WorldWideScience

Sample records for rapidly solidified ti

  1. Evaluation of Ti(3)Si Phase Stability from Heat-Treated, Rapidly Solidified Ti-Si Alloys

    OpenAIRE

    COSTA, Alex Matos da Silva; de Lima, Gisele Ferreira; Rodrigues,Geovani; NUNES, Carlos Angelo; Coelho,Gilberto Carvalho; Suzuki, Paulo Atsushi

    2010-01-01

    Ti-base alloys containing significant amounts of silicon have been considered for high temperature structural applications. Thus, information concerning phase stability on the Ti-Si system is fundamental and there are not many investigations covering the phase stability of the Ti(3)Si phase, specially its dependence on oxygen/nitrogen contamination. In this work the stability of this phase has been evaluated through heat-treatment of rapidly solidified Ti-rich Ti-Si alloys at 700 A degrees C ...

  2. Electrochemical properties of rapidly solidified Si-Ti-Ni(-Cu) base anode for Li-ion rechargeable batteries

    Science.gov (United States)

    Kwon, Hye Jin; Sohn, Keun Yong; Park, Won-Wook

    2013-11-01

    In this study, rapidly solidified Si-Ti-Ni-Cu alloys have been investigated as high capacity anodes for Li-ion secondary batteries. To obtain nano-sized Si particles dispersed in the inactive matrix, the alloy ribbons were fabricated using the melt spinning process. The thin ribbons were pulverized using ball-milling to make a fine powder of ˜ 4 µm average size. Coin-cell assembly was carried out under an argon gas in a glove box, in which pure lithium was used as a counter-electrode. The cells were cycled using the galvanostatic method in the potential range of 0.01 V and 1.5 V vs. Li/Li+. The microstructure and morphology were examined using an x-ray diffractometer, Field-Emission Scanning Electron Microscopy and High Resolution Transmission Electron Microscopy. Among the anode alloys, the Si70Ti15Ni15 electrodes had the highest discharge capacity (974.1 mAh/g) after the 50th cycle, and the Si60Ti16Ni16Cu8 electrode showed the best coulombic efficiency of ˜95.9% in cyclic behavior. It was revealed that the Si7Ni4Ti4 crystal phase coexisting with an amorphous phase, could more efficiently act as a buffer layer than the fully crystallized Si7Ni4Ti4 phase. Consequently, the electrochemical properties of the anode materials pronouncedly improved when the nano-sized primary Si particle was dispersed in the inactive Si7Ni4Ti4-based matrix mixed with an amorphous structure.

  3. New developments in rapidly solidified magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.K. [Allied-Signal, Inc., Morristown, NJ (United States); Chang, C.F. [Allied-Signal, Inc., Morristown, NJ (United States); Raybould, D. [Allied-Signal, Inc., Morristown, NJ (United States); King, J.F. [Magnesium Elektron Ltd., Manchester (United Kingdom); Thistlethwaite, S. [Magnesium Elektron Ltd., Manchester (United Kingdom)

    1992-12-31

    In the present paper, we will examine the new developments in the rapidly solidified Mg-Al-Zn-Nd (EA55RS) alloy. We shall first briefly review the process scale-up currently employed for producing rapidly solidified magnesium alloys in large quantities, and then discuss the effect of billet size and processing parameters on the mechanical properties of various mill product forms such as extrusions and sheets. The superplastic behavior of EA55RS extrusions and rolled sheets are also discussed. Finally, some results on magnesium metal-matrix composites using rapidly solidified EA55RS matrix powders and SiC particulates are presented. (orig.)

  4. Shape Memory Characteristics of Rapidly Solidified Ti-37.8Cu-18.7Ni Alloy Ribbons

    Science.gov (United States)

    Ramos, Alana Pereira; de Castro, Walman Benicio

    Amorphization and martensitic transformation (Ms) characteristics of Ti-Ni-Cu alloy ribbons prepared by melt spinning were investigated by means of differential scanning calorimetry and X-ray diffraction. In these experiments particular attention has been paid to change the wheel linear velocity from 21 to 63 m/s. Then the cooling rates of ribbons were controlled. The effect of this cooling rate and alloy composition on martensitic transformation behavior is discussed.

  5. Selective aluminum dissolution as a means to observe the microstructure of nanocrystalline intermetallic phases from Al-Fe-Cr-Ti-Ce rapidly solidified alloy.

    Science.gov (United States)

    Michalcová, Alena; Vojtěch, Dalibor; Novák, Pavel

    2013-02-01

    Rapidly solidified aluminum alloys are promising materials with very fine microstructure. The microscopy observation of these materials is complicated due to overlay of fcc-Al matrix and different intermetallic phases. A possible way to solve this problem is to dissolve the Al matrix. By this process powder formed by single intermetallic phase particles is obtained. In this paper a new aqueous based dissolving agent for Al-based alloy is presented. The influence of oxidation agent (FeCl(3)) concentration on quality of extraction process was studied. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Characterization of the Ni-45wt% Ti shape memory alloy rapidly solidified; Caracterizacao da liga Ni-45wt%Ti com efeito de memoria de forma solidificadas rapidamente

    Energy Technology Data Exchange (ETDEWEB)

    Anselmo, G.C.S.; Castro, W.B. de; Araujo, C.J. de, E-mail: walman@dem.ufcg.edu.b [Universidade Federal de Campina Grande (UAEM/UFCG), PB (Brazil). Unidade Academica de Engenharia Mecanica

    2010-07-01

    One important challenge of microsystems design is the implementation of miniaturized actuation principles efficient at the micro-scale. Shape memory alloys (SMAs) have early on been considered as a potential solution to this problem as these materials offer attractive properties like a high-power to weight ratio, large deformation and the capability to be processed at the micro-scale. shape memory characteristics of Ni-45wt%Ti alloy ribbons prepared by melt spinning were investigated by means of differential scanning calorimetry and X-ray. In these experiments particular attention has been paid to change the velocity of cooling wheel from 30 to 50 m/s. Then the cooling rates of ribbons were controlled. The effect of this cooling rate on martensitic transformation behaviors and structure are discussed. (author)

  7. Testing techniques for mechanical characterization of rapidly solidified materials

    Science.gov (United States)

    Koch, C. C.

    1986-01-01

    Mechanical property testing techniques are reviewed for rapidly solidified materials. Mechanical testing of rapidly solidified materials is complicated by the fact that in most cases at least one dimension of the material is very small (less than 100 microns). For some geometries, i.e., powder or thin surface layers, microhardness is the only feasible mechanical test. The ribbon geometry which is obtained by the melt-spinning method, however, has been used for a variety of mechanical property measurements including elastic properties, tensile properties, fracture toughness, creep, and fatigue. These techniques are described with emphasis placed on the precautions required by the restricted geometry of rapidly solidified specimens.

  8. Undercooling and demixing in rapidly solidified Cu-Co alloys

    DEFF Research Database (Denmark)

    Battezzati, L.; Curiotto, S.; Johnson, Erik

    2007-01-01

    competition of transformation phenomena, the mechanisms have not been fully disclosed. This contribution reviews such findings with the help of a computer calculation of the phase diagram and extends the present knowledge by presenting new results obtained by rapidly solidifying various Cu–Co compositions...

  9. Microstructures in rapidly solidified Ni-Mo alloys

    Science.gov (United States)

    Jayaraman, N.; Tewari, S. N.; Hemker, K. J.; Glasgow, T. K.

    1986-01-01

    Ni-Mo alloys of compositions ranging from pure Ni to Ni-40 at. percent Mo were rapidly solidified by Chill Block Melt Spinning in vacuum and were examined by optical metallography, X-ray diffraction and transmission electron microscopy. Rapid solidification resulted in an extension of molybdenum solubility in nickel from 28 to 37.5 at. percent. A number of different phases and microstructures were seen at different depths (solidification conditions) from the quenched surface of the melt spun ribbons.

  10. Rapidly solidified Mg-Al-Zn-rare earth alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.F.; Das, S.K.; Raybould, D.

    1987-01-01

    Among the light metal alloys, magnesium is the lightest structural material except for beryllium, and yet magnesium alloys have not seen extensive use because of their poor strength and corrosion resistance. Rapid solidification technology offers a possible solution to these problems. A number of Mg-Al-Zn alloys containing rare earth (RE) elements (e.g. Ce, Pr, Y, and Nd) have been investigated using rapid solidification processing for possible structural applications. The processing consists of planar flow or jet casting into ribbons, pulverization of ribbon to powder, and consolidation of powder into bulk shapes. The mechanical properties of some of these alloys show attractive combinations of strength, ductility and corrosion resistance. The microstructures of these alloys are correlated with their mechanical properties. The rapidly solidified Mg-Al-Zn-RE alloys show great potential for applications in automotive and aerospace industries. 7 references.

  11. Microstructural Quantification of Rapidly Solidified Undercooled D2 Tool Steel

    Science.gov (United States)

    Valloton, J.; Herlach, D. M.; Henein, H.; Sediako, D.

    2017-10-01

    Rapid solidification of D2 tool steel is investigated experimentally using electromagnetic levitation (EML) under terrestrial and reduced gravity conditions and impulse atomization (IA), a drop tube type of apparatus. IA produces powders 300 to 1400 μm in size. This allows the investigation of a large range of cooling rates ( 100 to 10,000 K/s) with a single experiment. On the other hand, EML allows direct measurements of the thermal history, including primary and eutectic nucleation undercoolings, for samples 6 to 7 mm in diameter. The final microstructures at room temperature consist of retained supersaturated austenite surrounded by eutectic of austenite and M7C3 carbides. Rapid solidification effectively suppresses the formation of ferrite in IA, while a small amount of ferrite is detected in EML samples. High primary phase undercoolings and high cooling rates tend to refine the microstructure, which results in a better dispersion of the eutectic carbides. Evaluation of the cell spacing in EML and IA samples shows that the scale of the final microstructure is mainly governed by coarsening. Electron backscattered diffraction (EBSD) analysis of IA samples reveals that IA powders are polycrystalline, regardless of the solidification conditions. EBSD on EML samples reveals strong differences between the microstructure of droplets solidified on the ground and in microgravity conditions. While the former ones are polycrystalline with many different grains, the EML sample solidified in microgravity shows a strong texture with few much larger grains having twinning relationships. This indicates that fluid flow has a strong influence on grain refinement in this system.

  12. Heat Treatment Development for a Rapidly Solidified Heat Resistant Cast Al-Si Alloy

    Science.gov (United States)

    Kasprzak, W.; Chen, D. L.; Shaha, S. K.

    2013-07-01

    Existing heat treatment standards do not properly define tempers for thin-walled castings that solidified with high solidification rates. Recently emerged casting processes such as vacuum high pressure die casting should not require long solution treatment times due to the fine microstructures arising from rapid solidification rates. The heat treatment studies involving rapidly solidified samples with secondary dendrite arm spacing between 10 and 35 μm were conducted for solution times between 30 min and 9 h and temperatures of 510 and 525 °C and for various aging parameters. The metallurgical analysis revealed that an increase in microstructure refinement could enable a reduction of solution time up to 88%. Solution treatment resulted in the dissolution of Al2Cu and Al5Mg8Si6Cu2, while Fe- and TiZrV-based phases remained partially in the microstructure. The highest strength of approximately 351 ± 9.7 and 309 ± 3.4 MPa for the UTS and YS, respectively, was achieved for a 2-step solution treatment at 510 and 525 °C in the T6 peak aging conditions, i.e., 150 °C for 100 h. The T6 temper did not yield dimensionally stable microstructure since exceeding 250 °C during in-service operation could result in phase transformation corresponding to the over-aging reaction. The microstructure refinement had a statistically stronger effect on the alloy strength than the increase in solutionizing time. Additionally, thermal analysis and dilatometer results were presented to assess the dissolution of phases during solution treatment, aging kinetics as well as dimensional stability.

  13. Nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tashlykova-Bushkevich, Iya I. [Belarusian State University of Informatics and Radioelectronics, Minsk (Belarus)

    2015-12-31

    The present work summarizes recent progress in the investigation of nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys foils produced at exceptionally high cooling rates. We focus here on the potential of modification of hydrogen desorption kinetics in respect to weak and strong trapping sites that could serve as hydrogen sinks in Al materials. It is shown that it is important to elucidate the surface microstructure of the Al alloy foils at the submicrometer scale because rapidly solidified microstructural features affect hydrogen trapping at nanostructured defects. We discuss the profound influence of solute atoms on hydrogen−lattice defect interactions in the alloys. with emphasis on role of vacancies in hydrogen evolution; both rapidly solidified pure Al and conventionally processed aluminum samples are considered.

  14. Microstructure evolution and thermal stability of rapidly solidified Al-Ni-Co-RE alloy

    Directory of Open Access Journals (Sweden)

    B. Karpe

    2013-07-01

    Full Text Available In the frame of this work, Al-5Ni-1Co-3RE (RE-Rare Earth (Mischmetal rapidly solidified ribbons were manufactured and analyzed. The morphology of the as-cast structure, as well as the microstructural features were analyzed by transmission electron microscopy (TEM and scanning electron microscopy (SEM. Thermal stability has been investigated by combination of four point scanning electrical resistivity measurement (ER, differential scanning calorimetry (DSC and microhardness measurement. From the results we can conclude, that Al-5Ni-1Co-3RE rapidly solidified alloys have good thermal stability due to very slow coarsening kinetics of precipitated particles.

  15. Effect of hafnium addition on solidifi cation structure of cast Ti-46Al alloys

    Directory of Open Access Journals (Sweden)

    Su Yanqing

    2008-11-01

    Full Text Available To investigate the effect of hafnium addition on the solidifi cation structure, Ti-46Al alloys with nominal compositions of Ti-46Al-xHf (x = 0, 3, 5, 7 (at.% were arc-melted into small ingots in an argon atmosphere. The characteristics of the macrostructures and microstructures were studied using a linear intercept method, OM, SEM (BSE, XRD and TEM. The results showed that the ingots with Hf have near lamellar microstructure in columnar and dendrite morphology. The hafnium concentration has a strong effect on the columnar spacing refi nement. Increasing Hf from 0 to 7 (at.%, the columnar spacing can be reduced from ~ 1000 to ~ 400 μm. Constitute phases of the ingots are α2, a small amount of B2 and c. Most of the B2 phases, richer in Hf and leaner in Al and Ti, exist on the node of the dendrite core in block shape and a little across the lamellar colonies in stick shape. The c phases exist on the boundaries of lamellar colonies in small cellular shape. There also exists a segregation of Hf on the columnar and dendrite core. Particularly, both the α- and β-phase form from the melt as prior phases. The possible phase sequencing during solidifi cation and solid-state transformations with Hf is given in this paper.

  16. Influence of quench rates on the properties of rapidly solidified ...

    Indian Academy of Sciences (India)

    Unknown

    A K PANDA, I CHATTORAJ, S BASU* and A MITRA. National Metallurgical Laboratory, Jamshedpur 831 007, India. *Materials Science Centre, Indian Institute of Technology, Kharagpur 721 302, India. Abstract. FeNbCuSiB based materials were produced in the form of ribbons by rapid solidification techniques.

  17. Influence of quench rates on the properties of rapidly solidified ...

    Indian Academy of Sciences (India)

    FeNbCuSiB based materials were produced in the form of ribbons by rapid solidification techniques. The crystallization, magnetic, mechanical and corrosion behaviour were studied for the prepared materials as a function of quenching rate from liquid to the solid state. Higher quench rates produced a more amorphous ...

  18. Phosphorus Segregation in Meta-Rapidly Solidified Carbon Steels

    Science.gov (United States)

    Li, Na; Qiao, Jun; Zhang, Junwei; Sha, Minghong; Li, Shengli

    2017-09-01

    Twin-roll strip casters for near-net-shape manufacture of steels have received increased attention in the steel industry. Although negative segregation of phosphorus occurred in twin-roll strip casting (TRSC) steels in our prior work, its mechanism is still unclear. In this work, V-shaped molds were designed and used to simulate a meta-rapid solidification process without roll separating force during twin roll casting of carbon steels. Experimental results show that no obvious phosphorus segregation exist in the V-shaped mold casting (VMC) steels. By comparing TRSC and the VMC, it is proposed that the negative phosphorus segregation during TRSC results from phosphorus redistribution driven by recirculating and vortex flow in the molten pool. Meanwhile, solute atoms near the advancing interface are overtaken and incorporated into the solid because of the high solidification speed. The high rolling force could promote the negative segregation of alloying elements in TRSC.

  19. The Development of Rapidly Solidified Magnesium – Copper Ribbons

    Directory of Open Access Journals (Sweden)

    Pastuszak M.

    2016-06-01

    Full Text Available The aim of the present work was to plan and carry out an experiment consisting of amorphization of industrial magnesium alloy WE 43 (Mg - 4 Y - 3 RE - 0.5 Zr modified by the copper addition. Investigated alloy modified with 20% of copper was rapidly quenched with the use of melt spinning technique. The effects of cooling rate on the structure and properties of the obtained material were extensively analyzed. The structure and phase analysis of samples were examined using X-ray diffraction method (XRD while the thermal stability of the samples was determined by differential scanning calorimetry (DSC. Microstructure observations were also conducted. The microhardness tests (HV0.02 and corrosion resistance tests were carried out to investigate the properties of the material. Corrosion resistance measurements were held using a typical three-electrode system. As the result of the research, the effect of cooling rate on microstructure and properties of investigated alloy was determined.

  20. Properties of rapidly solidified Al-12.5 Si-1Ni alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tawtik, N.L.; Abdel Hady, E.M.; Bastawros, A.M. [Nat. Res. Centre, Giza (Egypt). Solid State Phys. Dept.

    1998-11-01

    Rapidly solidified Al-12.5 Si-1 Ni ribbons were prepared by melt spinning. The Si solid solubility was extended to high values as deduced from X-ray diffraction and TEM. This high solubility of Si was found to have significant effects on the various properties of this alloy. High values of electric resistivity was observed which was about four times the fully annealed values. Furthermore rapid solidification improved the tensile strength and the toughness of this alloy as compared with its classically solidified counter part. The relaxation kinetics was followed by isothermal resistivity measurements. The relaxation follows an equation which has the Johnson-Mehl-Avrami (JMA) form. No metastable phase was observed. (orig.)

  1. Corrosion resistance of rapidly solidified Al-Cu and Al-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Girgis, N.N. (Corrosion Dept., Central Metallurgical Research and Development Inst., Helwan (Egypt)); Bastawros, A.M. (Physics Dept., National Research Center, Dokki, Giza (Egypt))

    1992-12-01

    This work has shown that rapidly solidified AlSi alloy is more resistant than AlCu when exposed in either neutral or acidic chloride solutions. This can be related to Si, metalloid element, which accelerates active dissolution of the alloy surface and causes rapid formation of a passive film and subsequent enrichment of Al in the film. This is in agreement with the views of Naka et al. on the role of metalloid elements, like phosphorus, in promoting the corrosion resistance of amorphous alloys. (orig.)

  2. Microstructure and mechanical properties of rapidly solidified FeAlCr intermetallic compound

    Directory of Open Access Journals (Sweden)

    R. A. Rodríguez‐Díaz

    2009-08-01

    Full Text Available In this work results regarding microstructural characterization of a melt‐spun intermetallic compound Fe40Al5Cr (% at.produced by rapid solidification employing the melt spinning technique at three different tangential wheel speeds (12, 16 and20 ms‐1 are presented. Melt spun ribbons were characterized by optical and scanning electron microscopy (SEM in order toobserve morphology, grain size, ribbon thickness and also fracture surfaces after tensile tests. EDS coupled to SEM wasemployed to perform punctual and scan line chemical analyses on samples, x‐ray diffraction (XRD was utilized to identify crystalstructure and phases. Transmission electron microscopy (TEM was employed to confirm crystal structure and also tocharacterize nanopores formed in the specimens by vacancy clustering. With regard to mechanical properties, micro hardnessVickers measurements as well as tensile tests at room temperature were applied to the rapidly solidified ribbons.The grain size of rapidly solidified Fe40Al5Cr ribbons suffered a drastic reduction as compared with alloys of the samecomposition produced by conventional melting and casting methods, and in melt‐spun ribbons it decreases as the wheel speedincreases. Punctual and line‐scanning chemical analyses revealed that Cr enters in solid solution in FeAl matrix. Hardnessmeasurements revealed a softening in rapidly solidified FeAlCr ribbons as compared with FeAl alloys and tensile test exhibited a(transgranular + intergranular mode of fracture, reaching up to 3 % of elongation in FeAlCr alloys. The presence of porous(meso and nano were also characterized.

  3. Undercooling of Rapidly Solidified Droplets and Spray Formed Strips of Al-Cu (Sc)

    Science.gov (United States)

    Bogno, A.; Natzke, P.; Yin, S.; Henein, H.

    Impulse Atomization (IA) (a single fluid atomization technique) was used to rapidly solidify Al-4.5wt%Cu and Al-4.5wt%Cu-0.4wt%Sc under argon atmosphere. In addition to the IA-generated droplets, the same technique was used to produce strips by Spray Deposition (SD) of the same alloys on a copper substrate with and without oil coating. The rapid solidification microstructures were analyzed using Scanning Electron Microscopy (SEM). From the SEM images, the amount of eutectic and the secondary dendrite arm spacing (SDAS) were measured. These SDAS results lead to the estimation of cooling rate. The eutectic fraction coupled with the metastable extension of the solidus and liquidus lines of Al-Cu (Sc) phase diagram lead to the estimation of primary and eutectic undercoolings. A comparison of the solidification path of the droplets and the strips was done as well as the analysis of the effects of scandium.

  4. Effect of titanium content and cooling rate on the microstructure and martensitic transformation of rapidly solidified Ti-Ni shape memory alloys; Influencia do Ti e da taxa de resfriamento na microestrutura e na temperatura M{sub S} em ligas Ni-Ti com EMF solidificadas rapidamente

    Energy Technology Data Exchange (ETDEWEB)

    Anselmo, George Carlos dos Santos; Castro, Walman Benicio de, E-mail: georgeanselmo@yahoo.com.br, E-mail: walman.castro@ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2017-01-15

    One important challenge of microsystems design is the implementation of efficient principles of miniaturized actuation at the micro-scale. Shape memory alloys (SMAs) have early been considered as a potential solution to this problem as these materials offer attractive properties like a high-power to weight ratio, large deformation and the capability to be micro-scale processed. Alloys of composition Ni-44,8wt%Ti and Ni- 45,3wt%Ti were produced using the melt spinning method in air atmosphere. Ribbons obtained in this process showed martensitic grain size between 5 and 30 μm, depending on the alloy composition and the linear velocity of the wheel. (author)

  5. Microstructure Properties of Rapidly Solidified Al-Zn-Mg-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Emad M. Ahmed

    2014-01-01

    Full Text Available The Rietveld X-ray diffraction analysis was applied to analyze the weight fraction of precipitation phases and microstructure characterizations of rapidly solidified Al-8Zn-4Mg-xCu, x = 1, 4, 8, and 10 alloys (in wt.%, prepared by melt spun technique. A good agreement between observed and calculated diffraction pattern was obtained and the conventional Rietveld factors (Rp, Rwp, and GOF converged to satisfactory values. Solid solubilities of Zn, Mg, and Cu in α-Al were extended to high values. Besides, metastable Al0.71Zn0.29, intermetallic Al2CuMg, Al2Cu, and CuMgZn phases have been observed for x = 4, 8, and 10 Cu alloys. The crystal structure and microstructure characterizations exhibit strong Cu content dependence.

  6. Microstructural observations and thermal stability of a rapidly solidified aluminum-gadolinium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Savage, S.J.; Eliezer, D.; Froes, F.H. (Rapid Solidification Group, Swedish Institute for Metals Research, Drottning Kristinas vag 48, S-114 28 Stockholm (SE))

    1987-08-01

    Rapid solidification processing has significant potential to extend the use of aluminum alloys to higher temperatures (200/sup 0/C to 350/sup 0/C). In particular, alloys based on Al-Fe-X compositions, where X = Ce or Mo, have been studied in detail. Cerium is representative of the family of rare earth, or lanthanide elements, and forms a number of intermetallic compounds with aluminum. Alloys containing rare earths other than cerium have received little attention, although for several reasons they are considered worthy of study. Rapidly solidified ribbons were prepared from this alloy by the chill block melt spinning technique at a peripheral wheel velocity of 20.4 m/s. A melt temperature of --1300/sup 0/C was used to ensure complete dissolution of all intermetallic particles. The ribbons produced were typically about 100 ..mu..m thick and 2 to 3 mm wide. Standard polishing techniques were used to prepare sections for optical microscopy and microhardness measurements. Room temperature Keller's reagent (diluted to 50 vol pct, in water) was used to etch the samples. Thin foils were prepared for TEM by electropolishing from both sides of the ribbon using the window technique.

  7. Surface precipitation of chromium in rapidly solidified Cu-Cr alloys

    Science.gov (United States)

    Bizjak, Milan; Karpe, Blaž; Jakša, Gregor; Kovač, Janez

    2013-07-01

    Rapidly solidified ribbons of Cu-Cr alloys with 2.27 and 4.20 at.% of chromium were produced using the melt-spinning method. Alloys were analyzed by electron microscopy for complete solubility of Cr in copper matrix. To avoid disturbing effects of Cr phase particles, the kinetics and the sequence of microstructural transformations during heating were analyzed only the sample with 2.27 at.% of chromium with complete Cr solubility in the copper matrix. We then investigated the precipitation process for this alloy that was subsequently heated at a constant rate. The increased solid solubility obtained allowed the extensive precipitation of a Cr-rich phase. The kinetics and the sequence of microstructural changes that occurred during the heating were analyzed using an in situ measurement of the electrical resistance. The quenched microstructure was analyzed at transition points using scanning and transmission electron microscopy. X-ray photoelectron spectroscopy, as a very surface-sensitive method, was applied to study the changes in the chemical composition of the surface for the Cu-Cr alloy ribbons in the temperature range 400-700 °C during an in situ heat treatment in an ultra-high vacuum. The results show a relatively rapid precipitation of chromium to the surface, which starts at 400 °C and is correlated with a change in the microstructure and the electrical resistance. The Cr-precipitation is faster at higher temperatures and follows the parabolic law. The resistivity results for the supersaturated binary alloy were analyzed using the Ozawa method to give an activation energy for the precipitation of 196 ± 10 kJ mol-1.

  8. Microstructure and Mechanical Properties of a Novel Rapidly Solidified, High-Temperature Al-Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Overman, Nicole R.; Mathaudhu, Suveen; Choi, Jung-Pyung; Roosendaal, Timothy J.; Pitman, Stan G.

    2016-02-12

    Rapid solidification (RS) processing, as a production method, offers a variety of unique properties based on far-from-equilibrium microstructures obtained through rapid cooling rates. In this study, we seek to investigate the microstructures and properties of a novel Al-alloy specifically designed for high temperature mechanical stability. Synthesis of, AlFe11.4Si1.8V1.6Mn0.9 (wt. %), was performed by two approaches: rotating cup atomization (“shot”) and melt spinning (“flake”). These methods were chosen because of their ability to produce alloys with tailored microstructures due to their inherent differences in cooling rate. The as-solidified precursor materials were microstructurally characterized with electron microscopy. The results show that the higher cooling rate flake material exhibited the formation of nanocrystalline regions as well additional phase morphologies not seen in the shot material. Secondary dendritic branching in the flake material was on the order of 0.1-0.25µm whereas branching in the shot material was 0.5-1.0µm. Consolidated and extruded material from both precursor materials was mechanically evaluated at both ambient and high (300°C) temperature. The consolidated RS flake material is shown to exhibit higher strengths than the shot material. The ultimate tensile strength of the melt spun flake was reported as 544.2MPa at room temperature and 298.0MPa at 300°C. These results forecast the ability to design alloys and processing approaches with unique non-equilibrium microstructures with robust mechanical properties at elevated temperatures.

  9. Magnetism-Structure Correlations during the ε→τ Transformation in Rapidly-Solidified MnAl Nanostructured Alloys

    Directory of Open Access Journals (Sweden)

    Felix Jiménez-Villacorta

    2014-01-01

    Full Text Available Magnetic and structural aspects of the annealing-induced transformation of rapidly-solidified Mn55Al45 ribbons from the as-quenched metastable antiferromagnetic (AF ε-phase to the target ferromagnetic (FM L10 τ-phase are investigated. The as-solidified material exhibits a majority hexagonal ε-MnAl phase revealing a large exchange bias shift below a magnetic blocking temperature TB~95 K (Hex~13 kOe at 10 K, ascribed to the presence of compositional fluctuations in this antiferromagnetic phase. Heat treatment at a relatively low annealing temperature Tanneal ≈ 568 K (295 °C promotes the nucleation of the metastable L10 τ-MnAl phase at the expense of the parent ε-phase, donating an increasingly hard ferromagnetic character. The onset of the ε→τ transformation occurs at a temperature that is ~100 K lower than that reported in the literature, highlighting the benefits of applying rapid solidification for synthesis of the rapidly-solidified parent alloy.

  10. Magnetism-Structure Correlations during the epsilon ->tau Transformation in Rapidly-Solidified MnAl Nanostructured Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Villacorta, F; Marion, JL; Oldham, JT; Daniil, M; Willard, MA; Lewis, LH

    2014-01-21

    Magnetic and structural aspects of the annealing-induced transformation of rapidly-solidified Mn55Al45 ribbons from the as-quenched metastable antiferromagnetic (AF) epsilon-phase to the target ferromagnetic (FM) L1(0) tau-phase are investigated. The as-solidified material exhibits a majority hexagonal epsilon-MnAl phase revealing a large exchange bias shift below a magnetic blocking temperature T-B similar to 95 K (H-ex similar to 13 kOe at 10 K), ascribed to the presence of compositional fluctuations in this antiferromagnetic phase. Heat treatment at a relatively low annealing temperature T-anneal approximate to 568 K (295 degrees C) promotes the nucleation of the metastable L1(0) tau-MnAl phase at the expense of the parent epsilon-phase, donating an increasingly hard ferromagnetic character. The onset of the epsilon ->tau transformation occurs at a temperature that is similar to 100 K lower than that reported in the literature, highlighting the benefits of applying rapid solidification for synthesis of the rapidly-solidified parent alloy.

  11. Microstructure and mechanical properties of a novel rapidly solidified, high-temperature Al-alloy

    Energy Technology Data Exchange (ETDEWEB)

    Overman, N.R., E-mail: Nicole.Overman@pnnl.gov [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States); Mathaudhu, S.N. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States); University of California, Riverside, 3401 Watkins Dr., Riverside, CA 92521 (United States); Choi, J.P.; Roosendaal, T.J.; Pitman, S. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States)

    2016-02-15

    Rapid solidification (RS) processing, as a production method, offers a variety of unique properties based on far-from-equilibrium microstructures obtained through rapid cooling rates. In this study, we seek to investigate the microstructures and properties of a novel Al-alloy specifically designed for high temperature mechanical stability. Synthesis of, AlFe{sub 11.4}Si{sub 1.8}V{sub 1.6}Mn{sub 0.9} (wt.%), was performed by two approaches: rotating cup atomization (“shot”) and melt spinning (“flake”). These methods were chosen because of their ability to produce alloys with tailored microstructures due to their inherent differences in cooling rate. The as-solidified precursor materials were microstructurally characterized with electron microscopy. The results show that the higher cooling rate flake material exhibited the formation of nanocrystalline regions as well additional phase morphologies not seen in the shot material. Secondary dendritic branching in the flake material was on the order of 0.1–0.25 μm whereas branching in the shot material was 0.5–1.0 μm. Consolidated and extruded material from both precursor materials was mechanically evaluated at both ambient and high (300 °C) temperature. The consolidated RS flake material is shown to exhibit higher strengths than the shot material. The ultimate tensile strength of the melt spun flake was reported as 544.2 MPa at room temperature and 298.0 MPa at 300 °C. These results forecast the ability to design alloys and processing approaches with unique non-equilibrium microstructures with robust mechanical properties at elevated temperatures. - Highlights: • A novel alloy, AlFe{sub 11.4}Si{sub 1.8}V{sub 1.6}Mn{sub 0.9} was fabricated by rapid solidification. • Room temperature yield strength exceeded 500 MPa. • Elevated temperature (300 °C) yield strength exceeded 275 MPa. • Forging, after extrusion of the alloy resulted in microstructural coarsening. • Decreased strength and ductility was

  12. Investigation of the effect of rapidly solidified braze ribbons on the microstructure of brazed joints

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Wiesner, S.; Rochala, P.; Mayer, J.; Aretz, A.; Iskandar, R.; Schwedt, A.

    2017-03-01

    Shrinkage and warpage due to melting and solidification are crucial for the geometric precision of related components. In order to assure a high geometric precision, the formation of the microstructure in the joint during brazing must be taken into consideration. An extensive interaction can occur between liquid melt and base material, resulting in the formation of distinctive phases. This interaction depends on the parameters of the brazing process. However, the consequences of the interaction between phase formation and process parameters in terms of geometric precision cannot be estimated yet. Insufficient quality of the joint can be a result. In this study, investigations focus on the process of solidification in terms of time dependent diffusion behavior of elements. Therefore, microcrystalline and amorphous braze ribbons based on Ti are produced by rapid solidification and are used for joining. The microstructure of the braze ribbons as well as the melting behavior and phase formation during brazing are considered to be of particular importance for the mechanical properties of the brazed components.

  13. Dendrite growth morphologies in rapidly solidified Al-4.5wt.%Cu droplets

    Science.gov (United States)

    Bedel, M.; Reinhart, G.; Bogno, A.-A.; Nguyen-Thi, H.; Boller, E.; Gandin, Ch-A.; Henein, H.

    2016-03-01

    The impulse atomization process developed at the University of Alberta (Canada) enables metallic powders to be solidified with controlled process parameters and improved properties. In order to investigate the microstructure morphologies in droplets of Al- 4.5wt.%Cu alloys, three-dimensional reconstructions of several droplets are obtained by using synchrotron X-ray micro-tomography, allowing a visualization of the inner microstructure in three dimensions. The analysis of the reconstructed volumes reveals that a wide range of morphology, from highly branched to “finger-bundle”, can be obtained for different droplets of similar diameter and produced in the same batch. Unexpectedly for this alloy, microstructural features also indicate that the development of the dendrite arms (primary and of higher orders) occurs in most droplets along crystallographic axes, instead of the usual directions observed in conventional casting technologies.

  14. A Study on the Physical Properties and Interfacial Reactions with Cu Substrate of Rapidly Solidified Sn-3.5Ag Lead-Free Solder

    Science.gov (United States)

    Ma, Hai-Tao; Wang, Jie; Qu, Lin; Zhao, Ning; Kunwar, A.

    2013-08-01

    A rapidly solidified Sn-3.5Ag eutectic alloy produced by the melt-spinning technique was used as a sample in this research to investigate the microstructure, thermal properties, solder wettability, and inhibitory effect of Ag3Sn on Cu6Sn5 intermetallic compound (IMC). In addition, an as-cast Sn-3.5Ag solder was prepared as a reference. Rapidly solidified and as-cast Sn-3.5Ag alloys of the same size were soldered at 250°C for 1 s to observe their instant melting characteristics and for 3 s with different cooling methods to study the inhibitory effect of Ag3Sn on Cu6Sn5 IMC. Experimental techniques such as scanning electron microscopy, differential scanning calorimetry, and energy-dispersive spectrometry were used to observe and analyze the results of the study. It was found that rapidly solidified Sn-3.5Ag solder has more uniform microstructure, better wettability, and higher melting rate as compared with the as-cast material; Ag3Sn nanoparticles that formed in the rapidly solidified Sn-3.5Ag solder inhibited the growth of Cu6Sn5 IMC during aging significantly much strongly than in the as-cast material because their number in the rapidly solidified Sn-3.5Ag solder was greater than in the as-cast material with the same soldering process before aging. Among the various alternative lead-free solders, this study focused on comparison between rapidly solidified and as-cast solder alloys, with the former being observed to have better properties.

  15. Surface modification induced phase transformation and structure variation on the rapidly solidified recast layer of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ming-Hung [Department of Mechanical Engineering and Graduate Institute of Mechanical and Precision Engineering, National Kaoshiung University of Applied Sciences, Kaoshiung 807, Taiwan (China); School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Haung, Chiung-Fang [School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Division of Family and Operative Dentistry, Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan (China); Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei 110, Taiwan (China); Shyu, Shih-Shiun [Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan (China); Chou, Yen-Ru [Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei 110, Taiwan (China); Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan (China); Lin, Ming-Hong [Department of Mechanical Engineering and Graduate Institute of Mechanical and Precision Engineering, National Kaoshiung University of Applied Sciences, Kaoshiung 807, Taiwan (China); Peng, Pei-Wen, E-mail: apon@tmu.edu.tw [School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); and others

    2015-08-15

    In this study, neodymium-doped yttrium orthovanadate (Nd:YVO{sub 4}) as a laser source with different scanning speeds was used on biomedical Ti surface. The microstructural and biological properties of laser-modified samples were investigated by means of optical microscope, electron microscope, X-ray diffraction, surface roughness instrument, contact angle and cell cytotoxicity assay. After laser modification, the rough volcano-like recast layer with micro-/nanoporous structure and wave-like recast layer with nanoporous structure were generated on the surfaces of laser-modified samples, respectively. It was also found out that, an α → (α + rutile-TiO{sub 2}) phase transition occurred on the recast layers of laser-modified samples. The Ti surface becomes hydrophilic at a high speed laser scanning. Moreover, the cell cytotoxicity assay demonstrated that laser-modified samples did not influence the cell adhesion and proliferation behaviors of osteoblast (MG-63) cell. The laser with 50 mm/s scanning speed induced formation of rough volcano-like recast layer accompanied with micro-/nanoporous structure, which can promote cell adhesion and proliferation of MG-63 cell on Ti surface. The results indicated that the laser treatment was a potential technology to enhance the biocompatibility for titanium. - Highlights: • Laser induced the formation of recast layer with micro-/nanoporous structure on Ti. • An α → (α + rutile-TiO{sub 2}) phase transition was observed within the recast layer. • The Ti surface becomes hydrophilic at a high speed laser scanning. • Laser-modified samples exhibit good biocompatibility to osteoblast (MG-63) cell.

  16. Microstructure of rapidly solidified Nb-based pre-alloyed powders for additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yueling; Jia, Lina, E-mail: jialina@buaa.edu.cn; Kong, Bin; Zhang, Shengnan; Zhang, Fengxiang; Zhang, Hu

    2017-07-01

    Highlights: • Sphere shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by PREP. • An oxide layer with a thickness of 9.39 nm was generated on the powder surface. • The main phases of the pre-alloyed powders were Nbss and Cr{sub 2}Nb. • SDAS increased and microhardness decreased with the increase of powder size. • Microstructure of powders evolved into large grains from dendrite structures after HT. - Abstract: For powder-based additive manufacturing, sphere-shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by plasma rotating electrode processing (PREP). The microstructure, surface oxidation and microhardness of the pre-alloyed powders were systematically investigated. Results showed that the main phases were Nb solid solution (Nbss) and Cr{sub 2}Nb. The Cr{sub 2}Nb phases were further determined using transmission electron microscopy (TEM). Fine dendrite structures were observed in the as-fabricated pre-alloyed powders, which transformed to large grains after heat treatment (HT) at 1450 °C for 3 h. With the increase of powder size, the secondary dendrite arm spacing (SDAS) increased and the microhardness (HV) decreased. A clean powder surface free of oxide particles was obtained by PREP and an oxide layer with 9.39 nm in thickness was generated on the powder surface. Compared with Cr- and Nb-oxides, more Ti-oxides were formed on outmost powder surface with a higher content of Ti (up to 47.86 at.%). The differences upon the microstructure and microhardness of the pre-alloyed powders with different sizes were discussed.

  17. Microstructure of rapidly solidified Nb-based pre-alloyed powders for additive manufacturing

    Science.gov (United States)

    Guo, Yueling; Jia, Lina; Kong, Bin; Zhang, Shengnan; Zhang, Fengxiang; Zhang, Hu

    2017-07-01

    For powder-based additive manufacturing, sphere-shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by plasma rotating electrode processing (PREP). The microstructure, surface oxidation and microhardness of the pre-alloyed powders were systematically investigated. Results showed that the main phases were Nb solid solution (Nbss) and Cr2Nb. The Cr2Nb phases were further determined using transmission electron microscopy (TEM). Fine dendrite structures were observed in the as-fabricated pre-alloyed powders, which transformed to large grains after heat treatment (HT) at 1450 °C for 3 h. With the increase of powder size, the secondary dendrite arm spacing (SDAS) increased and the microhardness (HV) decreased. A clean powder surface free of oxide particles was obtained by PREP and an oxide layer with 9.39 nm in thickness was generated on the powder surface. Compared with Cr- and Nb-oxides, more Ti-oxides were formed on outmost powder surface with a higher content of Ti (up to 47.86 at.%). The differences upon the microstructure and microhardness of the pre-alloyed powders with different sizes were discussed.

  18. Inactivation efficiency and mechanism of UV-TiO2photocatalysis against murine norovirus using a solidified agar matrix.

    Science.gov (United States)

    Park, Daseul; Shahbaz, Hafiz Muhammad; Kim, Sun-Hyoung; Lee, Mijin; Lee, Wooseong; Oh, Jong-Won; Lee, Dong-Un; Park, Jiyong

    2016-12-05

    Human norovirus (HuNoV) is the primary cause of viral gastroenteritis worldwide. Fresh blueberries are among high risk foods associated with norovirus related outbreaks. Therefore, it is important to assess intervention strategies to reduce the risk of foodborne illness. The disinfection efficiency of decontamination methods is difficult to evaluate for fruits and vegetables due to an inconsistent degree of contamination and irregular surface characteristics. The inactivation efficiency and mechanism of murine norovirus 1 (MNV-1, a surrogate for HuNoV) was studied on an experimentally prepared solidified agar matrix (SAM) to simulate blueberries using different wavelengths (A, B, C) of UV light both with and without TiO 2 photocatalysis (TP). MNV-1 was inoculated on exterior and interior of SAM and inactivation efficiencies of different treatments were investigated using a number of assays. Initial inoculum levels of MNV-1 on the SAM surface and interior were 5.2logPFU/mL. UVC with TiO 2 (UVC-TP) achieved the highest level of viral reduction for both externally inoculated and internalized MNV-1. Externally inoculated MNV-1 was reduced to non-detectable levels after UVC-TP treatment for 5min while there was still a 0.9 log viral titer after UVC alone. For internalized MNV-1, 3.2 log and 2.7 log reductions were obtained with UVC-TP and UVC alone treatments for 10min, respectively. The Weibull model was applied to describe the inactivation behavior of MNV-1, and the model showed a good fit to the data. An excellent correlation between the steady-state concentration of OH radicals ([OH] ss ) and viral inactivation was quantified using a para-chlorobenzoic acid (pCBA) probe compound, suggesting that OH radicals produced in the UV-TP reaction were the major species for MNV-1 inactivation. Transmission electron microscopy images showed that the structure of viral particles was completely disrupted with UVC-TP and UVC alone. SDS-PAGE analysis showed that the major capsid

  19. Amorphous Phase Formation Analysis of Rapidly Solidified CoCr Droplets

    Science.gov (United States)

    Bogno, Abdoul-Aziz; Riveros, Carlos; Henein, Hani; Li, Delin

    2016-12-01

    This paper investigates amorphous phase formation and rapid solidification characteristics of a CoCr alloy. High cooling rate and high undercooling-induced rapid solidification of the alloy was achieved by impulse atomization in helium atmosphere. Two atomization experiments were carried out to generate powders of a wide size range from liquid CoCr at two different temperatures. Amorphous fraction and kinetic crystallization properties of impulse atomized powders were systematically quantified by means of differential scanning calorimetry. In addition, different but complementary characterization tools were used to analyze the powders microstructures. The fraction of amorphous phase within the investigated powders is found to be promoted by high cooling rate or smaller powder size. The critical cooling rate for amorphous phase formation, which is influenced by the oxygen content in the melt, is found to be 3 × 104 K s-1 and corresponds to a 160- µm-diameter powder atomized in helium. Hardness of the powders is found to follow a trend that is described by the Hall-Petch relation when a relatively high fraction of crystalline structures is present and decreases with the fraction of amorphous phase.

  20. Microstructure Evolution and Biodegradation Behavior of Laser Rapid Solidified Mg–Al–Zn Alloy

    Directory of Open Access Journals (Sweden)

    Chongxian He

    2017-03-01

    Full Text Available The too fast degradation of magnesium (Mg alloys is a major impediment hindering their orthopedic application, despite their superior mechanical properties and favorable biocompatibility. In this study, the degradation resistance of AZ61 (Al 6 wt. %, Zn 1 wt. %, remaining Mg was enhanced by rapid solidification via selective laser melting (SLM. The results indicated that an increase of the laser power was beneficial for enhancing degradation resistance and microhardness due to the increase of relative density and formation of uniformed equiaxed grains. However, too high a laser power led to the increase of mass loss and decrease of microhardness due to coarsened equiaxed grains and a reduced solid solution of Al in the Mg matrix. In addition, immersion tests showed that the apatite increased with the increase of immersion time, which indicated that SLMed AZ61 possessed good bioactivity.

  1. Biocompatibility of rapidly solidified magnesium alloy RS66 as a temporary biodegradable metal.

    Science.gov (United States)

    Willbold, Elmar; Kalla, Katharina; Bartsch, Ivonne; Bobe, Katharina; Brauneis, Maria; Remennik, Sergei; Shechtman, Dan; Nellesen, Jens; Tillmann, Wolfgang; Vogt, Carla; Witte, Frank

    2013-11-01

    Biodegradable magnesium-based alloys are very promising materials for temporary implants. However, the clinical use of magnesium-based alloys is often limited by rapid corrosion and by insufficient mechanical stability. Here we investigated RS66, a magnesium-based alloy with extraordinary physicochemical properties of high tensile strength combined with a high ductility and a homogeneous grain size of ~1 μm which was obtained by rapid solidification processing and reciprocal extrusion. Using a series of in vitro and in vivo experiments, we analyzed the biodegradation behavior and the biocompatibility of this alloy. In vitro, RS66 had no cytotoxic effects in physiological concentrations on the viability and the proliferation of primary human osteoblasts. In vivo, RS66 cylinders were implanted into femur condyles, under the skin and in the muscle of adult rabbits and were monitored for 1, 2, 3, 4 and 8 weeks. After explantation, the RS66 cylinders were first analyzed by microtomography to determine the remaining RS66 alloy and calculate the corrosion rates. Then, the implantation sites were examined histologically for healing processes and foreign body reactions. We found that RS66 was corroded fastest subcutaneously followed by intramuscular and bony implantation of the samples. No clinical harm with transient gas cavities during the first 6 weeks in subcutaneous and intramuscular implantation sites was observed. No gas cavities were formed around the implantation site in bone. The corrosion rates in the different anatomical locations correlated well with the local blood flow prior to implantation. A normal foreign body reaction occurred in all tissues. Interestingly, no enhanced bone formation could be observed around the corroding samples in the condyles. These data show that RS66 is biocompatible, and due to its interesting physicochemical properties, this magnesium alloy is a promising material for biodegradable implants. Copyright © 2013 Acta Materialia Inc

  2. Improving permanent magnetic properties of rapidly solidified nanophase RE-TM-B alloys by compositional modification

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.W. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD (United Kingdom)], E-mail: zwliu@scut.edu.cn; Liu, Yan; Deheri, P.K.; Ramanujan, R.V. [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Davies, H.A. [Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2009-08-15

    Rapid solidification is one of the most important techniques to produce nanocrystalline rare-earth-transition metal-boron (RE-TM-B) hard magnetic materials. To achieve high performance on these NdFeB-based alloys, compositional modification and microstructure optimization have been frequently employed. In this short review, various substitutions and doping elements have been discussed regarding to their behaviors in adjusting the individual or combined hard magnetic properties as well as the microstructure based on our recent results. It has been demonstrated that Pr and Dy enhance coercivity {sub j}H{sub C}, whereas Sm reduces {sub j}H{sub C} due to their effects on intrinsic properties. Co improves the thermal stability as well as the microstructure. Introducing Fe{sub 65}Co{sub 35} is a possible approach to enhance the magnetization and maximum energy product (BH){sub max}. As a doping element, Ta was found to play an important role to obtain an appropriate combination of magnetic properties for this type of alloys.

  3. Microstructures and properties of rapidly solidified Cu90Zr10-xAlx alloys

    Directory of Open Access Journals (Sweden)

    Bing-wen Zhou

    2016-07-01

    Full Text Available u90Zr10-xAlx (x=1, 3, 5, 7, 9; at.% alloy rods were synthesized based on rapid solidification method. The structure, distribution of elements, mechanical properties and electrical conductivity of the Cu-based alloy samples were studied using X-ray diffraction (XRD, scanning electron microscope (SEM, electro-probe micro-analyzer (EPMA, uniaxial compression test and four-probe technique. The as-cast Cu90Zr10-xAlx (x=1, 3, 5; at.% alloy rods with a diameter of 2 mm exhibit good mechanical properties and electrical conductivity, i.e., high compressive yield strength of 812-1513 MPa, Young’s modulus of 52-85 GPa, Vickers hardness of 250-420 and electrical conductivity of 11.1%-12.6% IACS (International Annealed Copper Standard. The composite microstructure composed of high density fibrous duplex structure (Cu5Zr and α-Cu phases is thought to be the origin of the high strength.

  4. Recovery Phenomenon During Annealing of an As-Rapidly Solidified Al Alloy

    Science.gov (United States)

    Yan, Zhigang; Mao, Shuaiying; Lin, Yaojun; Zhang, Yaqi; Wang, Limin

    2017-06-01

    It has been well documented that recovery occurring in metals/alloys produced via solid-state quenching involves only annihilation of supersaturated vacancies. Interestingly, in the present study, we observed completely different mechanisms underlying recovery during annealing of an Al-Zn-Mg-Cu (7075 Al) alloy processed via liquid-state quenching, i.e., rapid solidification (specifically melt spinning herein). The as-melt-spun alloy consists of refined grains containing tangled dislocations inside the grains. Following annealing at 393 K (120 °C) for 24 hours, refined grain structure was still retained and grain sizes essentially remained unchanged, but subgrains separated by dense dislocation walls were generated at grain interiors, with a much lower density of dislocations at subgrain interiors than that in the as-melt-spun 7075 Al alloy and dislocation arrays inside some subgrains. The microstructural evolution suggests the absence of recrystallization and the occurrence of recovery primarily via the annihilation and rearrangement of dislocations and the formation of subgrains. Based on the stored energy in dislocations in, and the annealing temperature of, the as-melt-spun 7075 Al alloy, the recovery phenomenon was analyzed and discussed in detail.

  5. Evolution of rapidly solidified NiAlCu(B) alloy microstructure.

    Science.gov (United States)

    Czeppe, Tomasz; Ochin, Patrick

    2006-10-01

    This study concerned phase transformations observed after rapid solidification and annealing at 500, 700 and 800 degrees C in 56.3 Ni-39.9 Al-3.8 Cu-0.06 B (E1) and 59.8 Ni-36.0 Al-4.3 Cu-0.06 B (E2) alloys (composition in at.%). Injection casting led to a homogeneous structure of very small, one-phase grains (2-4 microm in size). In both alloys, the phase observed at room temperature was martensite of L1(0) structure. The process of the formation of the Ni(5)Al(3) phase by atomic reordering proceeded at 285-394 degrees C in the case of E1 alloy and 450-550 degrees C in the case of E2 alloy. Further decomposition into NiAl (beta) and Ni(3)Al (gamma') phases, the microstructure and crystallography of the phases depended on the path of transformations, proceeding in the investigated case through the transformation of martensite crystallographic variants. This preserved precise crystallographic orientation between the subsequent phases, very stable plate-like morphology and very small beta + gamma' grains after annealing at 800 degrees C.

  6. Numerical Research on Magnetic Field, Temperature Field and Flow Field During Melting and Directionally Solidifying TiAl Alloys by Electromagnetic Cold Crucible

    Science.gov (United States)

    Chen, Ruirun; Yang, Yaohua; Gong, Xue; Guo, Jingjie; Su, Yanqing; Ding, Hongsheng; Fu, Hengzhi

    2017-12-01

    The electromagnetic cold crucible (EMCC) technique is an effective method to melt and directionally solidify reactive and high-temperature materials without contamination. The temperature field and fluid flow induced by the electromagnetic field are very important for melting and controlling the microstructure. In this article, a 3D EMCC model for calculating the magnetic field in the charges (TiAl alloys) using the T-Ω finite element method was established and verified. Magnetic fields in the charge under different electrical parameters, positions and dimensions of the charge were calculated and analyzed. The calculated results show that the magnetic field concentrates in the skin layer, and the magnetic flux density ( B) increases with increasing of the frequency, charge diameter and current. The maximum B in the charge is affected by the position of the charge in EMCC ( h 1) and the charge height ( h 2), which emerges at the middle of coils ( h c) when the relationship of h c field in the charge. Consequently, the induced uniform electromagnetic stirring weakens the turbulence and improves temperature uniformity in the vicinity of the solid/liquid (S/L) interface, which is beneficial to forming a planar S/L interface during directional solidification. Based on the above conclusions, the TiAlNb alloy was successfully melted with lower power consumption and directionally solidified by the square EMCC.

  7. Precipitate Evolution and Strengthening in Supersaturated Rapidly Solidified Al-Sc-Zr Alloys

    Science.gov (United States)

    Deane, Kyle; Kampe, S. L.; Swenson, Douglas; Sanders, P. G.

    2017-04-01

    Because of the low diffusivities of scandium and zirconium in aluminum, trialuminide precipitates containing these elements have been reported to possess excellent thermal stability at temperatures of 573 K (300 °C) and higher. However, the relatively low equilibrium solubilities of these elements in aluminum limit the achievable phase fraction and, in turn, strengthening contributions from these precipitates. One method of circumventing this limitation involves the use of rapid solidification techniques to suppress the initial formation of precipitates in alloys containing higher solute compositions. This work specifically discusses the fabrication of supersaturated Al-Sc, Al-Zr, and Al-Sc-Zr alloys via melt spinning, in which supersaturations of at least 0.55 at. pct Zr and 0.8 at. pct Sc are shown to be attainable through XRD analysis. The resulting ribbons were subjected to a multistep aging heat treatment in order to encourage a core-shell precipitate morphology, the precipitate evolution behavior was monitored with XRD and TEM, and the aging behavior was observed. While aging in these alloys is shown to follow similar trends to conventionally processed materials reported in literature, with phase fraction increasing until higher aging temperatures causing a competing dissolution effect, the onset of precipitation begins at lower temperatures than previously observed and the peak hardnesses occurred at higher temperature steps due to an increased aging time associated with increased solute concentration. Peaking in strength at a higher temperature doesn't necessarily mean an increase in thermal stability, but rather emphasizes the need for intelligently designed heat treatments to take full advantage of the potential strengthening of supersaturated Al-Sc-Zr alloys.

  8. Microstructure, biocorrosion and cytotoxicity evaluations of rapid solidified Mg-3Ca alloy ribbons as a biodegradable material.

    Science.gov (United States)

    Gu, X N; Li, X L; Zhou, W R; Cheng, Y; Zheng, Y F

    2010-06-01

    Rapidly solidified (RS) Mg–3Ca alloy ribbons were prepared by the melt-spinning technique at different wheel rotating speeds (15 m s(-1), 30 m s(-1) and 45 m s(-1) with the as-cast Mg–3Ca alloy ingot as a raw material. The RS45 Mg–3Ca alloy ribbon showed a much more fine grain size feature (approximately 200–500 nm) in comparison to the coarse grain size (50–100 μm)of the original as-cast Mg–3Ca alloy ingot. The corrosion electrochemical tests in simulated body fluid indicated that the corrosion rate of the as-cast Mg–3Ca alloy was strongly reduced by the RS procedure and tended to be further decreased with increasing wheel rotating speeds(1.43 mm yr(-1) for RS15, 0.94 mm yr(-1) for RS30 and 0.36 mm yr(-1) for RS45). The RS Mg–3Ca alloy ribbons showed more uniform corrosion morphology compared with the as-cast Mg–3Ca alloy after polarization. The cytotoxicity evaluation revealed that the three experimental as-spun Mg–3Ca alloy ribbon extracts did not induce toxicity to the L-929 cells,whereas the as-cast Mg–3Ca alloy ingot extract did. The L-929 cells showed more improved adhesion on the surfaces of the three as-spun Mg–3Ca alloy ribbons than that of the as-cast Mg–3Ca alloy ingot.

  9. Incorporating an extended dendritic growth model into the CAFE model for rapidly solidified non-dilute alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jie; Wang, Bo [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Zhao, Shunli [Research Institute, Baoshan Iron & Steel Co., Ltd, Shanghai 201900 (China); Wu, Guangxin [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Zhang, Jieyu, E-mail: zjy6162@staff.shu.edu.cn [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Yang, Zhiliang [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China)

    2016-05-25

    We have extended the dendritic growth model first proposed by Boettinger, Coriell and Trivedi (here termed EBCT) for microstructure simulations of rapidly solidified non-dilute alloys. The temperature-dependent distribution coefficient, obtained from calculations of phase equilibria, and the continuous growth model (CGM) were adopted in the present EBCT model to describe the solute trapping behaviors. The temperature dependence of the physical properties, which were not used in previous dendritic growth models, were also considered in the present EBCT model. These extensions allow the present EBCT model to be used for microstructure simulations of non-dilute alloys. The comparison of the present EBCT model with the BCT model proves that the considerations of the distribution coefficient and physical properties are necessary for microstructure simulations, especially for small particles with high undercoolings. Finally, the EBCT model was incorporated into the cellular automaton-finite element (CAFE) model to simulate microstructures of gas-atomized ASP30 high speed steel particles that were then compared with experimental results. Both the simulated and experimental results reveal that a columnar dendritic microstructure preferentially forms in small particles and an equiaxed microstructure forms otherwise. The applications of the present EBCT model provide a convenient way to predict the microstructure of non-dilute alloys. - Highlights: • A dendritic growth model was developed considering non-equilibrium distribution coefficient. • The physical properties with temperature dependence were considered in the extended model. • The extended model can be used to non-dilute alloys and the extensions are necessary in small particles. • Microstructure of ASP30 steel was investigated using the present model and verified by experiment.

  10. Characterization of a rapid thermal anneal TiNxOy/TiSi2 contact barrier

    Science.gov (United States)

    Ho, V. Q.

    1989-07-01

    In this paper, the physical and electrical properties of a TiNxOy/TiSi2 dual layer contact barrier are reported. The TiNxOy/TiSi2 barrier was formed by rapidly annealing a Ti thin film on Si in an N2 ambient. During this process, the Ti film surface reacts with N2 to form a TiNxOy skin layer and the bulk of the Ti film reacts with Si to form an underlying TiSi2 layer. The influences of rapid thermal anneal (RTA) conditions on the TiNxOy layer were investigated by varying the RTA temperature from 600 to 1100° C and cycle duration from 30 to 100 s. It is found that the resulting TiNxOy and TiSi2 layer thicknesses are dependent on RTA temperature and the starting Ti thickness. For a starting Ti thickness of 500Å, 150Å thick TiNxOy and 800Å thick TiSi2 are obtained after an RTA at 900° C for 30 s. The TiNxOy thickness is limited by a fast diffusion of Si into Ti to form TiSi2. When a Ti film is deposited on SiO2, Ti starts to react with SiO2 from 600° C and a significant reduction of the SiO2 thickness is observed after an RTA at 900° C. The resulting layer is composed of a surface TiNxOy layer followed by a complex layer of titanium oxide and titanium suicide. In addition, when Ti is depos-ited on TiSi2, thicker TiNxOy and TiSi2 layers are obtained after RTA. This is because the TiSi2 layer retards the diffusion of Si from the underlying substrate into the Ti layer. NMOSFETs were fabricated using the TiNxOy/TiSi2 as a contact barrier formed by RTA at 900° C for 30 s and a significant reduction of contact resistance was obtained. In addition, electromigration test at a high current density indicated that a significant improvement in mean time to failure (MTF) has been obtained with the barrier.

  11. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part I. Microstructural Characterization of Rapidly Solidified Solders

    Science.gov (United States)

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; Handwerker, Carol A.

    2016-12-01

    Particles of Cu x Al y in Sn-Cu-Al solders have previously been shown to nucleate the Cu6Sn5 phase during solidification. In this study, the number and size of Cu6Sn5 nucleation sites were controlled through the particle size refinement of Cu x Al y via rapid solidification processing and controlled cooling in a differential scanning calorimeter. Cooling rates spanning eight orders of magnitude were used to refine the average Cu x Al y and Cu6Sn5 particle sizes down to submicron ranges. The average particle sizes, particle size distributions, and morphologies in the microstructures were analyzed as a function of alloy composition and cooling rate. Deep etching of the samples revealed the three-dimensional microstructures and illuminated the epitaxial and morphological relationships between the Cu x Al y and Cu6Sn5 phases. Transitions in the Cu6Sn5 particle morphologies from faceted rods to nonfaceted, equiaxed particles were observed as a function of both cooling rate and composition. Initial solidification cooling rates within the range of 103 to 104 °C/s were found to be optimal for realizing particle size refinement and maintaining the Cu x Al y /Cu6Sn5 nucleant relationship. In addition, little evidence of the formation or decomposition of the ternary- β phase in the solidified alloys was noted. Solidification pathways omitting the formation of the ternary- β phase agreed well with observed room temperature microstructures.

  12. Effects of intermetallic phases on the electrochemical properties of rapidly-solidified Si-Cr alloys for rechargeable Li-ion batteries

    Science.gov (United States)

    Ha, Jeong Ae; Jo, In Joo; Park, Won-Wook; Sohn, Keun Yong

    2016-09-01

    The microstructures and the electrochemical properties of rapidly-solidified Si-Cr alloys of various compositions were investigated in order to elucidate the effects of intermetallic phases on the cyclic energy capacity of the materials. Rapidly-solidified ribbons of the alloys were prepared by using a melt-spinning process, which is one of the most efficient rapid-solidification processes. The ribbons were fragmented by using a ball-milling process to produce powders of the alloys. To examine the electrochemical characteristics of the alloys, we mixed each of the alloy powders with Ketjenblack®, a conductive material, and a binder dissolved in deionized water and used it to form electrodes. The electrolyte used was 1.5-M LiPF6 dissolved in ethyl carbonate/dimethyl carbonate/fluoroethylene carbonate. The microstructures and the phases of the alloys were analyzed by using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction analyses. The obtained results showed that the microstructures of the rapidly-solidified Si-Cr alloys were composed of Si and CrSi2 phases. Fine Si particles with diameters of 50 - 100 nm were observed in an eutectic constituent while the sizes of the primary Si and CrSi2 phases were relatively larger at 500 - 900 nm. The specific energy capacities ( C) of the Si-Cr alloys decreased linearly with increasing volume fraction ( f) of the CrSi2 phase as follows: C = -1,667 f + 1,978 after the 50th cycle. The Columbic efficiency after the 3rd cycle increased slightly with increasing volume fraction of the CrSi2 phase; this was effective in improving the cycling capacity of the Si particles.

  13. Influence of cooling rate on microstructure formation during rapid solidification of binary TiAl alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kenel, C., E-mail: Christoph.Kenel@empa.ch; Leinenbach, C.

    2015-07-15

    Highlights: • Rapid solidification studies with varying cooling rates were realized for Ti–Al. • Experiments were combined with finite element simulations of heat transfer. • The resulting microstructure of Ti–Al alloys is strongly dependent on the Al content. • The microstructure and phase transformation behavior can be predicted. • The method allows alloy development for processes involving rapid solidification. - Abstract: Titanium aluminides as structural intermetallics are possible candidates for a potential weight reduction and increased performance of high temperature components. A method for the characterization of the microstructure formation in rapidly solidified alloys was developed and applied for binary Ti–(44–48)Al (at.%). The results show a strong dependency of the microstructure on the Al content at cooling rates between 6 ⋅ 10{sup 2} and 1.5 ⋅ 10{sup 4} K s{sup −1}. The formation of α → α{sub 2} ordering, lamellar α{sub 2} + γ colonies and interdendritic TiAl γ-phase were observed, depending on the Al amount. Based on thermodynamic calculations the observed microstructure can be explained using the CALPHAD approach taking into account the non-equilibrium conditions. The presented method provides a useful tool for alloy development for processing techniques involving rapid solidification with varying cooling rates.

  14. Coupling Effects of Melt Treatment and Ultrasonic Treatment on Solidifying Microstructure and Mechanical Performance of Ti44Al6Nb1Cr Alloy

    Science.gov (United States)

    Deshuang, Zheng; Ruirun, Chen; Tengfei, Ma; Hongsheng, Ding; Yanqing, Su; Jingjie, Guo; Hengzhi, Fu

    2018-02-01

    The coupling effects of melt treatment and ultrasonic treatment on the solidifying microstructure and mechanical performance of Ti44Al6Nb1Cr alloy are investigated. During melt treatment, a low superheat degree is beneficial for microstructure refinement, with the lamellar colony size decreasing from 512 to 243 μm, while a low cooling rate leads to the microstructure coarsening as the lamellar colony size enlarges from 458 to 615 μm. After coupling with ultrasonic treatment, under moderate superheat degree and cooling rate, the original coarse lamellar colony size is significantly refined to 56 and 38 μm, the compressive strength is improved by 60.71 and 47.89 pct, and the compressive strain is enlarged by 80.19 and 112.33 pct, respectively. It is found that the ultrasonic refining efficiency is dominated by the melt temperature, and there is an optimum temperature range near the crystallization temperature: a too-high temperature leads to the remelting of crystal nuclei, impairing the refining efficiency, whereas a too-low temperature results in high viscosity, hindering the ultrasonic effects. Under ultrasonic treatment, the melt supercooling is increased, leading to an extended constitutional supercooling region, which will enlarge the crystal nucleation; the solute enrichment is enhanced, forming a quasi-steady state with a higher solution concentration gradient, which improves the crystal growth velocity.

  15. Rapidly solidified Ag-Cu eutectics: A comparative study using drop-tube and melt fluxing techniques

    Science.gov (United States)

    Yu, Y.; Mullis, A. M.; Cochrane, R. F.

    2016-03-01

    A comparative study of rapid solidification of Ag-Cu eutectic alloy processed via melt fluxing and drop-tube techniques is presented. A computational model is used to estimate the cooling rate and undercooling of the free fall droplets as this cannot be determined directly. SEM micrographs show that both materials consist of lamellar and anomalous eutectic structures. However, below the critical undercooling the morphologies of each are different in respect of the distribution and volume of anomalous eutectic. The anomalous eutectic in flux- undercooled samples preferentially forms at cell boundaries around the lamellar eutectic in the cell body. In drop-tube processed samples it tends to distribute randomly inside the droplets and at much smaller volume fractions. That the formation of the anomalous eutectic can, at least in part, be suppressed in the drop-tube is strongly suggestive that the formation of anomalous eutectic occurs via remelting process, which is suppressed by rapid cooling during solidification.

  16. Room-Temperature Indentation Creep and the Mechanical Properties of Rapidly Solidified Sn-Sb-Pb-Cu Alloys

    Science.gov (United States)

    Kamal, Mustafa; El-Bediwi, A.; Lashin, A. R.; El-Zarka, A. H.

    2016-05-01

    In this paper, we study the room-temperature indentation creep and the mechanical properties of Sn-Sb-Pb-Cu alloys. Rapid solidification from melt using the melt-spinning technique is applied to prepare all the alloys. The experimental results show that the magnitude of the creep displacement increases with the increase in both time and applied load, and the stress exponent increases with the increase in the copper content in the alloys which happens primarily due to the existence of the intermetallic compounds SbSn and Cu6Sn5. The calculated values of the stress exponent are in the range of 2.82 to 5.16, which are in good agreement with the values reported for the Sn-Sb-Pb-Cu alloys. We have also studied and analyzed the structure, elastic modulus, and internal friction of the Sn-Sb-Pb-Cu alloys.

  17. Quantification of Primary Dendritic and Secondary Eutectic Nucleation Undercoolings in Rapidly Solidified Hypo-Eutectic Al-Cu Droplets

    Science.gov (United States)

    Bogno, A.-A.; Khatibi, P. Delshad; Henein, H.; Gandin, Ch.-A.

    2016-09-01

    This paper reports on the quantification of primary dendritic and secondary eutectic nucleation undercoolings during rapid solidification of impulse atomized hypo-eutectic Al-Cu droplets. The procedure consists in determining the eutectic fraction of each investigated droplet from the fraction of intermetallic Al2Cu obtained by Rietveld refinement analysis of neutrons scattering data. The corresponding eutectic nucleation undercooling is then deduced from the metastable phase diagram of the alloy. The primary dendritic nucleation undercooling is subsequently determined using semi-empirical coarsening models of secondary dendrite arms. The two nucleation undercoolings are finally used as input variables to run a microsegregation model for binary alloys. The fractions of eutectic computed by the microsegregation model compare very favorably with the experimental results.

  18. Air-assisted liquid–liquid microextraction by solidifying the floating organic droplets for the rapid determination of seven fungicide residues in juice samples

    Energy Technology Data Exchange (ETDEWEB)

    You, Xiangwei [Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101 (China); College of Science, China Agricultural University, Beijing 100193 (China); Xing, Zhuokan [College of Science, China Agricultural University, Beijing 100193 (China); Liu, Fengmao, E-mail: liufengmao@cau.edu.cn [College of Science, China Agricultural University, Beijing 100193 (China); Zhang, Xu [College of Science, China Agricultural University, Beijing 100193 (China)

    2015-05-22

    Highlights: • A novel AALLME-SFO method was firstly reported for pesticide residue analysis. • Solvent with low density and proper melting point was used as extraction solvent. • The formation of “cloudy solvent” with a syringe only. • The new method avoided the use of organic dispersive solvent. - Abstract: A novel air assisted liquid–liquid microextraction using the solidification of a floating organic droplet method (AALLME-SFO) was developed for the rapid and simple determination of seven fungicide residues in juice samples, using the gas chromatography with electron capture detector (GC-ECD). This method combines the advantages of AALLME and dispersive liquid–liquid microextraction based on the solidification of floating organic droplets (DLLME-SFO) for the first time. In this method, a low-density solvent with a melting point near room temperature was used as the extraction solvent, and the emulsion was rapidly formed by pulling in and pushing out the mixture of aqueous sample solution and extraction solvent for ten times repeatedly using a 10-mL glass syringe. After centrifugation, the extractant droplet could be easily collected from the top of the aqueous samples by solidifying it at a temperature lower than the melting point. Under the optimized conditions, good linearities with the correlation coefficients (γ) higher than 0.9959 were obtained and the limits of detection (LOD) varied between 0.02 and 0.25 μg L{sup −1}. The proposed method was applied to determine the target fungicides in juice samples and acceptable recoveries ranged from 72.6% to 114.0% with the relative standard deviations (RSDs) of 2.3–13.0% were achieved. Compared with the conventional DLLME method, the newly proposed method will neither require a highly toxic chlorinated solvent for extraction nor an organic dispersive solvent in the application process; hence, it is more environmentally friendly.

  19. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part II. Intermetallic Coarsening Behavior of Rapidly Solidified Solders After Multiple Reflows

    Science.gov (United States)

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; Handwerker, Carol A.

    2016-12-01

    Controlling the size, dispersion, and stability of intermetallic compounds in lead-free solder alloys is vital to creating reliable solder joints regardless of how many times the solder joints are melted and resolidified (reflowed) during circuit board assembly. In this article, the coarsening behavior of Cu x Al y and Cu6Sn5 in two Sn-Cu-Al alloys, a Sn-2.59Cu-0.43Al at. pct alloy produced via drip atomization and a Sn-5.39Cu-1.69Al at. pct alloy produced via melt spinning at a 5-m/s wheel speed, was characterized after multiple (1-5) reflow cycles via differential scanning calorimetry between the temperatures of 293 K and 523 K (20 °C and 250 °C). Little-to-no coarsening of the Cu x Al y particles was observed for either composition; however, clustering of Cu x Al y particles was observed. For Cu6Sn5 particle growth, a bimodal size distribution was observed for the drip atomized alloy, with large, faceted growth of Cu6Sn5 observed, while in the melt spun alloy, Cu6Sn5 particles displayed no significant increase in the average particle size, with irregularly shaped, nonfaceted Cu6Sn5 particles observed after reflow, which is consistent with shapes observed in the as-solidified alloys. The link between original alloy composition, reflow undercooling, and subsequent intermetallic coarsening behavior was discussed by using calculated solidification paths. The reflowed microstructures suggested that the heteroepitaxial relationship previously observed between the Cu x Al y and the Cu6Sn5 was maintained for both alloys.

  20. Hydrogen-induced changes in the crystalline structure and mechanical properties of a Zn-Al eutectoid alloy rapidly solidified

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval Jimenez, Alberto; Iturbe Garcia, Jose Luis [Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de Mexico (Mexico)]. E-mail: alberto.sandoval@inin.gob.mx; asandovalj@correo.unam.mx; Negrete Sanchez, Jesus [Universidad Autonoma de San Luis Potosi, San Luis Potosi (Mexico); Torres Villasenor, Gabriel [Instituto de Investigaciones en Materiales, UNAM, Mexico D.F. (Mexico)

    2009-09-15

    Ribbon fractions of a zinc-aluminum eutectoid (Zn40.8Al%at.) alloy, obtained by rapid solidification using melt spinning technique, were submitted to a thermo-hydrogenation process by periods of 1, 6, 18, 24, 30, and 48 hours, to 200 degrees Celsius and 20 atmospheres. Thermo-hydrogenated samples were analyzed by transmission electron microscopy (TEM). Hydrogen-induced changes were produced, such as microstructure refining, development of crystalline defects, microhardness changes and modification of stable crystalline structures to {alpha}R meta-stable phase at room temperature. [Spanish] Fracciones de tiras de una aleacion eutectoide de zinc-aluminio (Zn40.8Al%at.), obtenidas mediante solidificacion rapida usando la tecnica de melt spinning, se sometieron a un proceso de termohidrogenacion por periodos de 1, 6, 18, 24, 30 y 48 horas, a 200 grados centigrados y 20 atmosferas. Las muestras termohidrogenadas se analizaron por microscopia electronica de transmision (MET). Se produjeron cambios inducidos por hidrogeno, tales como la refinacion de la microestructura, el desarrollo de defectos cristalinos, cambios de microdureza y modificacion de las estructuras cristalinas estables a fase metaestable {alpha}R a temperatura ambiente.

  1. Application of Rapidly Solidified Superalloys.

    Science.gov (United States)

    1976-08-01

    from high speed cinematography , the liquid metal dwell time was cut from a period on the order of 80 milliseconds to one less than 10 milliseconds...formation theory, in which a liquid film is disintegrated directly into droplets, anticipates an exponent on_ on the order of 1, still below the values

  2. TEM Characterization and Properties of Cu-1 wt.% TiB2 Nanocomposite Prepared by Rapid Solidification and Subsequent Heat Treatment

    Directory of Open Access Journals (Sweden)

    M. Sobhani

    2012-12-01

    Full Text Available Copper matrix composite reinforced by 1wt.% TiB2 particles was prepared using in situ reaction of Cu-1.4wt.% Ti and Cu-0.7wt.% B by rapid solidification and subsequent heat treatment for 1-20 hrs at 900ºC. High-resolution transmission electron microscopy (HRTEM characterization showed that primary TiB2 particles were formed in liquid copper. Heat treatment of as-solidified samples led to the formation of secondary TiB2 particles via spinodal decomposition of titanium-rich zone inside the grains. Mechanical properties (after 50% reduction in area as well as electrical conductivity of composite were evaluated after heat treatment and were compared with those of pure copper. The results indicated that, due to the formation of secondary TiB2 particles in the matrix, electrical conductivity increased along with hardness up to 10 hrs of heat treatment and reached 65% IACS and 155 HV, respectively. Moreover, the maximum ultimate (i.e. 580 MPa and yield (i.e. 555 MPa strengths of composite were achieved at this time.

  3. Devitrification of rapidly quenched Al–Cu–Ti amorphous alloys

    Indian Academy of Sciences (India)

    Unknown

    X-ray diffraction, transmission electron microscopy and differential scanning calorimetry were carried out to study the transformation from .... ing speed etc) were kept constant for all diffraction expe- riments performed on different ... Differential scanning calorimeter curve of Al50Cu45Ti5 amorphous alloy at scanning rate ...

  4. In vitro and in vivo performance of bioactive Ti6Al4V/TiC/HA implants fabricated by a rapid microwave sintering technique

    Energy Technology Data Exchange (ETDEWEB)

    Choy, Man Tik; Tang, Chak Yin, E-mail: mfcytang@polyu.edu.hk; Chen, Ling; Wong, Chi Tak; Tsui, Chi Pong

    2014-09-01

    Failure of the bone–implant interface in a joint prosthesis is a main cause of implant loosening. The introduction of a bioactive substance, hydroxyapatite (HA), to a metallic bone–implant may enhance its fixation on human bone by encouraging direct bone bonding. Ti6Al4V/TiC/HA composites with a reproducible porous structure (porosity of 27% and pore size of 6–89 μm) were successfully fabricated by a rapid microwave sintering technique. This method allows the biocomposites to be fabricated in a short period of time under ambient conditions. Ti6Al4V/TiC/HA composites exhibited a compressive strength of 93 MPa, compressive modulus of 2.9 GPa and microhardness of 556 HV which are close to those of the human cortical bone. The in vitro preosteoblast MC3T3-E1 cells cultured on the Ti6Al4V/TiC/HA composite showed that the composite surface could provide a biocompatible environment for cell adhesion, proliferation and differentiation without any cytotoxic effects. This is among the first attempts to study the in vivo performance of load-bearing Ti6Al4V/TiC and Ti6Al4V/TiC/HA composites in a live rabbit. The results indicated that the Ti6Al4V/TiC/HA composite had a better bone–implant interface compared with the Ti6Al4V/TiC implant. Based on the microstructural features, the mechanical properties, and the in vitro and in vivo test results from this study, the Ti6Al4V/TiC/HA composites have the potential to be employed in load-bearing orthopedic applications. - Highlights: • Ti6Al4V/TiC and Ti6Al4V/TiC/HA composites were fabricated by microwave sintering. • Ti6Al4V/TiC/HA exhibited mechanical properties close to human cortical bone. • Ti6Al4V/TiC/HA could provide a biocompatible environment for bone cell growth. • Ti6Al4V/TiC/HA showed a better bone–implant interface than Ti6Al4V/TiC. • Ti6Al4V/TiC/HA could be used for bone replacement under load-bearing conditions.

  5. Liquid Phase Separation and the Aging Effect on Mechanical and Electrical Properties of Laser Rapidly Solidified Cu100−xCrx Alloys

    Directory of Open Access Journals (Sweden)

    Song-Hua Si

    2015-11-01

    Full Text Available Duplex structure Cu-Cr alloys are widely used as contact materials. They are generally designed by increasing the Cr content for the hardness improvement, which, however, leads to the unfavorable rapid increase of the electrical resistivity. The solidification behavior of Cu100−xCrx (x = 4.2, 25 and 50 in wt.% alloys prepared by laser rapid solidification is studied here, and their hardness and electrical conductivity after aging are measured. The results show that the Cu-4.2%Cr alloy has the most desirable combination of hardness and conductive properties after aging in comparison with Cu-25%Cr and Cu-50%Cr alloys. Very importantly, a 50% improvement in hardness is achieved with a simultaneous 70% reduction in electrical resistivity. The reason is mainly attributed to the liquid phase separation occurring in the Cu-4.2%Cr alloy, which introduces a large a

  6. In vitro and in vivo performance of bioactive Ti6Al4V/TiC/HA implants fabricated by a rapid microwave sintering technique.

    Science.gov (United States)

    Choy, Man Tik; Tang, Chak Yin; Chen, Ling; Wong, Chi Tak; Tsui, Chi Pong

    2014-09-01

    Failure of the bone-implant interface in a joint prosthesis is a main cause of implant loosening. The introduction of a bioactive substance, hydroxyapatite (HA), to a metallic bone-implant may enhance its fixation on human bone by encouraging direct bone bonding. Ti6Al4V/TiC/HA composites with a reproducible porous structure (porosity of 27% and pore size of 6-89 μm) were successfully fabricated by a rapid microwave sintering technique. This method allows the biocomposites to be fabricated in a short period of time under ambient conditions. Ti6Al4V/TiC/HA composites exhibited a compressive strength of 93 MPa, compressive modulus of 2.9 GPa and microhardness of 556 HV which are close to those of the human cortical bone. The in vitro preosteoblast MC3T3-E1 cells cultured on the Ti6Al4V/TiC/HA composite showed that the composite surface could provide a biocompatible environment for cell adhesion, proliferation and differentiation without any cytotoxic effects. This is among the first attempts to study the in vivo performance of load-bearing Ti6Al4V/TiC and Ti6Al4V/TiC/HA composites in a live rabbit. The results indicated that the Ti6Al4V/TiC/HA composite had a better bone-implant interface compared with the Ti6Al4V/TiC implant. Based on the microstructural features, the mechanical properties, and the in vitro and in vivo test results from this study, the Ti6Al4V/TiC/HA composites have the potential to be employed in load-bearing orthopedic applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al-5Mg-Mn Alloys Solidified Under Near-Rapid Cooling.

    Science.gov (United States)

    Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong

    2016-01-29

    Mn was an important alloying element used in Al-Mg-Mn alloys. However, it had to be limited to a low level (alloy with low Fe content (alloys (0.5 wt % Fe), intermetallic Al₆(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al₆(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al₆(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al₆(Fe,Mn) to become the primary phase at a lower Mn content.

  8. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al–5Mg–Mn Alloys Solidified Under Near-Rapid Cooling

    Science.gov (United States)

    Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong

    2016-01-01

    Mn was an important alloying element used in Al–Mg–Mn alloys. However, it had to be limited to a low level (alloy with low Fe content (alloys (0.5 wt % Fe), intermetallic Al6(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al6(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al6(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al6(Fe,Mn) to become the primary phase at a lower Mn content. PMID:28787888

  9. Inducing magnetic anisotropy and optimized microstructure in rapidly solidified Nd-Fe-B based magnets by thermal gradient, magnetic field and hot deformation

    Science.gov (United States)

    Zhao, L. Z.; Li, W.; Wu, X. H.; Hussain, M.; Liu, Z. W.; Zhang, G. Q.; Greneche, J. M.

    2016-10-01

    Direct preparation of Nd-Fe-B alloys by rapid solidification of copper mold casting is a very simple and low cost process for mini-magnets, but these magnets are generally magnetically isotropic. In this work, high coercivity Nd24Co20Fe41B11Al4 rods were produced by injection casting. To induce magnetic anisotropy, temperature gradient, assisted magnetic field, and hot deformation (HD) procedures were employed. As-cast samples showed non-uniform microstructure due to the melt convection. The thermal gradient during solidification led to the formation of radially distributed acicular hard magnetic grains, which gives the magnetic anisotropy. The growth of the oriented grains was confirmed by phase field simulation. A magnetic field up to 1 T applied along the casting direction could not induce significant magnetic anisotropy, but it improved the magnetic properties by reducing the non-uniformity and forming a uniform microstructure. The annealed alloys exhibited high intrinsic coercivity but disappeared anisotropy. HD was demonstrated to be a good approach for inducing magnetic anisotropy and enhanced coercivity by deforming and refining the grains. This work provides an alternative approach for preparing fully dense Nd-rich anisotropic bulk Nd-Fe-B magnets.

  10. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al–5Mg–Mn Alloys Solidified Under Near-Rapid Cooling

    Directory of Open Access Journals (Sweden)

    Yulin Liu

    2016-01-01

    Full Text Available Mn was an important alloying element used in Al–Mg–Mn alloys. However, it had to be limited to a low level (<1.0 wt % to avoid the formation of coarse intermetallics. In order to take full advantage of the benefits of Mn, research was carried out to investigate the possibility of increasing the content of Mn by studying the effect of cooling rate on the formation of Fe- and Mn-rich intermetallics at different content levels of Mn and Fe. The results indicated that in Al–5Mg–Mn alloy with low Fe content (<0.1 wt %, intermetallic Al6(Fe,Mn was small in size and amount. With increasing Mn content, intermetallic Al6(Fe,Mn increased, but in limited amount. In high-Fe-containing Al–5Mg–Mn alloys (0.5 wt % Fe, intermetallic Al6(Fe,Mn became the dominant phase, even in the alloy with low Mn content (0.39 wt %. Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al6(Fe,Mn was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al6(Fe,Mn phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al6(Fe,Mn to become the primary phase at a lower Mn content.

  11. Ti-thickness-dependent electromigration resistance for Ti/Al-Cu-Si metallization with and without barrier rapid-thermal-anneal in an ammonia ambient

    Science.gov (United States)

    Fu, Kuan Y.; Kawasaki, Hisao; Olowolafe, Johnson O.; Pyle, Ronald E.

    1993-05-01

    The electromigration resistance for Al-Cu-Si alloy over a Ti underlayer as a function of the initial Ti thickness in the range of 0 angstroms - 1000 angstroms is investigated. After the Ti deposition, test structures have been divided into groups with and without a rapid thermal anneal (RTA) in an ammonia ambient to form a TiN barrier. The electromigration resistance of these barrier metallization systems, in general, increases with the initial Ti thickness, except when the initial Ti thickness is less than 600 angstroms for the RTA TiN/Al-Cu-Si system. A model is proposed to explain this electromigration characteristic as a function of the initial Ti thickness for these barrier metallization systems, with the support of texture analysis of the Al-alloy surface and stress measurements of barrier layers using X-ray diffraction and wafer curvature. This study highlights a direction of how a Ti-based barrier metallization system should be processed in order to optimize its electromigration resistance.

  12. Rapid synthesis of rutile TiO2 nano-flowers by dealloying Cu60Ti30Y10 metallic glasses

    Science.gov (United States)

    Wang, Ning; Pan, Ye; Wu, Shikai; Zhang, Enming; Dai, Weiji

    2018-01-01

    The 3D nanostructure rutile TiO2 photocatalyst was rapidly synthesized by dealloying method using Cu60Ti30Y10 amorphous ribbons as precursors. The preparation period was kept down to just 3 h, which is much shorter than those of the samples by dealloying Cu60Ti30Al10, Cu70Ti30 and Cu60Ti30Sn10. The synthesized sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). XRD and XPS reveal the successful synthesis of rutile TiO2. The SEM and TEM images show that the synthesized rutile TiO2 nano-material presents homogeneous distributed 3D nanoflowers structure, which is composed of large quantities of fine rice-like nanorods (40-150 nm in diameter and 100-250 nm in length). BET specific surface areas of the samples were investigated by N2 adsorption-desorption isotherms, the fabricated rutile TiO2 exhibits very high specific surface area (194.08 m2/g). The photocatalytic activities of the samples were evaluated by degrading rhodamine B (RhB) dye (10 mg/L) under the irradiation of both simulated visible light (λ > 420 nm) and ultraviolet (UV) light (λ = 365 nm). The results show that the photocatalytic activity of rutile TiO2 prepared by dealloying Cu60Ti30Y10 amorphous ribbons is higher than those of commercial rutile and the sample synthesized by dealloying Cu70Ti30 precursors. The advantages of both short preparation period and superior photocatalytic activity suggest that Cu60Ti30Y10 metallic glasses are really a kind of perfect titanium source for rapidly fabricating high efficient TiO2 nano-materials. In addition, the influence of chemical composition of the amorphous precursors on preparation period of the rutile TiO2 nano-material was investigated from the point of view of standard electrode potentials.

  13. In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating

    Science.gov (United States)

    Kenel, C.; Schloth, P.; Van Petegem, S.; Fife, J. L.; Grolimund, D.; Menzel, A.; Van Swygenhoven, H.; Leinenbach, C.

    2016-03-01

    Beam-based additive manufacturing (AM) typically involves high cooling rates in a range of 103-104 K/s. Therefore, new techniques are required to understand the non-equilibrium evolution of materials at appropriate time scales. Most technical alloys have not been optimized for such rapid solidification, and microstructural, phase, and elemental solubility behavior can be very different. In this work, the combination of complementary in situ synchrotron micro-x-ray diffraction (microXRD) and small angle x-ray scattering (SAXS) studies with laser-based heating and rapid cooling is presented as an approach to study alloy behavior under processing conditions similar to AM techniques. In rapidly solidified Ti-48Al, the full solidification and phase transformation sequences are observed using microXRD with high temporal resolution. The high cooling rates are achieved by fast heat extraction. Further, the temperature- and cooling rate-dependent precipitation of sub-nanometer clusters in an Al-Cu-Mg alloy can be studied by SAXS. The sensitivity of SAXS on the length scales of the newly formed phases allows their size and fraction to be determined. These techniques are unique tools to help provide a deeper understanding of underlying alloy behavior and its influence on resulting microstructures and properties after AM. Their availability to materials scientists is crucial for both in-depth investigations of novel alloys and also future production of high-quality parts using AM.

  14. Corrosion inhibitor storage and release property of TiO{sub 2} nanotube powder synthesized by rapid breakdown anodization method

    Energy Technology Data Exchange (ETDEWEB)

    Arunchandran, C.; Ramya, S.; George, R.P. [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Kamachi Mudali, U., E-mail: kamachi@igcar.gov.in [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► TiO{sub 2} nanotube powders were synthesized by rapid breakdown anodization method. ► Benzotriazole was loaded into the TiO{sub 2} nanotube powders. ► Low pH induced release of benzotriazole from TiO{sub 2} nanotube powders was proved. -- Abstract: Titanium dioxide (TiO{sub 2}) is one of the most studied substances in material science due to its versatile properties and diverse applications. In this study titanium dioxide nanotube powder were synthesized by rapid breakdown anodization (RBA) method. The synthesis involved potentiostatic anodization of titanium foil in 0.1 M HClO{sub 4} electrolyte under an applied voltage of 20 V and rapid stirring. The morphology and the phase of titanium dioxide nanotube powder were studied using field emission scanning electron microscopy, laser Raman spectroscopy and high resolution transmission electron microscopy. Benzotriazole was chosen as model inhibitor to evaluate TiO{sub 2} nanotube powder's corrosion inhibitor loading and releasing properties. The storage and release properties of TiO{sub 2} nanotube powder were studied using UV–visible spectroscopy and thermogravimetric analysis.

  15. In situ controlled rapid growth of novel high activity TiB2/(TiB2–TiN hierarchical/heterostructured nanocomposites

    Directory of Open Access Journals (Sweden)

    Jilin Wang

    2017-10-01

    Full Text Available In this work, a reaction coupling self-propagating high-temperature synthesis (RC-SHS method was developed for the in situ controlled synthesis of novel, high activity TiB2/(TiB2–TiN hierarchical/heterostructured nanocomposites using TiO2, Mg, B2O3, KBH4 and NH4NO3 as raw materials. The as-synthesized samples were characterized using X-ray diffraction (XRD, scanning electron microscope (SEM, X-ray energy dispersive spectroscopy (EDX, transition electron microscopy (TEM, high-resolution TEM (HRTEM and selected-area electron diffraction (SAED. The obtained TiB2/TiN hierarchical/heterostructured nanocomposites demonstrated an average particle size of 100–500 nm, and every particle surface was covered by many multibranched, tapered nanorods with diameters in the range of 10–40 nm and lengths of 50–200 nm. In addition, the tapered nanorod presents a rough surface with abundant exposed atoms. The internal and external components of the nanorods were TiB2 and TiN, respectively. Additionally, a thermogravimetric and differential scanning calorimetry analyzer (TG-DSC comparison analysis indicated that the as-synthesized samples presented better chemical activity than that of commercial TiB2 powders. Finally, the possible chemical reactions as well as the proposed growth mechanism of the TiB2/(TiB2–TiN hierarchical/heterostructured nanocomposites were further discussed.

  16. Fabrication of Intermetallic Titanium Alloy Based on Ti2AlNb by Rapid Quenching of Melt

    Science.gov (United States)

    Senkevich, K. S.; Serov, M. M.; Umarova, O. Z.

    2017-11-01

    The possibility of fabrication of rapidly quenched fibers from alloy Ti - 22Al - 27Nb by extracting a hanging melt drop is studied. The special features of the production of electrodes for spraying the fibers by sintering mechanically alloyed powdered components of the alloy, i.e., titanium hydride, niobium, and aluminum dust, are studied. The rapidly quenched fibers with homogeneous phase composition and fine-grained structure produced from alloy Ti - 22Al - 27Nb are suitable for manufacturing compact semiproducts by hot pressing.

  17. Rapid and efficient photocatalytic reduction of hexavalent chromium by using “water dispersible” TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Kang, Shi-Zhao, E-mail: kangsz@sit.edu.cn; Li, Xiangqing; Qin, Lixia; Yan, Hao; Mu, Jin, E-mail: mujin@sit.edu.cn

    2016-08-01

    In the present work, “water dispersible” TiO{sub 2} nanoparticles were prepared, and meanwhile, their photocatalytic activity was systematically tested for the reduction of aqueous Cr(VI) ions. It is found that the as-prepared “water dispersible” TiO{sub 2} nanoparticles are a highly efficient photocatalyst for the reduction of Cr(VI) ions in water under UV irradiation, and suitable for the remediation of Cr(VI) ions wastewater with low concentration. Compared with commercial TiO{sub 2} nanoparticles (P25), the “water dispersible” TiO{sub 2} nanoparticles exhibit 3.8-fold higher photocatalytic activity. 100% Cr (VI) ions can be reduced into Cr(III) ions within 10 min when the Cr (VI) ions initial concentration is 10 mg L{sup −1}. Moreover, the electrical energy consumption can be obviously decreased using the “water dispersible” TiO{sub 2} nanoparticles. These results suggest that the “water dispersible” TiO{sub 2} nanoparticles are a promising photocatalyst for rapid removal of Cr (VI) in environmental therapy. - Highlights: • “Water dispersible” TiO{sub 2} nanoparticles with high photocatalytic activity. • 100% Cr (VI) (10 mg L{sup −1}) can be reduced within 10 min. • Obvious decrease of electrical energy consumption.

  18. Rapid fabrication of TiO2@carboxymethyl cellulose coatings capable of shielding UV, antifog and delaying support aging.

    Science.gov (United States)

    Li, Xiaozhou; Lv, Junping; Li, Dehuai; Wang, Lin

    2017-08-01

    Agricultural plastic films capable of shielding UV, filtering visible light and antifog are important to prolong their life and protect safeties of agriculturists and crops. In this work, high stable and small size TiO2@polymer nanoparticles (NPs) were prepared by an efficient one-pot microwave synthesis using titanic sulfate as Ti resource, carboxymethyl cellulose sodium (CMC) as complexing agent and stabilizer. The TiO2@CMC NPs obtained were then utilized to fabricate poly(ethylene imine) (PEI)/TiO2@CMC coatings on the surface of polypropylene films by a layer-by-layer assembly technique. The TiO2@CMC NPs show rapid deposition rate because small, spherical and anion-rich TiO2@CMC NPs possess large specific surface area and fast diffusion rate. More importantly, property experiments confirm that (PEI/TiO2@CMC)*15 coatings can not only effectively shield UV rays, filter visible light and prevent fogging but also delay the aging of their supports. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment

    NARCIS (Netherlands)

    Li Jiaping, L.; de Wijn, J.R.; van Blitterswijk, Clemens; de Groot, K.

    2006-01-01

    Three-dimensional (3D) fiber deposition (3DF), a rapid prototyping technology, was successfully directly applied to produce novel 3D porous Ti6Al4V scaffolds with fully interconnected porous networks and highly controllable porosity and pore size. A key feature of this technology is the 3D

  20. Rapid fabrication of mesoporous TiO2 thin films by pulsed fibre laser for dye sensitized solar cells

    Science.gov (United States)

    Hadi, Aseel; Alhabradi, Mansour; Chen, Qian; Liu, Hong; Guo, Wei; Curioni, Michele; Cernik, Robert; Liu, Zhu

    2018-01-01

    In this paper we demonstrate for the first time that a fibre laser with a wavelength of 1070 nm and a pulse width of milliseconds can be applied to generate mesoporous nanocrystalline (nc) TiO2 thin films on ITO coated glass in ambient atmosphere, by complete vaporisation of organic binder and inter-connection of TiO2 nanoparticles, without thermally damaging the ITO layer and the glass substrate. The fabrication of the mesoporous TiO2 thin films was achieved by stationary laser beam irradiation of 1 min. The dye sensitized solar cell (DSSC) with the laser-sintered TiO2 photoanode reached higher power conversion efficiency (PCE) of 3.20% for the TiO2 film thickness of 6 μm compared with 2.99% for the furnace-sintered. Electrochemical impedance spectroscopy studies revealed that the laser sintering under the optimised condition effectively decreased charge transfer resistance and increased electron lifetime of the TiO2 thin films. The use of the fibre laser with over 40% wall-plug efficiency offers an economically-feasible, industrial viable solution to the major challenge of rapid fabrication of large scale, mass production of mesoporous metal oxide thin film based solar energy systems, potentially for perovskite and monolithic tandem solar cells, in the future.

  1. Influences of rapid thermal process on solution-deposited Ti-silicate/Si films: Phase segregation, composition and interface changes, and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Muk; Hwang, Soo Min [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Hwang, Soon Yong [Nano-Optical Property Laboratory and Department of Physics, Kyung Hee University, Seoul (Korea, Republic of); Kim, Tae Woong; Lee, Sang Hyub; Park, Geun Chul; Choi, Ju Yun [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Yoon, Jae Jin [KLA-Tencor Corporation, 1 Technology Drive, Milpitas, CA 95035 (United States); Kim, Tae Jung; Kim, Young Dong [Nano-Optical Property Laboratory and Department of Physics, Kyung Hee University, Seoul (Korea, Republic of); Kim, Hyoungsub [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Lim, Jun Hyung, E-mail: lanosjh@gmail.com [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Joo, Jinho, E-mail: jinho@skku.edu [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon (Korea, Republic of)

    2014-05-01

    Ti-silicate/Si films were synthesized using a solution deposition route, and the effects of a rapid thermal process (RTP) on the microstructure, chemical bonding state, and interfacial layer (IL) properties were investigated and correlated to the permittivity of the films. The precursor solution was prepared from Ti(IV)-isopropoxide and tetraethylorthosilicate, spin-coated on HF-treated Si substrates, dried, pyrolyzed (400 °C), and subjected to the RTP at 700 °C–1000 °C. The Ti-silicate film consisted of Ti-rich and Si-rich silicates after the pyrolysis and phase segregation became significant as the RTP temperature increase. The silicates segregated into TiO{sub 2}-like nanocrystals and Si-richer silicate at up to 850 °C, and the TiO{sub 2}-like nanocrystals grew remarkably while the Si-richer silicate was converted into nearly pure SiO{sub 2} at 1000 °C. In addition, the Ti content in the Ti-silicate layer decreased due to Ti out-diffusion to the IL and substrate. Based on HRTEM, FT-IR, XPS, and SIMS analyses, we suggest a model of phase segregation with Ti diffusion and demonstrate that the Ti diffusion can be a critical issue in applications of Ti-silicate/Si systems, in addition to other well-known phenomena, including phase segregation, TiO{sub 2} precipitation, or interface properties. - Highlights: • Role of RTP on microstructure and properties of Ti-silicate film was investigated. • Phase segregation and Ti diffusion varied with the RTP. • Effects of the Ti diffusion on the dielectric properties were firstly investigated. • The Ti diffusion seemed to be one of the critical issues in the film applications. • New phase segregation model with Ti diffusion was suggested.

  2. Rapid sintering and microstructure evolution of composite TiC cermet

    Science.gov (United States)

    Ding, L.; Liu, X. G.; Pan, Y. L.; Wang, Y. W.; Xiang, D. P.

    2017-01-01

    Ti, Ni, activated carbon, and Mo powders were used as raw materials to prepare a composite TiC cermet in this study. The powders were mixed and prepared through high-energy ball milling and then sintered in a spark plasma sintering (SPS) system. Results revealed that ball milling time affected the raw materials. After ball milling was performed for 10 h, Ti and C particles reacted and generated TiC, meanwhile, the solid Mo solutionized in TiC and formed (Ti,Mo)C lumps. XRD results showed that the product of (Ti,Mo)C cermet with high hardness can be prepared at a low sintering temperature of 1150 °C. The microstructure of composite TiC cermet was different from the traditional core-ring structure. In particular, the developed microstructure comprises a (Ti,Mo)C-Ni dark-gray phase at the center surrounded by (Ti,Mo)C light-gray phase and dispersed Mo white phase.

  3. Synthesis and Rapid Sintering of Nanocrystalline CoTi-ZrO{sub 2} Composite

    Energy Technology Data Exchange (ETDEWEB)

    Shon, In-Jin [Chonbuk National University, Jeonju (Korea, Republic of)

    2016-11-15

    CoTi and ZrO{sub 2} nanopowders were mechanochemically synthesized from CoTiO{sub 3} and Zr powders according to the reaction (2CoTiO{sub 3} + 3Zr → 2CoTi + 3ZrO{sub 2}). The milled powders were then consolidated by pulsed current-activated sintering within two minutes under an applied pressure of 80MPa. The average hardness and fracture toughness of the nanostructured 2CoTi-3ZrO{sub 2} composite sintered from high energy ball milled powder were 940 kg/mm{sup 2} and 6 MPa·m{sup 1/2}, respectively. The mechanical properties of the composite were higher than those of monolithic CoTi or ZrO{sub 2}, respectively. The microstructure and phases of the composite were investigated using FE-SEM and XRD.

  4. PAHs leaching test for solidified waste

    Energy Technology Data Exchange (ETDEWEB)

    Henzler, R.; Grathwohl, P. [Tuebingen Univ. (Germany). Center for Applied Geoscience

    2003-07-01

    The treatment of waste materials to allow recycling or safe disposal is a rapidly expanding business, but also subject to increasing public awareness of enviromental issues and tightening of the regularise governing in many countries. One of the most widely used treatment for wastes is stabilisation /solidification using a cement matrix to obtain a monolithic residue. The most common test procedure to assess the risks of contaminant release into water (seepage, surface and groundwater) is the so-called ''tank leaching test'' or ''diffusion test'' (NEN 7345, Mulder et al 2001, Hohberg et al 2000), in which a solidified specimen is leached with water during different periods of time. The tests are usually done at room temperatures between 20 C and 25 C. However, the temperature under natural conditions are lower resulting in lower contaminant release rates. (subsurface temperature: 5 C - 10 C). If the thermodynamics of the contaminant release, especially the activation energy of desorption and diffusion, is known, it is possible to estimate the contaminant release for lower temperatures, e.g. down to groundwater temperatures. In addition the test can be accelerated if performed at high temperatures.

  5. Enhanced properties of nanostructured TiO2-graphene composites by rapid sintering

    Science.gov (United States)

    Shon, In-Jin; Yoon, Jin-Kook; Hong, Kyung-Tae

    2017-10-01

    Despite of many attractive properties of TiO2, the drawback of TiO2 ceramic is low fracture toughness for widely industrial application. The method to improve the fracture toughness and hardness has been reported by addition of reinforcing phase to fabricate a nanostructured composite. In this regard, graphene has been evaluated as an ideal second phase in ceramics. Nearly full density of nanostructured TiO2-graphene composite was achieved within one min using pulsed current activated sintering. The effect of graphene on microstructure, fracture toughness and hardness of TiO2-graphene composite was evaluated using Vickers hardness tester and field emission scanning electron microscopy. The grain size of TiO2 in the TiO2-x vol% (x = 0, 1, 3, and 5) graphene composite was greatly reduced with increase in addition of graphene. Both hardness and fracture toughness of TiO2-graphene composites simultaneously increased in the addition of graphene.

  6. Enhanced Photoelectrochemical Behavior of H-TiO2 Nanorods Hydrogenated by Controlled and Local Rapid Thermal Annealing.

    Science.gov (United States)

    Wang, Xiaodan; Estradé, Sonia; Lin, Yuanjing; Yu, Feng; Lopez-Conesa, Lluis; Zhou, Hao; Gurram, Sanjeev Kumar; Peiró, Francesca; Fan, Zhiyong; Shen, Hao; Schaefer, Lothar; Braeuer, Guenter; Waag, Andreas

    2017-12-01

    Recently, colored H-doped TiO2 (H-TiO2) has demonstrated enhanced photoelectrochemical (PEC) performance due to its unique crystalline core-disordered shell nanostructures and consequent enhanced conduction behaviors between the core-shell homo-interfaces. Although various hydrogenation approaches to obtain H-TiO2 have been developed, such as high temperature hydrogen furnace tube annealing, high pressure hydrogen annealing, hydrogen-plasma assisted reaction, aluminum reduction and electrochemical reduction etc., there is still a lack of a hydrogenation approach in a controlled manner where all processing parameters (temperature, time and hydrogen flux) were precisely controlled in order to improve the PEC performance of H-TiO2 and understand the physical insight of enhanced PEC performance. Here, we report for the first time a controlled and local rapid thermal annealing (RTA) approach to prepare hydrogenated core-shell H-TiO2 nanorods grown on F:SnO2 (FTO) substrate in order to address the degradation issue of FTO in the typical TiO2 nanorods/FTO system observed in the conventional non-RTA treated approaches. Without the FTO degradation in the RTA approach, we systematically studied the intrinsic relationship between the annealing temperature, structural, optical, and photoelectrochemical properties in order to understand the role of the disordered shell on the improved photoelectrochemical behavior of H-TiO2 nanorods. Our investigation shows that the improvement of PEC performance could be attributed to (i) band gap narrowing from 3.0 to 2.9 eV; (ii) improved optical absorption in the visible range induced by the three-dimensional (3D) morphology and rough surface of the disordered shell; (iii) increased proper donor density; (iv) enhanced electron-hole separation and injection efficiency due to the formation of disordered shell after hydrogenation. The RTA approach developed here can be used as a suitable hydrogenation process for TiO2 nanorods/FTO system for

  7. Tissue viability (TiVi) imaging: utility in assessment of rapid changes in the cutaneous microvasculature

    Science.gov (United States)

    McNamara, Paul M.; O'Doherty, Jim; O'Connell, Marie-Louise; Fitzgerald, Barry W.; Anderson, Chris D.; Nilsson, Gert E.; Leahy, Martin J.

    2010-02-01

    This report outlines results from an independent study assessing the clinical potential of an emerging, contemporary imaging technology. Tissue Viability (TiVi) imaging is an easily implemented, non-invasive, and portable technique which maps the blood circulation in the surface dermal layer. However, its routine clinical implementation awaits the development of the necessary standardised protocols. Thus the pilot study examines the efficacy of a novel TiVi imaging device within a localised skin blood flow occlusion protocol. The test was administered to the upper volar forearm of 19 healthy subjects (10:9 Female:Male) for 5 different time periods ranging from 5 to 25 seconds. Dermal areas corresponding to 100 × 100 pixels (2.89 cm2) were monitored for 60 seconds prior to, during and after each occlusal test. Our results support the relevance of a TiVi occlusion protocol for physiological assessment of the skin microcirculation.

  8. Pt-Enhanced Mesoporous Ti3+/TiO2 with Rapid Bulk to Surface Electron Transfer for Photocatalytic Hydrogen Evolution.

    Science.gov (United States)

    Lian, Zichao; Wang, Wenchao; Li, Guisheng; Tian, Fenghui; Schanze, Kirk S; Li, Hexing

    2017-05-24

    Pt-doped mesoporous Ti3+ self-doped TiO2 (Pt-Ti3+/TiO2) is in situ synthesized via an ionothermal route, by treating metallic Ti in an ionic liquid containing LiOAc, HOAc, and a H2PtCl6 aqueous solution under mild ionothermal conditions. Such Ti3+-enriched environment, as well as oxygen vacancies, is proven to be effective for allowing the in situ reduction of Pt4+ ions uniformly located in the framework of the TiO2 bulk. The photocatalytic H2 evolution of Pt-Ti3+/TiO2 is significantly higher than that of the photoreduced Pt loaded on the original TiO2 and commercial P25. Such greatly enhanced activity is due to the various valence states of Pt (Ptn+, n = 0, 2, or 3), forming Pt-O bonds embedded in the framework of TiO2 and ultrafine Pt metal nanoparticles on the surface of TiO2. Such Ptn+-O bonds could act as the bridges for facilitating the photogenerated electron transfer from the bulk to the surface of TiO2 with a higher electron carrier density (3.11 × 1020 cm-3), about 2.5 times that (1.25 × 1020 cm-3) of the photoreduced Pt-Ti3+/TiO2 sample. Thus, more photogenerated electrons could reach the Pt metal for reducing protons to H2.

  9. Characterization of Solidifiers used for Oil Spill Remediation

    Science.gov (United States)

    The physical characteristics and chemical composition of oil spill solidifiers were studied, and correlation of these properties with product effectiveness enabled determination of characteristics that are desirable in a good solidifier. The analyses revealed that the commercial...

  10. Boosting photoelectrochemical performance of hematite photoanode with TiO2 underlayer by extremely rapid high temperature annealing

    Science.gov (United States)

    Wang, Dan; Chen, Ying; Zhang, Yang; Zhang, Xintong; Suzuki, Norihiro; Terashima, Chiaki

    2017-11-01

    Extremely rapid high temperature annealing (ER-HTA) was used to boost the photoelectrochemical (PEC) performance of hematite thin film deposited on a TiO2 nanosheet-modified SnO2:F substrate (FTO-TN-HM). The PEC performance of FTO-TN-HM photoanodes were strongly enhanced with increasing ER-HTA temperatures from 700 to 820 °C with a holding time as short as 30 s. The photocurrent density of FTO-TN-HM photoanode treated by ER-HTA at 800 °C was 0.49 mA cm-2 and interfacial hole transfer efficiency of 32% was achieved at 1.23 V vs. RHE, which were 18.8 and 16 times as great as FTO-TN-HM photoanodes annealed at 500 °C for 30 min, respectively. The effect of ER-HTA on the PEC performance of FTO-TN-HM photoanodes were studied comparatively, which suggested that the improved crystallinity, decreased recombination through surface states, and enhanced interfacial Ti4+ diffusion all contributed to their advanced PEC performance. Our studies confirm that the ER-HTA treatment is an effective method to improve the PEC properties of hematite photoanodes with TiO2 underlayer and might be applicable for other semiconducting photoelectrodes to get better PEC performance.

  11. Thermal gradient analysis of solidifying casting

    Directory of Open Access Journals (Sweden)

    J. Suchoń

    2008-08-01

    Full Text Available For description of casting solidification and crystallization process the thermal derivative analysis (TDA is commonly used. Besides the process kinetics considered in TDA method to describe the solidification process, the thermal gradient analysis can be also used for this purpose [1, 2]. In conducted studies analysis of thermal gradient distribution inside the solidifying wedge casting was shown which enabled determination of heat flow intensity on casting section.

  12. The effect of gravity level on the average primary dendritic spacing of a directionally solidified superalloy

    Science.gov (United States)

    Mccay, M. H.; Lee, J. E.; Curreri, P. A.

    1986-01-01

    The effect of alternating low (0.01 g) and high (1.8 g) gravity force on the primary spacings in the dendrite structure in a directionally solidified Ni-based superalloy (PWA 1480, containing 5 pct Co, 10 pct Cr, 4 pct W, 12 pct Ta, 5 pct Al, 1.5 pct Ti, and the balance Ni) was investigated using samples solidified in a directional solidification furnace aboard the NASA KC-135 aircraft that made a series of low-g parabolas. The cross-section slices for each growth rate were polished and etched with Kallings II, and the primary dendritic arm spacings were measured using the method of Jacobi and Schwerdtfeger (1976). The arm spacings were found to fluctuate with gravity force, increasing as the gravity level decreased, and growing finer as gravity increased.

  13. Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @rGO@TiO2-catalyzed photo-Fenton system

    Science.gov (United States)

    Yang, Xiaoling; Chen, Wei; Huang, Jianfei; Zhou, Ying; Zhu, Yihua; Li, Chunzhong

    2015-05-01

    Herein, a ternary nanocomposite with TiO2 nanoparticles anchored on reduced graphene oxide (rGO)-encapsulated Fe3O4 spheres (Fe3O4@rGO@TiO2) is presented as a high efficient heterogeneous catalyst for photo-Fenton degradation of recalcitrant pollutants under neutral pH. Fe3O4@rGO@TiO2 was synthesized by depositing TiO2 nanoparticles on the surface of the Fe3O4 spheres wrapped by graphene oxide (GO) which was obtained by an electrostatic layer-by-layer method. This as-prepared catalyst reflected good ferromagnetism and superior stability which makes it convenient to be separated and recycled. Due to the synergic effects between the different components composed the catalyst, swift reduction of Fe3+ can be achieved to regenerate Fe2+. Fe3O4@rGO@TiO2 exhibited enhancing catalytic activity for the degradation of azo-dyes compared with Fe3O4, Fe3O4@SiO2@TiO2 or SiO2@rGO@TiO2, further conforming the rapid redox reaction between Fe2+ and Fe3+. All these merits indicate that the composite catalyst possesses great potential for visible-light driven destruction of organic compounds.

  14. Structure and phase transformations in copper-alloyed rapidly melt-quenched Ni50Ti32Hf18-based alloys with high-temperature shape memory effect

    Science.gov (United States)

    Pushin, A. V.; Pushin, V. G.; Kuranova, N. N.; Kourov, N. I.; Kuntsevich, T. E.; Makarov, V. V.; Uksusnikov, A. N.

    2017-10-01

    Methods of transmission and scanning electron microscopy, chemical microanalysis, electron diffraction, and X-ray diffraction have been used to carry out the comparative study of the structure and chemical and phase composition of thin ribbons of four quasi-binary alloys (Ni50Ti32Hf18, Ni45Ti32Hf18Cu5, Ni35Ti32Hf18Cu15, and Ni25Ti32Hf18Cu25) obtained in the amorphous state by rapid quenching from the melt by jet spinning. The critical temperatures of the devitrification and B2 ↔ B19' martensitic transformation of the alloys have been determined based on the data of temperature dependences of the electrical resistivity. The specific features of the formation of the ultrafine-grained structure upon the devitrification and of the phase transformations have been studied depending on the heat-treatment regimes and chemical composition of the alloys (concentration of copper atoms).

  15. Preparation, Characterization and Properties of Rapidly Solidified Alloys

    Science.gov (United States)

    1986-10-01

    the overlapping melt spots used to refine the surface microstructure. Figure 11. A crystal of the same type as shown in Figure 12, but aligned with a...rows there is a spacing of spots which follows a Fibonacci sequence for some distance until a defect is encountered; normal to the rows we then have...Gaussian. The fit shown corresponds to two overlapping Gaussians (see Table III). Fig. 4. SEM photographs of the edge of a flake with x - 0.20. The

  16. Nonequilibrium solidification in undercooled Ti45Al55 melts

    Science.gov (United States)

    Hartmann, H.; Galenko, P. K.; Holland-Moritz, D.; Kolbe, M.; Herlach, D. M.; Shuleshova, O.

    2008-04-01

    Ti-Al alloys are of high technological interest as light-weight high-performance materials. When produced by solidification from the liquid state, the material properties of as-solidified materials are strongly dependent on the conditions governing the solidification process. Nonequilibrium solidification from the state of an undercooled liquid may result to the formation of metastable solid materials. On the one hand undercooling under special cases may influence the phase selection behavior during solidification, and on the other hand during rapid growth of solid phases in undercooled melts nonequilibrium effects such as solute trapping and disorder trapping may occur. In the present work containerless processing by electromagnetic levitation is used to undercool Ti45Al55 melts deeply below the liquidus temperature. The dendrite growth velocity during the solidification is measured as a function of undercooling by application of a high-speed video camera. In situ diffraction experiments at ESRF in Grenoble and microstructure investigations are performed in order to identify the primary solidified phases. The experimental findings are interpreted within current theoretical models for dendritic growth and solute trapping.

  17. Ultrasonic-promoted rapid preparation of PVC/TiO2-BSA nanocomposites: Characterization and photocatalytic degradation of methylene blue.

    Science.gov (United States)

    Mallakpour, Shadpour; Shamsaddinimotlagh, Sima

    2018-03-01

    In the present project in order to prevent agglomeration and better dispersion of TiO2 nanoparticles (NPs) in the poly(vinyl chloride) (PVC) matrix, initially, the surface of TiO2 NPs was covered by bovine serum albumin protein (BSA) via sonication method. Then, the TiO2-BSA powders were embedded into the PVC matrix using ultrasonic irradiations. With mechanical and magnetic stirring homogenous mixture was not obtained. So sonication process was very essential and vital. Physical, chemical and structural properties of the samples were investigated with various tools. Morphology studies showed the well distribution of spherical TiO2 NPs in the PVC matrix. TGA analysis showed that nanocomposites (NCs) have higher thermal stability than the pristine polymer. The photocatalytic activity tests by destroying the methylene blue dye on the pristine TiO2 NPs, TiO2-BSA NPs and PVC/TiO2-BSA NC 6 wt% were examined. The results showed that the photocatalytic activity of TiO2 NPs was reduced in the presence of BSA and PVC. It can be concluded that the TiO2-BSA NPs and PVC/TiO2-BSA NC 6 wt% have UV shielding properties and can protect film from degradation by UV. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Superconductivity in amorphous+crystalline Ti-(Nb or V)-Si-B ductile alloys obtained by rapid quenching from the melt

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, A.; Takahashi, Y.; Hoshi, A.; Suryanarayana, C.; Masumoto, T.

    1981-07-01

    Ductile superconductors with a duplex structure consisting of amorphous and bcc phases have been found in rapidly quenched alloys of the Ti/sub 70-x/Nb/sub 30/(Si-B)/sub x/ and Ti/sub 60hyphenx/V/sub 40/(Si-B)/sub x/ quaternary systems. Continuous ribbons of these alloys were produced in the form of about 1-mm width and 0.02-mm thickness using a modified single roller quenching apparatus. The silicon content in these duplex alloys was limited to the range between about 7 and 19 at. % and the boron content was in the range of about 0 to 9 at. %. The superconducting transition temperature T/sub c/ increased with decreasing metalloid content and/or with replacement of silicon by boron. The highest values obtained were 7.3 K for Ti/sub 57/Nb/sub 30/Si/sub 10/B/sub 3/ and 4.7 K for Ti/sub 45/V/sub 40/Si/sub 8/B/sub 7/, which are much higher than those of Ti-Nb and Ti-V base amorphous superconductors. The upper critical magnetic field H/sub c/2 and the critical current density J/sub c/ for the Ti/sub 55/Nb/sub 30/Si/sub 7/B/sub 8/ alloy were about 5.1 x 10/sup 6/ A/m at 4.2 K and of the order 3.5 x 10/sup 4/ A/cm/sup 2/ at zero applied field and 4.2 K. Although the superconducting properties of the duplex alloys are still insufficient for practical use, the information that the duplex structure produces a remarkable improvement in the superconducting properties without a detectable change or loss of ductility seems to be very important from the technological point of view.

  19. Microstructure and high temperature oxidation resistance of in-situ synthesized TiN/Ti{sub 3}Al intermetallic composite coatings on Ti6Al4V alloy by laser cladding process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongxi, E-mail: piiiliuhx@sina.com; Zhang, Xiaowei; Jiang, Yehua; Zhou, Rong

    2016-06-15

    High temperature anti-oxidation TiN/Ti{sub 3}Al intermetallic composite coatings were fabricated with the powder and AlN powder on Ti6Al4V titanium alloy surface by 6 kW transverse-flow CO{sub 2} laser apparatus. The chemical composition, morphology and microstructure of the TiN/Ti{sub 3}Al composite coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high temperature oxidation resistance of TiN/Ti{sub 3}Al coating, the isothermal oxidation test was performed in a high temperature resistance furnace at 600 °C and 800 °C, respectively. The result shows that the composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like or dendrites), with an even distribution in Ti{sub 3}Al matrix. It indicates that a physical and chemical reaction between Ti powder and AlN powder has completely occurred under the laser irradiation condition. In addition, the microhardness of the TiN/Ti3Al intermetallic composite coating is 3.4 times higher than that of the Ti6Al4V alloy substrate and reaches 844 HV{sub 0.2}. The high temperature oxidation behavior test reveals that the high temperature oxidation resistance of TiN/Ti{sub 3}Al composite coating is much better than that of titanium alloy substrate. The excellent high temperature oxidation resistance of TiN/Ti{sub 3}Al intermetallic composite coating is attributed to the formation of reinforced phases TiN, Al{sub 2}O{sub 3} and TiO{sub 2}. The laser cladding TiN/Ti{sub 3}Al intermetallic composite coating is anticipated to be a promising high temperature oxidation resistance coating for Ti6Al4V alloy. - Highlights: • In-situ TiN/Ti{sub 3}Al composite coating was synthesized on Ti6Al4V alloy by laser cladding. • The influence of Ti and AlN molar ratio on the microstructure of the coating was studied. • The TiN/Ti{sub 3}Al intermetallic

  20. Magnetic Fe3O4@TiO2 Nanoparticles-based Test Strip Immunosensing Device for Rapid Detection of Phosphorylated Butyrylcholinesterase

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Xiaoxiao; Zhang, Weiying; Lin, Yuehe; Du, Dan

    2013-12-15

    An integrated magnetic nanoparticles-based test-strip immunosensing device was developed for rapid and sensitive quantification of phosphorylated butyrylcholinesterase (BChE), the biomarker of exposure to organophosphous pesticides (OP), in human plasma. In order to overcome the difficulty in scarce availability of OP-specific antibody, here magnetic Fe3O4@TiO2 nanoparticles were used and adsorbed on the test strip through a small magnet inserted in the device to capture target OP-BChE through selective binding between TiO2 and OP moiety. Further recognition was completed by horseradish peroxidase (HRP) and anti-BChE antibody (Ab) co-immobilized gold nanoparticles (GNPs). Their strong affinities among Fe3O4@TiO2, OP-BChE and HRP/Ab-GNPs were characterized by quartz crystal microbalance (QCM), surface plasmon resonance (SPR) and square wave voltammetry (SWV) measurements. After cutting off from test strip, the resulted immunocomplex (HRP/Ab-GNPs/OP-BChE/Fe3O4@TiO2) was measured by SWV using a screen printed electrode under the test zone. Greatly enhanced sensitivity was achieved by introduction of GNPs to link enzyme and antibody at high ratio, which amplifies electrocatalytic signal significantly. Moreover, the use of test strip for fast immunoreactions reduces analytical time remarkably. Coupling with a portable electrochemical detector, the integrated device with advanced nanotechnology displays great promise for sensitive, rapid and in-filed on-site evaluation of OP poisoning.

  1. Oxidation Behavior of a Refractory NbCrMo0.5Ta0.5TiZr Alloy

    Science.gov (United States)

    2014-04-01

    given in Table 1. To close porosity in the as- solidified alloy , it was hot isostatically pressed (HIPd) at 1723 K, 207 MN/m2 for 3 h. The crystal...oxi- des, which lead to a rapid loss in weight and catastrophic failure at temperatures greater than *873 K [21, 22]. New developmental Mo alloys ...BEHAVIOR OF A REFRACTORY NbCrMo0 5Ta0 5TiZr ALLOY (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6

  2. Application of solidifiers for oil spill containment: A review.

    Science.gov (United States)

    Motta, Fernanda L; Stoyanov, Stanislav R; Soares, João B P

    2018-03-01

    The need for new and/or improvement of existing oil spill remediation measures has increased substantially amidst growing public concern with the increased transportation of unconventional crudes, such as diluted bitumen products. Solidifiers may be a very good spill response measure to contain and mitigate the effects of oil discharge incidents, as these interact with the oil to limit hydrocarbon release into air and water, prevent it from adhering onto sediment and debris, and could allow for oil recovery and reuse. Solidifiers change the physical state of the spilled oil from liquid to a coherent mass by chemical interactions between the spilled oil and the solidifier. Currently, the use of solidifiers is limited to small spills near shorelines. To extend their use to large-scale spill containment operations, it is necessary to understand the mechanism of solidifier action and to establish consistent criteria for evaluation of their effectiveness. The research effort to date has been focused mainly on gelators and cross-linking agents, with particularly impressive advancements in the areas of phase-selective polymeric and small-molecule gelators. Substantial research efforts are needed to improve solidifier performance and integrate solidifiers as part of spill response procedures, particularly for acute oil spills involving unconventional petroleum products. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  3. Application of Sorbents and Solidifiers for Oil Spills

    Science.gov (United States)

    This guide assists product manufacturers and members of the response community in distinguishing a sorbent from a solidifier for purposes of listing such products on the National Contingency Plan (NCP) Product Schedule and applying them in the field.

  4. Gusev Rocks Solidified from Lava (3-D)

    Science.gov (United States)

    2006-01-01

    In recent weeks, as NASA's Mars Exploration Rover Spirit has driven through the basin south of 'Husband Hill,' it has been traversing mainly sand and dune deposits. This week, though, Spirit has been maneuvering along the edge of an arc-shaped feature called 'Lorre Ridge' and has encountered some spectacular examples of basaltic rocks with striking textures. This panoramic camera (Pancam) image shows a group of boulders informally named 'FuYi.' These basaltic rocks were formed by volcanic processes and may be a primary constituent of Lorre Ridge and other interesting landforms in the basin. Spirit first encountered basalts at its landing site two years ago, on a vast plain covered with solidified lava that appeared to have flowed across Gusev Crater. Later, basaltic rocks became rare as Spirit climbed Husband Hill. The basaltic rocks that Spirit is now seeing are interesting because they exhibit many small holes or vesicles, similar to some kinds of volcanic rocks on Earth. Vesicular rocks form when gas bubbles are trapped in lava flows and the rock solidifies around the bubbles. When the gas escapes, it leaves holes in the rock. The quantity of gas bubbles in rocks on Husband Hill varies considerably; some rocks have none and some, such as several here at FuYi, are downright frothy. The change in textures and the location of the basalts may be signs that Spirit is driving along the edge of a lava flow. This lava may be the same as the basalt blanketing the plains of Spirit's landing site, or it may be different. The large size and frothy nature of the boulders around Lorre Ridge might indicate that eruptions once took place at the edge of the lava flow, where the lava interacted with the rocks of the basin floor. Scientists hope to learn more as Spirit continues to investigate these rocks. As Earth approaches the Chinese New Year (The Year of the Dog), the Athena science team decided to use nicknames representing Chinese culture and geography to identify rocks and

  5. Gusev Rocks Solidified from Lava (False Color)

    Science.gov (United States)

    2006-01-01

    In recent weeks, as NASA's Mars Exploration Rover Spirit has driven through the basin south of 'Husband Hill,' it has been traversing mainly sand and dune deposits. This week, though, Spirit has been maneuvering along the edge of an arc-shaped feature called 'Lorre Ridge' and has encountered some spectacular examples of basaltic rocks with striking textures. This panoramic camera (Pancam) image shows a group of boulders informally named 'FuYi.' These basaltic rocks were formed by volcanic processes and may be a primary constituent of Lorre Ridge and other interesting landforms in the basin. Spirit first encountered basalts at its landing site two years ago, on a vast plain covered with solidified lava that appeared to have flowed across Gusev Crater. Later, basaltic rocks became rare as Spirit climbed Husband Hill. The basaltic rocks that Spirit is now seeing are interesting because they exhibit many small holes or vesicles, similar to some kinds of volcanic rocks on Earth. Vesicular rocks form when gas bubbles are trapped in lava flows and the rock solidifies around the bubbles. When the gas escapes, it leaves holes in the rock. The quantity of gas bubbles in rocks on Husband Hill varies considerably; some rocks have none and some, such as several here at FuYi, are downright frothy. The change in textures and the location of the basalts may be signs that Spirit is driving along the edge of a lava flow. This lava may be the same as the basalt blanketing the plains of Spirit's landing site, or it may be different. The large size and frothy nature of the boulders around Lorre Ridge might indicate that eruptions once took place at the edge of the lava flow, where the lava interacted with the rocks of the basin floor. Scientists hope to learn more as Spirit continues to investigate these rocks. As Earth approaches the Chinese New Year (The Year of the Dog), the Athena science team decided to use nicknames representing Chinese culture and geography to identify rocks and

  6. Rapid degradation of Congo red by molecularly imprinted polypyrrole-coated magnetic TiO{sub 2} nanoparticles in dark at ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Shoutai; Hu, Xiaolei; Liu, Hualong; Wang, Qiang; He, Chiyang, E-mail: chiyanghe@hotmail.com

    2015-08-30

    Highlights: • Molecularly imprinted polypyrrole-coated magnetic TiO{sub 2} catalyst was prepared. • The catalyst degraded Congo red rapidly in dark at ambient conditions. • Degradation mechanism was proposed according to LC–MS analysis. • The catalyst can be easily recycled by a magnet. - Abstract: A novel molecularly imprinted polymer (MIP)-coated magnetic TiO{sub 2} nanocomposite was prepared, using methyl orange (MO) as the dummy template and pyrrole as functional monomer, for degradation of Congo red (CR). The nanocomposite was characterized by Fourier transform infrared spectroscopy, thermo-gravimetric analysis, X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The imprinting efficiency of the imprinted nanoparticles was investigated by static binding test, and their degradation ability toward CR was also studied. Moreover, the effects of pH, temperature, dissolved oxygen and oscillation rate on degradation rate of CR were investigated. Results showed that the imprinted nanocomposite had higher adsorption ability for MO compared with the non-imprinted one. Moreover, it could degrade CR rapidly in dark at room temperature and atmospheric pressure and could be recycled easily by a magnet with a good reusability. A degradation mechanism was proposed according to LC–MS analysis of degradation products of CR. The new imprinted nanoparticles showed high catalytic activity at ambient conditions without light illumination and additional chemicals, and therefore, it can be potentially applied to the rapid, “green” and low-cost degradation of CR in industrial printing and dyeing wastewater.

  7. Relationship between cooling rate and microsegregation in bottom-chilled directionally solidified ductile irons

    Directory of Open Access Journals (Sweden)

    Chang W.S.

    2013-01-01

    Full Text Available This study explores the relationship between cooling rate and microsegregation of directionally solidified ductile iron. The unidirectional heat transfer system used in this research is made up of a copper mold kept chilled by circulating water and embedded in the bottom of Furan sand mold. Thermocouples are connected to the computer measuring system to record the cooling curves of the castings at a distance of 0, 30, 60 and 90 mm from the chilled copper mold surface. Alloys including Mn, Cr, Cu, Ni and Ti were added to the specimens. Electron microprobe analysis (EPMA was employed to examine distribution of elements between the dendrite arms and nodular graphite. Results show that unidirectional heat transfer affects directly the solidification mode and microstructure of the casting. The cooling curves reveal that local solidification time increases with increasing distance from the chilled copper mold surface. Different solidification rates with corresponding microstructure and element segregation were observed in the same unidirectionally solidified casting. Local solidification time was closely related to element segregation. The effective segregation coefficient (Keff calculated using the Scheil equation was found to vary, according to the stage of solidification. The actual segregation characteristics of complex alloys generally follow the Scheil equation.

  8. Rapid destruction of the rhodamine B using TiO2 photocatalyst in the liquid phase plasma.

    Science.gov (United States)

    Lee, Heon; Park, Sung Hoon; Park, Young-Kwon; Kim, Byung Hoon; Kim, Sun-Jae; Jung, Sang-Chul

    2013-09-16

    Rhodamine B (RhB) is widely used as a colorant in textiles and food stuffs, and is also a well-known water tracer fluorescent. It is harmful to human beings and animals, and causes irritation of the skin, eyes and respiratory tract. The carcinogenicity, reproductive and developmental toxicity, neurotoxicity and chronic toxicity toward humans and animals have been experimentally proven. RhB cannot be effectively removed by biological treatment due to the slow kinetics. Therefore, RhB is chosen as a model pollutant for liquid phase plasma (LPP) treatment in the present investigation. This paper presents experimental results for the bleaching of RhB from aqueous solutions in the presence of TiO2 photocatalyst with LPP system. Properties of generated plasma were investigated by optical emission spectroscopy methods. The results of electrical-discharge degradation of RhB showed that the decomposition rate increased with the applied voltage, pulse width, and frequency. The oxygen gas addition to reactant solution increases the degradation rate by active oxygen species. The RhB decomposition rate was shown to increase with the TiO2 particle dosage. This work presents the conclusions on the photocatalytic oxidation of RhB, as a function of plasma conditions, oxygen gas bubbling as well as TiO2 particle dosage. We knew that using the liquid phase plasma system with TiO2 photocatalyst at high speed we could remove the organic matter in the water.

  9. Microstructure/processing relationships in high-energy high-rate consolidated powder composites of Nb-stabilized Ti3Al+TiAl

    Energy Technology Data Exchange (ETDEWEB)

    Persad, C.; Lee, B.; Hou, C.; Eliezer, Z.; Marcus, H.L.

    1989-01-01

    A new approach to powder processing is employed in forming titanium aluminide composites. The processing consists of internal heating of a customized powder blend by a fast electrical discharge of a homopolar generator. The high-energy high-rate '1MJ in 1s' pulse permits rapid heating of an electrically conducting powder mixture in a cold wall die. This short time at temperature approach offers the opportunity to control phase transformations and the degree of microstructural coarsening not readily possible with standard powder-processing approaches. This paper describes the consolidation results of titanium aluminide-based powder-composite materials. The focus of this study was the definition of microstructure/processing relationships for each of the composite constituents, first as monoliths and then in composite forms. Non-equilibrium phases present in rapidly solidified TiAl powders are transformed to metastable intermediates en route to the equilibrium gamma phase.

  10. Parameters of Solidifying Mixtures Transporting at Underground Ore Mining

    Science.gov (United States)

    Golik, Vladimir; Dmitrak, Yury

    2017-11-01

    The article is devoted to the problem of providing mining enterprises with solidifying filling mixtures at underground mining. The results of analytical studies using the data of foreign and domestic practice of solidifying mixtures delivery to stopes are given. On the basis of experimental practice the parameters of transportation of solidifying filling mixtures are given with an increase in their quality due to the effect of vibration in the pipeline. The mechanism of the delivery process and the procedure for determining the parameters of the forced oscillations of the pipeline, the characteristics of the transporting processes, the rigidity of the elastic elements of pipeline section supports and the magnitude of vibrator' driving force are detailed. It is determined that the quality of solidifying filling mixtures can be increased due to the rational use of technical resources during the transportation of mixtures, and as a result the mixtures are characterized by a more even distribution of the aggregate. The algorithm for calculating the parameters of the pipe vibro-transport of solidifying filling mixtures can be in demand in the design of mineral deposits underground mining technology.

  11. Parameters of Solidifying Mixtures Transporting at Underground Ore Mining

    Directory of Open Access Journals (Sweden)

    Golik Vladimir

    2017-01-01

    Full Text Available The article is devoted to the problem of providing mining enterprises with solidifying filling mixtures at underground mining. The results of analytical studies using the data of foreign and domestic practice of solidifying mixtures delivery to stopes are given. On the basis of experimental practice the parameters of transportation of solidifying filling mixtures are given with an increase in their quality due to the effect of vibration in the pipeline. The mechanism of the delivery process and the procedure for determining the parameters of the forced oscillations of the pipeline, the characteristics of the transporting processes, the rigidity of the elastic elements of pipeline section supports and the magnitude of vibrator’ driving force are detailed. It is determined that the quality of solidifying filling mixtures can be increased due to the rational use of technical resources during the transportation of mixtures, and as a result the mixtures are characterized by a more even distribution of the aggregate. The algorithm for calculating the parameters of the pipe vibro-transport of solidifying filling mixtures can be in demand in the design of mineral deposits underground mining technology.

  12. Low-cost directionally-solidified turbine blades, volume 1

    Science.gov (United States)

    Sink, L. W.; Hoppin, G. S., III; Fujii, M.

    1979-01-01

    A low cost process of manufacturing high stress rupture strength directionally-solidified high pressure turbine blades was successfully developed for the TFE731-3 Turbofan Engine. The basic processing parameters were established using MAR-M 247 and employing the exothermic directional-solidification process in trial castings of turbine blades. Nickel-based alloys were evaluated as directionally-solidified cast blades. A new turbine blade, disk, and associated components were then designed using previously determined material properties. Engine tests were run and the results were analyzed and compared to the originally established goals. The results showed that the stress rupture strength of exothermically heated, directionally-solidified MAR-M 247 turbine blades exceeded program objectives and that the performance and cost reduction goals were achieved.

  13. Microstructures and martensitic transformation behavior of superelastic Ti-Ni-Ag scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuanglei; Kim, Eun-soo [School of Materials Science and Engineering & ERI, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of); Kim, Yeon-wook [Department of Material Engineering, Keimyung University, 1000 Shindang-dong, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Nam, Tae-hyun, E-mail: tahynam@gnu.ac.kr [School of Materials Science and Engineering & ERI, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of)

    2016-10-15

    Highlights: • The B2-R-B19′ transformation occurred in 49Ti-50.3Ni-0.7Ag alloy fibers. • Annealing treated alloy fibers showed superelastic recovery ratio of 93%. • Ageing treated scaffold had an elastic modulus of 0.67 GPa. • Ageing treated scaffold exhibited good superelasticity at human body temperature. - Abstract: Ti-Ni-Ag scaffolds were prepared by sintering rapidly solidified alloy fibers. Microstructures and transformation behaviors of alloy fibers and scaffolds were investigated by means of electron probe micro-analyzer (EPMA), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The B2-R-B19′ transformation occurs in alloy fibers. The alloy fibers have good superelasticity with superelastic recovery ratio of 93% after annealing heat treatment. The as-sintered Ti-Ni-Ag scaffolds possess three-dimensional and interconnected pores and have the porosity level of 80%. The heat treated Ti-Ni-Ag scaffolds not only have an elastic modulus of 0.67 GPa, which match well with that of cancellous bone, but also show excellent superelasticity at human body temperature. In terms of the mechanical properties, the Ti-Ni-Ag scaffolds in this study can meet the main requirements of bone scaffold for the purpose of bone replacement applications.

  14. Mechanical Properties of a Partially Solidified Cu-Zn Alloy

    Science.gov (United States)

    Kasuya, Naoki; Nakazawa, Tomoaki; Matsushita, Akira; Okane, Toshimitsu; Yoshida, Makoto

    2016-04-01

    For predicting solidification cracking by thermal stress analysis, the mechanical properties in the partially solidified state based on the experimental results are the best hope. However, the Young's modulus has never been investigated for copper alloys. In this study, stress-strain curves of a Cu-Zn alloy in the partially solidified state for various solid fractions were obtained using a specially developed horizontal tensile test device. Furthermore, by removing the load during the tensile test, the spring-back (elastic behavior) was observed and the Young's modulus was obtained.

  15. Solidified reverse micellar solutions (SRMS): A novel approach for ...

    African Journals Online (AJOL)

    AMARA

    lipids based drug delivery systems. Salome Amarachi Chime* and Ikechukwu V. Onyishi. Department of Pharmaceutical Technology and Industrial Pharmacy, University of Nigeria, Nsukka 410001, Nigeria. Accepted 24 December, 2013. Solidified reverse micellar solutions (SRMS) are reverse micelles containing lecithin ...

  16. Solidified reverse micellar solutions (SRMS): A novel approach for ...

    African Journals Online (AJOL)

    Solidified reverse micellar solutions (SRMS) are reverse micelles containing lecithin and a triglyceride, for example, SOFTISAN®142, which is hydrogenated coco glyceride. SRMS transform into a lamellar mesophase after melting on contact with water; this transformation enables controlled release of solubilized drugs.

  17. Site suitability criteria for solidified high level waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, R.A.; Holdsworth, T.; Towse, D.F.

    1979-03-07

    Activities devoted to development of regulations, criteria, and standards for storage of solidified high-level radioactive wastes are reported. The work is summarized in sections on site suitability regulations, risk calculations, geological models, aquifer models, human usage model, climatology model, and repository characteristics. Proposed additional analytical work is also summarized. (JRD)

  18. Application of solidified sea bottom sediments into environmental bioremediation materials

    Directory of Open Access Journals (Sweden)

    Ahmed H.A. Dabwan

    2017-05-01

    Full Text Available Since dredged sea bottom sediments normally give off a horrible smell, the limitation of disposal places has become a serious problem in Japan. Hence, development of an alternative system to readily treat dredged sea bottom sediments is therefore needed. The development of “value-added” reused products from these sediments offers particular benefits both in terms of resource recovery and protection of the environment. We developed an in situ solidification system for the treatment of sea bottom sediments, the “Hi-Biah-System (HBS”. Firstly, this review deals with solidified sea bottom sediments for the construction of an artificial tidal flat in Ago Bay, Japan. The environmental conditions (pH, oxidation–reduction potential (ORP, acid volatile sulphide (AVS, loss on ignition (LOI, water content (WC, chemical oxygen demand (COD, total organic carbon (TOC, total nitrogen (T-N, chlorophyll a and particle size were then monitored in the constructed tidal flat. The number of benthos individuals and growth of short-necked clams (Ruditapes philippinarum in the artificial tidal flat were also evaluated. The environmental conditions, number of benthos individuals and growth of short-necked clams in the artificial tidal flat were shown to be similar to those observed in a natural tidal flat. Next, the potential use of solidified sea bottom sediments as soil parent material in the germination/growth of seagrass is presented. The soil parent material consisting of solidified sediments obtained using HBS plus soil conditioner and hardener seems to be effective for the germination of Zostera marina. The best growth after six months was observed in plants grown in soil parent material consisting of a mixture of solidified sediments and the sand by weight ration 70:30. The present study may suggest the possible application of solidified sea bottom sediments into growth of other plants.

  19. Microstructure evolution of directionally solidifi ed Sn-16%Sb hyperperitectic alloy

    Directory of Open Access Journals (Sweden)

    Li Shuangming

    2008-11-01

    Full Text Available The directionally solidifi ed microstructure of Sn-16%Sb hyperperitectic alloy has been investigated at various solidifi cation rates using a high-thermal gradient directional solidifi cation apparatus. The results indicate that the solidifi cation microstructure consists of hard primary intermetallic SnSb phase embedded in a matrix of soft peritectic β-Sn phase. The primary SnSb phase exhibits faceted growth with tetragonal or trigonal shapes. At the same time, the primary SnSb phase is refi ned with an increase in the solidifi cation rate and dispersed more uniformly in the matrix of β-Sn phase. The volume fraction of the SnSb phase fi rstly decreases and then increases when the solidifi cation rate increases in directional solidifi cation of Sn-16%Sb hyperperitectic alloy.

  20. Crystal clear transparent lipstick formulation based on solidified oils.

    Science.gov (United States)

    De Clermont-Gallerande, H; Chavardes, V; Zastrow, L

    1999-12-01

    We have developed a lipstick, the stick of which looks totally transparent. The base, coloured or not, may contain high concentration of actives or fragrances. The present study examines the process of determination of oils and solidifying agents. The selecting criterion include visible spectroscopic measurements to quantify transparency of the formulated product. We have also validated the stick hardness through drop point and breakage measurements. After several investigations, we selected a mixture of oils and solidifying agents. The oil network obtained has been characterized through optical microscopy, transmission electronic microscopy, X-ray diffraction and differential scanning calorimetry. We can show that the final product we obtained is amorphous and its solidity can be explained by chemical bonds formation.

  1. Thermal Modeling and Simulation of Electron Beam Melting for Rapid Prototyping on Ti6Al4V Alloys

    Science.gov (United States)

    Neira Arce, Alderson

    To be a viable solution for contemporary engineering challenges, the use of titanium alloys in a wider range of applications requires the development of new techniques and processes that are able to decrease production cost and delivery times. As a result, the use of material consolidation in a near-net-shape fashion, using dynamic techniques like additive manufacturing by electron beam selective melting EBSM represents a promising method for part manufacturing. However, a new product material development can be cost prohibitive, requiring the use of computer modeling and simulation as a way to decrease turnaround time. To ensure a proper representation of the EBSM process, a thermophysical material characterization and comparison was first performed on two Ti6Al4V powder feedstock materials prepared by plasma (PREP) and gas atomized (GA) processes. This evaluation comprises an evaluation on particle size distribution, density and powder surface area, collectively with the temperature dependence on properties such as heat capacity, thermal diffusivity, thermal conductivity and surface emissivity. Multiple techniques were employed in this evaluation, including high temperature differential scanning calorimetry (HT-DSC), laser flash analysis (LFA), infrared remote temperature analysis (IR-Thermography), laser diffraction, liquid and gas pycnometry using mercury and krypton adsorption respectively. This study was followed by the review of complementary strategies to simulate the temperature evolution during the EBSM process, using a finite element analysis package called COMSOL Multiphysics. Two alternatives dedicated to representing a moving heat source (electron beam) and the powder bed were developed using a step-by-step approximation initiative. The first method consisted of the depiction of a powder bed discretized on an array of domains, each one representing a static melt pool, where the moving heat source was illustrated by a series of time dependant selective

  2. Influence of Annealing Temperature on the Magnetic Properties of Rapidly Quenched (Nd,Pr2-(Fe,Co,Ga,Ti,C14B/α-Fe Nanocomposite Ribbons

    Directory of Open Access Journals (Sweden)

    Rahim Sabbaghizadeh

    2013-01-01

    Full Text Available The effects of different heat treatment temperatures on the structure and magnetic properties of Nd-Fe-B nanocomposite permanent magnetic alloys with nominal composition of Nd9.4Pr0.6Fe74.5Co6B6Ga0.5Ti1.5C1.5 have been investigated. The most practical method to produce nanostructured metallic materials is rapid solidification. Melt spinning with constant wheel speed of V=40 m/s was employed to produce ribbons. As-spun ribbons were examined by using differential scanning calorimetry (DSC and X-ray diffractometer (XRD with Cu-kα radiation. The ribbons were annealed at different temperatures in order to extract the best magnetic properties. The XRD and electron microscopy technique results confirm that grains are in the size of less than 50 nm. In addition, optimum magnetic properties were obtained at 700°C annealed temperature.

  3. Achieving rapid Li-ion insertion kinetics in TiO2 mesoporous nanotube arrays for bifunctional high-rate energy storage smart windows.

    Science.gov (United States)

    Tong, Zhongqiu; Liu, Shikun; Li, Xingang; Mai, Liqiang; Zhao, Jiupeng; Li, Yao

    2018-01-31

    Smart electrochromic windows integrated with electrochemical energy storage capacity are receiving increasing interest for green buildings. However, the fabrication of bifunctional devices that demonstrate high-rate capability with stable and desirable optical modulation still remains a great challenge. Herein, a facile sacrificial template-accelerated hydrolysis approach is presented to prepare a designed lithium-ion insertion-type material layer on a fluorine-doped tin oxide substrate, with TiO2 mesoporous nanotube array (MNTA) film as an example, with rapid Li-ion insertion kinetics and without sacrificing window transparency, to meet requirements. A bifunctional device is assembled to exhibit the optical-electrochemical superiority of MNTA nanostructures. The as-assembled bifunctional smart window exhibits strong electrochromic contrast and high-rate capability in the fast galvanostatic charge/discharge process. For instance, at 1 A g-1, it completes the charge or discharge process within only 232 s and delivers a high, reversible and stable specific capacity of 60 mA h g-1, accompanying obvious transmittance modulation in the visible spectrum, with a typical value of ca. 30.4% at 700 nm, and strong color changes between deep blue and transparency.

  4. Rapid thermal reduced graphene oxide/Pt-TiO2 nanotube arrays for enhanced visible-light-driven photocatalytic reduction of CO2

    Science.gov (United States)

    Sim, Lan Ching; Leong, Kah Hon; Saravanan, Pichiah; Ibrahim, Shaliza

    2015-12-01

    In this study, a complicate natural photosynthesis process was prototyped through a photocatalysis process by reducing CO2 to light hydrocarbon, CH4. The composite photocatalyst employed for this study utilized Pt nanoparticles (Pt NPs) and rapid thermal reduced graphene oxide (RGO) deposited over the surface of the TiO2 nanotube arrays (TNTs). The existence and contribution of both Pt NPs and RGO in the composite was confirmed through various analytical techniques including XRD, HRTEM, FESEM, Raman, FTIR, XPS, UV-DRS and photoluminescence (PL) analysis. The TNTs in the composite exhibited pure anatase phase. The absorption bands at around 450 nm obtained from UV-DRS spectrum supported the existence of LSPR phenomenon of Pt NPs. The promising lower work function of RGO promoted the electrons transfer from TNTs to RGO efficiently. The successful depositions of Pt and RGO onto the surface of TNTs contributed for the improved photocatalytic activity (total CH4 yield of 10.96 μmol m-2) in the reduction of CO2 over TNTs and Pt-TNTs. Both of RGO and Pt NPs are equally important to exert a significant impact on the improvement of CH4 production rates.

  5. Nickel speciation in cement-stabilized/solidified metal treatment filtercakes

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Amitava, E-mail: reroy@lsu.edu [J. Bennett Johnston, Sr., Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, LA 70806, USA (United States); Stegemann, Julia A., E-mail: j.stegemann@ucl.ac.uk [Centre for Resource Efficiency & the Environment, Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK (United Kingdom)

    2017-01-05

    Highlights: • XAS shows the same Ni speciation in untreated and stabilized/solidified filtercake. • Ni solubility is the same for untreated and stabilized/solidified filtercake. • Leaching is controlled by pH and physical encapsulation for all binders. - Abstract: Cement-based stabilization/solidification (S/S) is used to decrease environmental leaching of contaminants from industrial wastes. In this study, two industrial metal treatment filtercakes were characterized by X-ray diffractometry (XRD), thermogravimetric and differential thermogravimetric analysis (TG/DTG) and Fourier transform infrared (FTIR); speciation of nickel was examined by X-ray absorption (XAS) spectroscopy. Although the degree of carbonation and crystallinity of the two untreated filtercakes differed, α-nickel hydroxide was identified as the primary nickel-containing phase by XRD and nickel K edge XAS. XAS showed that the speciation of nickel in the filtercake was unaltered by treatment with any of five different S/S binder systems. Nickel leaching from the untreated filtercakes and all their stabilized/solidified products, as a function of pH in the acid neutralization capacity test, was essentially complete below pH ∼5, but was 3–4 orders of magnitude lower at pH 8–12. S/S does not respeciate nickel from metal treatment filtercakes and any reduction of nickel leaching by S/S is attributable to pH control and physical mechanisms only. pH-dependent leaching of Cr, Cu and Ni is similar for the wastes and s/s products, except that availability of Cr, Cu and Zn at decreased pH is reduced in matrices containing ground granulated blast furnace slag.

  6. Micro and Macro Segregation in Alloys Solidifying with Equiaxed Morphology

    Science.gov (United States)

    Stefanescu, Doru M.; Curreri, Peter A.; Leon-Torres, Jose; Sen, Subhayu

    1996-01-01

    To understand macro segregation formation in Al-Cu alloys, experiments were run under terrestrial gravity (1g) and under low gravity during parabolic flights (10(exp -2) g). Alloys of two different compositions (2% and 5% Cu) were solidified at two different cooling rates. Systematic microscopic and SEM observations produced microstructural and segregation maps for all samples. These maps may be used as benchmark experiments for validation of microstructure evolution and segregation models. As expected, the macro segregation maps are very complex. When segregation was measured along the central axis of the sample, the highest macro segregation for samples solidified at 1g was obtained for the lowest cooling rate. This behavior is attributed to the longer time available for natural convection and shrinkage flow to affect solute redistribution. In samples solidified under low-g, the highest macro-segregation was obtained at the highest cooling rate. In general, low-gravity solidification resulted in less segregation. To explain the experimental findings, an analytical (Flemings-Nereo) and a numerical model were used. For the numerical model, the continuum formulation was employed to describe the macroscopic transports of mass, energy, and momentum, associated with the microscopic transport phenomena, for a two-phase system. The model proposed considers that liquid flow is driven by thermal and solutal buoyancy, and by solidification shrinkage. The Flemings-Nereo model explains well macro segregation in the initial stages of low-gravity segregation. The numerical model can describe the complex macro segregation pattern and the differences between low- and high-gravity solidification.

  7. Filling of recovered mining areas using solidifying backfill

    Directory of Open Access Journals (Sweden)

    Zeman Róbert

    2001-12-01

    Full Text Available The aim of this article is to explore the possibilities for filling recovered mining areas using solidifying backfill .The article describes the preparation of the backfill (backfill formulation with an eventual application using low quality sands, wastes from treatment plants and ash from power plants etc now to transport it as well as its application in practice. Advantageous and disadvantageous of this method are also mentioned.Several factors must be taken info consideration during the preparation process of the backfill mixture. Firstly, the quantities of each individual component must be constantly regulated. Secondly, the properties of each component must be respected. In addition, the needs of the pipeline transport system and the specific conditions of the recovered area to be filled must also be considered.Hydraulic transport and pneumo-hydraulic pipeline transport are used for handling the backfill. Pumps for transporting the solidifying backfill have to carry out demanding tasks.Due to the physical-mechanical properties of the backfill, only highly powerful pumps can be considered. Piston type pumps such as Abel Simplex and Duplex pumps with capacities of up to 100 m3.h-1 and operating pressures of up to 16 MPa would be suitable.This method has been applied abroad for different purposes. For example, solid backfill was used in the Hamr mine during exploitation of uranium using the room-and-pillar system mining method.In the Ostrava–Karvina Coal field, backfill was used in decontamination work, filling areas in a zone of dangerous deformations and for creating a dividing stratum during thick seam mining.Research info the use of solidifying backfill was also done in the Walsum mine in Germany. The aim of this research was:- to investigate the possibilities of filling a collapsing area in a working face using a solidifying mixture of power plant ash and water,- to verify whether towing pipelines proposed by the DMT corporation would be

  8. Detection of free liquid in containers of solidified radioactive waste

    Science.gov (United States)

    Greenhalgh, W.O.

    Nondestructive detection of the presence of free liquid within a sealed enclosure containing solidified waste is accomplished by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solifified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

  9. The relationship of microstructure to fracture and corrosion behavior of a directionally solidified superalloy

    Science.gov (United States)

    Trexler, Matthew D.

    GTD-111 DS is a directionally solidified superalloy currently used in turbine engines. To accurately predict the life of engine components it is essential to examine and characterize the microstructural evolution of the material and its effects on material properties. The as-cast microstructure of GTD-111 is highly inhomogeneous as a result of coring. The current post-casting heat treatments do not effectively eliminate the inhomogeneity. This inhomogeneity affects properties including tensile strength, fracture toughness, fracture path, and corrosion behavior, primarily in terms of the number of grains per specimen. The goal of this work was to link microstructural features to these properties. Quantitative fractography was used to determine that the path of cracks during failure of tensile specimens is influenced by the presence of carbides, which are located in the interdendritic regions of the material as dictated by segregation. The solvus temperature of the precipitate phase, Ni3(Al, Ti), was determined to be 1200°C using traditional metallography, differential thermal analysis, and dilatometry. A heat-treatment was designed to homogenize the microstructure for tensile testing that isolates the carbide by dissolving all of the "eutectic" Ni3(Al, Ti) precipitate phase, which is also found in the interdendritic areas. High temperature oxidation/sulfidation tests were conducted to investigate the corrosion processes involved when GTD-111 DS is utilized in steam and gas combustion turbine engines. The kinetics of corrosion in both oxidizing and sulfidizing atmospheres were determined using thermogravimetric analysis. Additionally, metallography of these samples after TGA revealed a correlation between the presence of grain boundaries and sulfur attack, which led to catastrophic failure of the material under stress-free conditions in a sulfur bearing environment. In summary, this work correlates the inhomogeneous microstructure of GTD-111 DS to tensile fracture

  10. A study of reduced chromium content in a nickel-base superalloy via element substitution and rapid solidification processing. Ph.D. ThesisFinal Report

    Science.gov (United States)

    Powers, William O.

    1987-01-01

    A study of reduced chromium content in a nickel base superalloy via element substitution and rapid solidification processing was performed. The two elements used as partial substitutes for chromium were Si and Zr. The microstructure of conventionally solidified materials was characterized using microscopy techniques. These alloys were rapidly solidified using the chill block melt spinning technique and the rapidly solidified microstructures were characterized using electron microscopy. The spinning technique and the rapidly solidified microstructures was assessed following heat treatments at 1033 and 1272 K. Rapidly solidified material of three alloys was reduced to particulate form and consolidated using hot isostatic pressing (HIP). The consolidated materials were also characterized using microscopy techniques. In order to evaluate the relative strengths of the consolidated alloys, compression tests were performed at room temperature and 1033 K on samples of as-HIPed and HIPed plus solution treated material. Yield strength, porosity, and oxidation resistance characteristics are given and compared.

  11. Effects of leachate concentration on the integrity of solidified clay liners.

    Science.gov (United States)

    Xue, Qiang; Zhang, Qian

    2014-03-01

    This study aimed to evaluate the impact of landfill leachate concentration on the degradation behaviour of solidified clay liners and to propose a viable mechanism for the observed degradation. The results indicated that the unconfined compressive strength of the solidified clay decreased significantly, while the hydraulic conductivity increased with the leachate concentration. The large pore proportion in the solidified clay increased and the sum of medium and micro pore proportions decreased, demonstrating that the effect on the solidified clay was evident after the degradation caused by exposure to landfill leachate. The unconfined compressive strength of the solidified clay decreased with increasing leachate concentration as the leachate changed the compact structure of the solidified clay, which are prone to deformation and fracture. The hydraulic conductivity and the large pore proportion of the solidified clay increased with the increase in leachate concentration. In contrast, the sum of medium and micro pore proportions showed an opposite trend in relation to leachate concentration, because the leachate gradually caused the medium and micro pores to form larger pores. Notably, higher leachate concentrations resulted in a much more distinctive variation in pore proportions. The hydraulic conductivity of the solidified clay was closely related to the size, distribution, and connection of pores. The proportion of the large pores showed a positive correlation with the increase of hydraulic conductivity, while the sum of the proportions of medium and micro pores showed a negative correlation.

  12. Building towers, domes, and arches by self-organized solidifying flows

    Science.gov (United States)

    Chopin, Julien

    2013-03-01

    We demonstrate that a wide variety of delicate solid structures from slender towers to arches, and chiral pagodas can be created by simply pouring a mixture of grains and water on a liquid absorbing substrate [Phys. Rev. Lett. 107, 208304 (2011)]. The same suspension poured on a solid substrate would form a featureless puddle or a pile with an angle of repose. However, an absorbing substrate can quickly drain the liquid from the suspension, rapidly causing the solidification of the fluid into a mechanically stable structure. In a dripping regime, successive drops are observed to jam rapidly upon impact literally stacking on top of each other forming slender granular towers. In a jetting regime and using a moving substrate, the jet is found to bounce on and off the substrate forming regular arches. We will discuss the subtle interplay of the incoming flux of the granular suspension, the drainage efficiency of the substrate, and the mechanical properties of the solid structure. The drainage driven jamming of granular suspensions gives a new route to shape cohesive granular materials and, from a broader perspective, demonstrates the potential a solidifying fluid spreading on a substrate to create new morphologies harder to achieve by other techniques. Applications to surface patterning, rheology of dense suspension and mechanics of wet granular materials will be discussed.

  13. H{sub 2}O{sub 2}-assisted photocatalysis on flower-like rutile TiO{sub 2} nanostructures: Rapid dye degradation and inactivation of bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kőrösi, László, E-mail: ltkorosi@gmail.com [Research Institute for Viticulture and Oenology, University of Pécs, H-7634 Pécs, Pázmány Péter u. 4 (Hungary); Prato, Mirko; Scarpellini, Alice [Department of Nanochemistry, Istituto Italianodi Tecnologia, via Morego 30, 16163, Genova (Italy); Kovács, János [Department of Geology & Meteorology, University of Pécs, Ifjúság u. 6, H-7624, Pécs (Hungary); Environmental Analytical and Geoanalytical Research Group, Szentágothai Research Centre, University of Pécs, Ifjúság u. 20, H-7624, Pécs (Hungary); Dömötör, Dóra; Kovács, Tamás; Papp, Szilvia [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632, Pécs (Hungary)

    2016-03-01

    Graphical abstract: - Highlights: • Hierarchically assembled rutile TiO{sub 2} was synthesized at room temperature. • Hydrothermal treatment enhanced the crystallinity, while morphology was maintained. • Hydrothermal treatment also led to larger crystallites and a lower surface area. • Effective K. pneumoniae killing and MO degradation were achieved with the use of H{sub 2}O{sub 2}. • Higher crystallinity enhanced the reaction rate in the presence of H{sub 2}O{sub 2}. - Abstract: Hierarchically assembled flower-like rutile TiO{sub 2} (FLH-R-TiO{sub 2}) nanostructures were successfully synthesized from TiCl{sub 4} at room temperature without the use of surfactants or templates. An initial sol–gel synthesis at room temperature allowed long-term hydrolysis and condensation of the precursors. The resulting FLH-R-TiO{sub 2} possessed relatively high crystallinity (85 wt%) and consisted of rod-shaped subunits assembling into cauliflower-like nanostructures. Hydrothermal evolution of FLH-R-TiO{sub 2} at different temperatures (150, 200 and 250 °C) was followed by means of X-ray diffraction, transmission and scanning electron microscopy. These FLH-R-TiO{sub 2} nanostructures were tested as photocatalysts under simulated daylight (full-spectrum lighting) in the degradation of methyl orange and in the inactivation of a multiresistant bacterium, Klebsiella pneumoniae. The effects of hydrothermal treatment on the structure, photocatalytic behavior and antibacterial activity of FLH-R-TiO{sub 2} are discussed.

  14. Structure fields in the solidifying cast iron roll

    Directory of Open Access Journals (Sweden)

    W.S. Wołczyński

    2010-01-01

    Full Text Available Some properties of the rolls depend on the ratio of columnar structure area to equiaxed structure area created during roll solidification. The transition is fundamental phenomenon that can be apply to characterize massive cast iron rolls produced by the casting house. As the first step of simulation, a temperature field for solidifying cast iron roll was created. The convection in the liquid is not comprised since in the first approximation, the convection does not influence the studied occurrence of the (columnar to equiaxed grains transition in the roll. The obtained temperature field allows to study the dynamics of its behavior observed in the middle of the mould thickness. This midpoint of the mould thickness was treated as an operating point for the transition. A full accumulation of the heat in the mould was postulated for the transition. Thus, a plateau at the curve was observed at the midpoint. The range of the plateau existence corresponded to the incubation period , that appeared before fully equiaxed grains formation. At the second step of simulation, behavior of the thermal gradients field was studied. Three ranges within the filed were visible: EC→EC→EC→EC→(tTECtt↔RERCtt↔a/ for the formation of columnar structure (the C – zone: ( and 0>>T&0>>=−>−=REREttGttG.The columnar structure formation was significantly slowed down during incubation period. It resulted from a competition between columnar growth and equiaxed growth expected at that period of time. The 0≈=−=RERCttGttG relationship was postulated to correspond well with the critical thermal gradient, known in the Hunt’s theory. A simulation was performed for the cast iron rolls solidifying as if in industrial condition. Since the incubation divides the roll into two zones: C and E; (the first with columnar structure and the second with fully equiaxed structure some experiments dealing with solidification were made on semi-industrial scale.

  15. Development of precipitation strengthened brass with Ti and Sn alloying elements additives by using water atomized powder via powder metallurgy route

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shufeng, E-mail: shufengli@hotmail.com [Joining and Welding Research Institute, Osaka University, Osaka (Japan); Imai, Hisashi; Kondoh, Katsuyoshi [Joining and Welding Research Institute, Osaka University, Osaka (Japan); Kojima, Akimichi; Kosaka, Yoshiharu [San-Etsu Metals Co. LTD., 1892 OHTA, Tonami, Toyama (Japan); Yamamoto, Koji; Takahashi, Motoi [Nippon Atomized Metal Powders Corporation, 87-16, Nishi-Sangao, Noda, Chiba (Japan)

    2012-08-15

    Effect of Ti and Sn alloying elements on microstructure and mechanical properties of 60/40 brass has been studied via the powder metallurgy (P/M) route. The water-atomized BS40-0.6Sn1.0Ti (Cu40wt%Zn-0.6wt%Sn1.0wt%Ti) pre-alloyed powder was consolidated at various temperatures within range of 400-600 Degree-Sign C using spark plasma sintering (SPS) and hot extrusion was carried out at 500 Degree-Sign C. Effects of extrusion temperature on microstructure and tensile strength were investigated by employing SEM-EDS/EBSD, TEM, XRD and tensile test. Results indicated that super-saturated solid solution Ti and Sn elements created high chemical potential for a precipitate reaction in rapidly solidified brass powder, which showed significant strengthening effects on the extruded sample consolidated at lower temperature. Solid solubility of Ti in brass matrix decreased with increasing of sintering temperature, thus resulted in degradation of mechanical properties. Consequently, lower hot processing temperature is necessary to obtain excellent mechanical properties for BS40-0.6Sn1.0Ti during sintering and extrusion. An yield strength of 398 MPa and ultimate tensile strength of 615 MPa were achieved, they respectively showed 31.3% and 22.9% higher values than those of extruded Cu40Zn brass. -- Graphical abstract: The Ti and Sn alloying elements additions showed significant grain refinement on Cu40Zn-0.6Sn1.0Ti brass (b) as comparing with that of the conventional Cu40Zn brass (a), detected by electron backscatter diffraction (EBSD) technique. The grain boundaries maps of (a) BS40 (b) BS40-0.6Sn1.0Ti SPS compact sintered at 400 Degree-Sign C reveals by electron backscatter diffraction (EBSD) technique. Highlights: Black-Right-Pointing-Pointer Alloying elements Ti and Sn are proposed as additives in 60/40 brass. Black-Right-Pointing-Pointer Super-saturated Ti in powder creates high chemical potential for precipitation. Black-Right-Pointing-Pointer CuSn{sub 3}Ti{sub 5

  16. Surface NH2-rich nanoparticles: Solidifying ionic-liquid electrolytes and improving the performance of dye-sensitized solar cells

    Science.gov (United States)

    Fang, Yanyan; Ma, Pin; Fu, Nianqing; Zhou, Xiaowen; Fang, Shibi; Lin, Yuan

    2017-12-01

    The surface properties of nanoparticles have a significant influence on the properties of the gel electrolytes. Herein, the surface NH2-rich nanoparticle (A-SiO2), with a tightening network, is synthesized by silanizing SiO2 nanoparticles with pre-polymerized aminopropyltriethoxysilane, which is further employed to prepare ionic-liquid gel electrolytes for dye-sensitized solar cells. The addition of a small amount of A-SiO2 can effectively solidify the ionic-liquid, whereas a large number of NH2 groups on the SiO2 surface leads to a large negative shift of the TiO2 conduction band edge, and can react with I3- in the form of a Lewis complex, resulting in an increase in the concentration of I- and a decrease in the concentration of I3- in the electrolyte. In addition, the ionic-liquid gel electrolyte possesses thixotropic behavior, which allows it to easily penetrate into the inner part of the TiO2 mesoporous film. As a result, large improvements of the photovoltage from 695 mV to 785 mV and of the photocurrent from 13.3 mA cm-2 to 14.9 mA cm-2 are achieved. This leads to significant enhancement of the power conversion efficiency, from 6.2% to 8.1%, for the cell with A-SiO2 compared to that of the pristine ionic-liquid electrolyte.

  17. Printing low-melting-point alloy ink to directly make a solidified circuit or functional device with a heating pen.

    Science.gov (United States)

    Wang, Lei; Liu, Jing

    2014-12-08

    A new method to directly print out a solidified electronic circuit through low-melting-point metal ink is proposed. A functional pen with heating capability was fabricated. Several typical thermal properties of the alloy ink Bi35In48.6Sn16Zn0.4 were measured and evaluated. Owing to the specifically selected melting point of the ink, which is slightly higher than room temperature, various electronic devices, graphics or circuits can be manufactured in a short period of time and then rapidly solidified by cooling in the surrounding air. The liquid-solid phase change mechanism of the written lines was experimentally characterized using a scanning electron microscope. In order to determine the matching substrate, wettability between the metal ink Bi35In48.6Sn16Zn0.4 and several materials, including mica plate and silicone rubber, was investigated. The resistance-temperature curve of a printed resistor indicated its potential as a temperature control switch. Furthermore, the measured reflection coefficient of a printed double-diamond antenna accords well with the simulated result. With unique merits such as no pollution, no requirement for encapsulation and easy recycling, the present printing approach is an important supplement to current printed electronics and has enormous practical value in the future.

  18. Structural, electrical, and surface morphological characteristics of rapidly annealed Pt/Ti Schottky contacts to n-type InP

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, V. Rajagopal; Reddy, D. Subba; Naik, S. Sankar [Department of Physics, Sri Venkateswara University, Tirupati (India); Choi, C.J. [School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC), Chonbuk National University, Jeonju (Korea, Republic of)

    2011-10-15

    We have investigated the electrical and structural properties of Pt/Ti metallization scheme on n-type InP as a function of annealing temperature using current-voltage (I-V), capacitance-voltage (C-V), Auger electron spectroscopy (AES), and X-ray diffraction (XRD) measurements. Measurements showed that barrier height of as-deposited Pt/Ti Schottky contact is 0.62 eV (I-V) and 0.76 eV (C-V). Experimental results indicate that high-quality Schottky contact with barrier height and ideality factor of 0.66 eV (I-V), 0.80 eV (C-V), and 1.14 can be achieved after annealing at 400 C for 1 min in N{sub 2} atmosphere. Further, it is observed that the barrier height slightly decreases to 0.55 eV (I-V) and 0.71 eV (C-V) after annealing at 500 C. Norde method is also employed to calculate the barrier height of Pt/Ti Schottky contacts. The obtained values are in good agreement with those obtained by I-V measurements. These results indicate that the optimum annealing temperature for the Pt/Ti Schottky contact is 400 C. According to AES and XRD analysis, the formation of indium phases at the Pt/Ti/n-InP interface could be the reason for the increase of Schottky barrier height (SBH) after annealing at 400 C. Results also showed the formation of phosphide phases at the interface. This may be the reason for the decrease in the barrier height after annealing at 500 C. The AFM results showed that the overall surface morphology of Pt/Ti Schottky contact is reasonably smooth. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Particle Trapping and Banding in Rapid Colloidal Solidification

    KAUST Repository

    Elliott, J. A. W.

    2011-10-11

    We derive an expression for the nonequilibrium segregation coefficient of colloidal particles near a moving solid-liquid interface. The resulting kinetic phase diagram has applications for the rapid solidification of clay soils, gels, and related colloidal systems. We use it to explain the formation of bandlike defects in rapidly solidified alumina suspensions. © 2011 American Physical Society.

  20. A new technology for concentrating and solidifying liquid LLRW

    Energy Technology Data Exchange (ETDEWEB)

    Newell, N. [TMC, Inc., Portland, OR (United States); Osborn, M.W.; Carey, C.C. [Oregon Health Sciences Univ., Portland, OR (United States)] [and others

    1995-12-31

    One of the unsolved problem areas of low level radioactive waste management is the radiolabeled material generated by life sciences research and clinical diagnostics. In hundreds of academic, biotechnology, and pharmaceutical institutions, there exists large amounts of both aqueous and organic solutions containing radioactively labeled nucleic acids, proteins, peptides, and their monomeric components. We have invented a generic slurry capable of binding all these compounds, thus making it possible to concentrate and solidify the radioactive molecules into a very small and lightweight material. The slurry can be contained in both large and small disposal plastic devices designed for the size of any particular operation. The savings in disposal costs and convenience of this procedure is a very attractive alternative to the present methods of long and short term storage. Additionally, the slurry can remove radiolabeled biological compounds from organic solvents, thus solving the major problem of {open_quotes}mixed{close_quotes} waste. We are now proceeding with the field application stage for the testing of these devices and anticipate widespread use of the process. We also are exploring the use of the slurry on other types of liquid low level radioactive waste.

  1. Macrostructure evolution in directionally solidified Mg-RE alloys

    Science.gov (United States)

    Salgado-Ordorica, M. A.; Punessen, W.; Yi, S.; Bohlen, J.; Kainer, K. U.; Hort, N.

    The use of Rare-Earths (RE) to develop new cast- and wrought-magnesium alloys has acquired increased interest in recent years. The good mechanical properties of Mg-RE alloys at room temperature, and in particular their high strength at relatively high temperatures are at present well-known facts that make them very promising materials for transport applications. In this context, it is necessary to achieve a better understanding of the macro and microstructure evolution of cast Mg-metals directionally solidified. To this end, binary Mg-RE alloys (where RE = Gd, Nd and Y) were cast by permanent mould direct chill casting. This process was performed in a specially optimized laboratory-scale installation in order to ensure the obtention of "clean" ingots, with homogeneous composition and free of porosity and inclusions. A set of different processing conditions was evaluated in order to better control the final microstructure, mainly in terms of grain size, orientation and distribution. The grain selection mechanisms operating during the solidification of these specimens, namely texturization and Columnar to Equiaxed Transition (CET), were characterized and put into relation with the initial composition of the alloy and the imposed cooling conditions.

  2. Experimental Study and Application of Inorganic Solidified Foam Filling Material for Coal Mines

    National Research Council Canada - National Science Library

    Hu Wen; Duo Zhang; Zhijin Yu; Xuezhao Zheng; Shixing Fan; Bin Laiwang

    2017-01-01

    .... Building an airtight wall is an effective measure for controlling air leakage. A new type of inorganic solidified foam-filled material was developed and its physical and chemical properties were analyzed experimentally...

  3. The structure and properties of rapidly solidified high alloy aluminum materials

    Science.gov (United States)

    Grant, N. J.

    1982-01-01

    A series of 2024 type aluminum alloys modified by additions of 1 to 2% Li were studied to determine the role of the Cu:Li and the (Cu + Mg):Li ratios on resultant strength, ductility, notch-tensile behavior, and crack propagation rates. Ultrasonically gas atomized powders with quench rates of 10 to 100 thousand degrees/s were atomized in an argon atmosphere, producing yields of powder such that almost 100% was finer than 250 microns. The powders are free of gases and porosity, are quite spherical, have few satellites (adhering fine powder particles) and are of uniform microstructure. Strength properties are such that yield strength is 20% greater than for lithium-free 2024 ingot alloy, tensile strength is 10% greater than that of 2024 ingot material, and ductilities are comparable. In terms of specific strength and specific modulus, these RS 2024-Li alloys are significantly better than IM 2024.

  4. Sinterable Ceramic Powders from Laser Heated Gas Phase Reactions and Rapidly Solidified Ceramic Materials.

    Science.gov (United States)

    1984-07-01

    Gattuso, T. R., Meunier, M., Adler, D., and Haggerty, J. S., "IR Laser- Induced Deposition of Silicon Thin Films ", to be published in the Proceedings of...and Thin Films by Laser Induced Gas Phase Reactions", presented at the Nineteenth University Conference on Ceramic Science, Emergent Process Methods... Silicon Carbonitrides from Monomeric Organosilicon Precursors". To be presented at the 1983 Annual Meeting of the American Ceramic Society, April 1983

  5. Morphology and microstructure of rapidly solidified tin-lead alloy powders

    Directory of Open Access Journals (Sweden)

    Xiang Qingchun

    2014-09-01

    Full Text Available Sn60Pb40 alloy powders were fabricated using the planar flow casting (PFC atomization process. By using OM, SEM and EPMA, the characteristics of the morphologies and microstructures of the powders have been investigated. It is observed that the environment of ambient gas in the atomization box has great effects on the morphology of the alloy powders. The microstructures of Sn60Pb40 alloy powders produced by the PFC atomization process are completely composed of eutectic, which is made up of both oversaturated α solid solution and β solid solution. The microstructures of small size powders are extraordinarily undeveloped dendritic eutectic, in which the large majority of the α phase appears nearly spherical, evidently since the cooling rate is higher and the under-cooling is larger. As for the large size powders, since the cooling rate and undercooling are relatively low, lamellar α phase apparently increases in the eutectic microstructures of these powders, and there is even typical lamellar eutectic structure clearly observed in some micro-areas. After remelting tests by DTA, the microstructures of small size powders are transformed, which become composed of large crumby α phase and eutectic (α+β, while those of large size powders change into classical tin-lead structures of primary α phase plus lamellar eutectic (α+β. By studying the microstructures of tin-lead alloy powders, a model has been proposed to predict the microstructure formation of Sn60Pb40 alloy powders.

  6. Magnetocaloric properties of rapidly solidified Dy{sub 3}Co alloy ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez Llamazares, J. L., E-mail: jose.sanchez@ipicyt.edu.mx; Flores-Zúñiga, H.; Sánchez-Valdés, C. F. [Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055 Col. Lomas 4" a, San Luis Potosí, S.L.P. 78216 (Mexico); Álvarez-Alonso, Pablo [Departamento de Electricidad y Electrónica, UPV/EHU, 48940 Leioa (Spain); Lara Rodríguez, G. A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México, D. F. 04510 (Mexico); Fernández-Gubieda, M. L. [Departamento de Electricidad y Electrónica, UPV/EHU, 48940 Leioa (Spain); BC Materials, Camino de Ibaizabal, Edificio 500, Planta 1, Parque Científico y Tecnológico de Zamudio, 48160 Derio (Spain)

    2015-05-07

    The magnetic and magnetocaloric (MC) properties of melt-spun ribbons of the Dy{sub 3}Co intermetallic compound were investigated. Samples were fabricated in an Ar environment using a homemade melt spinner system at a linear speed of the rotating copper wheel of 40 ms{sup −1}. X-ray diffraction analysis shows that ribbons crystallize into a single-phase with the Fe{sub 3}C-type orthorhombic crystal structure. The M(T) curve measured at 5 mT reveals the occurrence of a transition at 32 K from a first to a second antiferromagnetic (AFM) state and an AFM-to-paramagnetic transition at T{sub N} = 43 K. Furthermore, a metamagnetic transition is observed below T{sub N}, but the magnetization change ΔM is well below the one reported for bulk alloys. Below 12 K, large inverse MC effect and hysteresis losses are observed. This behavior is related to the metamagnetic transition. For a magnetic field change of 5 T (2 T) applied along the ribbon length, the produced ribbons show a peak value of the magnetic entropy change ΔS{sub M}{sup peak} of −6.5 (− 2.1) Jkg{sup −1}K{sup −1} occurring close to T{sub N} with a full-width at half-maximum δT{sub FWHM} of 53 (37) K, and refrigerant capacity RC = 364 (83) Jkg{sup −1} (estimated from the product |ΔS{sub M}{sup peak}| × δT{sub FWHM})

  7. The relation between experiments and modeling of rapidly solidified 12Cr-Mo-V stainless steel

    DEFF Research Database (Denmark)

    Pryds, Nini; Hattel, Jesper Henri

    1998-01-01

    Solidification during melt spinning of a 12Cr-Mo-V stainless steel has been experimentally studied and numerically simulated. The resulting microstructures have been related to the unknown parameter h, i.e. the heat transfer coefficient between the substrate and the melt, by fitting the heat flow...... of metastable austenite as the primary phase near the chill side of the ribbon. Upon quenching to room temperature, this austenite transformed into martensite. At a distance of about 15 mu m from the chill surface, the growth velocity of the solid/liquid interface decreased (

  8. Quatification of Primary Phase Undercooling of Rapidly Solidified Droplets with 3D Microtomography

    Science.gov (United States)

    Ilbagi, A.; Khatibi, P. Delshad; Henein, H.; Gandin, Ch. A.; Herlach, D. M.

    Powders of different compositions of Al-Cu alloys were atomized in helium and nitrogen and the microstructure of the atomized droplets was examined using X-ray micro-tomography. A method was developed to remove X-ray artifacts and background noise from the particles images. The method developed involves creating a clean mask file using MATLAB image toolbox, followed by applying the mask file to the original image to achieve clean images for the particle of interest. Separate features of interest in the droplets, such as region of initial growth and primary dendrites, were investigated at the various stages of solidification. The data is used to estimate the primary phase undercooling of the droplets, which will be used in a solidification model as an input to estimate the phase fractions. The results will then be compared with the experimental results.

  9. Microstructural evolution in a rapidly solidified Al-4mass%Fe droplet

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong-Gyoon (Department of Materials Science and Engineering, Kunsan National University, Kunsan 573-360 (Korea, Republic of)); Shin, Seong-Ho (Central Laboratory, Sammi Special Steel Company, Changwon 641-050 (Korea, Republic of)); Suzuki, Toshio (Engineering Research Institute, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113 (Japan)); Umeda, Takateru (Department of Metallurgy, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113 (Japan))

    1994-05-15

    A two-dimensional non-newtonian numerical analysis on the solidification of Al-4mass%Fe droplet was represented which includes the transition between the partitionless and partitioned solidification modes. It was shown that, instead of the banded-structure formation, a strong instability on the macroscopic solid-liquid interface occurs in the transition range. The patterns predicted as functions of the initial undercooling and the droplet size were compared with the microstructures of the gas-atomized Al-4mass%Fe powders. ((orig.))

  10. Electrochemical properties of melt spun Si-Cu-Ti-Zr-Ni alloy powders for the anode of Li-ion batteries

    Science.gov (United States)

    Bae, Seong Min; Sohn, Keun Yong; Park, Won-Wook

    2014-07-01

    The Si-Cu-Ti-Zr-Ni alloys of various compositions were prepared using arc-melting under an argon atmosphere, and the alloys were re-melted several times to ensure chemical homogeneity. The alloyed ingots were melt-spun to produce rapidly solidified ribbons under vacuum in order to prevent oxidation. Finely dispersed silicon particles 50-100 nm in diameter mainly consisting of Cu3Si, NiSi2 and TiSi2 phases were formed in the matrices. The alloy ribbons were then fragmented using ball-milling to produce powders. In order to evaluate the electrochemical properties of the alloys, anode electrodes were fabricated by mixing the active alloy materials (80 wt. %) with Ketjenblack® (2 wt. %) as a conductive material and polyamide imide (PAI, 8 wt. %) binder, and the mixtures were dissolved in N-methyl-2-pyrrolidinone (NMP) and SFG6 (10 wt. %). The anode performances of Si-Cu-Ti-Zr-Ni alloy cells were measured in the range 0.01-1.5 V (versus Li/Li+). The results showed that the Si68(Cu47Ti34Zr11Ni8)32 alloy ribbons had the highest specific discharge capacities, and the Si68(Cu40Ti40Zr10Ni10)32 alloy ribbons had relatively stable electrochemical properties and cycle performances due to the very fine microstructure including partially distributed amorphous phase. The matrix phases of the Si-Cu-Ti-Zr-Ni alloy ribbons effectively accommodated the change in Si particle volume during cycling.

  11. Gusev Rocks Solidified from Lava (Approximate True Color)

    Science.gov (United States)

    2006-01-01

    In recent weeks, as NASA's Mars Exploration Rover Spirit has driven through the basin south of 'Husband Hill,' it has been traversing mainly sand and dune deposits. This week, though, Spirit has been maneuvering along the edge of an arc-shaped feature called 'Lorre Ridge' and has encountered some spectacular examples of basaltic rocks with striking textures. This panoramic camera (Pancam) image shows a group of boulders informally named 'FuYi.' These basaltic rocks were formed by volcanic processes and may be a primary constituent of Lorre Ridge and other interesting landforms in the basin. Spirit first encountered basalts at its landing site two years ago, on a vast plain covered with solidified lava that appeared to have flowed across Gusev Crater. Later, basaltic rocks became rare as Spirit climbed Husband Hill. The basaltic rocks that Spirit is now seeing are interesting because they exhibit many small holes or vesicles, similar to some kinds of volcanic rocks on Earth. Vesicular rocks form when gas bubbles are trapped in lava flows and the rock solidifies around the bubbles. When the gas escapes, it leaves holes in the rock. The quantity of gas bubbles in rocks on Husband Hill varies considerably; some rocks have none and some, such as several here at FuYi, are downright frothy. The change in textures and the location of the basalts may be signs that Spirit is driving along the edge of a lava flow. This lava may be the same as the basalt blanketing the plains of Spirit's landing site, or it may be different. The large size and frothy nature of the boulders around Lorre Ridge might indicate that eruptions once took place at the edge of the lava flow, where the lava interacted with the rocks of the basin floor. Scientists hope to learn more as Spirit continues to investigate these rocks. As Earth approaches the Chinese New Year (The Year of the Dog), the Athena science team decided to use nicknames representing Chinese culture and geography to identify rocks and

  12. To eliminate the composition transient zone in directional solidification of TiAl alloys

    Science.gov (United States)

    Zhang, C. J.; Xu, D. M.; Fu, H. Z.; Bi, W. S.; Su, Y. Q.; Guo, J. J.

    2008-07-01

    The technique of directional solidification (DS) with cold-crucible and seeding is used to control the lamellar orientations in the solidified structures of TiAl alloys. However, the concentration transient zone (CTZ), a characteristic of alloy DS, may result in failure of the structure control because the CTZ separates the seed and the directionally solidified peritectic structure of TiAl alloys due to the β-phase formation. A composition adjusting method is proposed to eliminate the CTZ in this paper. Measurements were carried out to determine the macro-composition distributions in the directionally solidified Ti-Al%-Si% samples with and without the composition adjustment. The CTZ length measured in the directionally solidified sample without composition adjustment shows to be comparable to that predicted by a zone-melting-equivalent modeling performed in the present work. The experimental results for the CTZ control in zone-melting-like DS process with a cold crucible are exhibited. These results show that the CTZ control is feasible.

  13. The Effects of Externally Solidified Product on Wave Celerity and Quality of Die Cast Products

    Energy Technology Data Exchange (ETDEWEB)

    Carroll Mobley; Yogeshwar Sahai; Jerry Brevick

    2003-10-10

    The cold chamber die casting process is used to produce essentially all the die cast aluminum products and about 50% of the die cast magnesium products made today. Modeling of the cold chamber die casting process and metallographic observations of cold chamber die cast products indicate that typically 5 to 20% of the shot weight is solidified in the shot sleeve before or during cavity filling. The protion of the resulting die casting which is solidified in the shot sleeve is referred to as externally solidified product, or, when identified as a casting defect, as cold flakes. This project was directed to extending the understanding of the effects of externally solidified product on the cold chamber die casting process and products to enable the production of defect-free die castings and reduce the energy associated with these products. The projected energy savings from controlling the fraction of externally solidified product in die cast components is 40 x 10 Btu through the year 2025.

  14. An Experimental Study on Solidifying Municipal Sewage Sludge through Skeleton Building Using Cement and Coal Gangue

    Directory of Open Access Journals (Sweden)

    Jiankang Yang

    2017-01-01

    Full Text Available The municipal sewage sludge typically has very high water content and low shear strength. Conventional methods of lime and cement solidification of municipal sewage sludge often suffer high cost, significant drying shrinkage, frequent cracking, high hydraulic conductivity, and low strength. To overcome these shortcomings, in this paper a skeleton-building method was used to solidify municipal sewage sludge in which coal gangue, cement and clay, and fiber were used as skeleton materials, cementation materials, and filling materials, respectively. Comprehensive laboratory tests including cracking, nitrogen adsorption, triaxial shearing, and permeability tests were performed to determine cracking, pore structure, shear strength, and hydraulic conductivity of municipal sewage sludge solidified with different proportions of coal gangue, cement, fiber, and clay. Based upon the experimental results, the mechanisms of the skeleton building using cement and coal gangue were discussed and factors controlling the mechanical and hydraulic behavior of the solidified soils were analyzed at both microscopic and macroscopic levels. Based upon the test results and analyses, recommendations were made for solidifying municipal sewage sludge through skeleton building using cement and coal gangue. The solidified soils have high soil strength, high resistance to cracking, and low hydraulic conductivity which are sufficient for being used as landfill liner.

  15. Effects of Microalloying on the Microstructures and Mechanical Properties of Directionally Solidified Ni-33(at.%)Al-31Cr-3Mo Eutectic Alloys Investigated

    Science.gov (United States)

    Whittenberger, J. Daniel; Raj, Sai V.; Locci, Ivan E.; Salem, Jonathan A.

    2002-01-01

    Despite nickel aluminide (NiAl) alloys' attractive combination of oxidation and thermophysical properties, their development as replacements for superalloy airfoils in gas turbine engines has been largely limited by difficulties in developing alloys with an optimum combination of elevated-temperature creep resistance and room-temperature fracture toughness. Alternatively, research has focused on developing directionally solidified NiAl-based in situ eutectic composites composed of NiAl and (Cr,Mo) phases in order to obtain a desirable combination of properties a systematic investigation was undertaken at the NASA Glenn Research Center to examine the effects of small additions of 11 alloying elements (Co, Cu, Fe, Hf, Mn, Nb, Re, Si, Ta, Ti, and Zr) in amounts varying from 0.25 to 1.0 at.% on the elevated-temperature strength and room-temperature fracture toughness of directionally solidified Ni-33Al-31Cr-3Mo eutectic alloy. The alloys were grown at 12.7 mm/hr, where the unalloyed eutectic base alloy exhibited a planar eutectic microstructure. The different microstructures that formed because of these fifth-element additions are included in the table. The additions of these elements even in small amounts resulted in the formation of cellular microstructures, and in some cases, dendrites and third phases were observed. Most of these elemental additions did not improve either the elevated-temperature strength or the room-temperature fracture toughness over that of the base alloy. However, small improvements in the compression strength were observed between 1200 and 1400 K when 0.5 at.% Hf and 0.25 at.% Ti were added to the base alloy. The results of this study suggest that the microalloying of Ni-33Al-31Cr-3Mo will not significantly improve either its elevatedtemperature strength or its room-temperature fracture toughness. Thus, any improvements in these properties must be acquired by changing the processing conditions.

  16. Primary Dendrite Arm Spacings in Al-7Si Alloy Directionally Solidified on the International Space Station

    Science.gov (United States)

    Angart, Samuel; Lauer, Mark; Poirier, David; Tewari, Surendra; Rajamure, Ravi; Grugel, Richard

    2015-01-01

    Samples from directionally solidified Al- 7 wt. % Si have been analyzed for primary dendrite arm spacing (lambda) and radial macrosegregation. The alloy was directionally solidified (DS) aboard the ISS to determine the effect of mitigating convection on lambda and macrosegregation. Samples from terrestrial DS-experiments thermal histories are discussed for comparison. In some experiments, lambda was measured in microstructures that developed during the transition from one speed to another. To represent DS in the presence of no convection, the Hunt-Lu model was used to represent diffusion controlled growth under steady-state conditions. By sectioning cross-sections throughout the entire length of a solidified sample, lambda was measured and calculated using the model. During steady-state, there was reasonable agreement between the measured and calculated lambda's in the space-grown samples. In terrestrial samples, the differences between measured and calculated lambda's indicated that the dendritic growth was influenced by convection.

  17. Leaching of heavy metals from solidified waste using Portland cement and zeolite as a binder.

    Science.gov (United States)

    Napia, Chuwit; Sinsiri, Theerawat; Jaturapitakkul, Chai; Chindaprasirt, Prinya

    2012-07-01

    This study investigated the properties of solidified waste using ordinary Portland cement (OPC) containing synthesized zeolite (SZ) and natural zeolite (NZ) as a binder. Natural and synthesized zeolites were used to partially replace the OPC at rates of 0%, 20%, and 40% by weight of the binder. Plating sludge was used as contaminated waste to replace the binder at rates of 40%, 50% and 60% by weight. A water to binder (w/b) ratio of 0.40 was used for all of the mixtures. The setting time and compressive strength of the solidified waste were investigated, while the leachability of the heavy metals was determined by TCLP. Additionally, XRD, XRF, and SEM were performed to investigate the fracture surface, while the pore size distribution was analyzed with MIP. The results indicated that the setting time of the binders marginally increased as the amount of SZ and NZ increased in the mix. The compressive strengths of the pastes containing 20 and 40wt.% of NZ were higher than those containing SZ. The compressive strengths at 28 days of the SZ solidified waste mixes were 1.2-31.1MPa and those of NZ solidified waste mixes were 26.0-62.4MPa as compared to 72.9MPa of the control mix at the same age. The quality of the solidified waste containing zeolites was better than that with OPC alone in terms of the effectiveness in reducing the leachability. The concentrations of heavy metals in the leachates were within the limits specified by the US EPA. SEM and MIP revealed that the replacement of Portland cement by zeolites increased the total porosity but decreased the average pore size and resulted in the better containment of heavy ions from the solidified waste. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Estimation of Steel Solidified Layer Thickness, for Continuous Casting Control Purposes

    Directory of Open Access Journals (Sweden)

    Mihai MUNTEANU

    2008-08-01

    Full Text Available An important goal in continuous casting automation process rest in establishing a proper casting speed being able to assure a compromise between machine productivity and solidified skin cracking protection on the mould level. Contextually, this paper presents new solutions regarding solidified layer thickness estimation for steel continuous casting. The new model starts from actual stadium analysis and propose a solution for analytical model modification, in such a way that the model to approximate solidification dynamics at different casting speeds, using both important parameters for continuous casting process, meaning casting speed and time. A series of results obtained using numeric simulation are presented as a validation for proposed solution.

  19. Influence of Short-time Oxidation on Corrosion Properties of Directionally Solidified Superalloys with Different Orientations

    Directory of Open Access Journals (Sweden)

    MA Luo-ning

    2016-07-01

    Full Text Available In order to investigate the corrosion performance on intersecting and longitudinal surfaces of unoxidized and oxidized directionally solidified superalloys, Ni-base directionally solidified superalloy DZ125 and Co-base directionally solidified superalloy DZ40M were selected. Oxidation behavior on both alloys with different orientations was investigated at 1050℃ at different times, simulating the oxidation process of vanes or blades in service; subsequent electrochemical performance in 3.5%NaCl aqueous solution was studied on two orientations of unoxidized and oxidized alloys, simulating the corrosion process of superalloy during downtime. The results show that grain boundaries and sub-boundaries of directionally solidified superalloys are susceptible to corrosion and thus longitudinal surface with lower area fraction of grain boundaries has higher corrosion resistance. Compared to intersecting surface of alloys, the structure of grain boundaries of longitudinal surface is less conducive to diffusion and thus the oxidation rate on longitudinal surface is lower. Formation of oxide layers on alloys after short-time oxidation provides protective effect and enhances the corrosion resistance.

  20. Evaluation of Carbonation Effects on Cement-Solidified Contaminated Soil Used in Road Subgrade

    Directory of Open Access Journals (Sweden)

    Yundong Zhou

    2018-01-01

    Full Text Available Cement solidification/stabilization is widely used towards contaminated soil since it has a low price and significant improvement for the structural capacity of soil. To increase the usage of the solidified matrix, cement-solidified contaminated soil was used as road subgrade material. In this study, carbonation effect that reflected the durability on strength characteristics of cement-solidified contaminated soil and the settlement of pavement were evaluated through experimental and numerical analysis, respectively. According to results, compressive strengths of specimens with 1% Pb(II under carbonation and standard curing range from 0.44 MPa to 1.17 MPa and 0.14 MPa to 2.67 MPa, respectively. The relatively low strengths were attributed to immobilization of heavy metal, which consumed part of SiO2, Al2O3, and CaO components in the cement or kaolin and reduced the hydration and pozzolanic reaction materials. This phenomenon further decreased the strength of solidified soils. The carbonation depth of 1% Cu(II or Zn(II contaminated soils was 18 mm, which significantly increased with the increase of curing time and contamination concentration. Furthermore, the finite element calculation results showed that surface settlements decreased with the increase of modulus of subgrade and the distance away from the center. At the center, the pavement settlement was proportional to the level of traffic load.

  1. Direct Numerical Study of a Molten Metal Drop Solidifying on a Cold Plate with Different Wettability

    Directory of Open Access Journals (Sweden)

    Truong V. Vu

    2018-01-01

    Full Text Available This paper presents a direct numerical simulation of solidification of a molten metal drop on a cold plate with various wettability by an axisymmetric front-tracking method. Because of the plate kept at a temperature below the fusion value of the melt, a thin solid layer forms at the plate and evolves upwards. The numerical results show that the solidifying front is almost flat except near the triple point with a high solidification rate at the beginning and final stages of solidification. Two solid-to-liquid density ratios ρsl = 0.9 (volume change and 1.0 (no change in volume, with two growth angles φ0 = 0° and 12° are considered. The presence of volume change and a non-zero growth angle results in a solidified drop with a conical shape at the top. The focusing issue is the effects of the wettability of the plate in terms of the contact angle φ0. Increasing the contact angle in the range of 45° to 120° increases time for completing solidification, i.e., solidification time. However, it has a minor effect on the conical angle at the top of the solidified drop and the difference between the initial liquid and final solidified heights of the drop. The effects of the density ratio and growth angle are also presented.

  2. Periodontal tissue regeneration using enzymatically solidified chitosan hydrogels with or without cell loading

    NARCIS (Netherlands)

    Yan, X.Z.; Beucken, J.J.J.P van den; Cai, X; Yu, N.; Jansen, J.A.; Yang, F.

    2015-01-01

    This study is aimed to evaluate the in vivo biocompatibility and periodontal regenerative potential of enzymatically solidified chitosan hydrogels with or without incorporated periodontal ligament cells (PDLCs). To this end, chitosan hydrogels, with (n=8; CHIT+CELL) or without (n=8; CHIT)

  3. A united refinement technology for commercial pure Al by Al-10Ti and Al-Ti-C master alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ma Xiaoguang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Liu Xiangfa [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)], E-mail: xfliu@sdu.edu.cn; Ding Haimin [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2009-03-05

    Because flake-like TiAl{sub 3} particles in Al-Ti-C master alloys prepared in a melt reaction method dissolve slowly when they are added into Al melt at 720 deg. C, Ti atoms cannot be released rapidly to play the assistant role of grain refinement, leading to a poor refinement efficiency of Al-Ti-C master alloys. A united refinement technology by Al-10Ti and Al-Ti-C master alloys was put forward in this paper. The rational combination of fine blocky TiAl{sub 3} particles in Al-10Ti and TiC particles in Al-Ti-C can improve the nucleation rate of {alpha}-Al. It not only improves the grain refinement efficiency of Al-Ti-C master alloys, but also reduces the consumption.

  4. A review of rapid solidification studies of intermetallic compounds

    Science.gov (United States)

    Koch, C. C.

    1985-01-01

    A review of rapid solidification studies of high-temperature ordered intermetallic compounds is presented. Emphasis is on the nickel - and iron- aluminides which are of potential interest as structural materials. The nickel-base aluminides which have been rapidly solidified exhibit changes in grain size, compositional segregation, and degree of long range order (as reflected in APB size and distribution) which markedly affect mechanical properties. Some experiments indicate the formation of a metastable L1(2) phase in rapidly solidified Fe-(Ni,Mn)-Al-C alloys, while other work observes only a metastable fcc phase in the same composition range. The metastable phases and/or microstructures in both nickel and iron aluminides are destroyed by annealing at temperatures above 750 K, with subsequent degradation of mechanical properties. Rapid solidification studies of several other intermetallic compounds are briefly noted.

  5. Effect of heat treatment on the fracture behaviour of directionally solidified (gamma/gamma-prime)-alpha alloy

    Science.gov (United States)

    Sriramamurthy, A. M.; Tewari, S. N.

    1987-01-01

    An investigation is conducted into the influence of various heat treatments on the work of fracture and its relation to microstructure for a directionally solidified Ni-33Mo-5.7Al (wt pct) (gamma/gamma-prime)-alpha alloy. The jagged crack propagation observed is due to delamination of the ligaments and associated plastic deformation. Fracture behavior is examined with respect to alloy microstructures and load-deflection curves. The four heat-treatment conditions considered are: (1) as-directionally solidified, (2) solutionized, (3) directionally solidified and thermally cycled, and (4) solutionized and thermally cycled.

  6. Microstructure characteristics of Ni-43Ti-4Al-2Nb-2Hf alloy prepared by conventional casting and directional solidification

    Directory of Open Access Journals (Sweden)

    Zhou Lei

    2012-05-01

    Full Text Available To further investigate the microstructure characteristic and solidification mechanism, so as to provide knowledge for the microstructure control of a NiTi-Al based high-temperature structural material, the microstructure of Ni-43Ti-4Al-2Nb-2Hf (at.% alloy ingots prepared by conventional casting (arc-melting and directional solidification (DS at various drawing velocities (2 mm·min-1, 18 mm·min-1, 30 mm·min-1 and 60 mm·min-1, respectively was investigated by means of electron probe microanalyses. Experimental results reveal that the microstructures are composed of NiTi matrix phase, β-Nb phase and Ti2Ni phase for samples obtained by both conventional casting and DS. Conventional casting has an equiaxial structure, while DS has a slender and acicular cellular structure which grows along the [001] orientation preferentially. Small amounts of white β-Nb phase and black Ti2Ni phase co-exist at the grain boundaries or intercellular regions. With an increase in drawing velocity, the NiTi matrix phase is inclined to grow along (100 and (200 crystallographic planes, and the cellular arm spacing reduce gradually, but the directionality of the solidified structure weakens significantly. The homogeneous dispersion of β-Nb phase and the decrease of Ti2Ni phase in DS samples are beneficial to improving the mechanical properties. Solidification mechanism analysis indicates that the dark grey NiTi matrix phase initially precipitates from the liquid phase, and then the divorced eutectic reaction takes place, which produces the light gray matrix phase and β-Nb phase. Finally, the peritectic reaction happens, which generates the black Ti2Ni phase. The complete solidified path of the alloy is L→ NiTi+L → NiTi+ β-Nb+L → NiTi+β-Nb + Ti2Ni.

  7. Effect of residual stress relaxation by means of local rapid induction heating on stress corrosion cracking behavior and electrochemical characterization of welded Ti-6Al-4V alloy under slow strain rate test

    Science.gov (United States)

    Liu, Yan; Tang, Shawei; Liu, Guangyi; Sun, Yue; Hu, Jin

    2017-05-01

    In this study, a welded Ti-6Al-4V alloy was treated by means of local rapid induction heating in order to relax the residual stress existed in the weldment. The welded samples were heat treated at the different temperatures. The stress corrosion cracking behavior and electrochemical characterization of the as-welded samples before and after the post weld heat treatment as a function of residual stress were investigated. Electrochemical impedance spectroscopy measurements of the samples under slow strain rate test were performed in a LiCl-methanol solution. The results demonstrated that the residual stress in the as-welded sample was dramatically reduced after the post weld heat treatment, and the residual stress decreased with the increase in the heat treatment temperature. The stress corrosion cracking susceptibility and electrochemical activity of the as-welded sample were significantly reduced after the heat treatment due to the relaxation of the residual stress, which gradually decreased with the decreasing value of the residual stress distributed in the heat treated samples.

  8. Functions and requirements document for interim store solidified high-level and transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    Smith-Fewell, M.A., Westinghouse Hanford

    1996-05-17

    The functions, requirements, interfaces, and architectures contained within the Functions and Requirements (F{ampersand}R) Document are based on the information currently contained within the TWRS Functions and Requirements database. The database also documents the set of technically defensible functions and requirements associated with the solidified waste interim storage mission.The F{ampersand}R Document provides a snapshot in time of the technical baseline for the project. The F{ampersand}R document is the product of functional analysis, requirements allocation and architectural structure definition. The technical baseline described in this document is traceable to the TWRS function 4.2.4.1, Interim Store Solidified Waste, and its related requirements, architecture, and interfaces.

  9. Characterization of solidified gas thin film targets via alpha particle energy loss

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, M.C. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Phys. and Astron.; Beer, G.A.; Douglas, J.L.; Knowles, P.E.; Maier, M.; Mason, G.R.; Porcelli, T.A. [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8W 2Y2 (Canada); Beveridge, J.L.; Marshall, G.M.; Mulhauser, F.; Olin, A. [TRIUMF, Vancouver, BC, V6T 2A3 (Canada); Huber, T.M. [Department of Physics, Gustavus Adolphus College, St.Peter, MN 56082 (United States); Jacot-Guillarmod, R. [Physics Institute, Universite de Fribourg, CH-1700 Fribourg (Switzerland); Kim, S.K. [Department of Physics, Jeonbuk National University, Jeonju City 560-756 (Korea, Republic of); Kunselman, A.R. [Department of Physics, University of Wyoming, Laramie, WY 82071 (United States); Petitjean, C. [Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Zmeskal, J. [Austrian Academy of Sciences, A-1090 Wien (Austria); TRIUMF Collaboration

    1997-08-11

    A method is reported for measuring the thickness and uniformity of thin films of solidified gas targets. The energy of {alpha} particles traversing the film is measured and the energy loss is converted to thickness using the range. The uniformity is determined by measuring the thickness at different positions with an array of sources. Monte Carlo simulations have been performed to study the film deposition mechanism. Thickness calibrations for a TRIUMF solid hydrogen target system are presented. (orig.).

  10. Toward optimizing dental implant performance: Surface characterization of Ti and TiZr implant materials.

    Science.gov (United States)

    Murphy, M; Walczak, M S; Thomas, A G; Silikas, N; Berner, S; Lindsay, R

    2017-01-01

    Targeting understanding enhanced osseointegration kinetics, the goal of this study was to characterize the surface morphology and composition of Ti and TiZr dental implant substrates subjected to one of two surface treatments developed by Straumann. These two treatments are typically known as SLA and SLActive, with the latter resulting in more rapid osseointegration. A range of techniques was applied to characterize four different substrate/surface treatment combinations (TiSLA, TiSLActive, TiZrSLA, and TiZrSLActive). Contact angle measurements established their hydrophilic/hydrophobic nature. Surface morphology was probed with scanning electron microscopy. X-ray diffraction, Raman μ-spectroscopy, and X-ray photoelectron spectroscopy were used to elucidate the composition of the near-surface region. Consistent with previous work, surface morphology was found to differ only at the nanoscale, with both SLActive substrates displaying nano-protrusions. Spectroscopic data indicate that all substrates exhibit surface films of titanium oxide displaying near TiO2 stoichiometry. Raman μ-spectroscopy reveals that amorphous TiO2 is most likely the only phase present on TiSLA, whilst rutile-TiO2 is also evidenced on TiSLActive, TiZrSLA, and TiZrSLActive. For TiZr alloy substrates, there is no evidence of discrete phases of oxidized Zr. X-ray photoelectron spectra demonstrate that all samples are terminated by adventitious carbon, with it being somewhat thicker (∼1nm) on TiSLA and TiZrSLA. Given previous in vivo studies, acquired data suggest that both nanoscale protrusions, and a thinner layer of adventitious carbon contribute to the more rapid osseointegration of SLActive dental implants. Composition of the surface oxide layer is apparently less important in determining osseointegration kinetics. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Microstructure and orientation evolution in unidirectional solidified Al–Zn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhongwei, E-mail: chzw@nwpu.edu.cn; Wang, Enyuan; Hao, Xiaolei

    2016-06-14

    Morphological instability and growth orientation evolution during unidirectional solidification of Al–Zn alloys with different pulling speeds were investigated by X-ray diffraction (XRD) and electron back-scatter diffraction (EBSD) in scanning electron microscope (SEM). The experimental results show that, as the pulling speed increases, the primary dendrite spacing becomes smaller gradually and dendrite trunks incline to the heat flow direction perfectly in unidirectional solidified Al–9.8 wt%Zn and Al–89 wt%Zn alloys. However, regardless of the pulling speed in unidirectional solidified Al–Zn alloys under fixed thermal gradient, the regular dendrites with <100> directions of primary trunks and secondary arms in 9.8 wt% Zn composition are replaced by <110> dendrites of primary trunks and secondary arms in 89 wt% Zn composition. In unidirectional solidified Al–32 wt% Zn alloy, cellular, fractal seaweed, and stabilized seaweed structures were observed at high pulling speeds. At a high pulling speed of 1000 µm/s, seaweed structures transform to the columnar dendrites with <110> trunks and <100> arms. The above orientation evolution can be attributed to low anisotropy of solid-liquid interface energy and the seaweed structure is responsible for isotropy of {111} planes.

  12. Investigation of the as-solidified microstructure of an Al–Mg–Si–Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kai; Song, Min [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Du, Yong, E-mail: yongducalphad@gmail.com [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Tang, Ying [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Dong, Hongbiao [Department of Engineering, University of Leicester, Leicester LE1 7RH (United Kingdom); Ni, Song [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2014-07-25

    Highlights: • AlMgSiCu-Q particles preferentially grow along the solidification direction. • A new orientation relationship between Q particles and α-Al matrix was found. • The solidified microstructure was simulated based on Scheil–Gulliver model. • The effect of solidification on solution and aging processes were analyzed. - Abstract: The as-solidified microstructure of an Al–Mg–Si–Cu alloy was characterized by scanning electron microscopy and transmission electron microscopy. Quaternary Q particles were found to elongate preferentially along the solidification direction of the cylindrical cast ingot, whilst a small number of Si leaf-like particles aggregate mainly along the grain boundaries. The volume fractions of the Q and Si particles are quantitatively measured from electron microscopy images and thermodynamically simulated based on the Scheil–Gulliver solidification model. The results from experimental measurement agree well with those from simulation. The Q particles, which have dendrite-like internal structure and are uniformly distributed within the α-Al grains with a different orientation from that found in the aged alloys, are fast-dissolving and aid the formation of uniform aged microstructures. The aggregation of the Si particles along the grain boundaries in the as-solidified microstructure results in Si-rich boundaries even after a solution treatment, and causes the re-emergence of Si particles in the over-aged microstructure. This phenomenon helps to reduce the width of the precipitate-free zones.

  13. Modeling second-phase formation during rapid resolidification of stainless steel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Elmer, J.W. (Lawrence Livermore National Lab., CA (USA)); Eagar, T.W.; Allen, S.M. (Massachusetts Inst. of Tech., Cambridge, MA (USA))

    1991-01-28

    Many common stainless steel (SS) alloy microstructures consist of a mixture of ferrite and austenite phases, however, when these alloys are rapidly resolidified using laser beam (LB) or electron beam (EB) processes they solidify in the single-phase-austenite or single-phase-ferrite mode. This paper investigates the influence of solidification rate on the reduction, and eventual elimination, of second phases during the rapid solidification of SS alloys. The influence of solidification rate on the ferrite content of these alloys was studied by calculating the dendrite-tip undercooling and then incorporating these results into a solute-redistribution model to calculate the relative fractions of primary and secondary phase that solidify from the melt. Single-phase solidification was predicted at high cooling rates and was confirmed through STEM analysis, showing solidification microstructures void of any significant microchemical composition gradients. Results showed a rapid-solidification model was used to calculate the relative fractions of primary and secondary phases that form during the resolidification of stainless steel alloys. The rapid-solidification model shows that the ferrite content of primary-austenite solidified alloys decreases and the ferrite content of primary-ferrite solidified alloys increases with increasing cooling rate. Results of the model indicate that primary-austenite alloys will solidify in the single-phase mode at all interface velocities greater than about 20 mm/s. This value correlates well with experiments. Results of the model indicate that primary-ferrite alloys will solidify in the single-phase mode at all interface velocities greater than about 50 mm/s. The experimentally-observed interface velocity for single-phase-ferrite solidification is significantly less (10 mm/s). This discrepancy is proposed to be related to the relative difficulty of nucleating austenite from the eutectic liquid. 13 refs., 5 figs., 2 tabs.

  14. Toward optimizing dental implant performance: Surface characterization of Ti and TiZr implant materials.

    OpenAIRE

    Murphy, Matthew; Walczak, Monika; Thomas, Andrew; Silikas, Nick; Berner, S.; Lindsay, Robert

    2017-01-01

    ObjectiveTargeting understanding enhanced osseointegration kinetics, the goal of this study was to characterize the surface morphology and composition of Ti and TiZr dental implant substrates subjected to one of two surface treatments developed by Straumann. These two treatments are typically known as SLA and SLActive, with the latter resulting in more rapid osseointegration.MethodsA range of techniques was applied to characterize four different substrate/surface treatment combinations (TiSLA...

  15. Directionally Solidified Aluminum - 7 wt% Silicon Alloys: Comparison of Earth and International Space Station Processed Samples

    Science.gov (United States)

    Grugel, Richard N,; Tewari, Surendra; Rajamure, R. S.; Erdman, Robert; Poirier, David

    2012-01-01

    Primary dendrite arm spacings of Al-7 wt% Si alloy directionally solidified in low gravity environment of space (MICAST-6 and MICAST-7: Thermal gradient approx. 19 to 26 K/cm, Growth speeds varying from 5 to 50 microns/s show good agreement with the Hunt-Lu model. Primary dendrite trunk diameters of the ISS processed samples show a good fit with a simple analytical model based on Kirkwood s approach, proposed here. Natural convection, a) decreases primary dendrite arm spacing. b) appears to increase primary dendrite trunk diameter.

  16. Solidified self-nanoemulsifying formulation for oral delivery of combinatorial therapeutic regimen

    DEFF Research Database (Denmark)

    Jain, Amit K; Thanki, Kaushik; Jain, Sanyog

    2014-01-01

    PURPOSE: The present work reports rationalized development and characterization of solidified self-nanoemulsifying drug delivery system for oral delivery of combinatorial (tamoxifen and quercetin) therapeutic regimen. METHODS: Suitable oil for the preparation of liquid SNEDDS was selected based...... formulation revealed 9.63-fold and 8.44-fold higher Caco-2 uptake of tamoxifen and quercetin, respectively in comparison with free drug counterparts. CONCLUSIONS: The developed formulation strategy revealed a great potential for oral delivery of combination drugs having utmost clinical relevance....

  17. Pressure transmitting medium Daphne 7474 solidifying at 3.7 GPa at room temperature

    Science.gov (United States)

    Murata, Keizo; Yokogawa, Keiichi; Yoshino, Harukazu; Klotz, Stefan; Munsch, Pascal; Irizawa, Akinori; Nishiyama, Mototsugu; Iizuka, Kenzo; Nanba, Takao; Okada, Tahei; Shiraga, Yoshitaka; Aoyama, Shoji

    2008-08-01

    A pressure transmitting medium named Daphne 7474, which solidifies at Ps=3.7 GPa at room temperature, is presented. The value of Ps increases almost linearly with temperature up to 6.7 GPa at 100 °C. The high pressure realized by a medium at the liquid state allows a higher limit of pressurization, which assures an ideal hydrostatic pressure. We show a volume change against pressure, pressure reduction from room to liquid helium temperature in a clamped piston cylinder cell, pressure distribution and its standard deviation in a diamond anvil cell, and infrared properties, which might be useful for experimental applications.

  18. Determination of performance criteria for high-level solidified nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, R.A.; Holdsworth, T.

    1979-05-07

    To minimize radiological risk from the operation of a waste management system, performance limits on volatilization, particulate dispersion, and dissolution characteristics of solidified high level waste must be specified. The results show clearly that the pre-emplacement environs are more limiting in establishing the waste form performance criteria than the post-emplacement environs. Absolute values of expected risk are very sensitive to modeling assumptions. The transportation and interim storage operations appear to be most limiting in determining the performance characteristics required. The expected values of risk do not rely upon the repositories remaining intact over the potentially hazardous lifetime of the waste.

  19. Leaching of rapidly quenched Al65Cu20Fe15 quasicrystalline ribbons

    Indian Academy of Sciences (India)

    2017-12-06

    Dec 6, 2017 ... The Al–Mn QC exhibiting a simple icosahedral (i) symmetry. (Pm35), however the ordered QC was showing face-centred icosahedral (FCI) symmetry (Fm35) reported in annealed. Al–Cu–Fe rapidly solidified alloy [7,8]. A stable (i) Al–Cu–. Fe ternary QC has been discovered, which is a part of the.

  20. Research regarding the formation of micropores in a Ni-Ti-C alloy during directional solidification under vacuum

    OpenAIRE

    Daoxin, J.; Lecomte-Beckers, Jacqueline

    1982-01-01

    The aim of this experiment was to study the origin and formation of microporosities in a Ni-5% Ti-0.2% C alloy which has been solidified and quenched, and to compare it to the previously developed mathematical model. In the selected alloy, the porosity may result from gases formed during solidification (for example by chemical reaction). The results show that solidification conditions influence microporosity formation through the fraction eutectic and this suggests that it is possible to rela...

  1. As-cast structure refinement of Ti-46Al alloy by hafnium and boron additions

    Directory of Open Access Journals (Sweden)

    Zhang Li

    2009-05-01

    Full Text Available The infl uence of Hf and B on the solidifi cation structure of cast Ti-46Al alloys was investigated. The results show that the coupling effect of Hf and B changes the solidifi cation structure morphology and strongly refi nes the grain size. When the Hf+B contents were increased from 0 + 0.0 to 3 + 0.2, 5 + 0.6 and 7 + 1.0 (in at. %, the solidification structure morphology changed from coarse columnar dendrite to fine columnar dendrite, then to equiaxed dendrite, and further to fi ne near granular grain whilst the average grain size decreased to 20 μm. It is concluded that the columnar dendrite refinement is due to the effect of Hf and B on the decrease of Al diffusion coeffi cient in the melt. The fi ne near granular grain formation is attributed to the combined constitutional supercooling formed by Al and B segregation that is strengthened by Hf and B additions at the solid/liquid interface during solidifi cation, and the TiB2 precipitates acting as heterogeneous nuclei

  2. AE Monitoring of Diamond Turned Rapidly Soldified Aluminium 443

    Science.gov (United States)

    Onwuka, G.; Abou-El-Hossein, K.; Mkoko, Z.

    2017-05-01

    The fast replacement of conventional aluminium with rapidly solidified aluminium alloys has become a noticeable trend in the current manufacturing industries involved in the production of optics and optical molding inserts. This is as a result of the improved performance and durability of rapidly solidified aluminium alloys when compared to conventional aluminium. Melt spinning process is vital for manufacturing rapidly solidified aluminium alloys like RSA 905, RSA 6061 and RSA 443 which are common in the industries today. RSA 443 is a newly developed alloy with few research findings and huge research potential. There is no available literature focused on monitoring the machining of RSA 443 alloys. In this research, Acoustic Emission sensing technique was applied to monitor the single point diamond turning of RSA 443 on an ultrahigh precision lathe machine. The machining process was carried out after careful selection of feed, speed and depths of cut. The monitoring process was achieved with a high sampling data acquisition system using different tools while concurrent measurement of the surface roughness and tool wear were initiated after covering a total feed distance of 13km. An increasing trend of raw AE spikes and peak to peak signal were observed with an increase in the surface roughness and tool wear values. Hence, acoustic emission sensing technique proves to be an effective monitoring method for the machining of RSA 443 alloy.

  3. Experimental Investigation of Closed Porosity of Inorganic Solidified Foam Designed to Prevent Coal Fires

    Directory of Open Access Journals (Sweden)

    Yi Lu

    2015-01-01

    Full Text Available In order to overcome the deficiency of the existing fire control technology and control coal spontaneous combustion by sealing air leakages in coal mines, inorganic solidified foam (ISF with high closed porosity was developed. The effect of sodium dodecyl sulfate (SDS concentration on the porosity of the foams was investigated. The results showed that the optimized closed porosity of the solidified foam was 38.65 wt.% for an SDS concentration of approximately 7.4×10-3 mol/L. Based on observations of the microstructure of the pore walls after solidification, it was inferred that an equilibrium between the hydration process and the drainage process existed. Therefore, the ISF was improved using three different systems. Gelatin can increase the viscosity of the continuous phase to form a viscoelastic film around the air cells, and the SDS + gelatin system can create a mixed surfactant layer at gas/liquid interfaces. The accelerator (AC accelerates the hydration process and coagulation of the pore walls before the end of drainage. The mixed SDS + gelatin + AC systems produced an ISF with a total porosity of 79.89% and a closed porosity of 66.89%, which verified the proposed stabilization mechanism.

  4. Extracellular micro and nanostructures forming the velvet worm solidified adhesive secretion

    Science.gov (United States)

    Corrales-Ureña, Yendry Regina; Sanchez, Angie; Pereira, Reinaldo; Rischka, Klaus; Kowalik, Thomas; Vega-Baudrit, José

    2017-12-01

    The onychophoran Epiperipatus hilkae secrets a sticky slime that solidifies almost immediately upon contact with air and under high humidy environmental condition forming a glassy like material. The general adhesive biochemical composition, the releasing and hardening mechanism have been partially described in literature. In this study, the structural characterization of the extracellular microstructures and nanostructures forming the solid adhesive of the secretion from Epiperipatus hilkae velvet worm is presented. The adhesive secretion is formed by macro-threads, which, in their solid state, are composed of globular particles approximately 700 nm in diameter that are distributed homogeneously throughout the matrix surface, and nanoparticles approximately 70 nm in diameter that and 6 nm in height self-assemble forming fiber-like structures. Nanoparticules with approximately 2 nm heights and others with non roundish forms are also observed. These 70 nm nano particles could be associated to proteins that form high density coverage films with low roughness; suggesting the formation of 2D ordered films. A crystalline and an amorphous phase composes the solidified secretion. The glassy or viscoelastic properties depend on the time in contact with air before being adhered to a solid surface and/or the mechanical stimulus; suggesting a key role of the drying on the hardening process.

  5. Directionally solidified Al2O3/GAP eutectic ceramics by micro-pulling-down method

    Science.gov (United States)

    Cao, Xue; Su, Haijun; Guo, Fengwei; Tan, Xi; Cao, Lamei

    2016-11-01

    We reported a novel route to prepare directionally solidified (DS) Al2O3/GAP eutectic ceramics by micro-pulling-down (μ-PD) method. The eutectic crystallizations, microstructure characters and evolutions, and their mechanical properties were investigated in detail. The results showed that the Al2O3/GAP eutectic composites can be successfully fabricated through μ-PD method, possessed smooth surface, full density and large crystal size (the maximal size: φ90 mm × 20 mm). At the process of Diameter, the as-solidified Al2O3/GAP eutectic presented a combination of "Chinese script" and elongated colony microstructure with complex regular structure. Inside the colonies, the rod-type or lamellar-type eutectic microstructures with ultra-fine GAP surrounded by the Al2O3 matrix were observed. At an appropriate solidificational rate, the binary eutectic exhibited a typical DS irregular eutectic structure of "chinese script" consisting of interpenetrating network of α-Al2O3 and GAP phases without any other phases. Therefore, the interphase spacing was refined to 1-2 µm and the irregular microstructure led to an outstanding vickers hardness of 17.04 GPa and fracture toughness of 6.3 MPa × m1/2 at room temperature.

  6. EPICOR-II: a field leaching test of solidified radioactively loaded ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Davis, E.C.; Marshall, D.S.; Todd, R.A.; Craig, P.M.

    1986-08-01

    As part of an ongoing research program investigating the disposal of radioactive solid wastes in the environment' the Oak Ridge National Laboratory (ORNL) is participating with Argonne National Laboratory, the Idaho National Engineering Laboratory, and the Nuclear Regulatory Commission in a study of the leachability of solidified EPICOR-II ion-exchange resin under simulated disposal conditions. To simulate disposal, a group of five 2-m/sup 3/ soil lysimeters has been installed in Solid Waste Storage Area Six at ORNL, with each lysimeter containing a small sample of solidified resin at its center. Two solidification techniques are being investigated: a Portland cement and a vinyl ester-styrene treatment. During construction, soil moisture temperature cells were placed in each lysimeter, along with five porous ceramic tubes for sampling water near the waste source. A meteorological station was set up at the study site to monitor climatic conditions (primarily precipitation and air temperature), and a data acquisition system was installed to keep daily records of these meteorological parameters as well as lysimeter soil moisture and temperature conditions. This report documents the first year of the long-term field study and includes discussions of lysimeter installation, calibration of soil moisture probes, installation of the site meteorological station, and the results of the first-quarter sampling for radionuclides in lysimeter leachate. In addition, the data collection and processing system developed for this study is documented, and the results of the first three months of data collection are summarized in Appendix D.

  7. Cryogenic EBSD reveals structure of directionally solidified ice–polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Donius, Amalie E., E-mail: amalie.donius@gmail.com [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Obbard, Rachel W., E-mail: Rachel.W.Obbard@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Burger, Joan N., E-mail: ridge.of.the.ancients@gmail.com [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Hunger, Philipp M., E-mail: philipp.m.hunger@gmail.com [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Baker, Ian, E-mail: Ian.Baker@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Doherty, Roger D., E-mail: dohertrd@drexel.edu [Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Wegst, Ulrike G.K., E-mail: ulrike.wegst@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States)

    2014-07-01

    Despite considerable research efforts on directionally solidified or freeze-cast materials in recent years, little fundamental knowledge has been gained that links model with experiment. In this contribution, the cryogenic characterization of directionally solidified polymer solutions illustrates, how powerful cryo-scanning electron microscopy combined with electron backscatter diffraction is for the structural characterization of ice–polymer composite materials. Under controlled sublimation, the freeze-cast polymer scaffold structure is revealed and imaged with secondary electrons. Electron backscatter diffraction fabric analysis shows that the ice crystals, which template the polymer scaffold and create the lamellar structure, have a-axes oriented parallel to the direction of solidification and the c-axes perpendicular to it. These results indicate the great potential of both cryo-scanning electron microscopy and cryo-electron backscatter diffraction in gaining fundamental knowledge of structure–property–processing correlations. - Highlights: • Cryo-SEM of freeze-cast polymer solution reveals an ice-templated structure. • Cryo-EBSD reveals the ice crystal a-axis to parallel the solidification direction. • The honeycomb-like polymer phase favors columnar ridges only on one side. • Combining cryo-SEM with EBSD links solidification theory with experiment.

  8. Evolution of the dendritic morphology with the solidification velocity in rapidly solidified Al-4.5wt.%Cu droplets

    Science.gov (United States)

    Bedel, M.; Reinhart, G.; Gandin, Ch-A.; Bogno, A.-A.; Nguyen-Thi, H.; Henein, H.

    2015-06-01

    The microstructure morphology of Al-4.5wt.%Cu droplets formed by the Impulse Atomization technique is investigated. Three-dimensional reconstructions by synchrotron X- ray micro-tomography of several droplets reveal different morphologies in droplets of similar diameter and produced in the same batch. Moreover, microstructural features also indicate that the development of the dendrite arms occurs in some droplets along crystallographic axes instead of the usual directions observed in conventional casting for the same alloy. It has been observed that such an unusual growth direction of the dendrites is directly related to the solidification velocity. We underpin these results by carrying out comparisons with a solidification model. Predictions are used to discuss the change of dendrite growth direction, as well as the existence of a dendrite growth direction range for a given type of droplets. In addition, the effect of the droplet size and the cooling gas on the dendrite growth direction range observed experimentally is also investigated by using the model.

  9. Effect of Annealing on the Microstructure of Rapidly Solidified Foils of Alloy Bi50Sn35In15

    Science.gov (United States)

    Shepelevich, V. G.; Shcherbachenko, L. P.

    2016-07-01

    The effect of annealing on the microstructure of foils of alloy Bi50Sn35In15 is studied. It is shown that prolongation of the annealing time is accompanied by coarsening of the structure, which reduces the specific surface of the interfaces virtually without changing the volume fractions of the phases.

  10. Microstructure and Phase Formation in a Rapidly Solidified Laser-Deposited Ni-Cr-B-Si-C Hardfacing Alloy

    NARCIS (Netherlands)

    Hemmati, Ismail; Ocelik, Vaclav; Csach, Kornel; de Hosson, Jeff Th M.

    In this study, microstructural evolutions and phase selection phenomena during laser deposition of a hardfacing Ni-Cr-B-Si-C alloy at different processing conditions are experimentally investigated. The results show that even minor variations in the thermal conditions during solidification can

  11. THE EFFECT OF PREPARATION CONDITIONS OF RAPIDLY SOLIDIFIED IRON BASED GRANULES ON PROPERTIES OF COMPOSITE MATERIAL FORMED BY CASTING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2017-01-01

    Full Text Available The variety of requirements for friction pairs requires the development of different technologies for the production of tribological materials with reference to the operation modes. Composite materials obtained by the casting technology have been successfully applied for the normalization of the thermomechanical state of the steam turbines. These composites consist of the matrix based on copper alloys reinforced with cast iron granules. Because the structure and properties of cast iron are determined by the conditions of their production studies have been conducted on determination of preparation conditions on grain structure and properties of the synthesized composite material. Using an upgraded unit for production of granules technological regimes were determined providing narrow fractional composition. It has been found that granules formed are characterized with typical microstructure of white cast iron containing perlite and ledeburite. Microhardness of pilot cast iron granules is characterized by high values (from 7450 up to 9450 MPa and depends on the size of the fraction. Composite materials obtained using experimental granules had a microhardness of the reinforcing cast iron granules about 3500 MPa, and a bronze matrix – 1220 MPa, which is higher than the hardness of the composite material obtained by using the annealed DCL-1granules (2250 MPa. Metal base of experimental granules in the composite material has the structure of perlitic ductile iron with inclusions of ferrite not exceeding 10–15% and set around a flocculent graphite. As a result, the increase of physical-mechanical properties of finished products made of composite material is observed. 

  12. Homogenization and texture development in rapidly solidified AZ91E consolidated by Shear Assisted Processing and Extrusion (ShAPE)

    Energy Technology Data Exchange (ETDEWEB)

    Overman, N. R.; Whalen, S. A.; Bowden, M. E.; Olszta, M. J.; Kruska, K.; Clark, T.; Stevens, E. L.; Darsell, J. T.; Joshi, V. V.; Jiang, X.; Mattlin, K. F.; Mathaudhu, S. N.

    2017-07-01

    Shear Assisted Processing and Extrusion (ShAPE) -a novel processing route that combines high shear and extrusion conditions- was evaluated as a processing method to densify melt spun magnesium alloy (AZ91E) flake materials. This study illustrates the microstructural regimes and transitions in crystallographic texture that occur as a result of applying simultaneous linear and rotational shear during extrusion. Characterization of the flake precursor and extruded tube was performed using scanning and transmission electron microscopy, x-ray diffraction and microindentation techniques. Results show a unique transition in the orientation of basal texture development. Despite the high temperatures involved during processing, uniform grain refinement and material homogenization are observed. These results forecast the ability to implement the ShAPE processing approach for a broader range of materials with novel microstructures and high performance.

  13. Effect of Ce on Casting Structure of Near-rapidly Solidified Al-Zn-Mg-Cu Alloy

    Directory of Open Access Journals (Sweden)

    HUANG Gao-ren

    2017-11-01

    Full Text Available Through using XRD,DSC,SEM,EDS and other modern analysis methods, the effects of rare earth element Ce on microstructure and solidification temperature of Al-Zn-Mg-Cu under different cooling rates were studied, the principle of Ce on grain refining and melt cleaning of alloys was analyzed and discussed. The results show that MgZn2 phase and α-Al matrix are the main precipitations, Al,Cu,Mg and other elements dissolve in MgZn2 phase, a new phase Mg(Zn, Cu, Al2 is formed, solute elements in the grain boundary have higher concentration, eutectic reaction takes place between MgZn2 and α-Al, lamellar eutectic structure is generated. The addition of Ce decreases the dendritic arm spacing,reduces the layer spacing between eutectic phases and refines the eutectic structure and the grain significantly, and inhibits the appearance of the impurity phase Al7Cu2Fe in aluminum alloys. The addition of Ce also reduces the precipitation temperature of α-Al matrix and eutectic phase by 6.4℃ and 5.6℃ respectively.

  14. Parametric Study to Determine the Effect of Temperature on Oil Solidifier Performance and the Development of a New Empirical Correlation for Predicting Effectiveness

    Science.gov (United States)

    Temperature can play a significant role in the efficacy of solidifiers in removing oil slicks on water. We studied and quantified the effect of temperature on the performance of several solidifiers using 5 different types of oils under a newly developed testing protocol by conduc...

  15. Rapid solidification of Nb-base alloys

    Science.gov (United States)

    Gokhale, A. B.; Javed, K. R.; Abbaschian, G. J.; Lewis, R. E.

    1988-01-01

    New Nb-base alloys are of interest for aerospace structural applications at high temperatures, viz, 800 to 1650 C. Fundamental information regarding the effects of rapid solidification in achieving greatly refined microstructures, extended solid solubility, suppression of embrittling equilibrium phases, and formation of new phases is desired in a number of Nb-X alloys. The microstructures and selected properties of Nb-Si and other Nb-base alloys are presented for materials both rapidly quenched from the equilibrium liquidus and rapidly solidified following deep supercooling. Electromagnetic levitation was used to achieve melting and supercooling in a containerless inert gas environment. A variety of solidification conditions were employed including splatting or drop casting of supercooled samples. The morphology and composition of phases formed are discussed in terms of both solidification history and bulk composition.

  16. Experimental study of directionally solidified ferromagnetic shape memory alloy under multi-field coupling

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuping, E-mail: zhuyuping@126.com [Institute of Geophysics, China Earthquake Administration, Beijing 100081 (China); Chen, Tao; Teng, Yao [Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013 (China); Liu, Bingfei [Airport College, Civil Aviation University of China, Tianjin 300300 (China); Xue, Lijun [Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2016-11-01

    Directionally solidified, polycrystalline Ni–Mn–Ga is studied in this paper. The polycrystalline Ni–Mn–Ga samples were cut at different angles to solidification direction. The magnetic field induced strain under constant stress and the temperature-induced strain under constant magnetic field during the loading–unloading cycle were measured. The experimental results show that the mechanical behavior during the loading–unloading cycle of the material is nonlinear and anisotropic. Based on the experimental results, the effects of multi-field coupling factors, such as stress, magnetic field, temperature and cutting angle on the mechanical behaviors were analyzed. Some useful conclusions were obtained, which will provide guidance for practical applications. - Highlights: • The magnetic-induced strains in different directions are tested. • The temperature-induced strains in different directions are tested. • The effects of coupling factors on directional solidification samples are studied.

  17. Experimental study of directionally solidified ferromagnetic shape memory alloy under multi-field coupling

    Science.gov (United States)

    Zhu, Yuping; Chen, Tao; Teng, Yao; Liu, Bingfei; Xue, Lijun

    2016-11-01

    Directionally solidified, polycrystalline Ni-Mn-Ga is studied in this paper. The polycrystalline Ni-Mn-Ga samples were cut at different angles to solidification direction. The magnetic field induced strain under constant stress and the temperature-induced strain under constant magnetic field during the loading-unloading cycle were measured. The experimental results show that the mechanical behavior during the loading-unloading cycle of the material is nonlinear and anisotropic. Based on the experimental results, the effects of multi-field coupling factors, such as stress, magnetic field, temperature and cutting angle on the mechanical behaviors were analyzed. Some useful conclusions were obtained, which will provide guidance for practical applications.

  18. Morphological instability of lamellar structures in directionally solidified Ni-Ni3Si alloys

    Science.gov (United States)

    Wei, Lufeng; Zhao, Zhilong; Gao, Jianjun; Cui, Kai; Guo, Jingying; Chen, Sen; Liu, Lin

    2018-02-01

    The morphological instability of lamellar structures in Ni-Ni3Si eutectic and hypereutectic alloys directionally solidified at low growth rates was investigated. The first instability in large lamellar structures was zigzag instability, which formed curved lamellae. A zigzag pattern was first displayed in three dimensions. The diffusion-limited growth of the Ni3Si phase decreased phase width and spacing, consequently causing zigzag instability. The reduced spacing was observed at λ/λave = 0.9. After zigzag instability, the microstructure of the eutectic alloy turned into a labyrinth structure and lamellar fragmentation. However, in hypereutectic alloys, shape transition from lamellae to rods occurred, in turn, by the broken lamellae or elongated rods to dumbbell-shaped rods, peanut-shaped rods, and circular rods.

  19. Microstructure and property of directionally solidified Ni-Si hypereutectic alloy

    Science.gov (United States)

    Cui, Chunjuan; Tian, Lulu; Zhang, Jun; Yu, Shengnan; Liu, Lin; Fu, Hengzhi

    2016-03-01

    This paper investigates the influence of the solidification rate on the microstructure, solid/liquid interface, and micro-hardness of the directionally solidified Ni-Si hypereutectic alloy. Microstructure of the Ni-Si hypereutectic alloy is refined with the increase of the solidification rate. The Ni-Si hypereutectic composite is mainly composed of α-Ni matrix, Ni-Ni3Si eutectic phase, and metastable Ni31Si12 phase. The solid/liquid interface always keeps planar interface no matter how high the solidification rate is increased. This is proved by the calculation in terms of M-S interface stability criterion. Moreover, the Ni-Si hypereutectic composites present higher micro-hardness as compared with that of the pure Ni3Si compound. This is caused by the formation of the metastable Ni31Si12 phase and NiSi phase during the directional solidification process.

  20. On oscillatory microstructure during cellular growth of directionally solidified Sn-36at.%Ni peritectic alloy

    Science.gov (United States)

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-04-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn-36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure.

  1. Microstructural Development in Al-Ni Alloys Directionally Solidified under Unsteady-State Conditions

    Science.gov (United States)

    Canté, Manuel V.; Spinelli, José E.; Ferreira, Ivaldo L.; Cheung, Noé; Garcia, Amauri

    2008-07-01

    Three Al-Ni hypoeutectic alloys were directionally solidified under upward unsteady-state heat-flow conditions. Primary ( λ 1) and secondary ( λ 2) dendrite arm spacings were measured along the castings for all alloys and correlated with transient solidification thermal variables. A combined theoretical and experimental approach was used to quantitatively determine such thermal variables, i.e., transient metal/mold heat-transfer coefficients, tip growth rates, thermal gradients, tip cooling rates, and local solidification time. The article also focuses on the dependence of dendrite arm spacings on the alloy solute content. Furthermore, the experimental data concerning the solidification of Al-1.0, 2.5, and 4.7 wt pct Ni alloys are compared with the main predictive dendritic models from the literature.

  2. The correlation between dendritic microstructure and mechanical properties of directionally solidified hypoeutectic Al-Ni alloys

    Science.gov (United States)

    Canté, Manuel V.; Spinelli, José E.; Cheung, Noé; Garcia, Amauri

    2010-02-01

    Al-Ni hypoeutectic alloys were directionally solidified under upward transient heat flow conditions. The aim of the present study is to set up correlations between the as-cast microstructure and the resulting mechanical properties of these alloys. The dependence of primary and secondary dendrite arm spacing on the alloy solute content and on solidification thermal parameters is also analyzed. The results include transient metal/mold heat transfer coefficient, tip growth rate, cooling rate, dendrite arm spacing, ultimate tensile strength, yield tensile strength and elongation. Expressions relating dendrite spacing to solidification thermal parameters and mechanical properties to the scale of the dendritic microstructure have been determined. It was found that the ultimate tensile strength and the yield tensile strength increase with increasing alloy solute content and with decreasing primary and secondary dendrite arm spacing. In contrast, the elongation was found to be independent of both alloy composition and dendritic arrangement.

  3. Importance of microscopy in durability studies of solidified and stabilized contaminated soils

    Science.gov (United States)

    Klich, I.; Wilding, L.P.; Drees, L.R.; Landa, E.R.

    1999-01-01

    Solidification/stabilization (S/S) is recognized by the U.S. EPA as a best demonstrated available technology for the containment of contaminated soils and other hazardous wastes that cannot be destroyed by chemical, thermal, or biological means. Despite the increased use of S/S technologies, little research has been conducted on the weathering and degradation of solidified and stabilized wastes once the treated materials have been buried. Published data to verify the performance and durability of landfilled treated wastes over time are rare. In this preliminary study, optical and electron microscopy (scanning electron microscopy [SEM], transmission electron microscopy [TEM] and electron probe microanalyses [EPMA]) were used to evaluate weathering features associated with metal-bearing contaminated soil that had been solidified and stabilized with Portland cement and subsequently buried on site, stored outdoors aboveground, or achieved in a laboratory warehouse for up to 6 yr. Physical and chemical alteration processes identified include: freeze-thaw cracking, cracking caused by the formation of expansive minerals such as ettringite, carbonation, and the movement of metals from waste aggregates into the cement micromass. Although the extent of degradation after 6 yr is considered slight to moderate, results of this study show that the same environmental concerns that affect the durability of concrete must be considered when evaluating the durability and permanence of the solidification and stabilization of contaminated soils with cement. In addition, such evaluations cannot be based on leaching and chemical analyses alone. The use of all levels of microscopic analyses must be incorporated into studies of the long-term performance of S/S technologies.Solidification/stabilization (S/S) is recognized by the U.S. EPA as a best demonstrated available technology for the containment of contaminated soils and other hazardous wastes that cannot be destroyed by chemical

  4. Leaching behavior and immobilization of heavy metals in solidified/stabilized products.

    Science.gov (United States)

    Malviya, Rachana; Chaudhary, Rubina

    2006-09-01

    Solidification/stabilization (S/S) of hazardous sludge from steel processing plant has been studied. Mechanical strength and leaching behavior test of solidified/stabilized product was performed. Mechanical strength decreases with increase in waste content. Pb, Zn, Cu, Fe and Mn could be considerably immobilized by the solidification/stabilization process. The elements least immobilized were Na, K, and Cl. Leaching of heavy metals in the S/S matrix can be considered as pH dependent and corresponding metal hydroxide solubility controlled process. Geochemical modeling was performed for the prediction of speciation. On the basis of test results, mobility and mechanism of leaching was assessed. Dominant leaching mechanism was surface wash off in the initial stages followed by diffusion for Pb, Zn, Cu, Fe and Mn. Diffusion coefficient was above 11.5 indicating low mobility in the cement matrix.

  5. Solute redistribution and Rayleigh number in the mushy zone during directional solidifi cation of Inconel 718

    Directory of Open Access Journals (Sweden)

    Wang Ling

    2009-08-01

    Full Text Available The interdendritic segregation along the mushy zone of directionally solidifi ed superalloy Inconel 718 has been measured by scanning electron microscope (SEM and energy dispersion analysis spectrometry (EDAXtechniques and the corresponding liquid composition profile was presented. The liquid density and Rayleigh number (Ra profi les along the mushy zone were calculated as well. It was found that the liquid density difference increased from top to bottom in the mushy zone and there was no density inversion due to the segregation of Nb and Mo. However carbide formation in the freezing range and the preferred angle of the orientated dendrite array could prompt the fl uid fl ow in the mushy zone although there was no liquid density inversion. The largest relative Rayleigh number appeared at 1,326 篊 for Inconel 718 where the fl uid fl ow most easily occurred.

  6. Evaluation of leaching behavior and immobilization of zinc in cement-based solidified products

    Directory of Open Access Journals (Sweden)

    Krolo Petar

    2012-01-01

    Full Text Available This study has examined leaching behavior of monolithic stabilized/solidified products contaminated with zinc by performing modified dynamic leaching test. The effectiveness of cement-based stabilization/solidification treatment was evaluated by determining the cumulative release of Zn and diffusion coefficients, De. The experimental results indicated that the cumulative release of Zn decreases as the addition of binder increases. The values of the Zn diffusion coefficients for all samples ranged from 1.210-8 to 1.1610-12 cm2 s-1. The samples with higher amounts of binder had lower De values. The test results showed that cement-based stabilization/solidification treatment was effective in immobilization of electroplating sludge and waste zeolite. A model developed by de Groot and van der Sloot was used to clarify the controlling mechanisms. The controlling leaching mechanism was found to be diffusion for samples with small amounts of waste material, and dissolution for higher waste contents.

  7. Strain hardening and fracture behavior during tension of directionally solidified high-nitrogen austenitic steel

    Science.gov (United States)

    Maier, Galina; Astafurova, Elena; Melnikov, Eugene; Moskvina, Valentina; Galchenko, Nina

    2017-12-01

    The effect of grain orientation relative to tensile load on the strain hardening behavior and fracture mechanism of directionally solidified high-nitrogen steel Fe-20Cr-22Mn-1.5V-0.2C-0.6N (in wt %) was studied. The tensile samples oriented along the longitudinal direction of columnar grains demonstrated the improved mechanical properties compared to specimens with the transversal directions of columnar grains: the values of tensile strength and strain-to-fracture were as high as 1080 MPa and 22%, respectively, for tension along the columnar grains and 870 MPa and 11%, respectively, for the tension transversal to the columnar grains. The change in the grain orientation relative to the tensile load varies a fracture mode of the steel. The fraction of the transgranular fracture was higher in the samples with longitudinal directions of the columnar grains compared to the transversal ones.

  8. Microstructural evolution and corrosion behavior of directionally solidified FeCoNiCrAl high entropy alloy

    Directory of Open Access Journals (Sweden)

    Cui Hongbao

    2011-08-01

    Full Text Available The FeCoNiCrAl alloys have many potential applications in the fields of structural materials, but few attempts were made to characterize the directional solidification of high entropy alloys. In the present research, the microstructure and corrosion behavior of FeCoNiCrAl high entropy alloy have been investigated under directional solidification. The results show that with increasing solidification rate, the interface morphology of the alloy evolves from planar to cellular and dendritic. The electrochemical experiment results demonstrate that the corrosion products of both non-directionally and directionally solidified FeCoNiCrAl alloys appear as rectangular blocks in phases which Cr and Fe are enriched, while Al and Ni are depleted, suggesting that Al and Ni are dissolved into the NaCl solution. Comparison of the potentiodynamic polarization behaviors between the two differently solidified FeCoNiCrAl high entropy alloys in a 3.5%NaCl solution shows that the corrosion resistance of directionally solidified FeCoNiCrAl alloy is superior to that of the non-directionally solidified FeCoNiCrAl alloy.

  9. Prediction and improvement of shrinkage porosity in TiAl based alloy

    Directory of Open Access Journals (Sweden)

    Gao Yong

    2011-02-01

    Full Text Available The present research has developed a novel investment casting process for ingot production of TiAl alloys through forming a small vertical temperature gradient on the mold. The advantage of this process is to guarantee that the castings solidify sequentially from bottom to top. The analysis of numerical simulation and experimental results showed that the shrinkage porosity of Ti-47Al-2Cr-2Nb alloy was significantly improved by forming a vertical temperature gradient of 3 ℃/mm on the mold, while the increase of pouring temperature and pressure on the molten alloys had no apparent effect on the reduction of shrinkage porosity. The critical value of the Niyama criterion that can reliably predict the shrinkage porosity in Ti-47Al-2Cr-2Nb alloy was identified by the comparison of experimental and simulated results.

  10. Rapid solidification via melt spinning - Equipment and techniques

    Science.gov (United States)

    Jech, R. W.; Moore, T. J.; Glasgow, T. K.; Orth, N. W.

    1984-01-01

    One of the simpler methods available to accomplish rapid solidification processing is free jet melt spinning. With only a modest expenditure of time, effort, and capital, an apparatus suitable for preliminary experimentation can be assembled. Wheel and crucible materials, process atmospheres, crucible design, heating methods, and process parameters and their relationship to melt composition are described. Practical solutions to processing problems, based on 'hands-on' experience, are offered. Alloys with melting points up to 3000 F have been rapidly solidified using the techniques described.

  11. Formation and growth of crystal defects in directionally solidified multicrystalline silicon for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ryningen, Birgit

    2008-07-01

    Included in this thesis are five publications and one report. The common theme is characterisation of directionally solidified multicrystalline silicon for solar cells. Material characterisation of solar cell silicon is naturally closely linked to both the casting process and to the solar cell processing: Many of the material properties are determined by the casting process, and the solar cell processing will to some extend determine which properties will influence the solar cell performance. Solar grade silicon (SoG-Si) made by metallurgical refining route and supplied by Elkem Solar was directionally solidified and subsequently characterised, and a simple solar cell process was applied. Except from some metallic co-precipitates in the top of the ingot, no abnormalities were found, and it is suggested that within the limits of the tests performed in this thesis, the casting and the solar cell processing, rather than the assumed higher impurity content, was the limiting factor. It is suggested in this thesis that the main quality problem in multicrystalline silicon wafers is the existence of dislocation clusters covering large wafer areas. The clusters will reduce the effect of gettering and even if gettering could be performed successfully, the clusters will still reduce the minority carrier mobility and hence the solar cell performance. It has further been pointed out that ingots solidified under seemingly equal conditions might have a pronounced difference in minority carrier lifetime. Ingots with low minority carrier lifetime have high dislocation densities. The ingots with the substantially higher lifetime seem all to be dominated by twins. It is also found a link between a higher undercooling and the ingots dominated by twins. It is suggested that the two types of ingots are subject to different nucleation and crystal growth mechanisms: For the ingots dominated by dislocations, which are over represented, the crystal growth is randomly nucleated at the

  12. Effects of partial crystallinity and quenched-in defects on corrosion of ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Rapid solidification by planar flow casting has been found to have introduced deficiencies, viz. partial crystallinity, air pockets and compositional difference in the ribbons of rapidly solidified Ti42⋅9Cu57⋅1 alloy. In order to investigate the effects of these deficiencies on the corrosion of rapidly solidified ...

  13. Increased corrosion resistance of the AZ80 magnesium alloy by rapid solidification.

    Science.gov (United States)

    Aghion, E; Jan, L; Meshi, L; Goldman, J

    2015-11-01

    Magnesium (Mg) and Mg-alloys are being considered as implantable biometals. Despite their excellent biocompatibility and good mechanical properties, their rapid corrosion is a major impediment precluding their widespread acceptance as implantable biomaterials. Here, we investigate the potential for rapid solidification to increase the corrosion resistance of Mg alloys. To this end, the effect of rapid solidification on the environmental and stress corrosion behavior of the AZ80 Mg alloy vs. its conventionally cast counterpart was evaluated in simulated physiological electrolytes. The microstructural characteristics were examined by optical microscopy, SEM, TEM, and X-ray diffraction analysis. The corrosion behavior was evaluated by immersion, salt spraying, and potentiodynamic polarization. Stress corrosion resistance was assessed by Slow Strain Rate Testing. The results indicate that the corrosion resistance of rapidly solidified ribbons is significantly improved relative to the conventional cast alloy due to the increased Al content dissolved in the α-Mg matrix and the correspondingly reduced presence of the β-phase (Mg17 Al12 ). Unfortunately, extrusion consolidated solidified ribbons exhibited a substantial reduction in the environmental performance and stress corrosion resistance. This was mainly attributed to the detrimental effect of the extrusion process, which enriched the iron impurities and increased the internal stresses by imposing a higher dislocation density. In terms of immersion tests, the average corrosion rate of the rapidly solidified ribbons was <0.4 mm/year compared with ∼2 mm/year for the conventionally cast alloy and 26 mm/year for the rapidly solidified extruded ribbons. © 2014 Wiley Periodicals, Inc.

  14. Interplay between temperature gradients field and C - E transformation in solidifying rolls

    Directory of Open Access Journals (Sweden)

    W. Wołczyński

    2009-07-01

    Full Text Available At first step of simulation a temperature field for solidifying cast steel and cast iron roll has been performed. The calculation does not take into account the convection in the liquid since convection has no influence on the proposed model for the localization of the C-E (columnar to equiaxed grains transformation. However, it allows to study the dynamics of temperature field temporal behavior in the middle of a mould. It is postulated that for the C-E transition a full accumulation of the heat in the mould has been observed (plateau at the T(t curve. The temporal range of plateau existence corresponds to the incubation time for the full equiaxed grains formation. At the second step of simulation temporal behavior of the temperature gradient field has been studied. Three ranges within temperature gradients field have been distinguished for the operating point situated at the middle of mould: a/ for the formation of columnar grains zone, ( and high temperature gradient 0>>T&0//>>∂∂−∂∂∂∂−∂∂>EttEtrTrT. T - temperature, r - roll radius. It is evident that the heat transfer across the mould decides on the temporal appearance of incubation during which the solidification is significantly arrested and competition between columnar and equiaxed growth occurs. Moreover solidification with positive temperature gradient transforms into solidification with negative temperature gradient (locally after the incubation. A simulation has been performed for the cast steel and cast iron rolls solidifying as in industry condition. Since the incubation divides the roll into to parts (first with columnar structure, second with equiaxed structure some experiments dealing with solidification have been made in laboratory scale. Finally, observations of the macrosegregation or microsegregation and phase or structure appearance in the cast iron ingot / roll (made in laboratory has also been done in order to confront them with theoretical predictions

  15. Optimization of dispersive liquid-phase microextraction based on solidified floating organic drop combined with high-performance liquid chromatography for the analysis of glucocorticoid residues in food.

    Science.gov (United States)

    Huang, Yuan; Zheng, Zhiqun; Huang, Liying; Yao, Hong; Wu, Xiao Shan; Li, Shaoguang; Lin, Dandan

    2017-05-10

    A rapid, simple, cost-effective dispersive liquid-phase microextraction based on solidified floating organic drop (SFOD-LPME) was developed in this study. Along with high-performance liquid chromatography, we used the developed approach to determine and enrich trace amounts of four glucocorticoids, namely, prednisone, betamethasone, dexamethasone, and cortisone acetate, in animal-derived food. We also investigated and optimized several important parameters that influenced the extraction efficiency of SFOD-LPME. These parameters include the extractant species, volumes of extraction and dispersant solvents, sodium chloride addition, sample pH, extraction time and temperature, and stirring rate. Under optimum experimental conditions, the calibration graph exhibited linearity over the range of 1.2-200.0ng/ml for the four analytes, with a reasonable linearity(r 2 : 0.9990-0.9999). The enrichment factor was 142-276, and the detection limits was 0.39-0.46ng/ml (0.078-0.23μg/kg). This method was successfully applied to analyze actual food samples, and good spiked recoveries of over 81.5%-114.3% were obtained. Copyright © 2017. Published by Elsevier B.V.

  16. A novel solidified floating organic drop microextraction method for preconcentration and determination of copper ions by flow injection flame atomic absorption spectrometry in water samples

    Directory of Open Access Journals (Sweden)

    Arpa Şahin Ç.

    2013-04-01

    Full Text Available A simple, rapid and inexpensive solidified floating organic drop microextraction (SFODME and flow injection flame atomic absorption spectrometric determination (FI-FAAS method for copper was developed. 3-amino-7-dimethylamino-2-methylphenazine (Neutral red, NR was used as the complexing agent. Several factors affecting the microextraction efficiency, such as, pH, NR and sodium dodecylbenzenesulfonate (SDBS concentration, extraction time, stirring rate, and temperature were investigated and optimized. Under optimized experimental conditions an enrichment factor of 541 was obtained for 100 mL of sample solution. The calibration graph was linear in the range of 0.5 – 20.0 ng mL–1 and the limit of detection (3s was 0.18 ng mL–1, the limit of quantification (10s was 0.58 ng mL–1. The relative standard deviation (RSD for 10 replicate measurements of 10 ng mL–1 copper was 2.7%. The developed method was successfully applied to the extraction and determination of copper in different certified reference materials (Estuarine water, Slew 3 and fortified water, TM 23.2 and real water samples and satisfactory results were obtained.

  17. Comparative Investigation of the Downward and Upward Directionally Solidified Single-Crystal Blades of Superalloy CMSX-4

    Science.gov (United States)

    Wang, Fu; Ma, Dexin; Bogner, Samuel; Bührig-Polaczek, Andreas

    2016-05-01

    Single-crystal blades of Ni-base superalloys CMSX-4 have been directionally solidified using the downward directional solidification (DWDS) process. The possible benefits of the process were comparatively evaluated with respect to the Bridgman process' results. The DWDS process exhibits good capabilities for casting the single-crystal components. The thermal gradients of this process are approximately seven times higher than those of the Bridgman process. It provides more advantages for solidifying the single-crystal superalloy blades by reducing the casting defects, refining the microstructure, decreasing the size of the γ/ γ' eutectic pools, refining the γ' precipitates, alleviating the degree of the microsegregation, and minimizing the size and volume fraction of the micropores.

  18. The influence of melt convection on dendritic spacing of downward unsteady-state directionally solidified Sn-Pb alloys

    Directory of Open Access Journals (Sweden)

    José Eduardo Spinelli

    2006-03-01

    Full Text Available Microstructures are the strategic link between materials processing and materials behavior. A dendritic structure is the most frequently observed pattern of solidified alloys. The microstructural scales of dendrites, such as primary and secondary arm spacings, control the segregation profiles and the formation of secondary phases within interdendritic regions, determine the properties of cast structures. In this work, the influence of thermosolutal convection on dendrite arm spacings is experimentally examined in the downward vertical unsteady-state directional solidification of Sn-Pb hypoeutectic alloys. The experimental observations are compared not only with the main predictive theoretical models for dendritic spacings but also with experimental results obtained for Sn-Pb alloys solidified vertically upwards. Primary dendritic arm spacings have been affected by the direction of growth, decreasing in conditions of downward vertical solidification when compared with those grown vertically upwards. Further, the unsteady-state lambda1 predictive models did not generate the experimental observations.

  19. A SEM and X-ray study for investigation of solidified/stabilized arsenic-iron hydroxide sludge.

    Science.gov (United States)

    Phenrat, Tanapon; Marhaba, Taha F; Rachakornkij, Manaskorn

    2005-02-14

    Despite the fact that the solidification/stabilization of arsenic containing wastes with Portland cement and lime has an extensively documented history of use, the physical and chemical phenomena as a result of the interaction between arsenic and cement components have not been fully characterized. The study investigates the behavior of synthesized arsenic-iron hydroxide sludge, the by-product of arsenic removal by coagulation with ferric chloride, in solidified/stabilized matrices as well as its binding mechanisms by exploring the cementitious matrices in the micro-scale by scanning electron microscopy equipped with energy dispersive X-ray spectrometer (SEM-EDS). It was revealed that arsenic can be chemically fixed into cementitious environment of the solidified/stabilized matrices by three important immobilization mechanisms; sorption onto C-S-H surface, replacing SO4(2-) of ettringite, and reaction with cement components to form calcium-arsenic compounds, the solubility limiting phases.

  20. Effects of Rapid Solidification Process and 0.1 wt.% Pr Addition on Properties of Sn-9Zn Alloy and Cu/Solder/Cu Joints

    Science.gov (United States)

    Zhao, Guoji; Jing, Yanxia; Sheng, Guangmin; Chen, Jianhua

    2016-05-01

    Effects of 0.1 wt.% Pr addition and rapid solidification process on Sn-9Zn solder alloy were investigated. Solder characteristics of the as-solidified and rapidly solidified Sn-9Zn-0.1Pr alloys were analyzed in comparison with those of the as-solidified Sn-9Zn alloy. Mechanical properties and interfacial microstructure of solder/Cu joints obtained using these solders were comparatively studied. By comparison with the as-solidified Sn-9Zn alloy, the wettability of the solder was obviously improved with 0.1 wt.% Pr addition, and the melting behavior of the solder was promoted due to the rapid solidification process. The corrosion resistance of Sn-9Zn-0.1Pr alloy was improved due to the refined microstructure resulting from 0.1 wt.% Pr addition and rapid solidification. The growth of IMCs at the interface of Sn-9Zn-0.1Pr/Cu joints was depressed in some degree. Rapid solidification process promoted the interfacial reaction during soldering and improved the bonding strength of joints.

  1. On oscillatory microstructure during cellular growth of directionally solidified Sn–36at.%Ni peritectic alloy

    Science.gov (United States)

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-01-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn–36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure. PMID:27066761

  2. Effect of a weak transverse magnetic field on the microstructure in directionally solidified peritectic alloys

    Science.gov (United States)

    Li, Xi; Lu, Zhenyuan; Fautrelle, Yves; Gagnoud, Annie; Moreau, Rene; Ren, Zhongming

    2016-11-01

    Effect of a weak transverse magnetic field on the microstructures in directionally solidified Fe-Ni and Pb-Bi peritectic alloys has been investigated experimentally. The results indicate that the magnetic field can induce the formation of banded and island-like structures and refine the primary phase in peritectic alloys. The above results are enhanced with increasing magnetic field. Furthermore, electron probe micro analyzer (EPMA) analysis reveals that the magnetic field increases the Ni solute content on one side and enhances the solid solubility in the primary phase in the Fe-Ni alloy. The thermoelectric (TE) power difference at the liquid/solid interface of the Pb-Bi peritectic alloy is measured in situ, and the results show that a TE power difference exists at the liquid/solid interface. 3 D numerical simulations for the TE magnetic convection in the liquid are performed, and the results show that a unidirectional TE magnetic convection forms in the liquid near the liquid/solid interface during directional solidification under a transverse magnetic field and that the amplitude of the TE magnetic convection at different scales is different. The TE magnetic convections on the macroscopic interface and the cell/dendrite scales are responsible for the modification of microstructures during directional solidification under a magnetic field.

  3. Tensile behavior of directionally solidified Ni3Al intermetallics with different Al contents and solidification rates

    Science.gov (United States)

    Lu, Yun; Gu, Jiho; Kim, Sangshik; Hong, Hyunuk; Choi, Heekyu; Lee, Jehyun

    2014-03-01

    Despite the excellent high temperature mechanical properties of the Ni3Al intermetallic compound, its application is still limited due to its inherently weak grain boundary. Recent research advances have demonstrated that the tensile ductility can be enhanced by controlling the grain morphology using a directional solidification. In this study, a series of directional solidification experiments were carried out to increase both the tensile ductility and the strength of Ni3Al alloys by arraying either the ductile phase of γ-Ni-rich dendrite fibers or the hard phase of β-NiAl dendrite fibers in the γ'-Ni3Al matrix. The dendrite arm spacing could be controlled by the solidification rate, and the volume fraction of the γ or β phase could be altered by the Al content, ranging from 23 at.% to 27 at.%. With an increasing Al content, the γ dendritic microstructure was transformed into the β dendrite in the γ' matrix, thereby reducing the tensile ductility by increasing the volume fraction of brittle β dendrites in the γ' matrix. With an increasing solidification rate, the dendrite arm spacing decreased and the tensile properties of Ni3Al varied in a complex manner. The microstructural evolution affecting the tensile behavior of directionally solidified Ni3Al alloy specimens with different solidification rates and Al contents is discussed.

  4. Preparation and Stability of Inorganic Solidified Foam for Preventing Coal Fires

    Directory of Open Access Journals (Sweden)

    Botao Qin

    2014-01-01

    Full Text Available Inorganic solidified foam (ISF is a novel material for preventing coal fires. This paper presents the preparation process and working principle of main installations. Besides, aqueous foam with expansion ratio of 28 and 30 min drainage rate of 13% was prepared. Stability of foam fluid was studied in terms of stability coefficient, by varying water-slurry ratio, fly ash replacement ratio of cement, and aqueous foam volume alternatively. Light microscope was utilized to analyze the dynamic change of bubble wall of foam fluid and stability principle was proposed. In order to further enhance the stability of ISF, different dosage of calcium fluoroaluminate was added to ISF specimens whose stability coefficient was tested and change of hydration products was detected by scanning electron microscope (SEM. The outcomes indicated that calcium fluoroaluminate could enhance the stability coefficient of ISF and compact hydration products formed in cell wall of ISF; naturally, the stability principle of ISF was proved right. Based on above-mentioned experimental contents, ISF with stability coefficient of 95% and foam expansion ratio of 5 was prepared, which could sufficiently satisfy field process requirements on plugging air leakage and thermal insulation.

  5. Microstructure Control of Columnar-Grained Silicon Substrate Solidified from Silicon Melts Using Gas Pressure

    Directory of Open Access Journals (Sweden)

    Jun-Kyu Lee

    2015-01-01

    Full Text Available A silicon substrate with the dimensions of 100 × 140 × 0.3 mm was grown directly from liquid silicon with gas pressure. The silicon melt in the sealed melting part was injected into the growth part at applied pressure of 780–850 Torr. The solidified silicon substrate was then transferred by the pull of the cooled dummy bar. A desirable structure with a liquid-solid interface perpendicular to the pulling direction was formed when the mold temperature in the solidification zone of the growth part was much higher than that of the dummy bar, as this technique should be able to overcome thermal loss through the molds and the limited heat flux derived from the very narrow contact area between the silicon melt and the dummy bar. In addition, because the metallic impurities and expansion of volume during solidification are preferably moved to a liquid phase, a high-quality silicon substrate, without defects such as cracks and impurities in the substrate, could be manufactured in the interface structure. The present study reports the experimental findings on a new and direct growth system for obtaining silicon substrates characterized by high quality and productivity, as a candidate for alternate routes for the fabrication of silicon substrates.

  6. High-temperature performance evaluation of adirectionally solidified nickel-base superalloy

    Science.gov (United States)

    Woodford, D. A.; Stiles, D.

    1997-08-01

    The application of a new approach, design for performance, for high-temperature alloy development, design analysis, and remaining life assessment, based on short-time high-precision testing, is described in this paper. The material tested was a directionally solidified nickel-base alloy, GTD111. It was found that the creep strength at 850 °C was indeed superior to that of a competitive alloy, IN738, but was not necessarily enhanced by the preferred alignment of grain boundaries and crystal orientation. In contrast, the fracture resistance at 800 °C was improved in the longitudinal direction compared with transverse and diagonal orientations in terms of susceptibility to gas phase embrittlement (GPE) by oxygen. Specimens cut transversely and diagonally to the growth direction were more sensitive to GPE than specimens taken from conventionally cast IN738. The new conceptual framework allows account to be taken of GPE and other embrittling phenomena, which may develop in service, leading to rational life management decisions for gas turbine users. Additionally, straightforward design analysis procedures can be developed from the test data, which for the first time allow separate measurements of creep strength and fracture resistance to be used for performance evaluation.

  7. Massive, solidified bone in the wing of a volant courting bird.

    Science.gov (United States)

    Bostwick, Kimberly S; Riccio, Mark L; Humphries, Julian M

    2012-10-23

    One pervasive morphological feature of tetrapods is the pipe-like, often marrow-filled, structure of the limb or long bones. This 'hollow' form maximizes flexural strength and stiffness with the minimum amount of bony material, and is exemplified by truly hollow (air-filled), or pneumatic, humeri in many modern birds. High-resolution microCT scans of the wings of two male club-winged manakins (Machaeropterus deliciosus) uncovered a notable exception to the hollow-tube rule in terrestrial vertebrates; males exhibited solidified ulnae more than three times the volume of birds of comparable body size, with significantly higher tissue mineral densities. The humeri exhibited similar (but less extreme) modifications. Each of the observed osteological modifications increases the overall mass of the bone, running counter to pervasive weight-reducing optimizations for flight in birds. The club-winged manakin is named for a pair of unique wing feathers found in adult males; these enlarged feathers attach directly to the ulna and resonate to produce a distinctive sound used in courtship displays. Given that the observed modifications probably assist in sound production, the club-winged manakin represents a case in which sexual selection by female choice has generated an ecologically 'costly' forelimb morphology, unique in being specialized for sound production at a presumed cost in flight efficiency.

  8. Primary arm spacing in directionally solidified Pb-10 wt pct Sn alloys

    Science.gov (United States)

    Chopra, M. A.; Tewari, S. N.

    1990-01-01

    The dependence of primary arm spacings on growth speed was investigated for cellular and dendritic arrays in Pb-10 wt percent Sn samples directionally solidified under a constant positive thermal gradient in the melt. The gradient of constitutional supercooling was varied from almost zero (near the break-down of the planar liquid-solid interface at small growth speeds, cellular morphology) to near unity (large growth speeds, dendritic morphology). The spatial arrangements of cells and dendrites, as given by their coordination number, are not very different from each other. It appears that primary arm spacing maxima and the cell to dendrite transition are strongly influenced by the magnitude of the solute partition coefficient. The planar to cellular bifurction is supercritical in Pb-Sn which has a high partition coefficient, as compared to the subcritical behavior reported in Al-Cu and succinonitrile-acetone, both of which have low partition coefficients. The primary arm spacing model due to Hunt agrees with the experimentally observed trend for the whole growth regime. There is a good quantitative agreement at higher grdients of supercooling. However, the model overpredicts the primary arm spacings at low gradients of constitutional supercooling.

  9. Organic semiconductor rubrene thin films deposited by pulsed laser evaporation of solidified solutions

    Science.gov (United States)

    Majewska, N.; Gazda, M.; Jendrzejewski, R.; Majumdar, S.; Sawczak, M.; Śliwiński, G.

    2017-08-01

    Organic semiconductor rubrene (C42H28) belongs to most preferred spintronic materials because of the high charge carrier mobility up to 40 cm2(V·s)-1. However, the fabrication of a defect-free, polycrystalline rubrene for spintronic applications represents a difficult task. We report preparation and properties of rubrene thin films deposited by pulsed laser evaporation of solidified solutions. Samples of rubrene dissolved in aromatic solvents toluene, xylene, dichloromethane and 1,1-dichloroethane (0.23-1% wt) were cooled to temperatures in the range of 16.5-163 K and served as targets. The target ablation was provided by a pulsed 1064 nm or 266 nm laser. For films of thickness up to 100 nm deposited on Si, glass and ITO glass substrates, the Raman and AFM data show presence of the mixed crystalline and amorphous rubrene phases. Agglomerates of rubrene crystals are revealed by SEM observation too, and presence of oxide/peroxide (C42H28O2) in the films is concluded from matrix-assisted laser desorption/ionization time-of-flight spectroscopic analysis.

  10. Multi-scale Constitutive Model of Solidifying Cementitious Composites and Application to Cracking Assessment of a Concrete Structure

    OpenAIRE

    石田, 哲也; 浅本, 晋吾; 前川, 宏一

    2006-01-01

    A multi-scale constitutive model of solidifying cementitious materials is presented based on a systematic knowledge coupling structural mechanics with chemo-physical phenomena. The model can reasonably simulate time-dependent deformations such as autogenous/drying shrinkage and basic/drying creep in laboratory tests under arbitrary environmental and loading conditions. Shrinkage induced cracking in an actual PRC bridge structure was examined by the analytical system, which reveals that large ...

  11. 46 CFR 153.1108 - Heated prewash for solidifying NLS, high viscosity NLS and required prewashes of NLS whose...

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Heated prewash for solidifying NLS, high viscosity NLS and required prewashes of NLS whose viscosity exceeds 25 mPa sec at 20 °C: Categories A, B, and C. 153.1108 Section 153.1108 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID,...

  12. Development of methodology to evaluate microbially influenced degradation of cement-solidified low-level radioactive waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1994-12-31

    Because of its apparent structural integrity, cement has been widely used in the United States as a binder to solidify Class B and C low-level radioactive waste (LLW). However, the resulting cement preparations are susceptible to failure due to the actions of stress and environment. An environmentally mediated process that could affect cement stability is the action of naturally occurring microorganisms. The US Nuclear Regulatory Commission (NRC), recognizing this eventuality, stated that the effects of microbial action on waste form integrity must be addressed. This paper provides present results from an ongoing program that addresses the effects of microbially influenced degradation (MID) on cement-solidified LLW. Data are provided on the development of an evaluation method using acid-producing bacteria. Results are from work with one type of these bacteria, the sulfur-oxidizing Thiobacillus. This work involved the use of a system in which laboratory- and vendor-manufactured, simulated waste forms were exposed on an intermittent basis to media containing thiobacilli. Testing demonstrated that MID has the potential to severely compromise the structural integrity of ion-exchange resin and evaporator-bottoms waste that is solidified with cement. In addition, it was found that a significant percentage of calcium and other elements were leached from the treated waste forms. Also, the surface pH of the treated specimens decreased to below 2. These conditions apparently contributed to the physical deterioration of simulated waste forms after 60 days of exposure to the thiobacilli.

  13. Studies on uniformity of the active ingredients in acetaminophen suppositories re-solidified after melting under high temperature conditions.

    Science.gov (United States)

    Yamamoto, Yoshihisa; Fukami, Toshiro; Koide, Tatsuo; Onuki, Yoshinori; Suzuki, Toyofumi; Katori, Noriko; Tomono, Kazuo

    2015-01-01

    The target of the present pharmaceutical study was the antipyretic analgesic, acetaminophen; its suppository form is usually split when used in pediatric patients. We focused on the active ingredient uniformity in these products, which were re-solidified after melting under high temperature condition. When sections of the cut surfaces of the seven acetaminophen suppository products (SUP-A-G) commercially available in Japan were visualized by polarized microscopy, acetaminophen crystals that were dispersed in the base were identified. The results of the quantitative determination of agent concentration for each cut portion (mg/g) suggested uniform dispersion of these crystals in the base of each product. The agent concentration in each portion of the suppositories that was re-solidified after melting at high temperatures was measured. Segregation of the active ingredient was observed in four products at a temperature of 40°C for 1 h, while active ingredient uniformity was maintained in the other three products (SUP-C, SUP-F and SUP-G). The latter three products also showed high viscosity at 40°C. At 50°C for 4 h, only the uniformity of the active ingredient in SUP-C was maintained. These results suggest that the uniformity of the active ingredient is lost in some acetaminophen suppositories that were re-solidified after melting under high temperature conditions. The degree of loss varies depending on the product.

  14. Evaluation of physical stability and leachability of Portland Pozzolona Cement (PPC) solidified chemical sludge generated from textile wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Hema, E-mail: hhasija@gmail.com [TERI University, Plot No. 10, Institutional Area, Vasant Kunj, New Delhi (India); Pandey, Suneel [Centre for Regulatory and Policy Research, The Energy and Resources Institute (TERI), India Habitat Centre, New Delhi (India)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Stabilization/solidification of chemical sludge from textile wastewater treatment plants using Portland Pozzolona Cement (PPC) containing fly ash. Black-Right-Pointing-Pointer Physical engineering (compressive strength and block density) indicates that sludge has potential to be reused for construction purpose after stabilization/solidification. Black-Right-Pointing-Pointer Leaching of heavy metals from stabilized/solidified materials were within stipulated limits. Black-Right-Pointing-Pointer There is a modification of microstructural properties of PPC with sludge addition as indicated by XRD and SEM patterns. - Abstract: The chemical sludge generated from the treatment of textile dyeing wastewater is a hazardous waste as per Indian Hazardous Waste Management rules. In this paper, stabilization/solidification of chemical sludge was carried out to explore its reuse potential in the construction materials. Portland Pozzolona Cement (PPC) was selected as the binder system which is commercially available cement with 10-25% fly ash interground in it. The stabilized/solidified blocks were evaluated in terms of unconfined compressive strength, block density and leaching of heavy metals. The compressive strength (3.62-33.62 MPa) and block density (1222.17-1688.72 kg/m{sup 3}) values as well as the negligible leaching of heavy metals from the stabilized/solidified blocks indicate that there is a potential of its use for structural and non-structural applications.

  15. Cytotoxicity Property of Nano-TiO2 Sol and Nano-TiO2 Powder

    Directory of Open Access Journals (Sweden)

    Pingting He

    2011-01-01

    Full Text Available A homogeneous and transparent titania (TiO2 sol with nanosized anatase TiO2 particles was prepared by hydrothermal synthesis method. The transmission electron microscope and X-ray diffraction were used to characterize the structure and morphology of particulates in the TiO2 sol and purchased TiO2 powder. The results show that the homogeneous anatase crystalline phase was formed and the size of the spindle-like particle in sol was about 20 nm in width and 150 nm in average length, and the particulates of the purchased powder were globular-like about 50 nm in diameter. In addition, a consistent set of in vitro experimental protocols was used to study the effects of nano-TiO2 sol as prepared and nano-TiO2 powder on mouse peritoneal macrophage. The cytotoxicity tests in vitro indicate that, with the increasing of TiO2 sol concentration contaminated with the cells, the relative proliferation rate of macrophage cells was improved slightly after the cells contaminated for 24 h, but it reduced rapidly after contaminated for 48 h. The purchased nano-TiO2 powder inhibited the growth of the cells obviously as cultivating with macrophage both for 24 h and 48 h.

  16. Rapid synthesis of beta zeolites

    Science.gov (United States)

    Fan, Wei; Chang, Chun -Chih; Dornath, Paul; Wang, Zhuopeng

    2015-08-18

    The invention provides methods for rapidly synthesizing heteroatom containing zeolites including Sn-Beta, Si-Beta, Ti-Beta, Zr-Beta and Fe-Beta. The methods for synthesizing heteroatom zeolites include using well-crystalline zeolite crystals as seeds and using a fluoride-free, caustic medium in a seeded dry-gel conversion method. The Beta zeolite catalysts made by the methods of the invention catalyze both isomerization and dehydration reactions.

  17. Microstructural evolution of directionally solidified DZ125 superalloy castings with different solidification methods

    Directory of Open Access Journals (Sweden)

    Ge Bingming

    2013-01-01

    Full Text Available The properties of Ni-base superalloy castings are closely related to the uniformity of their as-cast microstructure, and different solidification methods have serious effect on microstructural uniformity. In this paper, the influences of high rate solidification (HRS process (with or without superheating and liquid metal cooling (LMC process on the microstructure of DZ125 superalloy were investigated. Blade-shape castings were solidified at rates of 40 μm·s-1 to 110 μm·s-1 using HRS process and a comparative experiment was carried out at a rate of 70 μm·s-1 by LMC process. The optical microscope (OM, scanning electron microscope (SEM were used to observe the microstructure and the grain size was analyzed using electron back scattered diffraction (EBSD technique. Results show that for the castings by either HRS or LMC process, the primary dendrite arm spacing and size of γ' precipitates decrease with increasing the withdrawal rate; the dendrites and γ' precipitates at the upper section of the blade are coarser than those in the middle, especially for the HRS castings without high superheating technique. When the withdrawal rate is 70 μm·s-1, the castings by HRS with high superheating technique have the smallest PDAS with fine γ' precipitates; while the size distribution of γ' precipitates is more homogenous in LMC castings, and the number of larger grains in LMC castings is smaller than that in the HRS castings. Moreover, high superheating technique yields smaller grains in the castings. Both the LMC method and HRS with high superheating technique can be used to prepare castings with reduced maximum grain size.

  18. Composites by rapid prototyping technology

    CSIR Research Space (South Africa)

    Kumar, S

    2010-02-01

    Full Text Available powder is a fiber, problems of manufacturing occur. The method has also been used to make Metal Matrix Composite (MMC), e.g Fe and graphite [17], WC-Co [18,19], WC-Co and Cu [20,21], Fe, Ni and TiC [22] etc and Ceramic Matrix Composite (CMC) e.g. Si... of various materials used. Key words: : Rapid Prototyping (RP), Laser, Composites 1 Introduction Rapid Prototyping (RP) initially focussed on polymers. These were later re- placed/supplemented by ceramics, metals and composites. Composites are used in RP...

  19. Water Adsorption on TiO2

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Wendt, Stefan; Besenbacher, Flemming

    2010-01-01

    Scanning Tunneling Microscopy (STM) studies and Density Functional Theory (DFT) investigations of the interaction of water with the rutile TiO2 (110) surface are summarized. From high-resolution STM the following reactions have been revealed: water adsorption and diffusion in the Ti troughs, water...... dissociation in bridging oxygen vacancies, assembly of adsorbed water monomers into rapidly diffusing water dimers, and formation of water dimers by reduction of oxygen molecules. The STM results are rationalized based on DFT calculations, revealing the bonding geometries and reaction pathways of the water...

  20. Microstructural characterization of the γ-TiAl alloy samples ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 25; Issue 7. Microstructural characterization of the -TiAl alloy samples fabricated by direct laser fabrication rapid prototype technique. D Srivastava. Alloys and Steels Volume 25 ... Keywords. Titanium aluminide; microstructure; direct laser fabrication; rapid prototyping.

  1. Reuse of cement-solidified municipal incinerator fly ash in cement mortars: physico-mechanical and leaching characteristics.

    Science.gov (United States)

    Cinquepalmi, Maria Anna; Mangialardi, Teresa; Panei, Liliana; Paolini, Antonio Evangelista; Piga, Luigi

    2008-03-01

    The reuse of cement-solidified Municipal Solid Waste Incinerator (MSWI) fly ash (solidified/stabilised (S/S) product) as an artificial aggregate in Portland cement mortars was investigated. The S/S product consisted of a mixture of 48 wt.% washed MSWI fly ash, 20 wt.% Portland cement and 32 wt.% water, aged for 365 days at 20 degrees C and 100% RH. Cement mortars (water/cement weight ratio=0.62) were made with Portland cement, S/S product and natural sand at three replacement levels of sand with S/S product (0%, 10% and 50% by mass). After 28 days of curing at 20 degrees C and 100% RH, the mortar specimens were characterised for their physico-mechanical (porosity, compressive strength) and leaching behaviour. No retardation in strength development, relatively high compressive strengths (up to 36 N/mm2) and low leaching rates of heavy metals (Cr, Cu, Pb and Zn) were always recorded. The leaching data from sequential leach tests on monolithic specimens were successfully elaborated with a pseudo-diffusional model including a chemical retardation factor related to the partial dissolution of contaminant.

  2. Directionally Solidified NiAl-Based Alloys Studied for Improved Elevated-Temperature Strength and Room-Temperature Fracture Toughness

    Science.gov (United States)

    Whittenberger, J. Daniel; Raj, Sai V.; Locci, Ivan E.; Salem, Jonathan A.

    2000-01-01

    Efforts are underway to replace superalloys used in the hot sections of gas turbine engines with materials possessing better mechanical and physical properties. Alloys based on the intermetallic NiAl have demonstrated potential; however, they generally suffer from low fracture resistance (toughness) at room temperature and from poor strength at elevated temperatures. Directional solidification of NiAl alloyed with both Cr and Mo has yielded materials with useful toughness and elevated-temperature strength values. The intermetallic alloy NiAl has been proposed as an advanced material to extend the maximum operational temperature of gas turbine engines by several hundred degrees centigrade. This intermetallic alloy displays a lower density (approximately 30-percent less) and a higher thermal conductivity (4 to 8 times greater) than conventional superalloys as well as good high-temperature oxidation resistance. Unfortunately, unalloyed NiAl has poor elevated temperature strength (approximately 50 MPa at 1027 C) and low room-temperature fracture toughness (about 5 MPa). Directionally solidified NiAl eutectic alloys are known to possess a combination of high elevated-temperature strength and good room-temperature fracture toughness. Research has demonstrated that a NiAl matrix containing a uniform distribution of very thin Cr plates alloyed with Mo possessed both increased fracture toughness and elevated-temperature creep strength. Although attractive properties were obtained, these alloys were formed at low growth rates (greater than 19 mm/hr), which are considered to be economically unviable. Hence, an investigation was warranted of the strength and toughness behavior of NiAl-(Cr,Mo) directionally solidified at faster growth rates. If the mechanical properties did not deteriorate with increased growth rates, directional solidification could offer an economical means to produce NiAl-based alloys commercially for gas turbine engines. An investigation at the NASA Glenn

  3. Heterogeneous nucleation of solid Al from the melt by TiB2 and Al3Ti: An ab initio molecular dynamics study

    KAUST Repository

    Wang, Junsheng

    2010-11-16

    The nucleation of solid Al from the melt by TiB2 is well established and is believed to involve the formation of Al3Ti. Since the atomic-scale mechanisms involved are not fully understood, we look to computer simulation to provide insight. As there is an absence of suitable potentials for all of this complex system we have performed large-scale density-functional-theory molecular dynamics simulations of the nucleation of solid Al from the melt on TiB2 and Al3Ti substrates at undercoolings of around 2 K. Using periodic boundary conditions, we find limited ordering and no signs of incipient growth in the liquid Al close to the B-terminated surface of TiB2. By contrast, we see fcc-like ordering near the Ti-terminated surface, with growth being frustrated by the lattice mismatch between bulk Al and the TiB2 substrate. The Al interatomic distances at the Ti-terminated surface are similar to distances found in Al3Ti; we suggest that the layer encasing TiB2 observed experimentally may be strained Al on a Ti-terminated surface rather than Al3Ti. For the Al3Ti substrate, fcc-like structures are observed on both sides which extend rapidly into the melt. Periodic boundaries introduce unphysical stresses which we removed by introducing a vacuum region to separate the liquid from the solid at one of the interfaces. We see ordering in the Al on both the B-terminated (0001) surface of TiB2, and on Al3Ti(112), with the ordering able to be stronger on the Al3Ti substrate. However, we cannot draw strong conclusions as these simulations need more time to allow long-ranged fluctuations in the liquid Al to dampen out. The huge computational cost restricted the range and duration of simulations that was possible.

  4. Flow-induced morphological instabilities due to temporally-modulated stagnation-point flow. [in single crystals growth by directionally-solidifying interface

    Science.gov (United States)

    Merchant, G. J.; Davis, S. H.

    1989-01-01

    The influence of periodically-modulated planar stagnation-point flow on the morphological stability of a directionally-solidifying interface is presently considered with a view to the effect of unsteady nonparallel flows on single-crystal growth. The modeling of the system assumes that the viscous boundary layer thickness is much greater than that of the solute boundary layer, and that the modulation frequency is much smaller than the strength of plane stagnation-point flow. The solidifying interface is either stabilized or destabilized depending on the ratio of the period of modulation to the solute-diffusion time.

  5. Microstructural development of rapid solidification in Al-Si powder

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Feng [Iowa State Univ., Ames, IA (United States)

    1995-09-26

    The microstructure and the gradient of microstructure that forms in rapidly solidificated powder were investigated for different sized particles. High pressure gas atomization solidification process has been used to produce a series of Al-Si alloys powders between 0.2 μm to 150 μm diameter at the eutectic composition (12.6 wt pct Si). This processing technique provides powders of different sizes which solidify under different conditions (i.e. interface velocity and interface undercooling), and thus give different microstructures inside the powders. The large size powder shows dendritic and eutectic microstructures. As the powder size becomes smaller, the predominant morphology changes from eutectic to dendritic to cellular. Microstructures were quantitatively characterized by using optical microscope and SEM techniques. The variation in eutectic spacing within the powders were measured and compared with the theoretical model to obtain interface undercooling, and growth rate during the solidification of a given droplet. Also, nucleation temperature, which controls microstructures in rapidly solidified fine powders, was estimated. A microstructural map which correlates the microstructure with particle size and processing parameters is developed.

  6. A coupled analysis of fluid flow, heat transfer and deformation behavior of solidifying shell in continuously cast beam blank

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Eui; Yeo, Tae Jung; Oh, Kyu Hwan; Yoon, Jong Kyu [School of Materials Science and Engineering, Seoul Nat`l Univ., Seoul (Korea, Republic of); Han, Heung Nam [Oxford Center for Advanced Materials and Composites, Department of Materials, Univ. of Oxford (United Kingdom)

    1997-12-31

    A mathematical model for a coupled analysis of fluid flow, heat transfer and deformation behavior in the continuously cast beam blank has been developed. The fluid flow, heat transfer and solidification in the mold region were analyzed with 3-dimensional finite difference method (FDM) based on control volume method. A body fitted coordinate system was introduced for the complex geometry of the beam blank. The effects of turbulence and natural convection of molten steel were taken into account in determining the fluid flow in the strand. The thermo-elasto-plastic deformation behavior in the cast strand and the formation of air gap between the solidifying shell and the mold were analyzed by the finite element method (FEM) using the 2-dimensional slice temperature profile calculated by the FDM. The heat flow between the strand and the mold was evaluated by the coupled analysis between the fluid flow-heat transfer analysis and the thermo-elasto-plastic stress analysis. In order to determine the solid fraction in the mushy zone, the microsegregation of solute element was assessed. The effects of fluid flow on the heat transfer, the solidification of steel and the distribution of shell thickness during the casting of the beam blank were simulated. The deformation behavior of the solidifying shell and the possibility of cracking of the strand were also investigated. The recirculating flows were developed in the regions of the web and the flange tip. The impinging of the inlet flow from the nozzle retarded the growing of solidifying shell in the regions of the fillet and the flange. The air gap between the strand and the mold was formed near the region of the corner of the flange tip. At the initial stage of casting, the probability of the surface cracking was high in the regions of the fillet and the flange tip. After the middle stage of casting, the internal cracking was predicted in the regions of the flange tip, and between the fillet and the flange tip. (author) 38

  7. First-principle calculations of the thermal properties of SrTiO3 and SrO(SrTiO3)n (n=1,2)

    Science.gov (United States)

    Lu, Yanli; Jia, Dewei; Gao, Feng; Hu, Tingting; Chen, Zheng

    2015-01-01

    The thermal properties of SrTiO3 and SrO(SrTiO3)n (n=1,2) with layered perovskite structure are analyzed using the Debye-Grüneisen model combined with ab initio calculations. The thermal expansion coefficient, specific heat at constant pressure CP and specific heat at constant volume CV, adiabatic bulk modulus BS and isothermal bulk modulus BT, entropy, and Debye temperature are investigated. At temperatures higher than 550 °C, the thermal expansion coefficient and the discrepancies between CP and CV, as well as that between BS and BT, of Sr3Ti2O7 increase the fastest as the temperature rises, followed by those of Sr2TiO4, and those of SrTiO3 increase the slowest. The bulk module and Debye temperature of Sr2TiO4, Sr3Ti2O7, and SrTiO3 increase with decreasing SrO/SrTiO3 ratio at 0 K. With increasing temperature, however, the bulk modulus and Debye temperature of Sr3Ti2O7 both rapidly decrease and even fall below those of Sr2TiO4 when the temperature is higher than specific values. We also analyzed the thermal properties of these three compounds in the pressure range from 0 GPa to 16 GPa at 300 K.

  8. Effect of a weak transverse magnetic field on the morphology and orientation of directionally solidified Al-Ni alloys

    Science.gov (United States)

    Li, Hanxiao; Fautrelle, Yves; Hou, Long; Du, Dafan; Zhang, Yikun; Ren, Zhongming; Lu, Xionggang; Moreau, Rene; Li, Xi

    2016-02-01

    The influence of a weak transverse magnetic field on the morphology and orientation of Al3Ni dendrites in directionally solidified Al-12 wt% Ni alloys was investigated. The experimental results indicated that the magnetic field caused segregation. It was also found that the application of a magnetic field decreased the primary dendrite spacing. By means of electronic backscatter diffraction (EBSD) analysis, the orientation of the Al3Ni dendrite was studied. In the case of no magnetic field, the crystal direction of the Al3Ni crystal was oriented along the solidification direction. When a transverse magnetic field was applied, the crystal direction rotated to the magnetic field direction, whereas the crystal direction remained oriented along the solidification direction. The above experimental results are discussed in the context of thermoelectric magnetic convection (TEMC) and crystal anisotropy.

  9. Influence of Growth Rate on Microstructural Length Scales in Directionally Solidified NiAl-Mo Hypo-Eutectic Alloy

    Science.gov (United States)

    Zhang, Jianfei; Ma, Xuewei; Ren, Huiping; Chen, Lin; Jin, Zili; Li, Zhenliang; Shen, Jun

    2016-01-01

    In this article, the Ni-46.1Al-7.8Mo (at.%) alloy was directionally solidified at different growth rates ranging from 15 μm/s to 1000 μm/s under a constant temperature gradient (334 K/cm). The dependence of microstructural length scales on the growth rate was investigated. The results show that, with the growth rate increasing, the primary dendritic arm spacings (PDAS) and secondary dendritic arm spacings (SDAS) decreased. There exists a large distribution range in PDAS under directional solidification conditions at a constant temperature gradient. The average PDAS and SDAS as a function of growth rate can be given as λ1 = 848.8967 V-0.4509 and λ2 = 64.2196 V-0.4140, respectively. In addition, a comparison of our results with the current theoretical models and previous experimental results has also been made.

  10. Effect of Sr content on porosity formation in directionally solidified Al-12.3wt.%Si alloy

    Directory of Open Access Journals (Sweden)

    Liao Hengcheng

    2014-09-01

    Full Text Available The influence of Sr addition on pore formation in directionally solidified Al-12.3wt.% alloy was investigated using X-ray detection, optical microscope, and SEM-EDX. Results indicate that addition of Sr significantly increases the number density and volume fraction of porosity. The considerable rise in volume fraction of porosity is attributed to the remarkable increase in the numbers of pores formed. It is found that Sr solute in liquid Al-Si alloy can diffuse into the oxide inclusions to form loose oxide aggregations which have more activity as the nucleation sites for porosity. Adding more Sr considerably increases the numbers of active nucleation sites. There is an obvious fluctuation of pore number density during steady state solidification, which is believed to be related to a fluctuation of local hydrogen supersaturation induced by the competition of pore nucleation and growth for hydrogen solute supplement.

  11. Numerical simulation of non-dendritic structure formation in Mg-Al alloy solidified with ultrasonic field.

    Science.gov (United States)

    Feng, Xiaohui; Zhao, Fuze; Jia, Hongmin; Li, Yingju; Yang, Yuansheng

    2018-01-01

    The formation of non-dendritic structure of Mg alloy solidified with ultrasonic treatment was investigated by numerical simulation and experiment. The models of nucleation and crystal growth involved the effects of ultrasonic cavitation and acoustic streaming were built. Based on the models, the grain refinement and the microstructure change from dendrite to non-dendritic structure of a Mg-Al alloy were numerically simulated by cellular automata method. The simulation and experimental results indicated that the ultrasonic cavitation strongly contributes to the grain refinement by improving nucleation, while the acoustic streaming is mainly responsible for the formation of non-dendritic structure. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Solidifying agent and processing of blood used for the larval diet affect screwworm (Diptera: Calliphoridae) life-history parameters.

    Science.gov (United States)

    Chaudhury, M F; Skoda, S R; Sagel, A

    2011-06-01

    Spray-dried whole bovine blood and a sodium polyacrylate polymer gel as a bulking and solidifying agent are among the constituents of the current larval diet for mass rearing screwworm, Cochliomyia hominivorax (Coquerel) (Diptera: Calliphoridae). Locally available, inexpensive dietary materials could reduce rearing cost and address an uncertain commercial supply of spray-dried blood. We compared efficacy of diet prepared from fresh bovine blood after decoagulation with sodium citrate or ethylenediaminetetraacetic acid (EDTA) or after mechanical defibrination, with the diet containing spray-dried blood using either gel or cellulose fiber as the bulking and solidifying agent. Several life-history parameters were compared among insects reared on each of the blood and bulking agent diets combination. Diets containing citrated blood yielded the lightest larval and pupal weights and fewest pupae. EDTA-treated blood with the gel also caused reductions. EDTA-treated blood with fiber yielded screwworms that were heavier and more numerous than those from the diet with citrated blood but lighter than those from the control diet using spray-dried blood. A reduction in percentage of adults emerging from pupae occurred from diets with both bulking agents using citrated blood and the diet using EDTA mixed with the gel bulking agent. As a group, the cellulose-fiber diets performed better than the gel diets. Larval diet did not affect adult longevity, weight of the eggs deposited by the females that emerged or subsequent egg hatch. Parameter measurements of insects from both defibrinated blood diets were similar to those from the spray-dried blood diets, indicating that fresh, defibrinated bovine blood can successfully replace the dry blood in the screwworm rearing medium.

  13. Advanced powder metallurgy aluminum alloys via rapid solidification technology

    Science.gov (United States)

    Ray, R.

    1984-01-01

    Aluminum alloys containing 10 to 11.5 wt. pct. of iron and 1.5 to 3 wt. pct. of chromium using the technique of rapid solidification powder metallurgy were studied. Alloys were prepared as thin ribbons (.002 inch thick) rapidly solidified at uniform rate of 10(6) C/second by the melt spinning process. The melt spun ribbons were pulverized into powders (-60 to 400 mesh) by a rotating hammer mill. The powders were consolidated by hot extrusion at a high reduction ratio of 50:1. The powder extrusion temperature was varied to determine the range of desirable processing conditions necessary to yield useful properties. Powders and consolidated alloys were characterized by SEM and optical metallography. The consolidated alloys were evaluated for (1) thermal stability, (2) tensile properties in the range, room temperature to 450 F, and (3) notch toughness in the range, room temperature to 450 F.

  14. Rapid Prototyping

    Science.gov (United States)

    1999-01-01

    Javelin, a Lone Peak Engineering Inc. Company has introduced the SteamRoller(TM) System as a commercial product. The system was designed by Javelin during a Phase II NASA funded small commercial product. The purpose of the invention was to allow automated-feed of flexible ceramic tapes to the Laminated Object Manufacturing rapid prototyping equipment. The ceramic material that Javelin was working with during the Phase II project is silicon nitride. This engineered ceramic material is of interest for space-based component.

  15. Nanomechanical properties of TiCN and TiCN/Ti coatings on Ti prepared by Filtered Arc Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yong [School of Mechanical, Materials & Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Lu, Cheng, E-mail: chenglu@uow.edu.au [School of Mechanical, Materials & Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Yu, Hailiang [School of Mechanical, Materials & Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); School of Mechanical Engineering, Shenyang University, Shenyang 110044 (China); Kiet Tieu, A.; Su, Lihong; Zhao, Yue; Zhu, Hongtao [School of Mechanical, Materials & Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Kong, Charlie [Electron Microscope Unit, University of New South Wales, Sydney, NSW 2052 (Australia)

    2015-02-11

    Monolayer TiCN and multilayer TiCN/Ti coatings were deposited on the surface of Ti using the Filtered Arc Deposition System (FADS). Nanoindentation tests were performed on both coatings. The multilayer TiCN/Ti coating exhibited better ductility than the monolayer TiCN coating. The lattice constants of the coatings were characterized by X-ray diffraction. Transmission Electron Microscopy (TEM) was used to investigate the fracture behavior of the coatings. Inter-columnar, inclined and lateral cracks were found to be the dominant crack modes in the monolayer TiCN coatings while small bending crack and radial crack were the dominant crack modes in the multilayer TiCN/Ti coatings. The Finite Element Method (FEM) was used to simulate the indentation process. It was found that the Ti interlayer in the multilayer TiCN/Ti coating could efficiently suppress the fracture, which is responsible for the improved ductility of the multilayer TiCN/Ti coating.

  16. Effect of nano-CeO2 on microstructure properties of TiC/TiN+ TiCN ...

    Indian Academy of Sciences (India)

    In this study, Al3Ti+TiC/TiN+nano-CeO2 laser-cladded coatings have been studied by means of X-ray diffraction and scanning electron microscope. X-ray diffraction results indicated that Al3Ti+TiC/TiN+nano-CeO2 laser-cladded coating consisted of Ti3Al, TiC, TiN, Ti2Al20Ce, TiC0.3N0.7, Ce(CN)3 and CeO2, this phase ...

  17. Fabrication and characterization of laminated Ti-(TiB+La2O3/Ti composite

    Directory of Open Access Journals (Sweden)

    Yuanfei Han

    2015-10-01

    Full Text Available The incorporation of ceramic particulate reinforcements into titanium alloys can improve the specific strength and specific stiffness, while inevitably reduce the plasticity and ductility. In this study, in situ synthesized multilayer Ti-(TiB+La2O3/Ti composite was designed by learning from the microstructure of nature biological materials with excellent mechanical properties. The Ti-(TiB+La2O3/Ti composite with unique characteristic of laminated structure was prepared by combined powder metallurgy and hot rolling. The method has the synthesize advantages with in-situ reaction of Ti and LaB6 at high temperature and controllability of reinforcements size and constituent phases in composites. The result shows that the pores in the as sintered laminated structure composite completely disappeared after hot rolling at 1050 °C. The agglomerated reinforcement particles were well dispersed and distributed uniformly along the rolling direction. The thickness of pure Ti layer and (TiB+La2O3/Ti composite layer decreased from 1 mm to about 200 μm. Meanwhile, the grains size was refined obviously after rolling deformation. The room temperature tensile test indicates that the elongation of the laminated Ti-(TiB+La2O3/Ti composite improved from 13% to 17% in comparison with the uniform (TiB+La2O3/Ti composite, while the tensile strength had little change. It provides theoretical and experimental basis for fabricating the novel high performance laminated Ti-(TiB+La2O3/Ti composites.

  18. Location specific solidification microstructure control in electron beam melting of Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Narra, Sneha P.; Cunningham, Ross; Beuth, Jack; Rollett, Anthony D.

    2018-01-01

    Relationships between prior beta grain size in solidified Ti-6Al-4V and melting process parameters in the Electron Beam Melting (EBM) process are investigated. Samples are built by varying a machine-dependent proprietary speed function to cover the process space. Optical microscopy is used to measure prior beta grain widths and assess the number of prior beta grains present in a melt pool in the raster region of the build. Despite the complicated evolution of beta grain sizes, the beta grain width scales with melt pool width. The resulting understanding of the relationship between primary machine variables and prior beta grain widths is a key step toward enabling the location specific control of as-built microstructure in the EBM process. Control of grain width in separate specimens and within a single specimen is demonstrated.

  19. Growth of 1-D TiO2 Nanowires on Ti and Ti Alloys by Oxidation

    OpenAIRE

    Huyong Lee; Suliman Dregia; Sheikh Akbar; Mansour Alhoshan

    2010-01-01

    The growth of titania nanowires by a simple metal oxidation process was investigated for both commercially pure α-Ti and Ti alloys including Ti64 and β-Ti under a limited supply of oxygen. The effects of processing variables including heat treatment temperature, gas flow rate, and process duration on the growth of nanowires were explored. Similarities and differences in the growth of nanowires on pure Ti versus Ti alloys were observed. While the growth window in terms of temperature and flow ...

  20. Microstructure and Mechanical Properties of Ti6Al4V Alloy Modified and Reinforced by In Situ Ti5Si3/Ti Composite Ribbon Inoculants

    Directory of Open Access Journals (Sweden)

    Nuo Li

    2017-07-01

    Full Text Available This paper deals with a novel fabrication method (a vacuum rapid solidification technique to prepare in situ Ti5Si3/Ti composite ribbon as inoculants to modify Ti6Al4V alloy to obtain titanium matrix composites (TMCs. Microstructure and morphology observations showed that the grain size of the TMCs was refined as the volume fraction of inoculants increased. The grain size of the TMCs can be refined from a grade of 650 μm to about 110 μm with a very small refiner adding ratio of 0.6% in weight. Thereafter, the mechanical properties of the TMCs, including their tensile strength, microhardness, impact properties, and resistant properties were improved obviously by adding the ribbon inoculants. The excellent grain refining and reinforcement effect can be attributed to the nano-sized Ti5Si3 refiner particles distributed homogeneously in the matrix, the well-banded particle/matrix interface, and the good wettability between the Ti5Si3 particles in inoculants and the Ti6Al4V alloy melt, which are benefit for the heterogeneous nucleation of the TMCs during solidification.

  1. Rapid Decolorization of Cobalamin

    OpenAIRE

    Falah H. Hussein; Ahmed F. Halbus

    2012-01-01

    The photocatalytic decolorization of cobalamin was carried out in aqueous solution of different types of catalysts including ZnO, TiO2 (Degussa P25), TiO2 (Hombikat UV100), TiO2 (Millennium PC105), and TiO2 (Koronose 2073) by using UVA source of irradiation. The effect of various parameters such as photocatalyst amount, cobalamin concentration, type of catalyst, pH of aqueous solution, light intensity, addition of H2O2, flow rate of O2, type of current gas, and temperature on photocatalytic o...

  2. A novel extraction method for β-carotene and other carotenoids in fruit juices using air-assisted, low-density solvent-based liquid-liquid microextraction and solidified floating organic droplets.

    Science.gov (United States)

    Sricharoen, Phitchan; Limchoowong, Nunticha; Techawongstien, Suchila; Chanthai, Saksit

    2016-07-15

    Green extraction using air-assisted, low-density solvent-based liquid-liquid microextraction and solidified floating organic droplets (AA-LDS-LLME-SFOD) prior to spectrophotometry was successfully applied for quantitation of carotenoids in fruit juices. Under optimal conditions, β-carotene could be quantified with a linear response up to a concentration of 60 μg mL(-1). The procedure was performed in a microcentrifuge tube with 40 μL of 1-dodecanol as the extraction solvent and a 1.0 mL juice sample containing 8% NaCl under seven extraction cycles of air pumping by syringe. This method was validated based on linearity (0.2-30 μg mL(-1), R(2) 0.998), limit of detection (0.04 μg mL(-1)) and limit of quantification (0.13 μg mL(-1)). The precision, expressed as the relative standard deviation (RSD) of the calibration curve slope (n=12), for inter-day and intra-day analysis was 4.85% and 7.92%, respectively. Recovery of β-carotene was in the range of 93.6-101.5%. The newly proposed method is simple, rapid and environmentally friendly, particularly as a useful screening test for food analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Tribological behavior and wear mechanisms of TiN/TiCN/TiN multilayer coatings

    Science.gov (United States)

    Su, Y. L.; Kao, W. H.

    1998-10-01

    This work employs the PVD process to deposit coatings of single layer TiN, binary layer TiN/TiCN, multilayer TiN⇔⇔N, and sequenced TiN⇔CN⇔N multilayer coatings with variable individual TiN-layer and TiCN-layer thicknesses on tungsten carbide disks and inserts. Also investigated are the fracture mechanisms and the influence of sequence and thickness of these coatings on cylinder-on-disk, line-contact wear mode and ball-on-disk, point-contact wear mode through SRV reciprocating wear tests. Actual milling tests identify wear performance. Experimental results indicate that the coating with a total thickness of 7 Μm and layer sequence TiN/TiCN/TiN exhibits good wear resistance on SRV wear test and milling test. The thickest multilayer TiN/Ti/TiN coating, although having the highest hardness, has the worst wear resistance for all tests. No-tably zero-wear performance was observed for all coating disks under cutting fluid lubricated condition due to the transferred layers formed between the contact interface.

  4. Detachment of secondary dendrite arm in a directionally solidified Sn-Ni peritectic alloy under deceleration growth condition

    Science.gov (United States)

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie; Fu, Hengzhi

    2016-06-01

    In order to better understand the detachment mechanism of secondary dendrite arm during peritectic solidification, the detachment of secondary dendrite arm from the primary dendrite arms in directionally solidified Sn-36at.%Ni peritectic alloys is investigated at different deceleration rates. Extensive detachment of secondary dendrite arms from primary stem is observed below peritectic reaction temperature TP. And an analytical model is established to characterize the detachment process in terms of the secondary dendrite arm spacing λ2, the root radius of detached arms and the specific surface area (SV) of dendrites. It is found that the detachment mechanism is caused by not only curvature difference between the tips and roots of secondary branches, but also that between the thicker secondary branches and the thinner ones. Besides, this detachment process is significantly accelerated by the temperature gradient zone melting (TGZM) effect during peritectic solidification. It is demonstrated that the reaction constant (f) which is used to characterize the kinetics of peritectic reaction is crucial for the determination of the detachment process. The value of f not only changes with growth rate but also with solidification time at a given deceleration rate. In conclusion, these findings help the better understanding of the detachment mechanism.

  5. Determination of molybdenum in plants by vortex-assisted emulsification solidified floating organic drop microextraction and flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Oviedo, Jenny A.; Fialho, Lucimar L.; Nóbrega, Joaquim A., E-mail: djan@terra.com.br

    2013-08-01

    A fast and sensitive procedure for extraction and preconcentration of molybdenum in plant samples based on solidified floating organic drop microextraction combined with flame atomic absorption spectrometry and discrete nebulization was developed. 8-Hydroxyquinoline (8-HQ) was used as complexing agent. The experimental conditions established were: 0.5% m v{sup −1} of 8-HQ, 60 μL of 1-undecanol as the extractant phase, 2 min vortex extraction time, centrifugation for 2 min at 2000 rpm, 10 min into an ice bath and discrete nebulization by introducing 200 μL of solution. The calibration curve was linear from 0.02 to 4.0 mg L{sup −1} with a limit of detection of 4.9 μg L{sup −1} and an enhancement factor of 67. The relative standard deviations for ten replicate measurements of 0.05 and 1.0 mg L{sup −1} Mo were 6.0 and 14.5%, respectively. The developed procedure was applied for determining molybdenum in corn samples and accuracy was proved using certified reference materials. - Highlights: ► Molybdenum was determined in plants by flame AAS. ► Flame AAS sensitivity was improved using microextraction and discrete nebulization. ► The developed procedure can be easily implemented in routine analysis. ► Green chemistry principles are followed.

  6. Modeling the growth of Byssochlamys fulva and Neosartorya fischeri on solidified apple juice by measuring colony diameter and ergosterol content.

    Science.gov (United States)

    Tremarin, Andréia; Longhi, Daniel Angelo; Salomão, Beatriz de Cassia Martins; Aragão, Gláucia Maria Falcão

    2015-01-16

    Byssochlamys fulva and Neosartorya fischeri are heat-resistant fungi which are a concern to food industries (e.g. apple juice industry) since their growth represents significant economic liabilities. Although the most common method used to assess fungal growth in solid substrates is by measuring the colony's diameter, it is difficult to apply this method to food substrates. Alternatively, ergosterol contents have been used to quantify fungal contamination in some types of food. The current study aimed at modeling the growth of the heat-resistant fungi B. fulva and N. fischeri by measuring the colony diameter and ergosterol content, fitting the Baranyi and Roberts model to the results, and finally establishing a correlation between the parameters of the two analytical methods. Whereas the colony diameter was measured daily, the quantification of ergosterol was performed when the colonies reached diameters of 30, 60, 90, 120 and 150 mm. Results showed that B. fulva and N. fischeri were able to grow successfully on solidified apple juice at 10, 15, 20, 25 and 30 °C, and the Baranyi and Roberts model showed good ability to describe growth data. The correlation curves between the parameters of colony diameter and ergosterol content were obtained with satisfactory statistical indexes. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Sensitive determination of cadmium using solidified floating organic drop microextraction-slotted quartz tube-flame atomic absorption spectroscopy.

    Science.gov (United States)

    Akkaya, Erhan; Chormey, Dotse Selali; Bakırdere, Sezgin

    2017-09-20

    In this study, solidified floating organic drop microextraction (SFODME) by 1-undecanol was combined with slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) for the determination of cadmium at trace levels. Formation of a complex with 4,4'-dimethyl-2,2'-bipyridine facilitated the extraction of cadmium from aqueous solutions. Several chemical variables were optimized in order to obtain high extraction outputs. Parameters such as concentration of the ligand, pH, and amount of buffer solution were optimized to enhance the formation of cadmium complex. The SFODME method was assisted by dispersion of extractor solvent into aqueous solutions using 2-propanol. Under the optimum extraction and instrumental conditions, the limit of detection and limit of quantitation values obtained for cadmium using the combined methods (SFODME-SQT-FAAS) were found to be 0.4 and 1.3 μg L -1 , respectively. Matrix effects on the method were also examined for tap water and wastewater, and spiked recovery results were found to be very satisfactory. Graphical Abstract SFODME-SQT-FAAS system for sensitive determination of cadmium.

  8. Effects of Growth Rates and Compositions on Dendrite Arm Spacings in Directionally Solidified Al-Zn Alloys

    Science.gov (United States)

    Acer, Emine; Çadırlı, Emin; Erol, Harun; Kaya, Hasan; Gündüz, Mehmet

    2017-12-01

    Dendritic spacing can affect microsegregation profiles and also the formation of secondary phases within interdendritic regions, which influences the mechanical properties of cast structures. To understand dendritic spacings, it is important to understand the effects of growth rate and composition on primary dendrite arm spacing ( λ 1) and secondary dendrite arm spacing ( λ 2). In this study, aluminum alloys with concentrations of (1, 3, and 5 wt pct) Zn were directionally solidified upwards using a Bridgman-type directional solidification apparatus under a constant temperature gradient (10.3 K/mm), resulting in a wide range of growth rates (8.3-165.0 μm/s). Microstructural parameters, λ 1 and λ 2 were measured and expressed as functions of growth rate and composition using a linear regression analysis method. The values of λ 1 and λ 2 decreased with increasing growth rates. However, the values of λ 1 increased with increasing concentration of Zn in the Al-Zn alloy, but the values of λ 2 decreased systematically with an increased Zn concentration. In addition, a transition from a cellular to a dendritic structure was observed at a relatively low growth rate (16.5 μm/s) in this study of binary alloys. The experimental results were compared with predictive theoretical models as well as experimental works for dendritic spacing.

  9. Wetting and Brazing of Alumina by Sn0.3Ag0.7Cu-Ti Alloy

    Science.gov (United States)

    Kang, J. R.; Song, X. G.; Hu, S. P.; Liu, D.; Guo, W. J.; Fu, W.; Cao, J.

    2017-12-01

    The wetting behavior of Sn0.3Ag0.7Cu (wt pct) with the addition of Ti on alumina was studied at 1273 K (1000 °C) using the sessile drop method. The wettability of Sn0.3Ag0.7Cu is significantly enhanced with the addition of Ti. Ti accumulates on the interface and reacts with O, producing TiO and yields good wetting. However, wetting is inhibited in high Ti containing droplets as intense Ti-Sn reactions take place. As a result of these competing reactions, the wettability of Sn0.3Ag0.7Cu-2Ti is the best, with the lowest equilibrium contact angle 24.6 deg. Thermodynamic calculations indicate that the value of the final contact angle cos θ varies linearly with Ti fraction in the Ti-Sn reaction-free case. The influence of the Ti-Sn reaction on wetting is quantitatively characterized by the deviation from the theoretical data. The adverse impact of Ti-Sn reaction on wetting increases in intensity with the droplets containing more Ti as the reaction between Ti and Sn becomes more intense and rapid. Alumina/alumina is brazed using different Ti containing Sn0.3Ag0.7Cu-Ti brazing metals at 1273 K (1000 °C) for 25 minutes. Pores are observed in joints prepared with Sn0.3Ag0.7Cu-0.7, 3, and 4Ti because of poor wettability. The highest joints shear strength of 28.6 MPa is obtained with Sn0.3Ag0.7Cu-2Ti.

  10. Reactive synthesis of Ti-Al intermetallics during microwave heating in an E-field maximum

    Energy Technology Data Exchange (ETDEWEB)

    Vaucher, S., E-mail: sebastien.vaucher@empa.ch [Swiss Federal Laboratories for Materials Testing and Research - Empa, Feuerwerkerstr. 39, CH-3602 Thun (Switzerland); Stir, M.; Ishizaki, K. [Swiss Federal Laboratories for Materials Testing and Research - Empa, Feuerwerkerstr. 39, CH-3602 Thun (Switzerland); Catala-Civera, J.-M. [Universidad Politecnica de Valencia, Camino Vera s/n, E-46022 Valencia (Spain); Nicula, R. [Swiss Federal Laboratories for Materials Testing and Research - Empa, Feuerwerkerstr. 39, CH-3602 Thun (Switzerland)

    2011-08-10

    The time-resolved X-ray diffraction synchrotron radiation technique was used in combination with E-field microwave heating to study in situ the kinetics of intermetallic phase formation in the Ti-Al system. The reaction of Ti with Al is triggered by the melting and spreading of Al onto the surface of Ti particles. The tetragonal TiAl{sub 3} phase is the primary reaction product, formed by instantaneous nucleation at the interface between the unreacted Ti cores and the Al melt. The growth of TiAl{sub 3} layers is diffusion-controlled. These preliminary results demonstrate that microwave heating can be used to rapidly synthesise intermetallic phases from high-purity elemental powders.

  11. High Rate of N2 Fixation by East Siberian Cryophilic Soil Bacteria as Determined by Measuring Acetylene Reduction in Nitrogen-Poor Medium Solidified with Gellan Gum▿ †

    Science.gov (United States)

    Hara, Shintaro; Hashidoko, Yasuyuki; Desyatkin, Roman V.; Hatano, Ryusuke; Tahara, Satoshi

    2009-01-01

    For evaluating N2 fixation of diazotrophic bacteria, nitrogen-poor liquid media supplemented with at least 0.5% sugar and 0.2% agar are widely used for acetylene reduction assays. In such a soft gel medium, however, many N2-fixing soil bacteria generally show only trace acetylene reduction activity. Here, we report that use of a N2 fixation medium solidified with gellan gum instead of agar promoted growth of some gellan-preferring soil bacteria. In a soft gel medium solidified with 0.3% gellan gum under appropriate culture conditions, bacterial microbiota from boreal forest bed soils and some free-living N2-fixing soil bacteria isolated from the microbiota exhibited 10- to 200-fold-higher acetylene reduction than those cultured in 0.2% agar medium. To determine the N2 fixation-activating mechanism of gellan gum medium, qualitative differences in the colony-forming bacterial components from tested soil microbiota were investigated in plate cultures solidified with either agar or gellan gum for use with modified Winogradsky's medium. On 1.5% agar plates, apparently cryophilic bacterial microbiota showed strictly distinguishable microbiota according to the depth of soil in samples from an eastern Siberian Taiga forest bed. Some pure cultures of proteobacteria, such as Pseudomonas fluorescens and Burkholderia xenovorans, showed remarkable acetylene reduction. On plates solidified with 1.0% gellan gum, some soil bacteria, including Luteibacter sp., Janthinobacterium sp., Paenibacillus sp., and Arthrobacter sp., uniquely grew that had not grown in the presence of the same inoculants on agar plates. In contrast, Pseudomonas spp. and Burkholderia spp. were apparent only as minor colonies on the gellan gum plates. Moreover, only gellan gum plates allowed some bacteria, particularly those isolated from the shallow organic soil layer, to actively swarm. In consequence, gellan gum is a useful gel matrix to bring out growth potential capabilities of many soil diazotrophs and

  12. High rate of N2 fixation by East Siberian cryophilic soil bacteria as determined by measuring acetylene reduction in nitrogen-poor medium solidified with gellan gum.

    Science.gov (United States)

    Hara, Shintaro; Hashidoko, Yasuyuki; Desyatkin, Roman V; Hatano, Ryusuke; Tahara, Satoshi

    2009-05-01

    For evaluating N(2) fixation of diazotrophic bacteria, nitrogen-poor liquid media supplemented with at least 0.5% sugar and 0.2% agar are widely used for acetylene reduction assays. In such a soft gel medium, however, many N(2)-fixing soil bacteria generally show only trace acetylene reduction activity. Here, we report that use of a N(2) fixation medium solidified with gellan gum instead of agar promoted growth of some gellan-preferring soil bacteria. In a soft gel medium solidified with 0.3% gellan gum under appropriate culture conditions, bacterial microbiota from boreal forest bed soils and some free-living N(2)-fixing soil bacteria isolated from the microbiota exhibited 10- to 200-fold-higher acetylene reduction than those cultured in 0.2% agar medium. To determine the N(2) fixation-activating mechanism of gellan gum medium, qualitative differences in the colony-forming bacterial components from tested soil microbiota were investigated in plate cultures solidified with either agar or gellan gum for use with modified Winogradsky's medium. On 1.5% agar plates, apparently cryophilic bacterial microbiota showed strictly distinguishable microbiota according to the depth of soil in samples from an eastern Siberian Taiga forest bed. Some pure cultures of proteobacteria, such as Pseudomonas fluorescens and Burkholderia xenovorans, showed remarkable acetylene reduction. On plates solidified with 1.0% gellan gum, some soil bacteria, including Luteibacter sp., Janthinobacterium sp., Paenibacillus sp., and Arthrobacter sp., uniquely grew that had not grown in the presence of the same inoculants on agar plates. In contrast, Pseudomonas spp. and Burkholderia spp. were apparent only as minor colonies on the gellan gum plates. Moreover, only gellan gum plates allowed some bacteria, particularly those isolated from the shallow organic soil layer, to actively swarm. In consequence, gellan gum is a useful gel matrix to bring out growth potential capabilities of many soil

  13. The effect of thermal cycling on the structure and properties of a Co, Cr, Ni-TaC directionally solidified eutectic composite

    Science.gov (United States)

    Dunlevey, F. M.; Wallace, J. F.

    1973-01-01

    The effect of thermal cycling on the structure and properties of a cobalt, chromium, nickel, tantalum carbide directionally solidified eutectic composite is reported. It was determined that the stress rupture properties of the alloy were decreased by the thermal cycling. The loss in stress rupture properties varied with the number of cycles with the loss in properties after about 200 cycles being relatively high. The formation of serrations and the resulting changes in the mechanical properties of the material are discussed.

  14. Examination of solidified and stabilized matrices as a result of solidification and stabilization process of arseniccontaining sludge with portland cement and lime

    Directory of Open Access Journals (Sweden)

    Tanapon Phenrat

    2004-02-01

    Full Text Available By solidification and stabilization (S/S with Portland cement and lime, it is possible to reduce arsenic concentration in leachate of the arsenic-containing sludge from arsenic removal process by coagulation with ferric chloride. From the initial arsenic concentration in leachate of unsolidified /unstabilized sludge which was around 20.75 mg/L, the arsenic concentrations in leachate of solidified/stabilized waste were reduced to 0.3, 0.58, 1.09, and 1.85 mg/L for the waste-to-binder ratios of 0.15, 0.25, 0.5, and 1, respectively, due tothe formation of insoluble calcium-arsenic compounds. To be more cost effective for the future, alternative uses of these S/S products were also assessed by measurement of compressive strength of the mortar specimens. It was found that the compressive strengths of these matrices were from 28 ksc to 461 ksc. In conclusion, considering compressive strength and leachability of the solidified matrices, some of these solidified/ stabilized products have potential to serve as an interlocking concrete paving block.

  15. Microstructure formation and in situ phase identification from undercooled Co-61.8 at.% Si melts solidified on an electromagnetic levitator and an electrostatic levitator

    Energy Technology Data Exchange (ETDEWEB)

    Li Mingjun [National Institute of Advanced Industrial Science and Technology (AIST), Materials Research Institute for Sustainable Development, 2266-98 Shimo-Shidami, Moriyama, Nagoya, Aichi 463-8560 (Japan); Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Tsukuba Space Centre, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan)], E-mail: li.mingjun@aist.go.jp; Nagashio, Kosuke [Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Sagamihara Campus, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Ishikawa, Takehiko [Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Tsukuba Space Centre, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Mizuno, Akitoshi; Adachi, Masayoshi; Watanabe, Masahito [Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima, Tokyo 171-8588 (Japan); Yoda, Shinichi [Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Tsukuba Space Centre, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Kuribayashi, Kazuhiko [Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Sagamihara Campus, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Katayama, Yoshinori [Japan Atomic Energy Agency (JAEA), 1-1-1 Kouto, Mikazuki, Sayo, Hyogo 679-5148 (Japan)

    2008-06-15

    Co-61.8 at.% Si (CoSi-CoSi{sub 2}) eutectic alloys were solidified on an electromagnetic levitator (EML) and an electrostatic levitator (ESL) at different undercooling levels. The results indicated that there is only a single recalescence event at low undercooling with the CoSi intermetallic compound as primary phase, which is independent of processing facilities, on either an EML or an ESL. The microstructure, however, is strongly dependent on the processing facility. The interior melt flow behavior in the sphere solidified at the EML differs substantially from that at the ESL, thus yielding different microstructures. On high undercooling, double recalescence takes place regardless of levitation condition. In situ X-ray diffraction of alloys solidified on the EML demonstrates that the CoSi{sub 2} compound becomes the primary phase upon the first recalescence, and the CoSi intermetallic phase crystallizes during the second recalescence. In addition to phase identification, real-time diffraction patterns can also provide additional evidence of the fragmentation of the primary phase and the ripening feature in the subsequent cooling process in the semisolid state. The phase competition between the CoSi and CoSi{sub 2} compounds is discussed when considering the nucleation barrier. The low interfacial energy of the CoSi{sub 2} phase favors a preferential nucleation event over the CoSi phase, which also plays a critical role in non-reciprocity nucleation and thus yields a double recalescence profile at high undercooling.

  16. Microstructure refinement and hardening of Ag–20 wt.%Cu alloy by rapid solidification

    Energy Technology Data Exchange (ETDEWEB)

    Lussana, Danilo, E-mail: danilo.lussana@unito.it [Dipartimento di Chimica and NIS, Università di Torino, Torino (Italy); Castellero, Alberto [Dipartimento di Chimica and NIS, Università di Torino, Torino (Italy); Vedani, Maurizio [Dipartimento di Meccanica, Politecnico di Milano, Milano (Italy); Ripamonti, Dario; Angella, Giuliano [Istituto IENI-CNR, Unità territoriale di Milano, Milano (Italy); Baricco, Marcello [Dipartimento di Chimica and NIS, Università di Torino, Torino (Italy)

    2014-12-05

    Highlights: • Ag80–Cu20 alloy were rapidly solidified by planar flow casting technique. • A significant refinement of the eutectic microstructure has been obtained. • A refinement of the primary silver-rich phase has been achieved with high cooling rate. • The hardness increases up to the 150% of the value of an annealed sample. - Abstract: Ag–20 wt.%Cu (wt%) hypoeutectic alloy has been rapidly solidified by means of planar flow casting technique. Two fcc solid solutions have been identified by X-ray diffraction. Microstructures have been observed by electron microscopy. A refinement of the eutectic microstructure, as well as of the Ag-rich primary phase, has been observed for high quenching rates, leading to a hardness value up to 235 Vickers. The lattice parameter and phase fraction of the Ag-rich solid solution increase as a function of quenching rates (i.e. wheel speed). The solidification processes occurring during rapid quenching have been described on the basis of thermodynamic and kinetic arguments.

  17. Effect of nano-CeO2 on microstructure properties of TiC/TiN+TiCN ...

    Indian Academy of Sciences (India)

    X-ray diffraction results indi- cated that Al3Ti+TiC/TiN+nano-CeO2 laser-cladded coating consisted of Ti3Al, TiC, TiN, Ti2Al20Ce, TiC0·3N0·7, ... Experimental. Cross-flow CO2 laser cladding equipment was used in this experiment. .... convection by a high energy density lead the distribution of. TiC0·3N0·7 precipitates to a ...

  18. Effect of convective flow on stable dendritic growth in rapid solidification of a binary alloy

    Science.gov (United States)

    Galenko, P. K.; Danilov, D. A.; Reuther, K.; Alexandrov, D. V.; Rettenmayr, M.; Herlach, D. M.

    2017-01-01

    A model for anisotropic growth of a dendritic crystal in a binary mixture under non-isothermal conditions is presented. A criterion for a stable growth mode is given for the dendrite tip as a function of the thermal Péclet number and the ratio between the velocities of dendrite growth and solute diffusion in the liquid bulk. Limiting cases of known criteria for anisotropic dendrite growth at low and high growth Péclet numbers are provided. The inclusion of forced convective flow extends the range of theoretical predictions, especially to low growth velocities, thus eliminating systematic discrepancies between earlier models and observed experimental data, as shown by a comparison of model predictions with measured growth velocities in Ti-55 at% Al alloys solidified under electromagnetic levitation.

  19. Growth of 1-D TiO2 Nanowires on Ti and Ti Alloys by Oxidation

    Directory of Open Access Journals (Sweden)

    Huyong Lee

    2010-01-01

    Full Text Available The growth of titania nanowires by a simple metal oxidation process was investigated for both commercially pure α-Ti and Ti alloys including Ti64 and β-Ti under a limited supply of oxygen. The effects of processing variables including heat treatment temperature, gas flow rate, and process duration on the growth of nanowires were explored. Similarities and differences in the growth of nanowires on pure Ti versus Ti alloys were observed. While the growth window in terms of temperature and flow rate is narrow in pure Ti, the window is much wider in the alloys. However, the trend towards high temperature is similar in all the samples promoting faceted oxide crystal growth rather than nanowires.

  20. Effect of an alkaline environment on the engineering behavior of cement-stabilized/solidified Zn-contaminated soils.

    Science.gov (United States)

    Liu, Jingjing; Zha, Fusheng; Deng, Yongfeng; Cui, Kerui; Zhang, Xueqin

    2017-10-12

    Although the stabilization/solidification method has been widely used for remediation of heavy metal-contaminated soils in recent decades, the engineering behavior and mobility of heavy metal ions under alkaline groundwater conditions are still unclear. Therefore, the unconfined compressive strength test (UCS) combined with toxicity characteristic leaching procedure (TCLP) and general acid neutralization capacity (GANC) was used to investigate the effects of alkalinity (using NaOH to simulate alkalinity in the environment) on the mechanical and leaching characteristics of cement-solidified/stabilized (S/S) Zn-contaminated soils. Moreover, the microstructure was analyzed using the scanning electron microscope (SEM) technology. The results indicated that alkaline environment could accelerate the UCS development compared with specimens without soaking in NaOH solution,, regardless of whether the specimens contained Zn2+ or not. And the UCS varied obviously attributed to the variations of both NaOH concentration and soaking time. Except for the specimens soaked for 90 days, the leached Zn2+ concentrations were higher than that of without soaking. However, the leachability of Zn2+ in all the stabilized specimens is in the regulatory level. ANC results indicated that the Zn2+ leaching behavior can be divided into three stages related to the initial leachate pH. Moreover, SEM results proved that the alkaline environment could actually facilitate the cement hydration process. The results proved in the present paper could be useful in treating the heavy metal-contaminated soils involved in the solidification/stabilization technology under alkaline environment.

  1. Rapid Decolorization of Cobalamin

    Directory of Open Access Journals (Sweden)

    Falah H. Hussein

    2012-01-01

    Full Text Available The photocatalytic decolorization of cobalamin was carried out in aqueous solution of different types of catalysts including ZnO, TiO2 (Degussa P25, TiO2 (Hombikat UV100, TiO2 (Millennium PC105, and TiO2 (Koronose 2073 by using UVA source of irradiation. The effect of various parameters such as photocatalyst amount, cobalamin concentration, type of catalyst, pH of aqueous solution, light intensity, addition of H2O2, flow rate of O2, type of current gas, and temperature on photocatalytic oxidation was investigated. The results indicated that the photocatalytic decolorization of cobalamin was well described by pseudo-first-order kinetics according to the Langmuir-Hinshelwood model. The effect of temperature on the efficiency of photodecolorization of cobalamin was also studied in the range 278–298 K. The activation energy was calculated according to Arrhenius plot and was found equal to  kJ·mol−1 for ZnO and  kJ·mol−1 for TiO2 (Degussa P25. The results of the total organic carbon (TOC analysis indicate that the rate of decolorization of dye was faster than the total mineralization. Decolorization and mineralization of cobalamin in the absence of light and/or catalyst were performed to demonstrate that the presence of light and catalyst is essential for the decolorization of this cobalamin. The results show that the activity of different types of catalysts used in this study was of the sequence: ZnO > TiO2 (Degussa P25 > TiO2 (Hombikat UV100 > TiO2 (Millennium PC105 > TiO2 (Koronose 2073.

  2. Self-Consolidation Mechanism of Nanostructured Ti5Si3 Compact Induced by Electrical Discharge

    Directory of Open Access Journals (Sweden)

    W. H. Lee

    2015-01-01

    Full Text Available Electrical discharge using a capacitance of 450 μF at 7.0 and 8.0 kJ input energies was applied to mechanical alloyed Ti5Si3 powder without applying any external pressure. A solid bulk of nanostructured Ti5Si3 with no compositional deviation was obtained in times as short as 159 μsec by the discharge. During an electrical discharge, the heat generated is the required parameter possibly to melt the Ti5Si3 particles and the pinch force can pressurize the melted powder without allowing the formation of pores. Followed rapid cooling preserved the nanostructure of consolidated Ti5Si3 compact. Three stepped processes during an electrical discharge for the formation of nanostructured Ti5Si3 compact are proposed: (a a physical breakdown of the surface oxide of Ti5Si3 powder particles, (b melting and condensation of Ti5Si3 powder by the heat and pinch pressure, respectively, and (c rapid cooling for the preservation of nanostructure. Complete conversion yielding a single phase Ti5Si3 is primarily dominated by the solid-liquid mechanism.

  3. Phase boundaries in the ternary (Bi0.5Na0.5TiO3)x(BaTiO3)y(SrTiO3)1-x-y system

    Science.gov (United States)

    Marlton, Frederick; Standard, Owen; Kimpton, Justin A.; Daniels, John E.

    2017-11-01

    The phase boundaries within (Bi0.5Na0.5TiO3)x(BaTiO3)y(SrTiO3)1-x-y with x ≥ 0.68 have been outlined. This was achieved using a combinatorial sample fabrication method and scanning synchrotron X-ray diffraction to rapidly characterise crystallographic structures over a large region of phase space. A parametric refinement method was used to clearly outline the phase boundaries as a function of the composition. The pseudo-cubic structure from the high strain non-ergodic Bi0.5Na0.5TiO3-BaTiO3 composition extends into the phase diagram with doping of SrTiO3, with regions of tetragonal and rhombohedral in the BaTiO3 and Bi0.5Na0.5TiO3 ends, respectively. This information can be used in conjunction with further compositional modifications to develop high strain piezoceramics that make use of electric-field-induced phase transformations and further understand the mechanisms in ergodic vs non-ergodic relaxors.

  4. Independent control of metal cluster and ceramic particle characteristics during one-step synthesis of Pt/TiO2

    DEFF Research Database (Denmark)

    Schulz, H.; Madler, L.; Strobel, R.

    2005-01-01

    Rapid quenching during flame spray synthesis of Pt/TiO2 (0-10 Wt% Pt) is demonstrated as a versatile method for independent control of support (TiO2) and noble metal (Pt)cluster characteristics. Titania grain size, morphology, crystal phase structure, and crystal size were analyzed by nitrogen...

  5. Tailoring ultrafine grained and dispersion-strengthened Ti2AlC/TiAl ...

    Indian Academy of Sciences (India)

    In situ Ti 2 AlC/TiAl composite was fabricated by hot-pressing method via the reaction system of Ti 3 AlC 2 and Ti-Al pre-alloyed powders at low temperature of 1150 ∘ C. The composite mainly consisted of TiAl, Ti 3 Al and Ti 2 AlC phases. Fine Ti 2 AlC particles were homogeneously distributed and dispersed in the matrix.

  6. Phase Composition of a CrMo0.5NbTa0.5TiZr High Entropy Alloy: Comparison of Experimental and Simulated Data (Postprint)

    Science.gov (United States)

    2014-04-01

    alloying elements is believed to stabilize the more ductile disordered solid-solution phases relative to the brittle intermetallic phases . This strategy...DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To) April 2014 Interim 19 March 2014 – 31 March 2014 4. TITLE AND SUBTITLE PHASE ...e15093796. 14. ABSTRACT Microstructure and phase composition of a CrMo0 5NbTa0 5TiZr high entropy alloy were studied in the as-solidified and heat

  7. Synthesis of Nano-Ilmenite (FeTiO3) doped TiO2/Ti Electrode for Photoelectrocatalytic System

    Science.gov (United States)

    Hikmawati; Watoni, A. H.; Wibowo, D.; Maulidiyah; Nurdin, M.

    2017-11-01

    Ilmenite (FeTiO3) doped on Ti and TiO2/Ti electrodes were successfully prepared by using the sol-gel method. The structure, morphology, and optical properties of FeTiO3 are characterized by XRD, UV-Vis DRS, and SEM. The FeTiO3 and TiO2 greatly affect the photoelectrocatalysis performance characterized by Linear Sweep Voltammetry (LSV) and Cyclic Voltammetry (CV). The characterization result shows a band gap of FeTiO3 is 2.94 eV. XRD data showed that FeTiO3 formed at 2θ were 35.1° (110), 49.9° (024), and 61.2° (214). The morphology of FeTiO3/Ti and FeTiO3.TiO2/Ti using SEM shows that the formation of FeTiO3 thin layer signifies the Liquid Phase Deposition method effectively in the coating process. Photoelectrochemical (PEC) test showed that FeTiO3.TiO2/Ti electrode was highly oxidation responsive under visible light compared to the FeTiO3/Ti electrodes i.e. 7.87×10‑4 A and 9.87×10‑5 A. Degradation test of FeTiO3/Ti and FeTiO3.TiO2/Ti electrodes on titan yellow showed that the percentages of degradation with photoelectrocatalysis at 0.5 mg/L were 41% and 43%, respectively.

  8. Effect of Laser Power and Scan Speed on Melt Pool Characteristics of Commercially Pure Titanium (CP-Ti)

    Science.gov (United States)

    Kusuma, Chandrakanth; Ahmed, Sazzad H.; Mian, Ahsan; Srinivasan, Raghavan

    2017-07-01

    Selective laser melting (SLM) is an additive manufacturing technique that creates complex parts by selectively melting metal powder layer-by-layer using a laser. In SLM, the process parameters decide the quality of the fabricated component. In this study, single beads of commercially pure titanium (CP-Ti) were melted on a substrate of the same material using an in-house built SLM machine. Multiple combinations of laser power and scan speed were used for single bead fabrication, while the laser beam diameter and powder layer thickness were kept constant. This experimental study investigated the influence of laser power, scan speed, and laser energy density on the melt pool formation, surface morphology, geometry (width and height), and hardness of solidified beads. In addition, the observed unfavorable effect such as inconsistency in melt pool width formation is discussed. The results show that the quality, geometry, and hardness of solidified melt pool are significantly affected by laser power, scanning speed, and laser energy density.

  9. Corrosion behavior of TiC particle-reinforced 2Cr13 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qianlin; Yin, Yansheng [Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 201306 (China); Li, Wenge [College of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China)

    2011-06-15

    The corrosion behavior of TiC particle-reinforced 2Cr13 stainless steels prepared by in situ reaction and electroslag remelting (ESR) was investigated using potentiodynamic polarisation measurements and immersion tests. The addition of TiC particles to 2Cr13 stainless steel impeded rapid pit propagation but maintained a high corrosion rate in the whole immersion time investigated. The TiC addition developed finer matrix structure, the formation of Cr-rich carbides and high dislocation density around the TiC particles before corrosion, which results in an increasing corrosion rate and preferential pitting attack at the steel matrix/TiC interface. Although the corrosion resistance of 2Cr13 stainless steel is sharply decreased due to TiC addition, it is significantly improved after the ESR process. This is attributed to the more uniform distribution and smaller size of TiC particles, the increase of value of {chi} in TiC{chi} and the elimination of the porosity in TiC particle-reinforced 2Cr13 stainless steel after the ESR process. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Tensile properties and microstructure of direct metal laser-sintered TI6AL4V (ELI alloy

    Directory of Open Access Journals (Sweden)

    Moletsane, M. G.

    2016-11-01

    Full Text Available Direct metal laser sintering (DMLS is an additive manufacturing technology used to melt metal powder by high laser power to produce customised parts, light-weight structures, or other complex objects. During DMLS, powder is melted and solidified track-by-track and layer-by-layer; thus, building direction can influence the mechanical properties of DMLS parts. The mechanical properties and microstructure of material produced by DMLS can depend on the powder properties, process parameters, scanning strategy, and building geometry. In this study, the microstructure, tensile properties, and porosity of DMLS Ti6Al4V (ELI horizontal samples were analysed. Defect analysis by CT scans in pre-strained samples was used to detect the crack formation mechanism during tensile testing of as-built and heat-treated samples. The mechanical properties of the samples before and after stress relieving are discussed.

  11. Stabilization/solidification of a porous waste by an hydraulic binder. Effects of grain size on the quality of the solidified product. Industrial test; Stabilisation/solidification d`un dechet poreux par un liant hydraulique influence de la granulometrie sur la qualite du produit solidifie, test industriel

    Energy Technology Data Exchange (ETDEWEB)

    Eyraud, P.; Teniere, C. [Groupement de Recherches de Lacq, 64 (France)

    1997-12-31

    The solidification of a porous and highly reactive waste (a catalyst that has been used for sulfuric acid) by the mean of a hydraulic binder, has been studied. Three different grain size distributions have been tested in order to determine if grinding is required before stabilization/solidification. The solidified waste is then evaluated through the SRETIE protocol. Site tests allowed for the optimization of an industrial scale implementation

  12. Microstructural Characterization of Melt Extracted High-Nb-Containing TiAl-Based Fiber

    Directory of Open Access Journals (Sweden)

    Shuzhi Zhang

    2017-02-01

    Full Text Available The microstructure of melt extracted Ti-44Al-8Nb-0.2W-0.2B-1.5Si fiber were investigated. When the rotation speed increased from 2000 to 2600 r/min, the appearance of the wire was uniform with no Rayleigh-wave default. The structure was mainly composed of fine α2 (α phase dendritic crystal and a second phase between dendrite arms and grain boundaries. The precipitated second phases were confirmed to be Ti5Si3 from the eutectic reaction L→Ti5Si3 + α and TiB. As the lower content of Si and higher cooling rate, a divorced eutectic microstructure was obtained. Segregation of Ti, Nb, B, Si, and Al occurred during rapid solidification.

  13. Search for muon electron conversion. mu. +Ti -> e+Ti

    Energy Technology Data Exchange (ETDEWEB)

    Bryman, D.A.; Leitch, M.J.; Navon, I.; Numao, T.; Schlatter, P.; Dixit, M.S.; Hargrove, C.K.; Mes, H.; Burnham, R.A.; Hasinoff, M.

    1985-02-25

    A progress report on a search for the lepton flavor violating reaction ..mu..+Ti->e+Ti is presented. No evidence for this process has yet been found leading to an upper limit < 2 x 10/sup 11/ (90% confidence level) relative to ordinary muon capture. (orig.).

  14. Microstructure and mechanical properties of sintered Ti Binary alloys for dental applications

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz Atay, H.; Haro Rodriguez, M.; Amigo Mata, A.; Vicente Escuder, V.; Amigo Borras, V.

    2016-07-01

    Biomaterials have shown rapid growth in the field of elderly population demands with the prolongation of human life. One of those biomaterials, titanium, has excellent properties and biocompatibility though it may cause weakening in the structures due to its higher stiffness. In this study, powder metallurgy process was used to produce Ti-Cr, Ti-Mo and Ti-Cu metal alloys to overcome this problem. Metal powders were mixed by mechanical alloying. After pressing and sintering, alloys structures were investigated. Characterizations were carried out by size analyzer, SEM-EDX, optical microscope and three points bending test. (Author)

  15. Effect of fatty acids complexed with polyethyleneimine on the flow curves of TiO2 nanoparticle/toluene suspensions

    Directory of Open Access Journals (Sweden)

    Motoyuki Iijima

    2016-09-01

    Full Text Available A series of polyethyleneimine (PEI–fatty acid complexes using oleic acid (OA, isostearic acid (ISA, and stearic acid (SA were prepared through a simple process. While PEI was not soluble in toluene, the complex with OA and ISA became soluble when its additive content was greater than 5 mol% based on the ethyleneimine (EI unit of PEI. PEI–SA had similar solubility in toluene when more than 5 mol% of SA was added; however, the complex precipitated when the additive ratio of SA was increased to 40 mol%. The effect of fatty acid of PEI complexes on their TiO2 nanoparticle adsorption properties and the flow curves of TiO2 nanoparticle/toluene suspension was then studied using PEI complexed with 30 mol% of fatty acids. Surprisingly, while PEI–OA and PEI–ISA complexes effectively adsorbed on TiO2 nanoparticles until saturation, the amount of adsorbed PEI–SA increased continuously. Comparing the flow curves of TiO2/toluene suspensions under 1.4 mg/m2 addition of PEI–fatty acid complexes, where PEI–OA and PEI–ISA were under saturated adsorption, it was confirmed that PEI–OA effectively stabilizes TiO2 nanoparticles in toluene without imparting thixotropic properties up to 30 vol%, while the suspensions with PEI–SA and PEI–ISA were solidified at lower volume contents and had high thixotropic properties.

  16. Microwave-induced crystallization of AC/TiO{sub 2} for improving the performance of rhodamine B dye degradation

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Fei [School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003 (China); Wu, Zhansheng, E-mail: wuzhans@126.com [School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003 (China); Chen, Qiuyu; Yan, Yujun [School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003 (China); Cravotto, Giancarlo; Wu, Zhilin [Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Torino 10125 (Italy)

    2015-10-01

    Graphical abstract: - Highlights: • Mixed phase titania coated with AC was obtained by microwave irradiation method. • The TiO{sub 2} nanoparticles were spherical and well distributed on the surface of AC. • The light absorption edges of AC/TiO{sub 2} showed red-shift compared to the pure TiO{sub 2}. • Higher surface and TiO{sub 2} content of AC/TiO{sub 2} could improve photocatalytic efficiency. - Abstract: Titanium dioxide (TiO{sub 2}) deposition on activated carbon (AC) is widely used for pollutant photodegradation. In this study, a simple and efficient method for preparing AC/TiO{sub 2} composites under microwave irradiation was developed for photocatalytic degradation of rhodamine B (RhB) under UV light. Results of X-ray diffraction, scanning electron microscopy, and transmission electron microscopy revealed that TiO{sub 2} nanoparticles are anatase and rutile, with a spherical shape and a particle size of 20–50 nm and are well distributed on the AC surface. The UV–vis spectrum of TiO{sub 2} coated on AC showed an evident red-shift and exhibited stronger optical absorption capacity than pure TiO{sub 2}. The AC/TiO{sub 2} nanoparticles prepared at a microwave power of 700 W for 15 min exhibited 98% efficiency in removing RhB dye under UV irradiation for 30 min. The high photocatalytic activity of AC/TiO{sub 2}-700 W could be mainly attributed to the high sorption capacity of the mesoporous carbon material and high TiO{sub 2} content, which could produce higher quantity of ·OH. This study provides a rapid synthesis technique to prepare AC/TiO{sub 2} and a novel method to improve photocatalytic efficiency via synergistic effect for other catalytic systems.

  17. Rapid solidification of an Al-5Ni alloy processed by spray forming

    Directory of Open Access Journals (Sweden)

    Conrado Ramos Moreira Afonso

    2012-10-01

    Full Text Available Recently, intermetallic compounds have attracted much attention due to their potential technological applications as high-temperature materials. In particular the intermetallic compounds, associated with the Al-Ni binary system stand out as promising candidates for high-temperature materials for the use in harsh environments. It is expected that a bulk Al-Ni alloy may exceed the strength of many commercial materials. The great challenge in developing these alloys is to manipulate the solidification thermal parameters in order to obtain the desired microstructural features. One of the indicated routes to obtain very refined intermetallic phases dispersed in the microstructure is the spray forming process. The dendritic and eutectic growth dependences on cooling rate are already known for directionally solidified (DS hypoeutectic Al-Ni alloys. In the case of rapidly solidified (RS samples, extrapolations of such experimental laws are needed, which can be very helpful to estimate realistic values of high cooling rates imposed during the spray forming process. The present study aims to compare directionally solidified and spray-formed Al-5wt. (%Ni alloy samples with a view to providing a basis for understanding how to control solidification parameters and the as-cast microstructure. The Al-5.0wt. (%Ni alloy was shown to have a cellular morphology for the overspray powder size range examined (up to 500 µm. The mean cell spacing decreased from 5.0 to 1.1 µm with the decrease in the powder average diameter. It was found that the experimental cooling rates imposed during the atomization step of the overspray powder solidification varied from 10³ to 2.10(4 K/s. The DSC trace depicted a crystallization peak of an amorphous structure fraction in the smallest Al-5.0wt. (%Ni alloy powder size range (<32 µm estimating a 15 µm critical diameter of amorphous powder in the binary Al97.5Ni2.5 (at% alloy.

  18. Interconnection between microstructure and microhardness of directionally solidified binary Al-6wt.%Cu and multicomponent Al-6wt.%Cu-8wt.%Si alloys.

    Science.gov (United States)

    Vasconcelos, Angela J; Kikuchi, Rafael H; Barros, André S; Costa, Thiago A; Dias, Marcelino; Moreira, Antonio L; Silva, Adrina P; Rocha, Otávio L

    2016-05-31

    An experimental study has been carried out to evaluate the microstructural and microhardness evolution on the directionally solidified binary Al-Cu and multicomponent Al-Cu-Si alloys and the influence of Si alloying. For this purpose specimens of Al-6wt.%Cu and Al-6wt.%Cu-8wt.%Si alloys were prepared and directionally solidified under transient conditions of heat extraction. A water-cooled horizontal directional solidification device was applied. A comprehensive characterization is performed including experimental dendrite tip growth rates (VL) and cooling rates (TR) by measuring Vickers microhardness (HV), optical microscopy and scanning electron microscopy with microanalysis performed by energy dispersive spectrometry (SEM-EDS). The results show, for both studied alloys, the increasing of TR and VL reduced the primary dendrite arm spacing (l1) increasing the microhardness. Furthermore, the incorporation of Si in Al-6wt.%Cu alloy to form the Al-6wt.%Cu-8wt.%Si alloy influenced significantly the microstructure and consequently the microhardness but did not affect the primary dendritic growth law. An analysis on the formation of the columnar to equiaxed transition (CET) is also performed and the results show that the occurrence of CET is not sharp, i.e., the CET in both cases occurs in a zone rather than in a parallel plane to the chill wall, where both columnar and equiaxed grains are be able to exist.

  19. Release of radionuclides and chelating agents from cement-solidified decontamination low-level radioactive waste collected from the Peach Bottom Atomic Power Station Unit 3

    Energy Technology Data Exchange (ETDEWEB)

    Akers, D.W.; Kraft, N.C.; Mandler, J.W. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1994-03-01

    As part of a study being performed for the Nuclear Regulatory Commission (NRC), small-scale waste-form specimens were collected during a low oxidation-state transition-metal ion (LOMI)-nitric permanganate (NP)-LOMI solidification performed in October 1989 at the Peach Bottom Atomic Power Station Unit 3. The purpose of this program was to evaluate the performance of cement-solidified decontamination waste to meet the low-level waste stability requirements defined in the NRC`s ``Technical Position on Waste Form,`` Revision 1. The samples were acquired and tested because little data have been obtained on the physical stability of actual cement-solidified decontamination ion-exchange resin waste forms and on the leachability of radionuclides and chelating agents from those waste forms. The Peach Bottom waste-form specimens were subjected to compressive strength, immersion, and leach testing in accordance with the NRC`s ``Technical Position on Waste Form,`` Revision 1. Results of this study indicate that the specimens withstood the compression tests (>500 psi) before and after immersion testing and leaching, and that the leachability indexes for all radionuclides, including {sup 14}C, {sup 99}{Tc}, and {sup 129}I, are well above the leachability index requirement of 6.0, required by the NRC`s ``Technical Position on Waste Form,`` Revision 1.

  20. Compression and immersion tests and leaching of radionuclides, stable metals, and chelating agents from cement-solidified decontamination waste collected from nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Akers, D.W.; Kraft, N.C.; Mandler, J.W. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1994-06-01

    A study was performed for the Nuclear Regulatory Commission (NRC) to evaluate structural stability and leachability of radionuclides, stable metals, and chelating agents from cement-solidified decontamination ion-exchange resin wastes collected from seven commercial boiling water reactors and one pressurized water reactor. The decontamination methods used at the reactors were the Can-Decon, AP/Citrox, Dow NS-1, and LOMI processes. Samples of untreated resin waste and solidified waste forms were subjected to immersion and compressive strength testing. Some waste-form samples were leach-tested using simulated groundwaters and simulated seawater for comparison with the deionized water tests that are normally performed to assess waste-form leachability. This report presents the results of these tests and assesses the effects of the various decontamination methods, waste form formulations, leachant chemical compositions, and pH of the leachant on the structural stability and leachability of the waste forms. Results indicate that releases from intact and degraded waste forms are similar and that the behavior of some radionuclides such as {sup 55}Fe, {sup 60}Co, and {sup 99}Tc were similar. In addition, the leachability indexes are greater than 6.0, which meets the requirement in the NRC`s ``Technical Position on Waste Form,`` Revision 1.

  1. Reactions of hydrogen with V-Cr-Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    DiStefano, J.R.; DeVan, J.H.; Chitwood, L.D. [Oak Ridge National Lab., TN (United States); Roehrig, D.H. [Forschungszentrum Karlsruhe (Germany). Projekleitung Kernfusion

    1998-09-01

    In the absence of increases in oxygen concentration, additions of up to 400 ppm hydrogen to V-4 Cr-4 Ti did not result in significant embrittlement as determined by room temperature tensile tests. However, when hydrogen approached 700 ppm after exposure at 325 C, rapid embrittlement occurred. In this latter case, hydride formation is the presumed embrittlement cause. When oxygen was added during or prior to hydrogen exposure, synergistic effects led to significant embrittlement by 100 ppm hydrogen.

  2. Dye-sensitized solar cells based on thick highly ordered TiO(2) nanotubes produced by controlled anodic oxidation in non-aqueous electrolytic media.

    Science.gov (United States)

    Stergiopoulos, T; Ghicov, A; Likodimos, V; Tsoukleris, D S; Kunze, J; Schmuki, P; Falaras, P

    2008-06-11

    Dye-sensitized solar cells (DSSCs) were prepared using TiO(2) nanotubes, grown by controlled Ti anodic oxidation in non-aqueous media. Smooth, vertically oriented TiO(2) nanotube arrays, presenting a high degree of self-organization and a length of 20 µm, have been grown using ethylene glycol electrolyte containing HF. As-grown nanotubes exhibit an amorphous structure, which transforms to the anatase TiO(2) crystalline phase upon post-annealing in air at 450 °C. Atomic force microscopy (AFM) revealed the porous morphology together with high roughness and fractality of the surface. The annealed tubes were sensitized by the standard N719 ruthenium dye and the adsorption was characterized using resonance micro-Raman spectroscopy and adsorption-desorption measurements. The sensitized tubes were further used as active photoelectrodes after incorporation in sandwich-type DSSCs using both liquid and solidified electrolytes. The efficiencies obtained under air mass (AM) 1.5 conditions, using a back-side illumination geometry, were very promising: 0.85% using a composite polymer redox electrolyte, while the efficiency was further increased up to 1.65% using a liquid electrolyte.

  3. Enhanced photocatalytic degradation of methylene blue on carbon nanotube-TiO{sub 2}-Pd composites

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Hye; Choi, Hyun Chul [Dept. of Chemistry, Chonnam National University, Gwangju (Korea, Republic of)

    2016-11-15

    Semiconductor-based photocatalysis is recognized as a promising technique for addressing energy and environmental issues. Among various semiconductors, the use of titanium dioxide (TiO-2) as a photocatalyst in solar energy conversion and pollutant degradation has been widely investigated because of its high efficiency, photostability, and low toxicity. However, its practical application is restricted by the intrinsic wide band gap of TiO-2 and the rapid recombination of photogenerated electron–hole pairs. Therefore, several remedial methods have been proposed, such as the doping of TiO{sub 2} with metallic or non-metallic elements, increasing its surface area, sensitization with dyes, and the generation of defect structures. We have successfully prepared CNT–TiO{sub 2}–Pd composites with a simple two-step sol–gel method. We characterized the composites with TEM and XRD, and demonstrated that anatase TiO{sub 2} and metallic Pd nanoparticles were deposited onto the surfaces of the CNTs. The average particle size of these nanoparticles was approximately 3.4 nm. The prepared catalyst was found to exhibit a higher activity in MB photodegradation than the reference systems. The synergy of the combination of CNTs and Pd nanoparticles with TiO{sub 2} provides superior MB degradation. More comprehensive studies of the mechanism for this synergy between the metal nanoparticles and TiO{sub 2} that enhances the photocatalytic activity of CNT–TiO{sub 2} are underway in our laboratory.

  4. Fabrication of TiCx-TiB₂/Al Composites for Application as a Heat Sink.

    Science.gov (United States)

    Shu, Shili; Yang, Hongyu; Tong, Cunzhu; Qiu, Feng

    2016-07-29

    Metal matrix composites reinforced with ceramic particles have become the most attractive material in the research and development of new materials for thermal management applications. In this work, 40-60 vol. % TiCx-TiB₂/Al composites were successfully fabricated by the method of combustion synthesis and hot press consolidation in an Al-Ti-B₄C system. The effect of the TiCx-TiB₂ content on the microstructure and compression properties of the composites was investigated. Moreover, the abrasive wear behavior and thermo-physics properties of the TiCx-TiB₂/Al composite were studied and compared with the TiCx/Al composite. The compression properties, abrasive wear behavior and thermo-physics properties of the TiCx-TiB₂/Al composite are all better than those of the TiCx/Al composite, which confirms that the TiCx-TiB₂/Al composite is more appropriate for application as a heat sink.

  5. Comparison of mechanical behavior of TiN, TiNC, CrN/TiNC, TiN/TiNC films on 9Cr18 steel by PVD

    Science.gov (United States)

    Feng, Xingguo; Zhang, Yanshuai; Hu, Hanjun; Zheng, Yugang; Zhang, Kaifeng; Zhou, Hui

    2017-11-01

    TiN, TiNC, CrN/TiNC and TiN/TiNC films were deposited on 9Cr18 steel using magnetron sputtering technique. The morphology, composition, chemical state and crystalline structure of the films were observed and analyzed by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Hardness and adhesion force were tested by nanoindentation and scratch tester, respectively. The friction and wear behavior of TiN, TiNC, CrN/TiNC and TiN/TiNC films sliding against GCr15 balls were investigated and compared synthetically using ball-on-disk tribometer. It was found that Tisbnd N, Tisbnd C, Tisbnd Nsbnd C and Csbnd C bonds were formed. The TiN/TiNC film was composed of TiN, TiC and TiNC phases. Hardness and adhesion force results indicated that although the TiN film possessed the highest hardness, its adhesion force was lowest among all the films. Tribological test results showed that the friction coefficient of TiN/TiNC was much lower than that of TiN and the wear rate decreases remarkably from 2.3 × 10-15 m3/Nm to 7.1 × 10-16 m3/Nm, which indicated the TiN/TiNC film has better wear resistance.

  6. Nanostructural evolution of one-dimensional BaTiO₃ structures by hydrothermal conversion of vertically aligned TiO₂ nanotubes.

    Science.gov (United States)

    Muñoz-Tabares, J A; Bejtka, K; Lamberti, A; Garino, N; Bianco, S; Quaglio, M; Pirri, C F; Chiodoni, A

    2016-03-28

    The use of TiO2 nanotube (NT) arrays as templates for hydrothermal conversion of one-dimensional barium titanate (BaTiO3) structures is considered a promising synthesis approach, even though the formation mechanisms are not yet fully understood. Herein we report a nanostructural study by means of XRD and (HR)TEM of high aspect ratio TiO2-NTs hydrothermally converted into BaTiO3. The nanostructure shows two different and well-defined regions: at the top the conversion involves complete dissolution of NTs and subsequent precipitation of BaTiO3 crystals by homogeneous nucleation, followed by the growth of dendritic structures by aggregation and oriented attachment mechanisms. Instead, at the bottom, the low liquid/solid ratio, due to the limited amount of Ba solution that infiltrates the NTs, leads to the rapid crystallization of such a solution into BaTiO3, thus allowing the NTs to act as a template for the formation of highly oriented one-dimensional nanostructures. The in-depth analysis of the structural transformations that take place during the formation of the rod-like arrays of BaTiO3 could help elucidate the conversion mechanism, thus paving the way for the optimization of the synthesis process in view of new applications in energy harvesting devices, where easy and low temperature processing, controlled composition, morphology and functional properties are required.

  7. Search for. mu. -e conversion in Ti

    Energy Technology Data Exchange (ETDEWEB)

    Bryman, D.A.; Clifford, E.T.H.; Leitch, M.J.; Navon, I.; Numao, T.; Schlatter, P.; Dixit, M.S.; Hargrove, C.K.; Mes, H.; Burnham, R.A.

    1985-07-29

    A search has been performed for the lepton-flavor-nonconserving reaction ..mu../sup -/+Ti..-->..e/sup -/+Ti using a time-projection chamber. No candidate events were observed, resulting in a limit of GAMMA(..mu../sup -/+Ti..-->..e/sup -/+Ti) / GAMMA(..mu../sup -/+Ti..-->..capture) <1.6 x 10/sup -11/ (90% C.L.) for this reaction relative to ordinary muon capture.

  8. Nanostructural evolution of one-dimensional BaTiO3 structures by hydrothermal conversion of vertically aligned TiO2 nanotubes

    Science.gov (United States)

    Muñoz-Tabares, J. A.; Bejtka, K.; Lamberti, A.; Garino, N.; Bianco, S.; Quaglio, M.; Pirri, C. F.; Chiodoni, A.

    2016-03-01

    The use of TiO2 nanotube (NT) arrays as templates for hydrothermal conversion of one-dimensional barium titanate (BaTiO3) structures is considered a promising synthesis approach, even though the formation mechanisms are not yet fully understood. Herein we report a nanostructural study by means of XRD and (HR)TEM of high aspect ratio TiO2-NTs hydrothermally converted into BaTiO3. The nanostructure shows two different and well-defined regions: at the top the conversion involves complete dissolution of NTs and subsequent precipitation of BaTiO3 crystals by homogeneous nucleation, followed by the growth of dendritic structures by aggregation and oriented attachment mechanisms. Instead, at the bottom, the low liquid/solid ratio, due to the limited amount of Ba solution that infiltrates the NTs, leads to the rapid crystallization of such a solution into BaTiO3, thus allowing the NTs to act as a template for the formation of highly oriented one-dimensional nanostructures. The in-depth analysis of the structural transformations that take place during the formation of the rod-like arrays of BaTiO3 could help elucidate the conversion mechanism, thus paving the way for the optimization of the synthesis process in view of new applications in energy harvesting devices, where easy and low temperature processing, controlled composition, morphology and functional properties are required.The use of TiO2 nanotube (NT) arrays as templates for hydrothermal conversion of one-dimensional barium titanate (BaTiO3) structures is considered a promising synthesis approach, even though the formation mechanisms are not yet fully understood. Herein we report a nanostructural study by means of XRD and (HR)TEM of high aspect ratio TiO2-NTs hydrothermally converted into BaTiO3. The nanostructure shows two different and well-defined regions: at the top the conversion involves complete dissolution of NTs and subsequent precipitation of BaTiO3 crystals by homogeneous nucleation, followed by the

  9. Laser weldability of Pt and Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Noolu, N.J. [Center for Advanced Materials Joining, University of Waterloo, Waterloo (Canada)]. E-mail: nnoolu@mecheng1.uwaterloo.ca; Kerr, H.W. [Center for Advanced Materials Joining, University of Waterloo, Waterloo (Canada); Zhou, Y. [Center for Advanced Materials Joining, University of Waterloo, Waterloo (Canada); Xie, J. [Cardiac Rhythm Management Division, Street Jude Medical Inc., Sylmar, CA (United States)

    2005-04-25

    Crack susceptibility of laser spot welds between Pt and Ti alloys was studied by characterizing the surface and the cross-sections of the welds produced at different pulse energies. Increase in laser pulse energy increased the dilution by the Ti alloy, giving rise to the evolution of microstructures with varying Ti contents across the entire fusion zone. Hardness results showed that regions with 66-75% Ti, i.e. consisting of primary Ti{sub 3}Pt and/or Ti{sub 3}Pt + TiPt eutectic, have a hardness higher than 700 Vickers hardness numbers (VHN), while regions with 42-66% Ti, i.e. consisting of primary TiPt, possessed hardness between 400 and 700 VHN. The extent of cracking increased with the increase in pulse energy and the cracked regions consisted of Ti contents between 50 and 75%. Brittle cracking in microstructures consisting of Ti{sub 3}Pt and TiPt phases suggested that one or both of the constituent phases are susceptible to cracking. However, crack arrest in microstructures predominantly consisting of TiPt showed that Ti{sub 3}Pt is the most susceptible phase to cracking in Pt-Ti alloy welds.

  10. [Corrosion resistance of Ti-Cu alloy].

    Science.gov (United States)

    Song, Yu-Xuan; Wang, Shi-Ming

    2010-09-01

    to investigate the corrosion behavior of Ti-Cu alloy in 0.9%NaCl solution and in acidified 0.9%NaCl solution. the microstructure of Ti-Cu alloys were characterized by means of X-ray diffraction (XRD). The electrochemical behavior of Ti-Cu alloy in two solutions (namely 0.9%NaCl solution and acidified 0.9%NaCl solution) was tested. Commercial pure Ti and 316L stainless steel were used as control. Ti-Cu alloys were composed by α-Ti and Ti(2)Cu intermetallic compound. After 3500 s immersion, the open circuit potential (OCP) values of pure Ti, Ti-5Cu alloy and Ti-10Cu alloy in 0.9% NaCl solution were -188, -181 and -173 mV, respectively. In 0.9% NaCl solution with lactic acid added, the OCP values were -143, -158 and -109 mV, respectively. In potentiodynamic polarization tests, the passive current densities of pure Ti and Ti-5Cu alloys were about 20 µA/cm(2). However, 316L stainless steel experienced pitting corrosion. it was possible to establish the following relation for their corrosion resistances: pure Ti≈Ti-5Cu > Ti-10Cu > 316L stainless steel. The addition of lactic acid in the solution did not compromise the corrosion resistance of Ti-Cu alloys.

  11. Complexes with Tunable Intramolecular Ferrocene to Ti(IV) Electronic Transitions: Models for Solid State Fe(II) to Ti(IV) Charge Transfer.

    Science.gov (United States)

    Turlington, Michael D; Pienkos, Jared A; Carlton, Elizabeth S; Wroblewski, Karlee N; Myers, Alexis R; Trindle, Carl O; Altun, Zikri; Rack, Jeffrey J; Wagenknecht, Paul S

    2016-03-07

    Iron(II)-to-titanium(IV) metal-to-metal-charge transfer (MMCT) is important in the photosensitization of TiO2 by ferrocyanide, charge transfer in solid-state metal-oxide photocatalysts, and has been invoked to explain the blue color of sapphire, blue kyanite, and some lunar material. Herein, a series of complexes with alkynyl linkages between ferrocene (Fc) and Ti(IV) has been prepared and characterized by UV-vis spectroscopy and electrochemistry. Complexes with two ferrocene substituents include Cp2Ti(C2Fc)2, Cp*2Ti(C2Fc)2, and Cp2Ti(C4Fc)2. Complexes with a single ferrocene utilize a titanocene with a trimethylsilyl derivatized Cp ring, (TMS)Cp, and comprise the complexes (TMS)Cp2Ti(C2Fc)(C2R), where R = C6H5, p-C6H4CF3, and CF3. The complexes are compared to Cp2Ti(C2Ph)2, which lacks the second metal. Cyclic voltammetry for all complexes reveals a reversible Ti(IV/III) reduction wave and an Fe(II/III) oxidation that is irreversible for all complexes except (TMS)Cp2Ti(C2Fc)(C2CF3). All of the complexes with both Fc and Ti show an intense absorption (4000 M(-1)cm(-1) ferrocene donor. The energy of the absorption tracks with the difference between the Ti(IV/III) and Fe(III/II) reduction potentials, shifting to lower energy as the difference in potentials decreases. Reorganization energies, λ, have been determined using band shape analysis (2600 cm(-1) ferrocene donor. Marcus-Hush-type analysis of the electrochemical and spectroscopic data are consistent with the assignment of the low-energy absorption as a MMCT band. TD-DFT analysis also supports this assignment. Solvatochromism is apparent for the MMCT band of all complexes, there being a bathochromic shift upon increasing polarizability of the solvent. The magnitude of the shift is dependent on both the electron density at Ti(IV) and the identity of the linker between the titanocene and the Fc. Complexes with a MMCT are photochemically stable, whereas Cp2Ti(C2Ph)2 rapidly decomposes upon photolysis.

  12. Dynamics of fibronectin adsorption on TiO2 surfaces.

    Science.gov (United States)

    Sousa, S R; Brás, M Manuela; Moradas-Ferreira, P; Barbosa, M A

    2007-06-19

    In the present work we analyze the dynamics of fibronectin (FN) adsorption on two different stable titanium oxides, with varied surface roughness, and chemically similar to those used in clinical practice. The two types of titanium oxide surfaces used were TiO2 sputtered on Si (TiO2 sp) and TiO2 formed on commercially pure titanium after immersion in H2O2 (TiO2 cp). Surface characterization was previously carried out using different techniques (Sousa, S. R.; Moradas-Ferreira, P.; Melo, L. V.; Saramago, B.; Barbosa, M. A. Langmuir 2004, 20 (22), 9745-9754). Imaging and roughness analysis before and after FN adsorption used atomic force microscopy (AFM) in tapping mode, in air, and in magnetic alternating current mode, in liquid (water). FN adsorption as a function of time was followed by X-ray photoelectron spectroscopy (XPS), by radiolabeling of FN with 125I (125I-FN), and by ellipsometry. Exchangeability studies were performed using FN and HSA. AFM roughness analysis revealed that, before FN adsorption, both TiO2 surfaces exhibited a lower root-mean-square (Rq) and maximum peak with the depth of the maximum valley (Rmax) roughness in air than in water, due to TiO2 hydration. After protein adsorption, the same behavior was observed for the TiO2 sp substrate, while Rq and Rmax roughness values in air and in water were similar in the case of the TiO2 cp substrate, for the higher FN concentration used. Surface roughness was always significantly higher on the TiO2 cp surfaces. AFM led to direct visualization of adsorbed FN on both surfaces tested, indicating that after 10 min of FN incubation the TiO2 sp surface was partially covered by FN. The adsorbed protein seems to form globular aggregates or ellipsoids, and FN aggregates coalesce, forming clusters as the time of adsorption and the concentration increase. Radiolabeling of FN revealed that a rapid adsorption occurs on both surfaces and the amount adsorbed increased with time, reaching a maximum after 60 min of

  13. A comparative study on biodegradation and mechanical properties of pressureless infiltrated Ti/Ti6Al4V-Mg composites.

    Science.gov (United States)

    Esen, Ziya; Bütev, Ezgi; Karakaş, M Serdar

    2016-10-01

    The mechanical response and biodegradation behavior of pressureless Mg-infiltrated Ti-Mg and Ti6Al4V-Mg composites were investigated by compression and simulated body fluid immersion tests, respectively. Prior porous preforms were surrounded uniformly with magnesium as a result of infiltration and the resultant composites were free of secondary phases and intermetallics. Although the composites' compressive strengths were superior compared to bone, both displayed elastic moduli similar to that of cortical bone and had higher ductility with respect to their starting porous forms. However, Ti-Mg composites were unable to preserve their mechanical stabilities during in-vitro tests such that they fractured in multiple locations within 15 days of immersion. The pressure generated by H2 due to rapid corrosion of magnesium caused failure of the Ti-Mg composites through sintering necks. On the other hand, the galvanic effect seen in Ti6Al4V-Mg was less severe compared to that of Ti-Mg. The degradation rate of magnesium in Ti6Al4V-Mg was slower, and the composites were observed to be mechanically stable and preserved their integrities over the entire 25-day immersion test. Both composites showed bioinert and biodegradable characteristics during immersion tests and magnesium preferentially corroded leaving porosity behind while Ti/Ti6Al4V remained as a permanent scaffold. The porosity created by degradation of magnesium was refilled by new globular agglomerates. Mg(OH)2 and CaHPO4 phases were encountered during immersion tests while MgCl2 was detected during only the first 5 days. Both composites were classified as bioactive since the precipitation of CaHPO4 phase is known to be precursor of hydroxyapatite formation, an essential requirement for an artificial material to bond to living bone. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Fabrication and Characterization of New Ti-TiO2-Al and Ti-TiO2--Pt Tunnel Diodes

    Directory of Open Access Journals (Sweden)

    Yaksh Rawal

    2012-01-01

    Full Text Available Remotely empowered wireless sensor networks use different energy resources including photovoltaic solar cells, wireless power transmission, and batteries. As another option the electromagnetic energy available in the ambient can be harvested to power these remote sensors. This is particularly valuable if it is desirable to harvest the ambient energy available in the wide range of electromagnetic spectrum. This has motivated the research for developing energy harvesting devices which can absorb this energy and produce a DC voltage. Rectenna, an antenna coupled with a rectifier, is the main component used for absorbing electromagnetic radiation at GHz and THz frequencies. Rectifying MIM tunnel diodes are able to operate at tens and hundreds of GHz frequency. As the preliminary steps towards development of high-frequency rectifiers, this paper presents fabrication and DC characterization of two new MIM diodes, Ti-TiO2-Al and Ti-TiO2-Pt. G-V analysis of the fabricated diodes verifies tunneling. Brinkman-Dynes-Rowell model is used to extract oxide thickness of which the derived value is around 9 nm. Ti-TiO2-Pt diode exhibits rectification ratio of 15 at 0.495 V, which is more than rectification ratio reported in earlier works.

  15. Effect of Growth Rate on Elevated Temperature Plastic Flow and Room Temperature Fracture Toughness of Directionally Solidified NiAl-31Cr-3Mo

    Science.gov (United States)

    Whittenberger, J. Daniel; Raj, S. V.; Locci, I. E.; Salem, J. A.

    1999-01-01

    The eutectic system Ni-33Al-31Cr-3Mo was directionally solidified at rates ranging from 7.6 to 508 mm/h. Samples were examined for microstructure and alloy chemistry, compression tested at 1200 and 1300 K, and subjected to room temperature fracture toughness measurements. Lamellar eutectic grains were formed at 12.7 mm/h; however cellular structures with a radial eutectic pattern developed at faster growth rates. Elevated temperature compression testing between 10(exp -4) to 10(exp -7)/s did not reveal an optimum growth condition, nor did any single growth condition result in a significant fracture toughness advantage. The mechanical behavior, taken together, suggests that Ni-33Al-31Cr-3Mo grown at rates from 25.4 to 254 mm/h will have nominally equivalent properties.

  16. Solidified Floating Organic Drop Microextraction for the Detection of Trace Amount of Lead in Various Samples by Electrothermal Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    Oya Aydın Urucu

    2017-01-01

    Full Text Available A novel method was developed for determination of trace amounts of lead in water and food samples. Solidified floating organic drop microextraction was used to preconcentrate the lead ion. After the analyte was complexed with 1-(2-pyridylazo-2-naphthol, undecanol and acetonitrile were added as extraction and dispersive solvent, respectively. Variables such as pH, volumes of extraction and dispersive solvents, and concentration of chelating agent were optimized. Under the optimum conditions, the detection limit of Pb (II was determined as 0.042 µg L−1 with an enrichment factor of 300. The relative standard deviation is <10%. Accuracy of the developed procedure was evaluated by the analysis of certified reference material of human hair (NCS DC 73347 and wastewater (SPS-WW2 with satisfactory results. The developed procedure was then successfully applied to biscuit and water samples for detection of Pb (II ions.

  17. Development of a Fluid-Particle Model in Simulating the Motion of External Solidified Crystals and the Evolution of Defect Bands in High-Pressure Die Casting

    Science.gov (United States)

    Bi, Cheng; Xiong, Shoumei; Li, Xiaobo; Guo, Zhipeng

    2016-04-01

    A numerical fluid-particle model was developed to simulate the motion of external solidified crystals (ESCs) in the melt during the filling process of high-pressure die casting (HPDC). Simulation results on a tensile bar casting with two types of ingates (semi-circle and circle) revealed that for a long time scale the ESCs tended to distribute in a ring pattern around the specimen center, whereas for a short time scale the ESC distribution changed constantly from the ring pattern to either the center pattern or the ring-center pattern. It was proposed that the defect bands would form at these areas where two solidification fronts met (where solidification shrinkage occurred), including one originating from the skin layer of the specimen and the other from the ESC region. Accordingly, three types of defect band patterns, which were commonly observed in HPDC experiment, could be successfully simulated and explained using this model.

  18. Experimental investigation of influence of acid rain on leaching and hydraulic characteristics of cement-based solidified/stabilized lead contaminated clay.

    Science.gov (United States)

    Du, Yan-Jun; Jiang, Ning-Jun; Shen, Shui-Long; Jin, Fei

    2012-07-30

    Remediation of contaminated lands in China urban areas is of great concern. Degradation of construction facilities caused by acid rain is a serious environmental pollution issue in China. This paper presents an investigation of the effects of acid rain on leaching and hydraulic properties of cement-based solidified/stabilized lead contaminated soil. Laboratory tests including infiltration test and soaking test are conducted. It is found that the soil hydraulic conductivity decreases with increase in the pore volume of flow of permeant liquids (acid rain and distilled water). The decreasing rate in the case of the acid rain is lower than that in the case of the distilled water. The soaking test results show that pH and the presence of sulfate ions of acid rain have considerable influence on the leached concentrations and leaching rate of calcium. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Microstructural Characterization of a Directionally-Solidified Ni-33 (at. %)Al-31Cr-3Mo Eutectic Alloy as a Function of Withdrawal Rate

    Science.gov (United States)

    Raj, S. V.; Locci, I. E.; Whittenberger, J. D.; Salem, J. A.

    2000-01-01

    The Ni-33 (at. %)Al-3lCr-3Mo eutectic alloy was directionally-solidified (DS) at different rates, V(sub I), varying between 2.5 to 508 mm/ h. Detailed qualitative and quantitative metallographic and chemical analyses were conducted on the directionally-solidified rods. The microstructures consisted of eutectic colonies with parallel lamellar NiAl/(Cr,Mo) plates for solidification rates at and below 12.7 mm/ h. Cellular eutectic microstructures were observed at higher solidification rates, where the plates exhibited a radial pattern. The microstructures were demonstrated to be fairly uniform throughout a 100 mm length of the DS zone by quantitative metallography. The average cell size, bar-d, decreased with increasing growth rate to a value of 125 microns at 508 mm/ h according to the relation bar-d (microns) approx. = 465 V(sup -0.22, sub I), where V(sub I) is in mm/ h. Both the average NiAl plate thickness, bar-Delta(sub NiAl), and the interlamellar spacing, bar-lambda, were observed to be constant for V(sub I) less than or = 50.8 mm/ h but decreased with increasing growth rate above this value as 0.93 bar-Delta(sub NiAl)(microns) = 61.2 V(sup -0.93, sub I) and bar-lambda (microns) = 47.7 V(sup -0.64, sub I), respectively. The present results are detailed on a microstructural map. Keywords Optical microscopy, microstructure, compounds intermetallic, directional solidification

  20. Simultaneously fabrication of free and solidified N, S-doped graphene quantum dots via a facile solvent-free synthesis route for fluorescent detection.

    Science.gov (United States)

    Xia, Chang; Hai, Xin; Chen, Xu-Wei; Wang, Jian-Hua

    2017-06-01

    A facile one-step solvent-free synthesis approach is proposed for the simultaneous fabrication of free and solidified N, S-doped graphene quantum dots (N, S-GQDs) by using citric acid as precursor and L-cysteine as dopant. Graphene nucleus is firstly formed via the intermolecular dehydration of citric acid. N and S are then incorporated into the graphene structure by attacking the margin of graphene nucleus. The cross-linking among the graphene nucleus via the intermolecular condensation leads to the generation of free N, S-GQDs, while the intermolecular amidation between L-cysteine molecules and graphene nucleuses contributes to the solid-state fluorescence graphene quantum dots (SSF-GQDs). The free N, S-GQDs exhibit favorable photoluminescence behaviors such as high fluorescent quantum yield of 74.5%, stable photoluminescence within a wide range of pH and high tolerance to external ionic strength of up to 1.0molL-1 NaCl, making it excellent fluorescence probe for the sensitive detection of Fe3+ with a linear range of 0.01-3μM and a detection limit of 3.3nM. The solidification of GQDs prevents the aggregation of GQDs efficiently and offers the solidified N, S-GQDs yellow-green fluorescence, with a fluorescence quantum yield of 10.6%. This proposed protocol provides a novel avenue to fabricate diverse fluorescent graphene materials for different practical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Improvement of charge separation in TiO{sub 2} by its modification with different tungsten compounds

    Energy Technology Data Exchange (ETDEWEB)

    Tryba, B., E-mail: beata.tryba@zut.edu.pl; Tygielska, M.; Grzeskowiak, M.; Przepiorski, J.

    2016-04-15

    Highlights: • Ammonium m-tungstate doped to TiO{sub 2} highly improved charge separation in TiO{sub 2}. • Negative electrokinetic potential of TiO{sub 2} facilitates holes migration to its surface. • Fast migration of holes to TiO{sub 2} surfaces increased yield of OH radicals formation. • Adsorption of dyes on photocatalyst increased its decomposition under visible light. - Abstract: Three different tungsten precursors were used for TiO{sub 2} modification: H{sub 2}WO{sub 4}, WO{sub 2}, and ammonium m-tungstate. It was proved that modification of TiO{sub 2} with tungsten compounds enhanced its photocatalytic activity through the improvement of charge separation. This effect was obtained by coating of TiO{sub 2} particles with tungsten compound, which changed their surficial electrokinetical potential from positive onto negative. The most efficient tungsten compound, which caused enhanced separation of free carriers was ammonium m-tungstate (AMT). Two dyes with different ionic potential were used for the photocatalytic decomposition. It appeared that cationic dye—Methylene Blue was highly adsorbed on the negatively charged surface of TiO{sub 2} modified by AMT and decomposed, however this photocatalyst was quickly deactivated whereas anionic dye—acid red was better adsorbed on the less acidic surface of TiO{sub 2} and was rapidly decomposed with almost the same rate in the five following cycles.

  2. Synthesis of magnetic graphene oxide–TiO{sub 2} and their antibacterial properties under solar irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ying-Na [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Ou, Xiao-Ming [China National Engineering Research Center for Agrochemicals, Hunan Research Institute of Chemical Industry, Changsha 410014 (China); Zeng, Guang-Ming [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Gong, Ji-Lai, E-mail: jilaigong@gmail.com [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Deng, Can-Hui; Jiang, Yan; Liang, Jie; Yuan, Gang-Qiang; Liu, Hong-Yu; He, Xun [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China)

    2015-07-15

    Highlights: • Magnetic graphene oxide–TiO{sub 2} (MGO–TiO{sub 2}) composites were synthesized. • MGO–TiO{sub 2} had excellent antibacterial activity toward Escherichia coli. • MGO–TiO{sub 2} could effectively and rapidly separate from aqueous solution. • Carbonates and phosphates significantly reduced the bacterial survival rate. - Abstract: Titanium dioxide (TiO{sub 2}) has been intensively researched and increasingly used as antibacterial agent, but it suffers from separation inconvenience. Its effective removal from water after reaction while maintaining its high antibacterial activity becomes necessary. In this work, it was the first time the magnetic graphene oxide–TiO{sub 2} (MGO–TiO{sub 2}) composites were prepared through a simple synthesis method. The results indicated that MGO–TiO{sub 2} exhibited a good antibacterial activity against Escherichia coli. MGO–TiO{sub 2} was found to almost completely inactivate the E. coli within 30 min under solar irradiation. The effect of inorganic ions present in E. coli suspension was also evaluated. Compared with other ions, HCO{sub 3}{sup −} and HPO{sub 4}{sup 2−} had a greater influence on the antibacterial property.

  3. Selective Removal of Perfluorooctanoic Acid Using Molecularly Imprinted Polymer-Modified TiO2 Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Yunbo Wu

    2016-01-01

    Full Text Available Perfluorinated chemicals have attracted worldwide concern owing to their wide occurrence and resistance to most conventional treatment processes. In this work, a novel photocatalyst was fabricated by modifying TiO2 nanotube arrays with molecularly imprinted polymers. The molecularly imprinted polymer-modified TiO2 nanotubes (MIP-TiO2 NTs were characterized and tested for the selective removal of perfluorooctanoic acid (PFOA from water. The amount of PFOA adsorbed by the MIP-TiO2 NTs was as high as 0.8125 μg/cm2. PFOA decomposition and defluorination by the MIP-TiO2 NTs reached 84% and 30.2% after 8 h reaction, respectively. The Freundlich model and pseudo-first-order kinetics were used to describe the observed adsorption and decomposition of PFOA, respectively. Compared with TiO2 NTs and nonmolecularly imprinted polymer-modified TiO2 NTs, the MIP-TiO2 NTs exhibited not only a higher PFOA degradation rate but also enhanced selectivity for target chemicals. The MIP-TiO2 NTs could also selectively and rapidly remove PFOA from secondary effluent, exhibiting a decomposition of 81.1%, almost as high as that observed in pure water. Investigation of the effects of scavengers on the photocatalytic reaction indicated that photogenerated holes were the main oxidant for PFOA decomposition, and the PFOA degradation mechanism and pathway were proposed.

  4. Coagulation characteristics of titanium (Ti) salt coagulant compared with aluminum (Al) and iron (Fe) salts.

    Science.gov (United States)

    Zhao, Y X; Gao, B Y; Shon, H K; Cao, B C; Kim, J-H

    2011-01-30

    In this study, the performance of titanium tetrachloride (TiCl(4)) coagulation and flocculation is compared with commonly used coagulants such as aluminum sulfate (Al(2)(SO(4))(3)), polyaluminum chloride (PACl), iron chloride (FeCl(3)), and polyferric sulfate (PFS) in terms of water quality parameters and floc properties. TiCl(4) flocculation achieved higher removal of UV(254) (98%), dissolved organic carbon (DOC) (84%) and turbidity (93%) than other conventional coagulants. Charge neutralization and physical entrapment of colloids within coagulant precipitates and adsorption, seemed to play a significant role during TiCl(4) flocculation, while the main mechanism for conventional coagulants was bridge-aggregation and adsorption. The aggregated flocs after TiCl(4) flocculation showed the fastest growth rate compared to the other coagulants, with the largest floc size (801 μm) occurring within 8 min. The floc strength factor of PACl, Al(2)(SO(4))(3), PFS, FeCl(3) and TiCl(4) was 34, 30, 29, 26 and 29, respectively, while the floc recovery factor of the TiCl(4) coagulant was the lowest. Based on the results of the above study, it is concluded that the TiCl(4) flocculation can reduce the hydraulic retention time of slow and rapid mixing, however, careful handling of sludge is required due to the low recoverability of the aggregated floc. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Electrophoretic deposition of PEEK-TiO 2 composite coatings on stainless steel

    KAUST Repository

    Seuß, Sigrid

    2012-03-01

    Electrophoretic deposition (EPD) has been successfully used to deposit composite coatings composed of polyetheretherketone (PEEK) and titanium dioxide (TiO 2) nanoparticles on 316L stainless steel substrates. The suspensions of TiO2 nanoparticles and PEEK microparticles for EPD were prepared in ethanol. PEEK-TiO 2 composite coatings were optimized using suspensions containing 6wt% PEEK-TiO 2 in ethanol with a 3:1 ratio of PEEK to TiO 2 in weight and by applying a potential difference of 30 V for 1 minute. A heat-treatment process of the optimized PEEK-TiO 2 composite coatings was erformed at 335°C for 30 minutes with a heating rate of 10°Cmin -1 to densify the deposits. The EPD coatings were microstructurally evaluated by scanning electron microscopy (SEM). It was demonstrated that EPD is a convenient and rapid method to fabricate PEEK/TiO 2 coatings on stainless steel which are interesting for biomedical applications. © (2012) Trans Tech Publications, Switzerland.

  6. Hierarchical structure and photocatalysis performance of the photo-anode TiO2 film

    Science.gov (United States)

    Guli, Mina; Deng, Minghan; Bimenyimana, Theogene; Hu, Zhe

    2017-11-01

    We herein present a useful technique to design photo-anode films by composing P25 nanoparticles (NPs) with TiO2 nanorod or TiO2 nanotube arrays to optimize the photocatalysis property and overall property of dye-sensitized solar cells (DSSCs). After solvothermal and spin-coating process, an interesting hierarchical film containing one-dimensional (1D) TiO2 film and P25 NPs (1D TiO2/P25) was obtained on a fluorine-doped tin oxide substrate. In our study, P25 NPs with high specific surface area can potentially adsorb large numbers of dye molecules when 1D TiO2 arrays provide a straight path for rapid transmission of photo-generated electrons. From the experiment results, the hierarchical photo-anodes indeed exhibit superior properties than that of pristine 1D films. The photoelectric conversion efficiency improves up to 3.96 and 3.69% based on 1D TiO2/P25 DSSCs, which are significantly higher than those of 3.21 and 2.70% of the DSSCs based on 1D TiO2 photoanodes.

  7. The effectiveness of Ti implants as barriers to carbon diffusion in Ti implanted steel under CVD diamond deposition conditions

    Energy Technology Data Exchange (ETDEWEB)

    Weiser, P.S.; Prawer, S. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Hoffman, A. [Technion-Israel Inst. of Tech., Haifa (Israel). Dept. of Chemistry; Evan, P.J. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Paterson, P.J.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    The growth of chemical vapour deposited (CVD) diamond onto iron based substrates complicated by preferential soot formation and carbon diffusion into the substrate [1], leading to poor quality films and poor adhesion. In the initial stages of exposure to a microwave plasma, a layer of graphite is rapidly formed on an untreated Fe based substrate. Once this graphite layer reaches a certain thickness, reasonable quality diamond nucleates and grows upon it. However, the diamond film easily delaminates from the substrate, the weak link being the graphitic layer. Following an initial success in using a TiN barrier layer to inhibit the formation of such a graphitic layer the authors report on attempts to use an implanted Ti layer for the same purpose. This work was prompted by observation that, although the TiN proved to be an extremely effective diffusion barrier, adhesion may be further enhanced by the formation of a TiC interface layer between the diamond film and the Fe substrate. 3 refs., 6 figs.

  8. The properties of transparent TiO2 films for Schottky photodetector

    Directory of Open Access Journals (Sweden)

    Sung-Ho Park

    2017-08-01

    Full Text Available In this data, the properties of transparent TiO2 film for Schottky photodetector are presented for the research article, entitled as “High-performing transparent photodetectors based on Schottky contacts” (Patel et al., 2017 [1]. The transparent photoelectric device was demonstrated by using various Schottky metals, such as Cu, Mo and Ni. This article mainly shows the optical transmittance of the Ni-transparent Schottky photodetector, analyzed by the energy dispersive spectroscopy and interfacial TEM images for transparency to observe the interface between NiO and TiO2 film. The observation and analyses clearly show that no pinhole formation in the TiO2 film by Ni diffusion. The rapid thermal process is an effective way to form the quality TiO2 film formation without degradation, such as pinholes (Qiu et al., 2015 [2]. This thermal process may apply to form functional metal oxide layers for solar cells and photodetectors.

  9. Enhanced photocatalytic and photoelectrochemical activities of reduced TiO 2-x /BiOCl heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Rongrong; Zeng, Xiaoqiao; Ma, Lu; Gao, Shanmin; Wang, Qingyao; Wang, Zeyan; Huang, Baibiao; Dai, Ying; Lu, Jun

    2016-04-01

    A key issue to design highly efficient photoelectrodes for hydrogen production is how to prohibit the rapid carrier recombination. In order to use the visible light and reduce the recombination of electrons and holes, reduced TiO2-x/BiOCl heterojunctions are successfully synthesized and the photoelectrodes are assembled in this work. The effects of various Bi/Ti molar ratios on the structural, morphological, optical, photoelectrochemical and photocatalytic activities of the resultant samples are investigated systematically. The TiO2-x nanoparticles contain Ti3+, Ti2+, and oxygen vacancies (Ov), while the BiOCl nanosheets exposed {001} facet. Ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS) results indicate that the existence of Ti3+, Ti2+ and Ov expand the light-response range. Linear scan voltammetry and electrochemical impedance spectroscopy results indicate that more efficient electron transportation is presented in the heterojunctions with the appropriate Bi/Ti molar ratio. Consequently, the reduced TiO2-x/BiOCl heterojunction with the most appropriate Bi/Ti molar ratio exhibits a high photocurrent density of 0.755 mA cm-2 with photoconversion efficiency up to 0.634%, 10.5 and 22.6 times larger than that of pure TiO2 and BiOCl. Furthermore, this heterojunction exhibit 48.38 and 12.54 times enhancement for the visible-light decomposition of rhodamine B compared with pure TiO2 and BiOCl.

  10. Effect of plasma molybdenized buffer layer on adhesive properties of TiN film coated on Ti6Al4V alloy

    Science.gov (United States)

    Qin, Lin; Yi, Hong; Kong, Fanyou; Ma, Hua; Guo, Lili; Tian, Linhai; Tang, Bin

    2017-05-01

    Effect of molybdenized buffer layer on adhesion strength of TiN film on Ti6Al4V alloy was investigated. The buffer layer composed of a dense molybdenum deposition layer, a rapid drop zone and a slow fall zone was prepared using double glow plasma surface alloying technique. Scratch tests and low energy repeated impact tests were adopted to comparatively evaluate the duplex treated layers and the single TiN samples. The results show that the critical load was increased from 62 N for the single TiN film to over 100 N for the duplex treated layer. The volume of impact pit, formed in impact tests, of the single TiN samples is 9.15 × 106 μm3, and about 1.5 times than that of the duplex treated samples. The Leeb hardness values reveal that about 70% impact energy was transferred to the single TiN samples to generate permanent deformation, while that was only about 47% for the duplex treated samples. The mechanism of improving adhesion strength is attributed to synergistic effect due to an inverted-S shape elastic modulus distribution produced by the molybdenized layer.

  11. Anatase TiO2/cellulose hybrid paper: Synthesis, characterizations, and photocatalytic activity for degradation of indigo carmine dye

    Science.gov (United States)

    Jiao, Yue; Wan, Caichao; Li, Jian

    We report a facile easy method to deposit anatase titania (TiO2) on cellulose paper. The anatase TiO2/cellulose paper (ATCP) was characterized by scanning electron microscopy, transmission electron microscope, energy dispersive X-ray spectrometer, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. This hybrid paper with the anatase TiO2 content of around 13.86wt.% can serve as an eco-friendly flexible photocatalyst, which can rapidly degrade blue indigo carmine dye into a colorless solution within 30min under UV radiation. Moreover, compared to commercially available TiO2 P25 and anatase TiO2 powder, a faster decomposition rate of indigo carmine dye was acquired when using ATCP. These results suggest that this hybrid paper might be useful in the treatment of organic dye wastewater.

  12. Ultra-fast in-situ X-ray studies of evolving columnar dendrites in solidifying steel weld pools

    OpenAIRE

    Mirihanage, W.U.; Di Michiel, M.; Mathiesen, R.H.

    2015-01-01

    High-brilliance polychromatic synchrotron radiation has been used to conduct in-situ studies of the solidification microstructure evolution during simulated welding. The welding simulations were realized by rapidly fusing ~ 5 mm spot in Fe-Cr-Ni steel. During the solid- liquid-solid phase transformations, a section of the weld pool was placed in an incident 50-150 keV polychromatic synchrotron X-ray beam, in a near-horizontal position at a very low inclination angle. Multiple high-resolution ...

  13. Rapid Prototyping Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The ARDEC Rapid Prototyping (RP) Laboratory was established in December 1992 to provide low cost RP capabilities to the ARDEC engineering community. The Stratasys,...

  14. Improved stress corrosion cracking resistance of a novel biodegradable EW62 magnesium alloy by rapid solidification, in simulated electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Hakimi, O.; Aghion, E. [Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Goldman, J., E-mail: jgoldman@mtu.edu [Biomedical Engineering Department, Michigan Technological University, Houghton, MI, 49931 (United States)

    2015-06-01

    The high corrosion rate of magnesium (Mg) and Mg-alloys precludes their widespread acceptance as implantable biomaterials. Here, we investigated the potential for rapid solidification (RS) to increase the stress corrosion cracking (SCC) resistance of a novel Mg alloy, Mg–6%Nd–2%Y–0.5%Zr (EW62), in comparison to its conventionally cast (CC) counterpart. RS ribbons were extrusion consolidated in order to generate bioimplant-relevant geometries for testing and practical use. Microstructural characteristics were examined by SEM. Corrosion rates were calculated based upon hydrogen evolution during immersion testing. The surface layer of the tested alloys was analyzed by X-ray photoelectron spectroscopy (XPS). Stress corrosion resistance was assessed by slow strain rate testing and fractography. The results indicate that the corrosion resistance of the RS alloy is significantly improved relative to the CC alloy due to a supersaturated Nd enrichment that increases the Nd{sub 2}O{sub 3} content in the external oxide layer, as well as a more homogeneous structure and reduced grain size. These improvements contributed to the reduced formation of hydrogen gas and hydrogen embrittlement, which reduced the SCC sensitivity relative to the CC alloy. Therefore, EW62 in the form of a rapidly solidified extruded structure may serve as a biodegradable implant for biomedical applications. - Highlights: • Here we have evaluated the corrosion resistance of a novel Mg alloy (EW62). • Rapid solidification reduces the hydrogen gas evolution and hydrogen embrittlement. • Rapid solidification increases the stress corrosion cracking resistance of EW62. • Improvement is due to enrichment with supersaturated Nd in the external oxide film. • Rapidly solidified and extruded EW62 may serve as a biodegradable medical implant.

  15. Effect of plasma molybdenized buffer layer on adhesive properties of TiN film coated on Ti6Al4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Lin, E-mail: qinlin@tyut.edu.cn; Yi, Hong; Kong, Fanyou; Ma, Hua; Guo, Lili; Tian, Linhai; Tang, Bin

    2017-05-01

    Highlights: • A molybdenized layer was prepared as a buffer layer under TiN film on Ti6Al4V. • The molybdenized layer can enhance adhesion strength of PVD coatings effectively. • The duplex treated samples increase elastic energy ratio in the impact tests. • The enhancement attributes to the hardness improvement and inverted-S shape elastic modulus profile of the modified layer. - Abstract: Effect of molybdenized buffer layer on adhesion strength of TiN film on Ti6Al4V alloy was investigated. The buffer layer composed of a dense molybdenum deposition layer, a rapid drop zone and a slow fall zone was prepared using double glow plasma surface alloying technique. Scratch tests and low energy repeated impact tests were adopted to comparatively evaluate the duplex treated layers and the single TiN samples. The results show that the critical load was increased from 62 N for the single TiN film to over 100 N for the duplex treated layer. The volume of impact pit, formed in impact tests, of the single TiN samples is 9.15 × 10{sup 6} μm{sup 3}, and about 1.5 times than that of the duplex treated samples. The Leeb hardness values reveal that about 70% impact energy was transferred to the single TiN samples to generate permanent deformation, while that was only about 47% for the duplex treated samples. The mechanism of improving adhesion strength is attributed to synergistic effect due to an inverted-S shape elastic modulus distribution produced by the molybdenized layer.

  16. Human serum albumin adsorption on TiO2 from single protein solutions and from plasma.

    Science.gov (United States)

    Sousa, S R; Moradas-Ferreira, P; Saramago, B; Melo, L Viseu; Barbosa, M A

    2004-10-26

    In the present work, the adsorption of human serum albumin (HSA) on commercially pure titanium with a titanium oxide layer formed in a H(2)O(2) solution (TiO(2) cp) and on TiO(2) sputtered on Si (TiO(2) sp) was analyzed. Adsorption isotherms, kinetic studies, and work of adhesion determinations were carried out. HSA exchangeability was also evaluated. Surface characterization was performed by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and wettability studies. The two TiO(2) surfaces have very distinct roughnesses, the TiO(2) sp having a mean R(a) value 14 times smaller than the one of TiO(2) cp. XPS analysis revealed consistent peaks representative of TiO(2) on sputtered samples as well as on Ti cp substrate after 48 h of H(2)O(2) immersion. Nitrogen was observed as soon as protein was present, while sulfur, present in disulfide bonds in HSA, was observed for concentrations of protein higher than 0.30 mg/mL. The work of adhesion was determined from contact angle measurements. As expected from the surface free energy values, the work of adhesion of HSA solution is higher for the TiO(2) cp substrate, the more hydrophilic one, and lower for the TiO(2) sp substrate, the more hydrophobic one. The work of adhesion between plasma and the substrates assumed even higher values for the TiO(2) cp surface, indicating a greater interaction between the surface and the complex protein solutions. Adsorption studies by radiolabeling of albumin ((125)I-HSA) suggest that rapid HSA adsorption takes place on both surfaces, reaching a maximum value after approximately 60 min of incubation. For the higher HSA concentrations in solution, a multilayer coverage was observed on both substrates. After the adsorption step from single HSA solutions, the exchangeability of adsorbed HSA molecules by HSA in solution was evaluated. The HSA molecules adsorbed on TiO(2) sp seem to be more easily exchanged by HSA itself than those adsorbed on TiO(2) cp after 24 h. In

  17. Mild Ti-mediated transformation of t-butyl thio-ethers into thio-acetates.

    Science.gov (United States)

    Pijper, Thomas C; Robertus, Jort; Browne, Wesley R; Feringa, Ben L

    2015-01-07

    We report a straightforward method for the rapid conversion of thio-ethers to thio-acetates using TiCl4, in good to excellent yields. The reaction conditions tolerate a variety of functional groups, including halide, nitro, ether, thiophene and acetylene functionalities. A catalytic variant of this reaction is also described.

  18. Photoelectrocatalytic removal of color from water using TiO 2 and ...

    African Journals Online (AJOL)

    The application of a positive potential higher than the flat-band potential on the TiO2 electrode decreases the rapid charge recombination process, and ... then to the back contact transparent fluorine doped tin-oxide-coated glass (TCO), making the behavior of the composite film analogous to that of an n-type semiconductor.

  19. In-Situ-Reduced Synthesis of Ti 3+ Self-Doped TiO 2 /g-C 3 N 4 Heterojunctions with High Photocatalytic Performance under LED Light Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kai [College; Gao, Shanmin [College; State; Wang, Qingyao [College; Xu, Hui [College; Wang, Zeyan [State; Huang, Baibiao [State; Dai, Ying [State; Lu, Jun [Chemical

    2015-04-27

    A simple one-step calcination route was used to prepare Ti3+ self-doped TiO2/g-C3N4 heterojunctions by mixture of H2Ti3O7 and melamine. X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), electron spin resonance (ESR) spectroscopy, and UV-Vis diffuse reflectance spectroscopy (UV-vis DRS) technologies were used to characterize the structure, crystallinity, morphology, and chemical state of the as-prepared samples. The absorption of the prepared Ti3+ self-doped TiO2/g-C3N4 heterojunctions shifted to a longer wavelength region in comparison with pristine TiO2 and g-C3N4. The photocatalytic activities of the heterojunctions were studied by degrading methylene blue under a 30 W visible-light-emitting diode irradiation source. The visible-light photocatalytic activities enhanced by the prepared Ti3+ self-doped TiO2/g-C3N4 heterojunctions were observed and proved to be better than that of pure TiO2 and g-C3N4. The photocatalysis mechanism was investigated and discussed. The intensive separation efficiency of photogenerated electron-hole in the prepared heterojunction was confirmed by photoluminescence (PL) spectra. The removal rate constant reached 0.038 min(-1) for the 22.3 wt % Ti3+ self-doped TiO2/g-C3N4 heterojunction, which was 26.76 and 7.6 times higher than that of pure TiO2 and g-C3N4, respectively. The established heterojunction between the interfaces of TiO2 nanoparticles and g-C3N4 nanosheets as well as introduced Ti3+ led to the rapid electron transfer rate and improved photoinduced electron-hole pair's separation efficiency, resulting in the improved photocatalytic performance of the Ti3+ self-doped TiO2/g-C3N4 heterojunctions.

  20. In vitro cytotoxicity and hemocompatibility studies of Ti-Nb, Ti-Nb-Zr and Ti-Nb-Hf biomedical shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B L; Li, L; Zheng, Y F, E-mail: blwang@hrbeu.edu.c, E-mail: lili_heu@hrbeu.edu.c, E-mail: yfzheng@pku.edu.c [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China)

    2010-08-01

    The in vitro cytotoxicity and hemocompatibility of the Ti-Nb, Ti-Nb-Zr and Ti-Nb-Hf biomedical shape memory alloys (SMAs) were investigated by cell culture (L-929 fibroblast cell), hemolytic test and platelet adhesion test, with CP Ti as a reference material. The cytotoxicity test indicates that all the Ti-Nb, Ti-Nb-Zr and Ti-Nb-Hf SMAs show over 94% cell viability for different incubation times (2, 4 and 7 days) in comparison with a negative control and CP Ti. The cell morphology observation shows good polygon-like adherent growth and proliferation of L-929 in the extracts of all the test samples and CP Ti. These results suggest excellent cytocompatibility for the Ti-Nb, Ti-Nb-Zr and Ti-Nb-Hf SMAs. The hemolytic test reveals that the hemolysis ratios of the Ti-Nb, Ti-Nb-Zr and Ti-Nb-Hf alloys are far less than 5%, so they cannot give rise to acute hemolysis. The platelet morphology observation shows almost the same adhered platelet morphology and activation ratio for the test samples in comparison with CP Ti, except the Ti-22Nb-6Hf alloy, which shows a lower activation ratio of platelets, indicating excellent blood compatibility. Therefore, it is proposed that the Ti-Nb, Ti-Nb-Zr and Ti-Nb-Hf SMAs will be candidates to replace Ti-Ni for biomedical applications.

  1. In situ photodeposition of amorphous CoSx on the TiO2 towards hydrogen evolution

    Science.gov (United States)

    Chen, Feng; Luo, Wei; Mo, Yanping; Yu, Huogen; Cheng, Bei

    2018-02-01

    Cocatalyst modification of photocatalysts is an important strategy to enhance the photocatalytic performance by promoting effective separation of photoinduced electron-hole pairs and providing abundant active sites. In this study, a facile in situ photodeposition method was developed to prepare amorphous CoSx-modified TiO2 photocatalysts. It was found that amorphous CoSx nanoparticles were solidly loaded on the TiO2 surface, resulting in a greatly improved photocatalytic H2-evolution performance. When the amount of amorphous CoSx was 10 wt%, the hydrogen evolution rate of the CoSx/TiO2 reached 119.7 μmol h-1, which was almost 16.7 times that of the pure TiO2. According to the above experimental results, a reasonable mechanism of improved photocatalytic performance is proposed for the CoSx/TiO2 photocatalysts, namely, the photogenerated electrons of TiO2 can rapidly transfer to amorphous CoSx nanoparticles due to the solid contact between them, and then amorphous CoSx can provide plenty of sulfur active sites to rapidly adsorb protons from solution to produce hydrogen by the photogenerated electrons. Considering the facile synthesis method, the present cheap and highly efficient amorphous CoSx-modified TiO2 photocatalysts would have great potential for practical use in photocatalytic H2 production.

  2. Deposit of thin films of TiN, a-C, Ti/TiN/a-C by laser ablation; Deposito de peliculas delgadas de TiN, a-C, Ti/TiN/a-C por ablacion laser

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, I.S.; Escobar A, L.; Camps, E.; Romero, S. [ININ, 52045 Ocoyoacac, Estado de mexico (Mexico); Muhl, S. [IIM, UNAM, A.P. 364, 01000 Mexico D.F. (Mexico)

    2006-07-01

    Thin films of titanium nitride (TiN), amorphous carbon (a-C), as well as bilayers of Ti/TiN/a-C were deposited by means of the laser ablation technique. It was investigated the effect that it has the laser fluence used to ablation the targets in the structure and mechanical properties of the TiN deposited films. The TiN obtained films have a preferential orientation in the direction (200). The results show that the hardness of this material is influenced by the laser fluence. It is observed that the hardness is increased in an approximately lineal way with the increment of the fluence up to 19 J/cm{sup 2}. The films of amorphous carbon present hardness of the order of 11.2 GPa. Likewise it was found that the multilayers of Ti/TiN/aC presented a bigger hardness that of its individual components. (Author)

  3. Effect of surface pretreatment of TiO2 films on interfacial processes leading to bacterial inactivation in the dark and under light irradiation

    Science.gov (United States)

    Rtimi, Sami; Nesic, Jelena; Pulgarin, Cesar; Sanjines, Rosendo; Bensimon, Michael; Kiwi, John

    2015-01-01

    Evidence is presented for radio-frequency plasma pretreatment enhancing the amount and adhesion of TiO2 sputtered on polyester (PES) and on polyethylene (PE) films. Pretreatment is necessary to attain a suitable TiO2 loading leading to an acceptable Escherichia coli reduction kinetics in the dark or under light irradiation for PES–TiO2 and PE–TiO2 samples. The amount of TiO2 on the films was monitored by diffuse reflectance spectroscopy and X-ray fluorescence. X-ray electron spectroscopy shows the lack of accumulation of bacterial residues such as C, N and S during bacterial inactivation since they seem to be rapidly destroyed by TiO2 photocatalysis. Evidence was found for Ti4+/Ti3+ redox catalysis occurring on PES–TiO2 and PE–TiO2 during the bacterial inactivation process. On PE–TiO2 surfaces, Fourier transform infrared spectroscopy (ATR-FTIR) provides evidence for a systematic shift of the na(CH2) stretching vibrations preceding bacterial inactivation within 60 min. The discontinuous IR-peak shifts reflect the increase in the C–H inter-bond distance leading to bond scission. The mechanism leading to E. coli loss of viability on PES–TiO2 was investigated in the dark up to complete bacterial inactivation by monitoring the damage in the bacterial outer cell by transmission electron microscopy. After 30 min, the critical step during the E. coli inactivation commences for dark disinfection on 0.1–5% wt PES–TiO2 samples. The interactions between the TiO2 aggregates and the outer lipopolysaccharide cell wall involve electrostatic effects competing with the van der Waals forces. PMID:25657831

  4. Photoelectrocatalytic removal of color from water using TiO2 and TiO2/Cu2O

    Directory of Open Access Journals (Sweden)

    Feleke Zewge

    2008-04-01

    Full Text Available This work describes, photoelectrocatalytic degradation of organic pollutants by using methyl orange (an azo dye as a model compound. The TiO2 thin film and TiO2/Cu2O composite electrodes were used as semiconductor photo electrodes. Photo catalysis by UV light corresponding to the light intensity range of the solar light was employed with the aim of using renewable and pollution-free energy. Result showed that the rate of removal of color was enhanced when potential bias of 1.5 V was applied. The degradation rate was also increased either in acidic (pH 2 or alkaline (pH 10 conditions. The application of a positive potential higher than the flat-band potential on the TiO2 electrode decreases the rapid charge recombination process, and enhanced the degradation of organic compound. When the TiO2/Cu2O thin film electrode was used, more efficient electron and hole separation was observed in the composite system under very low potential. It is considered that the photo-generated holes migrate towards the interface while the electrons migrate towards TiO2 and then to the back contact transparent fluorine doped tin-oxide-coated glass (TCO, making the behavior of the composite film analogous to that of an n-type semiconductor. In all cases, the kinetics of the photo catalytic oxidation of methyl orange followed a pseudo first order model and the apparent rate constant may depend on several factors such as, the nature and concentration of the organic compound, radiant flux, the solution pH and the presence of other organic substances.

  5. 45Ti extraction using hydroxamate resin

    DEFF Research Database (Denmark)

    Gagnon, K.; Severin, Gregory; Barnhart, T. E.

    2012-01-01

    As an attractive radionuclide for positron emission tomography, this study explores the extraction and reactivity of 45Ti produced via the 45Sc(p,n)45Ti reaction on a GE PETtrace. Using a small hydroxamate column, we have demonstrated an overall recovery of >50% of 45Ti in ~1 mL of 1M oxalic acid...

  6. Periodic modeling of zeolite Ti-LTA

    Science.gov (United States)

    Hernandez-Tamargo, Carlos E.; Roldan, Alberto; Ngoepe, Phuti E.; de Leeuw, Nora H.

    2017-08-01

    We have proposed a combination of density functional theory calculations and interatomic potential-based simulations to study the structural, electronic, and mechanical properties of pure-silica zeolite Linde Type A (LTA), as well as two titanium-doped compositions. The energetics of the titanium distribution within the zeolite framework suggest that the inclusion of a second titanium atom with configurations Ti-(Si)0-Ti, Ti-(Si)1-Ti, and Ti-(Si)2-Ti is more energetically favorable than the mono-substitution. Infra-red spectra have been simulated for the pure-silica LTA, the single titanium substitution, and the configurations Ti-(Si)0-Ti and Ti-(Si)2-Ti, comparing against experimental benchmarks where available. The energetics of the direct dissociation of water on these Lewis acid sites indicate that this process is only favored when two titanium atoms form a two-membered ring (2MR) sharing two hydroxy groups, Ti-(OH)2-Ti, which suggests that the presence of water may tune the distribution of titanium atoms within the framework of zeolite LTA. The electronic analysis indicates charge transfer from H2O to the Lewis acid site and hybridization of their electronic states.

  7. Highly selective colorimetric detection and preconcentration of Bi(III) ions by dithizone complexes anchored onto mesoporous TiO2

    Science.gov (United States)

    Faisal, Mohd; Ismail, Adel A.; Harraz, Farid A.; Bouzid, Houcine; Al-Sayari, Saleh A.; Al-Hajry, Ali

    2014-02-01

    We successfully developed a single-step detection and removal unit for Bi(III) ions based on dithizone (DZ) anchored on mesoporous TiO2 with rapid colorometric response and high selectivity for the first time. [(DZ)3-Bi] complex is easily separated and collected by mesoporous TiO2 as adsorbent and preconcentrator without any color change of the produced complex onto the surface of mesoporous TiO2 (TiO2-[(DZ)3-Bi]) at different Bi(III) concentrations. This is because highly potent mesoporous TiO2 architecture provides proficient channeling or movement of Bi(III) ions for efficient binding of metal ion, and the simultaneous excellent adsorbing nature of mesoporous TiO2 provides an extra plane for the removal of metal ions.

  8. A universal cooperative assembly-directed method for coating of mesoporous TiO2 nanoshells with enhanced lithium storage properties

    Science.gov (United States)

    Guan, Bu Yuan; Yu, Le; Li, Ju; Lou, Xiong Wen (David)

    2016-01-01

    TiO2 is exceptionally useful, but it remains a great challenge to develop a universal method to coat TiO2 nanoshells on different functional materials. We report a one-pot, low-temperature, and facile method that can rapidly form mesoporous TiO2 shells on various inorganic, organic, and inorganic-organic composite materials, including silica-based, metal, metal oxide, organic polymer, carbon-based, and metal-organic framework nanomaterials via a cooperative assembly-directed strategy. In constructing hollow, core-shell, and yolk-shell geometries, both amorphous and crystalline TiO2 nanoshells are demonstrated with excellent control. When used as electrode materials for lithium ion batteries, these crystalline TiO2 nanoshells composed of very small nanocrystals exhibit remarkably long-term cycling stability over 1000 cycles. The electrochemical properties demonstrate that these TiO2 nanoshells are promising anode materials. PMID:26973879

  9. On the Nonequilibrium Interface Kinetics of Rapid Coupled Eutectic Growth

    Science.gov (United States)

    Dong, H.; Chen, Y. Z.; Shan, G. B.; Zhang, Z. R.; Liu, F.

    2017-08-01

    Nonequilibrium interface kinetics (NEIK) is expected to play an important role in coupled growth of eutectic alloys, when solidification velocity is high and intermetallic compound or topologically complex phases form in the crystallized product. In order to quantitatively evaluate the effect of NEIK on the rapid coupled eutectic growth, in this work, two nonequilibrium interface kinetic effects, i.e., atom attachment and solute trapping at the solid-liquid interface, were incorporated into the analyses of the coupled eutectic growth under the rapid solidification condition. First, a coupled growth model incorporating the preceding two nonequilibrium kinetic effects was derived. On this basis, an expression of kinetic undercooling (∆ T k), which is used to characterize the NEIK, was defined. The calculations based on the as-derived couple growth model show good agreement with the reported experimental results achieved in rapidly solidified eutectic Al-Sm alloys consisting of a solid solution phase ( α-Al) and an intermetallic compound phase (Al11Sm3). In terms of the definition of ∆ T k defined in this work, the role of NEIK in the coupled growth of the Al-Sm eutectic system was analyzed. The results show that with increasing the coupled growth velocity, ∆ T k increases continuously, and its ratio to the total undercooling reaches 0.32 at the maximum growth velocity for coupled eutectic growth. Parametric analyses on two key alloy parameters that influence ∆ T k, i.e., interface kinetic parameter ( μ i ) and solute distribution coefficient ( k e ), indicate that both μ i and k e influence the NEIK significantly and the decrease of either these two parameters enhances the NEIK effect.

  10. Corrosion Characteristics of TiN/Ti Multilayer Coated Ti-30Ta-xZr Alloy for Biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. U. [Chonnam National University, Gwangju (Korea, Republic of); Cho, J. Y.; Choe, H. C. [Chosun University, Gwangju (Korea, Republic of)

    2009-08-15

    Pure titanium and its alloys are drastically used in implant materials due to their excellent mechanical properties, high corrosion resistance and good biocompatibility. However, the widely used Ti-6Al-4V is found to release toxic ions (Al and V) into the body, leading to undesirable long-term effects. Ti-6Al-4V has much higher elastic modulus than cortical bone. Therefore, titanium alloys with low elastic modulus have been developed as biomaterials to minimize stress shielding. For this reason, Ti-30Ta-xZr alloy systems have been studied in this study. The ti-30Ta containing Zr(5, 10 and 15 wt%) were 10 times melted to improve chemical homogeneity by using a vacuum furnace and then homogenized for 24 hrs at 1000 .deg. C. The specimens were cut and polished for corrosion test and Ti coating and then coated with TiN, respectively, by using DC magnetron sputtering method. The analyses of coated surface were carried out by field emission scanning electron microscope(FE-SEM). The electrochemical characteristics were examined using potentiodynamic (- 1500mV {approx} + 2000mV) and AC impedance spectroscopy(100 kHz {approx} 10 mHz) in 0.9% NaCl solution at 36.5{+-}1 .deg. C. The equiaxed structure was changed to needle-like structure with increasing Zr content. The surface defects and structures were covered with TiN/Ti coated layer. From the polarization behavior in 0.9% NaCl solution. The corrosion current density of Ti-30Ta-xZr alloys decreased as Zr content increased, whereas, the corrosion potential of Ti-30Ta-xZr alloys increased as Zr content increased. The corrosion resistance of TiN/Ti-coated Ti-30Ta-xZr alloys were higher than that of the TiN-coated Ti-30Ta-xZr alloys. From the AC impedance in 0.9% NaCl solution, polarization resistance(R{sub p}) value of TiN/Ti coated Ti-30Ta-xZr alloys showed higher than that of TiN-coated Ti-30Ta-xZr alloys.

  11. Residual stress prediction in a powder bed fusion manufactured Ti6Al4V hip stem

    Science.gov (United States)

    Barrett, Richard A.; Etienne, Titouan; Duddy, Cormac; Harrison, Noel M.

    2017-10-01

    Powder bed fusion (PBF) is a category of additive manufacturing (AM) that is particularly suitable for the production of 3D metallic components. In PBF, only material in the current build layer is at the required melt temperature, with the previously melted and solidified layers reducing in temperature, thus generating a significant thermal gradient within the metallic component, particularly for laser based PBF components. The internal thermal stresses are subsequently relieved in a post-processing heat-treatment step. Failure to adequately remove these stresses can result in cracking and component failure. A prototype hip stem was manufactured from Ti6Al4V via laser PBF but was found to have fractured during over-seas shipping. This study examines the evolution of thermal stresses during the laser PBF manufacturing and heat treatment processes of the hip stem in a 2D finite element analysis (FEA) and compares it to an electron beam PBF process. A custom written script for the automatic conversion of a gross geometry finite element model into a thin layer- by-layer finite element model was developed. The build process, heat treatment (for laser PBF) and the subsequent cooling were simulated at the component level. The results demonstrate the effectiveness of the heat treatment in reducing PBF induced thermal stresses, and the concentration of stresses in the region that fractured.

  12. Correlation of Heating Rates, Crystal Structures, and Microwave Dielectric Properties of Li2ZnTi3O8 Ceramics

    Science.gov (United States)

    Lu, Xuepeng; Zheng, Yong; Huang, Qi; Xiong, Weihao

    2015-11-01

    The correlation of heating rates, crystal structures, and microwave dielectric properties of Li2ZnTi3O8 ceramics was thoroughly investigated. Ionic polarizability, atomic packing fractions, bond strengths, and octahedral distortion of Li2ZnTi3O8 ceramics were calculated on the basis of structure refinement data. The "black core" phenomenon resulting from reduction of Ti4+ ions was observed for Li2ZnTi3O8 ceramic sintered at 1°/min; reduction of Ti4+ ions could be limited by heating more rapidly. For heating rates from 1 to 7°/min, the dielectric constants ( ɛ r) of Li2ZnTi3O8 ceramics were mainly determined by ionic polarizability. The temperature coefficient of the resonant frequency ( τ f ) of Li2ZnTi3O8 ceramics was determined by bond strengths. Li2ZnTi3O8 ceramic sintered at 1°/min had the lowest quality factor ( Q × f); this was related to the high dielectric loss as a result of oxygen vacancies formed by reduction of Ti4+ ions. Q × f values of Li2ZnTi3O8 ceramics also decreased with increasing heating rate from 3 to 7°/min, owing to reduced packing fractions and average grain sizes. Li2ZnTi3O8 ceramic sintered at 3°/min had the optimum microwave dielectric properties of ɛ r = 26.6, Q × f = 83,563 GHz, and τ f = -12.4 ppm/°C.

  13. Simple synthesized Pt/GNs/TiO2 with good mass activity and stability for methanol oxidation.

    Science.gov (United States)

    Zhang, Jianbo; Hu, Xiulan; Zhu, Faquan; Su, Nan; Huang, Huihong; Cheng, Jiexu; Yang, Hui

    2017-12-15

    Pt/GNs/TiO2 (GNs, graphene nanosheets) catalyst was synthesized by a simple two-step method, including a rapid solution plasma technique to obtained Pt nanoparticles with a size of 2-5 nm and followed by an ultrasonic mixing of the Pt, GNs and TiO2 nanoparticles. After coupling with TiO2 nanoparticles, the Pt/GNs/TiO2 catalyst exhibited a promoting catalytic activity towards methanol oxidation, which was superior to the Pt/GNs catalyst. The mass activity of the Pt/GNs/TiO2 catalyst was 3464 mA mgPt-1, which was 3.5 and 3.4 times higher than those of the Pt/GNs and the commercial Pt/C, respectively. And the Pt/GNs/TiO2 showed a strongly negative shift onset potential of methanol oxidation. The results of long-term cyclic voltammetry and CO-stripping tests showed an improved CO tolerance of the Pt/GNs/TiO2. Moreover, the mass activity of the Pt/GNs/TiO2 was further enhanced under light irradiation, with the mass activity of 4715 mA mgPt-1, which was 1.4 times higher than that of in dark. This work provides new opportunities for exploiting efficient visible photo-assisted electro-catalytic methanol oxidation.

  14. Fungus-mediated biosynthesis and characterization of TiO₂ nanoparticles and their activity against pathogenic bacteria.

    Science.gov (United States)

    Rajakumar, G; Rahuman, A Abdul; Roopan, S Mohana; Khanna, V Gopiesh; Elango, G; Kamaraj, C; Zahir, A Abduz; Velayutham, K

    2012-06-01

    In the present study, the biosynthesis of TiO(2) nanoparticles (TiO(2) NPs) was achieved by a novel, biodegradable and convenient procedure using Aspergillus flavus as a reducing and capping agent. Research on new, simple, rapid, eco-friendly and cheaper methods has been initiated. TiO(2) NPs were characterized by FTIR, XRD, AFM, SEM and TEM studies. The X-ray diffraction showed the presence of increased amount of TiO(2) NPs which can state by the presence of peaks at rutile peaks at 100, 002, 100 and anatase forms at 101 respectively. SEM observations revealed that synthesized TiO(2) NPs were spherical, oval in shape; individual nanoparticles as well as a few aggregate having the size of 62-74 nm. AFM shows crystallization temperature was seen on the roughness of the surface of TiO(2). The Minimum inhibitory concentration value for the synthesized TiO(2) NPs was found to be 40 μg ml(-1) for Escherichia coli, which was corresponding to the value of well diffusion test. This is the first report on antimicrobial activity of fungus-mediated synthesized TiO(2) NPs, which was proved to be a good novel antibacterial material. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Simple synthesized Pt/GNs/TiO2 with good mass activity and stability for methanol oxidation

    Science.gov (United States)

    Zhang, Jianbo; Hu, Xiulan; Zhu, Faquan; Su, Nan; Huang, Huihong; Cheng, Jiexu; Yang, Hui

    2017-12-01

    Pt/GNs/TiO2 (GNs, graphene nanosheets) catalyst was synthesized by a simple two-step method, including a rapid solution plasma technique to obtained Pt nanoparticles with a size of 2–5 nm and followed by an ultrasonic mixing of the Pt, GNs and TiO2 nanoparticles. After coupling with TiO2 nanoparticles, the Pt/GNs/TiO2 catalyst exhibited a promoting catalytic activity towards methanol oxidation, which was superior to the Pt/GNs catalyst. The mass activity of the Pt/GNs/TiO2 catalyst was 3464 mA mgPt ‑1, which was 3.5 and 3.4 times higher than those of the Pt/GNs and the commercial Pt/C, respectively. And the Pt/GNs/TiO2 showed a strongly negative shift onset potential of methanol oxidation. The results of long-term cyclic voltammetry and CO-stripping tests showed an improved CO tolerance of the Pt/GNs/TiO2. Moreover, the mass activity of the Pt/GNs/TiO2 was further enhanced under light irradiation, with the mass activity of 4715 mA mgPt ‑1, which was 1.4 times higher than that of in dark. This work provides new opportunities for exploiting efficient visible photo-assisted electro-catalytic methanol oxidation.

  16. Hot-working behavior of an advanced intermetallic multi-phase γ-TiAl based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Schwaighofer, Emanuel, E-mail: emanuel.schwaighofer@unileoben.ac.at [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria); Clemens, Helmut [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria); Lindemann, Janny [Chair of Physical Metallurgy and Materials Technology, Brandenburg University of Technology, Konrad-Wachsmann-Allee 17, D-03046 Cottbus (Germany); GfE Fremat GmbH, Lessingstr. 41, D-09599 Freiberg (Germany); Stark, Andreas [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, D-21502 Geesthacht (Germany); Mayer, Svea [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria)

    2014-09-22

    New high-performance engine concepts for aerospace and automotive application enforce the development of lightweight intermetallic γ-TiAl based alloys with increased high-temperature capability above 750 °C. Besides an increased creep resistance, the alloy system must exhibit sufficient hot-workability. However, the majority of current high-creep resistant γ-TiAl based alloys suffer from poor workability, whereby grain refinement and microstructure control during hot-working are key factors to ensure a final microstructure with sufficient ductility and tolerance against brittle failure below the brittle-to-ductile transition temperature. Therefore, a new and advanced β-solidifying γ-TiAl based alloy, a so-called TNM alloy with a composition of Ti–43Al–4Nb–1Mo–0.1B (at%) and minor additions of C and Si, is investigated by means of uniaxial compressive hot-deformation tests performed with a Gleeble 3500 simulator within a temperature range of 1150–1300 °C and a strain rate regime of 0.005–0.5 s{sup −1} up to a true deformation of 0.9. The occurring mechanisms during hot-working were decoded by ensuing constitutive modeling of the flow curves by a novel phase field region-specific surface fitting approach via a hyperbolic-sine law as well as by evaluation through processing maps combined with microstructural post-analysis to determine a safe hot-working window of the refined TNM alloy. Complementary, in situ high energy X-ray diffraction experiments in combination with an adapted quenching and deformation dilatometer were conducted for a deeper insight about the deformation behavior of the alloy, i.e. phase fractions and texture evolution as well as temperature uncertainties arising during isothermal and non-isothermal compression. It was found that the presence of β-phase and the contribution of particle stimulated nucleation of ζ-Ti{sub 5}Si{sub 3} silicides and h-type carbides Ti{sub 2}AlC enhance the dynamic recrystallization behavior during

  17. Determination of COD based on Photoelectrocatalysis of FeTiO3.TiO2/Ti Electrode

    Science.gov (United States)

    Wibowo, D.; Ruslan; Maulidiyah; Nurdin, M.

    2017-11-01

    Iron infrastructure technology of (Fe)-doped TiO2 nanotubes arrays (NTAs) was prepared for COD photoelectrocatalysis sensor. Fe-TiO2 NTAs was prepared using sol-gel method and coated with TiO2/Ti electrode by immersion technique. The optimization of COD photoelectrocatalytic sensor against Rhodamine B, Methyl Orange, and Methylene Blue organic dyes using photoelectrochemical system in a batch reactor. The high ordered FeTiO3.TiO2/Ti NTAs to determine COD value showed the high photocurrent response linearity and sensitivity to MO organic dye from the concentration of 5 ppm to 75 ppm with an average RSD value of 3.35. The development in this research is to utilize ilmenite mineral as model applied to COD sensor.

  18. Primary Dendrite Arm Spacing and Trunk Diameter in Al-7-Weight-Percentage Si Alloy Directionally Solidified Aboard the International Space Station

    Science.gov (United States)

    Ghods, M.; Tewari, S. N.; Lauer, M.; Poirier, D. R.; Grugel, R. N.

    2016-01-01

    Under a NASA-ESA collaborative research project, three Al-7-weight-percentage Si samples (MICAST-6, MICAST-7 and MICAST 2-12) were directionally solidified aboard the International Space Station to determine the effect of mitigating convection on the primary dendrite array. The samples were approximately 25 centimeters in length with a diameter of 7.8 millimeter-diameter cylinders that were machined from [100] oriented terrestrially grown dendritic Al-7Si samples and inserted into alumina ampoules within the Sample Cartridge Assembly (SCA) inserts of the Low Gradient Furnace (LGF). The feed rods were partially remelted in space and directionally solidified to effect the [100] dendrite-orientation. MICAST-6 was grown at 5 microns per second for 3.75 centimeters and then at 50 microns per second for its remaining 11.2 centimeters of its length. MICAST-7 was grown at 20 microns per second for 8.5 centimeters and then at 10 microns per second for 9 centimeters of its remaining length. MICAST2-12 was grown at 40 microns per second for 11 centimeters. The thermal gradient at the liquidus temperature varied from 22 to 14 degrees Kelvin per centimeter during growth of MICAST-6, from 26 to 24 degrees Kelvin per centimeter for MICAST-7 and from 33 to 31 degrees Kelvin per centimeter for MICAST2-12. Microstructures on the transverse sections along the sample length were analyzed to determine nearest-neighbor spacing of the primary dendrite arms and trunk diameters of the primary dendrite-arrays. This was done along the lengths where steady-state growth prevailed and also during the transients associated with the speed-changes. The observed nearest-neighbor spacings during steady-state growth of the MICAST samples show a very good agreement with predictions from the Hunt-Lu primary spacing model for diffusion controlled growth. The observed primary dendrite trunk diameters during steady-state growth of these samples also agree with predictions from a coarsening-based model

  19. Rapid Airplane Parametric Input Design (RAPID)

    Science.gov (United States)

    Smith, Robert E.

    1995-01-01

    RAPID is a methodology and software system to define a class of airplane configurations and directly evaluate surface grids, volume grids, and grid sensitivity on and about the configurations. A distinguishing characteristic which separates RAPID from other airplane surface modellers is that the output grids and grid sensitivity are directly applicable in CFD analysis. A small set of design parameters and grid control parameters govern the process which is incorporated into interactive software for 'real time' visual analysis and into batch software for the application of optimization technology. The computed surface grids and volume grids are suitable for a wide range of Computational Fluid Dynamics (CFD) simulation. The general airplane configuration has wing, fuselage, horizontal tail, and vertical tail components. The double-delta wing and tail components are manifested by solving a fourth order partial differential equation (PDE) subject to Dirichlet and Neumann boundary conditions. The design parameters are incorporated into the boundary conditions and therefore govern the shapes of the surfaces. The PDE solution yields a smooth transition between boundaries. Surface grids suitable for CFD calculation are created by establishing an H-type topology about the configuration and incorporating grid spacing functions in the PDE equation for the lifting components and the fuselage definition equations. User specified grid parameters govern the location and degree of grid concentration. A two-block volume grid about a configuration is calculated using the Control Point Form (CPF) technique. The interactive software, which runs on Silicon Graphics IRIS workstations, allows design parameters to be continuously varied and the resulting surface grid to be observed in real time. The batch software computes both the surface and volume grids and also computes the sensitivity of the output grid with respect to the input design parameters by applying the precompiler tool

  20. Ti-84 Plus graphing calculator for dummies

    CERN Document Server

    McCalla

    2013-01-01

    Get up-to-speed on the functionality of your TI-84 Plus calculator Completely revised to cover the latest updates to the TI-84 Plus calculators, this bestselling guide will help you become the most savvy TI-84 Plus user in the classroom! Exploring the standard device, the updated device with USB plug and upgraded memory (the TI-84 Plus Silver Edition), and the upcoming color screen device, this book provides you with clear, understandable coverage of the TI-84's updated operating system. Details the new apps that are available for download to the calculator via the USB cabl

  1. Rapid screening of potential metallic glasses for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C.H. [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC (China); Huang, C.H. [Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC (China); Chuang, J.F. [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC (China); Huang, J.C., E-mail: jacobc@mail.nsysu.edu.tw [Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC (China); Jang, J.S.C. [Institute of Materials Science and Engineering, Department of Mechanical Engineering, National Central University, Chung-Li, Taiwan, ROC (China); Chen, C.H. [Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC (China); Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC (China); Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC (China)

    2013-12-01

    This paper presents a rapid screening process to select potential titanium and zirconium based metallic glasses (MGs) for bio-material applications. Electrochemical activity of 7 MGs including 6 bulk metallic glasses and 1 thin-film deposited MG in simulation body and human serum is first inspected. A low-voltage potential state test is also developed to simulate the cell membrane potential that the implant MGs will suffer. Results show that the MGs composed of Ti{sub 65}Si{sub 15}Ta{sub 10}Zr{sub 10} and Ta{sub 57}Zr{sub 23}Cu{sub 12}Ti{sub 8} exhibit excellent electrochemical stability in both simulation body fluid and human serum. In addition, the copper content in the MGs plays an important role on the electrochemical activity. MGs with the copper content higher than 17.5% show significant electrochemical responses. The cytotoxicity of the solid MG samples and the corrosion released ions are also evaluated by an in-vitro MTT test utilizing the murine bone marrow stem cells. Results indicate that all the solid MG samples show no acute cytotoxicity yet the corrosion released ions show significant toxicity for murine bone marrow stem cells. The rapid screening process developed in the present study suggests that the Ti{sub 65}Si{sub 15}Ta{sub 10}Zr{sub 10} metallic glass has high potential for biomedical applications due to its good electrochemical stability and very low cytotoxicity. - Highlights: • A rapid electrochemical cycle screening process is proposed. • This process can select potential metallic glasses for bio-material applications. • The Ti{sub 65}Si{sub 15}Ta{sub 10}Zr{sub 10} metallic glass exhibits the best response and high potential.

  2. Fabrication of NiTi shape memory alloy by Micro-FAST

    Directory of Open Access Journals (Sweden)

    Huang Kunlan

    2015-01-01

    Full Text Available A NiTi shape memory alloy, known as nitinol, has been intensively studied for last five decades. The NiTi alloy with large size is commonly produced by vacuum sintering, thermal explosion mode of self-propagating high-temperature synthesis (TE-SHS and spark plasma sintering (SPS. These methods are, however, rarely utilized for the forming of miniature and micro-sized components and have their own limits and disadvantages, such as long process chains and low efficiency with the processes. In the study reported in this paper, an innovation in rapid powder consolidation technology, called Micro-FAST (combining micro-forming and electric-current activated sintering techniques (FAST is introduced for the forming of micro-components in which the loose powders are loaded directly into the die, followed by electric-sintering. In the study, Φ4.0 mm × 4.0 mm miniature cylinders were formed with pre-alloyed NiTi powders. Sintered sample with relative density of 98.65% has been fabricated at a sintering temperature of 1150 °C in a relatively short cycle time (119.5 s. Based on the results of SEM and XRD, it was found that the densified samples with Ni3Ti, NiTi and NiTi2 phases were produced.

  3. Cellulose Acetate/N-TiO2 Biocomposite Flexible Films with Enhanced Solar Photochromic Properties

    Science.gov (United States)

    Radhika, T.; Anju, K. R.; Silpa, M. S.; Ramalingam, R. Jothi; Al-Lohedan, Hamad A.

    2017-07-01

    Flexible cellulose acetate/N-TiO2 nanocomposite films containing various concentrations of nanosized N-TiO2 and an intelligent methylene blue ink have been prepared by solution casting. The hydrothermally prepared nitrogen-doped titania (N-TiO2) and the films were characterized in detail. The photochromic properties of the prepared films were investigated under ultraviolet (UV), visible light, and simulated solar irradiation by UV-Vis spectrophotometry. Upon irradiation, the films exhibited rapid photochromic response that was reversible at room temperature. Films with higher content of nano N-TiO2 showed enhanced decoloration/recoloration under all irradiation conditions, with fast decoloration/recoloration under simulated solar irradiation. These results suggest that the amount of nano N-TiO2 in the composite, the concentration of methylene blue, and the solvent greatly influence the photochromic properties of the films. Such flexible and transparent cellulose acetate/N-TiO2 films with enhanced decoloration/recoloration properties under solar irradiation are promising smart materials for use in photoreversible printed electronics applications.

  4. Investigation of In Vitro Bone Cell Adhesion and Proliferation on Ti Using Direct Current Stimulation.

    Science.gov (United States)

    Bodhak, Subhadip; Bose, Susmita; Kinsel, William C; Bandyopadhyay, Amit

    2012-12-01

    Our objective was to establish an in vitro cell culture protocol to improve bone cell attachment and proliferation on Ti substrate using direct current stimulation. For this purpose, a custom made electrical stimulator was developed and a varying range of direct currents, from 5 to 25 µA, were used to study the current stimulation effect on bone cells cultured on conducting Ti samples in vitro. Cell-materials interaction was studied for a maximum of 5 days by culturing with human fetal osteoblast cells (hFOB). The direct current was applied in every 8 h time interval and the duration of electrical stimulation was kept constant at 15 min for all cases. In vitro results showed that direct current stimulation significantly favored bone cell attachment and proliferation in comparison to nonstimulated Ti surface. Immunochemistry and confocal microscopy results confirmed that the cell adhesion was most pronounced on 25 µA direct current stimulated Ti surfaces as hFOB cells expressed higher vinculin protein with increasing amount of direct current. Furthermore, MTT assay results established that cells grew 30% higher in number under 25 µA electrical stimulation as compared to nonstimulated Ti surface after 5 days of culture period. In this work we have successfully established a simple and cost effective in vitro protocol offering easy and rapid analysis of bone cell-materials interaction which can be used in promotion of bone cell attachment and growth on Ti substrate using direct current electrical stimulation in an in vitro model.

  5. Rapid shallow breathing

    Science.gov (United States)

    ... the smallest air passages of the lungs in children ( bronchiolitis ) Pneumonia or other lung infection Transient tachypnea of the newborn Anxiety and panic Other serious lung disease Home Care Rapid, shallow breathing should not be treated at home. It is ...

  6. Rapid Strep Test

    Science.gov (United States)

    ... worse than normal. Your first thoughts turn to strep throat. A rapid strep test in your doctor’s office ... your suspicions.Viruses cause most sore throats. However, strep throat is an infection caused by the Group A ...

  7. Rapid Solidification of AB{sub 5} Hydrogen Storage Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gulbrandsen-Dahl, Sverre

    2002-01-01

    thesis the changes of the crystal structure and the grain structure of La{sub 0.60}Ce{sub 0.29}Pr{sub 0.04}Nd{sub 0.07}Ni{sub 3.37}Co{sub 0.79}Mn{sub 0.25}Al{sub 0.7}= cooling rate during chill-block melt spinning are described. Totally, the material was rapidly solidified at 9 different cooling rates. The grain structure, crystallographic texture and the lattice parameters were studied by means of electron microscopy and powder X-ray diffraction. Additionally, the density of the rapidly solidified materials was measured by a gas pycnometer. All these properties were found to change with increasing cooling rate. The grain size decreased continuously with increasing cooling rate and was in the range of 1-5 {mu}m. The strength of the crystallographic texture first increased and then decreased with increasing cooling rate. Transmission electron microscopy studies revealed that the grains contained a large amount of crystallographic twins and that the solidification morphology changed from cellular to plane front at a cooling rate during solidification of approximately 6*10{sup 4} Ks{sup -1}. The unit cell volume and the density followed the same pattern with increasing cooling rate and decreased within each solidification morphology, but at the cooling rate from which the morphology changed, both these parameters suddenly increased. The identical variations in the unit cell volume and the density is explained by formation of excess lattice vacancies during rapid solidification. In Part IV of the thesis rapid solidification of the materials La{sub 0.60}Ce{sub 0.27}Pr{sub 0.04}Nd{sub 0.09}Ni{sub 4.76}Sn{sub 0.24} and LaNi{sub 4.76}Sn different cooling rates are described. The materials were analysed by means of electron microscopy and powder X-ray diffraction. The grain structures of both alloys were found to be in the nanometer range, and the grain sizes were almost invariant with increasing cooling rate. Furthermore, the lattice parameters of these materials were almost

  8. RAPID3? Aptly named!

    Science.gov (United States)

    Berthelot, J-M

    2014-01-01

    The RAPID3 score is the sum of three 0-10 patient self-report scores: pain, functional impairment on MDHAQ, and patient global estimate. It requires 5 seconds for scoring and can be used in all rheumatologic conditions, although it has mostly been used in rheumatoid arthritis where cutoffs for low disease activity (12/30) have been set. A RAPID3 score of ≤ 3/30 with 1 or 0 swollen joints (RAPID3 ≤ 3 + ≤ SJ1) provides remission criteria comparable to Boolean, SDAI, CDAI, and DAS28 remission criteria, in far less time than a formal joint count. RAPID3 performs as well as the DAS28 in separating active drugs from placebos in clinical trials. RAPID3 also predicts subsequent structural disease progression. RAPID3 can be determined at short intervals at home, allowing the determination of the area under the curve of disease activity between two visits and flare detection. However, RAPID3 should not be seen as a substitute for DAS28 and face to face visits in routine care. Monitoring patient status with only self-report information without a rheumatologist's advice (including joints and physical examination, and consideration of imaging and laboratory tests) may indeed be as undesirable for most patients than joint examination without a patient questionnaire. Conversely, combining the RAPID3 and the DAS28 may consist in faster or more sensitive confirmation that a medication is effective. Similarly, better enquiring of most important concerns of patients (pain, functional status and overall opinion on their disorder) should reinforces patients' confidence in their rheumatologist and treatments.

  9. Columnar-to-Equiaxed Transition and Equiaxed Grain Alignment in Directionally Solidified Ni3Al Alloy Under an Axial Magnetic Field

    Science.gov (United States)

    Liu, Huan; Xuan, Weidong; Xie, Xinliang; Li, Chuanjun; Wang, Jiang; Yu, Jianbo; Li, Xi; Zhong, Yunbo; Ren, Zhongming

    2017-09-01

    The effect of an axial magnetic field on the solidification structure in directionally solidified Ni-21.5Al-0.4Zr-0.1B (at. pct) alloy was investigated. The experimental results indicated that the application of a high magnetic field caused the deformation of dendrites and the occurrence of columnar-to-equiaxed transition (CET). The magnetic field tended to orient the 〈001〉 crystal direction of the equiaxed grains along the magnetic field direction. The bulk solidification experiment under a high magnetic field showed that the crystal exhibited magnetic crystalline anisotropy. Further, the thermoelectric (TE) magnetic force and TE magnetic convention were analyzed by three-dimensional (3-D) numerical simulations. The results showed that the maximum value of TE magnetic force localized in the vicinity of the secondary dendrite arm root, which should be responsible for the dendrite break and CET. Based on the high-temperature creep mechanism, a simple model was proposed to describe the magnetic field intensity needed for CET: B ≥ kG^{ - 1.5} R^{1.25} . The model is in good agreement with the experiment results. The experimental results should be attributed to the combined action of TE magnetic effects and the magnetic moment.

  10. Effects of Withdrawal Rate and Temperature Gradient on the Microstructure Evolution in Directionally Solidified NiAl-36Cr-6Mo Hypereutectic Alloy

    Science.gov (United States)

    Shang, Zhao; Shen, Jun; Zhang, Jian-Fei; Wang, Lei; Qin, Ling; Fu, Heng-Zhi

    2014-09-01

    The effects of withdrawal rate and temperature gradient on the microstructure and growth interface morphology in directionally solidified Ni-29Al-36Cr-6Mo(at.%) hypereutectic alloy were investigated. Under the temperature gradient of 250 K/cm, well-aligned eutectic microstructure with lamellar morphology was obtained at the withdrawal rate of 6 μm/s. When the withdrawal rate was 10 μm/s, the microstructure changed to Cr(Mo) dendrites + eutectic lamellae. With the increasing withdrawal rate, the interdendritic eutectic growth interface changed from planar to cellular, the number of primary Cr(Mo) dendrites became greater, and the microstructure was refined. When the temperature gradient increased to 600 K/cm, the coupled eutectic growth zone of NiAl-Cr(Mo) alloy was expanded; a well-aligned eutectic microstructure could be obtained at higher rate of 10 μm/s. Furthermore, the planar/cellular transition rate of the interdendritic eutectic growth interface increased. Even at the same withdrawal rate, the number of primary Cr(Mo) dendrites was less and the microstructure was finer under the temperature gradient of 600 K/cm.

  11. Novel solidified reverse micellar solution-based mucoadhesive nano lipid gels encapsulating miconazole nitrate-loaded nanoparticles for improved treatment of oropharyngeal candidiasis.

    Science.gov (United States)

    Kenechukwu, Franklin Chimaobi; Attama, Anthony Amaechi; Ibezim, Emmanuel Chinedum

    2017-09-01

    To develop and evaluate solidified-reverse-micellar-solution (SRMS)-based oromucosal nano lipid gels for improved localised delivery of miconazole nitrate (MN). Phospholipon ® 90G and Softisan ® 154 (3:7) were used to prepare SRMS by fusion. Solid lipid nanoparticles (SLNs, 0.25-1.0% w/w MN) formulated with the SRMS by high shear homogenisation were employed to prepare mucoadhesive nano lipid gels. Physicochemical characterisation, drug release in simulated salivary fluid (SSF) (pH 6.8) and anti-candidal activity were carried out. The SLNs were spherical nanoparticles, had mean size of 133.8 ± 6.4 to 393.2 ± 14.5 nm, low polydispersity indices, good encapsulation efficiency (EE) (51.96 ± 2.33-67.12 ± 1.65%) and drug loading (DL) (19.05 ± 2.44-24.93 ± 1.98%). The nano lipid gels were stable, spreadable, pseudoplastic viscoelastic mucoadhesive systems that exhibited better prolonged release and anti-candidal properties than marketed formulation (Daktarin ® oral gel) (p < 0.05). This study has shown that SRMS-based nano lipid gels could be employed to prolong localised oromucosal delivery of MN.

  12. Comparative Study on the Grain Refinement of Al-Si Alloy Solidified under the Impact of Pulsed Electric Current and Travelling Magnetic Field

    Directory of Open Access Journals (Sweden)

    Yunhu Zhang

    2016-07-01

    Full Text Available It is high of commercial importance to generate the grain refinement in alloys during solidification by means of electromagnetic fields. Two typical patterns of electromagnetic fields, pulsed electric currents (ECP and traveling magnetic field (TMF, are frequently employed to produce the finer equiaxed grains in solidifying alloys. Various mechanisms were proposed to understand the grain refinement in alloys caused by ECP and TMF. In this paper, a comparative study is carried out in the same solidification regime to investigate the grain refinement of Al-7 wt. %Si alloy driven by ECP and TMF. Experimental results show that the application of ECP or TMF can cause the same grain refinement occurrence period, during which the refinement of primary Al continuously occurs. In addition, the related grain refinement mechanisms are reviewed and discussed, which shows the most likely one caused by ECP and TMF is the promoted dendrite fragmentation as the result of the ECP-induced or TMF-induced forced flow. It suggests that the same grain refinement process in alloys is provoked when ECP and TMF are applied in the same solidification regime, respectively.

  13. Standard test method for accelerated leach test for diffusive releases from solidified waste and a computer program to model diffusive, fractional leaching from cylindrical waste forms

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method provides procedures for measuring the leach rates of elements from a solidified matrix material, determining if the releases are controlled by mass diffusion, computing values of diffusion constants based on models, and verifying projected long-term diffusive releases. This test method is applicable to any material that does not degrade or deform during the test. 1.1.1 If mass diffusion is the dominant step in the leaching mechanism, then the results of this test can be used to calculate diffusion coefficients using mathematical diffusion models. A computer program developed for that purpose is available as a companion to this test method (Note 1). 1.1.2 It should be verified that leaching is controlled by diffusion by a means other than analysis of the leach test solution data. Analysis of concentration profiles of species of interest near the surface of the solid waste form after the test is recommended for this purpose. 1.1.3 Potential effects of partitioning on the test results can...

  14. Composition, Taste, Aroma, and Antioxidant Activity of Solidified Noncentrifugal Brown Sugars Prepared from Whole Stalk and Separated Pith of Sugarcane (Saccharum officinarum L.).

    Science.gov (United States)

    Takahashi, Makoto; Ishmael, Mutanda; Asikin, Yonathan; Hirose, Naoto; Mizu, Masami; Shikanai, Takesi; Tamaki, Hajime; Wada, Koji

    2016-10-25

    In this study, 2 types of solidified noncentrifugal brown sugars (W-NCS and P-NCS) were prepared from the whole stalk and separated pith, respectively, of raw sugarcane (Saccharum officinarum L.). These products were discriminated in terms of their quality attributes, including color, sugars and minerals composition, taste, aroma, and antioxidant activity. The brown color of P-NCS was clearly different compared with that of W-NCS with a color difference value (ΔE* ) of 9.36. There was no difference in the sugars and minerals composition between the 2 types of sugar, which led to very similar taste profiles. However, P-NCS had a weaker aroma intensity than W-NCS did. Moreover, P-NCS retained more than 60% of the antioxidant activity of W-NCS. The information gleaned from this study might be used to select appropriate end-uses for these 2 types of sugars. © 2016 Institute of Food Technologists®.

  15. Determination of Cadmium by Electrothermal Atomic Absorption Spectrometry after its Separation and Preconcentration by Syringe to Syringe Dispersive Liquid Phase Microextraction-Solidified Floating Organic Drop

    Directory of Open Access Journals (Sweden)

    Mohammad Asadi

    2017-12-01

    Full Text Available The application of syringe to syringe dispersive liquid phase microextraction-solidified floating organic drop was extended for the separation and preconcentration of trace amounts of cadmium ions from water and cereal samples. The extracted cadmium was quantified by electrothermal atomic absorption spectrometry. Factors affecting the complex formation as well as microextraction efficiency such as the concentration of dithizone as the chelating agent, sample pH, type and volume of the extractant, number of injections, ionic strength and sample volume were optimized. Under optimized conditions, the calibration curve was linear in the range of 1.0-14.0 ng L-1 with the coefficient of determination of 0.9994. The limit of detection and quantification were found to be 0.25 and 0.85 ng L-1, respectively. The inter-day and intra-day precision at two concentration levels (3.0 and 10.0 ng L-1 were in the range of 3.9-9.2%. The accuracy of the developed method was evaluated through recovery experiments and the analysis of certified reference material (SLRS-6.

  16. Speciation of antimony(III) and antimony(V) by electrothermal atomic absorption spectrometry after ultrasound-assisted emulsification of solidified floating organic drop microextraction.

    Science.gov (United States)

    Wen, Shengping; Zhu, Xiashi

    2013-10-15

    A simple, sensitive and efficient method of ultrasound-assisted emulsification of solidified floating organic drop microextraction (USE-SFODME) coupled to electrothermal atomic absorption spectrometry for the speciation of antimony at different oxidation state Sb(III)/Sb(V) in environmental samples was established. In this method, the hydrophobic complex of Sb(III) with sodium diethyldithiocarbamate (DDTC) is extracted by 1-undecanol at pH 9.0, while Sb(V) remains in aqueous phase. Sb(V) content can be calculated by subtracting Sb(III) from the total antimony after reducing Sb(V) to Sb(III) by l-cysteine. Various factors affecting USE-SFODME including pH, extraction solvent and its volume, concentration of DDTC, sonication time, and extraction temperature were investigated. Under the optimized conditions, the calibration curve was linear in the range from 0.05 to 10.0 ng mL(-1), with the limit of detection (3σ) 9.89 ng L(-1) for Sb(III). The relative standard deviation for Sb(III) was 4.5% (n=9, c=1.0 ng mL(-1)). This method was validated against the certified reference materials (GSB 07-1376-2001, GBW07441), and applied to the speciation of antimony in environmental samples (soil and water samples) with satisfactory results. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Inverse steptoes in Las Bombas volcano, as an evidence of explosive volcanism in a solidified lava flow field. Southern Mendoza-Argentina

    Science.gov (United States)

    Risso, Corina; Prezzi, Claudia; Orgeira, María Julia; Nullo, Francisco; Margonari, Liliana; Németh, Karoly

    2015-11-01

    Here we describe the unusual genesis of steptoes in Las Bombas volcano- Llancanelo Volcanic Field (LVF) (Pliocene - Quaternary), Mendoza, Argentina. Typically, a steptoe forms when a lava flow envelops a hill, creating a well-defined stratigraphic relationship between the older hill and the younger lava flow. In the Llancanelo Volcanic Field, we find steptoes formed with an apparent normal stratigraphic relationship but an inverse age-relationship. Eroded remnants of scoria cones occur in ;circular depressions; in the lava field. To express the inverse age-relationship between flow fields and depression-filled cones here we define this landforms as inverse steptoes. Magnetometric analysis supports this inverse age relationship, indicating reverse dipolar magnetic anomalies in the lava field and normal dipolar magnetization in the scoria cones (e.g. La Bombas). Negative Bouguer anomalies calculated for Las Bombas further support the interpretation that the scoria cones formed by secondary fracturing on already solidified basaltic lava flows. Advanced erosion and mass movements in the inner edge of the depressions created a perfectly excavated circular depression enhancing the ;crater-like; architecture of the preserved landforms. Given the unusual genesis of the steptoes in LVF, we prefer the term inverse steptoe for these landforms. The term steptoe is a geomorphological name that has genetic implications, indicating an older hill and a younger lava flow. Here the relationship is reversed.

  18. Leaching behavior and effectiveness of curing days (7& 28) of solidified/stabilized fly ash based geopolymer (multi-metal bearing sludge): experimental and modeling study.

    Science.gov (United States)

    Chaudhary, Rubina; Khaleb, Divya; Badur, Smita

    2012-04-01

    This paper presents the study of the immobilization of heavy metals like Pb, Fe, Mn, Cu and Zn by fly ash based geopolymers. The purpose of this study was to investigate the effectiveness of fly ash based geopolymeric solidification/stabilization technology. For S/S of waste, geopolymer as a binding agent was mixed with waste at different ratios. For initial waste characterization, contaminants concentration and some physical waste characterization such as dry density, bulk density, specific gravity, porosity, moisture holding capacity, and moisture content were determined. Waste and geopolymer mixture were cured for 7 and 28 days to study the effect of curing days on the solidified/ stabilized product. Diffusion leaching test was performed on the geopolymers containing industrial sludge to determine the leaching mechanism of binders to entrap the waste constituents within their matrix. Movement of the elements was identified with the help of leachability index. S/S through geopolymer was found to be effective in immobilizing toxic metals present in the sludge. Zn was 100% and other metals like Pb, Fe, Mn and Cu were in the range 80-99% immobilized. The order of fixation of metals was Zn >Cu > Fe > Mn > Pb.

  19. Reactive sintering of TiAl–Ti5Si3 in situ composites

    Energy Technology Data Exchange (ETDEWEB)

    Alman, David E.

    2005-06-01

    TiAl with between 0 and 20 vol%Ti5Si3 was produced by reactive sintering (700 °C for 15 min in vacuum) of cold pressed compacts of elemental Ti, Al and Si powder. The results show that adding Si to Ti and Al reduces the swelling associated with reactive sintering of TiAl, as composites containing more than 5 vol%Ti5Si3 densified during reactive sintering. However, composites containing more than 10 vol%Ti5Si3 did not retain their shape and the TiAl+20 vol%Ti5Si3 composite completely melted during the sintering process. A thermodynamic analysis indicated that the simultaneous formation of TiAl and Ti5Si3 increases the adiabatic flame temperature during the reaction between the powders. In fact, the analysis predicted that the maximum temperature of the reaction associated with the formation TiAl+20 vol%Ti5Si3 should exceed the melting point of TiAl, and this was observed experimentally. Differential thermal analysis (DTA) revealed that an Al–Si eutectic reaction occurred in mixtures of Ti, Al and Si powders prior to the formation of the TiAl and Ti5Si3 phases. There was no such pre-reaction formation of a eutectic liquid in Ti and Al powder mixtures. The formation of the pre-reaction liquid and the increase in adiabatic flame temperature resulted in the melting that occurred and the enhanced densification (minimization of swelling) during reactive sintering of the in situ composites.

  20. Development of solid SEDDS, III: application of Acconon® C-50 and Gelucire® 50/13 as both solidifying and emulsifying agents for medium chain triglycerides

    Directory of Open Access Journals (Sweden)

    Nrupa Patel

    2012-06-01

    Full Text Available Solid self-emulsifying drug delivery systems (SEDDS for medium chain triglycerides (Captex® 355, ABITEC were developed using stearoyl polyoxyl glycerides (Acconon® C-50, ABITEC and Gelucire® 50/13, Gattefosse as both solidifying and emulsifying agents. Different mixtures of the lipid and each solidifying agent were heated to 65ºC until homogenously mixed clear liquids were formed. Probucol was dissolved as the model drug. The molten mass was then filled into hard gelatin capsules, which upon cooling to room temperature converted to a solid mass inside capsules. The triglyceride could be incorporated into the system to a concentration as high as 80% w/w, still maintaining the solid or semisolid consistency of the system. Powder XRD, DSC, microscopy (cross-polarization and confocal fluorescence techniques, dispersion test and particle size analysis of the solid systems with, and without, drug were conducted to characterize different formulations. The solidifying agents maintained their crystallinity in solid systems, while the lipids were interspersed in between crystalline regions. The drug remained solubilized in the lipid phase. The formulations dispersed almost completely in 2 hours with particle size of the dispersed lipid in the range of 250 to 500 nm when the lipid content in the formulation was up to 50% w/w. Thus, a novel method of developing solid formulations of liquid triglycerides by incorporating lipids in stearoyl polyoxyl glycerides has been developed.

  1. Preparation of Ti3 AlC2 by mechanically activated sintering of 3Ti/Al ...

    Indian Academy of Sciences (India)

    Administrator

    , a large amount of rigor granules with a size of 0⋅5 ~ 10 mm were produced. Fine powders containing Ti3AlC2, Ti2AlC and TiC were obtained. The granules composed of Ti3AlC2, Ti2AlC and TiC. Adding Sn may remove Ti2AlC and enhance.

  2. Structural and Mechanical Properties of TiN-TiC-TiO System: First Principle Study

    Science.gov (United States)

    Farhadizadeh, Ali Reza; Amadeh, Ahmad Ali; Ghomi, Hamidreza

    2017-11-01

    Mechanical and structural properties of ternary system of TiN-TiO-TiC are investigated using first principle methods. 70 different compositions of Ti 100 (NOC) 100 with cubic structure are examined in order to illustrate the trend of properties variations. The geometry of compounds is optimized, and then, their chemical stability is assessed. Afterward, shear, bulk and young moduli, Cauchy pressure, Zener ratio, hardness and {H}3/{E}2 ratio are computed based on elastic constants. Graphical ternary diagram is used to represent the trend of such properties when the content of nitrogen, oxygen and carbon varies. The results show that incorporation of oxygen into the system decreases the hardness and {H}3/{E}2 ratio while subsequently ductility increases due to positive Cauchy pressure. It is revealed that the maximum {H}3/{E}2 ratio occurs when both nitrogen and carbon with a little amount of oxygen are incorporated. Ti 100 N 30 C 70 owns the highest hardness and {H}3/{E}2 ratio equal to 39.5 and 0.2 GPa, respectively. In addition, the G/B of this compound, which is about 0.9, shows it is brittle. It is also observed that the solid solutions have better mechanical properties with respect to titanium nitride and titanium carbide. The obtained results could be used to enhance monolayer coatings as well as to design multilayers with specific mechanical properties. The authors would like to acknowledge the financial support of University of Tehran Science and Technology Park for this research under Grant No. 94061

  3. Fabrication of TiCx-TiB2/Al Composites for Application as a Heat Sink

    Directory of Open Access Journals (Sweden)

    Shili Shu

    2016-07-01

    Full Text Available Metal matrix composites reinforced with ceramic particles have become the most attractive material in the research and development of new materials for thermal management applications. In this work, 40–60 vol. % TiCx-TiB2/Al composites were successfully fabricated by the method of combustion synthesis and hot press consolidation in an Al-Ti-B4C system. The effect of the TiCx-TiB2 content on the microstructure and compression properties of the composites was investigated. Moreover, the abrasive wear behavior and thermo-physics properties of the TiCx-TiB2/Al composite were studied and compared with the TiCx/Al composite. The compression properties, abrasive wear behavior and thermo-physics properties of the TiCx-TiB2/Al composite are all better than those of the TiCx/Al composite, which confirms that the TiCx-TiB2/Al composite is more appropriate for application as a heat sink.

  4. Fabrication of TiCx-TiB2/Al Composites for Application as a Heat Sink

    Science.gov (United States)

    Shu, Shili; Yang, Hongyu; Tong, Cunzhu; Qiu, Feng

    2016-01-01

    Metal matrix composites reinforced with ceramic particles have become the most attractive material in the research and development of new materials for thermal management applications. In this work, 40–60 vol. % TiCx-TiB2/Al composites were successfully fabricated by the method of combustion synthesis and hot press consolidation in an Al-Ti-B4C system. The effect of the TiCx-TiB2 content on the microstructure and compression properties of the composites was investigated. Moreover, the abrasive wear behavior and thermo-physics properties of the TiCx-TiB2/Al composite were studied and compared with the TiCx/Al composite. The compression properties, abrasive wear behavior and thermo-physics properties of the TiCx-TiB2/Al composite are all better than those of the TiCx/Al composite, which confirms that the TiCx-TiB2/Al composite is more appropriate for application as a heat sink. PMID:28773765

  5. Search for μ-e conversion in Ti

    Science.gov (United States)

    Bryman, D. A.; Clifford, E. T.; Leitch, M. J.; Navon, I.; Numao, T.; Schlatter, P.; Dixit, M. S.; Hargrove, C. K.; Mes, H.; Burnham, R. A.; Hasinoff, M.; Poutissou, J.-M.; MacDonald, J. A.; Spuller, J.; Azuelos, G.; Depommier, P.; Martin, J.-P.; Poutissou, R.; Blecher, M.; Gotow, K.; Carter, A. L.; Anderson, H. L.; Wright, S. C.

    1985-07-01

    A search has been performed for the lepton-flavor-nonconserving reaction μ-+Ti-->e-+Ti using a time-projection chamber. No candidate events were observed, resulting in a limit of Γ(μ-+Ti-->e-+Ti) / Γ(μ-+Ti-->capture) <1.6×10-11 (90% C.L.) for this reaction relative to ordinary muon capture.

  6. Hydrophobic effect of silica functionalized with silylated Ti ...

    Indian Academy of Sciences (India)

    ) to induce hydrophobicity. The composition of the ... Hydrophobicity; silylation; silica functionalized with silyated Ti-salicylaldimine complex; limonene oxidation ... lysts, such as TiO2-zeolite,3 Ti-SBA-15,4 Ti-POM,5 Ti-. MCM-416 and others, ...

  7. Rapid small lot manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Harrigan, R.W.

    1998-05-09

    The direct connection of information, captured in forms such as CAD databases, to the factory floor is enabling a revolution in manufacturing. Rapid response to very dynamic market conditions is becoming the norm rather than the exception. In order to provide economical rapid fabrication of small numbers of variable products, one must design with manufacturing constraints in mind. In addition, flexible manufacturing systems must be programmed automatically to reduce the time for product change over in the factory and eliminate human errors. Sensor based machine control is needed to adapt idealized, model based machine programs to uncontrolled variables such as the condition of raw materials and fabrication tolerances.

  8. Fabrication and characterization of TiAl/Ti3Al-based intermetallic composites (IMCs) reinforced with ceramic particles

    OpenAIRE

    V. Kevorkijan; S.D. Škapin

    2009-01-01

    Purpose: The purpose of the paper is to fabricate and characterise TiAl/Ti3Al-based intermetallic composites (IMCs) reinforced with ceramic particles.Design/methodology/approach: Composites were formulated by blending commercially available powders of either TiAl or Ti3Al (technical grade with traces of Al and Ti) with ceramic powders (B4C, TiC or TiB2) in appropriate amounts to create titanium aluminide-based matrices with 10, 20, 30, 40 and 50 vol. % of B4C, TiC or TiB2 discontinuo...

  9. Proton irradiation studies on pure Ti and Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Dutta Gupta, A. [Variable Energy Cyclotron Centre, HBNI, 1/AF Bidhannagar, Kolkata (India); Mukherjee, P., E-mail: paramita@vecc.gov.in [Variable Energy Cyclotron Centre, HBNI, 1/AF Bidhannagar, Kolkata (India); Gayathri, N.; Bhattacharyya, P.; Bhattacharya, M. [Variable Energy Cyclotron Centre, HBNI, 1/AF Bidhannagar, Kolkata (India); Sarkar, Apu [Materials Group, Bhabha Atomic Research Centre, Mumbai (India); Sen, S. [Mechanical Engineering, Jadavpur University, Kolkata (India); Mitra, M.K. [Metallurgical and Materials Engineering, Jadavpur University, Kolkata (India)

    2016-11-15

    Post irradiated microstructural characterisation of pure Ti and Ti-6Al-4V has been done as a function of dose using different model based techniques of X-ray diffraction line profile analysis. There is a systematic change of domain size for both the materials with dose but the microstrain within the domain remains almost unaltered. The domain size appears to be lower for pure Ti at all doses as compared to Ti-6Al-4V alloy. XRD peaks became highly asymmetric particularly at a dose of 5 × 10{sup 21} p/m{sup 2} for Ti-6Al-4V samples which is not observed for pure Ti at the same dose. This may be attributed to the segregation of alloying elements as a result of irradiation. Microhardness values increases with dose for pure Ti and then saturates at higher doses whereas microhardness values are found to decrease at higher doses for Ti-6Al-4V.

  10. Rapid Cycling and Its Treatment

    Science.gov (United States)

    ... Announcements Public Service Announcements Partnering with DBSA Rapid Cycling and its Treatment What is bipolar disorder? Bipolar ... to Depression and Manic Depression . What is rapid cycling? Rapid cycling is defined as four or more ...

  11. Aerosol deposition of (Cu,Ti) substituted bismuth vanadate films

    Energy Technology Data Exchange (ETDEWEB)

    Exner, Jörg, E-mail: Functional.Materials@Uni-Bayreuth.de [University of Bayreuth, Department of Functional Materials, Universitätsstraße 30, 95440 Bayreuth (Germany); Fuierer, Paul [Materials and Metallurgical Engineering Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801 (United States); Moos, Ralf [University of Bayreuth, Department of Functional Materials, Universitätsstraße 30, 95440 Bayreuth (Germany)

    2014-12-31

    Bismuth vanadate, Bi{sub 4}V{sub 2}O{sub 11}, and related compounds with various metal (Me) substitutions, Bi{sub 4}(Me{sub x}V{sub 1−x}){sub 2}O{sub 11−δ}, show some of the highest ionic conductivities among the known solid oxide electrolytes. Films of Cu and Ti substituted bismuth vanadate were prepared by an aerosol deposition method, a spray coating process also described as room temperature impact consolidation. Resultant films, several microns in thickness, were dense with good adhesion to the substrate. Scanning electron microscopy and high temperature X-ray diffraction were used to monitor the effects of temperature on the structure and microstructure of the film. The particle size remained nano-scale while microstrain decreased rapidly up to 500 °C, above which coarsening and texturing increased rapidly. Impedance measurements of films deposited on inter-digital electrodes revealed an annealing effect on the ionic conductivity, with the conductivity exceeding that of a screen printed film, and approaching that of bulk ceramic. - Highlights: • Cu and Ti doped bismuth vanadate films were prepared by aerosol deposition (AD). • Dense 3–5 μm thick films were deposited on alumina, silicon and gold electrodes. • Annealing of the AD-layer increases the conductivity by 1.5 orders of magnitude. • Effect of temperature on structure and microstructure was investigated.

  12. Corrosion behaviour of amorphous Ti48Cu52, Ti50Cu50 and ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Potentiodynamic polarization studies were carried out on virgin specimens of amorphous alloys. Ti48Cu52, Ti50Cu50 and Ti60Ni40 in 0⋅5 M HNO3, 0⋅5 M H2SO4 and 0⋅5 M NaOH aqueous media at room tem- perature. The value of the corrosion current density (Icorr) was maximum for Ti48Cu52 alloy in all the ...

  13. On the Nucleation and Growth of Alpha-Ti Off of TiB Precipitates (PREPRINT)

    Science.gov (United States)

    2010-01-01

    the aluminum and oxygen are enriched in α-Ti phase and depleted in the boride . In contrast, the molybdenum and niobium are enriched in the boride ...that a dispersion of thermally stable titanium- boride particles, formed by trace boron additions, was effective in restricting the grain growth...reinforced by the TiB phase [6-13]. The boride particles act as the pinning sites for the grain boundaries. In the TiB reinforced Ti-6Al-4V alloy

  14. Efficient removal of toluene and benzene in gas phase by the TiO2/Y-zeolite hybrid photocatalyst.

    Science.gov (United States)

    Takeuchi, Masato; Hidaka, Manabu; Anpo, Masakazu

    2012-10-30

    Efficient removal of toluene or benzene molecules thinly diffused in gas phase was achieved by using TiO(2)/Y-zeolite hybrid photocatalysts. TiO(2) of 10 wt% hybridized with a hydrophobic USY zeolite showed higher photocatalytic reactivity as compared to TiO(2) hybridized with hydrophilic H-Y or Na-Y zeolites. This phenomenon can be explained by the fact that the hydrophobic USY zeolite efficiently adsorbs the organic compounds and smoothly supplies them onto the TiO(2) photocatalyst surface. However, the toluene or benzene molecules, which are strongly trapped on the hydrophilic H(+) or Na(+) sites of zeolite, cannot diffuse onto the TiO(2) surfaces, resulting in lower photocatalytic reactivity. Although the adsorption capacity of the pure TiO(2) sample rapidly deteriorated, the TiO(2)/Y-zeolite hybrid system maintained a high adsorption efficiency to remove such aromatic compounds for a long period. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Catalyst performance and mechanism of catalytic combustion of dichloromethane (CH2Cl2) over Ce doped TiO2.

    Science.gov (United States)

    Cao, Shuang; Wang, Haiqiang; Yu, Feixiang; Shi, Mengpa; Chen, Shuang; Weng, Xiaole; Liu, Yue; Wu, Zhongbiao

    2016-02-01

    TiO2 and Ce/TiO2 were synthesized and subsequently used for the catalytic combustion of DCM. TiO2 had abundant Lewis acid sites and was responsible for the adsorption and the rupture of C-Cl bonds. However, TiO2 tended to be inactivated because of chloride poisoning due to the adsorption and accumulation of Cl species over the surface. While, Ce/TiO2 obtained total oxidation of CH2Cl2 at 335°C and exhibited stable DCM removal activity on 100h long-time stability tests at 330°C without any catalyst deactivation. The doped cerium generated Ce(3+) chemical states and surface active oxygen, and therefore played important roles from two aspects as follows. First of all, the poisoning of Cl for Ce/TiO2 was inhibited to some extent by CeO2 due to the rapid removal of Cl on the surface of CeO2, which has been verified by NH3-IR characterization. In the other hand, CeO2 enhanced the further deep oxidation of C-H from byproducts and retained the certain oxidation of CO to CO2. Based on the DRIFT characterization and the catalysts activity tests, a two-step reaction pathway for the catalytic combustion of DCM on Ce/TiO2 catalyst was proposed. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Rapid manufacturing for microfluidics

    CSIR Research Space (South Africa)

    Land, K

    2012-10-01

    Full Text Available . Microfluidics is at the forefront of developing solutions for drug discovery, diagnostics (from glucose tests to malaria and TB testing) and environmental diagnostics (E-coli monitoring of drinking water). In order to quickly implement new designs, a rapid...

  17. Rapid Prototyping in PVS

    Science.gov (United States)

    Munoz, Cesar A.; Butler, Ricky (Technical Monitor)

    2003-01-01

    PVSio is a conservative extension to the PVS prelude library that provides basic input/output capabilities to the PVS ground evaluator. It supports rapid prototyping in PVS by enhancing the specification language with built-in constructs for string manipulation, floating point arithmetic, and input/output operations.

  18. Rapid Prototyping Reconsidered

    Science.gov (United States)

    Desrosier, James

    2011-01-01

    Continuing educators need additional strategies for developing new programming that can both reduce the time to market and lower the cost of development. Rapid prototyping, a time-compression technique adapted from the high technology industry, represents one such strategy that merits renewed evaluation. Although in higher education rapid…

  19. Improvement of NO Gas Sensing Properties of Polyaniline/MWCNT Composite by Photocatalytic Effect of TiO2

    Directory of Open Access Journals (Sweden)

    Jumi Yun

    2013-01-01

    Full Text Available The highly sensitive and rapid NO gas sensor was prepared with polyaniline/TiO2/carbon nanotube composites. Aniline was polymerized on the surface of carbon nanotube (p-type semiconductor with embedding TiO2. The gas sensing property was measured by the changes of electrical resistance without or with UV irradiation to investigate the photodegradation of NO by TiO2. The photo-degraded products such as HNO2, NO2, and HNO3, which were adsorbed on the PANi-coated carbon nanotubes, resulted in the decreased electrical resistance in the p-type semiconductors of carbon nanotube and polyaniline. The advantages of TiO2 photocatalyst in gas sensing were apparent in the improvement in both sensitivity and response rate.

  20. Synthesis and Characterization of Hierarchical Structured TiO2 Nanotubes and Their Photocatalytic Performance on Methyl Orange

    Directory of Open Access Journals (Sweden)

    Kai Liu

    2015-01-01

    Full Text Available Hierarchical structured TiO2 nanotubes were prepared by mechanical ball milling of highly ordered TiO2 nanotube arrays grown by electrochemical anodization of titanium foil. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, specific surface area analysis, UV-visible absorption spectroscopy, photocurrent measurement, photoluminescence spectra, electrochemical impedance spectra, and photocatalytic degradation test were applied to characterize the nanocomposites. Surface area increased as the milling time extended. After 5 h ball milling, TiO2 hierarchical nanotubes exhibited a corn-like shape and exhibited enhanced photoelectrochemical activity in comparison to commercial P25. The superior photocatalytic activity is suggested to be due to the combined advantages of high surface area of nanoparticles and rapid electron transfer as well as collection of the nanotubes in the hierarchical structure. The hierarchical structured TiO2 nanotubes could be applied into flexible applications on solar cells, sensors, and other photoelectrochemical devices.

  1. Dendritic Arm Spacing Affecting Mechanical Properties and Wear Behavior of Al-Sn and Al-Si Alloys Directionally Solidified under Unsteady-State Conditions

    Science.gov (United States)

    Cruz, Kleber S.; Meza, Elisangela S.; Fernandes, Frederico A. P.; Quaresma, José M. V.; Casteletti, Luiz C.; Garcia, Amauri

    2010-04-01

    Alloys of Al-Sn and Al-Si are widely used in tribological applications such as cylinder liners and journal bearings. Studies of the influence of the as-cast microstructures of these alloys on the final mechanical properties and wear resistance can be very useful for planning solidification conditions in order to permit a desired level of final properties to be achieved. The aim of the present study was to contribute to a better understanding about the relationship between the scale of the dendritic network and the corresponding mechanical properties and wear behavior. The Al-Sn (15 and 20 wt pct Sn) and Al-Si (3 and 5 wt pct Si) alloys were directionally solidified under unsteady-state heat flow conditions in water-cooled molds in order to permit samples with a wide range of dendritic spacings to be obtained. These samples were subjected to tensile and wear tests, and experimental quantitative expressions correlating the ultimate tensile strength (UTS), yield tensile strength, elongation, and wear volume to the primary dendritic arm spacing (DAS) have been determined. The wear resistance was shown to be significantly affected by the scale of primary dendrite arm spacing. For Al-Si alloys, the refinement of the dendritic array improved the wear resistance, while for the Al-Sn alloys, an opposite effect was observed, i.e., the increase in primary dendrite arm spacing improved the wear resistance. The effect of inverse segregation, which is observed for Al-Sn alloys, on the wear resistance is also discussed.

  2. Preparation of [45Ti] Ti-salan-dipic

    DEFF Research Database (Denmark)

    Severin, Gregory W.; Jensen, Andreas Tue Ingemann; Fonslet, Jesper

    2014-01-01

    of the final compound upon ligand exchange to dipic. [45Ti]Ti-salan-dipic was characterized by radio-TLC on silica in 1:1 ethylacetate:chloroform in comparison to the cold compound. This is a hydrolytically stable, cytotoxic, 45Ti compound. The solid-phase synthesis is robust, and provides opportunity...

  3. Corrosion behaviour of amorphous Ti48Cu52, Ti50Cu50 and ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 26; Issue 6. Corrosion behaviour of amorphous Ti48Cu52, Ti50Cu50 and Ti60Ni40 alloys investigated by potentiodynamic polarization method. A Dhawan S Roychowdhury P K De S K Sharma. Corrosion Volume 26 Issue 6 October 2003 pp 609-612 ...

  4. Laser welding of NiTi wires

    Energy Technology Data Exchange (ETDEWEB)

    Gugel, H. [Institute for Materials, Materials Technology, Ruhr-University Bochum, Bochum (Germany)], E-mail: hajo.gugel@rub.de; Schuermann, A.; Theisen, W. [Institute for Materials, Materials Technology, Ruhr-University Bochum, Bochum (Germany)

    2008-05-25

    The special properties of nickel-titanium shape memory alloys are currently used in micro-engineering and medical technology. In order to integrate NiTi components into existing parts and modules, they often need to be joined to other materials. For this reason, the present contribution deals with the laser welding of thin pseudoelastic NiTi wires (100 {mu}m) with an Nd:YAG laser. Based on extensive parameter studies, faultless joints were produced. This study deals with the structural changes occurring in the fusion and heat-affected zones, the performance of the joints in static tensile tests and their functional fatigue. It can be shown that NiTi/NiTi joints reach about 75% of the ultimate tensile strength of pure NiTi wires. For welding NiTi to steel, no interlayer was used. The dissimilar NiTi/steel joints provide a bonding strength in the fusion and heat-affected zones higher than the plateau stress level. NiTi/steel joints of thin wires, as a new aspect, enable the possibility to benefit from the pseudoelastic properties of the NiTi component.

  5. Comparative activity of TiO{sub 2} microspheres and P25 powder for organic degradation: Implicative importance of structural defects and organic adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chuan [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122 (China); Liu, Hong, E-mail: liuhong@cigit.ac.cn [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122 (China); Liu, Yuan [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122 (China); He, Guang’an [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Jiang, Chengchun [School of Civil and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055 (China)

    2014-11-15

    Highlights: • Adsorption of TiO{sub 2} microspheres was stronger than P25, while less active. • P25 was more active owing to its oxygen vacancy and Ti(III). • Difference in the adsorption abilities of TiO{sub 2} microspheres varied kinetic models. - Abstract: TiO{sub 2} microspheres have been employed as a promisingly new photocatalyst for water and wastewater treatment. P25 TiO{sub 2} is commonly employed and its properties are well established as photocatalyst. In this study, photocatalytic activities of the two TiO{sub 2} samples are compared by degrading sulfosalicylic acid (SSA), phenol, and 2,4-Dichlorophenoxyacetic acid (2,4-D) under 365 nm UV illumination in a suspension system at neutral pH and associated optimized TiO{sub 2} dosages. The results showed that the three organic compounds unexceptionally degraded more rapidly on P25 than on TiO{sub 2} microspheres in terms of the concentration–time curves and total organic carbon removals at 120 min. This might me attributed the presence of oxygen vacancies and Ti(III) defects already present on P25 as determined by electron paramagnetic resonance, implying that the defects played an important role for the enhancement of the charge transfer step as rate-determining step. The degradations of three organic compounds on P25 and TiO{sub 2} microspheres could be well described by the first-order rate equation, while the degradation kinetics of SSA on TiO{sub 2} microspheres was quite different. The difference was ascribed to the medium adsorption ability of SSA on the TiO{sub 2} surface.

  6. Rapid prototyping with high power fiber lasers

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, R.M. [Faculty of Sciences and Technology, New University Lisbon (Portugal); IDMEC, Instituto Superior Tecnico, TULISBON, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Lopes, G. [Welding Engineering Research Centre, Building 46, Cranfield University, Bedfordshire, MK43 0AL (United Kingdom); Quintino, L. [IDMEC, Instituto Superior Tecnico, TULISBON, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)], E-mail: lquintino@ist.utl.pt; Rodrigues, J.P. [IDMEC, Instituto Superior Tecnico, TULISBON, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Williams, S. [Welding Engineering Research Centre, Building 46, Cranfield University, Bedfordshire, MK43 0AL (United Kingdom)

    2008-12-15

    Laser rapid prototyping technologies comprise a set of technologies used in a wide range of materials to produce prototypes or small batches of complex shaped components. This paper presents a research work on rapid prototyping technology with laser additive manufacture of wire based alloy Ti-6Al-4V with an 8 kW fiber laser for the production of components with cylindrical geometry. For this, an engineering system was developed, a demonstration part produced and the deposition process was characterized. Two processing parameters were investigated: and these were the relative position between the wire feeding system and the substrate and the laser beam to wire width ratio. The former affects the molten metal transfer mode and the pressure exerted by the wire tip on the molten pool, while the laser beam to wire width ratio affects the process efficiency, since this is a compromise of process stability and process speed. Both parameters control surface finishing and the smoothness of the part. The melting efficiency of the process is low when compared to alternative processes involving powder pre deposition, but the density of the part is improved with homogeneous structural characteristics.

  7. Tool geometry and damage mechanisms influencing CNC turning efficiency of Ti6Al4V

    Science.gov (United States)

    Suresh, Sangeeth; Hamid, Darulihsan Abdul; Yazid, M. Z. A.; Nasuha, Nurdiyanah; Ain, Siti Nurul

    2017-12-01

    Ti6Al4V or Grade 5 titanium alloy is widely used in the aerospace, medical, automotive and fabrication industries, due to its distinctive combination of mechanical and physical properties. Ti6Al4V has always been perverse during its machining, strangely due to the same mix of properties mentioned earlier. Ti6Al4V machining has resulted in shorter cutting tool life which has led to objectionable surface integrity and rapid failure of the parts machined. However, the proven functional relevance of this material has prompted extensive research in the optimization of machine parameters and cutting tool characteristics. Cutting tool geometry plays a vital role in ensuring dimensional and geometric accuracy in machined parts. In this study, an experimental investigation is actualized to optimize the nose radius and relief angles of the cutting tools and their interaction to different levels of machining parameters. Low elastic modulus and thermal conductivity of Ti6Al4V contribute to the rapid tool damage. The impact of these properties over the tool tips damage is studied. An experimental design approach is utilized in the CNC turning process of Ti6Al4V to statistically analyze and propose optimum levels of input parameters to lengthen the tool life and enhance surface characteristics of the machined parts. A greater tool nose radius with a straight flank, combined with low feed rates have resulted in a desirable surface integrity. The presence of relief angle has proven to aggravate tool damage and also dimensional instability in the CNC turning of Ti6Al4V.

  8. Alloy composition dependence of formation of porous Ni prepared by rapid solidification and chemical dealloying

    Energy Technology Data Exchange (ETDEWEB)

    Qi Zhen [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China); Zhang Zhonghua [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China)], E-mail: zh_zhang@sdu.edu.cn; Jia Haoling [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China); Qu Yingjie [Shandong Labor Occupational Technology College, Jingshi Road 388, Jinan 250022 (China); Liu Guodong; Bian Xiufang [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China)

    2009-03-20

    In this paper, the effect of alloy composition on the formation of porous Ni catalysts prepared by chemical dealloying of rapidly solidified Al-Ni alloys has been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and N{sub 2} adsorption experiments. The experimental results show that rapid solidification and alloy composition have a significant effect on the phase constituent and microstructure of Al-Ni alloys. The melt spun Al-20 at.% Ni alloy consists of {alpha}-Al, NiAl{sub 3} and Ni{sub 2}Al{sub 3}, while the melt spun Al-25 and 31.5 at.% Ni alloys comprise NiAl{sub 3} and Ni{sub 2}Al{sub 3}. Moreover, the formation and microstructure of the porous Ni catalysts are dependent upon the composition of the melt spun Al-Ni alloys. The morphology and size of Ni particles in the Ni catalysts inherit from those of grains in the melt spun Al-Ni alloys. Rapid solidification can extend the alloy composition of Al-Ni alloys suitable for preparation of the Ni catalysts, and obviously accelerate the dealloying process of the Al-Ni alloys.

  9. Rapid solid-state metathesis route to transition-metal doped titanias

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Nathaniel; Perera, Sujith; Gillan, Edward G., E-mail: edward-gillan@uiowa.edu

    2015-12-15

    Rapid solid-state metathesis (SSM) reactions are often short-lived highly exothermic reactions that yield a molten alkali halide salt that aids in product growth and crystallization. SSM reactions may also produce kinetically stabilized structures due to the short (seconds) reaction times. This report describes the investigation of rapid SSM reactions in the synthesis of transition-metal doped titanias (M–TiO{sub 2}). The dopant targeted compositions were ten mol percent and based on elemental analysis, many of the M–TiO{sub 2} samples were close to this targeted level. Based on surface analysis, some samples showed large enrichment in surface dopant content, particularly chromium and manganese doped samples. Due to the highly exothermic nature of these reactions, rutile structured TiO{sub 2} was observed in all cases. The M–TiO{sub 2} samples are visible colored and show magnetic and optical properties consistent with the dopant in an oxide environment. UV and visible photocatalytic experiments with these visibly colored rutile M–TiO{sub 2} powders showed that many of them are strongly absorbent for methylene blue dye and degrade the dye under both UV and visible light illumination. This work may open up SSM reactions as an alternate non-thermodynamic reaction strategy for dopant incorporation into a wide range of oxide and non-oxides.

  10. In-situ formation of laser Ti 6 Al 4 V–TiB composite coatings on Ti 6 Al 4 V alloy for biomedical application

    CSIR Research Space (South Africa)

    Popoola, API

    2016-01-01

    Full Text Available Ti 6 Al 4 V alloy has been widely used for medical implants due to good mechanical properties. For permanent implant applications Ti 6 Al 4 V alloy has shown to have low corrosion and wear resistance. Based on these the development of in-situ Ti 6 Al 4 V–Ti...

  11. Effect of TiH{sub 2} in the preparation of MMC Ti based with TiC reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Peillon, N.; Fruhauf, J.B. [Ecole Nationale Supérieure des Mines de Saint-Etienne, LGF UMR5307 CNRS, 42023 Saint-Etienne Cedex 2 (France); Gourdet, S. [EADS Innovation Works, 12, Rue Pasteur, BP 76, 92152 Suresnes Cedex (France); Feraille, J. [Eurocopter SA, Aéroport International de Marseille, 13725 Marignane Cedex (France); Saunier, S.; Desrayaud, C. [Ecole Nationale Supérieure des Mines de Saint-Etienne, LGF UMR5307 CNRS, 42023 Saint-Etienne Cedex 2 (France)

    2015-01-15

    Highlights: • Using TiH{sub 2} precursors promotes the MMC densification and microstructure homogeneity. • Clear description of the TiH{sub 2} interest and limitations. • Coupling of TGA, TMA and EBSD analyses to investigate the sintering process of MMC. • Process parameters: granulometry, precursor composition, temperature and rate. - Abstract: Many studies were carried out on the elaboration Metal Matrix Composites (MMCs) and a wide variety of process is reported in the bibliography. For titanium based MMC, the basis material for these elaboration techniques mainly consists of atomized titanium powder. In this work a titanium hydride powder is used to elaborate Ti/TiC MMC. Although an additional dehydrogenation operation is required a significant decrease of the sintering temperature is expected with this basis powder. In this context, the behavior of titanium hydride powder mixed with 0, 10 and 20 vol.% TiC reinforcement is studied during densification by free sintering. The effects of particle size, temperature and rate of sintering reinforcement are discussed. The comparison of the TiH{sub 2} process with Ti HDH (Hydride Dehydride) and atomized Ti mixture is made with 10 vol.% reinforcement. The results indicate that the sintering temperature is lowered and the final densities achieved are higher if the hydride is used. Interactions between dehydrogenation and sintering mechanisms clearly appear for the higher sintering temperature rate (10 °C/min) and need specific attention to prevent porosity nucleation through hydrogen entrapment.

  12. Lithiation Thermodynamics and Kinetics of the TiO2(B) Nanoparticles.

    Science.gov (United States)

    Hua, Xiao; Liu, Zheng; Fischer, Michael G; Borkiewicz, Olaf; Chupas, Peter J; Chapman, Karena W; Steiner, Ullrich; Bruce, Peter G; Grey, Clare P

    2017-09-27

    TiO 2 (B) has attracted considerable attention in recent years because it exhibits the largest capacity among all studied titania polymorphs, with high rate performance for Li intercalation being achieved when this material is nanostructured. However, due to the complex nature of its lithiation mechanism and practical challenges in probing Li structure in nanostructured materials, a definitive understanding of the lithiation thermodynamics has yet to be established. A comprehensive mechanistic investigation of the TiO 2 (B) nanoparticles is therefore presented using a combination of in situ/operando X-ray pair distribution function (PDF) and electrochemical techniques. The discharge begins with surface reactions in parallel with Li insertion into the subsurface of the nanoparticles. The Li bulk insertion starts with a single-phase reaction into the A2 site, a position adjacent to the b-channel. A change of the Li diffusion pathway from that along this open channel to that along the c-direction is likely to occur at the composition of Li 0.25 TiO 2 until Li 0.5 TiO 2 is attained, leading to a two-step A2-site incorporation with one step kinetically distinct from the other. Subsequent Li insertion involves the C' site, a position situated inside the channel, and follows a rapid two-phase reaction to form Li 0.75 TiO 2 . Due to the high diffusion barrier associated with the further lithiation, Li insertion into the A1 site, another position adjacent to the channel neighboring the A2 sites, is kinetically restricted. This study not only explores the lithiation reaction thermodynamics and mechanisms of nanoparticulate TiO 2 (B) but also serves as a strong reference for future studies of the bulk phase, and for future calculations to study the Li transport properties of TiO 2 (B).

  13. Fabrication of TiCx-TiB2/Al Composites for Application as a Heat Sink

    OpenAIRE

    Shili Shu; Hongyu Yang; Cunzhu Tong; Feng Qiu

    2016-01-01

    Metal matrix composites reinforced with ceramic particles have become the most attractive material in the research and development of new materials for thermal management applications. In this work, 40–60 vol. % TiCx-TiB2/Al composites were successfully fabricated by the method of combustion synthesis and hot press consolidation in an Al-Ti-B4C system. The effect of the TiCx-TiB2 content on the microstructure and compression properties of the composites was investigated. Moreover, the abrasiv...

  14. Rapid manufacturing facilitated customisation

    OpenAIRE

    Tuck, Christopher John; Hague, Richard; Ruffo, Massimiliano; Ransley, Michelle; Adams, Paul Russell

    2008-01-01

    Abstract This paper describes the production of body-fitting customised seat profiles utilising the following digital methods: three dimensional laser scanning, reverse engineering and Rapid Manufacturing (RM). The seat profiles have been manufactured in order to influence the comfort characteristics of an existing ejector seat manufactured by Martin Baker Aircraft Ltd. The seat, known as Navy Aircrew Common Ejection Seat (NACES), was originally designed with a generic profile. ...

  15. Rapid Detection of Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    David Perlin

    2005-08-14

    Pathogen identification is a crucial first defense against bioterrorism. A major emphasis of our national biodefense strategy is to establish fast, accurate and sensitive assays for diagnosis of infectious diseases agents. Such assays will ensure early and appropriate treatment of infected patients. Rapid diagnostics can also support infection control measures, which monitor and limit the spread of infectious diseases agents. Many select agents are highly transmissible in the early stages of disease, and it is critical to identify infected patients and limit the risk to the remainder of the population and to stem potential panic in the general population. Nucleic acid-based molecular approaches for identification overcome many of the deficiencies associated with conventional culture methods by exploiting both large- and small-scale genomic differences between organisms. PCR-based amplification of highly conserved ribosomal RNA (rRNA) genes, intergenic sequences, and specific toxin genes is currently the most reliable approach for bacterial, fungal and many viral pathogenic agents. When combined with fluorescence-based oligonucleotide detection systems, this approach provides real-time, quantitative, high fidelity analysis capable of single nucleotide allelic discrimination (4). These probe systems offer rapid turn around time (<2 h) and are suitable for high throughput, automated multiplex operations that are critical for clinical diagnostic laboratories. In this pilot program, we have used molecular beacon technology invented at the Public health Research Institute to develop a new generation of molecular probes to rapidly detect important agents of infectious diseases. We have also developed protocols to rapidly extract nucleic acids from a variety of clinical specimen including and blood and tissue to for detection in the molecular assays. This work represented a cooperative research development program between the Kramer-Tyagi/Perlin labs on probe development

  16. Si incorporation in Ti1-xSixN films grown on TiN(001) and (001)-faceted TiN(111) columns

    OpenAIRE

    Eriksson, Anders; Tengstrand, Olof; Lu, Jun; Jensen, Jens; Eklund, Per; Rosén, Johanna; Petrov, Ivan; Greene, Joseph E; Hultman, Lars

    2014-01-01

    Thin films consisting of TiN nanocrystallites encapsulated in a fully percolated SiNy tissue phase are archetypes for hard and superhard nanocomposites. Here, we investigate metastable SiNy solid solubility in TiN and probe the effects of surface segregation during the growth of TiSiN films onto substrates that are either flat TiN(001)/MgO(001) epitaxial buffer layers or TiN(001) facets of length 1-5 nm terminating epitaxial TiN(111) nanocolumns, separated by voids, deposited on epitaxial TiN...

  17. Highly efficient dual cocatalyst-modified TiO2 photocatalyst: RGO as electron-transfer mediator and MoSx as H2-evolution active site

    Science.gov (United States)

    Xu, Ying; Li, Yongan; Wang, Ping; Wang, Xuefei; Yu, Huogen

    2018-02-01

    The rapid interfacial charge transfer and interfacial catalytic reaction are highly desirable to improve the photocatalytic H2-evolution performance of semiconductor photocatalysts. To achieve the goal, in the paper, MoSx-rGO/TiO2 was synthesized by a facilely two-step photocatalytic reduction approach including reducing GO/TiO2 to rGO/TiO2 and then reducing ammonium tetrathiomolybdate ((NH4)2MoS4) to form amorphous MoSx on the rGO surface. In the case, the rGO nanosheets as an electron mediator caused rapid transportation of photogenerated electrons from the conduction band (CB) of TiO2, while amorphous MoSx served as an effective active site for the following interfacial reduction reaction for H2 evolution. The photocatalytic results indicated that the H2-evolution rate of synthesized MoSx-rGO/TiO2 was 206.6 μmol h-1, which was obviously higher than that of TiO2 (6.9 μmol h-1), rGO/TiO2 (31.8 μmol h-1) and MoSx/TiO2 (150.1 μmol h-1) due to the rapid interfacial charge transfer and interfacial catalytic reaction. Considering the present mild and green approach, the obtained MoSx-rGO/TiO2 could be regarded as a potential photocatalyst for the practical application. In addition, this work also could provide some new insights for the smart design and preparation of inexpensive and high-efficiency photocatalytic materials.

  18. Facile incorporation of hydroxyapatite onto an anodized Ti surface via a mussel inspired polydopamine coating

    Science.gov (United States)

    Zhe, Wang; Dong, Chaofang; Sefei, Yang; Dawei, Zhang; Kui, Xiao; Xiaogang, Li

    2016-08-01

    Inspired by the porous morphology of anodized Ti and the adhesive versatility of polydopamine (PDA), which can induce apatite mineralization, we fabricated a novel interface by coating a porous anodized TiO2 layer with PDA to rapidly immobilize HA on Ti-based substrates. It was found that the as-prepared PDA/anodized (HD) surface exhibited nanoscale roughness, which possessed an excellent ability to form apatite when immersed in 1.5× simulated body fluid (SBF), as observed by AFM and FE-SEM. The morphology and composition of each layer were further confirmed by XPS, XRD and FTIR. The corrosion resistance of the multilayer was investigated using potentiodynamic polarization curve and electrochemical impedance spectra (EIS) measurements in a 0.9 wt% NaCl solution, the results suggested that the HA/PDA/anodized (HDA) layer increased the corrosion resistance of pure Ti with higher corrosion potential and lower passive current, the surface wettability was also enhanced with the incorporation of HA. In vitro cellular assays showed that the HDA layer stimulated cell attachment and improved the alkaline phosphate (ALP) activity. Overall, the PDA/anodized treatment provided a viable method to quickly integrate HA, and the obtained HDA layer improved both corrosion resistance and biocompatibility of the Ti surface.

  19. Tiber Personal Rapid Transit

    Directory of Open Access Journals (Sweden)

    Diego Carlo D'agostino

    2011-02-01

    Full Text Available The project “Tiber Personal Rapid Transit” have been presented by the author at the Rome City Vision Competition1 2010, an ideas competition, which challenges architects, engineers, designers, students and creatives individuals to develop visionary urban proposals with the intention of stimulating and supporting the contemporary city, in this case Rome. The Tiber PRT proposal tries to answer the competition questions with the definition of a provocative idea: a Personal Rapid transit System on the Tiber river banks. The project is located in the central section of the Tiber river and aims at the renewal of the river banks with the insertion of a Personal Rapid Transit infrastructure. The project area include the riverbank of Tiber from Rome Transtevere RFI station to Piazza del Popolo, an area where main touristic and leisure attractions are located. The intervention area is actually no used by the city users and residents and constitute itself a strong barrier in the heart of the historic city.

  20. Corrosion behaviour of Al-Fe-Ti-V medium entropy alloy

    Science.gov (United States)

    Bodunrin, M. O.; Obadele, B. A.; Chown, L. H.; Olubambi, P. A.

    2017-12-01

    Alloys containing up to four multi-principal elements in equiatomic ratios are referred to as medium entropy alloys (MEA). These alloys have attracted the interest of many researchers due to the superior mechanical properties it offers over the traditional alloys. The design approach of MEA often results to simple solid solution with either body centered cubic; face centered cubic structures or both. As the consideration for introducing the alloys into several engineering application increases, there have been efforts to study the corrosion behaviour of these alloys. Previous reports have shown that some of these alloys are more susceptible to corrosion when compared with traditional alloys due to lack of protective passive film. In this research, we have developed AlFeTiV medium entropy alloys containing two elements (Ti and Al) that readily passivate when exposed to corrosive solutions. The alloys were produced in vacuum arc furnace purged with high purity argon. Open circuit potential and potentiodynamic polarisation tests were used to evaluate the corrosion behaviour of the as-cast AlFeTiV alloy in 3.5 wt% NaCl and 1 M H2SO4. The corrosion performance of the alloy was compared with Ti-6Al-4V alloy tested under similar conditions. The results show that unlike in Ti-6Al-4V alloy, the open circuit potential of the AlFeTiV alloy move towards the negative values in both 3.5 wt% NaCl and 1 M H2SO4 solutions indicating that self-activation occurred rapidly on immersion. Anodic polarisation of the alloys showed that AlFeTiV alloy exhibited a narrow range of passivity in both solutions. In addition, the alloys exhibited lower Ecorr and higher Icorr when compared with traditional Ti-6Al-4V alloy. The traditional Ti-6Al-4V alloy showed superior corrosion resistant to the AlFeTiV alloy in both 3.5 wt.% NaCl and 1 M H2SO4 solutions.

  1. Comparative study on the catalytic electrooxidative abilities of RuO(x)-PdO-TiO(2)/Ti and RuO(x)-PdO/Ti anode.

    Science.gov (United States)

    Du, Lin; Wang, Yu; Dai, Shijun; Pei, Juan; Qin, Song; Hu, Changwei

    2011-01-30

    Comparative study of the catalytic electrooxidative abilities of RuO(x)-PdO/Ti and RuO(x)-PdO-TiO(2)/Ti were conducted using Active Orange 5R solution as simulated wastewater. RuO(x)-PdO-TiO(2)/Ti anode possesses higher catalytic oxidation ability, as compared to RuO(x)-PdO/Ti, in both direct oxidation and indirect oxidation processes. RuO(x)-PdO-TiO(2)/Ti could provide a discoloration rate of 98.14% within 30 min, while the COD removal could reach 51.43% in 120 min. It was indicated that higher electrooxidation ability could be achieved at RuO(x)-PdO-TiO(2)/Ti anode, which exhibited lower chlorine evolution potential and higher oxygen evolution potential probably resulted from the higher oxidation states of Ru and Pd. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Preparation of MoS2/TiO2based nanocomposites for photocatalysis and rechargeable batteries: progress, challenges, and perspective.

    Science.gov (United States)

    Chen, Biao; Meng, Yuhuan; Sha, Junwei; Zhong, Cheng; Hu, Wenbin; Zhao, Naiqin

    2017-12-21

    The rapidly increasing severity of the energy crisis and environmental degradation are stimulating the rapid development of photocatalysts and rechargeable lithium/sodium ion batteries. In particular, MoS 2 /TiO 2 based nanocomposites show great potential and have been widely studied in the areas of both photocatalysis and rechargeable lithium/sodium ion batteries due to their superior combination properties. In addition to the low-cost, abundance, and high chemical stability of both MoS 2 and TiO 2 , MoS 2 /TiO 2 composites also show complementary advantages. These include the strong optical absorption of TiO 2 vs. the high catalytic activity of MoS 2 , which is promising for photocatalysis; and excellent safety and superior structural stability of TiO 2 vs. the high theoretic specific capacity and unique layered structure of MoS 2 , thus, these composites are exciting as anode materials. In this review, we first summarize the recent progress in MoS 2 /TiO 2 -based nanomaterials for applications in photocatalysis and rechargeable batteries. We highlight the synthesis, structure and mechanism of MoS 2 /TiO 2 -based nanomaterials. Then, advancements and strategies for improving the performance of these composites in photocatalytic degradation, hydrogen evolution, CO 2 reduction, LIBs and SIBs are critically discussed. Finally, perspectives on existing challenges and probable opportunities for future exploration of MoS 2 /TiO 2 -based composites towards photocatalysis and rechargeable batteries are presented. We believe the present review would provide enriched information for a deeper understanding of MoS 2 /TiO 2 composites and open avenues for the rational design of MoS 2 /TiO 2 based composites for energy and environment-related applications.

  3. Microstructural characterization and interactions in Ti- and TiH2-hydroxyapatite vacuum sintered composites

    Directory of Open Access Journals (Sweden)

    Marcelo Teresa Maria

    2006-01-01

    Full Text Available Titanium/hydroxyapatite (HAP composites are candidate materials for biomedical applications as implants and hard tissue substitutes since they combine the good mechanical properties and biocompatibility of Ti with the excellent HAP bioactivity and osteointegration. In powder metallurgy processing of these composites, HAP decomposition promoted by Ti during powder sintering is found. In a previous work Ti-50v%HAP greens of 60% theoretical density (dT were vacuum sintered at 1150 degreesC and formation of CaO and Ca4O(PO42 (TTCP resulting from the HAP decomposition, as well as Ti4P3 at the Ti/HAP interfaces was obtained. In the present work those composites are compared with similar ones processed from TiH2 as a substitute for Ti which were also vacuum sintered at 1150 degreesC from greens with 60 to 86%dT. For the lower %dT, the compounds formed were CaO, TTCP and Ti4P3 and for the higher %dT ones, besides those same products, CaTiO3, Ti5P3 and a phase containing Ti, Ca and P were detected.

  4. Electrolytic Production of Ti5Si3/TiC Composites by Solid Oxide Membrane Technology

    Science.gov (United States)

    Zheng, Kai; Zou, Xingli; Xie, Xueliang; Lu, Changyuan; Chen, Chaoyi; Xu, Qian; Lu, Xionggang

    2018-02-01

    This paper investigated the electrolytic production of Ti5Si3/TiC composites from TiO2/SiO2/C in molten CaCl2. The solid-oxide oxygen-ion-conducting membrane tube filled with carbon-saturated liquid tin was served as the anode, and the pressed spherical TiO2/SiO2/C pellet was used as the cathode. The electrochemical reduction process was carried out at 1273 K and 3.8 V. The characteristics of the obtained cathode products and the reaction mechanism of the electroreduction process were studied by a series of time-dependent electroreduction experiments. It was found that the electroreduction process generally proceeds through the following steps: TiO2/SiO2/C → Ti2O3, CaTiO3, Ca2SiO4, SiC → Ti5Si3, TiC. The morphology observation and the elemental distribution analysis indicate that the reaction routes for Ti5Si3 and TiC products are independent during the electroreduction process.

  5. XPS STRUCTURE ANALYSIS OF TiN/TiC BILAYERS PRODUCED BY PULSED VACUUM ARC DISCHARGE

    Directory of Open Access Journals (Sweden)

    ELISABETH RESTREPO PARRA

    2010-01-01

    Full Text Available se crecieron bicapas de TiN/TiC sobre sustratos de acero inoxidable 304 usando un sistema de deposición física de vapor asistida por plasma en forma de arco pulsado a dos diferentes temperaturas del sustrato (50º C y150º C. Para el análisis de la composición química se empleó la técnica de la espectroscopía de fotoelectrones de rayos X (XPS. Se observó el comportamiento de las líneas Ti2p, N1s y C1s. Los análisis de energía de enlace confirmaron la conformación de TiN y TiC. Los picos C1s y Ti2p sufrieron un corrimiento a medida que se incrementó el tiempo de esputtering, revelando contaminación debido a la presencia de hidrocarburos. Además, los perfiles de profundidad de las bicapas de TiN/TiC mostraron que las películas crecidas a una temperatura de 150 ° C tienen una capa de TiN más gruesa que las muestras crecidas a 50º C. El nitrógeno se difundió en la capa de TiC y el carbón en la capa de TiN para ambas temperaturas.

  6. Low modulus and bioactive Ti/α-TCP/Ti-mesh composite prepared by spark plasma sintering.

    Science.gov (United States)

    Guo, Yu; Tan, Yanni; Liu, Yong; Liu, Shifeng; Zhou, Rui; Tang, Hanchun

    2017-11-01

    A titanium mesh scaffold composite filled with Ti/α-TCP particles was prepared by spark plasma sintering (SPS). The microstructures and interfacial reactions of the composites were investigated by scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD) analyses. The compressive strength and elastic modulus were also measured. In vitro bioactivity and biocompatibility was evaluated by using simulated body fluid and cells culture, respectively. After high temperature sintering, Ti oxides, TixPy and CaTiO3 were formed. The formation of Ti oxides and TixPy were resulted from the diffusion of O and P elements from α-TCP to Ti. CaTiO3 was the reaction product of Ti and α-TCP. The composite of 70Ti/α-TCP incorporated with Ti mesh showed a high compressive strength of 589MPa and a low compressive modulus of 30GPa. The bioactivity test showed the formation of a thick apatite layer on the composite and well-spread cells attachment. A good combination of mechanical properties and bioactivity indicated a high potential application of Ti/α-TCP/Ti-mesh composite for orthopedic implants. Copyright © 2017. Published by Elsevier B.V.

  7. Sintering of HDH Ti Powder

    Directory of Open Access Journals (Sweden)

    Kováčik Jaroslav

    2014-12-01

    Full Text Available Titanium powders prepared by hydro-dehydration process (HDH powder were pressure less sintered in vacuum oven at different temperatures, time and green density. The sintering properties of powders of two particle sizes - 30 and 150 microns were investigated. The usual powder metallurgical (PM results were observed, i.e., decreasing final porosity with increasing sintering temperature and time at constant heating rate. Higher green density leading to higher final density for both powder sizes was also observed. The obtained results will be used as comparative material for future sintering experiments of Ti based composites.

  8. Ultraviolet photodetector with high internal gain enhanced by TiO₂/SrTiO₃ heterojunction.

    Science.gov (United States)

    Zhang, Min; Zhang, Haifeng; Lv, Kaibo; Chen, Weiyou; Zhou, Jingran; Shen, Liang; Ruan, Shengping

    2012-03-12

    In this letter, TiO₂ nanocrystalline film was prepared on SrTiO₃ (001) substrate to form an n-n heterojunction active layer. Interdigitated Au electrodes were deposited on the top of TiO₂ film to fabricate modified HMSM (heterojunction metal-semiconductor-metal) ultraviolet photodetector. At 10 V bias, the dark current of the detector was only 0.2 nA and the responsivity was 46.1 A/W at 260 nm. The rise and fall times of the device were 3.5 ms and 1.4 s, respectively. The TiO₂/SrTiO₃ heterojunction contributed a lot to the high responsivity and reduced the fall time, which improved the device performance effectively. These results demonstrate the excellent application of TiO₂/SrTiO₃ heterojunction in fabricating high performance UV photodetectors.

  9. Optical properties of TiAlC/TiAlCN/TiAlSiCN/TiAlSiCO/TiAlSiO tandem absorber coatings by phase-modulated spectroscopic ellipsometry

    Science.gov (United States)

    Jyothi, J.; Biswas, A.; Sarkar, P.; Soum-Glaude, A.; Nagaraja, H. S.; Barshilia, Harish C.

    2017-07-01

    TiAlC, TiAlCN, TiAlSiCN, TiAlSiCO, and TiAlSiO layers of thicknesses 2.2 μm, 755, 491, 393, and 431 nm, respectively, were deposited on stainless steel, silicon, and glass substrates to study their refractive indices and extinction coefficients using the phase-modulated spectroscopic ellipsometry in the wavelength range of 300-1200 nm. Absorption coefficient of each layer was calculated from the extinction coefficient of the layer. The results indicate that the first three layers (i.e., TiAlC, TiAlCN, and TiAlSiCN) are absorbing in nature, while TiAlSiCO and TiAlSiO act as intermediate and antireflection layers. Subsequently, a tandem absorber of TiAlC/TiAlCN/TiAlSiCN/TiAlSiCO/TiAlSiO with layer thicknesses of 62, 20, 18, 16, and 27 nm, respectively, was deposited on stainless steel substrates to fabricate a spectrally selective coating with absorptance of 0.961 and emittance of 0.15 at 82 °C. The obtained refractive indices and extinction coefficients of the tandem absorber were used to simulate the reflectance of the deposited tandem absorber using SCOUT software. Simulated reflectance data of the tandem absorber showed a good agreement with the experimental data measured by UV-Vis-NIR and FTIR spectrophotometry. The angular dependence of the selective properties of the tandem absorber was studied by measuring the reflectance spectra of the tandem absorber at different incident angles.

  10. Antibacterial activity and cell compatibility of TiZrN, TiZrCN, and TiZr-amorphous carbon coatings

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Heng-Li [School of Dentistry, China Medical University, Taichung 404, Taiwan (China); Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan (China); Chang, Yin-Yu, E-mail: yinyu@nfu.edu.tw [Department of Mechanical and Computer-aided Engineering, National Formosa University, Yunlin 632, Taiwan (China); Liu, Jia-Xu [Department of Mechanical and Computer-aided Engineering, National Formosa University, Yunlin 632, Taiwan (China); Tsai, Ming-Tzu [Department of Biomedical Engineering, Hungkuang University, Taichung 433, Taiwan (China); Lai, Chih-Ho [Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan (China)

    2015-12-01

    A cathodic-arc evaporation system with plasma-enhanced duct equipment was used to deposit TiZrN, TiZrCN, and TiZr/a-C coatings. Reactive gases (N{sub 2} and C{sub 2}H{sub 2}) activated by the Ti and Zr plasma in the evaporation process was used to deposit the TiZrCN and TiZr/a-C coatings with different C and nitrogen contents. The crystalline structures and bonding states of coatings were analyzed by X-ray diffraction and X-ray photoelectron spectroscopy. The microbial activity of the coatings was evaluated against Staphylococcus aureus (Gram-positive bacteria) and Actinobacillus actinomycetemcomitans (Gram-negative bacteria) by in vitro antibacterial analysis using a fluorescence staining method employing SYTO9 and a bacterial-viability test on an agar plate. The cell compatibility and morphology related to CCD-966SK cell-line human skin fibroblast cells on the coated samples were also determined using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, reverse-transcriptase-polymerase chain reaction, and scanning electron microscopy. The results suggest that the TiZrCN coatings not only possess better antibacterial performance than TiZrN and TiZr/a-C coatings but also maintain good compatibility with human skin fibroblast cells. - Highlights: • TiZrN, TiZrCN, and TiZr/a-C coatings were deposited using cathodic arc evaporation. • The TiZrCN showed a composite structure containing TiN, ZrN, and a-C. • The TiZrCN-coated Ti showed the least hydrophobicity among the samples. • The TiZrCN-coated Ti showed good human skin fibroblast cell viability. • The TiZrCN-coated Ti exhibited good antibacterial performance.

  11. Eesti-Läti orienteerumisliiga / Markus Puusepp

    Index Scriptorium Estoniae

    Puusepp, Markus, 1986-

    2011-01-01

    Eesti-Läti orienteerumisliiga 2011. aasta esimestest osavõistlustest: OK Kape poolt 16. aprillil Sõõrul korraldatud võistlusest "Tartu Kevad" ja 4.-5. juunil Lätis Cesises toimunud Läti meistrivõistlustest sprindis ja tavarajal

  12. Biphasic thermoelectric materials derived from the half-Heusler/full-Heusler system Ti-Ni-Sn

    Science.gov (United States)

    Douglas, Jason Everett

    comparative energies of formation. We discuss the effects of thermal treatment on the microstructure of biphasic materials comprising hH and fH phases, as well as on their associated thermal transport properties. The fH phase is observed to be semi-coherent with the hH majority phase. Microstructural analysis, both in 2-D and 3-D, shows that the fH solidifies first and the hH then nucleates on these fH dendrites as the melt becomes depleted of Ni. The various heat treatments generated microstructures containing second phase precipitates ranging from 10 nm to a few micrometers, reducing the connectivity of the percolated network observed previously. The materials were characterized with regard to morphology, size, shape and orientation relationship of the fH precipitates with the hH matrix. The precipitate size and morphology are very sensitive to Ni concentration in fH/hH phase. The thermal conductivity is found to drop by 50% as the precipitate size increases; however, this enhancement was not retained after high temperature exposure. In addition to the microstructural implications of TiNi 1+xSn alloying, the (crystal) structural implications of excess Ni in the TiNiSn hH compound were investigated next through a combination of synchrotron x-ray and neutron scattering studies, in conjunction with first principles density functional theory calculations on supercells. Despite the phase diagram suggesting that TiNiSn is a line compound with no solid solution, for small x in TiNi 1+xSn there is indeed an appearance--from careful analysis of the scattering--of some solubility, with the excess Ni occupying the interstitial tetrahedral site in the hH structure. The analysis performed here would point to the excess Ni not being statistically distributed, but rather occurring as coherent nanoclusters. First principles calculations of energetics, carried out using supercells, support a scenario of Ni interstitials clustering, rather than a statistical distribution. Finally, we also

  13. Giant magnetoimpedance intrinsic impedance and voltage sensitivity of rapidly solidified Co{sub 66}Fe{sub 2}Cr{sub 4}Si{sub 13}B{sub 15} amorphous wire for highly sensitive sensors applications

    Energy Technology Data Exchange (ETDEWEB)

    Das, Tarun K.; Mandal, Sushil K. [CSIR - National Metallurgical Laboratory, NDE and Magnetic Materials Group, MST Division, Jamshedpur (India); Banerji, Pallab [Indian Institute of Technology, Kharagpur, Materials Science Centre, Kharagpur (India)

    2016-11-15

    We report a systematic study of the influence of wire length, L, dependence of giant magneto-impedance (GMI) sensitivity of Co{sub 66}Fe{sub 2}Cr{sub 4}Si{sub 13}B{sub 15} soft magnetic amorphous wire of diameter ∝ 100 μm developed by in-water quenching technique. The magnetization behaviour (hysteresis loops) of the wire with different length (L = 1, 2, 3, 5, 8 and 10 cm) has been evaluated by fuxmetric induction method. It was observed that the behaviour of the hysteresis loops change drastically with the wire length, being attributed to the existence of a critical length, L{sub C}, found to be around 3 cm. GMI measurements have been taken using automated GMI measurement system and the GMI sensitivities in terms of intrinsic impedance sensitivity (S{sub Ω/Am}{sup -1}) and voltage sensitivity (S{sub V/Am}{sup -1}) of the wire have been evaluated under optimal bias field and excitation current. It was found that the maximum (S{sub Ω/Am}{sup -1}){sub max} ∼ 0.63 Ω/kAm{sup -1}/cm and (S{sub V/Am}{sup -1}){sub max} ∼ 3.10 V/kAm{sup -1}/cm were achieved at a critical length L{sub C} ∝ 3 cm of the wire for an AC current of 5 mA and a frequency of 5 MHz. These findings provide crucial insights for optimization of the geometrical dimensions of magnetic sensing elements and important practical guidance for designing high sensitive GMI sensors. The relevant combinations of magnetic material parameters and operating conditions that optimize the sensitivity are highlighted. (orig.)

  14. Rapidly variable relatvistic absorption

    Science.gov (United States)

    Parker, M.; Pinto, C.; Fabian, A.; Lohfink, A.; Buisson, D.; Alston, W.; Jiang, J.

    2017-10-01

    I will present results from the 1.5Ms XMM-Newton observing campaign on the most X-ray variable AGN, IRAS 13224-3809. We find a series of nine absorption lines with a velocity of 0.24c from an ultra-fast outflow. For the first time, we are able to see extremely rapid variability of the UFO features, and can link this to the X-ray variability from the inner accretion disk. We find a clear flux dependence of the outflow features, suggesting that the wind is ionized by increasing X-ray emission.

  15. Rapid prototype and test

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, D.L.; Hansche, B.D.

    1996-06-01

    In order to support advanced manufacturing, Sandia has acquired the capability to produce plastic prototypes using stereolithography. Currently, these prototypes are used mainly to verify part geometry and ``fit and form`` checks. This project investigates methods for rapidly testing these plastic prototypes, and inferring from prototype test data actual metal part performance and behavior. Performances examined include static load/stress response, and structural dynamic (modal) and vibration behavior. The integration of advanced non-contacting measurement techniques including scanning laser velocimetry, laser holography, and thermoelasticity into testing of these prototypes is described. Photoelastic properties of the epoxy prototypes to reveal full field stress/strain fields are also explored.

  16. Right-Rapid-Rough

    Science.gov (United States)

    Lawrence, Craig

    2003-01-01

    IDEO (pronounced 'eye-dee-oh') is an international design, engineering, and innovation firm that has developed thousands of products and services for clients across a wide range of industries. Its process and culture attracted the attention of academics, businesses, and journalists around the world, and are the subject of a bestselling book, The Art of Innovation by Tom Kelley. One of the keys to IDEO's success is its use of prototyping as a tool for rapid innovation. This story covers some of IDEO's projects, and gives reasons for why they were successful.

  17. The effects of low-molecular-weight emulsifiers in O/W-emulsions on microviscosity of non-solidified oil in fat globules and the mobility of emulsifiers at the globule surfaces

    DEFF Research Database (Denmark)

    Munk, Merete B.; Erichsen, Henriette Rifbjerg; Andersen, Mogens Larsen

    2014-01-01

    Electron Spin Resonance spectroscopy (ESR) was used to measure the mobility of the spin probe TEMPO in O/W-emulsions. This allowed determination of temperature-dependent microviscosity of the liquid fraction in lipid globules. Six hydrogenated palm kernel oil (HPKO) based emulsions containing...... caseinate and different combinations of lactic acid ester of monoglyceride (LACTEM), unsaturated monoglycerides (GMU) or saturated monoglyceride (GMS) were studied. The non-solidified oil in emulsions made with LACTEM. +. GMU had a high microviscosity, whereas the emulsion made with GMS had a low...

  18. Stress evolution in magnetron sputtered Ti-Zr-N and Ti-Ta-N films studied by in situ wafer curvature: Role of energetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Abadias, G., E-mail: gregory.abadias@univ-poitiers.f [Laboratoire PHYMAT, UMR 6630, Universite de Poitiers-CNRS, SP2MI, Teleport 2, Bd Marie et Pierre Curie, 86962 Chasseneuil-Futuroscope (France); Koutsokeras, L.E. [Laboratoire PHYMAT, UMR 6630, Universite de Poitiers-CNRS, SP2MI, Teleport 2, Bd Marie et Pierre Curie, 86962 Chasseneuil-Futuroscope (France); Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece); Guerin, Ph. [Laboratoire PHYMAT, UMR 6630, Universite de Poitiers-CNRS, SP2MI, Teleport 2, Bd Marie et Pierre Curie, 86962 Chasseneuil-Futuroscope (France); Patsalas, P. [Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece)

    2009-12-31

    Stress evolution during reactive magnetron sputtering of binary TiN, ZrN and TaN thin films as well as ternary Ti-Zr-N and Ti-Ta-N solid-solutions was studied using real-time wafer curvature measurements. The energy of the incoming particles (sputtered atoms, backscattered Ar, ions) was tuned by changing either the metal target (M{sub Ti} = 47.9, M{sub Zr} = 91.2 and M{sub Ta} = 180.9 g/mol), the plasma conditions (effect of pressure, substrate bias or magnetron configuration) for a given target or by combining different metal targets during co-sputtering. Experimental results were discussed using the average energy of the incoming species, as calculated using Monte-Carlo simulations (SRIM code). In the early stage of growth, a rapid evolution to compressive stress states is noticed for all films. A reversal towards tensile stress is observed with increasing thickness at low energetic deposition conditions, revealing the presence of stress gradients. The tensile stress is ascribed to the development of a 'zone T' columnar growth with intercolumnar voids and rough surface. At higher energetic deposition conditions, the atomic peening mechanism is predominant: the stress remains largely compressive and dense films with more globular microstructure and smooth surface are obtained.

  19. BaTiO3 FILMS DEPOSITED ONTO TiNb AND Ti SUBSTRATES - AMOUNT AND STABILITY OF BARIUM

    Directory of Open Access Journals (Sweden)

    Kamila Moriová

    2017-06-01

    Full Text Available BaTiO3 films deposited onto TiNb and Ti substrates using hydrothermal synthesis method were studied in the presented work. These films are supposed to improve properties of bone implants due to their ferroelectric behaviour, because ferroelectrics induce improved bone formation. A great question is the chemical stability of the used material. It can be crucial for its biocompatibility and possible in vivo application. We studied chemical composition of prepared samples, especially concentration of Ba and Ti and trends of these concentrations stimulated by a solution saline action. The Ba and Ti concentrations were determined by XPS under ultra - high vacuum condition. The BaTiO3 films were investigated as received after the preparation procedure as well as after a long - time treatment in solution saline. Every sample was introduced to the solution saline at first for 1 and later for 3 weeks. Ti concentration almost does not change during our experiments while a meaningful Ba decrease is observed. Nevertheless, barium release seems to slow down with respect to the time of solution saline action. Stability of barium titanate films in a period of several months and an absolute amount of the released barium will be a subject of the next research.

  20. Highly Visible Light Responsive, Narrow Band gap TiO2 Nanoparticles Modified by Elemental Red Phosphorus for Photocatalysis and Photoelectrochemical Applications

    Science.gov (United States)

    Ansari, Sajid Ali; Cho, Moo Hwan

    2016-01-01

    This paper reports that the introduction of elemental red phosphorus (RP) into TiO2 can shift the light absorption ability from the UV to the visible region, and confirmed that the optimal RP loading and milling time can effectively improve the visible light driven-photocatalytic activity of TiO2. The resulting RP-TiO2 nanohybrids were characterized systematically by a range of techniques and the photocatalytic ability of the RP-TiO2 photocatalysts was assessed further by the photodegradation of a model Rhodamine B pollutant under visible light irradiation. The results suggest that the RP-TiO2 has superior photodegradation ability for model contaminant decomposition compared to other well-known photocatalysts, such as TiO2 and other reference materials. Furthermore, as a photoelectrode, electrochemical impedance spectroscopy, differential pulse voltammetry, and linear scan voltammetry were also performed in the dark and under visible light irradiation. These photoelectrochemical performances of RP-TiO2 under visible light irradiation revealed more efficient photoexcited electron-hole separation and rapid charge transfer than under the dark condition, and thus improved photocatalytic activity. These findings show that the use of earth abundant and inexpensive red phosphorus instead of expensive plasmonic metals for inducing visible light responsive characteristics in TiO2 is an effective strategy for the efficient energy conversion of visible light. PMID:27146098

  1. Zinc-porphyrin-imide type sensitized TiO2 nanotube arrays as photoactive electrode in a dyes sensitized solar cell

    Science.gov (United States)

    Syafaat, F.; Gunlazuardi, J.

    2017-04-01

    In this work, TiO2 nanotube was prepared by rapid breakdown electrooxidation of Ti foil in electrolyte containing 0.15 M HClO4. The obtained TiO2 nanotube bundling powder was calcinated at 450°C for 3 hours, then characterized by SEM, XRD, UV-Vis DRS, and BET. Zinc-porphyrin-imide dyes was deposited into TiO2 nanotube by immersion of TiO2 nanotube in zinc-porphyrin-imide solution for 24 hours. Free zinc-porphyrin-imide dyes shows characteristics of absorption spectra in visible region at 439 nm and 620 nm. Meanwhile, when it was immobilized to TiO2-nanotube, the absorption peak shifted to 421 nm and 640 nm. The zinc-porphyrin-imide/TiO2 electrode showed an excellent response toward the visible light with the typical photocurrent density of 1.1 mA/cm2. When the fabricated photoelectrode was assembled in a typical Dyes Sensitize Solar Cell (DSSC), the I-V curve showed photoconversion efficiency of the assembled zinc-porphyrin-imide/TiO2 DSSC was 1.914% (front side illumination) and 1.147% (backside illumination), respectively.

  2. Electrocatalytic activity of lithium polysulfides adsorbed into porous TiO2 coated MWCNTs hybrid structure for lithium-sulfur batteries

    Science.gov (United States)

    He, Xiulin; Hou, Huijie; Yuan, Xiqing; Huang, Long; Hu, Jingping; Liu, Bingchuan; Xu, Jingyi; Xie, Jia; Yang, Jiakuan; Liang, Sha; Wu, Xu

    2017-01-01

    Lithium-sulfur batteries have attracted great attention because of their high energy density, environmental friendliness, natural abundance and intrinsically low cost of sulfur. However, their commercial applications are greatly hindered by rapid capacity decay due to poor conductivity of electrode, fast dissolution of the intermediate polysulfides into the electrolyte, and the volume expansion of sulfur. Herein, we report a novel composite MWCNTs@TiO2-S nanostructure by grafting TiO2 onto the surface of MWCNTs, followed by incorporating sulfur into the composite. The inner MWCNTs improved the mechanical strength and conductivity of the electrode and the outer TiO2 provided the adsorption sites to immobilize polysulfides due to bonding interaction between TiO2 and polysulfides. The MWCNTs@TiO2-S composite with a mass ratio of 50% (MWCNTs in MWCNTs@TiO2) exhibited the highest electrochemistry performance among all compositing ratios of MWCNTs/TiO2. The performance improvement might be attributed to the downward shift of the apparent Fermi level to a more positive potential and electron rich space region at the interface of MWCNTs-TiO2 that facilitates the reduction of lithium polysulfide at a higher potential. Such a novel hybrid structure can be applicable for electrode design in other energy storage applications.

  3. Shape memory characteristics and mechanical properties of powder metallurgy processed Ti50Ni40Cu10 alloy.

    Science.gov (United States)

    Kim, Yeon-Wook

    2014-10-01

    Ti-Ni-Cu alloy powders were prepared by gas atomization and porous bulk specimens were fabricated by spark plasma sintering (SPS). The microstructure of as-solidified powders exhibited a cellular structure and they contained a high density of nano-sized porosities which were located in the intercellular regions. XRD analysis showed that one-step martensitic transformation of B2-B19 occurred in all alloy powders and SPS specimens. When the martensitic transformation start temperature (M(s)) and austenite transformation finish temperature (A(f)) were determined in order to analyze the dependence of powder size on transformation temperatures, the M(s) increased slightly from -17.5 degrees C to - 14.6 degrees C as increasing the powder size ranging from between 25 and 50 μm to ranging between 100 and 150 μm. However, the M(s) and A(f) of the as-atomized powders is much smaller than those of SPS specimens and the M(s) of porous specimen was about 10.9 degrees C. Loading-unloading compressive tests were carried out to investigate the mechanical properties of porous Ti-Ni-Cu specimen. The specimen was compressed to the strain of 6% at a temperature higher than A,. After unloading, the residual strain was 2.1%. After the compressed specimen was heated to 60 degrees C and held for 30 minutes and then cooled to room temperature, the changes in the length of the specimens were measured. Then it was found that the recovered strain ascribed to shape memory effect was 1.5%.

  4. Rapid mineralocorticoid receptor trafficking.

    Science.gov (United States)

    Gekle, M; Bretschneider, M; Meinel, S; Ruhs, S; Grossmann, C

    2014-03-01

    The mineralocorticoid receptor (MR) is a ligand-dependent transcription factor that physiologically regulates water-electrolyte homeostasis and controls blood pressure. The MR can also elicit inflammatory and remodeling processes in the cardiovascular system and the kidneys, which require the presence of additional pathological factors like for example nitrosative stress. However, the underlying molecular mechanism(s) for pathophysiological MR effects remain(s) elusive. The inactive MR is located in the cytosol associated with chaperone molecules including HSP90. After ligand binding, the MR monomer rapidly translocates into the nucleus while still being associated to HSP90 and after dissociation from HSP90 binds to hormone-response-elements called glucocorticoid response elements (GREs) as a dimer. There are indications that rapid MR trafficking is modulated in the presence of high salt, oxidative or nitrosative stress, hypothetically by induction or posttranslational modifications. Additionally, glucocorticoids and the enzyme 11beta hydroxysteroid dehydrogenase may also influence MR activation. Because MR trafficking and its modulation by micro-milieu factors influence MR cellular localization, it is not only relevant for genomic but also for nongenomic MR effects. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Rapid response manufacturing (RRM)

    Energy Technology Data Exchange (ETDEWEB)

    Cain, W.D. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Waddell, W.L. [National Centers for Manufacturing Sciences, Ann Arbor, MI (United States)

    1997-02-18

    US industry is fighting to maintain its competitive edge in the global market place. Today markets fluctuate rapidly. Companies, to survive, have to be able to respond with quick-to-market, improved, high quality, cost efficient products. The way products are developed and brought to market can be improved and made more efficient through the proper incorporation of emerging technologies. The RRM project was established to leverage the expertise and resources of US private industries and federal agencies to develop, integrate, and deploy new technologies that meet critical needs for effective product realization. The RRM program addressed a needed change in the US Manufacturing infrastructure that will ensure US competitiveness in world market typified by mass customization. This project provided the effort needed to define, develop and establish a customizable infrastructure for rapid response product development design and manufacturing. A major project achievement was the development of a broad-based framework for automating and integrating the product and process design and manufacturing activities involved with machined parts. This was accomplished by coordinating and extending the application of feature-based product modeling, knowledge-based systems, integrated data management, and direct manufacturing technologies in a cooperative integrated computing environment. Key technological advancements include a product model that integrates product and process data in a consistent, minimally redundant manner, an advanced computer-aided engineering environment, knowledge-based software aids for design and process planning, and new production technologies to make products directly from design application software.

  6. Optical and microstructural properties of decorative Al/Ti/TiO2 interference coatings

    Science.gov (United States)

    Skowronski, L.; Wachowiak, A. A.; Wachowiak, W.

    2017-11-01

    This paper presents a study of the optical properties and the microstructure of interference Al/Ti/TiO2 systems obtained by gas injection magnetron sputtering (GIMS). The samples are examined by means of spectroscopic ellipsometry, atomic force microscopy and spectrophotometry combined with colorimetric measurements. The optical constants of the Al, Ti and TiO2 layers are determined and carefully studied. The thickness of dielectric films varies from 23 nm to 49 nm and directly determines the color of a sample from orange to blue, respectively. The thickness of Ti films ranges from 0 nm to 125 nm which corresponds to both the semitransparent and opaque titanium layers. The colors of the Al/TiO2 interference systems are not highly saturated because of the high reflectance of aluminum in the visible spectral range. The introduction of a Ti film between Al and TiO2 reduced the effective amount of reflected light. Moreover, the thickness of the titanium layer is associated with the color saturation of the Al/Ti/TiO2 multilayered systems.

  7. Hydrolysis of TiCl₄: Initial Steps in the Production of TiO₂

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tsang-Hsiu; Navarrete-Lopez, Alejandra M.; Li, Shenggang; Dixon, David A.; Gole, James L.

    2010-06-24

    The hydrolysis of titanium tetrachloride (TiCl{sub 4}) to produce titanium dioxide (TiO{sub 2})nanoparticles has been studied to provide insight into the mechanism for forming these nanoparticles. We provide calculations of the potential energy surfaces, the thermochemistry of the intermediates, and the reaction paths for the initial steps in the hydrolysis of TiCl{sub 4}. We assess the role of the titanium oxychlorides (Ti{sub x}O{sub y}Cl{sub z}; x = 2-4, y = 1,3-6, and z = 2, 4, 6) and their viable reaction paths. Using transition-state theory and RRKM theory, we predicted rate constants including the effect of tunneling. Heats of formation at 0 and 298 K are predicted for TiCl{sub 4}, TiCl{sub 3}OH, TiOCl{sub 2}, TiOClOH, TiCl{sub 2}(OH){sub 2}, TiCl(OH){sub 3}, Ti(OH){sub 4}, and TiO{sub 2} using the CCSD(T) method with correlation consistent basis sets extrapolated to the complete basis set limit and compared with the available experimental data. Clustering energies and heats of formation are calculated for neutral clusters. The calculated heats of formation were used to study condensation reactions that eliminate HCl or H{sub 2}O. The reaction energy is substantially endothermic if more than two HCl molecules are eliminated. The results show that the mechanisms leading to formation of TiO{sub 2} nanoparticles and larger ones are complicated and will have a strong dependence on the experimental conditions.

  8. Effect of solution chemistry, aggregate size and temperature on the attachment of TiO2 nanoparticles onto quartz sand

    Science.gov (United States)

    Papaioannou, Alexandros K.; Chrysikopoulos, Constantinos V.

    2017-04-01

    In this study, the influence of pH, ionic strength (IS), and temperature on titanium oxide nanopar-ticles (TiO2 NPs) attachment onto quartz sand was investigated. Batch experiments were con-ducted at three controlled temperatures (8, 13, and 25 °C) in solutions with different pH values (pH 4, 7, and 10), and ionic strengths (IS = 2, 6, and 20 mM), under static and dynamic condi-tions. For each experiment, 21 glass tubes were employed, which were divided into three groups. The first group consisted of the "reactor tubes," which contained a TiO2 NP suspension and 14 g of quartz sand, the second group consisted of the "blank tubes," which contained a buffer solution and 14 g of quartz sand, while the third group consisted of the "control tubes," which contained a TiO2 suspension without sand. The dynamic batch experiments were per-formed with the tubes attached to a rotator. Control tubes were used to monitor TiO2 aggrega-tion and sedimentation. The surface properties of TiO2 nanoparticles and quartz sand were evaluated by electrophoretic mobility measurements. Derjaguin-Landau-Verwey-Overbeek (DLVO) potential energy profiles were constructed for the experimental conditions, using meas-ured zeta potentials. The experimental results showed that the stability of TiO2 NPs is quite var-iable in time, because TiO2 NPs tended to aggregate rapidly under the experimental conditions. Both temperature and pH play a significant role in the attachment of TiO2 NPs onto quartz sand. Moreover, the attachment of TiO2 particles onto quartz sand decreased significantly under dy-namic conditions at high IS. Under static conditions substantial sedimentation of aggregated TiO2 NPs occurred, while under dynamics conditions the attachment of TiO2 particles onto quartz sand was reversible. Therefore, the attachment of TiO2 NPs onto quartz sand is con-trolled by the size of the aggregates formed.

  9. Anatase TiO2 sheet-assisted synthesis of Ti(3+) self-doped mixed phase TiO2 sheet with superior visible-light photocatalytic performance: Roles of anatase TiO2 sheet.

    Science.gov (United States)

    Zhang, Xiaojie; Zuo, Guoqing; Lu, Xin; Tang, Changqing; Cao, Shuo; Yu, Miao

    2017-03-15

    On the basis of measurements, such as field emission scanning electron microscope, UV-Vis diffuse reflectance spectra, X-ray diffraction, electron paramagnetic resonance, photoluminescence spectra, and photocurrent measurements, the roles of anatase TiO2 sheet on synthesizing Ti(3+) self-doped mixed phase TiO2 nanosheets (doped TiO2 (A/R, TiO2 (A))) and on improving the performance for photocatalytic CO2 reduction were explored systematically. High surface area anatase TiO2 nanosheets (TiO2 (A)) as a substrate, structure directing agent, and inhibitor, mediated the synthesis of Ti(3+) self-doped mixed phase TiO2 nanosheets. Addition of TiO2 (A) significantly improved not only visible light absorption of doped TiO2 (A/R, TiO2 (A)), but also the efficiency of photo-excited charges separations due to the existence of interfacial regions of anatase-rutile TiO2 junctions. Finally, a possible mechanism for interfacial charge transfer at the anatase-rutile TiO2 interface and for photocatalytic CO2 reduction over Pt loaded doped TiO2 (A/R, TiO2 (A)) were proposed. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Deposition of TiN films in a batch reactor

    NARCIS (Netherlands)

    Hasper, Albert; Hasper, A.; Snijders, Gert-Jan; Vandezande, Lieve; De Blank, Marinus J.; Bankras, R.G.

    2010-01-01

    Titanium nitride (TiN) films are formed in a batch reactor using titanium chloride (TiCl4) and ammonia (NH3) as precursors. The TiCl4 is flowed into the reactor in temporally separated pulses. The NH3 can also be flowed into the reactor in temporally spaced pulses which alternate with the TiCl4

  11. Deposition of TiN films in a batch reactor

    NARCIS (Netherlands)

    Hasper, A.; Hasper, Albert; Snijders, Gert-Jan; Vandezande, Lieve; De Blank, Marinus J.; Bankras, R.G.

    2006-01-01

    Titanium nitride (TiN) films are formed in a batch reactor using titanium chloride (TiCl4) and ammonia (NH3) as precursors. The TiCl4 is flowed into the reactor in temporally separated pulses. The NH3 can also be flowed into the reactor in temporally spaced pulses which alternate with the TiCl4

  12. Characterization and application of surface-molecular-imprinted-polymer modified TiO2 nanotubes for removal of perfluorinated chemicals.

    Science.gov (United States)

    Hu, Lei; Li, Yi; Zhang, Wenlong

    2016-09-01

    The removal of perfluorinated chemicals (PFCs) during wastewater reclamation is a great concern. However, the existing advanced treatment processes are inefficient for the removal of PFCs from secondary effluents of municipal wastewater treatment plants (WWTPs) because other coexistent pollutants with less environmental significance are removed simultaneously. Therefore, research on high-selectivity, low-cost removal methods is needed. The S-MIP-TiO2 nanotube (NT) photocatalysts were fabricated, characterized and tested for removal of PFCs from wastewater for the first time. Scanning electron microscopy and Fourier transform infrared spectroscopy show that the TiO2 NTs (average diameter 60 nm) were successfully imprinted with functional groups (i.e. carboxyl). The adsorption selectivity and photocatalytic activity of the S-MIP-TiO2 NTs over perfluorooctanoic acid (PFOA) were improved compared with neat TiO2 NTs and interestingly, were higher at low PFOA concentrations (10 to 100 ng/L, as normal PFC concentrations in secondary effluents) than at high concentrations (10 to 1,000 mg/L). With S-MIP-TiO2 NTs used as photocatalysts, some representative PFCs were selectively and rapidly removed from secondary effluents of a municipal WWTP. S-MIP-TiO2 NTs exhibited excellent regeneration performance. Thus, photocatalytic treatment using is promising for effective removal of PFCs from secondary effluents of municipal WWTPs.

  13. Anti-biofilm efficacy of low temperature processed AgCl–TiO{sub 2} nanocomposite coating

    Energy Technology Data Exchange (ETDEWEB)

    Naik, Kshipra, E-mail: kshipra_naik21@yahoo.co.in; Kowshik, Meenal, E-mail: meenal@goa.bits-pilani.ac.in

    2014-01-01

    Biofilms are a major concern in the medical settings and food industries due to their high tolerance to antibiotics, biocides and mechanical stress. Currently, the development of novel methods to control biofilm formation is being actively pursued. In the present study, sol–gel coatings of AgCl–TiO{sub 2} nanoparticles are presented as potential anti-biofilm agents, wherein TiO{sub 2} acts as a good supporting matrix to prevent aggregation of silver and facilitates its controlled release. Low-temperature processed AgCl–TiO{sub 2} nanocomposite coatings inhibit biofilm formation by Escherichia coli, Staphylococcus epidermidis and Pseudomonas aeruginosa. In vitro biofilm assay experiments demonstrated that AgCl–TiO{sub 2} nanocomposite coated surfaces, inhibited the development of biofilms over a period of 10 days as confirmed by scanning electron microscopy. The silver release kinetics exhibited an initial high release, followed by a slow and sustained release. The anti-biofilm efficacy of the coatings could be attributed to the release of silver, which prevents the initial bacterial adhesion required for biofilm formation. - Highlights: • Potential of AgCl–TiO{sub 2} nanocomposite coating to inhibit biofilm formation is exhibited. • Initial rapid release followed by later slow and sustained release of silver obtained. • TiO{sub 2} being porous and inorganic in nature acts as a good supporting matrix.

  14. Rapid Refresh (RAP) [13 km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Rapid Refresh (RAP) numerical weather model took the place of the Rapid Update Cycle (RUC) on May 1, 2012. Run by the National Centers for Environmental...

  15. Rapid Refresh (RAP) [20 km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Rapid Refresh (RAP) numerical weather model took the place of the Rapid Update Cycle (RUC) on May 1, 2012. Run by the National Centers for Environmental...

  16. Rapid chemical separations

    CERN Document Server

    Trautmann, N

    1976-01-01

    A survey is given on the progress of fast chemical separation procedures during the last few years. Fast, discontinuous separation techniques are illustrated by a procedure for niobium. The use of such techniques for the chemical characterization of the heaviest known elements is described. Other rapid separation methods from aqueous solutions are summarized. The application of the high speed liquid chromatography to the separation of chemically similar elements is outlined. The use of the gas jet recoil transport method for nuclear reaction products and its combination with a continuous solvent extraction technique and with a thermochromatographic separation is presented. Different separation methods in the gas phase are briefly discussed and the attachment of a thermochromatographic technique to an on-line mass separator is shown. (45 refs).

  17. Microstructure Formation and Resistivity Change in CuCr during Rapid Solidification

    Directory of Open Access Journals (Sweden)

    Ulla Hauf

    2017-11-01

    Full Text Available The formation of the surface-near microstructure after a current interruption of CuCr contact materials in a vacuum interrupter is characterized by a fast heating and subsequently rapid solidification process. In the present article, we reveal and analyse the formation of two distinct microstructural regions that result from the heat, which is generated and dissipated during interruption. In the topmost region, local and global texture, as well as the resulting microstructure, indicate that both Cu and Cr were melted during rapid heating and solidification whereas in the region underneath, only Cu was melted and elongated Cu-grains solidified with the <001>-direction perpendicularly aligned to the surface. By analysing the lattice parameter of the Cu solid solution, a supersaturation of the solid solution with about 2.25 at % Cr was found independent if Cu was melted solely or together with the Cr. The according reduction of electrical conductivity in the topmost region subsequent to current interruption and the resulting heat distribution are discussed based on these experimental results.

  18. Rapid solidification mechanism of highly undercooled ternary Cu40Sn45Sb15 alloy

    Science.gov (United States)

    Zhai, W.; Wang, B. J.; Lu, X. Y.; Wei, B.

    2015-10-01

    The rapid solidification of ternary Cu40Sn45Sb15 peri-eutectic type alloy was realized by glass fluxing and drop tube methods, and the corresponding maximum undercoolings are 185 K (0.22 T L) and 321 K (0.39 T L), respectively. The phase constitution of Cu40Sn45Sb15 alloy in these two rapid solidification experiments deviates from the two equilibrium phases (Sn + Cu6Sn5). In glass fluxing method, the structural morphology of Cu40Sn45Sb15 alloy is mainly characterized by a three-layer lamellar structure, which is comprised by an inner layer of long strips of primary ɛ(Cu3Sn) phase, an intermediate layer of η(Cu6Sn5) phase and an outer layer of β(SnSb) phase. As undercooling rises, this lamellar structure is remarkably refined. When small alloy droplets are containerlessly solidified during free fall in drop tube, the primary ɛ(Cu3Sn) phase grows by non-faceted mode into dendrites as droplet diameter decreases. Especially, solidification path alters in the smallest droplet with 50 μm diameter, in which η(Cu6Sn5) and Sn3Sb2 phases form directly from the metastable liquid phase by suppressing the primary ɛ phase formation and the following peri-eutectic transformation.

  19. Selective laser sintering: application of a rapid prototyping method in craniomaxillofacial reconstructive surgery.

    Science.gov (United States)

    Aung, S C; Tan, B K; Foo, C L; Lee, S T

    1999-09-01

    Advances in technology have benefited the medical world in many ways and a new generation of computed tomography (CT) scanners and three-dimensional (3-D) model making rapid prototyping systems (RPS) have taken craniofacial surgical planning and management to new heights. With the development of new rapid prototyping systems and the improvements in CT scan technology, such as the helical scanner, biomedical modelling has improved considerably and accurate 3-D models can now be fabricated to allow surgeons to visualise and physically handle a 3-D model on which simulation surgery can be performed. The principle behind this technology is to first acquire digital data (CT scan data) which is then imported to the RPS to fabricate fine layers or cuts of the model which are gradually built up to form the 3-D models. Either liquid resin or nylon powder or special paper may be used to make these models using the various RPS available today. Selective laser sintering (SLS), which employs a CO2 laser beam to solidify special nylon powder and build up the model in layers is described in this case report, where a 23-year old Chinese female with panfacial fracture and a skull defect benefited from SLS biomodelling in the preoperative workup.

  20. Review of the Methods for Production of Spherical Ti and Ti Alloy Powder

    Science.gov (United States)

    Sun, Pei; Fang, Zhigang Zak; Zhang, Ying; Xia, Yang

    2017-10-01

    Spherical titanium alloy powder is an important raw material for near-net-shape fabrication via a powder metallurgy (PM) manufacturing route, as well as feedstock for powder injection molding, and additive manufacturing (AM). Nevertheless, the cost of Ti powder including spherical Ti alloy has been a major hurdle that prevented PM Ti from being adopted for a wide range of applications. Especially with the increasing importance of powder-bed based AM technologies, the demand for spherical Ti powder has brought renewed attention on properties and cost, as well as on powder-producing processes. The performance of Ti components manufactured from powder has a strong dependence on the quality of powder, and it is therefore crucial to understand the properties and production methods of powder. This article aims to provide a cursory review of the basic techniques of commercial and emerging methods for making spherical Ti powder. The advantages as well as limitations of different methods are discussed.

  1. Development of High Sensitivity Humidity Sensor Based on Gray TiO₂/SrTiO₃ Composite.

    Science.gov (United States)

    Zhang, Min; Wei, Shunhang; Ren, Wei; Wu, Rong

    2017-06-07

    A gray TiO₂/SrTiO₃ composite nanocrystalline sensor with narrow band-gap was successfully prepared through a facile wet chemical method. The precursor was calcined in N₂ flow under atmospheric pressure and thereafter, a humidity sensor based on the composite was fabricated. The sensor showed high resistive sensitivity and varied by more than four orders of magnitude with an increase in relative humidity (RH) from 11% to 95%. The response and recovery time were about 3.1 s and 76 s, respectively with maximum hysteresis at 1% RH. In comparison with pure SrTiO₃ and black TiO₂, the gray composite based device exhibits a higher sensitivity. These results demonstrate the potential of gray TiO₂/SrTiO₃ for humidity sensing applications.

  2. New developments in Ni/Ti multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, I.; Hoghoj, P. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    It is now 20 years since super-mirrors were first used as a neutron optical element. Since then the field of multilayer neutron-optics has matured with multilayers finding their way to application in many neutron scattering instruments. However, there is still room for progress in terms of multilayer quality, performance and application. Along with work on multilayers for neutron polarisation Ni/Ti super-mirrors have been optimised. The state-of-the-art Ni/Ti super-mirror performance and the results obtained in two neutron-optics applications of Ni/Ti multilayers are presented. (author).

  3. Boriding of binary Ni-Ti shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ucar, Nazim; Dogan, Sule [Suleyman Demirel Univ., Isparta (Turkey). Physics Dept.; Karakas, Mustafa Serdar [Cankaya Univ., Ankara (Turkey). Materials Science and Engineering Dept.; Calik, Adnan [Suleyman Demirel Univ., Isparta (Turkey). Manufacturing Engineering Dept.

    2016-07-01

    Boriding of binary Ni-Ti shape memory alloys was carried out in a solid medium at 1273 K for 2, 4, 6, and 8 h using the powder pack method with proprietary Ekabor-Ni powders. Characterization of the boride layer formed on the surface of alloys was done by optical microscopy and scanning electron microscopy. The presence of boride, silicide, and borosilicide phases in the boride layers was confirmed by X-ray diffraction analysis. The thickness and microhardness of the boride layers increased with increasing boriding time. Hardness profiles showed a rapid decrease in hardness moving from the boride layer to the main structure. The high hardness of the boride layer was attributed mainly to the formation of TiB{sub 2}. A parabolic relationship was observed between layer thickness and boriding time, and the growth rate constant for the boriding treatment was calculated as 0.62 x 10{sup -8} cm{sup 2}s{sup -1}.

  4. Materials characterization of rapid thermal chemical vapor deposition of titanium disilicide

    Science.gov (United States)

    Gladden-Green, Dannellia Banay

    Technological advancements of novel processes and materials involving refractory metal silicides for ultra large scale integration is of paramount importance to the semiconductor industry. Scaling of devices to meet the demands for increased packing density and speed requires such novel processes and materials. Rapid thermal chemical vapor deposition (RTCVD) of titanium disilicide (TiSisb2) was investigated in an effort to meet some of the challenges of ultra large scale integration (ULSI) technology. Selective RTCVD of TiSisb2 offers an optimal technological vehicle for achieving contacts to ultra-shallow junctions. Of all of the metal silicides, TiSisb2 has the lowest resistivity and meets the microelectronics demands for a thermally stable contact. The research results presented in this dissertation explores the mechanisms of selective RTCVD of TiSisb2 in terms of thermodynamic trends and kinetic driving forces for nucleation and growth. The present research addresses the qualitative and quantitative parameters that affect the controlling mechanisms for nucleation and therefore the results provide significant data and theoretical insights into a state-of-the-art process. Just as the fundamental building block in understanding the kinetic constraints of a process lie in the realm of thermodynamic exploration, understanding the complex processes involved in RTCVD TiSisb2 begin with characterization of the mechanisms governing thin film nucleation. In this work, the early stages of growth are investigated as they offer insight into how process parameters are optimized to render desired silicide film properties. Equilibrium simulations have been used to model the CVD reaction with very good trend indicating accuracy. Empirical investigations of CVD TiSisb2 took place in a low-pressure rapid-thermal environment using the SiHsb4 + TiClsb4 gas system on silicon (100) substrates. Secondary ion mass spectroscopy (SIMS) has been used to qualify the benefits of vacuum and

  5. Corrosion behavior and biocompatibility of nanostructured TiO2 film on Ti6Al4V.

    Science.gov (United States)

    Karpagavalli, Ramji; Zhou, Anhong; Chellamuthu, Prithiviraj; Nguyen, Kytai

    2007-12-15

    The corrosion behavior and cell adhesion property of nanostructured TiO2 films deposited electrolytically on Ti6Al4V were examined in the present in vitro study. The nanostructured TiO2 film deposition on Ti6Al4V was achieved via peroxoprecursors. SEM micrographs exhibit the formation of amorphous and crystallite TiO2 nanoparticles on Ti6Al4V before and after being annealed at 500 degrees C. Corrosion behavior of TiO2-deposited and uncoated Ti6Al4V was evaluated in freely aerated Hank's solution at 37 degrees C by the measurement and analysis of open-circuit potential variation with time, Tafel plots, and electrochemical impedance spectroscopy. The electrochemical results indicated that nano-TiO2 coated Ti6Al4V showed a better corrosion resistance in simulated biofluid than uncoated Ti6Al4V. Rat bone cells and human aortic smooth muscle cells were grown on these substrates to study the cellular responses in vitro. The SEM images revealed enhanced cell adhesion, cell spreading, and proliferation on nano-TiO2 coated Ti6Al4V compared to those grown on uncoated substrates for both cell lines. These results suggested that nanotopography produced by deposition of nanostructured TiO2 onto Ti alloy surfaces might enhance corrosion resistance, biocompatibility, and cell integration for implants made of Ti alloys. (c) 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2007.

  6. Ti-in-Zircon Thermometer: Preliminary Results

    Science.gov (United States)

    Fu, B.; Cavosie, A. J.; Clechenko, C. C.; Fournelle, J.; Kita, N. T.; Lackey, J.; Page, F.; Wilde, S. A.; Valley, J. W.

    2005-12-01

    The titanium in zircon thermometer has been applied to 167 zircons from diverse rock types. These rocks include metamorphosed anorthosite and gabbro (1.15 Ga, intrusion age), and unmetamorphosed granitic pegmatite (0.9 Ga) from the Adirondack Highlands; metaluminous and peraluminous granites (114-90 Ma) of the Sierra Nevada Batholith; megacrysts from kimberlite pipes in southern Africa, Brazil, and Siberia; and detrital zircons (4.4-3.9 Ga) of metaconglomerate from Jack Hills, Western Australia. Titanium concentration in zircon was analysed using a CAMECA IMS-1280 ion microprobe (see Page et al., this volume). Spot analyses were correlated to U-Pb SHRIMP pits especially for Adirondack and Jack Hills zircons. The majority of zircons have Ti-content less than 10 ppm. Variability, in excess of analytical precision, within individual zircons is observed in about one-third of crystals. In general, there is no systematic change in Ti from core to rim (identified by cathodoluminescence) of zircons, or with regard to age, U content, Th/U ratio, or U-Pb age concordance for these non-metamict grains. The average temperatures for zircon crystallization in different rock suites using the experimental/empirical calibration of Watson and Harrison (W&H, 2005, Science 308:841), assuming the presence of rutile and quartz, are estimated to be: anorthosite 735±41°C (1SD, n=24; Ti = 10±5 ppm); metagabbro 714±31°C (n=19; Ti = 8±4 ppm); Adirondack pegmatite 500±16°C (n=5; Ti = 0.3±0.1 ppm); metaluminous and peraluminous granites from Sierra Nevada 681±67°C (n=53; Ti = 6±5 ppm) and 613±75°C (n=68; Ti = 3±3 ppm); kimberlite megacrysts 740±64°C (n=169; Ti = 14±13 ppm) (Page et al., this volume); and detrital zircons from Jack Hills metaconglomerate 718±63°C (n=64; Ti = 10±9 ppm). Most of the host rocks contain ilmenite or titanite suggesting that α(TiO2)>0.5, but rutile activity is unknown for megacrysts and detrital zircons. Pegmatite contains no Ti-rich minerals

  7. A Low Temperature Synthetic Route to Nanocrystalline TiN

    African Journals Online (AJOL)

    NICO

    recent years, autoclaved synthesis of TiN nanomaterials from titanium sources of TiO2, TiCl4 has been developed24–27. In the present work, we describe a simple chemical synthetic route to nanocrystalline TiN at 500-600 °C, using metallic Ti and sodium amide (NaNH2) as source materials. The reaction was carried out in ...

  8. Assessing Photocatalytic Oxidation Using Modified TiO 2 Nanomaterials for Virus Inactivation in Drinking Water: Mechanisms and Application

    Science.gov (United States)

    Liga, Michael Vincent

    Photocatalytic oxidation is an alternative water treatment method under consideration for disinfecting water. Chlorine disinfection can form harmful byproducts, and some viruses (e.g. adenoviruses) are resistant to other alternative disinfection methods. Photocatalytic oxidation using nano-sized photocatalytic particles (e.g. TiO2, fullerene) holds promise; however, it is limited by its low efficiency and long required treatment times. This research focuses on improving virus inactivation by photocatalytic oxidation by modifying catalysts for improved activity, by analyzing virus inactivation kinetics, and by elucidating the inactivation mechanisms of adenovirus serotype 2 (AdV2) and bacteriophage MS2. Modifying TiO2 with silver (nAg/TiO2) or silica (SiO2-TiO2) improves the inactivation kinetics of bacteriophage MS2 by a factor of 3-10. nAg/ TiO2 increases hydroxyl radical (HO·) production while SiO2 increases the adsorption of MS2 to TiO 2. These results suggest that modifying the photocatalyst surface to increase contaminant adsorption is an important improvement strategy along with increasing HO· production. The inactivation kinetics of AdV2 by P25 TiO2 is much slower than the MS2 inactivation kinetics and displays a strong shoulder, which is not present in the MS2 kinetics. nAg/TiO2 initially improves the inactivation rate of AdV2. SiO2-TiO2 reduces the AdV2 inactivation kinetics since adsorption is not significantly enhanced, as it is with MS2. Amino-C60 is highly effective for AdV2 inactivation under visible light irradiation, making it a good material for use in solar disinfection systems. The efficacy of amino-fullerene also demonstrates that singlet oxygen is effective for AdV2 inactivation. When exposed to irradiated TiO2, AdV2 hexon proteins are heavily damaged resulting in the release of DNA. DNA damage is also present but may occur after capsids break. With MS2, the host interaction protein is rapidly damaged, but not the coat protein. The kinetics

  9. Structural properties of nanometric and micrometric TiCN/TiNbCN supperlattices

    Science.gov (United States)

    Caicedo, Julio; Yate, Luis; Ramírez, Juan; Gómez, Maria Elena; Lousa, Arturo; Esteve, Joan; Prieto, Pedro

    2010-03-01

    TiCN and TiNbCN systems have broadly been used as protective hard and anticorrosive coatings. [TiCN/TiNbCN]n multilayers were deposited on silicon substrates by two-target-r.f. magnetron sputtering with alternatively changing the sputtering plasma composition between pure Ti+C and Nb elements under a reactive mixture Ar/N2. TiCN/TiNbCN bilayer period varied from nanometric range (15 nm) to higher micrometric range (1.5 μm) values. Structural, morphological and stoichiometric of the coatings were analyzed by high-angle- and low-angle X-ray diffraction, X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS) and cross-sectional transmission electron microscopy (TEM). We determined multilayer period, λ, and individual layer thicknesses. We found a cube-on-cube epitaxial growth structure and with epitaxial relationship between layers inside each columnar crystallite given by (111)[110]TiCN//(111)[110]TiNbCN.

  10. Sputter deposition and characterisation of hard wear-resistant Ti/TiN multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Simmonds, M.C.; Swygenhoven, H. van [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Multilayered Ti/TiN thin films have been synthesized by magnetron sputter deposition. Alternating layers of Ti and TiN with layer thickness in the 5-50 nm range are sequentially deposited. The structure of the films have been characterised by atomic force microscopy (AFM), X-ray diffraction and reflection and Auger depth profiling. The mechanical properties have been investigated using pin-on-disc wear rate testing, nanoindentation determination of hardness and micro scratch testing. (author) 1 fig., 3 refs.

  11. Microstructure and mechanical properties of ceramic coatings on Ti and Ti-based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Surowska, B.; Bienias, J.; Walczak, M.; Sangwal, K.; Stoch, A

    2004-11-15

    Results of a study of silica and silica-titania sol-gel coatings for the creation of intermediate interfaces between commercially pure Ti or titanium alloy Ti6Al4VELI and dental porcelain are presented. Coatings of SiO{sub 2} on Ti6Al4V alloy and SiO{sub 2}-TiO{sub 2} on Ti were deposited using sol-gel method. Surface microstructures and wear behaviour of the coatings were studied by using scanning electron microscopy with electron diffraction spectroscopy and pin-on-disc method. It is found that (1) Ti6Al4V/SiO{sub 2} and Ti/SiO{sub 2}-TiO{sub 2} coatings obtained by the sol-gel method are compact, chemically homogeneous and relatively rough, and (2) the smaller wear of SiO{sub 2} coatings than that of SiO{sub 2}-TiO{sub 2} coatings is associated with differences in their microstructure and roughness.

  12. The Influence of a TiN Film on the Electronic Contribution to the Thermal Conductivity of a TiC Film in a TiN-TiC Layer System

    Science.gov (United States)

    Jagannadham, K.

    2018-01-01

    TiC and TiN films were deposited by reactive magnetron sputtering on Si substrates. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterization of the microstructure and interface structure have been carried out and the stoichiometric composition of TiC is determined. Thermal conductivity and interface thermal conductance between different layers in the films are evaluated by the transient thermo reflectance (TTR) and three-omega (3- ω) methods. The results showed that the thermal conductivity of the TiC films increased with temperature. The thermal conductivity of TiC in the absence of TiN is dominated by phonon contribution. The electronic contribution to the thermal conductivity of TiC in the presence of TiN is found to be more significant. The interface thermal conductance of the TiC/TiN interface is much larger than that of interfaces at Au/TiC, TiC/Si, or TiN/Si. The interface thermal conductance between TiC and TiN is reduced by the layer formed as a result of interdiffusion.

  13. Rapid Raman mapping of a fulgurite.

    Science.gov (United States)

    Carter, Elizabeth A; Pasek, Matthew A; Smith, Tim; Kee, Terence P; Hines, Peter; Edwards, Howell G M

    2010-08-01

    A fulgurite is a naturally occurring glass formed when lightning hits sand, rock, or soil. The formation of fulgurites is accompanied by mineralogical and sometimes compositional changes, and may record information about the environment in which they were formed. A previous investigation using Raman point spectroscopy discovered the presence of anatase, a low-temperature polymorph of TiO(2), and polyaromatic hydrocarbons within a fulgurite. These findings indicate that there were regions within the sample that were not subjected to temperatures of 2,000 K or more that the matrix is reported to attain when struck by lightning. This paper seeks to expand the previous research by utilizing the capabilities of a new Raman spectroscopic technological development that enables rapid mapping. The entire surface area of a cross-sectioned fulgurite (approximately 40 mm x 23 mm) sample was mapped allowing several regions of polyaromatic hydrocarbons and anatase to be located. Furthermore, shocked quartz was found within the boundary regions of the fulgurite, and is proposed to have resulted from contact with vaporized material during the lightning strike. Shocked quartz is typically indicative of extraterrestrial impact, yet its discovery here suggests that its formation is not exclusive to the impact process.

  14. Building a rapid response team.

    Science.gov (United States)

    Halvorsen, Lisa; Garolis, Salomeja; Wallace-Scroggs, Allyson; Stenstrom, Judy; Maunder, Richard

    2007-01-01

    The use of rapid response teams is a relatively new approach for decreasing or eliminating codes in acute care hospitals. Based on the principles of a code team for cardiac and/or respiratory arrest in non-critical care units, the rapid response teams have specially trained nursing, respiratory, and medical personnel to respond to calls from general care units to assess and manage decompensating or rapidly changing patients before their conditions escalate to a full code situation. This article describes the processes used to develop a rapid response team, clinical indicators for triggering a rapid response team call, topics addressed in an educational program for the rapid response team members, and methods for evaluating effectiveness of the rapid response team.

  15. Site preference of Zr in Ti3Al and phase stability of Ti2ZrAl

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The site preference of Zr atoms in Ti3Al and the phase stability of Ti2ZrAl are examined using first-principles electronic structure total energy calculations. Of the sixteen possible ways in which Ti, Zr and. Al atoms can be arranged, in the lattice sites corresponding to D019 structure of Ti3Al, to obtain Ti2ZrAl, it is.

  16. Site preference of Zr in Ti3Al and phase stability of Ti2ZrAl

    Indian Academy of Sciences (India)

    The site preference of Zr atoms in Ti3Al and the phase stability of Ti2ZrAl are examined using first-principles electronic structure total energy calculations. Of the sixteen possible ways in which Ti, Zr and Al atoms can be arranged, in the lattice sites corresponding to D 0 19 structure of Ti3Al, to obtain Ti2ZrAl, it is s hown that ...

  17. Problems of rapid growth.

    Science.gov (United States)

    Kim, T D

    1980-01-01

    South Korea's export-oriented development strategy has achieved a remarkable growth record, but it has also brought 2 different problems: 1) since the country's exports accounted for about 1% of total world export volume, the 1st world has become fearful about Korea's aggressive export drive; and 2) the fact that exports account for over 30% of its total gross national product (GNP) exposes the vulnerability of South Korea's economy itself. South Korea continues to be a poor nation, although it is rated as 1 of the most rapidly growing middle income economies. A World Bank 1978 report shows Korea to be 28th of 58 middle income countries in terms of per capita GNP in 1976. Of 11 newly industrializing countries (NIC), 5 in the European continent are more advanced than the others. A recent emphasis on the basic human needs approach has tended to downgrade the concept of GNP. Korea has only an abundant labor force and is without any natural resources. Consequently, Korea utilized an export-oriented development strategy. Oil requirements are met with imports, and almost all raw materials to be processed into exportable products must be imported. To pay import bills Korea must export and earn foreign exchange. It must be emphasized that foreign trade must always be 2-way traffic. In order to export more to middle income countries like Korea, the countries of the 1st world need to ease their protectionist measures against imports from developing countries.

  18. Rapid Polymer Sequencer

    Science.gov (United States)

    Stolc, Viktor (Inventor); Brock, Matthew W (Inventor)

    2013-01-01

    Method and system for rapid and accurate determination of each of a sequence of unknown polymer components, such as nucleic acid components. A self-assembling monolayer of a selected substance is optionally provided on an interior surface of a pipette tip, and the interior surface is immersed in a selected liquid. A selected electrical field is impressed in a longitudinal direction, or in a transverse direction, in the tip region, a polymer sequence is passed through the tip region, and a change in an electrical current signal is measured as each polymer component passes through the tip region. Each of the measured changes in electrical current signals is compared with a database of reference electrical change signals, with each reference signal corresponding to an identified polymer component, to identify the unknown polymer component with a reference polymer component. The nanopore preferably has a pore inner diameter of no more than about 40 nm and is prepared by heating and pulling a very small section of a glass tubing.

  19. Rapidly rotating red giants

    Science.gov (United States)

    Gehan, Charlotte; Mosser, Benoît; Michel, Eric

    2017-10-01

    Stellar oscillations give seismic information on the internal properties of stars. Red giants are targets of interest since they present mixed modes, wich behave as pressure modes in the convective envelope and as gravity modes in the radiative core. Mixed modes thus directly probe red giant cores, and allow in particular the study of their mean core rotation. The high-quality data obtained by CoRoT and Kepler satellites represent an unprecedented perspective to obtain thousands of measurements of red giant core rotation, in order to improve our understanding of stellar physics in deep stellar interiors. We developed an automated method to obtain such core rotation measurements and validated it for stars on the red giant branch. In this work, we particularly focus on the specific application of this method to red giants having a rapid core rotation. They show complex spectra where it is tricky to disentangle rotational splittings from mixed-mode period spacings. We demonstrate that the method based on the identification of mode crossings is precise and efficient. The determination of the mean core rotation directly derives from the precise measurement of the asymptotic period spacing ΔΠ1 and of the frequency at which the crossing of the rotational components is observed.

  20. Thermal and mechanical effect during rapid heating of astroloy for improving structural integrity

    Energy Technology Data Exchange (ETDEWEB)

    Popoolaa, A.P.I., E-mail: popoolaapi@tut.ac.za [Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Oluwasegun, K.M. [Department of Materials Science and Engineering, Obafemi Awolowo University (Nigeria); Olorunniwo, O.E., E-mail: segun_nniwo@yahoo.com [Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Department of Materials Science and Engineering, Obafemi Awolowo University (Nigeria); Atanda, P.O. [Department of Materials Science and Engineering, Obafemi Awolowo University (Nigeria); Aigbodion, V.S. [Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Department of Metallurgical and Materials Engineering, University of Nigeria, Nsukka (Nigeria)

    2016-05-05

    The behaviour of γ′ phase to thermal and mechanical effects during rapid heating of Astroloy(Turbine Disc alloy) a Powder metallurgy (PM) nickel base superalloy has been investigated. The thermo-mechanical affected zone (TMAZ) and heat affected zone (HAZ) microstructure of an inertia friction welded Astroloy were simulated using a Gleeble thermo-mechanical simulation system. Detailed microstructural examination of the simulated TMAZ and HAZ and those present in actual inertial friction welded specimens showed that γ′ particles persisted during rapid heating up to a temperature where the formation of liquid is thermodynamically favoured, and subsequently re-solidified eutectically. The result obtained showed that forging during the thermo-mechanical simulation significantly enhanced resistance to weld liquation cracking of the alloy. This is attributable to strain-induced rapid isothermal dissolution of the constitutional liquation products within 150 μm from the centre of the forged sample. This was not observed in purely thermally simulated samples. The microstructure within the TMAZ of the as-welded alloy is similar to the microstructure in the forged Gleeble specimens. - Highlights: • The behaviour of γ′ phase to thermal and mechanical effects during rapid heating of Astrology • The thermo-mechanical affected zone (TMAZ) and heat affected zone (HAZ). • significantly enhanced resistance to weld liquation cracking of the alloy. • This was not observed in purely thermally simulated samples. • The microstructure within the TMAZ of the as-welded alloy is similar to the microstructure in the forged Gleeble specimens.

  1. CdS Nanoparticle-Modified α-Fe2O3/TiO2 Nanorod Array Photoanode for Efficient Photoelectrochemical Water Oxidation.

    Science.gov (United States)

    Yin, Ruiyang; Liu, Mingyang; Tang, Rui; Yin, Longwei

    2017-09-02

    In this work, we demonstrate a facile successive ionic layer adsorption and reaction process accompanied by hydrothermal method to synthesize CdS nanoparticle-modified α-Fe2O3/TiO2 nanorod array for efficient photoelectrochemical (PEC) water oxidation. By integrating CdS/α-Fe2O3/TiO2 ternary system, light absorption ability of the photoanode can be effectively improved with an obviously broadened optical-response to visible light region, greatly facilitates the separation of photogenerated carriers, giving rise to the enhancement of PEC water oxidation performance. Importantly, for the designed abnormal type-II heterostructure between Fe2O3/TiO2, the conduction band position of Fe2O3 is higher than that of TiO2, the photogenerated electrons from Fe2O3 will rapidly recombine with the photogenerated holes from TiO2, thus leads to an efficient separation of photogenerated electrons from Fe2O3/holes from TiO2 at the Fe2O3/TiO2 interface, greatly improving the separation efficiency of photogenerated holes within Fe2O3 and enhances the photogenerated electron injection efficiency in TiO2. Working as the photoanodes of PEC water oxidation, CdS/α-Fe2O3/TiO2 heterostucture electrode exhibits improved photocurrent density of 0.62 mA cm- 2 at 1.23 V vs. reversible hydrogen electrode (RHE) in alkaline electrolyte, with an obviously negatively shifted onset potential of 80 mV. This work provides promising methods to enhance the PEC water oxidation performance of the TiO2-based heterostructure photoanodes.

  2. TiO2 Nanoparticles Aggregation and Disaggregation in Presence of Alginates and Humic Acids: pH and Concentration Effects on Suspension Stability

    Science.gov (United States)

    Loosli, Frédéric; Le Coustumer, Philippe; Stoll, Serge

    2013-04-01

    The behavior of manufactured TiO2 nanoparticles is studied here in a systematic way as a function of pH and in the presence of Suwannee river humic acids and alginate, at variable concentrations, which represent two major components found in aquatic systems. TiO2 nanoparticles aggregation, disaggregation and stabilization are investigated using dynamic light scattering and electrophoretic experiments allowing the measurement and evolution determination of z-average hydrodynamic diameters and zeta potential values. Stability of the TiO2 nanoparticles is carried out by considering three pH-dependent electrostatic scenarios (below the point of zero charge of the nanoparticles, at the point of zero charge and above it). In the first scenario, when pH is below the point of zero charge of the TiO2 nanoparticles, nanoparticles exhibit a positively charged surface whereas alginate and Suwannee river humic acids are negatively charged. Fast adsorption at the TiO2 nanoparticles occurs, promotes surface charge neutralization and aggregation and, by increasing further Alginate and Suwannee river humic acids, results in charge inversion and thus stabilization of TiO2 nanoparticles. In the second electrostatic scenario, at the pH of the TiO2 surface charge neutralization, TiO2 nanoparticles are rapidly forming aggregates and adsorption of alginate and Suwannee river humic acid on aggregates surface leads to the partial disaggregation of aggregates. In the third electrostatic scenario, when nanoparticles, alginates and Suwannee river humic acids are negatively charged a small amount of Suwannee river humic acids is adsorbed via hydrophobic interactions. It is found that the fate and behavior of individual and aggregated TiO2 nanoparticles in presence of environmental compounds are strongly dependent on the electrostatic, concentration ratio, and to a less extend to the amphiphilic compounds character and that environmental aquatic concentration ranges of humic acids and

  3. TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability.

    Science.gov (United States)

    Loosli, Frédéric; Le Coustumer, Philippe; Stoll, Serge

    2013-10-15

    The behavior of manufactured TiO2 nanoparticles is studied in a systematic way in presence of alginate and Suwannee River humic acids at variable concentrations. TiO2 nanoparticles aggregation, disaggregation and stabilization are investigated using dynamic light scattering and electrophoretic experiments allowing the measurement of z-average hydrodynamic diameters and zeta potential values. Stability of the TiO2 nanoparticles is discussed by considering three pH-dependent electrostatic scenarios. In the first scenario, when pH is below the TiO2 nanoparticle point of zero charge, nanoparticles exhibit a positively charged surface whereas alginate and Suwannee River humic acids are negatively charged. Fast adsorption at the TiO2 nanoparticles occurs, promotes surface charge neutralization and aggregation. By increasing further alginate and Suwannee River humic acids concentrations charge inversion and stabilization of TiO2 nanoparticles are obtained. In the second electrostatic scenario, at the surface charge neutralization pH, TiO2 nanoparticles are rapidly forming aggregates. Adsorption of alginate and Suwannee River humic acids on aggregates leads to their partial fragmentation. In the third electrostatic scenario, when nanoparticles, alginate and Suwannee River humic acids are negatively charged, only a small amount of Suwannee River humic acids is adsorbed on TiO2 nanoparticles surface. It is found that the fate and behavior of individual and aggregated TiO2 nanoparticles in presence of environmental compounds are mainly driven by the complex interplay between electrostatic attractive and repulsive interactions, steric and van der Waals interactions, as well as concentration ratio. Results also suggest that environmental aquatic concentration ranges of humic acids and biopolymers largely modify the stability of aggregated or dispersed TiO2 nanoparticles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Shape-Controlled TiCx Particles Fabricated by Combustion Synthesis in the Cu-Ti-C System

    Directory of Open Access Journals (Sweden)

    Dongdong Zhang

    2017-07-01

    Full Text Available TiCx particle-reinforced Cu-matrix composites were prepared in the Cu-Ti-C system by thermal explosion and hot press. Extracted TiCx particles with various shapes of in situ TiCx particles in the Cu-Ti-C system were observed through the Field Emission Scanning Electron Microscope (FESEM. It was found that octahedral and close-to-spherical, spherical or cubic TiCx could be fabricated by changing the C/Ti molar ratio and Cu content. Then, the effect of the C/Ti molar ratio and constituent element concentrations on the shape of in situ TiCx particles was determined: the shape of TiCx particles is octahedral at a C/Ti ratio of 0.4–0.6 with the presence of 70 vol% Cu; or spherical and close-to-spherical at 0.8–1.0 with the presence of 70 vol% Cu; or cubic at C/Ti ratios ≥1.0 with the presence of Cu from 80 vol%–90 vol% and even at C/Ti ratios >1.0 with the presence of 70 vol% Cu. The shape-controlled synthesis of TiCx particles in the Cu-Ti-C system is realized.

  5. Efficient Yttrium(III) Chloride-Treated TiO2Electron Transfer Layers for Performance-Improved and Hysteresis-Less Perovskite Solar Cells.

    Science.gov (United States)

    Li, Minghua; Huan, Yahuan; Yan, Xiaoqin; Kang, Zhuo; Guo, Yan; Li, Yong; Liao, Xinqin; Zhang, Ruxiao; Zhang, Yue

    2018-01-10

    Hybrid organic-inorganic metal halide perovskite solar cells have attracted widespread attention, owing to their high performance, and have undergone rapid development. In perovskite solar cells, the charge transfer layer plays an important role for separating and transferring photogenerated carriers. In this work, an efficient YCl 3 -treated TiO 2 electron transfer layer (ETL) is used to fabricate perovskite solar cells with enhanced photovoltaic performance and less hysteresis. The YCl 3 -treated TiO 2 layers bring about an upward shift of the conduction band minimum (E CBM ), which results in a better energy level alignment for photogenerated electron transfer and extraction from the perovskite into the TiO 2 layer. After optimization, perovskite solar cells based on the YCl 3 -treated TiO 2 layers achieve a maximum power conversion efficiency of about 19.99 % (19.29 % at forward scan) and a steady-state power output of about 19.6 %. Steady-state and time-resolved photoluminescence measurements and impedance spectroscopy are carried out to investigate the charge transfer and recombination dynamics between the perovskite and the TiO 2 electron transfer layer interface. The improved perovskite/TiO 2 ETL interface with YCl 3 treatment is found to separate and extract photogenerated charge rapidly and suppress recombination effectively, which leads to the improved performance. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Biased Target Ion Beam Deposition and Nanoskiving for Fabricating NiTi Alloy Nanowires

    Science.gov (United States)

    Hou, Huilong; Horn, Mark W.; Hamilton, Reginald F.

    2016-12-01

    Nanoskiving is a novel nanofabrication technique to produce shape memory alloy nanowires. Our previous work was the first to successfully fabricate NiTi alloy nanowires using the top-down approach, which leverages thin film technology and ultramicrotomy for ultra-thin sectioning. For this work, we utilized biased target ion beam deposition technology to fabricate nanoscale (i.e., sub-micrometer) NiTi alloy thin films. In contrast to our previous work, rapid thermal annealing was employed for heat treatment, and the B2 austenite to R-phase martensitic transformation was confirmed using stress-temperature and diffraction measurements. The ultramicrotome was programmable and facilitated sectioning the films to produce nanowires with thickness-to-width ratios ranging from 4:1 to 16:1. Energy dispersive X-ray spectroscopy analysis confirmed the elemental Ni and Ti make-up of the wires. The findings exposed the nanowires exhibited a natural ribbon-like curvature, which depended on the thickness-to-width ratio. The results demonstrate nanoskiving is a potential nanofabrication technique for producing NiTi alloy nanowires that are continuous with an unprecedented length on the order of hundreds of micrometers.

  7. Nanogenerator power output: influence of particle size and crystallinity of BaTiO3

    Science.gov (United States)

    Nutal Schädli, Gian; Büchel, Robert; Pratsinis, Sotiris E.

    2017-07-01

    Lead-free piezoelectric nanogenerators made with BaTiO3 offer an attractive energy harvesting solution towards portable, battery-free medical devices such as self-powered pacemakers. Here, we assembled nanogenerators made of thin, flexible poly(vinylidene fluoride-co-hexafluoropropylene) films containing either polycrystalline BaTiO3 nanoparticles of various sizes or commercial monocrystalline particles of 64 or 278 nm in average diameter. The nanoparticles were prepared by hydrogen-driven flame aerosol technology and had an average diameter of 24-50 nm with an average crystal size of about 10 nm. The rapid cooling during nanoparticle formation facilitated the synthesis of polycrystalline, multi-domain, piezoelectrically active tetragonal BaTiO3 with a high c/a lattice ratio. Using these particles, 2 μm thin polymer nanocomposites were formed, assembled into nanogenerators that exhibited a 1.4 V time-averaged output, almost twice that of the best commercial BaTiO3 particles. That output was maintained stable for over 45 000 cycles with each cycle corresponding to a heartbeat of 60 bpm. The exceptional piezoelectric performance of these nanogenerators is traced to their constituent polycrystalline nanoparticles, having high degree of domain orientation upon poling and exhibiting the flexoelectric effect, polarization induced by a strain gradient.

  8. Successful beam test of the SPS-to-LHC transfer line TI2

    CERN Multimedia

    2007-01-01

    Image of the first beam spot on the last BTV screen traversed by the beam during the TI 2 test.At 12:03:47 on 28 October a beam passed down the 2.7 km of the new SPS-to-LHC transfer line TI 2 at the first attempt, to within some 50 m of the LHC tunnel. After initial tuning, a range of measurements was carried out with a low intensity proton beam and preliminary analyses look good. After the test, no increase in radiation levels was found in either the LHC or ALICE, and the zones were rapidly opened again for access. As from next year TI 2 will regularly transport a beam from the SPS to the LHC injection point of Ring 1, near Point 2 (ALICE). The TI 8 transfer line, which will bring particles from the SPS to the injection point in Ring 2, near Point 8 (LHCb), was commissioned successfully with low intensity beam in 2004. The two LHC injection lines have a combined length of 5.6 km and comprise some seven hundred warm magnets. While a...

  9. Rapid mixing kinetic techniques.

    Science.gov (United States)

    Martin, Stephen R; Schilstra, Maria J

    2013-01-01

    Almost all of the elementary steps in a biochemical reaction scheme are either unimolecular or bimolecular processes that frequently occur on sub-second, often sub-millisecond, time scales. The traditional approach in kinetic studies is to mix two or more reagents and monitor the changes in concentrations with time. Conventional spectrophotometers cannot generally be used to study reactions that are complete within less than about 20 s, as it takes that amount of time to manually mix the reagents and activate the instrument. Rapid mixing techniques, which generally achieve mixing in less than 2 ms, overcome this limitation. This chapter is concerned with the use of these techniques in the study of reactions which reach equilibrium; the application of these methods to the study of enzyme kinetics is described in several excellent texts (Cornish-Bowden, Fundamentals of enzyme kinetics. Portland Press, 1995; Gutfreund, Kinetics for the life sciences. Receptors, transmitters and catalysis. Cambridge University Press, 1995).There are various ways to monitor changes in concentration of reactants, intermediates and products after mixing, but the most common way is to use changes in optical signals (absorbance or fluorescence) which often accompany reactions. Although absorbance can sometimes be used, fluorescence is often preferred because of its greater sensitivity, particularly in monitoring conformational changes. Such methods are continuous with good time resolution but they seldom permit the direct determination of the concentrations of individual species. Alternatively, samples may be taken from the reaction volume, mixed with a chemical quenching agent to stop the reaction, and their contents assessed by techniques such as HPLC. These methods can directly determine the concentrations of different species, but are discontinuous and have a limited time resolution.

  10. Microstructures and Continuous Cooling Transformation of CGHAZ in E36 Class V-N-Ti, V-Ti and Nb-Ti Shipbuilding Steels

    Science.gov (United States)

    Shi, Zhongran; Wang, Ruizhen; Wang, Qingfeng; Su, Hang; Chai, Feng; Yang, Caifu

    For the purpose of obtaining the optimal microstructures and mechanical properties of the CGHAZ under high input welding, continuous cooling transformation diagrams of the coarse grain heat-affected zone (CGHAZ) and the corresponding microstructures were investigated for a E36 class V-N-Ti, V-Ti, and Nb-Ti shipbuilding steels. The results indicated that the CGHAZ continuous transformation behaviors of Nb-Ti and V-Ti steel were similar, but the V-retard phenomenon was not as apparent as that of Nb. In addition, the cooling rate of ferrite transformation of V-Ti steel was higher than that of Nb-Ti steel. The nitrogen addition in the V-Ti steel enhanced the ferrite transformation, since that increasing the nitrogen could obtain fine (Ti, V)(C, N) particles and refine the original austenite size, which can promote the ferrite nucleation. The bainite transformation range of V-N-Ti steel was obviously lower than that of Nb-Ti, V-Ti steel at the t8/5≥100s.

  11. TEM characterization of a Cr/Ti/TiC graded interlayer for magnetron-sputtered TiC/a-C : H nanocomposite coatings

    NARCIS (Netherlands)

    Galvan, D.; Pei, Y.T.; Hosson, J.Th.M. De

    A TiC/a-C:H nanocomposite coating is deposited on top of a Cr/Ti/TiC graded interlayer. Cross-section transmission electron microscopy is employed to investigate the detailed structure of the interlayer and the coating. Five different phases are formed as a consequence of the compositional gradient

  12. Impact of TiO{sub 2} nanoparticles on freshwater bacteria from three Swedish lakes

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Julia, E-mail: julia.farkas@ntnu.no [Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim (Norway); Peter, Hannes [Institute of Ecology, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck (Austria); Ciesielski, Tomasz M. [Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim (Norway); Thomas, Kevin V. [Norwegian Institute of Water Research, Gaustadalléen 21, 0349 Oslo (Norway); Sommaruga, Ruben [Institute of Ecology, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck (Austria); Salvenmoser, Willi [Institute of Zoology, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck (Austria); Weyhenmeyer, Gesa A.; Tranvik, Lars J. [Department of Ecology and Genetics/Limnology, Uppsala University, PO Box 573, 75123 Uppsala (Sweden); Jenssen, Bjørn M. [Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim (Norway)

    2015-12-01

    Due to the rapidly rising production and usage of nano-enabled products, aquatic environments are increasingly exposed to engineered nanoparticles (ENPs), causing concerns about their potential negative effects. In this study we assessed the effects of uncoated titanium dioxide nanoparticles (TiO{sub 2}NPs) on the growth and activity of bacterial communities of three Swedish lakes featuring different chemical characteristics such as dissolved organic carbon (DOC) concentration, pH and elemental composition. TiO{sub 2}NP exposure concentrations were 15, 100, and 1000 μg L{sup −1}, and experiments were performed in situ under three light regimes: darkness, photosynthetically active radiation (PAR), and ambient sunlight including UV radiation (UVR). The nanoparticles were most stable in lake water with high DOC and low chemical element concentrations. At the highest exposure concentration (1000 μg L{sup −1} TiO{sub 2}NP) the bacterial abundance was significantly reduced in all lake waters. In the medium and high DOC lake waters, exposure concentrations of 100 μg L{sup −1} TiO{sub 2}NP caused significant reductions in bacterial abundance. The cell-specific bacterial activity was significantly enhanced at high TiO{sub 2}NP exposure concentrations, indicating the loss of nanoparticle-sensitive bacteria and a subsequent increased activity by tolerant ones. No UV-induced phototoxic effect of TiO{sub 2}NP was found in this study. We conclude that in freshwater lakes with high DOC and low chemical element concentrations, uncoated TiO{sub 2}NPs show an enhanced stability and can significantly reduce bacterial abundance at relatively low exposure concentrations. - Highlights: • Titanium dioxide nanoparticles reduced the abundance of lake water bacteria from 3 Swedish lakes. • The impact was most severe in the lake with high DOC content and low element concentration. • Particle stability influences impact on bacteria. • No phototoxic effects of TiO{sub 2}NP

  13. Microstructure and oxidation behaviour of TiAl(Nb)/Ti2AlC ...

    Indian Academy of Sciences (India)

    Abstract. TiAl-based intermetallic matrix composites with dispersed Ti2AlC particles and different amounts of. Nb were successfully synthesized by mechanical alloying and hot pressing. The phase evolution of Ti–48 at%. Al elemental powder mixture milled for different times with hexane as a process control agent was ...

  14. Deformation mechanisms in TiN/(Ti,Al)N multilayers under depth-sensing indentation

    NARCIS (Netherlands)

    Carvalho, NJM; De Hosson, JTM

    TiN/(Ti,Al)N multilayer coatings prepared by physical vapour deposition onto steel Substrates were Subjected to depth-sensing indentation testing. The investigation was aimed at predicting their performance by identifying the contact-induced fracture mechanisms. Analysis of the load-displacement

  15. Search for muon electron conversion μ-+Ti → e -+Ti

    Science.gov (United States)

    Bryman, D. A.; Leitch, M. J.; Navon, I.; Numao, T.; Schlatter, P.; Dixit, M. S.; Hargrove, C. K.; Mes, H.; Burnham, R. A.; Hasinoff, M.; Poutissou, J.-M.; Macdonald, J. A.; Spuller, J.; Azuelos, G.; Depommier, P.; Martin, J. P.; Poutissou, R.; Blecher, M.; Gotow, K.; Carter, A. L.; Anderson, H. L.; Wright, S. C.

    1985-02-01

    A progress report on a search for the lepton flavor violating reaction μ-+Ti → e -+Ti is presented. No evidence for this process has yet been found leading to an upper limit < 2 × 10 -11 (90% confidence level) relative to ordinary muon capture.

  16. Search for muon electron conversion. mu. /sup -/+Ti. -->. e/sup -/+Ti

    Energy Technology Data Exchange (ETDEWEB)

    Bryman, D.A.; Leitch, M.J.; Navon, I.; Numao, T.; Schlatter, P.; Dixit, M.S.; Hargrove, C.K.; Mes, H.; Burnham, R.A.; Hasinoff, M.

    1984-07-01

    A progress report on a search for the lepton flavor violating reaction ..mu../sup -/+Ti ..-->.. e/sup -/+Ti is presented. No evidence for this process has yet been found leading to an upper limit < 2 x 10/sup -11/ (90% confidence level) relative to ordinary muon capture.

  17. Search for muon electron conversion. mu. /sup -/+Ti -> e/sup -/+Ti

    Energy Technology Data Exchange (ETDEWEB)

    Bryman, D.A.; Leitch, M.J.; Navon, I.; Numao, T.; Schlatter, P. (British Columbia Univ., Vancouver (Canada). TRIUMF Facility; Victoria Univ., British Columbia (Canada)); Dixit, M.S.; Hargrove, C.K.; Mes, H. (National Research Council of Canada, Ottawa, Ontario); Burnham, R.A.

    1985-02-25

    A progress report on a search for the lepton flavor violating reaction ..mu../sup -/+Ti->e/sup -/+Ti is presented. No evidence for this process has yet been found leading to an upper limit < 2 x 10/sup -11/ (90% confidence level) relative to ordinary muon capture.

  18. Effect of annealing process on TiN/TiC bilayers grown by pulsed arc discharge

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Rivera, L., E-mail: lramosr@unal.edu.co [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al Aeropuerto Campus La Nubia (Colombia); Escobar, D.; Benavides-Palacios, V.; Arango, P.J.; Restrepo-Parra, E. [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al Aeropuerto Campus La Nubia (Colombia)

    2012-08-15

    In this work, a study of annealing process effect on TiN/TiC bilayer is presented. The annealing temperature was varied between room temperature and 500 Degree-Sign C. Materials were produced by the plasma-assisted pulsed vacuum arc discharge technique. In order to grow the films, a target of Ti with 99.9999% purity and stainless-steel 304 substrate were used. For the production of TiN layer, the reaction chamber was filled up with nitrogen gas until reaching 25 Pa and the discharge was performed at 310 V. The TiC layer was grown in a methane atmosphere at 30 Pa and 270 V. X-ray diffraction and X photoelectron spectroscopy were employed for studying the structure and chemical composition evolution during the annealing process. At 400 Degree-Sign C, TiO{sub 2} phase begun to appear and it was well observed at 500 Degree-Sign C. Crystallite size and microstrain was obtained as a function of the annealing temperature. XPS technique was employed for analyzing the bilayers before and after the annealing process. Narrow spectra of Ti2p, N1s and O1s were obtained, presenting TiO phases.

  19. PLD prepared bioactive BaTiO.sub.3./sub. films on TiNb implants

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Vaněk, Přemysl; Tolde, Z.; Buixaderas, Elena; Kocourek, Tomáš; Studnička, Václav; Drahokoupil, Jan; Petzelt, Jan; Remsa, Jan; Tyunina, Marina

    2017-01-01

    Roč. 70, Jan (2017), s. 334-339 ISSN 0928-4931 R&D Projects: GA ČR(CZ) GA15-05864S; GA ČR(CZ) GA15-01558S Institutional support: RVO:68378271 Keywords : BaTiO 3 * thin films * pld * implants * TiNb * ferroelectricity Subject RIV: BM - Solid Matter Physics ; Magnetism

  20. Novel ZnO-TiO2 nanocomposite arrays on Ti fabric for enhanced photocatalytic application

    Science.gov (United States)

    Li, Xiujuan; Wang, Chang; Xia, Ning; Jiang, Ming; Liu, Ruina; Huang, Jing; Li, Qiong; Luo, Zhiping; Liu, Lin; Xu, Weilin; Fang, Dong

    2017-11-01

    In this study, ZnO-TiO2 nanocomposite arrays on Ti fabric were synthesized via a hydrothermal process, where the amorphous TiO2 nanotube array was used as a precursor. The fabrication process involved the preparation of zinc acetate particles that were modified on TiO2 nanotube arrays. These transformed the amorphous TiO2 to crystallized ZnO-TiO2. The prepared samples were then characterized by X-ray diffractometer, field-emission scanning electron microscope, transmission electron microscope, energy-dispersive X-ray spectroscopy, and photoluminescence. Photodegradation test of methyl orange was examined using the ZnO-TiO2 nanocomposite arrays on the Ti fabric. Following 60 min of UV irradiation nearly 100% photodegradation of the 20 mg L-1 methyl orange solution at pH = 10 was achieved. The degradation products were identified and the photocatalysis process was studied. The results obtained in the study will enable researchers to design a scalable, practical process for dye wastewater treatment.