be measured; this increase was not due to catecholamines originating from adrenal medulla as adrenomedullectomized animals showed a similar increase in CMRO2 (28%); the withdrawing animals showed a corresponding cerebral blood flow (CBF) increase. The elevated CMRO2 and CBF could be reduced to normal by administration of a beta-adrenergic receptor blocker (propranolol 2 mg/kg i.v.), and hence the increased CMRO2 during ethanol withdrawal could be related to catecholaminergic systems in the brain, e.g. the noradrenergic locus coeruleus system which is anatomically well suited as a general activating system. This interpretation is supported by the earlier neurochemical finding of an increased cerebral noradrenaline turnover during ethanol withdrawal. The exact mechanism underlying the increased cerebral oxygen consumption during ethanol withdrawal and the effect of propranolol on cerebral function during this condition remains to be clarified.

  14. Effects of apomorphine upon local cerebral glucose utilization in conscious rats and in rats anesthetized with chloral hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Grome, J.J.; McCulloch, J.

    1983-02-01

    The effects of the dopaminergic agonist apomorphine upon local cerebral glucose utilization in 43 anatomically discrete regions of the CNS were examined in conscious, lightly restrained rats and in rats anesthetized with chloral hydrate by means of the quantitative autoradiographic (/sup 14/C)2-deoxyglucose technique. In animals anesthetized with chloral hydrate, glucose utilization was reduced throughout all regions of the CNS from the levels observed in conscious animals. With chloral hydrate anesthesia, the proportionately most marked reductions in glucose use were noted in primary auditory nuclei, thalmaic relay nuclei, and neocortex, and the least pronounced reductions in glucose use (by 15-25% from conscious levels) were observed in limbic areas, some motor relay nuclei, and white matter. In conscious, lightly restrained rats, the administration of apomorphine effected significant increases in glucose utilization in 15 regions of the CNS, and significant reductions in glucose utilization in two regions of the CNS. In rats anesthetized with chloral hydrate, the effects of apomorphine upon local glucose utilization were less widespread and less marked than in conscious animals. The profound effects of chloral hydrate anesthesia upon local cerebral glucose use, and the modification by this anesthetic regime of the local metabolic responses to apomorphine, emphasize the difficulties which exists in the extrapolation of data from anesthetized animals to the conditions which prevail in the conscious animal.

  15. Effects on locomotion and memory in 2 models of cerebral hypoperfusion in male Wistar rats.

    Science.gov (United States)

    Martínez-Díaz, J A; García, L I; Hernández, M E; Aranda-Abreu, G E

    2015-09-01

    Cerebral ischaemia is one of the most common neurological diseases worldwide. Its many sequelae range from motor and sensory symptoms to cognitive decline and dementia. Animal models of cerebral ischaemia/hypoperfusion elicit effects on long term memory; however, the effects of these procedures on short term memory are not clearly understood and effects induced by alternative hypoperfusion models are completely unknown. We evaluated the effects of 2 cerebral hyperperfusion models on memory in 3-month-old male rats. Episodic memory and working memory were assessed using the new object recognition test and the spontaneous alteration test, respectively. Neurological assessment was also performed, along with an open field test to evaluate locomotor activity. Rats in both hyperperfusion models displayed no cognitive changes. Rats with unilateral left-sided ligation plus temporary ligation of the right carotid tended to show slightly impaired performance on the new object recognition test on the second day after the procedure. In contrast, the group with permanent unilateral ligation tended to display alterations in working and episodic memory 9 days after the procedure, but they subsequently recovered. Despite these differences, both hypoperfusion groups displayed clear signs of motor impairment 2 days after the procedure, as reflected by their decreased locomotor activity during the open field test. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  16. Neuroprotective Effect of Xueshuantong for Injection (Lyophilized in Transient and Permanent Rat Cerebral Ischemia Model

    Directory of Open Access Journals (Sweden)

    Xumei Wang

    2015-01-01

    Full Text Available Xueshuantong for Injection (Lyophilized (XST, a Chinese Materia Medica standardized product extracted from Panax notoginseng (Burk., is used extensively for the treatment of cerebrovascular diseases such as acutely cerebral infarction clinically in China. In the present study, we evaluated the acute and extended protective effects of XST in different rat cerebral ischemic model and explored its effect on peroxiredoxin (Prx 6-toll-like receptor (TLR 4 signaling pathway. We found that XST treatment for 3 days could significantly inhibit transient middle cerebral artery occlusion (MCAO induced infarct volume and swelling percent and regulate the mRNA expression of interleukin-1β (IL-1β, IL-17, IL-23p19, tumor necrosis factor-α (TNFα, and inducible nitric oxide synthase (iNOS in brain. Further study demonstrated that treatment with XST suppressed the protein expression of peroxiredoxin (Prx 6-toll-like receptor (TLR 4 and phosphorylation level of p38 and upregulated the phosphorylation level of STAT3. In permanent MCAO rats, XST could reduce the infarct volume and swelling percent. Moreover, our results revealed that XST treatment could increase the rats’ weight and improve a batch of functional outcomes. In conclusion, the present data suggested that XST could protect against ischemia injury in transient and permanent MCAO rats, which might be related to Prx6-TLR4 pathway.

  17. Investigation of Implantable Multi-Channel Electrode Array in Rat Cerebral Cortex Used for Recording

    Science.gov (United States)

    Taniguchi, Noriyuki; Fukayama, Osamu; Suzuki, Takafumi; Mabuchi, Kunihiko

    There have recently been many studies concerning the control of robot movements using neural signals recorded from the brain (usually called the Brain-Machine interface (BMI)). We fabricated implantable multi-electrode arrays to obtain neural signals from the rat cerebral cortex. As any multi-electrode array should have electrode alignment that minimizes invasion, it is necessary to customize the recording site. We designed three types of 22-channel multi-electrode arrays, i.e., 1) wide, 2) three-layered, and 3) separate. The first extensively covers the cerebral cortex. The second has a length of 2 mm, which can cover the area of the primary motor cortex. The third array has a separate structure, which corresponds to the position of the forelimb and hindlimb areas of the primary motor cortex. These arrays were implanted into the cerebral cortex of a rat. We estimated the walking speed from neural signals using our fabricated three-layered array to investigate its feasibility for BMI research. The neural signal of the rat and its walking speed were simultaneously recorded. The results revealed that evaluation using either the anterior electrode group or posterior group provided accurate estimates. However, two electrode groups around the center yielded poor estimates although it was possible to record neural signals.

  18. [Relation between expression of cerebral beta-APP in the chronic alcoholism rats and death caused by TSAH].

    Science.gov (United States)

    Wei, Lai; Lei, Huai-Cheng; Yu, Xiao-Jun; Lai, Xiao-Ping; Qian, Hong; Xu, Xiao-Hu; Zhu, Fang-Cheng

    2013-04-01

    By observing the cerebral beta-amyloid precursor protein (beta-APP) expression in the chronic alcoholism rats with slight cerebral injury, to discuss the correlation of chronic alcoholism and death caused by traumatic subarachnoid haemorrhage (TSAH). Sixty male SD rats were randomly divided into watering group, watering group with strike, alcoholism group and alcoholism group with strike. Among them, the alcohol was used for continuous 4 weeks in alcoholism groups and the concussion was made in groups with strike. In each group, HE staining and immunohistochemical staining of the cerebral tissues were done and the results were analyzed by the histopathologic image system. In watering group, there was no abnormal. In watering group with strike, mild neuronic congestion was found. In alcoholism group, vascular texture on cerebral surface was found. And the neurons arranged in disorder with dilated intercellular space. In alcoholism group with strike, diffuse congestion on cerebral surface was found. And there was TSAH with thick-layer patches around brainstem following irregular axonotmesis. The quantity of beta-APP IOD in alcoholism group was significantly higher in the frontal lobe, hippocampus, cerebellum, brainstem than those in watering group with strike and alcoholism group with strike. The cerebral tissues with chronic alcoholism, due to the decreasing tolerance, could cause fatal TSAH and pathological changes in cerebral tissues of rats under slight cerebral injury.

  19. Salvia miltiorrhiza Bunge (Danshen) extract attenuates permanent cerebral ischemia through inhibiting platelet activation in rats.

    Science.gov (United States)

    Fei, Yu-Xiang; Wang, Si-Qi; Yang, Li-Jian; Qiu, Yan-Ying; Li, Yi-Ze; Liu, Wen-Yuan; Xi, Tao; Fang, Wei-Rong; Li, Yun-Man

    2017-07-31

    Danshen is a crude herbal drug isolated from dried roots of Salvia miltiorrhiza Bunge. This plant is widely used in oriental medicine for the treatment of cardiovascular and cerebrovascular diseases. The supercritical CO 2 extract from Danshen (SCED) (57.85%, 5.67% and 4.55% for tanshinone IIA, tanshinone I and cryptotanshinone respectively) was studied in this article, whose potential molecular mechanism remains unclear, especially in anti-thrombosis. The present study was designed to observe the protective effect of SCED on ischemic stroke in rats and to explore the underlying anti-thrombosis mechanism. Following induction of cerebral ischemia in rats by permanent middle cerebral artery occlusion (pMCAO). Neurological defect score, cerebral blood flow, infarct size, and brain edema were measured to evaluate the injury. Arteriovenous shunt thrombosis model and adenosine 5'-diphosphate (ADP) induced acute pulmonary embolism model were conducted to estimate the antithrombotic effect of SCED. In order to investigate the effects of SCED on platelet aggregation, rat platelet-rich-plasma (PRP) were incubated with SCED prior to the addition of the stimuli (ADP or 9, 11-dideoxy-11α, 9α-epoxymethanoprostaglandin F2α (U46619)). Aggregation was monitored in a light transmission aggregometer. Inhibitory effect of SCED on thromboxane A2 (TXA 2 ) release was detected by ELISA kit. Phospholipase C (PLC)/ Protein kinase C (PKC) signaling pathway was analyzed by a Western blot technique. The effect of the SCED was also studied in vivo on bleeding time in mice. SCED improved the neurological defect score, increased cerebral blood flow, reduced infarct size and alleviated brain edema in rats exposed to pMCAO. After administration of SCED, thrombosis formation in arteriovenous shunt was inhibited and recovery time in pulmonary embolism was shortened. The inhibitory effect of SCED on platelet activation was further confirmed by TXB 2 ELISA kit and Western blot analysis of PLC

  20. Acupuncture inhibits Notch1 and Hes1 protein expression in the basal ganglia of rats with cerebral hemorrhage

    Directory of Open Access Journals (Sweden)

    Wei Zou

    2015-01-01

    Full Text Available Notch pathway activation maintains neural stem cells in a proliferating state and increases nerve repair capacity. To date, studies have rarely focused on changes or damage to signal transduction pathways during cerebral hemorrhage. Here, we examined the effect of acupuncture in a rat model of cerebral hemorrhage. We examined four groups: in the control group, rats received no treatment. In the model group, cerebral hemorrhage models were established by infusing non-heparinized blood into the brain. In the acupuncture group, modeled rats had Baihui (DU20 and Qubin (GB7 acupoints treated once a day for 30 minutes. In the DAPT group, modeled rats had 0.15 μg/mL DAPT solution (10 mL infused into the brain. Immunohistochemistry and western blot results showed that acupuncture effectively inhibits Notch1 and Hes1 protein expression in rat basal ganglia. These inhibitory effects were identical to DAPT, a Notch signaling pathway inhibitor. Our results suggest that acupuncture has a neuroprotective effect on cerebral hemorrhage by inhibiting Notch-Hes signaling pathway transduction in rat basal ganglia after cerebral hemorrhage.

  1. Protective Effects of Ferulic Acid against Chronic Cerebral Hypoperfusion-Induced Swallowing Dysfunction in Rats

    Directory of Open Access Journals (Sweden)

    Takashi Asano

    2017-03-01

    Full Text Available Ferulic acid (FA, a phenolic phytochemical, has been reported to exert antioxidative and neuroprotective effects. In this study, we investigated the protective effects of FA against the dysfunction of the swallowing reflex induced by ligation of bilateral common carotid arteries (2VO in rats. In 2VO rats, topical administration of water or citric acid to the pharyngolaryngeal region evoked a diminished number of swallowing events with prolonged latency compared to sham-operated control rats. 2VO rats had an increased level of superoxide anion radical, and decreased dopamine and tyrosine hydroxylase enzyme levels in the striatum, suggesting that 2VO augmented cerebral oxidative stress and impaired the striatal dopaminergic system. Furthermore, substance P (SP expression in the laryngopharyngeal mucosa, which is believed to be positively regulated by dopaminergic signaling in the basal ganglia, was decreased in 2VO rats. Oral treatment with FA (30 mg/kg for 3 weeks (from one week before 2VO to two weeks after improved the swallowing reflex and maintained levels of striatal dopamine and laryngopharyngeal SP expression in 2VO rats. These results suggest that FA maintains the swallowing reflex by protecting the dopamine-SP system against ischemia-induced oxidative damage in 2VO rats.

  2. [Mechanism of treatment effect of Huanglian-Huangqin herb pairs on cerebral ischemia rats based on metabolomic approach].

    Science.gov (United States)

    Cao, Hui-Ting; Zhu, Hua-Xu; Zhang, Qi-Chun; Guo, Li-Wei

    2017-06-01

    The metabolic effect of Huanglian-Huangqin herb pairs on cerebral ischemia rats was studied by using metabolomic method. The rat model of ischemia reperfusion injury induced by introduction of transient middle cerebral artery occlusion (MCAO) followed by reperfusion. Ultra high performance liquid chromatography-series four pole time of flight mass spectrometry method(UPLC-Q-TOF/MS), Markerlynx software, and principal component analysis and partial least-squares discriminant analysis were used to analyze the different endogenous metabolites among the urine samples of sham rats, cerebral ischemia model rats, Huanglian groups (HL), Huangqin groups (HQ) and Huanglian-Huangqin herb pairs groups (LQ) was achieved, combined with accurate information about the endogenous metabolites level and secondary fragment ions, retrieval and identification of possible biological markers, metabolic pathway which build in MetPA database. The 20 potential biomarkers were found in the urine of rats with cerebral ischemia, which mainly involved in the neurotransmitter regulation, amino acid metabolism, energy metabolism, lipid metabolism and so on. Those metabolic pathways were disturbed in cerebral ischemia model rats, the principal component analysis showed that the normal and cerebral ischemia model is clearly distinguished, and the compound can be given to the normal state of change after HL, HQ, LQ administration. This study index the interpretation of cerebral ischemia rat metabolism group and mechanism, the embodiment of metabonomics can reflect the physiological and metabolic state, which can better reflect the traditional Chinese medicine as a whole view, system view and the features of multi ingredient synergistic or antagonistic effects. Copyright© by the Chinese Pharmaceutical Association.

  3. Protective effect of Kombucha tea on brain damage induced by transient cerebral ischemia and reperfusion in rat

    Directory of Open Access Journals (Sweden)

    Najmeh Kabiri

    2016-09-01

    Full Text Available The aim of study was to investigate the potential neuroprotective effects of Kombucha on cerebral damage induced by ischemia in rats (n=99. Cerebral infarct volume in the ischemic rats received Kombucha solution showed no significance alteration. However, the permeability of blood-brain barrier significantly decreased in both ischemic rats received 15 mg/kg Kombucha tea and Sham group. In addition, brain water content in the ischemic groups treated with Kombucha solution was significantly higher than the Sham group, although right hemispheres in all of the treated groups illustrated higher brain water content than the left ones. Brain anti-oxidant capacity elevated in the ischemic rats treated with Kombucha and in the Sham group. Brain and plasma malondialdehyde concentrations significantly decreased in both of the ischemic groups injected with Kombucha. The findings suggest that Kombucha tea could be useful for the prevention of cerebral damage.

  4. Effects of the duration of hyperlipidemia on cerebral lipids, vessels and neurons in rats.

    Science.gov (United States)

    Yang, Weichun; Shi, He; Zhang, Jianfen; Shen, Ziyi; Zhou, Guangyu; Hu, Minyu

    2017-01-31

    The present study was designed to investigate the effects of hyperlipidemia on the cerebral lipids, vessels and neurons of rats, and to provide experimental evidence for subsequent intervention. One hundred adult SD rats, half of which were male and half of which were female, were randomly divided into five groups on the basis of serum total cholesterol (TC) levels. Four groups were fed a hypercholesterolemic diet (rat chow supplemented with 4% cholesterol, 1% cholic acid and 0.5% thiouracil - this is also called a CCT diet) for periods of 1 week, 2 weeks, 3 weeks and 4 weeks, respectively. A control group was included. The levels of serum lipids, cerebral lipids, free fatty acids (FFA), interleukin-6 (IL-6), interleukin-1 (IL-1), tumor necrosis factor alpha (TNF-α), vascular endothelial growth factor (VEGF), oxidized low density lipoprotein (ox-LDL), A-beta precursor proteins (APP), amyloid beta (Aβ), glial fibrillary acidic protein (GFAP) and tight junction protein Claudin-5 were measured after the experiment. The pathologic changes and apoptosis of the rat brains were evaluated. Compared with the control group, after 1 week of a CCT diet, the levels of serum total cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-C) and brain triglycerides had increased by 2.40, 1.29 and 1.75 and 0.3 times, respectively. The serum high density lipoprotein cholesterol (HDL-C) had decreased by 0.74 times (P neurons, had increased (P neurons had increased (P neuronal apoptosis in the rat brains, and they all were negatively correlated with Claudin-5 (P neurons by causing the secretion of TNF-α and IL-1 in the brains of rats. In the metabolic procession, brain tissue was shown to generate FFA that aggravated the biosynthesis of ox-LDL. With the extension of the duration of hyperlipidemia, high levels of cerebral TC and LDL-C were shown to aggravate the deposition of Aβ, induce the secretion of VEGF, reduce the expression of tight

  5. Sulforaphane exerts neuroprotective effects via suppression of the inflammatory response in a rat model of focal cerebral ischemia.

    Science.gov (United States)

    Ma, Li-Li; Xing, Guo-Ping; Yu, Yin; Liang, Hui; Yu, Tian-Xia; Zheng, Wei-Hong; Lai, Tian-Bao

    2015-01-01

    Inflammatory damage plays an important role in cerebral ischemic pathogenesis and may represent a promising target for treatment. Sulforaphane exerts protective effects in a rat model of focal cerebral ischemia/reperfusion injury by alleviating brain edema. However, the possible mechanisms of sulforaphane after cerebral ischemia/reperfusion injury have not been fully elucidated. Therefore, in the present study, we investigated the effect of sulforaphane on inflammatory reaction and the potential molecular mechanisms in cerebral ischemia rats. We found that sulforaphane significantly attenuated the blood-brain barrier (BBB) disruption; decreased the levels of pro-inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-1β; reduced the nitric oxide (NO) levels and inducible nitric oxide synthase (iNOS) activity; inhibited the expression of iNOS and cyclooxygenase-2 (COX-2). In addition, sulforaphane inhibits the expression of p-NF-κB p65 after focal cerebral ischemia-reperfusion injury. Taken together, our results suggest that sulforaphane suppresses the inflammatory response via inhibiting the NF-κB signaling pathway in a rat model of focal cerebral ischemia, and sulforaphane may be a potential therapeutic agent for the treatment of cerebral ischemia injury.

  6. Neuronal precursor cell proliferation in the hippocampus after transient cerebral ischemia: a comparative study of two rat strains using stereological tools

    DEFF Research Database (Denmark)

    Kelsen, Jesper; Larsen, Marianne; Sørensen, Jens Christian H.

    2010-01-01

    We are currently investigating microglial activation and neuronal precursor cell (NPC) proliferation after transient middle cerebral artery occlusion (tMCAo) in rats. This study aimed: (1) to investigate differences in hippocampal NPC proliferation in outbred male spontaneously hypertensive rats ...

  7. Rat Pial Microvascular Changes During Cerebral Blood Flow Decrease and Recovery: Effects of Cyanidin Administration

    Directory of Open Access Journals (Sweden)

    Teresa Mastantuono

    2018-05-01

    Full Text Available The reactive oxygen species (ROS are known to play a major role in many pathophysiological conditions, such as ischemia and reperfusion injury. The present study was aimed to evaluate the in vivo cyanidin (anthocyanin effects on damages induced by rat pial microvascular hypoperfusion-reperfusion injury by cerebral blood flow decrease (CBFD and subsequent cerebral blood flow recovery (CBFR. In particular, the main purpose was to detect changes in ROS production after cyanidin administration. Rat pial microvasculature was investigated using fluorescence microscopy through a cranial window (closed; Strahler's method was utilized to define the geometric features of pial vessels. ROS production was investigated in vivo by 2′-7′-dichlorofluorescein-diacetate assay and neuronal damage was measured on isolated brain sections by 2,3,5-triphenyltetrazolium chloride staining. After 30 min of CBFD, induced by bilateral common carotid artery occlusion, and 60 min of CBFR, rats showed decrease of arteriolar diameter and capillary perfusion; furthermore, increase in microvascular leakage and leukocyte adhesion was observed. Conversely, cyanidin administration induced dose-related arteriolar dilation, reduction in microvascular permeability as well as leukocyte adhesion when compared to animals subjected to restriction of cerebral blood flow; moreover, capillary perfusion was protected. ROS generation increase and marked neuronal damage were detected in animals subjected to CBFD and CBFR. On the other hand, cyanidin was able to reduce ROS generation and neuronal damage. In conclusion, cyanidin treatment showed dose-related protective effects on rat pial microcirculation during CBFD and subsequent CBFR, inducing arteriolar dilation by nitric oxide release and inhibiting ROS formation, consequently preserving the blood brain barrier integrity.

  8. Effects of the Rabdosia rubescens total flavonoids on focal cerebral ischemia reperfusion model in rats

    Directory of Open Access Journals (Sweden)

    Mingsan Miao

    2017-05-01

    Full Text Available The effect of the Rabdosia rubescens total flavonoids on focal cerebral ischemia reperfusion model in rats was observed. The model group, nimodipine group, cerebral collateral group, and large, medium and small dose group of the Rabdosia rubescens total flavonoids were administered with corresponding drugs but sham operation group and model group were administered the same volume of 0.5%CMC, 1 times a day, continuous administration of 7 d. After 1 h at 7 d to medicine, left incision in the middle of the neck of rats after anesthesia, we can firstly expose and isolate the left common carotid artery (CCA, and then expose external carotid artery (ECA and internal carotid artery (ICA. The common carotid artery and the external carotid artery are ligated. Then internal carotid artery with arterial clamp is temporarily clipped. Besides, cut the incision of 0.2 mm from 5 cm of the bifurcation of the common carotid artery. A thread Line bolt is inserted with more than 18–20 mm from bifurcation of CCA into the internal carotid artery until there is resistance. Then the entrance of the middle cerebral artery is blocked and internal carotid artery is ligated (the blank group only exposed the left blood vessel without Plugging wire. Finally it is gently pulled out the plug line after 2 h. Results: Compared with the model mice, Rabdosia rubescens total flavonoids can significantly relieve the injury of brain in hippocampus and cortex nerve cells; experimental rat focal cerebral ischemia was to improve again perfusion model of nerve function defect score mortality; significantly reduce brain homogenate NOS activity and no content, MDA, IL-1, TNF-a, ICAM-1 content; increase in brain homogenate SOD and ATPase activity (P < 0.05, P < 0.01; and reduce the serum S-100β protein content. Each dose group of the Rabdosia rubescens total flavonoids has a better Improvement effect on focal cerebral ischemia reperfusion model in rats.

  9. Investigation of redox status in chronic cerebral hypoperfusion-induced neurodegeneration in rats

    Directory of Open Access Journals (Sweden)

    Anil Kumar Saxena

    2015-06-01

    Full Text Available Aging related reduction in cerebral blood flow (CBF has been linked with neurodegenerative disorders including Alzheimer's disease and dementia. Experimentally, a condition of chronic cerebral hypoperfusion due to reduced CBF can be induced by permanent bilateral occlusion of common carotid arteries (2-vessel occlusion, 2VO in rats. Since oxidative stress, leading to neuronal apoptosis and death, is one of the mechanisms, which is thought to play a significant role in chronic degenerative neurological disorders, the present study was planned to assess the ROS status by measuring the levels of anti-oxidant enzymes that might occur during chronic cerebral hypoperfusion. Antioxidant enzymes namely glutathione peroxidase (GPx, superoxide dismutase (SOD, and catalase were measured in the brain tissue at eight weeks of 2VO induction in rats. Results show significantly elevated levels of GPx, SOD, and catalase enzymes as compared with the control group. It is possible that compensatory rise in antioxidant enzymes occurs in response to increased oxidative stress following ischemic insult.

  10. Neuroprotection of taurine through inhibition of 12/15 lipoxygenase pathway in cerebral ischemia of rats.

    Science.gov (United States)

    Zhang, Zhe; Yu, Rongbo; Cao, Lei

    2017-05-01

    Cerebral ischemia exhibits a multiplicity of pathophysiological mechanisms. Taurine (Tau), an endogenous substance, possesses a number of cytoprotective properties. The aim of the present study was to examine the neuroprotective effect of Tau, through affecting 12/15 lipoxygenase (12/15-LOX) signal pathway in an acute permanent middle cerebral artery occlusion (MCAO) model of rats. Sprague-Dawley rats were randomly divided into 3 groups (n = 10), namely the sham-operated group, MCAO group and Tau group. Tau was intraperitoneally administrated immediately after cerebral ischemia. At 24 h after MCAO, neurological function score, brain water content and infarct volume were assessed. The expression of 12/15-lipoxygenase (12/15-LOX), p38 mitogen-activated protein kinase (p38 MAPK), and cytosolic phospholipase A2 (cPLA2) was measured by Western blot. Enzyme-linked immunosorbent assay was used to evaluate the inflammatory factors TNF-α, IL-1β and IL-6 in serum. Compared with MCAO group, taurine significantly improved neurological function and significantly reduced brain water content (p Taurine protected the brain from damage caused by MCAO; this effect may be through down-regulation of 12/15-LOX, p38 MAPK, and cPLA2.

  11. Subcortical cerebral blood flow and metabolic changes elicited by cortical spreading depression in rat

    Energy Technology Data Exchange (ETDEWEB)

    Mraovitch, S.; Calando, Y.; Goadsby, P.J.; Seylaz, J. (Laboratoire de Recherches Cerebrovasculaire, Paris (France))

    1992-06-01

    Changes in cerebral cortical perfusion (CBF{sub LDF}), local cerebral blood flow (lCBF) and local cerebral glucose utilization (lCGU) elicited by unilateral cortical spreading depression (SD) were monitored and measured in separate groups of rats anesthetized with {alpha}-chloralose. CBF{sub LDF} was recorded with laser Doppler flowmetry, while lCBF and lCGU were measured by the quantitative autoradiographic ({sup 14}C)iodoantipyrine and ({sup 14}C)-2-deoxyglucose methods, respectively. SD elicited a wave of hyperemia after a latency of 2 to 3 min followed by an oligemic phase. Ninety minutes following the onset of SD cortical lCBF and lCGU were essentially the same as on the contralateral side and in sham-treated rats. However, alteration in the lCBF and lCGU in upper and lower brainstem persisted. The present results demonstrate that long-lasting cerebrovascular and metabolic alterations take place within the subcortical regions following SD. These regions provide an attractive site to integrate observations in man concerning spreading depression and the aura of migraine with the other features of the syndrome. 19 refs., 2 figs., 1 tab.

  12. A Microarray Study of Middle Cerebral Occlusion Rat Brain with Acupuncture Intervention

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2015-01-01

    Full Text Available Microarray analysis was used to investigate the changes of gene expression of ischemic stroke and acupuncture intervention in middle cerebral artery occlusion (MCAo rat brain. Results showed that acupuncture intervention had a remarkable improvement in neural deficit score, cerebral blood flow, and cerebral infarction volume of MCAo rats. Microarray analysis showed that a total of 627 different expression genes were regulated in ischemic stroke. 417 genes were upregulated and 210 genes were downregulated. A total of 361 different expression genes were regulated after acupuncture intervention. Three genes were upregulated and 358 genes were downregulated. The expression of novel genes after acupuncture intervention, including Tph1 and Olr883, was further analyzed by Real-Time Quantitative Polymerase Chain Reaction (RT-PCR. Upregulation of Tph1 and downregulation of Olr883 indicated that the therapeutic effect of acupuncture for ischemic stroke may be closely related to the suppression of poststroke depression and regulation of olfactory transduction. In conclusion, the present study may enrich our understanding of the multiple pathological process of ischemic brain injury and indicate possible mechanisms of acupuncture on ischemic stroke.

  13. A Promising Approach to Integrally Evaluate the Disease Outcome of Cerebral Ischemic Rats Based on Multiple-Biomarker Crosstalk

    Directory of Open Access Journals (Sweden)

    Guimei Ran

    2017-01-01

    Full Text Available Purpose. The study was designed to evaluate the disease outcome based on multiple biomarkers related to cerebral ischemia. Methods. Rats were randomly divided into sham, permanent middle cerebral artery occlusion, and edaravone-treated groups. Cerebral ischemia was induced by permanent middle cerebral artery occlusion surgery in rats. To form a simplified crosstalk network, the related multiple biomarkers were chosen as S100β, HIF-1α, IL-1β, PGI2, TXA2, and GSH-Px. The levels or activities of these biomarkers in plasma were detected before and after ischemia. Concurrently, neurological deficit scores and cerebral infarct volumes were assessed. Based on a mathematic model, network balance maps and three integral disruption parameters (k, φ, and u of the simplified crosstalk network were achieved. Results. The levels or activities of the related biomarkers and neurological deficit scores were significantly impacted by cerebral ischemia. The balance maps intuitively displayed the network disruption, and the integral disruption parameters quantitatively depicted the disruption state of the simplified network after cerebral ischemia. The integral disruption parameter u values correlated significantly with neurological deficit scores and infarct volumes. Conclusion. Our results indicate that the approach based on crosstalk network may provide a new promising way to integrally evaluate the outcome of cerebral ischemia.

  14. Proteomic analysis of rat cerebral cortex following subchronic acrolein toxicity.

    Science.gov (United States)

    Rashedinia, Marzieh; Lari, Parisa; Abnous, Khalil; Hosseinzadeh, Hossein

    2013-10-01

    Acrolein, a member of reactive α,β-unsaturated aldehydes, is a major environmental pollutant. Acrolein is also produced endogenously as a toxic by-product of lipid peroxidation. Because of high reactivity, acrolein may mediate oxidative damages to cells and tissues. It has been shown to be involved in a wide variety of pathological states including pulmonary, atherosclerosis and neurodegenerative diseases. In this study we employed proteomics approach to investigate the effects of subchronic oral exposures to 3mg/kg of acrolein on protein expression profile in the brain of rats. Moreover effects of acrolein on malondialdehyde (MDA) levels and reduced glutathione (GSH) content were investigated. Our results revealed that treatment with acrolein changed levels of several proteins in diverse physiological process including energy metabolism, cell communication and transport, response to stimulus and metabolic process. Interestingly, several differentially over-expressed proteins, including β-synuclein, enolase and calcineurin, are known to be associated with human neurodegenerative diseases. Changes in the levels of some proteins were confirmed by Western blot. Moreover, acrolein increases the level of MDA, as a lipid peroxidation biomarker and decreased GSH concentrations, as a non-enzyme antioxidant in the brain of acrolein treated rats. These findings suggested that acrolein induces the oxidative stress and lipid peroxidation in the brain, and so that may contribute to the pathophysiology of neurological disorders. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Levetiracetam Affects Differentially Presynaptic Proteins in Rat Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Daniele Marcotulli

    2017-12-01

    Full Text Available Presynaptic proteins are potential therapeutic targets for epilepsy and other neurological diseases. We tested the hypothesis that chronic treatment with the SV2A ligand levetiracetam affects the expression of other presynaptic proteins. Results showed that in rat neocortex no significant difference was detected in SV2A protein levels in levetiracetam treated animals compared to controls, whereas levetiracetam post-transcriptionally decreased several vesicular proteins and increased LRRK2, without any change in mRNA levels. Analysis of SV2A interactome indicates that the presynaptic proteins regulation induced by levetiracetam reported here is mediated by this interactome, and suggests that LRRK2 plays a role in forging the pattern of effects.

  16. Impaired cerebral microcirculation induced by ammonium chloride in rats is due to cortical adenosine release

    DEFF Research Database (Denmark)

    Bjerring, Peter Nissen; Bjerrum, Esben Jannik; Larsen, Fin Stolze

    2018-01-01

    BACKGROUND: Liver failure results in hyperammonaemia, impaired regulation of cerebral microcirculation, encephalopathy and death. However, the key mediator that alters cerebral microcirculation remains unidentified. In this study we show that topical ammonium significantly increases periarteriolar......: In patients with liver failure disturbances in the brain function is caused in part by ammonia toxicity. In our project we have studied how ammonia, through adenosine release, affects the blood flow in the brain of rats. In our experimental model we demonstrated that the detrimental effect of ammonia on blood...... flow regulation was counteracted by blocking the adenosine receptors in the brain. With this observation we have identified a novel potential treatment target. If we can confirm our findings in a future clinical study it might help patients suffering from liver failure and the severe condition called...

  17. Neuroprotective effect of pretreatment with ganoderma lucidum in cerebral ischemia/reperfusion injury in rat hippocampus

    Science.gov (United States)

    Zhang, Wangxin; Zhang, Quiling; Deng, Wen; Li, Yalu; Xing, Guoqing; Shi, Xinjun; Du, Yifeng

    2014-01-01

    Ganoderma lucidum is a traditional Chinese medicine, which has been shown to have both anti-oxidative and anti-inflammatory effects, and noticeably decreases both the infarct area and neuronal apoptosis of the ischemic cortex. This study aimed to investigate the protective effects and mechanisms of pretreatment with ganoderma lucidum (by intragastric administration) in cerebral ischemia/reperfusion injury in rats. Our results showed that pretreatment with ganoderma lucidum for 3 and 7 days reduced neuronal loss in the hippocampus, diminished the content of malondialdehyde in the hippocampus and serum, decreased the levels of tumor necrosis factor-α and interleukin-8 in the hippocampus, and increased the activity of superoxide dismutase in the hippocampus and serum. These results suggest that pretreatment with ganoderma lucidum was protective against cerebral ischemia/reperfusion injury through its anti-oxidative and anti-inflammatory actions. PMID:25317156

  18. Neuroprotective effect of agmatine in rats with transient cerebral ischemia using MR imaging and histopathologic evaluation.

    Science.gov (United States)

    Huang, Y C; Tzeng, W S; Wang, C C; Cheng, B C; Chang, Y K; Chen, H H; Lin, P C; Huang, T Y; Chuang, T J; Lin, J W; Chang, C P

    2013-09-01

    This study aimed to further investigate the effects of agmatine on brain edema in the rats with middle cerebral artery occlusion (MCAO) injury using magnetic resonance imaging (MRI) monitoring and biochemical and histopathologic evaluation. Following surgical induction of MCAO for 90min, agmatine was injected 5min after beginning of reperfusion and again once daily for the next 3 post-operative days. The events during ischemia and reperfusion were investigated by T2-weighted images (T2WI), serial diffusion-weighted images (DWI), calculated apparent diffusion coefficient (ADC) maps and contrast-enhanced T1-weighted images (CE-T1WI) during 3h-72h in a 1.5T Siemens MAGNETON Avanto Scanner. Lesion volumes were analyzed in a blinded and randomized manner. Triphenyltetrazolium chloride (TTC), Nissl, and Evans Blue stainings were performed at the corresponding sections. Increased lesion volumes derived from T2WI, DWI, ADC, CE-T1WI, and TTC all were noted at 3h and peaked at 24h-48h after MCAO injury. TTC-derived infarct volumes were not significantly different from the T2WI, DWI-, and CE-T1WI-derived lesion volumes at the last imaging time (72h) point except for significantly smaller ADC lesions in the MCAO model (Pagmatine-treated rats compared with the control ischemia rats (Pagmatine has neuroprotective effects against brain edema on a reperfusion model after transient cerebral ischemia. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Use of hypoxia imaging agent 99mTc-HL91 in rat cerebral ischemia models

    International Nuclear Information System (INIS)

    Zhou Ying; Qu Wanying; Li Meng; Chen Fang; Yao Zhiming; Zhu Ming; Zhu Lin

    1999-01-01

    Objective: To explore the possibility of diagnosis for cerebrovascular disease by a novel synthetic hypoxia agent 99m Tc-HL91 used in rat cerebral ischemia models. Methods: Pharmacological experiments of 99m Tc-HL91 were carried out including common properties, radiochemical purity, stability in vitro, anomalous toxicity test and biodistribution in mice. Fifteen cerebral ischemic rat models were established and received 99m Tc-HL91 scintigraphy. Results: 1) HL91 kits were labelled with 99m Tc easily and showed high radiochemical purity and stability. 2) Rapid clearance in blood, heart and lungs and high activity in liver, kidneys and intestines were observed. Relatively low uptake in brain was identified. 3) The radioactivity in ischemic brain tissue increased significantly at 4h postinjection in both rat images and isolated brain images. 4) The radioactivity ratios of lesion to normal brain tissue by drawing ROIs in isolated brain planar images were 0.98 +- 0.06, 0.99 +- 0.05, 1.29 +- 0.03, 1.56 +- 0.14 and 1.66 +- 0.06 at 1,2,4,8 and 12 h postinjection, respectively. There were significant differences among all groups except for 1 h and 2 h, 8 h and 12 h postinjection (P 99m Tc-HL91 in the hypoxic, ischemic brain tissue have been proved. It is appropriate to perform imaging at 4 h postinjection

  20. Niosomes of Ascorbic Acid and α-Tocopherol in the Cerebral Ischemia-Reperfusion Model in Male Rats

    OpenAIRE

    Varshosaz, Jaleh; Taymouri, Somayeh; Pardakhty, Abbas; Asadi-Shekaari, Majid; Babaee, Abodolreza

    2014-01-01

    The objective of the present study was to prepare a stable iv injectable formulation of ascorbic acid and α-tocopherol in preventing the cerebral ischemia. Different niosomal formulations were prepared by Span and Tween mixed with cholesterol. The physicochemical characteristics of niosomal formulations were evaluated in vitro. For in vivo evaluation, the rats were made ischemic by middle cerebral artery occlusion model for 30 min and the selected formulation was used for determining its neur...

  1. A single subcutaneous bolus of erythropoietin normalizes cerebral blood flow autoregulation after subarachnoid haemorrhage in rats

    DEFF Research Database (Denmark)

    Springborg, Jacob Bertram; Ma, XiaoDong; Rochat, Per

    2002-01-01

    the intracarotid (133)Xe method. CBF autoregulation was preserved in both sham-operated groups (lower limits of mean arterial blood pressure: 91+/-3 and 98+/-3 mmHg in groups A and B, respectively). In the vehicle treated SAH-group, autoregulation was abolished and the relationship between CBF and blood pressure...... administered recombinant EPO on impaired cerebral blood flow (CBF) autoregulation after experimental subarachnoid haemorrhage (SAH). Four groups of male Sprague-Dawley rats were studied: group A, sham operation plus vehicle; group B, sham operation plus EPO; group C, SAH plus vehicle; group D, SAH plus EPO...

  2. Effect of. beta. -endorphin on catecholamine levels in rat hypothalamus and cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Slavnov, V.N.; Valueva, G.V.; Markov, V.V.; Luchitskii, E.V.

    1986-10-01

    The authors studied the effect of beta-endorphin on catecholamine concentrations in the hypothalmus and cerebral cortex in rats, as a contribution to the explanation of the mechanism of action of this peptide on certain pituitary trophic functions. Concentrations of dopamine, noradrenalin, and adrenalin were determined by a radioenzymatic method. A Mark 3 scintillation system was used for radiometric investigation of the samples. The results of these experiments indicate that beta-endorphin has a marked effect on brain catecholamine levels mainly in the hypothalamus.

  3. Effect of β-endorphin on catecholamine levels in rat hypothalamus and cerebral cortex

    International Nuclear Information System (INIS)

    Slavnov, V.N.; Valueva, G.V.; Markov, V.V.; Luchitskii, E.V.

    1986-01-01

    The authors studied the effect of beta-endorphin on catecholamine concentrations in the hypothalmus and cerebral cortex in rats, as a contribution to the explanation of the mechanism of action of this peptide on certain pituitary trophic functions. Concentrations of dopamine, noradrenalin, and adrenalin were determined by a radioenzymatic method. A Mark 3 scintillation system was used for radiometric investigation of the samples. The results of these experiments indicate that beta-endorphin has a marked effect on brain catecholamine levels mainly in the hypothalamus

  4. Structural and Ultrastructural Analysis of Cerebral Cortex, Cerebellum, and Hypothalamus from Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Juan P. Hernández-Fonseca

    2009-01-01

    Full Text Available Autonomic and peripheral neuropathies are well-described complications in diabetes. Diabetes mellitus is also associated to central nervous system damage. This little-known complication is characterized by impairment of brain functions and electrophysiological changes associated with neurochemical and structural abnormalities. The purpose of this study was to investigate brain structural and ultrastructural changes in rats with streptozotocin-induced diabetes. Cerebral cortex, hypothalamus, and cerebellum were obtained from controls and 8 weeks diabetic rats. Light and electron microscope studies showed degenerative changes of neurons and glia, perivascular and mitochondrial swelling, disarrangement of myelin sheath, increased area of myelinated axons, presynaptic vesicle dispersion in swollen axonal boutoms, fragmentation of neurofilaments, and oligodendrocyte abnormalities. In addition, depressive mood was observed in diabetic animals. The brain morphological alterations observed in diabetic animals could be related to brain pathologic process leading to abnormal function, cellular death, and depressive behavioral.

  5. The cholinergic-inducing effect of BMP4 on rat's cerebral neural stem cells

    International Nuclear Information System (INIS)

    Chang Yan; Xue Yilong; Luo Yun; Tian Lei; Pan Jingkun; Cui Xin

    2004-01-01

    The cholinergic-inducing effect of BMP4 on isolated and cultivated rat's cerebral neural stem cells (NSC) was examined. NSC isolated from two months old rat's brain region like hippocampus and striatum was cultivated in a DMEM/F12 medium containing EGF and bFGF, and was identified with morphological character and nestin immunocytochemistry test. After 24 hours, cultivating the NSC with the BMP4-added medium for 7-8 days, then the microscopical change were observed, ChAT and nestin double-labelling immunocytochemistry test was done. Results showed that about 34% NSC of neuron-like character was observed by microscope in the paper. That ChAT-positive cells coexist with nestin-positive cells was found by immunocytochemistry test. There were 28% ChAT-positive cells and 38% nestin-positive cells in the study. Cholinergic neurons differentiated from NSC could be induced by adding BMP4 to the medium

  6. Functional response of cerebral blood flow induced by somatosensory stimulation in rats with subarachnoid hemorrhage

    Science.gov (United States)

    Li, Zhiguo; Huang, Qin; Liu, Peng; Li, Pengcheng; Ma, Lianting; Lu, Jinling

    2015-09-01

    Subarachnoid hemorrhage (SAH) is often accompanied by cerebral vasospasm (CVS), which is the phenomenon of narrowing of large cerebral arteries, and then can produce delayed ischemic neurological deficit (DIND) such as lateralized sensory dysfunction. CVS was regarded as a major contributor to DIND in patients with SAH. However, therapy for preventing vasospasm after SAH to improve the outcomes may not work all the time. It is important to find answers to the relationship between CVS and DIND after SAH. How local cerebral blood flow (CBF) is regulated during functional activation after SAH still remains poorly understood, whereas, the regulation of CBF may play an important role in weakening the impact of CVS on cortex function. Therefore, it is worthwhile to evaluate the functional response of CBF in the activated cortex in an SAH animal model. Most evaluation of the effect of SAH is presently carried out by neurological behavioral scales. The functional imaging of cortical activation during sensory stimulation may help to reflect the function of the somatosensory cortex more locally than the behavioral scales do. We investigated the functional response of CBF in the somatosensory cortex induced by an electrical stimulation to contralateral forepaw via laser speckle imaging in a rat SAH model. Nineteen Sprague-Dawley rats from two groups (control group, n=10 and SAH group, n=9) were studied. SAH was induced in rats by double injection of autologous blood into the cisterna magna after CSF aspiration. The same surgical procedure was applied in the control group without CSF aspiration or blood injection. Significant CVS was found in the SAH group. Meanwhile, we observed a delayed peak of CBF response in rats with SAH compared with those in the control group, whereas no significant difference was found in magnitude, duration, and areas under curve of relative CBF changes between the two groups. The results suggest that the regulation function of local CBF during

  7. Protective effects of alkaloid extract from Leonurus heterophyllus on cerebral ischemia reperfusion injury by middle cerebral ischemic injury (MCAO) in rats.

    Science.gov (United States)

    Liang, Hao; Liu, Ping; Wang, Yunshan; Song, Shuliang; Ji, Aiguo

    2011-07-15

    The neuronal damage following cerebral ischemia is a serious risk to stroke patients. The aim of this study was to investigate the neuroprotective effects of alkaloid extract from Leonurus heterophyllus (LHAE) on cerebral ischemic injury. After 24 h of reperfusion following ischemia for 2 h induced by middle cerebral artery occlusion (MCAO), some rats were intraperitoneally administered different doses of LHAE (3.6, 7.2, 14.4 mg/kg, respectively). Neurological examination was measured in all animals. Infarct volume, myeloperoxidase (MPO) activity, levels of nitrate/nitrite metabolite (NO) and apoptosis ratio of nerve fiber in brain were determined. The results showed that LHAE at 7.2 mg/kg or 14.4 mg/kg exerted significantly decreasing neurological deficit scores and reducing the infarct volume on rats with focal cerebral ischemic injury (pagent. Further studies are warranted to assess the efficacy and safety of LHAE in patients. Copyright © 2011 Elsevier GmbH. All rights reserved.

  8. Effect of tetramethylpyrazine on the spatial learning and memory function of rats after focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Jianjun Zhao; Yong Liu; Xinlin Chen; Jianxin Liu; Yingfang Tian; Pengbo Zhang; Qianyan Kang; Fen Qiu

    2006-01-01

    BACKGROUND: Tetramethylpyrazine (TMP) presents the effect of anti-platelet aggregation, reduces arterial resistance, increases cerebral blood flow, and improves microcirculation.OBJECTIVE: To observe the effects of TMP on the learning and memory abilities and the number of neurons in cortex and hippocampus after focal cerebral ischemia in rats DESIGN: A randomized controlled trial.SETTING: Department of Human Anatomy and Histological Embryology, School of Medicine, Xi'an Jiaotong University.MATERIALS: Fifty adult male Sprague-Dawley rats, weighing 250-300 g were supplied by the Experimental Animal Center, School of Medicine, Xi'an Jiaotong University. TMP was purchased from Wuxi Seventh Pharmaceutical Co. Ltd (Lot Number: 2004051106, Specification: 2 mL/piece).METHODS: The experiments were carried out in School of Medicine of Xi'an Jiaotong University from June 2004 to May 2005. The 50 rats were randomly divided into five groups according to the random number table method: sham-operated group, cerebral ischemia control group, Iow-dose TMP group, middle-dose TMP group and high-dose TMP group, 10 rats in each group. Rats in the TMP groups were immediately treated with intraperitoneal injection of TMP of 40, 80 and 120 mg/kg respectively, and those in the sham-operated group and cerebral ischemia control group were injected intraperitoneally by isovolume saline, once a day for 14 days successively. On the 15th day, the spatial learning and memory abilities of the rats were assessed with the Morris water maze test, and then the changes of neuron numbers in cortex and hippocampus were observed by Nissl staining of brain sections.MAIN OUTCOME MEASURES: The results of Morris water maze test and the changes of neuron numbers in cortex and hippocampus by Nissl staining of brain sections were observed,RESULTS : Finally 39 rats were involved in the analysis of results, and the other 11 died of excessive anesthesia or failure in model establishment. ① The rats in the

  9. Cerebral blood flow, glucose use, and CSF ionic regulation in potassium-depleted rats

    International Nuclear Information System (INIS)

    Schroek, H.; Kuschinsky, W.

    1988-01-01

    Rats were kept on a low-K + diet for 25 or 70 days. Local cerebral blood flow (LCBF) and local cerebral glucose utilization (LCGU) were measured in 31 different structures of the brain by means of the [ 14 C]iodoantipyrine and [ 14 C]2-deoxy-D-glucose method. After 25 and 70 days of K + depletion LCBF was decreased significantly in 27 and 30 structures, respectively, the average decrease being 19 and 25%. In contrast, average LCGU was not changed. Cisternal cerebrospinal fluid (CSF) K + concentration decreased significantly from 2.65 ± 0.02 mM in controls to 2.55 ± 0.02 mM and 2.47 ± 0.02 mM in the two treated groups. CSF [HCO 3 - ], pH, and Pco 2 were increased in K + -depleted animals. These data show that K + depletion induces an increase in CSF pH and a decrease in CSF K + concentration, both of which cause a reduction in cerebral blood flow. The increased CSF Pco 2 is secondary to the reduction of blood flow, since brain metabolism and arterial Pco 2 remained constant

  10. MRI in acute cerebral ischaemia: perfusion imaging with superparamagnetic iron oxide in a rat model

    International Nuclear Information System (INIS)

    Forsting, M.; Reith, W.; Doerfler, A.; Kummer, R. von; Hacke, W.; Sartor, K.

    1994-01-01

    An imaging technique capable of detecting ischaemic cerebral injury at an early stage could improve diagnosis in acute or transient cerebral ischaemia. We compared the ability of superparamagnetically contrast-enhanced MRI and conventional T2-weighted MRI to detect ischaemic injury early after unilateral occlusion of the middle cerebral artery in 12 male Wistar rats. Permanent vessel occlusion was achieved by a transvascular approach, which has the advantage of not requiring a craniectom. At 45-60 min after the procedure, the animals had conventional T2-weighted MRI before and after administration of a superparamagnetic contrast agent (iron oxide particles). Unenhanced images were normal in all animals. After administration of iron oxide particles, the presumed ischaemic area was clearly visible, as relatively increased signal, in all animals; this high signal area corresponded to the area of ischaemic brain infarction seen on histological studies. Our results suggest that superparamagnetic iron particles may significantly reduce the interval between an ischaemic insult and the appearance of parenchymal changes on MRI. (orig./UWA)

  11. Early Exercise Protects against Cerebral Ischemic Injury through Inhibiting Neuron Apoptosis in Cortex in Rats

    Directory of Open Access Journals (Sweden)

    Junfa Wu

    2013-03-01

    Full Text Available Early exercise is an effective strategy for stroke treatment, but the underlying mechanism remains poorly understood. Apoptosis plays a critical role after stroke. However, it is unclear whether early exercise inhibits apoptosis after stroke. The present study investigated the effect of early exercise on apoptosis induced by ischemia. Adult SD rats were subjected to transient focal cerebral ischemia by middle cerebral artery occlusion model (MCAO and were randomly divided into early exercise group, non-exercise group and sham group. Early exercise group received forced treadmill training initiated at 24 h after operation. Fourteen days later, the cell apoptosis were detected by TdT-mediated dUTP-biotin nick-end labeling (TUNEL and Fluoro-Jade-B staining (F-J-B. Caspase-3, cleaved caspase-3 and Bcl-2 were determined by western blotting. Cerebral infarct volume and motor function were evaluated by cresyl violet staining and foot fault test respectively. The results showed that early exercise decreased the number of apoptotic cells (118.74 ± 6.15 vs. 169.65 ± 8.47, p < 0.05, n = 5, inhibited the expression of caspase-3 and cleaved caspase-3 (p < 0.05, n = 5, and increased the expression of Bcl-2 (p < 0.05, n = 5. These data were consistent with reduced infarct volume and improved motor function. These results suggested that early exercise could provide neuroprotection through inhibiting neuron apoptosis.

  12. Generation of coherent soft x-rays using a single-pass free-electron laser amplifier

    International Nuclear Information System (INIS)

    Wang, T.F.; Goldstein, J.C.; Newnam, B.E.; McVey, B.D.

    1988-01-01

    We consider a single-pass free-electron laser (FEL) amplifier, driven by an rf-linac followed by a damping ring for reduced emittance, for use in generating coherent light in the soft x-ray region. The dependence of the optical gain on electron-beam quality, studied with the three-dimensional FEL simulation code FELEX, is given and related to the expected power of self-amplified spontaneous emission. We discuss issues for the damping ring designed to achieve the required electron beam quality. The idea of a multipass regenerative amplifier is also presented

  13. Early polymorphonuclear leukocyte accumulation correlates with the development of posttraumatic cerebral edema in rats

    International Nuclear Information System (INIS)

    Schoettle, R.J.; Kochanek, P.M.; Magargee, M.J.; Uhl, M.W.; Nemoto, E.M.

    1990-01-01

    To evaluate the role of polymorphonuclear leukocytes (PMNs) in the development of posttraumatic cerebral edema, we quantitatively assessed the time course and magnitude of PMN accumulation and its relationship to cerebral edema formation after cerebral trauma in 78 rats. 111 In-labeled PMN accumulation was measured in 26 rats in the first 8 h after right hemispheric percussive cerebral trauma or a sham control condition. 51 Cr-labeled erythrocyte accumulation was measured simultaneously in 22 rats to assess the contribution of expansion of blood volume to early posttraumatic PMN accumulation. Edema formation [right-left (R-L) hemispheric difference in percent brain water], R-L hemispheric labeled-PMN accumulation, and blood volume index-adjusted PMN accumulation were measured between 0-2 h and 4-8 h posttrauma. PMN accumulation was elevated markedly in the first 2 h posttrauma compared with values in sham controls (13.45 +/- 2.53 vs -0.03 +/- 0.31, p less than 0.01) but not when adjusted for blood volume index (BVI), suggesting that PMN accumulation in the first 2 h posttrauma was due to expansion of blood volume. Between 4 and 8 h posttrauma, however, both total (2.56 +/- 0.82 vs -0.29 +/- 0.52) and BVI-adjusted (8.78 +/- 3.97 vs -0.48 +/- 0.79) PMN accumulation were elevated (p less than 0.05) compared with sham. Brain edema and total PMN accumulation were significantly correlated at both 2 h and 8 h posttrauma (r2 = 0.77, p less than 0.001, and r2 = 0.69, p less than 0.002, respectively), but a significant correlation between edema and BVI-adjusted PMN accumulation was observed only at 8 h posttrauma (r2 = 0.96, p less than 0.001). These data show that PMN accumulation after traumatic brain injury occurs with an initial phase explained by an increase in blood volume in the first 2 h posttrauma followed by a subsequent acute inflammatory phase

  14. Neuroprotective effects of SMADs in a rat model of cerebral ischemia/reperfusion

    Directory of Open Access Journals (Sweden)

    Fang-fang Liu

    2015-01-01

    Full Text Available Previous studies have shown that up-regulation of transforming growth factor β1 results in neuroprotective effects. However, the role of the transforming growth factor β1 downstream molecule, SMAD2/3, following ischemia/reperfusion remains unclear. Here, we investigated the neuroprotective effects of SMAD2/3 by analyzing the relationships between SMAD2/3 expression and cell apoptosis and inflammation in the brain of a rat model of cerebral ischemia/reperfusion. Levels of SMAD2/3 mRNA were up-regulated in the ischemic penumbra 6 hours after cerebral ischemia/reperfusion, reached a peak after 72 hours and were then decreased at 7 days. Phosphorylated SMAD2/3 protein levels at the aforementioned time points were consistent with the mRNA levels. Over-expression of SMAD3 in the brains of the ischemia/reperfusion model rats via delivery of an adeno-associated virus containing the SMAD3 gene could reduce tumor necrosis factor-α and interleukin-1β mRNA levels, down-regulate expression of the pro-apoptotic gene, capase-3, and up-regulate expression of the anti-apoptotic protein, Bcl-2. The SMAD3 protein level was negatively correlated with cell apoptosis. These findings indicate that SMAD3 exhibits neuroprotective effects on the brain after ischemia/reperfusion through anti-inflammatory and anti-apoptotic pathways.

  15. Characterization of neuronal damage by iomazenil binding and cerebral blood flow in an ischemic rat model

    International Nuclear Information System (INIS)

    Toyama, Hiroshi; Takeuchi, Akira; Koga, Sukehiko; Matsumura, Kaname; Nakashima, Hiromichi; Takeda, Kan; Yoshida, Toshimichi; Ichise, Masanori

    1998-01-01

    I-123-iomazenil is a SPECT probe for central benzodiazepine receptors (BZR) which may reflect intact cortical neuron density after ischemic insults. We evaluated whether neuronal damage in rats could be characterized by iomazenil as compared with cerebral blood flow (CBF). Serial changes in I-125-iomazenil for BZR and I-123-IMP for CBF were analyzed after the unilateral middle cerebral artery occlusion in rats by using an in vivo dualtracer technique. Uptake ratios of affected to contralateral regions were calculated. The iomazenil as well as IMP were decreased in all regions except for the cerebellum (remote area). Both iomazenil and IMP increased over time except in the temporal region (ischemic core). The iomazenil uptake was higher than IMP except in the ischemic core between 1 and 3-4 wk when iomazenil was lower than IMP. Iomazenil showed a moderate decrease in the proximal and middle parietal regions (peri-infarct areas) at 3-4 wk. The triphenyl-tetrazolium-chloride (TTC) stain at 1 wk demonstrated unstained tissue in the temporal region indicating tissue necrosis. With hematoxylin-eosin (HE) stain at 1 wk, widespread neuronal necrosis with occasional intact neurons were found in the proximal parietal region, and isolated necrotic neurons were represented in the distal parietal region. Iomazenil correlated well with the neuron distribution and the finding of a discrepancy between iomazenil and IMP might be useful in evaluating the neuronal damage. (author)

  16. Asymmetry in the brain influenced the neurological deficits and infarction volume following the middle cerebral artery occlusion in rats

    Directory of Open Access Journals (Sweden)

    Zhang Meizeng

    2008-12-01

    Full Text Available Abstract Background Paw preference in rats is similar to human handedness, which may result from dominant hemisphere of rat brain. However, given that lateralization is the uniqueness of the humans, many researchers neglect the differences between the left and right hemispheres when selecting the middle cerebral artery occlusion (MCAO in rats. The aim of this study was to evaluate the effect of ischemia in the dominant hemisphere on neurobehavioral function and on the cerebral infarction volume following MCAO in rats. Methods The right-handed male Sprague-Dawley rats asserted by the quadrupedal food-reaching test were subjected to 2 hours MCA occlusion and then reperfusion. Results The neurological scores were significantly worse in the left MCAO group than that in the right MCAO group at 1 h, 24 h, 48 h and 72 h (p 0.05 respectively. There was a trend toward better neurobehavioral function recovery in the right MCAO group than in the left MCAO group. The total infarct volume in left MCAO was significantly larger than that in the right (p Conclusion The neurobehavioral function result and the pathological result were consistent with the hypothesis that paw preference in rats is similar to human handedness, and suggested that ischemia in dominant hemisphere caused more significant neurobehavioral consequence than in another hemisphere following MCAO in adult rats. Asymmetry in rat brain should be considered other than being neglected in choice of rat MCAO model.

  17. Bexarotene reduces blood-brain barrier permeability in cerebral ischemia-reperfusion injured rats.

    Directory of Open Access Journals (Sweden)

    Lu Xu

    Full Text Available Matrix metalloproteinase-9 (MMP-9 over-expression disrupts the blood-brain barrier (BBB in the ischemic brain. The retinoid X receptor agonist bexarotene suppresses MMP-9 expression in endothelial cells and displays neuroprotective effects. Therefore, we hypothesized that bexarotene may have a beneficial effect on I/R-induced BBB dysfunction.A total of 180 rats were randomized into three groups (n = 60 each: (i a sham-operation group, (ii a cerebral ischemia-reperfusion (I/R group, and (iii an I/R+bexarotene group. Brain water content was measured by the dry wet weight method. BBB permeability was analyzed by Evans Blue staining and the magnetic resonance imaging contrast agent Omniscan. MMP-9 mRNA expression, protein expression, and activity were assessed by reverse transcription polymerase chain reaction, Western blotting, and gelatin zymography, respectively. Apolipoprotein E (apoE, claudin-5, and occludin expression were analyzed by Western blotting.After 24 h, 48 h, and 72 h post-I/R, several effects were observed with bexarotene administration: (i brain water content and BBB permeability were significantly reduced; (ii MMP-9 mRNA and protein expression as well as activity were significantly decreased; (iii claudin-5 and occludin expression were significantly increased; and (iv apoE expression was significantly increased.Bexarotene decreases BBB permeability in rats with cerebral I/R injury. This effect may be due in part to bexarotene's upregulation of apoE expression, which has been previously shown to reduce BBB permeability through suppressing MMP-9-mediated degradation of the tight junction proteins claudin-5 and occludin. This work offers insight to aid future development of therapeutic agents for cerebral I/R injury in human patients.

  18. Study of the influence and molecular mechanism of ticagrelor on cerebral ischemia reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Gui-Fa Chen

    2017-06-01

    Full Text Available Objective: To study the influence and molecular mechanism of ticagrelor on cerebral ischemia reperfusion injury in rats. Methods: SD rats were selected as experimental animals and divided into control group, model group, ticagrelor group and clopidogrel group, cerebral ischemic reperfusion injury models were made, then ticagrelor group were given intragastric administration of 150 mg ticagrelor, clopidogrel group were given intragastric administration of 90 mg clopidogrel. 1 week after intervention, the brain water content as well as the contents of oxidative stress molecules and inflammatory factors were measured. Results: Water content in brain, MDA, Ox-LDL, NF-kB, TNF-α, IL-1β and IL-6 contents in brain tissue as well as TNF-α, IL-1β and IL-6 contents in serum of model group were significantly higher than those of control group while SOD, GSH-Px and Prdx6 contents in brain tissue were significantly lower than those of control group; water content in brain, MDA, Ox-LDL, NFkB, TNF-α, IL-1β and IL-6 contents in brain tissue as well as TNF-α, IL-1β and IL-6 contents in serum of ticagrelor group and clopidogrel group were significantly lower than those of model group while SOD, GSH-Px and Prdx6 contents in brain tissue were significantly higher than those of model group; water content in brain, MDA, Ox-LDL, NF-kB, TNF-α, IL-1β and IL-6 contents in brain tissue as well as TNF-α, IL-1β and IL-6 contents in serum of ticagrelor group were significantly lower than those of clopidogrel group while SOD, GSHPx and Prdx6 contents in brain tissue were significantly higher than those of clopidogrel group. Conclusion: Ticagrelor can be more effective in inhibiting oxidative stress response and inflammatory response, and reducing the cerebral ischemia reperfusion injury than clopidogrel.

  19. Cytofluorometric analysis of proliferation kinetics of cerebral cells of prenatally irradiated rats

    International Nuclear Information System (INIS)

    Borovitskaya, A.E.; Evtushenko, V.I.; Tokalov, S.V.; Yagunov, A.S.; Khanson, K.P.

    1994-01-01

    Prenatal irradiation of humans or animals causes serious and life-long functional and structural damage to the central nervous system. Irradiation of a fetus decreases its brain mass, an effect accompanied by a broad spectrum of disorders in higher nervous activity and behavior. The extent of cerebral damage depends on the kind of radiation, dosage, and on the stage of embryonic development. In rodents, the most serious damage resulted from the irradiation of 15-18 day embryos. Prenatally irradiated animals had pronounced morphological and biochemical changes within the brain, as well as serious deviations from normal behavior. The cerebral structural-functional disorders are known to result from the destruction of irradiated cells, primarily of neuroblasts. The authors used flow cytofluorometry to study the proliferation of cerebral cells at various ontogenetic stages in rats antenatally exposed to γ-neutron radiation. For one-week old animals, the postradiation changes of cell distributions over the cell cycle were found only within the cerebellum. This likely reflects the compensatory cell proliferation, because delayed postnatal development is typical of this part of the brain. There were no detectable differences in brain cytokinetics between two week-old control and irradiated animals. Most of the brain cells (except a limited population of glia, endothelial cells, and cells of the secondary germinal layer) are in the resting state during this period, and radiation does not change their cell cycle distributions. Thus, the increasing occurrence of the S + G 2 + M phases in the cell cycle observed in newborn irradiated rats may reflect the enhanced proliferation of nervous cells surviving the irradiation. However, this compensatory proliferation does not prevent the brain mass from being deficient in the postnatal development of prenatally irradiated animals

  20. Energy metabolism of rat cerebral cortex, hypothalamus and hypophysis during ageing.

    Science.gov (United States)

    Villa, R F; Ferrari, F; Gorini, A

    2012-12-27

    Ageing is one of the main risk factors for brain disorders. According to the neuroendocrine theory, ageing modifies the sensitivity of hypothalamus-pituitary-adrenal axis to homoeostatic signals coming from the cerebral cortex. The relationships between the energy metabolism of these areas have not been considered yet, in particular with respect to ageing. For these reasons, this study was undertaken to systematically investigate in female Sprague-Dawley rats aged 4, 6, 12, 18, 24, 28 months and in 4-month-old male ones, the catalytic properties of energy-linked enzymes of the Krebs' cycle, electron transport chain, glutamate and related amino acids on different mitochondrial subpopulations, i.e. non-synaptic perikaryal and intra-synaptic (two types) mitochondria. The biochemical enzymatic pattern of these mitochondria shows different expression of the above-mentioned enzymatic activities in the investigated brain areas, including frontal cerebral cortex, hippocampus, striatum, hypothalamus and hypophysis. The study shows that: (i) the energy metabolism of the frontal cerebral cortex is poorly affected by physiological ageing; (ii) the biochemical machinery of non-synaptic perikaryal mitochondria is differently expressed in the considered brain areas; (iii) at 4-6 months, hypothalamus and hypophysis possess lower oxidative metabolism with respect to the frontal cerebral cortex while (iv), during ageing, the opposite situation occurs. We hypothesised that these metabolic modifications likely try to grant HPA functionality in response to the incoming external stress stimuli increased during ageing. It is particularly notable that age-related changes in brain bioenergetics and in mitochondrial functionality may be considered as remarkable factors during physiological ageing and should play important roles in predisposing the brain to physiopathological events, tightly related to molecular mechanisms evoked for pharmacological treatments. Copyright © 2012 IBRO

  1. Protective effects of D-Limonene against transient cerebral ischemia in stroke-prone spontaneously hypertensive rats.

    Science.gov (United States)

    Wang, Xifeng; Li, Gang; Shen, Wei

    2018-01-01

    Stroke is a leading cause of disability and death world-wide and there is currently a lack of effective treatments for acute stroke. D-Limonene is a common natural monocyclic monoterpene possessing various activities. The present study aimed to evaluate the therapeutic efficacy of D-limonene against ischemia-associated cerebral injury in hypertensive SHRsp rats. Although systolic blood pressure was not altered by ischemia, D-Limonene decreased the systolic blood pressure of SHRsp rats following stroke. Induction of stroke resulted in increased escape latency time, decreased time spent in the target quadrant in the probe trial, decreased capacity to distinguish between familiar objects and novel objects, and increased sensory neglect in the SHRsp rat, however these symptoms were significantly inhibited by D-limonene. D-limonene also decreased the cerebral infarct size in the SHRsp rats following stroke. D-Limonene markedly decreased the mRNA expression of interleukin-1β, monocyte chemoattractant protein-1 and cyclooxygenase-2 in SHRsp rats following stroke. The mRNA expression of vascular endothelial growth factor in the brain of SHRsp rats following stroke was significantly increased by D-Limonene. D-Limonene increased the activities of superoxide dismutase and catalase, decreased the malondialdehyde level, increased glutathione content and reduced the DHE-staining in SHRsp rats following stroke. Overall, inhibition of cerebral inflammation, vascular remodeling and antioxidant activities of D-Limonene may be involved in the protective effects against ischemia-induced damage in SHRsp rats. The present study identified D-Limonene as a potential therapeutic candidate for treatment of stroke-associated cerebral and vascular damage under conditions of hypertension.

  2. The effects of apomorphine upon local cerebral glucose utilization in conscious rats and in rats anesthetized with chloral hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Grome, J J; McCulloch, J

    1983-02-01

    The effects of the dopaminergic agonist apomorphine (1 mg . kg-1 i.v.) upon local cerebral glucose utilization in 43 anatomically discrete regions of the CNS were examined in conscious, lightly restrained rats and in rats anesthetized with chloral hydrate by means of the quantitative autoradiographic (/sup 14/C)2-deoxyglucose technique. In animals anesthetized with chloral hydrate, glucose utilization was reduced throughout all regions of the CNS from the levels observed in conscious animals, although the magnitude of the reductions in glucose use displayed considerable regional heterogeneity. With chloral hydrate anesthesia, the proportionately most marked reductions in glucose use (by 40-60% from conscious levels) were noted in primary auditory nuclei, thalmaic relay nuclei, and neocortex, and the least pronounced reductions in glucose use (by 15-25% from conscious levels) were observed in limbic areas, some motor relay nuclei, and white matter. In conscious, lightly restrained rats, the administration of apomorphine (1 mg . kg-1) effected significant increased in glucose utilization in 15 regions of the CNS (e.g., subthalamic nucleus, ventral thalamic nucleus, rostral neocortex, substantia nigra, pars reticulata), and significant reductions in glucose utilization in two regions of the CNS (lateral habenular nucleus and anterior cingulate cortex).

  3. Endothelin-1-induced focal cerebral ischemia in the growth hormone/IGF-1 deficient Lewis Dwarf rat.

    Science.gov (United States)

    Yan, Han; Mitschelen, Matthew; Toth, Peter; Ashpole, Nicole M; Farley, Julie A; Hodges, Erik L; Warrington, Junie P; Han, Song; Fung, Kar-Ming; Csiszar, Anna; Ungvari, Zoltan; Sonntag, William E

    2014-11-01

    Aging is a major risk factor for cerebrovascular disease. Growth hormone (GH) and its anabolic mediator, insulin-like growth factor (IGF)-1, decrease with advancing age and this decline has been shown to promote vascular dysfunction. In addition, lower GH/IGF-1 levels are associated with higher stroke mortality in humans. These results suggest that decreased GH/IGF-1 level is an important factor in increased risk of cerebrovascular diseases. This study was designed to assess whether GH/IGF-1-deficiency influences the outcome of cerebral ischemia. We found that endothelin-1-induced middle cerebral artery occlusion resulted in a modest but nonsignificant decrease in cerebral infarct size in GH/IGF-1 deficient dw/dw rats compared with control heterozygous littermates and dw/dw rats with early-life GH treatment. Expression of endothelin receptors and endothelin-1-induced constriction of the middle cerebral arteries were similar in the three experimental groups. Interestingly, dw/dw rats exhibited reduced brain edema and less astrocytic infiltration compared with their heterozygous littermates and this effect was reversed by GH-treatment. Because reactive astrocytes are critical for the regulation of poststroke inflammatory processes, maintenance of the blood-brain barrier and neural repair, further studies are warranted to determine the long-term functional consequences of decreased astrocytic activation in GH/IGF-1 deficient animals after cerebral ischemia. Published by Oxford University Press on behalf of the Gerontological Society of America 2014.

  4. Daily consumption of white tea (Camellia sinensis (L.)) improves the cerebral cortex metabolic and oxidative profile in prediabetic Wistar rats.

    Science.gov (United States)

    Nunes, Ana R; Alves, Marco G; Tomás, Gonçalo D; Conde, Vanessa R; Cristóvão, Ana C; Moreira, Paula I; Oliveira, Pedro F; Silva, Branca M

    2015-03-14

    Diabetes mellitus (DM) is a major public health problem and its incidence is rising dramatically. The brain, particularly the cerebral cortex, is very susceptible to glucose fluctuations and hyperglycaemia-induced oxidative stress. Tea (Camellia sinensis (L.)) is widely consumed; however, the antidiabetic properties of white tea remain largely unexplored. In the present study, we investigated the effects of daily consumption of white tea on the cerebral cortex of prediabetic rats. The cerebral cortex metabolic profile was evaluated, and the expression levels of GLUT, phosphofructokinase-1, lactate dehydrogenase (LDH) and monocarboxylate transporter 4 were assessed. LDH activity was also determined. The cerebral cortex oxidative profile was determined by evaluating its antioxidant power, lipid peroxidation and protein oxidation levels. Catalase, glutathione, glutamate, N-acetylaspartate, aspartate, choline, γ-aminobutyric acid, taurine and valine contents were determined. Daily consumption of white tea ameliorated glucose tolerance and insulin sensitivity. Moreover, white tea altered the cortex glycolytic profile, modulating GLUT expression and lactate and alanine contents. Finally, white tea consumption restored protein oxidation and lipid peroxidation levels and catalase expression, and improved antioxidant capacity. In conclusion, daily consumption of white tea improved the cerebral cortex metabolic and oxidative profile in prediabetic rats, suggesting it as a good, safe and inexpensive strategy to prevent DM-related effects in the cerebral cortex.

  5. [Adipose-derived stem cell transplantation promotes the expression of netrin-1 in the rat cortex after focal cerebral ischemia].

    Science.gov (United States)

    Wang, Jiehua; Hong, Zhuquan; Pan, Ying; Li, Guoqian

    2017-01-01

    Objective To observe the effect of adipose-derived stem cells (ADSCs) transplantation on the expression of netrin-1 in rats after focal cerebral ischemia. Methods Male SD rats were randomly divided into control group, model group and ADSC group. ADSCs were harvested and purified. Focal cerebral ischemia models were established in rats by the suture method. ADSCs were injected into the lateral ventricle of ADSC group rats and the same does of PBS was given to model group rats. At day 4, 7 and 14 after reperfusion, six rats were sacrificed to remove the brain tissues at each time point. The expression of netrin-1 was detected by reverse-transcription PCR, Western blotting and immunohistochemistry. Results Compared with the control group, the expression of netrin-1 in the brain tissues of the model group increased after focal cerebral ischemia, reached the peak at 4 days, and the expression of netrin-1 was significantly higher than that of the control group at each time point. Compared with the model group, the expression of netrin-1 in the ADSC group increased further, reached the peak at 7 days, and the expression of netrin-1 in the ADSC group was significantly higher than that of the model group at each time point. Conclusion ADSC transplantation could up-regulate the expression of netrin-1, and promote axon regeneration and the recovery of neurological functions.

  6. Preventing High Altitude Cerebral Edema in Rats with Repurposed Anti-Angiogenesis Pharmacotherapy.

    Science.gov (United States)

    Tarshis, Samantha; Maltzahn, Joanne; Loomis, Zoe; Irwin, David C

    2016-12-01

    High altitude cerebral edema (HACE) is a fulminant, deadly, and yet still unpredictable brain disease. A new prophylactic treatment for HACE and its predecessor, acute mountain sickness (AMS), needs to be developed without the contraindications or adverse effect profiles of acetazolamide and dexamethasone. Since neovascularization signals are likely key contributors to HACE/AMS, our approach was to examine already existing anti-angiogenic drugs to inhibit potential initiating HACE pathway(s). This approach can also reveal crucial early steps in the frequently debated mechanism of HACE/AMS pathogenesis. We exposed four rat cohorts to hypobaric hypoxia and one to sea level (hyperbaric) conditions. The cohorts were treated with saline controls, an anti-angiogenesis drug (motesanib), a pro-angiogenesis drug (deferoxamine), or an intraperitoneal version of the established AMS prophylaxis drug, acetazolamide (benzolamide). Brain tissue was analyzed for cerebrovascular leak using the Evans Blue Dye (EVBD) protocol. We observed significantly increased EVBD in the altitude control and pro-angiogenesis (deferoxamine) cohorts, and significantly decreased EVBD in the anti-angiogenesis (motesanib), established treatment (benzolamide), and sea-level cohorts. Anti-angiogenesis-treated cohorts demonstrated less cerebrovascular extravasation than the altitude control and pro-angiogenesis treated rats, suggesting promise as an alternative prophylactic HACE/AMS treatment. The leak exacerbation with pro-angiogenesis treatment and improvement with anti-angiogenesis treatment support the hypothesis of early neovascularization signals provoking HACE. We demonstrate statistically significant evidence to guide further investigation for VEGF- and HIF-inhibitors as HACE/AMS prophylaxis, and as elucidators of still unknown HACE pathogenesis.Tarshis S, Maltzahn J, Loomis Z, Irwin DC. Preventing high altitude cerebral edema in rats with repurposed anti-angiogenesis pharmacotherapy. Aerosp Med

  7. Characterization of rat cerebral cortical beta adrenoceptor subtypes using (-)-[125I]-iodocyanopindolol

    International Nuclear Information System (INIS)

    Tiong, A.H.; Richardson, J.S.

    1990-01-01

    (-)-[125I]-Iodocyanopindolol [-(ICYP)], used to characterize beta adrenoceptors on membrane preparations from rat cerebral cortex, was shown to have affinity for both beta adrenoceptors and serotonin receptors. Therefore, 10 microM serotonin was added to the assays to prevent (-)ICYP binding to serotonin receptors. Under these conditions, (-)ICYP binding to the cortical membrane preparation was reversible and saturable, and the association reaction was very slow. The dissociation reaction was also very slow, and revealed two affinity states corresponding to a high and a low affinity state. Scatchard analysis showed a single class of binding sites with an equilibrium dissociation constant (KD) of 20.7 pM, and a maximal density of binding sites (Bmax) of 95.1 fmol/mg membrane protein. Displacement binding analyses revealed a potency series of (-) isoproterenol greater than (-) epinephrine equal to (-) norepinephrine, suggesting a predominance of the beta 1 adrenoceptor subtype. Detailed competition ligand binding studies with the selective beta 1 adrenoceptor antagonist ICI-89406 and the selective beta 2 adrenoceptor antagonist ICI-118551, showed that about 70% of the beta adrenoceptor population in the rat cortex is of the beta 1 subtype with the remainder being of the beta 2 subtype. We conclude that since (-)ICYP binds to both beta adrenoceptors and serotonin receptors, it is important to prevent the binding of (-)ICYP to serotonin receptors by adding a suppressing ligand like excess cold serotonin when assaying beta adrenoceptors. We have presented the first such characterization of rat cerebral cortical beta adrenoceptors with (-)ICYP in this study

  8. [Identification of early irreversible damage area in a rat model of cerebral ischemia and reperfusion].

    Science.gov (United States)

    Liu, S; Guo, Y

    2000-02-01

    To observe the early neuron ischemic damage in focal cerebral ischemia/reperfusion with histostaining methods of argyrophil III (AG III), Toludine blue(TB), and H&E, and to make out the 'separating line' between the areas of reversible and irreversible early ischemic damage. Forty-two male Wistar rats were randomly divided into the following groups: pseudo-surgical, blank-control, O2R0(occluded for 2 hours and reperfused for 0 hour), O2R0.5, O2R2, O2R4, O2R24. There were 6 rats in each group. Rats in experimental groups were suffered focal cerebral ischemia/reperfusion through a nylon suture method. After a special processor for tissue manage, the brain were coronal sectioned and stained with H&E, TB, and AG III. The area where dark neurons dwell in (ischemic core) were calculated with image analysis system. The success rate of ischemic model for this experiment is 90%. After being stained with argyrophil III method, normal neurons appear yellow or pale brown, which is hardly distinguished from the pale brown background. The ischemic neuron stained black, and has collapsed body and "corkscrew-like" axon or dentries, which were broken to some extent. The neuropil in the dark neurons dwelt area appears gray or pale black, which is apparently different from the pale brown neighborhood area. The distribution of dark neurons in cortex varies according to different layers, and has a character of columnar form. The dark neurons present as early as 2 hours ischemia without reperfusion with AG III method. AG III stain could selectively display early ischemic neurons, the area dwelt by dark neurons represent early ischemic core. Dark neuron is possibly the irreversibly damaged neuron. Identification of dark neurons could be helpful in the discrimination between early ischemic center and penumbra.

  9. Reduction of mitochondrial electron transport complex activity is restricted to the ischemic focus after transient focal cerebral ischemia in rats

    DEFF Research Database (Denmark)

    Christensen, Thomas; Diemer, Nils Henrik

    2003-01-01

    Using histochemical methods offering high topographical resolution for evaluation of changes in the ischemic focus and the penumbra, the mitochondrial electron transport chain (ETC) complexes I, II, and IV were examined in rats subjected to 2 h of proximal occlusion of the middle cerebral artery...

  10. In vivo cellular uptake of glutamate is impaired in the rat hippocampus during and after transient cerebral ischemia

    DEFF Research Database (Denmark)

    Bruhn, T; Christensen, Thomas; Diemer, Nils Henrik

    2001-01-01

    Using microdialysis in CA1 of the rat hippocampus, we studied the effect of transient cerebral ischemia on in vivo uptake and on extracellular levels of glutamate during, and at different time points after ischemia. (3)H-D-aspartate (test substance), and (14)C-mannitol (reference substance), were...

  11. [Effect of electric acupuncture on the expression of NgR in the cerebral cortex, the medulla oblongata, and the spinal cord of hypertensive rats after cerebral infarction].

    Science.gov (United States)

    Tan, Feng; Chen, Jie; Liang, Yan-Gui; Li, Yan-Ping; Wang, Xue-Wen; Meng, Di; Cheng, Nan-Fang

    2014-03-01

    To observe the effect of electric acupuncture (EA) on the Nogo receptors (NgR) protein expression in the cerebral cortex, the medulla oblongata, and the spinal cord of cerebral ischemia-reperfusion (I/R) stroke-prone renovascular hypertensive rats (RHRSP) with middle cerebral artery occlusion (MCAO) at different time points, and to investigate its possible mechanisms for remote-organ injury of acute cerebral infarction (ACI). The RHRSP model was duplicated in male SPF grade SD rats. Then the MCAO model was prepared by a thread stringing method. Rats were divided into the hypertension group,the sham-operation group, the MCAO group, the EA group, and the sham-acupoint group by random number table method, 60 in each group. Rats in the MCAO group only received MCAO reperfusion treatment. Those in the sham-operation group only received surgical trauma. Baihui (DU20) and Dazhui (DU14) were needled in the EA group, once daily for a total of 28 days.The needles were acupunctured at the skin one cun distant from Baihui (DU20) and Dazhui (DU14) and then the same EA treatment was performed in the sham-acupoint group. At day 1, 7, 14, 28 after treatment, six rats were executed from each group, and their right cortex and medulla oblongata, and the left spinal cord were isolated. The infarct volume was detected by Nissl's staining method. The NgR expression was detect by Western blot. (1) In the cortex area: compared with the hypertension group,the NgR expression increased in the MCAO group at day 1,7,14,and 28 after MCAO (P 0.05). At day 7, 14,and 28 after MCAO, the NgR expression decreased in the EA group (P 0.05). (2) In the medulla oblongata area: compared with the hypertension group, the NgR expression was equivalent in the sham-operation group. the MCAO group,the EA group, and the sham-acupoint group at 1 day after MCAO (P > 0.05). At day 7.14, and 28 after MCAO, the NgR expression increased in the MCAO group (P 0.05). (3) In the spinal cord area: compared with the

  12. Alterations of local cerebral glucose utilization in lean and obese fa/fa rats after acute adrenalectomy.

    Science.gov (United States)

    Doyle, P; Rohner-Jeanrenaud, F; Jeanrenaud, B

    1994-08-29

    An animal model often used to investigate the aetiology of obesity is the genetically obese fa/fa rat. It has many abnormalities, including hyperphagia, hyper-insulinemia, insulin resistance, low cerebral glucose utilization and an overactive hypothalamo-pituitary adrenal (HPA) axis with resulting hypercorticism. Due to the latter consideration, the aim of this work was to study the impact of acute adrenalectomy (ADX) on the local cerebral glucose utilization (LCGU) of lean and obese fa/fa rats. ADX resulted in discrete increases in LCGU of regions common to both lean and obese rats. These common regions were found to belong to be related to the limbic system. Within this system, the LCGU of the brain of obese rats was either normalized to lean sham operated values or increased by ADX to a similar degree in both groups on a percentage basis. It was concluded that the LCGU of both lean and obese animals appears to be negatively regulated, albeit to different extents, by glucocorticoids. Such negative regulation is particularly salient within the limbic system of the lean rat and even more so in the fa/fa rat. It is suggested that the long-term hypercorticism of obese fa/fa rats due to abnormal regulation of the HPA axis may result in a decreased LCGU in limbic and related regions of the brain of fa/fa rats and contribute to the expression of the obese phenotype.

  13. Neuroprotective Effect of Melatonin Against PCBs Induced Behavioural, Molecular and Histological Changes in Cerebral Cortex of Adult Male Wistar Rats.

    Science.gov (United States)

    Bavithra, S; Selvakumar, K; Sundareswaran, L; Arunakaran, J

    2017-02-01

    There is ample evidence stating Polychlorinated biphenyls (PCBs) as neurotoxins. In the current study, we have analyzed the behavioural impact of PCBs exposure in adult rats and assessed the simultaneous effect of antioxidant melatonin against the PCBs action. The rats were grouped into four and treated intraperitoneally with vehicle, PCBs, PCBs + melatonin and melatonin alone for 30 days, respectively. After the treatment period the rats were tested for locomotor activity and anxiety behaviour analysis. We confirmed the neuronal damage in the cerebral cortex by molecular and histological analysis. Our data indicates that there is impairment in locomotor activity and behaviour of PCBs treated rats compared to control. The simultaneous melatonin treated rat shows increased motor coordination and less anxiety like behaviour compared to PCBs treated rats. Molecular and histological analysis supports that, the impaired motor coordination in PCBs treated rats is due to neurodegeneration in motor cortex region. The results proved that melatonin treatment improved the motor co-ordination and reduced anxiety behaviour, prevented neurodegeneration in the cerebral cortex of PCBs-exposed adult male rats.

  14. Short-term sleep deprivation stimulates hippocampal neurogenesis in rats following global cerebral ischemia/reperfusion.

    Directory of Open Access Journals (Sweden)

    Oumei Cheng

    Full Text Available Sleep deprivation (SD plays a complex role in central nervous system (CNS diseases. Recent studies indicate that short-term SD can affect the extent of ischemic damage. The aim of this study was to investigate whether short-term SD could stimulate hippocampal neurogenesis in a rat model of global cerebral ischemia/reperfusion (GCIR.One hundred Sprague-Dawley rats were randomly divided into Sham, GCIR and short-term SD groups based on different durations of SD; the short-term SD group was randomly divided into three subgroups: the GCIR+6hSD*3d-treated, GCIR+12hSD-treated and GCIR+12hSD*3d-treated groups. The GCIR rat model was induced via the bilateral occlusion of the common carotid arteries and hemorrhagic hypotension. The rats were sleep-deprived starting at 48 h following GCIR. A Morris water maze test was used to assess learning and memory ability; cell proliferation and differentiation were analyzed via 5-bromodeoxyuridine (BrdU and neuron-specific enolase (NSE, respectively, at 14 and 28 d; the expression of hippocampal BDNF was measured after 7 d.The different durations of short-term SD designed in our experiment exhibited improvement in cognitive function as well as increased hippocampal BDNF expression. Additionally, the short-term SD groups also showed an increased number of BrdU- and BrdU/NSE-positive cells compared with the GCIR group. Of the three short-term SD groups, the GCIR+12hSD*3d-treated group experienced the most substantial beneficial effects.Short-term SD, especially the GCIR+12hSD*3d-treated method, stimulates neurogenesis in the hippocampal dentate gyrus (DG of rats that undergo GCIR, and BDNF may be an underlying mechanism in this process.

  15. Progesterone induces neuroprotection following reperfusion-promoted mitochondrial dysfunction after focal cerebral ischemia in rats.

    Science.gov (United States)

    Andrabi, Syed Suhail; Parvez, Suhel; Tabassum, Heena

    2017-06-01

    Organelle damage and increases in mitochondrial permeabilization are key events in the development of cerebral ischemic tissue injury because they cause both modifications in ATP turnover and cellular apoptosis/necrosis. Early restoration of blood flow and improvement of mitochondrial function might reverse the situation and help in recovery following an onset of stroke. Mitochondria and related bioenergetic processes can be effectively used as pharmacological targets. Progesterone (P4), one of the promising neurosteroids, has been found to be neuroprotective in various models of neurological diseases, through a number of mechanisms. This influenced us to investigate the possible role of P4 in the mitochondria-mediated neuroprotective mechanism in an ischemic stroke model of rat. In this study, we have shown the positive effect of P4 administration on behavioral deficits and mitochondrial health in an ischemic stroke injury model of transient middle cerebral artery occlusion (tMCAO). After induction of tMCAO, the rats received an initial intraperitoneal injection of P4 (8 mg/kg body weight) or vehicle at 1 h post-occlusion followed by subcutaneous injections at 6, 12 and 18 h. Behavioral assessment for functional deficits included grip strength, motor coordination and gait analysis. Findings revealed a significant improvement with P4 treatment in tMCAO animals. Staining of isolated brain slices from P4-treated rats with 2,3,5-triphenyltetrazolium chloride (TTC) showed a reduction in the infarct area in comparison to the vehicle group, indicating the presence of an increased number of viable mitochondria. P4 treatment was also able to attenuate mitochondrial reactive oxygen species (ROS) production, as well as block the mitochondrial permeability transition pore (mPTP), in the tMCAO injury model. In addition, it was also able to ameliorate the altered mitochondrial membrane potential and respiration ratio in the ischemic animals, thereby suggesting that P4 has

  16. Curcumin inhibits endoplasmic reticulum stress induced by cerebral ischemia-reperfusion injury in rats

    Science.gov (United States)

    Zhu, Haiying; Fan, Yanxia; Sun, Hongyu; Chen, Liyan; Man, Xiao

    2017-01-01

    The aim of the present study was to observe the dynamic changes of the growth arrest and DNA damage-inducible 153 (GADD153) gene and caspase-12 in the brain tissue of rats with cerebral ischemia-reperfusion injury (CIRI) and the impact of curcumin pretreatment. A total of 60 rats were randomly divided into the normal group (N), the sham operation group (S), the dimethyl sulfoxide control group (D) and the curcumin treatment group (C). For group D and C, 12 (T1), 24 (T2) and 72 h (T3) of reperfusion were performed after 2 h ischemia. The expression levels of GADD153 and caspase-12 in the brain tissue were detected and compared among the groups by immunohistochemistry, immunofluorescence double staining and western blotting. The expression levels of GADD153 and caspase-12 were increased at T1compared with groups N and S, and the expression of caspase-12 peaked at T2 in group D, while GADD153 was increased until T3 in group D. Compared with group D, the expression levels of GADD153 and caspase-12 in group C at T2 and T3 were significantly decreased (P<0.05). Endoplasmic reticulum stress is involved in the pathological process of CIRI. Curcumin may decrease the expression levels of the above two factors, thus exhibiting protective effects against CIRI in rats. PMID:29067098

  17. Protective Effects of Dihydrocaffeic Acid, a Coffee Component Metabolite, on a Focal Cerebral Ischemia Rat Model

    Directory of Open Access Journals (Sweden)

    Kyungjin Lee

    2015-06-01

    Full Text Available We recently reported the protective effects of chlorogenic acid (CGA in a transient middle cerebral artery occlusion (tMCAo rat model. The current study further investigated the protective effects of the metabolites of CGA and dihydrocaffeic acid (DHCA was selected for further study after screening using the same tMCAo rat model. In the current study, tMCAo rats (2 h of MCAo followed by 22 h of reperfusion were injected with various doses of DHCA at 0 and 2 h after onset of ischemia. We assessed brain damage, functional deficits, brain edema, and blood-brain barrier damage at 24 h after ischemia. For investigating the mechanism, in vitro zymography and western blotting analysis were performed to determine the expression and activation of matrix metalloproteinase (MMP-2 and -9. DHCA (3, 10, and 30 mg/kg, i.p. dose-dependently reduced brain infarct volume, behavioral deficits, brain water content, and Evans Blue (EB leakage. DHCA inhibited expression and activation of MMP-2 and MMP-9. Therefore, DHCA might be one of the important metabolites of CGA and of natural products, including coffee, with protective effects on ischemia-induced neuronal damage and brain edema.

  18. Effect of heroin-conditioned auditory stimuli on cerebral functional activity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Trusk, T.C.; Stein, E.A.

    1988-08-01

    Cerebral functional activity was measured as changes in distribution of the free fatty acid (1-14C)octanoate in autoradiograms obtained from rats during brief presentation of a tone previously paired to infusions of heroin or saline. Rats were trained in groups of three consisting of one heroin self-administering animal and two animals receiving yoked infusions of heroin or saline. Behavioral experiments in separate groups of rats demonstrated that these training parameters imparts secondary reinforcing properties to the tone for animals self-administering heroin while the tone remains behaviorally neutral in yoked-infusion animals. The optical densities of thirty-seven brain regions were normalized to a relative index for comparisons between groups. Previous pairing of the tone to heroin infusions irrespective of behavior (yoked-heroin vs. yoked-saline groups) produced functional activity changes in fifteen brain areas. In addition, nineteen regional differences in octanoate labeling density were evident when comparison was made between animals previously trained to self-administer heroin to those receiving yoked-heroin infusions, while twelve differences were noted when comparisons were made between the yoked vehicle and self administration group. These functional activity changes are presumed related to the secondary reinforcing capacity of the tone acquired by association with heroin, and may identify neural substrates involved in auditory signalled conditioning of positive reinforcement to opiates.

  19. Effect of heroin-conditioned auditory stimuli on cerebral functional activity in rats

    International Nuclear Information System (INIS)

    Trusk, T.C.; Stein, E.A.

    1988-01-01

    Cerebral functional activity was measured as changes in distribution of the free fatty acid [1-14C]octanoate in autoradiograms obtained from rats during brief presentation of a tone previously paired to infusions of heroin or saline. Rats were trained in groups of three consisting of one heroin self-administering animal and two animals receiving yoked infusions of heroin or saline. Behavioral experiments in separate groups of rats demonstrated that these training parameters imparts secondary reinforcing properties to the tone for animals self-administering heroin while the tone remains behaviorally neutral in yoked-infusion animals. The optical densities of thirty-seven brain regions were normalized to a relative index for comparisons between groups. Previous pairing of the tone to heroin infusions irrespective of behavior (yoked-heroin vs. yoked-saline groups) produced functional activity changes in fifteen brain areas. In addition, nineteen regional differences in octanoate labeling density were evident when comparison was made between animals previously trained to self-administer heroin to those receiving yoked-heroin infusions, while twelve differences were noted when comparisons were made between the yoked vehicle and self administration group. These functional activity changes are presumed related to the secondary reinforcing capacity of the tone acquired by association with heroin, and may identify neural substrates involved in auditory signalled conditioning of positive reinforcement to opiates

  20. Effects of the administration of a catalase inhibitor into the fourth cerebral ventricle on cardiovascular responses in spontaneously hypertensive rats exposed to sidestream cigarette smoke

    OpenAIRE

    Valenti, Vitor E.; Abreu, Luiz Carlos de; Fonseca, Fernando L. A.; Adami, Fernando; Sato, Monica A.; Vanderlei, Luiz Carlos M.; Ferreira, Lucas Lima; Rodrigues, Luciano M.; Ferreira, Celso

    2013-01-01

    OBJECTIVE: Previous studies have demonstrated a relationship between brain oxidative stress and cardiovascular regulation. We evaluated the effects of central catalase inhibition on cardiovascular responses in spontaneously hypertensive rats exposed to sidestream cigarette smoke. METHODS: Male Wistar Kyoto (WKY) rats and spontaneously hypertensive rats (SH) (16 weeks old) were implanted with a stainless steel guide cannula leading into the fourth cerebral ventricle (4...

  1. Hyperthyroidism modifies ecto-nucleotidase activities in synaptosomes from hippocampus and cerebral cortex of rats in different phases of development.

    Science.gov (United States)

    Bruno, Alessandra Nejar; Da Silva, Rosane Souza; Bonan, Carla Denise; Battastini, Ana Maria Oliveira; Barreto-chaves, Maria Luiza M; Sarkis, João José Freitas

    2003-11-01

    Here we investigate the possible effects of the hyperthyroidism on the hydrolysis of the ATP to adenosine in the synaptosomes of hippocampus, cerebral cortex and blood serum of rats in different developmental phases. Manifestations of hyperthyroidism include anxiety, nervousness, tachycardia, physical hyperactivity and weight loss amongst others. The thyroid hormones modulate a number of physiological functions in central nervous system, including development, function, expression of adenosine A(1) receptors and transport of neuromodulator adenosine. Thus, hyperthyroidism was induced in male Wistar rats (5-, 60-, 150- and 330-day old) by daily injections of L-thyroxine (T4) for 14 days. Nucleotide hydrolysis was decreased by about 14-52% in both hippocampus and cerebral cortex in 5 to 60-day-old rats. These changes were also observed in rat blood serum. In addition, in 11-month-old rats, inhibition of ADP and AMP hydrolysis persisted in the hippocampus, whereas, in cerebral cortex, an increase in AMP hydrolysis was detected. Thus, hyperthyroidism affects the extracellular nucleotides balance and adenosine production, interfering in neurotransmitter release, development and others physiological processes in different systems.

  2. Ginsenoside Rg1 nanoparticle penetrating the blood–brain barrier to improve the cerebral function of diabetic rats complicated with cerebral infarction

    Directory of Open Access Journals (Sweden)

    Shen J

    2017-09-01

    Full Text Available Junyi Shen, Zhiming Zhao, Wei Shang, Chunli Liu, Beibei Zhang, Lingjie Zhao, Hui Cai Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China Abstract: Diabetic cerebral infarction is with poorer prognosis and high rates of mortality. Ginsenoside Rg1 (Rg1 has a wide variety of therapeutic values for central nervous system (CNS diseases for the neuron protective effects. However, the blood–brain barrier (BBB restricts Rg1 in reaching the CNS. In this study, we investigated the therapeutic effects of Rg1 nanoparticle (PHRO, fabricated with γ-PGA, L-PAE (H, Rg1, and OX26 antibody, targeting transferrin receptor, on the diabetes rats complicated with diabetic cerebral infarction in vitro and in vivo. Dynamic light scattering analysis shows the average particle size of PHRO was 79±18 nm and the polydispersity index =0.18. The transmission electron microscope images showed that all NPs were spherical in shape with diameters of 89±23 nm. PHRO released Rg1 with sustained release manner and could promote the migration of cerebrovascular endothelial cells and tube formation and even penetrated the BBB in vitro. PHRO could penetrate the BBB with high concentration in brain tissue to reduce the cerebral infarction volume and promote neuronal recovery in vivo. PHRO was promising to be a clinical treatment of diabetes mellitus with cerebral infarction. Keywords: poly-γ-glutamic acid, ginsenoside Rg1, OX26, blood–brain barrier

  3. Postnatal changes in local cerebral blood flow measured by the quantitative autoradiographic [14C]iodoantipyrine technique in freely moving rats

    International Nuclear Information System (INIS)

    Nehlig, A.; Pereira de Vasconcelos, A.; Boyet, S.

    1989-01-01

    The postnatal changes in local cerebral blood flow in freely moving rats were measured by means of the quantitative autoradiographic [ 14 C]iodoantipyrine method. The animals were studied at 10, 14, 17, 21 and 35 days and at the adult stage. At 10 days after birth, rates of blood flow were very low and quite homogeneous in most cerebral structures except in a few posterior areas. From these relatively uniform levels, values of local cerebral blood flow rose notably to reach a peak at 17 days in all brain regions studied. Rates of blood flow decreased between 17 and 21 days after birth and then increased from weaning time to reach the known characteristic distribution of the adult rat. The postnatal evolution of local cerebral blood in the rat is in good agreement with previous studies in other species such as dog and humans that also show higher rates of cerebral blood flow and glucose utilization at immature stages. However, in the rat, local cerebral blood flow and local cerebral glucose utilization are not coupled over the whole postnatal period studied, since blood flow rates reach peak values at 17 days whereas glucose utilization remains still quite low at that stage. The high rate of cerebral blood flow in the 17-day-old rat may reflect the energetic and biosynthetic needs of the actively developing brain that are completed by the summation of glucose and ketone body utilization

  4. [Mobile single-pass batch hemodialysis system in intensive care medicine. Reduction of costs and workload in renal replacement therapy].

    Science.gov (United States)

    Hopf, H-B; Hochscherf, M; Jehmlich, M; Leischik, M; Ritter, J

    2007-07-01

    This paper describes the introduction of a single-pass batch hemodialysis system for renal replacement therapy in a 14 bed intensive care unit. The goals were to reduce the workload of intensive care unit physicians using an alternative and simpler method compared to continuous veno-venous hemodiafiltration (CVVHDF) and to reduce the costs of hemofiltrate solutions (80,650 EUR per year in our clinic in 2005). We describe and evaluate the process of implementation of the system as well as the achieved and prospective savings. We conclude that a close cooperation of all participants (physicians, nurses, economists, technicians) of a hospital can achieve substantial benefits for patients and employees as well as reduce the economic burden of a hospital.

  5. Mild focal cerebral ischemia in the rat. The effect of local temperature on infarct size

    DEFF Research Database (Denmark)

    Hildebrandt-Eriksen, Elisabeth S; Christensen, Thomas; Diemer, Nils Henrik

    2002-01-01

    . The effect of local temperature at the occlusion site in this model was furthermore tested. Thirty-three Wistar rats were subjected to 30 min of simultaneous common carotid artery and distal middle cerebral artery occlusion or sham treatment. Animals were magnetic resonance-scanned repeatedly between day one...... and day 14 after surgery, then sacrificed, and paraffin brain sections stained. All animals scanned 24 h after reperfusion showed an area of edema in the affected cortex, which later was identified as an infarct. Animals with a temperature of 33.9 +/- 1.5 degrees C at the MCA site (hypothermic) showed...... smaller infarcts (14.4 +/- 10 mm3) than animals with normothermic local temperature (36.7 +/- 0.2 degrees C, 57.7 +/- 26.4 mm3). Infarct size was maximal on day 3 after ischemia but decreased as edema subsided. Infarct volumes from histology and magnetic resonance imaging correlated well. The model...

  6. Carbon balance studies of glucose metabolism in rat cerebral cortical synaptosomes

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, U; Brand, K

    1982-07-01

    Synaptosomes were isolated from rat cerebral cortex and incubated with (U-/sup 14/C)-, (1-/sup 14/C)- or (6-/sup 14/C)glucose. Glucose utilization and the metabolic partitioning of glucose carbon in products were determined by isotopic methods. From the data obtained a carbon balance was constructed, showing lactate to be the main product of glucose metabolism, followed by CO/sup 2/, amino acids and pyruvate. Measuring the release of /sup 14/CO/sup 2/ from glucose labelled in three different positions allowed the construction of a flow diagram of glucose carbon atoms in synaptosomes, which provides information about the contribution of the various pathways of glucose metabolism. Some 2% of glucose utilized was calculated to be degraded via the pentose phosphate pathway. Addition of chlorpromazine, imipramine or haloperidol at concentrations of 10(-5) M reduced glucose utilisation by 30% without changing the distribution pattern of radioactivity in the various products.

  7. Effects of activated ACM on expression of signal transducers in cerebral cortical neurons of rats.

    Science.gov (United States)

    Wang, Xiaojing; Li, Zhengli; Zhu, Changgeng; Li, Zhongyu

    2007-06-01

    To explore the roles of astrocytes in the epileptogenesis, astrocytes and neurons were isolated, purified and cultured in vitro from cerebral cortex of rats. The astrocytes were activated by ciliary neurotrophic factor (CNTF) and astrocytic conditioned medium (ACM) was collected to treat neurons for 4, 8 and 12 h. By using Western blot, the expression of calmodulin dependent protein kinase II (CaMK II), inducible nitric oxide synthase (iNOS) and adenylate cyclase (AC) was detected in neurons. The results showed that the expression of CaMK II, iNOS and AC was increased significantly in the neurons treated with ACM from 4 h to 12 h (PACM and such signal pathways as NOS-NO-cGMP, Ca2+/CaM-CaMK II and AC-cAMP-PKA might take part in the signal transduction of epileptogenesis.

  8. Neuroprotective capabilities of TSA against cerebral ischemia/reperfusion injury via PI3K/Akt signaling pathway in rats.

    Science.gov (United States)

    Ma, Xiao-Hui; Gao, Qiang; Jia, Zhen; Zhang, Ze-Wei

    2015-02-01

    Hundreds of previous studies demonstrated the cytoprotective effect of trichostatin-A (TSA), a kind of histone deacetylases inhibitors (HDACIs), against cerebral ischemia/reperfusion insult. Meanwhile, phosphatidylinositol-3 kinase/Akt (PI3K/Akt) is a well-known, important signaling pathway that mediates neuroprotection. However, it should be remains unclear whether the neuroprotective capabilities of TSA against cerebral ischemia/reperfusion is mediated by activation of the PI3K/Akt signaling pathway. Five groups rats (n = 12 each), with middle cerebral artery occlusion (MCAO) except sham group, were used to investigate the neuroprotective effect of certain concentration (0.05 mg/kg) of TSA, and whether the neuroprotective effect of TSA is associated with activation of the PI3K/Akt signaling pathway through using of wortmannin (0.25 mg/kg). TSA significantly increased the expression of p-Akt protein, reduced infarct volume, and attenuated neurological deficit in rats with transient MCAO, wortmannin weakened such effect of TSA dramatically. TSA could significantly decrease the neurological deficit scores and reduce the cerebral infarct volume during cerebral ischemia/reperfusion injury, which was achieved partly by activation of the PI3K/Akt signaling pathway via upgrading of p-Akt protein.

  9. Pericyte protection by edaravone after tissue plasminogen activator treatment in rat cerebral ischemia

    Science.gov (United States)

    Deguchi, Kentaro; Liu, Ning; Liu, Wentao; Omote, Yoshio; Kono, Syoichiro; Yunoki, Taijun; Deguchi, Shoko; Yamashita, Toru; Ikeda, Yoshio; Abe, Koji

    2014-01-01

    Pericytes play a pivotal role in contraction, mediating inflammation and regulation of blood flow in the brain. In this study, changes of pericytes in the neurovascular unit (NVU) were examined in relation to the effects of exogenous tissue plasminogen activator (tPA) and a free radical scavenger, edaravone. Immunohistochemistry and Western blot analyses showed that the overlap between platelet-derived growth factor receptor β-positive pericytes and N-acetylglucosamine oligomers (NAGO)-positive endothelial cells increased significantly at 4 days after 90 min of transient middle cerebral artery occlusion (tMCAO). The number of pericytes and the overlap with NAGO decreased with tPA but recovered with edaravone 4 days after tMCAO with proliferation. Thus, tPA treatment damaged pericytes, resulting in the detachment from astrocytes and a decrease in glial cell line-derived neurotrophic factor secretion. However, treatment with edaravone greatly improved tPA-induced damage to pericytes. The present study demonstrates that exogenous tPA strongly damages pericytes and destroys the integrity of the NVU, but edaravone treatment can greatly ameliorate such damage after acute cerebral ischemia in rats. © 2014 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc. PMID:24938625

  10. MR imaging of cerebral lesions accompanying stroke in stroke-prone spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Takahashi, Masaya; Fritz-Zieroth, B.; Yamaguchi, Motonori; Ogawa, Hiroshi; Tanaka, Tomoyo; Sasagawa, Sukenari; Chikugo, Taka-aki; Ohta, Yoshio; Okamoto, Kozo.

    1992-01-01

    Cerebral lesions accompanying stroke in male stroke-prone spontaneously hypertensive rats (SHRSP, n=10) were examined by both magnetic resonance imaging (MRI) and histological evaluation. T2-weighted MR images (T2-WI), taken 1-2 days after animals showed behavioral hyperactivity, indicated hyperintense regions in the occipital cortex, caudate putamen and/or thalamus. The areas of hyperintensity on T2-WI corresponded to neurodegenerative regions including edema, gliosis, and softening of the tissue. T1-weighted images (T1-WI) did not show any hyperintense regions. However T1-weighted images enhanced by the contrast media Gd-DTPA (Gd-T1-WI) showed hyperintense spots within some of the hyperintense areas on T2-WI, which exhibited neurodegenerative regions such as thrombus, angionecrosis and hemorrhage in addition to the edematous formation. The hyperintense areas on Gd-T1-WI were smaller than those on T2-WI. In some animals, hypointense spots on T2-, T1- and Gd-T1-WI were found within the hyperintense areas, which corresponded to clots. Extensive histological examination did not reveal any additional cerebral degeneration which had not been detected on the MR images. These findings indicate that MRI is useful for detecting and differentiating various types of cerebrovascular diseases in this model. (author)

  11. Piracetam improves cognitive deficits caused by chronic cerebral hypoperfusion in rats.

    Science.gov (United States)

    He, Zhi; Liao, Yun; Zheng, Min; Zeng, Fan-Dian; Guo, Lian-Jun

    2008-06-01

    Piracetam is the derivate of gamma-aminobutyric acid, which improves the cognition,memory,consciousness, and is widely applied in the clinical treatment of brain dysfunction. In the present experiments, we study the effects of piracetam on chronic cerebral hypoperfused rats and observe its influence on amino acids, synaptic plasticity in the Perforant path-CA3 pathway and apoptosis in vivo. Cerebral hypoperfusion for 30 days by occlusion of bilateral common carotid arteries induced marked amnesic effects along with neuron damage, including: (1) spatial learning and memory deficits shown by longer escape latency and shorter time spent in the target quadrant; (2) significant neuronal loss and nuclei condensation in the cortex and hippocampus especially in CA1 region; (3) lower induction rate of long term potentiation, overexpression of BAX and P53 protein, and lower content of excitatory and inhibitory amino acids in hippocampus. Oral administration of piracetam (600 mg/kg, once per day for 30 days) markedly improved the memory impairment, increased the amino acid content in hippocampus, and attenuated neuronal damage. The ability of piracetam to attenuate memory deficits and neuronal damage after hypoperfusion may be beneficial in cerebrovascular type dementia.

  12. MR imaging of cerebral lesions accompanying stroke in stroke-prone spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Masaya; Fritz-Zieroth, B.; Yamaguchi, Motonori (Nihon Schering K.K., Osaka (Japan)); Ogawa, Hiroshi; Tanaka, Tomoyo; Sasagawa, Sukenari; Chikugo, Taka-aki; Ohta, Yoshio; Okamoto, Kozo

    1992-07-01

    Cerebral lesions accompanying stroke in male stroke-prone spontaneously hypertensive rats (SHRSP, n=10) were examined by both magnetic resonance imaging (MRI) and histological evaluation. T2-weighted MR images (T2-WI), taken 1-2 days after animals showed behavioral hyperactivity, indicated hyperintense regions in the occipital cortex, caudate putamen and/or thalamus. The areas of hyperintensity on T2-WI corresponded to neurodegenerative regions including edema, gliosis, and softening of the tissue. T1-weighted images (T1-WI) did not show any hyperintense regions. However T1-weighted images enhanced by the contrast media Gd-DTPA (Gd-T1-WI) showed hyperintense spots within some of the hyperintense areas on T2-WI, which exhibited neurodegenerative regions such as thrombus, angionecrosis and hemorrhage in addition to the edematous formation. The hyperintense areas on Gd-T1-WI were smaller than those on T2-WI. In some animals, hypointense spots on T2-, T1- and Gd-T1-WI were found within the hyperintense areas, which corresponded to clots. Extensive histological examination did not reveal any additional cerebral degeneration which had not been detected on the MR images. These findings indicate that MRI is useful for detecting and differentiating various types of cerebrovascular diseases in this model. (author).

  13. Culturated rat cerebral cortex explants and their application in the study of SPECT scan radiopharaceuticals

    International Nuclear Information System (INIS)

    Jong, B.M. de.

    1989-01-01

    In this thesis mechanics that result in the distinct localization of radiopharmaceuticals within the brain have been investigated. In order to 'get more insight' in uptake and binding of radiopharmaceuticals bu brain tissue, use has been made of the tissue culture technique. Tissue culture privides the opportunity of doing experiments with brain tissue under stable conditions, in the absence of a blood-brain barrier, and without interference by cerebral blood flow. The present thesis is presented in two sections. The first part focusses on longterm culture of 'organotypic' cerebral neocortex tissue, obtained from neonatal rat brain and explanted into a chemically defined medium. Procedures were developed which enabled culturing of this tissue without the occurence of central necrosis and with the preservation of a characteristic histiotypic organization. Morphological characteristics of the cultures were described and measured at various ages in vitro. In the second part, the cultures were used to study mechanisms that might contribute to the tissue uptake of radiopharmaceuticals which are in clinical use for SPECT brain imaging. (author). 369 refs.; 50 figs.; 13 tabs

  14. Gain claming in single-pass and double-pass L-band erbium-doped fiber amplifiers

    International Nuclear Information System (INIS)

    Harun, S.W.; Ahmad, H.

    2004-01-01

    Gain clamping is demonstrated in single-pass and double-pass long wavelength band erbium-doped fiber amplifiers. A C/L-band wavelength division multiplexing coupler is used in single-pass system to generate a laser at 1566 nm. The gain for the amplifier is clamped at 15.5 dB with gain variation of less than 0.2 dB from input signal power of -40 to -14 dBm with almost negligible noise figure penalty. However, the flatness of gain spectrum is slightly degraded due to the un-optimisation of erbium-doped fiber length. The advantage of this configuration is that the oscillating light does not appear at the output of the amplifier. A highly efficient gain-clamped long wavelength band erbium-doped fiber amplifiers with improved noise figure characteristic is demonstrated by simply adding a broadband conventional band fiber Bragg grating in double pass system. The combination of the fiber Bragg grating and optical circulator has created laser in the cavity for gain clamping. By adjusting the power combination of pumps 1 and 2, the clamped gain level can be controlled. The amplifier gain is clamped at 28.1 dB from -40 to -25 dBm with gain variation of less than 0.5 dB by setting the pumps 1 and 2 at 59.5 and 50.6 mW, respectively. The gain is also flat from 1574 nm to 1604 nm with gain variation of less than 3 dB. The corresponding noise figure varies from 5.6 to 7.6 dB, which is 0.8 to 2.6 dB reduced compared to those of unclamped amplifier (Authors)

  15. Neuroprotective effects of andrographolide in a rat model of permanent cerebral ischaemia

    Science.gov (United States)

    Chan, Su Jing; Wong, WS Fred; Wong, Peter TH; Bian, Jin-Song

    2010-01-01

    BACKGROUND AND PURPOSE Andrographolide is a diterpenoid lactone isolated from a traditional medicinal herb, Andrographis paniculata. It possesses potent anti-inflammatory activity. The present study examined potential therapeutic effects of andrographolide on cerebral ischaemia using a rat model with permanent middle cerebral artery occlusion (pMCAO). EXPERIMENTAL APPROACH The MCA in rats was permanently occluded (by cautery), and 24 h later neurological effects were assessed with behavioural scores. Infarct volume and microglial activation were determined histologically. The p65 form of the transcription factor, nuclear factor-κB (NF-κB), was measured by Western blot, and cytokines by immunoassay of brain extracts. KEY RESULTS Andrographolide, given i.p. 1 h after pMCAO, reduced infarct volume with a maximum reduction of approximately 50% obtained at 0.1 mg·kg−1. Neurological deficits were also reduced by andrographolide, reflecting a correlation between infarct volume and neurological deficits. pMCAO was found to induce activation of microglia and elevate tumour necrosis factor (TNF)-α, interleukin (IL)-1β and prostaglandin (PG)E2 in the ischaemic brain areas. Andrographolide (0.1 mg·kg−1) significantly attenuated or abolished these effects. In addition, andrographolide suppressed the translocation of p65 from cytosol to nucleus, indicating reduced NF-κB activation. CONCLUSIONS AND IMPLICATIONS Andrographolide exhibited neuroprotective effects, with accompanying suppression of NF-κB and microglial activation, and reduction in the production of cytokines including TNF-α and IL-1β, and pro-inflammatory factors such as PGE2. Our findings suggest that andrographolide may have therapeutic value in the treatment of stroke. PMID:20880404

  16. Effect of donepezil hydrochloride (E2020) on extracellular acetylcholine concentration in the cerebral cortex of rats.

    Science.gov (United States)

    Kosasa, T; Kuriya, Y; Yamanishi, Y

    1999-10-01

    Donepezil hydrochloride (donepezil), a potent and selective acetylcholinesterase inhibitor, has been developed for the treatment of Alzheimer's disease. We studied the effect of oral administration of this drug on the extracellular acetylcholine (ACh) concentration in the cerebral cortex of rats using microdialysis. We also observed fasciculation, a peripheral cholinergic sign induced by activation of neuromuscular transmission, after oral administration of the drug as an index of peripheral cholinergic activation. Other cholinesterase inhibitors, tacrine, ENA-713 and TAK-147, were used as reference drugs. Donepezil significantly and dose-dependently increased the extracellular ACh concentration in the rat cerebral cortex within the dose range of 2.5-10 mg/kg. Tacrine, ENA-713 and TAK-147 also elevated the extracellular concentration of ACh. The minimum effective doses of donepezil, tacrine, ENA-713 and TAK-147 were (< or = 2.5, 10, 10 and < or = 10 mg/kg, respectively. Donepezil produced fasciculation at doses of 2.5 mg/kg and above, with a dose-dependent increase in incidence and intensity. The reference compounds also induced fasciculation in a dose-dependent manner. The threshold doses of tacrine, ENA-713 and TAK-147 for fasciculation were 5, 2.5 and 2.5 mg/kg, respectively. The values of the ratio of the minimum effective dose for the ACh-increasing action to that for the fasciculation-producing action were: donepezil, < or = 1; tacrine, 2; ENA-713, 4; TAK-147, < or = 4. These results indicate that orally administered donepezil has a potent and selective activity on the central cholinergic system.

  17. Hypoxia Inducible Factor 1α Promotes Endogenous Adaptive Response in Rat Model of Chronic Cerebral Hypoperfusion

    Directory of Open Access Journals (Sweden)

    Ying Yang

    2017-01-01

    Full Text Available Hypoxia inducible factor 1α (HIF-1α, a pivotal regulator of gene expression in response to hypoxia and ischemia, is now considered to regulate both pro-survival and pro-death responses depending on the duration and severity of the stress. We previously showed that chronic global cerebral hypoperfusion (CCH triggered long-lasting accumulation of HIF-1α protein in the hippocampus of rats. However, the role of the stabilized HIF-1α in CCH is obscure. Here, we knock down endogenous HIF-1α to determine whether and how HIF-1α affects the disease processes and phenotypes of CCH. Lentivirus expressing HIF-1α small hairpin RNA was injected into the bilateral hippocampus and bilateral ventricles to knock down HIF-1α gene expression in the hippocampus and other brain areas. Permanent bilateral common carotid artery occlusions, known as 2-vessel occlusions (2VOs, were used to induce CCH in rats. Angiogenesis, oxidative stress, histopathological changes of the brain, and cognitive function were tested. Knockdown of HIF-1α prior to 2VO significantly exacerbates the impairment of learning and memory after four weeks of CCH. Mechanically, reduced cerebral angiogenesis, increased oxidative damage, and increased density of astrocytes and microglia in the cortex and some subregions of hippocampus are also shown after four weeks of CCH. Furthermore, HIF-1α knockdown also disrupts upregulation of regulated downstream genes. Our findings suggest that HIF-1α-protects the brain from oxidative stress and inflammation response in the disease process of CCH. Accumulated HIF-1α during CCH mediates endogenous adaptive processes to defend against more severe hypoperfusion injury of the brain, which may provide a therapeutic benefit.

  18. Effects of Edaravone, a Free Radical Scavenger, on Photochemically Induced Cerebral Infarction in a Rat Hemiplegic Model

    Directory of Open Access Journals (Sweden)

    Satoshi Ikeda

    2013-01-01

    Full Text Available Edaravone is a free radical scavenger that protects the adjacent cortex during cerebral infarction. We created a hemiparetic model of cerebral thrombosis from a photochemically induced infarction with the photosensitive dye, rose bengal, in rats. We examined the effects of edaravone on recovery in the model. A total of 36 adult Wistar rats were used. The right sensorimotor area was irradiated with green light with a wavelength of 533 nm (10 mm diameter, and the rose bengal was injected intravenously to create an infarction. The edaravone group was injected intraperitoneally with edaravone (3 mg/kg, and the control group was injected with saline. The recovery process of the hemiplegia was evaluated with the 7-step scale of Fenny. The infarcted areas were measured after fixation. The recovery of the paralysis in the edaravone-treated group was significantly earlier than that in the untreated group. Seven days later, both groups were mostly recovered and had scores of 7, and the infarction region was significantly smaller in the edaravone-treated group. Edaravone reduced the infarction area and promoted the functional recovery of hemiparesis from cerebral thrombosis in a rat model. These findings suggest that edaravone treatment would be effective in clinical patients recovering from cerebral infarction.

  19. Effects of edaravone, a free radical scavenger, on photochemically induced cerebral infarction in a rat hemiplegic model.

    Science.gov (United States)

    Ikeda, Satoshi; Harada, Katsuhiro; Ohwatashi, Akihiko; Kamikawa, Yurie

    2013-01-01

    Edaravone is a free radical scavenger that protects the adjacent cortex during cerebral infarction. We created a hemiparetic model of cerebral thrombosis from a photochemically induced infarction with the photosensitive dye, rose bengal, in rats. We examined the effects of edaravone on recovery in the model. A total of 36 adult Wistar rats were used. The right sensorimotor area was irradiated with green light with a wavelength of 533 nm (10 mm diameter), and the rose bengal was injected intravenously to create an infarction. The edaravone group was injected intraperitoneally with edaravone (3 mg/kg), and the control group was injected with saline. The recovery process of the hemiplegia was evaluated with the 7-step scale of Fenny. The infarcted areas were measured after fixation. The recovery of the paralysis in the edaravone-treated group was significantly earlier than that in the untreated group. Seven days later, both groups were mostly recovered and had scores of 7, and the infarction region was significantly smaller in the edaravone-treated group. Edaravone reduced the infarction area and promoted the functional recovery of hemiparesis from cerebral thrombosis in a rat model. These findings suggest that edaravone treatment would be effective in clinical patients recovering from cerebral infarction.

  20. Protective effect of tetraethyl pyrazine against focal cerebral ischemia/reperfusion injury in rats: therapeutic time window and its mechanism.

    Science.gov (United States)

    Jia, Jie; Zhang, Xi; Hu, Yong-Shan; Wu, Yi; Wang, Qing-Zhi; Li, Na-Na; Wu, Cai-Qin; Yu, Hui-Xian; Guo, Qing-Chuan

    2009-03-01

    Tetramethyl pyrazine has been considered an effective agent in treating neurons ischemia/reperfusion injury, but the mechanism of its therapeutic effect remains unclear. This study was to explore the therapeutic time window and mechanism of tetramethyl pyrazine on temporary focal cerebral ischemia/reperfusion injury. Middle cerebral artery occlusion was conducted in male Sprague-Dawley rats and 20 mg/kg of tetramethyl pyrazine was intraperitoneally injected at different time points. At 72 h after reperfusion, all animals' neurologic deficit scores were evaluated. Cerebrums were removed and cerebral infarction volume was measured. The expression of thioredoxin and thioredoxin reductase mRNA was determined at 6 and 24 h after reperfusion. Cerebral infarction volume and neurological deficit scores were significantly decreased in the group with tetramethyl pyrazine treatment. The expression of thioredoxin-1/thioredoxin-2 and thioredoxin reductase-1/thioredoxin reductase-2 was significantly decreased in rats with ischemia/reperfusion injury, while it was increased by tetramethyl pyrazine administration. Treatment with tetramethyl pyrazine, within 4 h after reperfusion, protects the brain from ischemic reperfusion injury in rats. The neuroprotective mechanism of tetramethyl pyrazine treatment is, in part, mediated through the upregulation of thioredoxin transcription.

  1. Chronic ethanol exposure during adolescence in rats induces motor impairments and cerebral cortex damage associated with oxidative stress.

    Science.gov (United States)

    Teixeira, Francisco Bruno; Santana, Luana Nazaré da Silva; Bezerra, Fernando Romualdo; De Carvalho, Sabrina; Fontes-Júnior, Enéas Andrade; Prediger, Rui Daniel; Crespo-López, Maria Elena; Maia, Cristiane Socorro Ferraz; Lima, Rafael Rodrigues

    2014-01-01

    Binge drinking is common among adolescents, and this type of ethanol exposure may lead to long-term nervous system damage. In the current study, we evaluated motor performance and tissue alterations in the cerebral cortex of rats subjected to intermittent intoxication with ethanol from adolescence to adulthood. Adolescent male Wistar rats (35 days old) were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) during 55 days by gavage to complete 90 days of age. The open field, inclined plane and the rotarod tests were used to assess the spontaneous locomotor activity and motor coordination performance in adult animals. Following completion of behavioral tests, half of animals were submitted to immunohistochemical evaluation of NeuN (marker of neuronal bodies), GFAP (a marker of astrocytes) and Iba1 (microglia marker) in the cerebral cortex while the other half of the animals were subjected to analysis of oxidative stress markers by biochemical assays. Chronic ethanol intoxication in rats from adolescence to adulthood induced significant motor deficits including impaired spontaneous locomotion, coordination and muscle strength. These behavioral impairments were accompanied by marked changes in all cellular populations evaluated as well as increased levels of nitrite and lipid peroxidation in the cerebral cortex. These findings indicate that continuous ethanol intoxication from adolescence to adulthood is able to provide neurobehavioral and neurodegenerative damage to cerebral cortex.

  2. Expression of Neurotrophin-3 and trkC following Focal Cerebral Ischemia in Adult Rat Brain with Treadmill Exercise

    Directory of Open Access Journals (Sweden)

    Jin-Young Chung

    2017-01-01

    Full Text Available Neurotrophin-3 (NT-3 is a neurotrophic factor that mainly binds to the tyrosine kinase C (trkC receptor. NT-3 has been shown to have neuroprotective effects in focal cerebral ischemia. Exercise also has ability to induce functional recovery in focal cerebral ischemia. However, the relationship between NT-3, its receptor trkC, and exercise has not been revealed. In this study, we assessed the expressions of NT-3 and trkC in focal cerebral ischemia. We also assessed the expression of NT-3 and trkC with treadmill exercise in focal cerebral ischemia. The results showed that, in a permanent middle cerebral artery occlusion rat model, exercise increased NT-3 and trkC expression. However, the patterns of expression of NT-3 and trkC at different time points varied. These results suggest that exercise-induced functional recovery in focal cerebral ischemia was related to NT-3 and trkC, but the role on times of NT-3 and trkC differed, although trkC is the receptor kinase for NT-3.

  3. The effects of low dose ionizing radiation on the development of rat cerebral cortex, (1)

    International Nuclear Information System (INIS)

    Matsushita, Koji

    1993-01-01

    We obtained the following results with regards to the effects of low dose ionizing radiation (5, 10, 15 and 20 cGy) on neuronal migration of developing rat cerebral cortex. Neuronal migration delay was found by autoradiography after intraperitoneal labeling with 3 H-thymidine to pregnant Wistar rats embryonic 16, and low dose radiation an hour or 48 hours after labeling. In 15-20 cGy, N-CAM (neural cell adhesion molecules) staining patterns changed with immunohistochemical method, whereas those of L1 and cytoskeleton neurofilament (160 KD), tauprotein, MAP2 (microtubule associated protein 2) did not. After 24-48 hours of radiation, N-CAM were not detected on the matrix cell layer. After 72-96 hours of radiation, N-CAM staining recovered to a normal pattern. In conclusion, low dose radiation of 15-20 cGy gave rise to neuronal migration delay and it was suggested that N-CAM may be related to neuronal migration as one of the mechanisms involved. (author)

  4. Developmental changes of mast cell populations in the cerebral meninges of the rat.

    Science.gov (United States)

    Michaloudi, Helen; Batzios, Christos; Chiotelli, Maria; Papadopoulos, Georgios C

    2007-10-01

    It is known that both the dura and the pia mater attract and support the differentiation of mast cells. The present study shows that unevenly distributed mast cells in the cerebral meninges of the rat can be found in perivascular sites and vessel ramification points, but can also be unrelated to the meningeal vasculature. It also documents changes in the number, localization and staining preferences of the mast cells in the two meninges of the developing and mature rat brain. Quantitative examination of all types of histochemically differentiated meningeal mast cells reveals no major (although some exist) differences between right and left side subpopulations, but strongly suggests a different origin and fate of the dural and the pial mast cells. The number of dural mast cells, already high from postnatal day 0, although declining from postnatal day 21 onwards, remains conspicuous up to postnatal day 180. In contrast, pial mast cells are comparatively very few in the first day of the postnatal life, and despite a transient significant increase in the following two weeks, they reach almost zero levels from postnatal day 21.

  5. Effects of Scrambling trumpet Creeper flavone on transient cerebral ischemia model (TIA) in rats.

    Science.gov (United States)

    Miao, Mingsan; Zhang, Xu; Zhang, Fan; Wang, Can; Fang, Xiaoyan; Bai, Ming; Xu, Cuishan; Teng, Leshang

    2018-03-01

    To investigate the effects of Scrambling Trumpet Creeper flavone on neurological function score, brain tissue lesion and related biochemical indexes in rat TIA model. Methods: TIA model was induced by tail vein injection of t-butanol (t-BHP). The rats in each administration group were given large, medium and low dose of Scrambling Trumpet Creeper flavone 0.1% CMC suspension, nimodipine and Yangxueqingnao particles group 0.1% CMC suspension, model group and blank group fed the same volume 0.1% CMC. Once a day, continuous administration of 7d. On the 3rd and 6th day after administration, t-BHP was injected into the tail vein, and then placed in a sealed 1 L jar. After 10 min of hypoxia, the neurological function score (NDS) was performed. After the first 2 days of TIA administration, the hem rheology was measured immediately after 1 h of administration, and blood rheology was measured immediately after the administration of blood, blood clotting, hematocrit, hematocrit and whole blood viscosity. After HE is staining to observe the pathological changes of hippocampus and cortex in the left-brain tissue. (LDH) and adenosine triphosphate (ATP) were measured. The right brain tissue of the cerebral cortex was observed. The expression of lactate (LD), lactate dehydrogenase (LDH) Fibroblast growth factor (FGF) and insulin growth factor (IGF) were detected by immunohistochemistry. Compared with the blank group, the coagulation time of the model rats was significantly shortened. The red blood cell deformation index was significantly decreased. Erythrocyte sedimentation rate, hematocrit, plasma viscosity, whole blood viscosity, erythrocyte rigidity index and blood sedimentation equation K value were significantly increased; LD content increased significantly, and LDH, ATP enzyme activity decreased significantly. The positive expression of FGF and IGF in the cortical area had a trend of increasing. The Scrambling Trumpet Creeper flavone significantly improved the

  6. Effects of Scrambling trumpet Creeper flavone on transient cerebral ischemia model (TIA in rats

    Directory of Open Access Journals (Sweden)

    Mingsan Miao

    2018-03-01

    Full Text Available To investigate the effects of Scrambling Trumpet Creeper flavone on neurological function score, brain tissue lesion and related biochemical indexes in rat TIA model. Methods: TIA model was induced by tail vein injection of t-butanol (t-BHP. The rats in each administration group were given large, medium and low dose of Scrambling Trumpet Creeper flavone 0.1% CMC suspension, nimodipine and Yangxueqingnao particles group 0.1% CMC suspension, model group and blank group fed the same volume 0.1% CMC. Once a day, continuous administration of 7d. On the 3rd and 6th day after administration, t-BHP was injected into the tail vein, and then placed in a sealed 1 L jar. After 10 min of hypoxia, the neurological function score (NDS was performed. After the first 2 days of TIA administration, the hem rheology was measured immediately after 1 h of administration, and blood rheology was measured immediately after the administration of blood, blood clotting, hematocrit, hematocrit and whole blood viscosity. After HE is staining to observe the pathological changes of hippocampus and cortex in the left-brain tissue. (LDH and adenosine triphosphate (ATP were measured. The right brain tissue of the cerebral cortex was observed. The expression of lactate (LD, lactate dehydrogenase (LDH Fibroblast growth factor (FGF and insulin growth factor (IGF were detected by immunohistochemistry. Results: Compared with the blank group, the coagulation time of the model rats was significantly shortened. The red blood cell deformation index was significantly decreased. Erythrocyte sedimentation rate, hematocrit, plasma viscosity, whole blood viscosity, erythrocyte rigidity index and blood sedimentation equation K value were significantly increased; LD content increased significantly, and LDH, ATP enzyme activity decreased significantly. The positive expression of FGF and IGF in the cortical area had a trend of increasing. Conclusion: The Scrambling Trumpet Creeper flavone

  7. Subarachnoid hemorrhage-induced upregulation of the 5-HT1B receptor in cerebral arteries in rats

    DEFF Research Database (Denmark)

    Hansen-Schwartz, Jacob; Hoel, Natalie Løvland; Xu, Cang-Bao

    2003-01-01

    experimental SAH. METHODS: Experimental SAH was induced in rats by using an autologous prechiasmatic injection of arterial blood. Two days later, the middle cerebral artery (MCA), posterior communicating artery (PCoA), and basilar artery (BA) were harvested and examined functionally with the aid of a sensitive...... RNA coding for the 5-HT1B receptor as determined by quantitative real-time PCR. In the PCoA no upregulation of the 5-HT1B receptor was observed. CONCLUSIONS: Changes in the receptor phenotype in favor of contractile receptors may well represent the end stage in a sequence of events leading from SAH...... to the actual development of cerebral vasospasm. Insight into the mechanism of upregulation may provide new targets for developing specific treatment against cerebral vasospasm....

  8. Exercise enhanced functional recovery and expression of GDNF after photochemically induced cerebral infarction in the rat.

    Science.gov (United States)

    Ohwatashi, Akihiko; Ikeda, Satoshi; Harada, Katsuhiro; Kamikawa, Yurie; Yoshida, Akira

    2013-01-01

    Exercise has been considered to affect the functional recovery from central nervous damage. Neurotrophic factors have various effects on brain damage. However, the effects of exercise for expression of GDNF on functional recovery with brain damage are not well known. We investigated the difference in functional recovery between non-exercise and beam-walking exercise groups, and the expression of GDNF in both groups after photochemical infarction. Adult male Wistar rats (N = 64) were used. Animals were divided into two groups: non-exercise (N = 35), and beam-walking exercise (N = 29). All rats underwent surgical photochemical infarction. The rats of the beam-walking group were trained every day to walk on a narrow beam after a one-day recovery period and those of the non-exercise group were left to follow a natural course. Animals were evaluated for hind limb function every day using a beam-walking task with an elevated narrow beam. The number of GDNF-like immunoreactive cells in the temporal cortex surrounding the lesion was counted 1, 3, 5, and 7 days after the infarction. Functional recovery of the beam-walking exercise group was significantly earlier than that of the non-exercise group. At 3 days after infarction, the number of GDNF-positive cells in the temporal cortex surrounding the infarction was significantly increased in the beam-walking exercise group compared with that in the non-exercise group. In the exercise group, motor function was remarkably recovered with the increased expression of GDNF-like immunoreactive cells. Our results suggested that a rehabilitative approach increased the expression of GDNF and facilitated functional recovery from cerebral infarction.

  9. Extracellular levels of lactate, but not oxygen, reflect sleep homeostasis in the rat cerebral cortex.

    Science.gov (United States)

    Dash, Michael B; Tononi, Giulio; Cirelli, Chiara

    2012-07-01

    It is well established that brain metabolism is higher during wake and rapid eye movement (REM) sleep than in nonrapid eye movement (NREM) sleep. Most of the brain's energy is used to maintain neuronal firing and glutamatergic transmission. Recent evidence shows that cortical firing rates, extracellular glutamate levels, and markers of excitatory synaptic strength increase with time spent awake and decline throughout NREM sleep. These data imply that the metabolic cost of each behavioral state is not fixed but may reflect sleep-wake history, a possibility that is investigated in the current report. Chronic (4d) electroencephalographic (EEG) recordings in the rat cerebral cortex were coupled with fixed-potential amperometry to monitor the extracellular concentration of oxygen ([oxy]) and lactate ([lac]) on a second-by-second basis across the spontaneous sleep-wake cycle and in response to sleep deprivation. Basic sleep research laboratory. Wistar Kyoto (WKY) adult male rats. N/A. Within 30-60 sec [lac] and [oxy] progressively increased during wake and REM sleep and declined during NREM sleep (n = 10 rats/metabolite), but with several differences. [Oxy], but not [lac], increased more during wake with high motor activity and/or elevated EEG high-frequency power. Meanwhile, only the NREM decline of [lac] reflected sleep pressure as measured by slow-wave activity, mirroring previous results for cortical glutamate. The observed state-dependent changes in cortical [lac] and [oxy] are consistent with higher brain metabolism during waking and REM sleep in comparison with NREM sleep. Moreover, these data suggest that glycolytic activity, most likely through its link with glutamatergic transmission, reflects sleep homeostasis.

  10. Malformation of the cerebral cortex of rats caused by embryonal exposure to x-ray

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, M [Nagoya Univ. (Japan). Research Inst. of Environmental Medicine

    1978-03-01

    200 R x-ray was irradiated to rat embryos, 17 days of age, and changes of the brain were observed histologically from one hour after the irradiation until they grew up. At start, there was not a great damage in the formation of bundles of major and minor hemisphere commissure passing through the terminal plate, although many cells died or fell off in the new brain mantle. After that, callosal fibers did not reach the midline because of the tissue destruction around the midline, and growth of the stem of the corpus callosum was pressed down. Defect of the stem of the corpus callosum was recognized in adult rats. Surviving mother cells gathered irregularly on the wall of the ventricle at the time of the repair of destructed tissues, and they remained as they stood around the midline of the brain mantle without rearrangement. In adult rats, there was abnormal formation of the cerebral cortex within medullary substances. Marked hypoplasia was recognized in the II-IV layer of the new cortex, bundle branches of dendritic processes of pyramidal cells in the V layer were small in number, and the directions of dendritic processes were abnormal. Pyramidal cell layer of the hippocampus fell into disorder and the directions of dendritic processes were irregular. It was demonstrated by the measurement of cubic volume of each part of the brain using reconstruction method that not only marked hypoplasia of the new cortex and the hippocampus but also hypoplasia of the old cortex, the basal ganglion, and the thalamus in which it was thought to be little disorder in the past were clear.

  11. Malformation of the cerebral cortex of rats caused by embryonal exposure to x-ray

    International Nuclear Information System (INIS)

    Inoue, Minoru

    1978-01-01

    200 R x-ray was irradiated to rat embryos, 17 days of age, and changes of the brain were observed histologically from one hour after the irradiation until they grew up. At start, there was not a great damage in the formation of bundles of major and minor hemisphere commissure passing through the terminal plate, although many cells died or fell off in the new brain mantle. After that, callosal fibers did not reach the midline because of the tissue destruction around the midline, and growth of the stem of the corpus callosum was pressed down. Defect of the stem of the corpus callosum was recognized in adult rats. Surviving mother cells gathered irregularly on the wall of the ventricle at the time of the repair of destructed tissues, and they remained as they stood around the midline of the brain mantle without rearrangement. In adult rats, there was abnormal formation of the cerebral cortex within medullary substances. Marked hypoplasia was recognized in the II-IV layer of the new cortex, bundle branches of dendritic processes of pyramidal cells in the V layer were small in number, and the directions of dendritic processes were abnormal. Pyramidal cell layer of the hippocampus fell into disorder and the directions of dendritic processes were irregular. It was demonstrated by the measurement of cubic volume of each part of the brain using reconstruction method that not only marked hypoplasia of the new cortex and the hippocampus but also hypoplasia of the old cortex, the basal ganglion, and the thalamus in which it was thought to be little disorder in the past were clear. (Iwagami, H.)

  12. Lysine and arginine reduce the effects of cerebral ischemic insults and inhibit glutamate-induced neuronal activity in rats

    Directory of Open Access Journals (Sweden)

    Takashi Kondoh

    2010-06-01

    Full Text Available Intravenous administration of arginine was shown to be protective against cerebral ischemic insults via nitric oxide production and possibly via additional mechanisms. The present study aimed at evaluating the neuroprotective effects of oral administration of lysine (a basic amino acid, arginine, and their combination on ischemic insults (cerebral edema and infarction and hemispheric brain swelling induced by transient middle cerebral artery occlusion/reperfusion in rats. Magnetic resonance imaging and 2,3,5-triphenyltetrazolium chloride staining were performed two days after ischemia induction. In control animals, the major edematous areas were observed in the cerebral cortex and striatum. The volumes associated with cortical edema were significantly reduced by lysine (2.0 g/kg, arginine (0.6 g/kg, or their combined administration (0.6 g/kg each. Protective effects of these amino acids on infarction were comparable to the inhibitory effects on edema formation. Interestingly, these amino acids, even at low dose (0.6 g/kg, were effective to reduce hemispheric brain swelling. Additionally, the effects of in vivo microiontophoretic (juxtaneuronal applications of these amino acids on glutamate-evoked neuronal activity in the ventromedial hypothalamus were investigated in awake rats. Glutamate-induced neuronal activity was robustly inhibited by microiontophoretic applications of lysine or arginine onto neuronal membranes. Taken together, our results demonstrate the neuroprotective effects of oral ingestion of lysine and arginine against ischemic insults (cerebral edema and infarction, especially in the cerebral cortex, and suggest that suppression of glutamate-induced neuronal activity might be the primary mechanism associated with these neuroprotective effects.

  13. Single-pass high-gain tapered free-electron laser with transverse diffraction in the postsaturation regime

    Directory of Open Access Journals (Sweden)

    Cheng-Ying Tsai

    2018-06-01

    Full Text Available It has been well known that the resonant interaction of an ultrarelativistic electron beam and the radiation field in the single-pass high-gain free electron laser (FEL amplifier leads to the optical gain guiding. The transverse Laplacian term of the slowly varying wave equation in the linear regime can be approximated as a constant detuning parameter, i.e., |∇_{⊥}^{2}|∼k_{R}/z_{R} where k_{R} is the resonant wave number and z_{R} is the Rayleigh range of the laser. In the post-saturation regime, the radiation power begins to oscillate about an equilibrium for the untapered case while continues to grow by undulator tapering. Moreover, in this regime the gain guiding decreases and the simple constant detune is no longer valid. In this paper we study the single-pass high-gain FEL performance in the post-saturation regime with inclusion of diffraction effect and undulator tapering. Our analysis relies upon two constants of motion, one from the energy conservation and the other from the adiabatic invariant of the action variable. By constructing a two-dimensional axisymmetric wave equation and the coupled one-dimensional electron dynamical equations, the performance of a tapered FEL in the postsaturation regime can be analyzed, including the fundamental mode profile, the power efficiency and the scaled energy spread. We begin the analytical investigation with two different axisymmetric electron beam profiles, the uniform and bounded parabolic ones. It is found that the tapered FEL power efficiency can be smaller but close to the taper ratio provided the resonant phase remains constant and the beam-wave is properly matched. Such a tapered efficiency is nearly independent of transverse electron beam size before significant electron detrapping occurs. This is essentially different from the untapered case, where the power extraction efficiency is around the essential FEL gain bandwidth (or ρ, the Pierce or FEL parameter and depends on the beam

  14. Mechanisms of angiogenesis in a Curculigoside A-treated rat model of cerebral ischemia and reperfusion injury

    International Nuclear Information System (INIS)

    Zhu, Haibo; He, Jie; Ye, Liang; Lin, Fei; Hou, Jian; Zhong, Yan; Jiang, Wanglin

    2015-01-01

    Curculigoside A has shown protective effects against rat cortical neuron damage in vivo. However, the molecular mechanisms through which Curculigoside A affords this protection are unclear. In the present study, we sought to elucidate the mechanisms of angiogenesis in rat aortic endothelial cells (RAEC), rat aortic smooth muscle cells (RASMC) as well as a rat model of cerebral ischemia and reperfusion injury following treatment with Curculigoside A. We examined the role of Curculigoside A on RAEC and RASMC proliferation, migration, and tube formation in vitro and in a cerebral ischemia and reperfusion injury rat model. We used the recombinant Dickkopf (DKK)-1 protein, a Wnt/β-catenin inhibitor, and the recombinant WIF-1 protein, a Wnt5a antagonist to determine mechanisms. In addition, we measured leakage of the blood–brain barrier (BBB) and tested for angiogenesis associated proteins. Our data suggest that Curculigoside A induces angiogenesis in vitro by increasing proliferation, migration and tube formation in RAEC and RASMC. The increase in Curculigoside A-induced proliferation and tube formation was counteracted by DKK-1 and WIF-1. Curculigoside A increased expression of VEGF, p-VEGFR, p-CREB, Egr-3, VCAM-1, Ang1 and Tie2 while prohibiting BBB leakage in cerebral ischemia and reperfusion injured rats. However, Cyclosporine A, a CREB inhibitor, reduced the expression of p-CREB, Egr-3, VCAM-1, Ang1 and Tie2. These data suggest that Curculigoside A induces cell proliferation and angiogenesis through the Wnt5a/β-catenin and VEGF/CREB/Egr-3/VCAM-1 signaling axis and promotes maturation and stability of new blood vessels via increasing Ang1 and Tie-2 expression. - Highlights: • Curculigoside A induces cell proliferation through Wnt5a/β-catenin pathway. • Curculigoside A induces angiogenesis via VEGF/CREB/Egr-3/VCAM-1 signaling axis. • Curculigoside A promotes blood vessel maturation via Ang1/Tie2 pathway.

  15. Mechanisms of angiogenesis in a Curculigoside A-treated rat model of cerebral ischemia and reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Haibo [School of Public Health and Management, Binzhou Medical University, Yantai (China); Institute of Toxicology, Binzhou Medical University, Yantai (China); He, Jie [State Key Laboratory of Long-acting Targeting Drug Delivery Technologies (Luye Pharma Group Ltd.), Yantai 264003 (China); Ye, Liang [School of Public Health and Management, Binzhou Medical University, Yantai (China); Institute of Toxicology, Binzhou Medical University, Yantai (China); Lin, Fei; Hou, Jian; Zhong, Yan [State Key Laboratory of Long-acting Targeting Drug Delivery Technologies (Luye Pharma Group Ltd.), Yantai 264003 (China); Jiang, Wanglin, E-mail: jwl518@163.com [School of Pharmaceutical Sciences, Institute of Materia Medica, Binzhou Medical University, Yantai (China)

    2015-11-01

    Curculigoside A has shown protective effects against rat cortical neuron damage in vivo. However, the molecular mechanisms through which Curculigoside A affords this protection are unclear. In the present study, we sought to elucidate the mechanisms of angiogenesis in rat aortic endothelial cells (RAEC), rat aortic smooth muscle cells (RASMC) as well as a rat model of cerebral ischemia and reperfusion injury following treatment with Curculigoside A. We examined the role of Curculigoside A on RAEC and RASMC proliferation, migration, and tube formation in vitro and in a cerebral ischemia and reperfusion injury rat model. We used the recombinant Dickkopf (DKK)-1 protein, a Wnt/β-catenin inhibitor, and the recombinant WIF-1 protein, a Wnt5a antagonist to determine mechanisms. In addition, we measured leakage of the blood–brain barrier (BBB) and tested for angiogenesis associated proteins. Our data suggest that Curculigoside A induces angiogenesis in vitro by increasing proliferation, migration and tube formation in RAEC and RASMC. The increase in Curculigoside A-induced proliferation and tube formation was counteracted by DKK-1 and WIF-1. Curculigoside A increased expression of VEGF, p-VEGFR, p-CREB, Egr-3, VCAM-1, Ang1 and Tie2 while prohibiting BBB leakage in cerebral ischemia and reperfusion injured rats. However, Cyclosporine A, a CREB inhibitor, reduced the expression of p-CREB, Egr-3, VCAM-1, Ang1 and Tie2. These data suggest that Curculigoside A induces cell proliferation and angiogenesis through the Wnt5a/β-catenin and VEGF/CREB/Egr-3/VCAM-1 signaling axis and promotes maturation and stability of new blood vessels via increasing Ang1 and Tie-2 expression. - Highlights: • Curculigoside A induces cell proliferation through Wnt5a/β-catenin pathway. • Curculigoside A induces angiogenesis via VEGF/CREB/Egr-3/VCAM-1 signaling axis. • Curculigoside A promotes blood vessel maturation via Ang1/Tie2 pathway.

  16. The effects of abnormalities of glucose homeostasis on the expression and binding of muscarinic receptors in cerebral cortex of rats.

    Science.gov (United States)

    Sherin, Antony; Peeyush, Kumar T; Naijil, George; Nandhu, Mohan Sobhana; Jayanarayanan, Sadanandan; Jes, Paul; Paulose, Cheramadathikudiyil Skaria

    2011-01-25

    Glucose homeostasis in humans is an important factor for the functioning of nervous system. Both hypo and hyperglycemia contributes to neuronal functional deficit. In the present study, effect of insulin induced hypoglycemia and streptozotocin induced diabetes on muscarinic receptor binding, cholinergic enzymes; AChE, ChAT expression and GLUT3 in the cerebral cortex of experimental rats were analysed. Total muscarinic, muscarinic M(1) receptor showed a significant decrease and muscarinic M(3) receptor subtype showed a significant increased binding in the cerebral cortex of hypoglycemic rats compared to diabetic and control. Real-Time PCR analysis of muscarinic M(1), M(3) receptor subtypes confirmed the receptor binding studies. Immunohistochemistry of muscarinic M(1), M(3) receptors using specific antibodies were also carried out. AChE and GLUT3 expression up regulated and ChAT expression down regulated in hypoglycemic rats compared to diabetic and control rats. Our results showed that hypo/hyperglycemia caused impaired glucose transport in neuronal cells as shown by altered expression of GLUT3. Increased AChE and decreased ChAT expression is suggested to alter cortical acetylcholine metabolism in experimental rats along with altered muscarinic receptor binding in hypo/hyperglycemic rats, impair cholinergic transmission, which subsequently lead to cholinergic dysfunction thereby causing learning and memory deficits. We observed a prominent cholinergic functional disturbance in hypoglycemic condition than in hyperglycemia. Hypoglycemia exacerbated the neurochemical changes in cerebral cortex induced by hyperglycemia. These findings have implications for both therapy and identification of causes contributing to neuronal dysfunction in diabetes. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Edaravone, a Free Radical Scavenger, Mitigates Both Gray and White Matter Damages after Global Cerebral Ischemia in Rats

    Science.gov (United States)

    Kubo, Kozue; Nakao, Shinichi; Jomura, Sachiko; Sakamoto, Sachiyo; Miyamoto, Etsuko; Xu, Yan; Tomimoto, Hidekazu; Inada, Takefumi; Shingu, Koh

    2012-01-01

    Recent studies have shown that similar to cerebral gray matter (mainly composed of neuronal perikarya), white matter (composed of axons and glias) is vulnerable to ischemia. Edaravone, a free radical scavenger, has neuroprotective effects against focal cerebral ischemia even in humans. In this study, we investigated the time course and the severity of both gray and white matter damage following global cerebral ischemia by cardiac arrest, and examined whether edaravone protected the gray and the white matter. Male Sprague-Dawley rats were used. Global cerebral ischemia was induced by 5 minutes of cardiac arrest and resuscitation (CAR). Edaravone, 3 mg/kg, was administered intravenously either immediately or 60 minutes after CAR. The morphological damage was assessed by cresyl violet staining. The microtubule-associated protein 2 (a maker of neuronal perikarya and dendrites), the β amyloid precursor protein (the accumulation of which is a maker of axonal damage), and the ionized calcium binding adaptor molecule 1 (a marker of microglia) were stained for immunohistochemical analysis. Significant neuronal perikaryal damage and marked microglial activation were observed in the hippocampal CA1 region with little axonal damage one week after CAR. Two weeks after CAR, the perikaryal damage and microglial activation were unchanged, but obvious axonal damage occurred. Administration of edaravone 60 minutes after CAR significantly mitigated the perikaryal damage, the axonal damage, and the microglial activation. Our results show that axonal damage develops slower than perikaryal damage and that edaravone can protect both gray and white matter after CAR in rats. PMID:19410562

  18. Niosomes of Ascorbic Acid and α-Tocopherol in the Cerebral Ischemia-Reperfusion Model in Male Rats

    Directory of Open Access Journals (Sweden)

    Jaleh Varshosaz

    2014-01-01

    Full Text Available The objective of the present study was to prepare a stable iv injectable formulation of ascorbic acid and α-tocopherol in preventing the cerebral ischemia. Different niosomal formulations were prepared by Span and Tween mixed with cholesterol. The physicochemical characteristics of niosomal formulations were evaluated in vitro. For in vivo evaluation, the rats were made ischemic by middle cerebral artery occlusion model for 30 min and the selected formulation was used for determining its neuroprotective effect against cerebral ischemia. Neuronal damage was evaluated by optical microscopy and transmission electron microscopy. The encapsulation efficiency of ascorbic acid was increased to more than 84% by remote loading method. The cholesterol content of the niosomes, the hydrophilicity potential of the encapsulated compounds, and the preparation method of niosomes were the main factors affecting the mean volume diameter of the prepared vesicles. High physical stability of the niosomes prepared from Span 40 and Span 60 was demonstrated due to negligible size change of vesicles during 6 months storage at 4–8°C. In vivo studies showed that ST60/Chol 35 : 35 : 30 niosomes had more neuroprotective effects against cerebral ischemic injuries in male rats than free ascorbic acid.

  19. Niosomes of ascorbic acid and α-tocopherol in the cerebral ischemia-reperfusion model in male rats.

    Science.gov (United States)

    Varshosaz, Jaleh; Taymouri, Somayeh; Pardakhty, Abbas; Asadi-Shekaari, Majid; Babaee, Abodolreza

    2014-01-01

    The objective of the present study was to prepare a stable iv injectable formulation of ascorbic acid and α-tocopherol in preventing the cerebral ischemia. Different niosomal formulations were prepared by Span and Tween mixed with cholesterol. The physicochemical characteristics of niosomal formulations were evaluated in vitro. For in vivo evaluation, the rats were made ischemic by middle cerebral artery occlusion model for 30 min and the selected formulation was used for determining its neuroprotective effect against cerebral ischemia. Neuronal damage was evaluated by optical microscopy and transmission electron microscopy. The encapsulation efficiency of ascorbic acid was increased to more than 84% by remote loading method. The cholesterol content of the niosomes, the hydrophilicity potential of the encapsulated compounds, and the preparation method of niosomes were the main factors affecting the mean volume diameter of the prepared vesicles. High physical stability of the niosomes prepared from Span 40 and Span 60 was demonstrated due to negligible size change of vesicles during 6 months storage at 4-8(°)C. In vivo studies showed that ST60/Chol 35 : 35 : 30 niosomes had more neuroprotective effects against cerebral ischemic injuries in male rats than free ascorbic acid.

  20. Effects of Cortical Spreading Depression on Synaptic Activity, Blood Flow and Oxygen Consumption in Rat Cerebral Cortex

    DEFF Research Database (Denmark)

    Hansen, Henning Piilgaard

    2010-01-01

    As the title of this thesis indicates I have during my PhD studied the effects of cortical spreading depression (CSD) on synaptic activity, blood flow and oxygen consumption in rat cerebral cortex. This was performed in vivo using an open cranial window approach in anesthetized rats. I applied...... parameters of the whisker/infraorbital nerve etwork (IO) targeting the same cortical area. We tested the hypothesis that the relation between increases in CBF and CMRO2 evoked by stimulation and synaptic activity differed for the two activated networks and that activation of two distinct networks activate...

  1. Protective Effects and Mechanism of Puerarin on Learning-Memory Disorder after Global Cerebral Ischemia-Reperfusion Injury in Rats

    Institute of Scientific and Technical Information of China (English)

    WU Hai-qin; GUO He-na; WANG Hu-qing; CHANG Ming-ze; ZHANG Gui-lian; ZHAO Ying-xian

    2009-01-01

    Objective: To observe the effect of puerarin on the learning-memory disorder after global cerebral ischemia-reperfusion injury in rats, and to explore its mechanism of action. Methods: The global cerebral ischemia-reperfusion injury model was established using the modified Pulsinelli four-vessel occlusion in Sprague-Dawley rats. Rats were intraperitoneally injected with puerarin (100 mg/kg) 1 h before ischemia and once every 6 h afterwards. The learning-memory ability was evaluated by the passive avoidance test. The dynamic changes of the cell counts of apoptosis and positive expression of Bcl-2 in the hippocampus CA1 region were determined by the TUNEL and immunohistochemical methods, respectively. Results: (1) Compared with the reperfusion group, the step through latency (STL) in the passive avoidance test in the puerarin group was prolonged significantly (P<0.01). (2) The apoptotic neurons were injured most severely on the 3rd day in the hippocampal CA1 region after global ischemia and reperfusion. In the pueradn group, the number of apoptotic cells decreased at respective time points after ischemia-reperfusion (P<0.01). (3) The level of positive expression of Bcl-2 varied according to the duration of reperfusion and the peak level occurred on day 1 in the hippocampal CA1 region after global cerebral ischemia. Compared with the reperfusion group, the expression of Bcl-2 in the pueradn group was up-regulated at the respective time points after ischemia raperfusion (P<0.01), reaching the peak on day 1. Conclusions: Puerarin could improve the learning-memory ability after global cerebral ischemia and reperfusion in rats. The protective mechanism might be related to the effect of inhibiting or delaying the cell apoptosis through up-regulating the expression of Bcl-2 after ischemia and reperfusion.

  2. Electroacupuncture-Induced Neuroprotection against Cerebral Ischemia in Rats: Role of the Dopamine D2 Receptor

    Directory of Open Access Journals (Sweden)

    Ming-Shu Xu

    2013-01-01

    Full Text Available Background. Cerebral ischemia is known to produce brain damage and related behavioural deficits, including memory deficits and motor disorders. Evidence shows that EA significantly promotes recovery of neurological function and thus improves quality of life. Objective. Evidence exists for the involvement of catecholamines in human neuroplasticity. A better understanding of dopaminergic (DAergic modulation in this process will be important. Methods. A total of 72 adult male Sprague-Dawley (SD rats were divided into 6 groups: normal, model, EA, spiperone group, EA + spiperone group, and pergolide. The middle cerebral artery occlusion (MCAO model was used in all 6 groups except the normal group. A behavioural assessment was conducted at 1, 3, 5, and 7 days after MCAO. The percent of brain infarct area was also determined 7 days after MCAO. Tyrosine hydroxylase (TH and growth-associated protein 43 (GAP-43 fluorescence double labeling was performed in the striatum. Results. In this study, we found that EA at Fengchi (GB20 acupoints resulted in marked improvements based on a behavioural assessment. Both TTC staining and GAP-43 immunofluorescence labeling results showed that EA treatment reduced ischemia injury and promoted neuroplasticity compared with the model group. The D2R-selective agonist, pergolide, showed similar results, but these results were reversed by the D2R-selective antagonist, spiperone. We also found that there were more colocalization and expression of GAP-43 and TH in the EA and pergolide groups than those in the other groups. Conclusion. These results suggest that the neuroplasticity induced by EA was mediated by D2 autoreceptors in DAergic neurons.

  3. Improvement in regional CBF by L-serine contributes to its neuroprotective effect in rats after focal cerebral ischemia.

    Directory of Open Access Journals (Sweden)

    Tao-Jie Ren

    Full Text Available To investigate the mechanisms underlying the neuroprotective effect of L-serine, permanent focal cerebral ischemia was induced by occlusion of the middle cerebral artery while monitoring cerebral blood flow (CBF. Rats were divided into control and L-serine-treated groups after middle cerebral artery occlusion. The neurological deficit score and brain infarct volume were assessed. Nissl staining was used to quantify the cortical injury. L-serine and D-serine levels in the ischemic cortex were analyzed with high performance liquid chromatography. We found that L-serine treatment: 1 reduced the neurological deficit score, infarct volume and cortical neuron loss in a dose-dependent manner; 2 improved CBF in the cortex, and this effect was inhibited in the presence of apamin plus charybdotoxin while the alleviation of both neurological deficit score and infarct volume was blocked; and 3 increased the amount of L-serine and D-serine in the cortex, and inhibition of the conversion of L-serine into D-serine by aminooxyacetic acid did not affect the reduction of neurological deficit score and infarct volume by L-serine. In conclusion, improvement in regional CBF by L-serine may contribute to its neuroprotective effect on the ischemic brain, potentially through vasodilation which is mediated by the small- and intermediate-conductance Ca(2+-activated K(+ channels on the cerebral blood vessel endothelium.

  4. Single-pass continuous-flow leach test of PNL 76-68 glass: some selected Bead Leach I results

    International Nuclear Information System (INIS)

    Coles, D.G.

    1981-01-01

    A single-pass continuous-flow leach test of PNL 76-68 glass beads (7 mm dia) was concluded after 420 days of uninterrupted operation. Variables included in the experimental matrix were flow-rate, leachant composition, and temperature. Analysis was conducted on all leachate samples for 237 Np and 239 Pu as well as a number of nonradioactive elements. Results indicated that flow-rate and leachant systematically affected the leach rate, but only slightly. Temperature effects were significant. Plutonium leach rate was lower at higher temperature suggesting that Pu sorption onto the beads was enhanced at the higher temperature. The range of leach rates for all analyzed elements (except Pu), at both temperature, at all three flow rates, and with all three leachant compositions varied only three orders of magnitude. The range of variables used in this experiment covered those expected in many proposed repository environments. The preliminary interpretation of the results also indicated that matrix dissolution may be the dominant leaching mechanism, at least for Np in bicarbonate leachant. Regardless of the leaching mechanism the importance of this study is that it bounds the effects of repository environments when the ground water is oxidizing and when it doesn't reach the waste form until the waste has cooled to ambient rock temperature

  5. Single-pass continuous-flow leach test of PNL 76-68 glass: some selected Bead Leach I results

    International Nuclear Information System (INIS)

    Coles, D.G.

    1981-01-01

    A single-pass continuous-flow leach test of PNL 76-68 glass beads (7 mm dia) was concluded after 420 days of uninterrupted operation. Variables included in the experimental matrix were flow-rate, leachant composition, and temperature. Analysis was conducted on all leachate samples for 237 Np and 239 Pu as well as a number of nonradioactive elements. Results indicated that flow-rate and leachant systematically affected the leach rate, but only slightly. Temperature effects were significant. Plutonium leach rate was lower at higher temperature suggesting that Pu sorption onto the beads was enhanced at the higher temperature. The range of leach rates for all analyzed elements (except Pu), at both temperatures, at all three flow rates, and with all three leachant compositions varied over only three orders of magnitude. The range of variables used in this experiment covered those expected in many proposed repository environments. The preliminary interpretation of the results aPPh 3 also reacted with Mn 2 (CO) 10 and Cp 2 Mo 2 (CO) 6 to give a variety of products at room temperature. A radical mechanism was suggested

  6. Evaluation of the single-pass flow-through test to support a low-activity waste specification

    International Nuclear Information System (INIS)

    McGrail, B.P.; Peeler, D.K.

    1995-09-01

    A series of single-pass flow-through (SPFT) tests was performed on five reference low-activity waste glasses and a reference glass from the National Institute of Standards and Technology to support a product specification for low-activity waste (LAW) forms. The results showed that the SPFT test provides a means to quantitatively distinguish among LAW glass forms in terms of their forward reaction rate at a given temperature and solution pH. Two of the test glasses were also subjected to SPFT testing at Argonne National Laboratory (ANL). Forward reaction rate constants calculated from the ANL test data were 100 to over 1,000 times larger than the values obtained from the SPFT tests conducted at PNL. An analysis of the ANL results showed that they were inconsistent with independent measurements done on glasses of similar composition, the known pH-dependence of the forward rate, and with the results from low surface-area-to-volume, short duration product consistency tests. Because the data set obtained from the SPFT tests done at PNL was consistent with each of these same factors, a detailed examination of the test procedures used at both laboratories was performed to determine the cause(s) of the discrepancy. The omission of background subtraction in the data analysis procedure and the short-duration (on the order of hours) of the ANL tests are factors that may have significantly affected the calculated rates

  7. Single-Pass Percutaneous Liver Biopsy for Diffuse Liver Disease Using an Automated Device: Experience in 154 Procedures

    International Nuclear Information System (INIS)

    Rivera-Sanfeliz, Gerant; Kinney, Thomas B.; Rose, Steven C.; Agha, Ayad K.M.; Valji, Karim; Miller, Franklin J.; Roberts, Anne C.

    2005-01-01

    Purpose: To describe our experience with ultrasound (US)-guided percutaneous liver biopsies using the INRAD 18G Express core needle biopsy system.Methods: One hundred and fifty-four consecutive percutaneous core liver biopsy procedures were performed in 153 men in a single institution over 37 months. The medical charts, pathology reports, and radiology files were retrospectively reviewed. The number of needle passes, type of guidance, change in hematocrit level, and adequacy of specimens for histologic analysis were evaluated.Results: All biopsies were performed for histologic staging of chronic liver diseases. The majority of patients had hepatitis C (134/153, 90.2%). All patients were discharged to home after 4 hr of postprocedural observation. In 145 of 154 (94%) biopsies, a single needle pass was sufficient for diagnosis. US guidance was utilized in all but one of the procedures (153/154, 99.4%). The mean hematocrit decrease was 1.2% (44.1-42.9%). Pain requiring narcotic analgesia, the most frequent complication, occurred in 28 of 154 procedures (18.2%). No major complications occurred. The specimens were diagnostic in 152 of 154 procedures (98.7%).Conclusions: Single-pass percutaneous US-guided liver biopsy with the INRAD 18G Express core needle biopsy system is safe and provides definitive pathologic diagnosis of chronic liver disease. It can be performed on an outpatient basis. Routine post-biopsy monitoring of hematocrit level in stable, asymptomatic patients is probably not warranted

  8. A 3D Reconstruction Strategy of Vehicle Outline Based on Single-Pass Single-Polarization CSAR Data.

    Science.gov (United States)

    Leping Chen; Daoxiang An; Xiaotao Huang; Zhimin Zhou

    2017-11-01

    In the last few years, interest in circular synthetic aperture radar (CSAR) acquisitions has arisen as a consequence of the potential achievement of 3D reconstructions over 360° azimuth angle variation. In real-world scenarios, full 3D reconstructions of arbitrary targets need multi-pass data, which makes the processing complex, money-consuming, and time expending. In this paper, we propose a processing strategy for the 3D reconstruction of vehicle, which can avoid using multi-pass data by introducing a priori information of vehicle's shape. Besides, the proposed strategy just needs the single-pass single-polarization CSAR data to perform vehicle's 3D reconstruction, which makes the processing much more economic and efficient. First, an analysis of the distribution of attributed scattering centers from vehicle facet model is presented. And the analysis results show that a smooth and continuous basic outline of vehicle could be extracted from the peak curve of a noncoherent processing image. Second, the 3D location of vehicle roofline is inferred from layover with empirical insets of the basic outline. At last, the basic line and roofline of the vehicle are used to estimate the vehicle's 3D information and constitute the vehicle's 3D outline. The simulated and measured data processing results prove the correctness and effectiveness of our proposed strategy.

  9. Field trial of a fast single-pass transmit-receive probe during Gentilly II steam generator tube inspection

    International Nuclear Information System (INIS)

    Obrutsky, L.; Cantin, M.; Renaud, J.; Cecco, V.; Lakhan, R.; Sullivan, S.

    2000-01-01

    A new generation of transmit-receive single-pass probes, denoted as C6 or X probe, was field tested during the Gentilly II, 2000 steam generator tube inspection. This probe has a performance equivalent to rotating probes and can be used for tubesheet and full-length inspection at an inspection speed equivalent to that of bobbin probes. Existing C3 transmit-receive probes have been demonstrated to be effective in detecting circumferential cracks. The C5 probe can detect both circumferential and axial cracks and volumetric defects but cannot discriminate between them. The C6 probe expands on the capabilities of both probes in a single probe head. It can simultaneously detect and discriminate between circumferential and axial cracks to satisfy different plugging criteria. It has excellent coverage, good defect detectability, and improved sizing and characterization. Probe data is displayed in C-scan format so that the amount of data to be analyzed is similar to rotating probes. The C6 probe will significantly decrease inspection time and the need for re-inspection and tube pulling. This paper describes the advantages of the probe and demonstrates its capabilities employing signals from tube samples with calibration flaws and laboratory induced cracks. It shows the results from the field trial of the probe at Gentilly II and describes the instrumentation, hardware and software used for the inspection. (author)

  10. Sea ice local surface topography from single-pass satellite InSAR measurements: a feasibility study

    Directory of Open Access Journals (Sweden)

    W. Dierking

    2017-08-01

    Full Text Available Quantitative parameters characterizing the sea ice surface topography are needed in geophysical investigations such as studies on atmosphere–ice interactions or sea ice mechanics. Recently, the use of space-borne single-pass interferometric synthetic aperture radar (InSAR for retrieving the ice surface topography has attracted notice among geophysicists. In this paper the potential of InSAR measurements is examined for several satellite configurations and radar frequencies, considering statistics of heights and widths of ice ridges as well as possible magnitudes of ice drift. It is shown that, theoretically, surface height variations can be retrieved with relative errors  ≤  0.5 m. In practice, however, the sea ice drift and open water leads may contribute significantly to the measured interferometric phase. Another essential factor is the dependence of the achievable interferometric baseline on the satellite orbit configurations. Possibilities to assess the influence of different factors on the measurement accuracy are demonstrated: signal-to-noise ratio, presence of a snow layer, and the penetration depth into the ice. Practical examples of sea surface height retrievals from bistatic SAR images collected during the TanDEM-X Science Phase are presented.

  11. Standard practice for measurement of the glass dissolution rate using the single-pass flow-through test method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice describes a single-pass flow-through (SPFT) test method that can be used to measure the dissolution rate of a homogeneous silicate glass, including nuclear waste glasses, in various test solutions at temperatures less than 100°C. Tests may be conducted under conditions in which the effects from dissolved species on the dissolution rate are minimized to measure the forward dissolution rate at specific values of temperature and pH, or to measure the dependence of the dissolution rate on the concentrations of various solute species. 1.2 Tests are conducted by pumping solutions in either a continuous or pulsed flow mode through a reaction cell that contains the test specimen. Tests must be conducted at several solution flow rates to evaluate the effect of the flow rate on the glass dissolution rate. 1.3 This practice excludes static test methods in which flow is simulated by manually removing solution from the reaction cell and replacing it with fresh solution. 1.4 Tests may be conducted wit...

  12. Field trial of a fast single-pass transmit-receive probe during Gentilly II steam generator tube inspection

    International Nuclear Information System (INIS)

    Obrutsky, L.; Cantin, M.; Renaud, J.; Cecco, V.; Lakhan, R.; Sullivan, S.

    2000-01-01

    A new generation of transmit-receive single-pass probes, denoted as C6 or X probe, was field-tested during the Gentilly II, 2000 steam generator tube inspection. This probe has a performance equivalent to rotating probes and can be used for tubesheet and full-length inspection at an inspection speed equivalent to that of bobbin probes. Existing C3 transmit-receive probes have been demonstrated to be effective in detecting circumferential cracks. The C5 probe can detect both circumferential and axial cracks and volumetric defects but cannot discriminate between them. The C6 probe expands on the capabilities of both probes in a single probe head. It can simultaneously detect and discriminate between circumferential and axial cracks to satisfy different plugging criteria. It has excellent coverage, good defect detectability, and improved sizing and characterization. Probe data is displayed in C-scan format so that the amount of data to be analyzed is similar to rotating probes. The C6 probe will significantly decrease inspection time and the need for re-inspection and tube pulling. This paper describes the advantages of the probe and demonstrates its capabilities employing signals from tube samples with calibration flaws and laboratory induced cracks. It shows the results from the field trial of the probe at Gentilly II and describes the instrumentation, hardware and software used for the inspection. (author)

  13. Xinnao Shutong Modulates the Neuronal Plasticity Through Regulation of Microglia/Macrophage Polarization Following Chronic Cerebral Hypoperfusion in Rats

    Directory of Open Access Journals (Sweden)

    Liye Wang

    2018-05-01

    Full Text Available Xinnao shutong (XNST capsules have been clinically used in China to treat cerebrovascular diseases. Previous studies have demonstrated that XNST has significant neuroprotective effects against acute cerebral ischemic stroke. The present study investigated the effects and mechanisms of XNST treatment following chronic cerebral hypoperfusion. Thirty-six adult male Sprague-Dawley rats were treated with XNST or vehicle following permanent bilateral common carotid artery (BCCA ligation. Body weight was recorded on days 0, 3, 7, 14, 28, and 42 post-surgery. The Morris water maze (MWM test was used to assess cognitive function in rats. Immunofluorescent staining and western blot were used to assess the severity of neuronal plasticity, white matter injury, and the numbers and/or phenotypic changes incurred to microglia. Protein levels of p-AKT (Thr308 and p-ERK (Thr202/Tyr204 were detected 42 days after BCCA ligation was performed. The results indicate that XNST treatment significantly reduced escape latency, decreased the frequency of platform crossing compared to the vehicle group. Synaptophysin, protein levels improved and white matter injury ameliorated following XNST treatment. Meanwhile, XNST reduced the number of M1 microglia and increased the number of M2 microglia. Furthermore, p-AKT (Thr308 and p-ERK (Thr202/Tyr204 levels were increased 42 days following BCCA ligation. In summary, our results suggest that XNST mitigates memory impairments by restoration of neuronal plasticity and by modulation of microglial polarization following chronic cerebral hypoperfusion in rats.

  14. Evaluation of hypoxic tissue dynamics with 18F-FMISO PET in a rat model of permanent cerebral ischemia.

    Science.gov (United States)

    Rojas, Santiago; Herance, José Raul; Abad, Sergio; Jiménez, Xavier; Pareto, Deborah; Ruiz, Alba; Torrent, Èlia; Figueiras, Francisca P; Popota, Foteini; Fernández-Soriano, Francisco J; Planas, Anna M; Gispert, Juan D

    2011-06-01

    [¹⁸F]Fluoromisonidazole (¹⁸F-FMISO) is a nitroimidazole derivative that has been proposed as a positron emission tomography (PET) radiotracer to detect hypoxic tissue in vivo. This compound accumulates in hypoxic but viable tissue and may be a good candidate for evaluating the ischemic penumbra. We evaluated the time course of ¹⁸F-FMISO uptake using PET in a rat model of permanent cerebral ischemia and the correlation with histological changes. Rats (n = 14) were subjected to permanent ischemia by intraluminal occlusion of the middle cerebral artery in order to assess by PET the uptake of ¹⁸F-FMISO at various times over 24 h following ischemia. The PET results were compared to histological changes with Nissl and 2,3,5 triphenyltetrazolium chloride staining. Elevated uptake of ¹⁸F-FMISO was detected in the infarcted area up to 8 h after occlusion but was no longer detected at 24 h, a time point coincident with pan necrosis of the tissue. Our findings suggest that salvageable tissue persists for up to 8 h in this rat model of brain ischemia. We propose ¹⁸F-FMISO PET as a tool for evaluating the ischemic penumbra after cerebral ischemia.

  15. Damaged Neocortical Perineuronal Nets Due to Experimental Focal Cerebral Ischemia in Mice, Rats and Sheep

    Directory of Open Access Journals (Sweden)

    Wolfgang Härtig

    2017-08-01

    Full Text Available As part of the extracellular matrix (ECM, perineuronal nets (PNs are polyanionic, chondroitin sulfate proteoglycan (CSPG-rich coatings of certain neurons, known to be affected in various neural diseases. Although these structures are considered as important parts of the neurovascular unit (NVU, their role during evolution of acute ischemic stroke and subsequent tissue damage is poorly understood and only a few preclinical studies analyzed PNs after acute ischemic stroke. By employing three models of experimental focal cerebral ischemia, this study was focused on histopathological alterations of PNs and concomitant vascular, glial and neuronal changes according to the NVU concept. We analyzed brain tissues obtained 1 day after ischemia onset from: (a mice after filament-based permanent middle cerebral artery occlusion (pMCAO; (b rats subjected to thromboembolic MACO; and (c sheep at 14 days after electrosurgically induced focal cerebral ischemia. Multiple fluorescence labeling was applied to explore simultaneous alterations of NVU and ECM. Serial mouse sections labeled with the net marker Wisteria floribunda agglutinin (WFA displayed largely decomposed and nearly erased PNs in infarcted neocortical areas that were demarcated by up-regulated immunoreactivity for vascular collagen IV (Coll IV. Subsequent semi-quantitative analyses in mice confirmed significantly decreased WFA-staining along the ischemic border zone and a relative decrease in the directly ischemia-affected neocortex. Triple fluorescence labeling throughout the three animal models revealed up-regulated Coll IV and decomposed PNs accompanied by activated astroglia and altered immunoreactivity for parvalbumin, a calcium-binding protein in fast-firing GABAergic neurons which are predominantly surrounded by neocortical PNs. Furthermore, ischemic neocortical areas in rodents simultaneously displayed less intense staining of WFA, aggrecan, the net components neurocan, versican and the

  16. [Effects of combined use of total alkaloids of Uncaria rhynchophylla and Coryadlis ambailis migo on cerebral ischemia-reperfusion injury in rats].

    Science.gov (United States)

    Hu, Xue-yong; Sun, An-sheng; Sui, Yu-xia

    2007-11-01

    To study the effects of combined use of total alkaloids (TA) of Uncaria rhynchophylla (UR) and Coryadlis ambailis migo (CAM) on cerebral ischemia/reperfusion injury in rats. Rat model of middle cerebral artery ischemia/reperfusion was established, the changes of neurological state was scored before and after treatment with the two kinds of TA, single or combined, and the changes of cerebral infarcted volume, cerebral water content, activities of NOS and SOD and content of MDA in rats' brain were estimated as well. After being treated with the combination of both TA, the average neurological score, cerebral infracted volume, cerebral water content, activity of NOS and content of MDA in the model rats significantly decreased, and the activity of SOD was significantly increased (all P < 0.05). The effect of combined use of the two TA was higher than that of use TA of UR or CAM alone (P <0.05). Moreover, the central nervous system inhibitory effect induced by combined TA was significantly weaker than that of UR. Combined use of TA of UR and CAM may facilitate the protection against cerebral ischemia/reperfusion damage, the action mechanism might be relevant to reducing the lipid peroxidation injury of brain cells through inhibiting the NOS activity and increasing the SOD activity.

  17. Low level prenatal exposure to methylmercury disrupts neuronal migration in the developing rat cerebral cortex

    International Nuclear Information System (INIS)

    Guo, Bao-Qiang; Yan, Chong-Huai; Cai, Shi-Zhong; Yuan, Xiao-Bing; Shen, Xiao-Ming

    2013-01-01

    Highlights: ► Low level MeHg exposure causes migratory defect of rat cerebrocortical neurons. ► The migration defect is due to the impact of MeHg on the neuronal migration itself. ► Rho GTPases seem to be involved in MeHg-induced disruption of neuronal migration. -- Abstract: We determined the effects of low-level prenatal MeHg exposure on neuronal migration in the developing rat cerebral cortex using in utero electroporation. We used offspring rats born to dams that had been exposed to saline or various doses of MeHg (0.01 mg/kg/day, 0.1 mg/kg/day, and 1 mg/kg/day) from gestational day (GD) 11–21. Immunohistochemical examination of the brains of the offspring was conducted on postnatal day (PND) 0, PND3, and PND7. Our results showed that prenatal exposure to low levels of MeHg (0.1 mg/kg/day or 1 mg/kg/day) during the critical stage in neuronal migration resulted in migration defects of the cerebrocortical neurons in offspring rats. Importantly, our data revealed that the abnormal neuronal distribution induced by MeHg was not caused by altered proliferation of neural progenitor cells (NPCs), induction of apoptosis of NPCs and/or newborn neurons, abnormal differentiation of NPCs, and the morphological changes of radial glial scaffold, indicating that the defective neuronal positioning triggered by exposure to low-dose of MeHg is due to the impacts of MeHg on the process of neuronal migration itself. Moreover, we demonstrated that in utero exposure to low-level MeHg suppresses the expression of Rac1, Cdc42, and RhoA, which play key roles in the migration of cerebrocortical neurons during the early stage of brain development, suggesting that the MeHg-induced migratory disturbance of cerebrocortical neurons is likely associated with the Rho GTPases signal pathway. In conclusion, our results provide a novel perspective on clarifying the mechanisms underlying the impairment of neuronal migration induced by MeHg

  18. Trigeminal nociception-induced, cerebral Fos expression in the conscious rat

    NARCIS (Netherlands)

    Ter Horst, GJ; Meijler, WJ; Korf, J; Kemper, RHA

    2001-01-01

    Little is known about trigeminal nociception-induced cerebral activity and involvement of cerebral structures in pathogenesis of trigeminovascular headaches such as migraine. Neuroimaging has demonstrated cortical, hypothalamic and brainstem activation during the attack and after abolition with

  19. Single-frequency blue light generation by single-pass sum-frequency generation in a coupled ring cavity tapered laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-01-01

    A generic approach for generation of tunable single frequency light is presented. 340 mW of near diffraction limited, single-frequency, and tunable blue light around 459 nm is generated by sum-frequency generation (SFG) between two tunable tapered diode lasers. One diode laser is operated in a ring...... cavity and another tapered diode laser is single-passed through a nonlinear crystal which is contained in the coupled ring cavity. Using this method, the single-pass conversion efficiency is more than 25%. In contrast to SFG in an external cavity, the system is entirely self-stabilized with no electronic...

  20. Production rates and turnover of triiodothyronine in rat-developing cerebral cortex and cerebellum. Responses to hypothyroidism

    International Nuclear Information System (INIS)

    Silva, J.E.; Matthews, P.S.

    1984-01-01

    Local 5'-deiodination of serum thyroxine (T4) is the main source of triiodothyronine (T3) for the brain. Since we noted in previous studies that the cerebral cortex of neonatal rats tolerated marked reductions in serum T4 without biochemical hypothyroidism, we examined the in vivo T4 and T3 metabolism in that tissue and in the cerebellum of euthyroid and hypothyroid 2-wk-old rats. We also assessed the contribution of enhanced tissue T4 to T3 conversion and decreased T3 removal from the tissues to the T3 homeostasis in hypothyroid brain. Congenital and neonatal hypothyroidism was induced by adding methimazole to the drinking water. Serum, cerebral cortex (Cx), cerebellum (Cm), liver (L) and kidney (R) concentrations of 125I-T4, 125I-T3(T4), and 131I-T3 were measured at various times after injecting 125I-T4 and 131I-T3. The rate of T3 removal from the tissues was measured after injecting an excess of anti-T3-antibody to rats previously injected with tracer T3. In hypothyroidism, the fractional removal rates and clearances were reduced in all tissues, in cortex and cerebellum by 70%, and in liver and kidney ranging from 30 to 50%. While greater than 80% of the 125I-T3(T4) in the brain tissues of euthyroid rats was locally produced, in hypothyroid cerebral cortex and cerebellum the integrated concentrations of 125I-T3(T4) were 2.7- and 1.5-fold greater than in euthyroid rats

  1. Proteomic profiling of the rat cerebral cortex in sleep and waking.

    Science.gov (United States)

    Cirelli, C; Pfister-Genskow, M; McCarthy, D; Woodbury, R; Tononi, G

    2009-09-01

    Transcriptomic studies have shown that hundreds of genes change their expression levels across the sleep/waking cycle, and found that waking-related and sleep-related mRNAs belong to different functional categories. Proteins, however, rather than DNA or RNA, carry out most of the cellular functions, and direct measurements of protein levels and activity are required to assess the effects of behavioral states on the overall functional state of the cell. Here we used surface-enhanced laser desorption-ionization (SELDI), followed by time-of-flight mass spectrometry, to obtain a large-scale profiling of the proteins in the rat cerebral cortex whose expression is affected by sleep, spontaneous waking, short (6 hours) and long (7 days) sleep deprivation. Each of the 94 cortical samples was profiled in duplicate on 4 different ProteinChip Array surfaces using 2 different matrix molecules. Overall, 1055 protein peaks were consistently detected in cortical samples and 15 candidate biomarkers were selected for identification based on significant changes in multiple conditions (conjunction analysis): 8 "sleep" peaks, 4 "waking" peaks, and 4 "long sleep deprivation" peaks. Four candidate biomarkers were purified and positively identified. The 3353 Da candidate sleep marker was identified as the 30 amino acid C-terminal fragment of rat histone H4. This region encompasses the osteogenic growth peptide, but a possible link between sleep and this peptide remains highly speculative. Two peaks associated with short and long sleep deprivation were identified as hemoglobin alpha1/2 and beta, respectively, while another peak associated with long sleep deprivation was identified as cytochrome C. The upregulation of hemoglobins and cytochrome C may be part of a cellular stress response triggered by even short periods of sleep loss.

  2. Effect of different component ratio of Astragalus total saponins and Verbena total glycosides on the cerebral infarction area and serum biochemical indicators in the focal cerebral ischemia-reperfusion rat model

    Directory of Open Access Journals (Sweden)

    Erping Xu

    2017-05-01

    Full Text Available Our purpose is to study the effect of different component ratio of Astragalus Total Saponins (ATS and Verbena Total Glycosides (VTG on the cerebral infarction area and the serum biochemical indicators in the focal cerebral ischemia-reperfusion rat model. Compared with the model group, different component ratio of ATS and VTG could significantly improve the neurological deficit scores to the focal cerebral ischemia-reperfusion rat model, and the group of 7:3, 6:4, 5:5 got the best results; it could reduce the mortality of rat model to a certain extent, and the group of 5:5 group got the best results; it can significantly reduce the cerebral infarction area, and the group of 7:3, 5:5, 4:6 got the best results; it could significantly reduce the content of TNF-α, and the group of 8:2, 6:4 got the best results; it could significantly reduce the content of NO, and the group of 7:3, 5:5 got the best results; it could significantly increase the content of SOD, and the group of 6:4, 5:5 got the best results. This indicates that different component ratio of ATS and VTG may protect the damage of focal cerebral ischemia-reperfusion rat model to a certain extent, which are compared using the comprehensive weight method and the ratio of 5:5 was proved to be the optimal active ratio.

  3. Expression of S100 protein and protective effect of arundic acid on the rat brain in chronic cerebral hypoperfusion.

    Science.gov (United States)

    Ohtani, Ryo; Tomimoto, Hidekazu; Wakita, Hideaki; Kitaguchi, Hiroshi; Nakaji, Kayoko; Takahashi, Ryosuke

    2007-03-02

    S100 protein is expressed primarily by astroglia in the brain, and accumulates in and around the ischemic lesions. Arundic acid, a novel astroglia-modulating agent, is neuroprotective in acute cerebral infarction, whereas the protective effects remain unknown during chronic cerebral hypoperfusion. Rats undergoing chronic cerebral hypoperfusion were subjected to a bilateral ligation of the common carotid arteries, and were allowed to survive for 3, 7 and 14 days. The animals received a daily intraperitoneal injection of 5.0, 10.0 or 20.0 mg/kg of arundic acid, or vehicle, for 14 days. Alternatively, other groups of rats received a delayed intraperitoneal injection of 20.0 mg/kg of arundic acid or vehicle, which started from 1, 3 or 7 days after ligation and continued to 14 days. The degree of white matter (WM) lesions and the numerical density of S100 protein-immunoreactive astroglia were estimated. In the WM of rats with vehicle injections, the number of S100 protein-immunoreactive astroglia increased significantly after chronic cerebral hypoperfusion as compared to the sham-operation. A dosage of 10.0 and 20.0 mg/kg of arundic acid suppressed the numerical increase in S100 protein-immunoreactive astroglia and the WM lesions. These pathological changes were suppressed with delayed treatment up to 7 days in terms of astroglial activation, and up to 3 days in terms of the WM lesions. The protective effects of arundic acid against WM lesions were demonstrated in a dose-dependent manner, and even after postischemic treatments. These results suggest the potential usefulness of arundic acid in the treatment of cerebrovascular WM lesions.

  4. Actions of the pyrethroid insecticide bifenthrin on sodium channels expressed in rat cerebral cortical neurons.

    Science.gov (United States)

    Yang, Lin; Li, Li

    2015-01-01

    Voltage-gated sodium channels are important sites for the neurotoxic actions of pyrethroid insecticides in mammals. Here, we studied the mode of action of bifenthrin on the native sodium channels in cerebral cortical neurons prepared from newborn rat brain, where the toxic effects are largely generated. Bifenthrin caused a pronounced late current that persisted at the end of a depolarizing pulse, a slowly-decaying tail current following repolarization and significant resting modification (25.3% modification at 10 μM). No significant bifenthrin-induced effect was observed at the peak current. Bifenthrin also caused a concentration-dependent hyperpolarizing shift in steady-state activation and inactivation as well as slowed recovery from channel inactivation. Repetitive depolarization increased the potency of bifenthrin with high frequency. There was approximately 64% inhibition of modification upon repetitive activation by 10-Hz trains of depolarizing pulses. These results suggest that bifenthrin binds to and modifies sodium channels in both the closed and open states and exhibits the behavior between type I and type II.

  5. Neuroprotective effect of Buddleja officinalis extract on transient middle cerebral artery occlusion in rats.

    Science.gov (United States)

    Lee, Dae-Hee; Ha, Nina; Bu, Yung-Min; Choi, Hyoung Il; Park, Yoo Guen; Kim, Yoon Bum; Kim, Mi-Yeon; Kim, Hocheol

    2006-08-01

    The flower buds of Buddleja officinalis MAXIM (Loganiaceae) are used to treat headache and inflammatory diseases in traditional Korean medicine. In the present study, the neuroprotective effects of the methanolic extract of B. officinalis (BOME) and of its hexane fraction (BOHF) were investigated in a middle cerebral artery occlusion (MCAo, 120 min occlusion, 24 h reperfusion) Sprague-Dawley rat model. BOME or BOHF (100 mg/kg, p.o.) was twice administered 30 min before the onset of MCAo and 2 h after reperfusion. BOME and BOHF treated groups showed infarct volumes reduced by 33.9% and 68.2%, respectively, at 2 h occlusion. In BOHF treated animals, cyclooxygenase-2 and iNOS inductions were inhibited in ischemic hemispheres at both the mRNA and protein levels. Furthermore, in vitro studies showed that BOME and BOHF both inhibited LPS-induced nitric oxide production in BV-2 mouse microglial cells. These results suggest that the anti-inflammatory and the microglial activation inhibitory effects of B. officinalis extract may contribute to its neuroprotective effects in brain ischemia.

  6. In vivo transgenic expression of collybistin in neurons of the rat cerebral cortex.

    Science.gov (United States)

    Fekete, Christopher D; Goz, Roman U; Dinallo, Sean; Miralles, Celia P; Chiou, Tzu-Ting; Bear, John; Fiondella, Christopher G; LoTurco, Joseph J; De Blas, Angel L

    2017-04-01

    Collybistin (CB) is a guanine nucleotide exchange factor selectively localized to γ-aminobutyric acid (GABA)ergic and glycinergic postsynapses. Active CB interacts with gephyrin, inducing the submembranous clustering and the postsynaptic accumulation of gephyrin, which is a scaffold protein that recruits GABA A receptors (GABA A Rs) at the postsynapse. CB is expressed with or without a src homology 3 (SH3) domain. We have previously reported the effects on GABAergic synapses of the acute overexpression of CB SH3- or CB SH3+ in cultured hippocampal (HP) neurons. In the present communication, we are studying the effects on GABAergic synapses after chronic in vivo transgenic expression of CB2 SH3- or CB2 SH3+ in neurons of the adult rat cerebral cortex. The embryonic precursors of these cortical neurons were in utero electroporated with CB SH3- or CB SH3+ DNAs, migrated to the appropriate cortical layer, and became integrated in cortical circuits. The results show that: 1) the strength of inhibitory synapses in vivo can be enhanced by increasing the expression of CB in neurons; and 2) there are significant differences in the results between in vivo and in culture studies. J. Comp. Neurol. 525:1291-1311, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Balancing Radiation and Contrast Media Dose in Single-Pass Abdominal Multidetector CT: Prospective Evaluation of Image Quality.

    Science.gov (United States)

    Camera, Luigi; Romano, Federica; Liccardo, Immacolata; Liuzzi, Raffaele; Imbriaco, Massimo; Mainenti, Pier Paolo; Pizzuti, Laura Micol; Segreto, Sabrina; Maurea, Simone; Brunetti, Arturo

    2015-11-01

    As both contrast and radiation dose affect the quality of CT images, a constant image quality in abdominal contrast-enhanced multidetector computed tomography (CE-MDCT) could be obtained balancing radiation and contrast media dose according to the age of the patients. Seventy-two (38 Men; 34 women; aged 20-83 years) patients underwent a single-pass abdominal CE-MDCT. Patients were divided into three different age groups: A (20-44 years); B (45-65 years); and C (>65 years). For each group, a different noise index (NI) and contrast media dose (370 mgI/mL) was selected as follows: A (NI, 15; 2.5 mL/kg), B (NI, 12.5; 2 mL/kg), and C (NI, 10; 1.5 mL/kg). Radiation exposure was reported as dose-length product (DLP) in mGy × cm. For quantitative analysis, signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were calculated for both the liver (L) and the abdominal aorta (A). Statistical analysis was performed with a one-way analysis of variance. Standard imaging criteria were used for qualitative analysis. Although peak hepatic enhancement was 152 ± 16, 128 ± 12, and 101 ± 14 Hounsfield units (P contrast media dose (mL) administered were 476 ± 147 and 155 ± 27 for group A, 926 ± 291 and 130 ± 16 for group B, and 1981 ± 451 and 106 ± 15 for group C, respectively (P contrast media dose administered to patients of different age. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  8. Global and local characteristics of an autogenous single pass electron beam weld in thick gage UNS S41500 steel

    Energy Technology Data Exchange (ETDEWEB)

    Sarafan, S., E-mail: Sheida.Sarafan.1@ens.etsmtl.ca [École de Technologie Supérieure, Montréal, Québec, Canada H3C 1K3 (Canada); National Research Council Canada, Aerospace, Montréal, Québec, Canada H3T 2B2 (Canada); Wanjara, P., E-mail: priti.wanjara@nrc-cnrc.gc.ca [National Research Council Canada, Aerospace, Montréal, Québec, Canada H3T 2B2 (Canada); Gholipour, J., E-mail: Javad.gholipour@nrc-cnrc.gc.ca [National Research Council Canada, Aerospace, Montréal, Québec, Canada H3T 2B2 (Canada); Champliaud, H., E-mail: henri.champliaud@etsmtl.ca [École de Technologie Supérieure, Montréal, Québec, Canada H3C 1K3 (Canada)

    2016-06-01

    Electron beam welding of UNS S41500, a low carbon martensitic stainless steel utilized in hydroelectric turbine manufacturing, was investigated by applying a single pass autogenous process to penetrate a section thickness of 72 mm without preheating. In the as-welded and post-weld heat treated conditions, the evolution in microhardness and microstructure across the weldments, as well as the global and local tensile properties, were evaluated. In the as-welded condition, assessment of the microhardness and the associated microstructure across the welds led to the identification of six regions, including the fusion zone, four heat affected zones and the base metal; each of these regions consisted of different phase constituents, such as tempered martensite, untempered martensite, delta ferrite and retained austenite. Post-weld heat treatment, undertaken to temper the untempered martensite in the as-welded microstructure, was effective in homogenizing the hardness across the weldment. The mechanical response of the welds, determined through tensile testing at room temperature with an automated non-contact three-dimensional deformation measurement system, indicated that the global tensile properties in the as-welded and post-weld heat treated conditions met the acceptance criteria in the ASME Section IX standard. Also, evaluation of the local tensile properties in the fusion and heat affected zones of the as-welded samples allowed a more comprehensive understanding of the strength and ductility associated with the different microstructures in the “composite” nature of the weldment. Fractographic analysis demonstrated dimpled features on the tensile fracture surfaces and failure was associated with debonding between the martensitic matrix and the secondary phases (such as delta ferrite and retained austenite) that resulted in the formation, growth and coalescence of voids into a macroscale crack.

  9. Microstructure evolution of pure copper during a single pass of simple shear extrusion (SSE): role of shear reversal

    Energy Technology Data Exchange (ETDEWEB)

    Bagherpour, E., E-mail: e.bagherpour@semnan.ac.ir [Faculty of Metallurgical and Materials Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Department of Mechanical Engineering, Doshisha University, Kyotanabe, Kyoto 610–0394 (Japan); Qods, F., E-mail: qods@semnan.ac.ir [Faculty of Metallurgical and Materials Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Ebrahimi, R., E-mail: ebrahimy@shirazu.ac.ir [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Miyamoto, H., E-mail: hmiyamot@mail.doshisha.ac.jp [Department of Mechanical Engineering, Doshisha University, Kyotanabe, Kyoto 610–0394 (Japan)

    2016-06-01

    In the present paper the role of shear reversal on microstructure, texture and mechanical properties of pure copper during a single pass of the simple shear extrusion (SSE) process was investigated. For SSE processing an appropriate die with a linear die profile was designed and constructed, which imposes forward shear in the first half and reverse shear in the second half channels. Electron back-scattering diffraction (EBSD), transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) were used to evaluate the microstructure of the deformed samples. The geometrical nature of this process imposes a distribution of strain results in the inhomogeneous microstructure and the hardness throughout the plane perpendicular to the extrusion direction. Strain reversal during the process results in a slight reduction in dislocation density, the hardness and mean disorientation angle of the samples, and an increase in the grain size. After a complete pass of SSE, dislocation density decreased by ~14% if compared to the middle of the process. This suggests that the dislocation annihilation occurred by the reversal of the shear strain. The simple shear textures were formed gradually and the strongest simple shear textures were observed on the middle of the SSE channel. The degree of the simple shear textures decreases with the distance from the middle plane where the shear is reversed, but the simple shear textures are still the major components after exit of the channel. Hardness variation was modeled by contributions from dislocation strengthening and grain boundary strengthening, where dislocation density is approximated by the misorientation angle of LAGBs which are regarded as dislocation cell boundaries. As a result, the hardness can be predicted successfully by the microstructural features, i.e. the low-angle boundaries, the mean misorientation angle and the fraction of high-angle grain boundaries.

  10. Effect of certain antioxidants on cerebral ischemia induced in irradiated rats

    International Nuclear Information System (INIS)

    Abd El-Aziz, E.R.

    2008-01-01

    The present study was performed to investigate the possible roles of vitamin E, coenzyme-Q 10 and rutin in ameliorating the biochemical changes in the brain and serum induced by cerebral ischemia/reperfusion (I/R) in rats exposed to whole body gamma radiation. Induction of I/R increased the brain oxidative stress as manifested by a marked increase in its content of MDA accompanied by depletion of its GSH content, and a compensatory elevation in the cytosolic activities of GPx and GR enzymes. In addition, it caused a significant rise in brain cytosolic activity of LDH and cytosolic Ca 2+ level. Furthermore, I/R provoked a remarkable inflammatory response reflected by the observed significant increment in serum levels of the pro inflammatory cytokines TNF-α and IL-Iβ. Moreover, induction of I/R in fractionally or single irradiated rats resulted in a further increase in brain oxidative stress and cytosolic LDH activity, disturbed brain Ca 2+ homeostasis, as well as an exaggerated inflammatory reaction. Concomitant to radiation, daily administration of each of vitamin E, coenzyme-Q 10 and rutin to irradiated rats before induction of I/R, was effective in alleviating the brain oxidative stress (represented by a decrease in the increment of brain MDA concentration and the restoration of its GSH level). Moreover, each of these antioxidants caused a significant attenuation of the compensatory rise of the cytosolic activities of GPx and GR enzymes. Antioxidants were, also; able to partially correct the metabolic disturbances induced in brain by I/R and radiation, that correction was reflected by lowering of the cytosolic LDH activity and Ca 2+ level. Administration of each of vitamin E and rutin revealed a potent ant inflammatory action of these antioxidants, while coenzyme-Q 10 had no significant effect on serum levels of TNF-α and IL-Iβ. Finally, the present study justifies the use of antioxidants in hope to alleviate or minimize the various deleterious effects of

  11. Effect of certain antioxidants on cerebral ischemia induced in irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Aziz, E R [National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt)

    2008-07-01

    The present study was performed to investigate the possible roles of vitamin E, coenzyme-Q{sub 10} and rutin in ameliorating the biochemical changes in the brain and serum induced by cerebral ischemia/reperfusion (I/R) in rats exposed to whole body gamma radiation. Induction of I/R increased the brain oxidative stress as manifested by a marked increase in its content of MDA accompanied by depletion of its GSH content, and a compensatory elevation in the cytosolic activities of GPx and GR enzymes. In addition, it caused a significant rise in brain cytosolic activity of LDH and cytosolic Ca{sup 2+} level. Furthermore, I/R provoked a remarkable inflammatory response reflected by the observed significant increment in serum levels of the pro inflammatory cytokines TNF-{alpha} and IL-I{beta}. Moreover, induction of I/R in fractionally or single irradiated rats resulted in a further increase in brain oxidative stress and cytosolic LDH activity, disturbed brain Ca{sup 2+} homeostasis, as well as an exaggerated inflammatory reaction. Concomitant to radiation, daily administration of each of vitamin E, coenzyme-Q{sub 10} and rutin to irradiated rats before induction of I/R, was effective in alleviating the brain oxidative stress (represented by a decrease in the increment of brain MDA concentration and the restoration of its GSH level). Moreover, each of these antioxidants caused a significant attenuation of the compensatory rise of the cytosolic activities of GPx and GR enzymes. Antioxidants were, also; able to partially correct the metabolic disturbances induced in brain by I/R and radiation, that correction was reflected by lowering of the cytosolic LDH activity and Ca{sup 2+} level. Administration of each of vitamin E and rutin revealed a potent ant inflammatory action of these antioxidants, while coenzyme-Q{sub 10} had no significant effect on serum levels of TNF-{alpha} and IL-I{beta}. Finally, the present study justifies the use of antioxidants in hope to alleviate or

  12. Double Pass 595?nm pulsed dye laser at a 6 minute interval for the treatment of port-wine stains is not more effective than single pass

    NARCIS (Netherlands)

    Peters, M. A. D.; van Drooge, A. M.; Wolkerstorfer, A.; van Gemert, M. J. C.; van der Veen, J. P. W.; Bos, J. D.; Beek, J. F.

    2012-01-01

    Background Pulsed dye laser (PDL) is the first choice for treatment of port wine stains (PWS). However, outcome is highly variable and only a few patients achieve complete clearance. The objective of the study was to compare efficacy and safety of single pass PDL with double pass PDL at a 6 minute

  13. Physicochemical properties of bio-oil and biochar produced by fast pyrolysis of stored single-pass corn stover and cobs.

    Science.gov (United States)

    Shah, Ajay; Darr, Matthew J; Dalluge, Dustin; Medic, Dorde; Webster, Keith; Brown, Robert C

    2012-12-01

    Short harvest window of corn (Zea mays) stover necessitates its storage before utilization; however, there is not enough work towards exploring the fast pyrolysis behavior of stored biomass. This study investigated the yields and the physicochemical properties (proximate and ultimate analyses, higher heating values and acidity) of the fast pyrolysis products obtained from single-pass stover and cobs stored either inside a metal building or anaerobically within plastic wraps. Biomass samples were pyrolyzed in a 183 cm long and 2.1cm inner diameter free-fall fast pyrolysis reactor. Yields of bio-oil, biochar and non-condensable gases from different biomass samples were in the ranges of 45-55, 25-37 and 11-17 wt.%, respectively, with the highest bio-oil yield from the ensiled single-pass stover. Bio-oils generated from ensiled single-pass cobs and ensiled single-pass stover were, respectively, the most and the least acidic with the modified acid numbers of 95.0 and 65.2 mg g(-1), respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. The rate of cerebral utilization of glucose, ketone bodies, and oxygen: a comparative in vivo study of infant and adult rats.

    Science.gov (United States)

    Dahlquist, G; Persson, B

    1976-11-01

    Cerebral blood flow (CBF) was measured by means of Celabeled microspheres in infant (20-day-old) and adult (3-month-old) rats, anesthetised with Na-5-ethyl-5-(1-methylpropyl)2-thiobarbituric acid. Cerebral arteriovenous differences of acetoacetate, D-beta-hydroxybutyrate, glucose, lactate, and oxygen and brain DNA content were determined in other groups of similarly treated infant and adult animals fed or starved for 48 or 72 hr. The mean CBF values of 0.48+/-0.04 and 0.62+/-0.07 ml/(g X min), +/- SEM, in infant and adult animals, respectively, were not significantly different. CBF was unaffected by starvation. At any given arterial concentration the cerebral arteriovenous difference of acetoacetate was significantly higher in infant than adult rats. The same was true for D-beta-hydroxybutyrate at arterial concentrations above 1 mmol/liter. There was an approximately linear relationship between arterial concentration of acetoacetate and its cerebral arteriovenous difference in both infant and adult rats. A similar relationship was found for D-beta-hydroxybutyrate only in infant animals. In the fed state, the cerebral uptake of glucose and ketone bodies (micromoles per (mg DNA X min)) was not different in infant and adult rats. During starvation, cerebral uptake of ketone bodies expressed as micromoles per (mg DNA X min) was higher in infant than adult rats, indicating a higher rate of utilization of ketone bodies per cell in these animals. For glucose, no such difference was found in either fed or starved groups (Table 3). The average percentage of the total cerebral uptake of substrates (micromoles per min) accounted for by ketone bodies increased in both infant and adult rats during starvation. This percentage value was clearly higher in infant than adult rats during starvation. After 72 hr of starvation the values were 38.8% and 15.2% in infant and adult rats, respectively (Fig. 3). Calculated cerebral metabolic rate for oxygen (CMRO2), assuming complete

  15. [Effect of Tongluo Xingnao effervescent tablets on learning and memory dysfunction in rats with chronic cerebral ischemia].

    Science.gov (United States)

    Hu, Yong; Ju, Shao-Hua; Zhang, Yin-Jie; Xiong, Min; Xu, Shi-Jun; Ma, Yun-Tong; Zhong, Zhen-Dong

    2014-05-01

    To study the effect of Tongluo Xingnao effervescent tablets on learning and memory capacity and expression of Na(+)-K(+)-ATPase in hippocampus of rats with chronic cerebral ischemia-induced learning and memory dysfunction model. The 2-VO method was used to establish sd rat model learning and memory dysfunction induced by chronic cerebral ischemia. The 50 rats in the successfully established model were randomly divided into the model control group, the Dihydroergotoxine Mesylate tablets group (0.7 mg x kg(-1), Tongluo Xingnao effervescent tablets high dose (7.56 g x kg(-1)), middle dose (3.78 g x kg(-1)) and low dose (1.59 g x kg(-1)) groups and the sham operation group (n = 10) as the control group. The groups were orally given 10 ml x kg(-1) x d(-1) drugs for consecutively 90 days. On the 86th day, Morris water maze was adopted for them. On the 90th day, a leaning and memory capacity test was held. The brain tissues were fixed with 10% formaldehyde and observed for pathomorphism after routine slide preparation and staining. The expression of hippocampal Na(+)-K(+)-ATPase was detected with immunohistochemistry and image quantitative analysis. Compared with the model group, all of Tongluo Xingnao effervescent tablets groups showed significant decrease in the escape latency at the 5th day in the Morris water maze, and notable increase in the frequency of the first quadrant dwell, the frequency passing the escape platform and the frequency entering effective area (p tablets can improve the learning and memory capacity, reduce pathological changes of hippocampal tissues of rats with chronic cerebral ischemia-induced learning and memory dysfunction model, and promote the expression of Na(+)-K(+)-ATPase in hippocampus.

  16. Mechanics and composition of middle cerebral arteries from simulated microgravity rats with and without 1-h/d -Gx gravitation.

    Directory of Open Access Journals (Sweden)

    Jiu-Hua Cheng

    Full Text Available BACKGROUND: To elucidate further from the biomechanical aspect whether microgravity-induced cerebral vascular mal-adaptation might be a contributing factor to postflight orthostatic intolerance and the underlying mechanism accounting for the potential effectiveness of intermittent artificial gravity (IAG in preventing this adverse effect. METHODOLOGY/PRINCIPAL FINDINGS: Middle cerebral arteries (MCAs were isolated from 28-day SUS (tail-suspended, head-down tilt rats to simulate microgravity effect, S+D (SUS plus 1-h/d -Gx gravitation by normal standing to simulate IAG, and CON (control rats. Vascular myogenic reactivity and circumferential stress-strain and axial force-pressure relationships and overall stiffness were examined using pressure arteriography and calculated. Acellular matrix components were quantified by electron microscopy. The results demonstrate that myogenic reactivity is susceptible to previous pressure-induced, serial constrictions. During the first-run of pressure increments, active MCAs from SUS rats can strongly stiffen their wall and maintain the vessels at very low strains, which can be prevented by the simulated IAG countermeasure. The strains are 0.03 and 0.14 respectively for SUS and S+D, while circumferential stress being kept at 0.5 (106 dyn/cm2. During the second-run pressure steps, both the myogenic reactivity and active stiffness of the three groups declined. The distensibility of passive MCAs from S+D is significantly higher than CON and SUS, which may help to attenuate the vasodilatation impairment at low levels of pressure. Collagen and elastin percentages were increased and decreased, respectively, in MCAs from SUS and S+D as compared with CON; however, elastin was higher in S+D than SUS rats. CONCLUSIONS: Susceptibility to previous myogenic constrictions seems to be a self-limiting protective mechanism in cerebral small resistance arteries to prevent undue cerebral vasoconstriction during orthostasis at 1-G

  17. Transplanted Dental Pulp Stem Cells Migrate to Injured Area and Express Neural Markers in a Rat Model of Cerebral Ischemia.

    Science.gov (United States)

    Zhang, Xuemei; Zhou, Yinglian; Li, Hulun; Wang, Rui; Yang, Dan; Li, Bing; Cao, Xiaofang; Fu, Jin

    2018-01-01

    Ischemic stroke is a major cause of disability and mortality worldwide, while effective restorative treatments are limited at present. Stem cell transplantation holds therapeutic potential for ischemic vascular diseases and may provide an opportunity for neural regeneration. Dental pulp stem cells (DPSCs) origin from neural crest and have neuro-ectodermal features including proliferation and multilineage differentiation potentials. The rat model of middle cerebral artery occlusion (MCAO) was used to evaluate whether intravenous administration of DPSCs can reduce infarct size and to estimate the migration and trans-differentiation into neuron-like cells in focal cerebral ischemia models. Brain tissues were collected at 4 weeks following cell transplantation and analyzed with immunofluorescence, immunohistochemistry and real-time polymerase chain reaction (RT-PCR) methods. Intravenously administration of rat-derived DPSCs were found to migrate into the boundary of ischemic areas and expressed neural specific markers, reducing infarct volume and cerebral edema. These results suggest that DPSCs treatment may serve as a potential therapy for clinical stroke patients in the future. © 2018 The Author(s). Published by S. Karger AG, Basel.

  18. Neuroprotective effect of safranal, an active ingredient of Crocus sativus , in a rat model of transient cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Hamid R. Sadeghnia

    2017-09-01

    Full Text Available Safranal is a monoterpene aldehyde found in saffron (Crocus sativus L. petals. It has been previously reported that safranal has a wide range of activities such as antioxidant and anti-inflammatory effects. In this study, we examined the effect of safranal on brain injuries in a transient model of focal cerebral ischemia. Transient focal cerebral ischemia was induced by middle cerebral artery occlusion for 30 min, followed by 24 h of reperfusion. Safranal in the doses of 72.5 and 145 mg/kg was administered intraperitoneally at 0, 3, and 6 h after reperfusion. Neurobehavioral deficit, infarct volume, hippocampal cell loss and markers of oxidative stress including thiobarbituric acid reactive substances (TBARS, total sulfhydryl (SH content, and antioxidant capacity (using FRAP assay were also assessed. The focal cerebral ischemia induced a significant increase in the neurological score, infarct volume and neuronal cell loss in the ipsilateral hippocampal CA1 and CA3 subfields (p < 0.001 and also oxidative stress markers (p < 0.01. Following safranal administration, the total SH content and antioxidant capacity significantly increased, while marked decreases were observed in the neurological score, infarct volume and hippocampal cell loss, as well as TBARS level. This study concluded that safranal had protective effects on ischemic reperfusion injury in the rat model of stroke. Such effects of safranal may have been exerted mainly by suppressing the production of free radicals and increasing antioxidant activity.

  19. Effect of ligustrazine on levels of amino acid neurotransmitters in rat striatum after cerebral ischemia-reperfusion injury.

    Science.gov (United States)

    Han, Jin; Wan, Hai-Tong; Yang, Jie-Hong; Zhang, Yu-Yan; Ge, Li-Jun; Bie, Xiao-Dong

    2014-01-01

    This study aimed to evaluate the effect of ligustrazine on levels of amino acid transmitters in the extracellular fluid of striatum following cerebral ischemia/reperfusion (I/R) in male Sprague-Dawley rats. A microdialysis cannula guide was implanted into the right striatum. After recovery, animals underwent a sham operation or middle cerebral artery occlusion (MCAO). Those that developed cerebral ischemia after MCAO were randomized to receive propylene glycol salt water and ligustrazine respectively. Striatal fluid samples were collected from all animals at 15-min intervals after treatment and were subjected to HPLC analysis of aspartic acid, glutamic acid, taurine, and γ-amino butyric acid. Upon the last sample collection, animals were sacrificed and brain tissue specimens were collected for triphenyltetrazolium chloride staining and NeuN staining. Compared with the sham operation, MCAO induced significant neurological deficits and increased striatal concentrations of the four neurotransmitters assessed in a time-dependent manner (P cerebral infarction-protective agent may have potential clinical implications for I/R-related brain damage.

  20. Double-tracer autoradiographic study of protein synthesis and glucose consumption in rats with focal cerebral ischemia

    DEFF Research Database (Denmark)

    Christensen, Thomas; Balchen, T; Bruhn, T

    1999-01-01

    A double-tracer autoradiographic method for simultaneous measurement of regional glucose utilization (rCMRglc) and regional protein synthesis (PS) in consecutive brain sections is described and applied to study the metabolism of the ischemic penumbra 2 h after occlusion of the middle cerebral...... artery (MCAO) in rats. In halothane anesthesia, the left middle cerebral artery was permanently occluded. Two hours after MCAO an i.v. bolus injection of 14C-deoxyglucose and 3H-leucine was given and circulated for 45 min. Two sets of brain sections were processed for quantitative autoradiography....... Neighboring brain sections exposed an X-ray film (3H-insensitive), and a 3H-sensitive for determination of rCMRglc and PS, respectively. Sections for PS determination were washed in trichloroacetic acid (TCA) prior to film exposure in order to remove 14C-deoxyglucose and unincorporated 3H-leucine. Regional...

  1. A microarray study of gene and protein regulation in human and rat brain following middle cerebral artery occlusion

    Science.gov (United States)

    Mitsios, Nick; Saka, Mohamad; Krupinski, Jerzy; Pennucci, Roberta; Sanfeliu, Coral; Wang, Qiuyu; Rubio, Francisco; Gaffney, John; Kumar, Pat; Kumar, Shant; Sullivan, Matthew; Slevin, Mark

    2007-01-01

    Background Altered gene expression is an important feature of ischemic cerebral injury and affects proteins of many functional classes. We have used microarrays to investigate the changes in gene expression at various times after middle cerebral artery occlusion in human and rat brain. Results Our results demonstrated a significant difference in the number of genes affected and the time-course of expression between the two cases. The total number of deregulated genes in the rat was 335 versus 126 in the human, while, of 393 overlapping genes between the two array sets, 184 were changed only in the rat and 36 in the human with a total of 41 genes deregulated in both cases. Interestingly, the mean fold changes were much higher in the human. The expression of novel genes, including p21-activated kinase 1 (PAK1), matrix metalloproteinase 11 (MMP11) and integrase interactor 1, was further analyzed by RT-PCR, Western blotting and immunohistochemistry. Strong neuronal staining was seen for PAK1 and MMP11. Conclusion Our findings confirmed previous studies reporting that gene expression screening can detect known and unknown transcriptional features of stroke and highlight the importance of research using human brain tissue in the search for novel therapeutic agents. PMID:17997827

  2. Cerebral changes occurring in arginase and dimethylarginine dimethylaminohydrolase (DDAH in a rat model of sleeping sickness.

    Directory of Open Access Journals (Sweden)

    Donia Amrouni

    2011-03-01

    Full Text Available Involvement of nitric oxide (NO in the pathophysiology of human African trypanosomiasis (HAT was analyzed in a HAT animal model (rat infected with Trypanosoma brucei brucei. With this model, it was previously reported that trypanosomes were capable of limiting trypanocidal properties carried by NO by decreasing its blood concentration. It was also observed that brain NO concentration, contrary to blood, increases throughout the infection process. The present approach analyses the brain impairments occurring in the regulations exerted by arginase and N(G, N(G-dimethylarginine dimethylaminohydrolase (DDAH on NO Synthases (NOS. In this respect: (i cerebral enzymatic activities, mRNA and protein expression of arginase and DDAH were determined; (ii immunohistochemical distribution and morphometric parameters of cells expressing DDAH-1 and DDAH-2 isoforms were examined within the diencephalon; (iii amino acid profiles relating to NOS/arginase/DDAH pathways were established.Arginase and DDAH activities together with mRNA (RT-PCR and protein (western-blot expressions were determined in diencephalic brain structures of healthy or infected rats at various days post-infection (D5, D10, D16, D22. While arginase activity remained constant, that of DDAH increased at D10 (+65% and D16 (+51% in agreement with western-blot and amino acids data (liquid chromatography tandem-mass spectrometry. Only DDAH-2 isoform appeared to be up-regulated at the transcriptional level throughout the infection process. Immunohistochemical staining further revealed that DDAH-1 and DDAH-2 are contained within interneurons and neurons, respectively.In the brain of infected animals, the lack of change observed in arginase activity indicates that polyamine production is not enhanced. Increases in DDAH-2 isoform may contribute to the overproduction of NO. These changes are at variance with those reported in the periphery. As a whole, the above processes may ensure additive protection

  3. Prophylactic action of Alpha-tocopherol against Gamma irradiation changes in total lipid and phospholipid contents of brain cerebral hemispheres in Rats

    Energy Technology Data Exchange (ETDEWEB)

    Mahdy, A M; Helen, N S; Roushdy, H M [National Centre for Radiation Research and Technology, Cairo (Egypt)

    1987-12-31

    Male albino rats were intraperitoneally injected with Gamma tocopherol (vitamin E) at 10 mg/100 g animal body weight, 2 hr, before irradiation exposure. exposure. Rats were then exposed to a whole body dose of gamma irradiation at 7 Gy. Rats were sacrificed 1, 3, 7 and 10 days post irradiation. The two cerebral hemispheres were taken to determine the phospholipids and total lipid contents. whole body gamma irradiation of rats at 7 Gy caused a significant decrease in the levels of both phospholipids and total lipid contents in the cerebral hemispheres on the 3 rd, 7 Th, and 10 Th days post-irradiation, the decrease was insignificant on the 1 st day post exposure. The variations were less pronounced in rats treated with vitamin E. The results obtained were discussed in view of the relevant literature. 2 tabs.

  4. Insulin promotes diacylglycerol kinase activation by different mechanisms in rat cerebral cortex synaptosomes.

    Science.gov (United States)

    Zulian, Sandra E; Ilincheta de Boschero, Mónica G; Giusto, Norma M

    2006-10-01

    The mechanism by which insulin increases diacylglycerol kinase (DAGK) activity has been studied in cerebral cortex (CC) synaptosomes from adult (3-4 months of age) rats. The purpose of this study was to identify the role of phospholipases C and D (PLC and PLD) in DAGK activation by insulin. Neomycin, an inhibitor of PLC phosphatidylinositol-bisphosphate (PIP2) specific; ethanol, an inhibitor of phosphatidic acid (PA) formation by the promotion of a transphosphatidyl reaction of phosphatidylcholine phospholipase D (PC-PLD); and DL propranolol, an inhibitor of phosphatidate phosphohydrolase (PAP), were used in this study. Insulin (0.1 microM) shielded an increase in PA synthesis by [32P] incorporation using [gamma-32P]ATP as substrate and endogenous diacylglycerol (DAG) as co-substrate. This activated synthesis was strongly inhibited either by ethanol or DL propranolol. Pulse chase experiments also showed a PIP2-PLC activation within 1 min exposure to insulin. When exogenous unsaturated 18:0-20:4 DAG was present, insulin increased PA synthesis significantly. However, this stimulatory effect was not observed in the presence of exogenous saturated (di-16:0). In the presence of R59022, a selective DAGK inhibitor, insulin exerted no stimulatory effect on [32P]PA formation, suggesting a strong relationship between increased PA formation by insulin and DAGK activity. These data indicate that the increased synthesis of PA by insulin could be mediated by the activation of both a PC-PLD pathway to provide DAG and a direct DAGK activation that is associated to the use of 18:0-20:4 DAG species. PIP2-PLC activation may contribute at least partly to the insulin effect on DAGK activity. Copyright 2006 Wiley-Liss, Inc.

  5. Central alpha2 adrenergic receptors in the rat cerebral cortex: repopulation kinetics and receptor reserve

    International Nuclear Information System (INIS)

    Adler, C.H.

    1986-01-01

    The alpha 2 adrenergic receptor subtype is thought to play a role in the mechanism of action of antidepressant and antihypertensive drugs. This thesis has attempted to shed light on the regulation of central alpha 2 adrenergic receptors in the rat cerebral cortex. Repopulation kinetics analysis allows for the determination of the rate of receptor production, rate constant of degradation, and half-life of the receptor. This analysis was carried out using both radioligand binding and functional receptor assays at various times following the irreversible inactivation of central alpha 2 adrenergic receptors by in vivo administration of N-ethoxycarbonyl-2-ethyoxy-1,2-dihydroquinoline (EEDQ). Both alpha 2 agonist and antagonist ligand binding sites recovered with a t/sub 1/2/ equal to approximately 4 days. The function of alpha 2 adrenergic autoreceptors, which inhibit stimulation-evoked release of 3 H-norepinephrine ( 3 H-NE) and alpha 2 adrenergic heteroreceptors which inhibit stimulation-evoked release of 3 H-serotonin ( 3 H-5-HT) were assayed. The t/sub 1/2/ for recovery of maximal autoreceptor and heteroreceptor function was 2.4 days and 4.6 days, respectively. The demonstration of a receptor reserve is critical to the interpretation of past and future studies of the alpha 2 adrenergic receptor since it demonstrates that: (1) alterations in the number of alpha 2 adrenergic receptor binding sites cannot be extrapolated to the actual function of the alpha 2 adrenergic receptor; and (2) alterations in the number of alpha 2 receptors is not necessarily accompanied by a change in the maximum function being studied, but may only result in shifting of the dose-response curve

  6. Phosphodiesterase inhibitors enhance object memory independent of cerebral blood flow and glucose utilization in rats.

    Science.gov (United States)

    Rutten, Kris; Van Donkelaar, Eva L; Ferrington, Linda; Blokland, Arjan; Bollen, Eva; Steinbusch, Harry Wm; Kelly, Paul At; Prickaerts, Jos Hhj

    2009-07-01

    Phosphodiesterase (PDE) inhibitors prevent the breakdown of the second messengers, cyclic AMP (cAMP) and cyclic GMP (cGMP), and are currently studied as possible targets for cognitive enhancement. Earlier studies indicated beneficial effects of PDE inhibitors in object recognition. In this study we tested the effects of three PDE inhibitors on spatial memory as assessed in a place and object recognition task. Furthermore, as both cAMP and cGMP are known vasodilators, the effects of PDE inhibition on cognitive functions could be explained by enhancement of cerebrovascular function. We examined this possibility by measuring the effects of PDE5 and PDE4 inhibitor treatment on local cerebral blood flow and glucose utilization in rats using [14C]-iodoantipyrine and [14C]-2-deoxyglucose quantitative autoradiography, respectively. In the spatial location task, PDE5 inhibition (cGMP) with vardenafil enhanced only early phase consolidation, PDE4 inhibition (cAMP) with rolipram enhanced only late phase consolidation, and PDE2 inhibition (cAMP and cGMP) with Bay 60-7550 enhanced both consolidation processes. Furthermore, PDE5 inhibition had no cerebrovascular effects in hippocampal or rhinal areas. PDE4 inhibition increased rhinal, but not hippocampal blood flow, whereas it decreased glucose utilization in both areas. In general, PDE5 inhibition decreased the ratio between blood flow and glucose utilization, indicative of general oligaemia; whereas PDE4 inhibition increased this ratio, indicative of general hyperemia. Both oligaemic and hyperemic conditions are detrimental for brain function and do not explain memory enhancement. These results underscore the specific effects of cAMP and cGMP on memory consolidation (object and spatial memory) and provide evidence that the underlying mechanisms of PDE inhibition on cognition are independent of cerebrovascular effects.

  7. Revealing the cerebral regions and networks mediating vulnerability to depression: oxidative metabolism mapping of rat brain.

    Science.gov (United States)

    Harro, Jaanus; Kanarik, Margus; Kaart, Tanel; Matrov, Denis; Kõiv, Kadri; Mällo, Tanel; Del Río, Joaquin; Tordera, Rosa M; Ramirez, Maria J

    2014-07-01

    The large variety of available animal models has revealed much on the neurobiology of depression, but each model appears as specific to a significant extent, and distinction between stress response, pathogenesis of depression and underlying vulnerability is difficult to make. Evidence from epidemiological studies suggests that depression occurs in biologically predisposed subjects under impact of adverse life events. We applied the diathesis-stress concept to reveal brain regions and functional networks that mediate vulnerability to depression and response to chronic stress by collapsing data on cerebral long term neuronal activity as measured by cytochrome c oxidase histochemistry in distinct animal models. Rats were rendered vulnerable to depression either by partial serotonergic lesion or by maternal deprivation, or selected for a vulnerable phenotype (low positive affect, low novelty-related activity or high hedonic response). Environmental adversity was brought about by applying chronic variable stress or chronic social defeat. Several brain regions, most significantly median raphe, habenula, retrosplenial cortex and reticular thalamus, were universally implicated in long-term metabolic stress response, vulnerability to depression, or both. Vulnerability was associated with higher oxidative metabolism levels as compared to resilience to chronic stress. Chronic stress, in contrast, had three distinct patterns of effect on oxidative metabolism in vulnerable vs. resilient animals. In general, associations between regional activities in several brain circuits were strongest in vulnerable animals, and chronic stress disrupted this interrelatedness. These findings highlight networks that underlie resilience to stress, and the distinct response to stress that occurs in vulnerable subjects. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Evidence that two stereochemically different alpha-2 adrenoceptors modulate norepinephrine release in rat cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Harsing, L.G. Jr.; Vizi, E.S. (Institute of Experimental Medicine, Budapest (Hungary))

    1991-01-01

    Cerebral cortex slices from the rat were loaded with (3H)norepinephrine ((3H)NE) and superfused in order to measure the release of radioactivity at rest and in response to electrical stimulation. The (-)-isomer and the (+)-isomer of CH-38083 (7,8-(methylenedioxy)-14- alpha-hydroxyalloberbane HCl), a selective alpha-2-adrenoceptor antagonist with an alloberbane skeleton, increased the electrically induced release of (3H)NE in a concentration-dependent manner, and a similar effect was observed with racemic CH-38083 and idazoxan. The stereoisomers of CH-38083 applied in a concentration range of 10(-8) to 10(-6) mol/l were equipotent in facilitating stimulation-evoked (3H)NE release: concentrations needed to enhance tritium outflow by 50% were 1.3 X 10(-7) mol/l for (-)-CH-38083 and 1.4 X 10(-7) mol/l for (+)-CH-38083. Exogenous NE decreased the electrically stimulated release of (3H)NE, and the stereoisomers of CH-38083 antagonized this inhibition with different potencies: the dissociation constant (KB) values for (-)-isomer and for (+)-isomer of CH-38083 were 14.29 and 97.18 nmol/l. These data indicate that presynaptic alpha-2 adrenoceptors that are available for NE released from axon terminals do not show stereospecificity toward enantiomers of CH-38083, whereas those that are occupied by exogenous NE are much more sensitive toward (-)-CH-38083. The alpha-1 adrenoceptor antagonist prazosin also differentiated between the alpha-2 adrenoceptor subtypes: prazosin (10(-6) mol/l) did not alter the increase of electrically induced (3H)NE release evoked by (-)- and (+)-CH-38083; however, in its presence, the stereoisomers of CH-38083 failed to antagonize the inhibitory effect of exogenous NE on its own release.

  9. Responsiveness of cerebral and hepatic cytochrome P450s in rat offspring prenatally exposed to lindane

    International Nuclear Information System (INIS)

    Johri, Ashu; Yadav, Sanjay; Dhawan, Alok; Parmar, Devendra

    2008-01-01

    ABSTRACT: Prenatal exposure to low doses of lindane has been shown to affect the ontogeny of xenobiotic metabolizing cytochrome P450s (CYPs), involved in the metabolism and neurobehavioral toxicity of lindane. Attempts were made in the present study to investigate the responsiveness of CYPs in offspring prenatally exposed to lindane (0.25 mg/kg b. wt.; 1/350th of LD 50 ; p. o. to mother) when challenged with 3-methylcholanthrene (MC) or phenobarbital (PB), inducers of CYP1A and 2B families or a sub-convulsant dose of lindane (30 mg/kg b. wt., p. o.) later in life. Prenatal exposure to lindane was found to produce an increase in the mRNA and protein expression of CYP1A1, 1A2, 2B1, 2B2 isoforms in brain and liver of the offspring at postnatal day 50. The increased expression of the CYPs in the offspring suggests the sensitivity of the CYPs during postnatal development, possibly, to low levels of lindane, which may partition into mother's milk. A higher increase in expression of CYP1A and 2B isoenzymes and their catalytic activity was observed in animals pretreated prenatally with lindane and challenged with MC (30 mg/kg, i. p. x 5 days) or PB (80 mg/kg, i. p. x 5 days) when young at age (approx. 7 weeks) compared to animals exposed to MC or PB alone. Further, challenge of the control and prenatally exposed offspring with a single sub-convulsant dose of lindane resulted in an earlier onset and increased incidence of convulsions in the offspring prenatally exposed to lindane have demonstrated sensitivity of the CYPs in the prenatally exposed offspring. Our data assume significance as the subtle changes in the expression profiles of hepatic and cerebral CYPs in rat offspring during postnatal development could modify the adult response to a later exposure to xenobiotics

  10. Postoperative intermittent fasting prevents hippocampal oxidative stress and memory deficits in a rat model of chronic cerebral hypoperfusion.

    Science.gov (United States)

    Hu, Yuan; Zhang, Miao; Chen, Yunyun; Yang, Ying; Zhang, Jun-Jian

    2018-01-11

    Whether intermittent fasting (IF) treatment after stroke can prevent its long-term detrimental effects remains unknown. Here, we investigate the effects of postoperative IF on cognitive deficits and its underlying mechanisms in a permanent two-vessel occlusion (2VO) vascular dementia rat model. Rats were subjected to either IF or ad libitum feeding 1 week after 2VO surgery. The cognition of rats was assessed using the novel object recognition (NOR) task and Morris water maze (MWM) 8 weeks after surgery. After behavioral testing, hippocampal malondialdehyde (MDA) and glutathione (GSH) concentrations, superoxide dismutase (SOD) activity, gene expression of antioxidative enzymes, inflammatory protein levels, and microglia density were determined. Postoperative IF significantly ameliorated the cognitive performance of 2VO rats in the NOR and MWM tests. Cognitive enhancement paralleled preservation of the PSD95 and BDNF levels in the 2VO rat hippocampus. Mechanistically, postoperative IF mitigated hippocampal oxidative stress in 2VO rats, as indicated by the reduced MDA concentration and mRNA and the protein levels of the reactive oxygen species-generating enzyme nicotinamide adenine dinucleotide phosphate oxidase 1. IF treatment also preserved the GSH level and SOD activity, as well as the levels of their upstream regulating enzymes, resulting in preserved antioxidative capability. In addition, postoperative IF prevented hippocampal microglial activation and elevation of sphingosine 1-phosphate receptor 1 and inflammatory cytokines in 2VO rats. Our results suggest that postoperative IF suppresses neuroinflammation and oxidative stress induced by chronic cerebral ischemia, thereby preserving cognitive function in a vascular dementia rat model.

  11. [Effect of Electroacupuncture on Cerebro-cortex Caspase-3 Expression and Blood Lipid Levels in Hyperlipemia Rats with Cerebral Ischemia].

    Science.gov (United States)

    Wang, Zhuo-Yu; Ma, Jia-Jia; Guan, Han-Yu; Tian, Yao; Ren, Xiu-Jun; Ma, Hui-Fang

    2017-04-25

    To observe the effect of electroacupuncture (EA) stimulation of "Fenglong" (ST 40), "Sanyinjiao" (SP 6) plus manual acupuncture (MA) stimulation of "Shuigou" (GV 26) and "Baihui" (GV 20) on Caspase-3 protein expression in the cerebral cortex of rats with hyperlipemia and cerebral ischemia(HL-CI),so as to reveal its mechanisms underlying improvement of HL-CI. Forty-five rats were randomly divided into normal control,sham operation,model,EA group I(EA+MA was given for 14 days, i.e., 7 days before CI, and 7 days more after HL-CI)and EA group Ⅱ (EA+MA was given for only 7 days after HL-CI),with 9 rats being in each group. The HL-CI model was established by feeding the animals with high fat forage for 6 weeks and then making an occlusion of the unilateral middle cerebral artery by regional application of quantitative paper adsorbing 50% FeCl 3 solution (10 μL). Rats of the sham operation group were treated with the same procedures only without application of FeCl 3 solution. For rats of the EA group I,EA (1-3 mA, 2 Hz/100 Hz) was applied to bilateral acupoints SP 6 and ST 40 (for 20 min),and MA stimulation applied to GV 26 and GV 20. EA was conducted once daily for 7 days after 6 weeks' high fat fo-rage feeding, and EA+MA intervention was conducted once daily for 7 days after CI modeling. For rats in the EA group Ⅱ, EA+MA was applied to the same 4 acupoints once a day for 7 days only after CI modeling. The neurological impairment was assessed by Zea Longa's scoring. The blood sample was taken from the abdominal aorta for measuring the contents of serum cholesterol (CHO),triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C). Pathological changes of the cerebral cortex were observed after H.E. staining, and the expression of cerebro-cortex Caspase-3 was analyzed by immunohistochemistry. Following modeling,the neurological score,CHO, TG and LDL-C contents, and the number of Caspase-3 positive cells as well

  12. Subarachnoid hemorrhage induces enhanced expression of thromboxane A2 receptors in rat cerebral arteries

    DEFF Research Database (Denmark)

    Ansar, Saema; Larsen, Carl; Maddahi, Aida

    2010-01-01

    Cerebral ischemia remains the key cause of morbidity and mortality after subarachnoid hemorrhage (SAH) with a pathogenesis that is still poorly understood. The aim of the present study was to examine the involvement of thromboxane A(2) receptors (TP) in the pathophysiology of cerebral ischemia...

  13. Global cerebral blood flow and metabolism during acute hyperketonemia in the awake and anesthetized rat

    DEFF Research Database (Denmark)

    Linde, Rasmus; Hasselbalch, Steen G.; Topp, Simon

    2006-01-01

    and cerebral metabolism could not be explained by alterations in blood pH or arterial CO2 tension. By measuring cerebral intracellular pH by 31P nuclear magnetic resonance spectroscopy, it could further be concluded that the brain pH was unchanged during acute hyperketonemia. These observations indicate......In the human setting, it has been shown that acute increase in the concentration of ketone bodies by infusion of beta-hydroxybutyrate increased the cerebral blood flow (CBF) without affecting the overall cerebral metabolic activity. The mechanism by which this effect of ketone bodies was mediated...... that the mechanism responsible for the increase in CBF is rather a direct effect on the cerebral endothelium than via some metabolic interactions...

  14. The free radical spin-trap alpha-PBN attenuates periinfarct depolarizations following permanent middle cerebral artery occlusion in rats without reducing infarct volume

    DEFF Research Database (Denmark)

    Christensen, Thomas; Bruhn, Torben; Diemer, Nils Henrik

    2003-01-01

    The effect of the free radical spin-trap alpha-phenyl-butyl-tert-nitrone (alpha-PBN) in permanent focal cerebral ischemia in rats was examined in two series of experiments. In the first, rats were subjected to permanent occlusion of the middle cerebral artery (MCAO) and treated 1 h after occlusion...... with a single dose of alpha-PBN (100 mg/kg) or saline. Body temperature was measured and controlled for the first 24 h to obtain identical temperature curves in the two groups. Cortical infarct volumes were determined on histological sections 7 days later. alpha-PBN did not significantly reduce infarct volume...

  15. Repetitive Neonatal Erythropoietin and Melatonin Combinatorial Treatment Provides Sustained Repair of Functional Deficits in a Rat Model of Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Lauren L. Jantzie

    2018-04-01

    Full Text Available Cerebral palsy (CP is the leading cause of motor impairment for children worldwide and results from perinatal brain injury (PBI. To test novel therapeutics to mitigate deficits from PBI, we developed a rat model of extreme preterm birth (<28 weeks of gestation that mimics dual intrauterine injury from placental underperfusion and chorioamnionitis. We hypothesized that a sustained postnatal treatment regimen that combines the endogenous neuroreparative agents erythropoietin (EPO and melatonin (MLT would mitigate molecular, sensorimotor, and cognitive abnormalities in adults rats following prenatal injury. On embryonic day 18 (E18, a laparotomy was performed in pregnant Sprague–Dawley rats. Uterine artery occlusion was performed for 60 min to induce placental insufficiency via transient systemic hypoxia-ischemia, followed by intra-amniotic injections of lipopolysaccharide, and laparotomy closure. On postnatal day 1 (P1, approximately equivalent to 30 weeks of gestation, injured rats were randomized to an extended EPO + MLT treatment regimen, or vehicle (sterile saline from P1 to P10. Behavioral assays were performed along an extended developmental time course (n = 6–29. Open field testing shows injured rats exhibit hypermobility and disinhibition and that combined neonatal EPO + MLT treatment repairs disinhibition in injured rats, while EPO alone does not. Furthermore, EPO + MLT normalizes hindlimb deficits, including reduced paw area and paw pressure at peak stance, and elevated percent shared stance after prenatal injury. Injured rats had fewer social interactions than shams, and EPO + MLT normalized social drive. Touchscreen operant chamber testing of visual discrimination and reversal shows that EPO + MLT at least partially normalizes theses complex cognitive tasks. Together, these data indicate EPO + MLT can potentially repair multiple sensorimotor, cognitive, and behavioral realms following PBI, using

  16. Changes in cerebral [18F]-FDG uptake induced by acute alcohol administration in a rat model of alcoholism.

    Science.gov (United States)

    Gispert, Juan D; Figueiras, Francisca P; Vengeliene, Valentina; Herance, José R; Rojas, Santiago; Spanagel, Rainer

    2017-06-01

    Several [ 18 F]-FDG positron emission tomography (PET) studies in alcoholics have consistently reported decreases in overall brain glucose metabolism at rest and following acute alcohol administration. However, changes in cerebral glucose utilization associated with the transition to addiction are not well understood and require longitudinal translational imaging studies in animal models of alcoholism. Here, we studied brain glucose uptake in alcohol drinking rats in order to provide convergent evidence to what has previously been reported in human studies. Brain glucose metabolism was measured by [ 18 F]-FDG microPET imaging in different male Wistar rat groups: short-term drinking (three months), long-term drinking (twelve months) and alcohol-naïve. Global and regional cerebral glucose uptake was measured at rest and following acute alcohol administration. We showed that alcohol significantly reduced the whole-brain glucose metabolism. This effect was most pronounced in the parietal cortex and cerebellum. Alcohol-induced decreases in brain [ 18 F]-FDG uptake was most apparent in alcohol-naïve rats, less intense in short-term drinkers and absent in long-term drinkers. The latter finding indicates the occurrence of tolerance to the intoxicating effects of alcohol in long-term drinking individuals. In contrast, some regions, like the ventral striatum and entorhinal cortex, showed enhanced metabolic activity, an effect that did not undergo tolerance during long-term alcohol consumption. Our findings are comparable to those described in human studies using the same methodology. We conclude that [ 18 F]-FDG PET studies in rat models of alcoholism provide good translation and can be used for future longitudinal studies investigating alterations in brain function during different stages of the addiction cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Dl-3-n-Butylphthalide Treatment Enhances Hemodynamics and Ameliorates Memory Deficits in Rats with Chronic Cerebral Hypoperfusion

    Directory of Open Access Journals (Sweden)

    Zhilin Xiong

    2017-07-01

    Full Text Available Our previous study has revealed that chronic cerebral hypoperfusion (CCH activates a compensatory vascular mechanism attempting to maintain an optimal cerebral blood flow (CBF. However, this compensation fails to prevent neuronal death and cognitive impairment because neurons die prior to the restoration of normal CBF. Therefore, pharmacological invention may be critical to enhance the CBF for reducing neurodegeneration and memory deficit. Dl-3-n-butylphthalide (NBP is a compound isolated from the seeds of Chinese celery and has been proven to be able to prevent neuronal loss, reduce inflammation and ameliorate memory deficits in acute ischemic animal models and stroke patients. In the present study, we used magnetic resonance imaging (MRI techniques, immunohistochemistry and Morris water maze (MWM to investigate whether NBP can accelerate CBF recovery, reduce neuronal death and improve cognitive deficits in CCH rats after permanent bilateral common carotid artery occlusion (BCCAO. Rats were intravenously injected with NBP (5 mg/kg daily for 14 days beginning the first day after BCCAO. The results showed that NBP shortened recovery time of CBF to pre-occlusion levels at 2 weeks following BCCAO, compared to 4 weeks in the vehicle group, and enhanced hemodynamic compensation through dilation of the vertebral arteries (VAs and increase in angiogenesis. NBP treatment also markedly reduced reactive astrogliosis and cell apoptosis and protected hippocampal neurons against ischemic injury. The escape latency of CCH rats in the MWM was also reduced in response to NBP treatment. These findings demonstrate that NBP can accelerate the recovery of CBF and improve cognitive function in a rat model of CCH, suggesting that NBP is a promising therapy for CCH patients or vascular dementia.

  18. Atrial electrogram quality in single-pass defibrillator leads with floating atrial bipole in patients with permanent atrial fibrillation and cardiac resynchronization therapy.

    Science.gov (United States)

    Sticherling, Christian; Müller, Dirk; Schaer, Beat A; Krüger, Silke; Kolb, Christof

    2018-03-27

    Many patients receiving cardiac resynchronization therapy (CRT) suffer from permanent atrial fibrillation (AF). Knowledge of the atrial rhythm is important to direct pharmacological or interventional treatment as well as maintaining AV-synchronous biventricular pacing if sinus rhythm can be restored. A single pass single-coil defibrillator lead with a floating atrial bipole has been shown to obtain reliable information about the atrial rhythm but has never been employed in a CRT-system. The purpose of this study was to assess the feasibility of implanting a single coil right ventricular ICD lead with a floating atrial bipole and the signal quality of atrial electrograms (AEGM) in CRT-defibrillator recipients with permanent AF. Seventeen patients (16 males, mean age 73 ± 6 years, mean EF 25 ± 5%) with permanent AF and an indication for CRT-defibrillator placement were implanted with a designated CRT-D system comprising a single pass defibrillator lead with a atrial floating bipole. They were followed-up for 103 ± 22 days using remote monitoring for AEGM transmission. All patients had at last one AEGM suitable for atrial rhythm diagnosis and of 100 AEGM 99% were suitable for visual atrial rhythm assessment. Four patients were discharged in sinus rhythm and one reverted to AF during follow-up. Atrial electrograms retrieved from a single-pass defibrillator lead with a floating atrial bipole can be reliably used for atrial rhythm diagnosis in CRT recipients with permanent AF. Hence, a single pass ventricular defibrillator lead with a floating bipole can be considered in this population. Copyright © 2018 Indian Heart Rhythm Society. Production and hosting by Elsevier B.V. All rights reserved.

  19. Morphological changes of cerebral vessels and expression patterns of MMP-2 and MMP-9 on cerebrovascular wall of alcoholic rats.

    Science.gov (United States)

    Qi, Qian; Liu, Xia; Zhang, Guozhong; He, Wenjing; Ma, Rufei; Cong, Bin; Li, Yingmin

    2014-01-01

    Alcohol abuse increases the incidence of cerebral accidents, which correlates with cerebrovascular structural changes. The present study was designed to observe the cerebrovascular remodeling of drinking rats with light microscopy and transmission electron microscopy (TEM). Short-term alcohol administration induced apparent amplification of perivascular spaces around small vessels in brain tissue, while long-term administration caused pathological changes of basilar arteries (BAs), including endothelial exfoliation, inner elastic lamina (IEL) fragmentation and thickening of tunica media and adventitia. In addition, the relationship between cerebrovascular remodeling and MMP-2 and MMP-9 synthesized by endothelial cells and vascular smooth muscle cells was explored by immunohistochemistry. The two protein expression in cerebral vessels changed dynamically, peaking at 1-2 weeks after treatment, and decreasing as treatment continued. These results suggest that MMP-2 and MMP-9 may play a significant role in blood-brain barrier disruption after alcohol abuse. But the chronic changes of cerebral arteries resulted from drinking are not coincident with time course of MMP-2 and MMP-9 expression in situ.

  20. The Protective Effect of Human Umbilical Cord Blood CD34+ Cells and Estradiol against Focal Cerebral Ischemia in Female Ovariectomized Rat: Cerebral MR Imaging and Immunohistochemical Study.

    Directory of Open Access Journals (Sweden)

    Ching-Chung Liang

    Full Text Available Human umbilical cord blood derived CD34+ stem cells are reported to mediate therapeutic effects in stroke animal models. Estrogen was known to protect against ischemic injury. The present study wished to investigate whether the protective effect of CD34+ cells against ischemic injury can be reinforced with complemental estradiol treatment in female ovariectomized rat and its possible mechanism. Experiment 1 was to determine the best optimal timing of CD34+ cell treatment for the neuroprotective effect after 60-min middle cerebral artery occlusion (MCAO. Experiment 2 was to evaluate the adjuvant effect of 17β-estradiol on CD34+ cell neuroprotection after MCAO. Experiment 1 showed intravenous infusion with CD34+ cells before MCAO (pre-treatment caused less infarction size than those infused after MCAO (post-treatment on 7T magnetic resonance T2-weighted images. Experiment 2 revealed infarction size was most significantly reduced after CD34+ + estradiol pre-treatment. When compared with no treatment group, CD34+ + estradiol pre-treatment showed significantly less ADC reduction at 2 h and 2 d, less CBF reduction at 2 h and less hyperperfusion at 2 d. The immunoreactivity of c-Fos, c-Jun and GFAP was attenuated, and BDNF showed significant recovery from 2 h to 2 d after MCAO, especially after CD34+ + estradiol pre-treatment. The present study suggests pre-treatment with CD34+ cells with complemental estradiol can be most protective against ischemic injury, which may act through stabilization of cerebral hemodynamics and normalization of the expressions of immediate early genes and BDNF.

  1. Protective effect and its mechanism of curcumin on ischemia-reperfusion injury of cerebral cortex in rats

    Directory of Open Access Journals (Sweden)

    Li LIU

    2013-03-01

    Full Text Available Objective  To investigate the effect of curcumin pretreatment on the expression of uncoupling protein 2 (UCP2 and mitochondrial transcription factor A (MTFA in rats' cerebral cortex against focal ischemia reperfusion injury. Methods  Eighty male SD rats weighed 220g–300g were randomly divided into 4 groups: sham-operated group, ischemia/reperfusion (I/R group, curcumine 50mg/kg+I/R (low dose group, and curcumine 100mg/kg+I/R (high dose group. The common carotid artery, external carotid artery and internal carotid artery on the right side were exposed in the sham-operated group. Animals of the other groups were subjected to a 2-hour period of right middle cerebral artery occlusion, followed by 24 hours of reperfusion, and then they were sacrificed. Curcumin was administered (ip in a dose of 50mg/kg (low dose group or 100mg/kg (high dose group for 5 days, respectively, prior to arterial occlusion. The pathological changes in neurons and their mitochondria in the cerebral cortex supplied by middle cerebral artery were observed with Nissl staining and electron microscope, respectively. The expressions of UCP2 and MTFA in corresponding cotex were assessed by immunohistochemistry and RT-PCR. Results  Compared with sham-operated group, animals in I/R group presented edema of neurons in the corresponding cortex, reduction in the number of Nissl bodies, and swelling of mitochondria with broken, even lysis of cristae. Low dose and high dose of curcumin pretreatment before brain ischemia significantly alleviated the loss of neurons and the damage of mitochondria, accompanied with an increase in the expression of UCP2 and TFAM (P<0.05, and the changes appeared a dose-dependent manner (P<0.05. Conclusions  Curcumin may prevent neurons from focal cerebral ischemia reperfusion injury by up-regulating UCP2 and MTFA. Regulation of mitochondrial biogenesis may probably be a potential target of curcumin as a neuroprotective drug.

  2. Detection of TRPV4 channel current-like activity in Fawn Hooded hypertensive (FHH rat cerebral arterial muscle cells.

    Directory of Open Access Journals (Sweden)

    Debebe Gebremedhin

    Full Text Available The transient receptor potential vallinoid type 4 (TRPV4 is a calcium entry channel known to modulate vascular function by mediating endothelium-dependent vasodilation. The present study investigated if isolated cerebral arterial myocytes of the Fawn Hooded hypertensive (FHH rat, known to display exaggerated KCa channel current activity and impaired myogenic tone, express TRPV4 channels at the transcript and protein level and exhibit TRPV4-like single-channel cationic current activity. Reverse transcription polymerase chain reaction (RT-PCR, Western blot, and immunostaining analysis detected the expression of mRNA transcript and translated protein of TRPV4 channel in FHH rat cerebral arterial myocytes. Patch clamp recording of single-channel current activity identified the presence of a single-channel cationic current with unitary conductance of ~85 pS and ~96 pS at hyperpolarizing and depolarizing potentials, respectively, that was inhibited by the TRPV4 channel antagonist RN 1734 or HC 067074 and activated by the potent TRPV4 channel agonist GSK1016790A. Application of negative pressure via the interior of the patch pipette increased the NPo of the TRPV4-like single-channel cationic current recorded in cell-attached patches at a patch potential of 60 mV that was inhibited by prior application of the TRPV4 channel antagonist RN 1734 or HC 067047. Treatment with the TRPV4 channel agonist GSK1016790A caused concentration-dependent increase in the NPo of KCa single-channel current recorded in cell-attached patches of cerebral arterial myocytes at a patch potential of 40 mV, which was not influenced by pretreatment with the voltage-gated L-type Ca2+ channel blocker nifedipine or the T-type Ca2+ channel blocker Ni2+. These findings demonstrate that FHH rat cerebral arterial myocytes express mRNA transcript and translated protein for TRPV4 channel and display TRPV4-like single-channel cationic current activity that was stretch-sensitive and

  3. Preconditioning with the traditional Chinese medicine Huang-Lian-Jie-Du-Tang initiates HIF-1α-dependent neuroprotection against cerebral ischemia in rats.

    Science.gov (United States)

    Zhang, Qichun; Bian, Huimin; Li, Yu; Guo, Liwei; Tang, Yuping; Zhu, Huaxu

    2014-06-11

    Huang-Lian-Jie-Du-Tang (HLJDT) is a classical heat-clearing and detoxicating formula of traditional Chinese medicine that is widely used to treat stroke. The present study was designed to investigate the effects of HLJDT preconditioning on neurons under oxygen and glucose deprivation (OGD) and rats subjected to middle cerebral artery occlusion (MCAO). A stroke model of rats was obtained through MCAO. Following HLJDT preconditioning, the cerebral infarction volume, cerebral water content, and neurological deficient score were determined. Cerebral cortical neurons cultured in vitro were preconditioned with HLJDT and then subjected to OGD treatment. The release of lactate dehydrogenase (LDH) from neurons was detected. The levels of hypoxia-inducible factor-1α (HIF-1α) and PI3K/Akt signaling were analyzed by western blotting, and the levels of erythropoietin (EPO) and vascular endothelial growth factor (VEGF) in the supernatant of the neurons and the plasma of MCAO rats were measured through a radioimmunological assay. The apoptosis and proliferation of neurons were analyzed by immunohistochemistry. HLJDT preconditioning significantly reduced the cerebral infarction volume and cerebral water content and ameliorated the neurological deficient score of MCAO rats. In addition, HLJDT preconditioning protected neurons against OGD. Increased HIF-1α, EPO, and VEGF levels and the activation of PI3K/Akt signaling were observed as a result of HLJDT preconditioning. Furthermore, HLJDT preconditioning was found to inhibit ischemia-induced neuron apoptosis and to promote neuron proliferation under conditions of ischemia/reperfusion. Both rats and neurons subjected to HLJDT preconditioning were able to resist ischemia/reperfusion or hypoxia injury through the inhibition of apoptosis and the enhancement of proliferation, and these effects were primarily dependent on the activation of the PI3K/Akt signaling pathway and HIF-1α. Copyright © 2014 Elsevier Ireland Ltd. All rights

  4. Curcumin modulates dopaminergic receptor, CREB and phospholipase c gene expression in the cerebral cortex and cerebellum of streptozotocin induced diabetic rats

    Directory of Open Access Journals (Sweden)

    George Naijil

    2010-05-01

    Full Text Available Abstract Curcumin, an active principle component in rhizome of Curcuma longa, has proved its merit for diabetes through its anti-oxidative and anti-inflammatory properties. This study aims at evaluating the effect of curcumin in modulating the altered dopaminergic receptors, CREB and phospholipase C in the cerebral cortex and cerebellum of STZ induced diabetic rats. Radioreceptor binding assays and gene expression was done in the cerebral cortex and cerebellum of male Wistar rats using specific ligands and probes. Total dopaminergic receptor binding parameter, Bmax showed an increase in cerebral cortex and decrease in the cerebellum of diabetic rats. Gene expression studies using real time PCR showed an increased expression of dopamine D1 and D2 receptor in the cerebral cortex of diabetic rats. In cerebellum dopamine D1 receptor was down regulated and D2 receptor showed an up regulation. Transcription factor CREB and phospholipase C showed a significant down regulation in cerebral cortex and cerebellum of diabetic rats. We report that curcumin supplementation reduces diabetes induced alteration of dopamine D1, D2 receptors, transcription factor CREB and phospholipase C to near control. Our results indicate that curcumin has a potential to regulate diabetes induced malfunctions of dopaminergic signalling, CREB and Phospholipase C expression in cerebral cortex and cerebellum and thereby improving the cognitive and emotional functions associated with these regions. Furthermore, in line with these studies an interaction between curcumin and dopaminergic receptors, CREB and phospholipase C is suggested, which attenuates the cortical and cerebellar dysfunction in diabetes. These results suggest that curcumin holds promise as an agent to prevent or treat CNS complications in diabetes.

  5. Curcumin modulates dopaminergic receptor, CREB and phospholipase C gene expression in the cerebral cortex and cerebellum of streptozotocin induced diabetic rats.

    Science.gov (United States)

    Kumar, T Peeyush; Antony, Sherin; Gireesh, G; George, Naijil; Paulose, C S

    2010-05-31

    Curcumin, an active principle component in rhizome of Curcuma longa, has proved its merit for diabetes through its anti-oxidative and anti-inflammatory properties. This study aims at evaluating the effect of curcumin in modulating the altered dopaminergic receptors, CREB and phospholipase C in the cerebral cortex and cerebellum of STZ induced diabetic rats. Radioreceptor binding assays and gene expression was done in the cerebral cortex and cerebellum of male Wistar rats using specific ligands and probes. Total dopaminergic receptor binding parameter, B(max) showed an increase in cerebral cortex and decrease in the cerebellum of diabetic rats. Gene expression studies using real time PCR showed an increased expression of dopamine D1 and D2 receptor in the cerebral cortex of diabetic rats. In cerebellum dopamine D1 receptor was down regulated and D2 receptor showed an up regulation. Transcription factor CREB and phospholipase C showed a significant down regulation in cerebral cortex and cerebellum of diabetic rats. We report that curcumin supplementation reduces diabetes induced alteration of dopamine D1, D2 receptors, transcription factor CREB and phospholipase C to near control. Our results indicate that curcumin has a potential to regulate diabetes induced malfunctions of dopaminergic signalling, CREB and Phospholipase C expression in cerebral cortex and cerebellum and thereby improving the cognitive and emotional functions associated with these regions. Furthermore, in line with these studies an interaction between curcumin and dopaminergic receptors, CREB and phospholipase C is suggested, which attenuates the cortical and cerebellar dysfunction in diabetes. These results suggest that curcumin holds promise as an agent to prevent or treat CNS complications in diabetes.

  6. Response of the sensorimotor cortex of cerebral palsy rats receiving transplantation of vascular endothelial growth factor 165-transfected neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Jielu Tan; Xiangrong Zheng; Shanshan Zhang; Yujia Yang; Xia Wang; Xiaohe Yu; Le Zhong

    2014-01-01

    Neural stem cells are characterized by the ability to differentiate and stably express exogenous ge-nes. Vascular endothelial growth factor plays a role in protecting local blood vessels and neurons of newborn rats with hypoxic-ischemic encephalopathy. Transplantation of vascular endothelial growth factor-transfected neural stem cells may be neuroprotective in rats with cerebral palsy. In this study, 7-day-old Sprague-Dawley rats were divided into ifve groups: (1) sham operation (control), (2) cerebral palsy model alone or with (3) phosphate-buffered saline, (4) vascular en-dothelial growth factor 165 + neural stem cells, or (5) neural stem cells alone. hTe cerebral palsy model was established by ligating the letf common carotid artery followed by exposure to hypox-ia. Phosphate-buffered saline, vascular endothelial growth factor + neural stem cells, and neural stem cells alone were administered into the sensorimotor cortex using the stereotaxic instrument and microsyringe. Atfer transplantation, the radial-arm water maze test and holding test were performed. Immunohistochemistry for vascular endothelial growth factor and histology using hematoxylin-eosin were performed on cerebral cortex. Results revealed that the number of vas-cular endothelial growth factor-positive cells in cerebral palsy rats transplanted with vascular endothelial growth factor-transfected neural stem cells was increased, the time for ifnding water and the ifnding repetitions were reduced, the holding time was prolonged, and the degree of cell degeneration or necrosis was reduced. hTese ifndings indicate that the transplantation of vascu-lar endothelial growth factor-transfected neural stem cells alleviates brain damage and cognitive deifcits, and is neuroprotective in neonatal rats with hypoxia ischemic-mediated cerebral palsy.

  7. MR-angiography allows defining severity grades of cerebral vasospasm in an experimental double blood injection subarachnoid hemorrhage model in rats.

    Directory of Open Access Journals (Sweden)

    Vesna Malinova

    Full Text Available Magnetic resonance (MR imaging has been used for the detection of cerebral vasospasm (VSP related infarction in experimental subarachnoid hemorrhage (eSAH in rats. Conventional angiography is generally used to visualize VSP, which is an invasive technique with a possible increase in morbidity and mortality. In this study we evaluated the validity of MR-angiography (MRA in detecting VSP and its feasibility to define VSP severity grades after eSAH in rats.SAH was induced using the double-hemorrhage model in 12 rats. In two rats, saline solution was injected instead of blood (sham group. MR was performed on day 1, 2 and on day 5. T1-, T2-, T2*-weighted and time-of-flight MR sequences were applied, which were analyzed by two blinded neuroradiologists. Vessel narrowing of 25-50% was defined as mild, 50-75% as moderate and >75% as severe VSP.We performed a total of 34 MRAs in 14 rats. In 14 rats, MRA was performed on day 2 and day 5. In six rats MRA was additionally performed on day1 before the blood injection. A good visualization of cerebral vessels was possible in all cases. No VSP was seen in the sham group neither on day 2 nor on day 5. We found vasospasm on day 2 in 7 of the 14 rats (50% whereas all 7 rats had mild and one rat had additionally moderate and severe vasospasm in one vessel, respectively. On day 5 we found vasospasm in 8 of the 14 rats (60% whereas 4 rats had severe vasospasm, 1 rat had moderate vasospasm and 3 rats demonstrated mild vasospasm. In 4 of the 14 rats (30% an ischemic lesion was detected on day 5. Three of these rats had severe vasospasm and one rat had mild vasospasm. Severe vasospasm on day 5 was statistically significant correlated with the occurrence of ischemic lesions (Fisher's Exact test, OR 19.5, p = 0.03.MRA is a noninvasive diagnostic tool, which allows a good visualization of the cerebral vasculature and provides reproducible results concerning the detection of VSP and the differentiation into three severity

  8. The effect of isovolemic hemodilution with oxycyte, a perfluorocarbon emulsion, on cerebral blood flow in rats.

    Directory of Open Access Journals (Sweden)

    Zhong-jin Yang

    Full Text Available BACKGROUND: Cerebral blood flow (CBF is auto-regulated to meet the brain's metabolic requirements. Oxycyte is a perfluorocarbon emulsion that acts as a highly effective oxygen carrier compared to blood. The aim of this study is to determine the effects of Oxycyte on regional CBF (rCBF, by evaluating the effects of stepwise isovolemic hemodilution with Oxycyte on CBF. METHODOLOGY: Male rats were intubated and ventilated with 100% O(2 under isoflurane anesthesia. The regional (striatum CBF (rCBF was measured with a laser doppler flowmeter (LDF. Stepwise isovolemic hemodilution was performed by withdrawing 4ml of blood and substituting the same volume of 5% albumin or 2 ml Oxycyte plus 2 ml albumin at 20-minute intervals until the hematocrit (Hct values reached 5%. PRINCIPAL FINDINGS: In the albumin-treated group, rCBF progressively increased to approximately twice its baseline level (208+/-30% when Hct levels were less than 10%. In the Oxycyte-treated group on the other hand, rCBF increased by significantly smaller increments, and this group's mean rCBF was only slightly higher than baseline (118+/-18% when Hct levels were less than 10%. Similarly, in the albumin-treated group, rCBF started to increase when hemodilution with albumin caused the CaO(2 to decrease below 17.5 ml/dl. Thereafter, the increase in rCBF was accompanied by a nearly proportional decrease in the CaO(2 level. In the Oxycyte-treated group, the increase in rCBF was significantly smaller than in the albumin-treated group when the CaO(2 level dropped below 10 ml/dl (142+/-20% vs. 186+/-26%, and rCBF returned to almost baseline levels (106+/-15 when the CaO(2 level was below 7 ml/dl. CONCLUSIONS/SIGNIFICANCE: Hemodilution with Oxycyte was accompanied with higher CaO(2 and PO(2 than control group treated with albumin alone. This effect may be partially responsible for maintaining relatively constant CBF and not allowing the elevated blood flow that was observed with albumin.

  9. Therapeutic time window and underlying therapeutic mechanism of breviscapine injection against cerebral ischemia/reperfusion injury in rats.

    Science.gov (United States)

    Guo, Chao; Zhu, Yanrong; Weng, Yan; Wang, Shiquan; Guan, Yue; Wei, Guo; Yin, Ying; Xi, Miaomaio; Wen, Aidong

    2014-01-01

    Breviscapine injection is a Chinese herbal medicine standardized product extracted from Erigeron breviscapus (Vant.) Hand.-Mazz. It has been widely used for treating cardiovascular and cerebrovascular diseases. However, the therapeutic time window and the action mechanism of breviscapine are still unclear. The present study was designed to investigate the therapeutic time window and underlying therapeutic mechanism of breviscapine injection against cerebral ischemic/reperfusion injury. Sprague-Dawley rats were subjected to middle cerebral artery occlusion for 2h followed by 24h of reperfusion. Experiment part 1 was used to investigate the therapeutic time window of breviscapine. Rats were injected intravenously with 50mg/kg breviscapine at different time-points of reperfusion. After 24h of reperfusion, neurologic score, infarct volume, brain water content and serum level of neuron specific enolase (NSE) were measured in a masked fashion. Part 2 was used to explore the therapeutic mechanism of breviscapine. 4-Hydroxy-2-nonenal (4-HNE), 8-hydroxyl-2'- deoxyguanosine (8-OHdG) and the antioxidant capacity of ischemia cortex were measured by ELISA and ferric-reducing antioxidant power (FRAP) assay, respectively. Immunofluorescence and western blot analysis were used to analyze the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Part 1: breviscapine injection significantly ameliorated neurologic deficit, reduced infarct volume and water content, and suppressed the levels of NSE in a time-dependent manner. Part 2: breviscapine inhibited the increased levels of 4-HNE and 8-OHdG, and enhanced the antioxidant capacity of cortex tissue. Moreover, breviscapine obviously raised the expression of Nrf2 and HO-1 proteins after 24h of reperfusion. The therapeutic time window of breviscapine injection for cerebral ischemia/reperfusion injury seemed to be within 5h after reperfusion. By up-regulating the expression of Nrf2/HO-1 pathway

  10. Evaluation of pharmacological efficacy of anti-edema agents in a rat cerebral infarction model by MRI image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, Yoshio; Haida, Munetaka; Kurita, Daisaku; Shinohara, Yukito [Tokai Univ., Isehara, Kanagawa (Japan). School of Medicine; Sugiura, Takeo

    1997-04-01

    We investigated the efficacy of drugs used to treat brain edema in a rat acute cerebral infarction model by MRI image analysis. Twenty-six Sprague-Dawley rats were anesthetized with halothane, and the right middle cerebral artery was permanently occluded via a transvascular approach using a nylon 2-0 suture. At 24 hours after the occlusion, axial T{sub 2}-weighted MRI images were taken before and 2 hours after intraperitoneal administration of a test drug. After the administration of 1.7 g/kg glycerol (n=9), 3.3 g/kg mannitol (n=9) or 17 mg/kg furosemide (n=8), the high intensity area (HIA) in the whole brain amounted to 92% (p<0.01), 94% (p=0.07), or 95% (p=0.03), respectively as compared to the corresponding HIA before administration. The HIA in the cerebral cortex amounted to 87% (p<0.01), 89% (p=0.03), or 98% (p=0.47), and that in the striatum to 102%, 106%, or 87% (p<0.05), respectively. The signal intensity change (before{yields}after) was 54{yields}49 (p<0.01), 54{yields}50 (p<0.01), or 55{yields}54 in the left side normal cortex; 102{yields}97 (p<0.0l), 100{yields}98, or 98{yields}97 in the injured side cortex; and 100{yields}93 (p<0.0l), 94{yields}88 (p=0.03), or 94{yields}94 in the injured side striatum, respectively. Improvement of edema by the drugs was observed as a reduction in HIA and a decrease in signal intensity on MRI, and the changes were significant in the case of administration of each of glycerol, mannitol and furosemide. (author)

  11. Evaluation of pharmacological efficacy of anti-edema agents in a rat cerebral infarction model by MRI image analysis

    International Nuclear Information System (INIS)

    Izumi, Yoshio; Haida, Munetaka; Kurita, Daisaku; Shinohara, Yukito; Sugiura, Takeo.

    1997-01-01

    We investigated the efficacy of drugs used to treat brain edema in a rat acute cerebral infarction model by MRI image analysis. Twenty-six Sprague-Dawley rats were anesthetized with halothane, and the right middle cerebral artery was permanently occluded via a transvascular approach using a nylon 2-0 suture. At 24 hours after the occlusion, axial T 2 -weighted MRI images were taken before and 2 hours after intraperitoneal administration of a test drug. After the administration of 1.7 g/kg glycerol (n=9), 3.3 g/kg mannitol (n=9) or 17 mg/kg furosemide (n=8), the high intensity area (HIA) in the whole brain amounted to 92% (p<0.01), 94% (p=0.07), or 95% (p=0.03), respectively as compared to the corresponding HIA before administration. The HIA in the cerebral cortex amounted to 87% (p<0.01), 89% (p=0.03), or 98% (p=0.47), and that in the striatum to 102%, 106%, or 87% (p<0.05), respectively. The signal intensity change (before→after) was 54→49 (p<0.01), 54→50 (p<0.01), or 55→54 in the left side normal cortex; 102→97 (p<0.0l), 100→98, or 98→97 in the injured side cortex; and 100→93 (p<0.0l), 94→88 (p=0.03), or 94→94 in the injured side striatum, respectively. Improvement of edema by the drugs was observed as a reduction in HIA and a decrease in signal intensity on MRI, and the changes were significant in the case of administration of each of glycerol, mannitol and furosemide. (author)

  12. 3H-spiroperidol labels serotonin receptors in rat cerebral cortex and hippocampus

    International Nuclear Information System (INIS)

    Creese, I.; Snyder, S.H.

    1978-01-01

    It is found that in the cerebral cortex, butaclamol displaceable 3 H-spiroperidol binding labels both dopamine and serotonin receptors. In the hippocampus it is probable that 3 H-spiroperidol binding involves serotonin receptors exclusively. (Auth.)

  13. Nepeta Dschuparensis Bornm Extract Moderates COX-2 and IL-1β Proteins in a Rat Model of Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Alireza Mousavi Nia

    2017-03-01

    Full Text Available Background: Nepeta dschuparensis Bornm (NP is used as a medicinal herb in Iran. In traditional medicine, this herb is extensively employed for curing ailments such as cardiovascular diseases. NP has antioxidant and anti-inflammatory properties. This project examined the effects of the NP extract on cyclooxygenase-2 (COX-2 and interleukin-1β (IL-1β protein levels and its efficacy in neuroprotection in a cerebral ischemia-reperfusion model. Methods: Twenty-six male rats were randomly divided into 3 groups: 1 sham (n=6: no middle cerebral artery occlusion (MCAO procedure, 2 control (n=10: MCAO procedure and treatment with normal saline, and 3 NP extract (n=10: MCAO procedure and treatment with the NP extract (20 mg/kg, i.p. at the beginning of reperfusion. To examine the injury caused by cerebral ischemia, we measured motor coordination and the infarct area using the rotarod test and triphenyl tetrazolium chloride staining, respectively. IL-1β and COX-2 protein levels, as inflammatory markers, were measured by immunoblotting assay. The statistical analyses were performed using SPSS, version 16, and the data are expressed as means±SEMs. Statistical difference was evaluated using the one-way ANOVA, followed by the post hoc LSD test (P<0.01. Results: Treatment with the NP extract significantly diminished the infarct volume and alleviated the motor coordination disorder induced by cerebral ischemia. The NP extract administration significantly attenuated the increase in IL-1β and COX-2 protein levels too (P<0.01. Conclusion: The beneficial effects of the NP extract are related to its ability to decrease the levels of IL-1β and COX-2.

  14. Electroacupuncture improves cerebral blood flow and attenuates moderate ischemic injury via Angiotensin II its receptors-mediated mechanism in rats.

    Science.gov (United States)

    Li, Jing; He, Jiaojun; Du, Yuanhao; Cui, Jingjun; Ma, Ying; Zhang, Xuezhu

    2014-11-11

    To investigate the effects and potential mechanism of electroacupuncture intervention on expressions of Angiotensin II and its receptors-mediated signaling pathway in experimentally induced cerebral ischemia. Totally 126 male Wistar rats were randomly divided into control group, model group and EA group. The latter two were further divided into ten subgroups (n = 6) following Middle Cerebral Artery Occlusion (MCAO). Changes in regional cerebral blood flow (rCBF) and expressions of Angiotensin II and its receptors (AT1R, AT2R), as well as effector proteins in phosphatidyl inositol signal pathway were monitored before and at different times after MCAO. MCAO-induced decline of ipsilateral rCBF was partially suppressed by electroacupuncture, and contralateral blood flow was also superior to that of model group. Angiotensin II level was remarkably elevated immediately after MCAO, while electroacupuncture group exhibited significantly lower levels at 1 to 3 h and the value was significantly increased thereafter. The enhanced expression of AT1R was partially inhibited by electroacupuncture, while increased AT2R level was further induced. Electroacupuncture stimulation attenuated and postponed the upregulated-expressions of Gq and CaM these upregulations. ELISA results showed sharply increased expressions of DAG and IP3, which were remarkably neutralized by electroacupuncture. MCAO induced significant increases in expression of Angiotensin II and its receptor-mediated signal pathway. These enhanced expressions were significantly attenuated by electroacupuncture intervention, followed by reduced vasoconstriction and improved blood supply in ischemic region, and ultimately conferred beneficial effects on cerebral ischemia.

  15. Hemopexin induces neuroprotection in the rat subjected to focal cerebral ischemia

    OpenAIRE

    Dong, Beibei; Cai, Min; Fang, Zongping; Wei, Haidong; Zhu, Fangyun; Li, Guochao; Dong, Hailong; Xiong, Lize

    2013-01-01

    Background The plasma protein hemopexin (HPX) exhibits the highest binding affinity to free heme. In vitro experiments and gene-knock out technique have suggested that HPX may have a neuroprotective effect. However, the expression of HPX in the brain was not well elucidated and its expression after cerebral ischemia-reperfusion injury was also poorly studied. Furthermore, no in vivo data were available on the effect of HPX given centrally on the prognosis of focal cerebral ischemia. Results I...

  16. S-nitrosoglutathione reduces tau hyper-phosphorylation and provides neuroprotection in rat model of chronic cerebral hypoperfusion.

    Science.gov (United States)

    Won, Je-Seong; Annamalai, Balasubramaniam; Choi, Seungho; Singh, Inderjit; Singh, Avtar K

    2015-10-22

    We have previously reported that treatment of rats subjected to permanent bilateral common carotid artery occlusion (pBCCAO), a model of chronic cerebral hypoperfusion (CCH), with S-nitrosoglutathione (GSNO), an endogenous nitric oxide carrier, improved cognitive functions and decreased amyloid-β accumulation in the brains. Since CCH has been implicated in tau hyperphosphorylation induced neurodegeneration, we investigated the role of GSNO in regulation of tau hyperphosphorylation in rat pBCCAO model. The rats subjected to pBCCAO had a significant increase in tau hyperphosphorylation with increased neuronal loss in hippocampal/cortical areas. GSNO treatment attenuated not only the tau hyperphosphorylation, but also the neurodegeneration in pBCCAO rat brains. The pBCCAO rat brains also showed increased activities of GSK-3β and Cdk5 (major tau kinases) and GSNO treatment significantly attenuated their activities. GSNO attenuated the increased calpain activities and calpain-mediated cleavage of p35 leading to production of p25 and aberrant Cdk5 activation. In in vitro studies using purified calpain protein, GSNO treatment inhibited calpain activities while 3-morpholinosydnonimine (a donor of peroxynitrite) treatment increased its activities, suggesting the opposing role of GSNO vs. peroxynitrite in regulation of calpain activities. In pBCCAO rat brains, GSNO treatment attenuated the expression of inducible nitric oxide synthase (iNOS) expression and also reduced the brain levels of nitro-tyrosine formation, thereby indicating the protective role of GSNO in iNOS/nitrosative-stress mediated calpain/tau pathologies under CCH conditions. Taken together with our previous report, these data support the therapeutic potential of GSNO, a biological NO carrier, as a neuro- and cognitive-protective agent under conditions of CCH. Published by Elsevier B.V.

  17. Effect of fasting and different diets on 14C incorporation from U-14C glucose into glycogen and carbon dioxide by cerebral cortical slices of rats

    International Nuclear Information System (INIS)

    Visweswaran, P.; Binod Kumar; Sinha, A.P.; Suraiya, A.; Brahamchari, A.K.; Singh, S.P.

    1994-01-01

    There are some reports regarding change in the glycogen level due to fasting. Here an attempt is made by keeping the albino rats under fasting or feeding different diets on the rate of 14 C incorporation into glycogen and carbon dioxide from U- 14 C glucose. Our study reveals that the above conditions do not alter any significant change in the glycogen and carbon dioxide in the cerebral cortical slices of albino rats. (author). 8 refs., 1 tab

  18. Resveratrol alleviates cerebral ischemia/reperfusion injury in rats by inhibiting NLRP3 inflammasome activation through Sirt1-dependent autophagy induction.

    Science.gov (United States)

    He, Qi; Li, Zhenyu; Wang, Yueting; Hou, Yanghao; Li, Lingyu; Zhao, Jing

    2017-09-01

    Resveratrol has been reported to protect against cerebral ischemia/reperfusion (I/R) injury in rats, but the underlying mechanism is unclear. In the current study, we examined whether resveratrol ameliorates cerebral I/R injury by inhibiting NLRP3 inflammasome-derived inflammation and whether autophagy is involved in this process. In addition, we explored the role of Sirt1 in resveratrol-mediated protective effects. To answer these questions, healthy male Sprague-Dawley rats were exposed to middle cerebral artery occlusion for 1h followed by 24h reperfusion. We found that cerebral I/R increased levels of activated NLRP3 inflammasome, caspase-1, IL-1β, and IL-18 and enhanced autophagy activity (ratio of LC3B-II/LC3B-I and p62/SQSTM1). Treatment with resveratrol, a specific Sirt1 agonist, attenuated I/R-induced NLRP3 inflammasome-derived inflammation but upregulated autophagy. Furthermore, resveratrol treatment clearly reduced cerebral infarct volume, decreased brain water content, and improved neurological scores. In addition, inhibition of autophagy using 3-MA intracerebroventricular injection blocked the inhibitory effect of resveratrol on NLRP3 inflammasome activation. Finally, Sirt1 knockdown with siRNA significantly blocked resveratrol-induced enhancement of autophagy activity and suppression of NLRP3 inflammasome activation. In conclusion, our results demonstrate that resveratrol protects against cerebral I/R injury by inhibiting NLRP3 inflammasome activation through Sirt1-dependent autophagy activity. Copyright © 2017. Published by Elsevier B.V.

  19. Panax ginseng extract attenuates neuronal injury and cognitive deficits in rats with vascular dementia induced by chronic cerebral hypoperfusion

    Directory of Open Access Journals (Sweden)

    Jun-De Zhu

    2018-01-01

    Full Text Available Panax ginseng is a slow-growing perennial plant. Panax ginseng extract has numerous biological activities, including antitumor, anti-inflammatory and antistress activities. Panax ginseng extract also has a cognition-enhancing effect in rats with alcohol-induced memory impairment. In this study, we partially occluded the bilateral carotid arteries in the rat to induce chronic cerebral hypoperfusion, a well-known model of vascular dementia. The rats were then intragastrically administered 50 or 100 mg/kg Panax ginseng extract. Morris water maze and balance beam tests were used to evaluate memory deficits and motor function, respectively. Protein quantity was used to evaluate cholinergic neurons. Immunofluorescence staining was used to assess the number of glial fibrillary acidic protein-positive cells. Western blot assay was used to evaluate protein levels of vascular endothelial growth factor, basic fibroblast growth factor, Bcl-2 and Bax. Treatment with Panax ginseng extract for 8 weeks significantly improved behavioral function and increased neuronal density and VEGF and bFGF protein expression in the hippocampal CA3 area. Furthermore, Panax ginseng extract reduced the number of glial fibrillary acidic protein-immunoreactive cells, and it decreased apoptosis by upregulating Bcl-2 and downregulating Bax protein expression. The effect of Panax ginseng extract was dose-dependent and similar to that of nimodipine, a commonly used drug for the treatment of vascular dementia. These findings suggest that Panax ginseng extract is neuroprotective against vascular dementia induced by chronic cerebral hypoperfusion, and therefore might have therapeutic potential for preventing and treating the disease.

  20. A comparison of long-term functional outcome after 2 middle cerebral artery occlusion models in rats.

    Science.gov (United States)

    Roof, R L; Schielke, G P; Ren, X; Hall, E D

    2001-11-01

    Proven behavioral assessment strategies for testing potential therapeutic agents in rat stroke models are needed. Few studies include tasks that demand higher levels of sensorimotor and cognitive function. Because behavioral outcome and rate of recovery vary among ischemia models, there is a need to characterize and compare performance on specific tasks across models. To this end, sensorimotor and cognitive deficits were assessed during a 5-week period after either permanent proximal middle cerebral artery occlusion (pMCAO) or permanent distal middle cerebral artery occlusion combined with a 90-minute occlusion of both common carotid arteries (dMCAO/tCCAO) in Sprague-Dawley rats. The EBST, hindlimb and forelimb placing, and cylinder tests were given at regular intervals postinjury to assess sensorimotor function. Cognitive function was assessed with a multitrial water navigation task. pMCAO, which caused both striatal and cortical damage, produced persistent sensorimotor and cognitive deficits. Limb placing responses and postural reflexes were impaired throughout the month of testing. A persistent bias for using the ipsilateral forelimb for wall movements in the cylinder test was observed as well as a bias for landing on the opposite forelimb. pMCAO rats were also impaired in the water navigation task. dMCAO/tCCAO, which caused only cortical damage, produced similar sensorimotor deficits, but these were greatly diminished by 2 weeks after injury. No impairment was found for water tank navigation. Correlations between forelimb placing (both models), water navigation performance (pMCAO model), and sensorimotor asymmetry (dMCAOtCCAO model) and infarct volume were observed. Based on the range of functions affected and stability of observed deficits, the pMCAO model appears to be preferable to the dMCAO/tCCAO model for use in assessing therapeutic agents for stroke.

  1. Monitoring stem cell transplantation in rat cerebral ischemic infarction model with 131I-FIAU/TK reporter gene system

    International Nuclear Information System (INIS)

    Wu Tao; An Rui; Zhang Binqing; Sun Xun; Lang Juntao

    2011-01-01

    Objective: To study the biodistribution of 131 I-2'-deoxy-1-β-D-arabinofuranosyl-5-iodouracil (FIAU) in the rat middle cerebral artery occlusion model and the expression of thymidine kinase (TK) gene in brain tissue after gene-modified stem cell transplantation, and thus evaluate the possibility of further noninvasive monitoring of stem cell transplantation therapy in cerebral infarction. Methods: Adenovirus recombinant Ad5-TK-internal ribosome entry site-brain derived heterotrophic factor-enhanced green florescent protein(IRES-BDNF-EGFP) carrying TK-IRES-BDNF gene was prepared. Cerebral infarction model was established in rats by intraluminal middle cerebral artery occlusion with nylon monofilament. Gene modified bone marrow mesenchymal stem cells were transplanted via intraparenchymal route, lateral ventricle, carotid artery and tail vein, respectively. The normal rats were used as controls. 131 I-FAU was prepared to be the tracer for biodistribution study and the % ID/g was calculated based on measurement of the tissue radioactivity counts. The expression of TK gene was evaluated by quantitative real-time PCR (QR-PCR) and Western blot analysis. Data were analyzed with independent-samples t-test, one-way analysis of variance (ANOVA) test, and Pearson linear correlation test. Results: The % ID/g of infarcted brain tissue in the intraparenchymal group was 0.124 ± 0.013, which was significantly higher than that in lateral ventricle group (0.052 ±0.004), carotid artery group (0.061 ±0.002), tail vein group (0.059 ±0.005) and control group (0.005 ±0.001) (t=2.913-5.652, all P<0.05), while there were no statistically significant differences among the other route transplanted groups (t=0.694-1.448, all P>0.05). The differences of % ID/g between the infarcted and contralateral sides of brain tissue in all transplanted groups were statistically significant (t=9.004-15.734, all P<0.05), while there was no statistically significant difference of this parameter

  2. Inhalation of water electrolysis-derived hydrogen ameliorates cerebral ischemia-reperfusion injury in rats - A possible new hydrogen resource for clinical use.

    Science.gov (United States)

    Cui, Jin; Chen, Xiao; Zhai, Xiao; Shi, Dongchen; Zhang, Rongjia; Zhi, Xin; Li, Xiaoqun; Gu, Zhengrong; Cao, Liehu; Weng, Weizong; Zhang, Jun; Wang, Liping; Sun, Xuejun; Ji, Fang; Hou, Jiong; Su, Jiacan

    2016-10-29

    Hydrogen is a kind of noble gas with the character to selectively neutralize reactive oxygen species. Former researches proved that low-concentration of hydrogen can be used to ameliorating cerebral ischemia/reperfusion injury. Hydrogen electrolyzed from water has a hydrogen concentration of 66.7%, which is much higher than that used in previous studies. And water electrolysis is a potential new hydrogen resource for regular clinical use. This study was designed and carried out for the determination of safety and neuroprotective effects of water electrolysis-derived hydrogen. Sprague-Dawley rats were used as experimental animals, and middle cerebral artery occlusion was used to make cerebral ischemia/reperfusion model. Pathologically, tissues from rats in hydrogen inhalation group showed no significant difference compared with the control group in HE staining pictures. The blood biochemical findings matched the HE staining result. TTC, Nissl, and TUNEL staining showed the significant improvement of infarction volume, neuron morphology, and neuron apoptosis in rat with hydrogen treatment. Biochemically, hydrogen inhalation decreased brain caspase-3, 3-nitrotyrosine and 8-hydroxy-2-deoxyguanosine-positive cells and inflammation factors concentration. Water electrolysis-derived hydrogen inhalation had neuroprotective effects on cerebral ischemia/reperfusion injury in rats with the effect of suppressing oxidative stress and inflammation, and it is a possible new hydrogen resource to electrolyze water at the bedside clinically. Copyright © 2016. Published by Elsevier Ltd.

  3. Nitric oxide (NO) is an endogenous anticonvulsant but not a mediator of the increase in cerebral blood flow accompanying bicuculline-induced seizures in rats

    DEFF Research Database (Denmark)

    Wang, Qian; Theard, M A; Pelligrino, D A

    1994-01-01

    ) is NO an endogenous anticonvulsant or proconvulsant substance? and (2) is the cerebral blood flow (CBF) increase accompanying bicuculline (BC)-induced seizures mediated by NO? The experiments were performed in 300-400-g Wistar rats anesthetized with 0.6% halothane and 70% N2O/30% O2. CBF was measured using...

  4. Beta-amyloid-induced cholinergic denervation correlates with enhanced nitric oxide synthase activity in rat cerebral cortex: Reversal by NMDA receptor blockade : Reversal by NMDA receptor blockade

    NARCIS (Netherlands)

    O’Mahony, S.; Harkany, T.; Ábrahám, I.; Jong, G.I. de; Varga, J.L.; Zarándi, M.; Penke, B.; Nyakas, C.; Luiten, P.G.M.; Leonard, B.E.

    1998-01-01

    Ample experimental evidence indicates that acute beta-amyloid infusion into the nucleus basalis of rats elicits abrupt degeneration of the magnocellular cholinergic neurons projecting to the cerebral cortex, In fact, involvement of a permanent Ca2+ overload, partially via N-methyl-D-aspartate (NMDA)

  5. Cerebrovascular endothelin-1 hyper-reactivity is associated with transient receptor potential canonical channels 1 and 6 activation and delayed cerebral hypoperfusion after forebrain ischaemia in rats

    DEFF Research Database (Denmark)

    Johansson, S E; Andersen, X E D R; Hansen, R H

    2015-01-01

    . METHODS: Experimental forebrain ischaemia was induced in Wistar male rats by a two-vessel occlusion model, and the cerebral blood flow was measured by magnetic resonance imaging two days after reperfusion. In vitro vasoreactivity studies, immunofluorescence and quantitative PCR were performed on cerebral...... in the vascular smooth muscle cells was enhanced and correlated with decreased cerebral blood flow two days after forebrain ischaemia. Furthermore, under conditions when voltage-dependent calcium channels were inhibited, endothelin-1-induced cerebrovascular contraction was enhanced and this enhancement...... was presumably mediated by Ca(2+) influx via upregulated transient receptor potential canonical channels 1 and 6. CONCLUSIONS: Our data demonstrates that endothelin-1-mediated influx of extracellular Ca(2+) activates transient receptor potential canonical channels 1 and 6 in cerebral vascular smooth muscle cells...

  6. Anti neuroinflammatory effect of Vildagliptin in ischaemia-reperfusion induced cerebral infarction in normal and STZ induced type-II diabetic rats

    Directory of Open Access Journals (Sweden)

    Kaleru Purnachander

    2016-03-01

    Full Text Available Diabetes is one of the major risk factor for cerebral ischemic stroke. Increased base line levels of oxidative stress in diabetes will lead to cerebral ischemic damage. In pathological conditions such as cerebral ischemia/reperfusion injury, free radicals cause oxidative stress and inflammation leading to increased injury of brain. Inflammation is one of the major pathological mechanisms involved in cerebral ischemia and reperfusion injury. Vildagliptin newer anti-diabetic drug of the class DPP-4 inhibitors is reported to have anti-inflammatory properties apart from its antihyperglycemic activity. Therefore the aim of the present study is to evaluate the anti-inflammatory effect of Vildagliptin against cerebral infarction induced ischemia reperfusion injury in normal and STZ induced diabetic Wistar rats. Cerebral infarction was induced by bilateral common carotid artery occlusion followed by 4 hr reperfusion. Percent infarction, inflammatory markers such as MPO, TNF-α, IL-6 and IL-10 were analysed. Treatment with Vildagliptin for a period of four weeks produced significant reduction in percent cerebral infarct volume. Vildagliptin at 10 mg/kg dose, showed significant reduction in markers like MPO, TNF-α, IL-6 and IL-1β in diabetic group when compared to normal group and in contrast significant increase in anti-inflammatory marker like IL-10 levels. Vildagliptin showed significant cerebroprotective effect by antiinflammatory mechanisms.

  7. Contribution of oxygen-sensitive neurons of the rostral ventrolateral medulla to hypoxic cerebral vasodilatation in the rat

    Science.gov (United States)

    Golanov, E. V.; Reis, D. J.

    1996-01-01

    1. We sought to determine whether hypoxic stimulation of neurons of the rostral ventrolateral reticular nucleus (RVL) would elevate regional cerebral blood flow (rCBF) in anaesthetized paralysed rats. 2. Microinjection of sodium cyanide (NaCN; 150-450 pmol) into the RVL rapidly (within 1-2 s), transiently, dose-dependently and site-specifically elevated rCBF1 measured by laser Doppler flowmetry, by 61.3 +/- 22.1% (P < 0.01), increased arterial pressure (AP; +30 +/- 8 mmHg; P < 0.01)1 and triggered a synchronized 6 Hz rhythm of EEG activity. 3. Following cervical spinal cord transection, NaCN and also dinitrophenol (DNP) significantly (P < 0.05) elevated rCBF and synchronized the EEG but did not elevate AP; the response to NaCN was attenuated by hyperoxia and deepening of anaesthesia. 4. Electrical stimulation of NaCN-sensitive sites in the RVL in spinalized rats increased rCBF measured autoradiographically with 14C iodoantipyrine (Kety method) in the mid-line thalamus (by 182.3 +/- 17.2%; P < 0.05) and cerebral cortex (by 172.6 +/- 15.6%; P < 0.05) regions, respectively, directly or indirectly innervated by RVL neurons, and in the remainder of the brain. In contrast regional cerebral glucose utilization (rCGU), measured autoradiographically with 14C-2-deoxyglucose (Sokoloff method), was increased in proportion to rCBF in the mid-line thalamus (165.6 +/- 17.8%, P < 0.05) but was unchanged in the cortex. 5. Bilateral electrolytic lesions of NaCN sensitive sites of RVL, while not altering resting rCBF or the elevation elicited by hypercarbia (arterial CO2 pressure, Pa,CO2, approximately 69 mmHg), reduced the vasodilatation elicited by normocapnic hypoxaemia (arterial O2 pressure, Pa,O2, approximately 27 mmHg) by 67% (P < 0.01) and flattened the slope of the Pa,O2-rCBF response curve. 6. We conclude that the elevation of rCBF produced in the cerebral cortex by hypoxaemia is in large measure neurogenic, mediated trans-synaptically over intrinsic neuronal pathways, and

  8. Alpha-Tocopherol Reduces Brain Edema and Protects Blood-Brain Barrier Integrity following Focal Cerebral Ischemia in Rats.

    Science.gov (United States)

    Haghnejad Azar, Adel; Oryan, Shahrbanoo; Bohlooli, Shahab; Panahpour, Hamdollah

    2017-01-01

    This study was conducted to examine the neuroprotective effects of α-tocopherol against edema formation and disruption of the blood-brain barrier (BBB) following transient focal cerebral ischemia in rats. Ninety-six male Sprague-Dawley rats were divided into 3 major groups (n = 32 in each), namely the sham, and control and α-tocopherol-treated (30 mg/kg) ischemic groups. Transient focal cerebral ischemia (90 min) was induced by occlusion of the left middle cerebral artery. At the end of the 24-hour reperfusion period, the animals were randomly selected and used for 4 investigations (n = 8) in each of the 3 main groups: (a) assessment of neurological score and measurement of infarct size, (b) detection of brain edema formation by the wet/dry method, (c) evaluation of BBB permeability using the Evans blue (EB) extravasation technique, and (d) assessment of the malondialdehyde (MDA) and reduced glutathione (GSH) concentrations using high-performance liquid chromatography methods. Induction of cerebral ischemia in the control group produced extensive brain edema (brain water content 83.8 ± 0.11%) and EB leakage into brain parenchyma (14.58 ± 1.29 µg/g) in conjunction with reduced GSH and elevated MDA levels (5.86 ± 0.31 mmol/mg and 63.57 ± 5.42 nmol/mg, respectively). Treatment with α-tocopherol significantly lowered brain edema formation and reduced EB leakage compared with the control group (p < 0.001, 80.1 ± 0.32% and 6.66 ± 0.87 µg/g, respectively). Meanwhile, treatment with α-tocopherol retained tissue GSH levels and led to a lower MDA level (p < 0.01, 10.17 ± 0.83 mmol/mg, and p < 0.001, 26.84 ± 4.79 nmol/mg, respectively). Treatment with α-tocopherol reduced ischemic edema formation and produced protective effects on BBB function following ischemic stroke occurrence. This effect could be through increasing antioxidant activity. © 2016 S. Karger AG, Basel.

  9. Hypersensitivity to thromboxane receptor mediated cerebral vasomotion and CBF oscillations during acute NO-deficiency in rats.

    Directory of Open Access Journals (Sweden)

    Béla Horváth

    Full Text Available BACKGROUND: Low frequency (4-12 cpm spontaneous fluctuations of the cerebrovascular tone (vasomotion and oscillations of the cerebral blood flow (CBF have been reported in diseases associated with endothelial dysfunction. Since endothelium-derived nitric oxide (NO suppresses constitutively the release and vascular effects of thromboxane A(2 (TXA(2, NO-deficiency is often associated with activation of thromboxane receptors (TP. In the present study we hypothesized that in the absence of NO, overactivation of the TP-receptor mediated cerebrovascular signaling pathway contributes to the development of vasomotion and CBF oscillations. METHODOLOGY/PRINCIPAL FINDINGS: Effects of pharmacological modulation of TP-receptor activation and its downstream signaling pathway have been investigated on CBF oscillations (measured by laser-Doppler flowmetry in anesthetized rats and vasomotion (measured by isometric tension recording in isolated rat middle cerebral arteries, MCAs both under physiological conditions and after acute inhibition of NO synthesis. Administration of the TP-receptor agonist U-46619 (1 µg/kg i.v. to control animals failed to induce any changes of the systemic or cerebral circulatory parameters. Inhibition of the NO synthesis by nitro-L-arginine methyl ester (L-NAME, 100 mg/kg i.v. resulted in increased mean arterial blood pressure and a decreased CBF accompanied by appearance of CBF-oscillations with a dominant frequency of 148±2 mHz. U-46619 significantly augmented the CBF-oscillations induced by L-NAME while inhibition of endogenous TXA(2 synthesis by ozagrel (10 mg/kg i.v. attenuated it. In isolated MCAs U-46619 in a concentration of 100 nM, which induced weak and stable contraction under physiological conditions, evoked sustained vasomotion in the absence of NO, which effect could be completely reversed by inhibition of Rho-kinase by 10 µM Y-27632. CONCLUSION/SIGNIFICANCE: These results suggest that hypersensitivity of the TP

  10. Biphasic functional regulation in hippocampus of rat with chronic cerebral hypoperfusion induced by permanent occlusion of bilateral common carotid artery.

    Directory of Open Access Journals (Sweden)

    Jihye Bang

    Full Text Available BACKGROUND: Chronic cerebral hypoperfusion induced by permanent occlusion of the bilateral common carotid artery (BCCAO in rats has been commonly used for the study of Alzheimer's disease and vascular dementia. Despite the apparent cognitive dysfunction in rats with BCCAO, the molecular markers or pathways involved in the pathological alternation have not been clearly identified. METHODS: Temporal changes (sham, 21, 35, 45, 55 and 70 days in gene expression in the hippocampus of rats after BCCAO were measured using time-course microarray analysis. Gene Ontology (GO and pathway analyses were performed to identify the functional involvement of temporally regulated genes in BCCAO. RESULTS: Two major gene expression patterns were observed in the hippocampus of rats after BCCAO. One pattern, which was composed of 341 early up-regulated genes after the surgical procedure, was dominantly involved in immune-related biological functions (false discovery rate [FDR]<0.01. Another pattern composed of 182 temporally delayed down-regulated genes was involved in sensory perception such as olfactory and cognition functions (FDR<0.01. In addition to the two gene expression patterns, the temporal change of GO and the pathway activities using all differentially expressed genes also confirmed that an immune response was the main early change, whereas sensory functions were delayed responses. Moreover, we identified FADD and SOCS3 as possible core genes in the sensory function loss process using text-based mining and interaction network analysis. CONCLUSIONS: The biphasic regulatory mechanism first reported here could provide molecular evidence of BCCAO-induced impaired memory in rats as well as mechanism of the development of vascular dementia.

  11. Effects of regional cerebral blood flow perfusion on learning and memory function and its molecular mechanism in rats

    Institute of Scientific and Technical Information of China (English)

    Cunli Xu; Wenhua Wu; Lingbin Kong

    2016-01-01

    Objective:To study the effects of regional cerebral blood flow (rCBF) perfusion on learning and memory function in special brain areas and its molecular mechanism in rat. Methods: Sixty-four adult male healthy Sprague-Dawley (SD) rats were randomly divided into two groups: Afalse operation group and an operation group. The false operation group was randomly divided into four subgroups (A0, B0, C0, and D0) and the operation group was randomly divided into four subgroups (A, B, C, and D), with eight rats in each subgroup. The operation group underwent bilateral common carotid artery permanent ligation, while the other group only underwent a skin incision without the bilateral common carotid artery permanent ligation. Learning memory function of rats in each subgroup was measured using a Y-maze at 4 h, 8 h, 24 h, and 3 days after surgery. The rCBF in the right frontal lobe and hippocampus was detected using the Periflux PF model laser Doppler flowmetry and c-fos, c-jun, Bcl-2, and Bax protein expression in the right frontal lobe and hippocampus was measured using immunohistochemistry. Results: The rCBF in the right frontal lobule division and right hippocampus division was significantly lower in the operation group than in the false operation group (P Conclusions:rCBF decrease can impair learning and memory function in rats, which may be related to the increased expression of c-fos, c-jun, Bcl-2, and Bax proteins in the frontal cortex and hippocampus.

  12. Effects of electroacupuncture on the cortical extracellular signal regulated kinase pathway in rats with cerebral ischaemia/reperfusion.

    Science.gov (United States)

    Wu, Chunxiao; Li, Chun; Zhou, Guoping; Yang, Lu; Jiang, Guimei; Chen, Jing; Li, Qiushi; Zhan, Zhulian; Xu, Xiuhong; Zhang, Xin

    2017-12-01

    To explore the effects of electroacupuncture (EA) on the phosphorylated extracellular signal regulated kinase (p-ERK) pathway of the cerebral cortex in a rat model of focal cerebral ischaemia/reperfusion (I/R). 160 adult Sprague-Dawley rats underwent middle carotid artery occlusion (MCAO) to establish I/R injury and were randomly divided into four groups (n=40 each) that remained untreated (I/R group) or received EA at LU5, LI4, ST36 and SP6 (I/R+EA group), the ERK inhibitor PD98059 (I/R+PD group), or both interventions (I/R+PD+EA groups). An additional 40 rats undergoing sham surgery formed a healthy control group. Eight rats from each group were sacrificed at the following time points: 2 hours, 6 hours, 1 day, 3 days and 1 week. Neurological function was assessed using neurological deficit scores, morphological examination was performed following haematoxylin-eosin staining of cortical tissues, and apoptotic indices were calculated after terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labelling. Cortical protein and mRNA expression of p-ERK and ERK were measured by immunohistochemistry and real-time quantitative PCR, respectively. Compared with the I/R group, neurological deficit scores and apoptotic indices were lower in the I/R+EA group at 1 and 3 days, whereas mRNA/protein expression of ERK/p-ERK was higher in the EA group at all time points studied. Our results suggest that EA can alleviate neurological deficits and reduce cortical apoptosis in rats with I/R injury. These anti-apoptotic effects may be due to upregulation of p-ERK. Moreover, apoptosis appeared to peak at 1 day after I/R injury, which might therefore represent the optimal time point for targeting of EA. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Protective effects of repetitive transcranial magnetic stimulation in a rat model of transient cerebral ischaemia: a microPET study

    International Nuclear Information System (INIS)

    Gao, Feng; Wang, Shuang; Guo, Yi; Lou, Min; Wu, Jimin; Ding, Meiping; Wang, Jing; Zhang, Hong; Tian, Mei

    2010-01-01

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive method to excite neurons in the brain. However, the underlying mechanism of its therapeutic effects in stroke remains unclear. The aim of this study was to investigate the neuroprotective effect of high-frequency rTMS in a rat model of transient cerebral ischaemia using positron emission tomography (PET). Sprague-Dawley rats (n=30) were anaesthetized with chloral hydrate and subjected to 90 min of intraluminal middle cerebral artery occlusion (MCAO) with subsequent reperfusion in three groups: control (n=10), rTMS (n=10), or sham-rTMS groups (n=10). In the rTMS group, rTMS was given 1 h after ischaemia and every 24 h for 7 days after MCAO. In all three groups, small-animal PET (microPET) imaging with 18 F-FDG was used to evaluate brain glucose metabolism. Apoptotic molecules were measured in the infarct margin using immunohistochemical staining. The neurological scores of the rats in the rTMS group were higher than in those of the control group over the whole 7-day observation period. The total, cortical and striatal infarct volumes were significantly less in the rTMS group than in the control group, as measured by 2,3,5-triphenyltetrazolium chloride staining. 18 F-FDG microPET images showed significantly higher standardized uptake values in the cortex and striatum in the rTMS group than in the control group in the affected hemisphere. The number of cells positive for caspase-3 was significantly lower in the rTMS group than in the control group, while the Bcl-2/Bax ratio was significantly higher in the rTMS group than in the control group. rTMS therapy increased glucose metabolism and inhibited apoptosis in the ischaemic hemisphere. 18 F-FDG PET could be used to monitor rTMS therapy in transient cerebral ischaemia in animal studies and in future clinical trials. (orig.)

  14. Protective effects of repetitive transcranial magnetic stimulation in a rat model of transient cerebral ischaemia: a microPET study

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng [Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Neurology, Hangzhou, Zhejiang (China); Zhejiang University Medical PET Center, Hangzhou, Zhejiang (China); Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang (China); Wang, Shuang; Guo, Yi; Lou, Min; Wu, Jimin; Ding, Meiping [Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Neurology, Hangzhou, Zhejiang (China); Wang, Jing; Zhang, Hong [Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Zhejiang University Medical PET Center, Hangzhou, Zhejiang (China); Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang (China); Tian, Mei [The University of Texas M.D. Anderson Cancer Center, Department of Experimental Diagnostic Imaging, Houston, TX (United States)

    2010-05-15

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive method to excite neurons in the brain. However, the underlying mechanism of its therapeutic effects in stroke remains unclear. The aim of this study was to investigate the neuroprotective effect of high-frequency rTMS in a rat model of transient cerebral ischaemia using positron emission tomography (PET). Sprague-Dawley rats (n=30) were anaesthetized with chloral hydrate and subjected to 90 min of intraluminal middle cerebral artery occlusion (MCAO) with subsequent reperfusion in three groups: control (n=10), rTMS (n=10), or sham-rTMS groups (n=10). In the rTMS group, rTMS was given 1 h after ischaemia and every 24 h for 7 days after MCAO. In all three groups, small-animal PET (microPET) imaging with {sup 18}F-FDG was used to evaluate brain glucose metabolism. Apoptotic molecules were measured in the infarct margin using immunohistochemical staining. The neurological scores of the rats in the rTMS group were higher than in those of the control group over the whole 7-day observation period. The total, cortical and striatal infarct volumes were significantly less in the rTMS group than in the control group, as measured by 2,3,5-triphenyltetrazolium chloride staining. {sup 18}F-FDG microPET images showed significantly higher standardized uptake values in the cortex and striatum in the rTMS group than in the control group in the affected hemisphere. The number of cells positive for caspase-3 was significantly lower in the rTMS group than in the control group, while the Bcl-2/Bax ratio was significantly higher in the rTMS group than in the control group. rTMS therapy increased glucose metabolism and inhibited apoptosis in the ischaemic hemisphere. {sup 18}F-FDG PET could be used to monitor rTMS therapy in transient cerebral ischaemia in animal studies and in future clinical trials. (orig.)

  15. Exercise preconditioning improves behavioral functions following transient cerebral ischemia induced by 4-vessel occlusion (4-VO) in rats.

    Science.gov (United States)

    Tahamtan, Mahshid; Allahtavakoli, Mohammad; Abbasnejad, Mehdi; Roohbakhsh, Ali; Taghipour, Zahra; Taghavi, Mohsen; Khodadadi, Hassan; Shamsizadeh, Ali

    2013-12-01

    There is evidence that exercise decreases ischemia/reperfusion injury in rats. Since behavioral deficits are the main outcome in patients after stroke, our study was designed to investigate whether exercise preconditioning improves the acute behavioral functions and also brain inflammatory injury following cerebral ischemia. Male rats weighing 250-300 g were randomly allocated into five experimental groups. Exercise was performed on a treadmill 30min/day for 3 weeks. Ischemia was induced by 4-vessel occlusion method. Recognition memory was assessed by novel object recognition task (NORT) and step-through passive avoidance task. Sensorimotor function and motor movements were evaluated by adhesive removal test and ledged beam-walking test, respectively. Brain inflammatory injury was evaluated by histological assessment. In NORT, the discrimination ratio was decreased after ischemia (P test, a significant reduction in response latency was observed in the ischemic group. Exercise preconditioning significantly decreased the response latency in the ischemic rats (P test, latency to touch and remove the sticky labels from forepaw was increased following induction of ischemia (all P beam-walking test, the slip ratio was increased following ischemia (P < 0.05).  In the ischemia group, marked neuronal injury in hippocampus was observed. These neuropathological changes were attenuated by exercise preconditioning (P < 0.001). Our results showed that exercise preconditioning improves behavioral functions and maintains more viable cells in the dorsal hippocampus of the ischemic brain.

  16. Sidestream cigarette smoke effects on cardiovascular responses in conscious rats: involvement of oxidative stress in the fourth cerebral ventricle

    Directory of Open Access Journals (Sweden)

    Valenti Vitor E

    2012-03-01

    Full Text Available Abstract Background Cigarette exposure increases brain oxidative stress. The literature showed that increased brain oxidative stress affects cardiovascular regulation. However, no previous study investigated the involvement of brain oxidative stress in animals exposed to cigarette and its relationship with cardiovascular regulation. We aimed to evaluate the effects of central catalase inhibition on baroreflex and cardiovascular responses in rats exposed to sidestream cigarette smoke (SSCS. Methods We evaluated males Wistar rats (320-370 g, which were implanted with a stainless steel guide cannula into the fourth cerebral ventricle (4th V. Femoral artery and vein were cannulated for mean arterial pressure (MAP and heart rate (HR measurement and drug infusion, respectively. Rats were exposed to SSCS during three weeks, 180 minutes, 5 days/week (CO: 100-300 ppm. Baroreflex was tested with a pressor dose of phenylephrine (PHE, 8 μg/kg, bolus to induce bradycardic reflex and a depressor dose of sodium nitroprusside (SNP, 50 μg/kg, bolus to induce tachycardic reflex. Cardiovascular responses were evaluated before, 5, 15, 30 and 60 minutes after 3-amino-1,2,4-triazole (ATZ, catalase inhibitor, 0.001 g/100 μL injection into the 4th V. Results Central catalase inhibition increased basal HR in the control group during the first 5 minutes. SSCS exposure increased basal HR and attenuated bradycardic peak during the first 15 minutes. Conclusion We suggest that SSCS exposure affects cardiovascular regulation through its influence on catalase activity.

  17. Noninvasive quantification of cerebral metabolic rate for glucose in rats using 18F-FDG PET and standard input function

    Science.gov (United States)

    Hori, Yuki; Ihara, Naoki; Teramoto, Noboru; Kunimi, Masako; Honda, Manabu; Kato, Koichi; Hanakawa, Takashi

    2015-01-01

    Measurement of arterial input function (AIF) for quantitative positron emission tomography (PET) studies is technically challenging. The present study aimed to develop a method based on a standard arterial input function (SIF) to estimate input function without blood sampling. We performed 18F-fluolodeoxyglucose studies accompanied by continuous blood sampling for measurement of AIF in 11 rats. Standard arterial input function was calculated by averaging AIFs from eight anesthetized rats, after normalization with body mass (BM) and injected dose (ID). Then, the individual input function was estimated using two types of SIF: (1) SIF calibrated by the individual's BM and ID (estimated individual input function, EIFNS) and (2) SIF calibrated by a single blood sampling as proposed previously (EIF1S). No significant differences in area under the curve (AUC) or cerebral metabolic rate for glucose (CMRGlc) were found across the AIF-, EIFNS-, and EIF1S-based methods using repeated measures analysis of variance. In the correlation analysis, AUC or CMRGlc derived from EIFNS was highly correlated with those derived from AIF and EIF1S. Preliminary comparison between AIF and EIFNS in three awake rats supported an idea that the method might be applicable to behaving animals. The present study suggests that EIFNS method might serve as a noninvasive substitute for individual AIF measurement. PMID:25966947

  18. Neuroprotective Effect of Matricaria chamomilla Extract on Motor Dysfunction Induced by Transient Global Cerebral Ischemia and Reperfusion in Rat

    Directory of Open Access Journals (Sweden)

    Azam Moshfegh

    2017-09-01

    Full Text Available Background Stroke can cause paralysis, muscle weakness, and loss of balance that may affect walking and routine activities. Objectives The aim of this study was to evaluate the effect of ethyl alcohol extract of Matricaria chamomilla on cerebral ischemia-induced motor dysfunctions in rats. Methods In this experimental study, forty two male Wistar rats were divided into 6 groups consisting of control group, sham group, ischemia/reperfusion group and three treatment groups [treated with 50, 100, and 200 mg/kg doses of M. chamomilla extract and undergoing ischemia/reperfusion(I/R]. Motor coordination and balance were evaluated using Rotarod test. Total antioxidant capacity, malondialdehyde (MDA, and nitric oxide (NO levels of serum and brain were also determined. Results The extract of M. chamomilla significantly improved I/R-induced motor dysfunction. Induction of I/R led to increase serum MDA, while the extract of M, chamomlla significantly reduced it. Administration all doses of M. chamomilla extract to the ischemic rats did not reduce the hippocampus MDA levels (P > 0.05. The extract of M. chamomilla at dose of 200 mg/kg slightly decreased cortex MDA (P > 0.01. It had no significant effects on the total antioxidant capacity of the brain (hippocampus and cortex and serum. Injection of Matricaria chamomilla extract also did not change serum NO level. Conclusions Our findings suggested that the Matricaria chamomilla extract could improve motor dysfunction.

  19. A Tunable CW Orange Laser Based on a Cascaded MgO:PPLN Single-Pass Sum-Frequency Generation Module

    OpenAIRE

    Dismas K. Choge; Huai-Xi Chen; Bao-Lu Tian; Yi-Bin Xu; Guang-Wei Li; Wan-Guo Liang

    2018-01-01

    We report an all-solid-state continuous wave (CW) tunable orange laser based on cascaded single-pass sum-frequency generation with fundamental wavelengths at 1545.7 and 975.2 nm using two quasi-phase-matched (QPM) MgO-doped periodically poled lithium niobate (MgO:PPLN) crystals. Up to 10 mW of orange laser is generated in the cascaded module corresponding to a 10.4%/W nonlinear conversion efficiency. The orange output showed a temperature tuning rate of ~0.05 nm/°C, and the beam quality (M2) ...

  20. [Effect of electro-acupuncture on metabolites in the cerebral cortex of ulcerative colitis rats based on Pi/Wei-brain related theory].

    Science.gov (United States)

    Yang, Yang; Zhao, Ji-lan; Hou, Tian-shu; Han, Xiao-xia; Zhao, Zheng-yu; Peng, Xiao-hua; Wu, Qiao-Feng

    2014-10-01

    To study the effect of electro-acupuncture (EA) at points along Foot Yangming Channel on metabolite of ulcerative colitis (UC) rats' cerebral cortex and to identify key metabolites by referring to Pi/Wei-brain related theory in Chinese medicine (CM). The UC rat model was set up by dextran sulfate sodium (DSS) method. Male SD rats were randomly divided into the model group and the EA group, 13 in each group. Another 13 rats were recruited as the blank control group. Rats in the blank control group and the model group received no EA. EA was performed at Zusanli (ST36), Shangjuxu (ST37), and Tianshu (ST25) for 5 days by using disperse-dense wave. Then all rats were sacrificed. Their recto-colon and the ileocecal junction were pathomorphologically observed by light microscope and transmission electron microscope (TEM). Cerebral cortexes were extracted. Water-soluble and lipid-soluble brain tissue metabolites were respectively extracted for metabolic research using 1H nuclear magnetic resonance (1H-NMR). EA could obviously improve the general condition of UC model rats, decrease the value of DAI, reduce the infiltration of inflammatory cells in the intestinal tract, stabilize structures such as mitochondria, endoplasmic reticulum and so on (P theory.

  1. Alpha-MSH decreases core and brain temperature during global cerebral ischemia in rats

    DEFF Research Database (Denmark)

    Spulber, S.; Moldovan, Mihai; Oprica, M.

    2005-01-01

    -vessel occlusion forebrain ischemia on core temperature (CT) and brain temperature (BT), respectively. After 10 min cerebral ischemia, BT was lower in alpha-MSH- than in saline-injected animals. After 10 min reperfusion, both CT and BT were lower than the corresponding pre-ischemic levels after injection of alpha...

  2. Neuroprotective effect of curcumin on transient focal cerebral ischemia in rats.

    Science.gov (United States)

    Zhao, Jing; Zhao, Yong; Zheng, Weiping; Lu, Yuyu; Feng, Gang; Yu, Shanshan

    2008-09-10

    Curcumin, a member of the curcuminoid family of compounds, is a yellow colored phenolic pigment obtained from the powdered rhizome of C. longa Linn. Recent studies have demonstrated that curcumin has protective effects against cerebral ischemia/reperfusion injury. However, little is known about its mechanism. Hence, in the present study the neuroprotective potential of curcumin was investigated in middle cerebral artery occlusion (MCAO) induced focal cerebral IR injury. Administration of curcumin 100 and 300 mg/kg i.p. 60 min after MCAO significantly diminished infarct volume, and improved neurological deficit in a dose-dependent manner. Nissl staining showed that the neuronal injury was significantly improved after being treated with curcumin. Curcumin significantly decreased the expression of caspase-3 protein. A higher number of TUNEL-positive cells were found in the vehicle group, but they were significantly decreased in the treated group. Taken together, these results suggest that the neuroprotective potentials of curcumin against focal cerebral ischemic injury are, at least in part, ascribed to its anti-apoptotic effects.

  3. Neuroprotective effect of p-coumaric acid in rat model of embolic cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Mustafa Guven

    2015-04-01

    Conclusion:Our results showed that p-coumaric acid is a neuroprotective agent on account of its strong anti-oxidant and anti-apoptotic features. Moreover, p-coumaric acid decreased the focal ischemia. Extra effort should be made to introduce p-coumaric acid as a promising therapeutic agent to be utilized for treatment of human cerebral ischemia in the future.

  4. Middle cerebral artery occlusion in presence of low perfusion pressure increases infarct size in rats

    DEFF Research Database (Denmark)

    Sillesen, H; Nedergaard, Majken; Schroeder, T

    1988-01-01

    0.005), which in turn had larger infarcts than the sham-operated animals (p less than 0.001). These results indicate that patients with hypoperfusion, due to severe ICA stenosis and impaired collateral blood supply, are at higher risk of developing major stroke, when embolism into a cerebral artery...

  5. Protection by the gross saponins of Tribulus terrestris against cerebral ischemic injury in rats involves the NF-κB pathway

    Directory of Open Access Journals (Sweden)

    En-ping Jiang

    2011-06-01

    Full Text Available The aim of this study was to investigate whether the gross saponins of Tribulus terrestris (GSTT, a traditional Chinese herbal medicine, have neuroprotective effects on rats subjected to middle cerebral artery occlusion (MCAO, through nuclear factor-κB (NF-κB pathway and inflammatory mediators. Cerebral ischemia was produced by MCAO in either untreated (control or GSTT-pretreated rats, and the animals were examined for infarct volume, cerebral edema, neuro-behavioral abnormality and pathological changes. Meanwhile, the expression of NF-κB protein in brain tissue was analyzed on Western blots and the serum levels of TNF-α and IL-1 were determined by ELISA. The experimental results demonstrated that, compared with the control MCAO group, GSTT-pretreated MCAO group had significantly reduced infarct volume, brain edema and neuro-behavioral abnormality, and lesser degree of pathologic changes in the brain, as well as had lower levels of serum TNF-α and IL-1β, and higher levels of brain NF-κB (P<0.05. Furthermore, treatment with an NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC abolished the protective effects of GSTT against MCAO-induced cerebral ischemic injury. These results indicated that GSTT's ability to protect against cerebral ischemic injury was mediated through the NF-κB signaling pathway, and that GSTT may act through inhibition of the production of inflammatory mediators.

  6. Liquid Chromatography with Tandem Mass Spectrometry: A Sensitive Method for the Determination of Dehydrodiisoeugenol in Rat Cerebral Nuclei

    Directory of Open Access Journals (Sweden)

    You-Bo Zhang

    2016-03-01

    Full Text Available A new liquid chromatography–tandem mass spectrometry (LC-MS/MS method is developed for the quantification of dehydrodiisoeugenol (DDIE in rat cerebral nuclei after single intravenous administration. DDIE and daidzein (internal standard were separated on a Diamonsil™ ODS C18 column with methanol–water containing 0.1% formic acid (81:19, v/v as a mobile phase. Detection of DDIE was performed on a positive electrospray ionization source using a triple quadrupole mass spectrometer. DDIE and daidzein were monitored at m/z 327.2→188.0 and m/z 255.0→199.2, respectively, in multiple reaction monitoring mode. This method enabled quantification of DDIE in various brain areas, including, cortex, hippocampus, striatum, hypothalamus, cerebellum and brainstem, with high specificity, precision, accuracy, and recovery. The data herein demonstrate that our new LC-MS/MS method is highly sensitive and suitable for monitoring cerebral nuclei distribution of DDIE.

  7. UCAO (UNILATERAL CEREBRAL ARTERY OCCLUSSION METHOD INCREASES THE LEVEL OF MMP- 9 BRAIN TISSUE IN RATS MODEL OF ISCHEMIC STROKE

    Directory of Open Access Journals (Sweden)

    M. Rasjad Indra

    2016-07-01

    Full Text Available Background. For the last 5 years, 15.4% of total population died because of stroke, which 42.9% of those are caused by ischemic stroke. UCAO (Unilateral Cerebral Artery Occlusion is a stroke induction method by ligating mice’s carotid artery for 45 minutes. Thus, giving a hypoxic condition similar to stroke attack in human. This method is less complicated and far more efficient. MMP-9 is a stroke marker which is assayed by ELISA from the blood of test animal. Objective. This research was conducted to prove UCAO (Unilateral Cerebral Artery Occlusion method is capable to raise MMP-9 concentration in mice’s blood. Methods. This research was an experimental laboratory research with post-test only controlled group design. 8 male rats (8-10 weeks were divided into 2 groups, control and treatment which would be inducted into stroke by UCAO method. A day after the treatment group had been induced to stroke, both group were tested to measure the MMP-9 blood concentration through ELISA. Results. In this research, UCAO method had increased MMP-9 blood concentration in treatment group, compared to the control group. It is proved by the statistic tests, Mann-Whitney and Kruskal-Wallis, which showed a significant increase in treatment group (p < 0.05. Conclusion. Based on this result, it can be concluded that UCAO method is accepted as a method to create an ischemic stroke mice model.

  8. Inhibitory Effect on Cerebral Inflammatory Response following Traumatic Brain Injury in Rats: A Potential Neuroprotective Mechanism of N-Acetylcysteine

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2008-01-01

    Full Text Available Although N-acetylcysteine (NAC has been shown to be neuroprotective for traumatic brain injury (TBI, the mechanisms for this beneficial effect are still poorly understood. Cerebral inflammation plays an important role in the pathogenesis of secondary brain injury after TBI. However, it has not been investigated whether NAC modulates TBI-induced cerebral inflammatory response. In this work, we investigated the effect of NAC administration on cortical expressions of nuclear factor kappa B (NF-κB and inflammatory proteins such as interleukin-1β (IL-1β, tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, and intercellular adhesion molecule-1 (ICAM-1 after TBI. As a result, we found that NF-κB, proinflammatory cytokines, and ICAM-1 were increased in all injured animals. In animals given NAC post-TBI, NF-κB, IL-1β, TNF-α, and ICAM-1 were decreased in comparison to vehicle-treated animals. Measures of IL-6 showed no change after NAC treatment. NAC administration reduced brain edema, BBB permeability, and apoptotic index in the injured brain. The results suggest that post-TBI NAC administration may attenuate inflammatory response in the injured rat brain, and this may be one mechanism by which NAC ameliorates secondary brain damage following TBI.

  9. Antioxidant Activity of Grapevine Leaf Extracts against Oxidative Stress Induced by Carbon Tetrachloride in Cerebral Cortex, Hippocampus and Cerebellum of Rats

    Directory of Open Access Journals (Sweden)

    Mariane Wohlenberg

    2014-04-01

    Full Text Available In recent years, it has become increasingly important to study the beneficial properties of derivatives of grapes and grapevine. The objective of this study was to determine the antioxidant activity of Vitis labrusca leaf extracts, comparing conventional and organic grapevines, in different brain areas of rats. We used male Wistar rats treated with grapevine leaf extracts for a period of 14 days, and on the 15th day, we administered in half of the rats, mineral oil and the other half, carbon tetrachloride (CCl4. The animals were euthanized by decapitation and the cerebral cortex, hippocampus and cerebellum were removed to assess oxidative stress parameters and the activity of antioxidant enzymes. Lipid peroxidation levels (TBARS were unchanged. However, CCl4 induced oxidative damage to proteins in all tissues studied, and this injury was prevented by both extracts. Superoxide dismutase (SOD activity was increased by CCl4 in the cerebral cortex and decreased in other tissues. However, CCl4 increased catalase (CAT activity in the cerebellum and decreased it in the cerebral cortex. The SOD/CAT ratio was restored in the cerebellum by both extracts and only in the cerebral cortex by the organic extract.

  10. Acute treatment with docosahexaenoic acid complexed to albumin reduces injury after a permanent focal cerebral ischemia in rats.

    Directory of Open Access Journals (Sweden)

    Tiffany N Eady

    Full Text Available Docosahexaenoic acid complexed to albumin (DHA-Alb is highly neuroprotective after temporary middle cerebral artery occlusion (MCAo, but whether a similar effect occurs in permanent MCAo is unknown. Male Sprague-Dawley rats (270-330 g underwent permanent MCAo. Neurological function was evaluated on days 1, 2 and 3 after MCAo. We studied six groups: DHA (5 mg/kg, Alb (0.63 or 1.25 g/kg, DHA-Alb (5 mg/kg+0.63 g/kg or 5 mg/kg+1.25 g/kg or saline. Treatment was administered i.v. at 3 h after onset of stroke (n = 7-10 per group. Ex vivo imaging of brains and histopathology were conducted on day 3. Saline- and Alb-treated rats developed severe neurological deficits but were not significantly different from one another. In contrast, rats treated with low and moderate doses of DHA-Alb showed improved neurological score compared to corresponding Alb groups on days 2 and 3. Total, cortical and subcortical lesion volumes computed from T2 weighted images were reduced following a moderate dose of DHA-Alb (1.25 g/kg by 25%, 22%, 34%, respectively, compared to the Alb group. The total corrected, cortical and subcortical infarct volumes were reduced by low (by 36-40% and moderate doses (by 34-42% of DHA-Alb treatment compared to the Alb groups. In conclusion, DHA-Alb therapy is highly neuroprotective in permanent MCAo in rats. This treatment can provide the basis for future therapeutics for patients suffering from ischemic stroke.

  11. A Unified Algorithm for Channel Imbalance and Antenna Phase Center Position Calibration of a Single-Pass Multi-Baseline TomoSAR System

    Directory of Open Access Journals (Sweden)

    Yuncheng Bu

    2018-03-01

    Full Text Available The multi-baseline synthetic aperture radar (SAR tomography (TomoSAR system is employed in such applications as disaster remote sensing, urban 3-D reconstruction, and forest carbon storage estimation. This is because of its 3-D imaging capability in a single-pass platform. However, a high 3-D resolution of TomoSAR is based on the premise that the channel imbalance and antenna phase center (APC position are precisely known. If this is not the case, the 3-D resolution performance will be seriously degraded. In this paper, a unified algorithm for channel imbalance and APC position calibration of a single-pass multi-baseline TomoSAR system is proposed. Based on the maximum likelihood method, as well as the least squares and the damped Newton method, we can calibrate the channel imbalance and APC position. The algorithm is suitable for near-field conditions, and no phase unwrapping operation is required. The effectiveness of the proposed algorithm has been verified by simulation and experimental results.

  12. Cerebroprotective Actions of Triticum aestivum Linn Powder and Bauhinia purpurea Flower Powder in Surgically Induced Cerebral Infraction in Rats.

    Science.gov (United States)

    Annapurna, Akula; Vishala, Thonangi C; Bitra, Veera R; Rapaka, Deepthi; Shaik, Asmath

    2018-01-01

    The prime objective of this study is to evaluate the cerebroprotective actions of Triticum aestivum (wheatgrass) powder and Bauhinia purpurea flower (dev kanchan) powder against the experimentally induced global ischemia reperfusion injury in rats. In the first phase of the studies, 1 h before the surgical procedure, the Wistar rats were orally served with varied doses of wheatgrass powder (5, 10, 30, and 100 μg/kg) and Bauhinia flower powder (30, 100, 200, and 300 μg/kg), respectively. The ischemia was induced by 30-min bilateral carotid artery occlusion in succession to reperfusion for 4 h. It was proved that the wheatgrass powder and Bauhinia flower powder yielded a significant, dose-dependent cerebroprotection in terms of reduction in cerebral infarct size when compared with the control group. Coming to the second phase of the studies, a certain potential dose of 10 μg/kg of wheatgrass and 200 μg/kg of Bauhinia flower powders was selected keeping the protective action in view, and the animals were treated for 15 days. The major findings of the study are that wheatgrass and Bauhinia flower powders significantly augmented the magnitude of the antioxidant enzymes, viz., super oxide dismutase and catalase, and further reduced the levels of lipid peroxidation. The present study clearly showed that the wheatgrass powder and Bauhinia flower powder possess significant antioxidant properties that may act as a key ingredient in various ayurvedic preparations for the treatment of various diseases like cerebral ischemic reperfusion injury. The wheat grass contains high amount of bioflavonoids, alkaloids, SOD etc which are responsible for anti oxidant activity.The Bauhinia purpurea contains glycosides, flavonoids and also plays a major role in DPPH activity which is responsible for anti oxidant activity.The wheat grass (10 mg/kg) and bauhinia (200 mg/kg) significantly(P bauhinia (200 mg/kg) significantly (P <0.0001) reduced the lipid peroxidation (MDA) and increased SOD

  13. Effect of electroacupuncture on TRPM7 mRNA expression after cerebral ischemia/reperfusion in rats via TrkA pathway.

    Science.gov (United States)

    Zhao, Li; Shi, Jing; Sun, Ning; Tian, Shunlian; Meng, Xianfang; Liu, Xiaochun; Li, Lingli

    2005-01-01

    The effect of electroacupuncture (EA) on TRPM7 mRNA expression of focal cerebral ischemia in rats and further the role of EA in the relationship between TRPM7 and trkA pathway was investigated. Thirty SD rats were randomly divided into 5 groups : normal group, ischemia/reperfusion group, EA treated group (ischemic rats with EA treatment), TE infusion group (ischemic rats with EA treatment and TE buffer infusion), AS-ODN group (ischemic rats with EA treatment and antisense trkA oligonucleotide infusion). The stroke animal model was established by the modified method of middle cerebral artery occlusion. Antisense trkA oligonucleotide that blocked NGFs effects was injected into cerebroventricle before EA. The TRPM7 mRNA was detected by RT-PCR method. The results showed that there were low TRPM7 mRNA levels in cortex and hippocampus in normal group. Compared with normal group, TRPM7 mRNA expression was increased significantly in ischemia/reperfusion group (PPM7 mRNA was found in EA treated group in contrast to ischemia/reperfusion group (P<0.05). The expression of TRPM7 mRNA in AS-ODN group was remarkably increased compared with EA treated group and TE infusion group (P<0.05). The results indicated that TRPM7 channels in the ischemic cortex and hippocampus in rats might play a key role in ischemic brain injury. EA could reverse the overexpression of TRPM7 in cerebral ischemia/reperfusion rats. And the inhibitory effect of EA on TRPM7 channels might be through trkA pathway.

  14. [Study of neuron-protective effect and mechanism of neuregulin1β against cerebral ischemia reperfusion-induced injury in rats].

    Science.gov (United States)

    Ji, Y Q; Zhang, R; Teng, L; Li, H Y; Guo, Y L

    2017-07-18

    Objective: Thecurrent study is to explore the neuron-protective mechanism of neuregulin1β (NRG1β) in a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) through inhibiting the c-Jun phosphorylation. Methods: After 24 h of MCAO/R (referring to Longa's method), neurobehavioral function was measured by modified neurological severity score (mNSS) test; the cerebral infarction volume was detected by triphenyltetrazolium chloride (TTC) staining; the blood brain barrier (BBB) permeability was measured by Evans Blue (EB); the neuron morphology of brain tissue was observed by Nissl stain; the ultra-structures of the neurons were observed by transmission electron microscopy (TEM); the apoptotic neurons were counted by in situ cell death detection kit colocalized with NeuN; the expressions of phospho-c-Jun was determined by immunofluorescent labeling and Western blot analysis. Results: Compared with the sham-operation rats, the rats receiving MCAO/R showed increased mNSS (9.7±1.2), cerebral infarction volume (41.4±3.0)%, permeability of BBB, deformation of neurons, ischemia-induced apoptosis (0.63±0.04), and enhanced expression of phospho-c-Jun protein (0.90±0.07) (all P <0.05). Our data indicated that NRG1β attenuated neurologic deficits (6.4±0.9), decreased the cerebral infarction volume (10.4±0.5), reduced EB extravasation (1.55±0.13) and the deformation of neurons, protected the ultra-structure of neurons, blocked ischemia-induced apoptosis (0.23±0.02), through down-regulated phospho-c-Jun expression (0.40±0.03) in MCAO/R rats ( P <0.05). Conclusion: NRG1β exerts neuron-protective effects against ischemia reperfusion-induced injury in rats through inhibiting the c-Jun phosphorylation.

  15. Possible involvements of glutamate and adrenergic receptors on acute toxicity of methylphenidate in isolated hippocampus and cerebral cortex of adult rats.

    Science.gov (United States)

    Motaghinejad, Majid; Motevalian, Manijeh; Shabab, Behnaz

    2017-04-01

    Neurodegeneration induced by methylphenidate (MPH), as a central stimulant with unknown long-term consequences, in adult rats' brain and the possible mechanisms involved were studied. Rats were acutely treated with MPH in the presence and absence of some receptor antagonists such as ketamine, topiramate, yohimbine, and haloperidol. Motor activity and anxiety level in rats were monitored. Antioxidant and inflammatory parameters were also measured in isolated hippocampus and cerebral cortex. MPH-treated groups (10 and 20 mg/kg) demonstrated anxiety-like behavior and increased motor activity. MPH significantly increased lipid peroxidation, GSSG content, IL-1β and TNF-α levels in isolated tissues, and also significantly reduced GSH content, superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) activities in hippocampus and cerebral cortex. Pretreatment of animals by receptor antagonists caused inhibition of MPH-induced motor activity disturbances and anxiety-like behavior. Pretreatment of animals by ketamine, topiramate, and yohimbine inhibited the MPH-induced oxidative stress and inflammation; it significantly decreased lipid peroxidation, GSSG level, IL-1β and TNF-α levels and increased GSH content, SOD, GPx, and GR activities in hippocampus and cerebral cortex of acutely MPH-treated rats. Pretreatment with haloperidol did not cause any change in MPH-induced oxidative stress and inflammation. In conclusion, acute administration of high doses of MPH can cause oxidative and inflammatory changes in brain cells and induce neurodegeneration in hippocampus and cerebral cortex of adult rats and these changes might probably be mediated by glutamate (NMDA or AMPA) and/or α 2 -adrenergic receptors. © 2016 Société Française de Pharmacologie et de Thérapeutique.

  16. Mitochondrial complex I inhibition in cerebral cortex of immature rats following homocysteic acid-induced seizures

    Czech Academy of Sciences Publication Activity Database

    Folbergrová, Jaroslava; Ješina, Pavel; Drahota, Zdeněk; Lisý, Václav; Haugvicová, Renata; Vojtíšková, Alena; Houštěk, Josef

    2007-01-01

    Roč. 204, č. 2 (2007), s. 597-609 ISSN 0014-4886 R&D Projects: GA ČR(CZ) GA309/05/2015; GA ČR(CZ) GA303/06/1261; GA MŠk 1M0520 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z50200510 Keywords : cerebral cortex * homocysteic acid * free radical scavenger Subject RIV: ED - Physiology Impact factor: 3.982, year: 2007

  17. Homocysteine Aggravates Cortical Neural Cell Injury through Neuronal Autophagy Overactivation following Rat Cerebral Ischemia-Reperfusion

    Directory of Open Access Journals (Sweden)

    Yaqian Zhao

    2016-07-01

    Full Text Available Elevated homocysteine (Hcy levels have been reported to be involved in neurotoxicity after ischemic stroke. However, the underlying mechanisms remain incompletely understood to date. In the current study, we hypothesized that neuronal autophagy activation may be involved in the toxic effect of Hcy on cortical neurons following cerebral ischemia. Brain cell injury was determined by hematoxylin-eosin (HE staining and TdT-mediated dUTP Nick-End Labeling (TUNEL staining. The level and localization of autophagy were detected by transmission electron microscopy, western blot and immunofluorescence double labeling. The oxidative DNA damage was revealed by immunofluorescence of 8-Hydroxy-2′-deoxyguanosine (8-OHdG. Hcy treatment aggravated neuronal cell death, significantly increased the formation of autophagosomes and the expression of LC3B and Beclin-1 in the brain cortex after middle cerebral artery occlusion-reperfusion (MCAO. Immunofluorescence analysis of LC3B and Beclin-1 distribution indicated that their expression occurred mainly in neurons (NeuN-positive and hardly in astrocytes (GFAP-positive. 8-OHdG expression was also increased in the ischemic cortex of Hcy-treated animals. Conversely, LC3B and Beclin-1 overexpression and autophagosome accumulation caused by Hcy were partially blocked by the autophagy inhibitor 3-methyladenine (3-MA. Hcy administration enhanced neuronal autophagy, which contributes to cell death following cerebral ischemia. The oxidative damage-mediated autophagy may be a molecular mechanism underlying neuronal cell toxicity of elevated Hcy level.

  18. Talampanel improves the functional deficit after transient focal cerebral ischemia in rats. A 30-day follow up study.

    Science.gov (United States)

    Erdo, Franciska; Berzsenyi, Pál; Német, László; Andrási, Ferenc

    2006-01-15

    The neuroprotective effect of talampanel, a negative allosteric modulator of alpha-amino-3-hydroxy-methyl-4-isoxazolyl-propionic acid (AMPA) receptors has been described previously. However, in these studies the histological changes and not the functional consequences of the brain damage were evaluated. The aim of present investigation was to analyze the sensorimotor function after stroke and to test the influence of talampanel (GYKI-53773, LY-300164) by 30-day monitoring in rats. After 1h middle cerebral artery occlusion (MCAO) general 'well-being', neurological status, spontaneous motor activity, rotation, motor coordination, balancing, muscle strength and reaction time were followed for 1 month. Talampanel (6 x 10 mg/kg i.p. given on the day of stroke) improved the motor coordination in rotarod (p beam walking (p tests, reduced the number of stroke-induced rotations (p < 0.05), shortened the reflex time on the forelimb contralateral to brain ischemia and improved the survival rate comparing with vehicle treated control. After stroke, serious sensorimotor deficits appeared in rats but they showed partial spontaneous recovery after 30 days. Talampanel treatment enhanced the rate of functional improvement without changing the morphology at the end of the experiment. Our results indicate that modulation of AMPA receptors by talampanel can be a promising therapeutic approach to the treatment of stroke.

  19. The effect of voluntarily ingested buprenorphine on rats subjected to surgically induced global cerebral ischaemia

    DEFF Research Database (Denmark)

    Kalliokoski, Otto Henrik; Abelson, Klas; Koch, Janne

    2010-01-01

    in buprenorphine-treated and untreated animals. A part from a slightly higher hyperthermia immediately after surgery and typical opiate-associated behaviour, the buprenorphine treatment had no apparent adverse effects on the experimental model. In contrast, the analgesic treatment improved the model by minimizing......The effect of perioperatively administered buprenorphine analgesia on rats subjected to surgically induced global ischaemia was assessed. Rats supplied with buprenorphine, mixed in nut paste for voluntary ingestion, displayed significant reductions in postoperative excretions of faecal...

  20. Nitric oxide (NO) is an endogenous anticonvulsant but not a mediator of the increase in cerebral blood flow accompanying bicuculline-induced seizures in rats

    DEFF Research Database (Denmark)

    Wang, Qian; Theard, M A; Pelligrino, D A

    1994-01-01

    Neurons synthesize NO, which may act as a retrograde messenger, involved in either potentiating or depressing neuronal excitability. NO may also play a role in the cerebral vasodilatory response to increased neuronal activity (i.e., seizures). In this study, two questions were asked: (1) is NO an......Neurons synthesize NO, which may act as a retrograde messenger, involved in either potentiating or depressing neuronal excitability. NO may also play a role in the cerebral vasodilatory response to increased neuronal activity (i.e., seizures). In this study, two questions were asked: (1......) is NO an endogenous anticonvulsant or proconvulsant substance? and (2) is the cerebral blood flow (CBF) increase accompanying bicuculline (BC)-induced seizures mediated by NO? The experiments were performed in 300-400-g Wistar rats anesthetized with 0.6% halothane and 70% N2O/30% O2. CBF was measured using...

  1. Proteomic Expression Changes in Large Cerebral Arteries After Experimental Subarachnoid Hemorrhage in Rat Are Regulated by the MEK-ERK1/2 Pathway

    DEFF Research Database (Denmark)

    Müller, Anne H; Edwards, Alistair V G; Larsen, Martin R

    2017-01-01

    Subarachnoid hemorrhage (SAH) is a serious clinical condition where leakage of blood into the subarachnoid space causes an acute rise in intracranial pressure and reduces cerebral blood flow, which may lead to delayed cerebral ischemia and poor outcome. In experimental SAH, we have previously shown...... was induced in rats that were treated with the MEK1/2 inhibitor U0126 or vehicle. Neurological outcome was assessed using a battery of behavioral tests. Specific protein expression of large cerebral arteries was analyzed quantitatively with high-throughput tandem mass spectrometry. SAH resulted in a marked...... reduction of neurological scores, which was counteracted by U0126 treatment. Mass spectrometry analysis demonstrated regulation of 184 proteins after SAH, regulations that were in part prevented by U0126 treatment. Network analysis identified several protein networks including a strong structural network...

  2. Correlations between ANP concentrations in atria, plasma and cerebral structures and sodium chloride preference in Wistar rats

    Directory of Open Access Journals (Sweden)

    Glass H.

    1997-01-01

    Full Text Available We determined whether ANP (atrial natriuretic peptide concentrations, measured by radioimmunoassay, in the ANPergic cerebral regions involved in regulation of sodium intake and excretion and pituitary gland correlated with differences in sodium preference among 40 Wistar male rats (180-220 g. Sodium preference was measured as mean spontaneous ingestion of 1.5% NaCl solution during a test period of 12 days. The relevant tissues included the olfactory bulb (OB, the posterior and anterior lobes of the pituitary gland (PP and AP, respectively, the median eminence (ME, the medial basal hypothalamus (MBH, and the region anteroventral to the third ventricle (AV3V. We also measured ANP content in the right (RA and left atrium (LA and plasma. The concentrations of ANP in the OB and the AP were correlated with sodium ingestion during the preceding 24 h, since an increase of ANP in these structures was associated with a reduced ingestion and vice-versa (OB: r = -0.3649, P<0.05; AP: r = -0.3291, P<0.05. Moreover, the AP exhibited a correlation between ANP concentration and mean NaCl intake (r = -0.4165, P<0.05, but this was not the case for the OB (r = 0.2422. This suggests that differences in sodium preference among individual male rats can be related to variations of AP ANP level. Earlier studies indicated that the OB is involved in the control of NaCl ingestion. Our data suggest that the OB ANP level may play a role mainly in day-to-day variations of sodium ingestion in the individual rat

  3. Effects of regional cerebral blood flow perfusion on learning and memory function and its molecular mechanism in rats

    Institute of Scientific and Technical Information of China (English)

    Cunli Xu; Wenhua Wu; Lingbin Kong

    2016-01-01

    Objective:To study the effects of regional cerebral blood flow(r CBF)perfusion on learning and memory function in special brain areas and its molecular mechanism in rat.Methods:Sixty-four adult male healthy Sprague-Dawley(SD)rats were randomly divided into two groups:A false operation group and an operation group.The false operation group was randomly divided into four subgroups(A0,B0,C0,and D0)and the operation group was randomly divided into four subgroups(A,B,C,and D),with eight rats in each subgroup.The operation group underwent bilateral common carotid artery permanent ligation,while the other group only underwent a skin incision without the bilateral common carotid artery permanent ligation.Learning memory function of rats in each subgroup was measured using a Y-maze at 4 h,8 h,24 h,and 3 days after surgery.The r CBF in the right frontal lobe and hippocampus was detected using the Periflux PF model laser Doppler flowmetry and c-fos,c-jun,Bcl-2,and Bax protein expression in the right frontal lobe and hippocampus was measured using immunohistochemistry.Results:The r CBF in the right frontal lobule division and right hippocampus division was significantly lower in the operation group than in the false operation group(P<0.05).The error number(EN),time to reach the target,and total reaction time(TRT)for the learning index using the Y-type labyrinth test in the operation group were significantly higher than that in the false operation group(P<0.05);however,the active avoid rate in the operation group was significantly lower than that of the false operation group.Expression of c-fos and c-jun as well as the average absorbency in the right frontal lobule division and right hippocampus division in the operation group were significantly higher than those in the false operation group(P<0.05).The number of Bax and Bcl-2-positive cells was significantly higher in the operation group,and the expression ratio of Bax/Bcl-2 in the operation

  4. Increased Expression Of Toll-Like Receptor 2 Mrna Following Permanent Middle Cerebral Artery Occlusion In Rat: Role Of TRPV1 Receptors

    Directory of Open Access Journals (Sweden)

    Amir Moghadam Ahmadi

    2017-02-01

    Full Text Available Background: Stroke is a major cause of mortality and long term disability in adults. TRPV1 has a pivotal role in neuroinflammation. Among TLRs, TLR2 significantly participate in induction of inflammation in brain. In this study, the effect of TRPV1 receptor agonist and antagonist on outcome and gene expression of TLR2 in a rat model of permanent middle cerebral artery occlusion (MCAO was investigated. Methods: Forty male rats were assigned to the following groups: sham, vehicle stroke, AMG9810 (selective TRPV1 antagonist, 0.5 mg/kg; 3 h after stroke, and capsaicin (1 mg/kg; 3 h after stroke. Stroke was induced by permanent middle cerebral artery occlusion and behavioral functions were assessed 1, 3, and 7 days after stroke. Infarct volume, brain edema and mRNA expression of TLR2 were also evaluated at the end of the study. Results: While stroke animals showed infarctions and behavioral functions, we did not observe any cerebral infarction and behavioral functions in sham-operated animals. AMG9810 decreased neurological deficits 7 days after cerebral ischemia (P<0.01. In the ledged beam-walking test, the slip ratio was increased following ischemia (*P < 0.05. AMG9810 improved this index in animals undergone stroke. However, capsaicin enhanced the slip ratio 3 and 7 days after cerebral ischemia (#P<0.05. TLR2 P<0.05(mRNA expression was elevated in ischemic rats.   Conclusion: Our data indicate that pharmacological blockade of TRPV1 by AMG9810 attenuates behavioral function and mRNA expression of TLR2. Therefore, it might be useful as a potential target for the treatment of ischemic stroke.

  5. Upregulation of contractile endothelin type B receptors by lipid-soluble cigarette smoking particles in rat cerebral arteries via activation of MAPK

    International Nuclear Information System (INIS)

    Sandhu, Hardip; Xu, Cang Bao; Edvinsson, Lars

    2010-01-01

    Cigarette smoke exposure increases the risk of stroke. However, the underlying molecular mechanisms are poorly understood. Endothelin system plays key roles in the pathogenesis of stroke. The present study was designed to examine if lipid-soluble (dimethyl sulfoxide-soluble) cigarette smoke particles (DSP) induces upregulation of contractile endothelin type B (ET B ) receptors in rat cerebral arteries and if activation of mitogen activated protein kinase (MAPK) and nuclear factor-kappaB (NF-κB) mediate the upregulation of contractile endothelin receptors in the cerebral arteries. Rat middle cerebral arteries were isolated and organ cultured in serum free medium for 24 h in the presence of DSP with or without specific inhibitors: MEK specific (U0126), p38 specific (SB202190), JNK specific (SP600125), NF-κB specific (BMS-345541) or (IMD-0354), transcription inhibitor (actinomycin D), or translation blocker (cycloheximide). Contractile responses to the ET B receptor agonist sarafotoxin 6c were investigated by a sensitive myograph. The expression of the ET B receptors were studied at mRNA and protein levels using quantitative real time PCR and immunohistochemistry, respectively. Results show that organ culture per se induced transcriptional upregulation of contractile ET B receptors in the cerebral vascular smooth muscle cells. This upregulation was further increased at the translational level by addition of DSP to the organ culture, but this increase was not seen by addition of nicotine or water-soluble cigarette smoke particles to the organ culture. The increased upregulation of contractile ET B receptors by DSP was abrogated by U0126, SP600125, actinomycin D, and cycloheximide, suggesting that the underlying molecular mechanisms involved in this process include activation of MEK and JNK MAPK-mediated transcription and translation of new contractile ET B receptors. Thus, the MAPK-mediated upregulation of contractile ET B receptors in cerebral arteries might be a

  6. A comparative study on the efficacy of 10% hypertonic saline and equal volume of 20% mannitol in the treatment of experimentally induced cerebral edema in adult rats

    Directory of Open Access Journals (Sweden)

    Fang Ming

    2010-12-01

    Full Text Available Abstract Background Hypertonic saline and mannitol are commonly used in the treatment of cerebral edema and elevated intracranial pressure (ICP at present. In this connection, 10% hypertonic saline (HS alleviates cerebral edema more effectively than the equal volume of 20% mannitol. However, the exact underlying mechanism for this remains obscure. This study aimed to explore the possible mechanism whereby 10% hypertonic saline can ameliorate cerebral edema more effectively than mannitol. Results Adult male Sprague-Dawley (SD rats were subjected to permanent right-sided middle cerebral artery occlusion (MCAO and treated with a continuous intravenous infusion of 10% HS, 20% mannitol or D-[1-3H(N]-mannitol. Brain water content (BWC as analyzed by wet-to-dry ratios in the ischemic hemisphere of SD rats decreased more significantly after 10% HS treatment compared with 20% mannitol. Concentration of serum Na+ and plasma crystal osmotic pressure of the 10% HS group at 2, 6, 12 and 18 h following permanent MCAO increased significantly when compared with 20% mannitol treated group. Moreover, there was negative correlation between the BWC of the ipsilateral ischemic hemisphere and concentration of serum Na+, plasma crystal osmotic pressure and difference value of concentration of serum Na+ and concentration of brain Na+ in ipsilateral ischemic hemisphere in the 10% HS group at the various time points after MCAO. A remarkable finding was the progressive accumulation of mannitol in the ischemic brain tissue. Conclusions We conclude that 10% HS is more effective in alleviating cerebral edema than the equal volume of 20% mannitol. This is because 10% HS contributes to establish a higher osmotic gradient across BBB and, furthermore, the progressive accumulation of mannitol in the ischemic brain tissue counteracts its therapeutic efficacy on cerebral edema.

  7. Effect of chlorella and its fractions on blood pressure, cerebral stroke lesions, and life-span in stroke-prone spontaneously hypertensive rats.

    Science.gov (United States)

    Sansawa, Hiroshi; Takahashi, Masatoshi; Tsuchikura, Satoru; Endo, Hiroshi

    2006-12-01

    Effects of Chlorella regularis (dried cell powder)--cultured axenically under heterotrophic conditions, and provided as a dietary supplement--and its fractions on the blood pressure, cerebral stroke lesions, and life-span of stroke-prone spontaneously hypertensive rats (SHRSP/Izm) were investigated. When SHRSP were fed on diets with supplemented Chlorella to a commercial diet (Funabashi SP), elevation of blood pressure was significantly lower in the Chlorella groups than in the control group. At 21 wk of feeding, serum total cholesterol was significantly lower in the Chlorella groups than in the control group. Histopathological examination revealed cerebral vascular accidents in the brains of the control group, but those of Chlorella groups showed apparently low incidence compared to the control group. The average life-span of the Chlorella groups were significantly longer than that of the control group (p vascular function of rats.

  8. Intermittent Fasting Pretreatment Prevents Cognitive Impairment in a Rat Model of Chronic Cerebral Hypoperfusion.

    Science.gov (United States)

    Hu, Yuan; Yang, Ying; Zhang, Miao; Deng, Min; Zhang, Jun-Jian

    2017-07-01

    Background: Whether intermittent fasting (IF) pretreatment can prevent vascular cognitive dysfunction remains unknown to our knowledge. Objective: We investigated the effects and underlying mechanisms of IF pretreatment on cognitive dysfunction in a permanent 2-vessel occlusion (2VO) vascular dementia rat model. Methods: Male Wistar rats weighing 200 g were subjected to either IF or ad libitum feeding for 12 wk before 2VO surgery. Rats in the IF protocol underwent alternative-day feed deprivation (FD). Memory of the animals was assessed by using the Morris water maze (MWM) and the novel object recognition (NOR) test 6 wk after the surgery. After behavioral testing, malondialdehyde and glutathione concentrations, superoxide dismutase (SOD) activity, gene expression of antioxidative enzymes, inflammatory protein concentrations, and microglia density were determined in the hippocampus of rats. Results: 2-vessel occlusion operation ad libitum (2VO-AL) rats had significantly longer escape latencies on day 4 of the training phase and spent a lower percentage of time in the target quadrant (25% compared with 38% and 41%) in the MWM, and had lower discrimination ratios (47% compared with 65% and 67%) in the NOR test than 2-vessel operation and alternate-day feed deprivation (2VO-FD) and sham operation ad libitum (Sham-AL) rats, respectively ( P < 0.05). This indicates that IF helps to prevent vascular cognitive deficits. 2VO-AL rats also had higher malondialdehyde (3.54 compared with 2.15 and 1.66 nmol/mg protein) and lower glutathione concentrations (53.25 compared with 66.41 and 91.71 nmol/mg protein), lower SOD activity (100.1 compared with 133.3 and 138.5 U/mg protein), lower gene expression of antioxidative enzymes, higher expression of inflammatory proteins, and higher microglia density in the hippocampus than 2VO-FD and Sham-AL rats, respectively ( P < 0.05). This suggests that IF has antioxidative and anti-inflammatory effects. Conclusions: IF pretreatment provided

  9. Effect of thyrotropin-releasing hormone (TRH) on local cerebral glucose utilization, by the autoradiographic 2-deoxy [14C] glucose method, in conscious and pentobarbitalized rats

    International Nuclear Information System (INIS)

    Nagai, Y.; Narumi, S.; Nagawa, Y.; Sakurada, O.; Ueno, H.; Ishii, S.

    1980-01-01

    Effects of TRH and pentobarbital alone, and in combination, on local cerebral glucose utilization of rats were studied by the autoradiographic 2-deoxy[ 14 C] glucose method. TRH (5 mg/kg i.v.) reduced the rate of cerebral glucose utilization slightly in the whole brain. Locally, significant depression was observed in the following structures: frontal and visual cortices, hippocampus Ammon's horn and dentate gyrus, medial and lateral geniculate bodies, nucleus accumbens, caudate-putamen, substantia nigra, pontine gray matter, superior colliculus, superior olivary nucleus, vestibular nucleus, lateral lemniscus and cerebellar cortex. Pentobarbital (30 mg/kg i.v.) produced a marked and diffuse reduction in the rate of glucose utilization throughout the brain. TRH given 15 min after the administration of pentobarbital markedly shortened the pentobarbital sleeping time and caused some reversal of the depression in local cerebral glucose utilization produced by pentobarbital., These effects were almost completely abolished by pretreatment with intracerebroventricular injection of atropine methyl bromide (20 μg/rat). These results indicate that although TRH acts to cause a reduction in the rate of cerebral glucose utilization, it reverses the depression induced by pentobarbital, via a cholinergic mechanism, in a number of structures, some of which are related to monoaminergic systems and the reticulo-thalamo-cortical activating system. (author)

  10. High dose infusion of activated protein C (rhAPC) fails to improve neuronal damage and cognitive deficit after global cerebral ischemia in rats.

    Science.gov (United States)

    Brückner, Melanie; Lasarzik, Irina; Jahn-Eimermacher, Antje; Peetz, Dirk; Werner, Christian; Engelhard, Kristin; Thal, Serge C

    2013-09-13

    Recent studies demonstrated anticoagulatory, antiinflammatory, antiapoptotic, and neuroprotective properties of activated protein C (APC) in rodent models of acute neurodegenerative diseases, suggesting APC as promising broad acting therapeutic agent. Unfortunately, continuous infusion of recombinant human APC (rhAPC) failed to improve brain damage following cardiac arrest in rats. The present study was designed to investigate the neuroprotective effect after global cerebral ischemia (GI) with an optimized infusion protocol. Rats were subjected to bilateral clip occlusion of the common carotid arteries (BCAO) and controlled hemorrhagic hypotension to 40 mm Hg for 14 min and a subsequent 5h-infusion of rhAPC (2mg/kg bolus+6 mg/kg/h continuous IV) or vehicle (0.9% NaCl). The dosage was calculated to maintain plasma hAPC activity at 150%. Cerebral inflammation, apoptosis and neuronal survival was determined at day 10. rhAPC infusion did not influence cortical cerebral perfusion during reperfusion and failed to reduce neuronal cell loss, microglia activation, and caspase 3 activity. Even an optimized rhAPC infusion protocol designed to maintain a high level of APC plasma activity failed to improve the sequels following GI. Despite positive reports about protective effects of APC following, e.g., ischemic stroke, the present study supports the notion that infusion of APC during the early reperfusion phase does not result in sustained neuroprotection and fails to improve outcome after global cerebral ischemia. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Continuous-wave sodium D2 resonance radiation generated in single-pass sum-frequency generation with periodically poled lithium niobate.

    Science.gov (United States)

    Yue, J; She, C-Y; Williams, B P; Vance, J D; Acott, P E; Kawahara, T D

    2009-04-01

    With two cw single-mode Nd:YAG lasers at 1064 and 1319 nm and a periodically poled lithium niobate crystal, 11 mW of 2 kHz/100 ms bandwidth single-mode tunable 589 nm cw radiation has been detected using single-pass sum-frequency generation. The demonstrated conversion efficiency is approximately 3.2%[W(-1) cm(-1)]. This compact solid-state light source has been used in a solid-state-dye laser hybrid sodium fluorescence lidar transmitter to measure temperatures and winds in the upper atmosphere (80-105 km); it is being implemented into the transmitter of a mobile all-solid-state sodium temperature and wind lidar under construction.

  12. Deformational Features and Microstructure Evolution of Copper Fabricated by a Single Pass of the Elliptical Cross-Section Spiral Equal-Channel Extrusion (ECSEE) Process

    Science.gov (United States)

    Wang, Chengpeng; Li, Fuguo; Liu, Juncheng

    2018-04-01

    The objectives of this work are to study the deformational feature, textures, microstructures, and dislocation configurations of ultrafine-grained copper processed by the process of elliptical cross-section spiral equal-channel extrusion (ECSEE). The deformation patterns of simple shear and pure shear in the ECSEE process were evaluated with the analytical method of geometric strain. The influence of the main technical parameters of ECSEE die on the effective strain distribution on the surface of ECSEE-fabricated samples was examined by the finite element simulation. The high friction factor could improve the effective strain accumulation of material deformation. Moreover, the pure copper sample fabricated by ECSEE ion shows a strong rotated cube shear texture. The refining mechanism of the dislocation deformation is dominant in copper processed by a single pass of ECSEE. The inhomogeneity of the micro-hardness distribution on the longitudinal section of the ECSEE-fabricated sample is consistent with the strain and microstructure distribution features.

  13. Regulation of microRNAs miR-30a and miR-143 in cerebral vasculature after experimental subarachnoid hemorrhage in rats

    DEFF Research Database (Denmark)

    Müller, Anne Holt; Povlsen, Gro Klitgaard; Edvinsson, Lars

    2015-01-01

    BACKGROUND: microRNAs (miRNAs) are important regulators of translation and have been implicated in the pathogenesis of a number of cardiovascular diseases, including stroke, and suggested as possible prognostic biomarkers. Our aim was to identify miRNAs that are differentially regulated in cerebral...... arteries after subarachnoid hemorrhage (SAH), using a rat injection model of SAH and a qPCR-based screen of 728 rat miRNAs. Additionally, serum was analyzed for a possible spill-over to the circulation of regulated miRNAs from the vessel walls. RESULTS: We identified 482 different miRNAs expressed...

  14. Differential effects of gaseous versus injectable anesthetics on changes in regional cerebral blood flow and metabolism induced by l-DOPA in a rat model of Parkinson's disease.

    Science.gov (United States)

    Bimpisidis, Zisis; Öberg, Carl M; Maslava, Natallia; Cenci, M Angela; Lundblad, Cornelia

    2017-06-01

    Preclinical imaging of brain activity requires the use of anesthesia. In this study, we have compared the effects of two widely used anesthetics, inhaled isoflurane and ketamine/xylazine cocktail, on cerebral blood flow and metabolism in a rat model of Parkinson's disease and l-DOPA-induced dyskinesia. Specific tracers were used to estimate regional cerebral blood flow (rCBF - [ 14 C]-iodoantipyrine) and regional cerebral metabolic rate (rCMR - [ 14 C]-2-deoxyglucose) with a highly sensitive autoradiographic method. The two types of anesthetics had quite distinct effects on l-DOPA-induced changes in rCBF and rCMR. Isoflurane did not affect either the absolute rCBF values or the increases in rCBF in the basal ganglia after l-DOPA administration. On the contrary, rats anesthetized with ketamine/xylazine showed lower absolute rCBF values, and the rCBF increases induced by l-DOPA were masked. We developed a novel improved model to calculate rCMR, and found lower metabolic activities in rats anesthetized with isoflurane compared to animals anesthetized with ketamine/xylazine. Both anesthetics prevented changes in rCMR upon l-DOPA administration. Pharmacological challenges in isoflurane-anesthetized rats indicated that drugs mimicking the actions of ketamine/xylazine on adrenergic or glutamate receptors reproduced distinct effects of the injectable anesthetics on rCBF and rCMR. Our results highlight the importance of anesthesia in studies of cerebral flow and metabolism, and provide novel insights into mechanisms mediating abnormal neurovascular responses to l-DOPA in Parkinson's disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. G-protein activity in Percoll-purified plasma membranes, bulk plasma membranes, and low-density plasma membranes isolated from rat cerebral cortex

    Czech Academy of Sciences Publication Activity Database

    Bouřová, Lenka; Stöhr, Jiří; Lisý, Václav; Rudajev, Vladimír; Novotný, Jiří; Svoboda, Petr

    2009-01-01

    Roč. 15, č. 4 (2009), BR111-BR122 ISSN 1234-1010 R&D Projects: GA MŠk(CZ) LC554; GA MŠk(CZ) LC06063; GA ČR(CZ) GA309/06/0121; GA AV ČR(CZ) IAA500110606 Institutional research plan: CEZ:AV0Z50110509 Keywords : rat cerebral cortex * plasma membrane * G-protein activity Subject RIV: CE - Biochemistry Impact factor: 1.543, year: 2009

  16. Protective effect of glycyrrhizin, a direct HMGB1 inhibitor, on focal cerebral ischemia/reperfusion-induced inflammation, oxidative stress, and apoptosis in rats.

    Directory of Open Access Journals (Sweden)

    Gu Gong

    Full Text Available AIM: Glycyrrhizin (GL has been reported to protect against ischemia and reperfusion (I/R-induced injury by inhibiting the cytokine activity of high mobility group box 1 (HMGB1. In the present study, the protective effects of GL against I/R injury, as well as the related molecular mechanisms, were investigated in rat brains. METHODS: Focal cerebral I/R injury was induced by intraluminal filamentous occlusion of the middle cerebral artery (MCA in Male Sprague-Dawley rats. GL alone or GL and rHMGB1 were administered intravenously at the time of reperfusion. Serum levels of HMGB1 and inflammatory mediators were quantified via enzyme-linked immunosorbent assay (ELISA. Histopathological examination, immunofluorescence, RT-PCR and western blotting analyses were performed to investigate the protective and anti-apoptotic effects and related molecular mechanisms of GL against I/R injury in rat brains. RESULTS: Pre-treatment with GL significantly reduced infarct volume and improved the accompanying neurological deficits in locomotor function. The release of HMGB1 from the cerebral cortex into the serum was inhibited by GL administration. Moreover, pre-treatment with GL alleviated apoptotic injury resulting from cerebral I/R through the inhibition of cytochrome C release and caspase 3 activity. The expression levels of inflammation- and oxidative stress-related molecules including TNF-α, iNOS, IL-1β, and IL-6, which were over-expressed in I/R, were decreased by GL. P38 and P-JNK signalling were involved in this process. All of the protective effects of GL could be reversed by rHMGB1 administration. CONCLUSIONS: GL has a protective effect on ischemia-reperfusion injury in rat brains through the inhibition of inflammation, oxidative stress and apoptotic injury by antagonising the cytokine activity of HMGB1.

  17. A new and specific non-NMDA receptor antagonist, FG 9065, blocks L-AP4-evoked depolarization in rat cerebral cortex.

    Science.gov (United States)

    Sheardown, M J

    1988-04-13

    L(+)-AP4 (2-amino-4-phosphonobutyrate) depolarized slices of rat cerebral cortex, when applied following a 2 min priming application of quisqualate. This response diminishes with time and is not seen after NMDA application. A new selective non-N-methyl-D-aspartate (NMDA) antagonist, 6-cyano-7-nitro-2,3-dihydroxyquinoxaline (FG 9065), inhibits the L(+)-AP4 depolarization. It is argued that the response is mediated indirectly by postsynaptic quisqualate receptors.

  18. Long-Term Stimulation with Electroacupuncture at DU20 and ST36 Rescues Hippocampal Neuron through Attenuating Cerebral Blood Flow in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Gui-Hua Tian

    2013-01-01

    Full Text Available This study was designed to investigate the effect of long-term electroacupuncture at Baihui (DU20 and Zusanli (ST36 on cerebral microvessels and neurons in CA1 region of hippocampus in spontaneously hypertensive rats (SHR. A total of 45 male Wistar rats and 45 SHR were randomly grouped, with or without electroacupuncture (EA at DU20 and ST36, once every other day for a period of 8 weeks. The mean arterial pressure (MAP was measured once every 2 weeks. Cerebral blood flow (CBF and the number of open microvessels in hippocampal CA1 region were detected by Laser Doppler and immunohistochemistry, respectively. Nissl staining and Western blotting were performed, respectively, to determine hippocampus morphology and proteins that were implicated in the concerning signaling pathways. The results showed that the MAP in SHR increased linearly over the observation period and was significantly reduced following electroacupuncture as compared with sham control SHR rats, while no difference was observed in Wistar rats between EA and sham control. The CBF, learning and memory capacity, and capillary rarefaction of SHR were improved by EA. The upregulation of angiotensin II type I receptor (AT1R, endothelin receptor (ETAR, and endothelin-1 (ET-1 in SHR rats was attenuated by electroacupuncture, suggesting an implication of AT1R, ETAR, and ET-1 pathway in the effect of EA.

  19. In vivo imaging of cerebral hemodynamics and tissue scattering in rat brain using a surgical microscope camera system

    Science.gov (United States)

    Nishidate, Izumi; Kanie, Takuya; Mustari, Afrina; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu; Kokubo, Yasuaki

    2018-02-01

    We investigated a rapid imaging method to monitor the spatial distribution of total hemoglobin concentration (CHbT), the tissue oxygen saturation (StO2), and the scattering power b in the expression of musp=a(lambda)^-b as the scattering parameters in cerebral cortex using a digital red-green-blue camera. In the method, Monte Carlo simulation (MCS) for light transport in brain tissue is used to specify a relation among the RGB-values and the concentration of oxygenated hemoglobin (CHbO), that of deoxygenated hemoglobin (CHbR), and the scattering power b. In the present study, we performed sequential recordings of RGB images of in vivo exposed brain of rats while changing the fraction of inspired oxygen (FiO2), using a surgical microscope camera system. The time courses of CHbO, CHbR, CHbT, and StO2 indicated the well-known physiological responses in cerebral cortex. On the other hand, a fast decrease in the scattering power b was observed immediately after the respiratory arrest, which is similar to the negative deflection of the extracellular DC potential so-called anoxic depolarization. It is said that the DC shift coincident with a rise in extracellular potassium and can evoke cell deformation generated by water movement between intracellular and extracellular compartments, and hence the light scattering by tissue. Therefore, the decrease in the scattering power b after the respiratory arrest is indicative of changes in light scattering by tissue. The results in this study indicate potential of the method to evaluate the pathophysiological conditions and loss of tissue viability in brain tissue.

  20. Rho-kinase inhibitor and nicotinamide adenine dinucleotide phosphate oxidase inhibitor prevent impairment of endothelium-dependent cerebral vasodilation by acute cigarette smoking in rats.

    Science.gov (United States)

    Iida, Hiroki; Iida, Mami; Takenaka, Motoyasu; Fukuoka, Naokazu; Dohi, Shuji

    2008-06-01

    We previously reported that acute cigarette smoking can cause a dysfunction of endothelium-dependent vasodilation in cerebral vessels, and that blocking the angiotensin II (Ang II) type 1 (AT1) receptor with valsartan prevented this impairment. Our aim was to investigate the effects of a Rho-kinase inhibitor (fasudil) and a Nicotinamide Adenine Dinucleotide PHosphate (NADPH) oxidase inhibitor (apocynin) on smoking-induced endothelial dysfunction in cerebral arterioles. In Sprague-Dawley rats, we used a closed cranial window preparation to measure changes in pial vessel diameters following topical acetylcholine (ACh) before smoking. After one-minute smoking, we again examined the arteriolar responses to ACh. Finally, after intravenous fasudil or apocynin pre-treatment we re-examined the vasodilator responses to topical ACh (before and after cigarette smoking). Under control conditions, cerebral arterioles were dose-dependently dilated by topical ACh (10(-6) M and 10(-5) M). One hour after a one-minute smoking (1 mg-nicotine cigarette), 10(-5) M ACh constricted cerebral arterioles. However, one hour after a one-minute smoking, 10(-5) M ACh dilated cerebral pial arteries both in the fasudil pre-treatment and the apocynin pre-treatment groups, responses that were significantly different from those obtained without fasudil or apocynin pre-treatment. Thus, inhibition of Rho-kinase and NADPH oxidase activities may prevent the above smoking-induced impairment of endothelium-dependent vasodilation.

  1. PI3K/Akt Pathway Contributes to Neurovascular Unit Protection of Xiao-Xu-Ming Decoction against Focal Cerebral Ischemia and Reperfusion Injury in Rats

    Directory of Open Access Journals (Sweden)

    Rui Lan

    2013-01-01

    Full Text Available In the present study, we used a focal cerebral ischemia and reperfusion rat model to investigate the protective effects of Xiao-Xu-Ming decoction (XXMD on neurovascular unit and to examine the role of PI3K (phosphatidylinositol 3-kinase/Akt pathway in this protection. The cerebral ischemia was induced by 90 min of middle cerebral artery occlusion. Cerebral infarct area was measured by tetrazolium staining, and neurological function was observed at 24 h after reperfusion. DNA fragmentation assay, combined with immunofluorescence, was performed to evaluate apoptosis of neuron, astrocyte, and vascular endothelial cell which constitute neurovascular unit. The expression levels of proteins involved in PI3K/Akt pathway were detected by Western blot. The results showed that XXMD improved neurological function, decreased cerebral infarct area and neuronal damage, and attenuated cellular apoptosis in neurovascular unit, while these effects were abolished by inhibition of PI3K/Akt with LY294002. We also found that XXMD upregulated p-PDKl, p-Akt, and p-GSK3β expression levels, which were partly reversed by LY294002. In addition, the increases of p-PTEN and p-c-Raf expression levels on which LY294002 had no effect were also observed in response to XXMD treatment. The data indicated the protective effects of XXMD on neurovascular unit partly through the activation of PI3K/Akt pathway.

  2. Region-specific effects on brain metabolites of hypoxia and hyperoxia overlaid on cerebral ischemia in young and old rats: a quantitative proton magnetic resonance spectroscopy study

    Directory of Open Access Journals (Sweden)

    Giuliani Patricia

    2010-02-01

    Full Text Available Abstract Background Both hypoxia and hyperoxia, deregulating the oxidative balance, may play a role in the pathology of neurodegenerative disorders underlain by cerebral ischemia. In the present study, quantitative proton magnetic resonance spectroscopy was used to evaluate regional metabolic alterations, following a 24-hour hypoxic or hyperoxic exposure on the background of ischemic brain insult, in two contrasting age-groups of rats: young - 3 months old and aged - 24 months old. Methods Cerebral ischemia was induced by ligation of the right common carotid artery. Concentrations of eight metabolites (alanine, choline-containing compounds, total creatine, γ-aminobutyric acid, glutamate, lactate, myo-inositol and N-acetylaspartate were quantified from extracts in three different brain regions (fronto-parietal and occipital cortices and the hippocampus from both hemispheres. Results In the control normoxic condition, there were significant increases in lactate and myo-inositol concentrations in the hippocampus of the aged rats, compared with the respective values in the young ones. In the ischemia-hypoxia condition, the most prevalent changes in the brain metabolites were found in the hippocampal regions of both young and aged rats; but the effects were more evident in the aged animals. The ischemia-hyperoxia procedure caused less dedicated changes in the brain metabolites, which may reflect more limited tissue damage. Conclusions We conclude that the hippocampus turns out to be particularly susceptible to hypoxia overlaid on cerebral ischemia and that old age further increases this susceptibility.

  3. Effects of transcranial direct current stimulation on hemichannel pannexin-1 and neural plasticity in rat model of cerebral infarction.

    Science.gov (United States)

    Jiang, T; Xu, R X; Zhang, A W; Di, W; Xiao, Z J; Miao, J Y; Luo, N; Fang, Y N

    2012-12-13

    The aim of this study was to investigate the effects of transcranial direct current stimulation (TDCS) on hemichannel pannexin-1 (PX1) in cortical neurons and neural plasticity, and explore the optimal time window of TDCS therapy after stroke. Adult male Sprague-Dawley rats (n=90) were randomly assigned to sham operation, middle cerebral artery occlusion (MCAO), and TDCS groups, and underwent sham operation, unilateral middle cerebral artery (MCA) electrocoagulation, and unilateral MCA electrocoagulation plus TDCS (daily anodal and cathodal 10 Hz, 0.1 mA TDCS for 30 min beginning day 1 after stroke), respectively. Motor function was assessed using the beam walking test (BWT), and density of dendritic spines (DS) and PX1 mRNA expression were compared among groups on days 3, 7, and 14 after stroke. Effects of PX1 blockage on DS in hippocampal neurons after hypoxia-ischemia were observed. TDCS significantly improved motor function on days 7 and 14 after stroke as indicated by reduced BWT scores compared with the MCAO group. The density of DS was decreased after stroke; the TDCS group had increased DS density compared with the MCAO group on days 3, 7, and 14 (all P<0.0001). Cerebral infarction induced increased PX1 mRNA expression on days 3, 7, and 14 (P<0.0001), and the peak PX1 mRNA expression was observed on day 7. TDCS did not decrease the up-regulated PX1 mRNA expression after stroke on day 3, but did reduce the increased post-stroke PX1 mRNA expression on days 7 and 14 (P<0.0001). TDCS increased the DS density after stroke, indicating that it may promote neural plasticity after stroke. TDCS intervention from day 7 to day 14 after stroke demonstrated motor function improvement and can down-regulate the elevated PX1 mRNA expression after stroke. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Preliminary evaluation of [1-11C]octanoate as a PET tracer for studying cerebral ischemia. A PET study in rat and canine models of focal cerebral ischemia

    International Nuclear Information System (INIS)

    Kuge, Yuji; Kawashima, Hidefumi; Hashimoto, Tadatoshi

    2000-01-01

    Octanoate is taken up into the brain and is converted in astrocytes to glutamine through the tricarboxylic acid (TCA) cycle after β-oxidation. We speculate that [1- 11 C]octanoate may be used as a tracer for astroglial functions and/or fatty acid metabolism in the brain and may be useful for studying cerebral ischemia. In the present study we investigated brain distribution of [1- 11 C]octanoate and compared it with cerebral blood flow (CBF) by using rat and canine models of middle cerebral artery (MCA) occlusion and a high resolution PET. In rats brain distribution of [ 15 O]H 2 O measured 1-2 h and 5-6 h after insult was compared with that of [1- 11 C]octanoate measured 3-4 h after insult. Radioactivity ratios of lesioned to normal hemispheres determined with [ 15 O]H 2 O were lower than those determined with [1- 11 C]octanoate. These results were confirmed by a study on a canine model of MCA-occlusion. Twenty-four hours after insult, CBF decreased in the MCA-territory of the occluded hemisphere, whereas normal or higher accumulation of [1- 11 C]octanoate was observed in the ischemic regions. The uptake of [1- 11 C]octanoate-derived radioactivity therefore increased relative to CBF in the ischemic regions, indicating that [1- 11 C]octanoate provides functional information different from CBF. In conclusion, we found that [1- 11 C]octanoate is a potential radiopharmaceutical for studying the pathophysiology of cerebral ischemia. (author)

  5. EEG patterns from acute to chronic stroke phases in focal cerebral ischemic rats: correlations with functional recovery.

    Science.gov (United States)

    Zhang, Shao-jie; Ke, Zheng; Li, Le; Yip, Shea-ping; Tong, Kai-yu

    2013-04-01

    Monitoring the neural activities from the ischemic penumbra provides critical information on neurological recovery after stroke. The purpose of this study is to evaluate the temporal alterations of neural activities using electroencephalography (EEG) from the acute phase to the chronic phase, and to compare EEG with the degree of post-stroke motor function recovery in a rat model of focal ischemic stroke. Male Sprague-Dawley rats were subjected to 90 min transient middle cerebral artery occlusion surgery followed by reperfusion for seven days (n = 58). The EEG signals were recorded at the pre-stroke phase (0 h), acute phase (3, 6 h), subacute phase (12, 24, 48, 72 h) and chronic phase (96, 120, 144, 168 h) (n = 8). This study analyzed post-stroke seizures and polymorphic delta activities (PDAs) and calculated quantitative EEG parameters such as the alpha-to-delta ratio (ADR). The ADR represented the ratio between alpha power and delta power, which indicated how fast the EEG activities were. Forelimb and hindlimb motor functions were measured by De Ryck's test and the beam walking test, respectively. In the acute phase, delta power increased fourfold with the occurrence of PDAs, and the histological staining showed that the infarct was limited to the striatum and secondary sensory cortex. In the subacute phase, the alpha power reduced to 50% of the baseline, and the infarct progressed to the forelimb cortical region. ADRs reduced from 0.23 ± 0.09 to 0.04 ± 0.01 at 3 h in the acute phase and gradually recovered to 0.22 ± 0.08 at 168 h in the chronic phase. In the comparison of correlations between the EEG parameters and the limb motor function from the acute phase to the chronic phase, ADRs were found to have the highest correlation coefficients with the beam walking test (r = 0.9524, p test (r = 0.8077, p < 0.05). This study measured EEG activities after focal cerebral ischemia and showed that functional recovery was closely correlated with the neural

  6. Gadd45b prevents autophagy and apoptosis against rat cerebral neuron oxygen-glucose deprivation/reperfusion injury.

    Science.gov (United States)

    He, Guoqian; Xu, Wenming; Tong, Linyan; Li, Shuaishuai; Su, Shiceng; Tan, Xiaodan; Li, Changqing

    2016-04-01

    Autophagic (type II) cell death has been suggested to play pathogenetic roles in cerebral ischemia. Growth arrest and DNA damage response 45b (Gadd45b) has been shown to protect against rat brain ischemia injury through inhibiting apoptosis. However, the relationship between Gadd45b and autophagy in cerebral ischemia/reperfusion (I/R) injury remains uncertain. The aim of this study is to investigate the effect of Gadd45b on autophagy. We adopt the oxygen-glucose deprivation and reperfusion (OGD/R) model of rat primary cortex neurons, and lentivirus interference used to silence Gadd45b expression. Cell viability and injury assay were performed using CCK-8 and LDH kit. Autophagy activation was monitored by expression of ATG5, LC3, Beclin-1, ATG7 and ATG3. Neuron apoptosis was monitored by expression of Bcl-2, Bax, cleaved caspase3, p53 and TUNEL assay. Neuron neurites were assayed by double immunofluorescent labeling with Tuj1 and LC3B. Here, we demonstrated that the expression of Gadd45b was strongly up-regulated at 24 h after 3 h OGD treatment. ShRNA-Gadd45b increased the expression of autophagy related proteins, aggravated OGD/R-induced neuron cell apoptosis and neurites injury. ShRNA-Gadd45b co-treatment with autophagy inhibitor 3-methyladenine (3-MA) or Wortmannin partly inhibited the ratio of LC3II/LC3I, and slightly ameliorated neuron cell apoptosis under OGD/R. Furthermore, shRNA-Gadd45b inhibited the p-p38 level involved in autophagy, but increased the p-JNK level involved in apoptosis. ShRNA-Gadd45b co-treatment with p38 inhibitor obviously induced autophagy. ShRNA-Gadd45b co-treatment with JNK inhibitor alleviated neuron cell apoptosis. In conclusion, our data suggested that Gadd45b inhibited autophagy and apoptosis under OGD/R. Gadd45b may be a common regulatory protein to control autophagy and apoptosis.

  7. Parecoxib is neuroprotective in spontaneously hypertensive rats after transient middle cerebral artery occlusion: a divided treatment response?

    Science.gov (United States)

    Kelsen, Jesper; Kjaer, Katrine; Chen, Gang; Pedersen, Michael; Røhl, Lisbeth; Frøkiaer, Jørgen; Nielsen, Søren; Nyengaard, Jens R; Rønn, Lars Christian B

    2006-12-06

    Anti-inflammatory treatment affects ischemic damage and neurogenesis in rodent models of cerebral ischemia. We investigated the potential benefit of COX-2 inhibition with parecoxib in spontaneously hypertensive rats (SHRs) subjected to transient middle cerebral artery occlusion (tMCAo). Sixty-four male SHRs were randomized to 90 min of intraluminal tMCAo or sham surgery. Parecoxib (10 mg/kg) or isotonic saline was administered intraperitoneally (IP) during the procedure, and twice daily thereafter. Nineteen animals were euthanized after 24 hours, and each hemisphere was examined for mRNA expression of pro-inflammatory cytokines and COX enzymes by quantitative RT-PCR. Twenty-three tMCAo animals were studied with diffusion and T2 weighted MRI within the first 24 hours, and ten of the SHRs underwent follow-up MRI six days later. Thirty-three SHRs were given 5-bromo-2'-deoxy-uridine (BrdU) twice daily on Day 4 to 7 after tMCAo. Animals were euthanized on Day 8 and the brains were studied with free-floating immunohistochemistry for activated microglia (ED-1), hippocampal granule cell BrdU incorporation, and neuronal nuclei (NeuN). Infarct volume estimation was done using the 2D nucleator and Cavalieri principle on NeuN-stained coronal brain sections. The total number of BrdU+ cells in the dentate gyrus (DG) of the hippocampus was estimated using the optical fractionator. We found a significant reduction in infarct volume in parecoxib treated animals one week after tMCAo (p < 0.03). Cortical ADC values in the parecoxib group were markedly less increased on Day 8 (p < 0.01). Interestingly, the parecoxib treated rats were segregated into two subgroups, suggesting a responder vs. non-responder phenomenon. We found indications of mRNA up-regulation of IL-1beta, IL-6, TNF-alpha and COX-2, whereas COX-1 remained unaffected. Hippocampal granule cell BrdU incorporation was not affected by parecoxib treatment. Presence of ED-1+ activated microglia in the hippocampus was related

  8. EEG patterns from acute to chronic stroke phases in focal cerebral ischemic rats: correlations with functional recovery

    International Nuclear Information System (INIS)

    Zhang, Shao-jie; Ke, Zheng; Tong, Kai-yu; Li, Le; Yip, Shea-ping

    2013-01-01

    Monitoring the neural activities from the ischemic penumbra provides critical information on neurological recovery after stroke. The purpose of this study is to evaluate the temporal alterations of neural activities using electroencephalography (EEG) from the acute phase to the chronic phase, and to compare EEG with the degree of post-stroke motor function recovery in a rat model of focal ischemic stroke. Male Sprague–Dawley rats were subjected to 90 min transient middle cerebral artery occlusion surgery followed by reperfusion for seven days (n = 58). The EEG signals were recorded at the pre-stroke phase (0 h), acute phase (3, 6 h), subacute phase (12, 24, 48, 72 h) and chronic phase (96, 120, 144, 168 h) (n = 8). This study analyzed post-stroke seizures and polymorphic delta activities (PDAs) and calculated quantitative EEG parameters such as the alpha-to-delta ratio (ADR). The ADR represented the ratio between alpha power and delta power, which indicated how fast the EEG activities were. Forelimb and hindlimb motor functions were measured by De Ryck's test and the beam walking test, respectively. In the acute phase, delta power increased fourfold with the occurrence of PDAs, and the histological staining showed that the infarct was limited to the striatum and secondary sensory cortex. In the subacute phase, the alpha power reduced to 50% of the baseline, and the infarct progressed to the forelimb cortical region. ADRs reduced from 0.23 ± 0.09 to 0.04 ± 0.01 at 3 h in the acute phase and gradually recovered to 0.22 ± 0.08 at 168 h in the chronic phase. In the comparison of correlations between the EEG parameters and the limb motor function from the acute phase to the chronic phase, ADRs were found to have the highest correlation coefficients with the beam walking test (r = 0.9524, p < 0.05) and De Ryck's test (r = 0.8077, p < 0.05). This study measured EEG activities after focal cerebral ischemia and showed that functional recovery was closely

  9. In depth pharmacological characterization of endothelin B receptors in the rat middle cerebral artery

    DEFF Research Database (Denmark)

    Szok, D; Hansen-Schwartz, J; Edvinsson, L

    2001-01-01

    Whereas the endothelin A receptor is generally believed to mediate vasoconstriction; the endothelin B receptor seems elusive; both dilative and constrictive responses have been reported. Using the in vitro arteriograph, a method allowing compartmentalized study of vessel segments, segments of rat...

  10. Losartan versus enalapril on cerebral edema and proteinuria in stroke-prone hypertensive rats

    NARCIS (Netherlands)

    Blezer, E.L.A.; Nicolaij, K.; Koomans, H.A.; Joles, Jaap

    2001-01-01

    Stroke-prone spontaneously hypertensive rats (SHRSP), subjected to high NaCl, show severe hypertension, organ damage, and early death. Preventive treatment with angiotensin II type 1 (AT1) receptor antagonists is known to be effective. Previously, we found that angiotensin converting enzyme (ACE)

  11. Effects of intrathecal baclofen therapy on motor and cognitive functions in a rat model of cerebral palsy.

    Science.gov (United States)

    Nomura, Sadahiro; Kagawa, Yoshiteru; Kida, Hiroyuki; Maruta, Yuichi; Imoto, Hirochika; Fujii, Masami; Suzuki, Michiyasu

    2012-02-01

    Cerebral palsy (CP) arises in the early stages of brain development and manifests as spastic paresis that is often associated with cognitive dysfunction. Available CP treatments are aimed at the management of spasticity and include botulinum toxin administration, selective dorsal rhizotomy, and intrathecal baclofen (ITB). In this study, the authors investigated whether the management of spasticity with ITB therapy affected motor function and whether the release of spasticity was associated with an improvement in intellectual function. Newborn Sprague-Dawley rats were divided into the following groups: control, CP model, and CP model with ITB therapy. For the CP model, postnatal Day 7 (P7) rats were exposed to hypoxic conditions (8% O(2)) for 150 minutes after ligation of the right common carotid artery. In the groups receiving ITB therapy, a spinal catheter was connected to an osmotic pump filled with baclofen and placed in the spinal subarachnoid space on P21 in the early group and on P35 in the late group. A daily dose of 12 μg of baclofen was continuously administered until P49, resulting in 28 days of therapy in the early group and 14 days in the late group. Changes in spasticity in the CP and CP with ITB treatment groups were confirmed by assessing the motor evoked potential in the plantar muscle. In the CP group, the time required to complete a beam-walking test on P49 was significantly longer than that in the control and ITB treatment groups (4.15 ± 0.60 vs 2.10 ± 0.18 and 2.22 ± 0.22 seconds, respectively). Results of the beam-walking test are expressed as the mean ± SD. Radial arm maze performance on P49 indicated that spatial reference memory had significantly deteriorated in the CP group compared with controls (2.33 ± 0.87 vs 0.86 ± 0.90 points); moreover, working memory was also negatively affected by CP (0.78 ± 1.09 vs 0.14 ± 0.38 points). Results of the memory tests are expressed as the mean ± SE. These memory functions did not recover after

  12. Neurotherapeutic activity of the recombinant heat shock protein Hsp70 in a model of focal cerebral ischemia in rats

    Directory of Open Access Journals (Sweden)

    Shevtsov MA

    2014-05-01

    Full Text Available Maxim A Shevtsov,1,2 Boris P Nikolaev,3 Ludmila Y Yakovleva,3 Anatolii V Dobrodumov,4 Anastasiy S Dayneko,5 Alexey A Shmonin,5,6 Timur D Vlasov,5 Elena V Melnikova,5 Alexander D Vilisov,4,5 Irina V Guzhova,1 Alexander M Ischenko,3 Anastasiya L Mikhrina,7 Oleg V Galibin,5 Igor V Yakovenko,2 Boris A Margulis1 1Institute of Cytology of the Russian Academy of Sciences (RAS, St Petersburg, Russia; 2AL Polenov Russian Research Scientific Institute of Neurosurgery, St Petersburg, Russia; 3Research Institute of Highly Pure Biopreparations, St Petersburg, Russia; 4Institute of Macromolecular Compounds of the Russian Academy of Sciences (RAS, St Petersburg, Russia; 5First St Petersburg IP Pavlov State Medical University, St Petersburg, Russia; 6Federal Almazov Medical Research Centre, St Petersburg, Russia; 7IM Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences (RAS, St Petersburg, Russia Abstract: Recombinant 70 kDa heat shock protein (Hsp70 is an antiapoptotic protein that has a cell protective activity in stress stimuli and thus could be a useful therapeutic agent in the management of patients with acute ischemic stroke. The neuroprotective and neurotherapeutic activity of recombinant Hsp70 was explored in a model of experimental stroke in rats. Ischemia was produced by the occlusion of the middle cerebral artery for 45 minutes. To assess its neuroprotective capacity, Hsp70, at various concentrations, was intravenously injected 20 minutes prior to ischemia. Forty-eight hours after ischemia, rats were sacrificed and brain tissue sections were stained with 2% triphenyl tetrazolium chloride. Preliminary treatment with Hsp70 significantly reduced the ischemic zone (optimal response at 2.5 mg/kg. To assess Hsp70’s neurotherapeutic activity, we intravenously administered Hsp70 via the tail vein 2 hours after reperfusion (2 hours and 45 minutes after ischemia. Rats were then kept alive for 72 hours. The

  13. The effects of MEK1/2 inhibition on cigarette smoke exposure-induced ET receptor upregulation in rat cerebral arteries

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lei [Division of Experimental Vascular Research, Institute of Clinical Sciences in Lund, Lund University (Sweden); Department of Pharmacology, School of Basic Medical Sciences, Xi' an Jiaotong University Health Science Center, Xi' an, Shaanxi (China); Ping, Na-Na; Cao, Yong-Xiao [Department of Pharmacology, School of Basic Medical Sciences, Xi' an Jiaotong University Health Science Center, Xi' an, Shaanxi (China); Li, Wei, E-mail: 13572512207@163.com [Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi' an Jiaotong University, Xi' an, Shaanxi (China); Cai, Yan [Department of Pharmacology, School of Basic Medical Sciences, Xi' an Jiaotong University Health Science Center, Xi' an, Shaanxi (China); Warfvinge, Karin; Edvinsson, Lars [Division of Experimental Vascular Research, Institute of Clinical Sciences in Lund, Lund University (Sweden)

    2016-08-01

    Cigarette smoking, a major stroke risk factor, upregulates endothelin receptors in cerebral arteries. The present study examined the effects of MEK1/2 pathway inhibition on cigarette smoke exposure-induced ET receptor upregulation. Rats were exposed to the secondhand smoke (SHS) for 8 weeks followed by intraperitoneal injection of MEK1/2 inhibitor, U0126 for another 4 weeks. The urine cotinine levels were assessed with high-performance liquid chromatography. Contractile responses of isolated cerebral arteries were recorded by a sensitive wire myograph. The mRNA and protein expression levels of receptor and MEK/ERK1/2 pathway molecules were examined by real-time PCR and Western blotting, respectively. Cerebral artery receptor localization was determined with immunohistochemistry. The results showed the urine cotinine levels from SHS exposure group were significantly higher than those from the fresh group. In addition, the MEK1/2 inhibitor, U0126 significantly reduced SHS exposure-increased ET{sub A} receptor mRNA and protein levels as well as contractile responses mediated by ET{sub A} receptors. The immunoreactivity of increased ET{sub A} receptor expression was primarily cytoplasmic in smooth muscle cells. In contrast, ET{sub B} receptor was noted in endothelial cells. However, the SHS-induced decrease in endothelium-dependent relaxation was unchanged after U0126 treatment. Furthermore, SHS increased the phosphorylation of MEK1/2 and ERK1/2 protein in cerebral arteries. By using U0126 could inhibit the phosphorylated ERK1/2 protein but not MEK1/2. Taken together, our data show that treatment with MEK1/2 pathway inhibitor offsets SHS exposure-induced ET{sub A} receptor upregulation in rat cerebral arteries. - Highlights: • Cigarette smoke exposure induces ET{sub A} receptor upregulation in rat cerebral arteries. • U0126 can alleviate the receptor upregulation. • The mechanism relies on MEK/ERK1/2 pathway activation. • We may provide a new target for the

  14. The effects of MEK1/2 inhibition on cigarette smoke exposure-induced ET receptor upregulation in rat cerebral arteries

    International Nuclear Information System (INIS)

    Cao, Lei; Ping, Na-Na; Cao, Yong-Xiao; Li, Wei; Cai, Yan; Warfvinge, Karin; Edvinsson, Lars

    2016-01-01

    Cigarette smoking, a major stroke risk factor, upregulates endothelin receptors in cerebral arteries. The present study examined the effects of MEK1/2 pathway inhibition on cigarette smoke exposure-induced ET receptor upregulation. Rats were exposed to the secondhand smoke (SHS) for 8 weeks followed by intraperitoneal injection of MEK1/2 inhibitor, U0126 for another 4 weeks. The urine cotinine levels were assessed with high-performance liquid chromatography. Contractile responses of isolated cerebral arteries were recorded by a sensitive wire myograph. The mRNA and protein expression levels of receptor and MEK/ERK1/2 pathway molecules were examined by real-time PCR and Western blotting, respectively. Cerebral artery receptor localization was determined with immunohistochemistry. The results showed the urine cotinine levels from SHS exposure group were significantly higher than those from the fresh group. In addition, the MEK1/2 inhibitor, U0126 significantly reduced SHS exposure-increased ET A receptor mRNA and protein levels as well as contractile responses mediated by ET A receptors. The immunoreactivity of increased ET A receptor expression was primarily cytoplasmic in smooth muscle cells. In contrast, ET B receptor was noted in endothelial cells. However, the SHS-induced decrease in endothelium-dependent relaxation was unchanged after U0126 treatment. Furthermore, SHS increased the phosphorylation of MEK1/2 and ERK1/2 protein in cerebral arteries. By using U0126 could inhibit the phosphorylated ERK1/2 protein but not MEK1/2. Taken together, our data show that treatment with MEK1/2 pathway inhibitor offsets SHS exposure-induced ET A receptor upregulation in rat cerebral arteries. - Highlights: • Cigarette smoke exposure induces ET A receptor upregulation in rat cerebral arteries. • U0126 can alleviate the receptor upregulation. • The mechanism relies on MEK/ERK1/2 pathway activation. • We may provide a new target for the treatment of SHS

  15. Effect of the acquisition enhancing drug piracetam on rat cerebral energy metabolism. Comparison with naftidrofuryl and methamphetamine

    NARCIS (Netherlands)

    Nickolson, V.J.; Wolthuis, O.L.

    1976-01-01

    The effects of Piracetam, Naftidrofuryl and methamphetamine on several parameters of cerebral energy metabolism have been studied. At variance with some reports in the literature neither Piracetam nor Naftidrofuryl affected the cerebral contents of adenine nucleotides and, accordingly, both

  16. Inhibition of P2X7 receptor ameliorates transient global cerebral ischemia/reperfusion injury via modulating inflammatory responses in the rat hippocampus

    Directory of Open Access Journals (Sweden)

    Chu Ketan

    2012-04-01

    Full Text Available Abstract Background Neuroinflammation plays an important role in cerebral ischemia/reperfusion (I/R injury. The P2X7 receptor (P2X7R has been reported to be involved in the inflammatory response of many central nervous system diseases. However, the role of P2X7Rs in transient global cerebral I/R injury remains unclear. The purpose of this study is to determine the effects of inhibiting the P2X7R in a rat model of transient global cerebral I/R injury, and then to explore the association between the P2X7R and neuroinflammation after transient global cerebral I/R injury. Methods Immediately after infusion with the P2X7R antagonists Brilliant blue G (BBG, adenosine 5′-triphosphate-2′,3′-dialdehyde (OxATP or A-438079, 20 minutes of transient global cerebral I/R was induced using the four-vessel occlusion (4-VO method in rats. Survival rate was calculated, neuronal death in the hippocampal CA1 region was observed using H & E staining, and DNA cleavage was observed by deoxynucleotidyl transferase-mediated UTP nick end labeling TUNEL. In addition, behavioral deficits were measured using the Morris water maze, and RT-PCR and immunohistochemical staining were performed to measure the expression of IL-1β, TNF-α and IL-6, and to identify activated microglia and astrocytes. Results The P2X7R antagonists protected against transient global cerebral I/R injury in a dosage-dependent manner. A high dosage of BBG (10 μg and A-0438079 (3 μg, and a low dosage of OxATP (1 μg significantly increased survival rates, reduced I/R-induced learning memory deficit, and reduced I/R-induced neuronal death, DNA cleavage, and glial activation and inflammatory cytokine overexpression in the hippocampus. Conclusions Our study indicates that inhibiting P2X7Rs protects against transient global cerebral I/R injury by reducing the I/R-induced inflammatory response, which suggests inhibition of P2X7Rs may be a promising therapeutic strategy for clinical treatment of

  17. Effect of graded hyperventilation on cerebral metabolism in a cisterna magna blood injection model of subarachnoid hemorrhage in rats

    DEFF Research Database (Denmark)

    Ma, Xiaodong; Bay-Hansen, Rikke; Hauerberg, John

    2006-01-01

    In subarachnoid hemorrhage (SAH) with cerebrovascular instability, hyperventilation may induce a risk of inducing or aggravating cerebral ischemia. We measured cerebral blood flow (CBF) and cerebral metabolic rates of oxygen (CMRO2), glucose (CMRglc), and lactate (CMRlac) at different PaCO2 level...

  18. Reduced Cerebral Oxygen Content in the DG and SVZ In Situ Promotes Neurogenesis in the Adult Rat Brain In Vivo.

    Directory of Open Access Journals (Sweden)

    Kuan Zhang

    Full Text Available Neurogenesis in the adult brain occurs mainly within two neurogenic structures, the dentate gyrus (DG of the hippocampus and the sub-ventricular zone (SVZ of the forebrain. It has been reported that mild hypoxia promoted the proliferation of Neural Stem Cells (NSCsin vitro. Our previous study further demonstrated that an external hypoxic environment stimulated neurogenesis in the adult rat brain in vivo. However, it remains unknown how external hypoxic environments affect the oxygen content in the brain and result in neurogenesis. Here we use an optical fiber luminescent oxygen sensor to detect the oxygen content in the adult rat brain in situ under normoxia and hypoxia. We found that the distribution of oxygen in cerebral regions is spatiotemporally heterogeneous. The Po2 values in the ventricles (45∼50 Torr and DG (approximately 10 Torr were much higher than those of other parts of the brain, such as the cortex and thalamus (approximately 2 Torr. Interestingly, our in vivo studies showed that an external hypoxic environment could change the intrinsic oxygen content in brain tissues, notably reducing oxygen levels in both the DG and SVZ, the major sites of adult neurogenesis. Furthermore, the hypoxic environment also increased the expression of HIF-1α and VEGF, two factors that have been reported to regulate neurogenesis, within the DG and SVZ. Thus, we have demonstrated that reducing the oxygen content of the external environment decreased Po2 levels in the DG and SVZ. This reduced oxygen level in the DG and SVZ might be the main mechanism triggering neurogenesis in the adult brain. More importantly, we speculate that varying oxygen levels may be the physiological basis of the regionally restricted neurogenesis in the adult brain.

  19. The sensorimotor and cognitive deficits in rats following 90- and 120-min transient occlusion of the middle cerebral artery.

    Science.gov (United States)

    Zvejniece, Liga; Svalbe, Baiba; Liepinsh, Edgars; Pulks, Eduards; Dambrova, Maija

    2012-07-15

    Middle cerebral artery occlusion (MCAO) is the most commonly used method to study the neurological and histological outcomes and the pathological mechanisms of ischaemic stroke. The current work compares sensorimotor and cognitive deficits and the infarct volume in rats following a transient 90- or 120-min MCAO, which allows the appropriate behavioural tests to be chosen based on the goal and design of the experiment. In the beam-walking test, we found significant differences between the 90- and 120-min MCAO groups in the number of foot faults made with the impaired hindlimb on post-stroke days 3, 7 and 14. In the cylinder test, a difference between the 90- and 120-min groups was observed on post-operation day 14. The responses to tactile and proprioceptive stimulation were impaired to a similar extent after 90- and 120-min MCAO in the vibrissae-evoked forelimb-placing and limb-placing tests. Moreover, we found significant memory impairment in the 120-min MCAO group 6 days after the acquisition trial. The brain tissue damage was significantly higher after 120-min occlusion of the MCA compared with 90-min occlusion; the infarct volumes were 13% and 25% of the contralateral hemispheres, respectively. In conclusion, both the 90- and 120-min occlusion models result in a significant impairment of sensorimotor, tactile and proprioceptive function, but memory impairment is only observed in the 120-min MCAO group. The beam-walking and cylinder tests detected neurological dysfunction after the 120-min MCAO, whereas the limb-placing and vibrissae-evoked forelimb-placing tests were able to evaluate the neurological dysfunction in rats after 90- and 120-min MCAO. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Pharmacokinetics of Active Components From Guhong Injection in Normal and Pathological Rat Models of Cerebral Ischemia: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Li Yu

    2018-05-01

    Full Text Available Background and Objectives: Guhong Injection (GHI is usually administered for the treatment of stroke in clinics. Aceglutamide and hydroxyl safflower yellow A (HSYA are its key ingredients for brain protective effect. To investigate the pharmacokinetics of aceglutamide and HSYA under pathological and normal conditions, the pharmacokinetic parameters and characteristics of middle cerebral artery occlusion (MCAO and normal rats given the same dosage of GHI were studied compared.Methods: 12 SD rats were divided into two groups, namely, MCAO and normal groups. Both groups were treated with GHI in the same dosage. Plasma samples were collected from the jaw vein at different time points and subsequently tested by high-performance liquid chromatography (HPLC.Results: After administration of GHI, both aceglutamide and HSYA were immediately detected in the plasma. Ninety percent of aceglutamide and HSYA was eliminated within 3 h. For aceglutamide, statistically significant differences in the parameters including AUC(0−t, AUC(0−∞, AUMC(0−t, AUMC(0−∞, Cmax (P < 0.01, and Vz (P < 0.05. Meanwhile, compared with the MCAO group, in the normal group, the values of AUC(0−t, AUMC(0−t, VRT(0−t, and Cmax (P < 0.01 for HSYA were significantly higher, whereas the value of MRT(0−t was significantly lower in the normal group.Conclusions: The in vivo trials based on the different models showed that, the pharmacokinetic behaviors and parameters of aceglutamide and HSYA in GHI were completely different. These results suggest that the pathological damage of ischemia-reperfusion has a significant impact on the pharmacokinetic traits of aceglutamide and HSYA.

  1. Tetramethylpyrazine analogue CXC195 protects against cerebral ischemia/reperfusion-induced apoptosis through PI3K/Akt/GSK3β pathway in rats.

    Science.gov (United States)

    Chen, Lin; Wei, Xinbing; Hou, Yunfeng; Liu, Xiaoqian; Li, Senpeng; Sun, Baozhu; Liu, Xinyong; Liu, Huiqing

    2014-01-01

    CXC195 showed strongest protective effects among the ligustrazine derivatives in cells and prevented apoptosis induced by H2O2 injury. We recently demonstrated that CXC195 protected against cerebral ischemia/reperfusion (I/R) injury by its antioxidant activity. However, whether the anti-apoptotic action of CXC195 is involved in cerebral I/R injury is unknown. Here, we investigated the role of CXC195 in apoptotic processes induced by cerebral I/R and the possible signaling pathways. Male Wistar rats were submitted to transient middle cerebral artery occlusion for 2h, followed by 24h reperfusion. CXC195 was injected intraperitoneally at 2h and 12h after the onset of ischemia. The number of apoptotic cells was measured by TUNEL assay, apoptosis-related protein cleaved caspase-3, Bcl-2, Bax and the phosphorylation levels of Akt and GSK3β in ischemic penumbra were assayed by western blot. The results showed that administration of CXC195 at the doses of 3mg/kg and 10mg/kg significantly inhibited the apoptosis by decreasing the number of apoptotic cells, decreasing the level of cleaved caspase-3 and Bax, and increasing the level of Bcl-2 in rats subjected to I/R injury. Simultaneously, CXC195 treatment markedly increased the phosphorylation of Akt and GSK3β. Blockade of PI3K activity by wortmannin, dramatically abolished its anti-apoptotic effect and lowered both Akt and GSK3β phosphorylation levels. Our study firstly demonstrated that CXC195 protected against cerebral I/R injury by reducing apoptosis in vivo and PI3K/Akt/GSK3β pathway involved in the anti-apoptotic effect. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  2. Reduced PBR/TSPO Expression After Minocycline Treatment in a Rat Model of Focal Cerebral Ischemia: A PET Study Using [18F]DPA-714

    International Nuclear Information System (INIS)

    Martin, A.; Boisgard, R.; Tavitian, B.; Kassiou, M.; Dolle, F.

    2011-01-01

    Background: Many new candidate pharmaceuticals designed to improve recovery after stroke have been proposed recently, but there are still too few molecular imaging methods capable to assess their efficacy. A hallmark of the inflammatory reaction that follows focal cerebral ischemia is overexpression of the mitochondrial peripheral benzodiazepine receptor/18 kDa translocator protein (PBR/TSPO) in the monocytic lineage and astrocytes. This overexpression can be imaged with positron emission tomography (PET) using PBR/TSPO-selective radioligands such as [ 18 F]DPA-714. Purpose: Here, we tested whether PET with [ 18 F]DPA-714 would evidence the effect of minocycline, a broad spectrum antibiotic presently tested as neuro-protective agent after stroke, on the inflammatory reaction induced in an experimental model of stroke. Procedures: Ten rats were subjected to a 2-h transient middle cerebral artery occlusion with reperfusion. Minocycline or saline was intravenously administrated 1 h after reperfusion and daily during the following 6 days. PET studies were performed using [ 18 F]DPA-714 at 7 days after cerebral ischemia. Results: In vivo PET imaging showed a significant decrease in [ 18 F]DPA-714 uptake at 7 days after cerebral ischemia in rats treated with minocycline with respect to saline-treated animals. Minocycline treatment had no effect on the size of the infarcted area. Conclusion: Minocycline administered daily during 7 days after ischemia decreases [ 18 F]DPA- 714 binding, suggesting that the drug exerts an anti-inflammatory activity. [ 18 F]DPA-714 PET is a useful bio-marker to study novel anti-inflammatory strategies in experimental cerebral ischemia. (authors)

  3. Electroacupuncture ameliorates cognitive impairment through inhibition of NF-κB-mediated neuronal cell apoptosis in cerebral ischemia-reperfusion injured rats.

    Science.gov (United States)

    Feng, Xiaodong; Yang, Shanli; Liu, Jiao; Huang, Jia; Peng, Jun; Lin, Jiumao; Tao, Jing; Chen, Lidian

    2013-05-01

    Cognitive impairment is a serious mental deficit following stroke that severely affects the quality of life of stroke survivors. Nuclear factor‑κB (NF-κB)-mediated neuronal cell apoptosis is involved in the development of post-stroke cognitive impairment; therefore, it has become a promising target for the treatment of impaired cognition. Acupuncture at the Baihui (DU20) and Shenting (DU24) acupoints is commonly used in China to clinically treat post‑stroke cognitive impairment; however, the precise mechanism of its action is largely unknown. In the present study, we evaluated the therapeutic efficacy of electroacupuncture against post-stroke cognitive impairment and investigated the underlying molecular mechanisms using a rat model of focal cerebral ischemia-reperfusion (I/R) injury. Electroacupuncture at Baihui and Shenting was identified to significantly ameliorate neurological deficits and reduce cerebral infarct volume. Additionally, electroacupuncture improved learning and memory ability in cerebral I/R injured rats, demonstrating its therapeutic efficacy against post-stroke cognitive impairment. Furthermore, electroacupuncture significantly suppressed the I/R-induced activation of NF-κB signaling in ischemic cerebral tissues. The inhibitory effect of electroacupuncture on NF-κB activation led to the inhibition of cerebral cell apoptosis. Finally, electroacupuncture markedly downregulated the expression of pro-apoptotic Bax and Fas, two critical downstream target genes of the NF-κB pathway. Collectively, our findings suggest that inhibition of NF-κB‑mediated neuronal cell apoptosis may be one mechanism via which electroacupuncture at Baihui and Shenting exerts a therapeutic effect on post-stroke cognitive impairment.

  4. Studies on cerebral protection of digoxin against hypoxic-ischemic brain damage in neonatal rats.

    Science.gov (United States)

    Peng, Kaiwei; Tan, Danfeng; He, Miao; Guo, Dandan; Huang, Juan; Wang, Xia; Liu, Chentao; Zheng, Xiangrong

    2016-08-17

    Hypoxic-ischemic brain damage (HIBD) is a major cause of neonatal acute deaths and chronic nervous system damage. Our present study was designed to investigate the possible neuroprotective effect of digoxin-induced pharmacological preconditioning after hypoxia-ischemia and underlying mechanisms. Neonatal rats were assigned randomly to control, HIBD, or HIBD+digoxin groups. Pharmacological preconditioning was induced by administration of digoxin 72 h before inducing HIBD by carotid occlusion+hypoxia. Behavioral assays, and neuropathological and apoptotic assessments were performed to examine the effects; the expression of Na/K ATPase was also assessed. Rats in the HIBD group showed deficiencies on the T-maze, radial water maze, and postural reflex tests, whereas the HIBD+digoxin group showed significant improvements on all behavioral tests. The rats treated with digoxin showed recovery of pathological conditions, increased number of neural cells and proliferative cells, and decreased number of apoptotic cells. Meanwhile, an increased expression level of Na/K ATPase was observed after digoxin preconditioning treatment. The preconditioning treatment of digoxin contributed toward an improved functional recovery and exerted a marked neuroprotective effect including promotion of cell proliferation and reduction of apoptosis after HIBD, and the neuroprotective action was likely associated with increased expression of Na/K ATPase.

  5. TRPV1 receptor-mediated expression of Toll-like receptors 2 and 4 following permanent middle cerebral artery occlusion in rats

    Directory of Open Access Journals (Sweden)

    Elham Hakimizadeh

    2017-08-01

    Full Text Available Objective(s: Stroke is known as a main cause of mortality and prolonged disability in adults. Both transient receptor potential V1 (TRPV1 channels and toll-like receptors (TLRs are involved in mediating the inflammatory responses. In the present study, the effects of TRPV1 receptor activation and blockade on stroke outcome and gene expression of TLR2 and TLR4 were assessed following permanent middle cerebral artery occlusion in rats Materials and Methods: Eighty male Wistar rats were divided into four groups as follows: sham, vehicle, AMG9810 (TRPV1 antagonist -treated and capsaicin (TRPV1 agonist -treated. For Stroke induction, the middle cerebral artery was permanently occluded and then behavioral functions were evaluated 1, 3 and 7 days after stroke. Results: TRPV1 antagonism significantly reduced the infarct volume compared to the stroke group. Also, neurological deficits were decreased by AMG9810 seven days after cerebral ischemia. In the ledged beam-walking test, the slip ratio was enhanced following ischemia. AMG9810 decreased this index in stroke animals. However, capsaicin improved the ratio 3 and 7 days after cerebral ischemia. Compared to the sham group, the mRNA expression of TLR2 and TLR4 was significantly increased in the stroke rats. AMG9810 Administration significantly reduced the mRNA expression of TLR2 and TLR4. However, capsaicin did not significantly affect the gene expression of TLR2 and TLR4. Conclusion: Our results demonstrated that TRPV1 antagonism by AMG9810 attenuates behavioral function and mRNA expression of TLR2 and TLR4. Thus, it might be useful to shed light on future therapeutic strategies for the treatment of ischemic stroke.

  6. TRPV1 receptor-mediated expression of Toll-like receptors 2 and 4 following permanent middle cerebral artery occlusion in rats

    Science.gov (United States)

    Hakimizadeh, Elham; Shamsizadeh, Ali; Roohbakhsh, Ali; Arababadi, Mohammad Kazemi; Hajizadeh, Mohammad Reza; Shariati, Mehdi; Fatemi, Iman; Moghadam-ahmadi, Amir; Bazmandegan, Gholamreza; Rezazadeh, Hossein; Allahtavakoli, Mohammad

    2017-01-01

    Objective(s): Stroke is known as a main cause of mortality and prolonged disability in adults. Both transient receptor potential V1 (TRPV1) channels and toll-like receptors (TLRs) are involved in mediating the inflammatory responses. In the present study, the effects of TRPV1 receptor activation and blockade on stroke outcome and gene expression of TLR2 and TLR4 were assessed following permanent middle cerebral artery occlusion in rats Materials and Methods: Eighty male Wistar rats were divided into four groups as follows: sham, vehicle, AMG9810 (TRPV1 antagonist) -treated and capsaicin (TRPV1 agonist) -treated. For Stroke induction, the middle cerebral artery was permanently occluded and then behavioral functions were evaluated 1, 3 and 7 days after stroke. Results: TRPV1 antagonism significantly reduced the infarct volume compared to the stroke group. Also, neurological deficits were decreased by AMG9810 seven days after cerebral ischemia. In the ledged beam-walking test, the slip ratio was enhanced following ischemia. AMG9810 decreased this index in stroke animals. However, capsaicin improved the ratio 3 and 7 days after cerebral ischemia. Compared to the sham group, the mRNA expression of TLR2 and TLR4 was significantly increased in the stroke rats. AMG9810 Administration significantly reduced the mRNA expression of TLR2 and TLR4. However, capsaicin did not significantly affect the gene expression of TLR2 and TLR4. Conclusion: Our results demonstrated that TRPV1 antagonism by AMG9810 attenuates behavioral function and mRNA expression of TLR2 and TLR4. Thus, it might be useful to shed light on future therapeutic strategies for the treatment of ischemic stroke. PMID:29085577

  7. Electroacupuncture modulates stromal cell-derived factor-1α expression and mobilization of bone marrow endothelial progenitor cells in focal cerebral ischemia/reperfusion model rats.

    Science.gov (United States)

    Xie, Chenchen; Gao, Xiang; Luo, Yong; Pang, Yueshan; Li, Man

    2016-10-01

    Stromal cell-derived factor-1α(SDF-1α) plays a crucial role in regulating the mobilization, migration and homing of endothelial progenitor cells(EPCs). Electroacupuncture(EA), a modern version of Traditional Chinese Medicine, can improve neurological recovery and angiogenesis in cerebral ischemic area. This study aimed to investigate the effects of electroacupuncture(EA) on the mobilization and migration of bone marrow EPCs and neurological functional recovery in rats model after focal cerebral ischemia/reperfusion and the potentially involved mechanisms. Sprague-Dawley rats received filament occlusion of the right middle cerebral artery for 2h followed by reperfusion for 12h, 1d, 2d, 3d, 7d respectively. Rats were randomly divided into sham group, model group and EA group. After 2h of the reperfusion, EA was given at the "Baihui" (GV 20)/Siguan ("Hegu" (LI 4)/"Taichong" (LR 3)) acupoints in the EA group. Modified neurological severity score (mNSS) was used to assess the neurological functional recovery. EPCs number and SDF-1α level in bone marrow(BM) and peripheral blood(PB) were detected by using fluorescence-activated cell sorting (FACS) analysis and quantitative real time polymerase chain reaction (qRT-PCR) respectively. An mNSS test showed that EA treatment significantly improved the neurological functional outcome. EPCs number in PB and BM were obviously increased in the EA group. After cerebral ischemia, the SDF-1α level was decreased in BM while it was increased in PB, which implied a gradient of SDF-1α among BM and PB after ischemia. It suggested that the forming of SDF-1α concentration gradient can induce the mobilization and homing of EPCs. Eletroacupuncture as a treatment can accelerate and increase the forming of SDF-1α concentration gradient to further induce the mobilization of EPCs and angiogenesis in ischemic brain and improve the neurological function recovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Alteration in contractile G-protein coupled receptor expression by moist snuff and nicotine in rat cerebral arteries

    DEFF Research Database (Denmark)

    Sandhu, Hardip; Xu, Cang-Bao; Edvinsson, Lars

    2011-01-01

    The cardiovascular risk for users of use of Swedish snus/American snuff (moist tobacco) has been debated for a long time. The present study was designed to examine the effects of water- or lipid-soluble (DMSO-soluble) snus and nicotine, the most important substance in tobacco, on the expression...... kinases (MAPK). However, the effects of moist tobacco on the expression of GPCR are less studied. Rat middle cerebral arteries were isolated and organ cultured in serum-free medium for 24h in the presence of water-soluble snus (WSS), DMSO-soluble snus (DSS), or nicotine. The dose of snus and nicotine...... was kept at plasma level of snus users (25ng nicotine/ml). A high dose (250ng nicotine/ml) was also included due to the previous results showing alteration in the GPCR expression by nicotine at this concentration. Contractile responses to the ET(B) receptor agonist sarafotoxin 6c, 5-HT(1B) receptor agonist...

  9. Selective alterations in cerebral metabolism within the mesocorticolimbic dopaminergic system produced by acute cocaine administration in rats

    Energy Technology Data Exchange (ETDEWEB)

    Porrino, L.J.; Domer, F.R.; Crane, A.M.; Sokoloff, L.

    1988-05-01

    The 2-(/sup 14/C)deoxyglucose method was used to examine the effects of acute intravenous administration of cocaine on local cerebral glucose utilization in rats. These effects were correlated with the effects of cocaine on locomotor activity assessed simultaneously in the same animals. At the lowest dose of cocaine, 0.5 mg/kg (1.47 mumol/kg), alterations in glucose utilization were restricted to the medial prefrontal cortex and nucleus accumbens. Metabolic activity at 1.0 mg/kg (2.9 mumol/kg) was altered in these structures, but in the substantia nigra reticulata and lateral habenula as well. The selectivity of cocaine's effects at low doses demonstrates the particular sensitivity of these structures to cocaine's actions in the brain. In contrast, 5.0 mg/kg (14.7 mumol/kg) produced widespread changes in glucose utilization, particularly in the extrapyramidal system. Only this dose significantly increased locomotor activity above levels in vehicle-treated controls. Rates of glucose utilization were positively correlated with locomotor activity in the globus pallidus, substantia nigra reticulata, and subthalamic nucleus, and negatively correlated in the lateral habenula.

  10. Hypoxia during pregnancy in rats leads to the changes of the cerebral white matter in adult offspring

    International Nuclear Information System (INIS)

    Wang, Lingxing; Cai, Ruowei; Lv, Guorong; Huang, Ziyang; Wang, Zhenhua

    2010-01-01

    The aim of the present study is to evaluate the effect of reduced fetal oxygen supply on cerebral white matter in the adult offspring and further assess its susceptibility to postnatal hypoxia and high-fat diet. Based on a 3 x 2 full factorial design consisting of three factors of maternal hypoxia, postnatal high-fat diet, and postnatal hypoxia, the ultrastructure of myelin, axon and capillaries were observed, and the expression of myelin basic protein (MBP), neurofilament-H+L(NF-H+L), and glial fibrillary acidic protein (GFAP) was analyzed in periventricular white matter of 16-month-old offspring. Demyelination, injured axon and damaged microvasculars were observed in maternal hypoxia offspring. The main effect of maternal hypoxia lead to decreased expression of MBP or NF-H+L, and increased expression of GFAP (all P < 0.05). Moreover, there was positive three-way interaction among maternal hypoxia, high-fat diet and postnatal hypoxia on MBP, NF-H+L or GFAP expression (all P < 0.05). In summary, our results indicated that maternal hypoxia during pregnancy in rats lead to changes of periventricular white matter in adult offspring, including demyelination, damaged axon and proliferated astroglia. This effect was amplified by high-fat diet and postnatal hypoxia.

  11. Upregulation of neuronal zinc finger protein A20 expression is required for electroacupuncture to attenuate the cerebral inflammatory injury mediated by the nuclear factor-kB signaling pathway in cerebral ischemia/reperfusion rats.

    Science.gov (United States)

    Zhan, Jian; Qin, Wenyi; Zhang, Ying; Jiang, Jing; Ma, Hongmei; Li, Qiongli; Luo, Yong

    2016-10-03

    Zinc finger protein A20 (tumor necrosis factor alpha-induced protein 3) functions as a potent negative feedback inhibitor of the nuclear factor-kB (NF-kB) signaling. It exerts these effects by interrupting the activation of IkB kinase beta (IKKβ), the most critical kinase in upstream of NF-kB, and thereby controlling inflammatory homeostasis. We reported previously that electroacupuncture (EA) could effectively suppress IKKβ activation. However, the mechanism underlying these effects was unclear. Therefore, the current study further explored the effects of EA on A20 expression in rat brain and investigated the possible mechanism of A20 in anti-neuroinflammation mediated by EA using transient middle cerebral artery occlusion (MCAO) rats. Rats were treated with EA at the "Baihui (GV20)," "Hegu (L14)," and "Taichong (Liv3)" acupoints once a day starting 2 h after focal cerebral ischemia. The spatiotemporal expression of A20, neurobehavioral scores, infarction volumes, cytokine levels, glial cell activation, and the NF-kB signaling were assessed at the indicated time points. A20 gene interference (overexpression and silencing) was used to investigate the role of A20 in mediating the neuroprotective effects of EA and in regulating the interaction between neuronal and glial cells by suppressing neuronal NF-kB signaling during cerebral ischemia/reperfusion-induced neuroinflammation. EA treatment increased A20 expression with an earlier peak and longer lasting upregulation. The upregulated A20 protein was predominantly located in neurons in the cortical zone of the ischemia/reperfusion. Furthermore, neuronal A20 cell counts were positively correlated with neurobehavioral scores but negatively correlated with infarct volume, the accumulation of pro-inflammatory cytokines, and glial cell activation. Moreover, the effects of EA on improving the neurological outcome and suppressing neuroinflammation in the brain were reversed by A20 silencing. Finally, A20 silencing also

  12. Effect of superlarge dose of gamma radiation on the rat cerebral cortex (ultrastructural aspects)

    International Nuclear Information System (INIS)

    Abdrakhmanov, A.A.; AN Kazakhskoj SSR, Alma-Ata

    1988-01-01

    Puberal Wistar line mall rats (180-210 g) were subjected to single whole-body gamma irradiation with 150 Gy dose and 75 Gy/min dose rate. Electron-microscopic investigation into dynamics of sensory-motor cortex ultrastructural changes during 24 hours after irradiation is conducted. Along with destructive changes compensator-reduction processes are developed in brain tissue at this period. Already during the first hours after irradiation the neutron ultrastructure change dynamics has been determined, alongside with direct radiation effect, by indirect effects juries of neuroglia and microcirculatory channel

  13. Effect of superlarge dose of gamma radiation on the rat cerebral cortex (ultrastructural aspects)

    Energy Technology Data Exchange (ETDEWEB)

    Abdrakhmanov, A A

    1988-06-01

    Puberal Wistar line mall rats (180-210 g) were subjected to single whole-body gamma irradiation with 150 Gy dose and 75 Gy/min dose rate. Electron-microscopic investigation into dynamics of sensory-motor cortex ultrastructural changes during 24 hours after irradiation is conducted. Along with destructive changes compensator-reduction processes are developed in brain tissue at this period. Already during the first hours after irradiation the neutron ultrastructure change dynamics has been determined, alongside with direct radiation effect, by indirect effects juries of neuroglia and microcirculatory channel.

  14. Antrodia camphorata Potentiates Neuroprotection against Cerebral Ischemia in Rats via Downregulation of iNOS/HO-1/Bax and Activated Caspase-3 and Inhibition of Hydroxyl Radical Formation

    Directory of Open Access Journals (Sweden)

    Po-Sheng Yang

    2015-01-01

    Full Text Available Antrodia camphorata (A. camphorata is a fungus generally used in Chinese folk medicine for treatment of viral hepatitis and cancer. Our previous study found A. camphorata has neuroprotective properties and could reduce stroke injury in cerebral ischemia animal models. In this study, we sought to investigate the molecular mechanisms of neuroprotective effects of A. camphorata in middle cerebral artery occlusion (MCAO rats. A selective occlusion of the middle cerebral artery (MCA with whole blood clots was used to induce ischemic stroke in rats and they were orally treated with A. camphorata (0.25 and 0.75 g/kg/day alone or combined with aspirin (5 mg/kg/day. To provide insight into the functions of A. camphorata mediated neuroprotection, the expression of Bax, inducible nitric oxide synthase (iNOS, haem oxygenase-1 (HO-1, and activated caspase-3 was determined by Western blot assay. Treatment of aspirin alone significantly reduced the expressions of HO-1 (P<0.001, iNOS (P<0.001, and Bax (P<0.01 in ischemic regions. The reduction of these expressions was more potentiated when rats treated by aspirin combined with A. camphorata (0.75 g/kg/day. Combination treatment also reduced apoptosis as measured by a significant reduction in active caspase-3 expression in the ischemic brain compared to MCAO group (P<0.01. Moreover, treatment of A. camphorata significantly (P<0.05 reduced fenton reaction-induced hydroxyl radical (OH• formation at a dose of 40 mg/mL. Taken together, A. camphorata has shown neuroprotective effects in embolic rats, and the molecular mechanisms may correlate with the downregulation of Bax, iNOS, HO-1, and activated caspase-3 and the inhibition of OH• signals.

  15. Intra-cerebral ventricular infusion of 5-iodo-2-deoxyuridine (IUDR) as a radiosensitizer in the treatment of a rat glioma

    International Nuclear Information System (INIS)

    Deutsch, M.; Rewers, A.B.; Redgate, S.; Fisher, E.R.; Boggs, S.S.

    1990-01-01

    The efficacy of 5-iodo-2-deoxyuridine (IUDR) as a radiosensitizer when administered by continuous infusion into the cerebral spinal fluid (CSF) of the lateral cerebral ventricle was evaluated in a 9L gliosarcoma rat brain tumor model. Stereotactic implantation of a 5 x 10(4) tumor cell suspension into the left caudate nucleus was carried out in four groups of 10 rats each. Control animals had a median survival of 16.9 days (range 16-21 days). IUDR, 8.4 mg over 7 days administered by continuous infusion into the left lateral ventricle produced a slight survival advantage (median survival 21.5 days, range 12-56). Irradiation of the entire brain, 8 Gy on days 4, 6 and 7 after tumor cell implantation also produced a slight improvement in survival (median 19.5 days, range 17-34). The combination of radiation and IUDR infusion into the CSF produced a marked survival advantage (median 30.5, range 22-54) compared to the control and single modality treatment groups. This is the first demonstration of the effectiveness of IUDR as a radiosensitizer when administered into the lateral cerebral ventricle in the treatment of an intraparenchymal brain tumor

  16. Serotonin-stimulated phosphoinositide turnover: mediation by the S2 binding site in rat cerebral cortex but not in subcortical regions

    International Nuclear Information System (INIS)

    Conn, P.J.; Sanders-Bush, E.

    1985-01-01

    In rat cerebral cortex, serotonin (5-HT) stimulates phosphoinositide turnover with an EC50 of 1 microM in the presence of pargyline. The EC50 is 16-fold higher in the absence of pargyline. Selective S2 antagonists inhibit 5-HT-stimulated phosphoinositide turnover. Schild analysis of the blockade by ketanserin of the 5-HT effect gives an estimated Kd of ketanserin for the phosphoinositide-linked receptor of 11.7 nM, which agrees with the Kd (3.5 nM) of [ 3 H]ketanserin for the S2 site. Furthermore, MK-212, 5-HT and 5-fluorotryptamine stimulate phosphoinositide turnover with potencies that resemble their potencies at the S2 but not the S1 binding site. Of 11 agonists tested, the tryptamine derivatives tend to be more efficacious than the piperazine derivatives. The selective S1 agonist 8-hydroxy-2-(di-N-propylamino)tetralin is inactive at stimulating phosphoinositide turnover. No significant relationship exists between the regional distributions of 5-HT-stimulated phosphoinositide turnover and S2 binding sites. Furthermore, the S2 antagonist ketanserin is less potent and less efficacious in hippocampus and limbic forebrain than in cerebral cortex. These data suggest that 5-HT-stimulated phosphoinositide turnover is linked to the S2 binding site in rat cerebral cortex. However, 5-HT increases phosphoinositide turnover in subcortical regions by mechanisms other than stimulation of the S2 receptor

  17. Free amino acids in synaptic vesicles isolated from the cerebellum and cerebral hemispheres of control and neonatally X-irradiated rats

    International Nuclear Information System (INIS)

    Valcana, T.; Hudson, D.B.; Timiras, P.S.

    1984-01-01

    X-irradiation of the rat brain (1000R, at two days of age), suppresses the normal age-related increase in the weight of the cerebellum and cerebral hemispheres and influences amino acid levels. The decrease in glutamic acid concentration, particularly in the cerebellum, supports the previously advanced proposition that this amino acid may be associated with or may be the transmitter of, the rat cerebellar granule cells. Subfractionation of the cerebellar tissue reveals that the decrease in the glutamic acid level consequent to the loss of granule cells, is reflected in the cytoplasmic fraction but not in the synaptic vesicle subfraction, where glutamic acid was increased. The reduced weight gain in the cerebral hemispheres after irradiation, is accompanied by a significant decrease of aspartate in the cytoplasmic fraction, changes which suggest that a specific cell type, with aspartic acid as its neurotransmitter (possibly in the hippocampus), may also be radiosensitive in the early postnatal period. In contrast, in the synaptic vesicle fraction from cerebral hemispheres, all free amino acids, with the exception of glutamine, increased significantly. Overall, the changes in free amino acid concentration induced by X-irradiation in the cytoplasmic fraction in both brain regions studied are opposite to those found in the synaptic vesicle fraction and although they may indicate changes in specific cell populations, as proposed above, they could also reflect changes in cellular compartmentalization and metabolism or changes in the relative axonal arborization of the affected regions

  18. Goreisan Inhibits Upregulation of Aquaporin 4 and Formation of Cerebral Edema in the Rat Model of Juvenile Hypoxic-Ischemic Encephalopathy

    Science.gov (United States)

    Yano, Hajime; Takahashi, Hisaaki; Yoshimoto, Kouhei; Tsuda, Shinji; Fujiyama, Kenta; Izumo-Shimizu, Yusuke; Motoie, Ryota; Ito, Masanori; Tanaka, Junya; Ishii, Eiichi

    2017-01-01

    Secondary cerebral edema regulation is of prognostic significance in hypoxic-ischemic encephalopathy (HIE), and aquaporin 4 (AQP4) plays an important role in the pathogenesis of cerebral edema. The traditional Japanese herbal medicine Goreisan relieves brain edema in adults; however, its effect and pharmacological mechanism in children are unknown. We investigated the effects of Goreisan on HIE-associated brain edema and AQP4 expression in a juvenile rat model, established by combined occlusion of middle cerebral and common carotid arteries. Magnetic resonance imaging showed that the lesion areas were significantly smaller in the Goreisan- (2 g/kg) treated group than in the nontreated (saline) group at 24 and 48 h postoperatively. AQP4 mRNA levels in the lesion and nonlesion sides were significantly suppressed in the Goreisan group compared with the nontreated group 36 h postoperatively. Western blotting revealed that levels of AQP4 protein were significantly decreased in the Goreisan group compared with the nontreated group in the lesion side 72 h postoperatively, but not at 12 or 36 h. After 14 days, the Goreisan group had a significantly better survival rate. These findings suggest that Goreisan suppresses brain edema in HIE and improves survival in juvenile rats, possibly via regulation of AQP4 expression and function. PMID:29234383

  19. Goreisan Inhibits Upregulation of Aquaporin 4 and Formation of Cerebral Edema in the Rat Model of Juvenile Hypoxic-Ischemic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Yoshiaki Yano

    2017-01-01

    Full Text Available Secondary cerebral edema regulation is of prognostic significance in hypoxic-ischemic encephalopathy (HIE, and aquaporin 4 (AQP4 plays an important role in the pathogenesis of cerebral edema. The traditional Japanese herbal medicine Goreisan relieves brain edema in adults; however, its effect and pharmacological mechanism in children are unknown. We investigated the effects of Goreisan on HIE-associated brain edema and AQP4 expression in a juvenile rat model, established by combined occlusion of middle cerebral and common carotid arteries. Magnetic resonance imaging showed that the lesion areas were significantly smaller in the Goreisan- (2 g/kg treated group than in the nontreated (saline group at 24 and 48 h postoperatively. AQP4 mRNA levels in the lesion and nonlesion sides were significantly suppressed in the Goreisan group compared with the nontreated group 36 h postoperatively. Western blotting revealed that levels of AQP4 protein were significantly decreased in the Goreisan group compared with the nontreated group in the lesion side 72 h postoperatively, but not at 12 or 36 h. After 14 days, the Goreisan group had a significantly better survival rate. These findings suggest that Goreisan suppresses brain edema in HIE and improves survival in juvenile rats, possibly via regulation of AQP4 expression and function.

  20. Neuroprotection by methanol extract of Uncaria rhynchophylla against global cerebral ischemia in rats.

    Science.gov (United States)

    Suk, Kyoungho; Kim, Sun Yeou; Leem, Kanghyun; Kim, Young Ock; Park, Sun Young; Hur, Jinyoung; Baek, Jihwoon; Lee, Kang Jin; Zheng, Hu Zhan; Kim, Hocheol

    2002-04-21

    In traditional Oriental medicine, Uncaria rhynchophylla has been used to lower blood pressure and to relieve various neurological symptoms. However, scientific evidence related to its effectiveness or precise modes of action has not been available. Thus, in the current study, we evaluated neuroprotective effects of U. rhynchophylla after transient global ischemia using 4-vessel occlusion model in rats. Methanol extract of U. rhynchophylla administered intraperitoneally (100-1000 mg/kg at 0 and 90 min after reperfusion) significantly protected hippocampal CA1 neurons against 10 min transient forebrain ischemia. Measurement of neuronal cell density in CA1 region at 7 days after ischemia by Nissl staining revealed more than 70% protection in U. rhynchophylla-treated rats compared to saline-treated animals. In U. rhynchophylla-treated animals, induction of cyclooxygenase-2 in hippocampus at 24 hr after ischemia was significantly inhibited at both mRNA and protein levels. Furthermore, U. rhynchophylla extract inhibited TNF-alpha and nitric oxide production in BV-2 mouse microglial cells in vitro. These anti-inflammatory actions of U. rhynchophylla extract may contribute to its neuroprotective effects.

  1. Relaxation along a fictitious field (RAFF and Z-spectroscopy using alternating-phase irradiation (ZAPI in permanent focal cerebral ischemia in rat.

    Directory of Open Access Journals (Sweden)

    Kimmo T Jokivarsi

    Full Text Available Cerebral ischemia alters the molecular dynamics and content of water in brain tissue, which is reflected in NMR relaxation, diffusion and magnetization transfer (MT parameters. In this study, the behavior of two new MRI contrasts, Relaxation Along a Fictitious Field (RAFF and Z-spectroscopy using Alternating-Phase Irradiation (ZAPI, were quantified together with conventional relaxation parameters (T1, T2 and T1ρ and MT ratios in acute cerebral ischemia in rat. The right middle cerebral artery was permanently occluded and quantitative MRI data was acquired sequentially for the above parameters for up to 6 hours. The following conclusions were drawn: 1 Time-dependent changes in RAFF and T1ρ relaxation are not coupled to those in MT. 2 RAFF relaxation evolves more like transverse, rather than longitudinal relaxation. 3 MT measured with ZAPI is less sensitive to ischemia than conventional MT. 4 ZAPI data suggest alterations in the T2 distribution of macromolecules in acute cerebral ischemia. It was shown that both RAFF and ZAPI provide complementary MRI information from acute ischemic brain tissue. The presented multiparametric MRI data may aid in the assessment of brain tissue status early in ischemic stroke.

  2. Neuroprotective effect of TAT-14-3-3ε fusion protein against cerebral ischemia/reperfusion injury in rats.

    Directory of Open Access Journals (Sweden)

    Yuanjun Zhu

    Full Text Available Stroke is the major cause of death and disability worldwide, and the thrombolytic therapy currently available was unsatisfactory. 14-3-3ε is a well characterized member of 14-3-3 family, and has been reported to protect neurons against apoptosis in cerebral ischemia. However, it cannot transverse blood brain barrier (BBB due to its large size. A protein transduction domain (PTD of HIV TAT protein, is capable of delivering a large variety of proteins into the brain. In this study, we generated a fusion protein TAT-14-3-3ε, and evaluated its potential neuroprotective effect in rat focal ischemia/reperfusion (I/R model. Western blot analysis validated the efficient transduction of TAT-14-3-3ε fusion protein into brain via a route of intravenous injection. TAT-14-3-3ε pre-treatment 2 h before ischemia significantly reduced cerebral infarction volume and improved neurologic score, while post-treatment 2 h after ischemia was less effective. Importantly, pre- or post-ischemic treatment with TAT-14-3-3ε significantly increased the number of surviving neurons as determined by Nissl staining, and attenuated I/R-induced neuronal apoptosis as showed by the decrease in apoptotic cell numbers and the inhibition of caspase-3 activity. Moreover, the introduction of 14-3-3ε into brain by TAT-mediated delivering reduced the formation of autophagosome, attenuated LC3B-II upregulation and reversed p62 downregulation induced by ischemic injury. Such inhibition of autophagy was reversed by treatment with an autophagy inducer rapamycin (RAP, which also attenuated the neuroprotective effect of TAT-14-3-3ε. Conversely, autophagy inhibitor 3-methyladenine (3-MA inhibited I/R-induced the increase in autophagic activity, and attenuated I/R-induced brain infarct. These results suggest that TAT-14-3-3ε can be efficiently transduced into brain and exert significantly protective effect against brain ischemic injury through inhibiting neuronal apoptosis and autophagic

  3. Effects of the administration of a catalase inhibitor into the fourth cerebral ventricle on cardiovascular responses in spontaneously hypertensive rats exposed to sidestream cigarette smoke.

    Science.gov (United States)

    Valenti, Vitor E; Abreu, Luiz Carlos de; Fonseca, Fernando L A; Adami, Fernando; Sato, Monica A; Vanderlei, Luiz Carlos M; Ferreira, Lucas Lima; Rodrigues, Luciano M; Ferreira, Celso

    2013-06-01

    Previous studies have demonstrated a relationship between brain oxidative stress and cardiovascular regulation. We evaluated the effects of central catalase inhibition on cardiovascular responses in spontaneously hypertensive rats exposed to sidestream cigarette smoke. Male Wistar Kyoto (WKY) rats and spontaneously hypertensive rats (SH) (16 weeks old) were implanted with a stainless steel guide cannula leading into the fourth cerebral ventricle (4th V). The femoral artery and vein were cannulated for arterial pressure and heart rate measurement and drug infusion, respectively. The rats were exposed to sidestream cigarette smoke for 180 minutes/day, 5 days/week for 3 weeks (CO: 100-300 ppm). The baroreflex was tested using a pressor dose of phenylephrine (8 μg/kg, bolus) and a depressor dose of sodium nitroprusside (50 μg/kg, bolus). Cardiovascular responses were evaluated before and 5, 15, 30 and 60 minutes after injection of a catalase inhibitor (3-amino-1,2,4-triazole, 0.001 g/100 μL) into the 4th V. Vehicle administration into the 4th V did not affect the cardiovascular response, whereas administration of the central catalase inhibitor increased the basal HR and attenuated the bradycardic peak (peffect of the catalase inhibitor treatment was stronger in the fresh air condition (pcatalase inhibitor into the 4th V combined with exposure to sidestream cigarette smoke has a stronger effect in WKY rats than in SH rats.

  4. Effects of the administration of a catalase inhibitor into the fourth cerebral ventricle on cardiovascular responses in spontaneously hypertensive rats exposed to sidestream cigarette smoke

    Directory of Open Access Journals (Sweden)

    Vitor E. Valenti

    2013-06-01

    Full Text Available OBJECTIVE: Previous studies have demonstrated a relationship between brain oxidative stress and cardiovascular regulation. We evaluated the effects of central catalase inhibition on cardiovascular responses in spontaneously hypertensive rats exposed to sidestream cigarette smoke. METHODS: Male Wistar Kyoto (WKY rats and spontaneously hypertensive rats (SH (16 weeks old were implanted with a stainless steel guide cannula leading into the fourth cerebral ventricle (4th V. The femoral artery and vein were cannulated for arterial pressure and heart rate measurement and drug infusion, respectively. The rats were exposed to sidestream cigarette smoke for 180 minutes/day, 5 days/week for 3 weeks (CO: 100-300 ppm. The baroreflex was tested using a pressor dose of phenylephrine (8 μg/kg, bolus and a depressor dose of sodium nitroprusside (50 μg/kg, bolus. Cardiovascular responses were evaluated before and 5, 15, 30 and 60 minutes after injection of a catalase inhibitor (3-amino-1,2,4-triazole, 0.001 g/100 μL into the 4th V. RESULTS: Vehicle administration into the 4th V did not affect the cardiovascular response, whereas administration of the central catalase inhibitor increased the basal HR and attenuated the bradycardic peak (p<0.05 to a greater extent in WKY rats exposed to sidestream cigarette smoke than in WKY rats exposed to fresh air. However, in spontaneously hypertensive rats, the effect of the catalase inhibitor treatment was stronger in the fresh air condition (p<0.05. CONCLUSION: Administration of a catalase inhibitor into the 4th V combined with exposure to sidestream cigarette smoke has a stronger effect in WKY rats than in SH rats.

  5. Double Pass 595 nm Pulsed Dye Laser Does Not Enhance the Efficacy of Port Wine Stains Compared with Single Pass: A Randomized Comparison with Histological Examination.

    Science.gov (United States)

    Yu, Wenxin; Zhu, Jiafang; Wang, Lizhen; Qiu, Yajing; Chen, Yijie; Yang, Xi; Chang, Lei; Ma, Gang; Lin, Xiaoxi

    2018-03-27

    To compare the efficacy and safety of double-pass pulsed dye laser (DWL) and single-pass PDL (SWL) in treating virgin port wine stain (PWS). The increase in the extent of vascular damage attributed to the use of double-pass techniques for PWS remains inconclusive. A prospective, side-by-side comparison with a histological study for virgin PWS is still lacking. Twenty-one patients (11 flat PWS, 10 hypertrophic PWS) with untreated PWS underwent 3 treatments at 2-month intervals. Each PWS was divided into three treatment sites: SWL, DWL, and untreated control. Chromametric and visual evaluation of the efficacy and evaluation of side effects were conducted 3 months after final treatment. Biopsies were taken at the treated sites immediately posttreatment. Chromametric and visual evaluation suggested that DWL sites showed no significant improvement compared with SWL (p > 0.05) in treating PWS. The mean depth of photothermal damage to the vessels was limited to a maximum of 0.36-0.41 mm in both SWL and DWL sides. Permanent side effects were not observed in any patients. Double-pass PDL does not enhance PWS clearance. To improve the clearance of PWS lesions, either the depth of laser penetration should be increased or greater photothermal damage to vessels should be generated.

  6. Electroacupuncture ameliorates post-stroke learning and memory through minimizing ultrastructural brain damage and inhibiting the expression of MMP-2 and MMP-9 in cerebral ischemia-reperfusion injured rats.

    Science.gov (United States)

    Lin, Ruhui; Yu, Kunqiang; Li, Xiaojie; Tao, Jing; Lin, Yukun; Zhao, Congkuai; Li, Chunyan; Chen, Li-Dian

    2016-07-01

    The aim of the present study was to investigate the potential neuroprotective effects of electroacupuncture (EA) in the treatment of cerebral ischemia/reperfusion (I/R) injury, and to elucidate the association between this neuroprotective effect and brain ultrastructure and expression of matrix metalloproteinase (MMP)‑2 and 9. Rats underwent focal cerebral I/R injury by arterial ligation and received in vivo therapeutic EA at the Baihui (DU20) and Shenting (DU24) acupoints. The therapeutic efficacy was then evaluated following the surgery. The results of the current study demonstrated that EA treatment significantly ameliorated neurological deficits and reduced cerebral infarct volume compared with I/R injured rats. Furthermore, EA improved the learning and memory ability of rats following I/R injury, inhibited blood brain barrier breakdown and reduced neuronal damage in the ischemic penumbra. Furthermore, EA attenuated ultrastructural changes in the brain tissue following ischemia and inhibited MMP‑2/MMP‑9 expression in cerebral I/R injured rats. The results suggest that EA ameliorates anatomical deterioration, and learning and memory deficits in rats with cerebral I/R injury.

  7. Voxel-based statistical analysis of cerebral glucose metabolism in the rat cortical deafness model by 3D reconstruction of brain from autoradiographic images

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Park, Kwang Suk [Seoul National University College of Medicine, Department of Nuclear Medicine, 28 Yungun-Dong, Chongno-Ku, Seoul (Korea); Seoul National University College of Medicine, Department of Biomedical Engineering, Seoul (Korea); Ahn, Soon-Hyun; Oh, Seung Ha; Kim, Chong Sun; Chung, June-Key; Lee, Myung Chul [Seoul National University College of Medicine, Department of Otolaryngology, Head and Neck Surgery, Seoul (Korea); Lee, Dong Soo; Jeong, Jae Min [Seoul National University College of Medicine, Department of Nuclear Medicine, 28 Yungun-Dong, Chongno-Ku, Seoul (Korea)

    2005-06-01

    Animal models of cortical deafness are essential for investigation of the cerebral glucose metabolism in congenital or prelingual deafness. Autoradiographic imaging is mainly used to assess the cerebral glucose metabolism in rodents. In this study, procedures for the 3D voxel-based statistical analysis of autoradiographic data were established to enable investigations of the within-modal and cross-modal plasticity through entire areas of the brain of sensory-deprived animals without lumping together heterogeneous subregions within each brain structure into a large region of interest. Thirteen 2-[1-{sup 14}C]-deoxy-D-glucose autoradiographic images were acquired from six deaf and seven age-matched normal rats (age 6-10 weeks). The deafness was induced by surgical ablation. For the 3D voxel-based statistical analysis, brain slices were extracted semiautomatically from the autoradiographic images, which contained the coronal sections of the brain, and were stacked into 3D volume data. Using principal axes matching and mutual information maximization algorithms, the adjacent coronal sections were co-registered using a rigid body transformation, and all sections were realigned to the first section. A study-specific template was composed and the realigned images were spatially normalized onto the template. Following count normalization, voxel-wise t tests were performed to reveal the areas with significant differences in cerebral glucose metabolism between the deaf and the control rats. Continuous and clear edges were detected in each image after registration between the coronal sections, and the internal and external landmarks extracted from the spatially normalized images were well matched, demonstrating the reliability of the spatial processing procedures. Voxel-wise t tests showed that the glucose metabolism in the bilateral auditory cortices of the deaf rats was significantly (P<0.001) lower than that in the controls. There was no significantly reduced metabolism in

  8. Voxel-based statistical analysis of cerebral glucose metabolism in the rat cortical deafness model by 3D reconstruction of brain from autoradiographic images

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Park, Kwang Suk; Ahn, Soon-Hyun; Oh, Seung Ha; Kim, Chong Sun; Chung, June-Key; Lee, Myung Chul; Lee, Dong Soo; Jeong, Jae Min

    2005-01-01

    Animal models of cortical deafness are essential for investigation of the cerebral glucose metabolism in congenital or prelingual deafness. Autoradiographic imaging is mainly used to assess the cerebral glucose metabolism in rodents. In this study, procedures for the 3D voxel-based statistical analysis of autoradiographic data were established to enable investigations of the within-modal and cross-modal plasticity through entire areas of the brain of sensory-deprived animals without lumping together heterogeneous subregions within each brain structure into a large region of interest. Thirteen 2-[1- 14 C]-deoxy-D-glucose autoradiographic images were acquired from six deaf and seven age-matched normal rats (age 6-10 weeks). The deafness was induced by surgical ablation. For the 3D voxel-based statistical analysis, brain slices were extracted semiautomatically from the autoradiographic images, which contained the coronal sections of the brain, and were stacked into 3D volume data. Using principal axes matching and mutual information maximization algorithms, the adjacent coronal sections were co-registered using a rigid body transformation, and all sections were realigned to the first section. A study-specific template was composed and the realigned images were spatially normalized onto the template. Following count normalization, voxel-wise t tests were performed to reveal the areas with significant differences in cerebral glucose metabolism between the deaf and the control rats. Continuous and clear edges were detected in each image after registration between the coronal sections, and the internal and external landmarks extracted from the spatially normalized images were well matched, demonstrating the reliability of the spatial processing procedures. Voxel-wise t tests showed that the glucose metabolism in the bilateral auditory cortices of the deaf rats was significantly (P<0.001) lower than that in the controls. There was no significantly reduced metabolism in any

  9. Chronic cobalt-induced epilepsy: noradrenaline ionophoresis and adrenoceptor binding studies in the rat cerebral cortex

    International Nuclear Information System (INIS)

    Bregman, B.; Le Saux, F.; Maurin, Y.; Trottier, S.; Chauvel, P.

    1985-01-01

    Several studies indicate that brain noradrenaline (NA) depletion facilitates the occurrence of epileptogenic syndromes in various animal models. In cobalt-induced epilepsy in the rat, seizure activity is associated with a cortical NA denervation. In order to search for cortical adrenoceptor modifications, inonophoretic studies and adrenoceptor binding assays were performed. At the period of maximal seizure activity, there was a significant supersensitivity of cortial neurons to the ionophoretic application of NA. An increase in the density of β-adrenoceptor binding sites was observed. No modification in α 1 - and α 2 -adrenoceptor binding sites was found. This suggests that in cobalt-induced epilepsy there is a denervation supersensitivity which rests on a selective involvement of β-adrenoceptors. (Author)

  10. Postnatal changes in the nitric oxide system of the rat cerebral cortex after hypoxia during delivery.

    Science.gov (United States)

    Fernández, Ana Patricia; Alonso, David; Lisazoaín, Ignacio; Serrano, Julia; Leza, Juan Carlos; Bentura, María Luisa; López, Juan Carlos; Manuel Encinas, Juan; Fernández-Vizarra, Paula; Castro-Blanco, Susana; Martínez, Alfredo; Martinez-Murillo, Ricardo; Lorenzo, Pedro; Pedrosa, Juan Angel; Peinado, María Angeles; Rodrigo, José

    2003-05-14

    The impact of hypoxia in utero during delivery was correlated with the immunocytochemistry, expression and activity of the neuronal (nNOS) and inducible (iNOS) isoforms of the nitric oxide synthase enzyme as well as with the reactivity and expression of nitrotyrosine as a marker of protein nitration during early postnatal development of the cortex. The expression of nNOS in both normal and hypoxic animals increased during the first few postnatal days, reaching a peak at day P5, but a higher expression was consistently found in hypoxic brain. This expression decreased progressively from P7 to P20, but was more prominent in the hypoxic group. Immunoreactivity for iNOS was also higher in the cortex of the hypoxic rats and was more evident between days P0 and P5, decreasing dramatically between P10 and P20 in both groups of rats. Two nitrated proteins of 52 and 38 kDa, were also identified. Nitration of the 52-kDa protein was more intense in the hypoxic animals than in the controls, increasing from P0 to P7 and then decreasing progressively to P20. The 38-kDa nitrated protein was seen only from P10 to P20, and its expression was more intense in control than in the hypoxic group. These results suggest that the NO system may be involved in neuronal maturation and cortical plasticity over postnatal development. Overproduction of NO in the brain of hypoxic animals may constitute an effort to re-establish normal blood flow and may also trigger a cascade of free-radical reactions, leading to modifications in the cortical plasticity.

  11. Permanent Distal Occlusion of Middle Cerebral Artery in Rat Causes Local Increased ETB, 5-HT1B and AT1 Receptor-Mediated Contractility Downstream of Occlusion

    DEFF Research Database (Denmark)

    Rasmussen, Marianne N P; Hornbak, Malene; Larsen, Stine S

    2013-01-01

    Background/Aims: In response to experimental stroke, a characteristic functional and expressional upregulation of contractile G-protein-coupled receptors has been uncovered in the affected cerebral vasculature; however, the mechanism initiating this phenomenon remains unknown. Methods: Using...... a model of permanent distal occlusion of rat middle cerebral arteries, we investigated whether there was a regional difference in receptor-mediated contractility of segments located upstream and downstream of the occlusion site. The contractile response to endothelin, angiotensin and 5-hydroxytryptamine...... receptor stimulation was studied by sensitive wire myograph. Results: Only downstream segments exhibited an augmented contractile response to stimulation with each of the three ligands, with the response towards sarafotoxin 6c being especially augmented compared to sham, upstream and contralateral controls...

  12. Lipid-soluble cigarette smoking particles induce expression of inflammatory and extracellular-matrix-related genes in rat cerebral arteries

    DEFF Research Database (Denmark)

    Vikman, Petter; Xu, Cang-Bao; Edvinsson, Lars

    2009-01-01

    /JNK) and their downstream transcription factors (ATF-2, Elk-1 and c-Jun) were examined. RESULTS: We observed that compared with control (DMSO-treated cerebral arteries), the cerebral arteries treated by DSP exhibited enhanced expression of MMP13 and AT(1) receptors, but not of AT(2) receptors, at both mRNA and protein...... factor ATF-2 and Elk-1. However, ERK 1/2 and SAPK/JNK activities were markedly expressed in the control (organ culture per se with DMSO), and DSP failed to further enhance the activation of ERK 1/2 and SAPK/JNK in the cerebral arteries. CONCLUSIONS: DSP induces cerebral vessel inflammation...

  13. Fluoxetine ameliorates cognitive impairments induced by chronic cerebral hypoperfusion via down-regulation of HCN2 surface expression in the hippocampal CA1 area in rats.

    Science.gov (United States)

    Luo, Pan; Zhang, Xiaoxue; Lu, Yun; Chen, Cheng; Li, Changjun; Zhou, Mei; Lu, Qing; Xu, Xulin; Shen, Guanxin; Guo, Lianjun

    2016-01-01

    Chronic cerebral hypoperfusion (CCH) causes cognitive impairments and increases the risk of Alzheimer's disease (AD) and vascular dementia (VD) through several biologically plausible pathways, yet the underlying neurobiological mechanisms are still poorly understood. In this study, we investigated whether fluoxetine, a selective serotonin reuptake inhibitor (SSRI), could play a neuroprotective role against chronic cerebral hypoperfusion injury and to clarify underlying mechanisms of its efficacy. Rats were subjected to permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO). Two weeks later, rats were treated with 30 mg/kg fluoxetine (intragastric injection, i.g.) for 6 weeks. Cognitive function was evaluated by Morris water maze (MWM) and novel objects recognition (NOR) test. Long-term potentiation (LTP) was used to address the underlying synaptic mechanisms. Western blotting was used to quantify the protein levels. Our results showed that fluoxetine treatment significantly improved the cognitive impairments caused by 2VO, accompanied with a reversion of 2VO-induced inhibitory of LTP. Furthermore, 2VO caused an up-regulation of hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) surface expressions in the hippocampal CA1 area and fluoxetine also effectively recovered the disorder of HCN2 surface expressions, which may be a possible mechanism that fluoxetine treatment ameliorates cognitive impairments in rats with CCH. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Total Phenolic Content and Antioxidant Activity of Different Types of Chocolate, Milk, Semisweet, Dark, and Soy, in Cerebral Cortex, Hippocampus, and Cerebellum of Wistar Rats

    Science.gov (United States)

    da Silva Medeiros, Niara; Koslowsky Marder, Roberta; Farias Wohlenberg, Mariane; Funchal, Cláudia; Dani, Caroline

    2015-01-01

    Chocolate is a product consumed worldwide and it stands out for presenting an important amount of phenolic compounds. In this study, the total phenolic content and antioxidant activity in the cerebral cortex, hippocampus, and cerebellum of male Wistar rats when consuming different types of chocolate, including milk, semisweet, dark, and soy, was evaluated. The total polyphenols concentration and antioxidant activity in vitro by the method of DPPH radical-scavenging test were evaluated in chocolate samples. Lipid peroxidation (TBARS), protein oxidation (carbonyl), sulfhydryl groups, and activity of SOD enzyme in cerebral cortex, hippocampus, and cerebellum of rats treated or not with hydrogen peroxide and/or chocolate were also evaluated. The dark chocolate demonstrated higher phenolic content and antioxidant activity, followed by semisweet, soy, and milk chocolates. The addition of chocolate in the diet of the rats reduced lipid peroxidation and protein oxidation caused by hydrogen peroxide. In the sulfhydryl assay, we observed that the levels of nonenzymatic defenses only increased with the chocolate treatments The SOD enzyme activity was modulated in the tissues treated with the chocolates. We observed in the samples of chocolate a significant polyphenol content and an important antioxidant activity; however, additional studies with different chocolates and other tissues are necessary to further such findings. PMID:26649198

  15. Total Phenolic Content and Antioxidant Activity of Different Types of Chocolate, Milk, Semisweet, Dark, and Soy, in Cerebral Cortex, Hippocampus, and Cerebellum of Wistar Rats

    Directory of Open Access Journals (Sweden)

    Niara da Silva Medeiros

    2015-01-01

    Full Text Available Chocolate is a product consumed worldwide and it stands out for presenting an important amount of phenolic compounds. In this study, the total phenolic content and antioxidant activity in the cerebral cortex, hippocampus, and cerebellum of male Wistar rats when consuming different types of chocolate, including milk, semisweet, dark, and soy, was evaluated. The total polyphenols concentration and antioxidant activity in vitro by the method of DPPH radical-scavenging test were evaluated in chocolate samples. Lipid peroxidation (TBARS, protein oxidation (carbonyl, sulfhydryl groups, and activity of SOD enzyme in cerebral cortex, hippocampus, and cerebellum of rats treated or not with hydrogen peroxide and/or chocolate were also evaluated. The dark chocolate demonstrated higher phenolic content and antioxidant activity, followed by semisweet, soy, and milk chocolates. The addition of chocolate in the diet of the rats reduced lipid peroxidation and protein oxidation caused by hydrogen peroxide. In the sulfhydryl assay, we observed that the levels of nonenzymatic defenses only increased with the chocolate treatments The SOD enzyme activity was modulated in the tissues treated with the chocolates. We observed in the samples of chocolate a significant polyphenol content and an important antioxidant activity; however, additional studies with different chocolates and other tissues are necessary to further such findings.

  16. Effect of Acupuncture at LR3 on Cerebral Glucose Metabolism in a Rat Model of Hypertension: A 18F-FDG-PET Study

    Directory of Open Access Journals (Sweden)

    Jing Li

    2018-01-01

    Full Text Available Our objective was to investigate the effect of acupuncture at LR3 on cerebral glucose metabolism in spontaneously hypertensive rats (SHRs. We used 18F-2-fluoro-deoxy-D-glucose positron emission tomography (18F-FDG-PET to examine the effects of acupuncture at LR3 on cerebral glucose metabolism in SHRs. SHRs were randomly allocated to receive no treatment (SHR group, needling at LR3 (SHR + LR3 group, or sham needling (SHR + sham group. Rats received 10 min acupuncture once per day for 7 days and were compared to normotensive Wistar Kyoto (WKY rats. Blood pressure (BP measurement and PET were performed after the first needling and the 7-day treatment period. BP was lower in the SHR + LR3 group compared to the other SHR groups between 30 and 60 min after the first needling and at 24 and 48 h after the 7-day treatment period. Glucose metabolism in the motor, sensory, and visual cortices was decreased in SHR group compared to WKY group. Needling at LR3 was associated with decreased glucose metabolism in the dorsal thalamus, thalamus, and hypothalamus and with increased metabolism in the cerebellar anterior and posterior lobes, medulla oblongata, and sensory cortex compared to the SHR group. These findings suggest that LR3 acupuncture improves hypertension through a mechanism involving altered brain activation in SHRs.

  17. Characterization of a cerebral palsy-like model in rats: Analysis of gait pattern and of brain and spinal cord motor areas.

    Science.gov (United States)

    Dos Santos, Adriana Souza; de Almeida, Wellington; Popik, Bruno; Sbardelotto, Bruno Marques; Torrejais, Márcia Miranda; de Souza, Marcelo Alves; Centenaro, Lígia Aline

    2017-08-01

    In an attempt to propose an animal model that reproduces in rats the phenotype of cerebral palsy, this study evaluated the effects of maternal exposure to bacterial endotoxin associated with perinatal asphyxia and sensorimotor restriction on gait pattern, brain and spinal cord morphology. Two experimental groups were used: Control Group (CTG) - offspring of rats injected with saline during pregnancy and Cerebral Palsy Group (CPG) - offspring of rats injected with lipopolysaccharide during pregnancy, submitted to perinatal asphyxia and sensorimotor restriction for 30days. At 29days of age, the CPG exhibited coordination between limbs, weight-supported dorsal steps or weight-supported plantar steps with paw rotation. At 45days of age, CPG exhibited plantar stepping with the paw rotated in the balance phase. An increase in the number of glial cells in the primary somatosensory cortex and dorsal striatum were observed in the CPG, but the corpus callosum thickness and cross-sectional area of lateral ventricle were similar between studied groups. No changes were found in the number of motoneurons, glial cells and soma area of the motoneurons in the ventral horn of spinal cord. The combination of insults in the pre, peri and postnatal periods produced changes in hindlimbs gait pattern of animals similar to those observed in diplegic patients, but motor impairments were attenuated over time. Besides, the greater number of glial cells observed seems to be related to the formation of a glial scar in important sensorimotor brain areas. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  18. Effects of Electroacupuncture Combined with Repetitive Transcranial Magnetic Stimulation on the Expression of Nestin in Neural Stem Cell after Focal Cerebral Ischemia in Adult Rats

    Institute of Scientific and Technical Information of China (English)

    HUANG Guofu; HUANG Xiaolin; CHEN Hong; HAY Xiaohua

    2009-01-01

    Objective: To investigate the influence of electroacupuncture (EA) combined with repetitive transeranial magnetic stimulation(rTMS) on the temporal profile of nestin expression after induction of focal cerebral isehemia in adult rats and to explore the mechanism of EA combined with rTMS in treating ischemic brain injury. Method: The model of transient focal ischemia was produced by occlusion of middle cerebral artery. Seventy-five Wistar rats were randomly divided into normal group, model group, EA group, rTMS group and EA +rTMS group. The neurologic impairment rating and ability of learning and memory were observed at the 7th、14th and 28th d after infarction respectively. Meanwhile, Western blotting was used to observe the number of nestin expression positive cells. Result: Nestin-positive cells were found in cortex, subgranular zone (SGZ), subventricular zone (SVZ) of the ipsilateral side at different time points after cerebral isehemia. The number of nestin-positive cells peaked at the 7th d, began to decrease at the 14th d and was significantly higher in EA+rTMS group than that in model group (P<0.05), then almost reached normal at the 28th d. The improvement of neural motor function deficits as well as the indexes of learning and memory were more obvious in EA+rTMS group compared with model group (P<0.01, P<0.05). These effects were most obvious in EA+rTMS group compared with the EA and rTMS group (P<0.05). Conclusion: EA and rTMS possess the potency of building up and can increase the number of nestin-positive cells in some brain regions after focal cerebral ischemia, which might be one of the important mechanisms of EA combined with rTMS in treating ischemia brain injury.

  19. Organoselenium compounds prevent hyperphosphorylation of cytoskeletal proteins induced by the neurotoxic agent diphenyl ditelluride in cerebral cortex of young rats

    International Nuclear Information System (INIS)

    Moretto, M.B.; Funchal, C.; Zeni, G.; Rocha, J.B.T.; Pessoa-Pureur, R.

    2005-01-01

    In this work we investigated the protective ability of the selenium compounds ebselen and diphenyl diselenide against the effect of diphenyl ditelluride on the in vitro incorporation of 32 P into intermediate filament (IF) proteins from slices of cerebral cortex of 17-day-old rats. We observed that ditelluride in the concentrations of 1, 15 and 50 μM induced hyperphosphorylation of the high-salt Triton insoluble neurofilament subunits (NF-M and NF-L), glial fibrillary acidic protein (GFAP) and vimentin, without altering the immunocontent of these proteins. Concerning the selenium compounds, diselenide (1, 15 and 50 μM) did not induce alteration of the in vitro phosphorylation of the IF proteins. Otherwise, ebselen induced an altered in vitro phosphorylation of the cytoskeletal proteins in a dose-dependent manner. At intermediate concentrations (15 and 30 μM) it increased the in vitro phosphorylation even though, at low (5 μM) or high (50 and 100 μM) concentrations this compound was ineffective in altering the activity of the cytoskeletal-associated phosphorylating system. In addition, 15 μM diselenide and 5 μM ebselen, presented a protective effect against the action of ditelluride, on the phosphorylation of the proteins studied. Considering that hyperphosphorylation of cytoskeletal proteins is associated with neuronal dysfunction and neurodegeneration, it is probable that the effects of ditelluride could be related to the remarkable neurotoxicity of this organic form of tellurium. Furthermore the neuroprotective action of selenium compounds against tellurium effects could be a promising route to be exploited for a possible treatment of organic tellurium poisoning

  20. The anti-oxidant and anti-apoptotic effects of nebivolol and zofenopril in a model of cerebral ischemia/reperfusion in rats.

    Science.gov (United States)

    Uzar, Ertuğrul; Acar, Abdullah; Evliyaoğlu, Osman; Fırat, Uğur; Kamasak, Kağan; Göçmez, Cüneyt; Alp, Harun; Tüfek, Adnan; Taşdemir, Nebahat; Ilhan, Atilla

    2012-01-10

    The aim of this experiment was to investigate whether nebivolol and zofenopril have protective effects against oxidative damage and apoptosis induced by cerebral ischemia/reperfusion (I/R). There were seven groups of rats, with each containing eight rats. The groups were: the control group, I/R group, I/R plus zofenopril, I/R plus nebivolol, I/R plus nebivolol and zofenopril, zofenopril only and nebivolol only. Cerebral I/R was induced by clamping the bilateral common carotid artery and through hypotension. The rats were sacrificed 1h after ischemia, and histopathological and biochemical analyses were carried out on their brains. The total antioxidant capacity was evaluated by using an automated and colorimetric measurement method developed by Erel. I/R produced a significant increase in the levels of total oxidant status and malondialdehyde levels, the number of caspase-3 immunopositive cells and activities of prolidase and paraoxonase in brain when compared with the control group (ptotal antioxidant capacity and nitric oxide levels were found in I/R group when compared with the control group (ptotal antioxidant capacity and nitric oxide levels, produced by I/R in the brain (ptotal oxidant status, malondialdehyde levels, activities of paraoxonase and prolidase from increasing in brains of rats exposed to I/R (p<0.05). In conclusion, both nebivolol and zofenopril protected rats from ischemia-induced brain injury. The protection may be due to the indirect prevention of oxidative stress and apoptosis. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Effect of sevoflurane on the ATPase activity of hippocampal neurons in a rat model of cerebral ischemia-reperfusion injury via the cAMP-PKA signaling pathway.

    Science.gov (United States)

    Liu, Tie-Jun; Zhang, Jin-Cun; Gao, Xiao-Zeng; Tan, Zhi-Bin; Wang, Jian-Jun; Zhang, Pan-Pan; Cheng, Ai-Bin; Zhang, Shu-Bo

    2018-01-01

    We aim to investigate the effects of sevoflurane on the ATPase activity of the hippocampal neurons in rats with cerebral ischemia-reperfusion injury (IRI) via the cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) signaling pathway. Sixty rats were assigned into the normal, model and sevoflurane groups (n = 20, the latter two groups were established as focal cerebral IRI models). The ATPase activity was detected using an ultramicro Na (+)-K (+)-ATP enzyme kit. Immunohistochemical staining was used to detect the positive protein expression of cAMP and PKA. The hippocampal neurons were assigned to the normal, IRI, IRI + sevoflurane, IRI + forskolin, IRI + H89 and IRI + sevoflurane + H89 groups. qRT-PCR and Western blotting were performed for the expressions of cAMP, PKA, cAMP-responsive element-binding protein (CREB) and brain derived neurotrophic factor (BDNF). The normal and sevoflurane groups exhibited a greater positive protein expression of cAMP and PKA than the model group. Compared with the normal group, the expressions of cAMP, PKA, CREB and BDNF all reduced in the IRI, model and IRI + H89 groups. The sevoflurane group showed higher cAMP, PKA, CREB and BDNF expressions than the model group. Compared with the IRI group, ATPase activity and expressions of cAMP, PKA, CREB and BDNF all increased in the normal, IRI + sevoflurane and IRI + forskolin groups but decreased in the IRI + H89 group. It suggests that sevoflurane could enhance ATPase activity in hippocampal neurons of cerebral IRI rats through activating cAMP-PKA signaling pathway. Copyright © 2017. Published by Elsevier Taiwan.

  2. Cerebral Oxygenation of the Cortex and Striatum following Normobaric Hyperoxia and Mild Hypoxia in Rats by EPR Oximetry using Multi-Probe Implantable Resonators

    Science.gov (United States)

    Hou, Huagang; Li, Hongbin; Dong, Ruhong; Mupparaju, Sriram; Khan, Nadeem; Swartz, Harold

    2013-01-01

    Multi-site electron paramagnetic resonance (EPR) oximetry, using multi-probe implantable resonators, was used to measure the partial pressure of oxygen (pO2) in the brains of rats following normobaric hyperoxia and mild hypoxia. The cerebral tissue pO2 was measured simultaneously in the cerebral cortex and striatum in the same rats before, during, and after normobaric hyperoxia and mild hypoxia challenges. The baseline mean tissue pO2 values (±SE) were not significantly different between the cortex and striatum. During 30 min of 100% O2 inhalation, a statistically significant increase in tissue pO2 of all four sites was observed, however, the tissue pO2 of the striatum area was significantly higher than in the forelimb area of the cortex. Brain pO2 significantly decreased from the baseline value during 15 min of 15% O2 challenge. No differences in the recovery of the cerebral cortex and striatum pO2 were observed when the rats were allowed to breathe 30% O2. It appears that EPR oximetry using implantable resonators can provide information on pO2 under the experimental conditions needed for such a study. The levels of pO2 that occurred in these experiments are readily resolvable by multi-site EPR oximetry with multi-probe resonators. In addition, the ability to simultaneously measure the pO2 in several areas of the brain provides important information that could potentially help differentiate the pO2 changes that can occur due to global or local mechanisms. PMID:21445770

  3. Sodium and potassium ions and accumulation of labelled D-aspartate and GABA in crude synaptosomal fraction from rat cerebral cortex

    International Nuclear Information System (INIS)

    Takagaki, G.

    1978-01-01

    The accumulation of labelled D-aspartate into crude synaptosomal fraction (P 2 ) prepared from the rat cerebral cortex proceeded by a 'high affinity' system (Ksub(m) = 15.1 μM). The maximal velocity of D-aspartate uptake was higher than that of the 'high affinity' component of L-aspartate uptake and almost equal to that of L-glutamate under the same incubation conditions. Negligible metabolism of labelled D-aspartate was observed in the P 2 fraction. These findings are in accord with those which have been reported for rat cerebral cortical slices. The following observations were made on D-aspartate uptake into rat cerebral P 2 fraction. The requirement of sodium were almost absolute and obligatory. The affinity of the carrier for the substrate was increased by increasing sodium concentration in the medium, but the maximal velocity was not altered. It is suggested that sodium ion is co-transported mole for mole with the substrate molecule. Omission of potassium from the medium inhibited the uptake competitively. Ouabain was a competitive inhibitor on the uptake. Whereas thallium, rubidium and ammonium were efficient substitutes for potassium in exhibiting Na-K ATPase activity of the P 2 fraction, the uptake was activated only by rubidium in the absence of potassium. These observations were in common with the uptake of L-aspartate as well as of L- and D-glutamate, but not with GABA uptake. The requirement of sodium for the uptake of D-glutamate was indicated to be higher than that in the uptake of the other amino acids. Mutual inhibitions of the uptake among L- and D-isomers of glutamate and aspartate suggested that a common carrier is involved in the transport. Mechanisms of the transport of these amino acids in the crude synaptosomal fraction were discussed. (author)

  4. Histological evidence for drug diffusion across the cerebral meninges into the underlying neocortex in rats.

    Science.gov (United States)

    Ludvig, Nandor; Sheffield, Lynette G; Tang, Hai M; Baptiste, Shirn L; Devinsky, Orrin; Kuzniecky, Ruben I

    2008-01-10

    Transmeningeal pharmacotherapy has been proposed to treat neurological disorders with localized pathology, such as intractable focal epilepsy. As a step toward understanding the diffusion and intracortical spread of transmeningeally delivered drugs, the present study used histological methods to determine the extent to which a marker compound, N-methyl-D-aspartate (NMDA), can diffuse into the neocortex through the meninges. Rats were implanted with bilateral parietal cortical epidural cups filled with 50 mM NMDA on the right side and artificial cerebrospinal fluid (ACSF) in the contralateral side. After 24 h, the histological effects of these treatments were evaluated using cresyl violet (Nissl) staining. The epidural NMDA exposure caused neuronal loss that in most animals extended from the pial surface through layer V. The area indicated by this neuronal loss was localized to the neocortical region underlying the epidural cup. These results suggest that NMDA-like, water soluble, small molecules can diffuse through the subdural/subarachnoid space into the underlying neocortex and spread in a limited fashion, close to the meningeal penetration site.

  5. Effect of dietary γ-aminobutyric acid on the nerve growth factor and the choline acetyltransferase in the cerebral cortex and hippocampus of ovariectomized female rats.

    Science.gov (United States)

    Tujioka, Kazuyo; Thanapreedawat, Panicha; Yamada, Takashi; Yokogoshi, Hidehiko; Horie, Kenji; Kim, Mujo; Tsutsui, Kazumi; Hayase, Kazutoshi

    2014-01-01

    The brain protein synthesis and the plasma concentration of growth hormone (GH) is sensitive to the dietary γ-aminobutyric acid (GABA) in ovariectomized female rats; however, the role of dietary GABA on biomarkers including nerve growth factor (NGF) and choline acetyltransferase for the function of cholinergic neurons remains unknown in ovariectomized female rats. The purpose of this study was to determine whether the dietary GABA affects the concentration and mRNA level of NGF, and the activity of choline acetyltransferase in the brains of ovariectomized female rats. Experiments were done on two groups of 24-wk-old ovariectomized female rats given 0 or 0.5% GABA added to a 20% casein diet. The concentrations of NGF and activities of choline acetyltransferase in the cerebral cortex and hippocampus, and mRNA level of NGF in the hippocampus increased significantly with the 20% casein+0.5% GABA compared with the 20% casein diet alone. In the hippocampus, the mRNA level of NGF significantly correlated with the NGF concentration (r=0.714, pGABA to ovariectomized female rats is likely to control the mRNA level and concentration of NGF and cause an increase in the activity of choline acetyltransferase in the brains.

  6. Effect of an inhibitor of neuronal nitric oxide synthase 7-nitroindazole on cerebral hemodynamic response and brain excitability in urethane-anesthetized rats

    Czech Academy of Sciences Publication Activity Database

    Brožíčková, Carole; Otáhal, Jakub

    2013-01-01

    Roč. 62, Suppl.1 (2013), S57-S66 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GAP303/10/0999; GA ČR(CZ) GPP304/11/P386; GA ČR(CZ) GBP304/12/G069 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : cerebral hemodynamic response * brain excitability * neuronal nitric oxide synthase * 7-nitroindazole * rat Subject RIV: FH - Neurology Impact factor: 1.487, year: 2013

  7. Protein kinase C inhibition prevents upregulation of vascular ET(B) and 5-HT(1B) receptors and reverses cerebral blood flow reduction after subarachnoid haemorrhage in rats

    DEFF Research Database (Denmark)

    Beg, Saema S; Hansen-Schwartz, Jacob A; Vikman, Petter J

    2007-01-01

    with Western blot; only PKCdelta and PKCalpha subtypes were increased after SAH RO-31-7549 treatment abolished this. At 2 days after the SAH basilar and middle cerebral arteries were harvested and the contractile response to endothelin-1 (ET-1; ET(A) and ET(B) receptor agonist) and 5-carboxamidotryptamine (5......-CT; 5-HT(1) receptor agonist) were investigated with a myograph. The contractile responses to ET-1 and 5-CT were increased (Poperated rats. In parallel, the ET(B) and 5-HT(1B) receptor mRNA and protein expression were significantly elevated after SAH, as analysed...

  8. Microglial and macrophage reactions mark progressive changes and define the penumbra in the rat neocortex and striatum after transient middle cerebral artery occlusion

    DEFF Research Database (Denmark)

    Lehrmann, E; Christensen, Thomas; Zimmer, J

    1997-01-01

    Transient middle cerebral artery occlusion in rats leads to infarction of the lateral part of the striatum and adjacent neocortex, with selective neuronal necrosis in the bordering penumbral zones. Administration of glutamate, cytokine, and leukocyte antagonists have rescued mainly neocortical....../macrophages in the adjacent penumbra. Within the neocortex, a later onset of degeneration along the insular-parietal axis was marked by neuronal expression of heat shock protein and a progressive microglial activation with induction of the full repertoire of microglial activation markers, including a widespread microglial...

  9. Performance of single-pass and by-pass multi-step multi-soil-layering systems for low-(C/N)-ratio polluted river water treatment.

    Science.gov (United States)

    Wei, Cai-Jie; Wu, Wei-Zhong

    2018-09-01

    Two kinds of hybrid two-step multi-soil-layering (MSL) systems loaded with different filter medias (zeolite-ceramsite MSL-1 and ceramsite-red clay MSL-2) were set-up for the low-(C/N)-ratio polluted river water treatment. A long-term pollutant removal performance of these two kinds of MSL systems was evaluated for 214 days. By-pass was employed in MSL systems to evaluate its effect on nitrogen removal enhancement. Zeolite-ceramsite single-pass MSL-1 system owns outstanding ammonia removal capability (24 g NH 4 + -Nm -2 d -1 ), 3 times higher than MSL-2 without zeolite under low aeration rate condition (0.8 × 10 4  L m -2 .h -1 ). Aeration rate up to 1.6 × 10 4  L m -2 .h -1 well satisfied the requirement of complete nitrification in first unit of both two MSLs. However, weak denitrification in second unit was commonly observed. By-pass of 50% influent into second unit can improve about 20% TN removal rate for both MSL-1 and MSL-2. Complete nitrification and denitrification was achieved in by-pass MSL systems after addition of carbon source with the resulting C/N ratio up to 2.5. The characters of biofilms distributed in different sections inside MSL-1 system well illustrated the nitrogen removal mechanism inside MSL systems. Two kinds of MSLs are both promising as an appealing nitrifying biofilm reactor. Recirculation can be considered further for by-pass MSL-2 system to ensure a complete ammonia removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Effect of Pre-nutrion of Flax Seed Oil (Linum Usitatissimum on the amount of Cerebral ischemic lesion and motor nerve disorders in animal model rat.

    Directory of Open Access Journals (Sweden)

    SV Hosseini

    2015-10-01

    Full Text Available Background & aim: Stroke is the third death agent (factor in industrial countries after cardiovascular disease and cancer. With regard to high content of antioxidant materials in flax seed oil like &alpha-linolenic acid, lignan as well as phenolic combinations like secoisolarisirsinol (SDG, this study performed for studding relationship between of cerebral ischemic lesion and motor-nerve disorders in model of stroke in rat. Methods: in the study, 35 male mice from strain Wistar divided to 5 groups. The groups included control, sham and 3 experimental groups. They received doses 0.25, 0.5 and 0.75 ml/kg from flax seed oil orally. By gavage for 30 days two control and sham groups received aqua distillate (distil water. Two hours after the last gavaged dose, overly group with 7 pieces operated for measurement of the amount of cerebral lesion and motor-nerve disorders. (Middle Cerebral Artery Occlusion Model. Middle cerebral Artery Occlusion by the model resulted in local ischemic stroke in animal. Data analyzed by software SPSS, test ANOVA and disorders by test mann-Whitney. Findings: Average of records of motor-nerve disorders decreased significantly in group with dose 0.5 and 0.75 using flax seed oil (P<0.05. The amount of cerebral ischemic lesion in doses 0.5 and 0.75 than to control group is indicated meaning full different, but percent of the total cerebral lesion in control group in compared group with dose 0.25 is not indicated meaningful different. Percent of the amount of ischemic lesion in region penumbra in group 0.75 and 0.5 than to control group is indicated meaningful different, but percent of the amount of lesion in region penumbra in control group in compared region penumbra in group with dose 0.25 is not indicated meaning full different. Results: Findings of the study indicated that flax seed oil, particular in doses 0.5 and 0.75 resulted to decrease of the amount of cerebral ischemic lesion and decrease of motor-nerve disorders in

  11. Beneficial Effect of HHI-Ⅰ(活血化瘀注射液Ⅰ号)on Cerebral Microcirculation,Blood-Brain Barrier in Rats and Anti-hypoxic Activity in Mice

    Institute of Scientific and Technical Information of China (English)

    赵连根; 吴咸中; 伍孝先

    2009-01-01

    Objective:To investigate the effect of HHI-Ⅰ(活血化瘀注射液Ⅰ号) on the cerebral microcirculation,the blood-brain barrier permeability in rats and anti-hypoxic activity in mice.Methods:(1) The blood microcirculation of the brain in rats was investigated by laser Doppler flowmetry with the probes laid on the cerebral pia mater or inserted into the brain parenchyma.(2) The protective action of HHI-Ⅰagainst the brain microcirculation disturbance induced by intravenous injection of high-molecular dextran(10%,9 mL/kg)...

  12. Glutamatergic and GABAergic neurotransmitter cycling and energy metabolism in rat cerebral cortex during postnatal development.

    Science.gov (United States)

    Chowdhury, Golam M I; Patel, Anant B; Mason, Graeme F; Rothman, Douglas L; Behar, Kevin L

    2007-12-01

    The contribution of glutamatergic and gamma-aminobutyric acid (GABA)ergic neurons to oxidative energy metabolism and neurotransmission in the developing brain is not known. Glutamatergic and GABAergic fluxes were assessed in neocortex of postnatal day 10 (P10) and 30 (P30) urethane-anesthetized rats infused intravenously with [1,6-(13)C(2)]glucose for different time intervals (time course) or with [2-(13)C]acetate for 2 to 3 h (steady state). Amino acid levels and (13)C enrichments were determined in tissue extracts ex vivo using (1)H-[(13)C]-NMR spectroscopy. Metabolic fluxes were estimated from the best fits of a three-compartment metabolic model (glutamatergic neurons, GABAergic neurons, and astroglia) to the (13)C-enrichment time courses of amino acids from [1,6-(13)C(2)]glucose, constrained by the ratios of neurotransmitter cycling (V(cyc))-to-tricarboxylic acid (TCA) cycle flux (V(TCAn)) calculated from the steady-state [2-(13)C]acetate enrichment data. From P10 to P30 increases in total neuronal (glutamate plus GABA) TCA cycle flux (3 x ; 0.24+/-0.05 versus 0.71+/-0.07 micromol per g per min, Pcycling flux (3.1 to 5 x ; 0.07 to 0.11 (+/-0.03) versus 0.34+/-0.03 micromol per g per min, Pcycling (DeltaV(cyc(tot))) and neuronal TCA cycle flux (DeltaV(TCAn(tot))) between P10 and P30 were 0.23 to 0.27 and 0.47 micromol per g per min, respectively, similar to the approximately 1:2 relationship previously reported for adult cortex. For the individual neurons, increases in V(TCAn) and V(cyc) were similar in magnitude (glutamatergic neurons, 2.7 x versus 2.8 to 4.6 x ; GABAergic neurons, approximately 5 x versus approximately 7 x), although GABAergic flux changes were larger. The findings show that glutamate and GABA neurons undergo large and approximately proportional increases in neurotransmitter cycling and oxidative energy metabolism during this major postnatal growth spurt.

  13. Endothelium-dependent relaxant responses to selective 5-HT(1B/1D) receptor agonist