Sample records for rare gas solids

  1. Origin of melting point depression for rare gas solids confined in carbon pores

    Energy Technology Data Exchange (ETDEWEB)

    Morishige, Kunimitsu, E-mail:; Kataoka, Takaaki [Department of Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005 (Japan)


    To obtain insights into the mechanism of the melting-point depression of rare gas solids confined in crystalline carbon pores, we examined the freezing and melting behavior of Xe and Ar confined to the crystalline pores of ordered mesoporous carbons as well as compressed exfoliated graphite compared to the amorphous pores of ordered mesoporous silicas, by means of X-ray diffraction. For the Xe and Ar confined to the crystalline carbon pores, there was no appreciable thermal hysteresis between freezing and melting. Furthermore, the position of the main diffraction peak did not change appreciably on freezing and melting. This strongly suggests that the liquids confined in the carbon pores form a multilayered structure parallel to the smooth walls. For the Xe and Ar confined to the amorphous silica pores, on the other hand, the position of the main diffraction peak shifted into higher scattering angle on freezing suggested that the density of the confined solid is distinctly larger than for the confined liquid. Using compressed exfoliated graphite with carbon walls of higher crystallinity, we observed that three-dimensional (3D) microcrystals of Xe confined in the slit-shaped pores melted to leave the unmelted bilayers on the pore walls below the bulk triple point. The lattice spacing of the 3D microcrystals confined is larger by ∼0.7% than that of the bilayer next to the pore walls in the vicinity of the melting point.

  2. Formation of ionic complexes in cryogenic matrices: a case study using co-deposition of Cu- with rare gas cations in solid argon. (United States)

    Ludwig, Ryan M; Moore, David T


    Matrix isolation spectra have been obtained for ionic species formed from a beam of mass-selected ions, with a coincident beam of externally generated counter-ions used to provide charge balance. Infrared spectra were obtained for copper carbonyl complexes formed following deposition of Cu(-) ions with rare-gas counter-cations into CO-doped argon matrices. Both anionic and neutral copper carbonyl complexes Cu(CO)(n)(q) (n = 1-3; q = 0, -1) were observed in the spectra, with peak positions corresponding to previously reported assignments; new partially resolved bands appearing in the range 1830-1845 cm(-1) are assigned to larger [Cu(CO)3●(CO)n](-) aggregates, having additional CO ligands in the second solvation shell. The experimental geometry ensures that all Cu-centers initially arrive at the matrix as anions, so the relative abundance of anionic relative to neutral complexes is much higher than in previous studies employing alternative methods for ion deposition; this allows for monitoring of electron-transfer processes between anions and cations in the matrix. Comparison of time-dependent vs. temperature-dependent trends reveals that there are two distinct mechanisms by which the population of anionic complexes is converted into neutral complexes: short-range electron transfer between a cation-anion pair following diffusion, and long-range electron transfer involving photodetachment of an electron from the anion into the conduction band of solid argon, resulting in eventual recombination of the electron with a cation in a remote matrix site. The spectra also show a marked dependence on the deposition temperature and dopant concentration, in that 100-fold higher CO concentrations were required during deposition with the sample window at 10 K compared to that used at 20 K, in order to obtain a similar distribution of copper carbonyl complexes. Furthermore, although no carbonyl complexes are observed initially when low concentrations of CO are used at 10 K, upon

  3. Kinetic Global Modeling of Rare Gas Lasers (United States)

    Parsey, Guy; Verboncoeur, John; Christlieb, Andrew


    Akin to diode-pumped alkali metal lasers, electronically excited states of rare gases (e.g. Ar and Kr) have been shown to operate as chemically inert three-level gain media for an optically pumped laser system. As opposed to vaporization heating, these systems rely on electric discharge to efficiently maintain a population of metastable states acting as the bottom laser level. We propose that a modified electron energy distribution (EEDF) in the electric heating can tune optically pumped rare gas laser (OPRGL) efficiencies. The EEDF factors into all plasma phase chemistry within the underlying reaction network, and is assumed to be maintained by discharge and electron sources. Using parameter scanning methods within the kinetic global modeling framework (KGMf), optimized EEDFs are found for metastable production and increasing OPRGL operational efficiencies. Finally, we investigate the feasibility of using a modified EEDF to drive a rare gas laser system without optical pumping. Supported by AFOSR and an MSU SPG.

  4. Gas transport in solid oxide fuel cells

    CERN Document Server

    He, Weidong; Dickerson, James


    This book provides a comprehensive overview of contemporary research and emerging measurement technologies associated with gas transport in solid oxide fuel cells. Within these pages, an introduction to the concept of gas diffusion in solid oxide fuel cells is presented. This book also discusses the history and underlying fundamental mechanisms of gas diffusion in solid oxide fuel cells, general theoretical mathematical models for gas diffusion, and traditional and advanced techniques for gas diffusivity measurement.

  5. Gas-solid reaction with porosity change

    Directory of Open Access Journals (Sweden)

    Ivar Stakgold


    Full Text Available For a gas diffusing through a porous solid and reacting with it isothermally and irreversibly, the mathematical formulation consists of a nonlinear parabolic PDE for the gas concentration coupled with an ODE for the solid concentration. Under the assumption of constant porosity, a fairly complete analysis was provided by Diaz and Stakgold, [3]. Here some of the results are extended to the case when the porosity increases as the solid is consumed. In particular, estimates are given for the time to full conversion of the solid when the reaction rate is proportional to the product of the gas concentration and a fractional power of the solid concentration.

  6. Positronium collisions with rare-gas atoms

    CERN Document Server

    Gribakin, G F; Wilde, R S; Fabrikant, I I


    We calculate elastic scattering of positronium (Ps) by the Xe atom using the recently developed pseudopotential method [Fabrikant I I and Gribakin G F 2014 Phys. Rev. A 90 052717] and review general features of Ps scattering from heavier rare-gas atoms: Ar, Kr and Xe. The total scattering cross section is dominated by two contributions: elastic scattering and Ps ionization (break-up). To calculate the Ps ionization cross sections we use the binary-encounter method for Ps collisions with an atomic target. Our results for the ionization cross section agree well with previous calculations carried out in the impulse approximation. Our total Ps-Xe cross section, when plotted as a function of the projectile velocity, exhibits similarity with the electron-Xe cross section for the collision velocities higher than 0.8 a.u., and agrees very well with the measurements at Ps velocities above 0.5 a.u.

  7. Solids flow mapping in gas-solid risers (United States)

    Bhusarapu, Satish Babu

    Gas-solid risers are extensively used in many industrial processes for gas-solid reactions (e.g. coal combustion and gasification) and for solid catalyzed gas phase reactions (e.g. fluid catalytic cracking, butane oxidation to maleic anhydride). Ab initio prediction of the complex multiphase fluid dynamics in risers is not yet possible, which makes reactor modeling difficult. In particular, quantification of solids flow and mixing is important. Almost all the experimental techniques used to characterize solids flow lead to appreciable errors in measured variables in large scale, high mass flux systems. In addition, none of the experimental techniques provide all the relevant data required to develop a satisfactory solids flow model. In this study, non-invasive Computer Automated Radioactive Particle Tracking (CARPT) is employed to visualize and quantify the solids dynamics and mixing in the gas-solid riser of a Circulating Fluidized Bed (CFB). A single radioactive tracer particle is monitored during its multiple visits to the riser and with an assumption of ergodicity, the following flow parameters are estimated: (a) Overall solids mass flux in the CFB loop. (b) Solids residence time distribution in the riser and down-comer. (c) Lagrangian and Eulerian solids velocity fields in a fully-developed section of the riser. This includes velocity fluctuations and components of the diffusivity tensor. The existing CARPT technique is extended to large scale systems. A new algorithm, based on a cross-correlation search, is developed for position rendition from CARPT data. Two dimensional solids holdup profiles are estimated using gamma-ray computed tomography. The image quality from the tomography data is improved by implementing an alternating minimization algorithm. This work establishes for the first time a reliable database for local solids dynamic quantities such as time-averaged velocities, Reynolds stresses, eddy diffusivities and turbulent kinetic energy. In addition

  8. Equation of state for inert gas solids

    Indian Academy of Sciences (India)

    The equation of state is a fundamental relation to analyse the thermophysical properties of different class of solids and it plays a key role in basic and applied condensed matter physics research. A lot of work has been done in the field of ionic solids, minerals and metals but a very little work is done in the field of inert gas ...

  9. Solid pseudopapillary epithelial neoplasm – a rare but curable ...

    African Journals Online (AJOL)

    Background. Solid pseudopapillary epithelial neoplasms (SPENs) of the pancreas are rare but curable tumours that have a low-grade malignant potential and occur almost exclusively in young women, with an excellent prognosis after complete resection. This study examines the clinicopathological characteristics of these ...

  10. Rare gas monohalide discharge studies. Final report

    Energy Technology Data Exchange (ETDEWEB)


    Results of the first phase of an experimental investigation of the minimum e-beam current density requirements for repetitively pulsed XeF lasers with 10 to 100-mJ pulse energy are presented. Measurements were made in the self-sustained and e-beam preionized mode of operation. The e-beam preionized experimental results were similar to those obtained with uv preionization at other laboratories, indicating that ionization phenomena (rather than photodissociation) are dominant in both experiments. Multi-pulse e-beam experiments in a single gas fill resulted in rapid gas degradation, possibly due to electron bombardment of insulated surfaces with subsequent evolution of gaseous impurities.

  11. Theoretical Studies of Rare Gas Halide Systems (United States)


    The Journal of Chemical Physics , Vol...Mixtures of Hydrogen and Rare Gases." The Journal of Chemical Physics , Vol. 49, No. 12, pp. 5426-5437, December 1968. 6. Jacox, M.E., "Matrix Isolation...Xe+H." The Journal of Chemical Physics , Vol. 68, No. 11, pp. 4917-4929, June 1978. 8. Matcha, R.L., and Milleur, M.B., "Theoretical Studies

  12. Measurements of solids concentration and axial solids velocity in gas-solid two-phase flows.

    NARCIS (Netherlands)

    Nieuwland, J.J.; Nieuwland, J.J.; Meijer, R.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria


    Several techniques reported in the literature for measuring solids concentration and solids velocity in (dense) gas-solid two-phase flow have been briefly reviewed. An optical measuring system, based on detection of light reflected by the suspended particles, has been developed to measure local

  13. Dynamics of exciplex formation in rare gas media

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Lorenzo, German, E-mail: [Departamento de Fisica General y Matematicas, Instituto Superior de Tecnologias y Ciencias Aplicadas, La Habana (Cuba)] [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain); Rubayo-Soneira, Jesus [Departamento de Fisica General y Matematicas, Instituto Superior de Tecnologias y Ciencias Aplicadas, La Habana (Cuba); Alberti, Sebastian Fernandez [Centro de Estudios e Investigaciones, Universidad Nacional de Quilmes, Roque Saenz Pena 180, Bernal B1876BXD (Argentina)


    A hopping-surface algorithm has been used to simulate the dynamics induced in rare gas matrices due to the photoexcitation ({sup 1}S{sub 0} {yields} {sup 3}P{sub 1}) of atomic mercury embedded in them. Especially, the study of the dynamics of an exciplex formation in a model system consisting of solid xenon doped with atomic mercury. The process starts upon the photoexcitation of the Hg atom to its {sup 3}P{sub 1} electronic excited state. Diatomics-in-Molecule approach has been used for constructing the adiabatic potential surfaces. In all trajectories we show that a triatomic Xe-Hg{sup *}-Xe complex is formed, but in two conformations: bent and linear. The mechanisms leading to the formation of one or the other are identified. Mainly, are noted the thermal fluctuations of the Hg impurity and the shape of the potential surfaces. Furthermore, we show that non-radiative intrastate relaxation occurs via a conical intersection between the excited state surfaces. The simulated spectra are in very good agreement with the experimental data.

  14. Recurrence of Solid Pseudopapillary Tumor: A Rare Pancreatic Tumor

    Directory of Open Access Journals (Sweden)

    Chandra Punch


    Full Text Available Solid pseudopapillary tumor of the pancreas (SPTP is a rare disease of young females that does not usually recur after resection. Here we report a case of an elderly female with history of SPTP ten years ago who presented with anorexia and a palpable left lower quadrant abdominal mass. Imaging revealed metastatic disease and US-guided biopsy of the liver confirmed the diagnosis of SPTP. Due to her advanced age and comorbidities, she elected to undergo hospice care. The objective of this case report is to increase awareness of this tumor and its possibility of recurrence, necessitating further guidelines for follow-up.

  15. Volume 1: The Solid-Gas Singlet Delta Oxygen Generator

    National Research Council Canada - National Science Library

    Alfano, Angelo


    ...: a) construction of a Raman diagnostic system for the simultaneous measurement of excited and ground state oxygen in gas-solid reactions between solid peroxides and hydrogen halides or chlorine gas, b...

  16. Solid Organic Deposition During Gas Injection Studies

    DEFF Research Database (Denmark)

    Dandekar, Abhijit Y.; Andersen, Simon Ivar; Stenby, Erling Halfdan


    Recently a series of first contact miscibility (swelling) experiments have been performed on undersaturated light and heavy oils using LPG rich and methane rich injection gases, in which solid organic deposition was observed. A compositional gradient in the oils during the gas injection process...... was also evident as oil fractions expelled from the top to bottom of the PVT cell were observed to vary in density, molecular weight, as well as darkness of color. The change in stability of the oil samples before and after the contact with gas was analyzed using flocculation threshold titration...

  17. Asymmetric electron capture in HCI collisions with rare gas dimers (United States)

    Matsumoto, J.; Leredde, A.; Fléchard, X.; Shiromaru, H.; Rangama, J.; Zhou, C. L.; Iskandar, W.; Guillous, S.; Hennecart, D.; Mery, A.; Gervais, B.; Cassimi, A.


    Low-energy collisions between different rare gas dimers (Ar2, Ne2) and different projectiles (O3+, Ar9+, Xe20+) show that the weight of the different fragmentation processes, Coulomb explosion and Radiative Charge Transfer, strongly depends on the projectile charge state. This result is understood in term of impact parameter from which the electrons are captured on the projectile.

  18. Compact solid source of hydrogen gas (United States)

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester, Alan P.; Bell, Nelson S.


    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  19. Elastic scattering of positrons off rare-gas atoms

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, S.; Talukdar, B. (Department of Physics, Visva-Bharati University, Santiniketan-731 235 (India)); Mandal, P. (Department of Mathematics, Visva-Bharati University, Santiniketan-731 235 (India))


    A simple potential model proposed for the elastic scattering of positrons off rare-gas atoms is used to compute low-energy phase shifts and differential scattering cross sections [sigma]([theta]) for positrons incident on [sub 10]Ne, [sub 18]Ar, and [sub 36]Kr at energies 20, 3.4, and 6.67 eV, respectively. The calculated results for [sigma]([theta]) are in good agreement with currently available experimental values and are as reliable as the numbers obtained from much more elaborate calculations. It is pointed out that an important virtue of the present model is its simplicity.

  20. Novel laser diagnostic for mercury rare gas low pressure discharges (United States)

    Moskowitz, Philip E.


    Knowledge of the Hg(3P1) spatial distribution in Hg rare gas low pressure discharges is important for understanding radiation transport, and aids in the formulation of discharge models for fluorescent lamps. We report on a novel single laser, two intersecting beams technique, which, for the first time, yields pinpoint information on the radial density profile of excited state mercury in the discharge positive column. Advantages over conventional single beam absorption are discussed, and preliminary data for a discharge containing one isotope (198Hg) of mercury and 2.5 Torr argon are presented.

  1. Visualizing Gas Adsorption on Porous Solids: Four Simple, Effective Demonstrations (United States)

    Cheung, Ocean


    Gas adsorption on porous solids is a topic that is often discussed in an undergraduate chemistry or chemical engineering course. The idea of porosity and gas adsorption on a porous solid is usually discussed with adsorption isotherms recorded using commercially available equipment. This discussion can be rather abstract and can be difficult for…

  2. Modeling the Gas-Solid Flow in Calcining Furnace

    Directory of Open Access Journals (Sweden)

    Haiyan Luo


    Full Text Available Gas-solid two-phase flow in calcining furnace is investigated in this paper. The turbulent fluid phase is calculated using the RNG k-e two-equation model in the Eulerain framework while the solid phase being handled via the particle stochastic trajectory model is calculated in the Lagrangian framework. Flow pattern characteristics of the fluid phase and the particle trajectories of the solid phase were predicted subject to a range of flow conditions and different particle sizes. The computed results provided useful information in the preview of kinetics regulation of the gas-solid two-phase in calcining furnace.

  3. Heat transfer across the interface between nanoscale solids and gas. (United States)

    Cheng, Chun; Fan, Wen; Cao, Jinbo; Ryu, Sang-Gil; Ji, Jie; Grigoropoulos, Costas P; Wu, Junqiao


    When solid materials and devices scale down in size, heat transfer from the active region to the gas environment becomes increasingly significant. We show that the heat transfer coefficient across the solid-gas interface behaves very differently when the size of the solid is reduced to the nanoscale, such as that of a single nanowire. Unlike for macroscopic solids, the coefficient is strongly pressure dependent above ∼10 Torr, and at lower pressures it is much higher than predictions of the kinetic gas theory. The heat transfer coefficient was measured between a single, free-standing VO(2) nanowire and surrounding air using laser thermography, where the temperature distribution along the VO(2) nanowire was determined by imaging its domain structure of metal-insulator phase transition. The one-dimensional domain structure along the nanowire results from the balance between heat generation by the focused laser and heat dissipation to the substrate as well as to the surrounding gas, and thus serves as a nanoscale power-meter and thermometer. We quantified the heat loss rate across the nanowire-air interface, and found that it dominates over all other heat dissipation channels for small-diameter nanowires near ambient pressure. As the heat transfer across the solid-gas interface is nearly independent of the chemical identity of the solid, the results reveal a general scaling relationship for gaseous heat dissipation from nanostructures of all solid materials, which is applicable to nanoscale electronic and thermal devices exposed to gaseous environments.

  4. Selected Topics on Mass Transport in Gas-solid Interactions

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.


    The present article is a short review containing examples of the role of mass transport in the solid state during gas-solid interactions. Examples are taken from the authors' research on the interaction of carbon and/or nitrogen with iron-based metals. Topics dealt with are diffusion...

  5. Solid pseudopapillary tumor of pancreas with sickle cell trait: A rare case report

    Directory of Open Access Journals (Sweden)

    Harish S Permi


    Full Text Available Solid pseudopapillary tumor of pancreas is a rare pancreatic neoplasm affecting young women, has low malignant potential and amenable for surgical excision with good long-term survival. Sickle cell trait is benign condition, which involves one normal beta-globin chain and one HbS chain. Although it is a benign condition, individuals are prone to have rare complications that may predispose to death under certain circumstances. We report a rare coexistence of solid pseudopapillary tumor of pancreas with sickle cell trait in an 18-year-old female who underwent distal pancreatectomy with splenectomy. Histopathological examination and haemoglobin electrophoresis confirmed the diagnosis.

  6. Equation of state for inert gas solids

    Indian Academy of Sciences (India)


    E-mail: k MS received 16 December 2006; revised 9 April ... Since the IGSs have closed electronic shells unlike other solids, their thermodynamic properties such as bonding, ..... [21] K Devlal, Ph.D. Thesis (G.B. Pant University, Pantnagar, India, 2005). [22] M S Anderson and C A Swenson, J. Phys.

  7. Integration of a municipal solid waste gasification plant with solid oxide fuel cell and gas turbine

    DEFF Research Database (Denmark)

    Bellomare, Filippo; Rokni, Masoud


    in landfills. A Municipal Solid Waste Gasification Plant Integrated with Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) has been studied and the plant is called IGSG (Integrated Gasification SOFC and GT). Gasification plant is fed by MSW to produce syngas by which the anode side of an SOFC is fed wherein...

  8. Methanol synthesis in a countercurrent gas-solid-solid trickle flow reactor. An experimental study

    NARCIS (Netherlands)

    Kuczynski, M.; Oyevaar, M.H.; Pieters, R.T.; Westerterp, K.R.


    The synthesis of methanol from CO and H2 was executed in a gas-solid-solid trickle flow reactor. The reactor consisted of three tubular reactor sections with cooling sections in between. The catalyst was Cu on alumina, the adsorbent was a silica-alumina powder and the experimental range 498–523 K,

  9. An integration scheme for stiff solid-gas reactor models

    Directory of Open Access Journals (Sweden)

    Bjarne A. Foss


    Full Text Available Many dynamic models encounter numerical integration problems because of a large span in the dynamic modes. In this paper we develop a numerical integration scheme for systems that include a gas phase, and solid and liquid phases, such as a gas-solid reactor. The method is based on neglecting fast dynamic modes and exploiting the structure of the algebraic equations. The integration method is suitable for a large class of industrially relevant systems. The methodology has proven remarkably efficient. It has in practice performed excellent and been a key factor for the success of the industrial simulator for electrochemical furnaces for ferro-alloy production.

  10. Zirconia-based solid state chemical gas sensors

    CERN Document Server

    Zhuiykov, S


    This paper presents an overview of chemical gas sensors, based on solid state technology, that are sensitive to environmental gases, such as O sub 2 , SO sub x , NO sub x , CO sub 2 and hydrocarbons. The paper is focussed on performance of electrochemical gas sensors that are based on zirconia as a solid electrolyte. The paper considers sensor structures and selection of electrode materials. Impact of interfaces on sensor performance is discussed. This paper also provides a brief overview of electrochemical properties of zirconia and their effect on sensor performance. Impact of auxiliary materials on sensors performance characteristics, such as sensitivity, selectivity, response time and recovery time, is also discussed. Dual gas sensors that can be applied for simultaneous monitoring of the concentration of both oxygen and other gas phase components, are briefly considered

  11. Defect structure of cubic solid solutions of alkaline earth and rare earth fluorides

    NARCIS (Netherlands)

    DenHartog, HW


    In this paper we will consider the disorder in some cubic solid solutions consisting of one of the alkaline earth fluorides and one of the rare earth fluorides. This is an attractive group of model materials, because these materials have a rather simple overall cubic structure. We will discuss the

  12. Headspace solid-phase microextraction and gas chromatography ...

    African Journals Online (AJOL)

    Purpose: To extract and analyze the volatile components of Chrysanthemum morifolium Ramat. 'huaiju' by headspace solid-phase microextraction (HS-SPME) and gas chromatography–mass spectrometry (GC–MS). Methods: Volatile components were extracted by HS-SPME and identified by GC–MS. The relative contents ...

  13. Headspace solid-phase microextraction and gas chromatography ...

    African Journals Online (AJOL)

    Purpose: To extract and analyze the volatile components of Chrysanthemum morifolium Ramat. 'huaiju' by headspace solid-phase microextraction (HS-SPME) and gas chromatography–mass spectrometry. (GC–MS). Methods: Volatile components were extracted by HS-SPME and identified by GC–MS. The relative contents ...

  14. Precipitate coarsening parameters for gas induced semi-solid cast ...

    Indian Academy of Sciences (India)


    T6 Al alloys, for ageing times ranging from peak ageing to ... 7075 Al alloy; gas induced semi-solid; small angle X-ray scattering; precipitate coarsening. 1. Introduction ... 80–75 vol% methanol at –15 to –20. ◦. C and an applied ...

  15. Surface modification of solid state gas sensors

    CERN Document Server

    Morris, L


    mechanism of the room temperature CO response of SnO sub 2 decorated with small Pt particles was refined. In this case Pt was applied by common impregnation techniques. The conductivity was shown to be controlled by the surface state of the Pt. The CO response at room temperature was found to be specific to the presence of Pt(ll) species. The mechanism was assigned to CO chemisorption onto Pt(ll), resulting in charge transfer, measured as conductivity increase. The samples were characterized by XPS, TPD, SEM, mass spectrometry and electrical measurements. Comparison of the results presented for Pt decorated BaSn sub 0 sub . sub 9 sub 7 Sb sub 0 sub . sub 0 sub 3 O sub 3 and BaFeO sub 3 demonstrated the phenomenon to be general providing that Pt particles act as surface traps, controlling the conductivity. The phenomenon of electrical conductivity being controlled by the chemical state of a surface grafted reactive centre, resulting in a room temperature gas response, is demonstrated. The reactive centres can ...

  16. Studies on solid phase synthesis,characterization and fluorescent property of the new rare earth complexes

    Directory of Open Access Journals (Sweden)

    Jianwei SHI


    Full Text Available Rare earth-β-diketone ligand complex luminescent material has stable chemical properties and excellent luminous property. Using europium oxide and (γ-NTA as raw materials, novel rare earth-β-dione complexes are synthesized by solid state coordination chemistry. The synthesis temperature and milling time are discussed for optimization. Experimental results show that the suitable reaction situation is at 50 ℃ and 20 h for solid-phase synthesis. The compositions and structures of the complexes are characterized by means of elemental analysis, UV-Vis and FTIR methods, and the phase stability of the complex is determined by using TG-DTA technique. It is proved that preparation of waterless binary rare earth complexes by the solid phase reaction method results in a higher product yield. The fluorescence spectra show that between Eu (Ⅲ and γ-NTA, there exists efficient energy transfer, and the rare earth complexes synthesis is an excellent red bright light-emitting material with excellent UV excited luminescence properties.

  17. Application of solid phase extraction procedures for rare earth elements determination in environmental samples. (United States)

    Pyrzynska, Krystyna; Kubiak, Anna; Wysocka, Irena


    Determination of rare earth elements in environmental samples requires often pre-concentration and separation step due to a low metal content and high concentration of the interfering matrix components. A solid phase extraction technique with different kind of solid sorbents offers a high enrichment factor, rapid phase separation and the possibility of its combination with various detection techniques used either in on-line or off-line mode. The recent developments in this area published over the last five years are presented and discussed in this paper. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The effect of gas double-dynamic on mass distribution in solid-state fermentation. (United States)

    Chen, Hong-Zhang; Zhao, Zhi-Min; Li, Hong-Qiang


    The mass distribution regularity in substrate of solid-state fermentation (SSF) has rarely been reported due to the heterogeneity of solid medium and the lack of suitable instrument and method, which limited the comprehensive analysis and enhancement of the SSF performance. In this work, the distributions of water, biomass, and fermentation product in different medium depths of SSF were determined using near-infrared spectroscopy (NIRS) and the developed models. Based on the mass distribution regularity, the effects of gas double-dynamic on heat transfer, microbial growth and metabolism, and product distribution gradient were systematically investigated. Results indicated that the maximum temperature of substrate and the maximum carbon dioxide evolution rate (CER) were 39.5°C and 2.48mg/(hg) under static aeration solid-state fermentation (SASSF) and 33.9°C and 5.38mg/(hg) under gas double-dynamic solid-state fermentation (GDSSF), respectively, with the environmental temperature for fermentation of 30±1°C. The fermentation production (cellulase activity) ratios of the upper, middle, and lower levels were 1:0.90:0.78 at seventh day under SASSF and 1:0.95:0.89 at fifth day under GDSSF. Therefore, combined with NIRS analysis, gas double-dynamic could effectively strengthen the solid-state fermentation performance due to the enhancement of heat transfer, the stimulation of microbial metabolism and the increase of the homogeneity of fermentation products. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Methods for measurement of gas flow velocity, methods for energy conversion using gas flow over solid material, and device therefor


    Sood, Ajay Kumar; Ghosh, Shankar


    The present invention relates to a methods for energy conversion by gas flow over solid materials and also to a method for measurement of velocity of a gas flow over solid material such as doped semiconductors, graphite, and the like as a function of the 5 electricity generated in the solid material due to the flow of the gas the surface thereof using a combination of the Seebeck effect and Bernoulli's principle.

  20. Theory for Indirect Conduction in Dense, Gas-Solid Systems (United States)

    Lattanzi, Aaron; Hrenya, Christine


    Heat transfer in dense gas-solid systems is dominated by conduction, and critical to the operation of rotary-kilns, catalytic cracking, and heat exchangers with solid particles as the heat transfer fluid. In particular, the indirect conduction occurring between two bodies separated by a thin layer of fluid can significantly impact the heat transfer within gas-solid systems. Current state-of-the-art models for indirect conduction assume that particles are surrounded by a static "fluid lens" and that one-dimensional conduction occurs through the fluid lens when the lens overlaps another body. However, attempts to evaluate the effect of surface roughness and fluid lens thickness (theoretical inputs) on indirect conduction have been restricted to static, single-particle cases. By contrast, here we quantify these effects for dynamic, multi-particle systems. This analysis is compared to outputs from computational fluid dynamics and discrete element method (CFD-DEM) simulations of heat transfer in a packed bed and flow down a heated ramp. Analytical predictions for model sensitivity are found to be in agreement with simulation results and differ greatly from the static, single-particle analysis. Namely, indirect conduction in static systems is found to be most sensitive to surface roughness, while dynamic systems are sensitive to the fluid lens thickness.

  1. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures (United States)

    Aines, Roger D.; Bourcier, William L.; Viani, Brian


    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  2. Emission Characteristics of Xenon and Xenon-Rare Gas Dielectric Barrier Discharge Fluorescent Lamps (United States)

    Jinno, Masafumi; Motomura, Hideki; Loo, Ka Hong; Aono, Masaharu

    The profile of vacuum ultraviolet (VUV), visible and near IR emissions of xenon and xenon-rare gas pulsed discharge fluorescent lamps were observed as a fundamental research on developing a mercury-free fluorescent lamp. All lamps were operated by pulsed dielectric barrier discharge (DBD). As the pulse width decreases, higher intensity of VUV emissions is obtained, while luminance and efficacy also increase. As the pulse frequency increases, the intensity of VUV emissions increases, however the radiative output per one pulse period decreases and the efficacy decreases. The decay time of VUV emissions which are exciting a phosphor, can be controlled by introducing a rare-gas mixture into xenon.

  3. The equivalent electrical permittivity of gas-solid mixtures at intermediate solid volume fractions.

    Energy Technology Data Exchange (ETDEWEB)

    Torczynski, John Robert; Ceccio, Steven Louis; Tortora, Paul Richard


    Several mixture models are evaluated for their suitability in predicting the equivalent permittivity of dielectric particles in a dielectric medium for intermediate solid volume fractions (0.4 to 0.6). Predictions of the Maxwell, Rayleigh, Bottcher and Bruggeman models are compared to computational simulations of several arrangements of solid particles in a gas and to the experimentally determined permittivity of a static particle bed. The experiment uses spherical glass beads in air, so air and glass permittivity values (1 and 7, respectively) are used with all of the models and simulations. The experimental system used to measure the permittivity of the static particle bed and its calibration are described. The Rayleigh model is found to be suitable for predicting permittivity over the entire range of solid volume fractions (0-0.6).

  4. Fine-Grid Eulerian Simulation of Sedimenting Particles: Liquid-Solid and Gas-Solid Systems (United States)

    Zaheer, Muhammad; Hamid, Adnan; Ullah, Atta


    A computational study of mono-dispersed spherical sedimenting particles was performed with Eulerian two-fluid model (TFM). The aim was to investigate the applicability and accuracy of TFM with proper closure laws from kinetic theory of granular flow (KTGF) for sedimentation studies. A three-dimensional cubical box with full periodic boundaries was employed. The volume fraction of particles (ϕs) was varied from very low (ϕs = 0.01) to dense regimes (ϕs = 0.4), for two different types of fluids, i.e., gas and liquid. It is observed that the results for liquid-solid sedimentation are in good agreement with simulation studies and experimental correlation of Richardson and Zaki. However, for gas-solid system, results show different behavior at low volume fractions, which is more pronounced with increasing Stokes number. This can be attributed to inhomogeneous distribution of solid particles in gas phase at dilute concentrations, which causes meso-scale clusters and streamers formation. It is concluded that the ratio of density of particles to density of fluid which appears in Stokes number plays critical role in settling behavior of particles.

  5. Particle resolved simulations of liquid/solid and gas/solid fluidized beds (United States)

    Esteghamatian, Amir; Hammouti, Abdelkader; Lance, Michel; Wachs, Anthony


    The present work studies particle resolved simulations of liquid/solid and gas/solid fluidization in a cuboid domain with periodic lateral boundary conditions. The focus is on investigating particles' dynamics, while a particular care is devoted to the spatial grid resolution and statistical time convergence of the results. A statistical analysis of particles' motion and fluid fluctuations asserts the intrinsic differences in the flow characteristics and mixing properties of these two configurations. Results reveal anisotropic mechanisms driving particles' motion and highlight the dominance of diffusive and convective mechanisms in liquid/solid and gas/solid regimes, respectively. Following a framework similar to that of Nicolai et al. ["Particle velocity fluctuations and hydrodynamic self-diffusion of sedimenting non-Brownian spheres," Phys. Fluids 7(1), 12-23 (1995)], we estimate the correlation time and the fluctuation length of particles' motion. A force budget analysis is discussed to gain more insight into the role of collision in isotropization of the system. Owing to the wide range of employed grid resolutions and accurate error analysis, the present dataset is also deemed to be useful in calibrating the grid resolution for a desired accuracy of the solution in a fluidization configuration.

  6. Gas-Solid Reaction Properties of Fluorine Compounds and Solid Adsorbents for Off-Gas Treatment from Semiconductor Facility

    Directory of Open Access Journals (Sweden)

    Shinji Yasui


    Full Text Available We have been developing a new dry-type off-gas treatment system for recycling fluorine from perfluoro compounds present in off-gases from the semiconductor industry. The feature of this system is to adsorb the fluorine compounds in the exhaust gases from the decomposition furnace by using two types of solid adsorbents: the calcium carbonate in the upper layer adsorbs HF and converts it to CaF2, and the sodium bicarbonate in the lower layer adsorbs HF and SiF4 and converts them to Na2SiF6. This paper describes the fluorine compound adsorption properties of both the solid adsorbents—calcium carbonate and the sodium compound—for the optimal design of the fixation furnace. An analysis of the gas-solid reaction rate was performed from the experimental results of the breakthrough curve by using a fixed-bed reaction model, and the reaction rate constants and adsorption capacity were obtained for achieving an optimal process design.


    Energy Technology Data Exchange (ETDEWEB)

    W.L. Lundberg; G.A. Israelson; R.R. Moritz(Rolls-Royce Allison); S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann (Consultant)


    Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

  8. Radial artery pseudoaneurysm: A rare complication after a single arterial puncture for blood-gas analysis. (United States)

    Patel, Kajal Nitin; Gandhi, Shruti P; Sutariya, Harsh C


    With a reported incidence of 0.048%, radial artery pseudoaneurysm (PA) is a rare but serious complication of arterial cannulation. We report a case of PA developing after a single puncture of the right radial artery for arterial blood-gas analysis diagnosed by Doppler ultrasound in young male patient. The development of PA after puncture of radial artery for continuous blood pressure monitoring and serial blood-gas analysis has been reported in the past; however, to the best of our knowledge, there is only one case report of development of PA after a single arterial puncture for blood-gas analysis is reported in the past.

  9. Improved parameterization of interatomic potentials for rare gas dimers with density-based energy decomposition analysis (United States)

    Zhou, Nengjie; Lu, Zhenyu; Wu, Qin; Zhang, Yingkai


    We examine interatomic interactions for rare gas dimers using the density-based energy decomposition analysis (DEDA) in conjunction with computational results from CCSD(T) at the complete basis set (CBS) limit. The unique DEDA capability of separating frozen density interactions from density relaxation contributions is employed to yield clean interaction components, and the results are found to be consistent with the typical physical picture that density relaxations play a very minimal role in rare gas interactions. Equipped with each interaction component as reference, we develop a new three-term molecular mechanical force field to describe rare gas dimers: a smeared charge multipole model for electrostatics with charge penetration effects, a B3LYP-D3 dispersion term for asymptotically correct long-range attractions that is screened at short-range, and a Born-Mayer exponential function for the repulsion. The resulted force field not only reproduces rare gas interaction energies calculated at the CCSD(T)/CBS level, but also yields each interaction component (electrostatic or van der Waals) which agrees very well with its corresponding reference value. PMID:24908000

  10. Absolute detection of metastable rare gas atoms by a cw laser photoionization method

    NARCIS (Netherlands)

    Schohl, S.; Klar, D.; Kraft, T.; Meijer, H.A.J.; Ruf, M.-W.; Schmitz, U.; Smith, S.J.; Hotop, H.


    A novel, accurate method for the absolute detection of metastable rare gas atoms is described and demonstrated. It involves a direct in situ determination of the electron emission coefficient γ for impact of the respective metastable atom on a conducting surface, γ is reliably obtained by a cw

  11. Fundamentals of multiphase, gas-solid and gas-liquid flows in porous media (United States)

    Mazaheri, Ali Reza

    This thesis is concerned with fundamentals and applications of multiphase and particulate flows. The study contains three parts covering gas-liquid flows through porous media, gas-solid flows and Chemical-Mechanical Polishing (CMP). A continuum model for multiphase fluid flows through poro-elastic media is developed. It is shown that the present theory leads to the extended Darcy's law and contains, as its special case, Biot's theory of saturated poro-elastic media. The capillary pressure formulation derived from the new model is used and the equation governing the evolution of the saturation and its temporal variation in porous media is derived. The resulting nonlinear diffusion equation is then solved numerically. The results show that the capillary hysteresis occurs when the temporal variation of saturation is included. Application of the developed model to CO2 sequestration is discussed. Computer simulations of dilute Gas-Solid flows in complex geometry regions are studied. A procedure for handling particle trajectory analysis in unstructured grid is developed. Examples of particle transport and removal in human lung and hot-gas cleaning systems are presented. The simulation results for the human lung show that the capture efficiency is affected by the turbulence in the upper three bifurcation airways. Computer simulations of gas-solid flows in hot-gas cleaning for a demonstration scale filtration system is studied in details. Alternative designs of the filter vessel are proposed. The corresponding vessel performance are numerically simulated. Chemical mechanical polishing (CMP) has become critical to the fabrication of advanced multilevel integrated circuit in microelectronic industry. The effect of course surface roughness of abrasive particles on the polishing rate in CMP is studied. The effects of slurry pH and double layer attraction and repulsion on chemical-mechanical polishing are also studied. It is shown that the slurry pH and colloidal forces

  12. Solid-phase sequencing on the gas-phase sequencer. (United States)

    Sarin, V K; Kim, Y; Fox, J L


    Automated Edman degradation has been successfully used for determining the primary structure of numerous peptides and proteins. Quantitative solid-phase Edman degradation has great potential use for amino acid sequence analysis of synthetic peptides assembled on resin support by the Merrifield procedure. We report here the combined use of a modified gas-phase sequencer program and our improved reversed-phase HPLC analysis for PTH-amino acids to carry out the sequence analysis on synthesized peptide resins. This approach is far more sensitive than using glass beads on the conventional solid-phase sequencer. The peptide was assembled on copoly (styrene-1% divinylbenzene) resin beads at an initial substitution of 0.54 mmol/g. On a routine basis, 10-15 resin beads are used, and a repetitive yield of 94% is obtained: as few as 4 beads can be successfully sequenced. The HPLC PTH-amino acid analysis is sensitive down to subpicomole quantities. This procedure offers a sensitive and rapid analytical tool for checking the purity of peptides as they are being assembled on solid support.

  13. Rare-earth-doped photonic crystals for the development of solid-state optical cryocoolers (United States)

    Garcia-Adeva, Angel J.; Balda, Rolindes; Fernández, Joaquín


    Optical cryocoolers made of luminescent solids are very promising for many applications in the fields of optical telecommunications, aerospace industry, bioimaging, and phototherapy. To the present day, researchers have employed a number of crystal and glass host materials doped with rare-earth ions (Yb3+, Tm3+, and Er3+) to yield anti-Stokes optical refrigeration. In these host materials, the attainable minimum temperature is limited by the average phonon energy of the lattice and the impurity concentration. However, recently Ruan and Kaviany have theoretically demonstrated that the cooling efficiency can be dramatically enhanced when the host material doped with rare-earth ions is ground into a powder made of sub-micron size grains. This is due to two facts: firstly, the phonon spectrum is modified due to finite size of the grains and, secondly, light localization effects increase the photon density, leading to an enhanced absorptivity. In the present work, we propose that using a photonic crystal doped with rare earth ions offers many advantages with regards to getting a larger cooling efficiency at room temperature when compared to standard bulk materials or nano-powders. Indeed, apart to analogous phenomena to the ones predicted in nano-crystalline powders, there is the possibility of directly controlling the spontaneous emission rate of the ions embedded in the structure and, also, the absorption rate in the Stokes side of the absorption band by adequately tuning the density of photonic states, thus obtaining a large improvement in the cooling efficiency.

  14. Low-energy electron diffraction study of rare gas adsorption on metal surfaces (United States)

    Caragiu, Mellita


    The method of Low Energy Electron Diffraction (LEED) is applied to the study of rare gas - metal systems. The emphasis is on the adsorption site of the adatoms on the substrate, as a result of controversial opinions on this matter arising both from theoretical approaches and previous experimental data. Contrary to the expectations, it is found that rare gases prefer low coordination sites when adsorbed in commensurate phases for practically all studied structures: Cu111 -3x3 R30°-Xe, Pt111- 3x3 R30°-Xe, Pd111 -3x3 R30° -Xe, Ag111 -7x 7R19.1° -4Ar, Cu110 - 41 02 -5Kran dCu110 - 61 02 -7Xe. Possible explanations for the rare gas behavior on metal substrates are reviewed. Besides the crucial information of the rare gas adsorption site, the LEED analysis provides structural (geometrical) parameters for the systems under study and several non-structural ones (e.g. vibrations of the atoms and inner potential of the crystal).

  15. Kinetic analysis of rare gas metastable production and optically pumped Xe lasers (United States)

    Demyanov, A. V.; Kochetov, I. V.; Mikheyev, P. A.; Azyazov, V. N.; Heaven, M. C.


    Optically pumped all-rare-gas lasers use metastable rare gas atoms as the lasing species in mixtures with He or Ar buffer gas. The metastables are generated in a glow discharge, and we report model calculations for the optimal production of Ne*, Ar*, Kr* and Xe*. Discharge efficiency was estimated by solving the Boltzmann equation. Laser efficiency, gain and output power of the CW optically pumped Xe laser were assessed as functions of heavier rare gas content, pressure, optical pump intensity and the optical path length. It was found that, for efficient operation the heavier rare gas content has to be of the order of one percent or less, and the total pressure—in the range 0.3–1.5 atm. Output power and specific discharge power increase approximately linearly with pump intensity over the output range from 300–500 W cm‑2. Ternary mixtures Xe:Ar:He were found to be the most promising. Total laser efficiency was found to be nearly the same for pumping the 2p8 or 2p9 state, reaching 61%–70% for a pump intensity of ~720 W cm‑2 when the Xe fraction was in the range 0.001 ÷ 0.01 and Ar fraction—0.1 ÷ 0.5. However, when the 2p8 state was pumped, the maximum total efficiency occurred at larger pressures than for pumping of the 2p9 state. The discharge power density required to sustain a sufficient Xe* number density was in the range of tens of watts per cubic centimeter for 50% Ar in the mixture.

  16. Charge neutralization of F- ions in thin rare-gas targets (United States)

    Hird, B.; Rahman, F.


    The σ-0 cross section for F- ions in rare-gas targets is found to be energy independent for helium and neon between 25 and 120 keV, and to increase with target mass and with beam energy for heavier gas targets. Extrapolation to existing lower-energy data suggests that in the few-keV energy region either double-electron detachment is equally as important as single-electron detachment, or that the single-electron-detachment cross section rises to a maximum and then decreases to our observed values.

  17. Study of Solid Particle Behavior in High Temperature Gas Flows (United States)

    Majid, A.; Bauder, U.; Stindl, T.; Fertig, M.; Herdrich, G.; Röser, H.-P.


    The Euler-Lagrangian approach is used for the simulation of solid particles in hypersonic entry flows. For flow field simulation, the program SINA (Sequential Iterative Non-equilibrium Algorithm) developed at the Institut für Raumfahrtsysteme is used. The model for the effect of the carrier gas on a particle includes drag force and particle heating only. Other parameters like lift Magnus force or damping torque are not taken into account so far. The reverse effect of the particle phase on the gaseous phase is currently neglected. Parametric analysis is done regarding the impact of variation in the physical input conditions like position, velocity, size and material of the particle. Convective heat fluxes onto the surface of the particle and its radiative cooling are discussed. The variation of particle temperature under different conditions is presented. The influence of various input conditions on the trajectory is explained. A semi empirical model for the particle wall interaction is also discussed and the influence of the wall on the particle trajectory with different particle conditions is presented. The heat fluxes onto the wall due to impingement of particles are also computed and compared with the heat fluxes from the gas.

  18. Medium-induced change of the optical response of metal clusters in rare-gas matrices (United States)

    Xuan, Fengyuan; Guet, Claude


    Interaction with the surrounding medium modifies the optical response of embedded metal clusters. For clusters from about ten to a few hundreds of silver atoms, embedded in rare-gas matrices, we study the environment effect within the matrix random phase approximation with exact exchange (RPAE) quantum approach, which has proved successful for free silver clusters. The polarizable surrounding medium screens the residual two-body RPAE interaction, adds a polarization term to the one-body potential, and shifts the vacuum energy of the active delocalized valence electrons. Within this model, we calculate the dipole oscillator strength distribution for Ag clusters embedded in helium droplets, neon, argon, krypton, and xenon matrices. The main contribution to the dipole surface plasmon red shift originates from the rare-gas polarization screening of the two-body interaction. The large size limit of the dipole surface plasmon agrees well with the classical prediction.

  19. A rare occurrence of hepatic portal venous gas in emphysematous pyelonephritis

    Directory of Open Access Journals (Sweden)

    Debraj Sen


    Full Text Available Hepatic portal venous gas (HPVG is an uncommon radiological sign and often portends significant underlying abdominal disease. A number of conditions may produce this sign and identifying the underlying etiology is essential for management. The advent of ultrasonography-color Doppler imaging and computerized tomography has led to more frequent recognition of this condition. This article describes the very rare association of HPVG in a patient with emphysematous pyelonephritis.

  20. Scattering of NH3 and ND3 with rare gas atoms at low collision energy. (United States)

    Loreau, J; van der Avoird, A


    We present a theoretical study of elastic and rotationally inelastic collisions of NH3 and ND3 with rare gas atoms (He, Ne, Ar, Kr, Xe) at low energy. Quantum close-coupling calculations have been performed for energies between 0.001 and 300 cm(-1). We focus on collisions in which NH3 is initially in the upper state of the inversion doublet with j = 1, k = 1, which is the most relevant in an experimental context as it can be trapped electrostatically and Stark-decelerated. We discuss the presence of resonances in the elastic and inelastic cross sections, as well as the trends in the inelastic cross sections along the rare gas series and the differences between NH3 and ND3 as a colliding partner. We also demonstrate the importance of explicitly taking into account the umbrella (inversion) motion of NH3 in order to obtain accurate scattering cross sections at low collision energy. Finally, we investigate the possibility of sympathetic cooling of ammonia using cold or ultracold rare gas atoms. We show that some systems exhibit a large ratio of elastic to inelastic cross sections in the cold regime, which is promising for sympathetic cooling experiments. The close-coupling calculations are based on previously reported ab initio potential energy surfaces for NH3-He and NH3-Ar, as well as on new, four-dimensional, potential energy surfaces for the interaction of ammonia with Ne, Kr, and Xe, which were computed using the coupled-cluster method and large basis sets. We compare the properties of the potential energy surfaces corresponding to the interaction of ammonia with the various rare gas atoms.

  1. A CFD study of gas-solid jet in a CFB riser flow

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tingwen; Guenther, Chris


    Three-dimensional high-resolution numerical simulations of a gas–solid jet in a high-density riser flow were conducted. The impact of gas–solid injection on the riser flow hydrodynamics was investigated with respect to voidage, tracer mass fractions, and solids velocity distribution. The behaviors of a gas–solid jet in the riser crossflow were studied through the unsteady numerical simulations. Substantial separation of the jetting gas and solids in the riser crossflow was observed. Mixing of the injected gas and solids with the riser flow was investigated and backmixing of gas and solids was evaluated. In the current numerical study, both the overall hydrodynamics of riser flow and the characteristics of gas–solid jet were reasonably predicted compared with the experimental measurements made at NETL.

  2. Solid-solid and gas-solid interactions induced during high-energy milling to produce PbTe nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Chavez, H., E-mail: [Instituto Tecnologico de Tlahuac - II (Mexico); Reyes-Carmona, F. [Facultad de Quimica - UNAM (Mexico); Garibay-Febles, V. [Instituto Mexicano del Petroleo, Laboratorio de Microscopia Electronica de Ultra Alta Resolucion (Mexico); Jaramillo-Vigueras, D. [Centro de Investigacion e Innovacion Tecnologica - IPN (Mexico)


    Transformations from precursors to nanoparticles by high-energy milling are promoted by two major driving forces, namely physical and/or chemical. While the former has been difficult to trace since stress, strain and recovery may occur almost simultaneously during milling, the latter has been sequentially followed as an evolution from precursors to intermediate phases and thereof to high purity nanocrystals. The specific objective of this work is to discern how solid-solid and partially solid-gas reactions manifest themselves correspondingly as a short-range diffusion through an interface or how vapor species, as a subliming phenomenon, grows as a different phase on an active local surface. These series of changes were traced by sub-cooling the as-milled powders extracted during a milling cycle. Through this experimental technique, samples were electron microscopically analyzed and where it was required, selected area electron diffraction images were obtained. High-resolution transmission electron microscopy results, unambiguously, confirm that nanocrystals in the last stage show a cubic morphology which average size distributions are around 17 nm.

  3. Unusual seeding mechanism for enhanced performance in solid-phase magnetic extraction of Rare Earth Elements. (United States)

    Polido Legaria, Elizabeth; Rocha, Joao; Tai, Cheuk-Wai; Kessler, Vadim G; Seisenbaeva, Gulaim A


    Due to the increasing demand of Rare Earth Elements (REE or RE), new and more efficient techniques for their extraction are necessary, suitable for both mining and recycling processes. Current techniques such as solvent extraction or solid adsorbents entail drawbacks such as using big volumes of harmful solvents or limited capacity. Hybrid nanoadsorbents based on SiO 2 and highly stable γ-Fe 2 O 3 -SiO 2 nanoparticles, proved recently to be very attractive for adsorption of REE, yet not being the absolute key to solve the problem. In the present work, we introduce a highly appealing new approach in which the nanoparticles, rather than behaving as adsorbent materials, perform as inducers of crystallization for the REE in the form of hydroxides, allowing their facile and practically total removal from solution. This induced crystallization is achieved by tuning the pH, offering an uptake efficiency more than 20 times higher than previously reported (up to 900 mg RE 3+ /g vs. 40 mg RE 3+ /g). The obtained phases were characterized by SEM-EDS, TEM, STEM and EFTEM and 13 C and 29 Si solid state NMR. Magnetic studies showed that the materials possessed enough magnetic properties to be easily removed by a magnet, opening ways for an efficient and industrially applicable separation technique.

  4. Correlation dimension estimate and its potential use in analysis of gas-solid flows

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse Aistrup; Kær, Søren Knudsen


    Gas-solid flows are nonlinear systems. Therefore state-space analysis, a tool developed within the framework of nonlinear dynamics, could provide more useful insights into complex gas-solid flows. One of the positive aspects of state-space analysis is that the major properties of a system can be ...

  5. High Temperature Gas-to-Gas Heat Exchanger Based on a Solid Intermediate Medium

    Directory of Open Access Journals (Sweden)

    R. Amirante


    Full Text Available This paper proposes the design of an innovative high temperature gas-to-gas heat exchanger based on solid particles as intermediate medium, with application in medium and large scale externally fired combined power plants fed by alternative and dirty fuels, such as biomass and coal. An optimization procedure, performed by means of a genetic algorithm combined with computational fluid dynamics (CFD analysis, is employed for the design of the heat exchanger: the goal is the minimization of its size for an assigned heat exchanger efficiency. Two cases, corresponding to efficiencies equal to 80% and 90%, are considered. The scientific and technical difficulties for the realization of the heat exchanger are also faced up; in particular, this work focuses on the development both of a pressurization device, which is needed to move the solid particles within the heat exchanger, and of a pneumatic conveyor, which is required to deliver back the particles from the bottom to the top of the plant in order to realize a continuous operation mode. An analytical approach and a thorough experimental campaign are proposed to analyze the proposed systems and to evaluate the associated energy losses.

  6. Diversity and dynamics of dominant and rare bacterial taxa in replicate sequencing batch reactors operated under different solids retention time

    KAUST Repository

    Bagchi, Samik


    In this study, 16S rRNA gene pyrosequencing was applied in order to provide a better insight on the diversity and dynamics of total, dominant, and rare bacterial taxa in replicate lab-scale sequencing batch reactors (SBRs) operated at different solids retention time (SRT). Rank-abundance curves showed few dominant operational taxonomic units (OTUs) and a long tail of rare OTUs in all reactors. Results revealed that there was no detectable effect of SRT (2 vs. 10 days) on Shannon diversity index and OTU richness of both dominant and rare taxa. Nonmetric multidimensional scaling analysis showed that the total, dominant, and rare bacterial taxa were highly dynamic during the entire period of stable reactor performance. Also, the rare taxa were more dynamic than the dominant taxa despite expected low invasion rates because of the use of sterile synthetic media.

  7. Possible Removal of Mercury in Dry Flue Gas Cleaning Lines of Solid Waste Incineration Units


    Svoboda, Karel


    Here we will focus on dry flue gas cleaning methods applied for MSW incineration. Majority of dust from the incineration is usually removed in electrostatic filters or fabric (bag) filters. Dry method of flue gas cleaning are advantageous particularly in smaller solid waste incineration units, they have usually lower capital costs and simpler operation. The dry gas cleaning methods are based on an alkali sorbent injection and fabric filters for removal of dust and solid products from cleaning...

  8. Towards sympathetic cooling of large molecules: cold collisions between benzene and rare gas atoms

    Energy Technology Data Exchange (ETDEWEB)

    Barletta, P; Tennyson, J; Barker, P F [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)], E-mail:


    This paper reports on calculations of collisional cross sections for the complexes X-C{sub 6}H{sub 6} (X={sup 3}He, {sup 4}He, Ne) at temperatures in the range 1 {mu}K-10 K and shows that relatively large cross sections in the 10{sup 3}-10{sup 5} A{sup 2} range are available for collisional cooling. Both elastic and inelastic processes are considered in this temperature range. The calculations suggest that sympathetically cooling benzene to microkelvin temperatures is feasible using these co-trapped rare gas atoms in an optical trap.

  9. Electron loss and transfer for 20-110-keV iodine-rare-gas collisions (United States)

    Hird, B.; Orakzai, M. W.; Rahman, F.


    Atomic cross sections have been measured for the loss and transfer of an electron during a collision between a neutral iodine atom and a rare-gas atom. The neutral iodine beam, with energy between 20 to 110 keV, was unlikely to contain a significant mixture of metastable-state atoms because it was produced by neutralizing a negative-iodine-ion beam. The σ0+ cross section is largest for the argon and krypton targets, not for xenon, as might have been expected. The σ0- cross section is very small for the light targets and only becomes appreciable for xenon at the highest energy used.

  10. Double-electron detachment from F- ions in rare-gas collisions (United States)

    Hird, B.; Rahman, F.


    The cross section σ-+ for double-electron detachment from F- ions in rare-gas targets has been measured between 25 and 125 keV under single-collision conditions. In contrast to the target dependence of single-detachment cross sections, the cross sections are largest for helium and neon and decreased with increasing target mass. The close similarity between the σ-+ and σ0+ cross sections suggest that double detachment is a sequential process where one electron is first detached and then the second electron is detached at a smaller interaction radius.

  11. Vacuum ultraviolet light source utilizing rare gas scintillation amplification sustained by photon positive feedback (United States)

    Aprile, Elena (Inventor); Chen, Danli (Inventor)


    A source of light in the vacuum ultraviolet (VUV) spectral region includes a reflective UV-sensitive photocathode supported in spaced parallel relationship with a mesh electrode within a rare gas at low pressure. A high positive potential applied to the mesh electrode creates an electric field which causes drifting of free electrons occurring between the electrodes and producing continuous VUV light output by electric field-driven scintillation amplification sustained by positive photon feedback mediated by photoemission from the photocathode. In one embodiment the lamp emits a narrow-band continuum peaked at 175 nm.

  12. Aqueous Rare Earth Element Patterns and Concentration in Thermal Brines Associated With Oil and Gas Production

    Energy Technology Data Exchange (ETDEWEB)

    Nye, Charles [University of Wyoming; Quillinan, Scott Austin [University of Wyoming; Neupane, Ghanashyam [Idaho National Lab. (INL), Idaho Falls, ID (United States); McLing, Travis [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    This study is part of a joint effort by the University of Wyoming (UW) School of Energy Resources (SER), the UW Engineering Department, Idaho National Laboratories (INL), and the United States Geological Survey (USGS) to describe rare earth element concentrations in oil and gas produced waters and in coal-fired power station ash ponds. In this work we present rare earth element (REE) and trace metal behavior in produced water from four Wyoming oil and gas fields and surface ash pond water from two coal-fired power stations. The concentration of REEs in oil and gas produced waters is largely unknown. For example, of the 150,000 entries in the USGS National Produced Waters Geochemical Database less than 5 include data for REEs. Part of the reason for this scarcity is the analytical challenge of measuring REEs in high salinity, hydrocarbon-bearing waters. The industry standard for water analysis struggles to detect REEs in natural waters under ideal conditions. The detection of REEs in oil and gas field samples becomes all but impossible with the background noise and interferences caused by high concentrations of non-REE ions and residual hydrocarbons. The INL team members have overcome many of these challenges (e.g. McLing, 2014), and continue to develop their methods. Using the methods of the INL team members we measured REEs in high salinity oil and gas produced waters. Our results show that REEs exist as a dissolved species in all waters measured for this project, typically within the parts per trillion range. The samples may be grouped into two broad categories analytically, and these categories match their genesis: Wyoming oil and gas brines contain elevated levels of Europium, and Wyoming industrial pond waters show elevation in heavy REEs (HREEs). While broadly true, important variations exist within both groups. In the same field Europium can vary by more than an order of magnitude, and likewise HREEs in industrial ponds at the same site can vary by more than

  13. Production of Ar and Xe metastables in rare gas mixtures in a dielectric barrier discharge (United States)

    Mikheyev, Pavel A.; Han, Jiande; Clark, Amanda; Sanderson, Carl; Heaven, Michael C.


    Optically pumped all-rare-gas lasers (OPRGL) utilize metastable atoms of the heavier rare gases as lasing species. The required number density of metastables for efficient laser operation is 1012–1013 cm‑3 in He buffer gas at pressures in the 400–1000 Torr range. Such metastable densities are easily produced in a nanosecond pulsed discharge, even at pressures larger than atmospheric, but problems appear when one is trying to achieve continuous production. The reason for low production efficiency in many types of continuous discharge at atmospheric pressure is the low value of the E/N parameter (tunable diode laser absorption spectroscopy. Time-averaged [Ar(1s5)] and [Xe(1s5)] number densities on the order of 1012 cm‑3 were readily achieved. The temporal behavior of [Xe(1s5)] throughout the DBD cycle was observed. The results demonstrate the feasibility of using DBDs for OPRGL development. Spectral scans over the absorption lines were also used to examine the pressure broadening coefficients for the 912.3 nm Ar line in He and the Xe 904.5 nm line in Ne and He.

  14. On the Limiting Markov Process of Energy Exchanges in a Rarely Interacting Ball-Piston Gas (United States)

    Bálint, Péter; Gilbert, Thomas; Nándori, Péter; Szász, Domokos; Tóth, Imre Péter


    We analyse the process of energy exchanges generated by the elastic collisions between a point-particle, confined to a two-dimensional cell with convex boundaries, and a `piston', i.e. a line-segment, which moves back and forth along a one-dimensional interval partially intersecting the cell. This model can be considered as the elementary building block of a spatially extended high-dimensional billiard modeling heat transport in a class of hybrid materials exhibiting the kinetics of gases and spatial structure of solids. Using heuristic arguments and numerical analysis, we argue that, in a regime of rare interactions, the billiard process converges to a Markov jump process for the energy exchanges and obtain the expression of its generator.

  15. Study of Suspended Solid in Constructed Wetland Using Rare Earth Elements (United States)

    Xiao, Z. X. Z.


    Constructed wetland (CW) is one of the commonly used technologies in wastewater treatment. By means of the biochemical interactions among water, microscopic organism, aquatic plant and sediments in natural environment CW can remove biochemical oxygen demand (BOD), ammoniacal nitrogen, suspended solid (SS) and heavy metals. In this study, rare earth elements (REEs) were used as a natural tracer for the study of SS in the CW. The studied CW, Hebao Island free water surface CW, is located in Chiayi County, south Taiwan. The CW is designed for removing SS and BOD due to the pollution from livestock farms in the upstream area. However, the removal of SS was not effective. In some cases, the SS concentration of inflow is even higher than that of outflow. That the sediments on the slope were flushed into the CW was considered as the main problem. After all the refinement, the issue has not improved yet. In the study, the water samples were filtered with 1.0μm filter paper. Then, part of water samples were digested by ultrapure nitric acid to obtain the water representing the total of dissolved and suspended matters. The others were filtered by 0.1μm filter, which represent the matters in dissolved form. REEs and most of metals were subsequently measured with ICP-MS. REEs generally have a unique source and would fractionate in certain regular patterns during biochemical reactions due to lanthanide contraction. They can be an excellent natural tracer in the environmental researches. After normalized by North American Shale Composite, the REEs pattern for the samples with the total of dissolved and suspended matters is characterized by a middle REE (MREE) enrichment and light REE (LREE) depletion. According to the previous theoretical studies, the MREE enrichment could be achieved by a selected adsorption of MREEs by organic matters, which is generally humic substance in natural surface water. It is suggested that the refinement of removal efficiency of SS should focus on

  16. Long-range dispersion interactions between Li and rare-gas atoms (United States)

    Zhang, Deng-Hong; Xu, Ya-Bin; Jiang, Jun; Jiang, Li; Xie, Lu-You; Dong, Chen-Zhong


    The energy levels, oscillator strength and dipole scalar polarizabilities of Li atoms are calculated by using the relativistic semiempirical-core-potential method (RCICP). The dispersion coefficients C6 between ground 2s1/2 2p1/2,2p3/2 states of Li atom and the ground state of rare gas atoms (Ne, Ar, Kr, Xe) are calculated in JJ coupled states, in which the spin-orbital interactions are included. Present results are in good agreement with other available results. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  17. One- and two-electron detachment from I- in single rare-gas collisions (United States)

    Hird, B.; Rahman, F.


    Cross sections for the production of fast I0 and I+ particles from I- negative ions in single collisions with He, Ne, Ar, Kr, and Xe targets are reported. The single-electron-detachment cross sections, which previously have been found to reach roughly constant values in other targets at about 100-eV center-of-mass energy, continue to rise until about 8 keV in neon, supporting the suggestion that the (I-Ne) molecular state does not cross into the continuum. The double-electron-detachment cross sections do not show the inverse target-mass dependence which has been found for F--rare-gas double-electron-detachment collisions.

  18. Ion-production cross sections in chlorine-rare-gas collisions (United States)

    Hird, B.; Rahman, F.; Orakzai, M. W.


    The cross sections are reported for chlorine negative- and positive-ion production in neutral-chlorine-rare-gas-atom collisions between 10 and 110 keV. The experimental conditions were chosen such that it is unlikely that there was an unknown mixture of metastable states in the neutral beam. The cross section for positive ion production is less for the Kr and Xe targets than for Ar, probably due to competition from target ionization. The negative-ion cross section increases with target mass, so that for a xenon target it is nearly twice the positive-ion cross section between 32 and 100 keV. Thirty percent negative-ion equilibrium charge fractions are predicted.

  19. Velocity map imaging of HBr photodissociation in large rare gas clusters. (United States)

    Fedor, J; Kocisek, J; Poterya, V; Votava, O; Pysanenko, A; Lipciuc, M L; Kitsopoulos, T N; Fárník, M


    We have implemented the velocity map imaging technique to study clustering in the pulsed supersonic expansions of hydrogen bromide in helium, argon, and xenon. The expansions are characterized by direct imaging of the beam velocity distributions. We have investigated the cluster generation by means of UV photodissociation and photoionization of HBr molecules. Two distinct features appear in the hydrogen atom photofragment images in the clustering regime: (i) photofragments with near zero kinetic energies and (ii) "hot" photofragments originating from vibrationally excited HBr molecules. The origin of both features is attributed to the fragment caging by the cluster. We discuss the nature of the formed clusters based on the change of the photofragment images with the expansion parameters and on the photoionization mass spectra and conclude that single HBr molecule encompassed with rare gas "snowball" is consistent with the experimental observations.

  20. Effect of isothermal heat treatment on semi-solid microstructure of AZ91D magnesium alloy containing rare earth Gd

    Directory of Open Access Journals (Sweden)

    Yong Hu


    Full Text Available The AZ91D magnesium alloy containing rare earth Gd was prepared in this study, and the effect of semi-solid isothermal heat treatment on the microstructure of the alloy was investigated to obtain an optimum semi-solid structure. Results show that Gd can refine the microstructure of AZ91D magnesium alloy, and the optimum semi-solid AZ91D microstructure can be achieved by adding 1.5wt.% Gd. After treated at 585 °C for 30 min, the well distributed rose-shaped and near-spherical semi-solid microstructures of AZ91D+1.5wt.%Gd alloy can be obtained. The liquid phase of the semi-solid alloy consists of three components, namely, the molten pool, the “entrapped liquid” pool and the liner liquid film which separates two neighbor particles. The solid phase is composed of two phases, the primary α-Mg particles and the α-Mg phase formed in the second stage of solidification. With the increase of holding time, melting which causes the decrease of the primary α-Mg particle size is the dominant mechanism in the initial stage while coalescence and Ostwald ripening tend to be the principles later.

  1. Reactive Gas Solids Flow in Circulating Fluidised Beds

    DEFF Research Database (Denmark)

    Hjertager, Bjørn Helge; Solberg, Tron; Hansen, Kim Granly


    Progress in modelling and simulation of flow processes in gas/particle systems carried out at the authors? research group are presented. Emphasis is given to computational fluid dynamics (CFD) models that use the multi-dimensional multi fluid techniques. Turbulence modelling strategies for gas....../particle flows based on the kinetic theory for granular flows are given. Sub models for the interfacial transfer processes and chemical kinetics modelling are presented. Examples are shown for several gas/particle systems including flow in risers, segregation by size and reacting systems....

  2. Method and apparatus for the separation of a gas-solids mixture in a circulating fluidized bed reactor (United States)

    Vimalchand, Pannalal; Liu, Guohai; Peng, WanWang


    The system of the present invention includes a centripetal cyclone for separating particulate material from a particulate laden gas solids stream. The cyclone includes a housing defining a conduit extending between an upstream inlet and a downstream outlet. In operation, when a particulate laden gas-solids stream passes through the upstream housing inlet, the particulate laden gas-solids stream is directed through the conduit and at least a portion of the solids in the particulate laden gas-solids stream are subjected to a centripetal force within the conduit.

  3. Solid-Fluid Phase Equilibria for Natural Gas Processing at Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Longman


    Precipitation and deposition of solid components create potential risks of blocking gas passages in processes such as in LNG plants. To avoid such risks, experimental data and modelling of solid-fluid equilibrium should be used to optimize the design and operations. The objective of this work was to get a better understanding of the fundamentals of solid-fluid phase equilibrium. The specific focus of this work was to study solid-fluid phase behavior in systems of solid Co2, heavy hydrocarbons(HHC) and hydrate in equilibria with natural gas at low temperatures.Experimental methods for measuring solid-fluid equilibrium data in natural gas systems at low temperatures were extensively reviewed, and important and practical issues for designing experimental systems were summarized. The frost points in the Co2-methane systems (Co2 mole fraction 0.108 to 0.542) were measured in this work. Meanwhile, in another experimental setup, the water content in the gas phase was measured in the hydratemethane and hydrate-natural gas systems down to temperature 238.15 K. These data, together with data from other researchers, were used to verify the thermodynamic models. It is expensive and time-consuming to get experimental data at low temperatures, thus it is important to verify and use thermodynamic models to predict the solid-fluid phase behaviors. In the systems of solid Co2 and HHC in equilibrium with natural gas systems, the Soave-Redlich-Kwong (SRK) Equation of State (EOS) and simplified Perturbed-Chain Statistic Associating Fluid Theory (sPC-SAFT) EOS were used to calculate the fugacities in fluid phases. For solid phase, one fugacity model based on sublimation pressures and one model based on subcooled liquid were used. For correlating and predicting the hydrate behaviors, the Cubic-Plus-Association (CPA)EOS was used to model fluid phases and the hydrate-forming conditions were modelled by the solid solution theory of van der Waals and Platteeuw. Examples of applications of

  4. Systematics of the rare-gas core contributions to the positron annihilation spectra of some simple and transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Sob, M. (Ceskoslovenska Akademie Ved, Brno. Ustav Fyzikalni Metalurgie)


    Taking into account the core electron enhancement factor the rare-gas core contribution to the angular correlation positron annihilation spectra and to the total annihilation rate in some simple and transition metals are calculated. It is shown that the valence high-momentum part of the Gaussian fraction is not negligible in simple metals. In 3d and 4d metals, the rare-gas core part of the total annihilation rate amounts from 9 to 37%. The results are expected to help in the correct interpretation of the positron annihilation data.

  5. Infrared spectra of (HCOOH)(2) and (DCOOH)(2) in rare gas matrices: a comparative study with gas phase spectra. (United States)

    Ito, Fumiyuki


    Infrared absorption spectra of (HCOOH)(2) and (DCOOH)(2) in solid argon, krypton, and xenon matrices have been measured and each fundamental band has been assigned. Spectra in Ar and Kr matrices showed notable splitting in contrast to those in Xe, which suggests a difference in structure of the trapping sites. A comparison with the reported jet-cooled spectra has shown that vibrational structures of the spectra of (HCOOH)(2) and (DCOOH)(2) in the O-H stretching region are preserved in the matrices. On the other hand, the C-O stretching band of (HCOOH)(2) shows a drastic change upon matrix isolation, wherein the Fermi-triad feature observed in gas phase [F. Ito, Chem. Phys. Lett. 447, 202 (2007)] could not be identified. No substantial change of the vibrational structure has been found for matrix-isolated (DCOOH)(2). The differences of the vibrational structures in the matrix-isolation spectra and in the jet-cooled spectra have been qualitatively accounted for using the idea of anharmonic couplings among "matrix-shifted harmonic states."

  6. Modelling Gas Adsorption in Porous Solids: Roles of Surface ...

    Indian Academy of Sciences (India)

    Modelling the adsorption of small molecule gases such as N2 , CH4 and CO2 in porous solids can provide valuable insights for the development of next generation materials. Employing a grand canonical Monte Carlo simulation code developed in our group, the adsorption isotherms of CH4 and CO2 in many metal organic ...

  7. Modelling Gas Adsorption in Porous Solids: Roles of Surface ...

    Indian Academy of Sciences (India)

    Abstract. Modelling the adsorption of small molecule gases such as N2, CH4 and CO2 in porous solids can provide valuable insights for the development of next generation materials. Employing a grand canonical Monte. Carlo simulation code developed in our group, the adsorption isotherms of CH4 and CO2 in many ...

  8. Numerical solution of moving boundary problem for deposition process in solid fuel gas generator (United States)

    Volokhov, V. M.; Dorofeenko, S. O.; Sharov, M. S.; Toktaliev, P. D.


    Moving boundary problem in application to process of depositions formation in gas generator are considered. Gas generator, as a part of fuel preparation system of high-speed vehicle, convert solid fuel into multicomponent multiphase mixture, which further burned down in combustion chamber. Mathematical model of two-phase “gas-solid particles” flow, including Navier-Stokes equations for turbulent flow in gas generator and mass, impulse conservations laws for elementary depositions layer are proposed. Verification of proposed mathematical model for depositions mass in gas generator conditions is done. Further possible improvements of proposed model, based on more detail accounting of particle-wall interaction and wall's surface adhesion properties are analyzed.

  9. Solid natural gas, a resource accessible soon; Le gaz naturel solide, une ressource bientot accessible

    Energy Technology Data Exchange (ETDEWEB)

    Lepetit, V.


    The Mallik project, launched by an international consortium of geologists, aims at adapting the classical oil and gas exploration-production methods to the recovery of gas hydrates. The dissociation of gas hydrates (separation between methane and water) is obtained even by the injection of hot water or steam inside the hydrate layer, or by depressurization. The main obstacle remains the identification of rich hydrate deposits (60 to 80% of methane). Short paper. (J.S.)

  10. Mutual Neutralization of Atomic Rare-Gas Cations (Ne+, Ar+, Kr+, Xe+) with Atomic Halide Anions (Cl-, Br-, I-) (United States)


    gas cations (Ne+, Ar+, Kr+, Xe+) with halide anions (Cl−, Br−, I−), comprising both mutual neutralization (MN) and transfer ionization. No rate...OF CHEMICAL PHYSICS 140, 044304 (2014) Mutual neutralization of atomic rare-gas cations (Ne+, Ar+, Kr+, Xe+) with atomic halide anions (Cl−, Br−, I... cations (Ne+, Ar+, Kr+, Xe+) with halide anions (Cl−, Br−, I−), comprising both mutual neutralization (MN) and transfer ionization. No rate coefficients

  11. Gas-solid trickle flow hydrodynamics in a packed column

    NARCIS (Netherlands)

    Westerterp, K.R.; Kuczynski, M.


    The pressure gradient and the static and the dynamic hold-up have been measured for a system consisting of a Fluid Cracking Catalyst (FCC) of 30–150 × 10−6 m diameter, trickling over a packed bed and with a gas streaming in countercurrent flow. The experiments were carried out at ambient conditions

  12. Two-dimensional gas flows under heterogeneous combustion of solid porous media (United States)

    Levin, V. A.; Lutsenko, N. A.


    Two-dimensional unsteady gas flows in porous media with heterogeneous-combustion centers are investigated under forced filtration and free convection. With the use of numerical methods, it is shown that complex gas flows including vortex ones can arise under the combustion of solid porous media. In the case of forced filtration, the gas tends to flow around the heated portion of an object preferring to flow along cold regions. Under natural convection, the vortex gas flows, which can exist for a reasonably long time and strongly affect the oxidizer inflow into the reaction zone, arise at the initial moment of the process in the combustion zone and in its vicinities.

  13. Effects of gas periodic stimulation on key enzyme activity in gas double-dynamic solid state fermentation (GDD-SSF). (United States)

    Chen, Hongzhang; Shao, Meixue; Li, Hongqiang


    The heat and mass transfer have been proved to be the important factors in air pressure pulsation for cellulase production. However, as process of enzyme secretion, the cellulase formation has not been studied in the view of microorganism metabolism and metabolic key enzyme activity under air pressure pulsation condition. Two fermentation methods in ATPase activity, cellulase productivity, weight lose rate and membrane permeability were systematically compared. Results indicated that gas double-dynamic solid state fermentation had no obviously effect on cell membrane permeability. However, the relation between ATPase activity and weight loss rate was linearly dependent with r=0.9784. Meanwhile, the results also implied that gas periodic stimulation had apparently strengthened microbial metabolism through increasing ATPase activity during gas double-dynamic solid state fermentation, resulting in motivating the production of cellulase by Trichoderma reesei YG3. Therefore, the increase of ATPase activity would be another crucial factor to strengthen fermentation process for cellulase production under gas double-dynamic solid state fermentation. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Evaluation of wall boundary condition parameters for gas-solids fluidized bed simulations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tingwen [URS Corporation; Morgantown, WV (United States); National Energy Technology Lab. (NETL), Morgantown, WV (United States); Benyahia, Sofiane [National Energy Technology Lab. (NETL), Morgantown, WV (United States)


    Wall boundary conditions for the solids phase have significant effects on numerical predictions of various gas-solids fluidized beds. Several models for the granular flow wall boundary condition are available in the open literature for numerical modeling of gas-solids flow. In this study, a model for specularity coefficient used in Johnson and Jackson boundary conditions by Li and Benyahia (AIChE Journal, 2012, 58, 2058-2068) is implemented in the open-source CFD code-MFIX. The variable specularity coefficient model provides a physical way to calculate the specularity coefficient needed by the partial-slip boundary conditions for the solids phase. Through a series of 2-D numerical simulations of bubbling fluidized bed and circulating fluidized bed riser, the model predicts qualitatively consistent trends to the previous studies. Furthermore, a quantitative comparison is conducted between numerical results of variable and constant specularity coefficients to investigate the effect of spatial and temporal variations in specularity coefficient.

  15. Quantum Interference as the Source of Steric Asymmetry and Parity Propensity Rules in NO-Rare Gas Inelastic Scattering

    NARCIS (Netherlands)

    Gijsbertsen, A.; Linnartz, H.V.J.; Taatjes, C.A.; Stolte, S.


    Rotationally inelastic scattering of rare gas atoms and oriented NO molecules exhibits a remarkable alternation in the sign of steric asymmetry between even and odd changes in rotational quantum number. This effect has also been found in full quantum-mechanical scattering calculations. However,

  16. Electrode Kinetics and Gas Conversion in Solid Oxide Cells

    DEFF Research Database (Denmark)

    Njodzefon, Jean-Claude

    concentration-related overpotential contribution in the model to account for the CO/CO2 diffusion to the reaction sites as a result of the water gas shift equilibrium reactions. The long-term stability of the system depends on whether the system is operated solely in fuel-, electrolysis-, reversible or dynamic...... that the kinetics at the fuel electrode were exactly the same in both reformates. This means that chemical equilibrium reactions were much faster than the electrochemical reactions. The electrode displayed slightly faster kinetics in hydrogen/steam fuel than in the reformate fuels. To minimize the influence of (i......) joule heating effects as a result of current flow across the electrolyte, (ii) concentration-related effects like gas diffusion, and (iii) overlapping of the characteristic frequencies of processes, the investigations were extended from full cell geometries to a novel pseudo-three electrode cell...

  17. Impact of the spectroscopic properties of rare-earth ions on solid-state laser systems

    NARCIS (Netherlands)

    Pollnau, Markus

    The electronic energy level schemes within the 4f subshells of rare-earth ions give rise to a number of fluorescence transitions ranging from the near-UV to the mid-IR spectral region. A large variety of laser lines have been demonstrated based on these fluorescence transitions. Depending on the

  18. Comparative investigation of pure and mixed rare gas atoms on coronene molecules. (United States)

    Rodríguez-Cantano, Rocío; Bartolomei, Massimiliano; Hernández, Marta I; Campos-Martínez, José; González-Lezana, Tomás; Villarreal, Pablo; Pérez de Tudela, Ricardo; Pirani, Fernando; Hernández-Rojas, Javier; Bretón, José


    Clusters formed by the combination of rare gas (RG) atoms of He, Ne, Ar, and Kr on coronene have been investigated by means of a basin-hopping algorithm and path integral Monte Carlo calculations at T = 2 K. Energies and geometries have been obtained and the role played by the specific RG-RG and RG-coronene interactions on the final results is analysed in detail. Signatures of diffuse behavior of the He atoms on the surface of the coronene are in contrast with the localization of the heavier species, Ar and Kr. The observed coexistence of various geometries for Ne suggests the motion of the RG atoms on the multi-well potential energy surface landscape offered by the coronene. Therefore, the investigation of different clusters enables a comparative analysis of localized versus non-localized features. Mixed Ar-He-coronene clusters have also been considered and the competition of the RG atoms to occupy the docking sites on the molecule is discussed. All the obtained information is crucial to assess the behavior of coronene, a prototypical polycyclic aromatic hydrocarbon clustering with RG atoms at a temperature close to that of interstellar medium, which arises from the critical balance of the interactions involved.

  19. Catalytic and Gas-Solid Reactions Involving HCN over Limestone

    DEFF Research Database (Denmark)

    Jensen, Anker; Johnsson, Jan Erik; Dam-Johansen, Kim


    In coal-fired combustion systems solid calcium species may be present as ash components or limestone added to the combustion chamber. In this study heterogeneous reactions involving HCN over seven different limestones were investigated in a laboratory fixed-bed quartz reactor at 873-1,173 K....... Calcined limestone is an effective catalyst for oxidation of HCN. Under conditions with complete conversion of HCN at O-2 concentrations above about 5,000 ppmv the selectivity for formation of NO and N2O is 50-70% and below 5%, respectively. Nitric oxide can be reduced by HCN to N-2 in the absence of O-2...

  20. Rapid estimate of solid volume in large tuff cores using a gas pycnometer

    Energy Technology Data Exchange (ETDEWEB)

    Thies, C. [ed.; Geddis, A.M.; Guzman, A.G. [and others


    A thermally insulated, rigid-volume gas pycnometer system has been developed. The pycnometer chambers have been machined from solid PVC cylinders. Two chambers confine dry high-purity helium at different pressures. A thick-walled design ensures minimal heat exchange with the surrounding environment and a constant volume system, while expansion takes place between the chambers. The internal energy of the gas is assumed constant over the expansion. The ideal gas law is used to estimate the volume of solid material sealed in one of the chambers. Temperature is monitored continuously and incorporated into the calculation of solid volume. Temperature variation between measurements is less than 0.1{degrees}C. The data are used to compute grain density for oven-dried Apache Leap tuff core samples. The measured volume of solid and the sample bulk volume are used to estimate porosity and bulk density. Intrinsic permeability was estimated from the porosity and measured pore surface area and is compared to in-situ measurements by the air permeability method. The gas pycnometer accommodates large core samples (0.25 m length x 0.11 m diameter) and can measure solid volume greater than 2.20 cm{sup 3} with less than 1% error.

  1. Investigation of a Gas-Solid Separation Process for Cement Raw Meal

    DEFF Research Database (Denmark)

    Maarup, Claus; Hjuler, Klaus; Clement, Karsten


    The gas/solid heat exchanger (2D-HX), developed to replace the cyclone preheaters in cement plants is presented. This design aims at reducing construction height and operation costs. The separation process in the 2D-HX is experimentally investigated, and the results show that separation efficienc......The gas/solid heat exchanger (2D-HX), developed to replace the cyclone preheaters in cement plants is presented. This design aims at reducing construction height and operation costs. The separation process in the 2D-HX is experimentally investigated, and the results show that separation...

  2. Simulation of granular and gas-solid flows using discrete element method (United States)

    Boyalakuntla, Dhanunjay S.


    In recent years there has been increased research activity in the experimental and numerical study of gas-solid flows. Flows of this type have numerous applications in the energy, pharmaceuticals, and chemicals process industries. Typical applications include pulverized coal combustion, flow and heat transfer in bubbling and circulating fluidized beds, hopper and chute flows, pneumatic transport of pharmaceutical powders and pellets, and many more. The present work addresses the study of gas-solid flows using computational fluid dynamics (CFD) techniques and discrete element simulation methods (DES) combined. Many previous studies of coupled gas-solid flows have been performed assuming the solid phase as a continuum with averaged properties and treating the gas-solid flow as constituting of interpenetrating continua. Instead, in the present work, the gas phase flow is simulated using continuum theory and the solid phase flow is simulated using DES. DES treats each solid particle individually, thus accounting for its dynamics due to particle-particle interactions, particle-wall interactions as well as fluid drag and buoyancy. The present work involves developing efficient DES methods for dense granular flow and coupling this simulation to continuum simulations of the gas phase flow. Simulations have been performed to observe pure granular behavior in vibrating beds. Benchmark cases have been simulated and the results obtained match the published literature. The dimensionless acceleration amplitude and the bed height are the parameters governing bed behavior. Various interesting behaviors such as heaping, round and cusp surface standing waves, as well as kinks, have been observed for different values of the acceleration amplitude for a given bed height. Furthermore, binary granular mixtures (granular mixtures with two particle sizes) in a vibrated bed have also been studied. Gas-solid flow simulations have been performed to study fluidized beds. Benchmark 2D

  3. Prediction of Ablation Rates from Solid Surfaces Exposed to High Temperature Gas Flow (United States)

    Akyuzlu, Kazim M.; Coote, David


    A mathematical model and a solution algorithm is developed to study the physics of high temperature heat transfer and material ablation and identify the problems associated with the flow of hydrogen gas at very high temperatures and velocities through pipes and various components of Nuclear Thermal Rocket (NTR) motors. Ablation and melting can be experienced when the inner solid surface of the cooling channels and the diverging-converging nozzle of a Nuclear Thermal Rocket (NTR) motor is exposed to hydrogen gas flow at temperatures around 2500 degrees Kelvin and pressures around 3.4 MPa. In the experiments conducted on typical NTR motors developed in 1960s, degradation of the cooling channel material (cracking in the nuclear fuel element cladding) and in some instances melting of the core was observed. This paper presents the results of a preliminary study based on two types of physics based mathematical models that were developed to simulate the thermal-hydrodynamic conditions that lead to ablation of the solid surface of a stainless steel pipe exposed to high temperature hydrogen gas near sonic velocities. One of the proposed models is one-dimensional and assumes the gas flow to be unsteady, compressible and viscous. An in-house computer code was developed to solve the conservations equations of this model using a second-order accurate finite-difference technique. The second model assumes the flow to be three-dimensional, unsteady, compressible and viscous. A commercial CFD code (Fluent) was used to solve the later model equations. Both models assume the thermodynamic and transport properties of the hydrogen gas to be temperature dependent. In the solution algorithm developed for this study, the unsteady temperature of the pipe is determined from the heat equation for the solid. The solid-gas interface temperature is determined from an energy balance at the interface which includes heat transfer from or to the interface by conduction, convection, radiation, and

  4. Modelling of non-catalytic reactors in a gas-solid trickle flow reactor: Dry, regenerative flue gas desulphurization using a silica-supported copper oxide sorbent

    NARCIS (Netherlands)

    Kiel, J.H.A.; Kiel, J.H.A.; Prins, W.; van Swaaij, Willibrordus Petrus Maria


    A one-dimensional, two-phase dispersed plug flow model has been developed to describe the steady-state performance of a relatively new type of reactor, the gas-solid trickle flow reactor (GSTFR). In this reactor, an upward-flowing gas phase is contacted with as downward-flowing dilute solids phase

  5. Flow Mapping in a Gas-Solid Riser via Computer Automated Radioactive Particle Tracking (CARPT)

    Energy Technology Data Exchange (ETDEWEB)

    Muthanna Al-Dahhan; Milorad P. Dudukovic; Satish Bhusarapu; Timothy J. O' hern; Steven Trujillo; Michael R. Prairie


    Statement of the Problem: Developing and disseminating a general and experimentally validated model for turbulent multiphase fluid dynamics suitable for engineering design purposes in industrial scale applications of riser reactors and pneumatic conveying, require collecting reliable data on solids trajectories, velocities ? averaged and instantaneous, solids holdup distribution and solids fluxes in the riser as a function of operating conditions. Such data are currently not available on the same system. Multiphase Fluid Dynamics Research Consortium (MFDRC) was established to address these issues on a chosen example of circulating fluidized bed (CFB) reactor, which is widely used in petroleum and chemical industry including coal combustion. This project addresses the problem of lacking reliable data to advance CFB technology. Project Objectives: The objective of this project is to advance the understanding of the solids flow pattern and mixing in a well-developed flow region of a gas-solid riser, operated at different gas flow rates and solids loading using the state-of-the-art non-intrusive measurements. This work creates an insight and reliable database for local solids fluid-dynamic quantities in a pilot-plant scale CFB, which can then be used to validate/develop phenomenological models for the riser. This study also attempts to provide benchmark data for validation of Computational Fluid Dynamic (CFD) codes and their current closures. Technical Approach: Non-Invasive Computer Automated Radioactive Particle Tracking (CARPT) technique provides complete Eulerian solids flow field (time average velocity map and various turbulence parameters such as the Reynolds stresses, turbulent kinetic energy, and eddy diffusivities). It also gives directly the Lagrangian information of solids flow and yields the true solids residence time distribution (RTD). Another radiation based technique, Computed Tomography (CT) yields detailed time averaged local holdup profiles at

  6. Municipal Solid Waste Gasification Plant Integrated With SOFC and Gas Turbine

    DEFF Research Database (Denmark)

    Bellomare, Filippo; Rokni, Masoud


    An interesting source of producing energy with low pollutants emission and reduced environmental impact are the biomasses; particularly using Municipal Solid Waste (MSW) as fuel, can be a competitive solution not only to produce energy with negligible costs but also to decrease the storage...... in landfills. A Municipal Solid Waste Gasification Plant Integrated with Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) has been studied and the plant is called IGSG (Integrated Gasification SOFC and GT). Gasification plant is fed by MSW to produce syngas by which the anode side of a SOFC is fed wherein...

  7. Exchange between the stagnant and flowing zone in gas-flowing solids-fixed bed contactors

    Directory of Open Access Journals (Sweden)



    Full Text Available In countercurrent gas – flowing solids – fixed bed contactors, a fraction of the flowing solids is in motion (dynamic holdup, while the other fraction is resting on the fixed bed elements. In this study it was experimentally proved that the stagnant zone should not be considered as a dead part of the column, but that there is a dynamic exchange between these two portions of flowing solids particles. Combining a mathematical model with tracer experiments, the rate of exchange was determined and it was shown that only a small part (ca. 20 % of the stagnant region should be considered as a dead one.

  8. Operation of real landfill gas fueled solid oxide fuel cell (SOFC) using internal dry reforming

    DEFF Research Database (Denmark)

    Langnickel, Hendrik; Hagen, Anke


    Biomass is one renewable energy source, which is independent from solar radiation and wind effect. Solid oxide fuel cells (SOFC’s) are able to convert landfill gas derived from landfill directly into electricity and heat with a high efficiency. In the present work a planar 16cm2 SOFC cell...... was operated with a real landfill gas from one of the largest Danish waste dump sites and additional carbon dioxide reforming agent at 750˚C, both with gas cleaning through an active carbon filter and without. The tests showed an electric efficiency up to ~60%. It was found that the active carbon filter...

  9. A solid ceramic electrolyte system for measuring redox conditions in high temperature gas mixing studies (United States)

    Williams, R. J.


    The details of the construction and operation of a gas mixing furnace are presented. A solid ceramic oxygen electrolyte cell is used to monitor the oxygen fugacity in the furnace. The system consists of a standard vertical-quench, gas mixing furnace with heads designed for mounting the electrolyte cell and with facilities for inserting and removing the samples. The system also contains the highinput impedance electronics necessary for measurements and a simplified version of standard gas mixing apparatus. The calibration and maintenance of the system are discussed.

  10. Extreme ultraviolet fluorescence spectroscopy of pure and core-shell rare gas clusters at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Schroedter, Lasse


    The interaction of rare gas clusters with short-wavelength radiation of free-electron lasers (FELs) has been studied extensively over the last decade by means of electron and ion time-of-flight spectroscopy. This thesis describes the design and construction of a fluorescence spectrometer for the extreme ultraviolet (XUV) spectral range and discusses the cluster experiments performed at FLASH, the Free-electron LAser in Hamburg. Fluorescence of xenon and of argon clusters was studied, both in dependence on the FEL pulse intensity and on the cluster size. The FEL wavelength was set to the giant 4d-resonance of xenon at 13.5 nm and the FEL pulse intensity reached peak values of 2.7.10{sup 15} W/cm{sup 2}. For xenon clusters, charge states of at least 11+ were identified. For argon, charge states up to 7+ were detected. The cluster-size dependent study revealed a decrease of the fluorescence yield per atom with increasing cluster size. This decrease is explained with the help of a geometric model. It assumes that virtually the entire fluorescence yield stems from shells of ions on the cluster surface, whereas ions in the cluster core predominantly recombine non-radiatively with electrons. However, the detailed analysis of fluorescence spectra from clusters consisting of a core of Xe atoms and a surrounding shell of argon atoms shows that, in fact, a small fraction of the fluorescence signal comes from Xe ions in the cluster core. Interestingly, these ions are as highly charged as the ions in the shells of a pure Xe cluster. This result goes beyond the current understanding of charge and energy transfer processes in these systems and points toward the observation of ultrafast charging dynamics in a time window where mass spectrometry is inherently blind. (orig.)

  11. Set-Up and Validation of a Dynamic Solid/Gas Bioreactor

    KAUST Repository

    Lloyd-Randol, Jennifer D.


    The limited availability of fossil resourses mandates the development of new energy vectors, which is one of the Grand Challenges of the 21st Century [1]. Biocatalytic energy conversion is a promising solution to meet the increased energy demand of industrialized societies. Applications of biocatalysis in the gas-phase are so far limited to production of fine chemicals and pharmaceuticals. However, this technology has the potential for large scale biocatalytic applications [2], e.g. for the formation of novel energy carriers. The so-called solid/gas biocatalysis is defined as the application of a biocatalyst immobilized on solid-phase support acting on gaseous substrates [3]. This process combines the advantages of bio-catalysis (green chemistry, mild reaction conditions, high specicity & selectivity) and heterogeneous dynamic gas-phase processes (low diffusion limitation, high conversion, simple scale-up). This work presents the modifications of a PID Microactivity Reference reactor in order to make it suitable for solid/gas biocatalysis. The reactor design requirements are based on previously published laboratory scale solid/gas systems with a feed of saturated vapors [4]. These vapors are produced in saturation flasks, which were designed and optimized during this project. Other modifications included relocation of the gas mixing chamber, redesigning the location and heating mechanism for the reactor tube, and heating of the outlet gas line. The modified reactor system was verified based on the Candida antarctica lipase B catalyzed transesterication of ethyl acetate with 1-hexanol to hexyl acetate and ethanol and results were compared to liquid-phase model reactions. Products were analyzed on line by a gas chromatograph with a flame ionization detector. C. antarc- tica physisorbed on silica particles produced a 50% conversion of hexanol at 40 C in the gas-phase. A commercial immobilized lipase from Iris Biotech produced 99% and 97% conversions of hexanol in

  12. Predicting the Agglomeration of Cohesive Particles in a Gas-Solid Flow and its Effect on the Solids Flow (United States)

    Kellogg, Kevin; Liu, Peiyuan; Lamarche, Casey; Hrenya, Christine


    In flows of cohesive particles, agglomerates will readily form and break. These agglomerates are expected to complicate how particles interact with the surrounding fluid in multiphase flows, and consequently how the solids flow. In this work, a dilute flow of particles driven by gas against gravity is studied. A continuum framework, composed of a population balance to predict the formation of agglomerates, and kinetic-theory-based balances, is used to predict the flow of particles. The closures utilized for the birth and death rates due to aggregation and breakage in the population balance take into account how the impact velocity (the granular temperature) affects the outcome of a collision as aggregation, rebound, or breakage. The agglomerate size distribution and solids velocity predicted by the continuum framework are compared to discrete element method (DEM) simulations, as well to experimental results of particles being entrained from the riser of a fluidized bed. Dow Corning Corporation.

  13. Characterization of Gas-Solid Reactions using In Situ Powder X-ray Diffraction

    DEFF Research Database (Denmark)

    Møller, Kasper Trans; Hansen, Bjarne Rosenlund Søndertoft; Dippel, Ann-Christin


    X-ray diffraction is a superior technique for structural characterization of crystalline matter. Here we review the use of in situ powder X-ray diffraction (PXD) mainly for real-time studies of solid/gas reactions, data analysis and the extraction of valuable knowledge of structural, chemical...

  14. A grain size distribution model for non-catalytic gas-solid reactions

    NARCIS (Netherlands)

    Heesink, Albertus B.M.; Prins, W.; van Swaaij, Willibrordus Petrus Maria


    A new model to describe the non-catalytic conversion of a solid by a reactant gas is proposed. This so-called grain size distribution (GSD) model presumes the porous particle to be a collection of grains of various sizes. The size distribution of the grains is derived from mercury porosimetry

  15. Analysis of Gas Leakage and Current Loss of Solid Oxide Fuel Cells by Screen Printing

    DEFF Research Database (Denmark)

    Jia, Chuan; Han, Minfang; Chen, Ming


    Two types of anode supported solid oxide fuel cell (SOFC) NiO-YSZ/YSZ/GDC/LSCF with the same structure and different manufacturing process were tested. Gas leakage was suspected for cells manufactured with screen printing technique. Effective leak current densities for both types of cells were...

  16. Highly sensitive solids mass spectrometer uses inert-gas ion source (United States)


    Mass spectrometer provides a recorded analysis of solid material surfaces and bulk. A beam of high-energy inert-gas ions bombards the surface atoms of a sample and converts a percentage into an ionized vapor. The mass spectrum analyzer separates the vapor ionic constituents by mass-to-charge ratio.

  17. Modeling of gas transport through a tubular solid oxide fuel cell and the porous anode layer (United States)

    Izzo, John R.; Peracchio, Aldo A.; Chiu, Wilson K. S.

    A design model is a necessary tool to understand the gas transport phenomena that occurs in a tubular solid oxide fuel cell (SOFC). This paper describes a computational model, which studies the gas flow through an anode-supported tubular SOFC and the subsequent diffusion of gas through its porous anode. The model is a numerical solution for the gas flow through a plug flow reactor with a diffusion layer, which includes the activation, ohmic, and concentration polarizations. Gas diffusion is modeled using the dusty-gas equations which include Knudsen diffusion. Mercury intrusion porosimetry (MIP) is used to experimentally determine micro-structural parameters such as porosity, tortuosity and effective diffusion coefficients, which are used in the diffusion equations for the porous anode layer. It was found that diffusion in the anode plays a key role in the performance of a tubular SOFC. The concentration gradient of hydrogen and water results in a lower concentration of hydrogen and a higher concentration of water at the reactive triple phase boundary (TPB) than in the fuel stream which both lead to a lower cell voltage. The gas diffusion determines the limiting current density of the cell where a higher concentration drop of hydrogen results in a lower limiting current density. The model validates well with experimental data and is used to improve micro-tubular solid oxide fuel cell designs.

  18. Online gas composition estimation in solid oxide fuel cell systems with anode off-gas recycle configuration (United States)

    Dolenc, B.; Vrečko, D.; Juričić, Ð.; Pohjoranta, A.; Pianese, C.


    Degradation and poisoning of solid oxide fuel cell (SOFC) stacks are continuously shortening the lifespan of SOFC systems. Poisoning mechanisms, such as carbon deposition, form a coating layer, hence rapidly decreasing the efficiency of the fuel cells. Gas composition of inlet gases is known to have great impact on the rate of coke formation. Therefore, monitoring of these variables can be of great benefit for overall management of SOFCs. Although measuring the gas composition of the gas stream is feasible, it is too costly for commercial applications. This paper proposes three distinct approaches for the design of gas composition estimators of an SOFC system in anode off-gas recycle configuration which are (i.) accurate, and (ii.) easy to implement on a programmable logic controller. Firstly, a classical approach is briefly revisited and problems related to implementation complexity are discussed. Secondly, the model is simplified and adapted for easy implementation. Further, an alternative data-driven approach for gas composition estimation is developed. Finally, a hybrid estimator employing experimental data and 1st-principles is proposed. Despite the structural simplicity of the estimators, the experimental validation shows a high precision for all of the approaches. Experimental validation is performed on a 10 kW SOFC system.

  19. Selective catalytic reduction of nitrogen oxide with ammonia in a novel reactor called the floating gas-solid fluidized bed

    NARCIS (Netherlands)

    Kwant, G.J.; Kwant, G.J.; Prins, W.; van Swaaij, Willibrordus Petrus Maria


    The floating gas-solid fluidized bed (FGSFB) is a new type of gas-solid contacting device described earlier by Kwant et al. (Fluidization VII, Proc. 7th Engng Foud. Conf. on Fluidization, Brisbane, May, 1992). It is a tapered column provided with several coarse grids, in which catalyst particles are

  20. DEM-CFD simulation of purge gas flow in a solid breeder pebble bed

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Zhenghong [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); University of Science and Technology of China, Hefei 230027 (China); Guo, Haibing [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Ye, Minyou [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Huang, Hongwen, E-mail: [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)


    Solid tritium breeding blanket applying pebble bed concept is promising for fusion reactors. Tritium bred in the pebble bed is purged out by inert gas. The flow characteristics of the purge gas are important for the tritium transport from the solid breeder materials. In this study, a randomly packed pebble bed was generated by Discrete Element Method (DEM) and verified by radial porosity distribution. The flow parameters of the purge gas in channels were solved by Computational Fluid Dynamics (CFD) method. The results show that the normalized velocity magnitudes have the same damped oscillating patterns with radial porosity distribution. Besides, the bypass flow near the wall cannot be ignored in this model, and it has a slight increase with inlet velocity. Furthermore, higher purging efficiency becomes with higher inlet velocity and especially higher in near wall region.


    Directory of Open Access Journals (Sweden)

    Jan J. Hycnar


    Full Text Available Most flue gas desulfurization products can be characterized by significant solubility in water and dusting in dry state. These characteristics can cause a considerable pollution of air, water, and soil. Among many approaches to utilization of this waste, the process of agglomeration using granulation or briquetting has proved very effective. Using desulfurization products a new material of aggregate characteristics has been acquired, and this material is resistant to water and wind erosion as well as to the conditions of transportation and storage. The paper presents the results of industrial trials granulation and briquetting of calcium desulphurization products. The granulation of a mixture of phosphogypsum used with fly ash (in the share 1:5. The resulting granules characterized by a compressive strength of 41.6 MPa, the damping resistance of 70% and 14.2% abrasion. The granulate was used for the production of cement mix. The produced concrete mortar have a longer setting and hardening time, as compared to the traditional ash and gypsum mortar, and have a higher or comparable flexural and compressive strength during hardening. Briquetting trials made of a product called synthetic gypsum or rea-gypsum both in pure form and with the addition of 5% and 10% of the limestone dust. Briquettes have a high initial strength and resistance to abrasion. The values ​​of these parameters increased after 72 hours of seasoning. It was found that higher hardiness of briquettes with rea-gypsum was obtained with the impact of atmospheric conditions and higher resistance to elution of water-soluble components in comparison to ash briquettes.

  2. Thermodynamics analysis of the rare earth metals and their alloys with indium in solid state

    Energy Technology Data Exchange (ETDEWEB)

    Vassiliev, V.P., E-mail: [Chemical Department, Lomonossov University, Moscow 119992 (Russian Federation); Benaissa, Ablazeze [Département des Matériaux, Faculté des Sciences de l’Ingénieur, Université M’hamed Bougara, Boumerdes 35000 (Algeria); Taldrik, A.F. [Institute of Superconductivity and Solid State Physics, Academician Kurchatov 1, Moscow 123098 (Russian Federation)


    Graphical abstract: Gibbs energies of formation vs. RE atomic numbers in REIn{sub 3}. Highlights: •Set of experimental values was collected for REIn{sub 3} phases. •Thermodynamic functions of formation were calculated at 298 K and 775 K. •Experimental and calculated values were compared. -- Abstract: Nonlinear correlative analyses between thermodynamic and some physico-chemical properties of rare-earth metals (RE) and their alloys with indium are performed for the isostructural phases RE and REIn{sub 3}. The thermodynamics values (Gibbs energies of formation, enthalpies of formation, and entropies of formation at 298 K and 775 K and standard entropies) of LnIn{sub 3} phases are calculated on the basis of calorimetry and potentiometry results. The proposed correlation between physico-chemical and thermodynamic properties agrees for all the isostructural phases REX (X are others elements of the periodic table). The resulting thermodynamic data are recommended for metallurgical handbook.

  3. Renal Solid Mass as a Rare Presentation of Wagener's Granulomatosis: A Case Report

    Directory of Open Access Journals (Sweden)

    Mehrdad Mohammadi Sichani


    Full Text Available Wagener's granulomatosis (WG is a rheumatologic disease with unknown etiology which renal and pulmonary involvement is commonly seen. Renal involvement in Wagener's granulomatosis represents as a segmental necrotizing glomerulonephritis which is not visible with imaging techniques and usually presents with proteinuria, microhematuria, and hypertension. A rare presentation of the disease is a renal mass which can be mistaken as renal tumors, abscess, or lymphoma. We report a 22-year-old female with flank pain and fever who was admitted in our hospital. The patient underwent renal tumor biopsy and diagnosed with Wagener's granulomatosis in pathologic staining. The aim of this work is introduction of Wagener's granulomatosis as a differential diagnosis of renal tumors, to prevent unnecessary interventions and delayed treatment.

  4. Lactic Acidosis: A Rare Oncological Emergency in Solid Tumors at Presentation. (United States)

    Nair, Ranjit; Shah, Usman


    Lactic acidosis is a potentially life-threatening complication characterized by accumulation of blood lactate resulting in low arterial pH. The majority of lactic acidosis in malignancies are reported in association with hematologic malignancies. It may result from an imbalance between lactate production and hepatic lactate utilization, but the exact pathophysiology is far more complex than what we can fathom from current micromolecular studies. We report a case of a 71-year-old male with metastatic lung cancer presenting with fatal lactic acidosis in the absence of liver involvement. Review of the literature reveals only 27 reported cases of solid tumors presenting with lactic acidosis, of which nearly all of them had extensive liver metastasis. Patients were treated with aggressive fluid resuscitation, bicarbonate administration and hemodialysis, but the only effective treatment modality was early aggressive chemotherapy initiation. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  5. Amperometric detector for gas chromatography based on a silica sol-gel solid electrolyte. (United States)

    Steinecker, William H; Miecznikowski, Krzysztof; Kulesza, Pawel J; Sandlin, Zechariah D; Cox, James A


    An electrochemical cell comprising a silica sol-gel solid electrolyte, a working electrode that protrudes into a gas phase, and reference and counter electrodes that contact the solid electrolyte comprises an amperometric detector for gas chromatography. Under potentiostatic conditions, a current related to the concentration of an analyte in the gas phase is produced by its oxidation at the three-phase boundary among the sol-gel, working electrode, and the gas phase. The sol-gel is processed to contain an electrolyte that also serves as a humidistat to maintain a constant water activity even in the presence the gas chromatographic mobile phase. Response was demonstrated toward a diverse set of analytes, namely hydrogen, 1,2-ethandithiol, phenol, p-cresol, and thioanisole. Using flow injection amperometry of hydrogen with He as the carrier gas, 90% of the steady-state current was achieved in < 1s at a flow rate of 20mLmin(-1). A separation of 1,2-ethandithiol, phenol, p-cresol, and thioanisole at a 2.2mLmin(-1) flow rate was achieved with respective detection limits (k = 3 criterion) of 4, 1, 3, and 70 ppmv when the working electrode potential was 800mV. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Boosting Gas Involved Reactions at Nanochannel Reactor with Joint Gas-Solid-Liquid Interfaces and Controlled Wettability. (United States)

    Mi, Li; Yu, Jiachao; He, Fei; Jiang, Ling; Wu, Yafeng; Yang, Lijun; Han, Xiaofeng; Li, Ying; Liu, Anran; Wei, Wei; Zhang, Yuanjian; Tian, Ye; Liu, Songqin; Jiang, Lei


    The low solubility of gases in aqueous solution is the major kinetic limitation of reactions that involve gases. To address this challenge, we report a nanochannel reactor with joint gas-solid-liquid interfaces and controlled wettability. As a proof of concept, a porous anodic alumina (PAA) nanochannel membrane with different wettability is used for glucose oxidase (GOx) immobilization, which contacts with glucose aqueous solution on one side, while the other side gets in touch with the gas phase directly. Interestingly, it is observed that the O2 could participate in the enzymatic reaction directly from gas phase through the proposed nanochannels, and a hydrophobic interface is more favorable for the enzymatic reaction due to the rearrangement of GOx structure as well as the high gas adhesion. As a result, the catalytic efficiency of GOx in the proposed interface is increased up to 80-fold compared with that of the free state in traditional aqueous air-saturated electrolyte. This triphase interface with controlled wettability can be generally applied to immobilize enzymes or catalysts with gas substrates for high efficiency.

  7. Mutual neutralization of atomic rare-gas cations (Ne(+), Ar(+), Kr(+), Xe(+)) with atomic halide anions (Cl(-), Br(-), I(-)). (United States)

    Shuman, Nicholas S; Miller, Thomas M; Johnsen, Rainer; Viggiano, Albert A


    We report thermal rate coefficients for 12 reactions of rare gas cations (Ne(+), Ar(+), Kr(+), Xe(+)) with halide anions (Cl(-), Br(-), I(-)), comprising both mutual neutralization (MN) and transfer ionization. No rate coefficients have been previously reported for these reactions; however, the development of the Variable Electron and Neutral Density Attachment Mass Spectrometry technique makes it possible to measure the difference of the rate coefficients for pairs of parallel reactions in a Flowing Afterglow-Langmuir Probe apparatus. Measurements of 18 such combinations of competing reaction pairs yield an over-determined data set from which a consistent set of rate coefficients of the 12 MN reactions can be deduced. Unlike rate coefficients of MN reactions involving at least one polyatomic ion, which vary by at most a factor of ∼3, those of the atom-atom reactions vary by at least a factor 60 depending on the species. It is found that the rate coefficients involving light rare-gas ions are larger than those for the heavier rare-gas ions, but the opposite trend is observed in the progression from Cl(-) to I(-). The largest rate coefficient is 6.5 × 10(-8) cm(3) s(-1) for Ne(+) with I(-). Rate coefficients for Ar(+), Kr(+), and Xe(+) reacting with Br2 (-) are also reported.

  8. Comparison of surface vacuum ultraviolet emissions with resonance level number densities. II. Rare-gas plasmas and Ar-molecular gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Boffard, John B., E-mail:; Lin, Chun C. [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Wang, Shicong; Wendt, Amy E. [Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsin 53706 (United States); Culver, Cody [Materials Science Program, University of Wisconsin, Madison, Wisconsin 53706 (United States); Radovanov, Svetlana; Persing, Harold [Applied Materials Inc., Gloucester, Massachusetts 01939 (United States)


    Vacuum ultraviolet (VUV) emissions from excited plasma species can play a variety of roles in processing plasmas, including damaging the surface properties of materials used in semiconductor processing. Depending on their wavelength, VUV photons can easily transmit thin upper dielectric layers and affect the electrical characteristics of the devices. Despite their importance, measuring VUV fluxes is complicated by the fact that few materials transmit at VUV wavelengths, and both detectors and windows are easily damaged by plasma exposure. The authors have previously reported on measuring VUV fluxes in pure argon plasmas by monitoring the concentrations of Ar(3p{sup 5}4s) resonance atoms that produce the VUV emissions using noninvasive optical emission spectroscopy in the visible/near-infrared wavelength range [Boffard et al., J. Vac. Sci. Technol., A 32, 021304 (2014)]. Here, the authors extend this technique to other rare-gases (Ne, Kr, and Xe) and argon-molecular gas plasmas (Ar/H{sub 2}, Ar/O{sub 2}, and Ar/N{sub 2}). Results of a model for VUV emissions that couples radiation trapping and the measured rare-gas resonance level densities are compared to measurements made with both a calibrated VUV photodiode and a sodium salicylate fluorescence detection scheme. In these more complicated gas mixtures, VUV emissions from a variety of sources beyond the principal resonance levels of the rare gases are found to contribute to the total VUV flux.

  9. Optical measurement of the effect of electric fields on the nuclear spin coherence of rare-earth ions in solids. (United States)

    Macfarlane, R M; Arcangeli, A; Ferrier, A; Goldner, Ph


    We show that the coherence properties of the nuclear spin states of rare-earth ions in solids can be manipulated by small applied electric fields. This was done by measuring the Stark effect on the nuclear quadrupole transitions of (151)Eu in Y(2)SiO(5) (YSO) using a combination of Raman heterodyne optical detection and Stark modulated quadrupole echoes to achieve high sensitivity. The measured Stark coefficients were 0.42 and 1.0 Hz cm/V for the two quadrupole transitions at 34.54 and 46.20 MHz, respectively. The long decoherence time of the nuclear spin states (25 ms) allowed us to make the measurements in very low electric fields of ∼ 10 V/cm, which produced 100% modulation of the nuclear spin echo, and to measure Stark shifts of ∼ 1 Hz or 20 ppm of the inhomogeneous linewidth.

  10. The rare earth elements in municipal solid waste incinerators ash and promising tools for their prospecting

    Energy Technology Data Exchange (ETDEWEB)

    Funari, Valerio, E-mail: [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA)—University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy); Bokhari, Syed Nadeem Hussain [General and Analytical Chemistry—Montanuniversität Leoben, Franz-Josef-Str. 18, Leoben (Austria); Vigliotti, Luigi [Istituto di Scienze Marine (ISMAR-CNR)—National Research Council, Via Piero Gobetti 101, Bologna (Italy); Meisel, Thomas [General and Analytical Chemistry—Montanuniversität Leoben, Franz-Josef-Str. 18, Leoben (Austria); Braga, Roberto [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA)—University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy)


    Highlights: • The REE concentrations of bottom and fly ashes from municipal incinerators are investigated. • First attempt toward discriminating the magnetic signature (susceptibility) of ashes from incinerators. • New methods and parameters for REE prospecting, which can be determined quickly and with limited costs, are provided. - Abstract: Bottom and fly ashes from Municipal Solid Waste Incinerators (MSWI) are hazardous products that present concern for their safe management. An attractive option to reduce their impact both on the environment and the financial commitment is turning MSWI ashes into secondary raw materials. In this study we present the REE content and distribution of bottom and fly ashes from MSWI after a highly effective digestion method and samples analysis by ICP–MS. The chondrite-normalised REE patterns of MSWI bottom and fly ash are comparable with that of crustal averages, suggesting a main geogenic source. Deviations from typical crustal pattern (e.g., Eu, Tb) disclose a contribution of likely anthropogenic provenance. The correlation with major elements indicates possible sources for REE and facilitates a preliminary resource assessment. Moreover, magnetic susceptibility measurements can be a useful prospecting method in urban ores made of MSWI ashes. The relationship between REE and some influencing parameters (e.g., Pricing Influence Factor) emphasises the importance of MSWI ash as alternative source of REE and the need of further efforts for REE recovery and purification from low concentrations but high flows waste.

  11. EPR properties of some new cadmium and rare-earth molybdates, molybdato-tungstates and their solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarek, S.M., E-mail: [Faculty of Mechanical Engineering and Mechatronics, Institute of Physics, West Pomeranian University of Technology, Al. Piastow 17, 70-310 Szczecin (Poland); Leniec, G.; Fuks, H. [Faculty of Mechanical Engineering and Mechatronics, Institute of Physics, West Pomeranian University of Technology, Al. Piastow 17, 70-310 Szczecin (Poland); Tomaszewicz, E.; Dabrowska, G. [Department of Inorganic and Analytical Chemistry, West Pomeranian University of Technology, Al. Piastow 42, 71-065 Szczecin (Poland); Skibinski, T. [Faculty of Mechanical Engineering and Mechatronics, Institute of Physics, West Pomeranian University of Technology, Al. Piastow 17, 70-310 Szczecin (Poland)


    Highlights: Black-Right-Pointing-Pointer Some new molybdato-tungstates of rare earths were synthesized and investigated. Black-Right-Pointing-Pointer EPR and XRD of the obtained phases revealed scheelite-like structures. Black-Right-Pointing-Pointer Rare-earths ions enter at axial symmetry sites convenient for phosphors or lasers. - Abstract: A reactivity in the solid state between CdMoO{sub 4} and RE{sub 2}(MoO{sub 4}){sub 3} or RE{sub 2}(WO{sub 4}){sub 3}, where RE = Nd, Sm, Dy, was investigated using X-ray diffraction and electron paramagnetic resonance techniques. Obtained phases have shown scheelite-like structure, congruent melting and axial or close to axial symmetry of RE{sup 3+} ions. The main type of magnetic interactions in samples under studies is proved to be ferromagnetic one. Besides RE{sup 3+} ions, isolated and paired centers o molybdenum (5+) were found in the electron paramagnetic resonance spectra.

  12. Dispersed bubble reactor for enhanced gas-liquid-solids contact and mass transfer (United States)

    Vimalchand, Pannalal; Liu, Guohai; Peng, WanWang; Bonsu, Alexander


    An apparatus to promote gas-liquid contact and facilitate enhanced mass transfer. The dispersed bubble reactor (DBR) operates in the dispersed bubble flow regime to selectively absorb gas phase constituents into the liquid phase. The dispersion is achieved by shearing the large inlet gas bubbles into fine bubbles with circulating liquid and additional pumped liquid solvent when necessary. The DBR is capable of handling precipitates that may form during absorption or fine catalysts that may be necessary to promote liquid phase reactions. The DBR can be configured with multistage counter current flow sections by inserting concentric cylindrical sections into the riser to facilitate annular flow. While the DBR can absorb CO.sub.2 in liquid solvents that may lead to precipitates at high loadings, it is equally capable of handling many different types of chemical processes involving solids (precipitates/catalysts) along with gas and liquid phases.

  13. Effect of Coal Gas Contaminants on Solid Oxide Fuel Cell Operation

    Energy Technology Data Exchange (ETDEWEB)

    Marina, Olga A.; Pederson, Larry R.; Edwards, Danny J.; Coyle, Christopher A.; Templeton, Jared W.; Engelhard, Mark H.; Zhu, Zihua


    The operation of solid oxide fuel cells (SOFC) was evaluated on simulated coal gas in the presence of several coal gas impurities that are expected to remain in low concentration after warm gas cleanup. Phosphorus, arsenic and sulfur were considered in this study. The presence of phosphorus and arsenic in low, 1-2 ppm, concentrations led to the slow and irreversible SOFC degradation due to the formation of the secondary phases with nickel in the upper part of the nickel-based anode close to the gas inlet. Sulfur interactions with the nickel were limited to the surface only. Cell performance losses due to sulfur exposure were reversible and independent of the presence of other impurities.

  14. Greenhouse gas emissions from solid waste in Beijing: The rising trend and the mitigation effects by management improvements. (United States)

    Yu, Yongqiang; Zhang, Wen


    Disposal of solid waste poses great challenges to city managements. Changes in solid waste composition and disposal methods, along with urbanisation, can certainly affect greenhouse gas emissions from municipal solid waste. In this study, we analysed the changes in the generation, composition and management of municipal solid waste in Beijing. The changes of greenhouse gas emissions from municipal solid waste management were thereafter calculated. The impacts of municipal solid waste management improvements on greenhouse gas emissions and the mitigation effects of treatment techniques of greenhouse gas were also analysed. Municipal solid waste generation in Beijing has increased, and food waste has constituted the most substantial component of municipal solid waste over the past decade. Since the first half of 1950s, greenhouse gas emission has increased from 6 CO2-eq Gg y(-1)to approximately 200 CO2-eq Gg y(-1)in the early 1990s and 2145 CO2-eq Gg y(-1)in 2013. Landfill gas flaring, landfill gas utilisation and energy recovery in incineration are three techniques of the after-emission treatments in municipal solid waste management. The scenario analysis showed that three techniques might reduce greenhouse gas emissions by 22.7%, 4.5% and 9.8%, respectively. In the future, if waste disposal can achieve a ratio of 4:3:3 by landfill, composting and incineration with the proposed after-emission treatments, as stipulated by the Beijing Municipal Waste Management Act, greenhouse gas emissions from municipal solid waste will decrease by 41%. © The Author(s) 2016.


    Research was conducted to evaluate landfill gas emissions at five municipal solid waste landfills which have modern control technology for landfill gas emissions. Comprehensive testing was conducted on the raw landfill gas and the combustion outlet exhaust. The project had two ...

  16. Assessment of alternative disposal methods to reduce greenhouse gas emissions from municipal solid waste in India. (United States)

    Yedla, Sudhakar; Sindhu, N T


    Open dumping, the most commonly practiced method of solid waste disposal in Indian cities, creates serious environment and economic challenges, and also contributes significantly to greenhouse gas emissions. The present article attempts to analyse and identify economically effective ways to reduce greenhouse gas emissions from municipal solid waste. The article looks at the selection of appropriate methods for the control of methane emissions. Multivariate functional models are presented, based on theoretical considerations as well as the field measurements to forecast the greenhouse gas mitigation potential for all the methodologies under consideration. Economic feasibility is tested by calculating the unit cost of waste disposal for the respective disposal process. The purpose-built landfill system proposed by Yedla and Parikh has shown promise in controlling greenhouse gas and saving land. However, these studies show that aerobic composting offers the optimal method, both in terms of controlling greenhouse gas emissions and reducing costs, mainly by requiring less land than other methods. © The Author(s) 2016.

  17. Versatile in situ powder X-ray diffraction cells for solid-gas investigations

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Torben R.; Nielsen, Thomas K.; Joergensen, Jens-Erik [Aarhus Univ. (Denmark). Center for Energy Materials, Center for Materials Crystallography; Filinchuk, Yaroslav [European Synchrotron Radiation Facility, Grenoble (France). Swiss-Norwegian Beam Lines; Cerenius, Yngve [Lund Univ. (Sweden). MAX-lab; Gray, Evan MacA.; Webb, Colin J. [Griffith Univ., Nathan, Brisbane (Australia). Queensland Micro- and Nanotechnology Centre


    This paper describes new sample cells and techniques for in situ powder X-ray diffraction specifically designed for gas absorption studies up to ca 300 bar (1 bar = 100 000 Pa) gas pressure. The cells are for multipurpose use, in particular the study of solid-gas reactions in dosing or flow mode, but can also handle samples involved in solid-liquid-gas studies. The sample can be loaded into a single-crystal sapphire (Al{sub 2}O{sub 3}) capillary, or a quartz (SiO{sub 2}) capillary closed at one end. The advantages of a sapphire single-crystal cell with regard to rapid pressure cycling are discussed, and burst pressures are calculated and measured to be {proportional_to}300 bar. An alternative and simpler cell based on a thin-walled silicate or quartz glass capillary, connected to a gas source via a VCR fitting, enables studies up to {proportional_to}100 bar. Advantages of the two cell types are compared and their applications are illustrated by case studies. (orig.)

  18. Thermodynamic simulation of biomass gas steam reforming for a solid oxide fuel cell (SOFC system

    Directory of Open Access Journals (Sweden)

    A. Sordi


    Full Text Available This paper presents a methodology to simulate a small-scale fuel cell system for power generation using biomass gas as fuel. The methodology encompasses the thermodynamic and electrochemical aspects of a solid oxide fuel cell (SOFC, as well as solves the problem of chemical equilibrium in complex systems. In this case the complex system is the internal reforming of biomass gas to produce hydrogen. The fuel cell input variables are: operational voltage, cell power output, composition of the biomass gas reforming, thermodynamic efficiency, electrochemical efficiency, practical efficiency, the First and Second law efficiencies for the whole system. The chemical compositions, molar flows and temperatures are presented to each point of the system as well as the exergetic efficiency. For a molar water/carbon ratio of 2, the thermodynamic simulation of the biomass gas reforming indicates the maximum hydrogen production at a temperature of 1070 K, which can vary as a function of the biomass gas composition. The comparison with the efficiency of simple gas turbine cycle and regenerative gas turbine cycle shows the superiority of SOFC for the considered electrical power range.

  19. Gas-solid reduction kinetic model of MgO-fluxed pellets (United States)

    Gao, Qiang-jian; Shen, Feng-man; Jiang, Xin; Wei, Guo; Zheng, Hai-yan


    The reduction process of MgO-fluxed pellets was investigated and compared with traditional acidic pellets in this paper. Based on the piston flow concept and experimental data, a kinetic model fitting for the gas-solid phase reduction of pellets in tubular reactors (blast furnace, BF) was built up, and the equations of reduction reaction rate were given for pellets. A series of reduction experiments of pellets were carried out to verify the model. As a result, the experimental data and calculated result were fitted well. Therefore, this model can well describe the gas-solid phase reduction process and calculate the reduction reaction rate of pellets. Besides, it can give a better explanation that the reduction reaction rate (reducibility) of MgO-fluxed pellets is better than that of traditional acidic pellets in BF.

  20. Producing Gas-selective Electrochemical Microsensors by Tuning Solid Electrolyte Composition

    Directory of Open Access Journals (Sweden)



    Full Text Available Abstract: Monolithic gas sensors, developed at Argonne National Laboratory, employed cyclic voltammetry measurement techniques, YSZ solid electrolyte electrochemical cells and K-nearest neighbor (neural chemometrics techniques to sense multiple components in a gas mixture. These voltammetry-based devices detected most hydrocarbons, displayed no saturation effects and were functional from < 1 ppm to 100 % oxygen concentrations, but were not sensitive to carbon dioxide due to the lack of reactivity within the Pt electrodes. Investigations revealed that specific CO2 sensitivity could be introduced by adding tungsten stabilized bismuth oxide (WBO to the solid electrolyte composition while maintaining the same basic sensor geometry and electrode configuration. The YSZ/WBO sensors are functional in a range of CO2 concentrations from low ppm to 100 %.

  1. Gas production in anaerobic dark-fermentation processes from agriculture solid waste (United States)

    Sriwuryandari, L.; Priantoro, E. A.; Sintawardani, N.


    Approximately, Bandung produces agricultural solid waste of 1549 ton/day. This wastes consist of wet-organic matter and can be used for bio-gas production. The research aimed to apply the available agricultural solid waste for bio-hydrogen. Biogas production was done by a serial of batches anaerobic fermentation using mix-culture bacteria as the active microorganism. Fermentation was carried out inside a 30 L bioreactor at room temperature. The analyzed parameters were of pH, total gas, temperature, and COD. Result showed that from 3 kg/day of organic wastes, various total gases of O2, CH4, H2, CO2, and CnHn,O2 was produced.

  2. Headspace Solid Phase Micro Extraction Gas Chromatographic Determination of Fenthion in Human Serum


    Kasiotis, Konstantinos M.; Souki, Helen; Tsakirakis, Angelos N.; Carageorgiou, Haris; Theotokatos, Spiridon A.; Haroutounian, Serkos A.; Machera, Kyriaki


    A simple and effective analytical procedure was developed for the determination of fenthion residues in human serum samples. The sample treatment was performed using the headspace solid-phase micro extraction with polyacrylate fiber, which has the advantage to require low amount of serum (1 mL) without tedious pre-treatment. The quantification of fenthion was carried out by gas chromatography-mass spectrometry and the recoveries ranged from 79 to 104% at two spiking levels for 6 replicates. D...

  3. Simulations of small solid accretion on to planetesimals in the presence of gas (United States)

    Hughes, A. G.; Boley, A. C.


    The growth and migration of planetesimals in a young protoplanetary disc are fundamental to planet formation. In all models of early growth, there are several processes that can inhibit grains from reaching larger sizes. Nevertheless, observations suggest that growth of planetesimals must be rapid. If a small number of 100 km sized planetesimals do manage to form in the disc, then gas drag effects could enable them to efficiently accrete small solids from beyond their gravitationally focused cross-section. This gas-drag-enhanced accretion can allow planetesimals to grow at rapid rates, in principle. We present self-consistent hydrodynamics simulations with direct particle integration and gas-drag coupling to estimate the rate of planetesimal growth due to pebble accretion. Wind tunnel simulations are used to explore a range of particle sizes and disc conditions. We also explore analytic estimates of planetesimal growth and numerically integrate planetesimal drift due to the accretion of small solids. Our results show that, for almost every case that we consider, there is a clearly preferred particle size for accretion that depends on the properties of the accreting planetesimal and the local disc conditions. For solids much smaller than the preferred particle size, accretion rates are significantly reduced as the particles are entrained in the gas and flow around the planetesimal. Solids much larger than the preferred size accrete at rates consistent with gravitational focusing. Our analytic estimates for pebble accretion highlight the time-scales that are needed for the growth of large objects under different disc conditions and initial planetesimal sizes.

  4. Solid sorbents for removal of carbon dioxide from gas streams at low temperatures (United States)

    Sirwardane, Ranjani V.


    New low-cost CO.sub.2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO.sub.2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of C.

  5. Migration of radionuclides in a gas cooled solid state spallation target

    DEFF Research Database (Denmark)

    Jørgensen, Thomas; Severin, Gregory; Jensen, Mikael


    The current design of the ESS (European Spallation Source) program proposes a rotating solid tungsten target cooled by helium gas and a pulsed beam of protons. For safety reasons any design has to address whether or not the induced radionuclidic isotopes in the target migrate. In this paper we have...... investigated the diffusion of (primarily) tritium in solid tungsten to see if a pulse driven short-term variation in temperature (temperature peaks separated by one turn of the wheel(2.36 s)) could possibly give rise to wave-like migration of the radionuclides, possibly accelerating the overall release....... In order to calculate the diffusion in the solid tungsten target two approaches have been used. One neglecting the time structure of the beam and thermal cycling of the target, and one numerical, discrete time step simulation to capture the effects of the thermal cycling on the diffusion behavior. We found...

  6. Absorption spectroscopy of heavy alkaline earth metals Ba and Sr in rare gas matrices--CCSD(T) calculations and atomic site occupancies. (United States)

    Davis, Barry M; McCaffrey, John G


    Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ⋅ RG ground state interaction potentials. The y(1)P ← a(1)S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ⋅ RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr2 while this transition is quenched in Ba2. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba2 indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications.

  7. Study of Parameters Effect on Hydrodynamics of a Gas-Solid Chamber Experimentally and Numerically

    Directory of Open Access Journals (Sweden)

    Rahimzadeh Hassan


    Full Text Available In this research, gas velocity, initial static bed height and particle size effect on hydrodynamics of a non-reactive gas–solid fluidized bed chamber were studied experimentally and computationally. A multi fluid Eulerian model incorporating the kinetic theory for solid particles was applied to simulate the unsteady state behavior of this chamber and momentum exchange coefficients were calculated by using the Syamlal- O’Brien drag functions. Simulation results were compared with the experimental data in order to validate the CFD model. Pressure drops predicted by the simulations at different particle sizes and initial static bed height were in good agreement with experimental measurements at superficial gas velocity higher than the minimum fluidization velocity. Simulation results also indicated that small bubbles were produced at the bottom of the bed. These bubbles collided with each other as they moved upwards forming larger bubbles. Furthermore, this comparison showed that the model can predict hydrodynamic behavior of gas solid fluidized bed chambers reasonably well.

  8. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units. (United States)

    Svoboda, Karel; Hartman, Miloslav; Šyc, Michal; Pohořelý, Michael; Kameníková, Petra; Jeremiáš, Michal; Durda, Tomáš


    Dry methods of the flue gas cleaning (for HCl and SO2 removal) are useful particularly in smaller solid waste incineration units. The amount and forms of mercury emissions depend on waste (fuel) composition, content of mercury and chlorine and on the entire process of the flue gas cleaning. In the case of high HCl/total Hg molar ratio in the flue gas, the majority (usually 70-90%) of mercury is present in the form of HgCl2 and a smaller amount in the form of mercury vapors at higher temperatures. Removal of both main forms of mercury from the flue gas is dependent on chemical reactions and sorption processes at the temperatures below approx. 340 °C. Significant part of HgCl2 and a small part of elemental Hg vapors can be adsorbed on fly ash and solid particle in the air pollution control (APC) processes, which are removed in dust filters. Injection of non-impregnated active carbon (AC) or activated lignite coke particles is able to remove mainly the oxidized Hg(2+) compounds. Vapors of metallic Hg(o) are adsorbed relatively weakly. Much better chemisorption of Hg(o) together with higher sorbent capacity is achieved by AC-based sorbents impregnated with sulfur, alkali poly-sulfides, ferric chloride, etc. Inorganic sorbents with the same or similar chemical impregnation are also applicable for deeper Hg(o) removal (over 85%). SCR catalysts convert part of Hg(o) into oxidized compounds (HgO, HgCl2, etc.) contributing to more efficient Hg removal, but excess of NH3 has a negative effect. Both forms, elemental Hg(o) and HgCl2, can be converted into HgS particles by reacting with droplets/aerosol of poly-sulfides solutions/solids in flue gas. Mercury captured in the form of water insoluble HgS is more advantageous in the disposal of solid waste from APC processes. Four selected options of the dry flue gas cleaning with mercury removal are analyzed, assessed and compared (in terms of efficiency of Hg-emission reduction and costs) with wet methods and retrofits for more

  9. Dramatically different kinetics and mechanism at solid/liquid and solid/gas interfaces for catalytic isopropanol oxidation over size-controlled platinum nanoparticles. (United States)

    Wang, Hailiang; Sapi, Andras; Thompson, Christopher M; Liu, Fudong; Zherebetskyy, Danylo; Krier, James M; Carl, Lindsay M; Cai, Xiaojun; Wang, Lin-Wang; Somorjai, Gabor A


    We synthesize platinum nanoparticles with controlled average sizes of 2, 4, 6, and 8 nm and use them as model catalysts to study isopropanol oxidation to acetone in both the liquid and gas phases at 60 °C. The reaction at the solid/liquid interface is 2 orders of magnitude slower than that at the solid/gas interface, while catalytic activity increases with the size of platinum nanoparticles for both the liquid-phase and gas-phase reactions. The activation energy of the gas-phase reaction decreases with the platinum nanoparticle size and is in general much higher than that of the liquid-phase reaction which is largely insensitive to the size of catalyst nanoparticles. Water substantially promotes isopropanol oxidation in the liquid phase. However, it inhibits the reaction in the gas phase. The kinetic results suggest different mechanisms between the liquid-phase and gas-phase reactions, correlating well with different orientations of IPA species at the solid/liquid interface vs the solid/gas interface as probed by sum frequency generation vibrational spectroscopy under reaction conditions and simulated by computational calculations.

  10. In situ measurement of gas-solid interactions in astrophysical dust & planetary analogues (United States)

    Thompson, S. P.; Parker, J. E.; Day, S. J.; Evans, A.; Tang, C. C.


    Facilities for studying gas-solid interactions on beamline I11 at the Diamond Light Source are described. Sample evolution in low and high gas pressure capillary cells (1 × 10-7 to 100 bar) with non-contact cooling and heating (80 to 1273 K) can be monitored structurally (X-rays) and spectroscopically (Raman). First results on the dehydration of MgSO4.7H2O, the formation of CO2 clathrate hydrate and the reaction of amorphous CaSiO3 grains with CO2 gas to form CaCO3 are presented to demonstrate the application of these cells to laboratory investigations involving the processing of cosmic dust simulants and planetary materials analogues.

  11. Applicability of linearized Dusty Gas Model for multicomponent diffusion of gas mixtures in porous solids

    Directory of Open Access Journals (Sweden)

    Marković Jelena


    Full Text Available The transport of gaseous components through porous media could be described according to the well-known Fick model and its modifications. It is also known that Fick’s law is not suitable for predicting the fluxes in multicomponent gas mixtures, excluding binary mixtures. This model is still frequently used in chemical engineering because of its simplicity. Unfortunately, besides the Fick’s model there is no generally accepted model for mass transport through porous media (membranes, catalysts etc.. Numerous studies on transport through porous media reveal that Dusty Gas Model (DGM is superior in its ability to predict fluxes in multicomponent mixtures. Its wider application is limited by more complicated calculation procedures comparing to Fick’s model. It should be noted that there were efforts to simplify DGM in order to obtain satisfactory accurate results. In this paper linearized DGM, as the simplest form of DGM, is tested under conditions of zero system pressure drop, small pressure drop, and different temperatures. Published experimental data are used in testing the accuracy of the linearized procedure. It is shown that this simplified procedure is accurate enough compared to the standard more complicated calculations.

  12. Development of solid-gas equilibrium propulsion system for small spacecraft (United States)

    Chujo, Toshihiro; Mori, Osamu; Kubo, Yuki


    A phase equilibrium propulsion system is a kind of cold-gas jet in which the phase equilibrium state of the fuel is maintained in a tank and its vapor is ejected when a valve is opened. One such example is a gas-liquid equilibrium propulsion system that uses liquefied gas as fuel. This system was mounted on the IKAROS solar sail and has been demonstrated in orbit. The system has a higher storage efficiency and a lighter configuration than a high-pressure cold-gas jet because the vapor pressure is lower, and is suitable for small spacecraft. However, the system requires a gas-liquid separation device in order to avoid leakage of the liquid, which makes the system complex. As another example of a phase equilibrium propulsion system, we introduce a solid-gas equilibrium propulsion system, which uses a sublimable substance as fuel and ejects its vapor. This system has an even lower vapor pressure and does not require such a separation device, instead requiring only a filter to keep the solid inside the tank. Moreover, the system is much simpler and lighter, making it more suitable for small spacecraft, especially CubeSat-class spacecraft, and the low thrust of the system allows spacecraft motion to be controlled precisely. In addition, the thrust level can be controlled by controlling the temperature of the fuel, which changes the vapor pressure. The present paper introduces the concept of the proposed system, and describes ejection experiments and its evaluation. The basic function of the proposed system is demonstrated in order to verify its usefulness.

  13. A practical law to predict the appearance sizes of multiply charged rare-gas and molecular clusters (United States)

    Bonhommeau, David A.


    A dimensionless law depending on cluster size N is derived from the Rayleigh limit expressed in reduced Lennard-Jones (LJ) units to predict the critical sizes nc (z) of clusters carrying z positive charges. This relationship provides suitable estimates of nc (z) (z = 2 - 4) for rare-gas clusters, including neon clusters whose predicted critical sizes deviate from experimental expectations by less than 12% for different choices of LJ parameters. An extension to 11 nonpolar and 15 polar molecular clusters, from dimers to aromatic hydrocarbons, is achieved that demonstrates the broad applicability of the formula despite inaccuracies for highly polar systems.

  14. Processes of noble gas elemental and isotopic fractionations in plasma-produced organic solids: Cosmochemical implications (United States)

    Kuga, Maïa; Cernogora, Guy; Marrocchi, Yves; Tissandier, Laurent; Marty, Bernard


    The main carrier of primordial heavy noble gases in chondrites is thought to be an organic phase, known as phase Q, whose precise characterization has resisted decades of investigation. The Q noble gas component shows elemental and isotopic fractionation relative to the Solar, in favor of heavy elements and isotopes. These noble gas characteristics were experimentally simulated using a plasma device called the ;Nebulotron;. In this study, we synthesized thirteen solid organic samples by electron-dissociation of CO, in which a noble gas mixture was added. The analysis of their heavy noble gas (Ar, Kr and Xe) contents and isotopic compositions reveals enrichment in the heavy noble gas isotopes and elements relative to the light ones. The isotope fractionation is mass-dependent and is consistent with a mn-type law, where n ≥ 1. Based on a plasma model, we propose that the ambipolar diffusion of ions in the ionized CO gas medium is at the origin of the noble gas isotopic fractionation. In addition, the elemental fractionation of experimental and chondritic samples can be accounted for by the Saha law of plasma equilibrium, which does not depend on the respective noble gas masses but rather on their ionization potentials. Our results suggest that the Q noble gases were trapped into growing organic particles starting from solar gases that were fractionated in an ionized medium by ambipolar diffusion and Saha processes. This would imply that both the formation of chondritic organic matter and the trapping of noble gases took place simultaneously in the ionized areas of the protoplanetary disk.

  15. Assessment of potential greenhouse gas mitigation of available household solid waste treatment technologies

    Directory of Open Access Journals (Sweden)

    Hoang Minh Giang


    Full Text Available Current household solid waste treatment practices in most cities in Vietnam caused a great amount of direct greenhouse gas (GHG emissions. Available solid waste treatment technologies should be seriously taken  into consideration as a wedge of GHG mitigation in waste sector base on presently Vietnamese economic conditions. This study aim to evaluate the potential amount of GHG mitigation from current domestic solid waste treatment technologies in Vietnam including landfills and composting from various management scenarios. In oder to use Tier 2 model of IPCC 2006 for GHG estimation from landfills, an analysis on current household solid waste management system of the city was obtained by using material flow analysis approach. A case study in Hanoi, the capital city of Vietnam was carried out in this research. As a result, there was a reduced of over 70% of the amount of CH4 emissions and  up to 53% of total GHG saving (CO2-eq from avoiding organic waste to landfill. In addition, applying an energy recovery from LFG system to available landfills would lead to aproximately 75% of GHG saved compare to current emission of waste sector.Doi: Giang, H.M.,Luong, N.D., and Huong, L.T.M.2013. Assessment of potential greenhouse gas mitigation of available household solid waste treatment technologies. . Waste Technology 1(1:6-9. Doi:

  16. Fullerene-rare gas mixed plasmas in an electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Asaji, T., E-mail:; Ohba, T. [Oshima National College of Maritime Technology, 1091-1 Komatsu, Suo-oshima, Oshima, Yamaguchi 742-2193 (Japan); Uchida, T.; Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan); Minezaki, H.; Ishihara, S. [Graduate School of Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan); Racz, R.; Biri, S. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem Tér 18/c (Hungary); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)


    A synthesis technology of endohedral fullerenes such as Fe@C{sub 60} has developed with an electron cyclotron resonance (ECR) ion source. The production of N@C{sub 60} was reported. However, the yield was quite low, since most fullerene molecules were broken in the ECR plasma. We have adopted gas-mixing techniques in order to cool the plasma and then reduce fullerene dissociation. Mass spectra of ion beams extracted from fullerene-He, Ar or Xe mixed plasmas were observed with a Faraday cup. From the results, the He gas mixing technique is effective against fullerene destruction.

  17. Digital image processing based mass flow rate measurement of gas/solid two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Song Ding; Peng Lihui; Lu Geng; Yang Shiyuan [Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing, 100084 (China); Yan Yong, E-mail: [University of Kent, Canterbury, Kent CT2 7NT (United Kingdom)


    With the rapid growth of the process industry, pneumatic conveying as a tool for the transportation of a wide variety of pulverized and granular materials has become widespread. In order to improve plant control and operational efficiency, it is essential to know the parameters of the particle flow. This paper presents a digital imaging based method which is capable of measuring multiple flow parameters, including volumetric concentration, velocity and mass flow rate of particles in the gas/solid two phase flow. The measurement system consists of a solid state laser for illumination, a low-cost CCD camera for particle image acquisition and a microcomputer with bespoke software for particle image processing. The measurements of particle velocity and volumetric concentration share the same sensing hardware but use different exposure time and different image processing methods. By controlling the exposure time of the camera a clear image and a motion blurred image are obtained respectively. The clear image is thresholded by OTSU method to identify the particles from the dark background so that the volumetric concentration is determined by calculating the ratio between the particle area and the total area. Particle velocity is derived from the motion blur length, which is estimated from the motion blurred images by using the travelling wave equation method. The mass flow rate of particles is calculated by combining the particle velocity and volumetric concentration. Simulation and experiment results indicate that the proposed method is promising for the measurement of multiple parameters of gas/solid two-phase flow.

  18. Emphysema following vitrectomy with fluid–gas exchange: description of a rare complication

    Directory of Open Access Journals (Sweden)

    Damasceno EF


    Full Text Available Eduardo F Damasceno,1 Nadyr Damasceno,2 Soraya Horowitz,2 Marcio Mortera Rodrigues3 1Universidade Federal Fluminense, Niterói, Brazil; 2Hospital Naval Marcílio Dias, Rio de Janeiro, Brazil; 3Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil Purpose: To report a case of subcutaneous emphysema involving the orbit, mediastinum, and face after pars plana vitrectomy with fluid–gas exchange. Methods: Case report of a 55-year-old man who presented with bilateral eyelid and face edema and dysphagia in the immediate postoperative period after pars plana vitrectomy. Orbital and chest computed tomographies were performed, revealing emphysema of the orbit and soft tissue of the face, extending from the neck to the upper chest. Results: The patient with a retinal detachment in the right eye underwent 23-gauge vitrectomy surgery with fluid–gas exchange and an implantation of silicone oil. The patient had a previous history of facial trauma for more than 20 years with an orbital fracture. After surgery, the patient developed emphysema of the orbit, soft tissue of the face and upper chest. Systemic prophylactic antibiotics associated with antibiotics and steroid drops performed a satisfactory evolution. Conclusion: The fluid–gas exchange during pars plana vitrectomy in patients with orbital fracture can lead to emphysema of the face, chest, and soft tissue. Keywords: vitrectomy complications, fluid–gas exchange, orbital emphysema, mediastinal emphysema, face emphysema, orbit fracture

  19. Interactions of nickel/zirconia solid oxide fuel cell anodes with coal gas containing arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, Christopher A.; Marina, Olga A.; Thomsen, Edwin C.; Edwards, Danny J.; Cramer, Carolyn N.; Coffey, Greg W.; Pederson, Larry R.


    The performance of anode-supported and electrolyte-supported solid oxide fuel cells was investigated in synthetic coal gas containing 0 to 10 ppm arsenic introduced as arsine. Arsenic was found to interact strongly with nickel in the anode, resulting in the formation of nickel-arsenic solid solution, Ni5As2 and Ni11As8, depending on temperature, arsenic concentration, and reaction time. For anode-supported cells, loss of electrical connectivity in the anode support was the principal mode of degradation, as nickel was converted to nickel arsenide phases that migrated to the surface to form large grains. Cell failure occurred well before the entire anode was converted to nickel arsenide, and followed a reciprocal square root of arsenic partial pressure dependence consistent with a diffusion-based rate-limiting step. Failure occurred more quickly with electrolyte-supported cells, which have a substantially smaller nickel inventory. For these cells, time to failure varied linearly with the reciprocal arsenic concentration in coal gas, and occurred when arsenic reached the anode/electrolyte interface. Test performed with nickel/zirconia coupons showed that arsenic was essentially completely captured in a narrow band near the fuel gas inlet.

  20. Gas suspension flows of a moderately dense binary mixture of solid particles in vertical tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zamankhan, P.; Huotari, J. [VTT Energy, Jyvaeskylae (Finland). Combustion and Conversion Lab.


    The turbulent, steady, fully-developed flow of a moderately dense (solid volume faction >>0.001) binary mixture of spherical particles in a gaseous carrier is investigated for the case of flow in a vertical riser. The suspended particles are considered to be in turbulent motion, driven by random aerodynamic forces acting between the particle and the gaseous carrier as well as particle-particle interactive forces. A model is constructed based on the combination of the time-averaged after volume-averaged conservation equations of mass, momentum and mechanical energy of the gas phase in the continuum theory and the corresponding equations for the solid particles obtained using the recently developed Enskog theory for dense multi-component mixtures of slightly inelastic spherical particles. The model properly takes into account the contributions of particle-particle collisions, as well as the fluid-dynamic fluctuating forces on individual particles. To demonstrate the validity of this approach, the fully-developed steady-state mean velocity and concentration distributions of a moderately dense binary mixture of solid particles in a turbulent vertical flow calculated by the present model are compared with available experimental measurements. The results provide a qualitative description of the experimentally observed motion of coarse particles in a fast bed of fine solids. (author)

  1. Ionisation cross sections of rare-gas atoms by electron impact (United States)

    Krishnakumar, E.; Srivastava, S. K.


    A pulsed electron beam and ion extraction method is used to measure normalized values of partial ionization cross sections for rare gases from threshold to 1000 eV. Cross sections obtained for singly ionized species are used to calibrate the mass transmission efficiency of the ion extraction/analyzer/detection system by the relative flow technique, and this mass transmission curve is then used to determine the absolute cross sections of the multiply ionized species. Total ion cross sections are found by summation of the individual partial cross sections with proper weighting for charge.

  2. Tank designs for combined high pressure gas and solid state hydrogen storage

    DEFF Research Database (Denmark)

    Mazzucco, Andrea

    Many challenges have still to be overcome in order to establish a solid ground for significant market penetration of fuel cell hydrogen vehicles. The development of an effective solution for on-board hydrogen storage is one of the main technical tasks that need to be tackled. The present thesis...... for each storage solution investigated in this work. Attention is given to solutions that involve high-pressure solid-state and gas hydrogen storage with an integrated passive cooling system. A set of libraries is implemented in the modeling platform to select among different material compositions, kinetic...... compressed-hydrogen vessel respectively. For the former, these models are used to quantify the main design parameter, being the critical metal hydride thickness, for the tank/heat-exchanger system. For the metal hydride tank, the tubular layout in a shell and tube configuration with 2 mm inner diameter tubes...

  3. Title I preliminary engineering for: A. S. E. F. solid waste to methane gas

    Energy Technology Data Exchange (ETDEWEB)



    An assignment to provide preliminary engineering of an Advanced System Experimental Facility for production of methane gas from urban solid waste by anaerobic digestion is documented. The experimental facility will be constructed on a now-existing solid waste shredding and landfill facility in Pompano Beach, Florida. Information is included on: general description of the project; justification of basic need; process design; preliminary drawings; outline specifications; preliminary estimate of cost; and time schedules for design and construction of accomplishment of design and construction. The preliminary cost estimate for the design and construction phases of the experimental program is $2,960,000, based on Dec. 1975 and Jan. 1976 costs. A time schedule of eight months to complete the Detailed Design, Equipment Procurement and the Award of Subcontracts is given.

  4. Modelling of a Biomass Gasification Plant Feeding a Hybrid Solid Oxide Fuel Cell and Micro Gas Turbine System

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud


    A system level modelling study on two combined heat and power (CHP) systems both based on biomass gasification. One system converts the product gas in a solid oxide fuel cell (SOFC) and the other in a combined SOFC and micro gas turbine (MGT) arrangement. An electrochemical model of the SOFC has...

  5. Modelling a Combined Heat and Power Plant based on Gasification, Micro Gas Turbine and Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud


    A system level modelling study on two combined heat and power (CHP) systems both based on biomass gasification. One system converts the product gas in a micro gas turbine (MGT) and the other in a combined solid oxide fuel cell (SOFC) and MGT arrangement. An electrochemical model of the SOFC has...

  6. Sulfur Poisoning of the Water Gas Shift Reaction on Anode Supported Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Hagen, Anke


    resistance increased both in the high and low frequency region, which indicates a strong poisoning of the water gas shift reaction and thus a lack of hydrogen fuel in addition to the poisoning of the electrochemical hydrogen oxidation. All poisoning effects are reversible under the applied operating......Investigation of fuels containing sulfur impurities is important regarding durability of solid oxide fuel cells (SOFC) because they are present in various potential fuels for SOFC applications. The effect of H2S in the ppm range on the performance of state-of-the-art anode supported SOFC at 850...

  7. Solid-liquid-gas state transducer: A study of an electro-mechanical system (United States)

    Meyer, H. O.


    We describe a transducer that is sensitive to the state of its environment (gas, liquid, or solid). It consists of a piezoelectric bimorph immersed in a medium. A phase change of the medium affects the freedom of motion of the sensor, and thus changes its electrical properties. The observed behavior of the device is explained by a simple model. The device is easy to realize, can be analyzed theoretically, illustrates several important physics principles, and is well suited for an experiment in an intermediate-level teaching lab.

  8. Effect of a diffuser on gas-solid behavior in CFB riser for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hoan Ju; Moon, Ho Kyu; Cho, Hyung Hee [Dept. of Mechanical Engineering, Yonsei University, Seoul (Korea, Republic of); Seo, Hwimin; Park, Yongki [Green Chemistry Process Research Division, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of)


    Gas-solid fluidized beds have been used in CO{sub 2} capture processes because of their high mixing characteristic and heat and mass transfer. Sufficient residence time of solid particles in a reactor is required to capture CO{sub 2}. However, a fraction of solid particles pass through a reactor without capturing CO{sub 2} due to normal reaction characteristics. Therefore, the objective of the present study was to increase the sorbent residence time using a diffuser in a reactor for CO{sub 2} capture. An Eulerian-Eulerian model in a commercial CFD program was employed to simulate gas-solid flow in the reactor. First, sensitivity analysis depending on operating conditions was conducted to predict the residence time of solid particles. The diffuser was located in the middle of the reactor and the angle of the diffuser was changed. Solid particles dispersed in the radial direction because of gas characteristics in the diffuser and increased the residence time. The results showed that the diffuser increased the sorbent residence time, so that the probabilities of gas-solid reaction would be also improved.

  9. Investigation of Gas Solid Fluidized Bed Dynamics with Non-Spherical Particles

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan [Univ. of Texas, El Paso, TX (United States). Dept. of Mechanical Engineering


    One of the largest challenges for 21st century is to fulfill global energy demand while also reducing detrimental impacts of energy generation and use on the environment. Gasification is a promising technology to meet the requirement of reduced emissions without compromising performance. Coal gasification is not an incinerating process; rather than burning coal completely a partial combustion takes place in the presence of steam and limited amounts of oxygen. In this controlled environment, a chemical reaction takes place to produce a mixture of clean synthetic gas. Gas-solid fluidized bed is one such type of gasification technology. During gasification, the mixing behavior of solid (coal) and gas and their flow patterns can be very complicated to understand. Many attempts have taken place in laboratory scale to understand bed hydrodynamics with spherical particles though in actual applications with coal, the particles are non-spherical. This issue drove the documented attempt presented here to investigate fluidized bed behavior using different ranges of non-spherical particles, as well as spherical. For this investigation, various parameters are controlled that included particle size, bed height, bed diameter and particle shape. Particles ranged from 355 µm to 1180 µm, bed diameter varied from 2 cm to 7 cm, two fluidized beds with diameters of 3.4 cm and 12.4 cm, for the spherical and non-spherical shaped particles that were taken into consideration. Pressure drop was measured with increasing superficial gas velocity. The velocity required in order to start to fluidize the particle is called the minimum fluidization velocity, which is one of the most important parameters to design and optimize within a gas-solid fluidized bed. This minimum fluidization velocity was monitored during investigation while observing variables factors and their effect on this velocity. From our investigation, it has been found that minimum fluidization velocity is independent of bed

  10. Greenhouse gas contribution of municipal solid waste collection: A case study in the city of Istanbul, Turkey. (United States)

    Korkut, Nafiz E; Yaman, Cevat; Küçükağa, Yusuf; Jaunich, Megan K; Demir, İbrahim


    This article estimates greenhouse gas emissions and global warming factors resulting from collection of municipal solid waste to the transfer stations or landfills in Istanbul for the year of 2015. The aim of this study is to quantify and compare diesel fuel consumption and estimate the greenhouse gas emissions and global warming factors associated with municipal solid waste collection of the 39 districts of Istanbul. Each district's greenhouse gas emissions resulting from the provision and combustion of diesel fuel was estimated by considering the number of collection trips and distances to municipal solid waste facilities. The estimated greenhouse gases and global warming factors for the districts varied from 61.2 to 2759.1 t CO 2 -eq and from 4.60 to 15.20 kg CO 2 -eq t -1 , respectively. The total greenhouse gas emission was estimated as 46.4E3 t CO 2 -eq. Lastly, the collection data from the districts was used to parameterise a collection model that can be used to estimate fuel consumption associated with municipal solid waste collection. This mechanistic model can then be used to predict future fuel consumption and greenhouse gas emissions associated with municipal solid waste collection based on projected population, waste generation, and distance to transfer stations and landfills. The greenhouse gas emissions can be reduced by decreasing the trip numbers and trip distances, building more transfer stations around the city, and making sure that the collection trucks are full in each trip.

  11. Anode-pore tortuosity in solid oxide fuel cells found from gas and current flow rates (United States)

    Schmidt, V. Hugo; Tsai, Chih-Long

    The effect of solid oxide fuel cell (SOFC) anode thickness, porosity, pore size, and pore tortuosity on fuel and exhaust gas flow is calculated. Also determined is the concentration of these gases and of diluent gases as a function of position across the anode. The calculation is based on the dusty-gas model which includes a Knudsen (molecule-wall) collision term in the Stefan-Maxwell equation which is based on unlike-molecule collisions. Commonly made approximations are avoided in order to obtain more exact results. One such approximation is the assumption of uniform total gas pressure across the anode. Another such approximation is the assumption of zero fuel gas concentration at the anode-electrolyte interface under the anode saturation condition for which the SOFC output voltage goes to zero. Elimination of this approximation requires use of a model we developed (published elsewhere) for terminal voltage V as a function of electrolyte current density i. Key formulae from this model are presented. The formulae developed herein for gas flow and tortuosity are applied to the results of a series of careful experiments performed by another group, who used binary and ternary gas mixtures on the anode side of an SOFC. Our values for tortuosity are in a physically reasonable low range, from 1.7 to 3.3. They are in fair agreement with those obtained by the other group, once a difference in nomenclature is taken into account. This difference consists in their definition of tortuosity being what some call tortuosity factor, which is the square of what we and some others call tortuosity. The results emphasize the need for careful design of anode pore structures, especially in anode-supported SOFCs which require thicker anodes.

  12. Interaction of coal-derived synthesis gas impurities with solid oxide fuel cell metallic components

    Energy Technology Data Exchange (ETDEWEB)

    Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Edwards, Danny J.; Chou, Y. S.; Cramer, Carolyn N.


    Chromium-containing iron-based alloys Crofer22 APU and SS 441 and nickel-based alloy Inconel600, all commonly used in a solid oxide fuel cell (SOFC) stack as interconnect materials, heat exchanger and gas feeding pipes, were exposed at 700-850oC to a synthetic coal gas containing ≤2 ppm phosphine, arsine, sulfur and antimony. Samples were characterized by SEM/EDS and XRD to monitor the secondary phase formation. Exposure of ferritic stainless steels to P led to the formation of surface Cr-Mn-P-O and Fe-P-O compounds and increased temperatures accelerated the rate of interactions. Fewer interactions were observed after exposures to As and Sb. No sulfur containing compounds were found. Nickel-based alloy exhibited much stronger interactions with As and P in comparison with ferritic steels and the arsenic interactions were particularly strong. The difference between the iron- and nickel-based alloys is explained by the different chemistry and morphology of the scales grown on the alloy surfaces in coal gas. While P and As interactions with the metallic parts in the SOFC are likely to mitigate the nickel/zirconia anode poisoning, the other degradation mechanisms should be taken into consideration to avoid potential stack failures. Manganese spinels were found to be effective as phosphorus getters and could be used in coal gas cleanup.

  13. Dynamic cyclone for solids removal: innovative sand management solutions for oil and gas production

    Energy Technology Data Exchange (ETDEWEB)

    Furnes, Olav [Inter Scandic a.s (Norway); Arefjord, Anders [CleanUp AS (Norway)


    Sand and other solids inevitably occurring in connection with drilling and production operations for exploitation of offshore and onshore petroleum resources represent an increasing challenge for operators and main contractors worldwide. The adherent sand problems can cause severe erosion of conductors, pipelines and critical processing equipment, such as valves, pumps and separator internals, etc. Proliferation of sand could clog up and severely diminish processing capacity in separators, calling for unscheduled shutdowns for separator jetting and equipment cleaning. These and other consequential problems incur considerable costs to the industry, affecting availability and reliability of production as well as undue cost outlays for equipment monitoring, renewal and refurbishment. Such cost impacts could have decisive effects on commercial viability of marginal fields or deep water prospects. Problematic aspects of produced solids could arise at early stages of reservoir drainage, pending geological profile. As sand volumes tend to increase when oil and gas fields mature, viable tail production to recover remaining reserves becomes decisive for operating costs and investment trade-off. The dynamic de-sanding cyclone system described herein is designed to operate without any pressure drop, thus avoiding loss of flow pressure. It consists of an inner and outer cylindrical chamber, allowing for a second separation run for removal of the smaller particles down to 50 micron or less. In additional to tangential flow inlet, an impeller driven by a hydraulic motor adds significantly to centrifugal separation effects, assisting cleaning of solids as part of the process. As the cyclone is designed to perform online de-gassing as well, it can sustain severe slugging during the solids removal operations. Removed solids can be either accumulated in closed, swapping containers or piped as slurry for final disposal. (author)

  14. Recycling of rare earths from Hg-containing fluorescent lamp scraps by solid state chlorination; Rueckgewinnung Seltener Erden aus quecksilberbelasteten Leuchtstoffen mittels Feststoffchlorierung

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Tom; Froehlich, Peter; Bertau, Martin [TU Bergakademie Freiberg (Germany); Golon, Katja [FNE Entsorgungsdienste GmbH, Freiberg (Germany)


    Solid state chlorination with NH{sub 4}Cl comprises a method for rare earth recycling apart from pyro- or hydrometallurgical strategies. The examined partially Hg-containing fluorescent lamp scraps are rich in rare earths like La, Ce, Tb and Gd, but especially in Y and Eu. By mixing with NH{sub 4}Cl and heating up to NH{sub 4}Cl decomposition temperature in a sublimation reactor, Y and Eu could be transferred selectively into their respective metal chlorides with high yields. The yield and selectivity depend on temperature and the ratio of NH{sub 4}Cl to fluorescent lamp scraps, which were varied systematically.

  15. Experimental study on solids mixing and bubble behavior in a pseudo-2D, freely bubbling, gas-solid fluidized bed using PIV and DIA

    NARCIS (Netherlands)

    Laverman, J.A.; Roghair, Ivo; van Sint Annaland, M.; Kuipers, J.A.M.


    The hydrodynamics of a freely bubbling, gas-solid fluidized bed has been investigated experimentally with non-invasive measuring techniques in a pseudo-2D column filled with glass beads of 400-600 μm fluidized with air. Particle Image Velocimetry (PIV) combined with Digital Image Analysis (DIA) has

  16. The contact line behaviour of solid-liquid-gas diffuse-interface models

    CERN Document Server

    Sibley, David N; Savva, Nikos; Kalliadasis, Serafim


    A solid-liquid-gas moving contact line is considered through a diffuse-interface model with the classical boundary condition of no-slip at the solid surface. Examination of the asymptotic behaviour as the contact line is approached shows that the relaxation of the classical model of a sharp liquid-gas interface, whilst retaining the no-slip condition, resolves the stress and pressure singularities associated with the moving contact line problem while the fluid velocity is well defined (not multi-valued). The moving contact line behaviour is analysed for a general problem relevant for any density dependent dynamic viscosity and volume viscosity, and for general microscopic contact angle and double well free-energy forms. Away from the contact line, analysis of the diffuse-interface model shows that the Navier--Stokes equations and classical interfacial boundary conditions are obtained at leading order in the sharp-interface limit, justifying the creeping flow problem imposed in an intermediate region in the se...

  17. Unified phonon-based approach to the thermodynamics of solid, liquid and gas states (United States)

    Bolmatov, Dima; Zav'yalov, Dmitry; Zhernenkov, Mikhail; Musaev, Edvard T.; Cai, Yong Q.


    We introduce a unified approach to states of matter (solid, liquid and gas) and describe the thermodynamics of the pressure-temperature phase diagram in terms of phonon excitations. We derive the effective Hamiltonian with low-energy cutoff in two transverse phonon polarizations (phononic band gaps) by breaking the symmetry in phonon interactions. Further, we construct the statistical mechanics of states of aggregation employing the Debye approximation. The introduced formalism covers the Debye theory of solids, the phonon theory of liquids, and thermodynamic limits such as the Dulong-Petit thermodynamic limit (cV = 3kB), the ideal gas limit (cV =3/2 kB) and the new thermodynamic limit (cV = 2kB), dubbed here the Frenkel line thermodynamic limit. We discuss the phonon propagation and localization effects in liquids above and below the Frenkel line, and explain the "fast sound" phenomenon. As a test for our theory we calculate velocity-velocity autocorrelation and pair distribution functions within the Green-Kubo formalism. We show the consistency between dynamics of phonons and pair correlations in the framework of the unified approach. New directions towards advancements in phononic band gaps engineering, hypersound manipulation technologies and exploration of exotic behaviour of fluids relevant to geo- and planetary sciences are discussed. The presented results are equally important both for practical implications and for fundamental research.

  18. Interactions of nickel/zirconia solid oxide fuel cell anodes with coal gas containing arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, C.A.; Marina, O.A.; Thomsen, E.C.; Edwards, D.J.; Cramer, C.D.; Coffey, G.W.; Pederson, L.R. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)


    The performance of anode-supported and electrolyte-supported solid oxide fuel cells was investigated in synthetic coal gas containing 0-10 ppm arsenic at 700-800 C. Arsenic was found to interact strongly with nickel, resulting in the formation of nickel-arsenic solid solution, Ni{sub 5}As{sub 2} and Ni{sub 11}As{sub 8}, depending on temperature, arsenic concentration, and reaction time. For anode-supported cells, loss of electrical connectivity in the anode support was the principal mode of degradation, as nickel was converted to nickel arsenide phases that migrated to the surface to form large grains. Cell failure occurred well before the entire anode was converted to nickel arsenide, and followed a reciprocal square root of arsenic partial pressure dependence that is consistent with a diffusion-based rate-limiting step. Failure occurred more quickly with electrolyte-supported cells, which have a substantially smaller nickel inventory. For these cells, time to failure varied linearly with the reciprocal arsenic concentration. Failure occurred when arsenic reached the anode/electrolyte interface, though agglomeration of nickel reaction products may have also contributed. Test performed with nickel/zirconia coupons showed that arsenic was essentially completely captured in a narrow band near the fuel gas inlet. Arsenic concentrations of {proportional_to}10 ppb or less are estimated to result in acceptable rates of fuel cell degradation. (author)

  19. High pressure operation of tubular solid oxide fuel cells and their intergration with gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, C.; Wepfer, W.J. [Georgia Institute of Technology, Atlanta, GA (United States)


    Fossil fuels continue to be used at a rate greater than that of their natural formation, and the current byproducts from their use are believed to have a detrimental effect on the environment (e.g. global warming). There is thus a significant impetus to have cleaner, more efficient fuel consumption alternatives. Recent progress has led to renewed vigor in the development of fuel cell technology, which has been shown to be capable of producing high efficiencies with relatively benign exhaust products. The tubular solid oxide fuel cell developed by Westinghouse Electric Corporation has shown significant promise. Modeling efforts have been and are underway to optimize and better understand this fuel cell technology. Thus far, the bulk of modeling efforts has been for operation at atmospheric pressure. There is now interest in developing high-efficiency integrated gas turbine/solid oxide fuel cell systems. Such operation of fuel cells would obviously occur at higher pressures. The fuel cells have been successfully modeled under high pressure operation and further investigated as integrated components of an open loop gas turbine cycle.

  20. Contribution to the modelling of gas-solid reactions and reactors; Contribution a la modelisation des reactions et des reacteurs gaz-solide

    Energy Technology Data Exchange (ETDEWEB)

    Patisson, F


    Gas-solid reactions control a great number of major industrial processes involving matter transformation. This dissertation aims at showing that mathematical modelling is a useful tool for both understanding phenomena and optimising processes. First, the physical processes associated with a gas-solid reaction are presented in detail for a single particle, together with the corresponding available kinetic grain models. A second part is devoted to the modelling of multiparticle reactors. Different approaches, notably for coupling grain models and reactor models, are illustrated through various case studies: coal pyrolysis in a rotary kiln, production of uranium tetrafluoride in a moving bed furnace, on-grate incineration of municipal solid wastes, thermogravimetric apparatus, nuclear fuel making, steel-making electric arc furnace. (author)

  1. Radiological and Nuclear Detection Material Science: Novel Rare-Earth Semiconductors for Solid-State Neutron Detectors and Thin High-k Dielectrics (United States)


    advanced materials, furthers our basic collective understanding in solid state neutron detector materials. The new materials directions have great promise...Lanthanum Amido Precursors”, Materials Chemistry and Physics 104 (2007) 220-224 10. Ihor Ketsman, Ya. B. Losovyj, A. Sokolov, Jinke Tang, Zhenjun Wang, M...and P.A. Dowben, “Surface charging of n-type Gd2O3 and HfO2 thin films”, Rare-Earth Doping of Advanced Materials for Photonic Applications, edited by

  2. Interaction of coal-derived synthesis gas impurities with solid oxide fuel cell metallic components

    Energy Technology Data Exchange (ETDEWEB)

    Marina, Olga A.; Coyle, Christopher A.; Edwards, Danny J.; Chou, Yeong-Shyung; Cramer, Carolyn N. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Pederson, Larry R. [North Dakota State University, Fargo, ND 58102 (United States)


    Oxidation-resistant alloys find use as interconnect materials, heat exchangers, and gas supply tubing in solid oxide fuel cell (SOFC) systems, especially when operated at temperatures below {proportional_to}800 C. If fueled with synthesis gas derived from coal or biomass, such metallic components could be exposed to impurities contained in those fuel sources. In this study, coupons of ferritic stainless steels Crofer 22 APU and SS 441, austenitic nickel-chromium superalloy Inconel 600, and an alumina-forming high nickel alloy alumel were exposed to synthesis gas containing {<=}2 ppm phosphorus, arsenic and antimony, and reaction products were tested. Crofer 22 APU coupons coated with a (Mn,Co){sub 3}O{sub 4} protective layer were also evaluated. Phosphorus was found to be the most reactive. On Crofer 22 APU, the (Mn,Cr){sub 3}O{sub 4} passivation layer reacted to form an Mn-P-O product, predicted to be manganese phosphate from thermochemical calculations, and Cr{sub 2}O{sub 3}. On SS 441, reaction of phosphorus with (Mn,Cr){sub 3}O{sub 4} led to the formation of manganese phosphate as well as an Fe-P product, predicted from thermochemical calculations to be Fe{sub 3}P. Minimal interactions with antimony or arsenic in synthesis gas were limited to Fe-Sb and Fe-As solid solution formation. Though not intended for use on the anode side, a (Mn,Co){sub 3}O{sub 4} spinel coating on Crofer 22 APU reacted with phosphorus in synthesis gas to produce products consistent with Mn{sub 3}(PO{sub 4}){sub 2} and Co{sub 2}P. A thin Cr{sub 2}O{sub 3} passivation layer on Inconel 600 did not prevent the formation of nickel phosphides and arsenides and of iron phosphides and arsenides, though no reaction with Cr{sub 2}O{sub 3} was apparent. On alumel, an Al{sub 2}O{sub 3} passivation layer rich in Ni did not prevent the formation of nickel phosphides, arsenides, and antimonides, though no reaction with Al{sub 2}O{sub 3} occurred. This work shows that unprotected metallic components of

  3. Migration of radionuclides in a gas cooled solid state spallation target

    Energy Technology Data Exchange (ETDEWEB)

    Jørgensen, Thomas; Severin, Gregory; Jensen, Mikael, E-mail:


    Highlights: • We have investigated diffusion of (primarily) tritium in solid tungsten. • We have used an analytical and a numerical approach. • The temperature of tungsten changes with a short-term pulse driven proton beam. • The time structure of the temperature has a negligible impact on the diffusion. • Radioactive release at the surface can be found by solving the differential equation. - Abstract: The current design of the ESS (European Spallation Source) program proposes a rotating solid tungsten target cooled by helium gas and a pulsed beam of protons. For safety reasons any design has to address whether or not the induced radionuclidic isotopes in the target migrate. In this paper we have investigated the diffusion of (primarily) tritium in solid tungsten to see if a pulse driven short-term variation in temperature (temperature peaks separated by one turn of the wheel (2.36 s)) could possibly give rise to wave-like migration of the radionuclides, possibly accelerating the overall release. In order to calculate the diffusion in the solid tungsten target two approaches have been used. One neglecting the time structure of the beam and thermal cycling of the target, and one numerical, discrete time step simulation to capture the effects of the thermal cycling on the diffusion behavior. We found that the time structure of the of the temperature has a negligible impact on the diffusion, and that the radioactive release at the surface can be calculated safely by solving the differential equation (Fick's law) using an appropriate temperature to calculate the diffusion constant.

  4. Fixing arsenic contained in a gas phase using solid hematite; Fijacion de arsenico en fase gas con hematita solida

    Energy Technology Data Exchange (ETDEWEB)

    Balladares, E.; Gonzalez, A.; Rarra, R.; Sanchez, M.


    Feasibility to obtain ferric arsenate starting from arsenic containing gas in contact with Fe{sub 3}O{sub 3} has been studied. Thermodynamic stability of the system Fe-As-O was analysed in order to verify conditions to form Fe{sub x}As{sub y}O{sub z} type compounds. Experiments were made using a hematite sample suspended in a thermogravimetric device. As{sub 4}O{sub 6} was generated starting from solid As{sub 2}O{sub 3} which was circulating through the iron oxide. Final samples were analysed chemically and by means of DRX, verifying the formation of FeAsO{sub 4}, FeAsO{sub 4}.2h{sub 2}O and FeAsO{sub 4}.(H{sub 2}O){sub 2} in small quantities. Tests in porous bed and pellets were carried out, studying the effect of: porosity, temperature and oxygen potential. The largest conversion obtained was 10% at 800 degree centigree, pO{sub 2}=50% and porosity=0.883. (Author) 9 refs.

  5. Reversible Poisoning of the Nickel/Zirconia Solid Oxide Fuel Cell Anodes by Hydrogen Chloride in Coal Gas

    Energy Technology Data Exchange (ETDEWEB)

    Marina, Olga A.; Pederson, Larry R.; Thomsen, Edwin C.; Coyle, Christopher A.; Yoon, Kyung J.


    The performance of anode-supported solid oxide fuel cells (SOFC) was evaluated in synthetic coal gas containing HCl in the temperature range 650 to 850oC. Exposure to up to 800 ppm HCl resulted in reversible poisoning of the Ni/zirconia anode by chlorine species adsorption, the magnitude of which decreased with increased temperature. Performance losses increased with the concentration of HCl to ~100 ppm, above which losses were insensitive to HCl concentration. Cell voltage had no effect on poisoning. No evidence was found for long-term degradation that can be attributed to HCl exposure. Similarly, no evidence of microstructural changes or formation of new solid phases as a result of HCl exposure was found. From thermodynamic calculations, solid nickel chloride phase formation was shown to be highly unlikely in coal gas. Further, the presence of HCl at even the highest anticipated concentrations in coal gas would minimally increase the volatility of nickel.

  6. Experimental correlation of gas-liquid-solid mass transfer coefficient in a stirred tank using response surface methodology (United States)

    Zhang, Xin; Duan, Xili; Gao, Zhengming


    In this paper, the three-phase (gas-liquid-solid) system in a stirred tank is experimentally studied. The response surface methodology (RSM) is used to analyze the three phase mass transfer coefficient under different conditions, i.e., rotation speeds (8, 10, and 12 s-1), volumetric solid content fractions (0, 6 and 12%), gas flow rates (6, 8, and 10 m3 h-1) and temperatures (40, 54, and 68 °C). With the RSM, it was found that all of these four operational parameters are significant in affecting the mass transfer coefficient, with the rotation speed being the most significant one. A new correlation is developed with a quadratic term for solid content fraction, indicating that there is a minimum value of mass transfer coefficient at a certain solid content fraction. Compared with traditional experimental design and correlation methods, the RSM in this study reduces experiment time and provides a better correlation to predict the mass transfer coefficient.

  7. Direct gas-solid carbonation kinetics of steel slag and the contribution to in situ sequestration of flue gas CO(2) in steel-making plants. (United States)

    Tian, Sicong; Jiang, Jianguo; Chen, Xuejing; Yan, Feng; Li, Kaimin


    Direct gas-solid carbonation of steel slag under various operational conditions was investigated to determine the sequestration of the flue gas CO2 . X-ray diffraction analysis of steel slag revealed the existence of portlandite, which provided a maximum theoretical CO2 sequestration potential of 159.4 kg CO 2 tslag (-1) as calculated by the reference intensity ratio method. The carbonation reaction occurred through a fast kinetically controlled stage with an activation energy of 21.29 kJ mol(-1) , followed by 10(3) orders of magnitude slower diffusion-controlled stage with an activation energy of 49.54 kJ mol(-1) , which could be represented by a first-order reaction kinetic equation and the Ginstling equation, respectively. Temperature, CO2 concentration, and the presence of SO2 impacted on the carbonation conversion of steel slag through their direct and definite influence on the rate constants. Temperature was the most important factor influencing the direct gas-solid carbonation of steel slag in terms of both the carbonation conversion and reaction rate. CO2 concentration had a definite influence on the carbonation rate during the kinetically controlled stage, and the presence of SO2 at typical flue gas concentrations enhanced the direct gas-solid carbonation of steel slag. Carbonation conversions between 49.5 % and 55.5 % were achieved in a typical flue gas at 600 °C, with the maximum CO2 sequestration amount generating 88.5 kg CO 2 tslag (-1) . Direct gas-solid carbonation of steel slag showed a rapid CO2 sequestration rate, high CO2 sequestration amounts, low raw-material costs, and a large potential for waste heat utilization, which is promising for in situ carbon capture and sequestration in the steel industry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Glass bottle sampling solid phase microextraction gas chromatography mass spectrometry for breath analysis of drug metabolites. (United States)

    Lu, Yan; Niu, Wenqi; Zou, Xue; Shen, Chengyin; Xia, Lei; Huang, Chaoqun; Wang, Hongzhi; Jiang, Haihe; Chu, Yannan


    Breath analysis is a non-invasive approach which may be applied to disease diagnosis and pharmacokinetic study. In the case of offline analysis, the exhaled gas needs to be collected and the sampling bag is often used as the storage vessel. However, the sampling bag usually releases some extra compounds, which may interfere with the result of the breath test. In this study, a novel breath sampling glass bottle was developed with a syringe needle sampling port for solid phase microextraction (SPME). Such a glass bottle scarcely liberates compounds and can be used to collect exhaled gas for ensuing analysis by gas chromatography-mass spectrometry (GC-MS). The glass bottle sampling SPME-GC-MS analysis was carried out to investigate the breath metabolites of myrtol, a multicompound drug normally used in the treatment of bronchitis and sinusitis. Four compounds, α-pinene, 2,3-dehydro-1,8-cineole, d-limonene and 1,8-cineole were found in the exhaled breath of all eight volunteers who had taken the myrtol. While for other ten subjects who had not used the myrtol, these compounds were undetectable. In the SPME-GC-MS analysis of the headspace of myrtol, three compounds were detected including α-pinene, d-limonene and 1,8-cineole. Comparing the results of breath and headspace analysis, it indicates that 2,3-dehydro-1,8-cineole in the breath is the metabolite of 1,8-cineole. It is the first time that this metabolite was identified in human breath. The study demonstrates that the glass bottle sampling SPME-GC-MS method is applicable to exhaled gas analysis including breath metabolites investigation of drugs like myrtol. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Experimental study on flow behavior in a gas-solid fluidized bed for the methanol-to-olefins process

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.; Li, T.; Fang, D.Y. [Engineering Research Center of Large Scale Reactor Engineering and Technology, East China University of Science and Technology, Shanghai (China); Sun, Q.W. [State Key Laboratory of Coal Liquefaction and Coal Chemical Technology, Shanghai (China); Ying, W.Y.


    A cold model experimental system is established to investigate the flow behavior in a gas-solid fluidized bed for the methanol-to-olefins process catalyzed by SAPO-34. The system comprises a gas distributor in a F 300 x 5000 mm acrylic column, double fiber optic probe system and a series of cyclones. The experiments are carried out under conditions of atmospheric pressure and room temperature with different superficial velocities (0.3930-0.7860 m s{sup -1}) and different initial bed heights (600-1200 mm). The effects of radial distance, axial distance, superficial gas velocity, and initial bed height on the solid concentration and particle velocity in the bed are discussed. The time-averaged solid concentration and rising particle velocity profiles under different conditions are obtained. The results show that an increase in the value of r/R or initial bed height results in an increase in the solid concentration but a decrease in the rising particle velocity in the dense phase area, while improvement of the superficial gas velocity has a negative influence on the solid concentration but results in an increase in the rising particle velocity. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  10. Harsh-Environment Solid-State Gamma Detector for Down-hole Gas and Oil Exploration

    Energy Technology Data Exchange (ETDEWEB)

    Peter Sandvik; Stanislav Soloviev; Emad Andarawis; Ho-Young Cha; Jim Rose; Kevin Durocher; Robert Lyons; Bob Pieciuk; Jim Williams; David O' Connor


    The goal of this program was to develop a revolutionary solid-state gamma-ray detector suitable for use in down-hole gas and oil exploration. This advanced detector would employ wide-bandgap semiconductor technology to extend the gamma sensor's temperature capability up to 200 C as well as extended reliability, which significantly exceeds current designs based on photomultiplier tubes. In Phase II, project tasks were focused on optimization of the final APD design, growing and characterizing the full scintillator crystals of the selected composition, arranging the APD device packaging, developing the needed optical coupling between scintillator and APD, and characterizing the combined elements as a full detector system preparing for commercialization. What follows is a summary report from the second 18-month phase of this program.

  11. Energy recuperation in solid oxide fuel cell (SOFC) and gas turbine (GT) combined system (United States)

    Kuchonthara, Prapan; Bhattacharya, Sankar; Tsutsumi, Atsushi

    A combined power generation system consisting of a solid oxide fuel cell (SOFC) and a gas turbine (GT) with steam and heat recuperation (HR) was evaluated using a commercial process simulation tool, ASPEN Plus. The effect of steam recuperation (SR) on the overall efficiency of the combined system was investigated by comparing the SOFC-GT during heat and steam recuperation (HSR) against the system during only heat recuperation. At low turbine inlet temperatures (TITs), the overall efficiency of the SOFC-GT combined system with heat and steam recuperation improved by showing an increase in TIT and a reduction in pressure ratio (PR). On the other hand, at high TITs, the opposite trend was observed. The integration of steam recuperation was found to improve the overall efficiency and specific power of SOFC-GT combined systems with a relatively compact SOFC component.

  12. Headspace Solid Phase Micro Extraction Gas Chromatographic Determination of Fenthion in Human Serum

    Directory of Open Access Journals (Sweden)

    Kyriaki Machera


    Full Text Available A simple and effective analytical procedure was developed for the determination of fenthion residues in human serum samples. The sample treatment was performed using the headspace solid-phase micro extraction with polyacrylate fiber, which has the advantage to require low amount of serum (1 mL without tedious pre-treatment. The quantification of fenthion was carried out by gas chromatography-mass spectrometry and the recoveries ranged from 79 to 104% at two spiking levels for 6 replicates. Detection and quantification limits were calculated as 1.51 and 4.54 ng/mL of serum respectively. Two fenthion metabolites − fenoxon and fenthion–sulfoxide − were also identified.

  13. Time series analysis of pressure fluctuation in gas-solid fluidized beds

    Directory of Open Access Journals (Sweden)

    C. Alberto S. Felipe


    Full Text Available The purpose of the present work was to study the differentiation of states of typical fluidization (single bubble, multiple bubble and slugging in a gas-solid fluidized bed, using spectral analysis of pressure fluctuation time series. The effects of the method of measuring (differential and absolute pressure fluctuations and the axial position of the probes in the fluidization column on the identification of each of the regimes studied were evaluated. Fast Fourier Transform (FFT was the mathematic tool used to analysing the data of pressure fluctuations, which expresses the behavior of a time series in the frequency domain. Results indicated that the plenum chamber was a place for reliable measurement and that care should be taken in measurement in the dense phase. The method allowed fluid dynamic regimes to be differentiated by their dominant frequency characteristics.

  14. Analytical flow/thermal modeling of combustion gas flows in Redesigned Solid Rocket Motor test joints (United States)

    Woods, G. H.; Knox, E. C.; Pond, J. E.; Bacchus, D. L.; Hengel, J. E.


    A one-dimensional analytical tool, TOPAZ (Transient One-dimensional Pipe flow AnalyZer), was used to model the flow characteristics of hot combustion gases through Redesigned Solid Rocket Motor (RSRM) joints and to compute the resultant material surface temperatures and o-ring seal erosion of the joints. The capabilities of the analytical tool were validated with test data during the Seventy Pound Charge (SPC) motor test program. The predicted RSRM joint thermal response to ignition transients was compared with test data for full-scale motor tests. The one-dimensional analyzer is found to be an effective tool for simulating combustion gas flows in RSRM joints and for predicting flow and thermal properties.

  15. [Determination of organophosphorous pesticide residues in red wine by solid phase microextraction-gas chromatography]. (United States)

    Hu, Yuan; Liu, Wenmin; Zhou, Yanming; Guan, Yafeng


    A method for the determination of 12 organophosphorus pesticide residues (OPs) in red wine by fiber solid phase microextraction (SPME) coupled with gas chromatography (GC) was developed and validated. The SPME phase was prepared by sol-gel technology of physical incorporation. The extraction conditions were optimized with the results of stirring rate of 1,250 r/min, NaCl mass concentration of 150 g/L, and extraction time of 30 min. With the sample volume of 25 mL, the relative standard deviations (RSD) of peak areas for most of OPs were below 5%, and the detection limits of OPs were in the range of 5 ng/L-0.38 microg/L. It can be seen from the results that this method has the potential to analyze OPs in other beverages and soft drinking materials.

  16. Pilot scale experiments of magnesia hydration under gas-liquid-solid (three-phase) reaction system (United States)

    Tang, Xiaojia; Lv, Qiwei; Yin, Lin; Nie, Yixing; Jin, Qi; Ji, Yangyuan; Zhu, Yimin


    Pilot scale experiments were conducted to prepare magnesium hydroxide by magnesia hydration under gas-liquid-solid (three-phase) reaction system. The effect of reaction pressure, reactivity and particle size of magnesia and the concentration of the pulp on the degree of hydration was investigated. The results indicated that the hydration reaction occurred at the first 30min mainly. During the set reaction condition, degree of hydration of 68% could be obtained at the reaction pressure of 0.2MPa, concentration of pulp of 5%w/w with high reactivity and fine powder. The promotion effect on the degree of hydration caused by the three-phase reaction system was mostly attributed to the exfoliation of steam.

  17. Toluene vapor capture by activated carbon particles in a dual gas-solid cyclone system. (United States)

    Lim, Yun Hui; Ngo, Khanh Quoc; Park, Young Koo; Jo, Young Min


    Capturing of odorous compounds such as toluene vapor by a particulate-activated carbon adsorbent was investigated in a gas-solid cyclone, which is one type of mobile beds. The test cyclone was early modified with the post cyclone (PoC) and a spiral flow guide to the vortex finder. The proposed process may contribute to the reduction of gases and dust from industrial exhausts, especially when dealing with a low concentration of odorous elements and a large volume ofdust flow. In this device, the toluene capturing efficiency at a 400 ppm concentration rose up to 77.4% when using activated carbon (AC) particles with a median size of 27.03 microm. A maximum 96% of AC particles could be collected for reuse depending on the size and flow rate. The AC regenerated via thermal treatment showed an adsorption potential up to 66.7% throughout repeated tests.

  18. Determination of oxadiazon residues by headspace solid-phase microextraction and gas chromatography-mass spectrometry. (United States)

    Navalón, Alberto; Prieto, Avismelsi; Araujo, Lilia; Vílchez, José Luis


    A method for the determination of trace amounts of the herbicide oxadiazon was developed using headspace solid-phase microextraction (HS-SPME), gas chromatography-mass spectrometry (GC-MS) and selected ion monitoring. It was applied to determine oxadiazon in ground water, agricultural soil, must, wine and human urine samples. To determine oxadiazon in liquid samples, a response surface methodology generated with a Doehlert design was applied to optimize the HS-SPME conditions using a 100 microm polydimethylsiloxane fibre. For the analysis of soil samples, they were mixed with water and the SPME fibre suspended in the headspace above the slurry. Ground water, human urine and must show linear concentration range of application of 0.5-50 ng ml(-1)' with detection limits matrix samples. The developed analytical procedure is solvent free, cost effective and fast.

  19. Dry Scrubbing of Aluminum Cell Gases: Design and Operating Characteristics of a Novel Gas/Solids Reactor (United States)

    Lamb, W. D.; Reeve, Martin R.; Dethloff, F. H.; Leinum, Magne


    Engineering details of a pilot plant reactor are described. It comprises a vertical cylindrical vessel with a tangential bottom gas entry. Countercurrent spiraling gas-solids flow is achieved. Reacted solids can be withdrawn from the bottom or the top using a rising axial gas jet. The reactor was evaluated by testing in a dry scrubber system treating 14,000 m3/h of gas from prebake cells. At inlet concentrations of 30-60 mg/m3 it achieved 99.5% scrubbing efficiency with aluminas of a surface area of 45-80 m2/g at feed rates considerably less than cell requirements. Potential benefits are: 1) control of metal purity by segregation of scrubber catch to selected cells, 2) scrubbing high HF inlet concentrations at full feed rate, and 3) meeting more stringent working environment and stack emission requirements.

  20. Flame Retardancy of Sorbitol Based Bioepoxy via Combined Solid and Gas Phase Action

    Directory of Open Access Journals (Sweden)

    Beáta Szolnoki


    Full Text Available Flame-retarded bioepoxy resins were prepared with the application of commercially available sorbitol polyglycidyl ether (SPE. The additive-type flame retardancy of the cycloaliphatic amine-cured SPE was investigated. Three-percent phosphorus (P-containing samples were prepared with the application of the liquid resorcinol bis(diphenyl phosphate (RDP, the solid ammonium polyphosphate (APP, and by combining them. Synergistic effect was found between the inorganic APP and the organophosphorus RDP, when applied in combination: formulations applying RDP or APP alone showed increased limiting oxygen index (LOI values, however, their UL-94 standard ratings remained HB. When the same amount of P originated from the two additives, V-0, self-extinguishing rating and LOI value of 34% (v/v was reached. By the combined approach the heat release rate of SPE could be lowered by approximately 60%. The assumed balanced solid and gas phase mechanism was confirmed by thermogravimetric analysis, Fourier transform infrared spectrometry (FTIR analysis (of the gases formed during laser pyrolysis, attenuated total reflection-infrared spectrometry (ATR-IR analysis (of the charred residues, as well as by mechanical testing (of the char obtained after combustion.

  1. Reversible solid oxide fuel cell for natural gas/renewable hybrid power generation systems (United States)

    Luo, Yu; Shi, Yixiang; Zheng, Yi; Cai, Ningsheng


    Renewable energy (RE) is expected to be the major part of the future energy. Presently, the intermittence and fluctuation of RE lead to the limitation of its penetration. Reversible solid oxide fuel cell (RSOFC) as the energy storage device can effectively store the renewable energy and build a bidirectional connection with natural gas (NG). In this paper, the energy storage strategy was designed to improve the RE penetration and dynamic operation stability in a distributed system coupling wind generators, internal combustion engine, RSOFC and lithium-ion batteries. By compromising the relative deviation of power supply and demand, RE penetration, system efficiency and capacity requirement, the strategy that no more than 36% of the maximum wind power output is directly supplied to users and the other is stored by the combination of battery and reversible solid oxide fuel cell is optimal for the distributed system. In the case, the RE penetration reached 56.9% and the system efficiency reached 55.2%. The maximum relative deviation of power supply and demand is also lower than 4%, which is significantly superior to that in the wind curtailment case.

  2. Investigation on dynamic calibration for an optical-fiber solids concentration probe in gas-solid two-phase flows. (United States)

    Xu, Guiling; Liang, Cai; Chen, Xiaoping; Liu, Daoyin; Xu, Pan; Shen, Liu; Zhao, Changsui


    This paper presents a review and analysis of the research that has been carried out on dynamic calibration for optical-fiber solids concentration probes. An introduction to the optical-fiber solids concentration probe was given. Different calibration methods of optical-fiber solids concentration probes reported in the literature were reviewed. In addition, a reflection-type optical-fiber solids concentration probe was uniquely calibrated at nearly full range of the solids concentration from 0 to packed bed concentration. The effects of particle properties (particle size, sphericity and color) on the calibration results were comprehensively investigated. The results show that the output voltage has a tendency to increase with the decreasing particle size, and the effect of particle color on calibration result is more predominant than that of sphericity.

  3. Investigation on Dynamic Calibration for an Optical-Fiber Solids Concentration Probe in Gas-Solid Two-Phase Flows

    Directory of Open Access Journals (Sweden)

    Changsui Zhao


    Full Text Available This paper presents a review and analysis of the research that has been carried out on dynamic calibration for optical-fiber solids concentration probes. An introduction to the optical-fiber solids concentration probe was given. Different calibration methods of optical-fiber solids concentration probes reported in the literature were reviewed. In addition, a reflection-type optical-fiber solids concentration probe was uniquely calibrated at nearly full range of the solids concentration from 0 to packed bed concentration. The effects of particle properties (particle size, sphericity and color on the calibration results were comprehensively investigated. The results show that the output voltage has a tendency to increase with the decreasing particle size, and the effect of particle color on calibration result is more predominant than that of sphericity.

  4. Kinetics of thermochemical gas-solid reactions important in the Venus sulfur cycle (United States)

    Fegley, Bruce, Jr.


    The thermochemical net reaction CaCO3 + SO2 yields CaSO4 + CO is predicted to be an important sink for incorporation of SO2 into the Venus crust. The reaction rate law was established to understand the dependence of rate on experimental variables such as temperature and partial pressure of SO2, CO2, and O2. The experimental approach was a variant of the thermogravimetric method often employed to study the kinetics of thermochemical gas-solid reactions. Clear calcite crystals were heated at constant temperature in SO2-bearing gas streams for varying time periods. Reaction rate was determined by three independent methods. A weighted linear least squares fit to all rate data yielded a rate equation. Based on the Venera 13, 14 and Vega 2 observations of CaO content of the Venus atmosphere, SO2 at the calculated rate would be removed from the Venus atmosphere in about 1,900,00 years. The most plausible endogenic source of the sulfur needed to replenish atmospheric SO2 is volcanism. The annual amount of erupted material needed for the replenishment depends on sulfur content; three ratios are used to calculate rates ranging from 0.4 to 11 cu km/year. This geochemically derived volcanism rate can be used to test if geophysically derived rates are correct. The work also suggests that Venus is less volcanically active than the Earth.

  5. Solid-phase microextraction may catalize hydrogenation when using hydrogen as carrier in gas chromatography. (United States)

    Fiorini, D; Boarelli, M C


    When hydrogen is used as carrier gas, carbon-carbon double bonds may be hydrogenated in the hot gas chromatograph (GC) injector if introduced by solid-phase microextraction (SPME). SPME fibers coated with polydimethylsiloxane (PDMS)/carboxen/divinylbenzene (DVB), PDMS/carboxen, polyacrylate, PDMS/DVB and PDMS on fused silica, stableflex or metal alloy core have been tested with fatty acid methyl esters (FAMEs) from olive oil. Using coatings containing DVB, hydrogenation took place with high conversion rates (82.0-92.9%) independently of the core material. With all fibers having a metal core, hydrogenation was observed to a certain extent (27.4-85.3%). PDMS, PDMS/carboxen and polyacrylate coated fibers with a fused silica or stableflex core resulted in negligible hydrogenation (0.2-2.5%). The occurrence of hydrogenation was confirmed also with other substances containing carbon-carbon double bonds (n-alkenes, alkenoic acids, mono- and polyunsaturated fatty acid methyl and ethyl esters). Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Modelling of simple hybrid solid oxide fuel cell and gas turbine power plant (United States)

    Chan, S. H.; Ho, H. K.; Tian, Y.

    This paper presents the work on a simple, natural gas-fed, hybrid solid oxide fuel cell-gas turbine (SOFC-GT) power-generation system. The system consists of an internal-reforming SOFC (IRSOFC) stack, a combustor, a GT, two compressors and three recuperators. Two case studies are conducted with particular attention on the effects of operating pressure and fuel flow-rate on the performance of the components and overall system. Results show that an internal-reforming hybrid SOFC-GT system can achieve an electrical efficiency of more than 60% and a system efficiency (including waste heat recovery for co-generation) of more than 80%. It is also found that increasing the operating pressure will improve the system efficiency, whereas increasing the fuel flow-rate (while keeping the fuel utilisation rate unchanged) causes the system efficiency to decrease. In the latter case, the increase in system fuel consumption is relatively higher which removes the benefit of increase in SOFC stack and turbine power output.

  7. Oxysterols in cosmetics-Determination by planar solid phase extraction and gas chromatography-mass spectrometry. (United States)

    Schrack, S; Hohl, C; Schwack, W


    Sterol oxidation products (SOPs) are linked to several toxicological effects. Therefore, investigation of potential dietary uptake sources particularly food of animal origin has been a key issue for these compounds. For the simultaneous determination of oxysterols from cholesterol, phytosterols, dihydrolanosterol and lanosterol in complex cosmetic matrices, planar solid phase extraction (pSPE) was applied as clean-up tool. SOPs were first separated from more non-polar and polar matrix constituents by normal phase thin-layer chromatography and then focussed into one target zone. Zone extraction was performed with the TLC-MS interface, followed by gas chromatography-mass spectrometry analysis. pSPE showed to be effective for cleaning up cosmetic samples as sample extracts were free of interferences, and gas chromatographic columns did not show any signs of overloading. Recoveries were between 86 and 113% with relative standard deviations of below 10% (n=6). Results of our market survey in 2016 showed that some cosmetics with ingredients of plant origin contained phytosterol oxidation products (POPs) in the low ppm range and therefore in line with levels reported for food. In lanolin containing products, total SOPs levels (cholesterol oxidation products (COPs), lanosterol oxidation products (LOPs), dihydrolanosterol oxidation products (DOPs)) being in the low percent range exceeded reported levels for food by several orders of magnitudes. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Benefits of improved municipal solid waste management on greenhouse gas reduction in Luangprabang, Laos. (United States)

    Vilaysouk, Xaysackda; Babel, Sandhya


    Climate change is a consequence of greenhouse gas emissions. Greenhouse gas (GHG) emissions from the waste sector contribute to 3% of total anthropogenic emissions. In this study, applicable solutions for municipal solid waste (MSW) management in Luangprabang (LPB) and Laos were examined. Material flow analysis of MSW was performed to estimate the amount of MSW generated in 2015. Approximately 29,419 tonnes of MSW is estimated for 2015. Unmanaged landfilling was the main disposal method, while MSW open burning was also practiced to some extent. The International Panel on Climate Change 2006 model and the Atmospheric Brown Clouds Emission Inventory Manual were used to estimate GHG emissions from existing MSW management, and total emissions are 33,889 tonnes/year carbon dioxide-equivalents (CO2-eq). Three scenarios were developed in order to reduce GHG emissions and environmental problems. Improvement of the MSW management by expanding MSW collection services, introducing composting and recycling, and avoiding open burning, can be considered as solutions to overcome the problems for LPB. The lowest GHG emissions are achieved in the scenario where composting and recycling are proposed, with the total GHG emissions reduction by 18,264 tonnes/year CO2-eq.

  9. Effect of cathode gas humidification on performance and durability of Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Hagen, Anke; Liu, Yi-Lin


    The effect of cathode inlet gas humidification was studied on single anode supported Solid Oxide Fuel Cells (SOFC's). The studied cells were Risø 2 G and 2.5 G. The former consists of a LSM:YSZ composite cathode, while the latter consists of a LSCF:CGO composite cathode on a CGO protection layer......-SEM analysis showed clear changes at and around the cathode/electrolyte contact area. In contrast to Risø 2 G cells, a very high tolerance towards humidification of cathode gas air was observed for Risø 2.5 G cells with no detectable effect of humidification even when the humidification was as high as 12.8 mol%...... respectively. A clear effect of humidification was observed for 2 G cells with a fast transient upon humidification followed by an ongoing long term passivation/degradation during humidification. Removal of humidification resulted in a partial regain of the cell voltage prior to humidification...

  10. Well-to-Wheels Analysis of Compressed Natural Gas and Ethanol from Municipal Solid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Uisung [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division


    The amount of municipal solid waste (MSW) generated in the United States was estimated at 254 million wet tons in 2013, and around half of that generated waste was landfilled. There is a huge potential in recovering energy from that waste, since around 60% of landfilled material is biomass-derived waste that has high energy content. In addition, diverting waste for fuel production avoids huge fugitive emissions from landfills, especially uncontrolled CH4 emissions, which are the third largest anthropogenic CH4 source in the United States. Lifecycle analysis (LCA) is typically used to evaluate the environmental impact of alternative fuel production pathways. LCA of transportation fuels is called well-to-wheels (WTW) and covers all stages of the fuel production pathways, from feedstock recovery (well) to vehicle operation (wheels). In this study, the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET®) model developed by Argonne National Laboratory is used to evaluate WTW greenhouse gas (GHG) emissions and fossil fuel consumption of waste-derived fuels. Two waste-to-energy (WTE) pathways have been evaluated – one for compressed natural gas (CNG) production using food waste via anaerobic digestion, and the other for ethanol production from yard trimmings via fermentation processes. Because the fuel production pathways displace current waste management practices (i.e., landfilling waste), we use a marginal approach that considers only the differences in emissions between the counterfactual case and the alternative fuel production case.

  11. Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Technology for Auxiliary Aerospace Power (United States)

    Steffen, Christopher J., Jr.; Freeh, Joshua E.; Larosiliere, Louis M.


    A notional 440 kW auxiliary power unit has been developed for 300 passenger commercial transport aircraft in 2015AD. A hybrid engine using solid-oxide fuel cell stacks and a gas turbine bottoming cycle has been considered. Steady-state performance analysis during cruise operation has been presented. Trades between performance efficiency and system mass were conducted with system specific energy as the discriminator. Fuel cell performance was examined with an area specific resistance. The ratio of fuel cell versus turbine power was explored through variable fuel utilization. Area specific resistance, fuel utilization, and mission length had interacting effects upon system specific energy. During cruise operation, the simple cycle fuel cell/gas turbine hybrid was not able to outperform current turbine-driven generators for system specific energy, despite a significant improvement in system efficiency. This was due in part to the increased mass of the hybrid engine, and the increased water flow required for on-board fuel reformation. Two planar, anode-supported cell design concepts were considered. Designs that seek to minimize the metallic interconnect layer mass were seen to have a large effect upon the system mass estimates.


    Directory of Open Access Journals (Sweden)

    Aisyah Endah Palupi


    Full Text Available Abstract: Hydrodynamics characteristic for the mixing of gas-solid-liquid in membrane bioreactor submerged (MBRs and its influence on mass transfer was studied computationally at various solid concentration, incoming gas rate, and the baffle distance. Computational method was conducted by using software GAMBIT 2.1.6. for the making of the grid which represents the calculation domain and conduct the simulation using CFD software FLUENT commercial code 6.2.16. Multiphase flow in reactor was simulated with mixture model, while to model the turbulence characteristic of the flow standard k-ε model was used. The geometrical system investigate is bioreactor in the form of box with flat bottom, 2 baffles, submerged membrane and air passage through the reactor bottom. The membrane type used is hollow fiber, the liquid used is water, and the solid is activated sludge, and air acts as gas phase. The result indicates that closer the baffle to the membrane, the liquid dispersion process goes faster, so that fluid in tank can be mixed perfectly and it can increase the gas-liquid mass transfer rate and the flux at MBRs. The increase of the solid concentration does not significantly affect the change of gas-liquid mass transfer rate and flux through the membrane, but the increase of air flow rate can accelerate the gas-liquid mass transfer and the flux. The position of baffle 9 cm from tank wall is the best position among the others because the amount of air flow is balanced with the circulating fluid flow. Consider from the solid distribution, double inlet MBRs is better compared to that of single inlet. Flux obtained does not show significant difference. From the both approach of the membrane model, membrane model as porous media give the simulation results closer to the experimental data.

  13. Development of Tandem, Double-Focusing, Electron Impact, Gas Source Mass Spectrometer for Measurement of Rare Double-Substituted Isotoplogues in Geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Young, Edward D. [University of California, Los Angeles, CA (United States)


    This project culminated in construction and delivery of the world’s first large-radius gas-source isotope ratio mass spectrometer that permits unparalleled analyses of the stable isotopic composition of methane gas. The instrument, referred to as the “Panorama” and installed at UCLA in March 2015, can now be used to determine the relative abundances of rare isotopic species of methane that serve as tracers of temperature of formation and/or subsequent processing of gas. With this technology we can begin to delineate different sources and sinks of methane isotopically in ways not possible until now.

  14. Electrical and optical properties of thin indium tin oxide films produced by pulsed laser ablation in oxygen or rare gas atmospheres

    DEFF Research Database (Denmark)

    Thestrup, B.; Schou, Jørgen; Nordskov, A.


    Films of indium tin oxide (ITO) have been produced in different background gases by pulsed laser deposition (PLD). The Films deposited in rare gas atmospheres on room temperature substrates were metallic, electrically conductive, but had poor transmission of visible light. For substrate...

  15. The role of water in the photocatalytic degradation of acetonitrile and toluene in gas-solid and liquid-solid regimes

    Directory of Open Access Journals (Sweden)


    Full Text Available Photocatalytic degradation of acetonitrile and toluene was carried out both in gas-solid and in liquid-solid regimes by using commercial TiO 2 samples (Merck and Degussa P25. The investigation was mainly aimed to study the influence of water present in the reaction environment on the mechanism and degradation rate of two probe molecules. In gas-solid regime, the reacting mixture consisted of toluene or acetonitrile, oxygen, nitrogen, and water vapour. The main degradation product of toluene was CO 2 with small amounts of benzaldehyde. In the presence of water vapour, the activity of TiO 2 Merck remained stable but greatly decreased if water was absent. TiO 2 Degussa P25 continuously deactivated, even in the presence of water vapour. With both catalysts, the photodegradation products of acetonitrile were CO 2 and HCN; the activity was stable and was independent of the presence of water vapour in the reacting mixture. The production of HCN represents a drawback of acetonitrile photocatalytic degradation but the elimination of HCN is not actually a problem. In liquid-solid regime, the main intermediates of toluene photodegradation were p -cresol and benzaldehyde; traces of pyrogallol and benzyl alcohol were also found. Benzoic acid, hydroquinone, and trans, trans muconic acid were detected only when TiO 2 Merck was used. The photodegradation products of acetonitrile were cyanide, cyanate, formate, nitrate, and carbonate ions.

  16. A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tingwen; Zhang, Yongmin


    Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve the 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.

  17. Direct solid-phase microextraction combined with gas and liquid chromatography for the determination of lidocaine in human urine

    NARCIS (Netherlands)

    Koster, E.H M; Hofman, N.S K; de Jong, G.J.

    Solid-phase microextraction (SPME) has been combined with gas chromatography (GC) and liquid chromatography (LC) for the determination of lidocaine in human urine. A polydimethylsiloxane (PDMS) coated fibre was directly immersed into buffered urine. Extraction conditions such as time, pH, ionic

  18. Exergy analysis and optimization of a biomass gasification, solid oxide fuel cell and micro gas turbine hybrid system

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud; Elmegaard, Brian


    A hybrid plant producing combined heat and power (CHP) from biomass by use of a two-stage gasification concept, solid oxide fuel cells (SOFC) and a micro gas turbine was considered for optimization. The hybrid plant represents a sustainable and efficient alternative to conventional decentralized...

  19. Tunable Rare Earth fcu-MOF Platform: Access to Adsorption Kinetics Driven Gas/Vapor Separations via Pore Size Contraction

    KAUST Repository

    Xue, Dongxu


    Reticular chemistry approach was successfully employed to deliberately construct new rare-earth (RE, i.e. Eu3+, Tb3+ and Y3+) fcu metal‒organic frameworks (MOFs) with restricted window apertures. Controlled and selective access to the resultant contracted fcu-MOF pores permits the achievement of the requisite sorbate cut-off ideal for selective adsorption kinetics separation and/or molecular sieving of gases and vapors. Predetermined reaction conditions that permitted the formation in-situ of the 12-connected RE hexanuclear molecular building block (MBB) and the establishment of the RE-fcu-MOF plat-form, especially in the presence of 2-fluorobenzoic acid (2-FBA) as a modulator and a structure directing agent, were used to synthesize isostructural RE-1,4-NDC-fcu-MOFs based on a relatively bulkier 2-connected bridging ligand, namely 1,4-naphthalenedicarboxylate (1,4-NDC). The subsequent RE-1,4-NDC-fcu-MOF structural features, contracted windows/pores and high concentration of open metal sites combined with exceptional hydrothermal and chemical stabilities, yielded nota-ble gas/solvent separation properties, driven mostly by adsorption kinetics as exemplified in this work for n-butane/methane, butanol/methanol and butanol/water pair systems.

  20. Quantum interference as the source of steric asymmetry and parity propensity rules in NO-rare gas inelastic scattering. (United States)

    Gijsbertsen, Arjan; Linnartz, Harold; Taatjes, Craig A; Stolte, Steven


    Rotationally inelastic scattering of rare gas atoms and oriented NO molecules exhibits a remarkable alternation in the sign of steric asymmetry between even and odd changes in rotational quantum number. This effect has also been found in full quantum-mechanical scattering calculations. However, until now no physical picture has been given for the alternation. In this work, a newly developed quasi-quantum treatment (QQT) provides the first demonstration that quantum interferences between different orientations of the repulsive potential (that are present in the oriented wave function) are the source of this alternation. Further, from application of the treatment to collisions of nonoriented molecules, a previously unrecognized propensity rule is derived. The angular dependence of the cross sections for excitation to neighboring rotational states with the same parity is shown to be similar, except for a prefactor. Experimental results are presented to support this rule. Unlike conventional quantum-mechanical (or semiclassical) treatments, QQT requires no summation over the orbital angular momentum quantum number l or integration over the impact parameter b. This eliminates the need to solve large sets of coupled differential equations that couple l and rotational state channels among which interference can occur. The QQT provides a physical interpretation of the scattering amplitude that can be represented by a Legendre moment. Application of the QQT on a simple hard-shell potential leads to near-quantitative agreement with experimental observations.

  1. Tunable Rare Earth fcu-MOF Platform: Access to Adsorption Kinetics Driven Gas/Vapor Separations via Pore Size Contraction. (United States)

    Xue, Dong-Xu; Belmabkhout, Youssef; Shekhah, Osama; Jiang, Hao; Adil, Karim; Cairns, Amy J; Eddaoudi, Mohamed


    Reticular chemistry approach was successfully employed to deliberately construct new rare-earth (RE, i.e., Eu(3+), Tb(3+), and Y(3+)) fcu metal-organic frameworks (MOFs) with restricted window apertures. Controlled and selective access to the resultant contracted fcu-MOF pores permits the achievement of the requisite sorbate cutoff, ideal for selective adsorption kinetics based separation and/or molecular sieving of gases and vapors. Predetermined reaction conditions that permitted the formation in situ of the 12-connected RE hexanuclear molecular building block (MBB) and the establishment of the first RE-fcu-MOF platform, especially in the presence of 2-fluorobenzoic acid (2-FBA) as a modulator and a structure directing agent, were used to synthesize isostructural RE-1,4-NDC-fcu-MOFs based on a relatively bulkier 2-connected bridging ligand, namely 1,4-naphthalenedicarboxylate (1,4-NDC). The subsequent RE-1,4-NDC-fcu-MOF structural features, contracted windows/pores and high concentration of open metal sites combined with exceptional hydrothermal and chemical stabilities, yielded notable gas/solvent separation properties, driven mostly by adsorption kinetics as exemplified in this work for n-butane/methane, butanol/methanol, and butanol/water pair systems.

  2. A battery-operated, stabilized, high-energy pulsed electron gun for the production of rare gas excimers. (United States)

    Barcellan, L; Berto, E; Carugno, G; Galet, G; Galeazzi, G; Borghesani, A F


    We report on the design of a new type of hot-filament electron gun delivering fairly high current (a few hundreds of μ A) at high voltage (up to 100 kV) in continuous or pulsed mode. Its novel features are that the filament is heated by means of a pack of rechargeable batteries floated atop the high-voltage power supply in order to get rid of bulky isolation transformers, and that the filament current and, hence, the electron gun current, is controlled by a feedback circuit including a superluminescent diode decoupled from the high voltage by means of an optical fiber. This electron gun is intended for general purposes, although we have especially developed it to meet the needs of our experiment on the infrared emission spectroscopy of rare gas excimers. Our experiment requires that the charge injection into the sample is pulsed and constant and stable in time. The new electron gun can deliver several tens of nC per pulse of electrons of energy up to 100 keV into the sample cell. The new design also eliminates ripples in the emission current and ensures up to 12 h of stable performance. © 2011 American Institute of Physics

  3. Hydrogen Production from Water by Photolysis, Sonolysis and Sonophotolysis with Solid Solutions of Rare Earth, Gallium and Indium Oxides as Heterogeneous Catalysts

    Directory of Open Access Journals (Sweden)

    Marta Penconi


    Full Text Available In this work, we present the hydrogen production by photolysis, sonolysis and sonophotolysis of water in the presence of newly synthesized solid solutions of rare earth, gallium and indium oxides playing as catalysts. From the experiments of photolysis, we found that the best photocatalyst is the solid solution Y0.8Ga0.2InO3 doped by sulphur atoms. In experiments of sonolysis, we optimized the rate of hydrogen production by changing the amount of water, adding ethanol and tuning the power of our piezoelectric transducer. Finally, we performed sonolysis and sonophotolysis experiments in the presence of S:Y0.8Ga0.2InO3 finding a promising synergistic effect of UV-visible electromagnetic waves and 38 kHz ultrasound waves in producing H2.

  4. Headspace solid-phase microextraction gas chromatography tandem mass spectrometry for the determination of brominated flame retardants in environmental solid samples. (United States)

    Salgado-Petinal, Carmen; Garcia-Chao, Maria; Llompart, Maria; Garcia-Jares, Carmen; Cela, Rafael


    A headspace solid-phase microextraction gas chromatography coupled with tandem mass spectrometry (HSSPME-GC-MS-MS) methodology for determination of brominated flame retardants in sediment and soil samples is presented. To the best of our knowledge, this is the first time that SPME has been applied to analyze polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs) in environmental solid samples. Analyses were performed using 0.5-g solid samples moisturized with 2 mL water, employing a polydimethylsiloxane (PDMS) fiber coating, exposed to the headspace at 100 degrees C for 60 min. Several types of environmental solid samples were included in this study and the extraction efficiency was related to the organic matter content of the sample. Calibration was performed using real samples, and the method showed good linearity over a wide concentration range, precision, and afforded quantitative recoveries. The obtained detection limits were in the sub-ng g(-1) for all the target analytes in both samples. The proposed procedure was applied to several marine and river sediments and soils, some of which were found to contain PBDEs at concentrations in the ng g(-1) level; BDE-47, BDE-100, and BDE-99 were the major congeners detected. The proposed method constitutes a rapid and low-cost alternative for the analysis of the target brominated flame retardants in environmental solid samples, since the clean-up steps, fractionation, and preconcentration of extracts inherent to the classical multi-step solvent extraction procedures are avoided.

  5. Solid-phase analytical derivatization for gas-chromatography-mass-spectrometry-based metabolomics. (United States)

    Takeo, Emi; Sasano, Ryoichi; Shimma, Shuichi; Bamba, Takeshi; Fukusaki, Eiichiro


    A novel derivatization method for gas chromatography/mass spectrometry (GC/MS)-based metabolomics was developed, based on solid-phase analytical derivatization (SPAD) with methoximation followed by trimethylsilylation. This SPAD method realized derivatization on solid phases combining strong anion exchange with strong cation exchange. To omit a sample condensation process, GC/MS injection was performed using a large-volume injection mode. This mode uses a stomach-shaped insert, and enables a large quantity of sample to be vaporized and introduced into the GC/MS system. In the present study, several parameters were investigated for each SPAD step. The optimal derivatization conditions were determined to be 3-min-methoximation with 5 μL of >5% methoxyamine solution, and 10-min-trimethylsilylation with 25 μL of N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA). Derivatized analytes were effectively eluted with 25 μL of n-hexane. The influences of coexisting substances were also investigated. Coexisting saccharides did not significantly affect the derivatization of analytes. Moreover, saccharides were efficiently washed out using 80% (v/v) acetonitrile in water. The influences of coexisting sodium chloride were negated by dilution of the sample solution with water. The developed method enables the derivatization of both anionic and cationic metabolites, and high-throughput sample preparation. The coverage of detectable metabolites for the developed method was similar to that of the conventional method. This is the first report of a SPAD-based human plasma metabolome analysis protocol. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Greenhouse gas emissions from municipal solid waste management in Vientiane, Lao PDR. (United States)

    Babel, Sandhya; Vilaysouk, Xaysackda


    Municipal solid waste (MSW) is one of the major environmental problems throughout the world including in Lao PDR. In Vientiane, due to the lack of a collection service, open burning and illegal dumping are commonly practised. This study aims to estimate the greenhouse gas (GHG) emission from the current situation of MSW management (MSWM) in Vientiane and proposes an alternative solution to reduce the GHG emission and environmental impacts. The 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories (IPCC 2006 model) are used for the estimation of GHG emission from landfill and composting. For the estimation of GHG emission from open burning, the Atmospheric Brown Clouds Emission Inventory Manual (ABC EIM) is used. In Vientiane, a total of 232, 505 tonnes year(-1) of MSW was generated in 2011. Waste generation in Vientiane is 0.69 kg per capita per day, and about 31% of the total MSW generated was directly sent to landfill (71,162 tonnes year(-1)). The total potential GHG emission from the baseline scenario in 2011 was 110,182 tonnes year(-1) CO2-eq, which is 0.15 tonne year(-1) CO2-eq per capita. From the three MSWM scenarios proposed, scenario S3, which includes recycling, composting and landfilling, seems to be an effective solution for dealing with MSW in Vientiane with less air pollution, and is environmentally friendly. The total GHG emission in scenario S3 is reduced to 91,920 tonnes year(-1) CO2-eq (47% reduction), compared with the S1 scenario where all uncollected waste is diverted to landfill. © The Author(s) 2015.

  7. Hydrodynamic boundary conditions for one-component liquid-gas flows on non-isothermal solid substrates

    KAUST Repository

    Xu, Xinpeng


    Recently, liquid-gas flows related to droplets, bubbles, and thin films on solid surfaces with thermal and wettability gradients have attracted widespread attention because of the many physical processes involved and their promising potential applications in biology, chemistry, and industry. Various new physical effects have been discovered at fluid-solid interfaces by experiments and molecular dynamics simulations, e.g., fluid velocity slip, temperature slip (Kapitza resistance), mechanical-thermal cross coupling, etc. There have been various models and theories proposed to explain these experimental and numerical observations. However, to the best of our knowledge,a continuum hydrodynamic model capable of predicting the temperature and velocity profiles of liquid-gas flows on non-isothermal, heterogeneous solid substrates is still absent. The purpose of this work is to construct a continuum model for simulating the liquid-gas flows on solid surfaces that are flat and rigid, and may involve wettability gradients and thermal gradients. This model is able to describe fluid velocity slip, temperature slip, and mechanical-thermal coupling that may occur at fluid-solid interfaces. For this purpose, we first employ the diffuse interface modeling to formulate the hydrodynamic equations for one-component liquid-gas flows in the bulk region. This reproduces the dynamic van der Waals theory of Onuki [Phys. Rev. Lett., 94: 054501, 2005]. We then extendWaldmann\\'s method [Z. Naturforsch. A, 22: 1269-1280, 1967] to formulate the boundary conditions at the fluid-solid interface that match the hydrodynamic equations in the bulk. The effects of the solid surface curvature are also briefly discussed in the appendix. The guiding principles of our model derivation are the conservation laws and the positive definiteness of entropy production together with the Onsager reciprocal relation. The derived model is self-consistent in the sense that the boundary conditions are

  8. Benchmark CCSD-SAPT study of rare gas dimers with comparison to MP-SAPT and DFT-SAPT (United States)

    Shirkov, Leonid; Sladek, Vladimir


    Symmetry-adapted perturbation theory (SAPT) based on coupled cluster approach with single and double excitations (CCSD) treatment of intramonomer electron correlation effects was applied to study rare gas homodimers from He2 to Kr2. The obtained benchmark CCSD-SAPT energies, including cumulant contributions to first order exchange and second-order exchange-induction terms, were then compared to their counterparts found using other methods—MP-SAPT based on many-body Møller-Plesset perturbation theory and DFT-SAPT based on density functional theory. The SAPT terms up to the second-order were calculated with the basis sets close to the complete basis set at the large range of interatomic distances R. It was shown that overestimation of the binding energies De found with DFT-SAPT reported in the work of Shirkov and Makarewicz [J. Chem. Phys. 142, 064102 (2015)] for Ar2 and Kr2 is mostly due to underestimation of the exchange energy Eexch(1 ) when comparing to the CCSD-SAPT benchmark. The CCSD-SAPT potentials were found to give the following values of the dissociation energies D0: 0.0006 cm-1 for He2, 16.71 cm-1 for Ne2, 85.03 cm-1 for Ar2, and 129.81 cm-1 for Kr2, which agree well with the values found from previously reported highly accurate ab initio supermolecular potentials and experimental data. The long-range dispersion coefficients C2n up to n = 6 that give the dispersion energy asymptotically equivalent to its SAPT counterpart were calculated from dynamic multipole polarizabilities at different levels of theory.

  9. Interaction of rare gas metastable atoms. [Differential and total cross sections, elastic scattering, ionization, potential scattering, phase shifts, rate constants

    Energy Technology Data Exchange (ETDEWEB)

    Wang, A.Z.F.


    The physical and chemical properties of metastable rare gas atoms are discussed and summarized. This is followed by a detailed examination of the various possible pathways whereby the metastable's excess electronic energy can be dissipated. The phenomenon of chemi-ionization is given special emphasis, and a theoretical treatment based on the use of complex (optical) potential is presented. This is followed by a discussion on the unique advantages offered by elastic differential cross section measurements in the apprehension of the fundamental forces governing the ionization process. The methodology generally adopted to extract information about the interaction potential for scattering data is also systematically outlined. Two widely studied chemi-ionization systems are then closely examined in the light of accurate differential cross section measurements obtained in this work. The first system is He(2/sup 3/S) + Ar for which one can obtain an interaction potential which is in good harmony with the experimental results of other investigators. The validity of using the first-order semiclassical approximation for the phase shifts calculation in the presence of significant opacities is also discussed. The second reaction studied is He*+D/sub 2/ for which measurements were made on both spin states of the metastable helium. A self-consistent interaction potential is obtained for the triplet system, and reasons are given for not being able to do likewise for the singlet system. The anomalous hump proposed by a number of laboratories is analyzed. Total elastic and ionization cross sections as well as rate constants are calculated for the triplet case. Good agreement with experimental data is found. Finally, the construction and operation of a high power repetitively pulsed nitrogen laser pumped dye laser system is described in great details. Details for the construction and operation of a flashlamp pumped dye laser are likewise given.

  10. Separation Process of Fine Coals by Ultrasonic Vibration Gas-Solid Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Shuai Wang


    Full Text Available Ultrasonic vibration gas-solid fluidized bed was proposed and introduced to separate fine coals (0.5–0.125 mm fraction. Several technological methods such as XRF, XRD, XPS, and EPMA were used to study the composition of heavy products to evaluate the separation effect. Results show that the ultrasonic vibration force field strengthens the particle separation process based on density when the vibration frequency is 35 kHz and the fluidization number is 1.8. The ash difference between the light and heavy products and the recovery of combustible material obtain the maximum values of 47.30% and 89.59%, respectively. The sulfur content of the heavy product reaches the maximum value of 6.78%. Chemical state analysis of sulfur shows that organic sulfur (-C-S-, sulfate-sulfur (-SO4, and pyrite-sulfur (-S2 are confirmed in the original coal and heavy product. Organic sulfur (-C-S- is mainly concentrated in the light product, and pyrite-sulfur (-S2 is significantly enriched in the heavy product. The element composition, phase composition, backscatter imagery, and surface distribution of elements for heavy product show concentration of high-density minerals including pyrite, quartz, and kaolinite. Some harmful elements such as F, Pb, and As are also concentrated in the heavy product.

  11. Determination of enantiomers of synthetic pyrethroids in water by solid phase microextraction - enantioselective gas chromatography. (United States)

    Liu, Weiping; Gan, Jay J


    Solid phase microextraction (SPME) is an ideal sample preparation technique because of its speed and solvent-free features. Sampling by SPME is selective and only the dissolved concentration is measured, which allows measurement of the bioavailable fraction of a contaminant in aqueous media. One potential application of SPME is for analysis of enantiomers of chiral contaminants in environmental samples. In this study, a method was developed for determining enantiomers of (Z)-cis-bifenthrin and cis-permethrin in water using coupled SPME and enantioselective gas chromatography (GC). Following SPME sampling, enantiomers of (Z)-cis-bifenthrin and cis-permethrin were separated at the baseline on a beta-cyclodextrin-based enantioselective column, and analyte enrichment onto the SPME fiber was not enantioselective. The GC response increased as sampling time was increased from 0 to 240 min, and as sampling temperature was increased from 20 to 40 degrees C. Organic solvents such as methanol, acetone, and acetonitrile enhanced, while soil extracts slightly decreased, the GC response. The integrated SPME-enantioselective GC method was used to analyze surface runoff samples. The analysis showed preferential degradation of the 1S-3S enantiomer over the 1R-3R enantiomer for both (Z)-cis-bifenthrin and cis-permethrin. The concentrations detected by SPME-GC were substantially smaller than those determined following solvent extraction, suggesting that SPME-enantioselective GC analysis selectively measured the dissolved fraction.

  12. Determination of volatile organic compounds in river water by solid phase extraction and gas chromatography. (United States)

    Mottaleb, M A; Abedin, M Z; Islam, M S


    A simple, rapid, and reproducible method is described employing solid-phase extraction (SPE) using dichloromethane followed by gas chromatography (GC) with flame ionization detection (FID) for determination of volatile organic compound (VOC) from the Buriganga River water of Bangladesh. The method was applied to detect the benzene, toluene, ethylbenzene, xylene and cumene (BTEXC) in the sample collected from the surface or 15 cm depth of water. Two-hundred ml of n-hexane-pretreated and filtered water samples were applied directly to a C18 SPE column. BTEXC were extracted with dichloromethane and average concentrations were obtained as 0.104 to 0.372 microg/ml. The highest concentration of benzene was found as 0.372 microg/ml with a relative standard deviation (RSD) of 6.2%, and cumene was not detected. Factors influencing SPE e.g., adsorbent types, sample load volume, eluting solvent, headspace and temperatures, were investigated. A cartridge containing a C18 adsorbent and using dichloromethane gave better performance for extraction of BTEXC from water. Average recoveries exceeding 90% could be achieved for cumene at 4 degrees C with a 2.7% RSD.

  13. Determination of terpenes in tequila by solid phase microextraction-gas chromatography-mass spectrometry. (United States)

    Peña-Alvarez, Araceli; Capella, Santiago; Juárez, Rocío; Labastida, Carmen


    Solid phase microextraction and capillary gas chromatography-mass spectrometry were used for the determination of seven terpenes in tequila. The method was selected based on the following parameters: coating selection (PA, PDMS, CW/DVB, and PDMS/DVB), extraction temperature, addition of salt, and extraction time profile. The extraction conditions were: PDMS/DVB fiber, Headspace, 100% NaCl, 25 degrees C extraction temperature, 30 min extraction time and stirring at 1200 rpm. The calibration curves (50-1000 ng/ml) for the terpenes followed linear relationships with correlation coefficients (r) greater than 0.99, except for trans,trans-farnesol (r = 0.98). RSD values were smaller than 10% confirmed that the technique was precise. Samples from 18 different trade brands of "Aged" tequila analyzed with the developed method showed the same terpenes in different concentrations. The analytical procedure used is selective, robust (more than 100 analyses with the same fiber), fast and of low-cost.

  14. Wetting in flatland: Complex interfacial transitions at inhomogeneous solid-gas interfaces (United States)

    Yatsyshin, Peter; Duran-Olivencia, Miguel A.; Parry, Andrew O.; Rascon, Carlos; Kalliadasis, Serafim

    Interfaces between the different phases of matter surround us, and since the days of van der Waals have been known to provide key insights into the workings of the atomic world. A classical example of this is the adsorption of liquid films at a planar, homogeneous solid-gas interface. It is well-known that substrates with first-order wetting transitions also exhibit a line of first-order prewetting transitions corresponding to the jump from a thin to a thick adsorbed liquid film. We use classical density functional theory to model adsorption on patterned walls and unravel the zoo of associated interfacial phase transitions and its complexity. We show that the thick prewetting film can nucleate at a lower pressure and to continuously spread out across the surface as the prewetting line is approached, thus manifesting ``complete prewetting in flatland. We also interrogate a planar wall chemically patterned with a deep stripe of a different material. This introduces interfacial unbending from the stripe into the picture. Surprisingly, for thin stripes, the lines of prewetting and unbending may merge, leading to a new two-dimensional wetting transition occurring along the walls. Our results may have ramifications for the design of lab-on-a-chip devices and controlled nanofluidics.

  15. Generation of Attosecond Light Pulses from Gas and Solid State Media

    Directory of Open Access Journals (Sweden)

    Stefanos Chatziathanasiou


    Full Text Available Real-time observation of ultrafast dynamics in the microcosm is a fundamental approach for understanding the internal evolution of physical, chemical and biological systems. Tools for tracing such dynamics are flashes of light with duration comparable to or shorter than the characteristic evolution times of the system under investigation. While femtosecond (fs pulses are successfully used to investigate vibrational dynamics in molecular systems, real time observation of electron motion in all states of matter requires temporal resolution in the attosecond (1 attosecond (asec = 10−18 s time scale. During the last decades, continuous efforts in ultra-short pulse engineering led to the development of table-top sources which can produce asec pulses. These pulses have been synthesized by using broadband coherent radiation in the extreme ultraviolet (XUV spectral region generated by the interaction of matter with intense fs pulses. Here, we will review asec pulses generated by the interaction of gas phase media and solid surfaces with intense fs IR laser fields. After a brief overview of the fundamental process underlying the XUV emission form these media, we will review the current technology, specifications and the ongoing developments of such asec sources.

  16. Diffusion and Gas Conversion Analysis of Solid Oxide Fuel Cells at Loads via AC Impedance

    Directory of Open Access Journals (Sweden)

    Robert U. Payne


    Full Text Available Impedance measurements were conducted under practical load conditions in solid oxide fuel cells of differing sizes. For a 2 cm2 button cell, impedance spectra data were separately measured for the anode, cathode, and total cell. Improved equivalent circuit models are proposed and applied to simulate each of measured impedance data. Circuit elements related to the chemical and physical processes have been added to the total-cell model to account for an extra relaxation process in the spectra not measured at either electrode. The processes to which elements are attributed have been deduced by varying cell temperature, load current, and hydrogen concentration. Spectra data were also obtained for a planar stack of five 61 cm2 cells and the individual cells therein, which were fitted to a simplified equivalent circuit model of the total button cell. Similar to the button cell, the planar cells and stack exhibit a pronounced low-frequency relaxation process, which has been attributed to concentration losses, that is, the combined effects of diffusion and gas conversion. The simplified total-cell model approximates well the dynamic behavior of the SOFC cells and the whole stack.

  17. Structural characterization of bismuth rare earth tungstates obtained by fast microwave-assisted solid-state synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, G.N.; Melo, L.F.L. [Grupo de Química de Materiais Avançados (GQMAT), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará – UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza – CE (Brazil); Castro, M.C.; Ayala, A.P. [Departamento de Física, Universidade Federal do Ceará (Brazil); Menezes, A.S. de [Departamento de Física – CCET, Universidade Federal do Maranhão, Campus do Bacanga, 65085-580 São Luís, MA (Brazil); Fechine, P.B.A., E-mail: [Grupo de Química de Materiais Avançados (GQMAT), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará – UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza – CE (Brazil)


    A new synthetic route was used to obtain bismuth rare earth tungstates: BiREWO{sub 6}, where RE = Y, Gd and Nd. These materials were obtained by microwave radiation in air at 900–1100 °C for 10 min, depend on the rare earth composition in the ceramic. Structural characterization was performed by X-ray powder diffraction, Infrared and Raman spectroscopy. It was observed that all samples are isostructural materials with monoclinic phase with space group A12/m1 and member of the Aurivillius family, as Bi{sub 2}WO{sub 6} ferroelectric phase. It was observed moderated values for dielectric measurements (14<ε{sub r}{sup ′}>19 and 0.018 < tg δ > 0.079) at microwaves frequencies, which can be used as Dielectric Resonator Antenna or for size reduction of the electric device. - Highlights: ► New synthetic route to obtain bismuth rare earth tungstates by microwave radiation. ► Vibration spectroscopy was based in Group Theory and observed in FTIR and Raman. ► BiGdWO{sub 6} presented simultaneously higher ε{sub r}{sup ′} and smaller tg δ values at microwaves frequencies. ► The samples can be used as a DRA or for size reduction of the electric device.

  18. Development of a Reduced-Order Model for Reacting Gas-Solids Flow using Proper Orthogonal Decomposition

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Dwayne; Dulikravich, George; Cizmas, Paul


    This report summarizes the objectives, tasks and accomplishments made during the three year duration of this research project. The report presents the results obtained by applying advanced computational techniques to develop reduced-order models (ROMs) in the case of reacting multiphase flows based on high fidelity numerical simulation of gas-solids flow structures in risers and vertical columns obtained by the Multiphase Flow with Interphase eXchanges (MFIX) software. The research includes a numerical investigation of reacting and non-reacting gas-solids flow systems and computational analysis that will involve model development to accelerate the scale-up process for the design of fluidization systems by providing accurate solutions that match the full-scale models. The computational work contributes to the development of a methodology for obtaining ROMs that is applicable to the system of gas-solid flows. Finally, the validity of the developed ROMs is evaluated by comparing the results against those obtained using the MFIX code. Additionally, the robustness of existing POD-based ROMs for multiphase flows is improved by avoiding non-physical solutions of the gas void fraction and ensuring that the reduced kinetics models used for reactive flows in fluidized beds are thermodynamically consistent.

  19. Uncertainty quantification tools for multiphase gas-solid flow simulations using MFIX

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Rodney O. [Iowa State Univ., Ames, IA (United States); Passalacqua, Alberto [Iowa State Univ., Ames, IA (United States)


    MFIX. The effect of uncertainty on the disperse-phase volume fraction, on the phase velocities and on the pressure drop inside the fluidized bed are examined, and the reconstructed PDFs are provided for the three quantities studied. Then the approach is applied to a bubbling fluidized bed with two uncertain parameters, particle-particle and particle-wall restitution coefficients. Contour plots of the mean and standard deviation of solid volume fraction, solid phase velocities and gas pressure are provided. The PDFs of the response are reconstructed using EQMOM with appropriate kernel density functions. The simulation results are compared to experimental data provided by the 2013 NETL small-scale challenge problem. Lastly, the proposed procedure is demonstrated by considering a riser of a circulating fluidized bed as an example application. The mean particle size is considered to be the uncertain input parameter. Contour plots of the mean and standard deviation of solid volume fraction, solid phase velocities, and granular temperature are provided. Mean values and confidence intervals of the quantities of interest are compared to the experiment results. The univariate and bivariate PDF reconstructions of the system response are performed using EQMOM and ECQMOM.

  20. Mechanism of kinetic energy transfer in homogeneous bidisperse gas-solid flow and its implications for segregation (United States)

    Mehrabadi, Mohammad; Subramaniam, Shankar


    Most gas-solid flows encountered in nature and industrial applications are polydisperse, and the segregation or mixing of particle classes in polydisperse gas-solid flows is a phenomenon of great practical importance. A statistically homogeneous gas-solid flow with a bidisperse distribution (in size or density) of particles is a canonical representation of polydisperse flows. A key feature that distinguishes the bidisperse flow from its monodisperse counterpart is the exchange of momentum and kinetic energy between the particle classes due to collisions, which are important for applications outside the very dilute regime. The average exchange of linear momentum between particle classes due to collisions occurs through the particle-particle drag term. The conservation equations for average momentum corresponding to each particle class can be used to deduce the average slip velocity between the particle size and density classes, which is the signature of particle segregation. In this canonical problem, the steady value of particle mean slip velocity results from a balance between three terms, each in turn involving the body force or the mean fluid pressure gradient, the gas-particle drag, and the particle-particle drag. The particle-particle drag depends on the particle velocity fluctuations in each class [Louge, M. Y. et al., "The role of particle collisions in pneumatic transport," J. Fluid Mech. 231, 345-359 (1991)], thereby coupling the mean and second-moment equations. For monodisperse gas-solid flows the transfer of kinetic energy from the mean to second-moment equations was explained by Subramaniam and co-workers who proposed the conservation of interphase turbulent kinetic energy transfer principle [Xu, Y. and Subramaniam, S., "Consistent modeling of interphase turbulent kinetic energy transfer in particle-laden turbulent flows," Phys. Fluids 19(8), 085101 (2007)], and this was subsequently verified by particle-resolved direct numerical simulation [Mehrabadi

  1. A Simple Expression for the Tortuosity of Gas Transport Paths in Solid Oxide Fuel Cells’ Porous Electrodes

    Directory of Open Access Journals (Sweden)

    Wei Kong


    Full Text Available Based on the three-dimensional (3D cube packing model, a simple expression for the tortuosity of gas transport paths in solid oxide fuel cells’ (SOFC porous electrodes is developed. The proposed tortuosity expression reveals the dependence of the tortuosity on porosity, which is capable of providing results that are very consistent with the experimental data in the practical porosity range of SOFC. Furthermore, for the high porosity (>0.6, the proposed tortuosity expression is also accurate. This might be helpful for understanding the physical mechanism for the tortuosity of gas transport paths in electrodes and the optimization electrode microstructure for reducing the concentration polarization.

  2. A system using solid ceramic oxygen electrolyte cells to measure oxygen fugacities in gas-mixing systems (United States)

    Williams, R. J.; Mullins, O.


    Details are given for the construction and operation of a 101.3 kN/sq m (1 atmosphere) redox control system. A solid ceramic oxygen electrolyte cell is used to monitor the oxygen fugacity in the furnace. The system consists of a vertical quench, gas mixing furnace with heads designed for mounting the electrolyte cell and with facilities for inserting and removing the samples. The system also contains the high input impedance electronics necessary for measurements, a simplified version of a gas mixing apparatus, and devices for experiments under controlled rates of change relative to temperature and redox state. The calibration and maintenance of the system are discussed.

  3. JSC systems using solid ceramic oxygen electrolyte cells to measure oxygen fugacites in gas-mixing systems (United States)

    Williams, R. J.; Mullins, O.


    Details are given for the construction and operation of a 101.3 KN/sq meter (1 atmosphere) redox control system. A solid ceramic oxygen electrolyte cell is used to monitor the oxygen fugacity in the furnace. The system consists of a vertical quench gas mixing furnace with heads designed for mounting the electrolyte cell and with facilities for inserting and removing the samples, a simplified version of a gas mixing apparatus, and devices for experiments under controlled rates of change of temperature. A thermogravimetric analysis system employing these techniques of redox control and measurement is also described. The calibration and maintenance of the system are discussed.

  4. Study of Pair and many-body interactions in rare-gas halide atom clusters using negative ion zero electron kinetic energy (ZEKE) and threshold photodetachment spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yourshaw, Ivan [Univ. of California, Berkeley, CA (United States)


    The diatomic halogen atom-rare gas diatomic complexes KrBr-, XeBr-, and KrCl- are studied in this work by zero electron kinetic energy (ZEKE) spectroscopy in order to characterize the weak intermolecular diatomic potentials of these species. Also, the ZEKE and threshold photodetachment spectra of the polyatomic clusters ArnBr- (n = 2-9) and ArnI- (n = 2-19) are studied to obtain information about the non-additive effects on the interactions among the atoms. This work is part of an ongoing effort to characterize the pair and many-body potentials of the complete series of rare gas halide clusters. In these studies we obtain information about both the anionic and neutral clusters.

  5. The importance of solid waste management and its reverse logistics in fuel gas city of Campina Grande – PB

    Directory of Open Access Journals (Sweden)

    Joselia Fernandes Nascimento


    Full Text Available This research aimed to identify the importance of controlling the solid waste management process generated in the posts of Campina Grande-PB fuels, still checking the current level of adequacy of the same with respect to Reverse Logistics for the proper disposal of lubricating oils used and / or contaminated, their waste and packaging. The population consisted of 56 gas stations, authorized by the National Agency of Petroleum, Natural Gas and Biofuels (ANP, and resulted in a sample, for this study, 35 stations, representing 62.50% of the universe. Data collection was carried out with the use of questionnaires and research is characterized exploratory and descriptive. The results show that 51.43% of respondents know the important role of controlling, but most do not have enough knowledge regarding PNRS, LR and management of solid waste, however, has actions that are appropriate for the proper disposal waste.

  6. Numerical Simulations of Liquid-Gas-Solid Three-Phase Flows in Microgravity

    Directory of Open Access Journals (Sweden)

    Xinyu Zhang


    Full Text Available Three-phase liquid-gas-solid flows under microgravity condition are studied. An Eulerian-Lagrangian computational model was developed and used in the simulations. In this approach, the liquid flow was modeled by a volume-averaged system of governing equations, whereas motions of particles and bubbles were evaluated using the Lagrangian trajectory analysis procedure. It was assumed that the bubbles remained spherical, and their shape variations were neglected. The bubble-liquid, particle-liquid and bubbl-particle two-way interactions were accounted for in the analysis. The discrete phase equations used included drag, lift, buoyancy, and virtual mass forces. Particle-particle interactions and bubble-bubble interactions were accounted for by the hard sphere model. Bubble coalescence was also included in the model. The transient flow characteristics of the three-phase flow were studied; and the effects of gravity, inlet bubble size and g-jitter acceleration on variation of flow characteristics were discussed. The low gravity simulations showed that most bubbles are aggregated in the inlet region. Also, under microgravity condition, bubble transient time is much longer than that in normal gravity. As a result, the Sauter mean bubble diameter, which is proportional to the transient time of the bubble, becomes rather large, reaching to more than 9 mm. The bubble plume in microgravity exhibits a plug type flow behavior. After the bubble plume reaches the free surface, particle volume fraction increases along the height of the column. The particles are mainly located outside the bubble plume, with very few particles being retained in the plume. In contrast to the normal gravity condition, the three phases in the column are poorly mixed under microgravity conditions. The velocities of the three phases were also found to be of the same order. Bubble size significantly affects the characteristics of the three-phase flows under microgravity conditions. For

  7. Simulation of tubular solid oxide fuel cell behavior for integration into gas turbine cycles (United States)

    Haynes, Comas Lamar

    Models have been developed and validated for the characterization of tubular solid oxide fuel cells (TSOFCs) and a corresponding fuel cell/gas turbine (FC/GT) power cycle. This promising area of technology is expected to attain near-term commercialization (most notably the SiemensWestinghouse "SureCell" initiative). There is a need for continued conceptual design research in order for the full potential of these systems to be realized. Parametric studies were performed to delineate the impact of cell stack operating conditions on power generation, cell stack thermal management, independent cell load-following and performance quality. The diverse operating conditions included variations in physical cell design, stack pressure, operating voltage, stoichiometric number and stack fuel utilization. A number of novel findings are reported throughout the thesis. As an example, it has been shown that lowering cell stack fuel utilization has a number of benefits for both the simple TSOFC arrangement and the hybrid TSOFC/ GT scenario. The cell stack produces more power at lower fuel utilizations, because fuel supply to the stack actually increases. Additionally, fuel depletion issues (i.e., Nernst potential decrease and smaller limiting currents) are not as influential. A gas turbine bottoming engine would also increase in power production, at lower stack fuel utilizations, because a greater amount of fuel would then fire it. Note that power generation expense is measured per unit rating (e.g., $/kW). Increasing power capacity may then be a means of lowering cost, which is the key obstacle to commercialization. Another cost reduction may stein from the greater contribution of turbomachinery to system power generation, when stack fuel utilization is lowered. FC/GT system efficiency remains stable across a wide domain of cell stack fuel utilizations. This is a result of both the indirect internally reforming (IIR) fuel processor efficiency and Brayton cycle regeneration

  8. Development of a fast cyclotron gas stopper for intense rare isotope beams from projectile fragmentation: Study of ion extraction with a radiofrequency carpet

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, Georg [Michigan State University; Morrissey, David [Michigan State University


    Research and development has been performed in support of the design of a future rare isotope beam facility in the US. An important aspect of plans for earlier RIA (Rare Isotope Accelerator) and a requirement of FRIB (Facility of Rare Isotope Beams) to be built at Michigan State University are the availability of so-called “stopped beams” for research that contributes to answering questions like how elements in the universe are created and to provide better insight into the nature of Fundamental Interactions. In order to create “stopped beams” techniques are required that transform fast rare isotopes beams as they are available directly after addresses questions like the origin of that will allow and High priority is given to the evaluation of intensity limitations and the efficiency of stopping of fast fragment beams in gas cells and to the exploration of options to increase the efficiency and the reduction of space charge effects. Systematic studies performed at MSU as part of the RIA R&D with a linear gas cell under conditions close to those expected at RIA and related simulations confirm that the efficiency of stopping and extracting ions decreases with increasing beam intensity. Similar results have also been observed at RIKEN in Japan. These results indicate the concepts presently under study will not be able to cover the full range of intensities of fast beams expected at RIA without major losses. The development of a more robust concept is therefore critical to the RIA concept. Recent new beam simulation studies performed at the NSCL show that the stopping of heavy ions in a weakly focusing gas-filled magnetic field can overcome the intensity limitation of present systems while simultaneously providing a much faster ion extraction. We propose to design and build such a cyclotron gas stopper and to test it at the NSCL under conditions as close as possible to those found at RIA.

  9. Development of a high-density gas-jet target for nuclear astrophysics and reaction studies with rare isotope beams. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Uwe, Greife [Colorado School of Mines, Golden, CO (United States)


    The purpose of this project was to develop a high-density gas jet target that will enable a new program of transfer reaction studies with rare isotope beams and targets of hydrogen and helium that is not currently possible and will have an important impact on our understanding of stellar explosions and of the evolution of nuclear shell structure away from stability. This is the final closeout report for the project.

  10. CFD-PBE simulation of gas-phase hydrodynamics in a gas-liquid-solid combined loop reactor

    National Research Council Canada - National Science Library

    Qi Nana Zhang Kai Xu Gang Yang Yongping Zhang Hu


    The computational fluid dynamics (CFD)-population balance equations (PBE) coupled model is employed to investigate the hydrodynamics in a gas-slurry internal loop reactor with external slurry circulation...

  11. Analysis by gas liquid chromatography of production of volatile fatty acids by anaerobic bacteria grown on solid medium.


    Wiggins, R J; Wilks, M.; Tabaqchali, S


    Volatile fatty acids produced in Robertson's cooked meat medium by a range of clinically relevant anaerobes were compared by gas liquid chromatography with those produced in blood agar. The same volatile fatty acid profiles were obtained in both media, although the concentration of acids was lower in blood agar. We conclude that detection of volatile fatty acids from a pure culture of an organism on solid medium is practicable and offers advantages over the conventional technique.

  12. Rate constants for collisional quenching of NO (A(2)Σ(+), v = 0) by He, Ne, Ar, Kr, and Xe, and infrared emission accompanying rare gas and impurity quenching. (United States)

    Few, Julian; Hancock, Gus


    The quenching rates of NO (A(2)Σ(+), v = 0) with He, Ne, Ar, Kr and Xe have been studied at room temperature by measurements of the time dependence of the fluorescence decay following laser excitation. The rates are slow, with upper limits of rate constants determined as between 1.2 and 2.0 × 10(-14) cm(3) molecule(-1) s(-1), considerably lower than those reported before in the literature. Such slow rates can be markedly influenced by impurities such as O2 and H2O which have quenching rate constants close to gas kinetic values. Time resolved Fourier transform infrared emission has been used to observe the products of the quenching processes with the rare gases and with impurities. For He, Ne Ar and Kr there is no difference within experimental error of the populations in NO (X(2)Π v ≥ 2) produced with and without rare gas present, but the low quantum yields of such quenching (of the order of 5% for an atmosphere of rare gas) preclude quantitative information on the quantum states being obtained. For quenching by Xe the collisional formation of electronically excited Xe atoms dominates the emission at early times. Vibrationally excited NO (X(2)Π, v) and products of reactive quenching are observed in the presence of O2 and H2O.

  13. Intermolecular dispersion interactions of normal alkanes with rare gas atoms: van der Waals complexes of n-pentane with helium, neon, and argon

    Energy Technology Data Exchange (ETDEWEB)

    Balabin, Roman M. [Gubkin Russian State University of Oil and Gas, 199991 Moscow (Russian Federation)], E-mail:


    Interaction energies of normal pentane with three rare gas atoms (helium, neon, and argon) were calculated using ab initio methods: the second-order Moller-Plesset (MP2), the fourth-order Moller-Plesset (MP4), and coupled cluster with single and double substitutions with noniterative triple excitation (CCSD(T)) levels of theory. Dunning's correlation consistent basis sets up to aug-cc-pVQZ were applied. Eight profiles (246 points for each rare gas atom) of potential energy surface (PES) of all-trans (anti-anti) conformation of n-pentane were scanned. Optimal distances for complex formation were found. MP2 interaction energies at the basis set limit were evaluated by three different methods (Feller's, Helgaker's, and Martin's). The MP2 interaction energy at the basis set limit for a global minimum of n-pentane complex with argon was more than 400 cm{sup -1}, so formation of a stable complex (at least at low temperature) can be expected. A comparison with previously published data on propane complexes with rare gas atoms (both computational and experimental) was done. The MP4 level of theory was found to be sufficient for a description of C{sub 5}H{sub 12} complexes with helium, neon, and argon.

  14. CO{sub 2} Capture from Flue Gas Using Solid Molecular Basket Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Fillerup, Eric; Zhang, Zhonghua; Peduzzi, Emanuela; Wang, Dongxiang; Guo, Jiahua; Ma, Xiaoliang; Wang, Xiaoxing; Song, Chunshan


    The objective of this project is to develop a new generation of solid, regenerable polymeric molecular basket sorbent (MBS) for more cost-efficient capture and separation of CO{sub 2} from flue gas of coal-fired power plants. The primary goal is to develop a cost-effective MBS sorbent with better thermal stability. To improve the cost-effectiveness of MBS, we have explored commercially available and inexpensive support to replace the more expensive mesoporous molecular sieves like MCM-41 and SBA- 15. In addition, we have developed some advanced sorbent materials with 3D pore structure such as hexagonal mesoporous silica (HMS) to improve the CO{sub 2} working capacity of MBS, which can also reduce the cost for the whole CO{sub 2} capture process. During the project duration, the concern regarding the desorption rate of MBS sorbents has been raised, because lower desorption rate increases the desorption time for complete regeneration of the sorbent which in turn leads to a lower working capacity if the regeneration time is limited. Thus, the improvement in the thermal stability of MBS became a vital task for later part of this project. The improvement in the thermal stability was performed via increasing the polymer density either using higher molecular weight PEI or PEI cross-linking with an organic compound. Moreover, we have used the computational approach to estimate the interaction of CO{sub 2} with different MBSs for the fundamental understanding of CO{sub 2} sorption, which may benefit the development, design and modification of the sorbents and the process.

  15. Modeling of gas turbine - solid oxide fuel cell systems for combined propulsion and power on aircraft (United States)

    Waters, Daniel Francis

    This dissertation investigates the use of gas turbine (GT) engine integrated solid oxide fuel cells (SOFCs) to reduce fuel burn in aircraft with large electrical loads like sensor-laden unmanned air vehicles (UAVs). The concept offers a number of advantages: the GT absorbs many SOFC balance of plant functions (supplying fuel, air, and heat to the fuel cell) thereby reducing the number of components in the system; the GT supplies fuel and pressurized air that significantly increases SOFC performance; heat and unreacted fuel from the SOFC are recaptured by the GT cycle offsetting system-level losses; good transient response of the GT cycle compensates for poor transient response of the SOFC. The net result is a system that can supply more electrical power more efficiently than comparable engine-generator systems with only modest (Propulsion System Simulation (NPSS). A sensitivity analysis identifies important design parameters and translates uncertainties in model parameters into uncertainties in overall performance. GT-SOFC integrations reduce fuel burn 3-4% in 50 kW systems on 35 kN rated engines (all types) with overall uncertainty electric power (factors >3 in some cases) than generator-based systems before encountering turbine inlet temperature limits. Aerodynamic drag effects of engine-airframe integration are by far the most important limiter of the combined propulsion/electrical generation concept. However, up to 100-200 kW can be produced in a bypass ratio = 8, overall pressure ratio = 40 turbofan with little or no drag penalty. This study shows that it is possible to create cooperatively integrated GT-SOFC systems for combined propulsion and power with better overall performance than stand-alone components.

  16. Gas-Solid Reaction Route toward the Production of Intermetallics from Their Corresponding Oxide Mixtures

    Directory of Open Access Journals (Sweden)

    Hesham Ahmed


    Full Text Available Near-net shape forming of metallic components from metallic powders produced in situ from reduction of corresponding pure metal oxides has not been explored to a large extent. Such a process can be probably termed in short as the “Reduction-Sintering” process. This methodology can be especially effective in producing components containing refractory metals. Additionally, in situ production of metallic powder from complex oxides containing more than one metallic element may result in in situ alloying during reduction, possibly at lower temperatures. With this motivation, in situ reduction of complex oxides mixtures containing more than one metallic element has been investigated intensively over a period of years in the department of materials science, KTH, Sweden. This review highlights the most important features of that investigation. The investigation includes not only synthesis of intermetallics and refractory metals using the gas solid reaction route but also study the reaction kinetics and mechanism. Environmentally friendly gases like H2, CH4 and N2 were used for simultaneous reduction, carburization and nitridation, respectively. Different techniques have been utilized. A thermogravimetric analyzer was used to accurately control the process conditions and obtain reaction kinetics. The fluidized bed technique has been utilized to study the possibility of bulk production of intermetallics compared to milligrams in TGA. Carburization and nitridation of nascent formed intermetallics were successfully carried out. A novel method based on material thermal property was explored to track the reaction progress and estimate the reaction kinetics. This method implies the dynamic measure of thermal diffusivity using laser flash method. These efforts end up with a successful preparation of nanograined intermetallics like Fe-Mo and Ni-W. In addition, it ends up with simultaneous reduction and synthesis of Ni-WN and Ni-WC from their oxide mixtures

  17. Reversible poisoning of nickel/zirconia solid oxide fuel cell anodes by hydrogen chloride in coal gas

    Energy Technology Data Exchange (ETDEWEB)

    Marina, O.A.; Thomsen, E.C.; Coyle, C.A.; Yoon, K.J. [Pacific Northwest National Laboratory, Richland, WA (United States); Pederson, L.R. [North Dakota State University, Fargo, ND (United States)


    The performance of anode-supported solid oxide fuel cells (SOFC) was evaluated in synthetic coal gas containing HCl in the temperature range 650-850 C. Exposure to up to 800 ppm HCl resulted in reversible poisoning of the Ni/zirconia anode by chlorine species adsorption, the magnitude of which decreased with increased temperature. Performance losses increased with the concentration of HCl to {proportional_to}100 ppm, above which losses were insensitive to HCl concentration. Neither cell potential, nor current density had any effect on the extent of poisoning. No evidence was found for long-term degradation that can be attributed to HCl exposure. Similarly, no evidence of microstructural changes or formation of new solid phases as a result of HCl exposure was found. From thermodynamic calculations, solid nickel chloride phase formation was shown to be highly unlikely in coal gas containing HCl. The presence of HCl at even the highest anticipated concentrations in coal gas would minimally increase the volatility of nickel. (author)

  18. Gas-solid flows - 1986; Proceedings of the Fourth Fluid Mechanics, Plasma Dynamics, and Lasers Conference, Atlanta, GA, May 11-14, 1986 (United States)

    Jurewicz, J. T.

    Papers are presented on deposition and resuspension of gas-borne particles in recirculating turbulent flows, particle dispersion in decaying isotropic homogeneous turbulence, turbulent dispersion of droplets for air flow in a pipe, a comparison between Lagrangian and Eulerian model approaches to turbulent particle dispersion, and the effect of turbulent electrohydrodynamics on electrostatic precipitator efficiency. Also considered are errors due to turbidity in particle sizing using laser Doppler velocimetry, particle motion in a fluidically oscillating jet, high pressure steam/water jet measurements using a portable particle sizing laser Doppler system, the effect of particle shape on pressure drop in a turbulent gas/solid suspension, and the experimental study of gas solid flows in pneumatic conveying. Other topics include entropy production and pressure loss in gas-solid flows, a computational study of turbulent gas-particle flow in a Venturi, a numerical analysis of confined recirculating gas-solid turbulent flows, nozzle and free jet flows of gas particle mixtures, and particle separation in pulsed airflow. Papers are also presented on sampling of solid particles in clouds, particle motion near the inlet of a sampling probe, the effects of slot injection on blade erosion in direct coal-fueled gas turbines, bed diameter effects and incipient slugging in gas fluidized beds, and sedimentation of air fluidized fine graphite particles by methanol vapor.

  19. A gas-diffusion flow injection method coupled with online solid-liquid extraction for the determination of ammonium in solid samples. (United States)

    Timofeeva, Irina I; Bulatov, Andrey V; Moskvin, Aleksey L; Kolev, Spas D


    A simple, rapid and reliable gas-diffusion flow injection (GD-FI) method for ammonium determination in building materials has been developed. It is based on leaching ammonium from a ground solid sample into an alkaline solution with subsequent ammonia gas generation. Ammonia is then transported in a nitrogen stream to the GD cell of the FI system where it is absorbed into its acceptor solution containing a mixture of the acid-base indicators cresol red and thymol blue. The maximum increase in the absorbance of the acceptor solution at 580 nm is related to the ammonium concentration in the solid sample. The proposed method is characterized by a linear concentration range of 0.1-5.0 mg NH4(+) kg(-1), a limit of detection of 8 μg NH4(+) kg(-1) and a sample throughput of 10h(-1). A successful application of this method for the determination of ammonium in building materials such as concrete, cement and sand is reported. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Calibration of a solid state nuclear track detector (SSNTD) with high detection threshold to search for rare events in cosmic rays

    CERN Document Server

    Dey, S; Maulik, A; Sibaji, R; Saha, Swapan K; Syam, D; Pakarinen, J; Voulot, D; Wenander, F


    We have investigated a commercially available polymer for its suitability as a solid state nuclear track detector (SSNTD). We identified that polymer to be polyethylene terephthalate (PET) and found that it has a higher detection threshold compared to many other widely used SSNTDs which makes this detector particularly suitable for rare event search in cosmic rays as it eliminates the dominant low Z background. Systematic studies were carried out to determine its charge response which is essential before any new material can be used as an SSNTD. In this paper we describe the charge response of PET to 129Xe, 78Kr and 49Ti ions from the REX-ISOLDE facility at CERN, present the calibration curve for PET and characterize it as a nuclear track detector.

  1. Modelling of a cathode-supported tubular solid oxide fuel cell operating with biomass-derived synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Suwanwarangkul, R. [School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasart University-Rangsit Campus, Pathum Thani 12121 (Thailand); Croiset, E.; Pritzker, M.D.; Fowler, M.W.; Douglas, P.L. [Department of Chemical Engineering, University of Waterloo, Waterloo, Ont. N2L 3G1 (Canada); Entchev, E. [Advance Combustion Technologies Laboratory, CANMET Energy Technology Centre, 1 Haanel Drive, Ottawa, Ont. K1A 1M1 (Canada)


    A mechanistic model for the operation of a tubular solid oxide fuel cell (SOFC) using synthesis gas as a fuel source has been successfully developed and validated against experimental data reported in the literature. The model considers momentum-, mass-, energy- and charge-transport equations coupled with electrochemical and water-gas shift reactions. This avoids the use of empirical correlations for estimating heat and mass transfer coefficients. The model is solved to predict SOFC performance and behavior by determining the distributions of current density, temperature and species concentrations throughout the cell. The developed model was used to predict the effect of the composition of biomass-derived synthesis gas fuels on cell performance and behavior. (author)

  2. Evaluation Of Landfill Gas Decay Constant For Municipal Solid Waste Landfills Operated As Bioreactors (United States)

    Prediction of the rate of gas production from bioreactor landfills is important to optimize energy recovery and to estimate greenhouse gas emissions. Landfill gas (LFG) composition and flow rate were monitored for four years for a conventional and two bioreactor landfill landfil...

  3. A Reversible Planar Solid Oxide Fuel-Fed Electrolysis Cell and Solid Oxide Fuel Cell for Hydrogen and Electricity Production Operating on Natural Gas/Biomass Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Greg, G.


    A solid oxide fuel-assisted electrolysis technique was developed to co-generate hydrogen and electricity directly from a fuel at a reduced cost of electricity. Solid oxide fuel-assisted electrolysis cells (SOFECs), which were comprised of 8YSZ electrolytes sandwiched between thick anode supports and thin cathodes, were constructed and experimentally evaluated at various operation conditions on lab-level button cells with 2 cm2 per-cell active areas as well as on bench-scale stacks with 30 cm2 and 100 cm2 per-cell active areas. To reduce the concentration overpotentials, pore former systems were developed and engineered to optimize the microstructure and morphology of the Ni+8YSZ-based anodes. Chemically stable cathode materials, which possess good electronic and ionic conductivity and exhibit good electrocatalytic properties in both oxidizing and reducing gas atmospheres, were developed and materials properties were investigated. In order to increase the specific hydrogen production rate and thereby reduce the system volume and capital cost for commercial applications, a hybrid system that integrates the technologies of the SOFEC and the solid-oxide fuel cell (SOFC), was developed and successfully demonstrated at a 1kW scale, co-generating hydrogen and electricity directly from chemical fuels.

  4. Method and apparatus for measuring the gas permeability of a solid sample (United States)

    Carstens, D.H.W.


    The disclosure is directed to an apparatus and method for measuring the permeability of a gas in a sample. The gas is allowed to reach a steady flow rate through the sample. A measurable amount of the gas is collected during a given time period and then delivered to a sensitive quadrupole. The quadrupole signal, adjusted for background, is proportional to the amount of gas collected during the time period. The quadrupole can be calibrated with a standard helium leak. The gas can be deuterium and the sample can be polyvinyl alcohol.

  5. Production of "Green Natural Gas" Using Solid Oxide Electrolysis Cells (SOEC): Status of Technology and Costs

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Jensen, Søren Højgaard; Ebbesen, Sune Dalgaard


    This paper gives arguments in favour of using green natural gas (GNG) as storage media for the intermittent renewable energy sources. GNG is here defined as being CH4, i.e. methane, often called synthetic natural gas or substitute natural gas (SNG), produced using renewable or at least CO2 neutral...... energy sources only. Also dimethyl ether (DME = (CH3)2O), which might be called Liquefied Green Gas, LGG, in analogy to Liquefied Petroleum Gas, LPG, because DME has properties similar to LPG. It further gives a short review of the state of the art of electrolysis in general and SOEC in particular....... Production of synthesis gas (H2 + CO) from CO2 and H2O using SOEC technology is evaluated. GNG and LGG can be produced from synthesis gas (or short: syngas) by means of well established commercially available catalysis technology. Finally, estimations of costs and efficiencies are presented and the relative...

  6. Greenhouse Gas and Criteria Pollutants Emissions Derived from Different Mitigation Measures in the Management of Solid Urban Waste in the Canton of San José, Costa Rica

    National Research Council Canada - National Science Library

    Jorge Herrera Murillo; José Félix Rojas Marín; Deivis Anchía Leitón


    Greenhouse gas and criteria pollutants emissions as well as the potential for electric power generation were estimated for four different scenarios of final disposal of solid urban waste (MSW) in San Jose...

  7. Controlling thermal properties of dense gas fluidized beds for concentrated solar power by internal and external solids circulation (United States)

    Ammendola, Paola; Bareschino, Piero; Chirone, Riccardo; Salatino, Piero; Solimene, Roberto


    Fluidization technology displays a long record of success stories, mostly related to applications to thermal and thermochemical processes, which are fostering extension to novel and relatively unexplored fields. Application of fluidized beds to collection and thermal storage of solar radiation in Concentrated Solar Power (CSP) is one of the most promising, a field which poses challenging issues and great opportunities to fluidization scientists and technologists. The potential of this growing field calls for reconsideration of some of the typical design and operation guidelines and criteria, with the goal of exploiting the inherently good thermal performances of gas-fluidized beds at their best. "Creative" and non-conventional design and operation of fluidized beds, like those based on internal and external solids circulation, may be beneficial to the enhancement of thermal diffusivity and surface-to-bed heat transfer, improving the potential for application in the very demanding context of CSP with thermal energy storage. This paper investigated: i) a fluidized bed configuration with an uneven distribution of the fluidizing gas to promote vortices in the scale of bed height (internal solids circulation); ii) a dual fluidized bed configuration characterized by an external solids circulation achieved by the operation of a riser and a bubbling fluidized bed. CFD simulations showed the hydrodynamics conditions under which the internal solids circulation was established. The hydrodynamic characterization of the external solids circulation was achieved by an experimental study carried out with different cold models. The dual fluidized bed system was optimized in terms of operating conditions and geometrical features of the connections between two fluidized beds.

  8. Gas/Solid Carbon Branching Ratios in Surface Mediated Reactions and the Incorporation of Carbonaceous Material into Planetesimals (United States)

    Nuth, Joseph A.; Johnson, Natasha M.; Ferguson, Frank T.; Carayon, Alicia


    We report the ratio of the initial carbon available as CO that forms gas-phase compounds compared to the fraction that deposits as a carbonaceous solid (the gas solid branching ratio) as a function of time and temperature for iron, magnetite, and amorphous iron silicate smoke catalysts during surface-mediated reactions in an excess of hydrogen and in the presence of N2. This fraction varies from more than 99 for an amorphous iron silicate smoke at 673 K to less than 40% for a magnetite catalyst at 873 K. The CO not converted into solids primarily forms methane, ethane, water, and CO2, as well as a very wide range of organic molecules at very low concentration. Carbon deposits do not form continuous coatings on the catalytic surfaces, but instead form extremely high surface area per unit volume filamentous structures. While these structures will likely form more slowly but over much longer times in protostellar nebulae than in our experiments due to the much lower partial pressure of CO, such fluffy coatings on the surfaces of chondrules or calcium aluminum inclusions could promote grain-grain sticking during low-velocity collisions.

  9. Thermodynamic analysis of a combined gas turbine power plant with a solid oxide fuel cell for marine applications

    Directory of Open Access Journals (Sweden)

    Yousri M.A. Welaya


    Full Text Available Strong restrictions on emissions from marine power plants (particularly SOx, NOx will probably be adopted in the near future. In this paper, a combined solid oxide fuel cell (SOFC and gas turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector. It includes a study of a heat-recovery system for 18 MW SOFC fuelled by natural gas, to provide the electric power demand onboard commercial vessels. Feasible heat-recovery systems are investigated, taking into account different operating conditions of the combined system. Two types of SOFC are considered, tubular and planar SOFCs, operated with either natural gas or hydrogen fuels. This paper includes a detailed thermodynamic analysis for the combined system. Mass and energy balances are performed, not only for the whole plant but also for each individual component, in order to evaluate the thermal efficiency of the combined cycle. In addition, the effect of using natural gas as a fuel on the fuel cell voltage and performance is investigated. It is found that a high overall efficiency approaching 70% may be achieved with an optimum configuration using SOFC system under pressure. The hybrid system would also reduce emissions, fuel consumption, and improve the total system efficiency.

  10. Performance Comparison on Repowering of a Steam Power Plant with Gas Turbines and Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Masoud Rokni


    Full Text Available Repowering is a process for transforming an old power plant for greater capacity and/or higher efficiency. As a consequence, the repowered plant is characterized by higher power output and less specific CO2 emissions. Usually, repowering is performed by adding one or more gas turbines into an existing steam cycle which was built decades ago. Thus, traditional repowering results in combined cycles (CC. High temperature fuel cells (such as solid oxide fuel cell (SOFC could also be used as a topping cycle, achieving even higher global plant efficiency and even lower specific CO2 emissions. Decreasing the operating temperature in a SOFC allows the use of less complex materials and construction methods, consequently reducing plant and the electricity costs. A lower working temperature makes it also suitable for topping an existing steam cycle, instead of gas turbines. This is also the target of this study, repowering of an existing power plant with SOFC as well as gas turbines. Different repowering strategies are studied here, repowering with one gas turbine with and without supplementary firing, repowering with two gas turbines with and without supplementary firing and finally repowering using SOFC. Plant performances and CO2 emissions are compared for the suggested repowered plants.

  11. Intramolecular London Dispersion Interaction Effects on Gas-Phase and Solid-State Structures of Diamondoid Dimers. (United States)

    Fokin, Andrey A; Zhuk, Tatyana S; Blomeyer, Sebastian; Pérez, Cristóbal; Chernish, Lesya V; Pashenko, Alexander E; Antony, Jens; Vishnevskiy, Yury V; Berger, Raphael J F; Grimme, Stefan; Logemann, Christian; Schnell, Melanie; Mitzel, Norbert W; Schreiner, Peter R


    The covalent diamantyl (C 28 H 38 ) and oxadiamantyl (C 26 H 34 O 2 ) dimers are stabilized by London dispersion attractions between the dimer moieties. Their solid-state and gas-phase structures were studied using a multitechnique approach, including single-crystal X-ray diffraction (XRD), gas-phase electron diffraction (GED), a combined GED/microwave (MW) spectroscopy study, and quantum chemical calculations. The inclusion of medium-range electron correlation as well as the London dispersion energy in density functional theory is essential to reproduce the experimental geometries. The conformational dynamics computed for C 26 H 34 O 2 agree well with solution NMR data and help in the assignment of the gas-phase MW data to individual diastereomers. Both in the solid state and the gas phase the central C-C bond is of similar length for the diamantyl [XRD, 1.642(2) Å; GED, 1.630(5) Å] and the oxadiamantyl dimers [XRD, 1.643(1) Å; GED, 1.632(9) Å; GED+MW, 1.632(5) Å], despite the presence of two oxygen atoms. Out of a larger series of quantum chemical computations, the best match with the experimental reference data is achieved with the PBEh-3c, PBE0-D3, PBE0, B3PW91-D3, and M06-2X approaches. This is the first gas-phase confirmation that the markedly elongated C-C bond is an intrinsic feature of the molecule and that crystal packing effects have only a minor influence.

  12. Air Pollution Monitoring and Use of Nanotechnology Based Solid State Gas Sensors in Greater Cairo Area, Egypt (United States)

    Ramadan, A. B. A.

    Air pollution is a serious problem in thickly populated and industrialized areas in Egypt, especially in greater Cairo area. Economic growth and industrialization are proceeding at a rapid pace, accompanied by increasing emissions of air polluting sources. Furthermore, though the variety and quantities of polluting sources have increased dramatically, the development of a suitable method for monitoring the pollution causing sources has not followed at the same pace. Environmental impacts of air pollutants have impact on public health, vegetation, material deterioration etc. To prevent or minimize the damage caused by atmospheric pollution, suitable monitoring systems are urgently needed that can rapidly and reliably detect and quantify polluting sources for monitoring by regulating authorities in order to prevent further deterioration of the current pollution levels. Consequently, it is important that the current real-time air quality monitoring system, controlled by the Egyptian Environmental Affairs Agency (EEAA), should be adapted or extended to aid in alleviating this problem. Nanotechnology has been applied to several industrial and domestic fields, for example, applications for gas monitoring systems, gas leak detectors in factories, fire and toxic gas detectors, ventilation control, breath alcohol detectors, and the like. Here we report an application example of studying air quality monitoring based on nanotechnology `solid state gas sensors'. So as to carry out air pollution monitoring over an extensive area, a combination of ground measurements through inexpensive sensors and wireless GIS will be used for this purpose. This portable device, comprising solid state gas sensors integrated to a Personal Digital Assistant (PDA) linked through Bluetooth communication tools and Global Positioning System (GPS), will allow rapid dissemination of information on pollution levels at multiple sites simultaneously.

  13. Probing the Mobility of Supercooled Liquid 3-Methylpentane at Temperatures Near the Glass Transition Using Rare Gas Permeation

    Energy Technology Data Exchange (ETDEWEB)

    Matthiesen, Jesper; Smith, R. Scott; Kay, Bruce D.


    We study the diffusivity of three-methyl pentane (3MP) using the permeation of inert gases (Ar,Kr, Xe) through the supercooled created when initially amorphous overlayers are heated above Tg. We find that the permeation rates for all of the gases have non-Arrhenius temperature dependences that are well described by the Vogel-Fulcher-Tamman equation. Comparison with the literature viscosity shows that the Stokes-Einstein equation breaks down at temperatures approaching Tg. The fractional Stokes-Einstein, D ∝ (T/η)n, does fit the permeation data, albeit with different values of n for each gas. There is qualitative agreement with the Stokes-Einstein equation in that the permeation rate decreases with increasing radius of the gas probe, but the differences in radii are not quantitatively proportional to the differences in the permeation rates. Instead the permeation rates are better correlated with the gas-3MP interaction energy than with the gas radius.

  14. Impact of operating conditions on performance of a novel gas double-dynamic solid-state fermentation bioreactor (GDSFB). (United States)

    Chen, Hongzhang; Li, Yanjun; Xu, Fujian


    A self-designed novel solid-state fermentation (SSF) bioreactor named "gas double-dynamic solid-state fermentation bioreactor (GDSFB)" showed great success in processes for the production of several valuable products. For the present study, a simple GDSFB (2 L in volume) was designed to investigate the impact of exhaust time on SSF performance. Both air pressure and vent aperture significantly influenced the exhaust time. The production of cellulase by Penicillium decumbens JUA10 was studied in this bioreactor. When the vent aperture was maintained at 0.2 cm, the highest FPA activity of 17.2 IU/g dry solid-state medium was obtained at an air pressure of 0.2 MPa (gauge pressure). When the air pressure was maintained at 0.2 MPa, a vent aperture of 0.3 cm gave the highest FPA activity of 18.0 IU/g dry solid-state medium. Further analysis revealed that the exhaust time was a crucial indicator of good performance in GDSFB.

  15. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification (United States)

    Choi, Dongwhi; Lee, Donghyeon; Sung Kim, Dong


    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two-phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid-liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability.

  16. Room temperature gas-solid reaction of titanium on glass surfaces forming a very low resistivity layer

    Directory of Open Access Journals (Sweden)

    Hugo Solís


    Full Text Available Titanium films were deposited on quartz, glass, polyamide and PET substrates in a high vacuum system at room temperature and their electrical resistance monitored in vacuo as a function of thickness. These measurements indicate that a low electrical resistance layer is formed in a gas-solid reaction during the condensation of the initial layers of Ti on glass and quartz substrates. Layers begin to show relative low electrical resistance at around 21 nm for glass and 9nm for quartz. Samples deposited on polyamide and PET do not show this low resistance feature.

  17. Three-phase gas-liquid-solid foaming bubble reactors and self-lubricated transport of bitumen froth (United States)

    Mata, Clara E.

    Two distinct topics in multi-phase flow of interest of the oil industry are considered in this thesis. Studies of three-phase gas-liquid-solid foaming bubble reactors and self-lubricated transport of bitumen froth are reported. Applications of foams and foaming are found in many industrial processes such as flotation of minerals, enhanced oil recovery, drilling in oil reservoirs, and refining processes. However the physics of foaming and defoaming are not fully understood. Foams trap gas and are not desirable in some processes such as oil refining. Previously, it has been found that foaming may be strongly suppressed in a cold slit bubble reactor by fluidizing hydrophilic particles in the bubbly mixture below the foam. In this work, we fluidized hydrophobic and hydrophilic versions of two different sands in a cold slit foaming bubble reactor. We found that the hydrophobic sands suppress the foam substantially better than their hydrophilic counterparts. To study the capacity of foams to carry particles, we built a new slit foaming bubble reactor, which can be continuously fed with solid particles. Global gas, liquid, and solid holdups were measured for given gas and liquid velocities and solid flow rates. This research provides the fundamental ground work for the identification of flow types in a slit three-phase foaming bubble reactor with continuous injection of particles. Bitumen froth is produced from the oil sands of Athabasca, Canada. When transported in a pipeline, water present in the froth is released in regions of high shear (at the pipe wall). This results in a lubricating layer of water that allows bitumen froth pumping at greatly reduced pressures and hence the potential for savings in pumping energy consumption. Experimental results establishing the features of this self lubrication phenomenon are presented. The pressure gradient of lubricated flows closely follow the empirical law of Blasius for turbulent pipe flow with a constant of proportionality

  18. Performance Comparison on Repowering of a Steam Power Plant with Gas Turbines and Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Rokni, Masoud


    into an existing steam cycle which was built decades ago. Thus, traditional repowering results in combined cycles (CC). High temperature fuel cells (such as solid oxide fuel cell (SOFC)) could also be used as a topping cycle, achieving even higher global plant efficiency and even lower specific CO2 emissions....... Decreasing the operating temperature in a SOFC allows the use of less complex materials and construction methods, consequently reducing plant and the electricity costs. A lower working temperature makes it also suitable for topping an existing steam cycle, instead of gas turbines. This is also the target...

  19. Tequila volatile characterization and ethyl ester determination by solid phase microextraction gas chromatography/mass spectrometry analysis. (United States)

    Vallejo-Cordoba, Belinda; González-Córdova, Aarón Fernando; del Carmen Estrada-Montoya, María


    Solid phase microextraction (SPME) and gas chromatography were used for tequila volatile characterization and ethyl ester quantitation. Several factors determined the differences in tequila volatile profiles obtained by the SPME technique, namely, sampling mode, fiber coating, and fiber exposure time. Each of these factors determined the most suitable conditions for the analysis of volatile profiles in tequila. Volatile extraction consisted of placing 40 mL of tequila in a sealed vial kept at 40 degrees C. A poly(dimethylsiloxane) fiber was immersed in the liquid for 60 min and desorbed for 5 min into the gas chromatograph. The identified volatiles by mass spectrometry were mainly alcohols, esters, and ketones. The calibration curves for ethyl hexanoate, octanoate, and decanoate followed linear relationships with highly significant (p tequila samples. Quantitative differences in ethyl esters were found for the four most commonly known tequila types: silver, gold, aged, and extra-aged.

  20. Anode gas recirculation for improving the performance and cost of a 5-kW solid oxide fuel cell system (United States)

    Torii, Ryohei; Tachikawa, Yuya; Sasaki, Kazunari; Ito, Kohei


    Solid oxide fuel cells (SOFCs) have the potential to efficiently convert chemical energy into electricity and heat and are expected to be implemented in stationary combined heat and power (CHP) systems. This paper presents the heat balance analysis for a 5-kW medium-sized integrated SOFC system and the evaluation of the effect of anode gas recirculation on the system performance. The risk of carbon deposition on an SOFC anode due to anode gas recirculation is also assessed using the C-H-O diagram obtained from thermodynamic equilibrium calculations. These results suggest that a higher recirculation ratio increases net fuel utilization and improves the electrical efficiency of the SOFC system. Furthermore, cost simulation of the SOFC system and comparison with the cost of electricity supply by a power grid indicates that the capital cost is sufficiently low to popularize the SOFC system in terms of the total cost over one decade.

  1. Thermo-economic analysis of a solid oxide fuel cell and steam injected gas turbine plant integrated with woodchips gasification

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rokni, Masoud


    cost on the generation cost is also presented. In order to discuss the investment cost, an economic analysis has been carried out and main parameters such as Net Present Value (NPV), internal rate of return (IRR) and Time of Return of Investment (TIR) are calculated and discussed.......This paper presents a thermo-economic analysis of an integrated biogas-fueled solid oxide fuel cell (SOFC) system for electric power generation. Basic plant layout consists of a gasification plant (GP), an SOFC and a retrofitted steam-injected gas turbine (STIG). Different system configurations...... and simulations are presented and investigated. A parallel analysis for simpler power plants, combining GP, SOFC, and hybrid gas turbine (GT) is carried out to obtain a reference point for thermodynamic results. Thermodynamic analysis shows energetic and exergetic efficiencies for optimized plant above 53% and 43...

  2. In-situ study of the gas-phase composition and temperature of an intermediate-temperature solid oxide fuel cell anode surface fed by reformate natural gas (United States)

    Santoni, F.; Silva Mosqueda, D. M.; Pumiglia, D.; Viceconti, E.; Conti, B.; Boigues Muñoz, C.; Bosio, B.; Ulgiati, S.; McPhail, S. J.


    An innovative experimental setup is used for in-depth and in-operando characterization of solid oxide fuel cell anodic processes. This work focuses on the heterogeneous reactions taking place on a 121 cm2 anode-supported cell (ASC) running with a H2, CH4, CO2, CO and steam gas mixture as a fuel, using an operating temperature of 923 K. The results have been obtained by analyzing the gas composition and temperature profiles along the anode surface in different conditions: open circuit voltage (OCV) and under two different current densities, 165 mA cm-2 and 330 mA cm-2, corresponding to 27% and 54% of fuel utilization, respectively. The gas composition and temperature analysis results are consistent, allowing to monitor the evolution of the principal chemical and electrochemical reactions along the anode surface. A possible competition between CO2 and H2O in methane internal reforming is shown under OCV condition and low current density values, leading to two different types of methane reforming: Steam Reforming and Dry Reforming. Under a current load of 40 A, the dominance of exothermic reactions leads to a more marked increase of temperature in the portion of the cell close to the inlet revealing that current density is not uniform along the anode surface.

  3. High temperature gas-solid reactions in calc-silicate Cu-Au skarn formation; Ertsberg, Papua Province, Indonesia (United States)

    Henley, Richard W.; Brink, Frank J.; King, Penelope L.; Leys, Clyde; Ganguly, Jibamitra; Mernagh, Terrance; Middleton, Jill; Renggli, Christian J.; Sieber, Melanie; Troitzsch, Ulrike; Turner, Michael


    The 2.7-3 Ma Ertsberg East Skarn System (Indonesia), adjacent to the giant Grasberg Porphyry Copper deposit, is part of the world's largest system of Cu -Au skarn deposits. Published fluid inclusion and stable isotope data show that it formed through the flux of magma-derived fluid through contact metamorphosed carbonate rock sequences at temperatures well above 600° C and pressures of less than 50 MPa. Under these conditions, the fluid has very low density and the properties of a gas. Combining a range of micro-analytical techniques, high-resolution QEMSCAN mineral mapping and computer-assisted X-ray micro-tomography, an array of coupled gas-solid reactions may be identified that controlled reactive mass transfer through the 1 km3 hydrothermal skarn system. Vacancy-driven mineral chemisorption reactions are identified as a new type of reactive transport process for high-temperature skarn alteration. These gas-solid reactions are maintained by the interaction of unsatisfied bonds on mineral surfaces and dipolar gas-phase reactants such as SO2 and HCl that are continuously supplied through open fractures and intergranular diffusion. Principal reactions are (a) incongruent dissolution of almandine-grossular to andradite and anorthite (an alteration mineral not previously recognized at Ertsberg), and (b) sulfation of anorthite to anhydrite. These sulfation reactions also generate reduced sulfur with consequent co-deposition of metal sulfides. Diopside undergoes similar reactions with deposition of Fe-enriched pyroxene in crypto-veins and vein selvedges. The loss of calcium from contact metamorphic garnet to form vein anhydrite necessarily results in Fe-enrichment of wallrock, and does not require Fe-addition from a vein fluid as is commonly assumed.

  4. Natural gas drying of the solid of slurry in a fluidized bed; Sechage au gaz naturel sur lit fluidise a jet de la partie solide du lisier

    Energy Technology Data Exchange (ETDEWEB)

    Duphily, C. [Centre des technologies du gaz naturel, Boucherville, PQ (Canada)


    On the invitation and the initiative of Gas Metropolitan, le centre des technologies du gaz naturel (CTGN) received a mandate for developing a technology that could handle a problem concerning a surplus of swine manure. This problem expressed itself in four main forms: 1) a surplus of manure on the farm-site, 2) a regional surplus of the same, 3) a release of odours, and 4) environmental concerns on the surrounding countryside. In collaboration with the Polytechniqie du Montreal, a management tool, PROGEST, was developed for these wastes. This process permits the drying of the swine wastes using natural gas on a jet fluidized bed followed by a heat treatment of the drying fumes in a combustion chamber. The deposits consisting of nearly 15% solids are sent along to a drying chamber where they dried and sterilized at 120 degrees C. The dried deposit recovered in the form of a powder in an assembly of a cyclone-deduster at the exit of the dryer can be granulated as needed and sold as a co-product. For example, it can be used as a fertilizer ingredient or as an ingredient in animal feed.

  5. A novel solid state fermentation coupled with gas stripping enhancing the sweet sorghum stalk conversion performance for bioethanol (United States)


    Background Bioethanol production from biomass is becoming a hot topic internationally. Traditional static solid state fermentation (TS-SSF) for bioethanol production is similar to the traditional method of intermittent operation. The main problems of its large-scale intensive production are the low efficiency of mass and heat transfer and the high ethanol inhibition effect. In order to achieve continuous production and high conversion efficiency, gas stripping solid state fermentation (GS-SSF) for bioethanol production from sweet sorghum stalk (SSS) was systematically investigated in the present study. Results TS-SSF and GS-SSF were conducted and evaluated based on different SSS particle thicknesses under identical conditions. The ethanol yield reached 22.7 g/100 g dry SSS during GS-SSF, which was obviously higher than that during TS-SSF. The optimal initial gas stripping time, gas stripping temperature, fermentation time, and particle thickness of GS-SSF were 10 h, 35°C, 28 h, and 0.15 cm, respectively, and the corresponding ethanol stripping efficiency was 77.5%. The ethanol yield apparently increased by 30% with the particle thickness decreasing from 0.4 cm to 0.05 cm during GS-SSF. Meanwhile, the ethanol yield increased by 6% to 10% during GS-SSF compared with that during TS-SSF under the same particle thickness. The results revealed that gas stripping removed the ethanol inhibition effect and improved the mass and heat transfer efficiency, and hence strongly enhanced the solid state fermentation (SSF) performance of SSS. GS-SSF also eliminated the need for separate reactors and further simplified the bioethanol production process from SSS. As a result, a continuous conversion process of SSS and online separation of bioethanol were achieved by GS-SSF. Conclusions SSF coupled with gas stripping meet the requirements of high yield and efficient industrial bioethanol production. It should be a novel bioconversion process for bioethanol production from SSS

  6. A novel solid state fermentation coupled with gas stripping enhancing the sweet sorghum stalk conversion performance for bioethanol. (United States)

    Chen, Hong-Zhang; Liu, Zhi-Hua; Dai, Shu-Hua


    Bioethanol production from biomass is becoming a hot topic internationally. Traditional static solid state fermentation (TS-SSF) for bioethanol production is similar to the traditional method of intermittent operation. The main problems of its large-scale intensive production are the low efficiency of mass and heat transfer and the high ethanol inhibition effect. In order to achieve continuous production and high conversion efficiency, gas stripping solid state fermentation (GS-SSF) for bioethanol production from sweet sorghum stalk (SSS) was systematically investigated in the present study. TS-SSF and GS-SSF were conducted and evaluated based on different SSS particle thicknesses under identical conditions. The ethanol yield reached 22.7 g/100 g dry SSS during GS-SSF, which was obviously higher than that during TS-SSF. The optimal initial gas stripping time, gas stripping temperature, fermentation time, and particle thickness of GS-SSF were 10 h, 35°C, 28 h, and 0.15 cm, respectively, and the corresponding ethanol stripping efficiency was 77.5%. The ethanol yield apparently increased by 30% with the particle thickness decreasing from 0.4 cm to 0.05 cm during GS-SSF. Meanwhile, the ethanol yield increased by 6% to 10% during GS-SSF compared with that during TS-SSF under the same particle thickness. The results revealed that gas stripping removed the ethanol inhibition effect and improved the mass and heat transfer efficiency, and hence strongly enhanced the solid state fermentation (SSF) performance of SSS. GS-SSF also eliminated the need for separate reactors and further simplified the bioethanol production process from SSS. As a result, a continuous conversion process of SSS and online separation of bioethanol were achieved by GS-SSF. SSF coupled with gas stripping meet the requirements of high yield and efficient industrial bioethanol production. It should be a novel bioconversion process for bioethanol production from SSS biomass.

  7. Evaluation and Application of a Solid Adsorbent Method for Monitoring Exposure to Volatile Organic Compounds from Oil and Gas Operations. (United States)

    Smith, K. R.; Helmig, D.; Thompson, C. R.; Wang, W.; Terrell, R. M.; Lewis, A. C.


    Residential communities are being increasingly impacted by emissions from oil and gas development and this has driven the need for simple, effective, and low-cost methods for air quality monitoring. Primary emissions from oil and gas production consist of volatile organic compounds (VOCs) ranging from the short chain alkanes and alkenes to aromatic and semi-volatile species; many of these are a concern from both an air quality and public health viewpoint, as they can lead to local ozone pollution and increased risk of cancer or respiratory illness. The fate of hydrocarbons once in the atmosphere is ultimately oxidation through to CO2 and water, adding to the greenhouse gas burden. Measurement techniques that are capable of identifying and quantifying the full range of primary emissions of concern are required to assess community exposure to air toxics and to better inform residents, as well as local and state legislators. Here, we present evaluation of a low-cost air monitoring technique using stainless steel diffusion cartridges containing multiple solid adsorbents. Over the course of a three-month period in summer of 2014, cartridges were deployed at five monitoring sites located around Boulder County in the Northern Colorado Front Range, and exposed to ambient air for periods of up to four days along with concurrent sampling using stainless steel SUMMA canisters. Samples collected with both methods were subsequently analyzed for VOCs by GC-FID and the results were compared to determine the accuracy and precision of the diffusion cartridge method. Results of this evaluation show that the diffusion cartridge method has the potential to be a simple and low-cost solution for widespread exposure monitoring in communities near oil and gas development regions. Such measurements may also provide supporting evidence on wider effects on greenhouse gas emissions from oil and gas development operations.

  8. Study of gas-solid contact in an ultra-rapid reactor for cumene catalytic cracking; Etude du contact gaz-solide dans un reacteur a co-courant descendant par la mise en oeuvre du craquage catalytique du cumene

    Energy Technology Data Exchange (ETDEWEB)

    Bayle, J.


    Few studies have been carried out on the notion of gas-solid contact in ultra-rapid reactors. Both gas and solid move in the reactor and the contact can be directly estimated when using a chemical reaction such as cumene cracking. It`s a pure and light feedstock whose kinetics can be determined in a fixed bed. The study was carried out on a downflow ultra-rapid reactor (ID = 20 mm, length = 1 m) at the University of Western Ontario. It proved that the quench and the ultra-rapid separation of gas and solid must be carefully designed in the pilot plant. Cumene conversion dropped when reducing gas-solid contact, which led to push the temperature over 550 deg. C and increase the cat/oil ratio at 25 working at solid mass fluxes below 85 kg/m{sup 2}.s. Change of selectivity at very short residence time were also observed due to deactivation effects. Experiments made by Roques (1994) with phosphorescent pigments on the Residence Time Distribution of solids gave Hydrodynamic data on a cold flow copy of the pilot plant. Experiments made on packed bed gave kinetic data on the cracking of cumene. These data were combined to optimize a mono dimensional plug flow model for cumene cracking. (author)

  9. Eulerian numerical simulation of gas-solid flows with several particles species; Modelisation numerique eulerienne des ecoulements gaz-solide avec plusieurs especes de particules

    Energy Technology Data Exchange (ETDEWEB)

    Patino-Palacios, G


    The simulation of the multiphase flows is currently an important scientific, industrial and economic challenge. The objective of this work is to improve comprehension via simulations of poly-dispersed flows and contribute the modeling and characterizing of its hydrodynamics. The study of gas-solid systems involves the models that takes account the influence of the particles and the effects of the collisions in the context of the momentum transfer. This kind of study is covered on the framework of this thesis. Simulations achieved with the Saturne-polyphasique-Tlse code, developed by Electricite de France and co-worked with the Institut de Mecanique des Fluides de Toulouse, allowed to confirm the feasibility of approach CFD for the hydrodynamic study of the injectors and dense fluidized beds. The stages of validation concern, on the one hand, the placement of the tool for simulation in its current state to make studies of validation and sensitivity of the models and to compare the numerical results with the experimental data. In addition, the development of new physical models and their establishments in the code Saturne will allow the optimization of the industrial process. To carry out this validation in a satisfactory way, a key simulation is made, in particular a monodisperse injection and the radial force of injection in the case of a poly-disperse flow, as well as the fluidization of a column made up of solid particles. In this last case, one approached three configurations of dense fluidized beds, in order to study the influence of the grid on simulations; then, one simulates the operation of a dense fluidized bed with which one characterizes the segregation between two various species of particles. The study of the injection of the poly-disperse flows presents two configurations; a flow Co-current gas-particle in gas (Case Hishida), and in addition, a poly-phase flow in a configuration of the jet type confined with zones of recirculation and stagnation (case

  10. Kinetic and hydrodynamic study of absorption of H{sub 2}S from coal gas with regenerable solid sorbent for advanced power generation systems

    Energy Technology Data Exchange (ETDEWEB)

    Perales, F.; Velo, E.; Puigianer, L. [Polytechnique Univ. of Catalunya, Barcelona (Spain). Dept. of Chemical Engineering


    Compared to conventional integrated gasification combined cycle (IGCC) systems used in thermal power plants, hot gas cleanup could increase the thermal efficiency of power generating systems while decreasing the capital cost. Hot gas cleanup also plays a significant role in advanced carbon dioxide control. In this study, absorbed hydrogen sulfide (H{sub 2}S) from coal gas, suitable for IGCC plants, was treated with a regenerable solid zinc titanate sorbent in a bubbling fluidized bed reactor. Reaction kinetics were determined in a previous study using thermogravimetric analysis. A mathematical model was developed to include heterogeneous gas-solid reactions, demonstrating the evolution of the zinc titanate structure. Zinc titanate reduced exhaust concentrations from the bubbling fluidized bed to levels that will be demanded by future regulations. It was concluded that 100 per cent elimination of pollutants requires low solid conversion operating conditions.

  11. Solid State Gas Sensor Research in Germany – a Status Report

    Directory of Open Access Journals (Sweden)

    Udo Weimar


    Full Text Available This status report overviews activities of the German gas sensor research community. It highlights recent progress in the field of potentiometric, amperometric, conductometric, impedimetric, and field effect-based gas sensors. It is shown that besides step-by-step improvements of conventional principles, e.g. by the application of novel materials, novel principles turned out to enable new markets. In the field of mixed potential gas sensors, novel materials allow for selective detection of combustion exhaust components. The same goal can be reached by using zeolites for impedimetric gas sensors. Operando spectroscopy is a powerful tool to learn about the mechanisms in n-type and in p-type conductometric sensors and to design knowledge-based improved sensor devices. Novel deposition methods are applied to gain direct access to the material morphology as well as to obtain dense thick metal oxide films without high temperature steps. Since conductometric and impedimetric sensors have the disadvantage that a current has to pass the gas sensitive film, film morphology, electrode materials, and geometrical issues affect the sensor signal. Therefore, one tries to measure directly the Fermi level position either by measuring the gas-dependent Seebeck coefficient at high temperatures or at room temperature by applying a modified miniaturized Kelvin probe method, where surface adsorption-based work function changes drive the drain-source current of a field effect transistor.

  12. Direct gas-solid carbonation of serpentinite residues in the absence and presence of water vapor: a feasibility study for carbon dioxide sequestration. (United States)

    Veetil, Sanoopkumar Puthiya; Pasquier, Louis-César; Blais, Jean-François; Cecchi, Emmanuelle; Kentish, Sandra; Mercier, Guy


    Mineral carbonation of serpentinite mining residue offers an environmentally secure and permanent storage of carbon dioxide. The strategy of using readily available mining residue for the direct treatment of flue gas could improve the energy demand and economics of CO2 sequestration by avoiding the mineral extraction and separate CO2 capture steps. The present is a laboratory scale study to assess the possibility of CO2 fixation in serpentinite mining residues via direct gas-solid reaction. The degree of carbonation is measured both in the absence and presence of water vapor in a batch reactor. The gas used is a simulated gas mixture reproducing an average cement flue gas CO2 composition of 18 vol.% CO2. The reaction parameters considered are temperature, total gas pressure, time, and concentration of water vapor. In the absence of water vapor, the gas-solid carbonation of serpentinite mining residues is negligible, but the residues removed CO2 from the feed gas possibly due to reversible adsorption. The presence of small amount of water vapor enhances the gas-solid carbonation, but the measured rates are too low for practical application. The maximum CO2 fixation obtained is 0.07 g CO2 when reacting 1 g of residue at 200 °C and 25 barg (pCO2 ≈ 4.7) in a gas mixture containing 18 vol.% CO2 and 10 vol.% water vapor in 1 h. The fixation is likely surface limited and restricted due to poor gas-solid interaction. It was identified that both the relative humidity and carbon dioxide-water vapor ratio have a role in CO2 fixation regardless of the percentage of water vapor.

  13. Nuclear Magnetic Resonance and Headspace Solid-Phase Microextraction Gas Chromatography as Complementary Methods for the Analysis of Beer Samples

    Directory of Open Access Journals (Sweden)

    Sarah R. Johnson


    Full Text Available Chemical analysis of the organic components in beer has applications to quality control, authenticity and improvements to the flavor characteristics and brewing process. This study aims to show the complementary nature of two instrumental techniques which, in combination, can identify and quantify a number of organic components in a beer sample. Nuclear Magnetic Resonance (NMR was used to provide concentrations of 26 different organic compounds including alcohols, organic acids, carbohydrates, and amino acids. Calorie content was also estimated for the samples. NMR data for ethanol concentrations were validated by comparison to a Fourier Transform Infrared Spectrometry (FTIR method. Headspace Solid-Phase Microextraction (SPME Gas Chromatography Mass Spectrometry (GCMS was used to identify a range of volatile compounds such as alcohols, esters and hop-derived aroma compounds. A simple and inexpensive conversion of a Gas Chromatography Flame Ionization Detector (GC FID instrument to allow the use of Solid-Phase Microextraction was found to be useful for the quantification of volatile esters.

  14. [Determination of methanol and fusel oils in alcohol beverages using headspace solid-phase microextraction and gas chromatography]. (United States)

    Liu, Hong-he; Li, Yuan-qian; Sun, Cheng-jun


    A method for the determination of methanol and fusel oils in alcohol beverages using headspace solid-phase microextraction and gas chromatography (HS-SPME-GC) is presented. The solid phase was a coated epoxy resin. The extraction and chromatography conditions were optimized. Limits of detection were 0.02 mg/L-0.04 mg/L and relative standard deviations were in the range of 1.4%-4.1%. The proposed method showed better sensitivity in comparing with direct headspace gas chromatography(HS-GC, the National Standard method). This method was applied to evaluate real samples. The spiked recoveries in beer, wine and functional alcohol samples ranged from 80.8% to 110.3% for methanol and fusel oils. The results by HS-SPME-GC and HS-GC for alcohol samples coincided very well. The proposed method is simple, fast and accurate with high reproducibility, high sensitivity and low cost. It extends the applications of SPME.

  15. Magnesium hydroxide extracted from a magnesium-rich mineral for CO2 sequestration in a gas-solid system. (United States)

    Lin, Pao-Chung; Huang, Cheng-Wei; Hsiao, Ching-Ta; Teng, Hsisheng


    Magnesium hydroxide extracted from magnesium-bearing minerals is considered a promising agent for binding CO2 as a carbonate mineral in a gas-solid reaction. An efficient extraction route consisting of hydrothermal treatment on serpentine in HCl followed by NaOH titration for Mg(OH)2 precipitation was demonstrated. The extracted Mg(OH)2 powder had a mean crystal domain size as small as 12 nm and an apparent surface area of 54 m2/g. Under one atmosphere of 10 vol% CO2/N2, carbonation of the serpentine-derived Mg(OH)2 to 26% of the stoichiometric limit was achieved at 325 degrees C in 2 h; while carbonation of a commercially available Mg(OH)2, with a mean crystal domain size of 33 nm and an apparent surface area of 3.5 m2/g, reached only 9% of the stoichiometric limit. The amount of CO2 fixation was found to be inversely proportional to the crystal domain size of the Mg(OH)2 specimens. The experimental data strongly suggested that only a monolayer of carbonates was formed on the crystal domain boundary in the gas-solid reaction, with little penetration of the carbonates into the crystal domain.

  16. In Situ Insight into Reversible O2 Gas-Solid Reactions

    DEFF Research Database (Denmark)

    Wegeberg, Christina


    Non-porous crystalline solids containing a series of cationic tetracobalt complexes reversibly, selectively and stoichiometrically chemisorb dioxygen in temperature/O2 partial pressure induced processes involving the oxidation of cobalt with concurrent reduction of two equivalents of sorbed O2...

  17. Analysis of Gas Leakage and Current Loss of Solid Oxide Fuel Cells by Screen Printing

    DEFF Research Database (Denmark)

    Jia, Chuan; Han, Minfang; Chen, Ming


    One of the biggest advantages of SOFC (solid oxide fuel cell) is the probable use of methane as fuel. However, when the actual SOFC stack is operating with CH4 as fuel, due to the catalytic action of metal nickel, carbon will deposit on SOFC anode and nickel foam, which directly shorten the SOFC ...

  18. The Physics Teacher: The Four States of Matter--Solid, Squishy, Liquid and Gas (United States)

    Clark, Roy W.


    The Physics Teacher provides introductory physics education at the high school and university levels and some of its articles are of interest to chemists. One such article points out that several substances used in the kitchen and bathrooms are not simple liquids or solids but are squishy substances, which include mayonnaise, shaving cream,…

  19. Determination of lidocaine in plasma by direct solid-phase microextraction combined with gas chromatography

    NARCIS (Netherlands)

    Koster, EHM; Wemes, C; Morsink, JB; de Jong, GJ


    Direct-immersion solid-phase microextraction (SPME) has been used to extract the local anesthetic lidocaine from human plasma. A simplified model shows the relationship between the total amount of drug in plasma and the amount of drug extracted. The model takes into account that the drug

  20. Pressure dependence of emission intensity of rare-gas excimer light produced by silent discharge; Teikiatsu ryoiki ni okeru musei hoden reiki ki gas excimer hikari shutsuryoku no atsuryoku izonsei

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Y.; Tanaka, M.; Yukimura, K. [Doshisha University, Kyoto (Japan)


    To establish the pressure dependence of silent discharge excited rare gas excimer light emission, a vacua ultraviolet light was subjected to spectroscopic analysis at a pressure lower than 20kPa. Researches are under way to apply the discharge excited rare gas excimer lamp as a vacuum ultraviolet light source for the development of new materials and for the conservation of environments. When the pressure is as low as 1.8kPa or 4.4kPa, the emission has peaks at wavelengths centering on 147nm and 149nm, both of which are the resonance lines of the xenon atom. Excimer generation becomes prominent as the pressure increases, with the second continuum of light growing dominant at 35kPa to weaken relatively the resonance lines and the first continuum of light. In the first continuum, emission increases only at a suppressed rate, as compared with emission in the second continuum, due for instance to a collision caused relaxation process in which excimers are lost. In the case of xenon in the vicinity of 10-11kPa, the first continuum of light and the second continuum of light are approximately equal in emission intensity, producing a vacuum ultraviolet light source with a bandwidth relatively large for a single gas spectrum. 14 refs., 11 figs.

  1. Anaerobic digestion of ultrasonicated sludge at different solids concentrations - Computation of mass-energy balance and greenhouse gas emissions. (United States)

    Pilli, Sridhar; Yan, S; Tyagi, R D; Surampalli, R Y


    Two cases of anaerobic digestion (AD) of sludge, namely (i) with pre-treatment and (ii) without pre-treatment, were assessed using mass-energy balance and the corresponding greenhouse gas (GHG) emissions. For a digestion period of 30 days, volatile solids degradation of the control sludge and the ultrasonicated secondary sludge was 51.4% and 60.1%, respectively. Mass balance revealed that the quantity of digestate required for dewatering, transport and land application was the lowest (20.2 × 10(6) g dry sludge/day) for ultrasonicated secondary sludge at 31.4 g TS/L. Furthermore, for ultrasonicated secondary sludge at 31.4 g TS/L, the maximum net energy (energy output - energy input) of total dry solids (TDS) was 7.89 × 10(-6) kWh/g and the energy ratio (output/input) was 1.0. GHG emissions were also reduced with an increase in the sludge solids concentration (i.e., 40.0 g TS/L < 30.0 g TS/L < 20.0 g TS/L). Ultrasonication pre-treatment proved to be efficient and beneficial for enhancing anaerobic digestion efficiency of the secondary sludge when compared to the primary and mixed sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Repowering of an Existing Power Plant by Means of Gas Turbine and Solid Oxide Fuel Cell

    DEFF Research Database (Denmark)

    Rokni, Masoud


    Repowering is a process consisting in a transformation of an old power plant in order to have a greater nameplate capacity or more efficiency, which result in a net increase of power generated. As a consequence of the higher efficiency, the repow ered plant is characterized by higher power output...... for topping an existing steam cycle, instead of gas turbine on the top. This is also the target of this study, r epowering of an existing power plant with SOFC as well as gas turbines. The plant used here for repowering is the Kyndby power station is an emergency and peak load facility for Zealand in Denmark....... This means the facilities at the station can be started up within minutes if operational irregularities occur in the high voltage electricity grid or problems arise at other power stations. Nowadays this station is repowered with two gas turbines but the current study is about the original steam plant before...

  3. Improvement of windowed type environmental-cell transmission electron microscope for in situ observation of gas-solid interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Tadahiro [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603 (Japan); PRESTO-JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Ueda, Kouta [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603 (Japan); Ichihashi, Mikio; Tanji, Takayoshi [EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)


    We have developed an improved, windowed type environmental-cell (E-cell) transmission electron microscope (TEM) for in situ observation of gas-solid interactions, such as catalytic reactions at atmospheric pressure. Our E-cell TEM includes a compact E-cell specimen holder with mechanical stability, resulting in smoother introduction of the desired gases compared with previous E-cell TEMs. In addition, the gas control unit was simplified by omitting the pressure control function of the TEM pre-evacuation chamber. This simplification was due to the successful development of remarkably tough thin carbon films as the window material. These films, with a thickness of <10 nm, were found to withstand pressure differences >2 atm. Appropriate arrangement of the specimen position inside the E-cell provided quantitatively analyzable TEM images, with no disturbances caused by the windowed films. As an application, we used this E-cell TEM to observe the dynamic shape change in a catalytic gold nanoparticle supported on TiO{sub 2} during the oxidation of CO gas.

  4. Reforming results of a novel radial reactor for a solid oxide fuel cell system with anode off-gas recirculation (United States)

    Bosch, Timo; Carré, Maxime; Heinzel, Angelika; Steffen, Michael; Lapicque, François


    A novel reactor of a natural gas (NG) fueled, 1 kW net power solid oxide fuel cell (SOFC) system with anode off-gas recirculation (AOGR) is experimentally investigated. The reactor operates as pre-reformer, is of the type radial reactor with centrifugal z-flow, has the shape of a hollow cylinder with a volume of approximately 1 L and is equipped with two different precious metal wire-mesh catalyst packages as well as with an internal electric heater. Reforming investigations of the reactor are done stand-alone but as if the reactor would operate within the total SOFC system with AOGR. For the tests presented here it is assumed that the SOFC system runs on pure CH4 instead of NG. The manuscript focuses on the various phases of reactor operation during the startup process of the SOFC system. Startup process reforming experiments cover reactor operation points at which it runs on an oxygen to carbon ratio at the reactor inlet (ϕRI) of 1.2 with air supplied, up to a ϕRI of 2.4 without air supplied. As confirmed by a Monte Carlo simulation, most of the measured outlet gas concentrations are in or close to equilibrium.

  5. Rapid Separation of Elemental Species by Fast Multicapillary Gas Chromatography with Multichannel Optical Spectrometry Detection following Headspace Solid Phase Microextraction

    Directory of Open Access Journals (Sweden)

    Jacek Giersz


    Full Text Available A method for conducting fast and efficient gas chromatography based on short multicapillaries in straight alignment combined with atomic emission detection was developed for field analysis. The strategy enables for speciation analysis of organometallic compounds. The analytes are simultaneously ethylated and preconcentrated on a solid phase microextraction (SPME fiber placed in the headspace over the sample for 25 min. The ethylated species are then completely separated and selectively quantified within 25 s under isothermal conditions. A new miniaturized speciation analyzer has been constructed and evaluated. The system consists of a GC injection port and a lab-made miniaturized GC unit directly coupled with miniaturized plasma excitation source. The emitted light is transferred via optical fiber and registered with a miniaturized charged coupled device (CCD based spectrometer. Working parameters for multicapillary column gas chromatography with atomic emission detector, including carrier gas flow rate, desorption temperature, and GC column temperature, were optimized to achieve good separation of analytes. Basic investigations of the fundamental properties of 5 cm-long multicapillary column, to evaluate its potential and limitations as a rapid separation unit, are presented. The adaptation of the technique for use with a SPME system and with a multichannel element-selective plasma-emission detector is highlighted.

  6. Efficiency of energy recovery from municipal solid waste and the resultant effect on the greenhouse gas balance. (United States)

    Gohlke, Oliver


    Global warming is a focus of political interest and life-cycle assessment of waste management systems reveals that energy recovery from municipal solid waste is a key issue. This paper demonstrates how the greenhouse gas effects of waste treatment processes can be described in a simplified manner by considering energy efficiency indicators. For evaluation to be consistent, it is necessary to use reasonable system boundaries and to take the generation of electricity and the use of heat into account. The new European R1 efficiency criterion will lead to the development and implementation of optimized processes/systems with increased energy efficiency which, in turn, will exert an influence on the greenhouse gas effects of waste management in Europe. Promising technologies are: the increase of steam parameters, reduction of in-plant energy consumption, and the combined use of heat and power. Plants in Brescia and Amsterdam are current examples of good performance with highly efficient electricity generation. Other examples of particularly high heat recovery rates are the energy-from-waste (EfW) plants in Malmö and Gothenburg. To achieve the full potential of greenhouse gas reduction in waste management, it is necessary to avoid landfilling combustible wastes, for example, by means of landfill taxes and by putting incentives in place for increasing the efficiency of EfW systems.

  7. FEM modeling of solidly mounted film bulk acoustic resonator and gas sensor using PIB-sensitive layer (United States)

    Patel, Raju; Patel, Manishkumar; Boolchandani, Dharmendar; Rangra, Kamal J.


    The application of a film bulk acoustic resonator (FBAR) as a gas sensor is presented here. Zinc Oxide is used as a piezoelectric (PZE) material for the resonator and a Bragg reflector is made of Molybdenum and Silicon dioxide in proposed Solidly Mounted FBAR. The structure offers a high quality factor of 1209 at the resonance and shows a coupling coefficient of 7.51% for the 0.7-μm-thick PZE layer. To make it capable of working as a gas sensor, an additional sensitive layer for adsorption is used. A 0.51-μm-thin film of polymer-sensitive layer (polyisobutylene, PIB) is used on the top electrode. The adsorption of CH2Cl2 (dichloromethane, DCM) prompts the change in density of the PIB layer, which causes the change in resonance frequency of the FBAR. The simulation results have shown the sensitivity of 450 Hz/ppm for gas sensing for the above-mentioned structure. The sensitivity of the sensor depends on the characteristic frequencies of the device, which are further the function of the thickness of the resonating structure. No involvement of a harsh etching process in fabrication, in addition to immense sensitivity and quality factor, makes this sensor relevant for DCM sensing.

  8. Computational fluid dynamics for dense gas-solid fluidized beds: a multi-scale modeling strategy

    NARCIS (Netherlands)

    van der Hoef, Martin Anton; van Sint Annaland, M.; Kuipers, J.A.M.


    Dense gas-particle flows are encountered in a variety of industrially important processes for large scale production of fuels, fertilizers and base chemicals. The scale-up of these processes is often problematic and is related to the intrinsic complexities of these flows which are unfortunately not

  9. The role of clusters in gas-solids reactors. An experimental study.

    NARCIS (Netherlands)

    Venderbosch, R.H.


    This PhD-work is meant to determine the contact efficiency experimentally for fluidization of fine particles over a wide range of superficial gas velocities (dp<200 mm and 0.1

  10. The gas/solid methane abundance ratio toward deeply embedded protostars

    NARCIS (Netherlands)

    Boogert, ACA; Helmich, EP; van Dishoeck, EF; Schutte, WA


    We present the detection of re-vibrational absorption lines of the deformation mode of gaseous CH4 toward the massive protostars W 33A, and NGC 7538 : IRS9, using the SWS spectrometer an board of the Infrared Space Observatory. The observed lines indicate that the CH4 gas is warm (T similar to N 90

  11. A Gas-Solid Singlet Delta Oxygen Generator for the Chemical Iodine Laser

    National Research Council Canada - National Science Library

    Alfano, Angelo


    ... at 1.27 microns by passing chlorine gas through aqueous, basic hydrogen peroxide (H2O2/OH). Unfortunately, the process of nonradiative relaxation used in COIL results in the creation of undesired heat and not the desired light emission...

  12. Inverse gas chromatography - a different approach to characterization of solids and liquids:


    Kunaver, Matjaž; Planinšek, Odon; Srčič, Stanko; Zadnik, Jernej


    IGC has become powerful technique in evaluating the properties of solids and liquids. It provides access to several physico-chemical properties of such materials including their surface energy, phase transitions, crystallinity andacid-base characteristics. Kinetic parameters such as diffusion coefficients can be determined. IGC is used to characterize a wide range of product types including pharmaceuticals, natural and synthetic polymers, food ingredients and products, minerals etc.

  13. In Situ Solid-Gas Reactivity of Nanoscaled Metal Borides from Molten Salt Synthesis


    Gouget, Guillaume; Debecker, Damien P.; Kim, Ara; Olivieri, Giorgia; Gallet, Jean-Jacques; Bournel, Fabrice; Thomas, Cyril; Ersen, Ovidiu; Moldovan, Simona; Sanchez, Clément; Carenco , Sophie; Portehault, David


    Metal borides have mostly been studied as bulk materials. The nanoscale provides new opportunities to investigate the properties of these materials, e.g., nanoscale hardening and surface reactivity. Metal borides are often considered stable solids because of their covalent character, but little is known on their behavior under a reactive atmosphere, especially reductive gases. We use molten salt synthesis at 750 °C to provide cobalt monoboride (CoB) nanocrystals embedded in an amorphous layer...

  14. Diffusion and Gas Conversion Analysis of Solid Oxide Fuel Cells at Loads via AC Impedance


    Robert U. Payne; Ying Zhu; Zhu, Wenhua H.; Timper, Mark S.; Elangovan, S; Bruce J. Tatarchuk


    Impedance measurements were conducted under practical load conditions in solid oxide fuel cells of differing sizes. For a 2 cm2 button cell, impedance spectra data were separately measured for the anode, cathode, and total cell. Improved equivalent circuit models are proposed and applied to simulate each of measured impedance data. Circuit elements related to the chemical and physical processes have been added to the total-cell model to account for an extra relaxation process in the spectra n...

  15. Modeling of vapor-liquid-solid equilibrium in gas - aqueous electrolyte systems

    DEFF Research Database (Denmark)

    Thomsen, Kaj; Rasmussen, Peter


    A thermodynamic model for the description of vapor-liquid-solid equilibria is introduced. This model is a combination of the extended UNIQUAC model for electrolytes and the Soave-Redlich-Kwong cubic equation of state. The model has been applied to aqueous systems containing ammonia and/or carbon...... dioxide along with various salts. Model parameters valid in the temperature range 0-110 degrees C, the pressure range from 0-100 bar, and the concentration range up to approximately 80 molal ammonia are given. The model parameters were evaluated on the basis of more than 7000 experimental data points. (C...

  16. Headspace solid-phase microextraction-gas chromatography-mass spectrometry applied to quality control in multilayer-packaging manufacture. (United States)

    Ezquerro, Oscar; Pons, Begoña; Tena, María Teresa


    A method based on headspace solid-phase microextraction-gas chromatography-mass spectrometry is proposed for the quality control of multilayer packaging and its manufacturing process. Volatile organic compounds (VOCs) are produced in the manufacturing process of the packaging. They can cause organoleptic problems or modify the properties of the packaging depending on the nature and the amount of the VOCs formed. The quantification using packaging samples with a known VOC concentration for the calibration is proposed in order to reduce the analysis time, and the method is validated using a statistical test. Finally, the method is applied to the determination of odour-responsible compounds in multilayer packaging samples obtained under different extrusion-coating conditions, i.e. type of extruder, type of polymer and extrusion speed.

  17. Characterization of novel varietal floral hop aromas by headspace solid phase microextraction and gas chromatography-mass spectrometry/olfactometry. (United States)

    Van Opstaele, Filip; De Causmaecker, Brecht; Aerts, Guido; De Cooman, Luc


    In this study, headspace solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS) were optimized and implemented to investigate the volatile composition of novel floral hop essences prepared from four German aroma hop varieties. In total, 91 different constituents were assigned, which were further grouped into monoterpene hydrocarbons, esters, ketones, aldehydes, furans, and oxygenated and nonoxygenated sesquiterpenes. Most volatiles belong to the ester group, whereas the monoterpene hydrocarbon β-myrcene appears to be the predominant compound in all hop oil preparations investigated. Furthermore, as demonstrated by principal component analysis, varietal floral hop essences are clearly discriminated on the basis of their characteristic volatile composition. Via GC-olfactometry on the floral essence variety Spalter Select, β-myrcene and 2-undecanone were identified as the most potent odorants. Several hop oil constituents were reported for the first time as impact odorants of hop aroma.

  18. Volatile constituents of Murraya koenigii fresh leaves using headspace solid phase microextraction--gas chromatography-mass spectrometry. (United States)

    Sukkaew, Sayamol; Pripdeevech, Patcharee; Thongpoon, Chalermporn; Machan, Theeraphan; Wongchuphan, Rattana


    The volatile components of Murraya koenigii fresh leaves, collected from Surat Thani province, Thailand were studied by using headspace (HS) solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS). The four fibers employed to extract the volatiles were polydimethylsiloxane (PDMS), polydimethylsiloxane-divinylbenzene (PDMS-DVB), carboxane-polydimethylsiloxane (CAR-PDMS) and polydimethylsiloxane-divinylbenzene-carboxane (PDMS-DVB-CAR). The volatile constituents of M. koenigii fresh leaves were also extracted by hydrodistillation and analyzed by GC-MS. Fifty-one compounds were identified by these fibers. Five major compounds, γ-terpinene, β-caryophyllene, β-phellandrene, a-selinene and a-pinene, were detected in all fibers. The PDMS-DVB-CAR fiber was considered as the best for trapping key volatiles of M. koenigii fresh leaves.

  19. Determination of 24 pesticide residues in fortified wines by solid-phase microextraction and gas chromatography-tandem mass spectrometry. (United States)

    Martins, Joana; Esteves, Cristina; Simoes, Tomas; Correia, Manuela; Delerue-Matos, Cristina


    The present work describes a solid-phase microextraction (SPME) gas chromatography-tandem mass spectrometry (MS/MS) method to quantify 24 pesticides in fortified white wine and fortified red wine. In this study "fortified wine" refers to a wine in which fermentation is arrested before completion by alcohol distillate addition, allowing sugar and alcoholic contents to be higher (around 80-100 g/L total sugars and 19-22% alcohol strength (v/v)). The analytical method showed good linearity, presenting correlation coefficients (R(2)) ≥ 0.989 for all compounds. Limits of detection (LOD) and quantitation (LOQ) in the ranges of 0.05-72.35 and 0.16-219.23 μg/L, respectively, were obtained. LOQs are below the maximum residue levels (MRL) set by European Regulation for grapes. The proposed method was applied to 17 commercial fortified wines. The analyzed pesticides were not detected in the wines tested.

  20. Identification of Flavor Components in Perfumes by Headspace Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry (United States)

    Knupp, Gerd; Kusch, Peter; Neugebauer, Michael


    An experiment for identification of flavor components in Original Eau de Cologne by headspace solid-phase microextraction (HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS) with electron impact ionization was developed. A new SPME fiber with a dual coating of divinylbenzene and Carboxen, each suspended in polydimethylsiloxane, was used. The compounds were identified by search of the NIST 98 MS Library or by comparison with pure standards. The experiment was developed for second-year chemistry students to learn the principles of analytical instrumentation (GC-MS) and sample preparation techniques (HS-SPME). The students are able to complete this experiment in a single four-hour laboratory session.

  1. Boundaries matter: Greenhouse gas emission reductions from alternative waste treatment strategies for California’s municipal solid waste

    DEFF Research Database (Denmark)

    Vergara, Sintana E.; Damgaard, Anders; Horvathc, Arpad


    is collected, and that our system boundary begins when waste is thrown away and ends with disposal or conversion to air emissions, reducing California’s residual waste by 40% can lead to a savings of 6 Mt (million metric tonnes) of CO2-e per year, and digesting California’s biogenic waste could save 0.6 Mt CO2......-e per year. Source reduction is the most robust means to mitigate GHG emissions from waste, though either increasing landfill gas capture rates within the current management plan or digesting biogenic waste (and designing landfills to maximize carbon sequestration) provide two other important means......How waste is managed – whether as a nuisance to be disposed of, or as a resource to be reused – directly affects local and global environmental quality. This analysis explores the GHG benefits of five treatment options for residual municipal solid waste (MSW) in California: Business As Usual...

  2. Analysis of linear and cyclic methylsiloxanes in water by headspace-solid phase microextraction and gas chromatography-mass spectrometry. (United States)

    Companioni-Damas, E Y; Santos, F J; Galceran, M T


    This paper proposes a new method for the analysis of linear and cyclic methylsiloxanes in water samples based on headspace-solid phase microextraction (HS-SPME) coupled to gas chromatography-mass spectrometry (GC-MS). The extraction efficiency of four commercially available SPME-fibres was evaluated and it was found that a 65 μm polydimethylsiloxane/divinylbenzene (PDMS/DVB) coating was the most suitable for the extraction of siloxanes. The method provided good linearity (r>0.999) and precision (RSD % river waters from Catalonia (NE, Spain) and the results showed concentrations of linear and cyclic siloxanes ranging from 0.09 to 3.94 ng L(-1) and 22.2 to 58.5 ng L(-1), respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Multi-loop control strategy of a solid oxide fuel cell and micro gas turbine hybrid system (United States)

    Wu, Xiao-Juan; Zhu, Xin-Jian


    Solid oxide fuel cell and micro gas turbine (SOFC/MGT) hybrid system is a promising distributed power technology. In order to ensure the system safe operation as well as long lifetime of the fuel cell, an effective control manner is expected to regulate the temperature and fuel utilization at the desired level, and track the desired power output. Thus, a multi-loop control strategy for the hybrid system is investigated in this paper. A mathematical model for the SOFC/MGT hybrid system is built firstly. Based on the mathematical model, control cycles are introduced and their design is discussed. Part load operation condition is employed to investigate the control strategies for the system. The dynamic modeling and control implementation are realized in the MATLAB/SIMULINK environment, and the simulation results show that it is feasible to build the multi-loop control methods for the SOFC/MGT hybrid system with regard to load disturbances.

  4. Determination of some volatile compounds in alcoholic beverage by headspace solid-phase microextraction gas chromatography - mass spectrometry (United States)

    Schmutzer, G.; Avram, V.; Feher, I.; David, L.; Moldovan, Z.


    The volatile composition of alcoholic beverage was studied by headspace solid-phase microextraction (HSSPME) method and gas chromatography - mass spectrometry (GC-MS). Some volatile compounds, such as alcohols, esters, terpenes and other are mainly responsible for the flavor of fortified wines and their amounts specify the quality of the alcoholic beverages. From this perspective it is interesting to develop a rapid, selective and sensitive analytical method suitable for simultaneous quantification of the main molecules being responsible for the organoleptic characteristic of alcoholic beverages. Vermouth fortified drink was analyzed in order to characterize the volatile profile. Using the HS-SPME/GC-MS a number of twenty-six volatile compounds from a commercial market alcoholic beverage were identified. The most abundant compounds were m-thymol, o-thymol and eugenol, alongside of the ethyl ester compounds.

  5. Evaluation of solid-phase microextraction conditions for the determination of polycyclic aromatic hydrocarbons in aquatic species using gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Aguinaga, N.; Campillo, N.; Vinas, P.; Hernandez-Cordoba, M. [University of Murcia, Department of Analytical Chemistry, Faculty of Chemistry, Murcia (Spain)


    This paper describes a headspace solid-phase microextraction (HS-SPME) procedure coupled to gas chromatography with mass spectrometric detection (GC-MS) for the determination of eight PAHs in aquatic species. The influence of various parameters on the PAH extraction efficiency was carefully examined. At 75 C and for an extraction time of 60 min, a polydimethylsiloxane-divinylbenzene (PDMS/DVB) fiber coating was found to be most suitable. Under the optimized conditions, detection limits ranged from 8 to 450 pg g{sup -1}, depending on the compound and the sample matrix. The repeatability varied between 7 and 15% (RSD). Accuracy was tested using the NIST SRM 1974b reference material. The method was successfully applied to different samples, and the studied PAHs were detected in several of the samples. (orig.)

  6. High resolution, low hν photoelectron spectroscopy with the use of a microwave excited rare gas lamp and ionic crystal filters. (United States)

    Suga, S; Sekiyama, A; Funabashi, G; Yamaguchi, J; Kimura, M; Tsujibayashi, M; Uyama, T; Sugiyama, H; Tomida, Y; Kuwahara, G; Kitayama, S; Fukushima, K; Kimura, K; Yokoi, T; Murakami, K; Fujiwara, H; Saitoh, Y; Plucinski, L; Schneider, C M


    The need for not only bulk sensitive but also extremely high resolution photoelectron spectroscopy for studying detailed electronic structures of strongly correlated electron systems is growing rapidly. Moreover, easy access to such a capability in one's own laboratory is desirable. Demonstrated here is the performance of a microwave excited rare gas (Xe, Kr, and Ar) lamp combined with ionic crystal filters (sapphire, CaF(2), and LiF), which can supply three strong lines near the photon energy of hnyu hν=8.4, 10.0, and 11.6 eV, with the hν resolution of better than 600 μeV for photoelectron spectroscopy. Its performance is demonstrated on some materials by means of both angle-integrated and angle-resolved measurements.

  7. Combustible gas production (methane) and biodegradation of solid and liquid mixtures of meat industry wastes

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, A.; Al-Kassir, A.; Cuadros, F.; Lopez-Rodriguez, F. [School of Engineering, University of Extremadura, Avda. De Elva, s/n, 06071, Badajoz (Spain); Mohamad, A.A. [Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta (Canada)


    This work is devoted to determine the optimal operational conditions on the methane production as well as on the biodegradation obtained from the anaerobic codigestion of solid (fat, intestines, rumen, bowels, whiskers, etc.) and liquid (blood, washing water, manure, etc.) wastes of meat industry, particularly the ones rising from the municipal slaughterhouse of Badajoz (Spain). The experiments were performed using a 2 l capacity discontinuous digester at 38 C. The loading rate were 0.5, 1, 2, 3, and 4.5 g COD for wastewater (washing water and blood; Mixture 1), and 0.5, 1, 2, 3, and 4 g COD for the co-digestion of a mixture of 97% liquid effluent and 3% solid wastes v/v (Mixture 2) which represents the annual mean composition of the waste generated by the slaughterhouse. The maximal biodegradation rates obtained were: Mixture 1, 56.9% for a COD load of 1 g; and Mixture 2, 19.1% for a COD load of 2 g. For both mixtures, the greatest methane production was for the maximum COD load (4.5 g for Mixture 1, and 4 g for Mixture 2), at which values the amounts of methane obtained during and at the end of the co-digestion were practically indistinguishable between the two mixtures. The results will be used to design, construct, and establish the optimal operating conditions of a continuous complete-mixture biodigester. (author)

  8. Determination of amphetamine-type stimulants in oral fluid by solid-phase microextraction and gas chromatography-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Daniele Z., E-mail: [Setor Tecnico-Cientifico, Superintendencia Regional do Departamento de Policia Federal no Rio Grande do Sul, 1365 Ipiranga Avenue, Azenha, Zip Code 90160-093 Porto Alegre, Rio Grande do Sul (Brazil); Programa de Pos-Graduacao em Ciencias Farmaceuticas, Faculdade de Farmacia, Universidade Federal do Rio Grande do Sul, 2752 Ipiranga Avenue, Santana, Zip Code 90610-000 Porto Alegre, Rio Grande do Sul (Brazil); Boehl, Paula O.; Comiran, Eloisa; Mariotti, Kristiane C. [Programa de Pos-Graduacao em Ciencias Farmaceuticas, Faculdade de Farmacia, Universidade Federal do Rio Grande do Sul, 2752 Ipiranga Avenue, Santana, Zip Code 90610-000 Porto Alegre, Rio Grande do Sul (Brazil); Pechansky, Flavio [Centro de Pesquisa em Alcool e Drogas (CPAD), Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, 2350, Ramiro Barcelos Street, Zip Code 90035-903 Porto Alegre, Rio Grande do Sul (Brazil); Duarte, Paulina C.A.V. [Secretaria Nacional de Politicas sobre Drogas (SENAD), Esplanada dos Ministerios, Block ' A' , 5th floor, Zip Code 70050-907 Brasilia, Distrito Federal (Brazil); De Boni, Raquel [Centro de Pesquisa em Alcool e Drogas (CPAD), Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, 2350, Ramiro Barcelos Street, Zip Code 90035-903 Porto Alegre, Rio Grande do Sul (Brazil); Froehlich, Pedro E.; Limberger, Renata P. [Programa de Pos-Graduacao em Ciencias Farmaceuticas, Faculdade de Farmacia, Universidade Federal do Rio Grande do Sul, 2752 Ipiranga Avenue, Santana, Zip Code 90610-000 Porto Alegre, Rio Grande do Sul (Brazil)


    Graphical abstract: Highlights: > Propylchloroformate derivatization of amphetamine-type stimulants in oral fluid. > Direct immersion solid-phase microextraction/gas chromatography-mass spectrometry. > Linear range 2(4)-256 ng mL{sup -1}, detection limits 0.5-2 ng mL{sup -1}. > Accuracy 98-112%, precision <15% of RSD, recovery 77-112%. > Importance of residual evaluation in checking model goodness-of-fit. - Abstract: A method for the simultaneous identification and quantification of amphetamine (AMP), methamphetamine (MET), fenproporex (FEN), diethylpropion (DIE) and methylphenidate (MPH) in oral fluid collected with Quantisal{sup TM} device has been developed and validated. Thereunto, in-matrix propylchloroformate derivatization followed by direct immersion solid-phase microextraction and gas chromatography-mass spectrometry were employed. Deuterium labeled AMP was used as internal standard for all the stimulants and analysis was performed using the selected ion monitoring mode. The detector response was linear for the studied drugs in the concentration range of 2-256 ng mL{sup -1} (neat oral fluid), except for FEN, whereas the linear range was 4-256 ng mL{sup -1}. The detection limits were 0.5 ng mL{sup -1} (MET), 1 ng mL{sup -1} (MPH) and 2 ng mL{sup -1} (DIE, AMP, FEN), respectively. Accuracy of quality control samples remained within 98.2-111.9% of the target concentrations, while precision has not exceeded 15% of the relative standard deviation. Recoveries with Quantisal{sup TM} device ranged from 77.2% to 112.1%. Also, the goodness-of-fit concerning the ordinary least squares model in the statistical inference of data has been tested through residual plotting and ANOVA. The validated method can be easily automated and then used for screening and confirmation of amphetamine-type stimulants in drivers' oral fluid.

  9. Investigation of the Electronic Excited States of Small Gold Clusters in Rare Gas Matrices: Spin-Orbit Time-Dependent Density Functional Theory Calculation. (United States)

    Jamshidi, Zahra; Kaveei, Elham; Mohammadpour, Mozhdeh


    The effects of the weak interactions of rare gas atoms on the UV-visible absorption spectra of gold dimer and tetramer clusters are investigated. The time-dependent density functional theory based on the two-component relativistic zeroth-order regular approximation that considered spin-orbit coupling is performed to estimate the absorption spectra of Au2,4-Rgn (Rg = Ne-Xe, and n = 1-6) complexes. Using spin-orbit, including the appropriate functional, shows a close correlation between experiment and our calculations. It is also demonstrated that the weak interactions between rare gas atoms and gold clusters affect the UV-vis spectra of Au2,4 clusters by shifting the electronic transition toward the blue. Moreover, we find that the order of change in peak position, Δν̃, is proportional to the strength of interactions: Δν̃Au2,4-Xe > Δν̃Au2,4-Kr > Δν̃Au2,4-Ar > Δν̃Au2,4-Ne. In addition, comparing the UV-visible spectra of Au2,4-Rgn complexes with those of isolated Au2 and Au4 clusters shows that for Au2,4-Rg2,4,6 complexes in which Rg atoms interacted symmetrically with gold clusters no additional peaks are observed compared to isolated clusters; however, for Au2,4-Rg1,3,5 complexes, extra peaks appear because of the decrease in symmetry.

  10. Coherent and non coherent atom optics experiment with an ultra-narrow beam of metastable rare gas atoms; Experiences d'optique atomique coherente ou non avec un jet superfin d'atomes metastables de gaz rares

    Energy Technology Data Exchange (ETDEWEB)

    Grucker, J


    In this thesis, we present a new type of atomic source: an ultra-narrow beam of metastable atoms produced by resonant metastability exchange inside a supersonic beam of rare gas atoms. We used the coherence properties of this beam to observe the diffraction of metastable helium, argon and neon atoms by a nano-transmission grating and by micro-reflection-gratings. Then, we evidenced transitions between Zeeman sublevels of neon metastable {sup 3}P{sub 2} state due to the quadrupolar part of Van der Waals potential. After we showed experimental proofs of the observation of this phenomenon, we calculated the transition probabilities in the Landau - Zener model. We discussed the interest of Van der Waals - Zeeman transitions for atom interferometry. Last, we described the Zeeman cooling of the supersonic metastable argon beam ({sup 3}P{sub 2}). We have succeeded in slowing down atoms to speeds below 100 m/s. We gave experimental details and showed the first time-of-flight measurements of slowed atoms.

  11. [Determination of short chain chlorinated paraffins in leather products by solid phase extraction coupled with gas chromatography-mass spectrometry]. (United States)

    Zhang, Weiya; Wan, Xin; Li, Lixia; Wang, Chengyun; Jin, Shupei; Xing, Jun


    The short chain chlorinated paraffins (SCCPs) are the additives frequently used in the leather production in China, but they have been put into the list of forbidden chemicals issued by European Union recently. In fact, there is not a commonly recognized method for the determination of the SCCPs in the leather products due to the serious matrix interferences from the leather products and the complex chemical structures of the SCCPs. A method of solid phase extraction coupled with gas chromatography-mass spectrometry (SPE-GC-MS) was established for the determination of the SCCPs in the leather products after the optimization of the SPE conditions. It was found that the interferences from the leather products were thor- oughly separated from the analyte of the SCCPs on a home-made solid phase extraction (SPE) column filled with silica packing while eluted with a mixed solvent of n-hexane-methylene chloride (2:1, v/v). With this method, the recoveries for the SCCPs spiked in the real leather samples varied from 90.47% to 99.00% with the relative standard deviations (RSDs) less than 6.7%, and the limits of detection (LODs) were between 0.069 and 0.110 mg/kg. This method is suitable for qualitative and quantitative analysis of SCCPs in the leather products.

  12. Exergy Analysis of an Intermediate Temperature Solid Oxide Fuel Cell-Gas Turbine Hybrid System Fed with Ethanol

    Directory of Open Access Journals (Sweden)

    Fotini Tzorbatzoglou


    Full Text Available In the present work, an ethanol fed Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT system has been parametrically analyzed in terms of exergy and compared with a single SOFC system. The solid oxide fuel cell was fed with hydrogen produced from ethanol steam reforming. The hydrogen utilization factor values were kept between 0.7 and 1. The SOFC’s Current-Volt performance was considered in the range of 0.1–3 A/cm2 at 0.9–0.3 V, respectively, and at the intermediate operating temperatures of 550 and 600 °C, respectively. The curves used represent experimental results obtained from the available bibliography. Results indicated that for low current density values the single SOFC system prevails over the SOFC-GT hybrid system in terms of exergy efficiency, while at higher current density values the latter is more efficient. It was found that as the value of the utilization factor increases the SOFC system becomes more efficient than the SOFC-GT system over a wider range of current density values. It was also revealed that at high current density values the increase of SOFC operation temperature leads in both cases to higher system efficiency values.

  13. Carbonate formation in non-aqueous environments by solid-gas carbonation of silicates (United States)

    Day, S. J.; Thompson, S. P.; Evans, A.; Parker, J. E.


    We have produced synthetic analogues of cosmic silicates using the Sol Gel method, producing amorphous silicates of composition Mg(x)Ca(1-x)SiO3. Using synchrotron X-ray powder diffraction on Beamline I11 at the Diamond Light Source, together with a newly-commissioned gas cell, real-time powder diffraction scans have been taken of a range of silicates exposed to CO2 under non-ambient conditions. The SXPD is complemented by other techniques including Raman and Infrared Spectroscopy and SEM imaging.


    Directory of Open Access Journals (Sweden)

    Tatiana Tugui


    Full Text Available The paper summarizes the research results on development national emissions factor for the Greenhouse Gas Inventory (GHGI Source Category “6A Solid Waste Disposal on Land”. The obtained results offer the opportunity to improve the Intergovernmental Panel for Climate Change (IPCC methodologies and Emission Factors for assessing the GHG emissions originated from waste sector. The article contains relevant information on composition of landfill gases at managed and unmanaged solid waste disposal sites, as well as the municipal solid waste composition results, investigated during one year in the Republic of Moldova: from autumn, 2004 to summer, 2005.

  15. Inverse gas chromatography a tool to follow physicochemical modifications of pharmaceutical solids: Crystal habit and particles size surface effects. (United States)

    Cares-Pacheco, M G; Calvet, R; Vaca-Medina, G; Rouilly, A; Espitalier, F


    Powders are complex systems and so pharmaceutical solids are not the exception. Nowadays, pharmaceutical ingredients must comply with well-defined draconian specifications imposing narrow particle size range, control on the mean particle size, crystalline structure, crystal habits aspect and surface properties of powders, among others. The different facets, physical forms, defects and/or impurities of the solid will alter its interaction properties. A powerful way of studying surface properties is based on the adsorption of an organic or water vapor on a powder. Inverse gas chromatography (IGC) appears as a useful method to characterize the surface properties of divided solids. The aim of this work is to study the sensitivity of IGC, in Henry's domain, in order to detect the impact of size and morphology in surface energy of two crystalline forms of an excipient, d-mannitol. Surface energy analyses using IGC have shown that the α form is the most energetically active form. To study size and shape influence on polymorphism, pure α and β mannitol samples were cryomilled (CM) and/or spray dried (SD). All forms showed an increase of the surface energy after treatment, with a higher influence for β samples (γs(d) of 40-62 mJ m(-2)) than for α mannitol samples (γs(d) of 75-86 mJ m(-2)). Surface heterogeneity analysis in Henry's domain showed a more heterogeneous β-CM sample (62-52 mJ m(-2)). Moreover, despite its spherical shape and quite homogeneous size distribution, β-SD mannitol samples showed a slightly heterogeneous surface (57-52 mJ m(-2)) also higher than the recrystallized β pure sample (∼40 mJ m(-2)). Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Improving the performance of catalytic combustion type methane gas sensors using nanostructure elements doped with rare Earth cocatalysts. (United States)

    Wang, Ying; Tong, Min Ming; Zhang, Dan; Gao, Zhen


    Conventional methane gas sensors based on catalytic combustion have the drawbacks of high working temperature, low thermal stability and small measurement range. To improve their performance, cerium, which possesses high oxygen storage and release ability, was introduced via nanotechnology to prepare Ce-contained nanostructure elements. Three kinds of elements with different carriers: Al(2)O(3), n-Al(2)O(3) and n-Ce-Al(2)O(3) were prepared and separately fabricated (Pt-Pd/Al, Pt-Pd/n-Al, Pt-Pd/n-Ce-Al). The performances of Wheatstone Bridges with three different catalytic elements were tested and compared. The results indicated that the cerium-containing element exhibited better performance than other elements regarding activity, anti-sulfur ability and thermal stability. Moreover, a constant temperature circuit was also applied in this system. The measurement range was extended from 4% to 10% by automatically decreasing the working current in a reasonable range. The maximum error for 0%-10% CH(4) was controlled below 5%, which fully meets the measurement requirements.

  17. Continuous versus Arrested Spreading of Biofilms at Solid-Gas Interfaces: The Role of Surface Forces (United States)

    Trinschek, Sarah; John, Karin; Lecuyer, Sigolène; Thiele, Uwe


    We introduce and analyze a model for osmotically spreading bacterial colonies at solid-air interfaces that includes wetting phenomena, i.e., surface forces. The model is based on a hydrodynamic description for liquid suspensions which is supplemented by bioactive processes. We show that surface forces determine whether a biofilm can expand laterally over a substrate and provide experimental evidence for the existence of a transition between continuous and arrested spreading for Bacillus subtilis biofilms. In the case of arrested spreading, the lateral expansion of the biofilm is confined, albeit the colony is biologically active. However, a small reduction in the surface tension of the biofilm is sufficient to induce spreading. The incorporation of surface forces into our hydrodynamic model allows us to capture this transition in biofilm spreading behavior.

  18. Numerical Simulation of the Gas-Solid Flow by DEM-CFD Approach with Application to a Spouted Bed

    Directory of Open Access Journals (Sweden)

    Jinhe FAN


    Full Text Available The paper presents a computational study of the gas-solid flow in a three- dimensional spouted bed by a combined approach of discrete element method and computational fluid dynamics (DEM-CFD.The coupling between the discrete particle and continuum gas was achieved by applying the principle of Newton’s third law of motion. As a result, it is found that the motion of particles was forming a distinct circulation between center zone and boundary zone of the 3D spouted bed in macro, and there was a stagnant zone near the bottom of the bed in which the particle velocity is almost zero near the wall, they do not move anywhere. Pressure drop will be affected by wind speed and particle density. With enhancing of wind velocity, pressure drop appears an increasing trend until it is up to a certain value, and then the curve will have a certain degree of back and keep in an extension; Adding particle density, pressure drop and its swing is increased markedly. The results of this study provide important information in the spouted bed and may be helpful for better application and modification of this type of spouted bed to the industrial process.

  19. Gas-Induced Rectified Motion of a Solid Object in a Liquid-Filled Housing during Vibration: Analysis and Experiments (United States)

    Torczynski, J. R.; O'Hern, T. J.; Clausen, J. R.; Koehler, T. P.


    The motion of a solid object (a piston) that fits closely within a housing filled with viscous liquid is studied. If a small amount of gas is introduced and the system is subjected to axial vibration, then the piston exhibits rectified motion when the drag on the piston depends on its position within the housing. An idealized system, in which the piston is suspended freely between two springs and the gas is replaced with two compressible bellows, is analyzed theoretically and studied experimentally. For a given vibration amplitude or frequency, the piston either remains near its original position (``up'') or moves to a different position (``down''), where its spring suspension is compressed. Analytical and experimental regime maps of the amplitudes and frequencies at which the piston is up or down are in good agreement. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  20. Greenhouse gas footprint and the carbon flow associated with different solid waste management strategy for urban metabolism in Bangladesh. (United States)

    Islam, K M Nazmul


    Greenhouse gas (GHG) emissions from municipal solid waste (MSW) and associated climate change consequences are gripping attention globally, while MSW management as a vital subsystem of urban metabolism significantly influences the urban carbon cycles. This study evaluates the GHG emissions and carbon flow of existing and proposed MSW management in Bangladesh through scenario analysis, including landfill with landfill gas (LFG) recovery, waste to energy (WtE), and material recovery facility (MRF). The analysis indicates that, scenario H2 and H5 emitted net GHGs -152.20kg CO2 eq. and -140.32kg CO2 eq., respectively, in comparison with 420.88kg CO2 eq. of scenario H1 for managing per ton of wastes during the reference year 2015. The annual horizontal carbon flux of the waste input was 319Gg and 158Gg during 2015 in Dhaka and Chittagong, respectively. An integrated strategy of managing the wastes in the urban areas of Bangladesh involving WtE incineration plant and LFG recovery to generate electricity as well as MRF could reverse back 209.46Gg carbon and 422.29Gg carbon to the Chittagong and Dhaka urban system, respectively. This study provides valuable insights for the MSW policy framework and revamp of existing MSW management practices with regards to reduction of GHGs emissions from the waste sector in Bangladesh. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Modelling for part-load operation of solid oxide fuel cell-gas turbine hybrid power plant (United States)

    Chan, S. H.; Ho, H. K.; Tian, Y.

    This paper presents the work on part-load operation of a power generation system composed of a solid oxide fuel cell and a gas turbine (SOFC-GT) which operate on natural gas. The system consists of an internal reforming SOFC (IRSOFC) stack, an external combustor, two turbines, two compressors, two recuperators and one heat-recovery steam generator (HRSG). Based on experience in different levels of modelling of the fuel cell, fuel cell stack and integrated system and the inherent characteristics of a IRSOFC-GT hybrid power plant, a practical approach for simplifying part-load operation of the system is proposed. Simulation results show that an IRSOFC-GT hybrid system could achieve a net electrical efficiency and system efficiency (including waste heat recovery for steam generation) of greater than 60 and 80%, respectively, under full-load operation. Due to the complexity of the interaction of the components and safety requirements, the part-load performance of a IRSOFC-GT hybrid power plant is poorer than that under full-load operation.

  2. Performance characteristics of a solid oxide fuel cell/gas turbine hybrid system with various part-load control modes (United States)

    Yang, Jin Sik; Sohn, Jeong L.; Ro, Sung Tack

    The purpose of this study is to compare the part-load performance of a solid oxide fuel cell/gas turbine (SOFC/GT) hybrid system in three different control modes: fuel-only control, rotational speed control, and variable inlet guide vane (VIGV) control. While the first mode maintains a constant air supply and reduces the supplied fuel to achieve part-load operation, the other modes are distinguished by the simultaneous controls of the air and fuel supplied to the system. After the performance analysis of a SOFC/GT hybrid system under part-load operating conditions, it was concluded that the rotational speed control mode provided the best performance characteristics for part-load operations. In spite of worse performance than the rotational speed control mode, the VIGV control mode can be a good candidate for part-load operation in a large-scale hybrid system in which the rotational speed control is not applicable. It was also found that, in spite of a relatively small contribution to the total system power generation, the gas turbine plays an important role in part-load operation of a SOFC/GT hybrid system.

  3. Electrochemical, Structural and Surface Characterization of Nickel/Zirconia Solid Oxide Fuel Cell Anodes in Coal Gas Containing Antimony

    Energy Technology Data Exchange (ETDEWEB)

    Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Thomsen, Edwin C.; Nachimuthu, Ponnusamy; Edwards, Danny J.


    The interaction of antimony with the nickel-zirconia solid oxide fuel cell (SOFC) anode has been investigated. Tests with both anode-supported and electrolyte-supported button cells were performed at 700 and 800oC in synthetic coal gas containing 10 ppb to 9 ppm antimony. Minor performance loss was observed immediately after Sb introduction to coal gas resulting in ca. 5 % power output drop. While no further degradation was observed during the following several hundred hours of testing, cells abruptly and irreversibly failed after 800-1500 hours depending on Sb concentration and test temperature. Antimony was found to interact strongly with nickel and result in extensive alteration phase formation, consistent with expectations based on thermodynamic properties. Nickel antimonide phases, NiSb and Ni5Sb2, were partially coalesced into large grains and eventually affected electronic percolation through the anode support. Initial degradation was attributed to diffusion of antimony to the active anode/electrolyte interface to form an adsorption layer.

  4. Hydrogen Fueled Hybrid Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) System for Long-Haul Rail Application (United States)

    Chow, Justin Jeff

    Freight movement of goods is the artery for America's economic health. Long-haul rail is the premier mode of transport on a ton-mile basis. Concerns regarding greenhouse gas and criteria pollutant emissions, however, have motivated the creation of annually increasing locomotive emissions standards. Health issues from diesel particulate matter, especially near rail yards, have also been on the rise. These factors and the potential to raise conventional diesel-electric locomotive performance warrants the investigation of using future fuels in a more efficient system for locomotive application. This research evaluates the dynamic performance of a Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) Hybrid system operating on hydrogen fuel to power a locomotive over a rail path starting from the Port of Los Angeles and ending in the City of Barstow. Physical constraints, representative locomotive operation logic, and basic design are used from a previous feasibility study and simulations are performed in the MATLAB Simulink environment. In-house controls are adapted to and expanded upon. Results indicate high fuel-to-electricity efficiencies of at least 54% compared to a conventional diesel-electric locomotive efficiency of 35%. Incorporation of properly calibrated feedback and feed-forward controls enables substantial load following of difficult transients that result from train kinematics while maintaining turbomachinery operating requirements and suppressing thermal stresses in the fuel cell stack. The power split between the SOFC and gas turbine is deduced to be a deterministic factor in the balance between capital and operational costs. Using hydrogen results in no emissions if renewable and offers a potential of 24.2% fuel energy savings for the rail industry.

  5. Effect of sewage sludge content on gas quality and solid residues produced by cogasification in an updraft gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Seggiani, Maurizia, E-mail: [Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa (Italy); Puccini, Monica, E-mail: [Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa (Italy); Raggio, Giovanni, E-mail: [Italprogetti Engineering SPA, Lungarno Pacinotti, 59/A, 56020 San Romano (Pisa) (Italy); Vitolo, Sandra, E-mail: [Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa (Italy)


    Highlights: Black-Right-Pointing-Pointer Cogasification of sewage sludge with wood pellets in updraft gasifier was analysed. Black-Right-Pointing-Pointer The effects of sewage sludge content on the gasification process were examined. Black-Right-Pointing-Pointer Sewage sludge addition up to 30 wt.% reduces moderately the process performance. Black-Right-Pointing-Pointer At high sewage sludge content slagging and clinker formation occurred. Black-Right-Pointing-Pointer Solid residues produced resulted acceptable at landfills for non-hazardous waste. - Abstract: In the present work, the gasification with air of dehydrated sewage sludge (SS) with 20 wt.% moisture mixed with conventional woody biomass was investigated using a pilot fixed-bed updraft gasifier. Attention was focused on the effect of the SS content on the gasification performance and on the environmental impact of the process. The results showed that it is possible to co-gasify SS with wood pellets (WPs) in updraft fixed-bed gasification installations. However, at high content of sewage sludge the gasification process can become instable because of the very high ash content and low ash fusion temperatures of SS. At an equivalent ratio of 0.25, compared with wood pellets gasification, the addition of sewage sludge led to a reduction of gas yield in favor of an increase of condensate production with consequent cold gas efficiency decrease. Low concentrations of dioxins/furans and PAHs were measured in the gas produced by SS gasification, well below the limiting values for the exhaust gaseous emissions. NH{sub 3}, HCl and HF contents were very low because most of these compounds were retained in the wet scrubber systems. On the other hand, high H{sub 2}S levels were measured due to high sulfur content of SS. Heavy metals supplied with the feedstocks were mostly retained in gasification solid residues. The leachability tests performed according to European regulations showed that metals leachability was

  6. A study of the effect of ammonia gas on the solid mono- and dinuclear oxorhenium(V complexes

    Directory of Open Access Journals (Sweden)



    Full Text Available The reaction of ammonia gas with the solid oxorhenium(V complexes [Re2 O3L2Cl4]·2H2O, [Re2O2L3Cl6]·2H2O, [ReOLCl(OH23]Cl2, [ReOL2(OH23]CCl3, [ReOLCl3(OH2], [ReOL(SCN2Cl(OH2]·H2O and [ReOL(SCNCl2(OH2] (where L = 2-benzimadazolethione, yielded the corresponding ammine and/or amine complexes, [Re2O3L2(NH32(NH22]Cl2 (I, [Re2O2L3(NH32(NH24]Cl2 (II, [Re2O3L2(NH32 (NH24]·H2O (III, [Re2O3L4(NH24] (IV, [Re2O3L2(NH32(NH24C (V, [Re2O3L2(SCN4(NH32] (VI and [Re2O3L2(Thio2(NH24] (VII, respectively, (Thio = thiourea where ammonia gas has replaced other ligands such as chlorine and water. In complex VII thiourea replaced the thiocyanate group in the start complex through its reaction with ammonia gas. The obtained ammine and/or amine of rhenium(V complexes have been observed to decompose through several isolatable, as well as non-isolatable complex species as intermediates during heating. [Re2O3L4], [Re2O3L2(NH24] and [Re2O3L2(SCN4], were synthesized pyrolytically in the solid state from the corresponding parent oxorhenium complexes. The electronic absorption spectra and magnetic moments of the complexes show that the Re(V cation has an octahedral configuration. IR,1H-NMR spectroscopy, conductivity measurements and thermal analysies show that ammonia and thiourea behave as neutral monodentate ligands, SCN- and NH2- as monodentate monoanionic ligands, the organic ligand (L as a neutral monodentate or bidentate ligand towards the metal cation.

  7. Solid particle spreading in gas-dispersed confined swirling flow. Eulerian and Lagrangian approaches (United States)

    Pakhomov, M. A.; Terekhov, V. I.


    Dynamics of a disperse phase in a swirling two-phase flow behind a sudden tube expansion is simulated with the aid of Eulerian and full Lagrangian descriptions. The carrier phase is described by three-dimensional Reynolds averaged Navier-Stokes equations with consideration of inverse influence of particles on the transport processes in gas. The velocity profiles calculated using these two approaches are practically the same. It is shown that the main difference between the Eulerian and Lagrangian approaches is presented by the concentration profile of the dispersed phase. The Eulerian approach underpredicts the value of particle concentration as compared with the Lagrangian approach (the difference reaches 15-20 %). The dispersed phase concentration predicted by the Lagrangian approach agrees with the measurement data somewhat better than the data obtained through the Eulerian approach.

  8. Numerical simulation of gas-solid flows in fluidized bed with TFM model (United States)

    Stanly, Ronith; Shoev, Georgy; Kokhanchik A., A.


    This work evaluates the effectiveness of the Two-Fluid Model (TFM) to simulate gas flows with dense particles by using a simplified Fluidized Bed as a test case. The overarching objective is to check the prediction accuracy of the TFM Model. This document includes the simulations performed using two drag models, namely Gidaspow and Syamlal-O'Brien, using Ansys Fluent 18.1. The bubble evolution as well as the time-averaged volume-fraction distributions have been compared with prior simulations conducted using MFIX, Barracuda and also with experimental data found in literature. Though the low computational requirements and capability to produce reasonable time-averaged results makes TFM a better choice for industrial applications, the low prediction accuracy for the instantaneous quantities often renders it unsuitable for more scientifically demanding studies. Hence, this work aims at a critical evaluation of the TFM model for the specified test problem.

  9. Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant

    Energy Technology Data Exchange (ETDEWEB)

    Tsai A, Banta L, Tucker D


    This work presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation built by the National Energy Technology Laboratory comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The public facility provides for the testing and simulation of different fuel cell models that in turn help identify the key difficulties encountered in the transient operation of such systems. An empirical model of the built facility comprising a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in transfer function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H{sub {infinity}} robust control algorithm. The controller’s main objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence. As a complementary tool to the aforementioned empirical plant, a nonlinear analytical model faithful to the existing process and instrumentation arrangement is evaluated and designed in the Simulink environment. This parallel task intends to serve as a building block to scalable hybrid configurations that might require a more detailed nonlinear representation for a wide variety of controller schemes and hardware implementations.

  10. Changes in the Spectral Features of Zinc Phthalocyanine Induced by Nitrogen Dioxide Gas in Solution and in Solid Polymer Nanofiber Media. (United States)

    Zugle, Ruphino; Tetteh, Samuel


    The changes in the spectral features of zinc phthalocyanine in the visible domain as a result of its interaction with nitrogen dioxide gas were assessed in this work. This was done both in solution and when the phthalocyanine was incorporated into a solid polystyrene polymer nanofiber matrix. The spectral changes were found to be spontaneous and marked in both cases suggesting a rapid response criterion for the detection of the gas. In particular, the functionalised nano-fabric material could serve as a practical fire alarm system as it rapidly detects the nitrogen dioxide gas generated during burning.

  11. Municipal solid waste management planning considering greenhouse gas emission trading under fuzzy environment. (United States)

    Zhang, Xiaodong; Huang, Gordon


    Waste management activities can release greenhouse gases (GHGs) to the atmosphere, intensifying global climate change. Mitigation of the associated GHG emissions is vital and should be considered within integrated municipal solid waste (MSW) management planning. In this study, a fuzzy possibilistic integer programming (FPIM) model has been developed for waste management facility expansion and waste flow allocation planning with consideration of GHG emission trading in an MSW management system. It can address the interrelationships between MSW management planning and GHG emission control. The scenario of total system GHG emission control is analyzed for reflecting the feature that GHG emission credits may be tradable. An interactive solution algorithm is used to solve the FPIM model based on the uncertainty-averse preferences of decision makers in terms of p-necessity level, which represents the certainty degree of the imprecise objective. The FPIM model has been applied to a hypothetical MSW planning problem, where optimal decision schemes for facility expansion and waste flow allocation have been achieved with consideration of GHG emission control. The results indicate that GHG emission credit trading can decrease total system cost through re-allocation of GHG emission credits within the entire MSW management system. This will be helpful for decision makers to effectively determine the allowable GHG emission permits in practices. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Illuminating solid gas storage in confined spaces - methane hydrate formation in porous model carbons. (United States)

    Borchardt, Lars; Nickel, Winfried; Casco, Mirian; Senkovska, Irena; Bon, Volodymyr; Wallacher, Dirk; Grimm, Nico; Krause, Simon; Silvestre-Albero, Joaquín


    Methane hydrate nucleation and growth in porous model carbon materials illuminates the way towards the design of an optimized solid-based methane storage technology. High-pressure methane adsorption studies on pre-humidified carbons with well-defined and uniform porosity show that methane hydrate formation in confined nanospace can take place at relatively low pressures, even below 3 MPa CH4, depending on the pore size and the adsorption temperature. The methane hydrate nucleation and growth is highly promoted at temperatures below the water freezing point, due to the lower activation energy in ice vs. liquid water. The methane storage capacity via hydrate formation increases with an increase in the pore size up to an optimum value for the 25 nm pore size model-carbon, with a 173% improvement in the adsorption capacity as compared to the dry sample. Synchrotron X-ray powder diffraction measurements (SXRPD) confirm the formation of methane hydrates with a sI structure, in close agreement with natural hydrates. Furthermore, SXRPD data anticipate a certain contraction of the unit cell parameter for methane hydrates grown in small pores.

  13. The Clustering Instability in Rapid Granular and Gas-Solid Flows (United States)

    Fullmer, William D.; Hrenya, Christine M.


    Flows of solid particles are known to exhibit a clustering instability—dynamic microstructures characterized by a dense region of highly concentrated particles surrounded by a dilute region with relatively few particles—that has no counterpart in molecular fluids. Clustering is pervasive in rapid flows. Its presence impacts momentum, heat, and mass transfer, analogous to how turbulence affects single-phase flows. Yet predicting clustering is challenging, again analogous to the prediction of turbulent flows. In this review, we focus on three key areas: (a) state-of-the-art mathematical tools used to study clustering, with an emphasis on kinetic theory-based continuum models, which are critical to the prediction of the larger systems found in nature and industry, (b) mechanisms that give rise to clustering, most of which are explained via linear stability analyses of kinetic theory-based models, and (c) a critical review of validation studies of kinetic theory-based models to highlight the accuracies and limitations of such theories.

  14. Data correlation in on-line solid-phase extraction-gas chromatography-atomic emission/mass spectrometric detection of unknown microcontaminants

    NARCIS (Netherlands)

    Hankemeier, Th.; Rozenbrand, J.; Abhadur, M.; Vreuls, J.J.; Brinkman, U.A.Th.


    A procedure is described for the (non-target) screening of hetero-atom-containing compounds in tap and waste water by correlating data obtained by gas chromatography (GC) using atomic emission (AED) and mass selective (MS) detection. Solid-phase extraction (SPE) was coupled on-line to both GC

  15. Derivatisation/solid-phase microextraction followed by gas chromatography-mass spectrometry for the analysis of phenoxy acid herbicides in aqueous samples

    DEFF Research Database (Denmark)

    Nilsson, Torben; Baglio, Daniela; Galdo-Miguez, Isabel


    Different combinations of derivatisation and solid-phase microextraction followed by gas chromatography-mass spectrometry were optimised and evaluated for the analysis of phenoxy acid herbicides in water. The most successful derivatisation approach was aqueous-phase derivatisation with benzyl...

  16. Quantitative Analysis of Bisphenol A Leached from Household Plastics by Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry (SPME-GC-MS) (United States)

    Johnson, Bettie Obi; Burke, Fernanda M.; Harrison, Rebecca; Burdette, Samantha


    The measurement of trace levels of bisphenol A (BPA) leached out of household plastics using solid-phase microextraction (SPME) with gas chromatography-mass spectrometry (GC-MS) is reported here. BPA is an endocrine-disrupting compound used in the industrial manufacture of polycarbonate plastic bottles and epoxy resin can liners. This experiment…

  17. Dynamic modelling and characterisation of a solid oxide fuel cell integrated in a gas turbine cycle

    Energy Technology Data Exchange (ETDEWEB)

    Thorud, Bjoern


    This thesis focuses on three main areas within the field of SOFC/GT-technology: 1) Development of a dynamic SOFC/GT model. 2) Model calibration and sensitivity study. 3) Assessment of the dynamic properties of a SOFC/GT power plant. The SOFC/GT model developed in this thesis describes a pressurised tubular Siemens Westinghouse-type SOFC, which is integrated in a gas turbine cycle. The process further includes a plate-fin recuperator for stack air preheating, a prereformer, an anode exhaust gas recycling loop for steam/carbon-ratio control, an afterburner and a shell-tube heat exchanger for air preheating. The fuel cell tube, the recuperator and the shell-tube heat exchanger are spatially distributed models. The SOFC model is further thermally integrated with the prereformer. The compressor and turbine models are based on performance maps as a general representation of the characteristics. In addition, a shaft model which incorporates moment of inertia is included to account for gas turbine transients. The SOFC model is calibrated against experimentally obtained data from a single-cell experiment performed on a Siemens Westinghouse tubular SOFC. The agreement between the model and the experimental results is good. The sensitivity study revealed that the degree of prereforming is of great importance with respect to the axial temperature distribution of the fuel cell. Types of malfunctions are discussed prior to the dynamic behaviour study. The dynamic study of the SOFC/GT process is performed by simulating small and large load changes according to three different strategies; 1) Load change at constant mean fuel cell temperature. 2) Load change at constant turbine inlet temperature. 3) Load change at constant shaft speed. Of these three strategies, the constant mean fuel cell temperature strategy appears to be the most rapid load change method. Furthermore, this strategy implies the lowest degree of thermal cycling, the smoothest fuel cell temperature distribution and


    Directory of Open Access Journals (Sweden)



    Full Text Available En este trabajo se muestra el desarrollo de una sonda con tres fi bras ópticas para estudiar el comportamiento de la burbuja en lechos gas-sólido fl uidizados burbujeantes. Su estructura compacta permite minimizar las perturbaciones inducidas al campo del fl ujo, lográndose resultados más exactos frentes a otros tipos de sonda. Los lechos fl uidizados burbujeantes son ampliamente usados en procesos petroquímicos, metalúrgicos y en termoeléctricas. El comportamiento de la burbuja es uno de los parámetros más importantes para la simulación y diseño de reactores termoeléctricos, dado que se relaciona con los saltos de fase, la interacción entre las fases sólida y gaseosa del lecho y el comportamiento de la transferencia de masa. Conocer tanto la velocidad como el tamaño de burbuja, ayudan a caracterizar estos sistemas, llevando un mejor diseño de reactores a gran escala.

  19. Decomposition of organochlorine compounds in flue gas from municipal solid waste incinerators using natural and activated acid clays. (United States)

    Hwang, In-Hee; Takahashi, Shigetoshi; Matsuo, Takayuki; Matsuto, Toshihiko


    High-temperature particle control (HTPC) using a ceramic filter is a dust collection method without inefficient cooling and reheating of flue gas treatment; thus, its use is expected to improve the energy recovery efficiency of municipal solid waste incinerators (MSWIs). However there are concerns regarding de novo synthesis and a decrease in the adsorptive removal efficiency of dioxins (DXNs) at approximately 300 degrees C. In this study, the effect of natural and activated acid clays on the decomposition of monochlorobenzene (MCB), one of the organochlorine compounds in MSW flue gas, was investigated. From the results of MCB removal tests at 30-300 degrees C, the clays were classified as adsorption, decomposition, and low removal types. More than half of the clays (four kinds of natural acid clays and two kinds of activated acid clays) were of the decomposition type. In addition, the presence of Cl atoms detached from MCB was confirmed by washing the clay used in the MCB removal test at 300 degrees C. Activated acid clay was expected to have high dechlorination performance because of its proton-rich-composition, but only two clays were classed as decomposition type. Conversely, all the natural acid clays used in this work were of the decomposition type, which contained relatively higher di- and trivalent metal oxides such as Al2O3, Fe2O3, MgO, and CaO. These metal oxides might contribute to the catalytic dechlorination of MCB at 300 degrees C. Therefore, natural and activated acid clays can be used as alternatives for activated carbon at 300 degrees C to remove organochloride compounds such as DXNs. Their utilization is expected to mitigate the latent risks related to the adoption of HTPC, and also to contribute to the improvement of energy recovery efficiency of MSWI. Implications: The effect of natural and activated acid clays on MCB decomposition was investigated to evaluate their suitability as materials for the removal of organochlorine compounds, such as

  20. In Situ Solid-Gas Reactivity of Nanoscaled Metal Borides from Molten Salt Synthesis. (United States)

    Gouget, Guillaume; Debecker, Damien P; Kim, Ara; Olivieri, Giorgia; Gallet, Jean-Jacques; Bournel, Fabrice; Thomas, Cyril; Ersen, Ovidiu; Moldovan, Simona; Sanchez, Clément; Carenco, Sophie; Portehault, David


    Metal borides have mostly been studied as bulk materials. The nanoscale provides new opportunities to investigate the properties of these materials, e.g., nanoscale hardening and surface reactivity. Metal borides are often considered stable solids because of their covalent character, but little is known on their behavior under a reactive atmosphere, especially reductive gases. We use molten salt synthesis at 750 °C to provide cobalt monoboride (CoB) nanocrystals embedded in an amorphous layer of cobalt(II) and partially oxidized boron as a model platform to study morphological, chemical, and structural evolutions of the boride and the superficial layer exposed to argon, dihydrogen (H2), and a mixture of H2 and carbon dioxide (CO2) through a multiscale in situ approach: environmental transmission electron microscopy, synchrotron-based near-ambient-pressure X-ray photoelectron spectroscopy, and near-edge X-ray absorption spectroscopy. Although the material is stable under argon, H2 triggers at 400 °C decomposition of CoB, leading to cobalt(0) nanoparticles. We then show that H2 activates CoB for the catalysis of CO2 methanation. A similar decomposition process is also observed on NiB nanocrystals under oxidizing conditions at 300 °C. Our work highlights the instability under reactive atmospheres of nanocrystalline cobalt and nickel borides obtained from molten salt synthesis. Therefore, we question the general stability of metal borides with distinct compositions under such conditions. These results shed light on the actual species in metal boride catalysis and provide the framework for future applications of metal borides in their stability domains.

  1. Chapter 3. Determination of semivolatile organic compounds and polycyclic aromatic hydrocarbons in solids by gas chromatography/mass spectrometry (United States)

    Zaugg, Steven D.; Burkhardt, Mark R.; Burbank, Teresa L.; Olson, Mary C.; Iverson, Jana L.; Schroeder, Michael P.


    A method for the determination of 38 polycyclic aromatic hydrocarbons (PAHs) and semivolatile organic compounds in solid samples is described. Samples are extracted using a pressurized solvent extraction system. The compounds of interest are extracted from the solid sample twice at 13,800 kilopascals; first at 120 degrees Celsius using a water/isopropyl alcohol mixture (50:50, volume-to-volume ratio), and then the sample is extracted at 200 degrees Celsius using a water/isopropyl alcohol mixture (80:20, volume-to-volume ratio). The compounds are isolated using disposable solid-phase extraction (SPE) cartridges containing divinylbenzene-vinylpyrrolidone copolymer resin. The cartridges are dried with nitrogen gas, and then sorbed compounds are eluted from the SPE material using a dichloromethane/diethyl ether mixture (80:20, volume-to-volume ratio) and passed through a sodium sulfate/Florisil SPE cartridge to remove residual water and to further clean up the extract. The concentrated extract is solvent exchanged into ethyl acetate and the solvent volume reduced to 0.5 milliliter. Internal standard compounds are added prior to analysis by capillary-column gas chromatography/mass spectrometry. Comparisons of PAH data for 28 sediment samples extracted by Soxhlet and the accelerated solvent extraction (ASE) method described in this report produced similar results. Extraction of PAH compounds from standard reference material using this method also compared favorably with Soxhlet extraction. The recoveries of PAHs less than molecular weight 202 (pyrene or fluoranthene) are higher by up to 20 percent using this ASE method, whereas the recoveries of PAHs greater than or equal to molecular weight 202 are equivalent. This ASE method of sample extraction of solids has advantages over conventional Soxhlet extraction by increasing automation of the extraction process, reducing extraction time, and using less solvent. Extract cleanup also is greatly simplified because SPE replaces

  2. Solid state gas sensors for detection of explosives and explosive precursors (United States)

    Chu, Yun

    The increased number of terrorist attacks using improvised explosive devices (IEDs) over the past few years has made the trace detection of explosives a priority for the Department of Homeland Security. Considerable advances in early detection of trace explosives employing spectroscopic detection systems and other sensing devices have been made and have demonstrated outstanding performance. However, modern IEDs are not easily detectable by conventional methods and terrorists have adapted to avoid using metallic or nitro groups in the manufacturing of IEDs. Instead, more powerful but smaller compounds, such as TATP are being more frequently used. In addition, conventional detection techniques usually require large capital investment, labor costs and energy input and are incapable of real-time identification, limiting their application. Thus, a low cost detection system which is capable of continuous online monitoring in a passive mode is needed for explosive detection. In this dissertation, a thermodynamic based thin film gas sensor which can reliably detect various explosive compounds was developed and demonstrated. The principle of the sensors is based on measuring the heat effect associated with the catalytic decomposition of explosive compounds present in the vapor phase. The decomposition mechanism is complicated and not well known, but it can be affected by many parameters including catalyst, reaction temperature and humidity. Explosives that have relatively high vapor pressure and readily sublime at room temperature, like TATP and 2, 6-DNT, are ideal candidate for vapor phase detection using the thermodynamic gas sensor. ZnO, W2O 3, V2O5 and SnO2 were employed as catalysts. This sensor exhibited promising sensitivity results for TATP, but poor selectivity among peroxide based compounds. In order to improve the sensitivity and selectivity of the thermodynamic sensor, a Pd:SnO2 nanocomposite was fabricated and tested as part of this dissertation. A

  3. Evaluation of kinetic parameters of exothermic gas/solid-reactions by the ignition point method; Bestimmung kinetischer Parameter exothermer Gas/Feststoff-Reaktionen mit der Zuendpunktsmethode

    Energy Technology Data Exchange (ETDEWEB)

    Hein, O.; Jess, A. [Technische Hochschule Aachen (Germany). Inst. fuer Technische Chemie und Makromolekulare Chemie


    The determination of kinetic constants of heterogeneous reactions is usually performed in tubular flow reactors under isothermal and stationary reaction conditions. This is often time-consuming and difficult. For example, in case of strong exothermic reactions, temperature gradients up to the ignition of the fixed-bed are hard to avoid, and therefore expensive reactors with internal or external gas recycle are needed. The effect of ignition can also be used to characterize the reactivity of solid fuels and the activity of catalysts, respectively. A well-known method for a simple, fast and accurate determination of the ignition temperature in a lab-scale tubular flow reactor is already described in literature. Yet, the ignition point method is up to now only used as a qualitative measure for the (relative) reactivity of solid fuels and activity of catalysts. Therefore, an attempt was made to extend this method towards a quantitative characterization of the kinetics of exothermic heterogeneous reaction systems, i.e. for a determination of the activation energy and the preexponential factor. The basic idea is thereby to alter the ignition point by a defined variation of the operation conditions such as particle diameter, heating rate as well as of the composition and flow rate of the reacting gas mixture. The resulting data are then used to calculate the kinetic constants based on the theory of ignition of exothermic reactions. The combustion of different cokes as well as of carbon deposits on a Pt-catalyst were selected as model reactions for gas/solid-reactions. In addition, the oxidation of methane on a Pt-catalyst was investigated. The experiments on the influence of the operation conditions show that the gas composition - in case of combustion of coke the oxygen content - has the strongest influence on the ignition temperature. This method is therefore very suitable to determine kinetic constants. To prove the accuracy of this method, the kinetic data were also

  4. Recycling of Rare Earth Elements (United States)

    Lorenz, Tom; Bertau, Martin


    Any development of an effective process for rare earth (RE) recycling has become more and more challenging, especially in recent years. Since 2011, when commodity prices of REs had met their all-time maximum, prices have dropped rapidly by more than 90 %. An economic process able to offset these fluctuations has to take unconventional methods into account beside well-known strategies like acid/basic leaching or solvent extraction. The solid-state chlorination provides such an unconventional method for mobilizing RE elements from waste streams. Instead of hydrochloric acid this kind of chlorination decomposes NH4Cl thermally to release up to 400 °C hot HCl gas. After cooling the resulting solid metal chlorides may be easily dissolved in pH-adjusted water. Without producing strongly acidic wastes and with NH4Cl as cheap source for hydrogen chloride, solid-state chlorination provides various advantages in terms of costs and disposal. In the course of the SepSELSA project this method was examined, adjusted and optimized for RE recycling from fluorescent lamp scraps as well as Fe14Nd2B magnets. Thereby many surprising influences and trends required various analytic methods to examine the reasons and special mechanisms behind them.

  5. An Overview of Natural Gas Conversion Technologies for Co-Production of Hydrogen and Value-Added Solid Carbon Products

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Robert A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dagle, Vanessa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Holladay, Jamelyn D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Krause, Theodore R. [Argonne National Lab. (ANL), Argonne, IL (United States); Ahmed, Shabbir [Argonne National Lab. (ANL), Argonne, IL (United States)


    This report was prepared in response to the U.S. Department of Energy Fuel Cell Technologies Office Congressional Appropriation language to support research on carbon-free production of hydrogen using new chemical processes that utilize natural gas to produce solid carbon and hydrogen. The U.S. produces 9-10 million tons of hydrogen annually with more than 95% of the hydrogen produced by steam-methane reforming (SMR) of natural gas. SMR is attractive because of its high hydrogen yield; but it also converts the carbon to carbon dioxide. Non-oxidative thermal decomposition of methane to carbon and hydrogen is an alternative to SMR and produces CO2-free hydrogen. The produced carbon can be sold as a co-product, thus providing economic credit that reduces the delivered net cost of hydrogen. The combination of producing hydrogen with potentially valuable carbon byproducts has market value in that this allows greater flexibility to match the market prices of hydrogen and carbon. That is, the higher value product can subsidize the other in pricing decisions. In this report we highlight the relevant technologies reported in the literature—primarily thermochemical and plasma conversion processes—and recent research progress and commercial activities. Longstanding technical challenges include the high energetic requirements (e.g., high temperatures and/or electricity requirements) necessary for methane activation and, for some catalytic processes, the separation of solid carbon product from the spent catalyst. We assess current and new carbon product markets that could be served given technological advances, and we discuss technical barriers and potential areas of research to address these needs. We provide preliminary economic analysis for these processes and compare to other emerging (e.g., electrolysis) and conventional (e.g., SMR) processes for hydrogen production. The overarching conclusion of this study is that the cost of hydrogen can be potentially

  6. Greenhouse gas emissions from different municipal solid waste management scenarios in China: Based on carbon and energy flow analysis. (United States)

    Liu, Yili; Sun, Weixin; Liu, Jianguo


    Waste management is a major source of global greenhouse gas (GHG) emissions and many opportunities exist to reduce these emissions. To identify the GHG emissions from waste management in China, the characteristics of MSW and the current and future treatment management strategies, five typical management scenarios were modeled by EaseTech software following the principles of life cycle inventory and analyzed based on the carbon and energy flows. Due to the high organic fraction (50-70%) and moisture content (>50%) of Chinese municipal solid waste (MSW), the net GHG emissions in waste management had a significant difference from the developed countries. It was found that the poor landfill gas (LFG) collection efficiency and low carbon storage resulted landfilling with flaring and landfilling with biogas recovery scenarios were the largest GHG emissions (192 and 117 kgCO 2 -Eq/t, respectively). In contrast, incineration had the best energy recovery rate (19%), and, by grid emissions substitution, led to a substantial decrease in net GHG emissions (-124 kgCO 2 -Eq/t). Due to the high energy consumption in operation, the unavoidable leakage of CH 4 and N 2 O in treatment, and the further release of CH 4 in disposing of the digested residue or composted product, the scenarios with biological treatment of the organic fractions after sorting, such as composting or anaerobic digestion (AD), did not lead to the outstanding GHG reductions (emissions of 32 and -36 kgCO 2 -Eq/t, respectively) as expected. Copyright © 2017. Published by Elsevier Ltd.

  7. Performance Characterization of Gas-Solid Cyclone for Separation of Particle from Syngas Produced from Food Waste Gasifier Plant

    Directory of Open Access Journals (Sweden)

    Osezua O. Ibhadode


    Full Text Available A biofuel from any biodegradable formation process such as a food waste bio-digester plant is a mixture of several gases such as methane (CH4, carbon dioxide (CO2, hydrogen sulfide (H2S, ammonia (NH3 and impurities like water and dust particles. The results are reported of a parametric study of the process of separation of methane, which is the most important gas in the mixture and usable as a biofuel, from particles and H2S. A cyclone, which is a conventional, economic and simple device for gas-solid separation, is considered based on the modification of three Texas A&M cyclone designs (1D2D, 2D2D and 1D3D by the inclusion of an air inlet tube. A parametric sizing is performed of the cyclone for biogas purification, accounting for the separation of hydrogen sulfide (H2S and dust particles from the biofuel. The stochiometric oxidation of H2S to form elemental sulphur is considered a useful cyclone design criterion. The proposed design includes geometric parameters and several criteria for quantifying the performance of cyclone separators such as the Lapple Model for minimum particle diameter collected, collection efficiency and pressure drop. For biogas volumetric flow rates between 0 and 1 m/s and inlet flow velocities of 12 m/s, 15 m/s and 18 m/s for the 1D2D, 2D2D and 1D3D cyclones, respectively, it is observed that the 2D2D configuration is most economic in terms of sizing (total height and diameter of cyclone. The 1D2D configuration experiences the lowest pressure drop. A design algorithm coupled with a user-friendly graphics interface is developed on the MATLAB platform, providing a tool for sizing and designing suitable cyclones.

  8. Contribution of solid fuel, gas combustion, or tobacco smoke to indoor air pollutant concentrations in Irish and Scottish homes

    Energy Technology Data Exchange (ETDEWEB)

    Semple, S.; Garden, C. (Univ. of Aberdeen. Scottish Centre for Indoor Air, Div. of Applied Health Sciences (United Kingdom)); Galea, K.S.; Cowie, H.; Hurley, J.F.; Sanchez-Jimenez, A. (Scottish Centre for Indoor Air. Institute of Occupational Medicine, Edinburgh (United Kingdom)); Whelan, P.; Coggins, M. (National Univ. of Ireland Galway (Ireland)); Thorne, P.S. (Univ. of Iowa. Environmental Health Sciences Research Center, Iowa City, IA (United States)); Ayres, J.G. (Univ. of Birmingham. Institute of Occupational and Environmental Medicine (United Kingdom))


    There are limited data describing pollutant levels inside homes that burn solid fuel within developed country settings with most studies describing test conditions or the effect of interventions. This study recruited homes in Ireland and Scotland where open combustion processes take place. Open combustion was classified as coal, peat, or wood fuel burning, use of a gas cooker or stove, or where there is at least one resident smoker. Twenty-four-hour data on airborne concentrations of particulate matter <2.5 mu in size (PM{sub 2.5}), carbon monoxide (CO), endotoxin in inhalable dust and carbon dioxide (CO{sub 2}), together with 2-3 week averaged concentrations of nitrogen dioxide (NO{sub 2}) were collected in 100 houses during the winter and spring of 2009-2010. The geometric mean of the 24-h time-weighted-average (TWA) PM{sub 2.5} concentration was highest in homes with resident smokers (99 mu/m3- much higher than the WHO 24-h guidance value of 25 mu/m3). Lower geometric mean 24-h TWA levels were found in homes that burned coal (7 mu/m3) or wood (6 mu/m3) and in homes with gas cookers (7 mu/m3). In peat-burning homes, the average 24-h PM{sub 2.5} level recorded was 11 mu/m3. Airborne endotoxin, CO, CO{sub 2}, and NO{sub 2} concentrations were generally within indoor air quality guidance levels. (Author)

  9. Upgraded biogas from municipal solid waste for natural gas substitution and CO2 reduction--a case study of Austria, Italy, and Spain. (United States)

    Starr, Katherine; Villalba, Gara; Gabarrell, Xavier


    Biogas is rich in methane and can be further purified through biogas upgrading technologies, presenting a viable alternative to natural gas. Landfills and anaerobic digestors treating municipal solid waste are a large source of such biogas. They therefore offer an attractive opportunity to tap into this potential source of natural gas while at the same time minimizing the global warming impact resulting from methane emissions in waste management schemes (WMS) and fossil fuel consumption reduction. This study looks at the current municipal solid waste flows of Spain, Italy, and Austria over one year (2009), in order to determine how much biogas is generated. Then it examines how much natural gas could be substituted by using four different biogas upgrading technologies. Based on current waste generation rates, exploratory but realistic WMS were created for each country in order to maximize biogas production and potential for natural gas substitution. It was found that the potential substitution of natural gas by biogas resulting from the current WMS seems rather insignificant: 0.2% for Austria, 0.6% for Italy and 0.3% for Spain. However, if the WMS is redesigned to maximize biogas production, these figures can increase to 0.7% for Austria, 1% for Italy and 2% for Spain. Furthermore, the potential CO2 reduction as a consequence of capturing the biogas and replacing fossil fuel can result in up to a 93% reduction of the annual national waste greenhouse gas emissions of Spain and Italy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Numerical Studies of the Gas-Solid Hydrodynamics at High Temperature in the Riser of a Bench-Scale Circulating Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Maximilian J. Hodapp


    Full Text Available The hydrodynamics of circulating fluidized beds (CFBs is a complex phenomenon that can drastically vary depending on operational setup and geometrical configuration. A research of the literature shows that studies for the prediction of key variables in CFB systems operating at high temperature still need to be implemented aiming at applications in energy conversion, such as combustion, gasification, or fast pyrolysis of solid fuels. In this work the computational fluid dynamics (CFD technique was used for modeling and simulation of the hydrodynamics of a preheating gas-solid flow in a cylindrical bed section. For the CFD simulations, the two-fluid approach was used to represent the gas-solid flow with the k-epsilon turbulence model being applied for the gas phase and the kinetic theory of granular flow (KTGF for the properties of the dispersed phase. The information obtained from a semiempirical model was used to implement the initial condition of the simulation. The CFD results were in accordance with experimental data obtained from a bench-scale CFB system and from predictions of the semiempirical model. The initial condition applied in this work was shown to be a viable alternative to a more common constant solid mass flux boundary condition.

  11. Thermodynamic Modeling of a Solid Oxide Fuel Cell to Couple with an Existing Gas Turbine Engine Model (United States)

    Brinson, Thomas E.; Kopasakis, George


    The Controls and Dynamics Technology Branch at NASA Glenn Research Center are interested in combining a solid oxide fuel cell (SOFC) to operate in conjunction with a gas turbine engine. A detailed engine model currently exists in the Matlab/Simulink environment. The idea is to incorporate a SOFC model within the turbine engine simulation and observe the hybrid system's performance. The fuel cell will be heated to its appropriate operating condition by the engine s combustor. Once the fuel cell is operating at its steady-state temperature, the gas burner will back down slowly until the engine is fully operating on the hot gases exhausted from the SOFC. The SOFC code is based on a steady-state model developed by The U.S. Department of Energy (DOE). In its current form, the DOE SOFC model exists in Microsoft Excel and uses Visual Basics to create an I-V (current-voltage) profile. For the project's application, the main issue with this model is that the gas path flow and fuel flow temperatures are used as input parameters instead of outputs. The objective is to create a SOFC model based on the DOE model that inputs the fuel cells flow rates and outputs temperature of the flow streams; therefore, creating a temperature profile as a function of fuel flow rate. This will be done by applying the First Law of Thermodynamics for a flow system to the fuel cell. Validation of this model will be done in two procedures. First, for a given flow rate the exit stream temperature will be calculated and compared to DOE SOFC temperature as a point comparison. Next, an I-V curve and temperature curve will be generated where the I-V curve will be compared with the DOE SOFC I-V curve. Matching I-V curves will suggest validation of the temperature curve because voltage is a function of temperature. Once the temperature profile is created and validated, the model will then be placed into the turbine engine simulation for system analysis.

  12. Quantitative analysis of menthol in human urine using solid phase microextraction and stable isotope dilution gas chromatography-mass spectrometry. (United States)

    Huang, Wenlin; Blount, Benjamin C; Watson, Clifford H; Watson, Christina; Chambers, David M


    To accurately measure menthol levels in human urine, we developed a method using gas chromatography/electron ionization mass spectrometry with menthol-d 4 stable isotope internal standardization. We used solid phase microextraction (SPME) headspace sampling for collection, preconcentration and automation. Conjugated forms of menthol were released using β-glucuronidase/sulfatase to allow for measuring total menthol. Additionally, we processed the specimens without using β-glucuronidase/sulfatase to quantify the levels of unconjugated (free) menthol in urine. This method was developed to verify mentholated cigarette smoking status to study the influence of menthol on smoking behaviour and exposure. This objective was accomplished with this method, which has no carryover or memory from the SPME fiber assembly, a method detection limit of 0.0017μg/mL, a broad linear range of 0.002-0.5μg/mL for free menthol and 0.01-10μg/mL for total menthol, a 7.6% precision and 88.5% accuracy, and an analysis runtime of 17min. We applied this method in analysis of urine specimens collected from cigarette smokers who smoke either mentholated or non-mentholated cigarettes. Among these smokers, the average total urinary menthol levels was three-fold higher (pmentholated cigarette smokers compared with non-mentholated cigarette smokers. Published by Elsevier B.V.

  13. A Study of the Influence of Numerical Diffusion on Gas-Solid Flow Predictions in Fluidized Beds (United States)

    Ghandriz, Ronak; Sheikhi, Reza


    In this work, an investigation is made of the influence of numerical diffusion on the accuracy of gas-solid flow predictions in fluidized beds. This is an important issue particularly in bubbling fluidized beds since numerical error greatly affects the dynamics of bubbles and their associated mixing process. A bed of coal (classified as Geldart A) is considered which becomes fluidized as the velocity of nitrogen stream into the reactor is gradually increased. The fluidization process is simulated using various numerical schemes as well as grid resolutions. Simulations involve Eulerian-Eulerian two-phase flow modeling approach and results are compared with experimental data. It is shown that higher order schemes equipped with flux limiter give favorable prediction of bubble and particle dynamics and hence, the mixing process within the reactor. The excessive numerical diffusion associated with lower order schemes results in unrealistic prediction of bubble shapes and bed height. Comparison is also made of computational efficiency of various schemes. It is shown that the Monotonized Central scheme with down wind factor results in the shortest simulation time because of its efficient parallelization on distributed memory platforms.

  14. Determination of Volatile Compounds in Four Commercial Samples of Japanese Green Algae Using Solid Phase Microextraction Gas Chromatography Mass Spectrometry (United States)

    Yoshikawa, Keisuke; Fujita, Akira; Mase, Nobuyuki; Watanabe, Naoharu


    Green algae are of great economic importance. Seaweed is consumed fresh or as seasoning in Japan. The commercial value is determined by quality, color, and flavor and is also strongly influenced by the production area. Our research, based on solid phase microextraction gas chromatography mass spectrometry (SPME-GC-MS), has revealed that volatile compounds differ intensely in the four varieties of commercial green algae. Accordingly, 41 major volatile compounds were identified. Heptadecene was the most abundant compound from Okayama (Ulva prolifera), Tokushima (Ulva prolifera), and Ehime prefecture (Ulva linza). Apocarotenoids, such as ionones, and their derivatives were prominent volatiles in algae from Okayama (Ulva prolifera) and Tokushima prefecture (Ulva prolifera). Volatile, short chained apocarotenoids are among the most potent flavor components and contribute to the flavor of fresh, processed algae, and algae-based products. Benzaldehyde was predominant in seaweed from Shizuoka prefecture (Monostroma nitidum). Multivariant statistical analysis (PCA) enabled simple discrimination of the samples based on their volatile profiles. This work shows the potential of SPME-GC-MS coupled with multivariant analysis to discriminate between samples of different geographical and botanical origins and form the basis for development of authentication methods of green algae products, including seasonings. PMID:24592162

  15. Determination of Lactones in Wines by Headspace Solid-Phase Microextraction and Gas Chromatography Coupled with Mass Spectrometry (United States)

    Pérez-Olivero, S. J.; Pérez-Pont, M. L.; Conde, J. E.; Pérez-Trujillo, J. P.


    Application of headspace solid-phase microextraction (HS-SPME) coupled with high-resolution gas chromatographic (HRGC) analysis was studied for determining lactones in wines. Six different SPME fibers were tested, and the influence of different factors such as temperature and time of desorption, ionic strength, time of extraction, content of sugar, ethanol, tannins and anthocyanins, and pH and influence of SO2 were studied. The proposed HS-SPME-GC method is an appropriate technique for the quantitative analysis of γ-butyrolactone, γ-hexalactone, trans-whiskey lactone, γ-octalactone, cis-whiskey lactone, γ-nonalactone, γ-decalactone, δ-decalactone, and γ-undecalactone in wines. Method reproducibility and repeatability ranged between 0.6 and 5.2% for all compounds. Detection limit for γ-butyrolactone was 0.17 mg/L and a few μg/L for the rest of the compounds. The optimized method has been applied to several wine samples. PMID:24782943

  16. Predicting PAH bioaccumulation and toxicity in earthworms exposed to manufactured gas plant soils with solid-phase microextraction

    Energy Technology Data Exchange (ETDEWEB)

    Michiel T.O. Jonker; Stephan A. van der Heijden; Joseph P. Kreitinger; Steven B. Hawthorne [Utrecht University, Utrecht (Netherlands). Institute for Risk Assessment Sciences


    Soils from former manufactured gas plant (MGP) sites are often heavily contaminated with polycyclic aromatic hydrocarbons (PAHs). Current risk assessment methods that rely on total PAH concentrations likely overstate adverse effects of such soils since bioavailability is ignored. In this study, solid-phase microextraction (SPME) was applied to estimate bioavailable PAH concentrations and toxicity in earthworms exposed to 15 MGP soils. In addition, PAH sorption to all soils (K{sub oc} values) was determined. The results showed a several orders of magnitude variation in K{sub oc} values, demonstrating that generic organic carbon-normalized sorption coefficients will typically be over-conservative at MGP sites. SPME-predicted bioaccumulation generally was within a factor of 10 of measured bioaccumulation (in earthworm bioassays), in contrast to current risk assessment model estimates that over predicted bioaccumulation 10-10,000 times. Furthermore, on the basis of estimated total body residues of narcotic PAHs, SPME correctly predicted worm mortality observed during bioassays in the majority of cases. For MGP sites where current risk assessment procedures indicate concerns, SPME thus provides a useful tool for performing a refined, site-specific assessment. 35 refs., 4 figs.

  17. Study of the Behaviors of Gunshot Residues from Spent Cartridges by Headspace Solid-Phase Microextraction-Gas Chromatographic Techniques. (United States)

    Chang, Kah Haw; Yew, Chong Hooi; Abdullah, Ahmad Fahmi Lim


    Gunshot residues, produced after shooting activity, have acquired their importance in analysis due to the notoriety of firearms-related crimes. In this study, solid-phase microextraction was performed to extract the headspace composition of spent cartridges using 85-μm polyacrylate fiber at 66°C for 21 min. Organic compounds, that is, naphthalene, 2,6-dinitrotoluene, 2,4-dinitrotoluene, diphenylamine, and dibutyl phthalate were detected and analyzed by gas chromatography-flame ionization detection technique. Evaluation of chromatograms for diphenylamine, dibutyl phthalate, and naphthalene indicates the period after a gunshot was discharged, whether it was 1 days, 2-4 days, <5 days, 10 days, 20 days, or more than 30 days ago. This study revealed the potential effects of environmental factors such as occasional wind blow and direct sunlight on the estimation of time after spent cartridges were discharged. In conclusion, we proposed reliable alternative in analyzing the headspace composition of spent cartridges in a simulated crime scene. © 2015 American Academy of Forensic Sciences.

  18. Determination of volatile compounds in four commercial samples of Japanese green algae using solid phase microextraction gas chromatography mass spectrometry. (United States)

    Yamamoto, Masayoshi; Baldermann, Susanne; Yoshikawa, Keisuke; Fujita, Akira; Mase, Nobuyuki; Watanabe, Naoharu


    Green algae are of great economic importance. Seaweed is consumed fresh or as seasoning in Japan. The commercial value is determined by quality, color, and flavor and is also strongly influenced by the production area. Our research, based on solid phase microextraction gas chromatography mass spectrometry (SPME-GC-MS), has revealed that volatile compounds differ intensely in the four varieties of commercial green algae. Accordingly, 41 major volatile compounds were identified. Heptadecene was the most abundant compound from Okayama (Ulva prolifera), Tokushima (Ulva prolifera), and Ehime prefecture (Ulva linza). Apocarotenoids, such as ionones, and their derivatives were prominent volatiles in algae from Okayama (Ulva prolifera) and Tokushima prefecture (Ulva prolifera). Volatile, short chained apocarotenoids are among the most potent flavor components and contribute to the flavor of fresh, processed algae, and algae-based products. Benzaldehyde was predominant in seaweed from Shizuoka prefecture (Monostroma nitidum). Multivariant statistical analysis (PCA) enabled simple discrimination of the samples based on their volatile profiles. This work shows the potential of SPME-GC-MS coupled with multivariant analysis to discriminate between samples of different geographical and botanical origins and form the basis for development of authentication methods of green algae products, including seasonings.

  19. Determination of Volatile Compounds in Four Commercial Samples of Japanese Green Algae Using Solid Phase Microextraction Gas Chromatography Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Masayoshi Yamamoto


    Full Text Available Green algae are of great economic importance. Seaweed is consumed fresh or as seasoning in Japan. The commercial value is determined by quality, color, and flavor and is also strongly influenced by the production area. Our research, based on solid phase microextraction gas chromatography mass spectrometry (SPME-GC-MS, has revealed that volatile compounds differ intensely in the four varieties of commercial green algae. Accordingly, 41 major volatile compounds were identified. Heptadecene was the most abundant compound from Okayama (Ulva prolifera, Tokushima (Ulva prolifera, and Ehime prefecture (Ulva linza. Apocarotenoids, such as ionones, and their derivatives were prominent volatiles in algae from Okayama (Ulva prolifera and Tokushima prefecture (Ulva prolifera. Volatile, short chained apocarotenoids are among the most potent flavor components and contribute to the flavor of fresh, processed algae, and algae-based products. Benzaldehyde was predominant in seaweed from Shizuoka prefecture (Monostroma nitidum. Multivariant statistical analysis (PCA enabled simple discrimination of the samples based on their volatile profiles. This work shows the potential of SPME-GC-MS coupled with multivariant analysis to discriminate between samples of different geographical and botanical origins and form the basis for development of authentication methods of green algae products, including seasonings.

  20. Characterization of the volatile profile of thistle honey using headspace solid-phase microextraction and gas chromatography-mass spectrometry. (United States)

    Bianchi, F; Mangia, A; Mattarozzi, M; Musci, M


    In this study, a headspace solid-phase microextraction method was developed for the characterization of the volatile fraction of thistle honey and compared with a dynamic headspace extraction method. A DVB/CAR/PDMS fibre was used. The effects of extraction time, equilibration time and salt addition on extraction yield were evaluated. The volatile fraction of seven Italian thistle honey samples was extracted under the optimized conditions and analyzed by gas chromatography-mass spectrometry. Characterization of the volatile profile was performed in terms of nature and relative amount of the extracted compounds. A total of 40 compounds, belonging to different chemical classes, were identified. The relative amounts of 16 compounds found in all the analyzed thistle honeys, i.e. nonanal, furfural, decanal, 3,6-dimethyl-2,3,3a,4,5,7a-hexahydrobenzofuran, benzaldehyde, α-linalool, lilac aldehyde (isomer IV), hotrienol, phenylacetaldehyde, 4-oxoisophorone, benzyl alcohol, 2-phenylethanol, a not identified compound, octanoic acid, nonanoic acid and methyl anthranilate, were calculated and submitted to statistical analysis, in order to define for each compound a typical range. On the basis of the obtained data, a characteristic set of values was defined for thistle honey volatile fingerprint. The developed model proved to be effective in recognizing the botanical origin of thistle honey. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Analysis of ammonium nitrate headspace by on-fiber solid phase microextraction derivatization with gas chromatography mass spectrometry. (United States)

    Lubrano, Adam L; Andrews, Benjamin; Hammond, Mark; Collins, Greg E; Rose-Pehrsson, Susan


    A novel analytical method has been developed for the quantitation of trace levels of ammonia in the headspace of ammonium nitrate (AN) using derivatized solid phase microextraction (SPME) fibers with gas chromatography mass spectrometry (GC-MS). Ammonia is difficult to detect via direct injection into a GC-MS because of its low molecular weight and extreme polarity. To circumvent this issue, ammonia was derivatized directly onto a SPME fiber by the reaction of butyl chloroformate coated fibers with the ammonia to form butyl carbamate. A derivatized externally sampled internal standard (dESIS) method based upon the reactivity of diethylamine with unreacted butyl chloroformate on the SPME fiber to form butyl diethylcarbamate was established for the reproducible quantification of ammonia concentration. Both of these compounds are easily detectable and separable via GC-MS. The optimized method was then used to quantitate the vapor concentration of ammonia in the headspace of two commonly used improvised explosive device (IED) materials, ammonium nitrate fuel oil (ANFO) and ammonium nitrate aluminum powder (Ammonal), as well as identify the presence of additional fuel components within the headspace. Published by Elsevier B.V.

  2. Feasibility study of solid oxide fuel cell engines integrated with sprinter gas turbines: Modeling, design and control (United States)

    Jia, Zhenzhong; Sun, Jing; Dobbs, Herb; King, Joel


    Conventional recuperating solid oxide fuel cell (SOFC)/gas turbine (GT) system suffers from its poor dynamic capability and load following performance. To meet the fast, safe and efficient load following requirements for mobile applications, a sprinter SOFC/GT system concept is proposed in this paper. In the proposed system, an SOFC stack operating at fairly constant temperature provides the baseline power with high efficiency while the fast dynamic capability of the GT-generator is fully explored for fast dynamic load following. System design and control studies have been conducted by using an SOFC/GT system model consisting of experimentally-verified component models. In particular, through analysis of the steady-state simulation results, an SOFC operation strategy is proposed to maintain fairly constant SOFC power (less than 2% power variation) and temperature (less than 2 K temperature variation) over the entire load range. A system design procedure well-suited to the proposed system has also been developed to help determining component sizes and the reference steady-state operation line. In addition, control analysis has been studied for both steady-state and transient operations. Simulation results suggest that the proposed system holds the promise to achieve fast and safe transient operations by taking full advantage of the fast dynamics of the GT-generator.

  3. Influence of changing particle structure on the rate of gas-solid gasification reactions. Final report, July 1981-March 1984

    Energy Technology Data Exchange (ETDEWEB)


    The objetive of this work is to determine the changes in the particle structure of coal as it undergoes the carbon/carbon dioxide reaction (C + CO/sub 2/ ..-->.. 2CO). Char was produced by heating the coal at a rate of 25/sup 0/C/min to the reaction temperatures of 800/sup 0/C, 900/sup 0/C, 1000/sup 0/C and 1100/sup 0/C. The changes in surface area and effective diffusivity as a result of devolitization were determined. Changes in effective diffusivity and surface area as a function of conversion have been measured for reactions conducted at 800, 900, 1000 and 1100/sup 0/C for Wyodak coal char. The surface areas exhibit a maximum as a function of conversion in all cases. For the reaction at 1000/sup 0/C the maximum in surface area is greater than the maxima determined at all other reaction temperatures. Thermogravimetric rate data were obtained for five coal chars; Wyodak, Wilcox, Cimmeron, Illinois number 6 and Pittsburgh number 6 over the temperature range 800-1100/sup 0/C. All coal chars exhibit a maximum in reaction rate. Five different models for gas-solid reactions were evaluated. The Bhatia/Perlmutter model seems to best represent the data. 129 references, 67 figures, 37 tables.

  4. Novel multiresidue method for determination of pesticides in red wine using gas chromatography-mass spectrometry and solid phase extraction. (United States)

    Pelajić, Maja; Peček, Gorana; Mutavdžić Pavlović, Dragana; Vitali Čepo, Dubravka


    A new multiresidue method was developed for determination of 25 pesticide residues in red wine by gas chromatography coupled to mass spectrometry with a single run of 23.63 min. Samples were extracted from wine with solid phase extraction using Oasis HLB. Mixture of methanol and water was used for rinsing, while acetonitrile and n-hexane were used as elution solvents. Method was validated according to SANCO/12571/2013 criteria in wide linearity range (limit of quantification - 400 μg L(-1)). Limits of quantification (LOQ) were well below 10 μg L(-1) for most pesticides and recoveries at 2×LOQ and 10×LOQ concentration levels were in range 70-120%. Precision, expressed as a relative standard deviation, was always under 14%. The method was applied to 32 red wine samples from Croatia. Pesticides were detected in 30 samples with a total of 15 pesticides found, 7 of which were at a high concentration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Optimal control of greenhouse gas emissions and system cost for integrated municipal solid waste management with considering a hierarchical structure. (United States)

    Li, Jing; He, Li; Fan, Xing; Chen, Yizhong; Lu, Hongwei


    This study presents a synergic optimization of control for greenhouse gas (GHG) emissions and system cost in integrated municipal solid waste (MSW) management on a basis of bi-level programming. The bi-level programming is formulated by integrating minimizations of GHG emissions at the leader level and system cost at the follower level into a general MSW framework. Different from traditional single- or multi-objective approaches, the proposed bi-level programming is capable of not only addressing the tradeoffs but also dealing with the leader-follower relationship between different decision makers, who have dissimilar perspectives interests. GHG emission control is placed at the leader level could emphasize the significant environmental concern in MSW management. A bi-level decision-making process based on satisfactory degree is then suitable for solving highly nonlinear problems with computationally effectiveness. The capabilities and effectiveness of the proposed bi-level programming are illustrated by an application of a MSW management problem in Canada. Results show that the obtained optimal management strategy can bring considerable revenues, approximately from 76 to 97 million dollars. Considering control of GHG emissions, it would give priority to the development of the recycling facility throughout the whole period, especially in latter periods. In terms of capacity, the existing landfill is enough in the future 30 years without development of new landfills, while expansion to the composting and recycling facilities should be paid more attention.

  6. [Determination of five synthetic musks in perfume by headspace solid-phase microextraction and gas chromatography-mass spectrometry]. (United States)

    Wang, Guannan; Tang, Hua; Chen, Dazhou; Feng, Jie; Li, Lei


    A method for headspace solid-phase microextraction (HS-SPME), followed by gas chromatography-mass spectrometry (GC-MS) analysis was established for the determination of five commonly used synthetic musks in perfume. Two polycyclic musks (celestolide and tonalide) and three nitro musks (musk ambrette, musk xylene and musk ketone) were used as analytes in the optimization of the analytical method. Six parameters, such as the extraction temperature, equilibrium time, extraction time, desorption time, injector temperature and solution of salting out, were optimized by exposing the 65 microm polydimethylsiloxane-divinyl-benzene (PDMS-DVB) fiber to the headspace of magnetically stirred (600 r/min) sample. According to the results of the optimization experiments, the following conclusion can be drawn: The water-diluted sample in a 10 mL headspace-vial was efficiently extracted for 20 min after the system was equilibrated for 3 min at 60 degrees C. After extraction, the fiber was immediately inserted into the GC injector and desorbed at 250 degrees C for 3 min. The spiked recoveries were in the range of 82.0% - 103.3% and the relative standard deviations (RSDs) were between 1.8% and 9.4%. Meanwhile, the limits of detection (LODs) ranged from 0.6 ng/g to 2.1 ng/g. This method is characterized by rapidity, high sensitivity, good linearity and repeatability for all the target compounds. It is applicable to the analysis of synthetic musks in perfumes.

  7. Optical effect on the growth of Ni-filled carbon nanotubes using gas/solid interfacial discharge pyrolysis

    Directory of Open Access Journals (Sweden)

    Hiroaki Miyazawa


    Full Text Available We report on a growth technique of carbon nanotubes (CNTs whose core and interlayer spaces were filled with Ni fine particles using discharge pyrolysis at gas/solid interface with optical-parametric-oscillation (OPO laser beam assist. Transmission electron microscope observation reveals that CNTs were grown at around a cathode spot and, in most cases, Ni fine particles had 3–4 nm diameters. With decreasing the wavelength of OPO laser, G/D ratios obtained from Raman spectrum analysis increased gradually and, in fact, the structures of CNTs were improved from amorphous-like structures to the long and straight CNTs. For longer wavelengths (593 nm, 650 nm of OPO laser, diameters of CNTs became thicker (typically 10 ~ 100 nm and therefore, Ni nanowires were formed in the core spaces of CNTs. However, for shorter wavelength (456 nm, 507 nm, diameters of CNTs were significantly reduced and Ni fine particles were embedded in between CNT layers. It was found that the structures of CNTs strongly depend on both the magnitude of discharge current and the wavelength of OPO laser beam during the CNT growth.

  8. Polyurethane/polystyrene-silica electrospun nanofibrous composite for the headspace solid-phase microextraction of chlorophenols coupled with gas chromatography. (United States)

    Eskandarpour, Niloufar; Sereshti, Hassan; Najarzadekan, Hamid; Gaikani, Hamid


    A novel electrospun composite nanofiber-based adsorbent (polyurethane/polystyrene-silica) was fabricated, characterized, and used in the headspace solid-phase microextraction of the acetylated derivatives of chlorophenols in water samples before gas chromatography with micro electron capture detection. The surface morphology, chemical composition, thermal stability, and structure of the fibers were investigated by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and Brunauer-Emmett-Teller and Barrett-Joyner-Halenda techniques. The effect of the main parameters influencing the efficiency of the method including extraction temperature, salt concentration, and extraction time was investigated and the optimized conditions were obtained. The linear dynamic ranges were 0.1-800 ng/mL. The relative standard deviations (n = 3) and the limits of detection were 2.64-9.57% and 0.0234-0.830 ng/mL, respectively. The relative recoveries for real samples (river water and sewage of our university campus) were between 90.8 and 111%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Determination of benzene, toluene, ethylbenzene and xylene in river water by solid-phase extraction and gas chromatography. (United States)

    Mottaleb, Mohammad A; Abedin, Mohammad Z; Islam, Mohammad S


    A rapid and reproducible method is described that employs solid-phase extraction (SPE) using dichloromethane, followed by gas chromatography (GC) with flame ionization detection for the determination of benzene, toluene, ethylbenzene, xylene and cumene (BTEXC) from Buriganga River water of Bangladesh. The method was applied to detect BTEXC in a sample collected from the surface, or 5 cm depth of water. Two-hundred milliliters of n-hexane-pretreated and filtered water samples were applied directly to a C18 SPE column. BTEXC were extracted with dichloromethane and the BTEX concentrations were obtained to be 0.1 to 0.37 microg ml(-1). The highest concentration of benzene was found as 0.37 microg ml(-1) with a relative standard deviation (RSD) of 6.2%; cumene was not detected. The factors influencing SPE e.g., adsorbent types, sample load volume, eluting solvent, headspace and temperatures, were investigated. A cartridge containing a C18 adsorbent and using dichloromethane gave a better performance for the extraction of BTEXC from water. Average recoveries exceeding 90% could be achieved for cumene at 4 degrees C with a 2.7% RSD.

  10. Cross section measurements using gas and solid targets for production of the positron-emitting radionuclide O-14

    CERN Document Server

    Kovács, Z; Tarkanyi, F; Coenen, H H; Qaim, S M


    Irradiation of nitrogen with protons leads to sup 1 sup 1 C (T sub 1 sub / sub 2 =20.4min) via the well-known sup 1 sup 4 N(p,alpha) reaction. However, sup 1 sup 4 O (T sub 1 sub / sub 2 =70.6s) and sup 1 sup 3 N (T sub 1 sub / sub 2 =10min) are also formed as side products via the sup 1 sup 4 N(p,n) and sup 1 sup 4 N(p,d+pn) reactions, respectively. In this work detailed cross section measurements were carried out for those two side reactions up to 19.2MeV using N sub 2 gas and nitrogen-containing solid targets. From the data, the thick-target yields and the exact level of radioactive impurities in sup 1 sup 1 C were calculated. In the case of sup 1 sup 4 O, the results also confirmed the possibility of producing this beta sup + emitting radionuclide in sufficient quantities for PET investigations.

  11. Determination of Lactones in Wines by Headspace Solid-Phase Microextraction and Gas Chromatography Coupled with Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    S. J. Pérez-Olivero


    Full Text Available Application of headspace solid-phase microextraction (HS-SPME coupled with high-resolution gas chromatographic (HRGC analysis was studied for determining lactones in wines. Six different SPME fibers were tested, and the influence of different factors such as temperature and time of desorption, ionic strength, time of extraction, content of sugar, ethanol, tannins and anthocyanins, and pH and influence of SO2 were studied. The proposed HS-SPME-GC method is an appropriate technique for the quantitative analysis of γ-butyrolactone, γ-hexalactone, trans-whiskey lactone, γ-octalactone, cis-whiskey lactone, γ-nonalactone, γ-decalactone, δ-decalactone, and γ-undecalactone in wines. Method reproducibility and repeatability ranged between 0.6 and 5.2% for all compounds. Detection limit for γ-butyrolactone was 0.17 mg/L and a few μg/L for the rest of the compounds. The optimized method has been applied to several wine samples.

  12. Development of Solid Phase Microextraction for Determination of Carbon tetrachloride and Chloroform in Air by Gas Chromatography-Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    hamad javad Zare Sakhvidi


    Full Text Available Introduction: In this research the solid phase micro extraction (SPME for sampling and determination of carbon tetrachloride and chloroform in air was developed and effect of ambient parameters on SPME was assessed. Methods: For this purpose standard chamber was built in the laboratory. The concentrations of compounds in the chamber were measured with SPME. The optimum condition for extraction were determined and compared with 1003 method of national institute occupational safety and health (NIOSH-1003. The samples were analyzed with gas chromatography-mass spectrometry. Results: Carboxen-Poly dimethyl siloxane (CAR/PDMS has high adsorption in comparing with other fibers and there were no significant differences between sampling rates at different temperatures (range of 20 to 30 °C and air velocities (2 to 50 cm/s but, relative humidity (RH had a significant effect on sampling rates. The results showed that samples can be storage in refrigerator at 4 °C for 3 days. The correlation coefficient of results between SPME and NIOSH-1003 for carbon tetrachloride and chloroform were 0.99 and 0.98 respectively and relative standard deviation of reproducibility between fibers for carbon tetrachloride and chloroform were 13.6 and 12.8 respectively. Conclusion: This study was showed that SPME was more sensitive than NIOSH-1003 method and successfully applied for determination of time weight average of carbon tetrachloride and chloroform as a passive method.

  13. Characterization of the volatile profiles of beer using headspace solid-phase microextraction and gas chromatography-mass spectrometry. (United States)

    Rossi, Serena; Sileoni, Valeria; Perretti, Giuseppe; Marconi, Ombretta


    The objective of this study was a multivariate characterization of the volatile profile of beers. Such a characterization is timely considering the increasing worldwide consumption of beer, the continuous growth of microbreweries and the importance of volatile compounds to beer flavour. A method employing solid-phase microextraction and gas chromatography-mass spectrometry (SPME-GC-MS) was optimized and then applied to a sample set of 36 industrial and craft beers of various styles and fermentation types. The volatile profiles of different beer styles is described, with particular attention paid to the volatile compounds characteristic of a spontaneously fermented lambic raspberry framboise beer. Furthermore, it was also possible to identify which specific volatile compounds are principally responsible for the differences in the volatile profiles of top- and bottom-fermented beers. Moreover, a volatile fingerprint of the craft top-fermented Italian beers was defined, as they show a very similar volatile profile. Finally, the volatile compounds that are characteristic of the bock-style beers are described. The SPME-GC-MS analytical method optimized in this study is suitable for characterizing the volatile fingerprint of different beers, especially on the basis of the kind of fermentation (top, bottom or spontaneous), the method of production and the style of the beer. © 2013 Society of Chemical Industry.

  14. Monitoring trihalomethanes and nitrogenous disinfection by-products in blending desalinated waters using solid-phase microextraction and gas chromatography. (United States)

    González-Hernández, Providencia; Hernández-Padrón, Manuel; Pino, Verónica; Afonso, Ana M; Ayala, Juan H


    A simple and efficient method has been developed for the extraction and determination of 16 common volatile halogenated disinfection by-products (DBPs) (four trihalomethanes, six haloacetonitriles, and six halonitromethanes) in blending desalinated waters, using headspace solid-phase microextraction and gas chromatography with flame ionization detector (HS-SPME/GC-FID). After the optimization using factorial designs of the HS-SPME parameters (optimum: carboxen/polydimethylsiloxane such as fiber, extraction time of 60 min at 30°C, pH 7, addition of 40% (w/v) of sodium chloride, and desorption time of 2 min at 250°C), quantification limits ranged from 3.03 to 40.8 µg L(-1), and relative standard deviation (inter-day) were lower than 9.7% for all the target DBPs. Adequate relative recoveries (with the exception of chloronitromethane) were obtained even when spiking waters at low levels (25 µg L(-1)), with values between 83.1% and 119% for ultrapure water, and between 87.4% and 115% for blending desalinated waters, supporting in this way the applicability of the method. The influence of various dechlorinating agents on the stability of 16 DBPs in water was evaluated, with ammonium chloride being the most suitable inhibitor of residual chlorine and carrying out the analytical determination of DBPs within 48 h after sampling. Different blending desalinated water samples collected in the South of Tenerife Island (Spain) were successfully analyzed.

  15. Qualitative screening for volatile organic compounds in human blood using solid-phase microextraction and gas chromatography-mass spectrometry. (United States)

    Gottzein, Anne Kathrin; Musshoff, Frank; Madea, Burkhard


    A fast and simple screening procedure using solid-phase microextraction and gas chromatography-mass spectrometry (SPME-GC-MS) in full-scan mode for the determination of volatile organic compounds (VOC) is presented. The development of a fast and simple screening technique for the simultaneous determination of various volatiles is of great importance, because of their widespread use, frequent occurrence in forensic toxicological questions and the fact that there is often no hint on involved substances at the crime scene. To simulate a screening procedure, eight VOC with different chemical characteristics were chosen (isoflurane, halothane, hexane, chloroform, benzene, isooctane, toluene and xylene). To achieve maximum sensitivity, variables that influence the SPME process, such as type of fiber, extraction and desorption temperature and time, agitation and additives were optimized by preliminary studies and by means of a central composite design. The limits of detection and recoveries ranged from 2.9 microg/l (xylene) to 37.1 microg/l (isoflurane) and 7.9% (chloroform) to 61.5% (benzene), respectively. This procedure can be used to answer various forensic and toxicological questions. The short time taken for the whole analytical procedure may make its eventual adoption for routine analysis attractive. Copyright 2010 John Wiley & Sons, Ltd.

  16. Potential for energy recovery and greenhouse gas mitigation from municipal solid waste using a waste-to-material approach. (United States)

    Chen, Ying-Chu


    Energy recovery and greenhouse gas (GHG) emissions from wastes are getting noticed in recent years. This study evaluated the potential for energy recovery and GHG mitigation from municipal solid waste (MSW) with a waste-to-material (WTM) approach. Waste generated in Taiwan contains a large amount of paper, food waste, and plastics, which previously were mostly sent to waste-to-energy (WTE) plants for incineration. However, the mitigation of GHGs by the WTM approach has been especially successful in the recycling of metals (averaging 1.83×106kgCO2-eq/year) and paper (averaging 7.38×105kgCO2-eq/year). In addition, the recycling of paper (1.33×1010kWh) and plastics (1.26×1010kWh) has contributed greatly to energy saving. Both metal and glass are not suitable for incineration due to their low energy content. The volumes of paper and food waste contained in the MSW are positively related to the carbon concentration, which may contribute to increased GHGs during incineration. Therefore, the recycling of paper, metals, and food waste is beneficial for GHG mitigation. Measures to reduce GHGs were also suggested in this study. The development of the WTM approach may be helpful for the proper management of MSW with regards to GHG mitigation. The results of this study can be a successful example for other nations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Quantification of phenol in soil using solid-phase microextraction, gas chromatography-mass spectrometry and standard addition

    Directory of Open Access Journals (Sweden)

    Saltanat Yegemova


    Full Text Available Phenol is a toxic environmental pollutant possessing carcinogenic and mutagenic properties. Determination of phenol in soil by certified methods requires long and laborious sample preparation. Solid-phase microextraction (SPME allows much simpler and faster determination of pollutants in soils. However, method accuracy is limited by the problem of effective matrix effect control. The aim of this study was to develop a rapid and inexpensive method for the quantitative determination of phenol in soil using SPME, gas chromatography-mass spectrometry and standard addition. Extraction temperature 80°C provides the lowest relative standard deviation being 2.1 and 4.6% for aqueous and soil samples, respectively. Soil equilibration time after addition of phenol standard at 80°C should take at least 6 h. The developed method was successfully tested on model and real soil samples having phenol concentrations 0.44 and 0.059 mg/kg, respectively. Coefficients of linear approximation of calibration dependences were higher than 0.97. Method detection limit depends on the affinity of matrix to analyte and is lower than 10 µg/kg.

  18. Hydrothermal solid-gas route to TiO2 nanoparticles/nanotube arrays for high-performance supercapacitors (United States)

    Fan, Haowen; Zhang, He; Luo, Xiaolei; Liao, Maoying; Zhu, Xufei; Ma, Jing; Song, Ye


    Although TiO2 nanotube arrays (TNTAs) have shown great promise as supercapacitor materials, their specific capacitances are still not comparable with some typical materials. Here, TiO2 nanoparticles (NPs)/TNTAs hybrid structure has been derived from the anodized TNTAs by a facile hydrothermal solid-gas method (HSGM), which can avoid cracking or curling of the TNTAs from Ti substrate. The obtained NPs/TNTAs hybrid structure can exhibit a ∼4.90 times increase in surface area and a ∼5.49 times increase in areal specific capacitance compared to the TNTAs without HSGM treatment. Besides, the argon-atmosphere annealing can offer improved areal capacitance and cycling stability relative to the air-atmosphere annealing. The hydrothermal vapor pressure is a key factor for controlling microscopic morphologies of TNTAs, the morphology transformations of TNTAs during the HSGM treatment can be accelerated under enhanced vapor pressures. The highest areal capacitance of HSGM-treated TNTAs is up to 76.12 mF cm-2 at 0.5 mA cm-2, well above that of any TiO2 materials reported to date.

  19. Simultaneous determination of sorbic and benzoic acids in food dressing by headspace solid-phase microextraction and gas chromatography. (United States)

    Dong, Chunzhou; Mei, Yong; Chen, Lin


    A facile headspace solid-phase microextraction (HS-SPME) procedure using 85 microm polyacrylate (PA) fiber is presented for the simultaneous determination of preservatives (sorbic and benzoic acids) in food dressing, including Thousand Island Dressing, HellMANN'S Salad Dressing and Tomato Ketchup, by gas chromatography (GC) with flame ionization detector (FID). The method presented preserves the advantages typical of HS-SPME such as simplicity, low intensity of labor, low cost and solvent free. The main factors affecting the HS-SPME process, such as extraction temperature and time, desorption temperature and time, the acidity and salt concentration of the solution, were optimized. Limits of detection (LODs) of the method were 2.00 microg/L for sorbic acid and 1.22 microg/L for benzoic acid. Relative standard deviations (RSDs) for quintuplicate analyses at three concentration levels of 0.10, 2.0 and 20 mg/L ranged between 3.86 and 14.8%. The method also showed good linearity n a range from 0.02 to 40 mg/L with correlation coefficients (R2) of 0.9986 for sorbic acid and 0.9994 for benzoic acid. Recoveries for the two analytes in all the samples tested ranged from 83.44 to 113.2%. Practical applicability was demonstrated through the simultaneous determination of sorbic and benzoic acids in the three complex samples.

  20. Comparative study of energy of particles ejected from coulomb explosion of rare gas and metallic clusters irradiated by intense femtosecond laser field (United States)

    Boucerredj, N.; Beggas, K.


    We present our study of high intensity femtosecond laser field interaction with large cluster of Kr and Na (contained 2.103 to 2.107 atoms). When laser intensity is above a critical value, it blows off all of electrons from the cluster and forms a non neutral ion cloud. The irradiation of these clusters by the intense laser field leads to highly excitation energy which can be the source of energetic electrons, electronic emission, highly charge, energetic ions and fragmentation process. During the Coulomb explosion of the resulting highly ionized, high temperature nanoplasma, ions acquire again their energy. It is shown that ultra fast ions are produced. The goal of our study is to investigate in detail a comparative study of the expansion and explosion then the ion energy of metallic and rare gas clusters irradiated by an intense femtosecond laser field. We have found that ions have a kinetic energy up to 105 eV and the Coulomb pressure is little than the hydrodynamic pressure. The Coulomb explosion of a cluster may provide a new high energy ion source.

  1. Experimental and theoretical characterization of a multi-wavelength DBD-driven exciplex lamp operated with mercury bromide/rare gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Guivan, Mykola M; Malinina, Antonina A [Department of Quantum Electronics, Uzhgorod National University, Pidgirna 46, Uzhgorod 88000 (Ukraine); Brablec, Antonin, E-mail: [Department of Physical Electronics, Masaryk University, Kotlarska 2, Brno 61137 (Czech Republic)


    Emission spectra from an atmospheric-pressure dielectric barrier discharge (DBD) with HgBr{sub 2}/He or HgBr{sub 2}/Xe/Kr mixtures, as well as the electrical characteristics, were investigated at repetition frequencies of sinusoidal voltage pulses up to 125 kHz. In the spectra, the study revealed radiation from HgBr(B-X, C-X) exciplex molecules, atomic lines of mercury and rare gases, and in mixtures with xenon, radiation of XeBr(B-X, B-A) exciplex molecules. Regularities in the spectral characteristics of the radiation from the gas-discharge plasma were discussed. The electron energy distribution function, the specific energy lost in the processes involving electrons, the electron temperature and density, and the rate constants of elastic and inelastic electron scattering by the components of the working mixture were calculated as functions of the reduced field E/N. The high-frequency atmospheric-pressure barrier discharge in mixtures of mercury dibromide with gases can be used in multi-wavelength exciplex lamps, operating in the UV and visible regions.

  2. Theoretical study of the interaction between intense laser pulses and rare gas clusters; Etude theorique de l'interaction entre une impulsion laser intense et un agregat de gaz rare

    Energy Technology Data Exchange (ETDEWEB)

    Micheau, S


    The irradiation of nanometer-scale rare gas clusters by a short (a few hundreds of femtosecond) and intense (I > 10{sup 15} W/cm{sup 2}) laser pulse yields multi-keV short X-ray bursts. We employ an hydrodynamic model, the so-called 'nano-plasma model', to understand the mechanisms that tailor the interaction. In this model, the cluster is treated as a dielectric sphere embedded in the quasi-static laser field leading to the formation of a plasma of nano-metric size. We have shown that this model cannot reproduce the experimental results such as the high ionization states and associated X-ray spectra. We have thus included in the model two additional mechanisms that significantly improve the ionization dynamics. First, we have introduced high order ionization processes involving intermediate excited states X{sup q+} + e{sup -} {yields} X{sup q+*} + e{sup -} {yields}... {yields} X{sup q+1+} + 2 e{sup -}. We have used a model potential approach to describe the electronic structure of the cluster's ions (and atoms), and we have computed the total excitation and ionization cross-sections in the distorted-wave Born approximation. Secondly we have studied the influence of screening phenomena induced by the electronic density on the interaction dynamics. By using a sophisticated potential, we have shown that screening effects enhance ionization and lower excitation cross sections with respect to the unscreened data. The improved nano-plasma model allows us to reproduce the populations of highly charged states experimentally observed, and the variation of argon He{sub {alpha}} emission with respect to the various experimental parameters (cluster size, laser pulse duration, intensity and wavelength). We have further computed time- and energy-resolved X-ray spectra which emphasize ultra-short emission duration (less than 100 fs), and therefore indicate that cluster-based X-ray sources are adequate to ultrafast X-ray science applications. (author)

  3. Upgraded biogas from municipal solid waste for natural gas substitution and CO{sub 2} reduction – A case study of Austria, Italy, and Spain

    Energy Technology Data Exchange (ETDEWEB)

    Starr, Katherine [Sostenipra, Department of Chemical Engineering, Universitat Autonoma de Barcelona, Bellaterra (Spain); Villalba, Gara, E-mail: [Sostenipra, Department of Chemical Engineering, Universitat Autonoma de Barcelona, Bellaterra (Spain); Sostenipra, Institute de Ciencia i Technologia Ambientals (ICTA), Universitat Autonoma de Barcelona, Bellaterra (Spain); Gabarrell, Xavier [Sostenipra, Department of Chemical Engineering, Universitat Autonoma de Barcelona, Bellaterra (Spain); Sostenipra, Institute de Ciencia i Technologia Ambientals (ICTA), Universitat Autonoma de Barcelona, Bellaterra (Spain)


    Highlights: • Biogas can be upgraded to create biomethane, a substitute to natural gas. • Biogas upgrading was applied to landfills and anaerobic digestors in 3 countries. • Up to 0.6% of a country’s consumption of natural gas could be replaced by biomethane. • Italy could save 46% of the national CO{sub 2} emissions attributed to the waste sector. • Scenarios were created to increase biomethane production. - Abstract: Biogas is rich in methane and can be further purified through biogas upgrading technologies, presenting a viable alternative to natural gas. Landfills and anaerobic digestors treating municipal solid waste are a large source of such biogas. They therefore offer an attractive opportunity to tap into this potential source of natural gas while at the same time minimizing the global warming impact resulting from methane emissions in waste management schemes (WMS) and fossil fuel consumption reduction. This study looks at the current municipal solid waste flows of Spain, Italy, and Austria over one year (2009), in order to determine how much biogas is generated. Then it examines how much natural gas could be substituted by using four different biogas upgrading technologies. Based on current waste generation rates, exploratory but realistic WMS were created for each country in order to maximize biogas production and potential for natural gas substitution. It was found that the potential substitution of natural gas by biogas resulting from the current WMS seems rather insignificant: 0.2% for Austria, 0.6% for Italy and 0.3% for Spain. However, if the WMS is redesigned to maximize biogas production, these figures can increase to 0.7% for Austria, 1% for Italy and 2% for Spain. Furthermore, the potential CO{sub 2} reduction as a consequence of capturing the biogas and replacing fossil fuel can result in up to a 93% reduction of the annual national waste greenhouse gas emissions of Spain and Italy.

  4. Formation of noble-gas hydrides and decay of solvated protons revisited: diffusion-controlled reactions and hydrogen atom losses in solid noble gases. (United States)

    Tanskanen, Hanna; Khriachtchev, Leonid; Lignell, Antti; Räsänen, Markku; Johansson, Susanna; Khyzhniy, Ivan; Savchenko, Elena


    UV photolysis and annealing of C2H2/Xe, C2H2/Xe/Kr, and HBr/Xe matrices lead to complicated photochemical processes and reactions. The dominating products in these experiments are noble-gas hydrides with general formula HNgY (Ng = noble-gas atom, Y = electronegative fragment). We concentrate on distinguishing the local and global mobility and losses of H atoms, barriers of the reactions, and the decay of solvated protons. Different deposition temperatures change the amount of lattice imperfections and thus the amount of traps for H atoms. The averaged distance between reacting species influencing the reaction kinetics is controlled by varying the precursor concentration. A number of solid-state processes connected to the formation of noble-gas hydrides and decay of solvated protons are discussed using a simple kinetic model. The most efficient formation of noble-gas hydrides is connected with global (long-range) mobility of H atoms leading to the H + Xe + Y reaction. The highest concentration of noble-gas hydrides was obtained in matrices of highest optical quality, which probably have the lowest concentration of defects and H-atom losses. In matrices with high amount of geometrical imperfections, the product formation is inefficient and dominated by a local (short-range) process. The decay of solvated protons is rather local than a global process, which is different from the formation of noble-gas molecules. However, the present data do not allow distinguishing local proton and electron mobilities. Our previous results indicate that these are electrons which move to positively-charged centers and neutralize them. It is believed that the image obtained here for solid xenon is applicable to solid krypton whereas the case of argon deserves special attention.

  5. A Novel Numerical Model For Channel-Flow Combustion Using An Elliptic Description For The Solid And A Parabolic For The Gas

    Energy Technology Data Exchange (ETDEWEB)

    Mantzaras, I.; Schneider, A.


    A novel numerical tool is developed for the efficient computation of reacting channel flows. An elliptic iterative solver for the solid phase is coupled to a parabolic marching solver for the gas phase. Over the domain of applicability of the parabolic approach, an order of magnitude gain in computational time is achieved. Application of the model to the combustion of CH{sub 4}/O{sub 2} mixtures diluted with H{sub 2}O and CO{sub 2} indicates that pure gas phase combustion in straight channels is unstable. (author)

  6. Propagation of a spherical shock wave in mixture of non-ideal gas and small solid particles under gravitational field with conductive and radiative heat fluxes (United States)

    Nath, Gorakh

    Self-similar solutions are obtained for one-dimensional unsteady adiabatic flow behind a spherical shock wave propagating in a dusty gas with conductive and radiative heat fluxes under a gravitational field. The shock is assumed to be driven out by a moving piston and the dusty gas to be a mixture of non-ideal (or perfect) gas and small solid particles, in which solid particles are continuously distributed. It is assumed that the equilibrium flow-conditions are maintained and variable energy input is continuously supplied by the piston. The heat conduction is express in terms of Fourier’s law and the radiation is considered to be of the diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density. The medium is assumed to be under a gravitational field due to heavy nucleus at the origin (Roche Model). The unsteady model of Roche consists of a dusty gas distributed with spherical symmetry around a nucleus having large mass It is assumed that the gravitational effect of the mixture itself can be neglected compared with the attraction of the heavy nucleus. The density of the ambient medium is taken to be constant. Our analysis reveals that after inclusion of gravitational field effect surprisingly the shock strength increases and remarkable difference can be found in the distribution of flow variables. The effects of the variation of the heat transfer parameters, the gravitational parameter and non-idealness of the gas in the mixture are investigated. Also, the effects of an increase in (i) the mass concentration of solid particles in the mixture and (ii) the ratio of the density of solid particles to the initial density of the gas on the flow variables are investigated. It is found that the shock strength is increased with an increase in the value of gravitational parameter. Further, it is investigated that the presence of gravitational field increases the

  7. Transformative Evolution of Organolead Triiodide Perovskite Thin Films from Strong Room-Temperature Solid-Gas Interaction between HPbI3-CH3NH2 Precursor Pair. (United States)

    Pang, Shuping; Zhou, Yuanyuan; Wang, Zaiwei; Yang, Mengjin; Krause, Amanda R; Zhou, Zhongmin; Zhu, Kai; Padture, Nitin P; Cui, Guanglei


    We demonstrate the feasibility of a nonsalt-based precursor pair--inorganic HPbI3 solid and organic CH3NH2 gas--for the deposition of uniform CH3NH3PbI3 perovskite thin films. The strong room-temperature solid-gas interaction between HPbI3 and CH3NH2 induces transformative evolution of ultrasmooth, full-coverage perovskite thin films at a rapid rate (in seconds) from nominally processed rough, partial-coverage HPbI3 thin films. The chemical origin of this behavior is elucidated via in situ experiments. Perovskite solar cells, fabricated using MAPbI3 thin films thus deposited, deliver power conversion efficiencies up to 18.2%, attesting to the high quality of the perovskite thin films deposited using this transformative process.

  8. Characterization of the efficiency of the gas-solid contact in circulating bed at by the use of a test reaction: the cumene catalytic cracking

    Energy Technology Data Exchange (ETDEWEB)

    Bayle, J.; Gauthier, T.; Pontier, R. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France); Briens, C.L.; Bergougnou, M. [University of Western Ontario, London, ON (Canada). Dept. of Physics


    The gas-solid down with the stream reactor, the ``downer``, presents a main interest for the high-speed reactions because it is well adapted to hard conditions uses: very short residence times, high temperatures and feeds of catalyst. This reactor type already presents a certain advantage to estimate the charges or new catalysts potential. But, it particularly constitutes an interesting option for some processes as petroleum cuts catalytic cracking. In order to intensify the contact between the catalyst and the reagents, the temperature increase of the reagents has to be almost instantaneous and the initial contact between the gas and the solid particles particularly effective. So as to validate these two hypothesis, the test reaction of the cumene catalytic cracking is carried out in the pilot unit ``downer`` of the Western Ontario University. (O.M.). 11 refs., 3 figs.

  9. Fluorine-ion conductivity of different technological forms of solid electrolytes R 1- y M y F3- y (LaF3 Type ) ( M = Ca, Sr, Ba; R Are Rare Earth Elements) (United States)

    Sorokin, N. I.; Sobolev, B. P.


    We have investigated the conductivity of some representatives of different technological forms of fluoride-conducting solid electrolytes R 1- y M y F3- y ( M = Ca, Sr, Ba; R are rare earth elements) with an LaF3 structure: single crystals, cold- and hot-pressing ceramics based on a charge prepared in different ways (mechanochemical synthesis, solid-phase synthesis, and fragmentation of single crystals), polycrystalline alloys, etc. It is shown (by impedance spectroscopy), that different technological forms of identical chemical composition ( R, M, y) exhibit different electrical characteristics. The maximum conductivity is observed for the single-crystal form of R 1- y M y F3- y tysonite phases, which provides (in contrast to other technological forms) the formation of true volume ion-conducting characteristics.

  10. Development of Millimeter-Wave Velocimetry and Acoustic Time-of-Flight Tomography for Measurements in Densely Loaded Gas-Solid Riser Flow

    Energy Technology Data Exchange (ETDEWEB)

    Fort, James A.; Pfund, David M.; Sheen, David M.; Pappas, Richard A.; Morgen, Gerald P.


    The MFDRC was formed in 1998 to advance the state-of-the-art in simulating multiphase turbulent flows by developing advanced computational models for gas-solid flows that are experimentally validated over a wide range of industrially relevant conditions. The goal was to transfer the resulting validated models to interested US commercial CFD software vendors, who would then propagate the models as part of new code versions to their customers in the US chemical industry. Since the lack of detailed data sets at industrially relevant conditions is the major roadblock to developing and validating multiphase turbulence models, a significant component of the work involved flow measurements on an industrial-scale riser contributed by Westinghouse, which was subsequently installed at SNL. Model comparisons were performed against these datasets by LANL. A parallel Office of Industrial Technology (OIT) project within the consortium made similar comparisons between riser measurements and models at NETL. Measured flow quantities of interest included volume fraction, velocity, and velocity-fluctuation profiles for both gas and solid phases at various locations in the riser. Some additional techniques were required for these measurements beyond what was currently available. PNNL’s role on the project was to work with the SNL experimental team to develop and test two new measurement techniques, acoustic tomography and millimeter-wave velocimetry. Acoustic tomography is a promising technique for gas-solid flow measurements in risers and PNNL has substantial related experience in this area. PNNL is also active in developing millimeter wave imaging techniques, and this technology presents an additional approach to make desired measurements. PNNL supported the advanced diagnostics development part of this project by evaluating these techniques and then by adapting and developing the selected technology to bulk gas-solids flows and by implementing them for testing in the SNL riser

  11. Application of solid-phase microextraction and gas chromatography-mass spectrometry for the determination of chlorophenols in leather. (United States)

    de Souza Silveira, Cristine D; Martendal, Edmar; Soldi, Valdir; Carasek, Eduardo


    This paper proposes a new analytical procedure based on the headspace solid-phase microextraction (HS-SPME) technique and gas chromatography-selected ion monitoring-mass spectrometry (GC-SIM-MS) for the determination of 16 phenols extracted from leather samples. The optimized conditions for the HS-SPME were obtained through two experimental designs - a two-level fractional factorial design followed by a central composite design - using the commercial SPME fiber polyacrylate 85 μm (PA). The best extraction conditions were as follows: 200 μL of derivatizing agent (acetic anhydride), 20 mL of saturated aqueous NaCl solution and extraction time and temperature of 50 min and 75°C, respectively. All optimized conditions were obtained with fixed leather sample mass (250 mg), vial volume (40 mL) and phosphate buffer pH (12) and concentration (50 mmol/L). Detection limits ranging from 0.03 to 0.20 ng/g, and relative standard deviation (RSD) lower than 10.23% (n=6) for a concentration of 800 ng/g (chlorophenols) and 1325 ng/g (2-phenylphenol) in the splitless mode were obtained. The recovery was studied at three concentration levels by adding different amounts of phenols to the leather sample and excellent recoveries ranging from 90.0 to 107.2% were obtained. The validated method was shown to be suitable for the quantification of phenols in leather samples, as it is simple, relatively fast and sensitive. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Accurate analysis of trace earthy-musty odorants in water by headspace solid phase microextraction gas chromatography-mass spectrometry. (United States)

    Ma, Kang; Zhang, Jin Na; Zhao, Min; He, Ya Juan


    A simple and sensitive method was developed for the simultaneous separation and determination of trace earthy-musty compounds including geosmin, 2-methylisoborneol, 2-isobutyl-3-methoxypyrazine, 2-isopropyl-3-methoxypyrazine, 2,3,4-trichloroanisole, 2,4,6-trichloroanisole, and 2,3,6-trichloroanisole in water samples. This method combined headspace solid-phase microextraction (HS-SPME) with gas chromatography-mass spectrometry and used naphthalene-d(8) as internal standard. A divinylbenzene/carboxen/polydimethylsiloxane fiber exposing at 90°C for 30 min provided effective sample enrichment in HS-SPME. These compounds were separated by a DB-1701MS capillary column and detected in selected ion monitoring mode within 12 min. The method showed a good linearity from 1 to 100 ng L(-1) and detection limits within (0.25-0.61 ng L(-1)) for all compounds. Using naphthalene-d(8) as the internal standard, the intra-day relative standard deviation (RSD) was within (2.6-3.4%), while the inter-day RSD was (3.5-4.9%). Good recoveries were obtained for tap water (80.5-90.6%), river water (81.5-92.4%), and lake water (83.5-95.2%) spiked at 10 ng L(-1). Compared with other methods using HS-SPME for determination of odor compounds in water samples, this present method had more analytes, better precision, and recovery. This method was successfully applied for analysis of earthy-musty odors in water samples from different sources. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Quantitative solid phase microextraction--gas chromatography mass spectrometry analysis of five megastigmatrienone isomers in aged wine. (United States)

    Slaghenaufi, Davide; Perello, Marie-Claire; Marchand-Marion, Stéphanie; Tempere, Sophie; de Revel, Gilles


    Megastigmatrienone is a key flavor compound in tobacco. It has also been detected in wine, where it may contribute to a tobacco/incense aroma, but its importance and concentration in wines had never previously been evaluated. A method was developed and validated for quantifying the five megastigmatrienone isomers in red and white wines. Megastigmatrienone isomers were extracted by headspace solid-phase microextraction (HS-SPME), with a 65 μm film thickness polydimethylsiloxane-divinylbenzene (PDMS-DVB) fiber and analyzed using gas chromatography-mass spectrometry (GC/MS) in selected ion monitoring mode (SIM). Several parameters affecting the length of the adsorption process (i.e., adding salt, extraction time and extraction temperature) were tested. The optimum analytical conditions were established. The LOQ were between 0.06 μg L(-1) and 0.49 μg L(-1) for white wine and 0.11 μg L(-1) and 0.98 μg L(-1) for red wine, repeatability in both types of wine was less than 10% and recovery ranged from 96% for white wine to 94% for red wine. The five isomers of megastigmatrienone were quantified in red and white wines for the first time. Concentrations ranged from 2 μg L(-1) to 41 μg L(-1) in both red and white wines. Initial results revealed a link between wine aging and megastigmatrienone levels, indicating that megastigmatrienone may be a component in wine "bouquet". Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Hydrogen analysis in solid samples by utilizing He metastable atoms induced by TEA CO{sub 2} laser plasma in He gas at 1 atm

    Energy Technology Data Exchange (ETDEWEB)

    Ramli, Muliadi [Program of Nuclear Power and Energy Safety Engineering, Graduate School of Engineering, University of Fukui, Fukui 910-8507 (Japan); Idris, Nasrullah [Department of Physics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh, Aceh 23111 (Indonesia); Fukumoto, Kenichi; Niki, Hideaki [Program of Nuclear Power and Energy Safety Engineering, Graduate School of Engineering, University of Fukui, Fukui 910-8507 (Japan); Sakan, Fujio [Department of Material Science, Faculty of Engineering, University of Fukui, Fukui 910-8507 (Japan); Maruyama, Tadashi [Integrated Research Institute, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku Yokohama 226-8503 (Japan); Kurniawan, Koo Hendrik; Lie, Tjung Jie [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Kagawa, Kiichiro [Department of Physics, Faculty of Education and Regional Studies, University of Fukui (Japan)], E-mail:


    A TEA CO{sub 2} laser (350 mJ-1.5 J, 10.6 {mu}m, 200 ns, 10 Hz) was focused onto a metal sub-target under He as host gas at 1 atmospheric pressure with a small amount of impurity gas, such as water and ethanol vapors. It was found that the TEA CO{sub 2} laser with the help of the metal sub-target is favorable for generating a strong, large volume helium gas breakdown plasma at 1 atmospheric pressure, in which the helium metastable-excited state was then produced overwhelmingly. While the metal sub-target itself was never ablated. The helium metastable-excited state produced after the strong helium gas breakdown plasma was considered to play an important role in exciting the atoms. This was confirmed by the specific characteristics of the detected H{alpha} emission, namely the strong intensity with low background, narrow spectral width, and the long lifetime. This technique can be used for gas and solid samples analysis. For nonmetal solid analysis, a metal mesh was introduced in front of the nonmetal sample surface to help initiation of the helium gas breakdown plasma. For metal sample, analysis can be carried out by combining the TEA CO{sub 2} laser and an Nd-YAG laser where the Nd-YAG laser is used to ablate the metal sample. The ablated atoms from the metal sample are then sent into the region of helium gas breakdown plasma induced by the TEA CO{sub 2} laser to be excited through the helium metastable-excited state. This technique can be extended to the analysis of other elements, not limited only to hydrogen, such as halogens.

  15. Automated headspace solid-phase microextraction and on-fiber derivatization for the determination of clenbuterol in meat products by gas chromatography coupled to mass spectrometry. (United States)

    Jiang, Yong; Ni, Yongnian


    A method was developed for the determination of clenbuterol in meat using stable-isotope-dilution gas chromatography with mass spectrometry coupled with solid-phase microextraction and on-fiber derivatization. The samples were first homogenized with hydrochloric acid followed by protein deposition. After headspace solid-phase microextraction and on-fiber derivatization, the content of clenbuterol was measured with the aid of stable-isotope dilution. The condition of solid-phase microextraction was optimized by central composite design. The relative standard deviations, limit of detection, and recoveries for clenbuterol were 4.2-9.2%, 0.48 μg/kg, and 96-104%, respectively. The proposed method was satisfactory for analysis of real samples as compared with the Chinese standard method. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Solid-State 13C NMR Spectroscopy Applied to the Study of Carbon Blacks and Carbon Deposits Obtained by Plasma Pyrolysis of Natural Gas

    Directory of Open Access Journals (Sweden)

    Jair C. C. Freitas


    Full Text Available Solid-state 13C nuclear magnetic resonance (NMR spectroscopy was used in this work to analyze the physical and chemical properties of plasma blacks and carbon deposits produced by thermal cracking of natural gas using different types of plasma reactors. In a typical configuration with a double-chamber reactor, N2 or Ar was injected as plasma working gas in the first chamber and natural gas was injected in the second chamber, inside the arc column. The solid residue was collected at different points throughout the plasma apparatus and analyzed by 13C solid-state NMR spectroscopy, using either cross polarization (CP or direct polarization (DP, combined with magic angle spinning (MAS. The 13C CP/MAS NMR spectra of a number of plasma blacks produced in the N2 plasma reactor showed two resonance bands, broadly identified as associated with aromatic and aliphatic groups, with indication of the presence of oxygen- and nitrogen-containing groups in the aliphatic region of the spectrum. In contrast to DP experiments, only a small fraction of 13C nuclei in the plasma blacks are effectively cross-polarized from nearby 1H nuclei and are thus observed in spectra recorded with CP. 13C NMR spectra are thus useful to distinguish between different types of carbon species in plasma blacks and allow a selective study of groups spatially close to hydrogen in the material.

  17. Identification and quantification of odours from oxobiodegradable polyethylene oxidised under a free radical flow by headspace solid-phase microextraction followed by gas chromatography-olfactometry-mass spectrometry. (United States)

    Wrona, Magdalena; Vera, Paula; Pezo, Davinson; Nerín, Cristina


    Recently oxobiodegradable polyethylene gained popularity as food packaging material due to its potential to reduce polymer waste. However, this type of material can release after its oxidation off-odour compounds that affect the organoleptic properties of packaged food. Odour compounds released from both polyethylene and oxobiodegradable polyethylene before and after oxidation under a free radicals flow were investigated after 1 day, 2 days and 3 days of oxidation. The samples were analysed using headspace solid phase microextraction followed by gas chromatography-mass spectrometry and headspace solid phase microextraction coupled to gas chromatography-olfactometry-mass spectrometry. Sixty-two different odorous compounds were identified. 4-methylthio-2-butanone (fruit), nonanal (fat) and 3,6-nonadienal (fat) were present in different materials before oxidation. Multiple headspace-solid phase microextraction has been used to quantify all analytes. The most abundant compound was (Z)-3-hexenyl hexanoate with a concentration range between 1.5791±0.1387µg/g and 4.8181±0.3123µg/g. Compounds such as 2-dodecenal, 2-octenal, 2-pentanol, 3-nonenal, 3,6-nonadienal, ethyl 3-methylbutanoate, ethyl octenoate, hexanone, isopropyl hexanoate, octanal were below their LOD evaluated using MS detector; however, they were detected by gas chromatography-olfactometry. The minimum LOD and LOQ were 0.011µg/g and 0.036µg/g, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Influence of forced internal air circulation on airflow distribution and heat transfer in a gas double-dynamic solid-state fermentation bioreactor. (United States)

    Chen, Hongzhang; Qin, Lanzhi; Li, Hongqiang


    Internal air circulation affects the temperature field distribution in a gas double-dynamic solid-state fermentation bioreactor (GDSFB). To enhance heat transfer through strengthening internal air circulation in a GDSFB, we put an air distribution plate (ADP) into the bioreactor and studied the effects of forced internal air circulation on airflow, heat transfer, and cellulase activity of Trichoderma viride L3. Results showed that ADP could help form a steady and uniform airflow distribution, and with gas-guide tubes, air reversal was formed inside the bioreactor, thus resulting in a smaller temperature difference between medium and air by enhancing convective heat transfer inside the bioreactor. Using an ADP of 5.35 % aperture ratio caused a 1 °C decrease in the average temperature difference during the solid-state fermentation process of T. viride L3. Meanwhile, the cellulase activity of T. viride L3 increased by 13.5 %. The best heat-transfer effect was attained when using an ADP of 5.35 % aperture ratio and setting the fan power to 125 V (4.81 W) in the gas double-dynamic solid-state fermentation (GDSF) process. An option of suitable aperture ratio and fan power may be conducive to ADPs' industrial amplification.

  19. Technical potential of electricity production from municipal solid waste disposed in the biggest cities in Brazil: landfill gas, biogas and thermal treatment. (United States)

    de Souza, Samuel Nm; Horttanainen, Mika; Antonelli, Jhonatas; Klaus, Otávia; Lindino, Cleber A; Nogueira, Carlos Ec


    This article presents an analysis of possibilities for electrical energy production by using municipal solid waste disposed in the biggest Brazilian cities. Currently, the municipal solid waste in Brazil is collected and disposed of at landfills, but there are also other technologies, which in addition to dealing with the garbage can also provide benefits in terms of energy provision. The following scenarios were studied in this work: electricity production from landfill gas (reference scenario); incineration of all municipal solid waste; anaerobic digestion of organic waste and incineration of refuse-derived fuel fractions after being separated in separation plants. According to this study, the biggest cities in Brazil generate about 18.9 million tonnes of municipal solid waste per year (2011), of which 51.5% is biogenic matter. The overall domestic consumption of electricity is 480,120 GWh y(-1) in Brazil and the municipal solid waste incineration in the 16 largest cities in the country could replace 1.8% of it using incinerators. The city of São Paulo could produce 637 GWh y(-1) with landfill gas, 2368 GWh y(-1) with incineration of municipal solid waste and 1177 GWh y(-1) with incineration of refuse-derived fuel. The latter two scenarios could replace 27% and 13.5% of the residential electrical energy consumption in the city. This shows that thermal treatment might be a viable option of waste-to-energy in Brazil. © The Author(s) 2014.

  20. Hydrogen in all its states: from solid to gas and liquid; L'hydrogene dans tous ses etats: du solide au gaz en passant par le liquide

    Energy Technology Data Exchange (ETDEWEB)

    Latroche, M.; Joubert, J.M.; Cuevas, F.; Paul-Boncour, V.; Percheron-Guegan, A. [Institut de Chimie et des Materiaux Paris-Est, Chimie Metallurgique des Terres Rares (CMTR-ICMPE-UMR 7182), CNRS, 94 - Thiais (France)


    Hydrogen is considered as one of the future energy vector. Several means of hydrogen storage are presented here: physical solutions (compression, liquefaction) and chemical solutions (adsorption in porous solids and absorption in chemical hydrides). Each of these means presents advantages and disadvantages according to economical, energetic, specific capacity, safety and sorption/desorption kinetics criteria. (O.M.)

  1. A New Method for Determining the Nanocrystallite Size Distribution in Systems Where Chemical Reaction between Solid and a Gas Phase Occurs

    Directory of Open Access Journals (Sweden)

    Rafał Pelka


    Full Text Available The proposed method, based on measuring the chemical reaction rate in solid phase, is, therefore, limited to such systems where reaction between nanocrystalline materials and a gas phase occurs. Additionally, assumptions of the model of reaction between nanocrystalline materials and a gas phase, where the surface chemical reaction rate is the rate limiting step, are used. As an example of such a reaction, nitriding (with ammonia of the prereduced industrial iron catalysts for ammonia synthesis of different average crystallite sizes was used. To measure the reaction rate, the differential reactor equipped with systems for thermogravimetric measurements and analysis of the chemical composition of the gas phase was used. The crystallites mass and size distributions for the analyzed samples of catalyst were determined.

  2. Studies in semiconducting metal oxides in conjunction with silicon for solid state gas sensors. Progress report, April 1, 1977-September 30,1979

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, A.G.; Advani, G.N.


    A fundamental investigation of SnO/sub 2/ and ZnO thin films with emphasis on their use in solid state gas detection is discussed. Methods of thin film preparation, described here, include the chemical vapor deposition (CVD) technique for SnO/sub 2/ films and the radio frequency sputtering technique for SnO/sub 2/ and ZnO films. The use of Auger electron spectroscopy, (AES), transmission electron microscopy, (TEM) and x ray diffractometry, (XRD) in the analysis of these films is reported. Careful selection of the most useful films are made by applying these techniques to the films prepared here. The electrical stability and gas sensitivity response of rf sputtered films are studied. Information regarding the mechanisms involved in gas detection are also presented. Some preliminary device structures using these films along with well-established techniques for planar processing are also reported.

  3. Fabrication and sealing performance of rare-earth containing glass–ceramic seals for intermediate temperature solid oxide fuel cell applications

    DEFF Research Database (Denmark)

    Abdoli, H.; Alizadeh, P.; Agersted, Karsten


    The opportunity of using two rare-earth metal oxides in an aluminosilicate glass for seal applications was investigated in this work. Substitution of La2O3 with Y2O3 in the system changed thermal and physical properties such as transition temperature, flowing behavior, and thermal expansion...... containing strontium in the composition, well bonded interface was obtained in contact with 8YSZ and SS430 ferritic stainless steel. The hermeticity of the glass seals was maintained after 100h isothermal aging at 800°C. Also the OCV showed insignificant fluctuations with stable average values after 24...

  4. Compact ultrafast orthogonal acceleration time-of-flight mass spectrometer for on-line gas analysis by electron impact ionization and soft single photon ionization using an electron beam pumped rare gas excimer lamp as VUV-light source. (United States)

    Mühlberger, F; Saraji-Bozorgzad, M; Gonin, M; Fuhrer, K; Zimmermann, R


    Orthogonal acceleration time-of-flight mass spectrometers (oaTOFMS), which are exhibiting a pulsed orthogonal extraction of ion bunches into the TOF mass analyzer from a continuous primary ion beam, are well-suited for continuous ionization methods such as electron impact ionization (EI). Recently an electron beam pumped rare gas excimer lamp (EBEL) was introduced, which emits intensive vacuum UV (VUV) radiation at, e.g., 126 nm (argon excimer) and is well suited as the light source for soft single photon ionization (SPI) of organic molecules. In this paper, a new compact oaTOFMS system which allows switching between SPI, using VUV-light from an EBEL-light source, and conventional EI is described. With the oaTOFMS system, EBEL-SPI and EI mass spectral transients can be recorded at very high repetition rates (up to 100 kHz), enabling high duty cycles and therefore good detection efficiencies. By using a transient recorder card with the capability to perform on-board accumulation of the oaTOF transients, final mass spectra with a dynamic range of 106 can be saved to the hard disk at a rate of 10 Hz. As it is possible to change the ionization modes (EI and SPI) rapidly, a comprehensive monitoring of complex gases with highly dynamic compositions, such as cigarette smoke, is possible. In this context, the EI based mass spectra address the bulk composition (compounds such as water, oxygen, carbon dioxide, etc. in the up to percentage concentration range) as well as some inorganic trace gases such as argon, sulfur dioxide, etc. down to the low ppm level. The EBEL-SPI mass spectra on the other hand are revealing the organic composition down to the lower ppb concentration range.

  5. Gas-Solid Turbulent Flow in a Circulating Fluidized Bed Riser; Numerical Study of Binary Particle Mixtures

    NARCIS (Netherlands)

    He, Y; Deen, N.G.; van Sint Annaland, M.; Kuipers, J.A.M.


    A numerical simulation was performed on a turbulent gas-particle multi-phase flow in a circulating fluidized bed riser based on a hard-sphere discrete particle model (DPM) for the particle phase and the Navier-Stokes equations for the gas phase. The sub-grid scale stresses (SGS) were modeled with


    The report gives results of tests to verify the performance of a landfill gas pretreatment unit (GPU) and a phorsphoric acid fuel cell system. The complete system removes contaminants from landfill gas and produces electricity for on-site use or connection to an electric grid. Th...

  7. Determination of some selected pesticide residues in apple juice by solid-phase microextraction coupled to gas chromatography – mass spectrometry

    Directory of Open Access Journals (Sweden)

    Andrea Hercegová


    Full Text Available The performance of solid phase microextraction (SPME for enrichment of pesticides from apple juice was investigated. Samples were diluted with water, extracted by solid-phase microextraction and analysed by gas chromatography using mass-spectrometry detector (MSD in selected ion monitoring mode (SIM. The method was tested for the following pesticides used mostly in fruit culturing at Slovakia: tebuthylazine, fenitrothion, chlorpyrifos, myclobutanil, cyprodinil, phosalone, pyrimethanil, tebuconazole, kresoxim-methyl, methidathion, penconazole. All pesticides were extracted with polydimethylsiloxane fibre 100 μm thickness. The linear concentration range of application was 0.05 μg dm−3–10 μg dm−3. The method described provides detectabilities complying with the maximum residue levels (MRLs set by regulatory organizations for pesticides in apple juice matrices. The solvent – free SPME procedure was found to be quicker and more cost effective then the solvent extraction methods commonly used.

  8. Energy-filtered environmental transmission electron microscopy for the assessment of solid-gas reactions at elevated temperature: NiO/YSZ-H2 as a case study

    DEFF Research Database (Denmark)

    Jeangros, Q.; Hansen, Thomas Willum; Wagner, Jakob Birkedal


    in 1.3mbar of H2. Three-window elemental maps and jump-ratio images of the O K edge and total inelastic mean free path images are recorded as a function of temperature and used to provide local and quantitative information about the reaction kinetics and the volume changes that result from the reaction......A novel approach, which is based on the analysis of sequences of images recorded using energy-filtered transmission electron microscopy and can be used to assess the reaction of a solid with a gas at elevated temperature, is illustrated for the reduction of a NiO/ceramic solid oxide fuel cell anode....... Under certain assumptions, the speed of progression of the reaction front in all three dimensions is obtained, thereby providing a three-dimensional understanding of the reaction....

  9. Direct numerical simulation of gas-solid-liquid flows with capillary effects: An application to liquid bridge forces between spherical particles (United States)

    Sun, Xiaosong; Sakai, Mikio


    In this study, a numerical method is developed to perform the direct numerical simulation (DNS) of gas-solid-liquid flows involving capillary effects. The volume-of-fluid method employed to track the free surface and the immersed boundary method is adopted for the fluid-particle coupling in three-phase flows. This numerical method is able to fully resolve the hydrodynamic force and capillary force as well as the particle motions arising from complicated gas-solid-liquid interactions. We present its application to liquid bridges among spherical particles in this paper. By using the DNS method, we obtain the static bridge force as a function of the liquid volume, contact angle, and separation distance. The results from the DNS are compared with theoretical equations and other solutions to examine its validity and suitability for modeling capillary bridges. Particularly, the nontrivial liquid bridges formed in triangular and tetrahedral particle clusters are calculated and some preliminary results are reported. We also perform dynamic simulations of liquid bridge ruptures subject to axial stretching and particle motions driven by liquid bridge action, for which accurate predictions are obtained with respect to the critical rupture distance and the equilibrium particle position, respectively. As shown through the simulations, the strength of the present method is the ability to predict the liquid bridge problem under general conditions, from which models of liquid bridge actions may be constructed without limitations. Therefore, it is believed that this DNS method can be a useful tool to improve the understanding and modeling of liquid bridges formed in complex gas-solid-liquid flows.

  10. Dynamic solid phase microextraction for sampling of airborne sarin with gas chromatography-mass spectrometry for rapid field detection and quantification. (United States)

    Hook, Gary L; Jackson Lepage, Carmela; Miller, Stephen I; Smith, Philip A


    A portable dynamic air sampler and solid phase microextraction were used to simultaneously detect, identify, and quantify airborne sarin with immediate analysis of samples using a field portable gas chromatography-mass spectrometry system. A mathematical model was used with knowledge of the mass of sarin trapped, linear air velocity past the exposed sampling fiber, and sample duration allowing calculation of concentration estimates. For organizations with suitable field portable instrumentation, these methods are potentially useful for rapid onsite detection and quantification of high concern analytes, either through direct environmental sampling or through sampling of air collected in bags.

  11. Multi-criteria optimization of a district cogeneration plant integrating a solid oxide fuel cell-gas turbine combined cycle, heat pumps and chillers

    Energy Technology Data Exchange (ETDEWEB)

    Burer, M.; Favrat, D. [Swiss Federal Institute of Technology, Lausanne (Switzerland). Institute of Energy Science; Tanaka, K. [UMIST, Tyndall Centre, Manchester (United Kingdom); Yamada, K. [Shinshu University, Nagano (Japan). Department of Fine Materials Engineering


    A simultaneous optimization of the design and operation of a district heating, cooling and power generation plant supplying a small stock of residential buildings has been undertaken with regards to cost and CO{sub 2} emissions. The simulation of the plant considers a superstructure including a solid oxide fuel cell-gas turbine combined cycle, a compression heat pump, a compression chiller and/or an absorption chiller and an additional gas boiler. The Pareto-frontier obtained as the global solution of the optimization problem delivers the minimal CO{sub 2} emission rates, achievable with the technology considered for a given accepted investment, or respectively the minimal cost associated with a given emission abatement commitment. (author)

  12. Fluid-Thermal-Structural Coupled Analysis of a Radial Inflow Micro Gas Turbine Using Computational Fluid Dynamics and Computational Solid Mechanics

    Directory of Open Access Journals (Sweden)

    Yonghui Xie


    Full Text Available A three-dimensional fluid-thermal-structural coupled analysis for a radial inflow micro gas turbine is conducted. First, a fluid-thermal coupled analysis of the flow and temperature fields of the nozzle passage and the blade passage is performed by using computational fluid dynamics (CFD. The flow and heat transfer characteristics of different sections are analyzed in detail. The thermal load and the aerodynamic load are then obtained from the temperature field and the pressure distribution. The stress distributions of the blade are finally studied by using computational solid mechanics (CSM considering three cases of loads: thermal load, aerodynamics load combined with centrifugal load, and all the three types of loads. The detailed parameters of the flow, temperature, and the stress are obtained and analyzed. The numerical results obtained provide a useful knowledge base for further exploration of radial gas turbine design.


    Directory of Open Access Journals (Sweden)

    Ari Wibawa Budi Santosa


    Full Text Available Weld CO2 is processing electric arc welding where gas carbondioksida or CO2 as component of metal fluid canopy where at welder process there will be liquefaction of metal, in order not to invite oxidation process, what causes the happening of porosity at weldment metal. Where porosity will reduce strength to draw the metal. At welder process surely happened liquefaction process of metal. Liquefaction of the metal because hot influence where temperature dissociation energy of diatomic used by electric current and oksidator attachment, to get strong weld joint is by enough temperature to liquefy metal which will be jointed, where increasingly temperature would increasingly in and the metal wide melts. If happened addition of gas O2 at welder process hence adding oxidation process meaning to increasingly temperature. In consequence is applied welding flux core electrode to lessen porosity generated by temperature. Purpose of this research to know strength value draws, bending and visual from result of weld welder CO2 with addition of gas O2 counted 0%, 5%, 10% at steel ST42 joint I plate Thick 10 mm Marine Plate with welding flux core electrode and Solid. Method used in this research is experiment method, that is experimental method directly to object. In this case steel ST42 joint I Thick plate 10 mm 24 piece weld by using gas CO2. To get research data is applied observation method by using testing machine draws and bending and test EDSA. Data which collected then is analysed the correlation. Result of research shows existence of strength difference to draw and bending and penetration depth between additions of gas O2 counted 0%, 5% and 10% with welding flux core electrode and Solid. Based on result of research suggested in doing welder kontruksi steel ST42 with Thick 10 mm joint I at weld process CO2 majoring strength to draw suggested to applies welding flux core electrode with current 230 A, while majoring strength of compress is suggested to

  14. Headspace Solid-Phase Microextraction Gas Chromatography-Mass Spectrometry and Gas Chromatography-Olfactometry Analysis of Volatile Compounds in Pineapple Breads


    Seye Lasekan; Kalla Reddi Mohan Naidu; Ola Lasekan; Saw Ying


    Sensorial analysis of pineapple breads (conventionally baked, Cpb; fully baked frozen, Fpb and partially baked, Ppb) showed no significant differences in terms of aroma and taste. On the contrary, the scores for the overall quality between the partially baked and conventionally baked breads showed significant (p < 0.05) differences. At the same time, headspace analysis using a solid-phase microextraction (SPME) method identified 59 volatile compounds. The results of the aroma extracts ...

  15. Solid-State and solution studies of [Ln(n)(SiW11O39)] polyoxoanions: an example of building block condensation dependent on the nature of the rare earth. (United States)

    Mialane, Pierre; Lisnard, Laurent; Mallard, Alain; Marrot, Jérôme; Antic-Fidancev, Elisabeth; Aschehoug, Patrick; Vivien, Daniel; Sécheresse, Francis


    The reactivity of the [alpha-SiW(11)O(39)](8-) monovacant polyoxometalate with lanthanide has been investigated for four different trivalent rare-earth cations (Ln = Nd(III), Eu(III), Gd(III), Yb(III)). The crystal structures of KCs(4)[Yb(alpha-SiW(11)O(39))(H(2)O)(2)] x 24H(2)O (1), K(0.5)Nd(0.5)[Nd(2)(alpha-SiW(11)O(39))(H(2)O)(11)] x 17H(2)O (2a), and Na(0.5)Cs(4.5)[Eu(alpha-SiW(11)O(39))(H(2)O)(2)] x 23H(2)O (3a) are reported. The solid-state structure of compound 1 consists of linear wires built up of [alpha-SiW(11)O(39)](8-) anions connected by Yb(3+) cations, while the linkage of the building blocks by Eu(3+) centers in 3a leads to the formation of zigzag chains. In 2a, dimeric [Nd(2)(alpha-SiW(11)O(39))(2)(H(2)O)(8)](10-) entities are linked by four Nd(3+) cations. The resulting chains are connected by lanthanide ions, leading to a bidimensional arrangement. Thus, the dimensionality, the organization of the polyoxometalate building units, and the Ln/[alpha-SiW(11)O(39)](8-) ratio in the solid state can be tuned by choosing the appropriate lanthanide. The luminescent properties of compound 3a have been studied, showing that, in solution, the polymer decomposes to give the monomeric complex [Eu(alpha-SiW(11)O(39))(H(2)O)(4)](5-). The lability of the four exogenous ligands connected to the rare earth must allow the functionalization of this lanthanide polyanion.

  16. Stall/surge dynamics of a multi-stage air compressor in response to a load transient of a hybrid solid oxide fuel cell-gas turbine system (United States)

    Azizi, Mohammad Ali; Brouwer, Jacob


    A better understanding of turbulent unsteady flows in gas turbine systems is necessary to design and control compressors for hybrid fuel cell-gas turbine systems. Compressor stall/surge analysis for a 4 MW hybrid solid oxide fuel cell-gas turbine system for locomotive applications is performed based upon a 1.7 MW multi-stage air compressor. Control strategies are applied to prevent operation of the hybrid SOFC-GT beyond the stall/surge lines of the compressor. Computational fluid dynamics tools are used to simulate the flow distribution and instabilities near the stall/surge line. The results show that a 1.7 MW system compressor like that of a Kawasaki gas turbine is an appropriate choice among the industrial compressors to be used in a 4 MW locomotive SOFC-GT with topping cycle design. The multi-stage radial design of the compressor enhances the ability of the compressor to maintain air flow rate during transient step-load changes. These transient step-load changes are exhibited in many potential applications for SOFC/GT systems. The compressor provides sustained air flow rate during the mild stall/surge event that occurs due to the transient step-load change that is applied, indicating that this type of compressor is well-suited for this hybrid application.

  17. A multi-level simulation platform of natural gas internal reforming solid oxide fuel cell-gas turbine hybrid generation system - Part II. Balancing units model library and system simulation (United States)

    Bao, Cheng; Cai, Ningsheng; Croiset, Eric


    Following our integrated hierarchical modeling framework of natural gas internal reforming solid oxide fuel cell (IRSOFC), this paper firstly introduces the model libraries of main balancing units, including some state-of-the-art achievements and our specific work. Based on gPROMS programming code, flexible configuration and modular design are fully realized by specifying graphically all unit models in each level. Via comparison with the steady-state experimental data of Siemens-Westinghouse demonstration system, the in-house multi-level SOFC-gas turbine (GT) simulation platform is validated to be more accurate than the advanced power system analysis tool (APSAT). Moreover, some units of the demonstration system are designed reversely for analysis of a typically part-load transient process. The framework of distributed and dynamic modeling in most of units is significant for the development of control strategies in the future.

  18. Co-precipitation of rare-earth-doped Y2O3 and MgO nanocomposites for mid-infrared solid-state lasers. (United States)

    Blair, Victoria L; Fleischman, Zackery D; Merkle, Larry D; Ku, Nicholas; Moorehead, Carli A


    Mid-infrared, solid-state laser materials face three main challenges: (1) need to dissipate heat generated in lasing; (2) luminescence quenching by multiphonon relaxation; and (3) trade-off in high thermal conductivity and small maximum phonon energy. We are tackling these challenges by synthesizing a ceramic nanocomposite in which multiple phases will be incorporated into the same structure. The undoped majority species, MgO, will be the main carrier of high thermal conductivity, and the minority species, Er:Y2O3, will have low maximum phonon energy. There is also an inherent challenge in attempting to make a translucent part from a mixture of two different materials with two different indexes of refraction. A simple, co-precipitation technique has been developed in which both components are synthesized in situ to obtain intimate mixing. These powders compare well to commercially available ceramics, including their erbium spectroscopy, even when mixed as a composite, and can be air-fired to ∼96% of theoretical density, yielding translucent parts. As the amount of Er:Y2O3 increases, the translucency decreases as the number of scattering sites start to coalesce into large patches. If the amount of Er:Y2O3 is sufficiently small and dispersed, the yttria grains will be pinned as individuals in a sea of MgO, leading to optimal translucency.

  19. Adiabatic-connection fluctuation-dissipation DFT for the structural properties of solids - The renormalized ALDA and electron gas kernels

    DEFF Research Database (Denmark)

    Patrick, Christopher E.; Thygesen, Kristian Sommer


    We present calculations of the correlation energies of crystalline solids and isolated systems within the adiabatic-connection fluctuation-dissipation formulation of density-functional theory. We perform a quantitative comparison of a set of model exchange-correlation kernels originally derived...... the kernels to inhomogeneous systems through a reciprocal-space averaging procedure, we calculate the lattice constants and bulk moduli of a test set of 10 solids consisting of tetrahedrally bonded semiconductors (C, Si, SiC), ionic compounds (MgO, LiCl, LiF), and metals (Al, Na, Cu, Pd). We also consider...

  20. Natural gas in the 21st century. Part 1. Rock-solid trust in the future of the Dutch natural gas trading company Nederlandse Gasunie; Gas in de 21ste eeuw. Deel 1. Rotsvast vertrouwen in de toekomst van Gasunie

    Energy Technology Data Exchange (ETDEWEB)

    Krikke, R. [ed.


    In this first part of a new series experts in the field of the natural gas market in the Netherlands are interviewed about their opinion on the consequences of and developments after the new Dutch Natural Gas Law ('Gaswet') has come into effect. In this article the general manager of the natural gas trading company Gasunie answers questions on the natural gas market and the position of Gasunie in that market. He also expresses his personal interest in domotics.

  1. Rare Decays (United States)

    Bryman, Douglas


    Fifty years after the discovery of the strange quark and the first search for lepton flavor violation in muon decay, extraordinary experimental progress continues to be made on measurements and searches for rare kaon and muon decays. Several important new rare kaon decay channels, including the second order weak flavor-changing-neutral-current process K^+arrowπ^+ν\\overlineν, have been reported recently, and further significant advances are anticipated. Although only null results have been found so far in the quest for lepton flavor violation, there are promising prospects for additional gains in sensitivity of orders of magnitude on such processes as μ→ e γ, nuclear μ → e conversion, K^0_Larrowμ e and Karrowπμ^+e^-. In this presentation, the status of experiments on selected rare decays of kaons and muons will be reviewed.

  2. Analysis of volatile organic compounds in pleural effusions by headspace solid-phase microextraction coupled with cryotrap gas chromatography and mass spectrometry. (United States)

    Huang, Zhongping; Zhang, Jie; Zhang, Peipei; Wang, Hong; Pan, Zaifa; Wang, Lili


    Headspace solid-phase microextraction coupled with cryotrap gas chromatography and mass spectrometry was applied to the analysis of volatile organic compounds in pleural effusions. The highly volatile organic compounds were separated successfully with high sensitivity by the employment of a cryotrap device, with the construction of a cold column head by freezing a segment of metal capillary with liquid nitrogen. A total of 76 volatile organic compounds were identified in 50 pleural effusion samples (20 malignant effusions and 30 benign effusions). Among them, 34 more volatile organic compounds were detected with the retention time less than 8 min, by comparing with the normal headspace solid-phase microextraction coupled with gas chromatography and mass spectrometry method. Furthermore, 24 volatile organic compounds with high occurrence frequency in pleural effusion samples, 18 of which with the retention time less than 8 min, were selected for the comparative analysis. The results of average peak area comparison and box-plot analysis showed that except for cyclohexanone, 2-ethyl-1-hexanol, and tetramethylbenzene, which have been reported as potential cancer biomarkers, cyclohexanol, dichloromethane, ethyl acetate, n-heptane, ethylbenzene, and xylene also had differential expression between malignant and benign effusions. Therefore, the proposed approach was valuable for the comprehensive characterization of volatile organic compounds in pleural effusions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Screening for pesticide residues in oil seeds using solid-phase dispersion extraction and comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. (United States)

    Wang, Xiupin; Li, Peiwu; Zhang, Wen; Zhang, Qi; Ma, Fei; Yu, Li; Wang, Lin


    In this paper, we describe the development of an oil-absorbing matrix solid-phase dispersion extraction with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry suitable for screening of 68 pesticide residues (PRs) in peanut, soybean, rape seed, sesame, and sunflower seed. The 68 PRs include 27 kinds of organophosphorus, 23 organic chlorines, 11 synthetic pyrethroids, and 7 carbamates. Heptachlor epoxide was used as the internal standard. Aminopropyl silica was chosen as the dispersion sorbent of the oil-absorbing matrix solid-phase dispersion extraction and was applied to capture hydrophobic components from high oil samples. A 35-min orthogonal separation was performed by using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry with a nonpolar-polar column set. Identification of 68 PRs in the extract was finished by using the time-of-flight mass spectrometry in the assistance of an automated peak-find and spectral deconvolution software. A screening based on control design was introduced and explained. This screening method considerably reduced the cost for the quantitative and confirmatory analyses. The quality of present screening method was evaluated by the Document No. SANCO/10684/2009. The false positive rate and false negative rate provide a useful tool for the evaluation of screening performance. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Comparison of different extraction methods for the determination of essential oils and related compounds from aromatic plants and optimization of solid-phase microextraction/gas chromatography. (United States)

    Richter, Jana; Schellenberg, Ingo


    Different extraction methods for the subsequent gas chromatographic determination of the composition of essential oils and related compounds from marjoram (Origanum majorana L.), caraway (Carum carvi L.), sage (Salvia officinalis L.), and thyme (Thymus vulgaris L.) have been compared. The comparison was also discussed with regard to transformation processes of genuine compounds, particularly in terms of expenditure of time. Hydrodistillation is the method of choice for the determination of the essential oil content of plants. For investigating the composition of genuine essential oils and related, aroma-active compounds, hydrodistillation is not very useful, because of discrimination and transformation processes due to high temperatures and acidic conditions. With cold solvent extraction, accelerated solvent extraction, and supercritical fluid extraction, discrimination of high and non-volatile aroma-active components as well as transformation processes can be diminished, but non-aroma-active fats, waxes, or pigments are often extracted, too. As solid-phase microextraction is a solvent-free fully automizable sample preparation technique, this was the most sparing to sensitive components and the most time-saving method for the rapid determination of the aroma compounds composition in marjoram, caraway, sage, and thyme. Finally, solid-phase microextraction could be successfully optimized for the extraction of the aroma components from the plants for their subsequent gas chromatographic determination.

  5. CO2 Biofixation by the Cyanobacterium Spirulina sp. LEB 18 and the Green Alga Chlorella fusca LEB 111 Grown Using Gas Effluents and Solid Residues of Thermoelectric Origin. (United States)

    da Silva Vaz, Bruna; Costa, Jorge Alberto Vieira; de Morais, Michele Greque


    The concentration of carbon dioxide (CO2) in the atmosphere has increased from 280 to 400 ppm in the last 10 years, and the coal-fired power plants are responsible for approximately 22 % of these emissions. The burning of fossil fuel also produces a great amount of solid waste that causes serious industrial and environmental problems. The biological processes become interesting alternative in combating pollution and developing new products. The objective of this study was to evaluate the CO2 biofixation potential of microalgae that were grown using gaseous effluents and solid residues of thermoelectric origin. The microalgae Chlorella fusca LEB 111 presented higher rate of CO2 biofixation (42.8 %) (p Chlorella cells grown using combustion gas did not differ significantly from those of cells grown using CO2 and a carbon source in the culture media. These microalgae could be grown using ash derived from coal combustion, using the minerals present in this residue as the source of the essential metals required for their growth and the CO2 derived from the combustion gas as their carbon source.

  6. Analysis and performance assessment of a new solar-based multigeneration system integrated with ammonia fuel cell and solid oxide fuel cell-gas turbine combined cycle (United States)

    Siddiqui, Osamah; Dincer, Ibrahim


    In the present study, a new solar-based multigeneration system integrated with an ammonia fuel cell and solid oxide fuel cell-gas turbine combined cycle to produce electricity, hydrogen, cooling and hot water is developed for analysis and performance assessment. In this regard, thermodynamic analyses and modeling through both energy and exergy approaches are employed to assess and evaluate the overall system performance. Various parametric studies are conducted to study the effects of varying system parameters and operating conditions on the energy and exergy efficiencies. The results of this study show that the overall multigeneration system energy efficiency is obtained as 39.1% while the overall system exergy efficiency is calculated as 38.7%, respectively. The performance of this multigeneration system results in an increase of 19.3% in energy efficiency as compared to single generation system. Furthermore, the exergy efficiency of the multigeneration system is 17.8% higher than the single generation system. Moreover, both energy and exergy efficiencies of the solid oxide fuel cell-gas turbine combined cycle are determined as 68.5% and 55.9% respectively.

  7. A novel temperature-gradient Na±β-alumina solid electrolyte based SOx gas sensor without gaseous reference electrode

    DEFF Research Database (Denmark)

    Rao, N.; Bleek, C.M. Van den; Schoonman, J.


    An electrochemical SOx ps sensor with a tubular Na+-beta"-alumina solid electrolyte has been fabricated and tested under non-isothermal conditions. The temperature difference between the reference and working electrode of the sensor cell is about 100-degrees-C, which causes a serious deviation...

  8. Analyzing Solutions High in Total Dissolved Solids for Rare Earth Elements (REEs) Using Cation Exchange and Online Pre-Concentration with the seaFAST2 Unit; NETL-TRS-7-2017; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Albany, OR, 2017; p 32

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J. [National Energy Technology Lab. (NETL), Albany, OR (United States); Oregon State Univ., Corvallis, OR (United States). College of Earth, Ocean, and Atmospheric Science; Torres, M. [Oregon State Univ., Corvallis, OR (United States). College of Earth, Ocean, and Atmospheric Science; Verba, C. [National Energy Technology Lab. (NETL), Albany, OR (United States); Oregon State Univ., Corvallis, OR (United States); Hakala, A. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)


    The accurate quantification of the rare earth element (REE) dissolved concentrations in natural waters are often inhibited by their low abundances in relation to other dissolved constituents such as alkali, alkaline earth elements, and dissolved solids. The high abundance of these constituents can suppress the overall analytical signal as well as create isobaric interferences on the REEs during analysis. Waters associated with natural gas operations on black shale plays are characterized by high salinities and high total dissolved solids (TDS) contents >150,000 mg/L. Methods used to isolate and quantify dissolved REEs in seawater were adapted in order to develop the capability of analyzing REEs in waters that are high in TDS. First, a synthetic fluid based on geochemical modelling of natural brine formation fluids was created within the Marcellus black shale with a TDS loading of 153,000 mg/L. To this solution, 1,000 ng/mL of REE standards was added based on preliminary analyses of experimental fluids reacted at high pressure and temperature with Marcellus black shale. These synthetic fluids were then run at three different dilution levels of 10, 100, and 1,000–fold dilutions through cation exchange columns using AG50-X8 exchange resin from Eichrom Industries. The eluent from the cation columns were then sent through a seaFAST2 unit directly connected to an inductively coupled plasma mass spectrometer (ICP-MS) to analyze the REEs. Percent recoveries of the REEs ranged from 80–110% and fell within error for the external reference standard used and no signal suppression or isobaric interferences on the REEs were observed. These results demonstrate that a combined use of cation exchange columns and seaFAST2 instrumentation are effective in accurately quantifying the dissolved REEs in fluids that are >150,000 mg/L in TDS and have Ba:Eu ratios in excess of 380,000.

  9. A numerical simulation analysis of the effect of the interface drag function on cluster evolution in a CFB riser gas-solid flow

    Directory of Open Access Journals (Sweden)

    Gómez L. C.


    Full Text Available The dynamics of formation, dissipation and breaking of coherent structures in the riser gas-solid flow of a circulating fluidized bed (CFB are evaluated by numerical simulation. The simulation is performed using the MICEFLOW code, which includes IIT's two-fluid hydrodynamic model B. The methodology for cluster characterization is used from Sharma et al. and is based on determination of four characteristics, average lifetime, average volumetric fraction of solid, existence time fraction and frequency of occurrence. Clusters are identified applying a criterion for the time average value of the volumetric solid fraction. A qualitative analysis of the influence of different drag function correlations on the hydrodynamics of the flow, including the evolution of coherent structures, is performed. The simulation predictions are also compared to experimental results. The results indicate that the choice of a correlation for drag function should be quite judicious. Finally it is shown that the mean clustering criteria of Sharma et al. should be modified to take into account other factors that influence cluster dynamics.

  10. Measurement of interactions between solid particles, liquid droplets, and/or gas bubbles in a liquid using an integrated thin film drainage apparatus. (United States)

    Wang, Louxiang; Sharp, David; Masliyah, Jacob; Xu, Zhenghe


    A novel device was designed to measure drainage dynamics of thin liquid films confined between a solid particle, an immiscible liquid droplet, and/or gas bubble. Equipped with a bimorph force sensor, a computer-interfaced video capture, and a data acquisition system, the newly designed integrated thin film drainage apparatus (ITFDA) allows for the direct and simultaneous measurements of force barrier, true film drainage time, and bubble/droplet deformation under a well-controlled external force, receding and advancing contact angles, capillary force, and adhesion (detachment) force between an air bubble or oil droplet and a solid, a liquid, or an air bubble in an immiscible liquid. Using the diaphragm of a high-frequency speaker as the drive mechanism for the air bubble or oil droplet attached to a capillary tube, this newly designed device is capable of measuring forces over a wide range of hydrodynamic conditions, including bubble approach and retract velocities up to 50 mm/s and displacement range up to 1 mm. The results showed that the ITFDA was capable of measuring hydrodynamic resistance, film drainage time, and other important physical parameters between air bubbles and solid particles in aqueous solutions. As an example of illustrating the versatility, the ITFDA was also applied to other important systems such as interactions between air bubble and oil droplet, two air bubbles, and two oil droplets in an aqueous solution.

  11. Molecularly imprinted solid-phase extraction for the selective determination of methamphetamine, amphetamine, and methylenedioxyphenylalkylamine designer drugs in human whole blood by gas chromatography-mass spectrometry. (United States)

    Kumazawa, Takeshi; Hasegawa, Chika; Hara, Kenji; Uchigasaki, Seisaku; Lee, Xiao-Pen; Seno, Hiroshi; Suzuki, Osamu; Sato, Keizo


    A novel method is described for the extraction of methamphetamine, amphetamine, and methylenedioxyphenylalkylamine designer drugs, such as 3,4-methylenedioxy-methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxyethylamphetamine, N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine, and 3,4-(methylenedioxyphenyl)-2-butanamine, from human whole blood using molecularly imprinted solid-phase extraction as highly selective sample clean-up technique. Whole blood samples were diluted with 10 mmol/L ammonium acetate (pH 8.6) and applied to a SupelMIP-Amphetamine molecularly imprinted solid-phase extraction cartridge. The cartridge was then washed to eliminate interferences, and the amphetamines of interest were eluted with formic acid/methanol (1:100, v/v). After derivatization with trifluoroacetic anhydride, the analytes were quantified using gas chromatography-mass spectrometry. Recoveries of the seven amphetamines spiked into whole blood were 89.1-102%. The limits of quantification for each compound in 200 μL of whole blood were between 0.25 and 1.0 ng. The maximum intra- and inter-day coefficients of variation were 9.96 and 13.8%, respectively. The results show that methamphetamine, amphetamine, and methylenedioxyphenylalkyl-amine designer drugs can be efficiently extracted from crude biological samples such as whole blood by molecularly imprinted solid-phase extraction with good reproducibility. This extraction method will be useful for the pretreatment of human samples before gas chromatography-mass spectrometry. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Diagnosis of solid waste of oil and natural gas exploration and production activities in Brazil offshore sedimentary basins; Diagnostico dos residuos solidos das atividades de exploracao e producao de petroleo e gas natural em bacias sedimentares maritimas no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Pedro Henrique Wisniewski; Mendonca; Gilberto Moraes de


    The objective of this study is to analyze the generation and disposal of solid waste from the exploration and production activities of oil and natural gas in Brazilian waters. We used data from the implementation reports of pollution control project of the activities licensed by IBAMA. During 2009 the activities related to exploration and production of offshore oil and gas produced a total of 44,437 tons of solid waste, with the main waste generated corresponding to: oily waste (16,002 t); Metal uncontaminated (11,085 t); contaminated waste (5630 t), non recycling waste (4935 t); Wood uncontaminated (1,861 t), chemicals (1,146 t). Considering the total waste generated by activities during the period analyzed, it was observed that 54.3% are made up of waste Class I (hazardous waste), 27.9% of Class II wastes (waste non-hazardous non-inert); and 17.8% of waste Class IIB (non-hazardous and inert waste). The results obtained in this work enabled the scenario of waste generation by the E and P offshore activities. As a result, the survey serves as a starting point for monitoring the progress in implementing the projects sought Pollution Control of licensed projects, as well as support the monitoring of reflexes arising from the intensification of activities in certain regions. (author)

  13. Synthesis and characterization of tungsten carbide doped cobalt via gas-solid reaction in rotary bed reactor; Sintese e caracterizacao de carbeto de tungstenio dopado com cobalto via reacao gas-solido em reator de leito rotativo

    Energy Technology Data Exchange (ETDEWEB)

    Tertuliano, R.S.C.; Araujo, C.P.B. de; Frota, A.V.V.M.; Moriyama, A.L.L.; Souza, C.P. de, E-mail: [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Departamento de Engenharia Quimica


    The search for materials with high added value, high applicability and sustainability, motivates innovations in all areas of engineering. In this context, so-called doped carbides, ceramic and metal compounds are included. This work proposes the synthesis and characterization of tungsten carbide doped cobalt (WC-Co) through the gas-solid reaction in a rotating bed reactor. The production stages of the material are: precursor synthesis by wetting, drying at 80 deg C, characterization of the precursor by MEV, DRX and FRX, gas-solid reaction at 750 deg C in a reducing atmosphere of CH{sub 4} / H{sub 2} in a rotary reactor at 34 rpm and characterization of the reaction product by the techniques already mentioned. The results showed that tungsten carbide powders were produced with cobalt inserted into the structure, with high surface area, nanometric grains and with potential for applications in the areas of catalysis, reactors and fuel cells, showing the relevance of this type of research.

  14. A flow cell for the study of gas-solid reactions via in situ powder X-ray diffraction (United States)

    Scarlett, Nicola V. Y.; Hewish, Damien; Pattel, Rachel; Webster, Nathan A. S.


    This paper describes the development and testing of a novel capillary flow cell for use in in situ powder X-ray diffraction experiments. It is designed such that it achieves 200° of rotation of the capillary whilst still allowing the flow of gas through the sample and the monitoring of off gas via mass spectrometry, gas chromatography, or other such analytical techniques. This high degree of rotation provides more uniform heating of the sample than can be achieved in static cells or those with lower rotational ranges and consequently also improves particle statistics. The increased uniformity of heating provides more accurate temperature calibration of the experimental setup as well. The cell is designed to be held in a standard goniometer head and is therefore suitable for use in many laboratory and synchrotron instruments.

  15. A short-range gradient-corrected spin density functional in combination with long-range coupled-cluster methods: Application to alkali-metal rare-gas dimers

    Energy Technology Data Exchange (ETDEWEB)

    Goll, Erich [Institut fuer Theoretische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart (Germany)], E-mail:; Werner, Hans-Joachim [Institut fuer Theoretische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart (Germany); Stoll, Hermann [Institut fuer Theoretische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart (Germany); Leininger, Thierry [Laboratoire de Physique Quantique, UMR 5626 du CNRS, Universite Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse Cedex 04 (France); Gori-Giorgi, Paola [Laboratoire de Chimie Theorique, CNRS UMR7616, Universite Pierre et Marie Curie, 4 Place Jussieu, F-75252 Paris (France); Savin, Andreas [Laboratoire de Chimie Theorique, CNRS UMR7616, Universite Pierre et Marie Curie, 4 Place Jussieu, F-75252 Paris (France)


    We extend our recently published short-range gradient-corrected density functional from the closed-shell to Open-shell case, combine it with long-range coupled-cluster methods (CCSD, CCSD(T)), and apply it to the weakly bound alkali-metal rare-gas dimers AmRg (Am = Li-Cs; Rg = Ne-Xe). The results are shown to be superior, with medium-size basis sets, to pure DFT and pure coupled-cluster calculations.

  16. Mathematical modeling of synthesis gas fueled electrochemistry and transport including H2/CO co-oxidation and surface diffusion in solid oxide fuel cell (United States)

    Bao, Cheng; Jiang, Zeyi; Zhang, Xinxin


    Fuel flexibility is a significant advantage of solid oxide fuel cell (SOFC). A comprehensive macroscopic framework is proposed for synthesis gas (syngas) fueled electrochemistry and transport in SOFC anode with two main novelties, i.e. analytical H2/CO electrochemical co-oxidation, and correction of gas species concentration at triple phase boundary considering competitive absorption and surface diffusion. Staring from analytical approximation of the decoupled charge and mass transfer, we present analytical solutions of two defined variables, i.e. hydrogen current fraction and enhancement factor. Giving explicit answer (rather than case-by-case numerical calculation) on how many percent of the current output contributed by H2 or CO and on how great the water gas shift reaction plays role on, this approach establishes at the first time an adaptive superposition mechanism of H2-fuel and CO-fuel electrochemistry for syngas fuel. Based on the diffusion equivalent circuit model, assuming series-connected resistances of surface diffusion and bulk diffusion, the model predicts well at high fuel utilization by keeping fixed porosity/tortuosity ratio. The model has been validated by experimental polarization behaviors in a wide range of operation on a button cell for H2-H2O-CO-CO2-N2 fuel systems. The framework could be helpful to narrow the gap between macro-scale and meso-scale SOFC modeling.

  17. Economic assessment and energy model scenarios of municipal solid waste incineration and gas turbine hybrid dual-fueled cycles in Thailand. (United States)

    Udomsri, Seksan; Martin, Andrew R; Fransson, Torsten H


    Finding environmentally benign methods related to sound municipal solid waste (MSW) management is of highest priority in Southeast Asia. It is very important to study new approaches which can reduce waste generation and simultaneously enhance energy recovery. One concrete example of particular significance is the concept of hybrid dual-fuel power plants featuring MSW and another high-quality fuel like natural gas. The hybrid dual-fuel cycles provide significantly higher electrical efficiencies than a composite of separate single-fuel power plant (standalone gas turbine combined cycle and MSW incineration). Although hybrid versions are of great importance for energy conversion from MSW, an economic assessment of these systems must be addressed for a realistic appraisal of these technologies. This paper aims to further examine an economic assessment and energy model analysis of different conversion technologies. Energy models are developed to further refine the expected potential of MSW incineration with regards to energy recovery and environmental issues. Results show that MSW incineration can play role for greenhouse gas reduction, energy recovery and waste management. In Bangkok, the electric power production via conventional incineration and hybrid power plants can cover 2.5% and 8% of total electricity consumption, respectively. The hybrid power plants have a relative short payback period (5 years) and can further reduce the CO(2) levels by 3% in comparison with current thermal power plants. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. Performance characteristics of part-load operations of a solid oxide fuel cell/gas turbine hybrid system using air-bypass valves (United States)

    Yang, Jin Sik; Sohn, Jeong L.; Ro, Sung Tack

    In spite of the high-performance characteristics of a solid oxide fuel cell/gas turbine (SOFC/GT) hybrid system, it is difficult to maintain high-level performance under real application conditions, which generally require part-load operations. The efficiency loss of the SOFC/GT hybrid system under such conditions is closely related to that of the gas turbine. The power generated by the gas turbine in a hybrid system is much less than that generated by the SOFC, but its contribution to the efficiency of the system is important, especially under part-load conditions. Over the entire operating load profile of a hybrid system, the efficiency of the hybrid system can be maximized by increasing the contribution of power coming from the high efficiency component, namely the fuel cell. In this study, part-load control strategies using air-bypass valves are proposed, and their impact on the performance of an SOFC/GT hybrid system is discussed. It is found that air-bypass modes with control of the fuel supply help to overcome the limits of the part-load operation characteristics in air/fuel control modes, such as variable rotational speed control and variable inlet guide vane control.

  19. Studying the characteristics of a 5 kW power installation on solid-oxide fuel cells with steam reforming of natural gas (United States)

    Munts, V. A.; Volkova, Yu. V.; Plotnikov, N. S.; Dubinin, A. M.; Tuponogov, V. G.; Chernishev, V. A.


    The results from tests of a 5 kW power plant on solid-oxide fuel cells (SOFCs), in which natural gas is used as fuel, are presented. The installation's process circuit, the test procedure, and the analysis of the obtained results are described. The characteristics of the power plant developed by the Ural Industrial Company are investigated in four steady-state modes of its operation: with the SOFC nominal power capacity utilized by 40% (2 kW), 60% (3 kW), 90% (4.5 kW) and 110% (5.4 kW) (the peaking mode). The electrical and thermodynamic efficiencies are calculated for all operating modes, and the most efficient mode, in which the electrical efficiency reached almost 70%, is determined. The air excess coefficient and heat loss with flue gases q 2 are determined, and it is revealed that the heat loss q 5 decreases from 40 to 25% with increasing the load. Thermal balances are drawn up for the following components of the system the reformer, the SOFC battery, the catalytic burner for afterburning anode gases, the heat exchanger for heating the cathode air and the mixture of natural gas and steam, and the actual fuel utilization rates in the electrochemical generator are calculated. An equation for the resulting natural gas steam reforming reaction was obtained based on the results from calculating the equilibrium composition of reforming products for the achieved temperatures at the reformer outlet t 3.

  20. Laser cooling of solids

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM


    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  1. Design and development of a propulsion system for a cubesat - Based on solid propellant cool gas generator technology

    NARCIS (Netherlands)

    Rackemann, N.J.; Sanders, H.M.; Vliet, L.D. van


    Orbital manoeuvring is the next challenge in the development of cubesats. In this study a propulsion system for a cubesat with the main purpose of providing orbit manoeuvring and formation flying has been designed. This propulsion system is basically a cold gas system but it does not use a

  2. Gas-solid two-phase turbulent flow in a circulating fluidized bed riser: an experimental and numerical study

    NARCIS (Netherlands)

    He, Y.; van Sint Annaland, M.; Deen, N.G.; Kuipers, J.A.M.


    Hydrodynamics of gas-particle two-phase turbulent flow in a circulating fluidized bed riser is studied experimentally by Particle Image Velocimetry (PIV) and numerically with the use of a 3D discrete hard sphere particle model (DPM). Mean particle velocities and RMS velocities are obtained and the

  3. Re-use of stabilised flue gas ashes from solid waste incineration in cement-treated base layers for pavements

    DEFF Research Database (Denmark)

    Cai, Zuansi; Jensen, Dorthe Lærke; Christensen, Thomas Højlund


    Fly ash from coal-burning power plants has been used extensively as a pozzolan and fine filter in concrete for many years. Laboratory experiments were performed investigating the effect of substituting the coal-based fly ash with chemically stabilised flue gas ashes (FGA) from waste incineration....

  4. Direct detection of Mycobacterium tuberculosis in sputum using combined solid phase extraction-gas chromatography-mass spectrometry

    NARCIS (Netherlands)

    Dang, N.A.; Mourão, M.; Kuijper, S.; Walters, E.; Janssen, H.-G.; Kolk, A.H.J.


    Recently, thermally-assisted hydrolysis and methylation followed by gas chromatography-mass spectrometry (THM-GC-MS) in combination with chemometrics has been used to develop a 20-compound model for fast differentiation of Mycobacterium tuberculosis (MTB) from Non-tuberculous mycobacteria (NTM) in

  5. Analysis of luwak coffee volatile by using solid phase microextraction and gas chromatography (Analisa senyawa volatil kopi luwak dengan menggunakan mikroekstrasi fase padat dan kromatolgi gas.

    Directory of Open Access Journals (Sweden)

    Ariza Budi Tunjung Sari


    Full Text Available The approach to authenticate Luwak coffee is made through analysis of volatile compounds of luwak coffee. Luwak coffee bean from type of arabica obtained from Andungsari Plantation in Bondowoso district, East Java Province Indonesia, was wet processed and sundried prior to roasting step. As many as 120 g green bean was roasted at 170-220°C for 8-12 minutes until reached light brown colour (Agtron scale 65 and was ground prior to extraction. Volatile compounds of roasted Luwak arabica coffee bean were extracted by using solid phase microextraction (SPME at 60°C for 30 minutes. The extracted analyte was subsequently transferred into GC-FID system by splitless injection at 260°C with five minutes sampling time, continued with separation through 50% phenyl 50% dimethylpolysiloxane capillary column and oven temperature programmed from 60°C to 180°C with rate of 5°C/min. Resulted chromatogram shows major peaks mainly in Rt 8.360-9.981, and Rt 9.705-14.778, and minor peaks identified before Rt 10 and after Rt 24. Varied sample quantity ranged within 0.5-2.5 g produced chromatograms which were not significantly different (p=0.08. This research also observed the use of γ-picoline (4-methylpyridine as internal standard. It was showed that γ-picoline appeared at Rt 8.6~ without overlaying other peaks originated from sample. Concentration of γ-picoline at 0.05 μL/g, resulted separable peaks. These findings showed that the use of solid phase microextraction and GC-FID is capable to be apply for identification and quantification of Luwak coffee

  6. Gas/solid particulate phthalic esters (PAEs) in Masson pine (Pinus massoniana L.) needles and rhizosphere surface soils

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wen-xin, E-mail: [Department of Environmental Science and Engineering, Fudan University, Shanghai 200433 (China); Fan, Chinbay Q. [Gas Technology Institute, 1700 S. Mt. Prospect Rd., Des Plaines, IL 60018 (United States)


    Graphical abstract: - Highlights: • The pine needle/rhizosphere soil distribution of PAEs was related to P{sub L} and K{sub P}. • The P{sub L} and K{sub P} determined the PAE deposition to surface soils and to needles. • High regression parameters of log Rs/n − log P{sub L} and log K{sub P} − log P{sub L} were achieved. • Log Rs/n carried the information of K{sub P} and lineally correlated with log P{sub L}. - Abstract: Phthalic acid esters (PAEs) are used in many branches of industry and are produced in huge amounts throughout the world. An investigation on particulate- and gas-phase distribution of PAEs has been conducted between January 2011 and December 2012 in Nanjing (China). Masson pine (Pinus massoniana L.) needles and rhizosphere surface soils were sampled from urban to suburban/remote sites, to investigate the pine needle/soil distribution of PAEs. The results showed that the average total PAE concentration (gas + particle) was 97.0 ng m{sup −3}. The six PAE congeners considered predominantly existed in the gas phase and the average contribution of gas phase to total PAEs ranged from 75.0% to 89.1%. The PAE concentrations in rhizosphere soils and pine needles were positively correlated with their particulate- and gas-phase concentrations, respectively, which suggested that surface soils accumulated PAEs mainly through gravity deposition of particles and pine needle stomata absorbed PAEs mainly from the gas phase. The gas/particle partitioning (K{sub P}) and soil-pine needle ratio (Rs/n) were determined. Experimentally determined K{sub P} values correlated well with the subcooled liquid vapor pressures (P{sub L}). A set of interesting relationships of log Rs/n − log K{sub P} − log P{sub L} was employed to explain the experimental findings of PAEs deposition to surface soils and to needles. This data set offered a unique perspective into the influence that Rs/n played in K{sub P} and correlated with P{sub L}.

  7. Comparative evaluation of liquid-liquid extraction, solid-phase extraction and solid-phase microextraction for the gas chromatography-mass spectrometry determination of multiclass priority organic contaminants in wastewater. (United States)

    Robles-Molina, José; Gilbert-López, Bienvenida; García-Reyes, Juan F; Molina-Díaz, Antonio


    The European Water Framework Directive (WFD) 2000/60/EC establishes guidelines to control the pollution of surface water by sorting out a list of priority substances that involves a significant risk to or via the aquatic systems. In this article, the analytical performance of three different sample preparation methodologies for the GC-MS/MS determination of multiclass organic contaminants-including priority comprounds from the WFD-in wastewater samples using gas chromatography-mass spectrometry was evaluated. The methodologies tested were: (a) liquid-liquid extraction (LLE) with n-hexane; (b) solid-phase extraction (SPE) with C18 cartridges and elution with ethyl acetate:dichloromethane (1:1 (v/v)), and (c) headspace solid-phase microextraction (HS-SPME) using two different fibers: polyacrylate and polydimethylsiloxane/carboxen/divinilbenzene. Identification and confirmation of the selected 57 compounds included in the study (comprising polycyclic aromatic hydrocarbons (PAHs), pesticides and other contaminants) were accomplished using gas chromatography tandem mass spectrometry (GC-MS/MS) with a triple quadrupole instrument operated in the multiple reaction monitoring (MRM) mode. Three MS/MS transitions were selected for unambiguous confirmation of the target chemicals. The different advantages and pitfalls of each method were discussed. In the case of both LLE and SPE procedures, the method was validated at two different concentration levels (15 and 150 ng L(-1)) obtaining recovery rates in the range 70-120% for most of the target compounds. In terms of analyte coverage, results with HS-SPME were not satisfactory, since 14 of the compounds tested were not properly recovered and the overall performance was worse than the other two methods tested. LLE, SPE and HS-SPME (using polyacrylate fiber) procedures also showed good linearity and precision. Using any of the three methodologies tested, limits of quantitation obtained for most of the detected compounds were in

  8. Lightweight, Room-Temperature CO2 Gas Sensor Based on Rare-Earth Metal-Free Composites-An Impedance Study. (United States)

    Willa, Christoph; Schmid, Alexander; Briand, Danick; Yuan, Jiayin; Koziej, Dorota


    We report a light, flexible, and low-power poly(ionic liquid)/alumina composite CO2 sensor. We monitor the direct-current resistance changes as a function of CO2 concentration and relative humidity and demonstrate fast and reversible sensing kinetics. Moreover, on the basis of the alternating-current impedance measurements we propose a sensing mechanism related to proton conduction and gas diffusion. The findings presented herein will promote the development of organic/inorganic composite CO2 gas sensors. In the future, such sensors will be useful for numerous practical applications ranging from indoor air quality control to the monitoring of manufacturing processes.

  9. Study of a hybrid system using solid oxide fuel cells (SOFC) and gas turbine; Estudo de um sistema hibrido empregando celula de combustivel de oxido solido (SOFC) e turbina a gas

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Antonio Carlos Caetano de; Gallo, Giulliano Batelochi; Silveira, Jose Luz [UNESP, Guaratingueta, SP (Brazil). Faculdade de Engenharia. Dept. de Energia], e-mail:


    In this paper a hybrid solid oxide fuel cell (SOFC) system, applying a combined cycle using gas turbine for rational decentralized energy production is analyzed. The relative concepts about the fuel cell are presented, followed by some chemical and technical information such as the change of Gibbs free energy in isothermal fuel oxidation directly into electricity. This represents a very high fraction of the lower heating value (LHV) of a hydrocarbon fuel. In the next step a methodology for the study of SOFC and gas turbine system is developed, considering the electricity and steam production for a hospital. This methodology is applied to energetic analysis. Natural gas is considered as a fuel. A Sankey Diagram shows that the hybrid SOFC system is a good opportunity to strengthen the decentralized energy production in Brazil. It is necessary to consider that the cogeneration in this version also is a good technical alternative, demanding special methods of design, equipment selection and contractual deals associated to electricity and fuel supply. (author)

  10. Characterization of temporal variations in landfill gas components inside an open solid waste dump site in Sri Lanka. (United States)

    Nagamori, Masanao; Mowjood, M I M; Watanabe, Youichi; Isobe, Yugo; Ishigaki, Tomonori; Kawamoto, Ken


    A long-term monitoring of composition of landfill gases in the region with high rainfall was conducted using an argon assay in order to discuss air intrusion into the dump site. Gas samples were taken from vertical gas monitoring pipes installed along transects at two sections (called new and old) of an abandoned waste dump site in Sri Lanka. N2O concentrations varied especially widely, by more than three orders of magnitude (0.046-140 ppmv). The nitrogen/argon ratio of landfill gas was normally higher than that of fresh air, implying that denitrification occurred in the dump site. Argon assays indicate that both N2 and N2O production occurred inside waste and more significantly in the old section. The Ar assay would help for evaluations of N2O emission in developing countries. A long-term monitoring of composition of landfill gases in the region with high rainfall was conducted using an argon assay in order to discuss air intrusion into the dump site. Argon assays indicate that both N2 and N2O production occurred inside waste and more significantly in the old section.

  11. Quantitation of formate by solid-phase microextraction and gas chromatography--mass spectrometry utilizing a [13C]formate internal standard. (United States)

    Kim, Jae Kwang; Shiraishi, Takehiko; Fukusaki, Ei-Ichiro; Kobayashi, Akio


    A new method for the analysis of formic acid was developed using gas chromatography-electron impact ionization mass spectrometry in the selected ion monitoring mode and solid-phase microextraction. Using this method with [13C]formic acid as an internal standard, the peak area ratio of [12C]formic acid/[13C]formic acid was not affected by differing methanol or sulfuric acid concentrations during the esterification and fiber adsorbing step. In comparison, the peak area ratio of formic acid/acetonitrile as detected by conventional GC with flame ionization detection was greatly affected by methanol or sulfuric acid concentrations. The formic acid calibration curve of our method showed excellent linearity over the range 5 to 200 microM. The within- and between-run assay relative standard deviations for the formic acid concentration were all less than 1.70%.

  12. Comparison of the solid phase and liquid-liquid extraction methods for methadone determination in human serum and whole blood samples using gas chromatography/mass spectrometry. (United States)

    Bratinčević, Maja Veršić; Visković, Tanja; Sutlović, Davorka


    The aim of this study was to determine the optimal biological sample and the optimal extraction technique for monitoring methadone concentrations in biological samples. We analysed methadone in serum and whole blood samples using gas chromatography/mass spectrometry (GC/MS). Before analysis, we compared five solid-phase extraction (SPE) and two liquid-liquid extraction (LLE) methods and determined that SPE with Supelco LC-18 in serum yielded the best extraction efficiency. The limit of detection was 10 ng mL-1 and the limit of quantification 25 ng mL-1. Correlation coefficient was over 0.999 for the methadone calibration curve in linear range from 50 to 2000 ng mL-1. Intra and inter-day accuracy and precision of the method was satisfactory. The method was successfully applied for determining serum methadone in patients on maintenance therapy.

  13. Speciation of mercury compounds by gas chromatography with atomic emission detection. Simultaneous optimization of a headspace solid-phase microextraction and derivatization procedure by use of chemometric techniques

    Energy Technology Data Exchange (ETDEWEB)

    Carro, A.M.; Neira, I.; Rodil, R.; Lorenzo, R. A. [Univ. Santiago de Compostela (Spain). Dpto. Quimica Analitica, Nutricion y Bromatologia


    A method is proposed for the extraction and determination of organomercury compounds and Hg(II) in seawater samples by headspace solid-phase microextraction (HS-SPME) combined with capillary gas chromatography-microwave-induced plasma atomic emission spectrometry. The mercury species were derivatized with sodium tetraphenylborate, sorbed on a polydimethylsiloxane-coated fused-silica fibre, and desorbed in the injection port of the GC, in splitless mode. Experimental design methodology was used to evaluate the effect of six HS-SPME-derivatization variables: sample volume, NaBPh{sub 4} volume, pH, sorption time, extraction-derivatization temperature, and rate of stirring. Use of a multicriterion decision-making approach, with the desirability function, enabled determination of the optimum working conditions of the procedure for simultaneous analysis of three mercury species. (orig.)

  14. Simplified pesticide multiresidue analysis of soybean oil by low-temperature cleanup and dispersive solid-phase extraction coupled with gas chromatography/mass spectrometry. (United States)

    Li, Li; Xu, Yanjun; Pan, Canping; Zhou, Zhiqiang; Jianc, Shuren; Liu, Fengmao


    A simple, fast, and economical method has been developed for the simultaneous determination of 28 various types of pesticides in soybean oil. Pesticides of low molecular mass were separated from the fat of the oil, which has a high molecular mass, by using low-temperature fat precipitation, followed by a cleanup process based on dispersive solid-phase extraction with primary secondary amine and C18 as sorbents and magnesium sulfate for the removal of residual water. The results for all pesticides determined by gas chromatography with mass spectrometry in the selected-ion monitoring mode were linear, and the matrix effect of the method was evaluated. Recoveries of most pesticides were acceptable at fortification levels of 0.02, 0.05, 0.2, and 1 mg/kg. The relative standard deviation was <20% even for determinations without internal standards. Limits of quantitation ranged from 20 to 250 microg/kg.

  15. Yield effects on 2-methoxy-3-isobutylpyrazine concentration in cabernet sauvignon using a solid phase microextraction gas chromatography/mass spectrometry method. (United States)

    Chapman, Dawn M; Thorngate, John H; Matthews, Mark A; Guinard, Jean-Xavier; Ebeler, Susan E


    A rapid and automated solid phase microextraction (SPME) stable isotope dilution gas chromatography/mass spectrometry (GC-MS) method for 2-methoxy-3-isobutylpyrazine (MIBP) quantification in red wine was developed. Wines with 30% (w/v) NaCl and 2-methoxy-(2)H(3)-3-isobutylpyrazine internal standard were sampled with a 2 cm divinylbenzene/carboxen/poly(dimethylsiloxane) SPME fiber for 30 min at 40 degrees C and analyzed by GC-MS. The method was used to measure MIBP concentrations in Cabernet Sauvignon wines that were produced from six winter pruning treatments over two vintages. MIBP concentrations were significantly negatively correlated with buds per vine. In addition, the MIBP concentration was directly related to sensory vegetal intensity ratings obtained by descriptive analysis.

  16. A headspace solid-phase microextraction procedure coupled with gas chromatography-mass spectrometry for the analysis of volatile polycyclic aromatic hydrocarbons in milk samples

    Energy Technology Data Exchange (ETDEWEB)

    Aguinaga, N.; Campillo, N.; Vinas, P.; Hernandez-Cordoba, M. [University of Murcia, Department of Analytical Chemistry, Faculty of Chemistry, Murcia (Spain)


    A sensitive and solvent-free method for the determination of ten polycyclic aromatic hydrocarbons, namely, naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene and chrysene, with up to four aromatic rings, in milk samples using headspace solid-phase microextraction and gas chromatography-mass spectrometry detection has been developed. A polydimethylsiloxane-divinylbenzene fiber was chosen and used at 75 C for 60 min. Detection limits ranging from 0.2 to 5 ng L{sup -1} were attained at a signal-to-noise ratio of 3, depending on the compound and the milk sample under analysis. The proposed method was applied to ten different milk samples and the presence of six of the analytes studied in a skimmed milk with vegetal fiber sample was confirmed. The reliability of the procedure was verified by analyzing two different certified reference materials and by recovery studies. (orig.)

  17. Trace analysis of parabens, triclosan and related chlorophenols in water by headspace solid-phase microextraction with in situ derivatization and gas chromatography-tandem mass spectrometry. (United States)

    Regueiro, Jorge; Becerril, Elias; Garcia-Jares, Carmen; Llompart, Maria


    An in situ derivatization solid-phase microextraction method has been developed for the determination of parabens, triclosan and related chlorophenols in water. Acetylated derivatives are selectively determined using gas chromatography with tandem mass spectrometry. Parameters affecting both derivatization and SPME procedures, such as fiber coating, extraction mode, temperature, volume of derivatizating reagent and ionic strength, are studied and optimized through a multifactorial experimental design. The performance of the method is studied in terms of accuracy, linearity, precision and limits of detection. Quantitative recoveries (> or =82%) and satisfactory precision (RSDriver water, wastewaters and swimming pool water. Since no matrix effects are observed, quantification can readily be carried out by external calibration with ultrapure water standards.

  18. Applications of Solid-Phase Microextraction and Gas Chromatography/Mass Spectrometry (SPME-GC/MS in the Study of Grape and Wine Volatile Compounds

    Directory of Open Access Journals (Sweden)

    Annarita Panighel


    Full Text Available Volatile compounds are responsible for the wine “bouquet”, which is perceived by sniffing the headspace of a glass, and of the aroma component (palate-aroma of the overall flavor, which is perceived on drinking. Grape aroma compounds are transferred to the wine and undergo minimal alteration during fermentation (e.g., monoterpenes and methoxypyrazines; others are precursors of aroma compounds which form in winemaking and during wine aging (e.g., glycosidically-bound volatile compounds and C13-norisoprenoids. Headspace solid phase microextraction (HS-SPME is a fast and simple technique which was developed for analysis of volatile compounds. This review describes some SPME methods coupled with gas chromatography/mass spectrometry (GC/MS used to study the grape and wine volatiles.

  19. Direct measurement of particle size and 3D velocity of a gas-solid pipe flow with digital holographic particle tracking velocimetry. (United States)

    Wu, Yingchun; Wu, Xuecheng; Yao, Longchao; Gréhan, Gérard; Cen, Kefa


    The 3D measurement of the particles in a gas-solid pipe flow is of great interest, but remains challenging due to curved pipe walls in various engineering applications. Because of the astigmatism induced by the pipe, concentric ellipse fringes in the hologram of spherical particles are observed in the experiments. With a theoretical analysis of the particle holography by an ABCD matrix, the in-focus particle image can be reconstructed by the modified convolution method and fractional Fourier transform. Thereafter, the particle size, 3D position, and velocity are simultaneously measured by digital holographic particle tracking velocimetry (DHPTV). The successful application of DHPTV to the particle size and 3D velocity measurement in a glass pipe's flow can facilitate its 3D diagnostics.

  20. Determination of nine volatile N-nitrosamines in tobacco and smokeless tobacco products by dispersive solid-phase extraction with gas chromatography and tandem mass spectrometry. (United States)

    Lv, Fang; Guo, Junwei; Yu, Fei; Zhang, Tingting; Zhang, Shimin; Cui, Huapeng; Liu, Xianjun; Chen, Li; Liu, Leiyu; Liu, Shaofeng; Xie, Fuwei


    A method was developed for the determination of nine volatile N-nitrosamines in tobacco and smokeless tobacco products. The targets are N-nitrosodimethylamine, N-nitrosopyrrolidine, N-nitrosopiperidine, N-nitrosomorpholine, N-nitrosoethylmethylamine, N-nitrosodiethylamine, N-nitrosodipropylamine, N-nitrosobuylmethylmine, and N-nitrosodibutylamine. The samples were treated by dispersive solid-phase extraction using 1 g of primary secondary amine and 0.5 g of carbon and then analyzed by gas chromatography with tandem mass spectrometry with an electron impact ion source. The recoveries for the targets ranged from 84 to 118%, with tobacco matrix. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Multi-criteria optimization of on-site heating, cooling and power generation with solid oxide fuel cell-gas turbine combined cycle units

    Energy Technology Data Exchange (ETDEWEB)

    K. Tanaka; M. Burer; D. Favrat; K. Yamada [UMIST, Manchester (United Kingdom). Tyndall Centre for Climate Change Research


    The implementation of integrated energy systems within urban areas is a promising CO{sub 2} emissions abatement measure. In this paper on-site heating, cooling and power generation based on a solid oxide fuel cell and gas turbine (SOFC-GT) combined cycle unit associated with a compression chiller and additional boilers has been considered from the viewpoints of cost and CO{sub 2} emissions. Physical and costing modelling of such a unit has been integrated within a new multi-criteria evolutionary algorithm for an assessment of the economic and environmental performances associated with optimal design and operation, for typical requirements of large office buildings in Tokyo. 9 refs., 8 figs., 2 tabs.

  2. Determination of styrene content in Gorgonzola PDO cheese by headspace solid phase micro-extraction (HS-SPME) and gas-chromatography mass-spectrometry (GC-MS). (United States)

    Chiesa, L M; Panseri, S; Soncin, S; Vallone, L; Dragoni, I


    Control of the composition of products that are intended for use as packaging material is essential, particularly when these products come into direct contact with food. It is well known that plastics are not inert and that their residual monomers, starting substances, and additives are able to migrate into the food they contact. Among plastics, styrene is a common compound found in many plastic containers that can also be produced by the oxidation of Penicillium roqueforti used in gorgonzola Protected Denomination of Origin cheese manufacturing. Therefore, solid-phase microextraction combined with gas chromatography/mass spectrometry was applied in the present work to determine the styrene content in packaged and unpackaged gorgonzola cheese samples to understand styrene migration phenomena from plastic containers.

  3. Relative enhancement of near-UV emission from a pulsed low-pressure mercury discharge lamp, using a rare gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    Kitsinelis, S [High Temperature Science Laboratories, Department of Chemistry, University of Sheffield, Sheffield S3 7HF (United Kingdom); Devonshire, R [High Temperature Science Laboratories, Department of Chemistry, University of Sheffield, Sheffield S3 7HF (United Kingdom); Jinno, M [High Temperature Science Laboratories, Department of Chemistry, University of Sheffield, Sheffield S3 7HF (United Kingdom); Loo, K H [Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Stone, D A [Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Tozer, R C [Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)


    In this paper, we explain the physical reasons for the enhancement of near-UV and visible emissions from a low-pressure mercury-argon discharge under pulse drive conditions. The conditions of operation that maximize the enhancement of near-UV and visible radiation, including the effect of the buffer gas, are investigated. We show that for a pulsed discharge, electron-ion recombination followed by cascade radiative transitions is the process responsible for most of the 365 nm emission and that argon with a small admixture of krypton is the buffer gas composition that leads to maximum radiative emission due to near-resonant energy transfers to mercury high-lying levels.

  4. Robotic solid-phase extraction of amphetamines from urine for analysis by gas chromatography-mass spectrometry. (United States)

    McCambly, K; Kelly, R C; Johnson, T; Johnson, J E; Brown, W C


    We have evaluated the use of the Hamilton Microlab 2200 robotic pipetting system modified to conduct solid-phase extractions of amphetamines from urine. The Hamilton system is a programmable XYZ robotic sample handling instrument compatible with commercial solid-phase extraction (SPE) columns in the most commonly available sizes. During the extraction and elution steps, the system delivers programmable positive pressure with pressure controlled feedback so as to ensure consistent recovery. The system increases sample throughput while reducing technician hands-on time and improving sample-to-sample and batch-to-batch consistency. In comparison with the manual SPE method, the automated scheme provides similar analyte recovery, accuracy, and precision and a reduced potential for laboratory errors. The method's upper limits of linearity, detection, and lquantitation were, respectively, 10,000, 100, and 100 ng/mL for amphetamine and 25,000, 50, and 50 ng/mL for methamphetamine. Extraction recoveries for the compounds ranged from 88 to 101%. Carryover amounted to less than 0.02% even at 50,000 ng/mL concentrations of analyte. A typical automated run required 20 min of technician time versus 90 min for a corresponding manual SPE procedure. The automated procedure proved to be a reliable and labor-efficient addition to the laboratory.

  5. Influence of fibre coating in headspace solid-phase microextraction-gas chromatographic analysis of aromatic and medicinal plants. (United States)

    Bicchi, C; Drigo, S; Rubiolo, P


    Solid-phase microextraction (SPME) is a solvent-free technique, which is well established in headspace analysis since it is sensitive, because of the concentration factor achieved by the fibres, and selective, because of different coating materials which can be used. The performance of eight commercially available SPME fibres was compared to evaluate the recoveries of some characteristic components with different polarities and structures present in the headspace of four aromatic and medicinal plants: rosemary (Rosmarinus officinalis L.), sage (Salvia officinalis L.), thyme (Thymus vulgaris L.) and valerian (Valeriana officinalis L.). The relative concentration capacity of each fibre on the same components of each plant was also determined by comparing their abundance with that obtained by classical static-headspace GC. The partition coefficient, K1, between the headspace gaseous phase and SPME polymeric coating, and the relative concentration factors, of some of the characteristic components of the plant investigated dissolved in dibutyl phtalate, were also determined, under rigorously standardised analysis conditions. The results showed that the most effective fibres were those consisting of two components, i.e., a liquid phase (polydimethylsiloxane) and a porous solid (carboxen or divinylbenzene, or both).

  6. Ultrasensitive Speciation Analysis of Mercury in Rice by Headspace Solid Phase Microextraction Using Porous Carbons and Gas Chromatography-Dielectric Barrier Discharge Optical Emission Spectrometry. (United States)

    Lin, Yao; Yang, Yuan; Li, Yuxuan; Yang, Lu; Hou, Xiandeng; Feng, Xinbin; Zheng, Chengbin


    Rice consumption is a primary pathway for human methylmercury (MeHg) exposure in inland mercury mining areas of Asia. In addition, the use of iodomethane, a common fumigant that significantly accelerates the methylation of mercury in soil under sunlight, could increase the MeHg exposure from rice. Conventional hyphenated techniques used for mercury speciation analysis are usually too costly for most developing countries. Consequently, there is an increased interest in the development of sensitive and inexpensive methods for the speciation of mercury in rice. In this work, gas chromatography (GC) coupled to dielectric barrier discharge optical emission spectrometry (DBD-OES) was developed for the speciation analysis of mercury in rice. Prior to GC-DBD-OES analysis, mercury species were derivatized to their volatile species with NaBPh4 and preconcentrated by headspace solid phase microextraction using porous carbons. Limits of detection of 0.5 μg kg(-1) (0.16 ng), 0.75 μg kg(-1) (0.24 ng), and 1.0 μg kg(-1) (0.34 ng) were obtained for Hg(2+), CH3Hg(+), and CH3CH2Hg(+), respectively, with relative standard deviations (RSDs) better than 5.2% and 6.8% for one fiber or fiber-to-fiber mode, respectively. Recoveries of 90-105% were obtained for the rice samples, demonstrating the applicability of the proposed technique. Owing to the small size, low power, and low gas consumption of DBD-OES as well as efficient extraction of mercury species by porous carbons headspace solid phase micro-extraction, the proposed technique provides several advantages including compactness, cost-effectiveness, and potential to couple with miniature GC to accomplish the field speciation of mercury in rice compared to conventional hyphenated techniques.

  7. Re-use of stabilised flue gas ashes from solid waste incineration in cement-treated base layers for pavements. (United States)

    Cai, Zuansi; Jensen, Dorthe L; Christensen, Thomas H; Bager, Dirch H


    Fly ash from coal-burning power plants has been used extensively as a pozzolan and fine filler in concrete for many years. Laboratory experiments were performed investigating the effect of substituting the coal-based fly ash with chemically stabilised flue gas ashes (FGA) from waste incineration. Two types of FGA were treated by the Ferrox-process, which removes the majority of the easily soluble salts in the FGA and provides binding sites for heavy metals in terms of ferrihydrite. Cubes of cement treated base layer materials containing 5% stabilised FGA were cast, sealed and cured for two weeks. Cylinders (diameter 100 mm, length 150 mm) were drilled from these cubes for tank leaching experiments. Duplicate specimens were subject to compression strength testing and to tank leaching experiments. The compressive strength of the CTB fulfilled the Danish requirements for CTB, i.e. strength more than 5 MPa after 7 days. The tank leaching tests revealed that leaching of heavy metals was not significantly affected by the use of chemically stabilised flue gas ashes from waste incineration. Assuming that diffusion controls the leaching process it was calculated that less than 1% of the metals would leach during a 100-year period from a 0.5 m thick concrete slab exposed to water on one side. Leaching of the common ions Ca, Cl, Na and SO4 was increased 3-20 times from the specimens with chemically stabilised flue gas ashes from waste incineration. However, the quantities leached were still modest. These experiments suggest that FGA from waste incineration after Ferrox-treatment could be re-used in CTB without compromising the strength and leaching from the base layer.

  8. Ionic liquid supported on an electrodeposited polycarbazole film for the headspace solid-phase microextraction and gas chromatography determination of aromatic esters. (United States)

    Feng, Yuanyuan; Zhao, Faqiong; Zeng, Baizhao


    A polycarbazole film was electrodeposited on a stainless-steel wire from a solution of N,N-dimethylformamide/propylene carbonate (1:9 v/v) containing 0.10 M carbazole and 0.10 M tetrabutylammonium perchlorate. The obtained polycarbazole fiber was immersed into an ionic liquid (1-hydroxyethyl-3-methyl imidazolium bis[(trifluoromethyl)sulfonyl]imide) solution (in dimethylsulfoxide) for 30 min, followed by drying under an infrared lamp. The resulting polycarbazole/ionic liquid fiber was applied to the headspace solid-phase microextraction and determination of aromatic esters by coupling with gas chromatography and flame ionization detection. Under the optimized conditions, the limits of detection were below 61 ng/L (S/N = 3) and the linear ranges were 0.061-500 μg/L with correlation coefficients above 0.9876. The relative standard deviations were below 4.8% (n = 5) for a single fiber, and below 9.9% for multi-fiber (n = 4). This fiber also exhibited good stability. It could be used for more than 160 times of headspace solid-phase microextraction and could withstand a high temperature up to 350°C. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Quantitative fingerprinting by headspace--two-dimensional comprehensive gas chromatography-mass spectrometry of solid matrices: some challenging aspects of the exhaustive assessment of food volatiles. (United States)

    Nicolotti, Luca; Cordero, Chiara; Cagliero, Cecilia; Liberto, Erica; Sgorbini, Barbara; Rubiolo, Patrizia; Bicchi, Carlo


    The study proposes an investigation strategy that simultaneously provides detailed profiling and quantitative fingerprinting of food volatiles, through a "comprehensive" analytical platform that includes sample preparation by Headspace Solid Phase Microextraction (HS-SPME), separation by two-dimensional comprehensive gas chromatography coupled with mass spectrometry detection (GC×GC-MS) and data processing using advanced fingerprinting approaches. Experiments were carried out on roasted hazelnuts and on Gianduja pastes (sugar, vegetable oil, hazelnuts, cocoa, nonfat dried milk, vanilla flavorings) and demonstrated that the information potential of each analysis can better be exploited if suitable quantitation methods are applied. Quantitation approaches through Multiple Headspace Extraction and Standard Addition were compared in terms of performance parameters (linearity, precision, accuracy, Limit of Detection and Limit of Quantitation) under headspace linearity conditions. The results on 19 key analytes, potent odorants, and technological markers, and more than 300 fingerprint components, were used for further processing to obtain information concerning the effect of the matrix on volatile release, and to produce an informative chemical blueprint for use in sensomics and flavoromics. The importance of quantitation approaches in headspace analysis of solid matrices of complex composition, and the advantages of MHE, are also critically discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Multivariate analysis of the volatile components in tobacco based on infrared-assisted extraction coupled to headspace solid-phase microextraction and gas chromatography-mass spectrometry. (United States)

    Yang, Yanqin; Pan, Yuanjiang; Zhou, Guojun; Chu, Guohai; Jiang, Jian; Yuan, Kailong; Xia, Qian; Cheng, Changhe


    A novel infrared-assisted extraction coupled to headspace solid-phase microextraction followed by gas chromatography with mass spectrometry method has been developed for the rapid determination of the volatile components in tobacco. The optimal extraction conditions for maximizing the extraction efficiency were as follows: 65 μm polydimethylsiloxane-divinylbenzene fiber, extraction time of 20 min, infrared power of 175 W, and distance between the infrared lamp and the headspace vial of 2 cm. Under the optimum conditions, 50 components were found to exist in all ten tobacco samples from different geographical origins. Compared with conventional water-bath heating and nonheating extraction methods, the extraction efficiency of infrared-assisted extraction was greatly improved. Furthermore, multivariate analysis including principal component analysis, hierarchical cluster analysis, and similarity analysis were performed to evaluate the chemical information of these samples and divided them into three classifications, including rich, moderate, and fresh flavors. The above-mentioned classification results were consistent with the sensory evaluation, which was pivotal and meaningful for tobacco discrimination. As a simple, fast, cost-effective, and highly efficient method, the infrared-assisted extraction coupled to headspace solid-phase microextraction technique is powerful and promising for distinguishing the geographical origins of the tobacco samples coupled to suitable chemometrics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Analysis of permethrin isomers in composite diet samples by molecularly imprinted solid-phase extraction and isotope dilution gas chromatography-ion trap mass spectrometry. (United States)

    Vonderheide, Anne P; Boyd, Brian; Ryberg, Anna; Yilmaz, Ecevit; Hieber, Thomas E; Kauffman, Peter E; Garris, Sherry T; Morgan, Jeffrey N


    Determination of an individual's aggregate dietary ingestion of pesticides entails analysis of a difficult sample matrix. Permethrin-specific molecularly imprinted polymer (MIP) solid-phase extraction cartridges were developed for use as a sample preparation technique for a composite food matrix. Vortexing with acetonitrile and centrifugation were found to provide optimal extraction of the permethrin isomers from the composite foods. The acetonitrile (with 1% acetic acid) was mostly evaporated and the analytes reconstituted in 90:10 water/acetonitrile in preparation for molecularly imprinted solid-phase extraction. Permethrin elution was accomplished with acetonitrile and sample extracts were analyzed by isotope dilution gas chromatography-ion trap mass spectrometry. Quantitation of product ions provided definitive identification of the pesticide isomers. The final method parameters were tested with fortified composite food samples of varying fat content (1%, 5%, and 10%) and recoveries ranged from 99.3% to 126%. Vegetable samples with incurred pesticide levels were also analyzed with the given method and recoveries were acceptable (81.0-95.7%). Method detection limits were demonstrated in the low ppb range. Finally, the applicability of the MIP stationary phase to extract other pyrethroids, specifically cyfluthrin and cypermethrin, was also investigated.

  12. Determination of organotin compounds by headspace solid-phase microextraction-gas chromatography-pulsed flame-photometric detection (HS-SPME-GC-PFPD)

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, Manuel [Universite de Pau et des Pays de L' Adour, Laboratoire de Chimie Analytique, LCABIE, UMR CNRS 5034, Pau (France); Pontificia Universidad Catolica de Valparaiso, Laboratorio de Quimica Analitica y Ambiental, Instituto de Quimica, Valparaiso (Chile); Lespes, Gaetane; Gautier, Martine Potin [Pontificia Universidad Catolica de Valparaiso, Laboratorio de Quimica Analitica y Ambiental, Instituto de Quimica, Valparaiso (Chile); Gregori, Ida de; Pinochet, Hugo [Universite de Pau et des Pays de L' Adour, Laboratoire de Chimie Analytique, LCABIE, UMR CNRS 5034, Pau (France)


    A method based on Headspace solid-phase microextraction (HS-SPME, with a 100 {mu}m PDMS-fiber) in combination with gas-chromatography and pulsed flame-photometric detection (GC-PFPD) has been investigated for simultaneous determination of eight organotin compounds. Monobutyltin (MBT), dibutyltin (DBT), tributyltin (TBT), monophenyltin (MPhT), and the semi-volatile diphenyltin (DPhT), triphenyltin (TPhT), monooctyltin (MOcT), and dioctyltin (DOcT) were determined after derivatization with sodium tetraethylborate. The conditions used for the extraction and preconcentration step were optimised by experimental design methodology. Tripropyltin (TPrT) and diheptyltin (DHepT) were used as internal standards for quantification of volatile and semi-volatile organotin compounds, respectively. The analytical precision (RSD) for ten successive injections of a standard mixture containing all the organic tin compounds ranged between 2 and 11%. The limits of detection for all the organotin compounds were sub ng (Sn) L{sup -1} in water and close to ng (Sn) kg{sup -1} in sediments. The accuracy of the method was evaluated by analysis of two certified reference material (CRM) sediment samples. The HS-SPME-GC-PFPD was then applied to the analysis of three harbour sediment samples. The results showed that headspace SPME is an attractive tool for analysis of organotin compounds in solid environmental matrices. (orig.)

  13. Determination of organotin compounds by headspace solid-phase microextraction-gas chromatography-pulsed flame-photometric detection (HS-SPME-GC-PFPD). (United States)

    Bravo, Manuel; Lespes, Gaëtane; De Gregori, Ida; Pinochet, Hugo; Gautier, Martine Potin


    A method based on Headspace solid-phase microextraction (HS-SPME, with a 100 mum PDMS-fiber) in combination with gas-chromatography and pulsed flame-photometric detection (GC-PFPD) has been investigated for simultaneous determination of eight organotin compounds. Monobutyltin (MBT), dibutyltin (DBT), tributyltin (TBT), monophenyltin (MPhT), and the semi-volatile diphenyltin (DPhT), triphenyltin (TPhT), monooctyltin (MOcT), and dioctyltin (DOcT) were determined after derivatization with sodium tetraethylborate. The conditions used for the extraction and preconcentration step were optimised by experimental design methodology. Tripropyltin (TPrT) and diheptyltin (DHepT) were used as internal standards for quantification of volatile and semi-volatile organotin compounds, respectively. The analytical precision (RSD) for ten successive injections of a standard mixture containing all the organic tin compounds ranged between 2 and 11%. The limits of detection for all the organotin compounds were sub ng (Sn) L(-1) in water and close to ng (Sn) kg(-1) in sediments. The accuracy of the method was evaluated by analysis of two certified reference material (CRM) sediment samples. The HS-SPME-GC-PFPD was then applied to the analysis of three harbour sediment samples. The results showed that headspace SPME is an attractive tool for analysis of organotin compounds in solid environmental matrices.

  14. Optimization of solid-phase-extraction cleanup and validation of quantitative determination of eugenol in fish samples by gas chromatography-tandem mass spectrometry. (United States)

    Li, Jincheng; Zhang, Jing; Liu, Yang


    This paper describes a rapid and sensitive method for the determination of eugenol in fish samples, based on solid-phase extraction (SPE) and gas chromatography-tandem mass spectrometry (GC-MS-MS). Samples were extracted with acetonitrile, and then cleanup was performed using C18 solid-phase extraction (SPE). The determination of eugenol was achieved using an electron-ionization source (EI) in multiple-reaction-monitoring (MRM) mode. Under optimized conditions, the average recoveries of eugenol were in the range 94.85-103.61 % and the relative standard deviation (RSD) was lower than 12.0 %. The limit of detection (LOD) was 2.5 μg kg(-1) and the limit of quantification (LOQ) was 5.0 μg kg(-1). This method was applied to an exposure study of eugenol residue in carp muscle tissues. The results revealed that eugenol was nearly totally eliminated within 96 h. Graphical Abstract Flow diagram for sample pretreatment.

  15. Gas chromatography-mass spectrometry following microwave distillation and headspace solid-phase microextraction for fast analysis of essential oil in dry traditional Chinese medicine. (United States)

    Li, Ning; Deng, Chunhui; Li, Yan; Ye, Hao; Zhang, Xiangmin


    In this paper, a novel method based on gas chromatography-mass spectrometry (GC-MS) following microwave distillation-headspace solid-phase microextraction (MD-HS-SPME) was developed for the determination of essential oil in dry traditional Chinese medicine (TCM). TCM is dried before being preserved and used, there is too little water to absorb microwave energy and heat the TCM samples. In the work, carbonyl iron powders (CIP) was added and mixed with the dried TCM sample, which was used as microwave absorption solid medium for dry distillation of the TCM. At the same time, SPME was used for the extraction and concentration of essential oil after MD. The dry rhizomes of Atractylodes lancea DC was used as the model TCM, and used in the study. The MD-HS-SPME parameters including fiber coating, microwave power, irradiation time, and the amount of added CIP, were studied. To demonstrate the method feasibility, the conventional HS-SPME method was also used for the analysis of essential oil in the TCM. Experimental results show that more compounds were isolated and identified by MD-HS-SPME than those by HS-SPME. Compared to conventional HS-SPME, the advantages of the proposed method are: short extraction time and high extraction efficiency. All experimental results show that the proposed method is an alternative tool for fast analysis of essential oils in dry TCMs.

  16. Rapid determination of acetone in human plasma by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization. (United States)

    Deng, Chunhui; Zhang, Wei; Zhang, Jie; Zhang, Xiangmin


    Acetone is an important volatile disease marker. Due to its nature of activity and volatility, it is a difficult task to measure the concentration of acetone in biological samples with accuracy. In this paper, we developed a novel method for determination of trace amount acetone in human plasma by solid-phase microextraction technique with on-fiber derivatization. In this method, the poly(dimethylsiloxane)/divinylbenzene (PDMS/DVB) fiber was used and O-2,3,4,5,6-(pentafluorobenzyl) hydroxylamine hydrochloride (PFBHA) was first loaded on the fiber. Acetone in plasma sample was agitated into headspace and extracted by solid-phase microextraction (SPME) fiber and subsequently derivatized with PFBHA on the fiber. Acetone oxime was analyzed by gas chromatography-mass spectrometry (GC-MS). Quantitative analysis of acetone in plasma was carried out by using external standard method. The SPME conditions (extraction temperature and time) and the method validation were studied. The present method was tested by determination of acetone in diabetes plasma and normal plasma. Acetone concentration in diabetes plasma was found to be higher than 1.8mM, while in normal plasma was lower than 0.017 mM. The results show that the present method is a potential tool for diagnosis of diabetes.

  17. Determination of trace/ultratrace rare earth elements in environmental samples by ICP-MS after magnetic solid phase extraction with Fe3O4@SiO2@polyaniline-graphene oxide composite. (United States)

    Su, Shaowei; Chen, Beibei; He, Man; Hu, Bin; Xiao, Zuowei


    A novel Fe3O4@SiO2@polyaniline-graphene oxide composite (MPANI-GO) was prepared through a simple noncovalent method and applied to magnetic solid phase extraction (MSPE) of trace rare earth elements (REEs) in tea leaves and environmental water samples followed by inductively coupled plasma mass spectrometry (ICP-MS) detection. The prepared MPANI-GO was characterized by transmission electron microscopy and vibrating sample magnetometer. Various parameters affecting MPANI-GO MSPE of REEs have been investigated. Under the optimized conditions, the limits of detection (LODs, 3σ) for REEs were in the range of 0.04-1.49 ng L(-1) and the relative standard deviations (RSDs, c=20 ng L(-1), n=7) were 1.7-6.5%. The accuracy of the proposed method was validated by analyzing a Certified Reference Material of GBW 07605 tea leaves. The method was also successfully applied for the determination of trace REEs in tea leaves and environmental water samples. The developed MPANI-GO MSPE-ICP-MS method has the advantages of simplicity, rapidity, high sensitivity, high enrichment factor and is suitable for the analysis of trace REEs in samples with complex matrix. © 2013 Elsevier B.V. All rights reserved.

  18. A novel solid state non-dispersive infrared CO2 gas sensor compatible with wireless and portable deployment. (United States)

    Gibson, Desmond; MacGregor, Calum


    This paper describes development of a novel mid-infrared light emitting diode (LED) and photodiode (PD) light source/detector combination and use within a non-dispersive infrared (NDIR) carbon dioxide gas sensor. The LED/PD based NDIR sensor provides fast stabilisation time (time required to turn on the sensor from cold, warm up, take and report a measurement, and power down again ≈1 second), longevity (>15 years), low power consumption and low cost. Described performance is compatible with "fit and forget" wireless deployed sensors in applications such as indoor air quality monitoring/control & energy conservation in buildings, transport systems, horticultural greenhouses and portable deployment for safety, industrial and medical applications. Fast stabilisation time, low intrinsic power consumption and cycled operation offer typical energy consumption per measurement of mJ's, providing extended operation using battery and/or energy harvesting strategies (measurement interval of ≈ 2 minutes provides >10 years operation from one AA battery). Specific performance data is provided in relation to measurement accuracy and noise, temperature performance, cross sensitivity, measurement range (two pathlength variants are described covering ambient through to 100% gas concentration), comparison with NDIR utilizing thermal source/pyroelectric light source/detector combination and compatibility with energy harvesting. Semiconductor based LED/PD processing together with injection moulded reflective optics and simple assembly provide a route to low cost high volume manufacturing.

  19. Improvement of cyclone grit arrestor performance by partial gas transportation of collected hopper solids through sidestream baghouse

    Energy Technology Data Exchange (ETDEWEB)


    The purpose of this study was to investigate the multicell cyclone system of particulate collectors since it is this type of arrestor which is physically most appropriate to larger boilers but which, by nature of it having many cyclone cells connected in parallel to a common dust hopper, can fail to provide the promised performance, due to intercell cross-talk. A documented method for enhancing the performance of all types of cycles is flue gas blowdown, where a small percentage of the throughput flue gas is extracted from the cycle, most frequently from the dust hopper but sometimes from the vortex outlet tube. This technique has been explored, both for its absolute improvement of performance, and also to find whether it might overcome the problem of hopper cross-talk suffered by multicell designs. A practical application of blowdown, retrofitted at an industrial coal customer site, is described. As a further tool for investigating multicell cyclone design and performance, a mechanistic computer model has been derived, termed CYCINT, specifically for axial entry cyclone cells. 33 figs., 10 tabs.

  20. A Novel Solid State Non-Dispersive Infrared CO2 Gas Sensor Compatible with Wireless and Portable Deployment

    Directory of Open Access Journals (Sweden)

    Desmond Gibson


    Full Text Available This paper describes development of a novel mid-infrared light emitting diode (LED and photodiode (PD light source/detector combination and use within a non-dispersive infrared (NDIR carbon dioxide gas sensor. The LED/PD based NDIR sensor provides fast stabilisation time (time required to turn on the sensor from cold, warm up, take and report a measurement, and power down again ≈1 second, longevity (>15 years, low power consumption and low cost. Described performance is compatible with “fit and forget” wireless deployed sensors in applications such as indoor air quality monitoring/control & energy conservation in buildings, transport systems, horticultural greenhouses and portable deployment for safety, industrial and medical applications. Fast stabilisation time, low intrinsic power consumption and cycled operation offer typical energy consumption per measurement of mJ’s, providing extended operation using battery and/or energy harvesting strategies (measurement interval of ≈ 2 minutes provides >10 years operation from one AA battery. Specific performance data is provided in relation to measurement accuracy and noise, temperature performance, cross sensitivity, measurement range (two pathlength variants are described covering ambient through to 100% gas concentration, comparison with NDIR utilizing thermal source/pyroelectric light source/detector combination and compatibility with energy harvesting. Semiconductor based LED/PD processing together with injection moulded reflective optics and simple assembly provide a route to low cost high volume manufacturing.