WorldWideScience

Sample records for rapidly solidified ti

  1. Rapidly solidified Ti-25Al-Nb alloys

    International Nuclear Information System (INIS)

    Ward, C.H.; Broderick, T.F.; Jackson, A.G.; Rowe, R.G.; Froes, F.H.

    1987-01-01

    Alloys based on the Ti-25Al-Nb intermetallic system were studied to determine the effects of rapid solidification on structure. Compositions ranging from 12 to 30 at% niobium which are beyond the α/sub 2/ single phase field were evaluated. Alloys were prepared using a melt spinning process. The resulting ribbons were characterized using transmission electron microscopy and x-ray diffraction. The alloys were all found to have a retained ordered B2 structure in the melt spun condition with an antiphase domain size that significantly decreased with increasing niobium content. ''Tweed-like'' striations, indicating planar shear strain, were observed in all compositions. The characteristic diffraction pattern of an ordered ''omega-type'' phase was found to occur in the patterns taken from the 12 at% niobium alloy

  2. Solidification structure and dispersoids in rapidly solidified Ti-Al-Sn-Zr-Er-B alloys

    International Nuclear Information System (INIS)

    Rowe, R.G.; Broderick, T.F.; Koch, E.F.; Froes, F.H.

    1986-01-01

    The microstructure of melt extracted and melt spun titanium alloys containing erbium and boron revealed a duplex solidification structure of columnar grains leading to equiaxed and dendritic structures near the free surface of melt extracted and melt spun alloys. The solidification structure was revealed by apparent boride segregation to cellular, interdendritic and grain boundaries. Precipitation of needle or lath-like TiB particles occurred adjacent to Er/sub 2/O/sub 3/ dispesoid particles in as-rapidly solidified ribbon

  3. The research of Ti-rich zone on the interface between TiCx and aluminum melt and the formation of Ti3Al in rapid solidified Al-Ti-C master alloys

    International Nuclear Information System (INIS)

    Jiang Kun; Ma Xiaoguang; Liu Xiangfa

    2009-01-01

    In the present work, the thermodynamic tendency of formation of Ti-rich zone on the interface between TiC x and aluminum melt is calculated and a high titanium concentration can exist in the zone according to the thermodynamic calculation. Rapid solidified Al-5Ti-0.5C master alloy is analyzed by X-ray diffraction (XRD) and transmission electronic microscopy (TEM). The appearance of Ti 3 Al in the master alloy results from the existence of high-concentration Ti-rich zone.

  4. Electrochemical properties of rapidly solidified Si-Ti-Ni(-Cu) base anode for Li-ion rechargeable batteries

    Science.gov (United States)

    Kwon, Hye Jin; Sohn, Keun Yong; Park, Won-Wook

    2013-11-01

    In this study, rapidly solidified Si-Ti-Ni-Cu alloys have been investigated as high capacity anodes for Li-ion secondary batteries. To obtain nano-sized Si particles dispersed in the inactive matrix, the alloy ribbons were fabricated using the melt spinning process. The thin ribbons were pulverized using ball-milling to make a fine powder of ˜ 4 µm average size. Coin-cell assembly was carried out under an argon gas in a glove box, in which pure lithium was used as a counter-electrode. The cells were cycled using the galvanostatic method in the potential range of 0.01 V and 1.5 V vs. Li/Li+. The microstructure and morphology were examined using an x-ray diffractometer, Field-Emission Scanning Electron Microscopy and High Resolution Transmission Electron Microscopy. Among the anode alloys, the Si70Ti15Ni15 electrodes had the highest discharge capacity (974.1 mAh/g) after the 50th cycle, and the Si60Ti16Ni16Cu8 electrode showed the best coulombic efficiency of ˜95.9% in cyclic behavior. It was revealed that the Si7Ni4Ti4 crystal phase coexisting with an amorphous phase, could more efficiently act as a buffer layer than the fully crystallized Si7Ni4Ti4 phase. Consequently, the electrochemical properties of the anode materials pronouncedly improved when the nano-sized primary Si particle was dispersed in the inactive Si7Ni4Ti4-based matrix mixed with an amorphous structure.

  5. Characterization of the Ni-45wt% Ti shape memory alloy rapidly solidified

    International Nuclear Information System (INIS)

    Anselmo, G.C.S.; Castro, W.B. de; Araujo, C.J. de

    2010-01-01

    One important challenge of microsystems design is the implementation of miniaturized actuation principles efficient at the micro-scale. Shape memory alloys (SMAs) have early on been considered as a potential solution to this problem as these materials offer attractive properties like a high-power to weight ratio, large deformation and the capability to be processed at the micro-scale. shape memory characteristics of Ni-45wt%Ti alloy ribbons prepared by melt spinning were investigated by means of differential scanning calorimetry and X-ray. In these experiments particular attention has been paid to change the velocity of cooling wheel from 30 to 50 m/s. Then the cooling rates of ribbons were controlled. The effect of this cooling rate on martensitic transformation behaviors and structure are discussed. (author)

  6. Microstructure of rapidly solidified materials

    Science.gov (United States)

    Jones, H.

    1984-07-01

    The basic features of rapidly solidified microstructures are described and differences arising from alternative processing strategies are discussed. The possibility of achieving substantial undercooling prior to solidification in processes such as quench atomization and chill block melt spinning can give rise to striking microstructural transitions even when external heat extraction is nominally Newtonian. The increased opportunity in laser and electron beam surface melting for epitaxial growth on the parent solid at an accelerating rate, however, does not exclude the formation of nonequilibrium phases since the required undercooling can be locally attained at the solidification front which is itself advancing at a sufficiently high velocity. The effects of fluid flow indicated particularly in melt spinning and surface melting are additional to the transformational and heat flow considerations that form the present basis for interpretation of such microstructural effects.

  7. Rapidly solidified aluminium for optical applications

    NARCIS (Netherlands)

    Gubbels, G.P.H.; Venrooy, B.W.H. van; Bosch, A.J.; Senden, R.

    2008-01-01

    This paper present the results of a diamond turning study of a rapidly solidified aluminium 6061 alloy grade, known as RSA6061. It is shown that this small grain material can be diamond turned to smaller roughness values than standard AA6061 aluminium grades. Also, the results are nearly as good as

  8. Rapidly solidified prealloyed powders by laser spin atomization

    Science.gov (United States)

    Konitzer, D. G.; Walters, K. W.; Heiser, E. L.; Fraser, H. L.

    1984-01-01

    A new technique, termed laser spin atomization, for the production of rapidly solidified prealloyed powders is described. The results of experiments involving the production of powders of two alloys, one based on Ni, the other on Ti, are presented. The powders have been characterized using light optical metallography, scanning electron microscopy, energy dispersive X-ray spectroscopy, and Auger elec-tron spectroscopy, and these various observations are described.

  9. Characterization of aluminium alloys rapidly solidified

    International Nuclear Information System (INIS)

    Monteiro, W.A.

    1988-01-01

    This paper discussed the investigation of the microstructural and mechanical properties of the aluminium alloys (3003; 7050; Al-9% Mg) rapidly solidified by melt spinning process (cooling rate 10 4 - 10 6 K/s). The rapidly solidification process of the studied aluminium alloys brought a microcrystallinity, a minimum presence of coarse precipitation and, also, better mechanical properties of them comparing to the same alloys using ingot process. (author) [pt

  10. Effect of titanium on structure and martensitic transformation in rapidly solidified Cu-Al-Ni-Mn-Ti alloys

    International Nuclear Information System (INIS)

    Dutkiewicz, J.; Czeppe, T.; Morgiel, J.

    1999-01-01

    Alloys of composition Cu-(11.8-13.5)%Al-(3.2-4)%Ni-(2-3)%Mn and 0-1%Ti (wt.%) were cast using the melt spinning method in He atmosphere. Ribbons obtained in this process showed grains from 0.5 to 30 μm depending on the type of alloy and wheel speed. Bulk alloys and most of the ribbons contained mixed 18R and 2H type martensite at room temperature (RT). Some ribbons, crystallizing at the highest cooling rate, retained also β phase due to a drop of M s below RT. The M s temperatures in ribbons were strongly lowered with increasing wheel speed controlling the solidification rate. This drop of M s shows a linear relationship with d -1/2 , where d is grain size. The strongest decrease of M s and smallest grains were found in the ribbons containing titanium due to its grain refinement effect. The cubic Ti rich precipitates, present in both Cu-Al-Ni-Ti and Cu-Al-Ni-Mn-Ti bulk, were dispersed in ribbons cast with intermediate cooling rates of up to 26 m s -1 , but suppressed for higher cooling rates. The transformation hysteresis loop was much broader in ribbons due to presence of coherent Ti rich precipitates and differences in grain size which is particularly important in the ultra small grain size range. (orig.)

  11. Cation distributions on rapidly solidified cobalt ferrite

    Science.gov (United States)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  12. Characterization of the Ni-45wt% Ti shape memory alloy rapidly solidified; Caracterizacao da liga Ni-45wt%Ti com efeito de memoria de forma solidificadas rapidamente

    Energy Technology Data Exchange (ETDEWEB)

    Anselmo, G.C.S.; Castro, W.B. de; Araujo, C.J. de, E-mail: walman@dem.ufcg.edu.b [Universidade Federal de Campina Grande (UAEM/UFCG), PB (Brazil). Unidade Academica de Engenharia Mecanica

    2010-07-01

    One important challenge of microsystems design is the implementation of miniaturized actuation principles efficient at the micro-scale. Shape memory alloys (SMAs) have early on been considered as a potential solution to this problem as these materials offer attractive properties like a high-power to weight ratio, large deformation and the capability to be processed at the micro-scale. shape memory characteristics of Ni-45wt%Ti alloy ribbons prepared by melt spinning were investigated by means of differential scanning calorimetry and X-ray. In these experiments particular attention has been paid to change the velocity of cooling wheel from 30 to 50 m/s. Then the cooling rates of ribbons were controlled. The effect of this cooling rate on martensitic transformation behaviors and structure are discussed. (author)

  13. Rapidly solidified long-range-ordered alloys

    International Nuclear Information System (INIS)

    Lee, E.H.; Koch, C.C.; Liu, C.T.

    1981-01-01

    The influence of rapid solidification processing on the microstructure of long-range-ordered alloys in the (Fe, Co, Ni) 3 V system has been studied by transmission electron microscopy. The main microstructural feature of the as-quenched alloys was a fine cell structure (approx. 300 nm diameter) decorated with carbide particles. This structure was maintained aftr annealing treatments which develop the ordered crystal structure. Other features of the microstructures both before and after annealing are presented and discussed. 6 figures

  14. Characterization of rapidly solidified powder of high-speed steel

    Czech Academy of Sciences Publication Activity Database

    Miglierini, M.; Lančok, Adriana; Kusý, M.

    2009-01-01

    Roč. 190, 1-3 (2009), s. 51-57 ISSN 0304-3843 R&D Projects: GA ČR GP203/07/P011 Grant - others:GA(SK) VEGA1/3190/06 Institutional research plan: CEZ:AV0Z40320502 Keywords : Rapidly solidified powder * Tool steel * Mössbauer spectroscopy Subject RIV: CA - Inorganic Chemistry Impact factor: 0.209, year: 2007

  15. Phase transformations in the rapidly solidified Ti{sub 40}Zr{sub 20}Hf{sub 20}Pd{sub 20} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, N. [Division of Engineering Materials, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Yao Kefu [Division of Engineering Materials, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)], E-mail: kfyao@tsinghua.edu.cn; Louzguine-Luzgin, D.V. [Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan); Qiu Shengbao [Division of Engineering Materials, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Ranganathan, S. [Department of Metallurgy, Indian Institute of Science, Bangalore 560 012 (India); Inoue, A. [Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)

    2007-10-15

    We report that an approximant phase was initially obtained in amorphous Ti{sub 40}Zr{sub 20}Hf{sub 20}Pd{sub 20} alloy. In the initial stage of the devitrification process, the approximant phase transforms into an icosahedral (I) phase with a high thermal stability while the cF96 Zr{sub 2}Ni-type (space group Fd3-bar m with a=1.25nm and 96 atoms cell{sup -1}) particles precipitate from the amorphous matrix. Eventually the I phase grows to several hundred nanometers when annealed at about 1000K and then transforms into the Zr{sub 2}Ni-type phase with an endothermic reaction.

  16. Undercooling and demixing in rapidly solidified Cu-Co alloys

    DEFF Research Database (Denmark)

    Battezzati, L.; Curiotto, S.; Johnson, Erik

    2007-01-01

    The Cu–Co system displays a metastable miscibility gap in the liquid state. A considerable amount of work has been performed to study phase separation and related microstructures showing that demixing of the liquid is followed by coagulation before dendritic solidification. Due to kinetic...... competition of transformation phenomena, the mechanisms have not been fully disclosed. This contribution reviews such findings with the help of a computer calculation of the phase diagram and extends the present knowledge by presenting new results obtained by rapidly solidifying various Cu–Co compositions...... using a wide range of cooling rates achieved by forcing the liquid into cylindric and conic moulds and by melt spinning....

  17. Chemical leaching of rapidly solidified Al-Si binary alloys

    International Nuclear Information System (INIS)

    Yamauchi, I.; Takahara, K.; Tanaka, T.; Matsubara, K.

    2005-01-01

    Various particulate precursors of Al 100-x Si x (x = 5-12) alloys were prepared by a rapid solidification process. The rapidly solidified structures of the precursors were examined by XRD, DSC and SEM. Most of Si atoms were dissolved into the α-Al(fcc) phase by rapid solidification though the solubility of Si in the α-Al phase is negligibly small in conventional solidification. In the case of 5 at.% Si alloy, a single α-Al phase was only formed. The amount of the primary Si phase increased with increase of Si content for the alloys beyond 8 at.% Si. Rapid solidification was effective to form super-saturated α-Al precursors. These precursors were chemically leached by using a basic solution (NaOH) or a hydrochloric acid (HCl) solution. All Al atoms were removed by a HCl solution as well as a NaOH solution. Granules of the Si phase were newly formed during leaching. The specific surface area was about 50-70 m 2 /g independent of Si content. The leaching behavior in both solutions was slightly different. In the case of a NaOH solution, the shape of the precursor often degenerated after leaching. On the other hand, it was retained after leaching by a HCl solution. Fine Si particles precipitated in the α-Al phase by annealing of as-rapidly solidified precursors at 773 K for 7.2 x 10 3 s. In this case, it was difficult to obtain any products by NaOH leaching, but a few of Si particles were obtained by HCl leaching. Precipitated Si particles were dissolved by the NaOH solution. The X-ray diffraction patterns of leached specimens showed broad lines of the Si phase and its lattice constant was slightly larger than that of the pure Si phase. The microstructures of the leached specimens were examined by transmission electron microscopy. It showed that the leached specimens had a skeletal structure composed of slightly elongated particles of the Si phase and quite fine pores. The particle size was about 30-50 nm. It was of comparable order with that evaluated by Scherer

  18. Microstructural Quantification of Rapidly Solidified Undercooled D2 Tool Steel

    Science.gov (United States)

    Valloton, J.; Herlach, D. M.; Henein, H.; Sediako, D.

    2017-10-01

    Rapid solidification of D2 tool steel is investigated experimentally using electromagnetic levitation (EML) under terrestrial and reduced gravity conditions and impulse atomization (IA), a drop tube type of apparatus. IA produces powders 300 to 1400 μm in size. This allows the investigation of a large range of cooling rates ( 100 to 10,000 K/s) with a single experiment. On the other hand, EML allows direct measurements of the thermal history, including primary and eutectic nucleation undercoolings, for samples 6 to 7 mm in diameter. The final microstructures at room temperature consist of retained supersaturated austenite surrounded by eutectic of austenite and M7C3 carbides. Rapid solidification effectively suppresses the formation of ferrite in IA, while a small amount of ferrite is detected in EML samples. High primary phase undercoolings and high cooling rates tend to refine the microstructure, which results in a better dispersion of the eutectic carbides. Evaluation of the cell spacing in EML and IA samples shows that the scale of the final microstructure is mainly governed by coarsening. Electron backscattered diffraction (EBSD) analysis of IA samples reveals that IA powders are polycrystalline, regardless of the solidification conditions. EBSD on EML samples reveals strong differences between the microstructure of droplets solidified on the ground and in microgravity conditions. While the former ones are polycrystalline with many different grains, the EML sample solidified in microgravity shows a strong texture with few much larger grains having twinning relationships. This indicates that fluid flow has a strong influence on grain refinement in this system.

  19. Microstructure of directionally solidified Ti-Fe eutectic alloy with low interstitial and high mechanical strength

    Science.gov (United States)

    Contieri, R. J.; Lopes, E. S. N.; Taquire de La Cruz, M.; Costa, A. M.; Afonso, C. R. M.; Caram, R.

    2011-10-01

    The performance of Ti alloys can be considerably enhanced by combining Ti and other elements, causing an eutectic transformation and thereby producing composites in situ from the liquid phase. This paper reports on the processing and characterization of a directionally solidified Ti-Fe eutectic alloy. Directional solidification at different growth rates was carried out in a setup that employs a water-cooled copper crucible combined with a voltaic electric arc moving through the sample. The results obtained show that a regular fiber-like eutectic structure was produced and the interphase spacing was found to be a function of the growth rate. Mechanical properties were measured using compression, microindentation and nanoindentation tests to determine the Vickers hardness, compressive strength and elastic modulus. Directionally solidified eutectic samples presented high values of compressive strength in the range of 1844-3000 MPa and ductility between 21.6 and 25.2%.

  20. Nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tashlykova-Bushkevich, Iya I. [Belarusian State University of Informatics and Radioelectronics, Minsk (Belarus)

    2015-12-31

    The present work summarizes recent progress in the investigation of nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys foils produced at exceptionally high cooling rates. We focus here on the potential of modification of hydrogen desorption kinetics in respect to weak and strong trapping sites that could serve as hydrogen sinks in Al materials. It is shown that it is important to elucidate the surface microstructure of the Al alloy foils at the submicrometer scale because rapidly solidified microstructural features affect hydrogen trapping at nanostructured defects. We discuss the profound influence of solute atoms on hydrogen−lattice defect interactions in the alloys. with emphasis on role of vacancies in hydrogen evolution; both rapidly solidified pure Al and conventionally processed aluminum samples are considered.

  1. Fabrication and tensile properties of rapidly solidified Cu-10wt. %Ni alloy. [Cu-10Ni

    Energy Technology Data Exchange (ETDEWEB)

    Baril, D; Angers, R; Baril, J [Dept. of Mining and Metallurgy, Laval Univ., Ste-Foy, Quebec (Canada)

    1992-10-15

    Cu-10wt.%Ni ribbons were produced by melt spinning and cut into small particles with a blade cutter mill. The powders were then hot consolidated to full density by hot pressing followed by hot extrusion. Tensile properties of the resulting pieces were measured. Cu-10wt.%Ni cast ingots were also hot extruded and mechanically tested to compare with the rapidly solidified alloy and to evaluate the possible benefits brought by the rapid solidification process.

  2. Influence of quench rates on the properties of rapidly solidified ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. FeNbCuSiB based materials were produced in the form of ribbons by rapid solidification techniques. The crystallization, magnetic, mechanical and corrosion behaviour were studied for the prepared materials as a function of quenching rate from liquid to the solid state. Higher quench rates produced a more ...

  3. Ordering in rapidly solidified Ni/sub 2/Mo

    International Nuclear Information System (INIS)

    Kulkarni, U.D.; Dey, G.K.; Banerjee, S.

    1988-01-01

    Ordering processes in the Ni-Mo system have been a subject of several investigations. Although the ordering behaviour of the Ni/sub 4/Mo and the Ni/sub 3/Mo has been examined in detail, no such study has been reported in the case of the Ni/sub 2/Mo alloy. The lack of experimental work on ordering transformations in Ni/sub 2/Mo is presumably due to the difficulty in obtaining a single phase fcc alloy of this composition. Enhanced solid solubility of Mo in Ni, which accompanies rapid solidification processing (RSP) makes the formation of such a phase possible. The ordering processes in Ni-Mo based alloys show several remarkable features. Firstly, the alloy (15 - 28 at % Mo) quenched from the α -phase filed exhibit a short range order (SRO) characterized by the presence of intensity maxima at /1 1/2 0/ fcc positions of the reciprocal space. This state of SRO has been attributed to the occurrence of 1 1/2 O spinodal ordering in the system. Secondly, the transformation from the state of SRO to the equilibrium/metastable coherent long range ordered (LRO) structures appears to take place in a continuous manner at relatively low temperatures of aging. Three different coherent LRO structures, namely: the equilibrium Ni/sub 4/Mo (prototype structure D1/sub a/) and the metastable Ni/sub 3/Mo (DO/sub 22/) and Ni/sub 2/Mo (Pt/sub 2/Mo) structures have reported to evolve from the SRO alloy, depending upon the aging treatment and the composition of the alloy

  4. The use of Nb in rapid solidified Al alloys and composites

    Energy Technology Data Exchange (ETDEWEB)

    Audebert, F., E-mail: metal@fi.uba.ar [Advanced Materials Group, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, Ciudad de Buenos Aires 1063 (Argentina); Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Department of Mechanical Engineering and Mathematical Sciences, Oxford Brookes University, Wheatley Campus, OX33 1HX Oxford (United Kingdom); Galano, M. [Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Saporiti, F. [Advanced Materials Group, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, Ciudad de Buenos Aires 1063 (Argentina)

    2014-12-05

    Highlights: • The use of Nb in RS Al alloys and composites has been reviewed. • Nb was found to improve the GFA of rapid solidified Al–Fe and Al–Ni alloys. • Nb has higher effect in increasing the corrosion resistance than RE in Al–Fe alloys. • Nb improves the stability of the Al–Fe–Cr icosahedral phase. • Nb improves strength, ductility and toughness of nanoquasicrystalline Al matrix composites. - Abstract: The worldwide requirements for reducing the energy consumption and pollution have increased the demand of new and high performance lightweight materials. The development of nanostructured Al-based alloys and composites is a key direction towards solving this demand. High energy prices and decreased availability of some alloying elements open up the opportunity to use non-conventional elements in Al alloys and composites. In this work the application of Nb in rapid solidified Al-based alloys and Al alloys matrix composites is reviewed. New results that clarify the effect of Nb on rapid solidified Al alloys and composites are also presented. It is observed that Nb stabilises the icosahedral Al–Fe/Cr clusters, enhances the glass forming ability and shifts the icosahedral phase decomposition towards higher temperatures. Nb provides higher corrosion resistance with respect to the pure Al and Al–Fe–RE (RE: rare earth) alloys in the amorphous and crystalline states. The use of Nb as a reinforcement to produce new Al alloy matrix composites is explored. It is observed that Nb provides higher strength, ductility and toughness to the nanoquasicrystalline matrix composite. Nb appears as a new key element that can improve several properties in rapid solidified Al alloys and composites.

  5. Structure and transformation behaviour of a rapidly solidified Al-Y-Ni-Co-Pd alloy

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, D.V.; Inoue, A.

    2005-01-01

    An as-solidified structure and transformation behaviour on heating of the rapidly solidified Al-Y-Ni-Co-Pd alloy was studied by X-ray diffractometry (XRD), transmission electron microscopy (TEM), differential scanning and isothermal calorimetries. The Al-Y-Ni-Co-Pd ribbon samples have been produced by the melt spinning technique and heat treated using a differential scanning calorimeter (DSC). The addition of Pd to Al-Y-Ni-Co alloys caused disappearance of the supercooled liquid region as well as the formation of the highly dispersed primary α-Al nanoparticles about 3-7 nm in size homogeneously embedded in the glassy matrix upon solidification. An extremely high density of precipitates of the order of 10 24 m -3 is obtained. These particles start growing at the temperature below a glass-transition temperature. The results presented in this paper indicate that some of so-called 'marginal' glass-formers in as-solidified state are actually not glassy alloys with pre-existed nuclei but crystal-glassy nanocomposites

  6. Hardness and microstructural characteristics of rapidly solidified Al-8-16 wt.%Si alloys

    International Nuclear Information System (INIS)

    Uzun, O.; Karaaslan, T.; Gogebakan, M.; Keskin, M.

    2004-01-01

    Al-Si alloys with nominal composition of Al-8 wt.%Si, Al-12 wt.%Si, and Al-16 wt.%Si were rapidly solidified by using melt-spinning technique to examine the influence of the cooling rate/conditions on microstructure and mechanical properties. The microstructures of the rapidly solidified ribbons and ingot samples were investigated by the optical microscopy, electron microscopy and X-ray diffraction (XRD) techniques. The results showed that the structures of all melt-spun ribbons were completely composed of finely dispersed α-Al and eutectic Si phase, and primary silicon was not observed. The XRD analysis indicated that the solubility of Si in the α-Al matrix was greatly increased with rapid solidification. Additionally, mechanical properties of both conventionally cast (ingot) and melt-spun ribbons were examined by using Vickers indenter for one applied load (0.098 N). The hardness values of the melt-spun ribbons were about three times higher than those of ingot counterparts. The high hardness of the rapidly solidified state can be attributed to the supersaturated solid solutions. Besides, hardness values with different applied loads were measured for melt-spun ribbons. The results indicated that Vickers hardness values (H v ) of the ribbons depended on the applied load. Applying the concept of Hays-Kendall, the load independent hardness values were calculated as 694.0, 982.8 and 1186.8 MN/m 2 for Al-8 wt.%Si, Al-12 wt.%Si and Al-16 wt.%Si, respectively

  7. A study on the microstructural characteristics of rapidly solidified Al-Fe alloys(I)

    International Nuclear Information System (INIS)

    Kim, D.H.; Lee, H.I.

    1991-01-01

    Solidification microstructures and phases in rapidly solidified Al-5, 10wt% Fe alloys have been investigated by TEM bright field and dark field imaging techniques and electron and x-ray diffraction techniques. Rapid solidification of Al-5, 10wt%Fe alloys produces various metastable and stable phases, such as Al m Fe, Al 6 Fe and Al 13 Fe 4 . In addition to these phases, clusters of randomly oriented few nm scale particles exist in the form of fine cellular network with α-Al or primary spherical particles. Solidification microstructures of the rapidly solidified Al-5, 10wt%Fe alloys consist of various combination of primary phases such as Al 13 Fe 4 , Al m Fe and cluster of nm scale particles, and cellular/dendritic structures such as fine cellular network structure of nm scale particle clusters and α-Al and cellular structure of Al m Fe and α-Al, depending upon alloy compositions and local cooling rates. (Author)

  8. Microstructural development in a rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Park, W.J.; Baek, E.R.; Lee, Sunghak; Kim, N.J.

    1991-01-01

    TEM is used to investigate microstructural development in a rapidly solidified Al-Fe-V-Si alloy. The as-cast microstructure of a rapidly solidified Al-Fe-V-Si alloy was found to vary depending on casting conditions and also through the thickness of ribbon. For completely Zone A ribbon, intercellular phase consists of a microquasi-crystalline phase, while for the Zone A and Zone B mixed ribbon, it consists of a silicide phase. In either case, formation of globular particles of a cluster microquasi-crystalline phase is observed near the air side of the ribbon. Annealing study shows significant differences in the final microstructure depending on the initial status of the ribbon. Completely Zone A ribbon, whose microstructure is composed of a microquasi-crystalline phase, results in a very coarse microstructure after annealing as compared to the Zone A and Zone B mixed ribbon. This result has important implications for the development of high-performance elevated-temperature Al alloys. 12 refs

  9. Effect of titanium content and cooling rate on the microstructure and martensitic transformation of rapidly solidified Ti-Ni shape memory alloys; Influencia do Ti e da taxa de resfriamento na microestrutura e na temperatura M{sub S} em ligas Ni-Ti com EMF solidificadas rapidamente

    Energy Technology Data Exchange (ETDEWEB)

    Anselmo, George Carlos dos Santos; Castro, Walman Benicio de, E-mail: georgeanselmo@yahoo.com.br, E-mail: walman.castro@ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2017-01-15

    One important challenge of microsystems design is the implementation of efficient principles of miniaturized actuation at the micro-scale. Shape memory alloys (SMAs) have early been considered as a potential solution to this problem as these materials offer attractive properties like a high-power to weight ratio, large deformation and the capability to be micro-scale processed. Alloys of composition Ni-44,8wt%Ti and Ni- 45,3wt%Ti were produced using the melt spinning method in air atmosphere. Ribbons obtained in this process showed martensitic grain size between 5 and 30 μm, depending on the alloy composition and the linear velocity of the wheel. (author)

  10. Structure and mechanical properties of Al-3Fe rapidly solidified alloy

    International Nuclear Information System (INIS)

    Karakoese, Ercan; Keskin, Mustafa

    2011-01-01

    The Al based Al-3 wt%Fe alloy was prepared by conventionally casting (ingot) and further processed the melt-spinning technique and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) together with energy dispersive spectroscopy (EDS), differential scanning calorimetry (DSC) and the Vickers microhardness tester. The rapidly solidified (RS) binary alloys were composed of supersaturated α-Al solid solution and finely dispersed intermetallic phases. Experimental results showed that the mechanical properties of RS alloys were enhanced, which can be attributed to significant changes in the microstructure. The dependence of microhardness H V on the solidification rate (V) was analysed. These results showed that with the increasing values of V, the values of H V increased.

  11. Phase composition of rapidly solidified Ag-Sn-Cu dental alloys

    International Nuclear Information System (INIS)

    Lecong Dzuong; Do Minh Nghiep; Nguyen van Dzan; Cao the Ha

    1996-01-01

    The phase composition of some rapidly solidified Ag-Sn-Cu dental alloys with different copper contents (6.22 wtpct) has been studied by XRD, EMPA and optical microscopy. The samples were prepared from melt-spun ribbons. The microstructure of the as-quenched ribbons was microcrystalline and consisted of the Ag sub 3 Sn, Ag sub 4 Sn, Cu sub 3 Sn and Cu sub 3 Sn sub 8 phases. Mixing with mercury (amalgamation) led to formation of the Ag sub 2 Hg sub 3, Sn sub 7 Hg and Cu sub 6 Sn sub 5 phases. The amount of copper atoms in the alloys played an important role in phase formation in the amalgams

  12. Microstructure of rapidly solidified Al2O3-dispersion-strengthened Type 316 stainless steel

    International Nuclear Information System (INIS)

    Megusar, J.; Arnberg, L.; Vander Sande, J.B.; Grant, N.J.

    1981-01-01

    An aluminum oxide dispersion strengthened 316 stainless steel was developed by surface oxidation. Surface oxidation was chosen as a preferred method in order to minimize formation of less stable chromium oxides. Ultra low C+N 316 stainless steel was alloyed with 1 wt % Al, rapidly solidified to produce fine powders and attrited to approximately 0.5 μm thick flakes to provide for surface oxidation. Oxide particles in the extruded material were identified mostly as Al oxides. In the preirradiated condition, oxide dispersion retarded crystallization and grain growth and had an effect on room temperature tensile properties. These structural modifications are expected to have an effect on the swelling resistance, structure stability and high temperature strength of austenitic stainless steels

  13. Formation of metastable phases and nanocomposite structures in rapidly solidified Al-Fe alloys

    International Nuclear Information System (INIS)

    Nayak, S.S.; Chang, H.J.; Kim, D.H.; Pabi, S.K.; Murty, B.S.

    2011-01-01

    Highlights: → Structures of nanocomposites in rapidly solidified Al-Fe alloys were investigated. → Nanoquasicrystalline, amorphous and intermetallics phases coexist with α-Al. → Nanoquasicrystalline phase was observed for the first time in the dilute Al alloys. → Thermodynamic driving force plays dominant role in precipitation of Fe-rich phases. → High hardness (3.57 GPa) was observed for nanocomposite of Al-10Fe alloy. - Abstract: In the present work the structure and morphology of the phases of nanocomposites formed in rapidly solidified Al-Fe alloys were investigated in details using analytical transmission electron microscopy and X-ray diffraction. Nanoquasicrystalline phases, amorphous phase and intermetallics like Al 5 Fe 2 , Al 13 F 4 coexisted with α-Al in nanocomposites of the melt spun alloys. It was seen that the Fe supersaturation in α-Al diminished with the increase in Fe content and wheel speed indicating the dominant role of the thermodynamic driving force in the precipitation of Fe-rich phases. Nanoquasicrystalline phases were observed for the first time in the dilute Al alloys like Al-2.5Fe and Al-5Fe as confirmed by high resolution TEM. High hardness (3.57 GPa) was measured in nanocomposite of Al-10Fe alloy, which was attributed to synergistic effect of solid solution strengthening due to high solute content (9.17 at.% Fe), dispersion strengthening by high volume fraction of nanoquasicrystalline phase; and Hall-Petch strengthening from finer cell size (20-30 nm) of α-Al matrix.

  14. Structural investigations of mechanical properties of Al based rapidly solidified alloys

    International Nuclear Information System (INIS)

    Karakoese, Ercan; Keskin, Mustafa

    2011-01-01

    Highlights: → Rapid solidification processing (RSP) involves exceptionally high cooling rates. → We correlate the microstructure of the intermetallic Al 3 Fe, Al 2 Cu and Al 3 Ni phases with the cooling rate. → The solidification rate is high enough to retain most of alloying elements in the Al matrix. → The rapid solidification has effect on the phase constitution. -- Abstract: In this study, Al based Al-3 wt.%Fe, Al-3 wt.%Cu and Al-3 wt.%Ni alloys were prepared by conventional casting. They were further processed using the melt-spinning technique and characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM) together with energy dispersive spectroscopy (EDS), transmission electron microscope (TEM), differential scanning calorimetry (DSC) and the Vickers microhardness tester. The rapidly solidified (RS) binary alloys were composed of supersaturated α-Al solid solution and finely dispersed intermetallic phases. Experimental results showed that the mechanical properties of RS alloys were enhanced, which can be attributed to significant changes in the microstructure. RS samples were measured using a microhardness test device. The dependence of microhardness H V on the solidification rate (V) was analysed. These results showed that with the increasing values of V, the values of H V increased. The enthalpies of fusion for the same alloys were determined by DSC.

  15. Properties of rapidly solidified Fe-Cr-Al ribbons for the use as automotive exhaust gas catalyst substrates

    International Nuclear Information System (INIS)

    Emmerich, K.

    1993-01-01

    Metallic honeycomb structures are used as catalyst substrates in automotive exhaust gas systems. This application requires an outstanding corrosion resistance at elevated temperatures of the substrate material. Technical improvements can be achieved by the use of rapid solidification technology for the production of the Fe-Cr-Al ribbons since the Al content can be substantially increased from about 5% Al in the conventionally rolled material to about 12% Al in the rapid solidified ribbon. As a result the lifetime of the ribbon in a higher-temperature corrosion environment is drastically increased. In addition the scale/metal adherance is improved. The impediment of recrystallization in the rapidly solidified ribbons prevents an embrittlement even in carbonizing atmospheres. (orig.)

  16. Synthesis of laser beam rapidly solidified novel surfaces on D2 tool steel

    International Nuclear Information System (INIS)

    Ahmed, B.A.; Rizwan, K.F.; Minhas, J.A.; Waheed-ul-Haq, S.; Shahid, M.

    2011-01-01

    Surface layer of D2 tool steel was subjected to laser surface melting using continuous wave 2.5 kW CO/sub 2/ laser in point source melting mode. The processing parameters were varied to achieve a uniform depth of around 2 mm. Microstructural study revealed epitaxial growth of fine dendritic structure with secondary dendrite arm spacing in the range of 20-25 mu m. The phases in the parent annealed sample were BCC ferrite and chromium rich M7C3 carbide. The major phase after laser treatment was austenite and M7C3. The average hardness of annealed sample was 195 HV which increased to 410 HV after laser melting. Corrosion studies in 2% HCl solution exhibited a drastic improvement in corrosion resistance in laser treated samples. Improvement in properties is attributed to the refinement and uniformity of microstructure in the rapidly solidified surface. The case of a moving heat source was subjected to computer aided simulation to predict the melt depth at different processing conditions in point source melting mode. The calculated depths using the model, in ABAQUS software was found in good agreement with the experimental data. (author)

  17. Electron microscopy investigations of rapidly solidified Fe-Zr-B-Cu alloys

    International Nuclear Information System (INIS)

    Majumdar, B.; Arvindha Babu, D.; Akhtar, D.

    2010-01-01

    Rapidly solidified Fe-based nanocrystalline soft magnetic materials possess a unique combination of properties i,e high permeability, saturation and Curie temperature and very low coercivity which are otherwise not attainable in conventional soft magnetic materials. The alloys are processed by producing amorphous phase through melt spinning route followed by a partial devitrification for incorporation of nanocrystalline phase in the amorphous matrix. In this paper, detailed electron microscopic investigations of melt spun Fe-Zr-B-Cu alloys are presented. Melt spun ribbons of Fe 99-x-y Zr x BCu 1 alloys with x+y = 11 and x+y = 13 were prepared under different wheel speed conditions and then vacuum annealed for 1 h at different temperatures. The microstructure changes from completely amorphous to a cellular/dendritic bcc solid solution coexisting with the amorphous phase at intercellular/dendritic regions when Zr/B ratio or the process parameters are varied. Annealing leads to the precipitation of nanocrystalline bcc-Fe phase from both amorphous phase and already existing bcc solid solution. (author)

  18. Short-term thermal response of rapidly solidified Type 304 stainless steel containing helium

    International Nuclear Information System (INIS)

    Clark, D.E.

    1988-06-01

    Type 304 stainless steel was heat treated for short times near its melting point in order to determine its microstructural response to thermal cycles typical of the near heat-affected zones of welding processes. The material was rapidly solidified as a powder by centrifugal atomization in a helium environment and consolidated by hot extrusion. Along with the ingot metallurgy material used for canning the powder prior to hot extrusion, it was heat treated using a Gleeble at temperatures of 1200 and 1300 degree C for times ranging from <1 to 1000 s, and the samples were examined for microstructure and the existence of porosity due to entrapped helium. At higher test temperatures and longer treatment times, the material developed extensive porosity, which was stabilized by the presence of helium and which may also have a role in anchoring grain boundaries and inhibiting grain growth. The powder material. At lower test temperatures and shorter treatment times, grain growth in the γ phase appeared to be restricted in the powder material, possible by the presence of helium. An intermediate temperatures and times, a γ-δ duplex microstructure also restricted grain growth again occurred in the δ microstructure. 9 refs., 14 figs., 3 tabs

  19. Microstructure and mechanical properties of a novel rapidly solidified, high-temperature Al-alloy

    Energy Technology Data Exchange (ETDEWEB)

    Overman, N.R., E-mail: Nicole.Overman@pnnl.gov [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States); Mathaudhu, S.N. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States); University of California, Riverside, 3401 Watkins Dr., Riverside, CA 92521 (United States); Choi, J.P.; Roosendaal, T.J.; Pitman, S. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States)

    2016-02-15

    Rapid solidification (RS) processing, as a production method, offers a variety of unique properties based on far-from-equilibrium microstructures obtained through rapid cooling rates. In this study, we seek to investigate the microstructures and properties of a novel Al-alloy specifically designed for high temperature mechanical stability. Synthesis of, AlFe{sub 11.4}Si{sub 1.8}V{sub 1.6}Mn{sub 0.9} (wt.%), was performed by two approaches: rotating cup atomization (“shot”) and melt spinning (“flake”). These methods were chosen because of their ability to produce alloys with tailored microstructures due to their inherent differences in cooling rate. The as-solidified precursor materials were microstructurally characterized with electron microscopy. The results show that the higher cooling rate flake material exhibited the formation of nanocrystalline regions as well additional phase morphologies not seen in the shot material. Secondary dendritic branching in the flake material was on the order of 0.1–0.25 μm whereas branching in the shot material was 0.5–1.0 μm. Consolidated and extruded material from both precursor materials was mechanically evaluated at both ambient and high (300 °C) temperature. The consolidated RS flake material is shown to exhibit higher strengths than the shot material. The ultimate tensile strength of the melt spun flake was reported as 544.2 MPa at room temperature and 298.0 MPa at 300 °C. These results forecast the ability to design alloys and processing approaches with unique non-equilibrium microstructures with robust mechanical properties at elevated temperatures. - Highlights: • A novel alloy, AlFe{sub 11.4}Si{sub 1.8}V{sub 1.6}Mn{sub 0.9} was fabricated by rapid solidification. • Room temperature yield strength exceeded 500 MPa. • Elevated temperature (300 °C) yield strength exceeded 275 MPa. • Forging, after extrusion of the alloy resulted in microstructural coarsening. • Decreased strength and ductility was

  20. Investigation on microstructure characterization and property of rapidly solidified Mg-Zn-Ca-Ce-La alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Tao, E-mail: tzhou1118@163.com [College of Material Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China); Chen Zhenhua, E-mail: chenzhenhua45@hotmail.com [College of Material Science and Engineering, Hunan University, Changsha 410082 (China); Yang Mingbo, E-mail: yangmingbo@cqit.edu.cn [College of Material Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China); Hu Jianjun, E-mail: hujj@qq.com [College of Material Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China); Xia Hua, E-mail: xiahua@cqut.edu.cn [College of Material Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China)

    2012-01-15

    Rapidly solidified (RS) Mg-Zn-Ca-Ce-La (wt.%) alloys have been produced via atomizing the alloy melt and subsequent splat-quenching on the water-cooled copper twin-rollers in the form of flakes. Microstructure characterization, phase compositions and thermal stability of the alloys have been systematically investigated. The results showed that with addition of RE (Ce and La) to the Mg-6Zn-5Ca alloy, the stable intermetallic compounds i.e. the Mg{sub x}Zn{sub y}RE{sub z} phase with a few Ca (about 3 at.%), shortened as the T Prime phase, were formed at the expense of the binary Mg-Zn and Ca{sub 2}Mg{sub 6}Zn{sub 3} phases, which was possibly beneficial to the enhanced thermal stability of the alloy. In the Mg-6Zn-5Ca-3Ce-0.5La alloy, the composition of the T Prime phase in the grain interior was different from that at the grain boundaries, in which the segregation of the La elements was found, and the atomic percentage ratio of Zn to Ce in the T Prime phase within the grains was close to 2. Moreover, the stable Mg{sub 2}Ca phases were detected around the T Prime phases at the grain boundaries in the alloy. - Research Highlights: Black-Right-Pointing-Pointer The phase constitution of RS Mg-6Zn-5Ca alloy can be improved by RE additions. Black-Right-Pointing-Pointer In the Mg-Zn-Ca-Ce-La alloys, the Mg{sub x}Zn{sub y}RE{sub z} phase with a few Ca (T Prime phase) is formed. Black-Right-Pointing-Pointer The formation of the T Prime phase leads to the loss of the Mg-Zn and Ca{sub 2}Mg{sub 6}Zn{sub 3} phases. Black-Right-Pointing-Pointer The composition of the T Prime phase differs from the grain interior to the grain boundary.

  1. A study on crystalline phases present in the as-solidified and crystallized microstructures in Zr53Cu21Al10Ni8Ti8 alloy

    International Nuclear Information System (INIS)

    Neogy, S.; Tewari, R.; Srivastava, D.; Dey, G.K.

    2011-01-01

    In the present study the as-solidified and crystallized microstructures of Zr 53 Cu 21 Al 10 Ni 8 Ti 8 alloy have been examined in detail. Solidification was carried out by melt spinning, suction casting and copper mould casting techniques. The last technique yielded a partially crystalline microstructure, whereas, the other two techniques resulted in amorphous microstructures. (author)

  2. Evolution of the microstructure and nanohardness of Ti-48 at.%Al alloy solidified under high pressure

    International Nuclear Information System (INIS)

    Wang, Hongwei; Zhu, Dongdong; Zou, Chunming; Wei, Zunjie

    2012-01-01

    Highlights: → The microstructure of Ti-48Al alloy changes under high pressure. → With increasing pressure, the amount of γ s phase decreases. → High pressure leads to the decreasing of lamellar spacing. → The nanohardness of lamellar structure increases with pressure. -- Abstract: In this work the microstructure and nanohardness of Ti-48 at.%Al alloy solidified under different pressures (normal pressure, 2 GPa, 4 GPa) were experimental investigated by using a tungsten-carbide six-anvil apparatus. The results indicate that high pressure does not change the phase constitution of Ti-48 at.%Al alloy. However, the microstructure changes under high pressure. With increasing pressure, the volume fraction of interdendritic γ (γ s ) phase decreases and Al concentration in lamellae increases. When the pressure is 4 GPa, there is only a little γ s embedded in lamellar structure. The volume fraction of γ s phase is approximately 17.0% for normal pressure, 8.73% for 2 GPa, 0.69% for 4 GPa. The lamellar spacings also decrease with pressure, which are 495 nm, 345 nm, 227 nm under normal pressure, 2 GPa, 4 GPa, respectively. The change in nanohardness was discussed based on the microstructural observations. It shows a certain increase of the nanohardness as the pressure increases from normal pressure to 4 GPa. When the pressure is 4 GPa, the nanohardness increases by 50.2% compared with that of normal pressure.

  3. Surface modification induced phase transformation and structure variation on the rapidly solidified recast layer of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ming-Hung [Department of Mechanical Engineering and Graduate Institute of Mechanical and Precision Engineering, National Kaoshiung University of Applied Sciences, Kaoshiung 807, Taiwan (China); School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Haung, Chiung-Fang [School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Division of Family and Operative Dentistry, Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan (China); Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei 110, Taiwan (China); Shyu, Shih-Shiun [Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan (China); Chou, Yen-Ru [Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei 110, Taiwan (China); Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan (China); Lin, Ming-Hong [Department of Mechanical Engineering and Graduate Institute of Mechanical and Precision Engineering, National Kaoshiung University of Applied Sciences, Kaoshiung 807, Taiwan (China); Peng, Pei-Wen, E-mail: apon@tmu.edu.tw [School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); and others

    2015-08-15

    In this study, neodymium-doped yttrium orthovanadate (Nd:YVO{sub 4}) as a laser source with different scanning speeds was used on biomedical Ti surface. The microstructural and biological properties of laser-modified samples were investigated by means of optical microscope, electron microscope, X-ray diffraction, surface roughness instrument, contact angle and cell cytotoxicity assay. After laser modification, the rough volcano-like recast layer with micro-/nanoporous structure and wave-like recast layer with nanoporous structure were generated on the surfaces of laser-modified samples, respectively. It was also found out that, an α → (α + rutile-TiO{sub 2}) phase transition occurred on the recast layers of laser-modified samples. The Ti surface becomes hydrophilic at a high speed laser scanning. Moreover, the cell cytotoxicity assay demonstrated that laser-modified samples did not influence the cell adhesion and proliferation behaviors of osteoblast (MG-63) cell. The laser with 50 mm/s scanning speed induced formation of rough volcano-like recast layer accompanied with micro-/nanoporous structure, which can promote cell adhesion and proliferation of MG-63 cell on Ti surface. The results indicated that the laser treatment was a potential technology to enhance the biocompatibility for titanium. - Highlights: • Laser induced the formation of recast layer with micro-/nanoporous structure on Ti. • An α → (α + rutile-TiO{sub 2}) phase transition was observed within the recast layer. • The Ti surface becomes hydrophilic at a high speed laser scanning. • Laser-modified samples exhibit good biocompatibility to osteoblast (MG-63) cell.

  4. Morphological variants of carbides of solidification origin in the rapidly solidified powder particles of hypereutectic iron alloy

    International Nuclear Information System (INIS)

    Kusy, M.; Grgac, P.; Behulova, M.; Vyrostkova, A.; Miglierini, M.

    2004-01-01

    The paper deals with the analysis of the morphological variants of solidification microstructures and vanadium rich M 4 C 3 carbide phases in the rapidly solidified (RS) powder particles from hypereutectic Fe-C-Cr-V alloy prepared by the nitrogen gas atomisation. Five main types of solidification microstructures were identified in RS particles: microstructure with globular carbides, microstructure with globular and star-like carbides, microstructure with primary carbides in the centres of eutectic colonies, microstructure with eutectic colonies without primary carbides and microstructure with eutectic spherulites. Based on the morphological features of carbide phases and the thermal history of RS particles, the microstructures were divided into two groups - microstructures morphologically affected and non-affected during the post-recalescence period of solidification. Thermophysical reasons for the morphologically different M 4 C 3 carbide phases development in the RS powder particles are discussed

  5. Effect of processing on the microstructural development in a rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Ranganathan, S.; Ojha, S.N.

    1993-01-01

    An Al 80 Fe 10 Si 6 alloy has been rapidly solidified using melt spinning, gas atomization and spray forming processes. The effect of processing techniques on the microstructural characteristics of the alloy has ben evaluated. The melt spun alloy has shown an icosahedral quasicrystalline phase surrounded by a rational approximant structure of the icosahedral phase. The rational approximant structure has been identified as a crystalline cubic silicide phase. The atomized powders have exhibited cellular and dendritic morphology depending on the size of particles. In addition, the second phase particles of the silicide phase are observed to decorate the cell boundaries and interdendritic regions. In contrast, the alloy processed by spray deposition has revealed an equiaxed solidification morphology with a uniform dispersion of find silicon phase inside the grain. The origin of the microstructure in the alloy processed by these techniques is discussed. The results are compared wherever possible with the commercially available Al-Fe-V-Si alloys

  6. Tensile behavior change depending on the microstructure of a Fe-Cu alloy produced from rapidly solidified powder

    International Nuclear Information System (INIS)

    Kakisawa, Hideki; Minagawa, Kazumi; Halada, Kohmei

    2003-01-01

    The relationship between consolidating temperature and the tensile behavior of iron alloy produced from Fe-Cu rapidly solidified powder is investigated. Fe-Cu powder fabricated by high-pressure water atomization was consolidated by heavy rolling at 873-1273 K. Microstructural changes were observed and tensile behavior was examined. Tensile behavior varies as the consolidating temperature changes, and these temperature-dependent differences depend on the morphology of the microstructure on the order of micrometers. The sample consolidated at 873 K shows a good strength/elongation balance because the powder microstructure and primary powder boundaries are maintained. The samples consolidated at the higher temperatures have a microstructure of recrystallized grains, and these recrystallized samples show the conventional relationship between tensile behavior and grain size in ordinal bulk materials

  7. Microstructure of rapidly solidified Nb-based pre-alloyed powders for additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yueling; Jia, Lina, E-mail: jialina@buaa.edu.cn; Kong, Bin; Zhang, Shengnan; Zhang, Fengxiang; Zhang, Hu

    2017-07-01

    Highlights: • Sphere shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by PREP. • An oxide layer with a thickness of 9.39 nm was generated on the powder surface. • The main phases of the pre-alloyed powders were Nbss and Cr{sub 2}Nb. • SDAS increased and microhardness decreased with the increase of powder size. • Microstructure of powders evolved into large grains from dendrite structures after HT. - Abstract: For powder-based additive manufacturing, sphere-shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by plasma rotating electrode processing (PREP). The microstructure, surface oxidation and microhardness of the pre-alloyed powders were systematically investigated. Results showed that the main phases were Nb solid solution (Nbss) and Cr{sub 2}Nb. The Cr{sub 2}Nb phases were further determined using transmission electron microscopy (TEM). Fine dendrite structures were observed in the as-fabricated pre-alloyed powders, which transformed to large grains after heat treatment (HT) at 1450 °C for 3 h. With the increase of powder size, the secondary dendrite arm spacing (SDAS) increased and the microhardness (HV) decreased. A clean powder surface free of oxide particles was obtained by PREP and an oxide layer with 9.39 nm in thickness was generated on the powder surface. Compared with Cr- and Nb-oxides, more Ti-oxides were formed on outmost powder surface with a higher content of Ti (up to 47.86 at.%). The differences upon the microstructure and microhardness of the pre-alloyed powders with different sizes were discussed.

  8. Effect of iron and cerium additions on rapidly solidified Al-TM-Ce alloys

    Czech Academy of Sciences Publication Activity Database

    Michalcová, A.; Vojtěch, D.; Schumacher, G.; Novák, P.; Pližingrová, Eva

    2013-01-01

    Roč. 47, č. 6 (2013), s. 757-761 ISSN 1580-2949 Institutional support: RVO:61388980 Keywords : rapid solidification * aluminium * quasicrystals Subject RIV: CA - Inorganic Chemistry Impact factor: 0.555, year: 2013

  9. Microstructures and phase formation in rapidly solidified Sm-Fe alloys

    International Nuclear Information System (INIS)

    Shield, J.E.; Kappes, B.B.; Meacham, B.E.; Dennis, K.W.; Kramer, M.J.

    2003-01-01

    Sm-Fe-based alloys were produced by melt spinning with various melt spinning parameters and alloying additions. The structural and microstructural evolution varied and strongly depended on processing and alloy composition. The microstructural scale was found to vary from micron to nanometer scale depending on the solidification rate and alloying additions. Additions of Si, Ti, V, Zr and Nb with C were all found to refine the scale, and the degree of refinement was dependent on the atomic size of the alloying agent. The alloying was also found to affect the dynamical aspects of the melt spinning process, although in general the material is characterized by a poor melt stream and pool, which in part contributes to the microstructural variabilities. The alloying additions also suppressed the long-range ordering, leading to formation of the TbCu 7 -type structure. The ordering was recoverable upon heat treatment, although the presence of alloying agents suppressed the recovery process relative to the binary alloy. This was attributed to the presence of Ti (V, Nb, Zr) in solid solution, which limited the diffusion kinetics necessary for ordering. In the binary alloy, the ordering led to the development of antiphase domain structures, with the antiphase boundaries effectively pinning Bloch walls

  10. Assessment of phase constitution on the Al-rich region of rapidly solidified Al-Co-Fe-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, W., E-mail: witorw@gmail.com [Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Bolfarini, C., E-mail: cbolfa@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Kiminami, C.S., E-mail: kiminami@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Botta, W.J., E-mail: wjbotta@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil)

    2016-12-15

    The formation of quasicrystalline approximants in rapidly solidified Al-Co-Fe-Cr alloys was investigated. Alloys of atomic composition Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8}, Al{sub 77}Co{sub 11}Fe{sub 6}Cr{sub 6} and Al{sub 76}Co{sub 19}Fe{sub 4}Cr{sub 1} were produced using melt spinning and arc melting methods and their microstructural characterization was carried out by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Up to the present there is no consensus in the literature regarding the formation of quasicrystalline phase or quasicrystalline approximants in the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy. This work presents, for the first time, a detailed structural characterization of selected alloys in the Al-Co-Fe-Cr system close to the atomic composition Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8}. The results indicated the samples to be composed, mostly, by two intermetallic phases, which are quaternary extensions of Al{sub 5}Co{sub 2} and Al{sub 13}Co{sub 4} and are quasicrystalline approximants. Although the Al{sub 5}Co{sub 2} phase has already been reported in the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy, the presence of the monoclinic Al{sub 13}Co{sub 4} is now identified for the first time in the as cast state. In the binary Al-Co system a quasicrystalline phase is known to form in a rapidly solidified alloy with composition close to the monoclinic and orthorhombic Al{sub 13}Co{sub 4} phases. This binary quasicrystalline phase presents an average valence electron per atom (e/a) between 1.7 and 1.9; thus, in addition to the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy, the compositions Al{sub 77}Co{sub 11}Fe{sub 6}Cr{sub 6} and Al{sub 76}Co{sub 19}Fe{sub 4}Cr{sub 1} were chosen to be within the region of formation of the quaternary extension of the Al{sub 13}Co{sub 4} phase and also within the (e/a) of 1.7 to 1.9. However, no quasicrystalline phase is present in any of the studied alloys. The Al-Co-Fe-Cr system

  11. Assessment of phase constitution on the Al-rich region of rapidly solidified Al-Co-Fe-Cr alloys

    International Nuclear Information System (INIS)

    Wolf, W.; Bolfarini, C.; Kiminami, C.S.; Botta, W.J.

    2016-01-01

    The formation of quasicrystalline approximants in rapidly solidified Al-Co-Fe-Cr alloys was investigated. Alloys of atomic composition Al 71 Co 13 Fe 8 Cr 8 , Al 77 Co 11 Fe 6 Cr 6 and Al 76 Co 19 Fe 4 Cr 1 were produced using melt spinning and arc melting methods and their microstructural characterization was carried out by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Up to the present there is no consensus in the literature regarding the formation of quasicrystalline phase or quasicrystalline approximants in the Al 71 Co 13 Fe 8 Cr 8 alloy. This work presents, for the first time, a detailed structural characterization of selected alloys in the Al-Co-Fe-Cr system close to the atomic composition Al 71 Co 13 Fe 8 Cr 8 . The results indicated the samples to be composed, mostly, by two intermetallic phases, which are quaternary extensions of Al 5 Co 2 and Al 13 Co 4 and are quasicrystalline approximants. Although the Al 5 Co 2 phase has already been reported in the Al 71 Co 13 Fe 8 Cr 8 alloy, the presence of the monoclinic Al 13 Co 4 is now identified for the first time in the as cast state. In the binary Al-Co system a quasicrystalline phase is known to form in a rapidly solidified alloy with composition close to the monoclinic and orthorhombic Al 13 Co 4 phases. This binary quasicrystalline phase presents an average valence electron per atom (e/a) between 1.7 and 1.9; thus, in addition to the Al 71 Co 13 Fe 8 Cr 8 alloy, the compositions Al 77 Co 11 Fe 6 Cr 6 and Al 76 Co 19 Fe 4 Cr 1 were chosen to be within the region of formation of the quaternary extension of the Al 13 Co 4 phase and also within the (e/a) of 1.7 to 1.9. However, no quasicrystalline phase is present in any of the studied alloys. The Al-Co-Fe-Cr system, around the compositions studied, is composed of quaternary extensions of Al-Co intermetallic phases, which present solubility of Fe and Cr at Co atomic sites. - Highlights: •The Al rich region of the Al

  12. Irradiation response of rapidly solidified Path A type prime candidate alloys

    International Nuclear Information System (INIS)

    Imeson, E.; Tong, C.; Lee, M.; Vander Sande, J.B.; Harling, O.K.

    1981-01-01

    The objective of this study is to present a first assessment of the microstructural response to neutron irradiation shown by Path A alloys prepared by rapid solidification processing. To more fully demonstrate the potential of the method, alloys with increased titanium and carbon content have been used in addition to the Path A prime candidate alloy

  13. Microstructure characterization of rapidly solidified Al-Fe-Cr-Ce alloy by positron annihilation spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Michalcová, A.; Vojtěch, D.; Čízek, J.; Procházka, I.; Drahokoupil, Jan; Novák, P.

    2011-01-01

    Roč. 509, č. 7 (2011), s. 3211-3218 ISSN 0925-8388 Institutional research plan: CEZ:AV0Z10100520 Keywords : metals and alloy s * nanostructured materials * rapid solidification * positron spectroscopies * transmission electron microscopy * x-ray diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.289, year: 2011

  14. Influence of cooling rate and cerium addition on rapidly solidified Al-TM alloys

    Czech Academy of Sciences Publication Activity Database

    Michalcová, A.; Vojtěch, D.; Schumacher, G.; Novák, P.; Klementová, Mariana; Šerák, J.; Mudrová, M.; Valdaufová, J.

    2010-01-01

    Roč. 48, č. 1 (2010), s. 1-7 ISSN 0023-432X Institutional research plan: CEZ:AV0Z40320502 Keywords : rapid solidification * Al-TM * microstructure * aluminium Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.471, year: 2010

  15. Valence electron structure analysis of the cubic silicide intermetallics in rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Wang, J.Q.; Qian, C.F.; Zhang, B.J.; Tseng, M.K.; Xiong, S.W.

    1996-01-01

    The application of rapid solidification for the development of elevated temperature aluminum alloys has resulted in the emergence of several alloys based on the Al-Fe alloy system. Of particular interest are Al-Fe-V-Si alloys which have excellent room temperature and high temperature mechanical properties. In a pioneering study, Skinner et al. showed the stabilization of the cubic phase in ternary Al-Fe-Si alloy by the addition of a quaternary element, vanadium. The evolution of the microstructure in these alloys both during rapid solidification and subsequent processing is of crucial importance. Kim has demonstrated that the composition of the silicide phase in rapidly solidified Al-Fe-V-Si alloy is very close to Al 12 (Fe,V) 3 Si with the body centered cubic (bcc) structure. The structure is closely related to that of quasicrystals.In view of the structural features and the relationship between the α 12 and α 13 phases, the researching emphasis should firstly be put on the α 12 phase. In this paper the authors analyzed the α -(AlFeSi)(α 12 -type) phase from the angle of atomic valence electron structure other than the traditional methods of obtaining the diffraction spots of the phase. Several pieces of information were obtained about the hybrid levels and bond natures of every kind of atom in the α -(AlFeSi) phase. Finally the authors explained the phenomenon which V atom can substitute for Fe atom in the α 12 phase and improve the thermal stability of the phase in Al-Fe-V-Si alloy

  16. Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy

    International Nuclear Information System (INIS)

    Matsuda, M.; Ii, S.; Kawamura, Y.; Ikuhara, Y.; Nishida, M.

    2005-01-01

    The long-period stacking order (LPSO) structures in rapidly solidified Mg 97 Zn 1 Y 2 alloy have been studied by conventional and high-resolution transmission electron microscopes (HRTEMs). There are four kinds of stacking sequences in the LPSO structures, i.e., 18R of ABABABCACACABCBCBC, 14H of ACBCBABABABCBC, 10H of ABACBCBCAB and 24R of ABABABABCACACACABCBCBCBC. The 18R structure is dominantly observed in the present study. The rest three are occasionally observed in places. The 10H and 24R structures are recently discovered. The lattice constants of 18R(1-bar 1-bar -bar 1-bar 1-bar -bar 2) 3 , 14H(2-bar -bar 1-bar 2-bar -bar 1-bar 1-bar -bar 1-bar 1-bar -bar 2-bar 1-bar -bar 2), 10H(1-bar 3-bar -bar 1-bar 1-bar -bar 3-bar 1-bar ) and 24R(1-bar 1-bar -bar 1-bar 1-bar -bar 1-bar 1-bar -bar 2) 3 structures are estimated to be a=0.320nm and c=4.678nm, a=0.325nm and c=3.694nm, a=0.325nm and c=2.603nm, a=0.322nm and c=6.181nm for the hexagonal structure, respectively

  17. High damping Al-Fe-Mo-Si/Zn-Al composites produced by rapidly solidified powder metallurgy process

    International Nuclear Information System (INIS)

    Li, P.Y.; Dai, S.L.; Chai, S.C.; Li, Y.R.

    2000-01-01

    The metallic materials commonly used in aircraft and aerospace fields, such as aluminum and titanium alloys, steels, etc., show extremely low damping capacity (usually of the order of or less than 10 -3 ). Thus, some problems related to vibration may emerge and influence the reliability, safety and life of airplanes, satellites, etc. It has been reported that almost two thirds of errors for rockets and satellites are related to vibration and noise. One effective way to solve these vibration-related problems is to adopt high damping metallic materials. Conventional high damping alloys exhibit damping capacity above 10 -2 , however, their densities are usually great than 5 x 10 3 kg m -3 , or their strengths are less than 200 MPa (for alloys based on dislocation damping), making them impossible to be applied to aircraft and aerospace areas. Recently, some low-density high-damping metal/metal composites based on aluminum and high damping alloys have been developed in Beijing Institute of Aeronautical Materials (BIAM) by the rapidly solidified power metallurgy process. This paper aims to report the properties of the composites based on a high temperature Al-Fe-Mo-Si alloy and a high damping Zn-Al alloy, and compare them with that of 2618-T61 alloy produced by the ingot metallurgy process

  18. Effect of Trace Ce on Microstructure and Properties of Near-rapidly Solidified Al-Zn-Mg-Cu Alloys

    Directory of Open Access Journals (Sweden)

    HUANG Gao-ren

    2018-03-01

    Full Text Available Through using DSC, XRD, SEM, EDS, static tensile test and other analysis methods of materials, the effect of trace Ce on microstructure and properties of near-rapidly solidified Al-Zn-Mg-Cu alloy was studied in order to find out rational homogenizing heat treatment process. The results show that Ce plays a role of refining grain and purifying molten alloy. The addition of Ce reduces dendritic spacing, refines the grain structures, eliminates dispersed shrinkage. The addition of Ce reduces the initial melting point of low melting eutectic phases by 3℃, under the same homogenization conditions. Trace Ce promotes the dissolution of low melting eutectic phases into the matrix, which improves the effect of homogenization. Homogenization temperatures of alloy A should be lower than 480℃and alloy B should be lower than 470℃; the addition of Ce decreases the homogenization temperature and improves the homogenization effect. The addition of Ce also greatly increases the tensile strength of the alloys.

  19. Elevated temperature mechanical properties of a rapidly solidified A1-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Mitra, S.

    1992-01-01

    Dispersion strengthened Al alloys based on the Al-Fe-V-Si quartenary system have recently been developed using rapid solidification techniques. Rapid solidification techniques which resulted in the above mentioned alloys have also been used to manufacture another commercial alloy, FVS 1212, with 37 volume % of dispersoid. The alloy has shown excellent resistance to coarsening at high temperatures and to creep deformation. Elevated temperature exposure of FVS 1212, for times up to 100 hours, resulted in a significant loss in room temperature mechanical properties only beyond 500 degrees C while 1000 hours at 425 degrees C did not result in any degradation of mechanical but no detailed study of the tensile behavior of FVS 1212 at slow strain rates and elevated temperatures has been reported to date. This paper reports that the present study was undertaken to investigate the tensile behavior of FVS 1212 from room temperature to 400 degrees C at strain rates of 6.56 x 10 - 5/sec and 6.56 x 10 -6 /sec. The study focussed on dynamic strain aging effects and strain hardening behavior, while the effect of strain rate on the flow behavior at elevated temperatures was also evaluated

  20. Evolution of rapidly solidified NiAlCu(B) alloy microstructure.

    Science.gov (United States)

    Czeppe, Tomasz; Ochin, Patrick

    2006-10-01

    This study concerned phase transformations observed after rapid solidification and annealing at 500, 700 and 800 degrees C in 56.3 Ni-39.9 Al-3.8 Cu-0.06 B (E1) and 59.8 Ni-36.0 Al-4.3 Cu-0.06 B (E2) alloys (composition in at.%). Injection casting led to a homogeneous structure of very small, one-phase grains (2-4 microm in size). In both alloys, the phase observed at room temperature was martensite of L1(0) structure. The process of the formation of the Ni(5)Al(3) phase by atomic reordering proceeded at 285-394 degrees C in the case of E1 alloy and 450-550 degrees C in the case of E2 alloy. Further decomposition into NiAl (beta) and Ni(3)Al (gamma') phases, the microstructure and crystallography of the phases depended on the path of transformations, proceeding in the investigated case through the transformation of martensite crystallographic variants. This preserved precise crystallographic orientation between the subsequent phases, very stable plate-like morphology and very small beta + gamma' grains after annealing at 800 degrees C.

  1. Surface segregation of chromium in rapidly solidified Al studied by RBS and SPEM

    International Nuclear Information System (INIS)

    Tashlykova-Bushkevich, I.I.; Amati, M.; Aleman, B.; Gregoratti, L.; Kiskinova, M.; Ryabuhin, O.V.; Shepelevich, V.G.

    2013-01-01

    The present study demonstrates the advances of using scanning photoelectron microscopy and imaging accomplished by RBS and AFM to investigate the surface segregation of alloying elements in RS aluminum. Depth profiling of elemental composition indicates that RS microstructure evolution is influenced by solute-nanostructured defect interactions in Al-Cr alloys. It was found that Cr 2p and 3p core level photoemission spectra exhibits foil surface impoverishment of chromium. In agreement with dope depth profiling as carried out by RBS, the revealed phenomenon can be attributed to the fact that Cr drastically reduces the concentration of vacancies compared with RS pure Al, and affects H behaviour in RS Al-Cr alloys. Obtained results indicate that the surface microstructure of the Al alloy foils at the sub-micrometer scale, as far as the high density of quenched-in vacancies is concerned, is essential to elucidate how the microstructural morphology resulting from rapid solidification affects hydrogen trapping at lattice defects. (authors)

  2. APFIM and TEM investigations of precipitation in rapidly solidified 316 stainless steel

    International Nuclear Information System (INIS)

    Wisutmethangoon, S.; Kelly, T.F.; Flinn, J.E.; Camus, P.P.

    1998-01-01

    316 stainless steel has been rapid solidification-processed (RSP) by gas atomization and hot extrusion of the powder with the intent of improving the mechanical properties through fine-scale precipitation. Vanadium, nitrogen and oxygen have been introduced intentionally as alloying elements for this purpose. The yield strength after solution heat treatment of the RSP alloy is 450 MPa. By ageing at 600 C for 1000 h, the yield strength increases to 615 MPa with little loss of ductility (53% reduction of area). The ultimate tensile strength after cold work and ageing is 922 MPa. The morphology and composition of the precipitates in this steel have been investigated using APFIM and TEM techniques in order understand the origin of the high strength. A high numbered density (∼2 x 10 21 m -3 ) of 25 nm plate-like precipitates was observed with TEM in an aged specimen. The composition of these precipitates was analyzed using APFIM techniques, and was found to be a complex nitride of Cr, V, Fe, Ni and Mo. This nitride precipitate was not found in an unaged specimen of this alloy. These precipitates are responsible for improving mechanical properties by dispersion strengthening. (orig.)

  3. Influence of micro-additions of bismuth on structures, mechanical and electrical transport properties of rapidly solidified Sn-3.5% Ag Alloy from melt

    International Nuclear Information System (INIS)

    El Bahay, M.M.; Mady, H.A.

    2005-01-01

    The present study was undertaken to investigate the influence of the Bi addition in the Sn-3.5 Ag rapidly solidified binary system for use as a Pb-free solder. The resulting properties of the binary system were extended to the Sn based ternary systems Sn 9 6.5-X Ag 3 .5 Bi x (0≤ X ≤ 2.5) solder. The structure and electrical resistivity of rapidly solidified (melt spun) alloys have been investigated. With the addition of up to 2.5 mass % Bi, the melting temperature decreases from 221.1 to 214.8 degree C. Wetting contact angle of the six alloys on Cu Zn 3 0 substrate are carried out at 573 K. Microhardness evaluations were also performed on the Sn-Ag-Bi alloys. The measured values and other researcher's results were compared with the calculated data

  4. The influence of Si and V on the kinetics of phase transformation and microstructure of rapidly solidified Al-Fe-Zr alloys

    OpenAIRE

    Karpe B.; Kosec B.; Nagode A.; Bizjak M.

    2013-01-01

    The influence of Si and V on the precipitation kinetics of the rapidly solidified (RS) Al-Fe-Zr alloys is presented. Precipitation kinetics and microstructural development of RS Al-Fe-Zr alloys with Si or V addition have been investigated by the combination of four point electrical resistance measurement, optical microscopy, transmition electron microscopy (TEM) and scanning electron microscopy (SEM). For verification of the electrical resistivity measurement results differential scanni...

  5. Incorporating an extended dendritic growth model into the CAFE model for rapidly solidified non-dilute alloys

    International Nuclear Information System (INIS)

    Ma, Jie; Wang, Bo; Zhao, Shunli; Wu, Guangxin; Zhang, Jieyu; Yang, Zhiliang

    2016-01-01

    We have extended the dendritic growth model first proposed by Boettinger, Coriell and Trivedi (here termed EBCT) for microstructure simulations of rapidly solidified non-dilute alloys. The temperature-dependent distribution coefficient, obtained from calculations of phase equilibria, and the continuous growth model (CGM) were adopted in the present EBCT model to describe the solute trapping behaviors. The temperature dependence of the physical properties, which were not used in previous dendritic growth models, were also considered in the present EBCT model. These extensions allow the present EBCT model to be used for microstructure simulations of non-dilute alloys. The comparison of the present EBCT model with the BCT model proves that the considerations of the distribution coefficient and physical properties are necessary for microstructure simulations, especially for small particles with high undercoolings. Finally, the EBCT model was incorporated into the cellular automaton-finite element (CAFE) model to simulate microstructures of gas-atomized ASP30 high speed steel particles that were then compared with experimental results. Both the simulated and experimental results reveal that a columnar dendritic microstructure preferentially forms in small particles and an equiaxed microstructure forms otherwise. The applications of the present EBCT model provide a convenient way to predict the microstructure of non-dilute alloys. - Highlights: • A dendritic growth model was developed considering non-equilibrium distribution coefficient. • The physical properties with temperature dependence were considered in the extended model. • The extended model can be used to non-dilute alloys and the extensions are necessary in small particles. • Microstructure of ASP30 steel was investigated using the present model and verified by experiment.

  6. Microstructure, biocorrosion and cytotoxicity evaluations of rapid solidified Mg-3Ca alloy ribbons as a biodegradable material.

    Science.gov (United States)

    Gu, X N; Li, X L; Zhou, W R; Cheng, Y; Zheng, Y F

    2010-06-01

    Rapidly solidified (RS) Mg–3Ca alloy ribbons were prepared by the melt-spinning technique at different wheel rotating speeds (15 m s(-1), 30 m s(-1) and 45 m s(-1) with the as-cast Mg–3Ca alloy ingot as a raw material. The RS45 Mg–3Ca alloy ribbon showed a much more fine grain size feature (approximately 200–500 nm) in comparison to the coarse grain size (50–100 μm)of the original as-cast Mg–3Ca alloy ingot. The corrosion electrochemical tests in simulated body fluid indicated that the corrosion rate of the as-cast Mg–3Ca alloy was strongly reduced by the RS procedure and tended to be further decreased with increasing wheel rotating speeds(1.43 mm yr(-1) for RS15, 0.94 mm yr(-1) for RS30 and 0.36 mm yr(-1) for RS45). The RS Mg–3Ca alloy ribbons showed more uniform corrosion morphology compared with the as-cast Mg–3Ca alloy after polarization. The cytotoxicity evaluation revealed that the three experimental as-spun Mg–3Ca alloy ribbon extracts did not induce toxicity to the L-929 cells,whereas the as-cast Mg–3Ca alloy ingot extract did. The L-929 cells showed more improved adhesion on the surfaces of the three as-spun Mg–3Ca alloy ribbons than that of the as-cast Mg–3Ca alloy ingot.

  7. Microstructure, biocorrosion and cytotoxicity evaluations of rapid solidified Mg-3Ca alloy ribbons as a biodegradable material

    Energy Technology Data Exchange (ETDEWEB)

    Gu, X N; Zhou, W R; Zheng, Y F [State Key Laboratory for Turbulence and Complex System and Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871 (China); Li, X L [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Cheng, Y, E-mail: yfzheng@pku.edu.c [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China)

    2010-06-01

    Rapidly solidified (RS) Mg-3Ca alloy ribbons were prepared by the melt-spinning technique at different wheel rotating speeds (15 m s{sup -1}, 30 m s{sup -1} and 45 m s{sup -1}) with the as-cast Mg-3Ca alloy ingot as a raw material. The RS45 Mg-3Ca alloy ribbon showed a much more fine grain size feature (approximately 200-500 nm) in comparison to the coarse grain size (50-100 {mu}m) of the original as-cast Mg-3Ca alloy ingot. The corrosion electrochemical tests in simulated body fluid indicated that the corrosion rate of the as-cast Mg-3Ca alloy was strongly reduced by the RS procedure and tended to be further decreased with increasing wheel rotating speeds (1.43 mm yr{sup -1} for RS15, 0.94 mm yr{sup -1} for RS30 and 0.36 mm yr{sup -1} for RS45). The RS Mg-3Ca alloy ribbons showed more uniform corrosion morphology compared with the as-cast Mg-3Ca alloy after polarization. The cytotoxicity evaluation revealed that the three experimental as-spun Mg-3Ca alloy ribbon extracts did not induce toxicity to the L-929 cells, whereas the as-cast Mg-3Ca alloy ingot extract did. The L-929 cells showed more improved adhesion on the surfaces of the three as-spun Mg-3Ca alloy ribbons than that of the as-cast Mg-3Ca alloy ingot.

  8. Microstructure, biocorrosion and cytotoxicity evaluations of rapid solidified Mg-3Ca alloy ribbons as a biodegradable material

    International Nuclear Information System (INIS)

    Gu, X N; Zhou, W R; Zheng, Y F; Li, X L; Cheng, Y

    2010-01-01

    Rapidly solidified (RS) Mg-3Ca alloy ribbons were prepared by the melt-spinning technique at different wheel rotating speeds (15 m s -1 , 30 m s -1 and 45 m s -1 ) with the as-cast Mg-3Ca alloy ingot as a raw material. The RS45 Mg-3Ca alloy ribbon showed a much more fine grain size feature (approximately 200-500 nm) in comparison to the coarse grain size (50-100 μm) of the original as-cast Mg-3Ca alloy ingot. The corrosion electrochemical tests in simulated body fluid indicated that the corrosion rate of the as-cast Mg-3Ca alloy was strongly reduced by the RS procedure and tended to be further decreased with increasing wheel rotating speeds (1.43 mm yr -1 for RS15, 0.94 mm yr -1 for RS30 and 0.36 mm yr -1 for RS45). The RS Mg-3Ca alloy ribbons showed more uniform corrosion morphology compared with the as-cast Mg-3Ca alloy after polarization. The cytotoxicity evaluation revealed that the three experimental as-spun Mg-3Ca alloy ribbon extracts did not induce toxicity to the L-929 cells, whereas the as-cast Mg-3Ca alloy ingot extract did. The L-929 cells showed more improved adhesion on the surfaces of the three as-spun Mg-3Ca alloy ribbons than that of the as-cast Mg-3Ca alloy ingot.

  9. Incorporating an extended dendritic growth model into the CAFE model for rapidly solidified non-dilute alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jie; Wang, Bo [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Zhao, Shunli [Research Institute, Baoshan Iron & Steel Co., Ltd, Shanghai 201900 (China); Wu, Guangxin [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Zhang, Jieyu, E-mail: zjy6162@staff.shu.edu.cn [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Yang, Zhiliang [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China)

    2016-05-25

    We have extended the dendritic growth model first proposed by Boettinger, Coriell and Trivedi (here termed EBCT) for microstructure simulations of rapidly solidified non-dilute alloys. The temperature-dependent distribution coefficient, obtained from calculations of phase equilibria, and the continuous growth model (CGM) were adopted in the present EBCT model to describe the solute trapping behaviors. The temperature dependence of the physical properties, which were not used in previous dendritic growth models, were also considered in the present EBCT model. These extensions allow the present EBCT model to be used for microstructure simulations of non-dilute alloys. The comparison of the present EBCT model with the BCT model proves that the considerations of the distribution coefficient and physical properties are necessary for microstructure simulations, especially for small particles with high undercoolings. Finally, the EBCT model was incorporated into the cellular automaton-finite element (CAFE) model to simulate microstructures of gas-atomized ASP30 high speed steel particles that were then compared with experimental results. Both the simulated and experimental results reveal that a columnar dendritic microstructure preferentially forms in small particles and an equiaxed microstructure forms otherwise. The applications of the present EBCT model provide a convenient way to predict the microstructure of non-dilute alloys. - Highlights: • A dendritic growth model was developed considering non-equilibrium distribution coefficient. • The physical properties with temperature dependence were considered in the extended model. • The extended model can be used to non-dilute alloys and the extensions are necessary in small particles. • Microstructure of ASP30 steel was investigated using the present model and verified by experiment.

  10. Numerical Research on Magnetic Field, Temperature Field and Flow Field During Melting and Directionally Solidifying TiAl Alloys by Electromagnetic Cold Crucible

    Science.gov (United States)

    Chen, Ruirun; Yang, Yaohua; Gong, Xue; Guo, Jingjie; Su, Yanqing; Ding, Hongsheng; Fu, Hengzhi

    2017-12-01

    The electromagnetic cold crucible (EMCC) technique is an effective method to melt and directionally solidify reactive and high-temperature materials without contamination. The temperature field and fluid flow induced by the electromagnetic field are very important for melting and controlling the microstructure. In this article, a 3D EMCC model for calculating the magnetic field in the charges (TiAl alloys) using the T-Ω finite element method was established and verified. Magnetic fields in the charge under different electrical parameters, positions and dimensions of the charge were calculated and analyzed. The calculated results show that the magnetic field concentrates in the skin layer, and the magnetic flux density ( B) increases with increasing of the frequency, charge diameter and current. The maximum B in the charge is affected by the position of the charge in EMCC ( h 1) and the charge height ( h 2), which emerges at the middle of coils ( h c) when the relationship of h c < h 1 + h 2 < h c + δ is satisfied. Lower frequency and smaller charge diameter can improve the uniformity of the magnetic field in the charge. Consequently, the induced uniform electromagnetic stirring weakens the turbulence and improves temperature uniformity in the vicinity of the solid/liquid (S/L) interface, which is beneficial to forming a planar S/L interface during directional solidification. Based on the above conclusions, the TiAlNb alloy was successfully melted with lower power consumption and directionally solidified by the square EMCC.

  11. RAPIDLY-SOLIDIFIED PERMANENT MAGNET MATERIALS: FACTORS AFFECTING QUENCHABILITY AND MAGNETIC PROPERTIES IN Nd2Fe14B

    International Nuclear Information System (INIS)

    LEWIS, L.H.; KRAMER, M.J.; MCCALLUM, R.W.; BRANAGAN, D.J.

    1999-01-01

    Insight into the solidification behavior of Nd 2 Fe 14 B-based materials processed by rapid solidification techniques has been obtained by a systematic experimental study of the Curie temperatures of selected phases found in these materials. Nd 2 Fe 14 B-based materials fabricated by two disparate rapid solidification techniques, inert gas atomization (IGA) and melt-spinning, has been studied. The compositions of the starting materials have been altered with additions of the refractory elements Ti and C which are known to alter the solidification behavior of these materials. Special emphasis has been placed on trying to understand the effect of alloying additions upon the nature of the quenched glass, the distribution of the elemental additions within the Nd 2 Fe 14 B lattice and the evolution of the elemental partitioning with quench rate and annealing condition. The experimental Curie temperature data obtained using thermal analysis methods from the particles produced by gas-atomization is consistent with both an ejection of quenched-in refractory species from the crystalline Nd 2 Fe 14 B lattice and with increased crystallographic order as particle size, and hence grain size, increases. Magnetic ac susceptibility measurements performed on nominally-amorphous Nd 2 Fe 14 B ribbons produced by melt-spinning indicate a decrease of the Curie temperature with increasing quench rate, a result that may be attributed either to the degree of Ti/C retention in the glass or to the degree of disorder in the glass, independent of Ti/C retention

  12. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part I. Microstructural Characterization of Rapidly Solidified Solders

    Science.gov (United States)

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; Handwerker, Carol A.

    2016-12-01

    Particles of Cu x Al y in Sn-Cu-Al solders have previously been shown to nucleate the Cu6Sn5 phase during solidification. In this study, the number and size of Cu6Sn5 nucleation sites were controlled through the particle size refinement of Cu x Al y via rapid solidification processing and controlled cooling in a differential scanning calorimeter. Cooling rates spanning eight orders of magnitude were used to refine the average Cu x Al y and Cu6Sn5 particle sizes down to submicron ranges. The average particle sizes, particle size distributions, and morphologies in the microstructures were analyzed as a function of alloy composition and cooling rate. Deep etching of the samples revealed the three-dimensional microstructures and illuminated the epitaxial and morphological relationships between the Cu x Al y and Cu6Sn5 phases. Transitions in the Cu6Sn5 particle morphologies from faceted rods to nonfaceted, equiaxed particles were observed as a function of both cooling rate and composition. Initial solidification cooling rates within the range of 103 to 104 °C/s were found to be optimal for realizing particle size refinement and maintaining the Cu x Al y /Cu6Sn5 nucleant relationship. In addition, little evidence of the formation or decomposition of the ternary- β phase in the solidified alloys was noted. Solidification pathways omitting the formation of the ternary- β phase agreed well with observed room temperature microstructures.

  13. Phase formation kinetics, hardness and magnetocaloric effect of sub-rapidly solidified LaFe11.6Si1.4 plates during isothermal annealing

    Science.gov (United States)

    Dai, Yuting; Xu, Zhishuai; Luo, Zhiping; Han, Ke; Zhai, Qijie; Zheng, Hongxing

    2018-05-01

    High-temperature phase transition behavior and intrinsic brittleness of NaZn13-type τ1 phase in La-Fe-Si magnetocaloric materials are two key problems from the viewpoint of materials production and practical applications. In the present work, the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation was introduced to quantitatively characterize the formation kinetics of τ1 phase in sub-rapidly solidified LaFe11.6Si1.4 plates during the isothermal annealing process. Avrami index was estimated to be 0.43 (∼0.5), which suggests that the formation of τ1 phase is in a diffusion-controlled one-dimensional growth mode. Meanwhile, it is found that the Vickers hardness as a function of annealing time for sub-rapidly solidified plates also agrees well with the JMAK equation. The Vickers hardness of τ1 phase was estimated to be about 754. Under a magnetic field change of 30 kOe, the maximum magnetic entropy change was about 22.31 J/(kg·K) for plates annealed at 1323 K for 48 h, and the effective magnetic refrigeration capacity reached 191 J/kg.

  14. Formation of an 18R long-period stacking ordered structure in rapidly solidified Mg88Y8Zn4 alloy

    International Nuclear Information System (INIS)

    Garcés, Gerardo; Requena, Guillermo; Tolnai, Domonkos; Pérez, Pablo; Medina, Judit; Stark, Andreas; Schell, Norbert; Adeva, Paloma

    2016-01-01

    The formation of the long-period stacking ordered structure (LPSO) in a Mg 88 Y 8 Zn 4 (at%) ribbon produced by melt spinning was studied using high energy X-ray synchrotron radiation diffraction during in-situ isochronal heating and transmission electron microscopy. The microstructure of the rapidly solidified ribbons is characterised by fine magnesium grains with yttrium and zinc in solid solution and primary 18R LPSO-phase segregated at grain boundaries. Using differential scanning calorimetry, a strong exothermal peak was observed around 300 °C which was associated with the development of the 18R-type LPSO-phase in the magnesium grains. The apparent activation energy calculated using the Kissinger model was 125 KJmol −1 and it is related to simultaneous diffusion of Y and Zn through magnesium basal plane. - Highlights: •The formation of the LPSO phase in rapidly solidified ribbons was studied. •The formation of the 18R LPSO starts at around 300 °C. •LPSO formation have to steps: Stacking faults along basal plane and then growth of 18R structure along the c direction.

  15. Growth and microstructure formation of isothermally-solidified Zircaloy-4 joints brazed by a Zr-Ti-Cu-Ni amorphous alloy ribbon

    Science.gov (United States)

    Kim, K. H.; Lim, C. H.; Lee, J. G.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    The microstructure and growth characteristics of Zircaloy-4 joints brazed by a Zr48Ti16Cu17Ni19 (at.%) amorphous filler metal have been investigated with regard to the controlled isothermal solidification and intermetallic formation. Two typical joints were produced depending on the isothermal brazing temperature: (1) a dendritic growth structure including bulky segregation in the central zone (at 850 °C), and (2) a homogeneous dendritic structure throughout the joint without segregation (at 890 °C). The primary α-Zr phase was solidified isothermally, nucleating to grow into a joint with a cellular or dendritic structure. Also, the continuous Zr2Ni and particulate Zr2Cu phases were formed in the segregated center zone and at the intercellular region, respectively, owing to the different solubility and atomic mobility of the solute elements (Ti, Cu, and Ni) in the α-Zr matrix. A disappearance of the central Zr2Ni phase was also rate-controlled by the outward diffusion of the Cu and Ni elements. When the detrimental Zr2Ni intermetallic phase was eliminated by a complete isothermal solidification at 890 °C, the strengths of the joints were high enough to cause yielding and fracture in the base metal, exceeding those of the bulk Zircaloy-4, at room temperature as well as at elevated temperatures (up to 400 °C).

  16. Effect of Bi-content on hardness and micro-creep behavior of Sn-3.5Ag rapidly solidified alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, M. [Metal Physics Laboratory, Faculty of Science, Mansoura University (Egypt); Gouda, El Said [Metal Physics Laboratory, Department of Solid State Physics, Physics Division, National Research Center, Dokki, Giza (Egypt); Marei, L.K. [Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez (Egypt)

    2009-12-15

    In the present paper, the influence of 1, 3, 5 and 10 % Bi (weight %) as ternary additions on structure, melting and mechanical properties of rapidly solidified Sn-3.5Ag alloy has been investigated. The effect of Bi was discussed based on the experimental results. The experimental results showed that the alloys of Sn-3.5Ag, Sn-3.5Ag-1Bi and Sn-3.5Ag-3Bi are composed of two phases; Ag{sub 3}Sn IMC embedded in Sn matrix phase, which indicated that the solubility of Bi phase in Sn-matrix was extended to 3 % as a result of rapid solidification. Bi precipitation in Sn matrix was only observed in Sn-3.5Ag-5Bi and Sn-3.5Ag-10Bi alloys. Also, addition of Bi decreased continuously the melting point of the eutectic Sn-3.5Ag alloy to 202.6 C at 10 % Bi. Vickers hardness of Sn-3.5Ag rapidly solidified alloy increased with increasing Bi content up to 3 % due to supersaturated solid solution strengthening hardening mechanism of Bi phase in Sn matrix, while the alloys contain 5 and 10 % Bi exhibited lower values of Vickers hardness. The lower values can be attributed to the precipitation of Bi as a secondary phase which may form strained regions due to the embrittlement of Bi atom. In addition, the effect of Bi addition on the micro-creep behavior of Sn-3.5Ag alloy as well as the creep rate have been described and has been calculated at room temperature. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Evolution of the microstructure and hardness of a rapidly solidified/melt-spun AZ91 alloy upon aging at different temperatures

    International Nuclear Information System (INIS)

    Wang Baishu; Liu Yongbing; An Jian; Li Rongguang; Su Zhenguo; Su Guihua; Lu You; Cao Zhanyi

    2009-01-01

    The effect of aging at different temperatures on a rapidly solidified/melt-spun AZ91 alloy has been investigated in depth. The microstructures of as-spun and aged ribbons with a thickness of approximately 60 μm were characterized using X-ray diffraction, transmission electron microscopy and laser optical microscopy; microhardness measurements were also conducted. It was found that the commercial AZ91 alloy undergoes a cellular/dendritic transition during melt-spinning at a speed of 34 m/s. A strengthening effect due to aging was observed: a maximum hardness of 110 HV/0.05 and an age-hardenability of 50% were obtained when the ribbon was aged at 200 deg. C for 20 min. The β-Mg 17 Al 12 phase exhibits net and dispersion types of distribution during precipitation. The dispersion of precipitates in dendritic grains or cells is the main source of strengthening

  18. Effect of cooling rate and Mg addition on the structural evaluation of rapidly solidified Al-20wt%Cu-12wt%Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Karaköse, Ercan, E-mail: ekarakose@karatekin.edu.tr [Çankırı Karatekin University, Faculty of Sciences, Department of Physics, 18100 Çankırı (Turkey); Çolak, Hakan [Çankırı Karatekin University, Faculty of Sciences, Department of Chemistry, 18100 Çankırı (Turkey)

    2016-11-15

    The present work examines the effect of Mg contents and cooling rate on the morphology and mechanical properties of Al{sub 20}Cu{sub 12}Fe quasicrystalline alloy. The microstructure of the alloys was analyzed by scanning electron microscopy and the phase composition was identified by X-ray diffractometry. The melting characteristics were studied by differential thermal analysis under an Ar atmosphere. The mechanical features of the melt-spun and conventionally solidified alloys were tested by tensile-strength test and Vickers micro-hardness test. It was found that the final microstructure of the Al{sub 20}Cu{sub 12}Fe samples mainly depends on the cooling rate and Mg contents, which suggests that different cooling rates and Mg contents produce different microstructures and properties. The average grain sizes of the melt spun samples were about 100–300 nm at 35 m/s. The nanosize, dispersed, different shaped quasicrystal particles possessed a remarkable effect to the mechanical characteristics of the rapidly solidified ribbons. The microhardness values of the melt spun samples were approximately 18% higher than those of the conventionally counterparts. - Highlights: •Quasicrystal-creating materials have high potential for applications. •Different shaped nanosize quasicrystal particles were observed. •The addition of Mg has an important impact on the mechanical properties. •H{sub V} values of the MS0, MS3 and MS5 samples at 35 m/s were 8.56, 8.66 and 8.80 GPa. •The volume fraction of IQC increases with increasing cooling rates.

  19. High-temperature deformation behavior and mechanical properties of rapidly solidified Al-Li-Co and Al-Li-Zr alloys

    International Nuclear Information System (INIS)

    Sastry, S.M.L.; Oneal, J.E.

    1984-01-01

    The deformation behavior at 25-300 C of rapidly solidified Al-3Li-0.6Co and Al-3Li-0.3Zr alloys was studied by tensile property measurements and transmission electron microscopic examination of dislocation substructures. In binary Al-3Li and Al-3Li-Co alloys, the modulus normalized yield stress increases with an increase in temperature up to 150 C and then decreases. The yield stress at 25 C of Al-3Li-0.3Zr alloys is 180-200 MPa higher than that of Al-3Li alloys. However, the yield stress of the Zr-containing alloy decreases drastically with increasing temperatures above 75 C. The short-term yield stresses at 100-200 C of the Al-3Li-based alloys are higher than that of the conventional high-temperature Al alloys. The temperature dependences of the flow stresses of the alloys were analyzed in terms of the magnitudes and temperature dependences of the various strengthening contributions in the two alloys. The dislocation substructures at 25-300 C were correlated with mechanical properties. 19 references

  20. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part II. Intermetallic Coarsening Behavior of Rapidly Solidified Solders After Multiple Reflows

    Science.gov (United States)

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; Handwerker, Carol A.

    2016-12-01

    Controlling the size, dispersion, and stability of intermetallic compounds in lead-free solder alloys is vital to creating reliable solder joints regardless of how many times the solder joints are melted and resolidified (reflowed) during circuit board assembly. In this article, the coarsening behavior of Cu x Al y and Cu6Sn5 in two Sn-Cu-Al alloys, a Sn-2.59Cu-0.43Al at. pct alloy produced via drip atomization and a Sn-5.39Cu-1.69Al at. pct alloy produced via melt spinning at a 5-m/s wheel speed, was characterized after multiple (1-5) reflow cycles via differential scanning calorimetry between the temperatures of 293 K and 523 K (20 °C and 250 °C). Little-to-no coarsening of the Cu x Al y particles was observed for either composition; however, clustering of Cu x Al y particles was observed. For Cu6Sn5 particle growth, a bimodal size distribution was observed for the drip atomized alloy, with large, faceted growth of Cu6Sn5 observed, while in the melt spun alloy, Cu6Sn5 particles displayed no significant increase in the average particle size, with irregularly shaped, nonfaceted Cu6Sn5 particles observed after reflow, which is consistent with shapes observed in the as-solidified alloys. The link between original alloy composition, reflow undercooling, and subsequent intermetallic coarsening behavior was discussed by using calculated solidification paths. The reflowed microstructures suggested that the heteroepitaxial relationship previously observed between the Cu x Al y and the Cu6Sn5 was maintained for both alloys.

  1. Microstructural characterization of a rapidly solidified ultrahigh strength Al94.5Cr3Co1.5Ce1 alloy

    International Nuclear Information System (INIS)

    Ping, D.H.; Hono, K.; Inoue, A.

    2000-01-01

    The microstructure of a rapidly solidified Al 94.5 Cr 3 Co 1.5 Ce 1 alloy has been examined in detail by means of high resolution transmission electron microscopy (HRTEM) and atom probe field ion microscopy (APFIM). In the as-quenched microstructure, nanoscale particles of a solute-enriched amorphous phase and an Al-Cr compound are dispersed in randomly oriented fine grains of α-Al ( 200nm ). The interface between the Al grains and the amorphous particles is not smooth but irregular with atomic protrusions and concavities, suggesting that interfacial instability occurs during the solidification process. Nanoscale amorphous particles are formed as a result of solute trapping within the rapidly grown Al grains. After annealing at 400 C for 15 minutes grain growth occurs, and the interface of the Al grains is smoothed. The amorphous region trapped within the grains if crystallized to an Al-Cr compound, but no icosahedral phase has been confirmed. The APFIM results have revealed that Cr and Ce atoms have a similar partitioning behavior, i.e., they are rejected from the α-Al phase and partitioned into the trapped amorphous regions. On the other hand, Co atoms are not partitioned between the two phases in the as-quenched state but are partitioned into the α-Al grains in the annealed alloys being rejected from the Al compounds and finally form Al-Co compounds. Based on these microstructural characterization results, the origins of high strength of this alloy are discussed

  2. Air-assisted liquid–liquid microextraction by solidifying the floating organic droplets for the rapid determination of seven fungicide residues in juice samples

    Energy Technology Data Exchange (ETDEWEB)

    You, Xiangwei [Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101 (China); College of Science, China Agricultural University, Beijing 100193 (China); Xing, Zhuokan [College of Science, China Agricultural University, Beijing 100193 (China); Liu, Fengmao, E-mail: liufengmao@cau.edu.cn [College of Science, China Agricultural University, Beijing 100193 (China); Zhang, Xu [College of Science, China Agricultural University, Beijing 100193 (China)

    2015-05-22

    Highlights: • A novel AALLME-SFO method was firstly reported for pesticide residue analysis. • Solvent with low density and proper melting point was used as extraction solvent. • The formation of “cloudy solvent” with a syringe only. • The new method avoided the use of organic dispersive solvent. - Abstract: A novel air assisted liquid–liquid microextraction using the solidification of a floating organic droplet method (AALLME-SFO) was developed for the rapid and simple determination of seven fungicide residues in juice samples, using the gas chromatography with electron capture detector (GC-ECD). This method combines the advantages of AALLME and dispersive liquid–liquid microextraction based on the solidification of floating organic droplets (DLLME-SFO) for the first time. In this method, a low-density solvent with a melting point near room temperature was used as the extraction solvent, and the emulsion was rapidly formed by pulling in and pushing out the mixture of aqueous sample solution and extraction solvent for ten times repeatedly using a 10-mL glass syringe. After centrifugation, the extractant droplet could be easily collected from the top of the aqueous samples by solidifying it at a temperature lower than the melting point. Under the optimized conditions, good linearities with the correlation coefficients (γ) higher than 0.9959 were obtained and the limits of detection (LOD) varied between 0.02 and 0.25 μg L{sup −1}. The proposed method was applied to determine the target fungicides in juice samples and acceptable recoveries ranged from 72.6% to 114.0% with the relative standard deviations (RSDs) of 2.3–13.0% were achieved. Compared with the conventional DLLME method, the newly proposed method will neither require a highly toxic chlorinated solvent for extraction nor an organic dispersive solvent in the application process; hence, it is more environmentally friendly.

  3. Air-assisted liquid–liquid microextraction by solidifying the floating organic droplets for the rapid determination of seven fungicide residues in juice samples

    International Nuclear Information System (INIS)

    You, Xiangwei; Xing, Zhuokan; Liu, Fengmao; Zhang, Xu

    2015-01-01

    Highlights: • A novel AALLME-SFO method was firstly reported for pesticide residue analysis. • Solvent with low density and proper melting point was used as extraction solvent. • The formation of “cloudy solvent” with a syringe only. • The new method avoided the use of organic dispersive solvent. - Abstract: A novel air assisted liquid–liquid microextraction using the solidification of a floating organic droplet method (AALLME-SFO) was developed for the rapid and simple determination of seven fungicide residues in juice samples, using the gas chromatography with electron capture detector (GC-ECD). This method combines the advantages of AALLME and dispersive liquid–liquid microextraction based on the solidification of floating organic droplets (DLLME-SFO) for the first time. In this method, a low-density solvent with a melting point near room temperature was used as the extraction solvent, and the emulsion was rapidly formed by pulling in and pushing out the mixture of aqueous sample solution and extraction solvent for ten times repeatedly using a 10-mL glass syringe. After centrifugation, the extractant droplet could be easily collected from the top of the aqueous samples by solidifying it at a temperature lower than the melting point. Under the optimized conditions, good linearities with the correlation coefficients (γ) higher than 0.9959 were obtained and the limits of detection (LOD) varied between 0.02 and 0.25 μg L −1 . The proposed method was applied to determine the target fungicides in juice samples and acceptable recoveries ranged from 72.6% to 114.0% with the relative standard deviations (RSDs) of 2.3–13.0% were achieved. Compared with the conventional DLLME method, the newly proposed method will neither require a highly toxic chlorinated solvent for extraction nor an organic dispersive solvent in the application process; hence, it is more environmentally friendly

  4. CALCUL DE LA VITESSE DE REFROIDISSEMENT ET MICROSTRUCTURE DE L’ALLIAGE Al-5%Cu SOLIDIFIE RAPIDEMENT

    Directory of Open Access Journals (Sweden)

    C SERRAR

    2010-12-01

    Full Text Available La technique de trempe sur roue tournante a permis d'élaborer des rubans d'épaisseur moyenne de 30 μm pour une vitesse de rotation périphérique de la roue de 42m/s. La résolution de l'équation de Fourier pour un transfert de la chaleur dans les conditions de chute brutale de l'alliage fondue sur le substrat en rotation, nous a permis de déterminer le profil de la distribution de la température du ruban suivant son épaisseur. Le temps de solidification et la vitesse de refroidissement ont été aussi recherchés et sont estimés respectivement à 2.3x10-6 s et 4x107 °C/s. La microstructure des constituants de l'alliage AL-5%Cu s'est transformée, sous l'influence de la trempe rapide, en de fins précipités de l'eutectique α-Al/Ө dispersés dans la matrice α-Al. La présence d'une nouvelle phase σ, précipitant sous forme de fines particules globulaires, a été aussi observée et confirmée par analyse structurale.

  5. Influence of Mn incorporation for Ni on the magnetocaloric properties of rapidly solidified off-stoichiometric NiMnGa ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Sushmita; Singh, Satnam; Roy, R.K.; Ghosh, M.; Mitra, A.; Panda, A.K., E-mail: akpanda@nmlindia.org

    2016-01-01

    The present investigation addresses the magnetocaloric behaviour in a series of Ni{sub 77−x}Mn{sub x}Ga{sub 23} (x=23, 24, 25, 27 and 29) rapidly solidified alloys prepared in the form of ribbons by melt spinning technique. The approach of the study is to identify the off-stoichiometric composition wherein room temperature magneto-structural transformation is achieved. The alloy chemistry was tailored through Mn incorporation for Ni such that the magnetic and structural transitions were at close proximity to achieve highest entropy value of ΔS equal to 8.51 J Kg{sup −1} K{sup −1} for #Mn{sub 24} ribbon measured at an applied field of 3 T. When such transitions are more staggered as in #Mn{sub 29} the entropy value of ribbon reduced to as low as 1.61 J Kg{sup −1} K{sup −1}. Near room temperature transformations in #Mn{sub 24} ribbon have been observed through calorimetric and thermomagnetic evaluation. Reverse martensitic transformation (martensite→autstenite) temperature indicates not only distinct change in the saturation flux density but also an inter-martensitic phase. Microstructural analysis of #Mn{sub 24} alloy ribbon revealed structural ordering with the existence of plate morphology evidenced for martensitic phase. - Highlights: • Magnetocaloric effect in a series of melt spun NiMnGa ribbon is addressed. • The alloy series revealed austenitic state as well as its presence with martensite. • The morphology of the ribbons has been shown and discussed through phase analysis. • Influence of magnetising field on entropy and relative cooling power is discussed. • Influence of intermartensitic state on magnetization plots have also been shown.

  6. Effect of rare-earth elements and quenching wheel speed on the structure, mechanical and thermal properties of rapidly solidified AZ91 Mg melt-spun ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Ekrami, A. [Iran University of Industries & Mines, Faculty of Engineering & High-Technology (Iran, Islamic Republic of); Shahri, F., E-mail: fshahri@irost.ir [Iranian Research Organization for Science & Technology, Department of Advanced Materials & Renewable Energy (Iran, Islamic Republic of); Mirak, A. [Iran University of Industries & Mines, Faculty of Engineering & High-Technology (Iran, Islamic Republic of)

    2017-01-27

    In this work, an attempt is made to study the effects of rare-earth elements as an additive (2 wt% of Ce base misch-metal) and various quenching wheel speeds (10–40 m/s) on the microstructure, thermal and mechanical properties of rapidly solidified AZ91 alloy prepared by single roller melt-spinning process. In this respect, all of the samples were studied using various techniques such as x-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), differential scanning calorimetry (DSC) and mechanical properties such as microhardness and tensile tests. The finding bore witness to proposed hypothesis in this study illustrating due to high affinity between Al and RE by adding 2 wt% rare-earth elements in the AZ91alloy, thermally stable Al{sub x}RE{sub y} intermetallic compounds are precipitated and the formation of β-Mg{sub 17}Al{sub 12} phases is reduced. DSC results revealed that by adding RE to AZ91 alloy, AlRE phases got stable up to 500 °C, while for the AZ91 sample, β-Mg{sub 17}Al{sub 12} phase was formed at temperature about 180 °C and then with increasing of temperature dissolved at 410 °C in the α-Mg matrix. Further it has been observed that the higher was the quenching wheel speed, the smaller was the grain size which in turn gives rise to a higher tensile properties (from 406 MPa for quenching wheel speed of 10 m/s to 510 MPa for 40 m/s) for the MM-added alloys. Tensile strength of 386 MPa was obtained for the AZ91 pure alloy which is prepared at wheel speed of 40 m/sec.

  7. TEM Characterization and Properties of Cu-1 wt.% TiB2 Nanocomposite Prepared by Rapid Solidification and Subsequent Heat Treatment

    Directory of Open Access Journals (Sweden)

    M. Sobhani

    2012-12-01

    Full Text Available Copper matrix composite reinforced by 1wt.% TiB2 particles was prepared using in situ reaction of Cu-1.4wt.% Ti and Cu-0.7wt.% B by rapid solidification and subsequent heat treatment for 1-20 hrs at 900ºC. High-resolution transmission electron microscopy (HRTEM characterization showed that primary TiB2 particles were formed in liquid copper. Heat treatment of as-solidified samples led to the formation of secondary TiB2 particles via spinodal decomposition of titanium-rich zone inside the grains. Mechanical properties (after 50% reduction in area as well as electrical conductivity of composite were evaluated after heat treatment and were compared with those of pure copper. The results indicated that, due to the formation of secondary TiB2 particles in the matrix, electrical conductivity increased along with hardness up to 10 hrs of heat treatment and reached 65% IACS and 155 HV, respectively. Moreover, the maximum ultimate (i.e. 580 MPa and yield (i.e. 555 MPa strengths of composite were achieved at this time.

  8. Radioactive waste solidifying material

    International Nuclear Information System (INIS)

    Ono, Keiichi; Sakai, Etsuro.

    1989-01-01

    The solidifying material according to this invention comprises cement material, superfine powder, highly water reducing agent, Al-containing rapid curing material and coagulation controller. As the cement material, various kinds of quickly hardening, super quickly hardening and white portland cement, etc. are usually used. As the superfine powder, those having average grain size smaller by one order than that of the cement material are desirable and silica dusts, etc. by-produced upon preparing silicon, etc. are used. As the highly water reducing agent, surface active agents of high decomposing performance and comprising naphthalene sulfonate, etc. as the main ingredient are used. As the Al-containing rapidly curing material, calcium aluminate, etc. is used in an amount of less than 10 parts by weight based on 100 parts by weight of the powdery body. As the coagulation controller, boric acid etc. usually employed as a retarder is used. This can prevent dissolution or collaption of pellets and reduce the leaching of radioactive material. (T.M.)

  9. Removal of radioactive cesium from surface soils solidified using polyion complex. Rapid communication for decontamination test at Iitate-mura in Fukushima Prefecture

    International Nuclear Information System (INIS)

    Naganawa, Hirochika; Yanase, Nobuyuki; Mitamura, Hisayoshi; Nagano, Tetsushi; Yoshida, Zenko; Kumazawa, Noriyuki; Saitoh, Hiroshi; Kashima, Kaoru; Fukuda, Tatsuya; Tanaka, Shun-ichi

    2011-01-01

    We tried the decontamination of surface soils for three types of agricultural land at Nagadoro district of Iitate-mura (village) in Fukushima Prefecture, which is highly contaminated by deposits of radionuclides from the plume released from the Fukushima Daiichi nuclear power plant. The decontamination method consisted of the peeling of surface soils solidified using a polyion complex, which was formed from a salt solution of polycations and polyanions. Two types of polyion complex solution were applied to an upland field in a plastic greenhouse, a pasture, and a paddy field. The decontamination efficiency of the surface soils reached 90%, and dust release was effectively suppressed during the removal of surface soils. (author)

  10. Rapid detection of TiO2 (E171) in table sugar using Raman spectroscopy.

    Science.gov (United States)

    Tan, Chen; Zhao, Bin; Zhang, Zhiyun; He, Lili

    2017-02-01

    The potential toxic effects of titanium dioxide (TiO 2 ) to humans remain debatable despite its broad application as a food additive. Thus, confirmation of the existence of TiO 2 particles in food matrices and subsequently quantifying them are becoming increasingly critical. This study developed a facile, rapid (E171) from food products (e.g., table sugar) by Raman spectroscopy. To detect TiO 2 particles from sugar solution, sequential centrifugation and washing procedures were effectively applied to separate and recover 97% of TiO 2 particles from the sugar solution. The peak intensity of TiO 2 sensitively responded to the concentration of TiO 2 with a limit of detection (LOD) of 0.073 mg kg -1 . In the case of sugar granules, a mapping technique was applied to directly estimate the level of TiO 2 , which can be potentially used for rapid online monitoring. The plot of averaged intensity to TiO 2 concentration in the sugar granules exhibited a good linear relationship in the wide range of 5-2000 mg kg -1 , with an LOD of 8.46 mg kg -1 . Additionally, we applied Raman spectroscopy to prove the presence of TiO 2 in sugar-coated doughnuts. This study begins to fill in the analytical gaps that exist regarding the rapid detection and quantification of TiO 2 in food, which facilitate the risk assessment of TiO 2 through food exposure.

  11. Method of solidifying radioactive waste

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Mihara, Shigeru; Yamashita, Koji; Sauda, Kenzo.

    1988-01-01

    Purpose: To obtain satisfactory plastic solidification products rapidly and more conveniently from radioactive wastes. Method: liquid wastes contain, in addition to sodium sulfate as the main ingredient, nitrates hindering the polymerizing curing reactions and various other unknown ingredients, while spent resins contain residual cationic exchange groups hindering the polymerizing reaction. Generally, as the acid value of unsaturated liquid polyester resins is lower, the number of terminal alkyd resins is small, formation of nitrates is reduced and the polymerizing curing reaction is taken place more smoothly. In view of the above, radioactive wastes obtained by dry powderization or dehydration of radioactive liquid wastes or spent resins are polymerized with unsaturated liquid polyester resins with the acid value of less than 13 to obtain plastic solidification. Thus, if the radioactive wastes contain a great amount of polymerization hindering material such as NaNO 2 , they can be solidified rapidly and conveniently with no requirement for pre-treatment. (Kamimura, Y.)

  12. In vitro and in vivo performance of bioactive Ti6Al4V/TiC/HA implants fabricated by a rapid microwave sintering technique

    International Nuclear Information System (INIS)

    Choy, Man Tik; Tang, Chak Yin; Chen, Ling; Wong, Chi Tak; Tsui, Chi Pong

    2014-01-01

    Failure of the bone–implant interface in a joint prosthesis is a main cause of implant loosening. The introduction of a bioactive substance, hydroxyapatite (HA), to a metallic bone–implant may enhance its fixation on human bone by encouraging direct bone bonding. Ti6Al4V/TiC/HA composites with a reproducible porous structure (porosity of 27% and pore size of 6–89 μm) were successfully fabricated by a rapid microwave sintering technique. This method allows the biocomposites to be fabricated in a short period of time under ambient conditions. Ti6Al4V/TiC/HA composites exhibited a compressive strength of 93 MPa, compressive modulus of 2.9 GPa and microhardness of 556 HV which are close to those of the human cortical bone. The in vitro preosteoblast MC3T3-E1 cells cultured on the Ti6Al4V/TiC/HA composite showed that the composite surface could provide a biocompatible environment for cell adhesion, proliferation and differentiation without any cytotoxic effects. This is among the first attempts to study the in vivo performance of load-bearing Ti6Al4V/TiC and Ti6Al4V/TiC/HA composites in a live rabbit. The results indicated that the Ti6Al4V/TiC/HA composite had a better bone–implant interface compared with the Ti6Al4V/TiC implant. Based on the microstructural features, the mechanical properties, and the in vitro and in vivo test results from this study, the Ti6Al4V/TiC/HA composites have the potential to be employed in load-bearing orthopedic applications. - Highlights: • Ti6Al4V/TiC and Ti6Al4V/TiC/HA composites were fabricated by microwave sintering. • Ti6Al4V/TiC/HA exhibited mechanical properties close to human cortical bone. • Ti6Al4V/TiC/HA could provide a biocompatible environment for bone cell growth. • Ti6Al4V/TiC/HA showed a better bone–implant interface than Ti6Al4V/TiC. • Ti6Al4V/TiC/HA could be used for bone replacement under load-bearing conditions

  13. Effect of rapid thermal annealing on the composition of Au/Ti/Al/Ti ohmic contacts for GaN-based microdevices

    International Nuclear Information System (INIS)

    Redondo-Cubero, A.; Ynsa, M.D.; Romero, M.F.; Alves, L.C.; Muñoz, E.

    2013-01-01

    The homogeneity of Au/Ti/Al/Ti ohmic contacts for AlGaN/GaN devices was analyzed as a function of the thickness of the Ti barrier (30 nm 50 nm, although several compositional deficiencies were identified in the distribution maps obtained with the ion microprobe, including the formation of craters. A clear interplay between Ti and Au was found, suggesting the relevance of lateral flows during the rapid thermal annealing

  14. Study of directionally solidified eutectic Al2O3-ZrO2(3%Y2O3 doped with TiO2

    Directory of Open Access Journals (Sweden)

    Peña, J. I.

    2007-06-01

    Full Text Available An study of directionally grown samples of the eutectic composition in the Al2O3-ZrO2 (3 mol% Y2O3 system, with small TiO2 additions (1 wt%, is presented. The microstructural changes induced by this addition are analysed using SEM (EDX techniques. The mechanical changes, when TiO2 is added, are studied by measuring the flexural strength by three point bending. Also, the toughness is determined by Vickers indentation method. When slow growth rates (10 mm/h are used, interpenetratred and homogeneous microstructure is obtained, independently of the TiO2 doping. When growth rates are higher (300 and 1000 mm/h the structure changes and the phases are organized in form of colonies or cells, which have smaller size when TiO2 is present. This size reduction is accompanied with an increase of the toughness.Este trabajo presenta un estudio de muestras crecidas direccionalmente del sistema Al2O3-ZrO2 (3 mol% Y2O3 en su composición eutéctica con pequeñas adiciones de óxido de titanio (1% de TiO2 en peso. Se analizan los cambios microestructurales inducidos por esta adición mediante SEM (EDX y se estudian los cambios en su comportamiento mecánico medido por flexión en tres puntos, así como la tenacidad de fractura mediante indentación Vickers. Con velocidades lentas de solidificación (10 mm/h se obtiene en ambos casos una microestructura homogénea e interpenetrada, mientras que a velocidades mayores, 300 y 1000 mm/h, se forma una estructura en las que las fases se organizan en forma de colonias o células, siendo éstas de menor tamaño en las muestras dopadas. Esta disminución en el tamaño viene acompañada de un aumento de la tenacidad de fractura medida por indentación.

  15. Radioactive substance solidifying device

    International Nuclear Information System (INIS)

    Sakoda, Kotaro.

    1979-01-01

    Purpose: To easily solidify radioactive substances adhering to the surfaces of solid wastes without scattering in the circumference by paints, and further to reduce surface contamination concentrations. Constitution: Solid wastes are placed on a hanging plate, and dipped in paints within a paint dipping treatment tank installed at the lower part of a treatment tank by means of a monorail hoist, and the surfaces of said solid wastes are coated with paints, thereby to solidify the radioactivity on the surfaces of the solid wastes. After dipping, the solid wastes are suspended up to a paint spraying tank to dry the paints. After drying, non-contaminated paints are atomized to apply through an atomizing tube onto the solid wastes. After drying the atomized paints, the solid wastes are carried outside the treatment tank by means of the monorail hoist. (Yoshino, Y.)

  16. In vitro and in vivo performance of bioactive Ti6Al4V/TiC/HA implants fabricated by a rapid microwave sintering technique.

    Science.gov (United States)

    Choy, Man Tik; Tang, Chak Yin; Chen, Ling; Wong, Chi Tak; Tsui, Chi Pong

    2014-09-01

    Failure of the bone-implant interface in a joint prosthesis is a main cause of implant loosening. The introduction of a bioactive substance, hydroxyapatite (HA), to a metallic bone-implant may enhance its fixation on human bone by encouraging direct bone bonding. Ti6Al4V/TiC/HA composites with a reproducible porous structure (porosity of 27% and pore size of 6-89 μm) were successfully fabricated by a rapid microwave sintering technique. This method allows the biocomposites to be fabricated in a short period of time under ambient conditions. Ti6Al4V/TiC/HA composites exhibited a compressive strength of 93 MPa, compressive modulus of 2.9 GPa and microhardness of 556 HV which are close to those of the human cortical bone. The in vitro preosteoblast MC3T3-E1 cells cultured on the Ti6Al4V/TiC/HA composite showed that the composite surface could provide a biocompatible environment for cell adhesion, proliferation and differentiation without any cytotoxic effects. This is among the first attempts to study the in vivo performance of load-bearing Ti6Al4V/TiC and Ti6Al4V/TiC/HA composites in a live rabbit. The results indicated that the Ti6Al4V/TiC/HA composite had a better bone-implant interface compared with the Ti6Al4V/TiC implant. Based on the microstructural features, the mechanical properties, and the in vitro and in vivo test results from this study, the Ti6Al4V/TiC/HA composites have the potential to be employed in load-bearing orthopedic applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Liquid Phase Separation and the Aging Effect on Mechanical and Electrical Properties of Laser Rapidly Solidified Cu100−xCrx Alloys

    Directory of Open Access Journals (Sweden)

    Song-Hua Si

    2015-11-01

    Full Text Available Duplex structure Cu-Cr alloys are widely used as contact materials. They are generally designed by increasing the Cr content for the hardness improvement, which, however, leads to the unfavorable rapid increase of the electrical resistivity. The solidification behavior of Cu100−xCrx (x = 4.2, 25 and 50 in wt.% alloys prepared by laser rapid solidification is studied here, and their hardness and electrical conductivity after aging are measured. The results show that the Cu-4.2%Cr alloy has the most desirable combination of hardness and conductive properties after aging in comparison with Cu-25%Cr and Cu-50%Cr alloys. Very importantly, a 50% improvement in hardness is achieved with a simultaneous 70% reduction in electrical resistivity. The reason is mainly attributed to the liquid phase separation occurring in the Cu-4.2%Cr alloy, which introduces a large a

  18. Phase transformation in rapidly quenched Fe-Cr-Co-Mo-Ti-Si-B alloys

    Science.gov (United States)

    Zhukov, D. G.; Shubakov, V. S.; Zhukova, E. Kh; Gorshenkov, M. V.

    2018-03-01

    The research results of phase transformations in Fe-24Cr-16Co-3Mo-0.2Ti-1Si-B alloys (with a boron content of 1 to 3% by mass) obtained by rapid quenching are presented. The structure formation regularities during the melt spinning and during the subsequent crystallization annealing in rapidly quenched bands of the Fe-Cr-Co-Mo-Ti-Si-B system alloys were studied. The changes in the phase composition of the rapidly quenched Fe-Cr-Co-Mo-Ti- Si-B system alloys after quenching at various quench rates and at different boron concentrations in the alloys are studied. It is shown that during crystallization from an amorphous state, at temperatures above 570 °C, in addition to the α-phase, the σ-phase appears first, followed by the γ-phase. Heat treatment of rapidly quenched bands to high-coercive state was carried out. A qualitative assessment of magnetic properties in a high-coercivity state was carried out. An evaluation of the level of magnetic properties in a high-coercivity state allows us to conclude that the application of a magnetic field during crystallization from an amorphous state leads to anisotropy of the magnetic properties, that is, an anisotropic effect of thermo-magnetic treatment is detected.

  19. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al–5Mg–Mn Alloys Solidified Under Near-Rapid Cooling

    Science.gov (United States)

    Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong

    2016-01-01

    Mn was an important alloying element used in Al–Mg–Mn alloys. However, it had to be limited to a low level (Al–5Mg–Mn alloy with low Fe content (Al6(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al6(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al–5Mg–Mn alloys (0.5 wt % Fe), intermetallic Al6(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al6(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al6(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al6(Fe,Mn) to become the primary phase at a lower Mn content. PMID:28787888

  20. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al-5Mg-Mn Alloys Solidified Under Near-Rapid Cooling.

    Science.gov (United States)

    Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong

    2016-01-29

    Mn was an important alloying element used in Al-Mg-Mn alloys. However, it had to be limited to a low level (Al-5Mg-Mn alloy with low Fe content (Al₆(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al₆(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al-5Mg-Mn alloys (0.5 wt % Fe), intermetallic Al₆(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al₆(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al₆(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al₆(Fe,Mn) to become the primary phase at a lower Mn content.

  1. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al–5Mg–Mn Alloys Solidified Under Near-Rapid Cooling

    Directory of Open Access Journals (Sweden)

    Yulin Liu

    2016-01-01

    Full Text Available Mn was an important alloying element used in Al–Mg–Mn alloys. However, it had to be limited to a low level (<1.0 wt % to avoid the formation of coarse intermetallics. In order to take full advantage of the benefits of Mn, research was carried out to investigate the possibility of increasing the content of Mn by studying the effect of cooling rate on the formation of Fe- and Mn-rich intermetallics at different content levels of Mn and Fe. The results indicated that in Al–5Mg–Mn alloy with low Fe content (<0.1 wt %, intermetallic Al6(Fe,Mn was small in size and amount. With increasing Mn content, intermetallic Al6(Fe,Mn increased, but in limited amount. In high-Fe-containing Al–5Mg–Mn alloys (0.5 wt % Fe, intermetallic Al6(Fe,Mn became the dominant phase, even in the alloy with low Mn content (0.39 wt %. Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al6(Fe,Mn was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al6(Fe,Mn phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al6(Fe,Mn to become the primary phase at a lower Mn content.

  2. Radioactive liquid waste solidifying device

    International Nuclear Information System (INIS)

    Uchiyama, Yoshio.

    1987-01-01

    Purpose: To eliminate the requirement for discharge gas processing and avoid powder clogging in a facility suitable to the volume-reducing solidification of regenerated liquid wastes containing sodium sulfate. Constitution: Liquid wastes supplied to a liquid waste preheater are heated under a pressure higher than the atmospheric pressure at a level below the saturation temperature for that pressure. The heated liquid wastes are sprayed from a spray nozzle from the inside of an evaporator into the super-heated state and subjected to flash distillation. They are further heated to deposit and solidify the solidification components in the solidifying evaporation steams. The solidified powder is fallen downwardly and heated for removing water content. The recovered powder is vibrated so as not to be solidified and then reclaimed in a solidification storage vessel. Steams after flash distillation are separated into gas, liquid and solids by buffles. (Horiuchi, T.)

  3. Rapid thermal annealing of Ti-rich TiNi thin films: A new approach to fabricate patterned shape memory thin films

    International Nuclear Information System (INIS)

    Motemani, Y.; Tan, M.J.; White, T.J.; Huang, W.M.

    2011-01-01

    This paper reports the rapid thermal annealing (RTA) of Ti-rich TiNi thin films, synthesized by the co-sputtering of TiNi and Ti targets. Long-range order of aperiodic alloy could be achieved in a few seconds with the optimum temperature of 773 K. Longer annealing (773 K/240 s), transformed the film to a poorly ordered vitreous phase, suggesting a novel method for solid state amorphization. Reitveld refinement analyses showed significant differences in structural parameters of the films crystallized by rapid and conventional thermal annealing. Dependence of the elastic modulus on the valence electron density (VED) of the crystallized films was studied. It is suggested that RTA provides a new approach to fabricate patterned shape memory thin films.

  4. Rutile TiO{sub 2} active-channel thin-film transistor using rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Jin; Heo, Kwan-Jun; Yoo, Su-Chang; Choi, Seong-Gon [Chungbuk National University, Cheongju (Korea, Republic of); Chang, Seung-Wook [Samsung Display, Co., Ltd., Suwon (Korea, Republic of)

    2014-10-15

    TiO{sub 2} active-channel thin-film transistors (TFTs), in which the bottom-gate top-contact architecture was prepared with atomic layer deposition grown TiO{sub 2} as the semiconducting layer, were fabricated and then investigated based on key process parameters, such as the rapid thermal annealing (RTA) temperature. Structural analyses suggested that TiO{sub 2} films annealed at temperatures above 500 .deg. C changed from an amorphous to a rutile phase. The TFT with a TiO{sub 2} semiconductor annealed at 600 .deg. C exhibited strongly-saturated output characteristics, a much higher on/off current ratio of 4.3 x 10{sup 5}, and an electron mobility of 0.014 cm{sup 2}/Vs. Moreover, the potential for manipulating TiO{sub 2}-based TFTs with RTA methodology was demonstrated through the realization of a simple resistive-load inverter.

  5. Fabrication of Intermetallic Titanium Alloy Based on Ti2AlNb by Rapid Quenching of Melt

    Science.gov (United States)

    Senkevich, K. S.; Serov, M. M.; Umarova, O. Z.

    2017-11-01

    The possibility of fabrication of rapidly quenched fibers from alloy Ti - 22Al - 27Nb by extracting a hanging melt drop is studied. The special features of the production of electrodes for spraying the fibers by sintering mechanically alloyed powdered components of the alloy, i.e., titanium hydride, niobium, and aluminum dust, are studied. The rapidly quenched fibers with homogeneous phase composition and fine-grained structure produced from alloy Ti - 22Al - 27Nb are suitable for manufacturing compact semiproducts by hot pressing.

  6. Method of solidifying radioactive laundry wastes

    International Nuclear Information System (INIS)

    Yasumura, Keijiro

    1984-01-01

    Purpose: To enable to solidify radioactive laundry wastes containing non-ionic liquid detergents less solidifiable by plastic solidification process in liquid laundry wastes for cloths or the likes discharged from a nuclear power plant. Method: Radioactive laundry wastes are solidified by using plastic solidifying agent comprising, as a main ingredient, unsaturated polyester resins and methylmethacrylate monomers. The plastic solidifying agents usable herein include, for example, unsaturated polyester resins prepared by condensating maleic anhydride and phthalic anhydride with propylene glycol and incorporated with methylmethacrylate monomers. The mixing ratio of the methylmethacrylate monomers is preferably 30 % by weight based on the unsaturated polyester resins. (Aizawa, K.)

  7. Method of solidifying radioactive wastes

    International Nuclear Information System (INIS)

    Fukazawa, Tetsuo; Ootsuka, Masaharu; Uetake, Naoto; Ozawa, Yoshihiro.

    1984-01-01

    Purpose: To prepare radioactive solidified wastes excellent in strength, heat resistance, weather-proof, water resistance, dampproof and low-leaching property. Method: A hardening material reactive with alkali silicates to form less soluble salts is used as a hardener for alkali silicates which are solidification filler for the radioactive wastes, and mixed with cement as a water absorbent and water to solidify the radioactive wastes. The hardening agent includes, for example, CaCO 3 , Ca(ClO 4 ) 2 , CaSiF 6 and CaSiO 3 . Further, in order to reduce the water content in the wastes and reduce the gap ratio in the solidification products, the hardener adding rate, cement adding rate and water content are selected adequately. As the result, solidification products can be prepared with no deposition of easily soluble salts to the surface thereof, with extremely low leaching of radioactive nucleides. (Kamimura, M.)

  8. Rapid and efficient photocatalytic reduction of hexavalent chromium by using “water dispersible” TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Wang, Lei; Kang, Shi-Zhao; Li, Xiangqing; Qin, Lixia; Yan, Hao; Mu, Jin

    2016-01-01

    In the present work, “water dispersible” TiO 2 nanoparticles were prepared, and meanwhile, their photocatalytic activity was systematically tested for the reduction of aqueous Cr(VI) ions. It is found that the as-prepared “water dispersible” TiO 2 nanoparticles are a highly efficient photocatalyst for the reduction of Cr(VI) ions in water under UV irradiation, and suitable for the remediation of Cr(VI) ions wastewater with low concentration. Compared with commercial TiO 2 nanoparticles (P25), the “water dispersible” TiO 2 nanoparticles exhibit 3.8-fold higher photocatalytic activity. 100% Cr (VI) ions can be reduced into Cr(III) ions within 10 min when the Cr (VI) ions initial concentration is 10 mg L −1 . Moreover, the electrical energy consumption can be obviously decreased using the “water dispersible” TiO 2 nanoparticles. These results suggest that the “water dispersible” TiO 2 nanoparticles are a promising photocatalyst for rapid removal of Cr (VI) in environmental therapy. - Highlights: • “Water dispersible” TiO 2 nanoparticles with high photocatalytic activity. • 100% Cr (VI) (10 mg L −1 ) can be reduced within 10 min. • Obvious decrease of electrical energy consumption.

  9. Rapid fabrication of TiO2@carboxymethyl cellulose coatings capable of shielding UV, antifog and delaying support aging.

    Science.gov (United States)

    Li, Xiaozhou; Lv, Junping; Li, Dehuai; Wang, Lin

    2017-08-01

    Agricultural plastic films capable of shielding UV, filtering visible light and antifog are important to prolong their life and protect safeties of agriculturists and crops. In this work, high stable and small size TiO 2 @polymer nanoparticles (NPs) were prepared by an efficient one-pot microwave synthesis using titanic sulfate as Ti resource, carboxymethyl cellulose sodium (CMC) as complexing agent and stabilizer. The TiO 2 @CMC NPs obtained were then utilized to fabricate poly(ethylene imine) (PEI)/TiO 2 @CMC coatings on the surface of polypropylene films by a layer-by-layer assembly technique. The TiO 2 @CMC NPs show rapid deposition rate because small, spherical and anion-rich TiO 2 @CMC NPs possess large specific surface area and fast diffusion rate. More importantly, property experiments confirm that (PEI/TiO 2 @CMC)*15 coatings can not only effectively shield UV rays, filter visible light and prevent fogging but also delay the aging of their supports. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Rapid fabrication of mesoporous TiO2 thin films by pulsed fibre laser for dye sensitized solar cells

    Science.gov (United States)

    Hadi, Aseel; Alhabradi, Mansour; Chen, Qian; Liu, Hong; Guo, Wei; Curioni, Michele; Cernik, Robert; Liu, Zhu

    2018-01-01

    In this paper we demonstrate for the first time that a fibre laser with a wavelength of 1070 nm and a pulse width of milliseconds can be applied to generate mesoporous nanocrystalline (nc) TiO2 thin films on ITO coated glass in ambient atmosphere, by complete vaporisation of organic binder and inter-connection of TiO2 nanoparticles, without thermally damaging the ITO layer and the glass substrate. The fabrication of the mesoporous TiO2 thin films was achieved by stationary laser beam irradiation of 1 min. The dye sensitized solar cell (DSSC) with the laser-sintered TiO2 photoanode reached higher power conversion efficiency (PCE) of 3.20% for the TiO2 film thickness of 6 μm compared with 2.99% for the furnace-sintered. Electrochemical impedance spectroscopy studies revealed that the laser sintering under the optimised condition effectively decreased charge transfer resistance and increased electron lifetime of the TiO2 thin films. The use of the fibre laser with over 40% wall-plug efficiency offers an economically-feasible, industrial viable solution to the major challenge of rapid fabrication of large scale, mass production of mesoporous metal oxide thin film based solar energy systems, potentially for perovskite and monolithic tandem solar cells, in the future.

  11. Method of solidifying powderous wastes

    International Nuclear Information System (INIS)

    Kakimoto, Akira; Miyake, Takashi; Sato, Shuichi; Inagaki, Yuzo.

    1985-01-01

    Purpose: To improve the properties of solidification products, in the case of solidifying powderous wastes with thermosetting resins. Method. A solvent for the solution of the thermosetting resin is admixed with the powderous wastes into a paste-like form prior to adding the resin to the wastes, which are then mixed with the resin solution. As the result, those solidification products having the specific gravity and the compression strength more excellent than those of the conventional ones, and much higher than the reference values can be obtained. (Kamimura, M.)

  12. A simple biogenic route to rapid synthesis of Au-TiO{sub 2} nanocomposites by electrochemically active biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Kalathil, Shafeer; Khan, Mohammad Mansoob [Yeungnam University, School of Chemical Engineering (Korea, Republic of); Banerjee, Arghya Narayan [Yeungnam University, School of Mechanical Engineering (Korea, Republic of); Lee, Jintae; Cho, Moo Hwan, E-mail: mhcho@ynu.ac.kr [Yeungnam University, School of Chemical Engineering (Korea, Republic of)

    2012-08-15

    Deposition of gold on titanium dioxide (TiO{sub 2}) nanoparticles is highly beneficial for maximizing the efficiency of many photocatalytic reactions. In this study, we have reported for the first time the use of an electrochemically active biofilm (EAB) for the synthesis of Au-TiO{sub 2} nanocomposite with sodium acetate as the electron donor. The EAB acts as an electron generator for the reduction of gold ions on the surface of TiO{sub 2} nanoparticles. It was observed that the TiO{sub 2} plays not only as a support for the gold nanoparticles but also as a storage of electrons produced by the EAB within the particles. These stored electrons dramatically increase the reduction of gold ions and hence we have observed the formation of the Au-TiO{sub 2} nanocomposites within 90 min. A mechanism of the nanocomposite formation is also proposed. The as-synthesized nanocomposites were characterized by UV-Vis absorption spectroscopy to monitor the proper formation of the nanocomposites. X-ray diffraction and transmission electron microscopic analyses were performed to determine the structural and microstructural properties of the nanocomposites. High-resolution transmission electron micrographs depict the proper formation of the Au-TiO{sub 2} nanocomposites with gold nanoparticle size varying from 5 to 10 nm with an increase in the gold precursor concentration. Zeta potential measurements were used to investigate surface charges of the as-synthesized nanocomposites. This novel biogenic route represents a unique pathway for the low cost, eco-friendly, rapid, and controlled synthesis of nanostructured Au-TiO{sub 2} hybrid systems which will truly revolutionize the synthetic fields of nanocomposites.

  13. Microstructure and high temperature oxidation resistance of in-situ synthesized TiN/Ti_3Al intermetallic composite coatings on Ti6Al4V alloy by laser cladding process

    International Nuclear Information System (INIS)

    Liu, Hongxi; Zhang, Xiaowei; Jiang, Yehua; Zhou, Rong

    2016-01-01

    High temperature anti-oxidation TiN/Ti_3Al intermetallic composite coatings were fabricated with the powder and AlN powder on Ti6Al4V titanium alloy surface by 6 kW transverse-flow CO_2 laser apparatus. The chemical composition, morphology and microstructure of the TiN/Ti_3Al composite coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high temperature oxidation resistance of TiN/Ti_3Al coating, the isothermal oxidation test was performed in a high temperature resistance furnace at 600 °C and 800 °C, respectively. The result shows that the composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like or dendrites), with an even distribution in Ti_3Al matrix. It indicates that a physical and chemical reaction between Ti powder and AlN powder has completely occurred under the laser irradiation condition. In addition, the microhardness of the TiN/Ti3Al intermetallic composite coating is 3.4 times higher than that of the Ti6Al4V alloy substrate and reaches 844 HV_0_._2. The high temperature oxidation behavior test reveals that the high temperature oxidation resistance of TiN/Ti_3Al composite coating is much better than that of titanium alloy substrate. The excellent high temperature oxidation resistance of TiN/Ti_3Al intermetallic composite coating is attributed to the formation of reinforced phases TiN, Al_2O_3 and TiO_2. The laser cladding TiN/Ti_3Al intermetallic composite coating is anticipated to be a promising high temperature oxidation resistance coating for Ti6Al4V alloy. - Highlights: • In-situ TiN/Ti_3Al composite coating was synthesized on Ti6Al4V alloy by laser cladding. • The influence of Ti and AlN molar ratio on the microstructure of the coating was studied. • The TiN/Ti_3Al intermetallic coating is mainly composed of α-Ti, TiN and Ti_3Al phases. • The

  14. Solidifying processing device for radioactive waste

    International Nuclear Information System (INIS)

    Sueto, Kumiko; Toyohara, Naomi; Tomita, Toshihide; Sato, Tatsuaki

    1990-01-01

    The present invention concerns a solidifying device for radioactive wastes. Solidifying materials and mixing water are mixed by a mixer and then charged as solidifying and filling materials to a wastes processing container containing wastes. Then, cleaning water is sent from a cleaning water hopper to a mixer to remove the solidifying and filling materials deposited in the mixer. The cleaning liquid wastes are sent to a separator to separate aggregate components from cleaning water components. Then, the cleaning water components are sent to the cleaning water hopper and then mixed with dispersing materials and water, to be used again as the mixing water upon next solidifying operation. On the other hand, the aggregate components are sent to a processing mechanism as radioactive wastes. With such procedures, since the discharged wastes are only composed of the aggregates components, and the amount of the wastes are reduced, facilities and labors for the processing of cleaning liquid wastes can be decreased. (I.N.)

  15. Method of solidifying radioactive wastes

    International Nuclear Information System (INIS)

    Maeda, Masahiko; Kira, Satoshi; Watanabe, Naotoshi; Nagaoka, Takeshi; Akane, Junta.

    1982-01-01

    Purpose: To obtain solidification products of radioactive wastes having sufficient monoaxial compression strength and excellent in water durability upon ocean disposal of the wastes. Method: Solidification products having sufficient strength and filled with a great amount of radioactive wastes are obtained by filling and solidifying 100 parts by weight of chlorinated polyethylene resin and 100 - 500 parts by weight of particular or powderous spent ion exchange resin as radioactive wastes. The chlorinated polyethylene resin preferably used herein is prepared by chlorinating powderous or particulate polyethylene resin in an aqueous suspending medium or by chlorinating polyethylene resin dissolved in an organic solvent capable of dissolving the polyethylene resin, and it is crystalline or non-crystalline chlorinated polyethylene resin comprising 20 - 50% by weight of chlorine, non-crystalline resin with 25 - 40% by weight of chlorine being particularly preferred. (Horiuchi, T.)

  16. Enhanced properties of nanostructured TiO2-graphene composites by rapid sintering

    Science.gov (United States)

    Shon, In-Jin; Yoon, Jin-Kook; Hong, Kyung-Tae

    2018-01-01

    Despite of many attractive properties of TiO2, the drawback of TiO2 ceramic is low fracture toughness for widely industrial application. The method to improve the fracture toughness and hardness has been reported by addition of reinforcing phase to fabricate a nanostructured composite. In this regard, graphene has been evaluated as an ideal second phase in ceramics. Nearly full density of nanostructured TiO2-graphene composite was achieved within one min using pulsed current activated sintering. The effect of graphene on microstructure, fracture toughness and hardness of TiO2-graphene composite was evaluated using Vickers hardness tester and field emission scanning electron microscopy. The grain size of TiO2 in the TiO2-x vol% (x = 0, 1, 3, and 5) graphene composite was greatly reduced with increase in addition of graphene. Both hardness and fracture toughness of TiO2-graphene composites simultaneously increased in the addition of graphene.

  17. Method of solidifying radioactive solid wastes

    International Nuclear Information System (INIS)

    Fukazawa, Tetsuo; Kawamura, Fumio; Kikuchi, Makoto.

    1984-01-01

    Purpose: To obtain solidification products of radioactive wastes satisfactorily and safely with no destruction even under a high pressure atmosphere by preventing the stress concentration by considering the relationships of the elastic module between the solidifying material and radioactive solid wastes. Method: Solidification products of radioactive wastes with safety and securing an aimed safety ratio are produced by conditioning the modules of elasticity of the solidifying material equal to or less than that of the radioactive wastes in a case where the elastic module of radioactive solid wastes to be solidified is smaller than that of the solidifying material (the elastic module of wastes having the minimum elastic module among various wastes). The method of decreasing the elastic module of the solidifying material usable herein includes the use of such a resin having a long distance between cross-linking points of a polymer in the case of plastic solidifying materials, and addition of rubber-like binders in the case of cement or like other inorganic solidifying materials. (Yoshihara, H.)

  18. Enhanced Photoelectrochemical Behavior of H-TiO2 Nanorods Hydrogenated by Controlled and Local Rapid Thermal Annealing.

    Science.gov (United States)

    Wang, Xiaodan; Estradé, Sonia; Lin, Yuanjing; Yu, Feng; Lopez-Conesa, Lluis; Zhou, Hao; Gurram, Sanjeev Kumar; Peiró, Francesca; Fan, Zhiyong; Shen, Hao; Schaefer, Lothar; Braeuer, Guenter; Waag, Andreas

    2017-12-01

    Recently, colored H-doped TiO 2 (H-TiO 2 ) has demonstrated enhanced photoelectrochemical (PEC) performance due to its unique crystalline core-disordered shell nanostructures and consequent enhanced conduction behaviors between the core-shell homo-interfaces. Although various hydrogenation approaches to obtain H-TiO 2 have been developed, such as high temperature hydrogen furnace tube annealing, high pressure hydrogen annealing, hydrogen-plasma assisted reaction, aluminum reduction and electrochemical reduction etc., there is still a lack of a hydrogenation approach in a controlled manner where all processing parameters (temperature, time and hydrogen flux) were precisely controlled in order to improve the PEC performance of H-TiO 2 and understand the physical insight of enhanced PEC performance. Here, we report for the first time a controlled and local rapid thermal annealing (RTA) approach to prepare hydrogenated core-shell H-TiO 2 nanorods grown on F:SnO 2 (FTO) substrate in order to address the degradation issue of FTO in the typical TiO 2 nanorods/FTO system observed in the conventional non-RTA treated approaches. Without the FTO degradation in the RTA approach, we systematically studied the intrinsic relationship between the annealing temperature, structural, optical, and photoelectrochemical properties in order to understand the role of the disordered shell on the improved photoelectrochemical behavior of H-TiO 2 nanorods. Our investigation shows that the improvement of PEC performance could be attributed to (i) band gap narrowing from 3.0 to 2.9 eV; (ii) improved optical absorption in the visible range induced by the three-dimensional (3D) morphology and rough surface of the disordered shell; (iii) increased proper donor density; (iv) enhanced electron-hole separation and injection efficiency due to the formation of disordered shell after hydrogenation. The RTA approach developed here can be used as a suitable hydrogenation process for TiO 2 nanorods

  19. Microstructure and high-temperature oxidation resistance of TiN/Ti3Al intermetallic matrix composite coatings on Ti6Al4V alloy surface by laser cladding

    Science.gov (United States)

    Zhang, Xiaowei; Liu, Hongxi; Wang, Chuanqi; Zeng, Weihua; Jiang, Yehua

    2010-11-01

    A high-temperature oxidation resistant TiN embedded in Ti3Al intermetallic matrix composite coating was fabricated on titanium alloy Ti6Al4V surface by 6kW transverse-flow CO2 laser apparatus. The composition, morphology and microstructure of the laser clad TiN/Ti3Al intermetallic matrix composite coating were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high-temperature oxidation resistance of the composite coatings and the titanium alloy substrate, isothermal oxidation test was performed in a conventional high-temperature resistance furnace at 600°C and 800°C respectively. The result shows that the laser clad intermetallic composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like, and dendrites), and uniformly distributed in the Ti3Al matrix. It indicates that a physical and chemical reaction between the Ti powder and AlN powder occurred completely under the laser irradiation. In addition, the microhardness of the TiN/Ti3Al intermetallic matrix composite coating is 844HV0.2, 3.4 times higher than that of the titanium alloy substrate. The high-temperature oxidation resistance test reveals that TiN/Ti3Al intermetallic matrix composite coating results in the better modification of high-temperature oxidation behavior than the titanium substrate. The excellent high-temperature oxidation resistance of the laser cladding layer is attributed to the formation of the reinforced phase TiN and Al2O3, TiO2 hybrid oxide. Therefore, the laser cladding TiN/Ti3Al intermetallic matrix composite coating is anticipated to be a promising oxidation resistance surface modification technique for Ti6Al4V alloy.

  20. Liquid wastes concentrating and solidifying device

    International Nuclear Information System (INIS)

    Kamiyoshi, Hideki; Ninokata, Yoshihide.

    1985-01-01

    Purpose: To provide a device for concentrating to solidify radioactive liquid wastes at large solidifying speed and with high decontaminating coefficient, without requirement for automatic control. Constitution: An asphalt solidifying device is disposed below a centrifugal thin film drier, and powder resulted from the drier is directly solidified with asphalt by utilizing the rotation of the drier for the mixing operation in the asphalt vessel. If abnormality should occur in the operation of the drier, resulting liquid wastes can be received and solidified in the asphalt vessel. The liquid wastes are heated to dry in a vessel main body having the heating surface at the circumferential surface. The vessel main body provided with a nozzle for supplying liquid to be treated disposed slantwise at the upper portion of the heating face, scrapers which rotate and slidingly contact the heating face and nozzles which jet out chemicals to the heating face behind the scrapers. Below the vessel main body, are disposed a funnel-like hopper for receiving falling scales, rotary vanes, and the likes by which the scales are introduced into the asphalt solidifying vessel. (Moriyama, K.)

  1. Formation of two-way shape memory effect in rapid-quenched TiNiCu alloys

    International Nuclear Information System (INIS)

    Shelyakov, A.V.; Bykovsky, Yu.A.; Matveeva, N.M.; Kovneristy, Yu.K.

    1995-01-01

    Recently we have developed a number of devices for an optical radiation control based on the shape memory effect. A blind of rapid-quenched TiNiCu alloy having a two-way shape memory in bending was used as a basic element. So far as the rapid quenched alloy used is amorphous in initial state, it needs thermal annealing to form shape memory. This paper describes procedure of thermo-mechanical treatment, that allows to form desired two-way shape memory immediately during thermal annealing of amorphous alloy without training. It was shown that degree of two-way shape recovery depends critically on initial strain, temperature and duration of the annealing. It was experimentally determined optimum parameters of thermo-mechanical treatment to achieve maximum two-way shape memory. (orig.)

  2. Solidified ceramics of radioactive wastes and method of producing it

    International Nuclear Information System (INIS)

    Oota, Takao; Matake, Shigeru; Ooka, Kazuo.

    1980-01-01

    Purpose: To provide solidified ceramics which have low leaching properties to water of radioactive substance, excellent heat dissipating and resistive properties and high mechanical strength by mixing and sintering limited amounts of titanium and aluminum compounds with calcined radioactive wastes containing special compound. Method: More than 20% by weight of titanium compound (as TiO 2 ) and more than 5% by weight of aluminum compound (as Al 2 O 3 ) are mixed with the calcined radioactive wasted containing, as converted by oxide, 5 to 40% by weight of Na 2 O, 5 to 20% by weight of Fe 2 O 3 , 5 to 15% by weight of MoO 3 , 5 to 15% by weight of ZrO 2 , 2 to 10% by weight of CeO 2 , 2 to 10% by weight of Cs 2 O, 1 to 5% by weight of BaO, 1 to 5% by weight of SrO, 0.2 to 2% by weight of Rb 2 O, 0.2% by weight of Y 2 O 3 , 0.2 to 2% by weight of NiO, 5 to 20% by weight of rare earth metal oxide, and 0.2 to 2% by weight of Cr 2 O 3 . The mixture is molded, sintered, and solidified to ceramics which contains no Mo phase, Na 2 O, MoO 3 , K 2 O, MoO 3 and Cs 2 O, MoO 3 phases and the like. (Yoshino, Y.)

  3. Method of solidifying radioactive wastes with plastics

    International Nuclear Information System (INIS)

    Matsuura, Hiroyuki; Yasumura, Keijiro; Minami, Yuji; Tomita, Toshihide

    1980-01-01

    Purpose: To prevent solidification of solidifying agents in the mixer by conducting the mixing process for the solidifying agents and the radioactive wastes at a temperature below the initiation point for the solidification of the agents thereby separating the mixing process from the solidification-integration process. Method: Catalyst such as cobalt naphthenate is charged into an unsaturated polyester resin in a mixer previously cooled, for example, to -10 0 C. They are well mixed with radioactive wastes and the mixture in the mixer is charged in a radioactive waste storage container. The temperature of the mixture, although kept at a low temperature initially, gradually increases to an ambient temperature whereby curing reaction is promoted and the reaction is completed about one day after to provide firm plastic solidification products. This can prevent the solidification of the solidifying agents in the mixer to thereby improve the circumstance's safety. (Kawakami, Y.)

  4. Layered Composite of TiC-TiB2 to Ti-6Al-4V in Graded Composition by Combustion Synthesis in High-gravity Field

    International Nuclear Information System (INIS)

    Huang Xuegang; Zhao Zhongmin; Zhang Long

    2013-01-01

    By taking combustion synthesis to prepare solidified TiB 2 matrix ceramic in high-gravity field, the layered composite of TiC-TiB 2 ceramic to Ti-6Al-4V substrate in graded composition was achieved. XRD, FESEM and EDS results showed that the bulk full-density solidified TiC-TiB 2 composite was composed of fine TiB 2 platelets, TiC irregular grains, a few of α-Al 2 O 3 inclusions and Cr alloy phases, and α'-Ti phases alternating with Ti-enriched carbides constituted the matrix of the joint in which fine TiB platelets were embedded, whereas some C, B atoms were also detected at the heat-affected zone of Ti-6A1-4V substrate. The layered composite of the solidified ceramic to Ti-6Al-4V substrate in graded composition with continuous microstructure was considered a result of fused joint and inter-diffusion between liquid ceramic and surface-molten Ti alloy, followed by TiB 2 -Ti peritectic reaction and subsequent eutectic reaction in TiC-TiB-Ti ternary system.

  5. Structure, microstructure and microhardness of rapidly solidified Smy(FexNi1-x)4Sb12 (x = 0.45, 0.50, 0.70, 1) thermoelectric compounds

    Science.gov (United States)

    Artini, C.; Castellero, A.; Baricco, M.; Buscaglia, M. T.; Carlini, R.

    2018-05-01

    Skutterudites are interesting compounds for thermoelectric applications. The main drawback in the synthesis of skutterudites by solidification of the melt is the occurrence of two peritectic reactions requiring long annealing times to form a single phase. Aim of this work is to investigate an alternative route for synthesis, based on rapid solidification by planar flow casting. The effect of cooling rate on phases formation and composition, as well as on structure, microstructure and mechanical properties of the filled Smy(FexNi1-x)4Sb12 (x = 0.45, 0.50, 0.70, 1) skutterudites was studied. Conversely to slowly cooled ingots, rapidly quenched ribbons show skutterudite as the main phase, suggesting that deep undercooling of the liquid prevents the nucleation of high temperature phases, such as (Fe,Ni)Sb and (Fe,Ni)Sb2. In as-quenched samples, a slightly out of equilibrium Sm content is revealed, which does not alter the position of the p/n boundary; nevertheless, it exerts an influence on crystallographic properties, such as the cell parameter and the shape of the Sb4 rings in the structure. As-quenched ribbons show a fine microstructure of the skutterudite phase (grain size of 2-20 μm), which only moderately coarsens after annealing at 873 K for 4 days. Vickers microhardness values (350-400 HV) of the skutterudite phase in as-quenched ribbons are affected by the presence of softer phases (i.e. Sb), which are homogeneously and finely dispersed within the sample. The skutterudite hardens after annealing as a consequence of a moderate grain growth, which limits the matrix effect due to the presence of additional phases.

  6. Morphological evolution of primary TiC carbide in laser clad TiC reinforced FeAl intermetallic composite coating

    Institute of Scientific and Technical Information of China (English)

    陈瑶; 王华明

    2003-01-01

    The novel rapidly solidified TiC/FeAl composite coatings were fabricated by laser cladding on the substrate of 1Cr18Ni9Ti stainless steel, particular emphasis has been placed on the growth morphologies of TiC carbide and its growth mechanism under a constant solidification conditions. Results show that the growth morphology of TiC carbide strongly depends upon the nucleation process and mass transportation process of TiC forming elements in laser melt pool. With increasing amount of titanium and carbon in melt pool, the growth morphology of TiC carbide changes from block-like to star-like and well-developed dendrite. As the amount of titanium and carbon increases further, TiC carbide particles are found to be irregular polyhedral block. Although the growth morphologies of TiC are various,their advancing fronts are all faceted, illustrating that TiC carbide grows by the mechanism of lateral ledge growth.

  7. Analysis of cement solidified product and ash samples and preparation of a reference material

    International Nuclear Information System (INIS)

    Ishimori, Ken-ichiro; Haraga, Tomoko; Shimada, Asako; Kameo, Yutaka; Takahashi, Kuniaki

    2010-08-01

    Simple and rapid analytical methods for radionuclides in low-level radioactive waste have been developed by the present authors. The methods were applied to simulated solidified products and actual metal wastes to confirm their usefulness. The results were summarized as analytical guide lines. In the present work, cement solidified product and ash waste were analyzed followed by the analytical guide lines and subjects were picked up and solved for the application of the analytical guide lines to these wastes. Pulverization and homogenization method for ash waste was improved to prevent a contamination since the radioactivity concentrations of the ash samples were relatively high. Pre-treatment method was altered for the cement solidified product and ash samples taking account for their high concentration of Ca. Newly, an analytical method was also developed to measure 129 I with a dynamic reaction cell inductively coupled plasma mass spectrometer. In the analytical test based on the improved guide lines, gamma-ray emitting nuclides, 60 Co and 137 Cs, were measured to estimate the radioactivity of the other alpha and beta-ray emitting nuclides. The radionuclides assumed detectable, 3 H, 14 C, 36 Cl, 63 Ni, 90 Sr, and alpha-ray emitting nuclides, were analyzed with the improved analytical guide lines and their applicability for cement solidified product and ash samples were confirmed. Additionally a cement solidified product sample was evaluated in terms of the homogeneity and the radioactivity concentrations in order to prepare a reference material for radiochemical analysis. (author)

  8. Method for solidifying powdery radioactive wastes

    International Nuclear Information System (INIS)

    Yasumura, Keijiro; Matsuura, Hiroyuki; Tomita, Toshihide.

    1978-01-01

    Purpose: To solidify powdery radioactive wastes through polymerization in a vessel at a high impregnation speed with no cloggings in pipes. Method: A drum can is lined with an inner liner layer of a predetermined thickness made of inflammable material such as glass fiber. A plurality of pipes for supplying liquid plastic monomer are provided in adjacent to the upper end face of the inflammable material or inserted between the vessel and the inflammable material. Then powdery radioactive wastes are filled in the vessel and the liquid plastic monomer dissolving therein a polymerization initiator is supplied through the pipes. The liquid plastic monomer impregnates through the inflammable material layer into the radioactive wastes and the plastic monomer is polymerized by the aid of the polymerization initiator after a predetermined of time to produce solidified plastic products of radioactive wastes. (Seki, T.)

  9. Leaching behavior of solidified plastics radioactive wastes

    International Nuclear Information System (INIS)

    Yook, Chong Chul; Lee, Byung Hun; Jae, Won Mok; Kim, Kyung Eung

    1986-01-01

    It is highly needed to develope the solidification process to dispose safely the radioactive wastes increasing with the growth of the nuclear industry. The leaching mechanisms of the solidified plastic wastes were investigated and the leaching rates of the plastic wastes were also measured among the many solidification processes. In addition, the transport equation based on the diffusion or the diffusion-dissolution was compared with the empirical equation derived from the experimental data by graphical method. Consequently, leaching process of the solidified plastic wastes is quite well agreed with the mass transport theory, but it may be difficult to simulate leaching process by diffusion dissolution mechanism. But the theoretical equation could be applicable to the cumulative amount of radionuclides leached form the plastic wastes disposed into the environment. (Author)

  10. Characterization of consolidated rapidly solidified Cu-Nb ribbons

    International Nuclear Information System (INIS)

    Ebrahimi, F.; Henne, M.L.C.

    1997-01-01

    Copper-niobium ribbons produced by melt-spinning were compacted by swaging and consolidated using HIPping. Final processing to obtain in-situ composites was done by swaging. The strength of the composite is discussed in terms of the composition and morphology of the niobium phase as evaluated using electron microscopy techniques

  11. Experiment of solidifying photo sensitive polymer by using UV LED

    Science.gov (United States)

    Kang, Byoung Hun; Shin, Sung Yeol

    2008-11-01

    The development of Nano/Micro manufacturing technologies is growing rapidly and in the same manner, the investments in these areas are increasing. The applications of Nano/Micro technologies are spreading out to semiconductor production technology, biotechnology, environmental engineering, chemical engineering and aerospace. Especially, SLA is one of the most popular applications which is to manufacture 3D shaped microstructure by using UV laser and photo sensitive polymer. To make a high accuracy and precision shape of microstructures that are required from the diverse industrial fields, the information of interaction relationship between the photo resin and the light source is necessary for further research. Experiment of solidifying photo sensitive polymer by using UV LED is the topic of this paper and the purpose of this study is to find out what relationships do the reaction of the resin have in various wavelength, power of the light and time.

  12. Processing of pure Ti by rapid prototyping based on laser cladding

    Science.gov (United States)

    Arias-González, F.; del Val, J.; Comesaña, R.; Lusquiños, F.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pou, J.

    2013-11-01

    Rapid prototyping based on laser cladding is an additive manufacturing (AM) process based on the overlapping of cladding tracks to produce functional components. Powder or wire are fed into a melting pool created using laser radiation as a heat source and the relative movement between the beam and the work piece makes possible to generate pieces layer-by-layer. This technique can be applied for any material which can be melted and the components can be manufactured directly according to a computer aided design (CAD) model. Additive manufacturing is particularly interesting to produce titanium components because, in this case, the loss of material produced by subtractive manufacturing methods is highly costly. Moreover, titanium and its alloys are widely used in biomedical, aircraft, chemical and marine industries due to their biocompatibility, excellent corrosion resistance and superior strength-to-weight ratio. In this research work, a near-infrared laser delivering a maximum power of 500W is used to produce pure titanium thin parts. Dimensions and surface morphology are characterized using Optical Microscopy (OM) and Scanning Electron Microscopy (SEM), the hardness by nanoindentation and the composition by X-Ray Diffraction (XRD) and Energy Dispersive X-Ray Spectroscopy (EDS). The aim of this work is to establish the conditions under which satisfactory properties are obtained and to understand the relationship between microstructure/properties and deposition parameters.

  13. Magnetic Fe3O4@TiO2 Nanoparticles-based Test Strip Immunosensing Device for Rapid Detection of Phosphorylated Butyrylcholinesterase

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Xiaoxiao; Zhang, Weiying; Lin, Yuehe; Du, Dan

    2013-12-15

    An integrated magnetic nanoparticles-based test-strip immunosensing device was developed for rapid and sensitive quantification of phosphorylated butyrylcholinesterase (BChE), the biomarker of exposure to organophosphous pesticides (OP), in human plasma. In order to overcome the difficulty in scarce availability of OP-specific antibody, here magnetic Fe3O4@TiO2 nanoparticles were used and adsorbed on the test strip through a small magnet inserted in the device to capture target OP-BChE through selective binding between TiO2 and OP moiety. Further recognition was completed by horseradish peroxidase (HRP) and anti-BChE antibody (Ab) co-immobilized gold nanoparticles (GNPs). Their strong affinities among Fe3O4@TiO2, OP-BChE and HRP/Ab-GNPs were characterized by quartz crystal microbalance (QCM), surface plasmon resonance (SPR) and square wave voltammetry (SWV) measurements. After cutting off from test strip, the resulted immunocomplex (HRP/Ab-GNPs/OP-BChE/Fe3O4@TiO2) was measured by SWV using a screen printed electrode under the test zone. Greatly enhanced sensitivity was achieved by introduction of GNPs to link enzyme and antibody at high ratio, which amplifies electrocatalytic signal significantly. Moreover, the use of test strip for fast immunoreactions reduces analytical time remarkably. Coupling with a portable electrochemical detector, the integrated device with advanced nanotechnology displays great promise for sensitive, rapid and in-filed on-site evaluation of OP poisoning.

  14. Rapid thermal melted TiO2 nano-particles into ZnO nano-rod and its application for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Chao, Ching-Hsun; Chang, Chi-Lung; Chan, Chien-Hung; Lien, Shui-Yang; Weng, Ko-Wei; Yao, Kuo-Shan

    2010-01-01

    TiO 2 nano-particles with an anchored ZnO nano-rod structure were synthesized using the hydrothermal method to grow ZnO nano-rods and coated TiO 2 nano-particles on ZnO nano-rods using the rapid thermal annealing method on ITO conducting glass pre-coated with nano porous TiO 2 film. The XRD study showed that there was little difference in crystal composition for various types of TiO 2 nano-particles anchored to ZnO nano-rods. The as-prepared architecture was characterized using field-emission scanning electron microscopy (FE-SEM). Films with TiO 2 nano-particles anchored to ZnO nano-rods were used as electrode materials to fabricate dye sensitized solar cells (DSSCs). The best solar energy conversion efficiency of 2.397% was obtained by modified electrode material, under AM 1.5 illumination, achieved up to J sc = 15.382 mA/cm 2 , V oc = 0.479 V and fill factor = 32.8%.

  15. Site Simulation of Solidified Peat: Lab Monitoring

    Science.gov (United States)

    Durahim, N. H. Ab; Rahman, J. Abd; Tajuddin, S. F. Mohd; Mohamed, R. M. S. R.; Al-Gheethi, A. A.; Kassim, A. H. Mohd

    2018-04-01

    In the present research, the solidified peat on site simulation is conducted to obtain soil leaching from soil column study. Few raw materials used in testing such as Ordinary Portland Cement (OPC), Fly ash (FA) and bottom ash (BA) which containing in solidified peat (SP), fertilizer (F), and rainwater (RW) are also admixed in soil column in order to assess their effects. This research was conducted in two conditions which dry and wet condition. Distilled water used to represent rainfall during flushing process while rainwater used to gain leaching during dry and wet condition. The first testing made after leaching process done was Moisture Content (MC). Secondly, Unconfined Compressive Strength (UCS) will be conducted on SP to know the ability of SP strength. These MC and UCS were made before and after SP were applied in soil column. Hence, the both results were compared to see the reliability occur on SP. All leachate samples were tested using Absorption Atomic Spectroscopy (AAS), Ion Chromatography (IC) and Inductively-Coupled Plasma Spectrophotometry (ICP-MS) testing to know the anion and cation present in it.

  16. Method and apparatus for solidifying radioactive waste

    International Nuclear Information System (INIS)

    Kadota, Hiroko; Kikuchi, Makoto; Tsuchiya, Hiroyuki; Tamada, Shin.

    1989-01-01

    The present invention concerns a method of solidifying radioactive wastes that generate heat with water curing solidifying material and the object there of is suppress the effect of heat generation of the wastes given on the solidification material. That is, it is a feature of the invention to inject water content contained in the water curable solidification material in the form of ice into the wastes. Thus, since the water content in the water curable solidification material is ice, the solidification products can be obtained by way of the following three steps: (1) ice is dissolved into water, (2) solid content of the solidification material is dissolved into water, and(3) curing reaction of the solidification material is started. Acccordingly, since the heat generated from the wastes contributes as heat of reaction when ice is dissolved into water till the solidification material has been completely filled, promotion for the curing reaction causing problems so far can be suppressed to enable easy filling. Then, after the completion of the filling of the solidification material, the heat of the wastes has an effect of promoting the second and the third steps described above to accelerate the curing reaction. (K.M.)

  17. Method and device for solidifying radioactive waste

    International Nuclear Information System (INIS)

    Hayashi, Tadamasa.

    1981-01-01

    Purpose: To solidify radioactive waste without producing radioactive dusts by always heating and evaporating the water from liquid radioactive waste in a mixture of liquid plastic and exhausting the molten mixture of the waste residue and the plastic material. Constitution: Liquid plastic material in a tank cooled to prevent polymerization or changes of its properties is continuously supplied to the top of a heating and mixing evaporator by a constant supply pump. After the heat transfer surface of the evaporator is covered with the plastic material, radioactive waste in the tank is supplied to the evaporator via the constant supply pump. The waste is abruptly mixed with the plastic material by an agitating rotor, heated by a heater, and the evaporated water is fed to a condenser. An anhydrous molten mixture is continuously exhausted from the bottom of the evaporator into a mixture cooler, a polymerizing agent and catalyst are introduced thereinto from a polymerizing agent tank and a catalyst tank, inhibitor is introduced thereinto from a polymerization inhibitor tank as required, and is filled with the mixture a solidifying container while it is cooled for its polymerization and solidification. (Yoshino, Y.)

  18. Microstructure and high temperature oxidation resistance of in-situ synthesized TiN/Ti{sub 3}Al intermetallic composite coatings on Ti6Al4V alloy by laser cladding process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongxi, E-mail: piiiliuhx@sina.com; Zhang, Xiaowei; Jiang, Yehua; Zhou, Rong

    2016-06-15

    High temperature anti-oxidation TiN/Ti{sub 3}Al intermetallic composite coatings were fabricated with the powder and AlN powder on Ti6Al4V titanium alloy surface by 6 kW transverse-flow CO{sub 2} laser apparatus. The chemical composition, morphology and microstructure of the TiN/Ti{sub 3}Al composite coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high temperature oxidation resistance of TiN/Ti{sub 3}Al coating, the isothermal oxidation test was performed in a high temperature resistance furnace at 600 °C and 800 °C, respectively. The result shows that the composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like or dendrites), with an even distribution in Ti{sub 3}Al matrix. It indicates that a physical and chemical reaction between Ti powder and AlN powder has completely occurred under the laser irradiation condition. In addition, the microhardness of the TiN/Ti3Al intermetallic composite coating is 3.4 times higher than that of the Ti6Al4V alloy substrate and reaches 844 HV{sub 0.2}. The high temperature oxidation behavior test reveals that the high temperature oxidation resistance of TiN/Ti{sub 3}Al composite coating is much better than that of titanium alloy substrate. The excellent high temperature oxidation resistance of TiN/Ti{sub 3}Al intermetallic composite coating is attributed to the formation of reinforced phases TiN, Al{sub 2}O{sub 3} and TiO{sub 2}. The laser cladding TiN/Ti{sub 3}Al intermetallic composite coating is anticipated to be a promising high temperature oxidation resistance coating for Ti6Al4V alloy. - Highlights: • In-situ TiN/Ti{sub 3}Al composite coating was synthesized on Ti6Al4V alloy by laser cladding. • The influence of Ti and AlN molar ratio on the microstructure of the coating was studied. • The TiN/Ti{sub 3}Al intermetallic

  19. Rapid synthesis of Ti-MCM-41 by microwave-assisted hydrothermal method towards photocatalytic degradation of oxytetracycline.

    Science.gov (United States)

    Chen, Hanlin; Peng, Yen-Ping; Chen, Ku-Fan; Lai, Chia-Hsiang; Lin, Yung-Chang

    2016-06-01

    This study employed microwave-assisted hydrothermal method to synthesize Ti-MCM-41, which are mesoporous materials with a high surface area and excellent photocatalytic ability. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and ultraviolet-visible spectroscopy (UV-Vis) were employed. The XRD findings showed that Ti-MCM-41 exhibited a peak at 2θ of 2.2°, which was attributed to the hexagonal MCM-41 structure. The BET (Brunauer-Emmett-Teller) results agreed with the TEM findings that Ti-MCM-41 has a pore size of about 3-5nm and a high surface area of 883m(2)/g. FTIR results illustrated the existence of Si-O-Si and Si-O-Ti bonds in Ti-MCM-41. The appearance of Ti 2p peaks in the XPS results confirmed the FTIR findings that the Ti was successfully doped into the MCM-41 structure. Zeta (ζ)-potential results indicated that the iso-electric point (IEP) of Ti-MCM-41 was at about pH3.02. In this study, the photocatalytic degradation of oxytetracycline (OTC) at different pH was investigated under Hg lamp irradiation (wavelength 365nm). The rate constant (K'obs) for OTC degradation was 0.012min(-1) at pH3. Furthermore, TOC (total organic carbon) and high resolution LC-MS (liquid chromatography-mass spectrometry) analyses were conducted to elucidate the possible intermediate products and degradation pathway for OTC. The TOC removal efficiency of OTC degradation was 87.0%, 74.4% and 50.9% at pH3, 7 and 10, respectively. LC-MS analysis results showed that the degradation products from OTC resulted from the removal of functional groups from the OTC ring. Copyright © 2016. Published by Elsevier B.V.

  20. Rapid Synthesis and Formation Mechanism of Core-Shell-Structured La-Doped SrTiO3 with a Nb-Doped Shell

    Directory of Open Access Journals (Sweden)

    Nam-Hee Park

    2015-07-01

    Full Text Available To provide a convenient and practical synthesis process for metal ion doping on the surface of nanoparticles in an assembled nanostructure, core-shell-structured La-doped SrTiO3 nanocubes with a Nb-doped surface layer were synthesized via a rapid synthesis combining a rapid sol-precipitation and hydrothermal process. The La-doped SrTiO3 nanocubes were formed at room temperature by a rapid dissolution of NaOH pellets during the rapid sol-precipitation process, and the Nb-doped surface (shell along with Nb-rich edges formed on the core nanocubes via the hydrothermal process. The formation mechanism of the core-shell-structured nanocubes and their shape evolution as a function of the Nb doping level were investigated. The synthesized core-shell-structured nanocubes could be arranged face-to-face on a SiO2/Si substrate by a slow evaporation process, and this nanostructured 10 μm thick thin film showed a smooth surface.

  1. Method of solidifying radioactive waste by plastics

    International Nuclear Information System (INIS)

    Yasumura, Keijiro; Tomita, Toshihide.

    1976-01-01

    Purpose: To prevent leakage of radioactivity by providing corrosion-resistant layer on the inner surface of a waste container for radioactive waste. Constitution: The inner periphery and bottom of a drum can is lined with an non-flammable cloth of such material as asbestos. This drum is filled with a radioactive waste in the form of powder or pellets. Then, a mixture of a liquid plastic monomer and a polymerization starting agent is poured at a normal temperature, and the surface is covered with a non-flammable cloth. The plastic monomer and radioactive waste are permitted to impregnate the non-flammable cloth and are solidified there. Thus, even if the drum can is corroded at the sea bottom after disposal it in the ocean, it is possible to prevent the waste from permeating into the outer sea water because of the presence of the plastic layer on the inside. Styrene is used as the monomer. (Aizawa, K.)

  2. A process for solidifying radioactive liquid waste

    International Nuclear Information System (INIS)

    Mergan, L.M.; Cordier, J.-P.

    1981-01-01

    In a process for solidifying radioactive liquid waste, its pH is adjusted, solids precipitated and then it is concentrated to about 50% solids content using a thin film evaporator, the concentrate then being dried to powder in a heated mixer. The mixer has a heated wall and working means, e.g. a rotor and helical screw, to shear the dried concentrate from the internal walls, subdivide it into a dry particulate powder, and advance the powder to the mixer outlet. The dried particles are then encapsulated in a suitable matrix. Vapour from the mixer and evaporator is condensed and recycled after any particles have been removed from it. The mixer may both dry the concentrate and mix the dry particles with the encapsulating matrix, and possibly, part of the mixer may be used for pH adjustment and precipitation. (author)

  3. Method of solidifying radioactive liquid wastes

    International Nuclear Information System (INIS)

    Uetake, Naoto; Kawamura, Fumio; Kikuchi, Makoto; Fukazawa, Tetsuo.

    1983-01-01

    Purpose: To enable to confine the volatiling ingredients such as cesium in liquid wastes safely in glass solidification products while suppressing the volatilization thereof. Method: Acid salt of tetravalent metal such as titanium phosphate has an intense selective adsorption property to cesium. So liquid wastes stored in a high level liquid wastes tank is mixed with titanium phosphate gels stored in an adsorbent tank, then supplied to a mixer and mixed with a sodium silicate solution stored in a sodium silicate storage tank and boric acid stored in an additive tank, into gel-like state. The gel-like material thus formed is supplied to a drier. After being dried at a temperature of 200sup(o)C - 300sup(o)C, the material is melted under heating at a temperature of 1000sup(o)C - 1100sup(o)C, and then cooled to solidify. (Horiuchi, T.)

  4. Study on metal material corrosion behavior of packaging of cement solidified form

    International Nuclear Information System (INIS)

    He Zhouguo; Lin Meiqiong; Fan Xianhua

    1997-01-01

    The corrosion behavior of A3 carbon steel is studied by the specimens that are exposed to atmosphere, embedded in cement solidified form or immersed in corrosion liquid. The corrosion rate is determined by mass change of the specimens. In order to compare the corrosion resistant performance of various coatings, the specimens painted with various material such as epoxide resin, propionic acid resin, propane ether resin and Ti-white paint are tested. The results of the tests show that corrosion rate of A3 carbon steel is less than 10 -3 mm·a -1 in the atmosphere and the cement solidified from, less than 0.1 mm·a -1 in the corrosion liquids, and pH value in the corrosion liquids also affect the corrosion rate of A3 carbon steel. The corrosion resistant performance of Ti-white paint is better than that of other paints. So, A3 carbon steel as packaging material can meet the requirements during storage

  5. Rapid degradation of Congo red by molecularly imprinted polypyrrole-coated magnetic TiO2 nanoparticles in dark at ambient conditions

    International Nuclear Information System (INIS)

    Wei, Shoutai; Hu, Xiaolei; Liu, Hualong; Wang, Qiang; He, Chiyang

    2015-01-01

    Highlights: • Molecularly imprinted polypyrrole-coated magnetic TiO 2 catalyst was prepared. • The catalyst degraded Congo red rapidly in dark at ambient conditions. • Degradation mechanism was proposed according to LC–MS analysis. • The catalyst can be easily recycled by a magnet. - Abstract: A novel molecularly imprinted polymer (MIP)-coated magnetic TiO 2 nanocomposite was prepared, using methyl orange (MO) as the dummy template and pyrrole as functional monomer, for degradation of Congo red (CR). The nanocomposite was characterized by Fourier transform infrared spectroscopy, thermo-gravimetric analysis, X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The imprinting efficiency of the imprinted nanoparticles was investigated by static binding test, and their degradation ability toward CR was also studied. Moreover, the effects of pH, temperature, dissolved oxygen and oscillation rate on degradation rate of CR were investigated. Results showed that the imprinted nanocomposite had higher adsorption ability for MO compared with the non-imprinted one. Moreover, it could degrade CR rapidly in dark at room temperature and atmospheric pressure and could be recycled easily by a magnet with a good reusability. A degradation mechanism was proposed according to LC–MS analysis of degradation products of CR. The new imprinted nanoparticles showed high catalytic activity at ambient conditions without light illumination and additional chemicals, and therefore, it can be potentially applied to the rapid, “green” and low-cost degradation of CR in industrial printing and dyeing wastewater

  6. Rapid degradation of Congo red by molecularly imprinted polypyrrole-coated magnetic TiO{sub 2} nanoparticles in dark at ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Shoutai; Hu, Xiaolei; Liu, Hualong; Wang, Qiang; He, Chiyang, E-mail: chiyanghe@hotmail.com

    2015-08-30

    Highlights: • Molecularly imprinted polypyrrole-coated magnetic TiO{sub 2} catalyst was prepared. • The catalyst degraded Congo red rapidly in dark at ambient conditions. • Degradation mechanism was proposed according to LC–MS analysis. • The catalyst can be easily recycled by a magnet. - Abstract: A novel molecularly imprinted polymer (MIP)-coated magnetic TiO{sub 2} nanocomposite was prepared, using methyl orange (MO) as the dummy template and pyrrole as functional monomer, for degradation of Congo red (CR). The nanocomposite was characterized by Fourier transform infrared spectroscopy, thermo-gravimetric analysis, X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The imprinting efficiency of the imprinted nanoparticles was investigated by static binding test, and their degradation ability toward CR was also studied. Moreover, the effects of pH, temperature, dissolved oxygen and oscillation rate on degradation rate of CR were investigated. Results showed that the imprinted nanocomposite had higher adsorption ability for MO compared with the non-imprinted one. Moreover, it could degrade CR rapidly in dark at room temperature and atmospheric pressure and could be recycled easily by a magnet with a good reusability. A degradation mechanism was proposed according to LC–MS analysis of degradation products of CR. The new imprinted nanoparticles showed high catalytic activity at ambient conditions without light illumination and additional chemicals, and therefore, it can be potentially applied to the rapid, “green” and low-cost degradation of CR in industrial printing and dyeing wastewater.

  7. Electrical characteristics and preparation of (Ba0.5Sr0.5)TiO3 films by spray pyrolysis and rapid thermal annealing

    International Nuclear Information System (INIS)

    Koo, Horngshow; Ku, Hongkou; Kawai, Tomoji; Chen Mi

    2007-01-01

    Functional films of (Ba 0.5 Sr 0.5 )TiO 3 on Pt (1000 A)/Ti (100 A)/SiO 2 (2000 A)/Si substrates are prepared by spray pyrolysis and subsequently rapid thermal annealing. Barium nitrate, strontium nitrate and titanium isopropoxide are used as starting materials with ethylene glycol as solvent. For (Ba 0.5 Sr 0.5 )TiO 3 functional thin film, thermal characteristics of the precursor powder scratched from as-sprayed films show a remarkable peak around 300-400degC and 57.7% weight loss up to 1000degC. The as-sprayed precursor film with coffee-like color and amorphous-like phase is transformed into the resultant film with white, crystalline perovskite phase and characteristic peaks (110) and (100). The resultant films show correspondent increases of dielectric constant, leakage current and dissipation factor with increasing annealing temperatures. The dielectric constant is 264 and tangent loss is 0.21 in the resultant films annealed at 750degC for 5 min while leakage current density is 1.5x10 -6 A/cm 2 in the film annealed at 550degC for 5 min. (author)

  8. Method for accelerated leaching of solidified waste

    International Nuclear Information System (INIS)

    Fuhrmann, M.; Heiser, J.H.; Pietrzak, R.F.; Franz, E.M.; Colombo, P.

    1990-11-01

    An accelerated leach test method has been developed to determine the maximum leachability of solidified waste. The approach we have taken is to use a semi-dynamic leach test; that is, the leachant is sampled and replaced periodically. Parameters such as temperature, leachant volume, and specimen size are used to obtain releases that are accelerated relative to other standard leach tests and to the leaching of full-scale waste forms. The data obtained with this test can be used to model releases from waste forms, or to extrapolate from laboratory-scale to full-scale waste forms if diffusion is the dominant leaching mechanism. Diffusion can be confirmed as the leaching mechanism by using a computerized mathematical model for diffusion from a finite cylinder. We have written a computer program containing several models including diffusion to accompany this test. The program and a Users' Guide that gives screen-by-screen instructions on the use of the program are available from the authors. 14 refs., 4 figs., 1 tab

  9. Leaching behavior of cement solidified materials

    International Nuclear Information System (INIS)

    2002-03-01

    An immersion test of mortar was carried out in order to solidify waste with uranium. The sample consists of 2000g cement, 950g ion exchange water, 1600g sound and 1g water reducing agent. The solid sample and ion exchange water (100 of immersion liquid/original sample) was put into polystyrene closed vessel in globe box and kept four weeks, and then it was separated to the immersion liquid and the solid phase. New ion exchange water was added to the solid and kept four weeks and then separated. Its ratio showed 200. The analysis was done at 100, 200 and 300 ratio of immersion liquid/sample. The solid phase was studied by the powder X-ray diffraction analysis, thermo gravimetric analysis and chemical analysis. The liquid phase was determined by pH values and composition analysis. The results showed Ca(OH) 2 , cement hydrate, was flowed out and it was not found in the solid phase at 200 ratio. (S.Y.)

  10. Leaching studies of radionuclides from solidified wastes with thermosetting resin

    International Nuclear Information System (INIS)

    Suzuki, K.; Kuribayashi, H.; Morimitsu, W.; Ono, I.

    1982-01-01

    This paper reports on studies of the leachability of Co-60 and Cs-137 from simulated LWR radwastes solidified with thermosetting resin and evaluates the effects of chemical fixation on leachability. It is concluded that insolubilization by a nickel-ferrocyanide compound offers an effective chemical fixation of these radionuclides and is a recommended pretreating method for radwastes that are to be solidified. 2 figures

  11. Rapid Obtaining of Nano-Hydroxyapatite Bioactive Films on NiTi Shape Memory Alloy by Electrodeposition Process

    Science.gov (United States)

    Lobo, A. O.; Otubo, J.; Matsushima, J. T.; Corat, E. J.

    2011-07-01

    Nano-hydroxyapatite (n-HA) crystalline films have been developed in this study by electrodeposition method on NiTi shape memory alloy (SMA). The electrodeposition of the n-HA films was carried out using 0.042 mol/L Ca(NO3)2 · 4H2O + 0.025 mol/L (NH4) · 2HPO4 electrolytes by applying a constant potential of -2.0 V for 120 min and keeping the solution temperature at 70 °C. The characterization of n-HA films is of special importance since bioactive properties related to n-HA have been directly identified with its specific composition and crystalline structure. AFM, XRD, EDX, FEG-SEM and Raman spectroscopy shows a homogeneous film, with high crystallinity, special composition, and bioactivity properties (Ca/P = 1.93) of n-HA on NiTi SMA surfaces. The n-HA coating with special structure would benefit the use of NiTi alloy in orthopedic applications.

  12. Microstructure/processing relationships in high-energy high-rate consolidated powder composites of Nb-stabilized Ti3Al+TiAl

    Energy Technology Data Exchange (ETDEWEB)

    Persad, C.; Lee, B.; Hou, C.; Eliezer, Z.; Marcus, H.L.

    1989-01-01

    A new approach to powder processing is employed in forming titanium aluminide composites. The processing consists of internal heating of a customized powder blend by a fast electrical discharge of a homopolar generator. The high-energy high-rate '1MJ in 1s' pulse permits rapid heating of an electrically conducting powder mixture in a cold wall die. This short time at temperature approach offers the opportunity to control phase transformations and the degree of microstructural coarsening not readily possible with standard powder-processing approaches. This paper describes the consolidation results of titanium aluminide-based powder-composite materials. The focus of this study was the definition of microstructure/processing relationships for each of the composite constituents, first as monoliths and then in composite forms. Non-equilibrium phases present in rapidly solidified TiAl powders are transformed to metastable intermediates en route to the equilibrium gamma phase.

  13. Biodegradation testing of solidified low-level waste streams

    International Nuclear Information System (INIS)

    Piciulo, P.L.; Shea, C.E.; Barletta, R.E.

    1985-05-01

    The NRC Technical Position on Waste Form (TP) specifies that waste should be resistant to biodegradation. The methods recommended in the TP for testing resistance to fungi, ASTM G21, and for testing resistance to bacteria, ASTM G22, were carried out on several types of solidified simulated wastes, and the effect of microbial activity on the mechanical strength of the materials tested was examined. The tests are believed to be sufficient for distinguishing between materials that are susceptible to biodegradation and those that are not. It is concluded that failure of these tests should not be regarded of itself as an indication that the waste form will biodegrade to an extent that the form does not meet the stability requirements of 10 CFR Part 61. In the case of failure of ASTM G21 or ASTM G22 or both, it is recommended that additional data be supplied by the waste generator to demonstrate the resistance of the waste form to microbial degradation. To produce a data base on the applicability of the biodegradation tests, the following simulated laboratory-scale waste forms were prepared and tested: boric acid and sodium sulfate evaporator bottoms, mixed-bed bead resins and powdered resins each solidified in asphalt, cement, and vinyl ester-styrene. Cement solidified wastes supported neither fungal nor bacterial growth. Of the asphalt solidified wastes, only the forms of boric acid evaporator bottoms did not support fungal growth. Bacteria grew on all of the asphalt solidified wastes. Cleaning the surface of these waste forms did not affect bacterial growth and had a limited effect on the fungal growth. Only vinyl esterstyrene solidified sodium sulfate evaporator bottoms showed viable fungi cultures, but surface cleaning with solvents eliminated fungal growth in subsequent testing. Some forms of all the waste streams solidified in vinyl ester-styrene showed viable bacteria cultures. 13 refs., 12 tabs

  14. Rapid charge-discharge property of Li4Ti5O12-TiO2 nanosheet and nanotube composites as anode material for power lithium-ion batteries.

    Science.gov (United States)

    Yi, Ting-Feng; Fang, Zi-Kui; Xie, Ying; Zhu, Yan-Rong; Yang, Shuang-Yuan

    2014-11-26

    Well-defined Li4Ti5O12-TiO2 nanosheet and nanotube composites have been synthesized by a solvothermal process. The combination of in situ generated rutile-TiO2 in Li4Ti5O12 nanosheets or nanotubes is favorable for reducing the electrode polarization, and Li4Ti5O12-TiO2 nanocomposites show faster lithium insertion/extraction kinetics than that of pristine Li4Ti5O12 during cycling. Li4Ti5O12-TiO2 electrodes also display lower charge-transfer resistance and higher lithium diffusion coefficients than pristine Li4Ti5O12. Therefore, Li4Ti5O12-TiO2 electrodes display lower charge-transfer resistance and higher lithium diffusion coefficients. This reveals that the in situ TiO2 modification improves the electronic conductivity and electrochemical activity of the electrode in the local environment, resulting in its relatively higher capacity at high charge-discharge rate. Li4Ti5O12-TiO2 nanocomposite with a Li/Ti ratio of 3.8:5 exhibits the lowest charge-transfer resistance and the highest lithium diffusion coefficient among all samples, and it shows a much improved rate capability and specific capacity in comparison with pristine Li4Ti5O12 when charging and discharging at a 10 C rate. The improved high-rate capability, cycling stability, and fast charge-discharge performance of Li4Ti5O12-TiO2 nanocomposites can be ascribed to the improvement of electrochemical reversibility, lithium ion diffusion, and conductivity by in situ TiO2 modification.

  15. Microstructures and martensitic transformation behavior of superelastic Ti-Ni-Ag scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuanglei; Kim, Eun-soo [School of Materials Science and Engineering & ERI, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of); Kim, Yeon-wook [Department of Material Engineering, Keimyung University, 1000 Shindang-dong, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Nam, Tae-hyun, E-mail: tahynam@gnu.ac.kr [School of Materials Science and Engineering & ERI, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of)

    2016-10-15

    Highlights: • The B2-R-B19′ transformation occurred in 49Ti-50.3Ni-0.7Ag alloy fibers. • Annealing treated alloy fibers showed superelastic recovery ratio of 93%. • Ageing treated scaffold had an elastic modulus of 0.67 GPa. • Ageing treated scaffold exhibited good superelasticity at human body temperature. - Abstract: Ti-Ni-Ag scaffolds were prepared by sintering rapidly solidified alloy fibers. Microstructures and transformation behaviors of alloy fibers and scaffolds were investigated by means of electron probe micro-analyzer (EPMA), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The B2-R-B19′ transformation occurs in alloy fibers. The alloy fibers have good superelasticity with superelastic recovery ratio of 93% after annealing heat treatment. The as-sintered Ti-Ni-Ag scaffolds possess three-dimensional and interconnected pores and have the porosity level of 80%. The heat treated Ti-Ni-Ag scaffolds not only have an elastic modulus of 0.67 GPa, which match well with that of cancellous bone, but also show excellent superelasticity at human body temperature. In terms of the mechanical properties, the Ti-Ni-Ag scaffolds in this study can meet the main requirements of bone scaffold for the purpose of bone replacement applications.

  16. Parameters of Solidifying Mixtures Transporting at Underground Ore Mining

    Directory of Open Access Journals (Sweden)

    Golik Vladimir

    2017-01-01

    Full Text Available The article is devoted to the problem of providing mining enterprises with solidifying filling mixtures at underground mining. The results of analytical studies using the data of foreign and domestic practice of solidifying mixtures delivery to stopes are given. On the basis of experimental practice the parameters of transportation of solidifying filling mixtures are given with an increase in their quality due to the effect of vibration in the pipeline. The mechanism of the delivery process and the procedure for determining the parameters of the forced oscillations of the pipeline, the characteristics of the transporting processes, the rigidity of the elastic elements of pipeline section supports and the magnitude of vibrator’ driving force are detailed. It is determined that the quality of solidifying filling mixtures can be increased due to the rational use of technical resources during the transportation of mixtures, and as a result the mixtures are characterized by a more even distribution of the aggregate. The algorithm for calculating the parameters of the pipe vibro-transport of solidifying filling mixtures can be in demand in the design of mineral deposits underground mining technology.

  17. Parameters of Solidifying Mixtures Transporting at Underground Ore Mining

    Science.gov (United States)

    Golik, Vladimir; Dmitrak, Yury

    2017-11-01

    The article is devoted to the problem of providing mining enterprises with solidifying filling mixtures at underground mining. The results of analytical studies using the data of foreign and domestic practice of solidifying mixtures delivery to stopes are given. On the basis of experimental practice the parameters of transportation of solidifying filling mixtures are given with an increase in their quality due to the effect of vibration in the pipeline. The mechanism of the delivery process and the procedure for determining the parameters of the forced oscillations of the pipeline, the characteristics of the transporting processes, the rigidity of the elastic elements of pipeline section supports and the magnitude of vibrator' driving force are detailed. It is determined that the quality of solidifying filling mixtures can be increased due to the rational use of technical resources during the transportation of mixtures, and as a result the mixtures are characterized by a more even distribution of the aggregate. The algorithm for calculating the parameters of the pipe vibro-transport of solidifying filling mixtures can be in demand in the design of mineral deposits underground mining technology.

  18. Energy asymmetry in melting and solidifying processes of PCM

    International Nuclear Information System (INIS)

    Jin, Xing; Hu, Huoyan; Shi, Xing; Zhang, Xiaosong

    2015-01-01

    Highlights: • The melting process and the solidifying process of PCM were asymmetrical. • The enthalpy and state of PCM were affected by its previous state. • The main reason for energy asymmetry of PCM was supercooling. - Abstract: The solidifying process of phase change material (PCM) was usually recognized as the exact inverse process of its melting process, especially when building the heat transfer model of PCM. To figure out that whether the melting process and the solidifying process of PCM were symmetrical, several kinds of PCMs were tested by a differential scanning calorimeter (DSC) in this paper. The experimental results showed that no matter using the DSC dynamic measurement method or the DSC step measurement method, the melting process and the solidifying process of PCM were asymmetrical. Because of the energy asymmetry in the melting and solidifying processes of PCM, it was also found that the enthalpy and the state of PCM were not only dependent on its temperature, but also affected by its “previous state”.

  19. Glass-forming ability and stability of ternary Ni-early transition metal (Ti/Zr/Hf) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Joysurya [Department of Metallurgy, Indian Institute of Science, Bangalore 560 012 (India); Ranganathan, S. [Department of Metallurgy, Indian Institute of Science, Bangalore 560 012 (India)]. E-mail: rangu@met.iisc.ernet.in

    2006-08-15

    Four Ni-bearing Ti, Zr and Hf ternary alloys of nominal composition Zr{sub 41.5}Ti{sub 41.5}Ni{sub 17}, Zr{sub 25}Ti{sub 25}Ni{sub 50}, Zr{sub 41.5}Hf{sub 41.5}Ni{sub 17} and Ti{sub 41.5}Hf{sub 41.5}Ni{sub 17} were rapidly solidified in order to produce ribbons. The Zr-Ti-Ni and Ti-Hf-Ni alloys become amorphous, whereas the Zr-Hf-Ni alloy shows precipitation of a cubic phase. The devitrification of all three alloys was followed and the relative tendency to form nanoquasicrystals and cF96 phases analysed. The relative glass-forming ability of the alloys can be explained by taking into account their atomic size difference. Addition of Ni often leads to quasicrystallisation or quasicrystal-related phases. This can be explained by the atomic radius and heat of mixing of the constituent elements. The phases precipitated at the initial stages of crystallisation indicate the possible presence of Frank-Kasper polyhedral structure in the amorphous alloys. Structural analysis reveals that the Laves and the anti-Laves phases have the same polyhedral structural unit, which is similar to the structural characteristics of glass.

  20. Solidified structure of thin-walled titanium parts by vertical centrifugal casting

    Directory of Open Access Journals (Sweden)

    Wu Shiping

    2011-05-01

    Full Text Available The solidified structure of the thin-walled and complicated Ti-6Al-4V castings produced by the vertical centrifugal casting process was studied in the present work. The results show that the wall thickness of the section is featured with homogeneously distributed fine equiaxial grains, compared with the microstructure of the thick-walled section. The grain size of the castings has a tendency to decrease gradually with the increasing of the centrifugal radius. The inter-lamellar space in thick-walled casting parts is bigger than that of the thin-walled parts, and the profile of inter-lamellar space is not susceptible to the centrifugal radius.

  1. Method of solidifying and disposing radioactive waste plastic

    International Nuclear Information System (INIS)

    Matsuura, Hiroyuki; Yasumura, Keijiro

    1981-01-01

    Purpose: To solidify radioactive waste as it is with plastic by forming a W/O (Water-in-Oil) emulsion with the radioactive waste and a plastic solidifier, and treating it with a polymerization starting agent, an accelerator, and the like. Method: A predetermined amount of alkaline substance such as sodium hydroxide, triethanol, or the like is added quantitatively to radioactive waste and it is mixed by an agitator. A predetermined amount of solidifier such as unsaturated polyester or the like is added to the mixture and it is further mixed by the agitator to form a stable W/O emulsion. Subsequently, predetermined amounts of polymerization starting agent such as methyl ethyl ketone peroxide and polymerization accelerator such as cobalt naphthenate or the like are added thereto, the mixture is mixed, and is then allowed to stand for at room temperature for the plastic solidification thereof. No reaction occurs after the solidification. (Sekiya, K.)

  2. Detection of free liquid in containers of solidified radioactive waste

    Science.gov (United States)

    Greenhalgh, Wilbur O.

    1985-01-01

    A method of nondestructively detecting the presence of free liquid within a sealed enclosure containing solidified waste by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solidified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

  3. Evaluation of solidified high-level waste forms

    International Nuclear Information System (INIS)

    1981-01-01

    One of the objectives of the IAEA waste management programme is to coordinate and promote development of improved technology for the safe management of radioactive wastes. The Agency accomplished this objective specifically through sponsoring Coordinated Research Programmes on the ''Evaluation of Solidified High Level Waste Products'' in 1977. The primary objectives of this programme are to review and disseminate information on the properties of solidified high-level waste forms, to provide a mechanism for analysis and comparison of results from different institutes, and to help coordinate future plans and actions. This report is a summary compilation of the key information disseminated at the second meeting of this programme

  4. Site suitability criteria for solidified high level waste repositories

    International Nuclear Information System (INIS)

    Heckman, R.A.; Holdsworth, T.; Towse, D.F.

    1979-01-01

    Activities devoted to development of regulations, criteria, and standards for storage of solidified high-level radioactive wastes are reported. The work is summarized in sections on site suitability regulations, risk calculations, geological models, aquifer models, human usage model, climatology model, and repository characteristics. Proposed additional analytical work is also summarized

  5. Characteristics of solidified high-level waste products

    International Nuclear Information System (INIS)

    1979-01-01

    The object of the report is to contribute to the establishment of a data bank for future preparation of codes of practice and standards for the management of high-level wastes. The work currently in progress on measuring the properties of solidified high-level wastes is being studied

  6. Thermal Modeling and Simulation of Electron Beam Melting for Rapid Prototyping on Ti6Al4V Alloys

    Science.gov (United States)

    Neira Arce, Alderson

    To be a viable solution for contemporary engineering challenges, the use of titanium alloys in a wider range of applications requires the development of new techniques and processes that are able to decrease production cost and delivery times. As a result, the use of material consolidation in a near-net-shape fashion, using dynamic techniques like additive manufacturing by electron beam selective melting EBSM represents a promising method for part manufacturing. However, a new product material development can be cost prohibitive, requiring the use of computer modeling and simulation as a way to decrease turnaround time. To ensure a proper representation of the EBSM process, a thermophysical material characterization and comparison was first performed on two Ti6Al4V powder feedstock materials prepared by plasma (PREP) and gas atomized (GA) processes. This evaluation comprises an evaluation on particle size distribution, density and powder surface area, collectively with the temperature dependence on properties such as heat capacity, thermal diffusivity, thermal conductivity and surface emissivity. Multiple techniques were employed in this evaluation, including high temperature differential scanning calorimetry (HT-DSC), laser flash analysis (LFA), infrared remote temperature analysis (IR-Thermography), laser diffraction, liquid and gas pycnometry using mercury and krypton adsorption respectively. This study was followed by the review of complementary strategies to simulate the temperature evolution during the EBSM process, using a finite element analysis package called COMSOL Multiphysics. Two alternatives dedicated to representing a moving heat source (electron beam) and the powder bed were developed using a step-by-step approximation initiative. The first method consisted of the depiction of a powder bed discretized on an array of domains, each one representing a static melt pool, where the moving heat source was illustrated by a series of time dependant selective

  7. Phase Composition of a CrMo0.5NbTa0.5TiZr High Entropy Alloy: Comparison of Experimental and Simulated Data

    OpenAIRE

    Fan Zhang; Oleg N. Senkov; Jonathan D. Miller

    2013-01-01

    Microstructure and phase composition of a CrMo0.5NbTa0.5TiZr high entropy alloy were studied in the as-solidified and heat treated conditions. In the as-solidified condition, the alloy consisted of two disordered BCC phases and an ordered cubic Laves phase. The BCC1 phase solidified in the form of dendrites enriched with Mo, Ta and Nb, and its volume fraction was 42%. The BCC2 and Laves phases solidified by the eutectic-type reaction, and their volume fractions were 27% and 31%, respectively....

  8. Design of high-temperature high-strength Al-Ti-V-Zr alloys

    International Nuclear Information System (INIS)

    Lee, H.M.

    1990-01-01

    This paper reports that it seems plausible to develop high-strength Al-base alloys useful up to 698K in view of the behavior of nickel base superalloys which resist degradation of mechanical properties to 75 pct of their absolute melting temperature. For high temperature Al alloys, the dispersed hardening phase must not undergo phase transformation to an undesirable phase during long time exposure at the temperature of interest. An additional factor to be considered is the stability of the hardening phase with respect to Ostwald ripening. This coarsening resistance is necessary so that the required strength level can be maintained after the long-time service at high temperatures. The equilibrium crystal structures of Al 3 Ti, Al 3 V and Al 3 Zr are tetragonal D0 22 , D0 22 and D0 23 , respectively. At the temperatures of interest, around 698K, vanadium and titanium are mutually substitutable in the form of Al 3 (Ti, V). Much of titanium and vanadium can be substituted for zirconium in the D0 23 - type Al 3 Zr compound, creating Al 3 (Ti, Zr) and Al 3 (V, Zr), respectively. In particular, it has been reported that fcc L1 2 -structured Al 3 M dispersoids form in the rapidly solidified Al-V-Zr and Al-Ti-Zr systems and both L1 2 and D0 23 -structured Al 3 M phases showed slow coarsening kinetics

  9. The formation of the two-way shape memory effect in rapidly quenched TiNiCu alloy under laser radiation

    International Nuclear Information System (INIS)

    Shelyakov, A V; Sitnikov, N N; Borodako, K A; Menushenkov, A P; Fominski, V Yu; Sheyfer, D V

    2015-01-01

    The effect of pulsed laser radiation (λ = 248 nm, τ = 20 ns) on structural properties and shape memory behavior of the rapidly quenched Ti 50 Ni 25 Cu 25 alloy ribbon was studied. The radiation energy density was varied from 2 to 20 mJ mm −2 . The samples were characterized by means of scanning electron microscopy, x-ray diffraction, microhardness measurements and shape memory bending tests. It was ascertained that the action of the laser radiation leads to the formation of a structural composite material due to amorphization or martensite modification in the surface layer of the ribbon. Two methods are proposed which allow one to generate the pronounced two-way shape memory effect (TWSME) in a local area of the ribbon by using only a single pulse of the laser radiation. With increasing energy density of laser treatment, the magnitude of the reversible angular displacement with realization of the TWSME increases. The developed techniques can be used for the creation of various micromechanical devices. (paper)

  10. Propertis of solidified radioactive wastes from commercial LWRs

    International Nuclear Information System (INIS)

    Neilson, R.M. Jr.; Colombo, P.

    1978-01-01

    A study has been performed to characterize the properties of solidified radioactive wastes generated in the liquid radwaste treatment systems at LWRs. The properties which have been studied are those which are pertinent in defining the relative potential for the release of radionuclides to the environment as well as others relating to the evaluation of various solidification agents on an economic and feasibility basis. The use of standard testing procedures in measuring these properties allows an intercomparison of respective properties between various types of solidified waste forms. The leachability, mechanical properties, thermal stability, radiation stability, and thermal properties of hydraulic cement, ureaformaldehyde, bitumen, and addition type polymer waste forms have been measured. In addition, the chemical sensitivity, volumetric efficiency and radiation shielding characteristics of these waste forms have been studied. Emphasis in this paper is placed on the results of studies concerning chemical compatibility of solidification agents with specific waste streams, volumetric efficiency, free standing water, and leachability

  11. Production and properties of solidified high-level waste

    International Nuclear Information System (INIS)

    Brodersen, K.

    1980-08-01

    Available information on production and properties of solidified high-level waste are presented. The review includes literature up to the end of 1979. The feasibility of production of various types of solidified high-level wast is investigated. The main emphasis is on borosilicate glass but other options are also mentioned. The expected long-term behaviour of the materials are discussed on the basis of available results from laboratory experiments. Examples of the use of the information in safety analysis of disposal in salt formations are given. The work has been made on behalf of the Danish utilities investigation of the possibilities of disposal of high-level waste in salt domes in Jutland. (author)

  12. Ultrasensitive determination of mercury in human saliva by atomic fluorescence spectrometry based on solidified floating organic drop microextraction

    International Nuclear Information System (INIS)

    Yuan, C.-G.; Wang, J.; Jin, Y.

    2012-01-01

    We report on a new, rapid and simple method for the determination of ultra-trace quantities of mercury ion in human saliva. It is based on solidified floating organic drop microextraction and detection by cold vapor atomic fluorescence spectrometry (CV-AFS). Mercury ion was complexed with diethyldithiocarbamate, and the hydrophobic complex was then extracted into fine droplets of 1-undecanol. By cooling in an ice bath after extraction, the droplets in solution solidify to form a single ball floating on the surface of solution. The solidified micro drop containing the mercury complex was then transferred for determination by CV-AFS. The effects of pH value, concentration of chelating reagent, quantity of 1-undecanol, sample volume, equilibration temperature and time were investigated. Under the optimum conditions, the preconcentration of a 25-mL sample is accomplished with an enrichment factor of 182. The limit of detection is 2.5 ng L -1 . The relative standard deviation for seven replicate determinations at 0.1 ng mL -1 level is 4.1%. The method was applied to the determination of mercury in saliva samples collected from four volunteers. Two volunteers having dental amalgam fillings had 0.4 ng mL -1 mercury in their saliva, whereas mercury was not detectable in the saliva of two volunteers who had no dental fillings. (author)

  13. Rapid photo-degradation of 2-chlorophenol under visible light irradiation using cobalt oxide-loaded TiO2/reduced graphene oxide nanocomposite from aqueous media.

    Science.gov (United States)

    Sharma, Ajit; Lee, Byeong-Kyu

    2016-01-01

    The photocatalytic removal of 2-chlorophenol (2-CP) from water environment was investigated by TiO2-RGO-CoO. Cobalt oxide-loaded TiO2 (TiO2-CoO) supported with reduced graphene oxide (RGO) was synthesized using a sol-gel method and then annealed at 500 °C for 5 min. The material characteristics were analyzed by UV-Vis analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Incorporation of cobalt oxide and RGO into the TiO2 system (TiO2-RGO-CoO) lowered the band gap energy to 2.83 eV, which greatly enhanced the visible light absorption. The TiO2-RGO-CoO photocatalyst showed complete removal of 20 mg/L 2-CP within 8 h with the addition of 0.01% H2O2 under 100 W visible light irradiation. The photo-degradation efficiency of 2-CP (10 mg/L) was 35.2, 48.9, 58.9 and 98.2% for TiO2, TiO2-RGO, TiO2-CoO and TiO2-RGO-CoO, respectively, in the presence of visible light irradiation at solution pH of 6.0. The TiO2-RGO-CoO photocatalyst retained its high removal efficiency even after five photocatalytic cycles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Constitution of the ternary system Cr–Ni–Ti

    International Nuclear Information System (INIS)

    Krendelsberger, Natalja; Weitzer, Franz; Du, Yong; Schuster, Julius C.

    2013-01-01

    Highlights: •Reaction scheme and liquidus surface for Cr-Ni-Ti are given. •In the ternary the C14-type Laves phase coexists with the liquid phase. •Two ternary eutectics are identified. -- Abstract: The nature of solid–liquid phase equilibria in the ternary system Cr–Ni–Ti was investigated using electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and differential thermal analysis. Literature data on solid state phase equilibria are confirmed. The Cr 2 Ti Laves phase modifications coexisting with Ni–Ti phases are clarified to be hexagonal C14-type and cubic C15-type. The C14-type Laves phase γCr 2 Ti is found to coexist with the liquid phase. It forms in the pseudobinary peritectic reaction p max1 from L + β(Cr,Ti) at 1389 °C. On further cooling γCr 2 Ti + NiTi solidify at 1202 °C in the pseudobinary eutectic e max2 . In the Cr-rich part of the system ternary eutectics occur at 1216 °C (E 1 : L = Ni 3 Ti + (Ni) + β(Cr,Ti)) and 1100 °C (E 2 : L = NiTi + Ni 3 Ti + β(Cr,Ti)), respectively. No ternary eutectic is found in the Ti-rich part. Rather the eutectic trough ends in the binary eutectic L = NiTi 2 + β(Ti)

  15. H_2O_2-assisted photocatalysis on flower-like rutile TiO_2 nanostructures: Rapid dye degradation and inactivation of bacteria

    International Nuclear Information System (INIS)

    Kőrösi, László; Prato, Mirko; Scarpellini, Alice; Kovács, János; Dömötör, Dóra; Kovács, Tamás; Papp, Szilvia

    2016-01-01

    Graphical abstract: - Highlights: • Hierarchically assembled rutile TiO_2 was synthesized at room temperature. • Hydrothermal treatment enhanced the crystallinity, while morphology was maintained. • Hydrothermal treatment also led to larger crystallites and a lower surface area. • Effective K. pneumoniae killing and MO degradation were achieved with the use of H_2O_2. • Higher crystallinity enhanced the reaction rate in the presence of H_2O_2. - Abstract: Hierarchically assembled flower-like rutile TiO_2 (FLH-R-TiO_2) nanostructures were successfully synthesized from TiCl_4 at room temperature without the use of surfactants or templates. An initial sol–gel synthesis at room temperature allowed long-term hydrolysis and condensation of the precursors. The resulting FLH-R-TiO_2 possessed relatively high crystallinity (85 wt%) and consisted of rod-shaped subunits assembling into cauliflower-like nanostructures. Hydrothermal evolution of FLH-R-TiO_2 at different temperatures (150, 200 and 250 °C) was followed by means of X-ray diffraction, transmission and scanning electron microscopy. These FLH-R-TiO_2 nanostructures were tested as photocatalysts under simulated daylight (full-spectrum lighting) in the degradation of methyl orange and in the inactivation of a multiresistant bacterium, Klebsiella pneumoniae. The effects of hydrothermal treatment on the structure, photocatalytic behavior and antibacterial activity of FLH-R-TiO_2 are discussed.

  16. Rapid thermal reduced graphene oxide/Pt–TiO{sub 2} nanotube arrays for enhanced visible-light-driven photocatalytic reduction of CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Lan Ching [Environmental Engineering Laboratory, Department of Civil Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak (Malaysia); Leong, Kah Hon [Environmental Engineering Laboratory, Department of Civil Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Saravanan, Pichiah, E-mail: saravananpichiah@um.edu.my [Environmental Engineering Laboratory, Department of Civil Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Nanotechnology & Catalysis Research Center (NANOCAT), University of Malaya, 50603 Kuala Lumpur (Malaysia); Ibrahim, Shaliza [Environmental Engineering Laboratory, Department of Civil Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-12-15

    Graphical abstract: - Highlights: • Enhanced visible light character of TNTs was imparted by RGO/Pt via facile route. • Pt NPs contribute exemplary visible light harvesting nature through plasmon effect. • Engulfed RGO promoted enhanced charge-carriers separation. • Synergistic effect of RGO, Pt photoreduced CO{sub 2} to CH{sub 4} with max. of 10.96 μmol m{sup −2}. - Abstract: In this study, a complicate natural photosynthesis process was prototyped through a photocatalysis process by reducing CO{sub 2} to light hydrocarbon, CH{sub 4}. The composite photocatalyst employed for this study utilized Pt nanoparticles (Pt NPs) and rapid thermal reduced graphene oxide (RGO) deposited over the surface of the TiO{sub 2} nanotube arrays (TNTs). The existence and contribution of both Pt NPs and RGO in the composite was confirmed through various analytical techniques including XRD, HRTEM, FESEM, Raman, FTIR, XPS, UV-DRS and photoluminescence (PL) analysis. The TNTs in the composite exhibited pure anatase phase. The absorption bands at around 450 nm obtained from UV-DRS spectrum supported the existence of LSPR phenomenon of Pt NPs. The promising lower work function of RGO promoted the electrons transfer from TNTs to RGO efficiently. The successful depositions of Pt and RGO onto the surface of TNTs contributed for the improved photocatalytic activity (total CH{sub 4} yield of 10.96 μmol m{sup −2}) in the reduction of CO{sub 2} over TNTs and Pt–TNTs. Both of RGO and Pt NPs are equally important to exert a significant impact on the improvement of CH{sub 4} production rates.

  17. Rapid thermal reduced graphene oxide/Pt–TiO2 nanotube arrays for enhanced visible-light-driven photocatalytic reduction of CO2

    International Nuclear Information System (INIS)

    Sim, Lan Ching; Leong, Kah Hon; Saravanan, Pichiah; Ibrahim, Shaliza

    2015-01-01

    Graphical abstract: - Highlights: • Enhanced visible light character of TNTs was imparted by RGO/Pt via facile route. • Pt NPs contribute exemplary visible light harvesting nature through plasmon effect. • Engulfed RGO promoted enhanced charge-carriers separation. • Synergistic effect of RGO, Pt photoreduced CO 2 to CH 4 with max. of 10.96 μmol m −2 . - Abstract: In this study, a complicate natural photosynthesis process was prototyped through a photocatalysis process by reducing CO 2 to light hydrocarbon, CH 4 . The composite photocatalyst employed for this study utilized Pt nanoparticles (Pt NPs) and rapid thermal reduced graphene oxide (RGO) deposited over the surface of the TiO 2 nanotube arrays (TNTs). The existence and contribution of both Pt NPs and RGO in the composite was confirmed through various analytical techniques including XRD, HRTEM, FESEM, Raman, FTIR, XPS, UV-DRS and photoluminescence (PL) analysis. The TNTs in the composite exhibited pure anatase phase. The absorption bands at around 450 nm obtained from UV-DRS spectrum supported the existence of LSPR phenomenon of Pt NPs. The promising lower work function of RGO promoted the electrons transfer from TNTs to RGO efficiently. The successful depositions of Pt and RGO onto the surface of TNTs contributed for the improved photocatalytic activity (total CH 4 yield of 10.96 μmol m −2 ) in the reduction of CO 2 over TNTs and Pt–TNTs. Both of RGO and Pt NPs are equally important to exert a significant impact on the improvement of CH 4 production rates.

  18. Solidifier effectiveness : variation due to oil composition, oil thickness and temperature

    International Nuclear Information System (INIS)

    Fieldhouse, B.; Fingas, M.

    2009-01-01

    This paper provided an overview of solidifier types and composition. Solidifiers are a class of spill treating agents that offer an effective means to convert a liquid oil into a solid material. They are used as a treatment option for oil spills on water. This paper also reported on recent laboratory studies that consist of 4 components: (1) a qualitative examination of the characteristics of the interaction of a broad range of solidifier products with a standard oil to evaluate reaction rate, states of solidification, and the impact of dosage, (2) a comparison of a smaller subset of solidifiers on the standard oil at lower temperatures, (3) solidifier treatment on a range of oils of varying physical properties and composition to assess the potential scope of application, and (4) the treatment of a series of small-scale oil layers of varying thickness to determine the significance of oil thickness on solidifier effectiveness and recovery. This paper also reviewed solidifier chemistry with particular reference to polymer sorbents; cross-linking agents; and cross-linking agents and polymeric sorbents combined. Toxicity is also an important issue regarding solidifiers. The aquatic toxicity of solidifiers is low and not measurable as the products are not water-soluble. There have not been any studies on the effects of the solidifier or the treated oil on surface feeders and shoreline wildlife that may come into contact with the products. It was concluded that oil composition may play a major role in solidifier effectiveness. The effectiveness of solidifiers is also inhibited at reduced temperatures, increased viscosity and density of the oil. 25 refs., 5 tabs., 2 figs., 1 appendix

  19. Micro and Macro Segregation in Alloys Solidifying with Equiaxed Morphology

    Science.gov (United States)

    Stefanescu, Doru M.; Curreri, Peter A.; Leon-Torres, Jose; Sen, Subhayu

    1996-01-01

    To understand macro segregation formation in Al-Cu alloys, experiments were run under terrestrial gravity (1g) and under low gravity during parabolic flights (10(exp -2) g). Alloys of two different compositions (2% and 5% Cu) were solidified at two different cooling rates. Systematic microscopic and SEM observations produced microstructural and segregation maps for all samples. These maps may be used as benchmark experiments for validation of microstructure evolution and segregation models. As expected, the macro segregation maps are very complex. When segregation was measured along the central axis of the sample, the highest macro segregation for samples solidified at 1g was obtained for the lowest cooling rate. This behavior is attributed to the longer time available for natural convection and shrinkage flow to affect solute redistribution. In samples solidified under low-g, the highest macro-segregation was obtained at the highest cooling rate. In general, low-gravity solidification resulted in less segregation. To explain the experimental findings, an analytical (Flemings-Nereo) and a numerical model were used. For the numerical model, the continuum formulation was employed to describe the macroscopic transports of mass, energy, and momentum, associated with the microscopic transport phenomena, for a two-phase system. The model proposed considers that liquid flow is driven by thermal and solutal buoyancy, and by solidification shrinkage. The Flemings-Nereo model explains well macro segregation in the initial stages of low-gravity segregation. The numerical model can describe the complex macro segregation pattern and the differences between low- and high-gravity solidification.

  20. Nickel speciation in cement-stabilized/solidified metal treatment filtercakes

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Amitava, E-mail: reroy@lsu.edu [J. Bennett Johnston, Sr., Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, LA 70806, USA (United States); Stegemann, Julia A., E-mail: j.stegemann@ucl.ac.uk [Centre for Resource Efficiency & the Environment, Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK (United Kingdom)

    2017-01-05

    Highlights: • XAS shows the same Ni speciation in untreated and stabilized/solidified filtercake. • Ni solubility is the same for untreated and stabilized/solidified filtercake. • Leaching is controlled by pH and physical encapsulation for all binders. - Abstract: Cement-based stabilization/solidification (S/S) is used to decrease environmental leaching of contaminants from industrial wastes. In this study, two industrial metal treatment filtercakes were characterized by X-ray diffractometry (XRD), thermogravimetric and differential thermogravimetric analysis (TG/DTG) and Fourier transform infrared (FTIR); speciation of nickel was examined by X-ray absorption (XAS) spectroscopy. Although the degree of carbonation and crystallinity of the two untreated filtercakes differed, α-nickel hydroxide was identified as the primary nickel-containing phase by XRD and nickel K edge XAS. XAS showed that the speciation of nickel in the filtercake was unaltered by treatment with any of five different S/S binder systems. Nickel leaching from the untreated filtercakes and all their stabilized/solidified products, as a function of pH in the acid neutralization capacity test, was essentially complete below pH ∼5, but was 3–4 orders of magnitude lower at pH 8–12. S/S does not respeciate nickel from metal treatment filtercakes and any reduction of nickel leaching by S/S is attributable to pH control and physical mechanisms only. pH-dependent leaching of Cr, Cu and Ni is similar for the wastes and s/s products, except that availability of Cr, Cu and Zn at decreased pH is reduced in matrices containing ground granulated blast furnace slag.

  1. H{sub 2}O{sub 2}-assisted photocatalysis on flower-like rutile TiO{sub 2} nanostructures: Rapid dye degradation and inactivation of bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kőrösi, László, E-mail: ltkorosi@gmail.com [Research Institute for Viticulture and Oenology, University of Pécs, H-7634 Pécs, Pázmány Péter u. 4 (Hungary); Prato, Mirko; Scarpellini, Alice [Department of Nanochemistry, Istituto Italianodi Tecnologia, via Morego 30, 16163, Genova (Italy); Kovács, János [Department of Geology & Meteorology, University of Pécs, Ifjúság u. 6, H-7624, Pécs (Hungary); Environmental Analytical and Geoanalytical Research Group, Szentágothai Research Centre, University of Pécs, Ifjúság u. 20, H-7624, Pécs (Hungary); Dömötör, Dóra; Kovács, Tamás; Papp, Szilvia [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632, Pécs (Hungary)

    2016-03-01

    Graphical abstract: - Highlights: • Hierarchically assembled rutile TiO{sub 2} was synthesized at room temperature. • Hydrothermal treatment enhanced the crystallinity, while morphology was maintained. • Hydrothermal treatment also led to larger crystallites and a lower surface area. • Effective K. pneumoniae killing and MO degradation were achieved with the use of H{sub 2}O{sub 2}. • Higher crystallinity enhanced the reaction rate in the presence of H{sub 2}O{sub 2}. - Abstract: Hierarchically assembled flower-like rutile TiO{sub 2} (FLH-R-TiO{sub 2}) nanostructures were successfully synthesized from TiCl{sub 4} at room temperature without the use of surfactants or templates. An initial sol–gel synthesis at room temperature allowed long-term hydrolysis and condensation of the precursors. The resulting FLH-R-TiO{sub 2} possessed relatively high crystallinity (85 wt%) and consisted of rod-shaped subunits assembling into cauliflower-like nanostructures. Hydrothermal evolution of FLH-R-TiO{sub 2} at different temperatures (150, 200 and 250 °C) was followed by means of X-ray diffraction, transmission and scanning electron microscopy. These FLH-R-TiO{sub 2} nanostructures were tested as photocatalysts under simulated daylight (full-spectrum lighting) in the degradation of methyl orange and in the inactivation of a multiresistant bacterium, Klebsiella pneumoniae. The effects of hydrothermal treatment on the structure, photocatalytic behavior and antibacterial activity of FLH-R-TiO{sub 2} are discussed.

  2. Detection of free liquid in containers of solidified radioactive waste

    Science.gov (United States)

    Greenhalgh, W.O.

    Nondestructive detection of the presence of free liquid within a sealed enclosure containing solidified waste is accomplished by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solifified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

  3. Filling of recovered mining areas using solidifying backfill

    Directory of Open Access Journals (Sweden)

    Zeman Róbert

    2001-12-01

    Full Text Available The aim of this article is to explore the possibilities for filling recovered mining areas using solidifying backfill .The article describes the preparation of the backfill (backfill formulation with an eventual application using low quality sands, wastes from treatment plants and ash from power plants etc now to transport it as well as its application in practice. Advantageous and disadvantageous of this method are also mentioned.Several factors must be taken info consideration during the preparation process of the backfill mixture. Firstly, the quantities of each individual component must be constantly regulated. Secondly, the properties of each component must be respected. In addition, the needs of the pipeline transport system and the specific conditions of the recovered area to be filled must also be considered.Hydraulic transport and pneumo-hydraulic pipeline transport are used for handling the backfill. Pumps for transporting the solidifying backfill have to carry out demanding tasks.Due to the physical-mechanical properties of the backfill, only highly powerful pumps can be considered. Piston type pumps such as Abel Simplex and Duplex pumps with capacities of up to 100 m3.h-1 and operating pressures of up to 16 MPa would be suitable.This method has been applied abroad for different purposes. For example, solid backfill was used in the Hamr mine during exploitation of uranium using the room-and-pillar system mining method.In the Ostrava–Karvina Coal field, backfill was used in decontamination work, filling areas in a zone of dangerous deformations and for creating a dividing stratum during thick seam mining.Research info the use of solidifying backfill was also done in the Walsum mine in Germany. The aim of this research was:- to investigate the possibilities of filling a collapsing area in a working face using a solidifying mixture of power plant ash and water,- to verify whether towing pipelines proposed by the DMT corporation would be

  4. Study on dissolution behavior of molten solidified waste

    International Nuclear Information System (INIS)

    Mizuno, Tsuyoshi; Maeda, Toshikatsu

    2005-01-01

    Radioactive molten solidified waste (slag) has been generated by melting non-metallic low-level radioactive wastes (LLW). Slag is expected to immobilize radionuclides in the waste repository. The chemical durability of slag is an important factor for the safety assessment of the disposal in that the durability provides the source term in the assessment. Since a chemical characteristic of slag is similar to that of glass, the general information on the chemical durability of slag might be provided from previous studies on nuclear waste glass. We have investigated effects of chemical compositions of slag and alkaline environments of repository on the chemical durability of slag. (author)

  5. Leaching experiment of cement solidified waste form under unsaturated condition

    International Nuclear Information System (INIS)

    Wang Zhiming; Yao Laigen; Li Shushen; Zhao Yingjie; Cai Yun; Li Dan; Han Xinsheng; An Yongfeng

    2003-01-01

    A device for unsaturated leaching experiments was designed and built up. 8 different sizes, ranging from 40.2 cm 3 to 16945.5 cm 3 , of solidified waste form were tested in the experiment. 5 different water contents, from 0.15 to 0.40, were used for the experiment. The results show that the cumulative leaching fraction increases with water content when the sizes of the forms are equal to and less than 4586.7 cm 3 , for example, the ratios of the cumulative leaching fractions are between 1.24-1.41 under water content of 0.35 and 0.15 on 360 day of Teaching. It can also be seen that the cumulative leaching fraction under higher water content is close to that under saturated condition. The cumulative leaching fraction decreases with size of the form. Maximum leached depth of the solidified waste forms is about 2.25 cm after one year Teaching. Moreover, it has no clear effect on cumulative leaching fraction that sampling or non-sampling during the experiment

  6. Vessel for solidifying water-impermeable radioactive waste

    International Nuclear Information System (INIS)

    Kiuchi, Yoshimasa; Tamada, Shin; Suzuki, Yasushi.

    1993-01-01

    A blend prepared by admixing silica sand, alumina powder or glass fiber, as aggregates, to epoxy resin elastic adhesives is coated on an inner surface of a steel drum can or an inner surface of a concrete vessel at a thickness of greater than 1mm followed by hardening. The addition amount of the silica sand, alumina powder or glass fiber is determined as 20 to 40% by weight, 30 to 60% by weight or 5 to 15% by weight respectively. A lid having a hole for injecting fillers is previously bonded to a container for use in solidifying radioactive materials. The strength of the coating layer is increased and a coating performance and an adhesion force are improved by admixing the aggregates, to provide a satisfactory water-impermeability. The container for use in solidifying radioactive wastes having a coating layer with an advantage of the elastic resin adhesives, strong strength and adhesion and being excellent in the water-impermeability can be obtained relatively economically. (N.H.)

  7. Features of Crystallization of Rapidly Quenched Ni45Ti32Hf18Cu5 and Ni25Ti32Hf18Cu25 Alloys from Melt with High-Temperature Shape Memory Effect

    Science.gov (United States)

    Pushin, A. V.; Pushin, V. G.; Kuntsevich, T. E.; Kuranova, N. N.; Makarov, V. V.; Uksusnikov, A. N.; Kourov, N. I.

    2017-12-01

    A comparative study of the structure and the chemical and phase composition of Ni45Ti32Hf18Cu5 and Ni25Ti32Hf18Cu25 amorphous alloys obtained by fast-quenching of melt stream by spinning has been carried out by transmission and scanning electron microscopy and X-ray diffraction. The critical temperatures of their devitrification were determined by the data of temperatures measurements of electrical resistance. The features of the formation of ultrafine structure and the phase transformation at the vitrification depending on the regimes of heat treatment and chemical composition of alloy have been established.

  8. Effects of leachate concentration on the integrity of solidified clay liners.

    Science.gov (United States)

    Xue, Qiang; Zhang, Qian

    2014-03-01

    This study aimed to evaluate the impact of landfill leachate concentration on the degradation behaviour of solidified clay liners and to propose a viable mechanism for the observed degradation. The results indicated that the unconfined compressive strength of the solidified clay decreased significantly, while the hydraulic conductivity increased with the leachate concentration. The large pore proportion in the solidified clay increased and the sum of medium and micro pore proportions decreased, demonstrating that the effect on the solidified clay was evident after the degradation caused by exposure to landfill leachate. The unconfined compressive strength of the solidified clay decreased with increasing leachate concentration as the leachate changed the compact structure of the solidified clay, which are prone to deformation and fracture. The hydraulic conductivity and the large pore proportion of the solidified clay increased with the increase in leachate concentration. In contrast, the sum of medium and micro pore proportions showed an opposite trend in relation to leachate concentration, because the leachate gradually caused the medium and micro pores to form larger pores. Notably, higher leachate concentrations resulted in a much more distinctive variation in pore proportions. The hydraulic conductivity of the solidified clay was closely related to the size, distribution, and connection of pores. The proportion of the large pores showed a positive correlation with the increase of hydraulic conductivity, while the sum of the proportions of medium and micro pores showed a negative correlation.

  9. Development of precipitation strengthened brass with Ti and Sn alloying elements additives by using water atomized powder via powder metallurgy route

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shufeng, E-mail: shufengli@hotmail.com [Joining and Welding Research Institute, Osaka University, Osaka (Japan); Imai, Hisashi; Kondoh, Katsuyoshi [Joining and Welding Research Institute, Osaka University, Osaka (Japan); Kojima, Akimichi; Kosaka, Yoshiharu [San-Etsu Metals Co. LTD., 1892 OHTA, Tonami, Toyama (Japan); Yamamoto, Koji; Takahashi, Motoi [Nippon Atomized Metal Powders Corporation, 87-16, Nishi-Sangao, Noda, Chiba (Japan)

    2012-08-15

    Effect of Ti and Sn alloying elements on microstructure and mechanical properties of 60/40 brass has been studied via the powder metallurgy (P/M) route. The water-atomized BS40-0.6Sn1.0Ti (Cu40wt%Zn-0.6wt%Sn1.0wt%Ti) pre-alloyed powder was consolidated at various temperatures within range of 400-600 Degree-Sign C using spark plasma sintering (SPS) and hot extrusion was carried out at 500 Degree-Sign C. Effects of extrusion temperature on microstructure and tensile strength were investigated by employing SEM-EDS/EBSD, TEM, XRD and tensile test. Results indicated that super-saturated solid solution Ti and Sn elements created high chemical potential for a precipitate reaction in rapidly solidified brass powder, which showed significant strengthening effects on the extruded sample consolidated at lower temperature. Solid solubility of Ti in brass matrix decreased with increasing of sintering temperature, thus resulted in degradation of mechanical properties. Consequently, lower hot processing temperature is necessary to obtain excellent mechanical properties for BS40-0.6Sn1.0Ti during sintering and extrusion. An yield strength of 398 MPa and ultimate tensile strength of 615 MPa were achieved, they respectively showed 31.3% and 22.9% higher values than those of extruded Cu40Zn brass. -- Graphical abstract: The Ti and Sn alloying elements additions showed significant grain refinement on Cu40Zn-0.6Sn1.0Ti brass (b) as comparing with that of the conventional Cu40Zn brass (a), detected by electron backscatter diffraction (EBSD) technique. The grain boundaries maps of (a) BS40 (b) BS40-0.6Sn1.0Ti SPS compact sintered at 400 Degree-Sign C reveals by electron backscatter diffraction (EBSD) technique. Highlights: Black-Right-Pointing-Pointer Alloying elements Ti and Sn are proposed as additives in 60/40 brass. Black-Right-Pointing-Pointer Super-saturated Ti in powder creates high chemical potential for precipitation. Black-Right-Pointing-Pointer CuSn{sub 3}Ti{sub 5

  10. Effective hydrogen diffusion coefficient for solidifying aluminium alloys

    International Nuclear Information System (INIS)

    Felberbaum, M.; Landry-Desy, E.; Weber, L.; Rappaz, M.

    2011-01-01

    An effective hydrogen diffusion coefficient has been calculated for two solidifying Al - 4.5 wt.% Cu and Al - 10 wt.% Cu alloys as a function of the volume fraction of solid. For this purpose, in situ X-ray tomography was performed on these alloys. For each volume fraction of solid between 0.6 and 0.9, a representative volume element of the microstructure was extracted. Solid and liquid voxels were assimilated to solid and liquid nodes in order to solve the hydrogen diffusion equation based on the chemical potential and using a finite volume formulation. An effective hydrogen diffusion coefficient based on the volume fraction of solid only could be deduced from the results of the numerical model at steady state. The results are compared with various effective medium theories.

  11. Particle Trapping and Banding in Rapid Colloidal Solidification

    KAUST Repository

    Elliott, J. A. W.

    2011-10-11

    We derive an expression for the nonequilibrium segregation coefficient of colloidal particles near a moving solid-liquid interface. The resulting kinetic phase diagram has applications for the rapid solidification of clay soils, gels, and related colloidal systems. We use it to explain the formation of bandlike defects in rapidly solidified alumina suspensions. © 2011 American Physical Society.

  12. Structure fields in the solidifying cast iron roll

    Directory of Open Access Journals (Sweden)

    W.S. Wołczyński

    2010-01-01

    Full Text Available Some properties of the rolls depend on the ratio of columnar structure area to equiaxed structure area created during roll solidification. The transition is fundamental phenomenon that can be apply to characterize massive cast iron rolls produced by the casting house. As the first step of simulation, a temperature field for solidifying cast iron roll was created. The convection in the liquid is not comprised since in the first approximation, the convection does not influence the studied occurrence of the (columnar to equiaxed grains transition in the roll. The obtained temperature field allows to study the dynamics of its behavior observed in the middle of the mould thickness. This midpoint of the mould thickness was treated as an operating point for the transition. A full accumulation of the heat in the mould was postulated for the transition. Thus, a plateau at the curve was observed at the midpoint. The range of the plateau existence corresponded to the incubation period , that appeared before fully equiaxed grains formation. At the second step of simulation, behavior of the thermal gradients field was studied. Three ranges within the filed were visible: EC→EC→EC→EC→(tTECtt↔RERCtt↔a/ for the formation of columnar structure (the C – zone: ( and 0>>T&0>>=−>−=REREttGttG.The columnar structure formation was significantly slowed down during incubation period. It resulted from a competition between columnar growth and equiaxed growth expected at that period of time. The 0≈=−=RERCttGttG relationship was postulated to correspond well with the critical thermal gradient, known in the Hunt’s theory. A simulation was performed for the cast iron rolls solidifying as if in industrial condition. Since the incubation divides the roll into two zones: C and E; (the first with columnar structure and the second with fully equiaxed structure some experiments dealing with solidification were made on semi-industrial scale.

  13. Effect of TiC additions to the microstructure and magnetic properties of Nd9.5Fe84.5B6 melt-spun ribbons

    International Nuclear Information System (INIS)

    Kramer, M.J.; Li, C.P.; Dennis, K.W.; McCallum, R.W.; Sellers, C.H.; Branagan, D.J.; Lewis, L.H.; Wang, J.Y.

    1998-01-01

    Rapidly solidified samples of Nd 9.5 Fe 84.5 B 6 with and without 3 at.% TiC were prepared by melt spinning and melt extraction and then annealed in vacuum (3x10 -6 Torr) at temperatures from 600 to 750 degree C. For alloys melt spun under similar conditions, the overquenched state was achieved at wheel speeds >10 m/s for the TiC added alloy while >20 m/s was necessary without TiC. The overquenched samples contained a smaller fraction of α-Fe in smaller grains than the undercooled samples where Fe dendrites formed near the free surface during solidification. These Fe dendrites were not removed by annealing. In addition, large orientated 2-14-1 grains nucleated on the Fe dendrites. This combination is detrimental to the magnetic properties. The addition of TiC results in improved control of the microstructure over a larger fraction of the ribbon volume enhancing the magnetic properties. copyright 1998 American Institute of Physics

  14. Study of vibrational and rapid local motions of hydrogen in the storage compound Ti0.8 Zr0.2 CrMnH3 by slow neutron scattering

    International Nuclear Information System (INIS)

    Mestnik Filho, J.

    1987-01-01

    The vibrational and the rapid local motions of hydrogen in the storage compound Ti 0,8 Zr 0,2 CrMnH 3 have been studied by slow neutron scattering with the beryllium-filter-time-of-flight spectrometer. The form of the density of states of the normal modes of vibrations in host metal does no appear to change on hydrogenation, but a shift of 25% towards lower frequencies has been observed. Debye temperatures for the metal and corresponding hydride have been estimated to be respectively (522 +- 15)K and (311 +- 10)K. An energy distribution consisting of three peeks ∼ 50mev (FWHM) wide corresponding to the energy transfer of 85, 115 and 141mev has been observed and were attributed to hydrogen local vibrations in three types of interstices wich differs in composition of Ti and Zr atoms. In the quasielastic scattering, a broadening of 15μev has been detected for the momentum transfer Q = 2,1(angstrom) -1 and for temperature T= 125 0 C. The broadening has been attributed to rapid local motions of hydrogen in a dumb-bell of lenght equal to the jump lenght for diffusion, l approx. 3(angstrom). (author) [pt

  15. Synthesis of Y2O3 particle enhanced Ni/TiC composite on TC4 Ti alloy by laser cladding%TC4钛合金表面激光熔覆法制备Y2O3颗粒增强Ni/TiC复合涂层

    Institute of Scientific and Technical Information of China (English)

    张可敏; 邹建新; 李军; 于治水; 王慧萍

    2012-01-01

    A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding.The phase component,microstructure,composition distribution and properties of the composite layer were investigated.The composite layer has graded microstructures and compositions,due to the fast melting followed by rapid solidification and cooling during laser cladding.The TiC powders are completely dissolved into the melted layer during melting and segregated as fine dendrites when solidified.The size of TiC dendrites decreases with increasing depth.Y2O3 fine particles distribute in the whole clad layer.The Y2O3 particle enhanced Ni/TiC composite layer has a quite uniform hardness along depth with a maximum value of HV1380,which is 4 times higher than the initial hardness.The wear resistance of the Ti alloy is significantly improved after laser cladding due to the high hardness of the composite coating.%采用激光熔覆法在TC4钛合金表面原位制备Y2O3颗粒增强Ni/TiC复合涂层,研究涂层的相组成、微结构、成分分布及性能.结果表明,复合涂层内的微结构和成分在深度方向具有分层现象,这主要是由激光熔覆过程的快速熔凝和冷却过程所致.在激光熔覆过程中,TiC粉末完全熔化并在凝固过程中析出为细小枝晶,这些TiC枝晶的尺寸随着深度的增加而减小,而Y2O3颗粒则分布在整个重熔层中.Y2O3颗粒增强Ni/TiC复合涂层具有较均匀的硬度,其最高值约为HV1380,比基体高4倍以上.由于复合涂层具有高的硬度,钛合金经过激光熔覆后其耐磨性得到大幅度提高.

  16. Printing low-melting-point alloy ink to directly make a solidified circuit or functional device with a heating pen.

    Science.gov (United States)

    Wang, Lei; Liu, Jing

    2014-12-08

    A new method to directly print out a solidified electronic circuit through low-melting-point metal ink is proposed. A functional pen with heating capability was fabricated. Several typical thermal properties of the alloy ink Bi 35 In 48.6 Sn 16 Zn 0.4 were measured and evaluated. Owing to the specifically selected melting point of the ink, which is slightly higher than room temperature, various electronic devices, graphics or circuits can be manufactured in a short period of time and then rapidly solidified by cooling in the surrounding air. The liquid-solid phase change mechanism of the written lines was experimentally characterized using a scanning electron microscope. In order to determine the matching substrate, wettability between the metal ink Bi 35 In 48.6 Sn 16 Zn 0.4 and several materials, including mica plate and silicone rubber, was investigated. The resistance-temperature curve of a printed resistor indicated its potential as a temperature control switch. Furthermore, the measured reflection coefficient of a printed double-diamond antenna accords well with the simulated result. With unique merits such as no pollution, no requirement for encapsulation and easy recycling, the present printing approach is an important supplement to current printed electronics and has enormous practical value in the future.

  17. Analysis of a Rapidly Solidified High-Phosphorus Austenitic Steel Containing an Amorphous Phase.

    Science.gov (United States)

    1981-12-01

    electrodeposited nickel by a combination of Jet electro- polishing and ion-beam milling. Specimens were observed in a Vacuum Generators HB-5 scanning...the cell walls in these powders is one of suppressed crystal growth rather than nucleation , since the glass is formed in direct contact with the...Cohen, this Symposium. 5. T. F. Kelly, Ph.D. Thesis , MIT, February 1982. 6. C. V. Thompson, A. L. Greer, and A. J. Drehman, Proc. 4th Intl. Conf

  18. The relation between experiments and modeling of rapidly solidified 12Cr-Mo-V stainless steel

    DEFF Research Database (Denmark)

    Pryds, Nini; Hattel, Jesper Henri

    1998-01-01

    Solidification during melt spinning of a 12Cr-Mo-V stainless steel has been experimentally studied and numerically simulated. The resulting microstructures have been related to the unknown parameter h, i.e. the heat transfer coefficient between the substrate and the melt, by fitting the heat flow...... of metastable austenite as the primary phase near the chill side of the ribbon. Upon quenching to room temperature, this austenite transformed into martensite. At a distance of about 15 mu m from the chill surface, the growth velocity of the solid/liquid interface decreased (

  19. Age hardening in rapidly solidified and hot isostatically pressed beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Carter, D.H.; McGeorge, A.C.; Jacobson, L.A.; Stanek, P.W.

    1995-01-01

    Three different alloys of beryllium, aluminum and silver were processed to powder by centrifugal atomization in a helium atmosphere. Alloy compositions were, by weight, 50% Be, 47.5% Al, 2.5% Ag, 50% Be, 47% Al, 3% Ag, and 50% Be, 46% Al, 4% Ag. Due to the low solubility of both aluminum and silver in beryllium, the silver was concentrated in the aluminum phase, which appeared to separate from the beryllium in the liquid phase. A fine, continuous composite beryllium-aluminum microstructure was formed, which did not significantly change after hot isostatically pressing at 550 C for one hour at 30,000 psi argon pressure. Samples of HIP material were solution treated at 550 C for one hour, followed by a water quench. Aging temperatures were 150, 175, 200 and 225 C for times ranging from one half hour to 65 hours. Hardness measurements were made using a diamond pyramid indenter with a load of 1 kg. Results indicate that peak hardness was reached in 36--40 hours at 175 C and 12--16 hours at 200 C aging temperature, relatively independent of alloy composition

  20. Magnetocaloric properties of rapidly solidified Dy{sub 3}Co alloy ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez Llamazares, J. L., E-mail: jose.sanchez@ipicyt.edu.mx; Flores-Zúñiga, H.; Sánchez-Valdés, C. F. [Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055 Col. Lomas 4" a, San Luis Potosí, S.L.P. 78216 (Mexico); Álvarez-Alonso, Pablo [Departamento de Electricidad y Electrónica, UPV/EHU, 48940 Leioa (Spain); Lara Rodríguez, G. A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México, D. F. 04510 (Mexico); Fernández-Gubieda, M. L. [Departamento de Electricidad y Electrónica, UPV/EHU, 48940 Leioa (Spain); BC Materials, Camino de Ibaizabal, Edificio 500, Planta 1, Parque Científico y Tecnológico de Zamudio, 48160 Derio (Spain)

    2015-05-07

    The magnetic and magnetocaloric (MC) properties of melt-spun ribbons of the Dy{sub 3}Co intermetallic compound were investigated. Samples were fabricated in an Ar environment using a homemade melt spinner system at a linear speed of the rotating copper wheel of 40 ms{sup −1}. X-ray diffraction analysis shows that ribbons crystallize into a single-phase with the Fe{sub 3}C-type orthorhombic crystal structure. The M(T) curve measured at 5 mT reveals the occurrence of a transition at 32 K from a first to a second antiferromagnetic (AFM) state and an AFM-to-paramagnetic transition at T{sub N} = 43 K. Furthermore, a metamagnetic transition is observed below T{sub N}, but the magnetization change ΔM is well below the one reported for bulk alloys. Below 12 K, large inverse MC effect and hysteresis losses are observed. This behavior is related to the metamagnetic transition. For a magnetic field change of 5 T (2 T) applied along the ribbon length, the produced ribbons show a peak value of the magnetic entropy change ΔS{sub M}{sup peak} of −6.5 (− 2.1) Jkg{sup −1}K{sup −1} occurring close to T{sub N} with a full-width at half-maximum δT{sub FWHM} of 53 (37) K, and refrigerant capacity RC = 364 (83) Jkg{sup −1} (estimated from the product |ΔS{sub M}{sup peak}| × δT{sub FWHM})

  1. Microstructure and magnetic properties of rapidly solidified nanocrystalline Fe81Zr7B12 alloy

    International Nuclear Information System (INIS)

    Xiong, X.Y.; Muddle, B.C.; Finlayson, T.R.

    2000-01-01

    Full text: Nanocrystalline Fe-Zr-B alloys have aroused extensive research interest due to their high saturation magnetization. There have been several studies [Suzuki et al., 1994; Kim et al., 1994] of the effect of boron on the formation of nanocrystalline structure and magnetic properties, showing that the addition of boron to Fe-Zr alloys improves the glass-forming ability and refines the primary bcc α-Fe grains during crystallization. However, when the boron content is increased to 8 at.%, the magnetic permeability is observed to decrease. There has been no detailed work to date concerning the microstructural evolution and magnetic properties in those alloys with higher boron content

  2. Disorder trapping in Ni3(Al, Ti) by solidification from the undercooled melt

    International Nuclear Information System (INIS)

    Goetzinger, R.; Kurz, W.

    1997-01-01

    Modelling of rapid solidification predicts disorder trapping in the superlattice structure of Ni 3 Al. However, experimental investigations on this compound suffer from ambiguities concerning the solidification path. There is a phase selection competition between the ordered fcc γ'-phase (Ni 3 Al), the ordered bcc β-phase (NiAl), the disordered fcc γ-phase (Ni), the stable γ'/β eutectic and the metastable γ/β eutectic, and there are subsequent solid state transformations. A replacement of several at.% Al by Ti leads to a stabilization of the γ'-phase and to an avoidance of most of the problems encountered on Ni 3 Al. The experiments on Ni 3 (Al, Ti) presented here clearly show the expected disordered crystallization from the undercooled melt. This was proven by measuring the dendrite growth velocity of electromagnetically levitated droplets and by analysing the data in the framework of dendrite and kinetic growth models. Complementary microstructural investigations were performed on the as-solidified samples. (orig.)

  3. Solidified structure of Al-Pb-Cu alloys

    International Nuclear Information System (INIS)

    Ikeda, Tetsuyuki; Nishi, Seiki; Kumeuchi, Hiroyuki; Tatsuta, Yoshinori.

    1986-01-01

    Al-Pb-Cu alloys were cast into bars or plates in different two metal mold casting processes in order to suppress gravity segregation of Pb and to achieve homogeneous dispersion of Pb phase in the alloys. Solidified structures were analyzed by a video-pattern-analyzer. Plate castings 15 to 20 mm in thickness of Al-Pb-1 % Cu alloy containing Pb up to 5 % in which Pb phase particles up to 10 μm disperse are achieved through water cooled metal mold casting. The plates up to 5 mm in thickness containing Pb as much as 8 to 10 % cast in this process have dispersed Pb particles up to 5 μm in diameter in the surface layer. Al-8 % Pb-1 % Cu alloy bars 40 mm in diameter and 180 mm in height in which gravity segregation of Pb is prevented can be cast by movable and water sprayed metal mold casting at casting temperature 920 deg C and mold moving speed 1.0 mm/s. Pb phase particles 10 μm in mean size are dispersed in the bars. (author)

  4. Characteristics of solidified products containing radioactive molten salt waste.

    Science.gov (United States)

    Park, Hwan-Seo; Kim, In-Tae; Cho, Yong-Zun; Eun, Hee-Chul; Kim, Joon-Hyung

    2007-11-01

    The molten salt waste from a pyroprocess to recover uranium and transuranic elements is one of the problematic radioactive wastes to be solidified into a durable wasteform for its final disposal. By using a novel method, named as the GRSS (gel-route stabilization/solidification) method, a molten salt waste was treated to produce a unique wasteform. A borosilicate glass as a chemical binder dissolves the silicate compounds in the gel products to produce one amorphous phase while most of the phosphates are encapsulated by the vitrified phase. Also, Cs in the gel product is preferentially situated in the silicate phase, and it is vitrified into a glassy phase after a heat treatment. The Sr-containing phase is mainly phosphate compounds and encapsulated by the glassy phase. These phenomena could be identified by the static and dynamic leaching test that revealed a high leach resistance of radionuclides. The leach rates were about 10(-3) - 10(-2) g/m2 x day for Cs and 10(-4) - 10(-3) g/m2 x day for Sr, and the leached fractions of them were predicted to be 0.89% and 0.39% at 900 days, respectively. This paper describes the characteristics of a unique wasteform containing a molten salt waste and provides important information on a newly developed immobilization technology for salt wastes, the GRSS method.

  5. Site suitability criteria for solidified high level waste repositories

    International Nuclear Information System (INIS)

    Heckman, R.A.; Holdsworth, T.; Isherwood, D.; Towse, D.F.; Dayem, N.L.

    1979-01-01

    The NRC is developing a framework of regulations, criteria, and standards. Lawrence Livermore Laboratory provides broad technical support to the NRC for developing this regulatory framework, part of which involves site suitability criteria for solidified high-level wastes (SHLW). Both the regulatory framework and the technical base on which it rests have evolved in time. This document is the second report of the technical support project. It was issued as a draft working paper for a programmatic review held at LLL from August 16 to 18, 1977. It was printed and distributed solely as a briefing document on preliminary methodology and initial findings for the purpose of critical review by those in attendance. These briefing documents are being reprinted now in their original formats as UCID-series reports for the sake of the historical record. Analysis results have evolved as both the models and data base have changed. As a result, the methodology, models, and data base in this document are severely outmoded

  6. A new technology for concentrating and solidifying liquid LLRW

    Energy Technology Data Exchange (ETDEWEB)

    Newell, N. [TMC, Inc., Portland, OR (United States); Osborn, M.W.; Carey, C.C. [Oregon Health Sciences Univ., Portland, OR (United States)] [and others

    1995-12-31

    One of the unsolved problem areas of low level radioactive waste management is the radiolabeled material generated by life sciences research and clinical diagnostics. In hundreds of academic, biotechnology, and pharmaceutical institutions, there exists large amounts of both aqueous and organic solutions containing radioactively labeled nucleic acids, proteins, peptides, and their monomeric components. We have invented a generic slurry capable of binding all these compounds, thus making it possible to concentrate and solidify the radioactive molecules into a very small and lightweight material. The slurry can be contained in both large and small disposal plastic devices designed for the size of any particular operation. The savings in disposal costs and convenience of this procedure is a very attractive alternative to the present methods of long and short term storage. Additionally, the slurry can remove radiolabeled biological compounds from organic solvents, thus solving the major problem of {open_quotes}mixed{close_quotes} waste. We are now proceeding with the field application stage for the testing of these devices and anticipate widespread use of the process. We also are exploring the use of the slurry on other types of liquid low level radioactive waste.

  7. Fabrication and Mechanical Properties of TiC/TiAl Composites

    Institute of Scientific and Technical Information of China (English)

    YUE Yun-long; GONG Yan-sheng; WU Hai-tao; WANG Chuan-bin; ZHANG Lian-meng

    2004-01-01

    TiC/TiAl composites with different TiC content were fabricated by rapid heating technique ofspark plasma sintering (SPS). The effect of TiC particles on microstructure and mechanical properties of TiAl matrix was investigated. The results indicate that grain sizes of TiAl matrix decrease and mechanical properties are improved because of the addition of TiC particles. The composites display a 26.8% increase in bending strength when10wt% TiC is added and 43.8% improvement in fracture toughness when 5 wt % TiC is added compared to valuesof TiC-free materials. Grain-refinement and dispersion-strengthening were the main strengthening mechanism. Theimprovement of fracture toughness was due to the deflexion of TiC particles to the crack.

  8. Solidified self-nanoemulsifying formulation for oral delivery of combinatorial therapeutic regimen

    DEFF Research Database (Denmark)

    Jain, Amit K; Thanki, Kaushik; Jain, Sanyog

    2014-01-01

    PURPOSE: The present work reports rationalized development and characterization of solidified self-nanoemulsifying drug delivery system for oral delivery of combinatorial (tamoxifen and quercetin) therapeutic regimen. METHODS: Suitable oil for the preparation of liquid SNEDDS was selected based...

  9. Welding and Weldability of Directionally Solidified Single Crystal Nickel-Base Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Vitek, J M; David, S A; Reed, R W; Burke, M A; Fitzgerald, T J

    1997-09-01

    Nickel-base superalloys are used extensively in high-temperature service applications, and in particular, in components of turbine engines. To improve high-temperature creep properties, these alloys are often used in the directionally-solidified or single-crystal form. The objective of this CRADA project was to investigate the weldability of both experimental and commercial nickel-base superalloys in polycrystalline, directionally-solidified, and single-crystal forms.

  10. Polarization-independent rapidly tunable optical add-drop multiplexer utilizing non-polarizing beam splitters in Ti:LiNbO3

    Science.gov (United States)

    Shin, Yong-Wook; Sung, Won Ju; Eknoyan, O.; Madsen, C. K.; Taylor, H. F.

    2012-04-01

    A polarization-independent four-port wavelength-tunable optical add drop multiplexer (OADM) that utilizes non-polarizing relaxed beam splitters has been analyzed and demonstrated in Ti:LiNbO3 at the 1530 nm wavelength regime. The design utilizes an asymmetric interferometer configuration with strain induced index grating for polarization coupling along its arms that are shifted in position relative to each other. Experimental results of the filter response agree with theoretical predictions. Electrooptic tuning over a range of 15.7 nm at a rate of 0.08 nm/V has been measured. A temporal response < 46 ns to a 20 V step change in tuning voltage has been demonstrated. Fiber-to-fiber insertion loss is ~ 6.5 dB.

  11. Containment of solidified liquid hazardous waste in domal salt

    International Nuclear Information System (INIS)

    Domenico, P.A.; Lerman, A.

    1992-01-01

    In recent years, the solidification of hazardous liquid waste has become a viable option in waste management. The solidification process results in an increased volume but more stable waste form that must be disposed of or stored in a dry environment. An environment of choice in south central Texas is domal salt. The salt dome currently under investigation has a water content of 0.002 percent by weight and a permeability less than one nanodarcy. A question that must be addressed is whether a salt dome has a particular set of attributes that will prevent the release of contaminants to the environment. From a regulatory perspective, a ''no migration'' petition must be approved by the U.S.E.P.A. for the containment facility. By ''no migration'' it is implied that the waste must be contained for 10,000 years. A demonstration that this condition will be met will require model calculations and such models must be based on the physical and chemical characteristics of the waste form and the geologic environment. In particular, the models must address the rate of brine infiltration into the caverns, providing information on how fast an immobile solid waste form could convert to a more mobile liquid state. Additionally, the potential for migration by both diffusion and advection is of concern. Lastly, given a partially saturated cavern, the question of how far gaseous waste will be transported over the 10,000 year containment period must also be addressed. Results indicate that the containment capabilities of domal salt are exceptional. A nominal volume of brine will seep into the cavern and most voids between the injected solidified waste pellets will remain unsaturated. Very small quantities of hazardous constituents will be leached from the waste pellets

  12. Measurements of Mercury Released from Solidified/Stabilized Waste Forms

    International Nuclear Information System (INIS)

    Mattus, C.H.

    2001-01-01

    This report covers work performed during FY 1999-2000 in support of treatment demonstrations conducted for the Mercury Working Group of the U.S. Department of Energy (DOE) Mixed Waste Focus Area. In order to comply with the requirements of the Resource Conservation and Recovery Act, as implemented by the U.S. Environmental Protection Agency (EPA), DOE must use one of these procedures for wastes containing mercury at levels above 260 ppm: a retorting/roasting treatment or an incineration treatment (if the wastes also contain organics). The recovered radioactively contaminated mercury must then be treated by an amalgamation process prior to disposal. The DOE Mixed Waste Focus Area and Mercury Working Group are working with the EPA to determine if some alternative processes could treat these types of waste directly, thereby avoiding for DOE the costly recovery step. They sponsored a demonstration in which commercial vendors applied their technologies for the treatment of two contaminated waste soils from Brookhaven National Laboratory. Each soil was contaminated with ∼4500 ppm mercury; however, one soil had as a major radioelement americium-241, while the other contained mostly europium-152. The project described in this report addressed the need for data on the mercury vapor released by the solidified/stabilized mixed low-level mercury wastes generated during these demonstrations as well as the comparison between the untreated and treated soils. A related work began in FY 1998, with the measurement of the mercury released by amalgamated mercury, and the results were reported in ORNL/TM-13728. Four treatments were performed on these soils. The baseline was obtained by thermal treatment performed by SepraDyne Corp., and three forms of solidification/stabilization were employed: one using sulfur polymer cement (Brookhaven National Laboratory), one using portland cement [Allied Technology Group (ATG)], and a third using proprietary additives (Nuclear Fuel Services)

  13. The dynamics of TiN{sub x} (x = 1–3) admolecule interlayer and intralayer transport on TiN/TiN(001) islands

    Energy Technology Data Exchange (ETDEWEB)

    Edström, D., E-mail: daned@ifm.liu.se [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping (Sweden); Sangiovanni, D.G.; Hultman, L. [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping (Sweden); Petrov, I.; Greene, J.E. [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping (Sweden); Frederick Seitz Materials Research Laboratory and the Materials Science Department, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Chirita, V. [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping (Sweden)

    2015-08-31

    It has been shown both experimentally and by density functional theory calculations that the primary diffusing species during the epitaxial growth of TiN/TiN(001) are Ti and N adatoms together with TiN{sub x} complexes (x = 1, 2, 3), in which the dominant N-containing admolecule species depends upon the incident N/Ti flux ratio. Here, we employ classical molecular dynamics (CMD) simulations to probe the dynamics of TiN{sub x} (x = 1–3) admolecules on 8 × 8 atom square, single-atom-high TiN islands on TiN(001), as well as pathways for descent over island edges. The simulations are carried out at 1000 K, a reasonable epitaxial growth temperature. We find that despite their lower mobility on infinite TiN(001) terraces, both TiN and TiN{sub 2} admolecules funnel toward descending steps and are incorporated into island edges more rapidly than Ti adatoms. On islands, TiN diffuses primarily via concerted translations, but rotation is the preferred diffusion mechanism on infinite terraces. TiN{sub 2} migration is initiated primarily by rotation about one of the N admolecule atoms anchored at an epitaxial site. TiN admolecules descend from islands by direct hopping over edges and by edge exchange reactions, while TiN{sub 2} trimers descend exclusively by hopping. In contrast, TiN{sub 3} admolecules are essentially stationary and serve as initiators for local island growth. Ti adatoms are the fastest diffusing species on infinite TiN(001) terraces, but on small TiN/TiN(001) islands, TiN dimers provide more efficient mass transport. The overall results reveal the effect of the N/Ti precursor flux ratio on TiN(001) surface morphological evolution and growth modes. - Highlights: • Classical MD is used to model TiN{sub x} admolecule dynamics on TiN/TiN(001) islands. • TiN{sub x} admolecules descend from islands by both direct hopping and exchange reactions. • TiN and TiN{sub 2} exhibit surprisingly high diffusivities on TiN/TiN(001) islands. • TiN{sub 3} tetramers are

  14. On confirmation of abandonment of imported waste (glass solidified bodies) outside business places

    International Nuclear Information System (INIS)

    1996-01-01

    Electric power companies entrust the reprocessing of spent fuel generated from nuclear power stations to COGEMA in France, and in April, 1995, 28 high level radioactive wastes (glass solidified bodies) generated by the reprocessing were returned. When these glass solidified wastes are abandoned in the waste management facility of Japan Nuclear Fuel Service Co., it was decided to receive the confirmation of the prime minister on the measures based on the relevant law. Four electric power companies submitted the application and the explanation paper. As to the contents of the glass solidified wastes, the technical inspection was carried out by Bureau Veritas. Considering that this import of glass solidified wastes is the first in Japan, Science and Technology Agency carried out the measurement of all 28 wastes. The results are reported. It was confirmed that the measures for the abandonment taken by four electric power companies conform to the stipulation. The contents of the confirmation are reported in the order of the stipulation. These wastes were solidified with borosilicate glass in 5 mm thick stainless steel vessels, and the welding was done properly. (K.I.)

  15. Reactive Ni/Ti nanolaminates

    International Nuclear Information System (INIS)

    Adams, D. P.; Bai, M. M.; Rodriguez, M. A.; McDonald, J. P.; Jones, E. Jr.; Brewer, L.; Moore, J. J.

    2009-01-01

    Nickel/titanium nanolaminates fabricated by sputter deposition exhibited rapid, high-temperature synthesis. When heated locally, self-sustained reactions were produced in freestanding Ni/Ti multilayer foils characterized by average propagation speeds between ∼0.1 and 1.4 m/s. The speed of a propagating reaction front was affected by total foil thickness and bilayer thickness (layer periodicity). In contrast to previous work with compacted Ni-Ti powders, no preheating of Ni/Ti foils was required to maintain self-propagating reactions. High-temperature synthesis was also stimulated by rapid global heating demonstrating low ignition temperatures (T ig )∼300-400 deg. C for nanolaminates. Ignition temperature was influenced by bilayer thickness with more coarse laminate designs exhibiting increased T ig . Foils reacted in a vacuum apparatus developed either as single-phase B2 cubic NiTi (austenite) or as a mixed-phase structure that was composed of monoclinic B19 ' NiTi (martensite), hexagonal NiTi 2 , and B2 NiTi. Single-phase, cubic B2 NiTi generally formed when the initial bilayer thickness was made small.

  16. Effects of Microalloying on the Microstructures and Mechanical Properties of Directionally Solidified Ni-33(at.%)Al-31Cr-3Mo Eutectic Alloys Investigated

    Science.gov (United States)

    Whittenberger, J. Daniel; Raj, Sai V.; Locci, Ivan E.; Salem, Jonathan A.

    2002-01-01

    Despite nickel aluminide (NiAl) alloys' attractive combination of oxidation and thermophysical properties, their development as replacements for superalloy airfoils in gas turbine engines has been largely limited by difficulties in developing alloys with an optimum combination of elevated-temperature creep resistance and room-temperature fracture toughness. Alternatively, research has focused on developing directionally solidified NiAl-based in situ eutectic composites composed of NiAl and (Cr,Mo) phases in order to obtain a desirable combination of properties a systematic investigation was undertaken at the NASA Glenn Research Center to examine the effects of small additions of 11 alloying elements (Co, Cu, Fe, Hf, Mn, Nb, Re, Si, Ta, Ti, and Zr) in amounts varying from 0.25 to 1.0 at.% on the elevated-temperature strength and room-temperature fracture toughness of directionally solidified Ni-33Al-31Cr-3Mo eutectic alloy. The alloys were grown at 12.7 mm/hr, where the unalloyed eutectic base alloy exhibited a planar eutectic microstructure. The different microstructures that formed because of these fifth-element additions are included in the table. The additions of these elements even in small amounts resulted in the formation of cellular microstructures, and in some cases, dendrites and third phases were observed. Most of these elemental additions did not improve either the elevated-temperature strength or the room-temperature fracture toughness over that of the base alloy. However, small improvements in the compression strength were observed between 1200 and 1400 K when 0.5 at.% Hf and 0.25 at.% Ti were added to the base alloy. The results of this study suggest that the microalloying of Ni-33Al-31Cr-3Mo will not significantly improve either its elevatedtemperature strength or its room-temperature fracture toughness. Thus, any improvements in these properties must be acquired by changing the processing conditions.

  17. Refining of cast intermetallic alloy Ti - 43 % Al - X (Nb, Mo, B) microstructure using heat treatment

    International Nuclear Information System (INIS)

    Imaev, R.M.; Imaev, V.M.; Khismatullin, T.G.

    2006-01-01

    The microstructure and high temperature mechanical properties are studied in a cast alloy Ti - 43 % Al - X (Nb, Mo, B) using methods of optical and scanning electron microscopy, X ray spectrum microanalysis and differential thermal analysis. The alloy belongs to a new class of β-solidifying γ-TiAl+α 2 -Ti 3 Al alloys. The alloy is investigated as cast and after heat treatment that promotes grain refinement. Mechanical properties are determined on tensile tests at 1000 and 1100 deg C in the air [ru

  18. The relationship between viscosity and refinement efficiency of pure aluminum by Al-Ti-B refiner

    Energy Technology Data Exchange (ETDEWEB)

    Yu Lina [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, 73 Jingshi Road, Jinan 250061 (China); Liu Xiangfa [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, 73 Jingshi Road, Jinan 250061 (China)]. E-mail: xfliu@sdu.edu.cn

    2006-11-30

    The relationship between viscosity and refinement efficiency of pure aluminum with the addition of Al-Ti-B master alloy was studied in this paper. The experimental results show that when the grain size of solidified sample is finer the viscosity of the melt is higher after the addition of different Al-Ti-B master alloys. This indicates that viscosity can be used to approximately estimate the refinement efficiency of Al-Ti-B refiners in production to a certain extent. The main reason was also discussed in this paper by using transmission electron microscopy (TEM) analysis and differential scanning calorimetry (DSC) experiment.

  19. Primary Dendrite Arm Spacings in Al-7Si Alloy Directionally Solidified on the International Space Station

    Science.gov (United States)

    Angart, Samuel; Lauer, Mark; Poirier, David; Tewari, Surendra; Rajamure, Ravi; Grugel, Richard

    2015-01-01

    Samples from directionally solidified Al- 7 wt. % Si have been analyzed for primary dendrite arm spacing (lambda) and radial macrosegregation. The alloy was directionally solidified (DS) aboard the ISS to determine the effect of mitigating convection on lambda and macrosegregation. Samples from terrestrial DS-experiments thermal histories are discussed for comparison. In some experiments, lambda was measured in microstructures that developed during the transition from one speed to another. To represent DS in the presence of no convection, the Hunt-Lu model was used to represent diffusion controlled growth under steady-state conditions. By sectioning cross-sections throughout the entire length of a solidified sample, lambda was measured and calculated using the model. During steady-state, there was reasonable agreement between the measured and calculated lambda's in the space-grown samples. In terrestrial samples, the differences between measured and calculated lambda's indicated that the dendritic growth was influenced by convection.

  20. A Study on Factors Affecting Strength of Solidified Peat through XRD and FESEM Analysis

    Science.gov (United States)

    Rahman, J. A.; Napia, A. M. A.; Nazri, M. A. A.; Mohamed, R. M. S. R.; Al-Geethi, A. S.

    2018-04-01

    Peat is soft soil that often causes multiple problems to construction. Peat has low shear strength and high deformation characteristics. Thus, peat soil needs to be stabilized or treated. Study on peat stabilization has been conducted for decades with various admixtures and mixing formulations. This project intends to provide an overview of the solidification of peat soil and the factors that affecting the strength of solidified peat soil. Three types of peats which are fabric, hemic and sapric were used in this study to understand the differences on the effect. The understanding of the factors affecting strength of solidified peat in this study is limited to XRD and FESEM analysis only. Peat samples were collected at Pontian, Johor and Parit Raja, Johor. Peat soil was solidified using fly ash, bottom ash and Portland cement with two mixing formulation following literature review. The solidified peat were cured for 7 days, 14 days, 28 days and 56 days. All samples were tested using Unconfined Compressive Strength Test (UCS), X-ray diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM). The compressive strength test of solidified peat had shown consistently increase of sheer strength, qu for Mixing 1 while decrease of its compressive strength value for Mixing 2. All samples were tested and compared for each curing days. Through XRD, it is found that all solidified peat are dominated with pargasite and richterite. The highest qu is Fabric Mixing 1(FM1) with the value of 105.94 kPa. This sample were proven contain pargasite. Samples with high qu were observed to be having fly ash and bottom ash bound together with the help of pargasite. Sample with decreasing strength showed less amount of pargasite in it. In can be concluded that XRD and FESEM findings are in line with UCS values.

  1. Microstructure and mechanical properties of an Al–Mg alloy solidified under high pressures

    International Nuclear Information System (INIS)

    Jie, J.C.; Zou, C.M.; Brosh, E.; Wang, H.W.; Wei, Z.J.; Li, T.J.

    2013-01-01

    Highlights: •Al–42.2Mg alloy was solidified under pressures of 1, 2, and 3 GPa and the microstructure analyzed. •A thermodynamic calculation of the Al–Mg phase diagram at high pressures was performed. •The phase content changes from predominantly γ-Al 12 Mg 17 at 1 GPa to FCC solid solution at 3 GPa. •The β-Al 3 Mg 2 is predicted to remain stable at low temperatures but is not observed. •The alloy solidified at high pressure has remarkably enhanced ultimate tensile strength. -- Abstract: Phase formation, the microstructure and its evolution, and the mechanical properties of an Al–42.2 at.% Mg alloy solidified under high pressures were investigated. After solidification at pressures of 1 GPa and 2 GPa, the main phase is the γ phase, richer in Al than in equilibrium condition. When the pressure is further increased to 3 GPa, the main phase is the supersaturated Al(Mg) solid solution with Mg solubility up to 41.6 at.%. Unlike in similar alloys solidified at ambient pressure, the β phase does not appear. Calculated high-pressure phase diagrams of the Al–Mg system show that although the stability range of the β phase is diminished with pressure, it is still thermodynamically stable at room temperature. Hence, the disappearance of the β phase is interpreted as kinetic suppression, due to the slow diffusion rate at high pressures, which inhibits solid–solid reactions. The Al–42.2 at.% Mg alloy solidified under 3 GPa has remarkably enhanced ultimate tensile strength compared to the alloy solidified under normal atmospheric pressure

  2. Evaluating Primary Dendrite Trunk Diameters in Directionally Solidified Al-Si Alloys

    Science.gov (United States)

    Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2014-01-01

    The primary dendrite trunk diameters of Al-Si alloys that were directionally solidified over a range of processing conditions have been measured. These data are analyzed with a model based primarily on an assessment of secondary dendrite arm dissolution in the mushy zone. Good fit with the experimental data is seen and it is suggested that the primary dendrite trunk diameter is a useful metric that correlates well with the actual solidification processing parameters. These results are placed in context with the limited results from the aluminium - 7 wt. % silicon samples directionally solidified aboard the International Space Station as part of the MICAST project.

  3. Simple and rapid determination methods for low-level radioactive wastes generated from nuclear research facilities. Guidelines for determination of radioactive waste samples

    International Nuclear Information System (INIS)

    Kameo, Yutaka; Shimada, Asako; Ishimori, Ken-ichiro; Haraga, Tomoko; Katayama, Atsushi; Nakashima, Mikio; Hoshi, Akiko

    2009-10-01

    Analytical methods were developed for simple and rapid determination of U, Th, and several nuclides, which are selected as important nuclides for safety assessment of disposal of wastes generated from research facilities at Nuclear Science Research Institute and Oarai Research and Development Center. The present analytical methods were assumed to apply to solidified products made from miscellaneous wastes by plasma melting in the Advanced Volume Reduction Facilities. In order to establish a system to analyze the important nuclides in the solidified products at low cost and routinely, we have advanced the development of a high-efficiency non-destructive measurement technique for γ-ray emitting nuclides, simple and rapid methods for pretreatment of solidified product samples and subsequent radiochemical separations, and rapid determination methods for long-lived nuclides. In the present paper, we summarized the methods developed as guidelines for determination of radionuclides in the low-level solidified products. (author)

  4. A united refinement technology for commercial pure Al by Al-10Ti and Al-Ti-C master alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ma Xiaoguang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Liu Xiangfa [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)], E-mail: xfliu@sdu.edu.cn; Ding Haimin [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2009-03-05

    Because flake-like TiAl{sub 3} particles in Al-Ti-C master alloys prepared in a melt reaction method dissolve slowly when they are added into Al melt at 720 deg. C, Ti atoms cannot be released rapidly to play the assistant role of grain refinement, leading to a poor refinement efficiency of Al-Ti-C master alloys. A united refinement technology by Al-10Ti and Al-Ti-C master alloys was put forward in this paper. The rational combination of fine blocky TiAl{sub 3} particles in Al-10Ti and TiC particles in Al-Ti-C can improve the nucleation rate of {alpha}-Al. It not only improves the grain refinement efficiency of Al-Ti-C master alloys, but also reduces the consumption.

  5. A united refinement technology for commercial pure Al by Al-10Ti and Al-Ti-C master alloys

    International Nuclear Information System (INIS)

    Ma Xiaoguang; Liu Xiangfa; Ding Haimin

    2009-01-01

    Because flake-like TiAl 3 particles in Al-Ti-C master alloys prepared in a melt reaction method dissolve slowly when they are added into Al melt at 720 deg. C, Ti atoms cannot be released rapidly to play the assistant role of grain refinement, leading to a poor refinement efficiency of Al-Ti-C master alloys. A united refinement technology by Al-10Ti and Al-Ti-C master alloys was put forward in this paper. The rational combination of fine blocky TiAl 3 particles in Al-10Ti and TiC particles in Al-Ti-C can improve the nucleation rate of α-Al. It not only improves the grain refinement efficiency of Al-Ti-C master alloys, but also reduces the consumption

  6. Radiochemical analysis of homogeneously solidified low level radioactive waste from nuclear power plants

    International Nuclear Information System (INIS)

    Sato, Kaneaki; Ikeuchi, Yoshihiro; Higuchi, Hideo

    1995-01-01

    As mentioned above, we have reliable radioanalytical methods for all kinds of homogeneously solidified wastes. We are now under studying an analytical method for pellets which are made from evaporator concentrates or resin. And we are going to study to establish new analytical method for the rad-waste including metal, cloths and so on in near future. (J.P.N.)

  7. Evaluation of Carbonation Effects on Cement-Solidified Contaminated Soil Used in Road Subgrade

    Directory of Open Access Journals (Sweden)

    Yundong Zhou

    2018-01-01

    Full Text Available Cement solidification/stabilization is widely used towards contaminated soil since it has a low price and significant improvement for the structural capacity of soil. To increase the usage of the solidified matrix, cement-solidified contaminated soil was used as road subgrade material. In this study, carbonation effect that reflected the durability on strength characteristics of cement-solidified contaminated soil and the settlement of pavement were evaluated through experimental and numerical analysis, respectively. According to results, compressive strengths of specimens with 1% Pb(II under carbonation and standard curing range from 0.44 MPa to 1.17 MPa and 0.14 MPa to 2.67 MPa, respectively. The relatively low strengths were attributed to immobilization of heavy metal, which consumed part of SiO2, Al2O3, and CaO components in the cement or kaolin and reduced the hydration and pozzolanic reaction materials. This phenomenon further decreased the strength of solidified soils. The carbonation depth of 1% Cu(II or Zn(II contaminated soils was 18 mm, which significantly increased with the increase of curing time and contamination concentration. Furthermore, the finite element calculation results showed that surface settlements decreased with the increase of modulus of subgrade and the distance away from the center. At the center, the pavement settlement was proportional to the level of traffic load.

  8. Elution behavior of heavy metals from cement solidified products of incinerated ash waste - 59102

    International Nuclear Information System (INIS)

    Meguro, Yoshihiro; Kawato, Yoshimi; Nakayama, Takuya; Tomioka, Osamu; Mitsuda, Motoyuki

    2012-01-01

    A method, in which incinerated ash is solidified with a cement material, has been developed to dispose radioactive incinerated ash waste. In order to bury the solidified product, it is required that elution of hazardous heavy metals included in the ash from the solidified products is inhibited. In this study, the elution behavior of the heavy metals from the synthetic solidified products, which included Pb(II), Cd(II), and Cr(VI) and were prepared using ordinary portland cement (OPC), blast furnace slag cement (BFS), or a cement material that showed low alkalinity (LA-Cement), was investigated. Several chemicals and materials were added as additive agents to prevent the elution of the heavy metals. When OPC was used, Cd elution was inhibited, but Pb and Cr were not enough even using the additive agent examined. FeSO 4 and Na 2 S additive agents worked effective to inhibit elution of Cr. When BFS was used, the elution of Pb, Cd and Cr was inhibited for the all products prepared. In the case of LA-Cement, the elution of Pb and Cd was inhibited for the all products, but only the product that was added FeSO 4 showed good result of the elution of Cr. (authors)

  9. IAEA coordinated research program on the evaluation of solidified high-level radioactive waste products

    International Nuclear Information System (INIS)

    Grover, J.R.; Schneider, K.J.

    1979-01-01

    A coordinated research program on the evaluation of solidified high-level radioactive waste products has been active with the IAEA since 1976. The program's objectives are to integrate research and to provide a data bank on an international basis in this subject area. Results and considerations to date are presented

  10. Effect of drying-wetting cycles on leaching behavior of cement solidified lead-contaminated soil.

    Science.gov (United States)

    Li, Jiang-Shan; Xue, Qiang; Wang, Ping; Li, Zhen-Ze; Liu, Lei

    2014-12-01

    Lead contaminated soil was treated by different concentration of ordinary Portland cement (OPC). Solidified cylindrical samples were dried at 40°C in oven for 48 h subsequent to 24h of immersing in different solution for one drying-wetting. 10 cycles were conducted on specimens. The changes in mass loss of specimens, as well as leaching concentration and pH of filtered leachates were studied after each cycle. Results indicated that drying-wetting cycles could accelerate the leaching and deterioration of solidified specimens. The cumulative leached lead with acetic acid (pH=2.88) in this study was 109, 83 and 71 mg respectively for solidified specimens of cement-to-dry soil (C/Sd) ratios 0.2, 0.3 and 0.4, compared to 37, 30, and 25mg for a semi-dynamic leaching test. With the increase of cycle times, the cumulative mass loss of specimens increased linearly, but pH of filtered leachates decreased. The leachability and deterioration of solidified specimens increased with acidity of solution. Increases of C/Sd clearly reduced the leachability and deterioration behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Influence of Short-time Oxidation on Corrosion Properties of Directionally Solidified Superalloys with Different Orientations

    Directory of Open Access Journals (Sweden)

    MA Luo-ning

    2016-07-01

    Full Text Available In order to investigate the corrosion performance on intersecting and longitudinal surfaces of unoxidized and oxidized directionally solidified superalloys, Ni-base directionally solidified superalloy DZ125 and Co-base directionally solidified superalloy DZ40M were selected. Oxidation behavior on both alloys with different orientations was investigated at 1050℃ at different times, simulating the oxidation process of vanes or blades in service; subsequent electrochemical performance in 3.5%NaCl aqueous solution was studied on two orientations of unoxidized and oxidized alloys, simulating the corrosion process of superalloy during downtime. The results show that grain boundaries and sub-boundaries of directionally solidified superalloys are susceptible to corrosion and thus longitudinal surface with lower area fraction of grain boundaries has higher corrosion resistance. Compared to intersecting surface of alloys, the structure of grain boundaries of longitudinal surface is less conducive to diffusion and thus the oxidation rate on longitudinal surface is lower. Formation of oxide layers on alloys after short-time oxidation provides protective effect and enhances the corrosion resistance.

  12. Performance criteria for solidified high-level radioactive wastes. Environmental impact statement. Revision 1

    International Nuclear Information System (INIS)

    1977-09-01

    This draft Environmental Impact Statement on performance criteria for solidified high-level radioactive wastes (PCSHLW) covers: considerations for PCSHLW development, the proposed rulemaking, characteristics of the PCSHLW, environmental impacts of the proposed PCSHLW, alternatives to the PCSHLW criteria, and cost/benefit/risk evaluation. Five appendices are included to support the technical data required in the Environmental Impact Statement

  13. Ti, Al

    Indian Academy of Sciences (India)

    In the present study, authors report on the effect that substrate bias voltage has on the microstructure and mechanical properties of (Ti, Al)N hard coatings deposited with cathodic arc evaporation (CAE) technique. The coatings were deposited from a Ti0.5Al0.5 powder metallurgical target in a reactive nitrogen atmosphere at ...

  14. The evaluation of solidifying performance of heavy metal waste using cementitious materials (2)

    International Nuclear Information System (INIS)

    Fujita, Hideki; Harasawa, Shuichi

    2005-02-01

    Some of radioactive waste generated from JNC's facilities contain the poisonous substances such as lead, cadmium and mercury. In order to establish an appropriate method of the treatment of these heavy metals, solidification performance was evaluated using cementitious materials. In this report, the solidification performance of lead and mercury, which accounts for relatively high ratio in total wastes, was evaluated. The results are summarized below: 1. The test of stabilization process of mercury. The conversion process from mercury to the powdery mercury sulfide (red) was examined on the beaker scale. As a result, it was confirmed that the conversion was possible using the liquid phase reaction at 80deg C by the addition of sulfur powder with the NaOH solution. After the process, the mercury concentration in the filtrate was relatively high (0.6 mass%), so it was judged that the reuse of the recovered mercury waste fluid was indispensable. 2. The fabrication and evaluation of solidified wastes. The solidified waste were fabricated with cementitious material, and were evaluated by the measurement of one-axis compressive strength, the elution ratio of lead, mercury and so on. Powdery lead sulfide and the mercury sulfide of reagent were used as model waste. (1) solidification test of the lead waste. It was confirmed one-axis compressive strength for all solidified waste to pass the technical standards 15 kg/cm 2 (1.5 Mpa) for homogeneously solidified waste as the Low-level Radioactive Waste Disposal Center in Aomori Prefecture, and as for the elution ratio of lead, it had obtained the better result (0.06 mg/L) at the case of solidification of sulfide lead 30 mass% packed in the total solidified waste by using Highly Fly-ash contained Silica fume Cement (HFSC) than standard value (0.3 mg/L) at Regulations of Waste Management and Public Cleansing Law. Additionally, it was confirmed the using admixture of the inorganic reducing agent such as the Iron (II) chloride

  15. Improvement in mechanical properties of hypereutectic Al-Si-Cu alloys through sono-solidified

    Directory of Open Access Journals (Sweden)

    Yoshiki Tsunekawa

    2014-07-01

    Full Text Available For the wider applications, it is necessary to improve the ductility as well as the strength and wear-resistance of hypereutectic Al-Si-Cu alloys, which are typical light-weight wear-resistant materials. An increase in the amounts of primary silicon particles causes the modified wear-resistance of hypereutectic Al-Si-Cu alloys, but leads to the poor strength and ductility. It is known that dual phase steels composed of hetero-structure have succeeded in bringing contradictory mechanical properties of high strength and ductility concurrently. In order to apply the idea of hetero-structure to hypereutectic Al-Si-Cu alloys for the achievement of high strength and ductility along with wear resistance, ultrasonic irradiation of the molten metal during the solidification, which is called sono-solidification, was carried out from its molten state to just above the eutectic temperature. The sono-solidified Al-17Si-4Cu alloy is composed of hetero-structure, which are, hard primary silicon particles, soft non-equilibrium a -Al phase and the eutectic region. Rheo-casting was performed at just above the eutectic temperature with sono-solidified slurry to shape a disk specimen. After the rheo-casting with modified sonosolidified slurry held for 45 s at 570 篊, the quantitative optical microscope observation exhibits that the microstructure is composed of 18area% of hard primary silicon particles and 57area% of soft a -Al phase. In contrast, there exist only 5 area% of primary silicon particles and no a -Al phase in rheo-cast specimen with normally solidified slurry. Hence the tensile tests of T6 treated rheo-cast specimens with modified sono-solidified slurry exhibit improved strength and 5% of elongation, regardless of having more than 3 times higher amounts of primary silicon particles compared to that of rheo-cast specimen with normally solidified slurry.

  16. Validatin of miniaturised tensile testing on DMLS TI6AL4V (ELI specimens

    Directory of Open Access Journals (Sweden)

    Van Zyl, Ian

    2016-11-01

    Full Text Available Direct metal laser sintering (DMLS is a relatively new technology that is developing rapidly. Since DMLS material is created by melting/solidifying tracks and layers from powder, even building geometry can influence the mechanical properties. To certify a material, the testing specimens must be designed and manufactured according to the appropriate standards. Miniaturised tensile DMLS samples could be a good alternative for express quality control, and could reduce the cost of DMLS-specific testing. In this study, as-built and stress-relieved miniaturised tensile DMLS Ti6Al4V (ELI specimens with different surface qualities were investigated. The fracture surfaces and mechanical properties of the mini-tensile specimens were analysed and compared with standard full-sized specimens also manufactured by DMLS. The obtained data showed the applicability of mini-tensile tests for the express analysis of DMLS objects if a correction factor is applied for the calculation of the load-bearing cross-section of the specimen.

  17. Effects of La2O3 on microstructure and wear properties of laser clad γ/Cr7C3/TiC composite coatings on TiAl intermatallic alloy

    International Nuclear Information System (INIS)

    Liu Xiubo; Yu Rongli

    2007-01-01

    The effects of La 2 O 3 addition on the microstructure and wear properties of laser clad γ/Cr 7 C 3 /TiC composite coatings on γ-TiAl intermetallic alloy substrates with NiCr-Cr 3 C 2 precursor mixed powders have been investigated by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive spectrometer (EDS) and block-on-ring wear tests. The responding wear mechanisms are discussed in detail. The results are compared with that for composite coating without La 2 O 3 . The comparison indicates that no evident new crystallographic phases are formed except a rapidly solidified microstructure consisting of the primary hard Cr 7 C 3 and TiC carbides and the γ/Cr 7 C 3 eutectics distributed in the tough γ nickel solid solution matrix. Good finishing coatings can be achieved under a proper amount of La 2 O 3 -addition and a suitable laser processing parameters. The additions of rare-earth oxide La 2 O 3 can refine and purify the microstructure of coatings, relatively decrease the volume fraction of primary blocky Cr 7 C 3 to Cr 7 C 3 /γ eutectics, reduce the dilution of clad material from base alloy and increase the microhardness of the coatings. When the addition of La 2 O 3 is approximately 4 wt.%, the laser clad composite coating possesses the highest hardness and toughness. The composite coating with 4 wt.%La 2 O 3 addition can result the best enhancement of wear resistance of about 30%. However, too less or excessive addition amount of La 2 O 3 have no better influence on wear resistance of the composite coating

  18. Growth and microstructure formation of isothermally-solidified Zircaloy-4 joints brazed by a Zr–Ti–Cu–Ni amorphous alloy ribbon

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.H. [University of Science and Technology, Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of); Lim, C.H. [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of); Lee, J.G., E-mail: jglee88@kaeri.re.kr [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of); Lee, M.K.; Rhee, C.K. [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of)

    2013-10-15

    The microstructure and growth characteristics of Zircaloy-4 joints brazed by a Zr{sub 48}Ti{sub 16}Cu{sub 17}Ni{sub 19} (at.%) amorphous filler metal have been investigated with regard to the controlled isothermal solidification and intermetallic formation. Two typical joints were produced depending on the isothermal brazing temperature: (1) a dendritic growth structure including bulky segregation in the central zone (at 850 °C), and (2) a homogeneous dendritic structure throughout the joint without segregation (at 890 °C). The primary α-Zr phase was solidified isothermally, nucleating to grow into a joint with a cellular or dendritic structure. Also, the continuous Zr{sub 2}Ni and particulate Zr{sub 2}Cu phases were formed in the segregated center zone and at the intercellular region, respectively, owing to the different solubility and atomic mobility of the solute elements (Ti, Cu, and Ni) in the α-Zr matrix. A disappearance of the central Zr{sub 2}Ni phase was also rate-controlled by the outward diffusion of the Cu and Ni elements. When the detrimental Zr{sub 2}Ni intermetallic phase was eliminated by a complete isothermal solidification at 890 °C, the strengths of the joints were high enough to cause yielding and fracture in the base metal, exceeding those of the bulk Zircaloy-4, at room temperature as well as at elevated temperatures (up to 400 °C)

  19. Powder metallurgy Al–6Cr–2Fe–1Ti alloy prepared by melt atomisation and hot ultra-high pressure compaction

    International Nuclear Information System (INIS)

    Dám, Karel; Vojtěch, Dalibor; Průša, Filip

    2013-01-01

    Al--6Cr--2Fe--1Ti alloy was prepared by melt atomisation into rapidly solidified powder. The powder was compacted using uniaxial hot compression at an ultra-high pressure (6 GPa). The samples were pressed at 300, 400 and 500 °C. The structure, mechanical properties and thermal stability were examined and compared with those of the commercially available Al--12Si--1Cu--1Mg--1Ni casting alloy, which is considered thermally stable. It was shown that the hot compression at ultra-high pressure results in a compact and pore-free material with excellent mechanical properties. The elevated pressing temperatures were found to be effective at increasing the mechanical stability after applying the ultra-high pressure. The results of thermal stability testing revealed that the mechanical properties do not change significantly at high temperature, even after 100 h of annealing at 400 °C. In addition, the Al--6Cr--2Fe--1Ti alloy exhibited very good creep resistance. A comparison between the commercial Al--12Si--1Cu--1Mg--1Ni alloy and the powder metallurgy alloy shows that this alloy has significantly better mechanical properties and thermal stability.

  20. Powder metallurgy Al-6Cr-2Fe-1Ti alloy prepared by melt atomisation and hot ultra-high pressure compaction

    Energy Technology Data Exchange (ETDEWEB)

    Dam, Karel, E-mail: Karel.Dam@vscht.cz [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Vojtech, Dalibor; Prusa, Filip [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2013-01-10

    Al--6Cr--2Fe--1Ti alloy was prepared by melt atomisation into rapidly solidified powder. The powder was compacted using uniaxial hot compression at an ultra-high pressure (6 GPa). The samples were pressed at 300, 400 and 500 Degree-Sign C. The structure, mechanical properties and thermal stability were examined and compared with those of the commercially available Al--12Si--1Cu--1Mg--1Ni casting alloy, which is considered thermally stable. It was shown that the hot compression at ultra-high pressure results in a compact and pore-free material with excellent mechanical properties. The elevated pressing temperatures were found to be effective at increasing the mechanical stability after applying the ultra-high pressure. The results of thermal stability testing revealed that the mechanical properties do not change significantly at high temperature, even after 100 h of annealing at 400 Degree-Sign C. In addition, the Al--6Cr--2Fe--1Ti alloy exhibited very good creep resistance. A comparison between the commercial Al--12Si--1Cu--1Mg--1Ni alloy and the powder metallurgy alloy shows that this alloy has significantly better mechanical properties and thermal stability.

  1. Microstructure of amorphous and crystalline zirconium alloys rapiddly solidified

    International Nuclear Information System (INIS)

    Monteiro, W.A.; Bezerra, G.H

    1986-01-01

    In this work we report microstructural studies of rapidly solification of Zr-30% at Cu alloy. This composition was chosen because it is the Zr rich limit of glass formation range. The ribbons were prepared by melt spinning system (cooling rate is estimated in 10 6 K/s) and the average thickness of the microscopy were prepared by double jet electropolishing to investigate the microstructure of the ribbon. It was observed amorphos and crystalline regions. In the crystalline regions occured a radial growth morphology with stress contrats. The beginning of solidification is a polimorphous reaction and the shape of the micrograins is similar to spherulitic form. The average diameter of the grains are 0,5 μm or less. (Author) [pt

  2. The evaluation of solidifying performance of heavy metal waste using cementitious materials

    International Nuclear Information System (INIS)

    Takei, Akihiko; Fujita, Hideki; Harasawa, Shuichi

    2004-02-01

    Some of radioactive waste generated form JNC's facilities contain the poisonous substances such as lead, cadmium and mercury. In order to establish an appropriate method of the treatment of these heavy metals, solidification performance was evaluated using cementitious materials. In this report, the solidification performance of lead, which accounts for relatively high ratio in total wastes, was evaluated. The results are summarized below: 1. The test of stabilization process of lead: The conversion process from block lead to the powdery lead sulfide was examined on the beaker scale. As a result, it was confirmed that the conversion was possible using the liquid phase reaction by the addition of thiourea after block lead had been dissolved by the acetic acid with bubbling air. After the process, the lead concentration in the filtrate was extremely low (0.02 mg/L), so it was judged that almost all of the lead was converted and recovered as lead sulfide. 2. The fabrication and evaluation of solidified wastes: Five types of solidified waste were fabricated with different binder, and were evaluated by the measurement of one-axis compressive strength, porosity, the elution ratio of lead, and so on. Powdery lead and sulfide lead reagent were used as model waste. As a result of the test, it was confirmed one-axis compressive strength for all solidified waste to pass the technical standards 15 kg/cm 2 (1.5 MPa) for homogeneously solidified waste as the Low-level Radioactive Waste Disposal Center in Aomori Prefecture, and as for the elution ratio of lead, it had obtained the better result (0.27 mg/L) at the case of solidification of sulfide lead 20 mass% packed in the total solidified waste by using low alkaline cement (including Hauyne mineral) than standard value (0.3 mg/L) at Regulations of Waste Management and Public Cleansing Law. Moreover, it was understood that the elution of lead had high relationship with not only the character of the binder but also the physical

  3. Validation of the solidifying soil process using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Lin, Zhao-Xiang; Liu, Lin-Mei; Liu, Lu-Wen

    2016-09-01

    Although an Ionic Soil Stabilizer (ISS) has been widely used in landslide control, it is desirable to effectively monitor the stabilization process. With the application of laser-induced breakdown spectroscopy (LIBS), the ion contents of K, Ca, Na, Mg, Al, and Si in the permeable fluid are detected after the solidified soil samples have been permeated. The processes of the Ca ion exchange are analyzed at pressures of 2 and 3 atm, and it was determined that the cation exchanged faster as the pressure increased. The Ca ion exchanges were monitored for different stabilizer mixtures, and it was found that a ratio of 1:200 of ISS to soil is most effective. The investigated plasticity and liquidity indexes also showed that the 1:200 ratio delivers the best performance. The research work indicates that it is possible to evaluate the engineering performances of soil solidified by ISS in real time and online by LIBS.

  4. Accelerated leach testing of radionuclides from solidified low-level waste

    International Nuclear Information System (INIS)

    Pietrzak, R.F.; Fuhrmann, M.; Franz, E.M.; Heiser, J. III; Colombo, P.

    1989-01-01

    This paper describes some of the work performed to develop an accelerated leach test designed to provide data that show long-term leaching behavior of solidified waste in a relatively short period of testing (1,2). The need for an accelerated leach test stems from the fact that the response of an effectively solidified waste form to the leaching process is so slow that a very long time is required to complete a test which shows the long-term leaching behavior of a waste form. Because of time limitations, as well as economic considerations, most studies have been limited to the early stages of the leaching process which is predominantly controlled by diffusion, although acknowledged to be due to also dissolution, corrosion or ion-exchange

  5. Modeling Macrosegregation in Directionally Solidified Aluminum Alloys under Gravitational and Microgravitational Conditions.

    Energy Technology Data Exchange (ETDEWEB)

    Lauer, Mark A.; Poirier, David R.; Erdmann, Robert G.; Tewari, Surendra N.; Madison, Jonathan D

    2014-09-01

    This report covers the modeling of seven directionally solidified samples, five under normal gravitational conditions and two in microgravity. A model is presented to predict macrosegregation during the melting phases of samples solidified under microgravitational conditions. The results of this model are compared against two samples processed in microgravity and good agreement is found. A second model is presented that captures thermosolutal convection during directional solidification. Results for this model are compared across several experiments and quantitative comparisons are made between the model and the experimentally obtained radial macrosegregation profiles with good agreement being found. Changes in cross section were present in some samples and micrographs of these are qualitatively compared with the results of the simulations. It is found that macrosegregation patterns can be affected by changing the mold material.

  6. Functions and requirements document for interim store solidified high-level and transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    Smith-Fewell, M.A., Westinghouse Hanford

    1996-05-17

    The functions, requirements, interfaces, and architectures contained within the Functions and Requirements (F{ampersand}R) Document are based on the information currently contained within the TWRS Functions and Requirements database. The database also documents the set of technically defensible functions and requirements associated with the solidified waste interim storage mission.The F{ampersand}R Document provides a snapshot in time of the technical baseline for the project. The F{ampersand}R document is the product of functional analysis, requirements allocation and architectural structure definition. The technical baseline described in this document is traceable to the TWRS function 4.2.4.1, Interim Store Solidified Waste, and its related requirements, architecture, and interfaces.

  7. Research on the compressive strength of basic magnesium salts and cyanide slag solidified body

    Science.gov (United States)

    Tu, Yubo; Han, Peiwei; Ye, Shufeng; Wei, Lianqi; Zhang, Xiaomeng; Fu, Guoyan; Yu, Bo

    2018-02-01

    The solidification of cyanide slag by using basic magnesium salts could reduce pollution and protect the environment. Experiments were carried out to investigate the effects of age, mixing amount of cyanide slag, water cement ratio and molar ratio of MgO to MgSO4 on the compressive strength of basic magnesium salts and cyanide slag solidified body in the present paper. It was found that compressive strength of solidified body increased with the increase of age, and decreased with the increase of mixing amount of cyanide slag and water cement ratio. The molar ratio of MgO to MgSO4 should be controlled in the range from 9 to 11 when the mixing amount of cyanide slag was larger than 80 mass%.

  8. Comparative analysis of mechanical characteristics of solidified concentrates from BWR system using Yugoslav and Italian cements

    International Nuclear Information System (INIS)

    Plecas, I.; Peric, A.; Drljaca, J.; Kostadinovic, A.

    1987-01-01

    In this paper, properties of Italian and Yugoslav cement mixture with BWR evaporation concentrates were compared, research was held upon fifteen samples, according to the adequate formulations. Samples were made in standard cube form, side 10 cm. Functional relationship between decreasing the compressive strength and amount of incorporated BWR concentrate cement mixture was developed. The results of research showed nearly the same mechanical properties of solidified BWR concentrate with Italian and Yugoslav cements. (author)

  9. Leach testing of simulated ion-exchange resin waste solidified in cement

    International Nuclear Information System (INIS)

    Muurinen, A.K.; Uotila, P.I.; Ovaskainen, R.M.

    Leach tests were carried out on ion-exchange resins solidified in cement. Three product mixtures, two isotopes and four leachants at two temperatures, were tested. The increase of resin content increased the leaching of Cs-137; the effect of silix admixture was negligible. The type of the leachant has a stronger influence on Co-60 than on Cs-137. The increase of temperature usually also increased leaching. (author)

  10. Effects of partial crystallinity and quenched-in defects on corrosion of ...

    Indian Academy of Sciences (India)

    Rapid solidification by planar flow casting has been found to have introduced deficiencies, viz. partial crystallinity, air pockets and compositional difference in the ribbons of rapidly solidified Ti42.9-Cu57.1 alloy. In order to investigate the effects of these deficiencies on the corrosion of rapidly solidified Ti42.9-Cu57.1 alloy ...

  11. Effect of tensile mean stress on fatigue behavior of single-crystal and directionally solidified superalloys

    Science.gov (United States)

    Kalluri, Sreeramesh; Mcgaw, Michael A.

    1990-01-01

    Two nickel base superalloys, single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf, were studied in view of the potential usage of the former and usage of the latter as blade materials for the turbomachinery of the space shuttle main engine. The baseline zero mean stress (ZMS) fatigue life (FL) behavior of these superalloys was established, and then the effect of tensile mean stress (TMS) on their FL behavior was characterized. At room temperature these superalloys have lower ductilities and higher strengths than most polycrystalline engineering alloys. The cycle stress-strain response was thus nominally elastic in most of the fatigue tests. Therefore, a stress range based FL prediction approach was used to characterize both the ZMS and TMS fatigue data. In the past, several researchers have developed methods to account for the detrimental effect of tensile mean stress on the FL for polycrystalline engineering alloys. However, the applicability of these methods to single crystal and directionally solidified superalloys has not been established. In this study, these methods were applied to characterize the TMS fatigue data of single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf and were found to be unsatisfactory. Therefore, a method of accounting for the TMS effect on FL, that is based on a technique proposed by Heidmann and Manson was developed to characterize the TMS fatigue data of these superalloys. Details of this method and its relationship to the conventionally used mean stress methods in FL prediction are discussed.

  12. Microstructure and orientation evolution in unidirectional solidified Al–Zn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhongwei, E-mail: chzw@nwpu.edu.cn; Wang, Enyuan; Hao, Xiaolei

    2016-06-14

    Morphological instability and growth orientation evolution during unidirectional solidification of Al–Zn alloys with different pulling speeds were investigated by X-ray diffraction (XRD) and electron back-scatter diffraction (EBSD) in scanning electron microscope (SEM). The experimental results show that, as the pulling speed increases, the primary dendrite spacing becomes smaller gradually and dendrite trunks incline to the heat flow direction perfectly in unidirectional solidified Al–9.8 wt%Zn and Al–89 wt%Zn alloys. However, regardless of the pulling speed in unidirectional solidified Al–Zn alloys under fixed thermal gradient, the regular dendrites with <100> directions of primary trunks and secondary arms in 9.8 wt% Zn composition are replaced by <110> dendrites of primary trunks and secondary arms in 89 wt% Zn composition. In unidirectional solidified Al–32 wt% Zn alloy, cellular, fractal seaweed, and stabilized seaweed structures were observed at high pulling speeds. At a high pulling speed of 1000 µm/s, seaweed structures transform to the columnar dendrites with <110> trunks and <100> arms. The above orientation evolution can be attributed to low anisotropy of solid-liquid interface energy and the seaweed structure is responsible for isotropy of {111} planes.

  13. Processing and Characterization of Liquid-Phase Sintered NiTi Woven Structures

    Science.gov (United States)

    Erdeniz, Dinc; Weidinger, Ryan P.; Sharp, Keith W.; Dunand, David C.

    2018-03-01

    Porous NiTi is of interest for bone implants because of its unique combination of biocompatibility (encouraging osseointegration), high strength (to prevent fracture), low stiffness (to reduce stress shielding), and shape memory or superelasticity (to deploy an implant). A promising method for creating NiTi structures with regular open channels is via 3D weaving of NiTi wires. This paper presents a processing method to bond woven NiTi wire structures at contact points between wires to achieve structural integrity: (i) a slurry consisting of a blend of NiTi and Nb powders is deposited on the surface of the NiTi wires after the weaving operation; (ii) the powders are melted to create a eutectic liquid phase which collects at contact points; and (iii) the liquid is solidified and binds the NiTi woven structures. The bonded NiTi wire structures exhibited lower transformation temperatures compared to the as-woven NiTi wires because of Nb diffusion into the NiTi wires. A bonded woven sample was deformed in bending and showed near-complete recovery up to 6% strain and recovered nearly half of the deformation up to 19% strain.

  14. The TiO2 Refraction Film for CsI Scintillator

    OpenAIRE

    C. C. Chen; C. W. Hun; C. J. Wang; C. Y. Chen; J. S. Lin; K. J. Huang

    2015-01-01

    Cesium iodide (CsI) melt was injected into anodic aluminum oxide (AAO) template and was solidified to CsI column. The controllable AAO channel size (10~500 nm) can makes CsI column size from 10 to 500 nm in diameter. In order to have a shorter light irradiate from each singe CsI column top to bottom the AAO template was coated a TiO2 nano-film. The TiO2 film acts a refraction film and makes X-ray has a shorter irradiation path in the CsI crystal making a stronger the photo-electron signal. Wh...

  15. Phase Composition of a CrMo0.5NbTa0.5TiZr High Entropy Alloy: Comparison of Experimental and Simulated Data

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2013-09-01

    Full Text Available Microstructure and phase composition of a CrMo0.5NbTa0.5TiZr high entropy alloy were studied in the as-solidified and heat treated conditions. In the as-solidified condition, the alloy consisted of two disordered BCC phases and an ordered cubic Laves phase. The BCC1 phase solidified in the form of dendrites enriched with Mo, Ta and Nb, and its volume fraction was 42%. The BCC2 and Laves phases solidified by the eutectic-type reaction, and their volume fractions were 27% and 31%, respectively. The BCC2 phase was enriched with Ti and Zr and the Laves phase was heavily enriched with Cr. After hot isostatic pressing at 1450 °C for 3 h, the BCC1 dendrites coagulated into round-shaped particles and their volume fraction increased to 67%. The volume fractions of the BCC2 and Laves phases decreased to 16% and 17%, respectively. After subsequent annealing at 1000 °C for 100 h, submicron-sized Laves particles precipitated inside the BCC1 phase, and the alloy consisted of 52% BCC1, 16% BCC2 and 32% Laves phases. Solidification and phase equilibrium simulations were conducted for the CrMo0.5NbTa0.5TiZr alloy using a thermodynamic database developed by CompuTherm LLC. Some discrepancies were found between the calculated and experimental results and the reasons for these discrepancies were discussed.

  16. AE Monitoring of Diamond Turned Rapidly Soldified Aluminium 443

    International Nuclear Information System (INIS)

    Onwuka, G; Abou-El-Hossein, K; Mkoko, Z

    2017-01-01

    The fast replacement of conventional aluminium with rapidly solidified aluminium alloys has become a noticeable trend in the current manufacturing industries involved in the production of optics and optical molding inserts. This is as a result of the improved performance and durability of rapidly solidified aluminium alloys when compared to conventional aluminium. Melt spinning process is vital for manufacturing rapidly solidified aluminium alloys like RSA 905, RSA 6061 and RSA 443 which are common in the industries today. RSA 443 is a newly developed alloy with few research findings and huge research potential. There is no available literature focused on monitoring the machining of RSA 443 alloys. In this research, Acoustic Emission sensing technique was applied to monitor the single point diamond turning of RSA 443 on an ultrahigh precision lathe machine. The machining process was carried out after careful selection of feed, speed and depths of cut. The monitoring process was achieved with a high sampling data acquisition system using different tools while concurrent measurement of the surface roughness and tool wear were initiated after covering a total feed distance of 13km. An increasing trend of raw AE spikes and peak to peak signal were observed with an increase in the surface roughness and tool wear values. Hence, acoustic emission sensing technique proves to be an effective monitoring method for the machining of RSA 443 alloy. (paper)

  17. Development and characterization of solidified forms for high-level wastes: 1978. Annual report

    International Nuclear Information System (INIS)

    Ross, W.A.; Mendel, J.E.

    1979-12-01

    Development and characterization of solidified high-level waste forms are directed at determining both process properties and long-term behaviors of various solidified high-level waste forms in aqueous, thermal, and radiation environments. Waste glass properties measured as a function of composition were melt viscosity, melt electrical conductivity, devitrification, and chemical durability. The alkali metals were found to have the greatest effect upon glass properties. Titanium caused a slight decrease in viscosity and a significant increase in chemical durability in acidic solutions (pH-4). Aluminum, nickel and iron were all found to increase the formation of nickel-ferrite spinel crystals in the glass. Four multibarrier advanced waste forms were produced on a one-liter scale with simulated waste and characterized. Glass marbles encapsulated in a vacuum-cast lead alloy provided improved inertness with a minimal increase in technological complexity. Supercalcine spheres exhibited excellent inertness when coated with pyrolytic carbon and alumina and put in a metal matrix, but the processing requirements are quite complex. Tests on simulated and actual high-level waste glasses continue to suggest that thermal devitrification has a relatively small effect upon mechanical and chemical durabilities. Tests on the effects radiation has upon waste forms also continue to show changes to be relatively insignificant. Effects caused by decay of actinides can be estimated to saturate at near 10 19 alpha-events/cm 3 in homogeneous solids. Actually, in solidified waste forms the effects are usually observed around certain crystals as radiation causes amorphization and swelling of th crystals

  18. Chemical characterization, leach, and adsorption studies of solidified low-level wastes

    International Nuclear Information System (INIS)

    Walter, M.B.; Serne, R.J.; Jones, T.L.; McLaurine, S.B.

    1986-12-01

    Laboratory and field leaching experiments are beig conducted by Pacific Northwest Laboratory (PNL) to investigate the performance of solidified low-level nuclear waste in a typical, arid, near-surface disposal site. Under PNL's Special Waste Form Lysimeters-Arid Program, a field test facility was constructed to monitor the leaching of commercial solidified waste. Laboratory experiments were conducted to investigate the leaching and adsorption characteristics of the waste forms in contact with soil. Liquid radioactive wastes solidified in cement, vinyl ester-styrene, and bitumen were obtained from commercial boiling water and pressurized water reactors, and buried in a field leaching facility on the Hanford site in southeastern Washington State. Batch leaching, soil column adsorption, and soil/waste form column experiments were conducted in the laboratory, using small-scale cement waste forms and Hanford site ground water. The purpose of these experiments is to evaluate the ability of laboratory leaching tests to predict leaching under actual field conditions and to determine which mechanisms (i.e., diffusion, solubility, adsorption) actually control the concentration of radionuclides in the soil surrounding the waste form. Chemical and radionuclide analyses performed on samples collected from the field and laboratory experiments indicate strong adsorption of /sup 134,137/Cs and 85 Sr onto the Hanford site sediment. Small amounts of 60 Co are leached from the waste forms as very mobile species. Some 60 Co migrated through the soil at the same rate as water. Chemical constituents present in the reactor waste streams also found at elevated levels in the field and laboratory leachates include sodium, sulfate, magnesium, and nitrate. Plausible solid phases that could be controlling some of the chemical and radionuclide concentrations in the leachate were identified using the MINTEQ geochemical computer code

  19. Determination of performance criteria for high-level solidified nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, R.A.; Holdsworth, T.

    1979-05-07

    To minimize radiological risk from the operation of a waste management system, performance limits on volatilization, particulate dispersion, and dissolution characteristics of solidified high level waste must be specified. The results show clearly that the pre-emplacement environs are more limiting in establishing the waste form performance criteria than the post-emplacement environs. Absolute values of expected risk are very sensitive to modeling assumptions. The transportation and interim storage operations appear to be most limiting in determining the performance characteristics required. The expected values of risk do not rely upon the repositories remaining intact over the potentially hazardous lifetime of the waste.

  20. The influence of interfacial energies and gravitational levels on the directionally solidified structures in hypermonotectic alloys

    Science.gov (United States)

    Andrews, J. B.; Curreri, P. A.; Sandlin, A. C.

    1988-01-01

    Various Cu-Pb-Al alloys were directionally solidified under 1-g conditions and alternating high-g/low-g conditions (achieved using NSAS's KC-135 aircraft) as a means of studying the influence of interfacial energies and gravitational levels on the resulting microstructures. Directional solidification of low Al content alloys was found to result in samples with coarser more irregular microstructures than in alloys with high Al contents under all the gravity conditions considered. Structures are correlated with interfacial energies, growth rates, and gravitational levels.

  1. Determination of performance criteria for high-level solidified nuclear waste

    International Nuclear Information System (INIS)

    Heckman, R.A.; Holdsworth, T.

    1979-01-01

    To minimize radiological risk from the operation of a waste management system, performance limits on volatilization, particulate dispersion, and dissolution characteristics of solidified high level waste must be specified. The results show clearly that the pre-emplacement environs are more limiting in establishing the waste form performance criteria than the post-emplacement environs. Absolute values of expected risk are very sensitive to modeling assumptions. The transportation and interim storage operations appear to be most limiting in determining the performance characteristics required. The expected values of risk do not rely upon the repositories remaining intact over the potentially hazardous lifetime of the waste

  2. Directionally Solidified Aluminum - 7 wt% Silicon Alloys: Comparison of Earth and International Space Station Processed Samples

    Science.gov (United States)

    Grugel, Richard N,; Tewari, Surendra; Rajamure, R. S.; Erdman, Robert; Poirier, David

    2012-01-01

    Primary dendrite arm spacings of Al-7 wt% Si alloy directionally solidified in low gravity environment of space (MICAST-6 and MICAST-7: Thermal gradient approx. 19 to 26 K/cm, Growth speeds varying from 5 to 50 microns/s show good agreement with the Hunt-Lu model. Primary dendrite trunk diameters of the ISS processed samples show a good fit with a simple analytical model based on Kirkwood s approach, proposed here. Natural convection, a) decreases primary dendrite arm spacing. b) appears to increase primary dendrite trunk diameter.

  3. Effect of Ce on Casting Structure of Near-rapidly Solidified Al-Zn-Mg-Cu Alloy

    Directory of Open Access Journals (Sweden)

    HUANG Gao-ren

    2017-11-01

    Full Text Available Through using XRD,DSC,SEM,EDS and other modern analysis methods, the effects of rare earth element Ce on microstructure and solidification temperature of Al-Zn-Mg-Cu under different cooling rates were studied, the principle of Ce on grain refining and melt cleaning of alloys was analyzed and discussed. The results show that MgZn2 phase and α-Al matrix are the main precipitations, Al,Cu,Mg and other elements dissolve in MgZn2 phase, a new phase Mg(Zn, Cu, Al2 is formed, solute elements in the grain boundary have higher concentration, eutectic reaction takes place between MgZn2 and α-Al, lamellar eutectic structure is generated. The addition of Ce decreases the dendritic arm spacing,reduces the layer spacing between eutectic phases and refines the eutectic structure and the grain significantly, and inhibits the appearance of the impurity phase Al7Cu2Fe in aluminum alloys. The addition of Ce also reduces the precipitation temperature of α-Al matrix and eutectic phase by 6.4℃ and 5.6℃ respectively.

  4. Investigation of structural and magnetic properties of rapidly-solidified iron-silicon alloys at ambient and elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jayaraman, T. V.; Meka, V. M.; Jiang, X.; Overman, N. R.; Doyle, J.; Shield, J. E.; Mathaudhu, S. N.

    2018-04-01

    In this work, we investigated the ambient temperature structural properties (~300 K) and the ambient and high temperature (up to 900 K) direct current (DC) magnetic properties of melt-spun Fe-x wt.% Si (x = 3, 5, & 8) alloys. The wheel surface speeds selected for the study were 30 m/s and 40 m/s. The thickness, width, lattice parameter, saturation magnetization (MS), and intrinsic coercivity (HCI) of the melt spun ribbons are presented and compared with data in the literature. The ribbons produced at the lower wheel surface speed (30 m/s) were continuous having relatively uniform edges compared to the ribbons produced at the higher wheel surface speed. The thickness and the width of the melt-spun ribbons ranged between ~15-60 μm and 500-800 μm, respectively. The x-ray diffraction spectra of the melt-spun ribbons indicated the presence of disordered α-phase, irrespective of the composition, and the wheel-surface speed. The lattice parameter decreased gradually as a function of increasing silicon content from ~0.2862 nm (Fe-3 wt.% Si) to ~0.2847 nm (Fe-8 wt.% Si). Wheel surface speed was not shown to have a significant effect on the magnetization, but primarily impacted the ribbon structure. A decreasing trend in the saturation magnetization was observed as a function of increased silicon content. The intrinsic coercivity of the melt-spun alloys ranged between ~50 to 200 A/m. Elevated temperature evaluation of the magnetization in the case of Fe-3 & 5 wt.% Si alloy ribbons was distinctly different from the Fe-8 wt.% Si alloy ribbons. The curves of the as-prepared Fe-3 wt.% Si and Fe-5 wt.% Si alloy ribbons were irreversible while that of Fe-8 wt.% Si was reversible. The MS for any of the combinations of wheel surface speed and composition decreased monotonically with the increase in temperature (from 300 – 900 K). The percentage decrease in MS from 300 K to 900 K for the Fe-3 wt.% Si and Fe-5 wt.% Si alloys was ~19-22 %, while the percentage decrease in the same temperature range for Fe-8 wt.% Si alloy was ~26-30 %. It appears that Fe-3 wt.% Si and Fe-5 wt.% Si alloys ribbons are primarily comprised of the α phase (disordered phase) with any minor constituents being beyond the detection limits of the studies performed, while the Fe-8 wt.% Si alloy ribbons are comprised of disordered and regions of short-range ordering.

  5. THE EFFECT OF PREPARATION CONDITIONS OF RAPIDLY SOLIDIFIED IRON BASED GRANULES ON PROPERTIES OF COMPOSITE MATERIAL FORMED BY CASTING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2017-01-01

    Full Text Available The variety of requirements for friction pairs requires the development of different technologies for the production of tribological materials with reference to the operation modes. Composite materials obtained by the casting technology have been successfully applied for the normalization of the thermomechanical state of the steam turbines. These composites consist of the matrix based on copper alloys reinforced with cast iron granules. Because the structure and properties of cast iron are determined by the conditions of their production studies have been conducted on determination of preparation conditions on grain structure and properties of the synthesized composite material. Using an upgraded unit for production of granules technological regimes were determined providing narrow fractional composition. It has been found that granules formed are characterized with typical microstructure of white cast iron containing perlite and ledeburite. Microhardness of pilot cast iron granules is characterized by high values (from 7450 up to 9450 MPa and depends on the size of the fraction. Composite materials obtained using experimental granules had a microhardness of the reinforcing cast iron granules about 3500 MPa, and a bronze matrix – 1220 MPa, which is higher than the hardness of the composite material obtained by using the annealed DCL-1granules (2250 MPa. Metal base of experimental granules in the composite material has the structure of perlitic ductile iron with inclusions of ferrite not exceeding 10–15% and set around a flocculent graphite. As a result, the increase of physical-mechanical properties of finished products made of composite material is observed. 

  6. Microstructure and wear of in-situ Ti/(TiN + TiB) hybrid composite layers produced using liquid phase process

    Energy Technology Data Exchange (ETDEWEB)

    Yazdi, R., E-mail: ryazdi@ut.ac.ir; Kashani-Bozorg, S.F.

    2015-02-15

    Tungsten inert gas (TIG) technique was conducted on commercially pure (CP)-Ti substrate, which was coated with h-BN-based powder mixture prior to the treatment. The treated surfaces were evaluated and characterized by means of scanning electron microscope (SEM), X-ray diffraction analysis, and electron dispersive spectrometry (EDS). The microhardness and wear experiment were also performed by using a microhardness machine and pin-on-disk tribometer. As h-BN reacted with titanium, an in-situ hybrid composite layer was formed showing near stoichiometric dendrites of TiN, platelets of TiB and interdendritic regions of α′-Ti martensite crystal structures. The population level of TiN and TiB regions were found to increase using a pre-placed powder mixture with greater h-BN content. However, the fabricated layers exhibited cracking and porosity; these were minimized by adjusting arc energy density and h-BN content of powder mixture. The microhardness value of the fabricated hybrid composite layers was found to be in the range of ∼650 HV{sub 0.2}–1000 HV{sub 0.2}; this is three to five times higher than that of the untreated CP-Ti substrate. In addition, the in-situ hybrid composite layers exhibited superior wear behavior over CP-Ti substrate; this is attributed to the formation of newly formed ceramic phases in the solidified surface layers and good coherent interface between the composite layer and CP-substrate. Meanwhile, severe adhesive wear mechanism of CP-titanium surface changed to mild abrasive one as a result of surface treatment. - Highlights: • In-situ Ti/(TiN + TiB) hybrid composite layers were synthesized by TIG processing on commercially pure titanium. • The microstructure features were characterized by several methods. • Microhardness enhanced three to five times higher than that of the CP-Ti substrate after surface modification. • The fabricated composite layers improved wear resistance of CP-titanium. • Severe adhesive wear mechanism of

  7. As-cast structure refinement of Ti-46Al alloy by hafnium and boron additions

    Directory of Open Access Journals (Sweden)

    Zhang Li

    2009-05-01

    Full Text Available The infl uence of Hf and B on the solidifi cation structure of cast Ti-46Al alloys was investigated. The results show that the coupling effect of Hf and B changes the solidifi cation structure morphology and strongly refi nes the grain size. When the Hf+B contents were increased from 0 + 0.0 to 3 + 0.2, 5 + 0.6 and 7 + 1.0 (in at. %, the solidification structure morphology changed from coarse columnar dendrite to fine columnar dendrite, then to equiaxed dendrite, and further to fi ne near granular grain whilst the average grain size decreased to 20 μm. It is concluded that the columnar dendrite refinement is due to the effect of Hf and B on the decrease of Al diffusion coeffi cient in the melt. The fi ne near granular grain formation is attributed to the combined constitutional supercooling formed by Al and B segregation that is strengthened by Hf and B additions at the solid/liquid interface during solidifi cation, and the TiB2 precipitates acting as heterogeneous nuclei

  8. A novel solidified floating organic drop microextraction method for preconcentration and determination of copper ions by flow injection flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Sahin, Cigdem Arpa; Tokgoez, Ilknur

    2010-01-01

    A rapid, simple and cost effective solidified floating organic drop microextraction (SFODME) and flow injection flame atomic absorption spectrometric determination (FI-FAAS) method for copper was developed. In this method, a free microdrop of 1-undecanol containing 1,5-diphenyl carbazide (DPC) as the complexing agent was transferred to the surface of an aqueous sample including Cu(II) ions, while being agitated by a stirring bar in the bulk of the solution. Under the proper stirring conditions, the suspended microdrop can remain at the top-center position of the aqueous sample. After the completion of the extraction, the sample vial was cooled by placing it in a refrigerator for 10 min. The solidified microdrop was then transferred into a conical vial, where it melted immediately and diluted to 300 μL with ethanol. Finally, copper ions in 200 μL of diluted solution were determined by FI-FAAS. Several factors affecting the microextraction efficiency, such as type of extraction solvent, pH, complexing agent concentration, extraction time, stirring rate, sample volume and temperature were investigated and optimized. Under optimized conditions for 100 mL of solution, the preconcentration factor was 333 and the enrichment factor was 324. The limit of detection (3 s) was 0.4 ng mL -1 , the limit of quantification (10 s) was 1.1 ng mL -1 and the relative standard deviation (RSD) for 10 replicate measurements of 10 ng mL -1 copper was 0.9%. The proposed method was successfully applied to the determination of copper in different water samples.

  9. JINR rapid communications

    International Nuclear Information System (INIS)

    1995-01-01

    The present collection of rapid communications from JINR, Dubna, contains eight separate reports on the measurement of charge radii for Ti nuclei, spectroscopy of 13 Be, concentrations of hadrons and quark-gluon plasma in mixed phase, experimental results on one-spin pion asymmetry in the d↑ + A → π±(90 0 ) + X process, new results on cumulative pion and proton production in p-D collisions, investigation of charge exchange reactions, the study of the tensor analyzing power in cumulative particle production on a deuteron beam and an evidence for the excited states of the S = -2 stable light dibaryon. 32 figs., 6 tabs

  10. Performance demonstration program plan for RCRA constituent analysis of solidified wastes

    International Nuclear Information System (INIS)

    1995-06-01

    Performance Demonstration Programs (PDPS) are designed to help ensure compliance with the Quality Assurance Objectives (QAOs) for the Waste Isolation Pilot Plant (WIPP). The PDPs are intended for use by the Department of Energy (DOE) Carlsbad Area Office (CAO) to assess and approve the laboratories and other measurement facilities supplying services for the characterization of WIPP TRU waste. The PDPs may also be used by CAO in qualifying laboratories proposing to supply additional analytical services that are required for other than waste characterization, such as WIPP site operations. The purpose of this PDP is to test laboratory performance for the analysis of solidified waste samples for TRU waste characterization. This performance will be demonstrated by the successful analysis of blind audit samples of simulated, solidified TRU waste according to the criteria established in this plan. Blind audit samples (hereinafter referred to as PDP samples) will be used as an independent means to assess laboratory performance regarding compliance with the QAOs. The concentration of analytes in the PDP samples will address levels of regulatory concern and will encompass the range of concentrations anticipated in actual waste characterization samples. Analyses that are required by the WIPP to demonstrate compliance with various regulatory requirements and which are included in the PDP must be performed by laboratories that demonstrate acceptable performance in the PDP. These analyses are referred to as WIPP analyses and the samples on which they are performed are referred to as WIPP samples for the balance of this document

  11. Cryogenic EBSD reveals structure of directionally solidified ice–polymer composite

    International Nuclear Information System (INIS)

    Donius, Amalie E.; Obbard, Rachel W.; Burger, Joan N.; Hunger, Philipp M.; Baker, Ian; Doherty, Roger D.; Wegst, Ulrike G.K.

    2014-01-01

    Despite considerable research efforts on directionally solidified or freeze-cast materials in recent years, little fundamental knowledge has been gained that links model with experiment. In this contribution, the cryogenic characterization of directionally solidified polymer solutions illustrates, how powerful cryo-scanning electron microscopy combined with electron backscatter diffraction is for the structural characterization of ice–polymer composite materials. Under controlled sublimation, the freeze-cast polymer scaffold structure is revealed and imaged with secondary electrons. Electron backscatter diffraction fabric analysis shows that the ice crystals, which template the polymer scaffold and create the lamellar structure, have a-axes oriented parallel to the direction of solidification and the c-axes perpendicular to it. These results indicate the great potential of both cryo-scanning electron microscopy and cryo-electron backscatter diffraction in gaining fundamental knowledge of structure–property–processing correlations. - Highlights: • Cryo-SEM of freeze-cast polymer solution reveals an ice-templated structure. • Cryo-EBSD reveals the ice crystal a-axis to parallel the solidification direction. • The honeycomb-like polymer phase favors columnar ridges only on one side. • Combining cryo-SEM with EBSD links solidification theory with experiment

  12. EPICOR-II: a field leaching test of solidified radioactively loaded ion exchange resin

    International Nuclear Information System (INIS)

    Davis, E.C.; Marshall, D.S.; Todd, R.A.; Craig, P.M.

    1986-08-01

    As part of an ongoing research program investigating the disposal of radioactive solid wastes in the environment' the Oak Ridge National Laboratory (ORNL) is participating with Argonne National Laboratory, the Idaho National Engineering Laboratory, and the Nuclear Regulatory Commission in a study of the leachability of solidified EPICOR-II ion-exchange resin under simulated disposal conditions. To simulate disposal, a group of five 2-m 3 soil lysimeters has been installed in Solid Waste Storage Area Six at ORNL, with each lysimeter containing a small sample of solidified resin at its center. Two solidification techniques are being investigated: a Portland cement and a vinyl ester-styrene treatment. During construction, soil moisture temperature cells were placed in each lysimeter, along with five porous ceramic tubes for sampling water near the waste source. A meteorological station was set up at the study site to monitor climatic conditions (primarily precipitation and air temperature), and a data acquisition system was installed to keep daily records of these meteorological parameters as well as lysimeter soil moisture and temperature conditions. This report documents the first year of the long-term field study and includes discussions of lysimeter installation, calibration of soil moisture probes, installation of the site meteorological station, and the results of the first-quarter sampling for radionuclides in lysimeter leachate. In addition, the data collection and processing system developed for this study is documented, and the results of the first three months of data collection are summarized in Appendix D

  13. Experimental Investigation of Closed Porosity of Inorganic Solidified Foam Designed to Prevent Coal Fires

    Directory of Open Access Journals (Sweden)

    Yi Lu

    2015-01-01

    Full Text Available In order to overcome the deficiency of the existing fire control technology and control coal spontaneous combustion by sealing air leakages in coal mines, inorganic solidified foam (ISF with high closed porosity was developed. The effect of sodium dodecyl sulfate (SDS concentration on the porosity of the foams was investigated. The results showed that the optimized closed porosity of the solidified foam was 38.65 wt.% for an SDS concentration of approximately 7.4×10-3 mol/L. Based on observations of the microstructure of the pore walls after solidification, it was inferred that an equilibrium between the hydration process and the drainage process existed. Therefore, the ISF was improved using three different systems. Gelatin can increase the viscosity of the continuous phase to form a viscoelastic film around the air cells, and the SDS + gelatin system can create a mixed surfactant layer at gas/liquid interfaces. The accelerator (AC accelerates the hydration process and coagulation of the pore walls before the end of drainage. The mixed SDS + gelatin + AC systems produced an ISF with a total porosity of 79.89% and a closed porosity of 66.89%, which verified the proposed stabilization mechanism.

  14. Directionally solidified Al2O3/GAP eutectic ceramics by micro-pulling-down method

    Science.gov (United States)

    Cao, Xue; Su, Haijun; Guo, Fengwei; Tan, Xi; Cao, Lamei

    2016-11-01

    We reported a novel route to prepare directionally solidified (DS) Al2O3/GAP eutectic ceramics by micro-pulling-down (μ-PD) method. The eutectic crystallizations, microstructure characters and evolutions, and their mechanical properties were investigated in detail. The results showed that the Al2O3/GAP eutectic composites can be successfully fabricated through μ-PD method, possessed smooth surface, full density and large crystal size (the maximal size: φ90 mm × 20 mm). At the process of Diameter, the as-solidified Al2O3/GAP eutectic presented a combination of "Chinese script" and elongated colony microstructure with complex regular structure. Inside the colonies, the rod-type or lamellar-type eutectic microstructures with ultra-fine GAP surrounded by the Al2O3 matrix were observed. At an appropriate solidificational rate, the binary eutectic exhibited a typical DS irregular eutectic structure of "chinese script" consisting of interpenetrating network of α-Al2O3 and GAP phases without any other phases. Therefore, the interphase spacing was refined to 1-2 µm and the irregular microstructure led to an outstanding vickers hardness of 17.04 GPa and fracture toughness of 6.3 MPa × m1/2 at room temperature.

  15. Study on the barrier performance of molten solidified waste (I). Review of the performance assessment research

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Toshikatsu; Sakamoto, Yoshiaki; Nakayama, Shinichi; Yamaguchi, Tetsuji; Ogawa, Hiromichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-02-01

    Application of melting technique is thought as one of the effective methods to treatment of the waste from the view point of its homogeneity and waste volume reduction. Solidified products by melting are expected as potential candidates of engineered barrier in a repository due to the good properties for their stabilization of radionuclides and hazardous elements. However, the methodology of performance evaluation has not been estimated so far. In this report, a literature survey on the properties of molten solidified waste was performed. It is clarified that the leachability of waste elements such as Co or Sr in molten waste form would be controlled by the corrosion behaviors of iron or silica which are the matrix elements of the waste form. While, no investigations into the durability of waste form have performed so far. Also noticed that the research items on performance evaluation such as the leachability for long-lived radionuclides and durability of waste form would be necessary for the long-term barrier assessment on the disposal. (author)

  16. Testing of variables which affect stablity of cement solidified low-level waste

    International Nuclear Information System (INIS)

    Boris, G.F.

    1989-01-01

    This paper describes the test program undertaken to investigate variables which could affect the stability of cement solidified low-level waste and to evaluate the effect of these variables on certain tests prescribed in the Technical Position on Waste Form. The majority of the testing was performed on solidified undepleted bead resin, however, six additional waste types, suggested by the NRC, were tested. The tested variables included waste loading, immersion duration, depletion level, ambient cure duration, curing environment, immersion medium and waste type. Of these, lower waste loadings, longer ambient cures prior to testing and immersion in demineralized water versus simulated sea water and potable water resulted in higher compressive strengths for bead resin samples. Immersion times longer than 90 days did not affect the resin samples. Compressive strengths for other waste types varied depending upon the waste. The strengths of all waste types exceeded the minimum criterion by at least a factor of four, up to a factor of forty. The higher waste loadings exhibit strengths less than the lower waste loadings

  17. Cryogenic EBSD reveals structure of directionally solidified ice–polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Donius, Amalie E., E-mail: amalie.donius@gmail.com [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Obbard, Rachel W., E-mail: Rachel.W.Obbard@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Burger, Joan N., E-mail: ridge.of.the.ancients@gmail.com [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Hunger, Philipp M., E-mail: philipp.m.hunger@gmail.com [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Baker, Ian, E-mail: Ian.Baker@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States); Doherty, Roger D., E-mail: dohertrd@drexel.edu [Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Wegst, Ulrike G.K., E-mail: ulrike.wegst@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 (United States)

    2014-07-01

    Despite considerable research efforts on directionally solidified or freeze-cast materials in recent years, little fundamental knowledge has been gained that links model with experiment. In this contribution, the cryogenic characterization of directionally solidified polymer solutions illustrates, how powerful cryo-scanning electron microscopy combined with electron backscatter diffraction is for the structural characterization of ice–polymer composite materials. Under controlled sublimation, the freeze-cast polymer scaffold structure is revealed and imaged with secondary electrons. Electron backscatter diffraction fabric analysis shows that the ice crystals, which template the polymer scaffold and create the lamellar structure, have a-axes oriented parallel to the direction of solidification and the c-axes perpendicular to it. These results indicate the great potential of both cryo-scanning electron microscopy and cryo-electron backscatter diffraction in gaining fundamental knowledge of structure–property–processing correlations. - Highlights: • Cryo-SEM of freeze-cast polymer solution reveals an ice-templated structure. • Cryo-EBSD reveals the ice crystal a-axis to parallel the solidification direction. • The honeycomb-like polymer phase favors columnar ridges only on one side. • Combining cryo-SEM with EBSD links solidification theory with experiment.

  18. Detection of free liquid in cement-solidified radioactive waste drums using computed tomography

    International Nuclear Information System (INIS)

    Steude, J.S.; Tonner, P.D.

    1991-01-01

    Acceptance criteria for disposal of radioactive waste drums require that the cement-solidified material in the drum contain minimal free liquid after the cement has hardened. Free liquid is to be avoided because it may corrode the drum, escape and cause environmental contamination. The DOE has requested that a nondestructive evaluation method be developed to detect free liquid in quantities in excess of 0.5% by volume. This corresponds to about 1 liter in a standard 208 liter (55 gallon) drum. In this study, the detection of volumes of free liquid in a 57 cm (2 ft.) diameter cement-solidified drum is demonstrated using high-energy X-ray computed tomography (CT0. In this paper it is shown that liquid concentrations of simulated radioactive waste inside glass tubes imbedded in cement can easily be detected, even for tubes with inner diameters less than 2 mm (0.08 in.). Furthermore, it is demonstrated that tubes containing water and liquid concentrations of simulated radioactive waste can be distinguished from tubes of the same size containing air. The CT images were obtained at a rate of about 6 minutes per slice on a commercially available CT system using a 9 MeV linear accelerator source

  19. Experimental Study and Application of Inorganic Solidified Foam Filling Material for Coal Mines

    Directory of Open Access Journals (Sweden)

    Hu Wen

    2017-01-01

    Full Text Available Spontaneous combustion of residual coal in a gob due to air leakage poses a major risk to mining safety. Building an airtight wall is an effective measure for controlling air leakage. A new type of inorganic solidified foam-filled material was developed and its physical and chemical properties were analyzed experimentally. The compressive strength of this material increased with the amount of sulphoaluminate cement. With an increasing water–cement ratio, the initial setting time was gradually extended while the final setting time firstly shortened and then extended. The change in compressive strength had the opposite tendency. Additionally, as the foam expansion ratio increased, the solidification time tended to decrease but the compressive strength remained approximately constant. With an increase in foam production, the solidification time increased and the compressive strength decreased exponentially. The results can be used to determine the optimal material ratios of inorganic solidified foam-filled material for coal mines, and filling technology for an airtight wall was designed. A field application of the new material demonstrated that it seals crossheadings tightly, leaves no fissures, suppresses air leakage to the gob, and narrows the width of the spontaneous combustion and heat accumulation zone.

  20. The effect of grain size and cement content on index properties of weakly solidified artificial sandstones

    Science.gov (United States)

    Atapour, Hadi; Mortazavi, Ali

    2018-04-01

    The effects of textural characteristics, especially grain size, on index properties of weakly solidified artificial sandstones are studied. For this purpose, a relatively large number of laboratory tests were carried out on artificial sandstones that were produced in the laboratory. The prepared samples represent fifteen sandstone types consisting of five different median grain sizes and three different cement contents. Indices rock properties including effective porosity, bulk density, point load strength index, and Schmidt hammer values (SHVs) were determined. Experimental results showed that the grain size has significant effects on index properties of weakly solidified sandstones. The porosity of samples is inversely related to the grain size and decreases linearly as grain size increases. While a direct relationship was observed between grain size and dry bulk density, as bulk density increased with increasing median grain size. Furthermore, it was observed that the point load strength index and SHV of samples increased as a result of grain size increase. These observations are indirectly related to the porosity decrease as a function of median grain size.

  1. Microbially influenced degradation of cement-solidified low-level radioactive waste forms

    International Nuclear Information System (INIS)

    Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. Jr.

    1996-01-01

    Because of its apparent structural integrity, cement has been widely used in the United States as a binder to solidify Class B and C low-level radioactive waste (LLW). However, the resulting cement preparations are susceptible to failure due to the actions of stress and environment. This paper contains information on three groups of microoganisms that are associated with the degradation of cement materials: sulfur-oxidizing bacteria (Thiobacillus), nitrifying bacteria (Nitrosomonas and Nitrobacter), and heterotrophic bacteria, which produce organic acids. Preliminary work using laboratory- and vendor-manufactured, simulated waste forms exposed to thiobacilli has shown that microbiologically influenced degradation has the potential to severely compromise the structural integrity of ion-exchange resin and evaporator-bottoms waste that is solidified with cement. In addition, it was found that a significant percentage of calcium was leached from the treated waste forms. Also, the surface pH of the treated specimens was decreased to below 2. These conditions apparently contributed to the physical deterioration of simulated waste forms after 30 to 60 days of exposure

  2. Leaching test of bituminized waste and waste solidified by epoxy resin

    International Nuclear Information System (INIS)

    Yoshinaka, Kazuyuki; Sugaya, Atsushi; Onizawa, Toshikazu; Takano, Yugo; Kimura, Yukihiko

    2008-10-01

    About 30,000 bituminized waste drums and about 1800 drums of waste solidified by epoxy resin, generated from Tokai Reprocessing Plant, were stored in storage facilities. And study for disposal of these waste is performed. It was considered that radioactive nuclides and chemical components were released from these waste by contact of underground water, when disposed there waste. This paper is reported that result of leaching tests for these waste, done from 2003 to 2006. We've get precious knowledge and data, as follows. (1) In leaching tests for bituminized waste, it has detected iodine-129 peak, considered difficult too low energy gamma to detect. We've get data and knowledge of iodine-129 behavior first. Leached radioactivity for 50 days calculated by peak area was equal for about 40% and 100% of including radioactivity in bituminized waste sample. And we've get data of behavior of nitric acid ion and so on, important to study for disposal, in various condition of sample shape or leaching liquid temperature. (2) In leaching test for waste solidified by epoxy resin, we've get data of behavior of TBP, radionuclides and so on, important to study for disposal. Leached TBP was equal about 1% of including of sample. And we've get data of iodine-129 behavior, too. It was confirmed that leached iodine-129 was equal for about 60% and 100% of including sample, for 90 days. (author)

  3. Freckle Defect Formation near the Casting Interfaces of Directionally Solidified Superalloys.

    Science.gov (United States)

    Hong, Jianping; Ma, Dexin; Wang, Jun; Wang, Fu; Sun, Baode; Dong, Anping; Li, Fei; Bührig-Polaczek, Andreas

    2016-11-16

    Freckle defects usually appear on the surface of castings and industrial ingots during the directional solidification process and most of them are located near the interface between the shell mold and superalloys. Ceramic cores create more interfaces in the directionally solidified (DS) and single crystal (SX) hollow turbine blades. In order to investigate the location of freckle occurrence in superalloys, superalloy CM247 LC was directionally solidified in an industrial-sized Bridgman furnace. Instead of ceramic cores, Alumina tubes were used inside of the casting specimens. It was found that freckles occur not only on the casting external surfaces, but also appear near the internal interfaces between the ceramic core and superalloys. Meanwhile, the size, initial position, and area of freckle were investigated in various diameters of the specimens. The initial position of the freckle chain reduces when the diameter of the rods increase. Freckle area follows a linear relationship in various diameters and the average freckle fraction is 1.1% of cross sectional area of casting specimens. The flow of liquid metal near the interfaces was stronger than that in the interdendritic region in the mushy zone, and explained why freckle tends to occur on the outer or inner surfaces of castings. This new phenomenon suggests that freckles are more likely to occur on the outer or inner surfaces of the hollow turbine blades.

  4. Freckle Defect Formation near the Casting Interfaces of Directionally Solidified Superalloys

    Directory of Open Access Journals (Sweden)

    Jianping Hong

    2016-11-01

    Full Text Available Freckle defects usually appear on the surface of castings and industrial ingots during the directional solidification process and most of them are located near the interface between the shell mold and superalloys. Ceramic cores create more interfaces in the directionally solidified (DS and single crystal (SX hollow turbine blades. In order to investigate the location of freckle occurrence in superalloys, superalloy CM247 LC was directionally solidified in an industrial-sized Bridgman furnace. Instead of ceramic cores, Alumina tubes were used inside of the casting specimens. It was found that freckles occur not only on the casting external surfaces, but also appear near the internal interfaces between the ceramic core and superalloys. Meanwhile, the size, initial position, and area of freckle were investigated in various diameters of the specimens. The initial position of the freckle chain reduces when the diameter of the rods increase. Freckle area follows a linear relationship in various diameters and the average freckle fraction is 1.1% of cross sectional area of casting specimens. The flow of liquid metal near the interfaces was stronger than that in the interdendritic region in the mushy zone, and explained why freckle tends to occur on the outer or inner surfaces of castings. This new phenomenon suggests that freckles are more likely to occur on the outer or inner surfaces of the hollow turbine blades.

  5. Leachability of radionuclides from cement solidified waste forms produced at operating nuclear power plants

    International Nuclear Information System (INIS)

    Croney, S.T.

    1985-03-01

    This study determined the leachability indexes of radionuclides contained in solidified liquid wastes from operating nuclear power plants. Different sizes of samples of cement-solidified liquid wastes were collected from two nuclear power plants - a pressurized water reactor and a boiling water reactor - to correlate radionuclide leaching from small- and full-sized (55-gallon) waste forms. Diffusion-based model analysis (ANS 16.1) of measured radionuclide leach data from both small- and full-sized samples was performed and indicate that leach data from small samples can be used to determine leachability indexes for full-sizes waste forms. The leachability indexes for cesium, strontium, and cobalt isotopes were determined for waste samples from both plants according to the models used for ANS 16.1. The leachability indexes for the pressurized water reactor samples were 6.4 for cesium, 7.1 for strontium, and 10.4 for cobalt. Leachability indexes for the boiling water reactor samples were 6.5 for cesium, 8.6 for strontium, and 11.1 for cobalt

  6. Phase transformations in the reaction cell of TiNi-based sintered systems

    Science.gov (United States)

    Artyukhova, Nadezhda; Anikeev, Sergey; Yasenchuk, Yuriy; Chekalkin, Timofey; Gunther, Victor; Kaftaranova, Maria; Kang, Ji-Hoon; Kim, Ji-Soon

    2018-05-01

    The present work addresses the structural-phase state changes of porous TiNi-based compounds fabricated by reaction sintering (RS) of Ti and Ni powders with Co, Mo, and no additives introduced. The study also emphasizes the features of a reaction cell (RC) during the transition from the solid- to liquid-phase sintering. Mechanisms of phase transformations occurring in the solid phase, involving the low-melting Ti2Ni phase within the RC, have been highlighted. Also, the intermediate Ti2Ni phase had a crucial role to provide both the required RS behavior and modified phase composition of RS samples, and besides, it is found to be responsible for the near-equiatomic TiNi saturation of the melt. Both cobalt and molybdenum additives are shown to cause additional structuring of the transition zone (TZ) at the Ti2Ni‑TiNi interface and broadening of this zone. The impact of Co and Mo on the Ti2Ni phase is evident through fissuring of this phase layer, which is referred to solidified stresses increased in the layer due to post-alloying defects in the structure.

  7. Evaluating the freeze-thaw durability of portland cement-stabilized-solidified heavy metal waste using acoustic measurements

    International Nuclear Information System (INIS)

    El-Korchi, T.; Gress, D.; Baldwin, K.; Bishop, P.

    1989-01-01

    The use of stress wave propagation to assess freeze-thaw resistance of portland cement solidified/stabilized waste is presented. The stress wave technique is sensitive to the internal structure of the specimens and would detect structural deterioration independent of weight loss or visual observations. The freeze-thaw resistance of a cement-solidified cadmium waste and a control was evaluated. The control and cadmium wastes both showed poor freeze-thaw resistance. However, the addition of cadmium and seawater curing increased the resistance to more cycles of freezing and thawing. This is attributed to microstructural changes

  8. Long-term leach testing of solidified radioactive waste forms (International Standard Publication ISO 6961:1982)

    International Nuclear Information System (INIS)

    Stefanik, J.

    2001-01-01

    Processes are developed for the immobilization of radionuclides by solidification of radioactive wastes. The resulting solidification products are characterized by strong resistance to leaching aimed at low release rates of the radionuclides to the environment. To measure this resistance to leaching of the solidified materials: glass, glass-ceramics, bitumen, cement, concrete, plastics, a long-term leach test is presented. The long-term leach test is aimed at: a) the comparison of different kinds or compositions of solidified waste forms; b) the intercomparison between leach test results from different laboratories on one product; c) the intercomparison between leach test results on products from different processes

  9. A high-sensitivity, fast-response, rapid-recovery p–n heterojunction photodiode based on rutile TiO{sub 2} nanorod array on p-Si(1 1 1)

    Energy Technology Data Exchange (ETDEWEB)

    Selman, Abbas M., E-mail: alabbasiabbas@yahoo.co.uk [Nano-Optoelectronics Research and Technology Laboratory (N.O.R.), School of Physics, Universiti Sains Malaysia, Penang 11800 (Malaysia); Department of Pharmacology and Toxicology, College of Pharmacy, University of Kufa, Najaf (Iraq); Hassan, Z.; Husham, M.; Ahmed, Naser M. [Nano-Optoelectronics Research and Technology Laboratory (N.O.R.), School of Physics, Universiti Sains Malaysia, Penang 11800 (Malaysia)

    2014-06-01

    The growth and characterization of a p–n heterojunction photodiode were studied. This photodiode was based on rutile TiO{sub 2} nanorods (NRs) grown on p-type (1 1 1)-oriented silicon substrate seeded with a TiO{sub 2} layer synthesized by radio-frequency (RF) reactive magnetron sputtering. Chemical bath deposition (CBD) was performed to grow rutile TiO{sub 2} NRs on Si substrate. The structural and optical properties of the sample were studied by X-ray diffraction (XRD) and field emission-scanning electron microscopy (FESEM) analyses. Results showed the tetragonal rutile structure of the synthesized TiO{sub 2} NRs. Optical properties were further examined by photoluminescence spectroscopy, and a high-intensity UV peak centered at around 392 nm compared with visible defect peaks centered at 527 and 707 nm was observed. Upon exposure to 395 nm light (2.3 mW/cm) at five-bias voltage, the device showed 2.9 × 10{sup 2} sensitivity. In addition, the internal gain of the photodiode was 3.92, and the photoresponse peak was 106 mA/W. Furthermore, the photocurrent was 3.06 × 10{sup −4} A. The response and the recovery times were calculated to be 10.4 and 11 ms, respectively, upon illumination to a pulse UV light (405 nm, 0.22 mW/cm{sup 2}) at five-bias voltage. All of these results demonstrate that this high-quality photodiode can be a promising candidate as a low-cost UV photodetector for commercially integrated photoelectronic applications.

  10. Evaluation of leaching behavior and immobilization of zinc in cement-based solidified products

    Directory of Open Access Journals (Sweden)

    Krolo Petar

    2012-01-01

    Full Text Available This study has examined leaching behavior of monolithic stabilized/solidified products contaminated with zinc by performing modified dynamic leaching test. The effectiveness of cement-based stabilization/solidification treatment was evaluated by determining the cumulative release of Zn and diffusion coefficients, De. The experimental results indicated that the cumulative release of Zn decreases as the addition of binder increases. The values of the Zn diffusion coefficients for all samples ranged from 1.210-8 to 1.1610-12 cm2 s-1. The samples with higher amounts of binder had lower De values. The test results showed that cement-based stabilization/solidification treatment was effective in immobilization of electroplating sludge and waste zeolite. A model developed by de Groot and van der Sloot was used to clarify the controlling mechanisms. The controlling leaching mechanism was found to be diffusion for samples with small amounts of waste material, and dissolution for higher waste contents.

  11. Processing method of radiation concrete waste and manufacturing method for radioactive waste solidifying filling mortar

    International Nuclear Information System (INIS)

    Sukekiyo, Mitsuaki; Okamoto, Masamichi

    1998-01-01

    Radioactive concrete wastes are crushed and pulverized. Fine solid granular materials caused by the pulverization are classified and the grain size is controlled so that the maximum grain size is 2.5mm, with the grains having a grain size of up to 0.15mm being up to 30% by weight to form fine aggregates. Separated and recovered fine concrete powders are classified and the size of the powder is controlled within a range of from 3,000 to 15,000cm 2 /g which is smaller than cement particles to form fine powders having a stable quality suitable as a mixing agent. The fine aggregates and the mixing agent are mixed to form a filling mortar (filler) for solidifying radioactive wastes. The filling mortar is filled together with other radioactive wastes in a drum to form a waste body in a drum. With such a constitution, crushed radioactive concrete wastes can be reutilized completely. (I.N.)

  12. Retrievable surface storage: interim storage of solidified high-level waste

    International Nuclear Information System (INIS)

    LaRiviere, J.R.; Nelson, D.C.

    1976-01-01

    Studies have been conducted on retrievable-surface-storage concepts for the interim storage of solidified high-level wastes. These studies have been reviewed by the Panel on Engineered Storage, convened by the Committee on Radioactive Waste Management of the National Research Council-National Academy of Sciences. The Panel has concluded that ''retrievable surface storage is an acceptable interim stage in a comprehensive system for managing high-level radioactive wastes.'' The scaled storage cask concept, which was recommended by the Panel on Engineered Storage, consists of placing a canister of waste inside a carbon-steel cask, which in turn is placed inside a thick concrete cylinder. The waste is cooled by natural convection air flow through an annulus between the cask and the inner wall of the concrete cylinder. The complete assembly is placed above ground in an outdoor storage area

  13. On oscillatory microstructure during cellular growth of directionally solidified Sn-36at.%Ni peritectic alloy.

    Science.gov (United States)

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-04-12

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn-36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure.

  14. Annual report on the development and characterization of solidified forms for nuclear wastes, 1979

    International Nuclear Information System (INIS)

    Chick, L.A.; McVay, G.L.; Mellinger, G.B.; Roberts, F.P.

    1980-12-01

    Development and characterization of solidified nuclear waste forms is a major continuing effort at Pacific Northwest Laboratory. Contributions from seven programs directed at understanding chemical composition, process conditions, and long-term behaviors of various nuclear waste forms are included in this report. The major findings of the report are included in extended figure captions that can be read as brief technical summaries of the research, with additional information included in a traditional narrative format. Waste form development proceeded on crystalline and glass materials for high-level and transuranic (TRU) wastes. Leaching studies emphasized new areas of research aimed at more basic understanding of waste form/aqueous solution interactions. Phase behavior and thermal effects research included studies on crystal phases in defense and TRU waste glasses and on liquid-liquid phase separation in borosilicate waste glasses. Radiation damage effects in crystals and glasses from alpha decay and from transmutation are reported

  15. Experimental study of directionally solidified ferromagnetic shape memory alloy under multi-field coupling

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuping, E-mail: zhuyuping@126.com [Institute of Geophysics, China Earthquake Administration, Beijing 100081 (China); Chen, Tao; Teng, Yao [Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013 (China); Liu, Bingfei [Airport College, Civil Aviation University of China, Tianjin 300300 (China); Xue, Lijun [Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2016-11-01

    Directionally solidified, polycrystalline Ni–Mn–Ga is studied in this paper. The polycrystalline Ni–Mn–Ga samples were cut at different angles to solidification direction. The magnetic field induced strain under constant stress and the temperature-induced strain under constant magnetic field during the loading–unloading cycle were measured. The experimental results show that the mechanical behavior during the loading–unloading cycle of the material is nonlinear and anisotropic. Based on the experimental results, the effects of multi-field coupling factors, such as stress, magnetic field, temperature and cutting angle on the mechanical behaviors were analyzed. Some useful conclusions were obtained, which will provide guidance for practical applications. - Highlights: • The magnetic-induced strains in different directions are tested. • The temperature-induced strains in different directions are tested. • The effects of coupling factors on directional solidification samples are studied.

  16. The Characterization of Filtration Waste Solidified Product from Baghouse Filter of the Incineration Process

    International Nuclear Information System (INIS)

    Sutoto

    2000-01-01

    To increase of the safety, quality and to easy maintenance of the incinerator media of bag house filter, coating of the surface filter media by CaCO 3 powder were done. In the incinerator process, the CaCO 3 powder will scrub of fly ash as secondary waste. And finally, both of the secondary waste and CaCO 3 will immobilized by cement matrix. The research has an objective to study and characterizing of the CaCO 3 as secondary waste on their cemented product. The research were done on block samples with content of CaCO 3 and the properties characterized by compressive strength and density. From this research known that on their solidified, each quantity of CaCO 3 will be impact to decreasing of the quality cementation product. The optimum formula for solidification of bag house filter scrubbed is CaCO 3 : cement: water is 3 : 10 : 7. (author)

  17. Relationship between critical current properties and microstructure in cylindrical RE123 melt-solidified bulks

    International Nuclear Information System (INIS)

    Nakashima, T.; Shimoyama, J.; Honzumi, M.; Tazaki, Y.; Horii, S.; Kishio, K.

    2005-01-01

    We report the synthesis of cylindrical melt-solidified bulks in REBa 2 Cu 3 O y (RE = Sm, Gd, Dy, Ho, Y and Er), and their critical current properties and microstructures of the a- and the c-growth regions. It was found from the microstructure analysis that the volume fractions of RE211 particles in the c-growth region were always lower than those in the a-growth region. Moreover, those in the c-growth region were increased with distance from the seed crystal. Interestingly, the second peak effects in J c -B curves were prominently enhanced for the c-growth region. J c values at zero field for the c-growth region through the appropriate oxygen post-annealing reached approximately 95 kA cm -2 for RE = Ho, Dy and Y

  18. Solute redistribution and Rayleigh number in the mushy zone during directional solidifi cation of Inconel 718

    Directory of Open Access Journals (Sweden)

    Wang Ling

    2009-08-01

    Full Text Available The interdendritic segregation along the mushy zone of directionally solidifi ed superalloy Inconel 718 has been measured by scanning electron microscope (SEM and energy dispersion analysis spectrometry (EDAXtechniques and the corresponding liquid composition profile was presented. The liquid density and Rayleigh number (Ra profi les along the mushy zone were calculated as well. It was found that the liquid density difference increased from top to bottom in the mushy zone and there was no density inversion due to the segregation of Nb and Mo. However carbide formation in the freezing range and the preferred angle of the orientated dendrite array could prompt the fl uid fl ow in the mushy zone although there was no liquid density inversion. The largest relative Rayleigh number appeared at 1,326 篊 for Inconel 718 where the fl uid fl ow most easily occurred.

  19. Microstructure and property of directionally solidified Ni-Si hypereutectic alloy

    Science.gov (United States)

    Cui, Chunjuan; Tian, Lulu; Zhang, Jun; Yu, Shengnan; Liu, Lin; Fu, Hengzhi

    2016-03-01

    This paper investigates the influence of the solidification rate on the microstructure, solid/liquid interface, and micro-hardness of the directionally solidified Ni-Si hypereutectic alloy. Microstructure of the Ni-Si hypereutectic alloy is refined with the increase of the solidification rate. The Ni-Si hypereutectic composite is mainly composed of α-Ni matrix, Ni-Ni3Si eutectic phase, and metastable Ni31Si12 phase. The solid/liquid interface always keeps planar interface no matter how high the solidification rate is increased. This is proved by the calculation in terms of M-S interface stability criterion. Moreover, the Ni-Si hypereutectic composites present higher micro-hardness as compared with that of the pure Ni3Si compound. This is caused by the formation of the metastable Ni31Si12 phase and NiSi phase during the directional solidification process.

  20. Importance of microscopy in durability studies of solidified and stabilized contaminated soils

    Science.gov (United States)

    Klich, I.; Wilding, L.P.; Drees, L.R.; Landa, E.R.

    1999-01-01

    Solidification/stabilization (S/S) is recognized by the U.S. EPA as a best demonstrated available technology for the containment of contaminated soils and other hazardous wastes that cannot be destroyed by chemical, thermal, or biological means. Despite the increased use of S/S technologies, little research has been conducted on the weathering and degradation of solidified and stabilized wastes once the treated materials have been buried. Published data to verify the performance and durability of landfilled treated wastes over time are rare. In this preliminary study, optical and electron microscopy (scanning electron microscopy [SEM], transmission electron microscopy [TEM] and electron probe microanalyses [EPMA]) were used to evaluate weathering features associated with metal-bearing contaminated soil that had been solidified and stabilized with Portland cement and subsequently buried on site, stored outdoors aboveground, or achieved in a laboratory warehouse for up to 6 yr. Physical and chemical alteration processes identified include: freeze-thaw cracking, cracking caused by the formation of expansive minerals such as ettringite, carbonation, and the movement of metals from waste aggregates into the cement micromass. Although the extent of degradation after 6 yr is considered slight to moderate, results of this study show that the same environmental concerns that affect the durability of concrete must be considered when evaluating the durability and permanence of the solidification and stabilization of contaminated soils with cement. In addition, such evaluations cannot be based on leaching and chemical analyses alone. The use of all levels of microscopic analyses must be incorporated into studies of the long-term performance of S/S technologies.Solidification/stabilization (S/S) is recognized by the U.S. EPA as a best demonstrated available technology for the containment of contaminated soils and other hazardous wastes that cannot be destroyed by chemical

  1. 3D observation of the solidified structures by x-ray micro computerized tomography

    International Nuclear Information System (INIS)

    Yasuda, Hideyuki; Ohnaka, Itsuo; Tsuchiyama, Akira; Nakano, Tsukasa; Uesugi, Kentaro

    2003-01-01

    The high flux density of the monochromatized and well-collimated X-ray and the high-resolution detector provide a new 3D observation tool for microstructures of metallic alloys and ceramics. The X-ray micro computerized tomography in BL47XU of SPring-8 (SP-μCT) was applied to observe microstructures produced through the eutectic reaction for Sn-based alloys and an Al 2 O 3 -Y 2 O 3 oxide system. The constituent phases in the eutectic structures were three-dimensionally identified, in which the lamellar spacing ranged from several to 10 μm. Since the 3D structure of the unidirectionally solidified specimens contains history of the eutectic structure formation, the 3D structure obtained by SP-μCT gives useful information to consider the microstructure evolution. (author)

  2. Radial macrosegregation and dendrite clustering in directionally solidified Al-7Si and Al-19Cu alloys

    Science.gov (United States)

    Ghods, M.; Johnson, L.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2016-05-01

    Hypoeutectic Al-7 wt% Si and Al-19 wt% Cu alloys were directionally solidified upward in a Bridgman furnace through a range of constant growth speeds and thermal gradients. Though processing is thermo-solutally stable, flow initiated by gravity-independent advection at, slightly leading, central dendrites moves rejected solute out ahead and across the advancing interface. Here any lagging dendrites are further suppressed which promotes a curved solid-liquid interface and the eventual dendrite "clustering" seen in transverse sections (dendrite "steepling" in longitudinal orientations) as well as extensive radial macrosegregation. Both aluminum alloys showed considerable macrosegregation at the low growth speeds (10 and 30 μm s-1) but not at higher speed (72 μm s-1). Distribution of the fraction eutectic-constituent on transverse sections was determined in order to quantitatively describe radial macrosegregation. The convective mechanisms leading to dendrite-steepling were elucidated with numerical simulations, and their results compared with the experimental observations.

  3. Experimental study on the leaching of radioactive materials from radioactive wastes solidified in cement into sea water. Part 2

    International Nuclear Information System (INIS)

    Hatta, H.; Ono, H.; Nagakura, T.; Machida, T.; Seki, T.; Maki, Y.

    Results are presented from the study on leachability of 60 Co and 137 Cs from BWR concentrated wastes that had been solidified in cement. The leachability of 60 Co is very small compared to that of 137 Cs and varies greatly with the type of leaching medium. The effect of duration of immersion on leachability is comparatively large

  4. A Laboratory Screening Study On The Use Of Solidifiers As A Response Tool To Remove Crude Oil Slicks On Seawater

    Science.gov (United States)

    The effectiveness of five solidifiers to remove Prudhoe Bay crude oil from artificial seawater in the laboratory was determined by ultraviolet-visible spectroscopy (UV-VIS) and gas chromatography/mass spectrometry (GC/MS). The performance of the solidifers was determined by US-V...

  5. Surface free energy of polypropylene and polycarbonate solidifying at different solid surfaces

    International Nuclear Information System (INIS)

    Chibowski, Emil; Terpilowski, Konrad

    2009-01-01

    Advancing and receding contact angles of water, formamide, glycerol and diiodomethane were measured on polypropylene (PP) and polycarbonate (PC) sample surfaces which solidified at Teflon, glass or stainless steel as matrix surfaces. Then from the contact angle hystereses (CAH) the apparent free energies γ s tot of the surfaces were evaluated. The original PP surface is practically nonpolar, possessing small electron donor interaction (γ s - =1.91mJ/m 2 ), as determined from the advancing contact angles of these liquids. It may result from impurities of the polymerization process. However, it increases up to 8-10 mJ/m 2 for PP surfaces contacted with the solids. The PC surfaces both original and modified show practically the same γ s - =6.56.7mJ/m 2 . No electron acceptor interaction is found on the surfaces. The γ s tot of modified PP and PC surfaces depend on the kind of probe liquid and contacted solid surface. The modified PP γ s tot values determined from CAH of polar liquids are greater than that of original surface and they increase in the sequence: Teflon, glass, stainless steel surface, at which they solidified. No clear dependence is observed between γ s tot and dielectric constant or dipole moment of the polar probe liquids. The changes in γ s tot of the polymer surfaces are due to the polymer nature and changes in its surface structure caused by the structure and force field of the contacting solid. It has been confirmed by AFM images.

  6. Leachability and heavy metal speciation of 17-year old stabilised/solidified contaminated site soils

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fei, E-mail: fwtiffany@gmail.com [Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Wang, Hailing, E-mail: wanghailing@njtech.edu.cn [College of Environment, Nanjing Tech University, Nanjing 210009 (China); Al-Tabbaa, Abir, E-mail: aa22@cam.ac.uk [Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2014-08-15

    Highlights: • The effectiveness of the cement-based S/S at 17 years in West Drayton site is still satisfactory. • Major leaching of Cu, Zn, Ni, Cd and Pb in all mixes took place in the Fe/Mn oxides phase. • The hydration process has been fully completed and further carbonation took place at 17 years. • Microstructure analyses show that unreacted PFA exists. - Abstract: The long-term leachability, heavy metal speciation transformation and binding mechanisms in a field stabilised/solidified contaminated soil (made ground) from West Drayton site were recently investigated following in situ auger mixing treatment with a number of cement-based binders back in 1996. Two batch leaching tests (TCLP and BS EN 12457) and a modified five step sequential extraction procedure along with X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses were employed for the testing of the 17-year-old field soil. The results of batch leaching tests show that the treatment employed remained effective at 17 years of service time, with all BS EN 12457 test samples and most of TCLP test samples satisfied drinking water standards. Sequential extraction results illustrate that the leaching of Cu, Ni, Zn, Pb and Cd in all mixes mainly occurred at the Fe/Mn phase, ranging from 43% to 83%. Amongst the five metals tested, Ni was the most stable with around 40% remained in the residual phase for all the different cement-based binder stabilised/solidified samples. XRD and SEM analyses show that the hydration process has been fully completed and further carbonation took place. In summary, this study confirms that such cement-based stabilisation/solidification (S/S) treatment can achieve satisfactory durability and thus is a reliable technique for long-term remediation of heavy metal contaminated soil.

  7. Study on Magnesium in Rainwater and Fertilizer Infiltration to Solidified Peat

    Science.gov (United States)

    Tajuddin, S. A. M.; Rahman, J. A.; Mohamed, R. M. S. R.

    2018-04-01

    Magnesium is a component of several primary and secondary minerals in the soil which are essentially insoluble for agricultural purpose. The presence of water infiltrate in the soil allows magnesium to dissolve together into the groundwater. In fertilizers, magnesium is categorized as secondary macronutrient which supplies food and encouraging for plants growth. The main objective of this study was to determine the concentration of magnesium in fibric peat when applied the solidification under different conditions. Physical model was used as a mechanism for the analysis of the experimental data using a soil column as an equipment to produce water leaching. In this investigation, there were four outlets in the soil column which were prepared from the top of the column to the bottom with the purpose of identifying the concentration of magnesium for each soil level. The water leaching of each outlet was tested using atomic absorption spectroscopy (AAS). The results obtained showed that the highest concentrations of magnesium for flush and control condition at outlet 4 was 12.50 ppm and 1.29 ppm respectively. Similarly, fibric with solidified peat under rainwater recorded the highest value of 3.16 at outlet 1 for wet condition while for dry condition at outlet 4 of 1.33 ppm. However, the difference in fibric with solidified peat under rainwater and fertilizer condition showed that the highest value for the wet condition was achieved at outlet 1 with 5.43 ppm while highest value of 1.26 ppm was obtained for the dry condition at the outlet 4. It was concluded that the outlets in the soil column gave a detailed analysis of the concentration of magnesium in the soil which was influenced by the environmental conditions.

  8. Increased corrosion resistance of the AZ80 magnesium alloy by rapid solidification.

    Science.gov (United States)

    Aghion, E; Jan, L; Meshi, L; Goldman, J

    2015-11-01

    Magnesium (Mg) and Mg-alloys are being considered as implantable biometals. Despite their excellent biocompatibility and good mechanical properties, their rapid corrosion is a major impediment precluding their widespread acceptance as implantable biomaterials. Here, we investigate the potential for rapid solidification to increase the corrosion resistance of Mg alloys. To this end, the effect of rapid solidification on the environmental and stress corrosion behavior of the AZ80 Mg alloy vs. its conventionally cast counterpart was evaluated in simulated physiological electrolytes. The microstructural characteristics were examined by optical microscopy, SEM, TEM, and X-ray diffraction analysis. The corrosion behavior was evaluated by immersion, salt spraying, and potentiodynamic polarization. Stress corrosion resistance was assessed by Slow Strain Rate Testing. The results indicate that the corrosion resistance of rapidly solidified ribbons is significantly improved relative to the conventional cast alloy due to the increased Al content dissolved in the α-Mg matrix and the correspondingly reduced presence of the β-phase (Mg17 Al12 ). Unfortunately, extrusion consolidated solidified ribbons exhibited a substantial reduction in the environmental performance and stress corrosion resistance. This was mainly attributed to the detrimental effect of the extrusion process, which enriched the iron impurities and increased the internal stresses by imposing a higher dislocation density. In terms of immersion tests, the average corrosion rate of the rapidly solidified ribbons was <0.4 mm/year compared with ∼2 mm/year for the conventionally cast alloy and 26 mm/year for the rapidly solidified extruded ribbons. © 2014 Wiley Periodicals, Inc.

  9. Diffusion behavior in the films of Nb-Ti systems

    International Nuclear Information System (INIS)

    Yoshitake, Michiko; Yoshihara, Kazuhiro

    1990-01-01

    The diffusion behavior of substrate element into a deposited film was investigated. The observed systems were a Nb film/Ti substrate and a Ti film/Nb substrate. When the Nb film/Ti substrate was heated in a vacuum, Ti diffused very rapidly in the Nb film. The pre-exponential factor of the diffusion constant of Ti in the Nb film was 5.6x10 -2 m 2 s -1 , and the activation energy was 220 kJmol -1 . The observed activation energy is about 60% of that of Ti in the bulk Nb. On the other hand, when the Ti film/Nb substrate was heated in a vacuum, Nb did not diffuse so rapidly. Titanium diffused through the Nb film rapidly and was concentrated on the surface of the Nb film. The chemical state of the concentrated Ti was metallic, and neither titanium oxides nor titanium carbide was observed. Therefore, the driving force of the rapid diffusion of Ti in the Nb film is considered as the reduction of the surface energy of Nb film. The difference in the diffusion behavior between Ti through the Nb film and Nb through the Ti film is explained supposing that the segregation of Ti reduces the surface energy of the Nb film but the segregation of Nb does not reduce the surface energy of the Ti film. After heating of the Nb film/Ti substrate for a long time, a new phase was formed at the interface between the Nb film and the Ti substrate. The chemical composition of the new phase is about 50% of Ti and 50% of Nb. This phase has not been reported in the phase diagram of the bulk Ti-Nb system. The surface area of the Nb film is considered to be quite large, so the contribution of surface energy to the thermodynamic state of the Nb film cannot be neglected. Therefore, the chemical potential of the film is different from that of the bulk. Then, the new phase, which does not exist in the phase diagram of the bulk system, is formed by an interaction of the films. (author)

  10. Rapid synthesis of beta zeolites

    Science.gov (United States)

    Fan, Wei; Chang, Chun -Chih; Dornath, Paul; Wang, Zhuopeng

    2015-08-18

    The invention provides methods for rapidly synthesizing heteroatom containing zeolites including Sn-Beta, Si-Beta, Ti-Beta, Zr-Beta and Fe-Beta. The methods for synthesizing heteroatom zeolites include using well-crystalline zeolite crystals as seeds and using a fluoride-free, caustic medium in a seeded dry-gel conversion method. The Beta zeolite catalysts made by the methods of the invention catalyze both isomerization and dehydration reactions.

  11. Effects of La{sub 2}O{sub 3} on microstructure and wear properties of laser clad {gamma}/Cr{sub 7}C{sub 3}/TiC composite coatings on TiAl intermatallic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiubo [Laboratory for Laser Intelligent Manufacturing, Institute of Mechanics, Chinese Academy of Sciences, 15 Beisihuanxi Road, Beijing 100080 (China) and School of Materials and Chemical Engineering, Zhongyuan Institute of Technology, 41 Zhongyuan Western Road, Zhengzhou 450007, Henan Province (China)]. E-mail: liubobo0828@yahoo.com.cn; Yu Rongli [School of Materials Science and Engineering, Beihang University, 37 Xueyuan Road, Beijing 100083 (China)

    2007-02-15

    The effects of La{sub 2}O{sub 3} addition on the microstructure and wear properties of laser clad {gamma}/Cr{sub 7}C{sub 3}/TiC composite coatings on {gamma}-TiAl intermetallic alloy substrates with NiCr-Cr{sub 3}C{sub 2} precursor mixed powders have been investigated by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive spectrometer (EDS) and block-on-ring wear tests. The responding wear mechanisms are discussed in detail. The results are compared with that for composite coating without La{sub 2}O{sub 3}. The comparison indicates that no evident new crystallographic phases are formed except a rapidly solidified microstructure consisting of the primary hard Cr{sub 7}C{sub 3} and TiC carbides and the {gamma}/Cr{sub 7}C{sub 3} eutectics distributed in the tough {gamma} nickel solid solution matrix. Good finishing coatings can be achieved under a proper amount of La{sub 2}O{sub 3}-addition and a suitable laser processing parameters. The additions of rare-earth oxide La{sub 2}O{sub 3} can refine and purify the microstructure of coatings, relatively decrease the volume fraction of primary blocky Cr{sub 7}C{sub 3} to Cr{sub 7}C{sub 3}/{gamma} eutectics, reduce the dilution of clad material from base alloy and increase the microhardness of the coatings. When the addition of La{sub 2}O{sub 3} is approximately 4 wt.%, the laser clad composite coating possesses the highest hardness and toughness. The composite coating with 4 wt.%La{sub 2}O{sub 3} addition can result the best enhancement of wear resistance of about 30%. However, too less or excessive addition amount of La{sub 2}O{sub 3} have no better influence on wear resistance of the composite coating.

  12. Formation and growth of crystal defects in directionally solidified multicrystalline silicon for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ryningen, Birgit

    2008-07-01

    Included in this thesis are five publications and one report. The common theme is characterisation of directionally solidified multicrystalline silicon for solar cells. Material characterisation of solar cell silicon is naturally closely linked to both the casting process and to the solar cell processing: Many of the material properties are determined by the casting process, and the solar cell processing will to some extend determine which properties will influence the solar cell performance. Solar grade silicon (SoG-Si) made by metallurgical refining route and supplied by Elkem Solar was directionally solidified and subsequently characterised, and a simple solar cell process was applied. Except from some metallic co-precipitates in the top of the ingot, no abnormalities were found, and it is suggested that within the limits of the tests performed in this thesis, the casting and the solar cell processing, rather than the assumed higher impurity content, was the limiting factor. It is suggested in this thesis that the main quality problem in multicrystalline silicon wafers is the existence of dislocation clusters covering large wafer areas. The clusters will reduce the effect of gettering and even if gettering could be performed successfully, the clusters will still reduce the minority carrier mobility and hence the solar cell performance. It has further been pointed out that ingots solidified under seemingly equal conditions might have a pronounced difference in minority carrier lifetime. Ingots with low minority carrier lifetime have high dislocation densities. The ingots with the substantially higher lifetime seem all to be dominated by twins. It is also found a link between a higher undercooling and the ingots dominated by twins. It is suggested that the two types of ingots are subject to different nucleation and crystal growth mechanisms: For the ingots dominated by dislocations, which are over represented, the crystal growth is randomly nucleated at the

  13. Interplay between temperature gradients field and C - E transformation in solidifying rolls

    Directory of Open Access Journals (Sweden)

    W. Wołczyński

    2009-07-01

    Full Text Available At first step of simulation a temperature field for solidifying cast steel and cast iron roll has been performed. The calculation does not take into account the convection in the liquid since convection has no influence on the proposed model for the localization of the C-E (columnar to equiaxed grains transformation. However, it allows to study the dynamics of temperature field temporal behavior in the middle of a mould. It is postulated that for the C-E transition a full accumulation of the heat in the mould has been observed (plateau at the T(t curve. The temporal range of plateau existence corresponds to the incubation time for the full equiaxed grains formation. At the second step of simulation temporal behavior of the temperature gradient field has been studied. Three ranges within temperature gradients field have been distinguished for the operating point situated at the middle of mould: a/ for the formation of columnar grains zone, ( and high temperature gradient 0>>T&0//>>∂∂−∂∂∂∂−∂∂>EttEtrTrT. T - temperature, r - roll radius. It is evident that the heat transfer across the mould decides on the temporal appearance of incubation during which the solidification is significantly arrested and competition between columnar and equiaxed growth occurs. Moreover solidification with positive temperature gradient transforms into solidification with negative temperature gradient (locally after the incubation. A simulation has been performed for the cast steel and cast iron rolls solidifying as in industry condition. Since the incubation divides the roll into to parts (first with columnar structure, second with equiaxed structure some experiments dealing with solidification have been made in laboratory scale. Finally, observations of the macrosegregation or microsegregation and phase or structure appearance in the cast iron ingot / roll (made in laboratory has also been done in order to confront them with theoretical predictions

  14. Copper-base alloys processed by rapid solidification and ion implantation

    International Nuclear Information System (INIS)

    Wood, J.V.; Elvidge, C.J.; Johnson, E.; Johansen, A.; Sarholt-Kristensen, L.; Henriksen, O.

    1985-01-01

    Alloys of Cu-Sn and Cu-B have been processed by both melt spinning and ion implantation. In some instances (e.g. Cu-Sn alloys) rapidly solidified ribbons have been subjected to further implantation. This paper describes the similarities and differences in structure of materials subjected to a dynamic and contained process. For example in Cu-B alloys (up to 2wt% Boron) extended solubility is found in implanted alloys which is not present to the same degree in rapidly solidified alloys of the same composition. Likewise the range and nature of the reversible martensitic transformation is different in both cases as examined by electron microscopy and differential scanning calorimetry. (orig.)

  15. Optimization of dispersive liquid-phase microextraction based on solidified floating organic drop combined with high-performance liquid chromatography for the analysis of glucocorticoid residues in food.

    Science.gov (United States)

    Huang, Yuan; Zheng, Zhiqun; Huang, Liying; Yao, Hong; Wu, Xiao Shan; Li, Shaoguang; Lin, Dandan

    2017-05-10

    A rapid, simple, cost-effective dispersive liquid-phase microextraction based on solidified floating organic drop (SFOD-LPME) was developed in this study. Along with high-performance liquid chromatography, we used the developed approach to determine and enrich trace amounts of four glucocorticoids, namely, prednisone, betamethasone, dexamethasone, and cortisone acetate, in animal-derived food. We also investigated and optimized several important parameters that influenced the extraction efficiency of SFOD-LPME. These parameters include the extractant species, volumes of extraction and dispersant solvents, sodium chloride addition, sample pH, extraction time and temperature, and stirring rate. Under optimum experimental conditions, the calibration graph exhibited linearity over the range of 1.2-200.0ng/ml for the four analytes, with a reasonable linearity(r 2 : 0.9990-0.9999). The enrichment factor was 142-276, and the detection limits was 0.39-0.46ng/ml (0.078-0.23μg/kg). This method was successfully applied to analyze actual food samples, and good spiked recoveries of over 81.5%-114.3% were obtained. Copyright © 2017. Published by Elsevier B.V.

  16. A novel solidified floating organic drop microextraction method for preconcentration and determination of copper ions by flow injection flame atomic absorption spectrometry in water samples

    Directory of Open Access Journals (Sweden)

    Arpa Şahin Ç.

    2013-04-01

    Full Text Available A simple, rapid and inexpensive solidified floating organic drop microextraction (SFODME and flow injection flame atomic absorption spectrometric determination (FI-FAAS method for copper was developed. 3-amino-7-dimethylamino-2-methylphenazine (Neutral red, NR was used as the complexing agent. Several factors affecting the microextraction efficiency, such as, pH, NR and sodium dodecylbenzenesulfonate (SDBS concentration, extraction time, stirring rate, and temperature were investigated and optimized. Under optimized experimental conditions an enrichment factor of 541 was obtained for 100 mL of sample solution. The calibration graph was linear in the range of 0.5 – 20.0 ng mL–1 and the limit of detection (3s was 0.18 ng mL–1, the limit of quantification (10s was 0.58 ng mL–1. The relative standard deviation (RSD for 10 replicate measurements of 10 ng mL–1 copper was 2.7%. The developed method was successfully applied to the extraction and determination of copper in different certified reference materials (Estuarine water, Slew 3 and fortified water, TM 23.2 and real water samples and satisfactory results were obtained.

  17. Rapid solidification and dynamic compaction of Ni-base superalloy powders

    Science.gov (United States)

    Field, R. D.; Hales, S. J.; Powers, W. O.; Fraser, H. L.

    1984-01-01

    A Ni-base superalloy containing 13Al-9Mo-2Ta (in at. percent) has been characterized in both the rapidly solidified condition and after dynamic compaction. Dynamically compacted specimens were examined in the as-compacted condition and observations related to current theories of interparticle bonding. In addition, the recrystallization behavior of the compacted material at relatively low temperature (about 0.5-0.75 Tm) was investigated.

  18. Evaluation of the performance of solidified commercial low-level wastes in an arid climate

    International Nuclear Information System (INIS)

    Graham, M.J.; Walter, M.B.

    1984-01-01

    Shallow land burial is being used as a disposal method for commercial low-level waste at waste disposal sites in arid (Hanford, Washington) and humid (Barnwell, South Carolina) climatic regions. A field lysimeter facility has been established at Hanford in which to conduct waste-form leaching tests. The primary objective of this research is to determine typical source terms generated by commercial solidified low-level wastes. The field lysimeter facility consists of 10, 3 M deep by 1.8 M diameter, closed-bottomed lysimeters around a central 4 M deep by 4 M diameter instrument caisson. Commercial cement and dow polymer waste samples were removed from 210 L drums and placed in the 1.8 M diameter lysimeters. Two bitumen samples are planned to be emplaced in the facility this year. The central caisson provides access to the instrumentation in the individual lysimeters and allows selective sampling of the soil and waste forms. Suction candles (ceramic cups) placed around the waste will be used to periodically collect soil water samples for chemical analysis. Meteorological data, moisture content, and soil temperature are being automatically monitored at the facility. Characterization of the soils and waste forms have been partially completed. These data consist of moisture release characteristics, particle size distribution, concentrations and distributions of radionuclides in the waste streams, and concentrations of hydrophilic organic species in one of the waste streams

  19. Organic semiconductor rubrene thin films deposited by pulsed laser evaporation of solidified solutions

    Science.gov (United States)

    Majewska, N.; Gazda, M.; Jendrzejewski, R.; Majumdar, S.; Sawczak, M.; Śliwiński, G.

    2017-08-01

    Organic semiconductor rubrene (C42H28) belongs to most preferred spintronic materials because of the high charge carrier mobility up to 40 cm2(V·s)-1. However, the fabrication of a defect-free, polycrystalline rubrene for spintronic applications represents a difficult task. We report preparation and properties of rubrene thin films deposited by pulsed laser evaporation of solidified solutions. Samples of rubrene dissolved in aromatic solvents toluene, xylene, dichloromethane and 1,1-dichloroethane (0.23-1% wt) were cooled to temperatures in the range of 16.5-163 K and served as targets. The target ablation was provided by a pulsed 1064 nm or 266 nm laser. For films of thickness up to 100 nm deposited on Si, glass and ITO glass substrates, the Raman and AFM data show presence of the mixed crystalline and amorphous rubrene phases. Agglomerates of rubrene crystals are revealed by SEM observation too, and presence of oxide/peroxide (C42H28O2) in the films is concluded from matrix-assisted laser desorption/ionization time-of-flight spectroscopic analysis.

  20. Disposal and long-term storage in geological formations of solidified radioactive wastes

    International Nuclear Information System (INIS)

    Shischits, I.

    1996-01-01

    The special depository near Krasnoyarsk contains temporarily about 1,100 tons of spent nuclear fuel (SNF) from WWR- should be solidified and for the most part buried in geological formations. Solid wastes and SNF from RBMK reactors are assumed to be buried as well. For this purpose special technologies and underground constructions are required. They are to be created in the geological plots within the territory of Russian Federation and adjacent areas of CIS, meeting the developed list of requirements. The burial structures will vary greatly depending on the geological formation, the amount of wastes and their isotope composition. The well-known constructions such as deep wells, shafts, mines and cavities can be mentioned. There is a need to design constructions, which have no analog in the world practice. In the course of the Project fulfillment the following work will be conducted: -theoretical work followed by code creation for mathematical simulation of processes; - modelling on the base of prototypes made from equivalent materials with the help of simulators; - bench study; - experiments in real conditions; - examination of massif properties in particular plots using achievements of geophysics, including gamma-gamma density detectors and geo locators. Finally, ecological-economical model will be given for designing burial sites

  1. Evaluation of the performance of solidified commercial low-level wastes in an arid climate

    International Nuclear Information System (INIS)

    Graham, M.J.; Walter, M.B.

    1984-09-01

    Shallow land burial is being used as a disposal method for commercial low-level waste at waste disposal sites in arid (Hanford site near Richland, Washington) and humid (Barnwell, South Carolina) climatic regions. A field lysimeter facility has been established at the Hanford site in which to conduct waste-form leaching tests. The primary objective of this research is to determine typical source terms generated by commercial solidified low-level wastes. The field lysimeter facility consists of ten 3-m-deep by 1.8-m-diameter, closed-bottom lysimeters around a central instrument caisson, 4 m in diameter. Commercial cement and vinyl ester-styrene waste samples were removed from 210-L drums and placed in the 1.8-m-diameter lysimeters. Two bitumen samples are planned to be emplaced in the facility in 1984. The central caisson provides access to the instrumentation in the individual lysimeters and allows selective sampling of the soil and waste forms. Suction candles (ceramic cups) placed around the waste will be used to periodically collect soil water samples for chemical analysis. Meteorological data, moisture content, and soil temperature are automatically monitored at the facility. Characterization of the soils and waste forms have been partially completed. These data consist of moisture release characteristics, particle size distribution, concentrations and distributions of radionuclides in the waste forms, concentrations of radionuclides in the waste streams, and concentrations of hydrophilic organic species in one of the waste steams. 8 references, 3 figures, 5 tables

  2. On oscillatory microstructure during cellular growth of directionally solidified Sn–36at.%Ni peritectic alloy

    Science.gov (United States)

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-01-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn–36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure. PMID:27066761

  3. Preparation and Stability of Inorganic Solidified Foam for Preventing Coal Fires

    Directory of Open Access Journals (Sweden)

    Botao Qin

    2014-01-01

    Full Text Available Inorganic solidified foam (ISF is a novel material for preventing coal fires. This paper presents the preparation process and working principle of main installations. Besides, aqueous foam with expansion ratio of 28 and 30 min drainage rate of 13% was prepared. Stability of foam fluid was studied in terms of stability coefficient, by varying water-slurry ratio, fly ash replacement ratio of cement, and aqueous foam volume alternatively. Light microscope was utilized to analyze the dynamic change of bubble wall of foam fluid and stability principle was proposed. In order to further enhance the stability of ISF, different dosage of calcium fluoroaluminate was added to ISF specimens whose stability coefficient was tested and change of hydration products was detected by scanning electron microscope (SEM. The outcomes indicated that calcium fluoroaluminate could enhance the stability coefficient of ISF and compact hydration products formed in cell wall of ISF; naturally, the stability principle of ISF was proved right. Based on above-mentioned experimental contents, ISF with stability coefficient of 95% and foam expansion ratio of 5 was prepared, which could sufficiently satisfy field process requirements on plugging air leakage and thermal insulation.

  4. High temperature low cycle fatigue behavior of a directionally solidified Ni-base superalloy DZ951

    International Nuclear Information System (INIS)

    Chu Zhaokuang; Yu Jinjiang; Sun Xiaofeng; Guan Hengrong; Hu Zhuangqi

    2008-01-01

    Total strain-controlled low cycle fatigue (LCF) tests were performed at a temperature range from 700 to 900 deg. C in ambient air condition on a directionally solidified Ni-base superalloy DZ951. The fatigue life of DZ951 alloy does not monotonously decrease with increasing temperature, but exhibits a strong dependence on the total strain range. The dislocation characteristics and failed surface observation were evaluated through transmission electron microscopy and scanning electron microscopy. The alloy exhibits cyclic hardening, softening or cyclic stability as a whole, which is dependent on the testing temperature and total strain range. At 700 deg. C, the cyclic plastic deformation process is the main cause of fatigue failure. At 900 deg. C, the failure mostly results from combined fatigue and creep damage under total strain range from 0.6 to 1.2% and the reduction in fatigue life can be taken as the cause of oxidation, creep and cyclic plastic deformation under total strain range of 0.5%

  5. Comparison of ice particle morphology crushed from ice chunk and directly solidified from droplet

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.H.; Yoon, Y.S.; Bang, S.Y. [Dongguk Univ., Pil-dong, Chung-gu, Seoul (Korea, Republic of). Dept. of Mechanical Engineering

    2008-07-01

    In order to investigate the transition kinetics of ice to hydrate and to produce standard specimens of hydrate pellet from prepared hydrate powders, fine ice beads with uniform diameters must be fabricated. This paper discussed the construction of several experimental setups for the fabrication of fine ice particle generation. The ultrasonic nozzle was used to produce fine mist which solidified near the free surface of liquid nitrogen bath. The shape and population distribution of ice bead diameters was analyzed. The study also compared ice particles produced by crushing. The surface morphology of ice particles produced with a ball mill was also examined. Experimental results were obtained for an ice shaver, ball mill, bowl for grinding medicine, and ultrasonic nozzle. It was concluded that the information generated from the study was useful in estimating the macroscopic flow characteristics such as permeability of bulk powder and in determining mean effective diameter of irregular shaped particles. Future work was also noted as being underway with different experiments for other cases with different operating conditions. 5 refs., 5 figs.

  6. Particle Engulfment and Pushing by Solidifying Interfaces. Pt. 2; Micro-Gravity Experiments and Theoretical Analysis

    Science.gov (United States)

    Stefanescu, Doru M.; Juretzko, Frank R.; Dhindaw, Brij K.; Catalina, Adrian; Sen, Subhayu; Curreri, Peter A.

    1998-01-01

    Results of the directional solidification experiments on Particle Engulfment and Pushing by Solidifying Interfaces (PEP) conducted on the space shuttle Columbia during the Life and Microgravity Science Mission are reported. Two pure aluminum (99.999%) 9 mm cylindrical rods, loaded with about 2 vol.% 500 micrometers diameter zirconia particles were melted and resolidified in the microgravity (microg) environment of the shuttle. One sample was processed at step-wise increased solidification velocity, while the other at step-wise decreased velocity. It was found that a pushing-to-engulfment transition (PET) occurred in the velocity range of 0.5 to 1 micrometers. This is smaller than the ground PET velocity of 1.9 to 2.4 micrometers. This demonstrates that natural convection increases the critical velocity. A previously proposed analytical model for PEP was further developed. A major effort to identify and produce data for the surface energy of various interfaces required for calculation was undertaken. The predicted critical velocity for PET was of 0.775 micrometers/s.

  7. Evaluating Local Primary Dendrite Arm Spacing Characterization Techniques Using Synthetic Directionally Solidified Dendritic Microstructures

    Science.gov (United States)

    Tschopp, Mark A.; Miller, Jonathan D.; Oppedal, Andrew L.; Solanki, Kiran N.

    2015-10-01

    Microstructure characterization continues to play an important bridge to understanding why particular processing routes or parameters affect the properties of materials. This statement certainly holds true in the case of directionally solidified dendritic microstructures, where characterizing the primary dendrite arm spacing is vital to developing the process-structure-property relationships that can lead to the design and optimization of processing routes for defined properties. In this work, four series of simulations were used to examine the capability of a few Voronoi-based techniques to capture local microstructure statistics (primary dendrite arm spacing and coordination number) in controlled (synthetically generated) microstructures. These simulations used both cubic and hexagonal microstructures with varying degrees of disorder (noise) to study the effects of length scale, base microstructure, microstructure variability, and technique parameters on the local PDAS distribution, local coordination number distribution, bulk PDAS, and bulk coordination number. The Voronoi tesselation technique with a polygon-side-length criterion correctly characterized the known synthetic microstructures. By systematically studying the different techniques for quantifying local primary dendrite arm spacings, we have evaluated their capability to capture this important microstructure feature in different dendritic microstructures, which can be an important step for experimentally correlating with both processing and properties in single crystal nickel-based superalloys.

  8. The development of basic glass formulations for solidifying HLW from nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Jiang Yaozhong; Tang Baolong; Zhang Baoshan; Zhou Hui

    1995-01-01

    Basic glass formulations 90U/19, 90U/20, 90Nd/7 and 90Nd/10 applied in electric melting process are developed by using the mathematical model of the viscosity and electric resistance of waste glass. The yellow phase does not occur for basic glass formulations 90U/19 and 90U/20 solidifying HLW from nuclear fuel reprocessing plant when the waste loading is 20%. Under the waste loading is 16%, the process and product properties of glass 90U/19 and 90U/20 come up to or surpass the properties of the same kind of foreign waste glasses, and other properties are about the same to them of foreign waste glasses. The process and product properties of basic glass formulations 90Nd/7 and 90Nd/10 used for the solidification of 'U replaced by Nd' liquid waste are almost similar to them of 90U/19 and 90U/20. These properties fairly meet the requirements of 'joint test' (performed at KfK-INE, Germany). Among these formulations, 90Nd/7 is applied in cold engineering scale electric melting test performed at KfK-INE in Germany. The main process properties of cold test is similar to laboratory results

  9. Review of metal-matrix encapsulation of solidified radioactive high-level waste

    International Nuclear Information System (INIS)

    Jardine, L.J.; Steindler, M.J.

    1978-05-01

    Literature describing previous and current work on the encapsulation of solidified high-level waste forms in a metal matrix was reviewed. Encapsulation of either stabilized calcine pellets or glass beads in alloys by casting techniques was concluded to be the most developed and direct approach to fabricating solid metal-matrix waste forms. Further characterizations of the physical and chemical properties of metal-matrix waste forms are still needed to assess the net attributes of metal-encapsulation alternatives. Steady-state heat transfer properties of waste canisters in air and water environments were calculated for four reference waste forms: (1) calcine, (2) glass monoliths, (3) metal-encapsulated calcine, and (4) metal-encapsulated glass beads. A set of criteria for the maximum allowable canister centerline and surface temperatures and heat generation rates per canister at the time of shipment to a Federal repository was assumed, and comparisons were made between canisters of these reference waste forms of the shortest time after reactor discharge that canisters could be filled and the subsequent ''interim'' storage times prior to shipment to a Federal repository for various canister diameters and waste ages. A reference conceptual flowsheet based on existing or developing technology for encapsulation of stabilized calcine pellets is discussed. Conclusions and recommendations are presented

  10. Leaching behaviour and mechanical properties of copper flotation waste in stabilized/solidified products.

    Science.gov (United States)

    Mesci, Başak; Coruh, Semra; Ergun, Osman Nuri

    2009-02-01

    This research describes the investigation of a cement-based solidification/stabilization process for the safe disposal of copper flotation waste and the effect on cement properties of the addition of copper flotation waste (CW) and clinoptilolite (C). In addition to the reference mixture, 17 different mixtures were prepared using different proportions of CW and C. Physical properties such as setting time, specific surface area and compressive strength were determined and compared to a reference mixture and Turkish standards (TS). Different mixtures with the copper flotation waste portion ranging from 2.5 to 12.5% by weight of the mixture were tested for copper leachability. The results show that as cement replacement materials especially clinoptilolite had clear effects on the mechanical properties. Substitution of 5% copper flotation waste for Portland cement gave a similar strength performance to the reference mixture. Higher copper flotation waste addition such as 12.5% replacement yielded lower strength values. As a result, copper flotation waste and clinoptilolite can be used as cementitious materials, and copper flotation waste also can be safely stabilized/solidified in a cement-based solidification/stabilization system.

  11. Measurements of Mercury Released From Solidified/Stabilized Waste Forms-FY2002

    International Nuclear Information System (INIS)

    Mattus, C.H.

    2003-01-01

    This report covers work performed during FY 2002 in support of treatment demonstrations conducted for the U.S. Department of Energy (DOE) Mixed Waste Focus Area (MWFA) Mercury Working Group. To comply with the requirements of the Resource Conservation and Recovery Act, as implemented by the U.S. Environmental Protection Agency (EPA), DOE must use one of the following procedures for mixed low-level radioactive wastes containing mercury at levels above 260 ppm: a retorting/roasting treatment or (if the wastes also contain organics) an incineration treatment. The recovered radioactively contaminated mercury must then be treated by an amalgamation process prior to disposal. The DOE MWFA Mercury Working Group is working with EPA to determine whether some alternative processes could be used to treat these types of waste directly, thereby avoiding a costly recovery step for DOE. In previous years, demonstrations were performed in which commercial vendors applied their technologies for the treatment of radiologically contaminated elemental mercury as well as radiologically contaminated and mercury-contaminated waste soils from Brookhaven National Laboratory. The test results for mercury release in the headspace were reported in two reports, ''Measurements of Mercury Released from Amalgams and Sulfide Compounds'' (ORNL/TM-13728) and ''Measurements of Mercury Released from Solidified/Stabilized Waste Forms'' (ORNL/TM-2001/17). The current work did not use a real waste; a surrogate sludge had been prepared and used in the testing in an effort to understand the consequences of mercury speciation on mercury release

  12. Strength, leachability and microstructure characteristics of cement-based solidified plating sludge

    International Nuclear Information System (INIS)

    Asavapisit, Suwimol; Naksrichum, Siripat; Harnwajanawong, Naraporn

    2005-01-01

    The solidification of the stabilized zinc-cyanide plating sludge was carried out using ordinary Portland cement (OPC) and pulverized fuel ash (PFA) as solidification binders. The plating sludge were used at the level of 0%, 10%, 20% and 30% dry weight, and PFA was used to replace OPC at 0%, 10%, 20% and 30% dry weight, respectively. Experimental results showed that a significant reduction in strength was observed when the plating sludge was added to both the OPC and OPC/PFA binders, but the negative effect was minimized when PFA was used as part substitute for OPC. SEM observation reveals that the deposition of the plating sludge on the surface of the clinkers and PFA could be the cause for hydration retardation. In addition, calcium zinc hydroxide hydrate complex and the unreacted di- and tricalcium silicates were the major phases in X-ray diffraction (XRD) patterns of the solidified plating waste hydrated for 28 days, although the retardation effect on hydration reactions but Cr concentration in toxicity characteristic leaching procedure (TCLP) leachates was lower than the U.S. EPA regulatory limit

  13. Testing and evaluation of solidified high-level waste forms. Joint annual progress report 1983

    International Nuclear Information System (INIS)

    Malow, G.

    1985-01-01

    A second joint programme of the European Atomic Community was started in 1981 under the indirect action programme (1980-84), Action No 5 'Testing and evaluation of the properties of various potential materials for immobilizing high activity waste'. The overall objective of the research is to test various European potential solidified high-level radioactive waste forms so as to predict their behaviour after disposal. The most important aspect is to produce data to calculate the activity release from the waste products under the attack of various aqueous solutions. The experiments were partly performed under waste repository relevant conditions and partly under simplified conditions for investigating basic activity release mechanisms. The topics of the programme were: (i) studies of basic leaching mechanisms; (ii) studies of hydrothermal leaching and surface attack of waste glasses; (iii) leach test carried out in contact with granite at low water flow rates; (iv) static leach tests with specimen surrounded by canister and backfill materials; (v) specific isotope leach tests in slowly flowing water; (vi) leach test of actinide spiked samples; (vii) leach tests of highly radioactive samples; (viii) leach tests of alpha radiation stability; (ix) studies of mechanical stability; (x) studies of mineral phases as model compounds and phase relations

  14. Decomposition for the analysis of radionuclides in solidified cement radioactive waste

    International Nuclear Information System (INIS)

    Lee, Jeong Jin; Pyo, Hyung Yeal; Jee, Kwang Yung; Jeon, Jong Seon

    2004-01-01

    Spent ion exchange resins make solid radioactive wastes when mixed with cement as solidifying material that was widely used in securing human environment from radionuclides for at least hundreds years. The cumulative increase of low and medium level radioactive wastes results in capacity problem of temporary storage in some NPPs (Nuclear Power Plants) of Korea around 2008. Radioactive wastes are scheduled to be disposed in a permanent disposal facility in accordance with the Korean Radioactive Wastes Management Program. It is mandatory to identify kinds and concentration of radionuclides immobilized for transporting them from temporary storage in NPPs to disposal facility. Accordingly, the effective sample decomposition prior to radiochemical separation is prerequisite to obtain the analytical data about radionuclides in cement waste forms. The closed-vessel microwave digestion technology among several sample preparation methods is taken into account to decompose cement waste forms. In this study, SRM 1880a (Portland cement) which is known for its certified values was used to optimize decomposition condition of cement waste forms containing nonradioactive ion exchange resins from NPP. With such variables as reagents, time, and power, the variation of the transparency and the color of the solution after closed-vessel microwave digestion can be examine. SRM 1880a is decomposed by suggested digestion procedure and the recoveries of constituents were investigated by ICP-AES and AAS

  15. Giant Enhancement of Magnetostrictive Response in Directionally-Solidified Fe83Ga17Erx Compounds

    Directory of Open Access Journals (Sweden)

    Radhika Barua

    2018-06-01

    Full Text Available We report, for the first time, correlations between crystal structure, microstructure and magnetofunctional response in directionally solidified [110]-textured Fe83Ga17Erx (0 < x < 1.2 alloys. The morphology of the doped samples consists of columnar grains, mainly composed of a matrix phase and precipitates of a secondary phase deposited along the grain boundary region. An enhancement of more than ~275% from ~45 to 170 ppm is observed in the saturation magnetostriction value (λs of Fe83Ga17Erx alloys with the introduction of small amounts of Er. Moreover, it was noted that the low field derivative of magnetostriction with respect to an applied magnetic field (i.e., dλs/dHapp for Happ up to 1000 Oe increases by ~230% with Er doping (dλs/dHapp,FeGa= 0.045 ppm/Oe; dλs/dHapp,FeGaEr= 0.15 ppm/Oe. The enhanced magnetostrictive response of the Fe83Ga17Erx alloys is ascribed to an amalgamation of microstructural and electronic factors, namely: (i improved grain orientation and local strain effects due to deposition of Er in the intergranular region; and (ii strong local magnetocrystalline anisotropy, due to the highly anisotropic localized nature of the 4f electronic charge distribution of the Er atom. Overall, this work provides guidelines for further improving galfenol-based materials systems for diverse applications in the power and energy sector.

  16. Precipitation in as-solidified undercooled Ni-Si hypoeutectic alloy: Effect of non-equilibrium solidification

    International Nuclear Information System (INIS)

    Fan Kai; Liu Feng; Yang Gencang; Zhou Yaohe

    2011-01-01

    Highlights: → The solid solubility of Si atom in α-Ni matrix increased with undercooling in the as-solidified sample. → The effect of non-equilibrium solidification on precipitation has been theoretically described. → The nucleation density, the real-time particle size and the precipitation rate are all increased upon annealing. → The precipitate process can be artificially controlled by modifying the initial melt undercooling and the annealing time. - Abstract: Applying glass fluxing and cyclic superheating, high undercooling up to ∼350 K was achieved for Ni-Si hypoeutectic alloy melt. By isothermally annealing the as-solidified alloy subjected to different undercoolings, precipitation behavior of Ni 3 Si particle, at 973 K, was systematically studied. It was found that, the nucleation density and the real-time particle size, as well as the precipitation rate, were all increased, provided the sample was solidified subjected to higher undercooling. This was ascribed mainly to the increased solid solubility of Si atom in α-Ni matrix upon non-equilibrium solidification. On this basis, the non-equilibrium dendrite growth upon solidification and the soft impingement prevailing upon solid-state precipitation have been quantitatively connected. As such, the effect of liquid/solid transformation on subsequent precipitation was described.

  17. Development of methodology to evaluate microbially influenced degradation of cement-solidified low-level radioactive waste forms

    International Nuclear Information System (INIS)

    Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W.

    1994-01-01

    Because of its apparent structural integrity, cement has been widely used in the United States as a binder to solidify Class B and C low-level radioactive waste (LLW). However, the resulting cement preparations are susceptible to failure due to the actions of stress and environment. An environmentally mediated process that could affect cement stability is the action of naturally occurring microorganisms. The US Nuclear Regulatory Commission (NRC), recognizing this eventuality, stated that the effects of microbial action on waste form integrity must be addressed. This paper provides present results from an ongoing program that addresses the effects of microbially influenced degradation (MID) on cement-solidified LLW. Data are provided on the development of an evaluation method using acid-producing bacteria. Results are from work with one type of these bacteria, the sulfur-oxidizing Thiobacillus. This work involved the use of a system in which laboratory- and vendor-manufactured, simulated waste forms were exposed on an intermittent basis to media containing thiobacilli. Testing demonstrated that MID has the potential to severely compromise the structural integrity of ion-exchange resin and evaporator-bottoms waste that is solidified with cement. In addition, it was found that a significant percentage of calcium and other elements were leached from the treated waste forms. Also, the surface pH of the treated specimens decreased to below 2. These conditions apparently contributed to the physical deterioration of simulated waste forms after 60 days of exposure to the thiobacilli

  18. Precipitation in as-solidified undercooled Ni-Si hypoeutectic alloy: Effect of non-equilibrium solidification

    Energy Technology Data Exchange (ETDEWEB)

    Fan Kai [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Liu Feng, E-mail: liufeng@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Yang Gencang; Zhou Yaohe [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China)

    2011-08-25

    Highlights: {yields} The solid solubility of Si atom in {alpha}-Ni matrix increased with undercooling in the as-solidified sample. {yields} The effect of non-equilibrium solidification on precipitation has been theoretically described. {yields} The nucleation density, the real-time particle size and the precipitation rate are all increased upon annealing. {yields} The precipitate process can be artificially controlled by modifying the initial melt undercooling and the annealing time. - Abstract: Applying glass fluxing and cyclic superheating, high undercooling up to {approx}350 K was achieved for Ni-Si hypoeutectic alloy melt. By isothermally annealing the as-solidified alloy subjected to different undercoolings, precipitation behavior of Ni{sub 3}Si particle, at 973 K, was systematically studied. It was found that, the nucleation density and the real-time particle size, as well as the precipitation rate, were all increased, provided the sample was solidified subjected to higher undercooling. This was ascribed mainly to the increased solid solubility of Si atom in {alpha}-Ni matrix upon non-equilibrium solidification. On this basis, the non-equilibrium dendrite growth upon solidification and the soft impingement prevailing upon solid-state precipitation have been quantitatively connected. As such, the effect of liquid/solid transformation on subsequent precipitation was described.

  19. Evaluation of physical stability and leachability of Portland Pozzolona Cement (PPC) solidified chemical sludge generated from textile wastewater treatment plants

    International Nuclear Information System (INIS)

    Patel, Hema; Pandey, Suneel

    2012-01-01

    Highlights: ► Stabilization/solidification of chemical sludge from textile wastewater treatment plants using Portland Pozzolona Cement (PPC) containing fly ash. ► Physical engineering (compressive strength and block density) indicates that sludge has potential to be reused for construction purpose after stabilization/solidification. ► Leaching of heavy metals from stabilized/solidified materials were within stipulated limits. ► There is a modification of microstructural properties of PPC with sludge addition as indicated by XRD and SEM patterns. - Abstract: The chemical sludge generated from the treatment of textile dyeing wastewater is a hazardous waste as per Indian Hazardous Waste Management rules. In this paper, stabilization/solidification of chemical sludge was carried out to explore its reuse potential in the construction materials. Portland Pozzolona Cement (PPC) was selected as the binder system which is commercially available cement with 10–25% fly ash interground in it. The stabilized/solidified blocks were evaluated in terms of unconfined compressive strength, block density and leaching of heavy metals. The compressive strength (3.62–33.62 MPa) and block density (1222.17–1688.72 kg/m 3 ) values as well as the negligible leaching of heavy metals from the stabilized/solidified blocks indicate that there is a potential of its use for structural and non-structural applications.

  20. PIIID-formed (Ti, O)/Ti, (Ti, N)/Ti and (Ti, O, N)/Ti coatings on NiTi shape memory alloy for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sun Tao, E-mail: taosun@hotmail.com.hk [Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road (Hong Kong); Institute of Microelectronics, Agency for Science, Technology and Research (A-STAR) (Singapore); Wang Langping, E-mail: aplpwang@hit.edu.cn [State Key Lab of Advanced Welding and Joining, Harbin Institute of Technology (China); Wang Min; Tong Howang [Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road (Hong Kong); Lu, William W. [Department of Orthopedics and Traumatology, University of Hong Kong, Sassoon Road (Hong Kong)

    2012-08-01

    (Ti, O)/Ti, (Ti, N)/Ti and (Ti, O, N)/Ti composite coatings were fabricated on NiTi shape memory alloy via plasma immersion ion implantation and deposition (PIIID). Surface morphology of samples was investigated using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Cross-sectional morphology indicated that the PIIID-formed coatings were dense and uniform. X-ray diffraction (XRD) was used to characterize the phase composition of samples. X-ray photoelectron spectroscopy (XPS) results showed that the surface of coated NiTi SMA samples was Ni-free. Nanoindentation measurements and pin-on-disc tests were carried out to evaluate mechanical properties and wear resistance of coated NiTi SMA, respectively. For the in vitro biological assessment of the composite coatings in terms of cell morphology and cell viability, osteoblast-like SaOS-2 cells and breast cancer MCF-7 cells were cultured on NiTi SMA samples, respectively. SaOS-2 cells attached and spread better on coated NiTi SMA. Viability of MCF-7 cells showed that the PIIID-formed composite coatings were noncytotoxic and coated samples were more biocompatible than uncoated samples. - Highlights: Black-Right-Pointing-Pointer PIIID-formed coatings were fabricated on NiTi SMA to improve its biocompatibility. Black-Right-Pointing-Pointer Microstructure, mechanical properties and biocompatibility of coatings were investigated. Black-Right-Pointing-Pointer All PIIID-formed composite coatings were noncytotoxic and cytocompatible.

  1. Hydrothermal–galvanic couple synthesis of directionally oriented BaTiO3 thin films on TiN-coated substrates

    International Nuclear Information System (INIS)

    Yang, Chia-Jung; Tsai, Di-You; Chan, Pei-Hsuan; Wu, Chu-Tsun; Lu, Fu-Hsing

    2013-01-01

    BaTiO 3 films were synthesized on TiN-coated Si substrate below 100 °C by a hydrothermal–galvanic couple technique in barium contained alkaline solutions. X-ray diffraction and electron backscatter diffraction results show that the BaTiO 3 thin films were directionally oriented grown on the TiN/Si substrates, i.e., (111) BaTiO 3 over (111) TiN. The surface morphologies revealed that BaTiO 3 nucleated and grew over the TiN surface with a single layer. From kinetic analyses, the growth rates of BaTiO 3 films prepared by the hydrothermal–galvanic couple technique were faster than a hydrothermal method. The galvanic effects were confirmed by investigating the induced currents and energies. The galvanic currents were generated and controlled by both the dissolution of TiN and the formation of BaTiO 3 . The output electric energies increased rapidly with the reaction time and leveled off at the full coverage of BaTiO 3 . - Highlights: • Cubic BaTiO 3 films are synthesized by a hydrothermal–galvanic couple method (HT–GC). • Growth rates of BaTiO 3 films made by HT–GC are faster than a hydrothermal method. • BaTiO 3 films are directionally oriented grown on the TiN/Si substrates. • Galvanic currents are controlled by dissolution of TiN and formation of BaTiO 3

  2. Microstructure, Wear Resistance and Oxidation Behavior of Ni-Ti-Si Coatings Fabricated on Ti6Al4V by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Qiaoqiao Zhuang

    2017-10-01

    Full Text Available The Ni-Ti-Si composite coatings were successfully fabricated on Ti6Al4V by laser cladding. The microstructure were studied by SEM (scanning electron microscopy and EDS (energy dispersive spectrometer. It has been found that Ti2Ni and Ti5Si3 phases exist in all coatings, and some samples have TiSi2 phases. Moreover, due to the existence of these phases, coatings presented relatively higher microhardness than that of the substrate (826 HV (Vickers hardness and the microhardness value of coating 3 is about twice larger than that of the substrate. During the dry sliding friction and wear test, due to the distribution of the relatively ductile phase of Ti2Ni and reinforcement phases of Ti5Si3 and TiSi2, the coatings performed good wear resistance. The oxidation process contains two stages: the rapid oxidation and slow oxidation by high temperature oxidation test at 800 °C for 50 h. Meanwhile, the value of the oxidation weight gain of the substrate is approximately three times larger than that of the coating 4. During the oxidation process, the oxidation film formed on the coating is mainly consisted of TiO2, Al2O3 and SiO2. Phases Ti2Ni, Ti5Si3, TiSi2 and TiSi were still found and it could be responsible for the improvement in oxidation resistance of the coatings by laser cladding.

  3. Effectiveness of Ti-micro alloying in relation to cooling rate on corrosion of AZ91 Mg alloy

    International Nuclear Information System (INIS)

    Candan, S.; Celik, M.; Candan, E.

    2016-01-01

    In this study, micro Ti-alloyed AZ91 Mg alloys (AZ91 + 0.5wt.%Ti) have been investigated in order to clarify effectiveness of micro alloying and/or cooling rate on their corrosion properties. Molten alloys were solidified under various cooling rates by using four stage step mold. The microstructural investigations were carried out by using scanning electron microscopy (SEM). Corrosion behaviors of the alloys were evaluated by means of immersion and electrochemical polarization tests in 3.5% NaCl solution. Results showed that the Mg 17 Al 12 (β) intermetallic phase in the microstructure of AZ91 Mg alloy formed as a net-like structure. The Ti addition has reduced the distribution and continuity of β intermetallic phase and its morphology has emerged as fully divorced eutectic. Compared to AZ91 alloy, the effect of the cooling rate in Ti-added alloy on the grain size was less pronounced. When AZ91 and its Ti-added alloys were compared under the same cooling conditions, the Ti addition showed notably high corrosion resistance. Electrochemical test results showed that while I corr values of AZ91 decrease with the increase in the cooling rate, the effect of the cooling rate on I corr values was much lower in the Ti-added alloy. The corrosion resistance of AZ91 Mg alloy was sensitive towards the cooling rates while Ti-added alloy was not affected much from the cooling conditions. - Highlights: • Effect the cooling rate on grain size was less pronounced in the Ti-added alloy. • The morphology of the β phase transformed into fully divorced eutectics. • Ti addition exhibited significantly higher corrosion resistance. • Ti micro alloying is more effective than faster cooling of the alloy on corrosion.

  4. Modeling of zinc solubility in stabilized/solidified electric arc furnace dust

    International Nuclear Information System (INIS)

    Fernandez-Olmo, Ignacio; Lasa, Cristina; Irabien, Angel

    2007-01-01

    Equilibrium models which attempt for the influence of pH on the solubility of metals can improve the dynamic leaching models developed to describe the long-term behavior of waste-derived forms. In addition, such models can be used to predict the concentration of metals in equilibrium leaching tests at a given pH. The aim of this work is to model the equilibrium concentration of Zn from untreated and stabilized/solidified (S/S) electric arc furnace dust (EAFD) using experimental data obtained from a pH-dependence leaching test (acid neutralization capacity, ANC). EAFD is a hazardous waste generated in electric arc furnace steel factories; it contains significant amounts of heavy metals such as Zn, Pb, Cr or Cd. EAFD from a local factory was characterized by X-ray fluorescence (XRF), acid digestion and X-ray diffraction (XRD). Zn and Fe were the main components while the XRD analysis revealed that zincite, zinc ferrite and hematite were the main crystalline phases. Different cement/EAFD formulations ranging from 7 to 20% dry weight of cement were prepared and subjected to the ANC leaching test. An amphoteric behavior of Zn was found from the pH dependence test. To model this behavior, the geochemical model Visual MINTEQ (VMINTEQ) was used. In addition to the geochemical model, an empirical model based on the dissolution of Zn in the acidic zone and the re-dissolution of zinc compounds in the alkaline zone was considered showing a similar prediction than that obtained with VMINTEQ. This empirical model seems to be more appropriate when the metal speciation is unknown, or when if known, the theoretical solid phases included in the database of VMINTEQ do not allow to describe the experimental data

  5. Solidified structure and leaching properties of metallurgical wastewater treatment sludge after solidification/stabilization process.

    Science.gov (United States)

    Radovanović, Dragana Đ; Kamberović, Željko J; Korać, Marija S; Rogan, Jelena R

    2016-01-01

    The presented study investigates solidification/stabilization process of hazardous heavy metals/arsenic sludge, generated after the treatment of the wastewater from a primary copper smelter. Fly ash and fly ash with addition of hydrated lime and Portland composite cement were studied as potential binders. The effectiveness of the process was evaluated by unconfined compressive strength (UCS) testing, leaching tests (EN 12457-4 and TCLP) and acid neutralization capacity (ANC) test. It was found that introduction of cement into the systems increased the UCS, led to reduced leaching of Cu, Ni and Zn, but had a negative effect on the ANC. Gradual addition of lime resulted in decreased UCS, significant reduction of metals leaching and high ANC, due to the excess of lime that remained unreacted in pozzolanic reaction. Stabilization of more than 99% of heavy metals and 90% of arsenic has been achieved. All the samples had UCS above required value for safe disposal. In addition to standard leaching tests, solidificates were exposed to atmospheric conditions during one year in order to determine the actual leaching level of metals in real environment. It can be concluded that the EN 12457-4 test is more similar to the real environmental conditions, while the TCLP test highly exaggerates the leaching of metals. The paper also presents results of differential acid neutralization (d-AN) analysis compared with mineralogical study done by scanning electron microscopy and X-ray diffraction analysis. The d-AN coupled with Eh-pH (Pourbaix) diagrams were proven to be a new effective method for analysis of amorphous solidified structure.

  6. Recycling stabilised/solidified drill cuttings for forage production in acidic soils.

    Science.gov (United States)

    Kogbara, Reginald B; Dumkhana, Bernard B; Ayotamuno, Josiah M; Okparanma, Reuben N

    2017-10-01

    Stabilisation/solidification (S/S), which involves fixation and immobilisation of contaminants using cementitious materials, is one method of treating drill cuttings before final fate. This work considers reuse of stabilised/solidified drill cuttings for forage production in acidic soils. It sought to improve the sustainability of S/S technique through supplementation with the phytoremediation potential of plants, eliminate the need for landfill disposal and reduce soil acidity for better plant growth. Drill cuttings with an initial total petroleum hydrocarbon (TPH) concentration of 17,125 mg kg -1 and low concentrations of metals were treated with 5%, 10%, and 20% cement dosages. The treated drill cuttings were reused in granular form for growing a forage, elephant grass (Pennisetum purpureum), after mixing with uncontaminated soil. The grasses were also grown in uncontaminated soil. The phytoremediation and growth potential of the plants was assessed over a 12-week period. A mix ratio of one part drill cuttings to three parts uncontaminated soil was required for active plant growth. The phytoremediation ability of elephant grass (alongside abiotic losses) reduced the TPH level (up to 8795 mg kg -1 ) in the soil-treated-drill cuttings mixtures below regulatory (1000 mg kg -1 ) levels. There were also decreased concentrations of metals. The grass showed better heights and leaf lengths in soil containing drill cuttings treated with 5% cement dosage than in uncontaminated soil. The results suggest that recycling S/S treated drill cuttings for forage production may be a potential end use of the treated waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Simulation and experiment for oxygen-enriched combustion engine using liquid oxygen to solidify CO2

    Science.gov (United States)

    Liu, Yongfeng; Jia, Xiaoshe; Pei, Pucheng; Lu, Yong; Yi, Li; Shi, Yan

    2016-01-01

    For capturing and recycling of CO2 in the internal combustion engine, Rankle cycle engine can reduce the exhaust pollutants effectively under the condition of ensuring the engine thermal efficiency by using the techniques of spraying water in the cylinder and optimizing the ignition advance angle. However, due to the water spray nozzle need to be installed on the cylinder, which increases the cylinder head design difficulty and makes the combustion conditions become more complicated. In this paper, a new method is presented to carry out the closing inlet and exhaust system for internal combustion engines. The proposed new method uses liquid oxygen to solidify part of cooled CO2 from exhaust system into dry ice and the liquid oxygen turns into gas oxygen which is sent to inlet system. The other part of CO2 is sent to inlet system and mixed with oxygen, which can reduce the oxygen-enriched combustion detonation tendency and make combustion stable. Computing grid of the IP52FMI single-cylinder four-stroke gasoline-engine is established according to the actual shape of the combustion chamber using KIVA-3V program. The effects of exhaust gas recirculation (EGR) rate are analyzed on the temperatures, the pressures and the instantaneous heat release rates when the EGR rate is more than 8%. The possibility of enclosing intake and exhaust system for engine is verified. The carbon dioxide trapping device is designed and the IP52FMI engine is transformed and the CO2 capture experiment is carried out. The experimental results show that when the EGR rate is 36% for the optimum EGR rate. When the liquid oxygen of 35.80-437.40 g is imported into the device and last 1-20 min, respectively, 21.50-701.30 g dry ice is obtained. This research proposes a new design method which can capture CO2 for vehicular internal combustion engine.

  8. Time-dependent performance of soil mix technology stabilized/solidified contaminated site soils.

    Science.gov (United States)

    Wang, Fei; Wang, Hailing; Al-Tabbaa, Abir

    2015-04-09

    This paper presents the strength and leaching performance of stabilized/solidified organic and inorganic contaminated site soil as a function of time and the effectiveness of modified clays applied in this project. Field trials of deep soil mixing application of stabilization/solidification (S/S) were performed at a site in Castleford in 2011. A number of binders and addictives were applied in this project including Portland cement (PC), ground granulated blastfurnace slag (GGBS), pulverised fuel ash (PFA), MgO and modified clays. Field trial samples were subjected to unconfined compressive strength (UCS), BS CN 12457 batch leaching test and the extraction of total organics at 28 days and 1.5 years after treatment. The results of UCS test show that the average strength values of mixes increased from 0-3250 kPa at 28 days to 250-4250 kPa at 1.5 years curing time. The BS EN 12457 leachate concentrations of all metals were well below their drinking water standard, except Ni in some mixes exceed its drinking water standard at 0.02 mg/l, suggesting that due to varied nature of binders, not all of them have the same efficiency in treating contaminated soil. The average leachate concentrations of total organics were in the range of 20-160 mg/l at 28 days after treatment and reduced to 18-140 mg/l at 1.5 years. In addition, organo clay (OC)/inorgano-organo clay (IOC) slurries used in this field trial were found to have a negative effect on the strength development, but were very effective in immobilizing heavy metals. The study also illustrates that the surfactants used to modify bentonite in this field trail were not suitable for the major organic pollutants exist in the site soil in this project. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Water Adsorption on TiO2

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Wendt, Stefan; Besenbacher, Flemming

    2010-01-01

    Scanning Tunneling Microscopy (STM) studies and Density Functional Theory (DFT) investigations of the interaction of water with the rutile TiO2 (110) surface are summarized. From high-resolution STM the following reactions have been revealed: water adsorption and diffusion in the Ti troughs, water...... dissociation in bridging oxygen vacancies, assembly of adsorbed water monomers into rapidly diffusing water dimers, and formation of water dimers by reduction of oxygen molecules. The STM results are rationalized based on DFT calculations, revealing the bonding geometries and reaction pathways of the water...

  10. Microporous TiO2-WO3/TiO2 films with visible-light photocatalytic activity synthesized by micro arc oxidation and DC magnetron sputtering

    International Nuclear Information System (INIS)

    Wu, Kee-Rong; Hung, Chung-Hsuang; Yeh, Chung-Wei; Wu, Jiing-Kae

    2012-01-01

    Highlights: ► A simple MAO is used to prepare porous WO 3 /TiO 2 layer on Ti sheet as a visible-light enabled catalyst. ► The photocatalytic activity of the WO 3 /TiO 2 is enhanced by sputtering over an N,C-TiO 2 layer. ► This is ascribed to the synergetic effect of hybrid sample prepared by two-step method. - Abstract: This study reports the preparation of microporous TiO 2 -WO 3 /TiO 2 films with a high surface area using a two-step approach. A porous WO 3 /TiO 2 template was synthesized by oxidizing a titanium sheet using a micro arc oxidation (MAO) process. This sheet was subsequently overlaid with a visible light (Vis)-enabled TiO 2 (N,C-TiO 2 ) film, which was deposited by codoping nitrogen (N) and carbon (C) ions into a TiO 2 lattice using direct current magnetron sputtering. The resulting microporous TiO 2 -WO 3 /TiO 2 film with a 0.38-μm-thick N,C-TiO 2 top-layer exhibited high photocatalytic activity in methylene blue (MB) degradation among samples under ultraviolet (UV) and Vis irradiation. This is attributable to the synergetic effect of two-step preparation method, which provides a highly porous microstructure and the well-crystallized N,C-TiO 2 top-layer. This is because a higher surface area with high crystallinity favors the adsorption of more MB molecules and more photocatalytic active areas. Thus, the microporous TiO 2 -WO 3 /TiO 2 film has promising applications in the photocatalytic degradation of dye solution under UV and Vis irradiation. These results imply that the microporous WO 3 /TiO 2 can be used as a template of hybrid electrode because it enables rapid fabrication.

  11. Ti and N adatom descent pathways to the terrace from atop two-dimensional TiN/TiN(001) islands

    Energy Technology Data Exchange (ETDEWEB)

    Edström, D., E-mail: daned@ifm.liu.se [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping (Sweden); Sangiovanni, D.G.; Hultman, L.; Chirita, V. [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping (Sweden); Petrov, I.; Greene, J.E. [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping (Sweden); Frederick Seitz Materials Research Laboratory and the Materials Science Department, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2014-05-02

    We use classical molecular dynamics and the modified embedded atom method to determine residence times and descent pathways of Ti and N adatoms on square, single-atom-high, TiN islands on TiN(001). Simulations are carried out at 1000 K, which is within the optimal range for TiN(001) epitaxial growth. Results show that the frequency of descent events, and overall adatom residence times, depend strongly on both the TiN(001) diffusion barrier for each species as well as the adatom island-edge location immediately prior to descent. Ti adatoms, with a low diffusion barrier, rapidly move toward the island periphery, via funneling, where they diffuse along upper island edges. The primary descent mechanism for Ti adatoms is via push-out/exchange with Ti island-edge atoms, a process in which the adatom replaces an island edge atom by moving down while pushing the edge atom out onto the terrace to occupy an epitaxial position along the island edge. Double push-out events are also observed for Ti adatoms descending at N corner positions. N adatoms, with a considerably higher diffusion barrier on TiN(001), require much longer times to reach island edges and, consequently, have significantly longer residence times. N adatoms are found to descend onto the terrace by direct hopping over island edges and corner atoms, as well as by concerted push-out/exchange with N atoms adjacent to Ti corners. For both adspecies, we also observe several complex adatom/island interactions, before and after descent onto the terrace, including two instances of Ti island-atom ascent onto the island surface. - Highlights: • We use classical molecular dynamics to model Ti and N adatom migration on TiN(001) islands. • N adatoms remain on islands significantly longer than Ti adatoms. • Ti adatoms descend via push-out/exchange, N adatoms primarily by direct hops. • N adatoms act as precursors for multilayer formation and surface roughening.

  12. Ti and N adatom descent pathways to the terrace from atop two-dimensional TiN/TiN(001) islands

    International Nuclear Information System (INIS)

    Edström, D.; Sangiovanni, D.G.; Hultman, L.; Chirita, V.; Petrov, I.; Greene, J.E.

    2014-01-01

    We use classical molecular dynamics and the modified embedded atom method to determine residence times and descent pathways of Ti and N adatoms on square, single-atom-high, TiN islands on TiN(001). Simulations are carried out at 1000 K, which is within the optimal range for TiN(001) epitaxial growth. Results show that the frequency of descent events, and overall adatom residence times, depend strongly on both the TiN(001) diffusion barrier for each species as well as the adatom island-edge location immediately prior to descent. Ti adatoms, with a low diffusion barrier, rapidly move toward the island periphery, via funneling, where they diffuse along upper island edges. The primary descent mechanism for Ti adatoms is via push-out/exchange with Ti island-edge atoms, a process in which the adatom replaces an island edge atom by moving down while pushing the edge atom out onto the terrace to occupy an epitaxial position along the island edge. Double push-out events are also observed for Ti adatoms descending at N corner positions. N adatoms, with a considerably higher diffusion barrier on TiN(001), require much longer times to reach island edges and, consequently, have significantly longer residence times. N adatoms are found to descend onto the terrace by direct hopping over island edges and corner atoms, as well as by concerted push-out/exchange with N atoms adjacent to Ti corners. For both adspecies, we also observe several complex adatom/island interactions, before and after descent onto the terrace, including two instances of Ti island-atom ascent onto the island surface. - Highlights: • We use classical molecular dynamics to model Ti and N adatom migration on TiN(001) islands. • N adatoms remain on islands significantly longer than Ti adatoms. • Ti adatoms descend via push-out/exchange, N adatoms primarily by direct hops. • N adatoms act as precursors for multilayer formation and surface roughening

  13. Kinetic analysis of the thermal decomposition of Li4Ti5O12 pellets

    Directory of Open Access Journals (Sweden)

    Hugo A. Mosqueda

    2011-12-01

    Full Text Available A single dynamic kinetic analysis, describing the surface decomposition of Li4Ti5O12 pellets, has been performed. Samples were analyzed by X-ray diffraction and scanning electron microscopy. The analyses were performed between 1000 and 1100°C and different times, perceiving the Li4Ti5O12 decomposition to Li2Ti3O7, with a loss of lithium. As expected, more rapid decomposition behaviour was found at higher temperatures. Finally, the activation energy for this decomposition of Li4Ti5O12 to Li2Ti3O7 was estimated to be equal to 383 kJ/mol.

  14. Crack initiation modeling of a directionally-solidified nickel-base superalloy

    Science.gov (United States)

    Gordon, Ali Page

    Combustion gas turbine components designed for application in electric power generation equipment are subject to periodic replacement as a result of cracking, damage, and mechanical property degeneration that render them unsafe for continued operation. In view of the significant costs associated with inspecting, servicing, and replacing damaged components, there has been much interest in developing models that not only predict service life, but also estimate the evolved microstructural state of the material. This thesis explains manifestations of microstructural damage mechanisms that facilitate fatigue crack nucleation in a newly-developed directionally-solidified (DS) Ni-base superalloy components exposed to elevated temperatures and high stresses. In this study, models were developed and validated for damage and life prediction using DS GTD-111 as the subject material. This material, proprietary to General Electric Energy, has a chemical composition and grain structure designed to withstand creep damage occurring in the first and second stage blades of gas-powered turbines. The service conditions in these components, which generally exceed 600°C, facilitate the onset of one or more damage mechanisms related to fatigue, creep, or environment. The study was divided into an empirical phase, which consisted of experimentally simulating service conditions in fatigue specimens, and a modeling phase, which entailed numerically simulating the stress-strain response of the material. Experiments have been carried out to simulate a variety of thermal, mechanical, and environmental operating conditions endured by longitudinally (L) and transversely (T) oriented DS GTD-111. Both in-phase and out-of-phase thermo-mechanical fatigue tests were conducted. In some cases, tests in extreme environments/temperatures were needed to isolate one or at most two of the mechanisms causing damage. Microstructural examinations were carried out via SEM and optical microscopy. A continuum

  15. Contribution to the study of U-Ti and U-Pu-Ti carbides; Contribution a l'etude des carbures U-C-Ti et (U, Pu) - C-Ti

    Energy Technology Data Exchange (ETDEWEB)

    Milet, C A [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-07-01

    After having discussed the reasons to use (U,Pu) carbides as fast reactor fuel, we examine the influence of the addition of titanium to these carbides. A preliminary study has been done on the system of U-C-Ti and some properties have been measured such as: density, thermal expansion, electrical resistivity, atmospheric corrosion and compatibility with stainless steel. The systems U-Pu-C-Ti (Pu/U + Pu equal to 15 per cent) and U-C-Ti have been found to be very similar. There exists a two phases region (U,Pu)C + TiC, an eutectic between (U,Pu)C and TiC for approximately 15 at %. The solubilities of U + Pu in TiC and of Ti in (U,Pu)C is less than 1 % at. The addition of titanium does not markedly change thermal expansion coefficients of (U,Pu)C. However the resistance to atmospheric corrosion and compatibility with stainless steel is improved. Thermal conductivity, calculated from electrical resistivity, has increased. On the other side, the density of fissile material is lowered. The combination of (U,Pu)C + TiC seems to be the most promising alloy for application as nuclear fuel. (author) [French] Apres avoir rappele les problemes poses par un combustible pour les reacteurs a neutrons rapides et l'interet des carbures U-Pu-C comme combustible, on examine l'influence de l'addition de titane dans ces carbures. Une etude preliminaire sur le systeme U-C-Ti a ete effectuee et quelques proprietes sont indiquees: densite, coefficients de dilatation, resistivite electrique, tenue a la corrosion atmospherique, compatibilite avec l'acier inoxydable. Le systeme U-Pu-C-Ti (Pu/U + Pu egal a 15 pour cent) presente de grandes analogies avec le systeme U-C-Ti. Il existe un domaine biphase (U,Pu)C + TiC, un eutectique entre (U,Pu)C et TiC pour environ 15 at % Ti; les solubilites de U + Pu clans TiC et de Ti dans (U,Pu)C sont inferieures a 1 at %. Par rapport a la phase (U,Pu)C, l'addition de titane est sans effets importants sur les coefficients de dilatation. Par contre la tenue a

  16. Dendritic coarsening of γ' phase in a directionally solidified superalloy during 24,000 h of exposure at 1173 K

    International Nuclear Information System (INIS)

    Li, H.; Wang, L.; Lou, L.H.

    2010-01-01

    Dendritic coarsening of γ' was investigated in a directionally solidified Ni-base superalloy during exposure at 1173 K for 24,000 h. Chemical homogeneity along different directions and residual internal strain in the experimental superalloy were measured by electronic probe microanalysis (EPMA) and electron back-scattered diffraction (EBSD) technique. It was indicated that the gradient of element distribution was anisotropic and the inner strain between dendrite core and interdendritic regions was different even after 24,000 h of exposure at 1173 K, which influenced the kinetics for the dendrite coarsening of γ' phase.

  17. Heterogeneous nucleation of solid Al from the melt by TiB2 and Al3Ti: An ab initio molecular dynamics study

    KAUST Repository

    Wang, Junsheng

    2010-11-16

    The nucleation of solid Al from the melt by TiB2 is well established and is believed to involve the formation of Al3Ti. Since the atomic-scale mechanisms involved are not fully understood, we look to computer simulation to provide insight. As there is an absence of suitable potentials for all of this complex system we have performed large-scale density-functional-theory molecular dynamics simulations of the nucleation of solid Al from the melt on TiB2 and Al3Ti substrates at undercoolings of around 2 K. Using periodic boundary conditions, we find limited ordering and no signs of incipient growth in the liquid Al close to the B-terminated surface of TiB2. By contrast, we see fcc-like ordering near the Ti-terminated surface, with growth being frustrated by the lattice mismatch between bulk Al and the TiB2 substrate. The Al interatomic distances at the Ti-terminated surface are similar to distances found in Al3Ti; we suggest that the layer encasing TiB2 observed experimentally may be strained Al on a Ti-terminated surface rather than Al3Ti. For the Al3Ti substrate, fcc-like structures are observed on both sides which extend rapidly into the melt. Periodic boundaries introduce unphysical stresses which we removed by introducing a vacuum region to separate the liquid from the solid at one of the interfaces. We see ordering in the Al on both the B-terminated (0001) surface of TiB2, and on Al3Ti(112), with the ordering able to be stronger on the Al3Ti substrate. However, we cannot draw strong conclusions as these simulations need more time to allow long-ranged fluctuations in the liquid Al to dampen out. The huge computational cost restricted the range and duration of simulations that was possible.

  18. Heterogeneous nucleation of solid Al from the melt by TiB2 and Al3Ti: An ab initio molecular dynamics study

    KAUST Repository

    Wang, Junsheng; Horsfield, Andrew; Lee, Peter D.; Schwingenschlö gl, Udo

    2010-01-01

    The nucleation of solid Al from the melt by TiB2 is well established and is believed to involve the formation of Al3Ti. Since the atomic-scale mechanisms involved are not fully understood, we look to computer simulation to provide insight. As there is an absence of suitable potentials for all of this complex system we have performed large-scale density-functional-theory molecular dynamics simulations of the nucleation of solid Al from the melt on TiB2 and Al3Ti substrates at undercoolings of around 2 K. Using periodic boundary conditions, we find limited ordering and no signs of incipient growth in the liquid Al close to the B-terminated surface of TiB2. By contrast, we see fcc-like ordering near the Ti-terminated surface, with growth being frustrated by the lattice mismatch between bulk Al and the TiB2 substrate. The Al interatomic distances at the Ti-terminated surface are similar to distances found in Al3Ti; we suggest that the layer encasing TiB2 observed experimentally may be strained Al on a Ti-terminated surface rather than Al3Ti. For the Al3Ti substrate, fcc-like structures are observed on both sides which extend rapidly into the melt. Periodic boundaries introduce unphysical stresses which we removed by introducing a vacuum region to separate the liquid from the solid at one of the interfaces. We see ordering in the Al on both the B-terminated (0001) surface of TiB2, and on Al3Ti(112), with the ordering able to be stronger on the Al3Ti substrate. However, we cannot draw strong conclusions as these simulations need more time to allow long-ranged fluctuations in the liquid Al to dampen out. The huge computational cost restricted the range and duration of simulations that was possible.

  19. Structural heredity of TiC and its influences on refinement behaviors of AlTiC master alloy

    Institute of Scientific and Technical Information of China (English)

    王振卿; 刘相法; 柳延辉; 张均燕; 于丽娜; 边秀房

    2003-01-01

    Heredity of microstructure in AlTiC master alloy, grain refiners, was analyzed. It is found that, for morphologies and distributions of TiC particles, there are visible heredity which originates from raw materials or processing methods of Al melt, and will ultimately be transferred to the solid state structure through the melt stage, and this phenomenon can cause hereditary influences on refinement: formation of chain-like TiC morphology results in rapid refinement fading behavior; distribution of TiC along grain boundaries greatly reduces refinement efficiency. Controlling of structural heredity through proper selections of raw materials and processing parameters is of great importance in obtaining ideal microstructures and improving refinement behaviors of AlTiC master alloys.

  20. Epoxidation of limonene over Ti MCM 41 and Ti BETA

    International Nuclear Information System (INIS)

    Cubillos Lobo, Jairo Antonio; Gonzalez Rodriguez, Lina Maria; Montes de Correa, Consuelo

    2002-01-01

    Ti MCM 41 were synthesized and evaluated in the epoxidation of limonene, using peroxide of hydrogen (H 2 O) as agent oxidizer. The characteristic hexagonal phase of Ti MCM 41 was obtained by heating the precursor gel during three days at 100 centigrade degrees. Further heating up to ten days leads to a decrease of this phase. The increase (Ti) in the synthesis gel also decreases that phase. The increase of Ti in the synthesis gel also decreases that phase UV VIS and FTIR spectroscopy indicates that Ti was incorporated in the lattice of Ti MCM 41 as well as, in Ti BETA. SEM micrographs of Ti MCM 41 show that the morphology changes with the Ti loading. Ti MCM 41 was most active than Ti BETA for limonene epoxidation even though both show high selectivity to epoxides

  1. Studies of the Influence of Beam Profile and Cooling Conditions on the Laser Deposition of a Directionally-Solidified Superalloy

    Directory of Open Access Journals (Sweden)

    Shuo Yang

    2018-02-01

    Full Text Available In the laser deposition of single crystal and directionally-solidified superalloys, it is desired to form laser deposits with high volume fractions of columnar grains by suppressing the columnar-to-equiaxed transition efficiently. In this paper, the influence of beam profile (circular and square shapes and cooling conditions (natural cooling and forced cooling on the geometric morphology and microstructure of deposits were experimentally studied in the laser deposition of a directionally-solidified superalloy, IC10, and the mechanisms of influence were revealed through a numerical simulation of the thermal processes during laser deposition. The results show that wider and thinner deposits were obtained with the square laser beam than those with the circular laser beam, regardless of whether natural or forced cooling conditions was used. The heights and contact angles of deposits were notably increased due to the reduced substrate temperatures by the application of forced cooling for both laser beam profiles. Under natural cooling conditions, columnar grains formed epitaxially at both the center and the edges of the deposits with the square laser beam, but only at the center of the deposits with the circular laser beam; under forced cooling conditions, columnar grains formed at both the center and the edges of deposits regardless of the laser beam profile. The high ratios of thermal gradient and solidification velocity in the height direction of the deposits were favorable to forming deposits with higher volume fractions of columnar grains.

  2. Effect of solidification parameters on mechanical properties of directionally solidified Al-Rich Al-Cu alloys

    Science.gov (United States)

    Çadırlı, Emin

    2013-05-01

    Al(100-x)-Cux alloys (x=3 wt%, 6 wt%, 15 wt%, 24 wt% and 33 wt%) were prepared using metals of 99.99% high purity in vacuum atmosphere. These alloys were directionally solidified under steady-state conditions by using a Bridgman-type directional solidification furnace. Solidification parameters (G, V and ), microstructure parameters (λ1, λ2 and λE) and mechanical properties (HV, σ) of the Al-Cu alloys were measured. Microstructure parameters were expressed as functions of solidification parameters by using a linear regression analysis. The dependency of HV, σ on the cooling rate, microstructure parameters and composition were determined. According to experimental results, the microhardness and ultimate tensile strength of the solidified samples was increased by increasing the cooling rate and Cu content, but decreased with increasing microstructure parameters. The microscopic fracture surfaces of the different samples were observed using scanning electron microscopy. Fractographic analysis of the tensile fracture surfaces showed that the type of fracture significantly changed from ductile to brittle depending on the composition.

  3. Cold Heat Release Characteristics of Solidified Oil Droplet-Water Solution Latent Heat Emulsion by Air Bubbles

    Science.gov (United States)

    Inaba, Hideo; Morita, Shin-Ichi

    The present work investigates the cold heat-release characteristics of the solidified oil droplets (tetradecane, C14H30, freezing point 278.9 K)/water solution emulsion as a latent heat-storage material having a low melting point. An air bubbles-emulsion direct-contact heat exchange method is selected for the cold heat-results from the solidified oil droplet-emulsion layer. This type of direct-contact method results in the high thermal efficiency. The diameter of air bubbles in the emulsion increases as compared with that in the pure water. The air bubbles blown from a nozzle show a strong mixing behavior during rising in the emulsion. The temperature effectiveness, the sensible heat release time and the latent heat release time have been measured as experimental parameters. The useful nondimensional emulsion level equations for these parameters have been derived in terms of the nondimensional emalsion level expressed the emulsion layer dimensions, Reynolds number for air flow, Stefan number and heat capacity ratio.

  4. Leach studies on cement-solidified ion exchange resins from decontamination processes at operating nuclear power stations

    International Nuclear Information System (INIS)

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.; Morcos, N.

    1992-01-01

    The effects of varying pH and leachant compositions on the physical stability and leachability of radionuclides and chelating agents were determined for cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small scale waste-form specimens were collected during waste solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station. The collected specimens were leach tested, and their compressive strength was measured in accordance with the Nuclear Regulatory Commission's ''Technical Position on Waste Form'' (Revision 1), from the Low-Level Waste Management Branch. Leachates from these studies were analyzed for radionuclides, selected transition metals, and chelating agents to assess the leachability of these waste form constituents. Leachants used for the study were deionized water, simulated seawater, and groundwater compositions similar to those found at Barnwell, South Carolina and Hanford, Washington. Results of this study indicate that initial leachant pH does not affect leachate pH or releases from cement-solidified decontamination ion-exchange resin waste forms. However, differences in leachant composition and the presence of chelating agents may affect the releases of radionuclides and chelating agents. In addition, results from this study indicate that the cumulative releases of radionuclides and chelating agents observed for forms that disintegrated were similar to those for forms that maintained their general physical integrity

  5. Nial and Nial-Based Composites Directionally Solidified by a Containerless Zone Process. Ph.D. Thesis

    Science.gov (United States)

    Joslin, Steven M.

    1995-01-01

    A containerless electromagnetically levitated zone (CELZ) process has been used to directionally solidify NiAl and NiAl-based composites. The CELZ processing results in single crystal NiAl (HP-NiAl) having higher purity than commercially pure NiAl grown by a modified Bridgman process (CP-NiAl). The mechanical properties, specifically fracture toughness and creep strength, of the HP-NiAl are superior to binary CP-NiAl and are used as a base-line for comparison with the composite materials subsequently studied. Two-phase composite materials (NiAl-based eutectic alloys) show improvement in room temperature fracture toughness and 1200 to 1400 K creep strength over that of binary HP-NiAl. Metallic phase reinforcements produce the greatest improvement in fracture toughness, while intermetallic reinforcement produces the largest improvement in high temperature strength. Three-phase eutectic alloys and composite materials were identified and directionally solidified with the intent to combine the improvements observed in the two-phase alloys into one alloy. The room temperature fracture toughness and high temperature strength (in air) serve as the basis for comparison between all of the alloys. Finally, the composite materials are discussed in terms of dominant fracture mechanism observed by fractography.

  6. Influence of carbonation on the acid neutralization capacity of cements and cement-solidified/stabilized electroplating sludge.

    Science.gov (United States)

    Chen, Quanyuan; Zhang, Lina; Ke, Yujuan; Hills, Colin; Kang, Yanming

    2009-02-01

    Portland cement (PC) and blended cements containing pulverized fuel ash (PFA) or granulated blast-furnace slag (GGBS) were used to solidify/stabilize an electroplating sludge in this work. The acid neutralization capacity (ANC) of the hydrated pastes increased in the order of PC > PC/GGBS > PC/PFA. The GGBS or PFA replacement (80 wt%) reduced the ANC of the hydrated pastes by 30-50%. The ANC of the blended cement-solidified electroplating sludge (cement/sludge 1:2) was 20-30% higher than that of the hydrated blended cement pastes. Upon carbonation, there was little difference in the ANC of the three cement pastes, but the presence of electroplating sludge (cement/sludge 1:2) increased the ANC by 20%. Blended cements were more effective binders for immobilization of Ni, Cr and Cu, compared with PC, whereas Zn was encapsulated more effectively in the latter. Accelerated carbonation improved the immobilization of Cr, Cu and Zn, but not Ni. The geochemical code PHREEQC, with the edited database from EQ3/6 and HATCHES, was used to calculate the saturation index and solubility of likely heavy metal precipitates in cement-based solidification/stabilization systems. The release of heavy metals could be related to the disruption of cement matrices and the remarkable variation of solubility of heavy metal precipitates at different pH values.

  7. Advanced powder metallurgy aluminum alloys via rapid solidification technology

    Science.gov (United States)

    Ray, R.

    1984-01-01

    Aluminum alloys containing 10 to 11.5 wt. pct. of iron and 1.5 to 3 wt. pct. of chromium using the technique of rapid solidification powder metallurgy were studied. Alloys were prepared as thin ribbons (.002 inch thick) rapidly solidified at uniform rate of 10(6) C/second by the melt spinning process. The melt spun ribbons were pulverized into powders (-60 to 400 mesh) by a rotating hammer mill. The powders were consolidated by hot extrusion at a high reduction ratio of 50:1. The powder extrusion temperature was varied to determine the range of desirable processing conditions necessary to yield useful properties. Powders and consolidated alloys were characterized by SEM and optical metallography. The consolidated alloys were evaluated for (1) thermal stability, (2) tensile properties in the range, room temperature to 450 F, and (3) notch toughness in the range, room temperature to 450 F.

  8. First-principles study on ferrite/TiC heterogeneous nucleation interface

    International Nuclear Information System (INIS)

    Yang, Jian; Zhang, Pengfei; Zhou, Yefei; Guo, Jing; Ren, Xuejun; Yang, Yulin; Yang, Qingxiang

    2013-01-01

    Highlights: ► Interface stability of ferrite (1 0 0)/TiC (1 0 0) was studied. ► The effectiveness of TiC as the heterogeneous nuclei of ferrite was analyzed. ► Ti-termination and C-termination are the two binding modes for ferrite/TiC interface. ► Interfacial energy of the Ti-termination is larger than that of the C-termination. ► On C-termination, ability of TiC promotes ferrite heterogeneous nucleation is strong. -- Abstract: Interface atomic structure, bonding character, cohesive energy and interfacial energy of ferrite (1 0 0)/TiC (1 0 0) were studied using a first-principles density functional plane-wave ultrasoft pseudopotential method. Meanwhile, the effectiveness of TiC as the heterogeneous nuclei of ferrite was analyzed. The results indicated that, TiC bonding is dominated by the C-2p, C-2s and Ti-3d electrons, which exhibits high covalency. With increase of the atomic layers, the interfacial energies of ferrite and TiC are both declined rapidly and stabilized gradually. There are two binding modes for TiC as the heterogeneous nuclei of ferrite, which are Fe atoms above the Ti atoms (Ti-termination) and Fe atoms above the C atoms (C-termination). Interfacial energy of the Ti-termination is larger than that of the C-termination, which means that for Fe atoms above the C atoms, the ability of TiC promotes ferrite heterogeneous nucleation on its surface is larger than that for Fe atoms above the Ti atoms

  9. Setting of cesium residual ratio of molten solidified waste produced in Japan Atomic Power Company Tokai and Tokai No.2 Power Stations

    International Nuclear Information System (INIS)

    2013-02-01

    JNES investigated the appropriateness of a view of the Japan Nuclear Fuel Co. on cesium residual content and the radioactivity measurement precision regarding the molten solidified (with lowered inorganic salt used) radioactive wastes which were produced from Japan Atomic Power Company Tokai and Tokai No. 2 Power Stations. Based on the written performance report from the request and past disposal confirmation experience, a view of the JNFC is confirmed as appropriate that setting of 15% cesium residual ratio for molten solidified with volume ratio larger than 4% and less than 10% cases. (S. Ohno)

  10. Phase stability in wear-induced supersaturated Al-Ti solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Y.; Yokoyama, K. [Dept. of Functional Machinery Mechanics Shinshu Univ., Ueda (Japan); Hosoda, H. [Precision and Intelligence Lab., Tokyo Inst. of Tech., Nagatsuta, Midori-ku, Yokohama (Japan)

    2002-07-01

    Al-Ti supersaturated solid solutions were introduced by wear testing and the rapid quenching of an Al/Al{sub 3}Ti composite (part of an Al/Al{sub 3}Ti functionally graded material) that was fabricated using the centrifugal method. The phase stability of the supersaturated solid solution was studied through systematic annealing of the supersaturated solid solution. It was found that the Al-Ti supersaturated solid solution decomposed into Al and Al{sub 3}Ti intermetallic compound phases during the heat treatment. The Al-Ti supersaturated solid solutions fabricated were, therefore, not an equilibrium phase, and thus decomposed into the equilibrium phases during heat treatment. It was also found that heat treatment leads to a significant hardness increase for the Al-Ti supersaturated solid solution. Finally, it was concluded that formation of the wear-induced supersaturated solid solution layer was a result of severe plastic deformation. (orig.)

  11. A coupled analysis of fluid flow, heat transfer and deformation behavior of solidifying shell in continuously cast beam blank

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Eui; Yeo, Tae Jung; Oh, Kyu Hwan; Yoon, Jong Kyu [School of Materials Science and Engineering, Seoul Nat` l Univ., Seoul (Korea, Republic of); Han, Heung Nam [Oxford Center for Advanced Materials and Composites, Department of Materials, Univ. of Oxford (United Kingdom)

    1998-12-31

    A mathematical model for a coupled analysis of fluid flow, heat transfer and deformation behavior in the continuously cast beam blank has been developed. The fluid flow, heat transfer and solidification in the mold region were analyzed with 3-dimensional finite difference method (FDM) based on control volume method. A body fitted coordinate system was introduced for the complex geometry of the beam blank. The effects of turbulence and natural convection of molten steel were taken into account in determining the fluid flow in the strand. The thermo-elasto-plastic deformation behavior in the cast strand and the formation of air gap between the solidifying shell and the mold were analyzed by the finite element method (FEM) using the 2-dimensional slice temperature profile calculated by the FDM. The heat flow between the strand and the mold was evaluated by the coupled analysis between the fluid flow-heat transfer analysis and the thermo-elasto-plastic stress analysis. In order to determine the solid fraction in the mushy zone, the microsegregation of solute element was assessed. The effects of fluid flow on the heat transfer, the solidification of steel and the distribution of shell thickness during the casting of the beam blank were simulated. The deformation behavior of the solidifying shell and the possibility of cracking of the strand were also investigated. The recirculating flows were developed in the regions of the web and the flange tip. The impinging of the inlet flow from the nozzle retarded the growing of solidifying shell in the regions of the fillet and the flange. The air gap between the strand and the mold was formed near the region of the corner of the flange tip. At the initial stage of casting, the probability of the surface cracking was high in the regions of the fillet and the flange tip. After the middle stage of casting, the internal cracking was predicted in the regions of the flange tip, and between the fillet and the flange tip. (author) 38

  12. A coupled analysis of fluid flow, heat transfer and deformation behavior of solidifying shell in continuously cast beam blank

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Eui; Yeo, Tae Jung; Oh, Kyu Hwan; Yoon, Jong Kyu [School of Materials Science and Engineering, Seoul Nat`l Univ., Seoul (Korea, Republic of); Han, Heung Nam [Oxford Center for Advanced Materials and Composites, Department of Materials, Univ. of Oxford (United Kingdom)

    1997-12-31

    A mathematical model for a coupled analysis of fluid flow, heat transfer and deformation behavior in the continuously cast beam blank has been developed. The fluid flow, heat transfer and solidification in the mold region were analyzed with 3-dimensional finite difference method (FDM) based on control volume method. A body fitted coordinate system was introduced for the complex geometry of the beam blank. The effects of turbulence and natural convection of molten steel were taken into account in determining the fluid flow in the strand. The thermo-elasto-plastic deformation behavior in the cast strand and the formation of air gap between the solidifying shell and the mold were analyzed by the finite element method (FEM) using the 2-dimensional slice temperature profile calculated by the FDM. The heat flow between the strand and the mold was evaluated by the coupled analysis between the fluid flow-heat transfer analysis and the thermo-elasto-plastic stress analysis. In order to determine the solid fraction in the mushy zone, the microsegregation of solute element was assessed. The effects of fluid flow on the heat transfer, the solidification of steel and the distribution of shell thickness during the casting of the beam blank were simulated. The deformation behavior of the solidifying shell and the possibility of cracking of the strand were also investigated. The recirculating flows were developed in the regions of the web and the flange tip. The impinging of the inlet flow from the nozzle retarded the growing of solidifying shell in the regions of the fillet and the flange. The air gap between the strand and the mold was formed near the region of the corner of the flange tip. At the initial stage of casting, the probability of the surface cracking was high in the regions of the fillet and the flange tip. After the middle stage of casting, the internal cracking was predicted in the regions of the flange tip, and between the fillet and the flange tip. (author) 38

  13. Nanomechanical properties of TiCN and TiCN/Ti coatings on Ti prepared by Filtered Arc Deposition

    International Nuclear Information System (INIS)

    Sun, Yong; Lu, Cheng; Yu, Hailiang; Kiet Tieu, A.; Su, Lihong; Zhao, Yue; Zhu, Hongtao; Kong, Charlie

    2015-01-01

    Monolayer TiCN and multilayer TiCN/Ti coatings were deposited on the surface of Ti using the Filtered Arc Deposition System (FADS). Nanoindentation tests were performed on both coatings. The multilayer TiCN/Ti coating exhibited better ductility than the monolayer TiCN coating. The lattice constants of the coatings were characterized by X-ray diffraction. Transmission Electron Microscopy (TEM) was used to investigate the fracture behavior of the coatings. Inter-columnar, inclined and lateral cracks were found to be the dominant crack modes in the monolayer TiCN coatings while small bending crack and radial crack were the dominant crack modes in the multilayer TiCN/Ti coatings. The Finite Element Method (FEM) was used to simulate the indentation process. It was found that the Ti interlayer in the multilayer TiCN/Ti coating could efficiently suppress the fracture, which is responsible for the improved ductility of the multilayer TiCN/Ti coating

  14. In situ NiTi/Nb(Ti) composite

    International Nuclear Information System (INIS)

    Jiang, Daqiang; Cui, Lishan; Jiang, Jiang; Zheng, Yanjun

    2013-01-01

    Graphical abstract: - Highlights: • In situ NiTi/Nb(Ti) composites were fabricated. • The transformation temperature was affected by the mixing Ti:Ni atomic ratios. • The NiTi component became micron-scale lamella after forging and rolling. • The composite exhibited high strength and high damping capacity. - Abstract: This paper reports on the creation of a series of in situ NiTi/Nb(Ti) composites with controllable transformation temperatures based on the pseudo-binary hypereutectic transformation of NiTi–Nb system. The composite constituent morphology was controlled by forging and rolling. It is found that the thickness of the NiTi lamella in the composite reached micron level after the hot-forging and cold-rolling. The NiTi/Nb(Ti) composite exhibited high damping capacity as well as high yield strength

  15. Prediction of as-cast grain size of inoculated aluminum alloys melt solidified under non-isothermal conditions

    International Nuclear Information System (INIS)

    Du, Qiang; Li, Yanjun

    2015-01-01

    In this paper, a multi-scale as-cast grain size prediction model is proposed to predict as-cast grain size of inoculated aluminum alloys melt solidified under non-isothermal condition, i.e., the existence of temperature gradient. Given melt composition, inoculation and heat extraction boundary conditions, the model is able to predict maximum nucleation undercooling, cooling curve, primary phase solidification path and final as-cast grain size of binary alloys. The proposed model has been applied to two Al-Mg alloys, and comparison with laboratory and industrial solidification experimental results have been carried out. The preliminary conclusion is that the proposed model is a promising suitable microscopic model used within the multi-scale casting simulation modelling framework. (paper)

  16. Effect of thermal cycling on the microstructure of a directionally solidified Fe, Cr, Al-TaC eutectic alloy

    Science.gov (United States)

    Harf, F. H.; Tewari, S. N.

    1977-01-01

    Cylindrical bars (1.2 cm diameter) of Fe-13.6Cr-3.7Al-9TaC (wt %) eutectic alloy were directionally solidified in a modified Bridgman type furnace at 1 cm/h. The alloy microstructure consisted of aligned TaC fibers imbedded in a bcc Fe-Cr-Al matrix. Specimens of the alloy were thermally cycled from 1100 to 425 C in a burner rig. The effects of 1800 thermal cycles on the microstructure was examined by scanning electron microscopy, revealing a zig-zag shape of TaC fibers aligned parallel to the growth direction. The mechanism of carbide solution and reprecipitation on the (111) easy growth planes, suggested previously to account for the development of irregular serrations in Co-Cr-Ni matrix alloys, is believed to be responsible for these zig-zag surfaces.

  17. Hydration products and mechanical properties of hydroceramics solidified waste for simulated Non-alpha low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Wang Jin; Hong Ming; Wang Junxia; Li Yuxiang; Teng Yuancheng; Wu Xiuling

    2011-01-01

    In this paper, simulated non-alpha low and intermediate level radioactive wastes was handled as curing object and that of 'alkali-slag-coal fly ash-metakaolin' hydroceramics waste forms were prepared by hydrothermal synthesis method. The hydration products were analyzed by X ray diffraction. The composition of hydrates and the compressive strength of waste forms were determined and measured. The results indicate that the main crystalline phase of hydration products were analcite when the temperature was 150 to 180 degree C and the salt content ratio was 0.10 to 0.30. Analcite diffraction peaks in hydration products is increasing when the temperature was raised and the reaction time prolonged. Strength test results show that the solidified waste forms have superior compressive strength. The compressive strength gradually decreased with the increase in salt content ratio in waste forms. (authors)

  18. Characterization of solidified radioactive wastes produced at Montalto di Castro BWR plant with reference to the site storage

    International Nuclear Information System (INIS)

    Donato, A.; Ricci, G.; Pace, A.

    1985-01-01

    The cement solidification of the Montalto di Castro BWR plant radwastes has been studied both from the point of view of the mixtures of formulation and of the product characterization. Five radwaste types and mixtures of them have been taken into consideration, determining the best chemical formulations starting from the compressive strenght as leading parameter. The solidified products have been characterized from the point of view of the freeze and thawing resistance, the water immersion resistance, the leachability, the dimensional changes and the free standing water. All the tests have been performed taking into account the real site conditions, so the leaching tests and the water immersion tests have been carried out using sea water and table water as leachant

  19. Shipment and Disposal of Solidified Organic Waste (Waste Type IV) to the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    D'Amico, E. L; Edmiston, D. R.; O'Leary, G. A.; Rivera, M. A.; Steward, D. M.

    2006-01-01

    In April of 2005, the last shipment of transuranic (TRU) waste from the Rocky Flats Environmental Technology Site to the WIPP was completed. With the completion of this shipment, all transuranic waste generated and stored at Rocky Flats was successfully removed from the site and shipped to and disposed of at the WIPP. Some of the last waste to be shipped and disposed of at the WIPP was waste consisting of solidified organic liquids that is identified as Waste Type IV in the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC) document. Waste Type IV waste typically has a composition, and associated characteristics, that make it significantly more difficult to ship and dispose of than other Waste Types, especially with respect to gas generation. This paper provides an overview of the experience gained at Rocky Flats for management, transportation and disposal of Type IV waste at WIPP, particularly with respect to gas generation testing. (authors)

  20. Segregation and microstructure evolution in chill cast and directionally solidified Ni-Mn-Sn metamagnetic shape memory alloys

    Science.gov (United States)

    Czaja, P.; Wierzbicka-Miernik, A.; Rogal, Ł.

    2018-06-01

    A multiphase solidification behaviour is confirmed for a range of Ni-rich and Ni-deficient Ni-Mn-Sn induction cast and directionally solidified (Bridgman) alloys. The composition variation is primarily linked to the changing Mn/Sn ratio, whereas the content of Ni remains largely stable. The partitioning coefficients for the Ni50Mn37Sn13 and Ni46Mn41.5Sn12.5 Bridgman alloys were obtained according to the Scheil equation based on the composition distribution along the longitudinal cross section of the ingots. Homogenization heat treatment performed for 72 h at 1220 K turned out sufficient for ensuring chemical uniformity on the macro- and microscale. It is owed to a limited segregation length scale due to slow cooling rates adopted for the directional solidification process.

  1. Analysis of Light Gathering Abilities of Dynamically Solidified Micro-lenses, and Their Implementation to Improve Sensitivity of Fluorescent PCR Micro-detectors.

    Science.gov (United States)

    Wu, Jian; Guo, Wei; Wang, Chunyan; Yu, Kuanxin; Chen, Tao; Li, Yinghui

    2015-06-01

    Fluorescent polymerase chain reaction (PCR) is becoming the preferred method of quantitative analysis due to its high specificity and sensitivity. We propose to use a new kind of micro-lens, dynamically solidified with optic glue, to improve the sensitivity of fluorescent PCR micro-detector. We developed light ray track equations for these lenses and used them to calculate relative light intensity distribution curve for stimulation lenses and illumination point probability distribution curve for detection lenses. We manufactured dynamically solidified micro-lenses using optic glue NOA61, and measured their light gathering ability. Lenses with radius/thickness (R/H) ratio of 4 reached light focusing ratio of 3.85 (stimulation lens) and photon collection efficiency of 0.86 (detection lens). We then used dynamically solidified lenses in PCR fluorescence micro-detector and analyzed their effect on the detector sensitivity. We showed that the use of dynamically solidified micro-lenses with R/H = 4 resulted in over 4.4-fold increased sensitivity of the detector.

  2. Experimental study on the properties of drum-packed, cement solidified waste package of pre and after sea dumping test of sea depth 30m and 100m

    International Nuclear Information System (INIS)

    Maki, Yasuro; Abe, Hirotoshi; Hattori, Seiichi

    1976-01-01

    Japan Marine Science and Technology Center has been tackling with the development of the monitoring system to confirm the soundness of drum-packed, cement-solidified low level radioactive waste (the package) during falling and after reaching at sea bed when it is dumped into sea. The test was carried out at Sagami Bay of 30 m and 100 m sea depth using non-radioactive packages. The observation of the falling behaviour of packages in sea was carried out by taking photographs of the motion of packages with an underwater 16 mm movie camera and an underwater industrial TV (ITV), and the observation of the soundness and the area of packages scattered on sea bed was carried out with an underwater ITV and an underwater 70 mm snap camera which were set up on the frame. The proportion of cement-solidified waste was decided so that the uni-axial compressive strength of the cement-solidified waste satisfies the condition of ''The tentative guideline''. Prior to tests at sea, hydrostatic pressure test of packages are carried out on land. After that, core specimens were sampled to obtain the uniaxial compressive strength from packages and were tested. After sea dumping tests, 6 packages were recovered from sea bed, and the soundness were tested. As the results, the deformation and damage of drums and cement solidified waste packages did not occur at all. (Kako, I.)

  3. Amorphous Ti-Zr

    International Nuclear Information System (INIS)

    Rabinkin, A.; Liebermann, H.; Pounds, S.; Taylor, T.

    1991-01-01

    This paper is the first report on processing, properties and potential application of amorphous titanium/zirconium-base alloys produced in the form of a good quality continuous and ductile ribbon having up to 12.5 mm width. To date, the majority of titanium brazing is accomplished using cooper and aluminum-base brazing filler metals. The brazements produced with these filler metals have rather low (∼300 degrees C) service temperature, thus impeding progress in aircraft and other technologies and industries. The attempt to develop a generation of high temperature brazing filler metals was made in the late sixties-early seventies studies in detail were a large number of Ti-, Zr-Ti-Zr, Ti-V and Zr-V-Ti based alloys. The majority of these alloys has copper and nickel as melting temperature depressants. The presence of nickel and copper converts them into eutectic alloys having [Ti(Zr)] [Cu(Ni)], intermetallic phases as major structural constituents. This, in turn, results in high alloy brittleness and poor, if any, processability by means of conventional, i.e. melting-ingot casting-deformation technology. In spite of good wettability and high joint strength achieved in dozens of promising alloys, only Ti-15Cu-15Ni is now widely used as a brazing filler metal for high service temperature. Up until now this material could not be produced as a homogeneous foil and is instead applied as a clad strip consisting of three separate metallic layers

  4. Microstructures and mechanical properties of grain refined Al-Li-Mg casting alloy by containing Zr and Ti

    International Nuclear Information System (INIS)

    Saikawa, Seiji; Nakai, Kiyoshi; Sugiura, Yasuo; Kamio, Akihiko.

    1995-01-01

    Mechanical properties and microstructures of various Al-Li-Mg alloy castings containing small amount of Zr and/or Ti were investigated. The δ(AlLi) phase was observed to crystallize in the dendrite-cell gaps as well as on the grain boundaries. Microsegregation of Mg also occurred in the solidified castings. The β(Al 3 Zr) or Al-Zr-Ti compounds crystallize during solidification and remain even after solid solution treatment at 803 K for 36 ks. The grain sizes of Al-2.5%Li-2%Mg alloy castings become finer by the addition of 0.15%Zr and 0.12%Ti compared with each addition of 0.15%Zr or 0.12%Ti. The age hardening is accelerated by the addition of 0.15%Zr. In an Al-2.5%Li-2%Mg-0.15%Zr-0.12%Ti alloy casting poured into a metallic mold and aged at 453 K for 36 ks, ultimate tensile strength, Young's modulus and density were 417 MPa, 80 GPa and was 2.52 g/cm 3 , respectively. Its specific strength and modulus are higher by 50.3 and 13.9% than those of the conventional AC4C-T6 casting. (author)

  5. Photodecomposition of volatile organic compounds using TiO2 nanoparticles.

    Science.gov (United States)

    Jwo, Ching-Song; Chang, Ho; Kao, Mu-Jnug; Lin, Chi-Hsiang

    2007-06-01

    This study examined the photodecomposition of volatile organic compounds (VOCs) using TiO2 catalyst fabricated by the Submerged Arc Nanoparticle Synthesis System (SANSS). TiO2 catalyst was employed to decompose volatile organic compounds and compare with Degussa-P25 TiO2 in terms of decomposition efficiency. In the electric discharge manufacturing process, a Ti bar, applied as the electrode, was melted and vaporized under high temperature. The vaporized Ti powders were then rapidly quenched under low-temperature and low-pressure conditions in deionized water, thus nucleating and forming nanocrystalline powders uniformly dispersed in the base solvent. The average diameter of the TiO2 nanoparticles was 20 nm. X-ray diffraction analysis confirmed that the nanoparticles in the deionized water were Anatase type TiO2. It was found that gaseous toluene exposed to UV irradiation produced intermediates that were even harder to decompose. After 60-min photocomposition, Degussa-P25 TiO2 reduced the concentration of gaseous toluene to 8.18% while the concentration after decomposition by SANSS TiO2 catalyst dropped to 0.35%. Under UV irradiation at 253.7 +/- 184.9 nm, TiO2 prepared by SANSS can produce strong chemical debonding energy, thus showing great efficiency, superior to that of Degussa-P25 TiO2, in decomposing gaseous toluene and its intermediates.

  6. Effect of nano-CeO 2 on microstructure properties of TiC/TiN+TiCN ...

    Indian Academy of Sciences (India)

    TiC/TiN+TiCN-reinforced composite coatings were fabricated on Ti–6Al–4V alloy by laser cladding, which improved surface performance of the substrate. ... X-ray diffraction results indicated that Al3Ti+TiC/TiN+nano-CeO2 laser-cladded coating consisted of Ti3Al, TiC, TiN, Ti2Al20Ce, TiC0.3N0.7, Ce(CN)3 and CeO2, this ...

  7. Rapid compression induced solidification of two amorphous phases of poly(ethylene terephthalate)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, S M [Laboratory of High Pressure Physics, Southwest Jiaotong University, Chengdu, 610031 (China); Liu, X R [Laboratory of High Pressure Physics, Southwest Jiaotong University, Chengdu, 610031 (China); Su, L [Laboratory of High Pressure Physics, Southwest Jiaotong University, Chengdu, 610031 (China); Huang, D H [Laboratory of High Pressure Physics, Southwest Jiaotong University, Chengdu, 610031 (China); Li, L B [Foods Research Centre Unilever R and D, Vlaardingen Olivier van Noortlaan, 120, 3133 AT Vlaardingen (Netherlands)

    2006-08-21

    Melts of poly(ethylene terephthalate) were solidified by rapid compression to 2 GPa within 20 ms and by a series of comparative processes including natural cooling, slow compressing and rapid cooling, respectively. By combining XRD and differential scanning calorimetry data of the recovered samples, it is made clear that rapid compression induces two kinds of amorphous phases. One is relatively stable and can also be formed in the slow compression and the cooling processes. Another is metastable and transforms to crystalline phase at 371 K. This metastable amorphous phase cannot be obtained by slow compression or natural cooling, and its crystallization temperature is remarkably different from that of the metastable amorphous phase formed in the rapid cooling sample.

  8. Lamellar boundary alignment of DS-processed TiAl-W alloys by a solidification procedure

    Science.gov (United States)

    Jung, In-Soo; Oh, Myung-Hoon; Park, No-Jin; Kumar, K. Sharvan; Wee, Dang-Moon

    2007-12-01

    In this study, a β solidification procedure was used to align the lamellae in a Ti-47Al-2W (at.%) alloy parallel to the growth direction. The Bridgman technique and the floating zone process were used for directional solidification. The mechanical properties of the directionally solidified alloy were evaluated in tension at room temperature and at 800°C. At a growth rate of 30 mm/h (with the floating zone approach), the lamellae were well aligned parallel to the growth direction. The aligned lamellae yielded excellent room temperature tensile ductility. The tensile yield strength at 800°C was similar to that at room temperature. The orientation of the γ lamellar laths in the directionally solidified ingots, which were manufactured by means of a floating zone process, was identified with the aid of electron backscattered diffraction analysis. On the basis of this analysis, the preferred growth direction of the bcc-β dendrites that formed at high temperatures close to the melting point was inferred to be [001]β at a growth rate of 30 mm/h and [111]β at a growth rate of 90 mm/h.

  9. Fatigue crack growth rates and fracture toughness of rapidly solidified Al-8.5 pct Fe-1.2 pct V-1.7 pct Si alloys

    International Nuclear Information System (INIS)

    Hariprasad, S.; Sastry, S.M.L.; Jerina, K.L.

    1994-01-01

    The room-temperature fatigue crack growth rates (FCGR) and fracture toughness were evaluated for different crack plane Orientations of an Al-8.5 pct Fe-1.2 pct V-1.7 pct Si alloy produced by planar flow casting (PFC) and atomized melt deposition (AMD) processes. For the alloy produced by the PFC process, properties were determined in six different orientations, including the short transverse directions S-T and S-L. Diffusion bonding and adhesive bonding methods were used to prepare specimens for determining FCGR and fracture toughness in the short transverse direction. Interparticle boundaries control fracture properties in the alloy produced by PFC. Fracture toughness of the PFC alloy varies from 13.4 MPa√ bar m to 30.8 MPa√ bar m, depending on the orientation of the crack plane relative to the interparticle boundaries. Fatigue crack growth resistance and fracture toughness are greater in the L-T, L-S, and T-S directions than in the T-L, S-T, and S-L orientations. The alloy produced by AMD does not exhibit anisotropy in fracture toughness and fatigue crack growth resistance in the as-deposited condition or in the extruded condition. The fracture toughness varies from 17.2 MPa√ bar m to 18.5 MPa√ bar m for the as-deposited condition and from 19.8 MPa√ bar m to 21.0 MPa√ bar m for the extruded condition. Fracture properties are controlled by intrinsic factors in the alloy produced by AMD. Fatigue crack growth rates of the AMD alloy are comparable to those of the PFC alloy in the L-T orientation. The crack propagation modes were studied by optical metallographic examination of crack-microstructure interactions and scanning electron microscopy of the fracture surfaces

  10. Effect of Fe addition on the magnetic and giant magneto-impedance behaviour of CoCrSiB rapidly solidified alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Seema; Chattoraj, I; Panda, A K; Mitra, A; Pal, S K [National Metallurgical Laboratory, Jamshedpur 831 007 (India)

    2006-05-21

    Thermal electrical resistivity, magnetic hysteresis and magneto-impedance behaviour of melt spun and annealed Co{sub 71-X}Fe{sub X}Cr{sub 7}Si{sub 8}B{sub 14} (X = 0, 2, 3.2, 4, 6, 8 and 12 at.%) were investigated. The addition of Fe in the system changed crystallization as well as the magnetic properties of the materials. The alloy containing 6 at.% Fe showed an increase in resistivity during the first crystallization process. A TEM micrograph indicated the formation of nanostructure during the crystallization process. The GMI properties of the alloys are evaluated at a driving current amplitude of 5 mA and a frequency of 4 MHz. The two-peak behaviour in the GMI profile was observed for all the samples. It is found that the alloy with 4 at.% Fe has the maximum GMI ratio because of the nearly zero magnetostriction value of the sample. About 62% change in the GMI ratio was observed in the alloy with 4 at.% Fe when annealed at 673 K. The anisotropy field was also minimum for the annealed alloy. The results were explained by the formation of directional ordering and the reduction of the magnetostriction constant of the alloy due to nanocrystallization during the annealing process.

  11. Microstructure and properties of extruded rapidly solidified AlCr4.7Fe1.1Si0.3 (at.%) alloys

    Czech Academy of Sciences Publication Activity Database

    Cavojsky, M.; Balog, M.; Dvořák, Jiří; Illekova, E.; Svec, P.; Krizik, P.; Janičkovič, D.; Simancik, F.

    2012-01-01

    Roč. 549, July (2012), s. 233-241 ISSN 0921-5093 Institutional research plan: CEZ:AV0Z20410507 Keywords : aluminium * mechanical properties * melt- spinning * powder metallurgy Subject RIV: JJ - Other Materials Impact factor: 2.108, year: 2012

  12. Effect of silver and indium addition on mechanical properties and indentation creep behavior of rapidly solidified Bi–Sn based lead-free solder alloys

    International Nuclear Information System (INIS)

    Shalaby, Rizk Mostafa

    2013-01-01

    Mechanical properties and indentation creep of the melt-spun process Bi–42 wt%Sn, Bi–40 wt%Sn–2 wt%In, Bi–40 wt%Sn–2 wt%Ag and Bi–38 wt%Sn–2 wt%In–2 wt%Ag were studied by dynamic resonance technique and Vickers indentation testing at room temperature and compared to that of the traditional Sn–37 wt%Pb eutectic alloy. The results show that the structure of Bi–42 wt%Sn alloy is characterized by the presence of rhombohedral Bi and body centered tetragonal β-Sn. The two ternary alloys exhibit additional constituent phases of intermetallic compounds SnIn 19 for Bi–40 wt%Sn–2 wt%In and ε-Ag 3 Sn for Bi–40 wt%Sn–2 wt%Ag alloys. Attention has been paid to the role of intermetallic compounds on mechanical and creep behavior. The In and Ag containing solder alloy exhibited a good combination of higher creep resistance, good mechanical properties and lower melting temperature as compared with Pb–Sn eutectic solder alloy. This was attributed to the strengthening effect of Bi as a strong solid solution element in the Sn matrix and formation of intermetallic compounds β-SnBi, ε-Ag 3 Sn and InSn 19 which act as both strengthening agent and grain refiner in the matrix of the material. Addition of In and Ag decreased the melting temperature of Bi–Sn lead-free solder from 143 °C to 133 °C which was possible mainly due to the existence of InSn 19 and Ag 3 Sn intermetallic compounds. Elastic constants, internal friction and thermal properties of Bi–Sn based alloys have been studied and analyzed.

  13. Formation and growth mechanism of TiC crystal in TiCp/Ti composites

    Institute of Scientific and Technical Information of China (English)

    金云学; 王宏伟; 曾松岩; 张二林

    2002-01-01

    Ti-C and Ti-Al-C alloys were prepared using gravity and directional solidification processes. Morphologies of TiC crystal were investigated by using SEM, XRD and EDX. Also, the formation and growth mechanism of TiC crystal have been analyzed on the basis of coordination polyhedron growth unit theory. During solidification of titanium alloys, the coordination polyhedron growth unit is TiC6. TiC6 growth units stack in a linking mode of edge to edge and form octahedral TiC crystal with {111} planes as present faces. Although the growing geometry of TiC crystal is decided by its lattice structure, the final morphology of TiC crystal depends on the effects of its growth environment. In solute concentration distribution, the super-saturation of C or TiC6 at the corners of octahedral TiC crystal is much higher than that of edges and faces of octahedral TiC crystal. At these corners the driving force for crystal growth is greater and the interface is instable which contribute to quick stacking rate of growth units at these corners and result in secondary dendrite arms along TiC crystallographic 〈100〉 directions. TiC crystal finally grows to be dendrites.

  14. Stress analysis and microstructure of PVD monolayer TiN and multilayer TiN/(Ti,Al)N coatings

    NARCIS (Netherlands)

    Carvalho, NJM; Zoestbergen, E; Kooi, BJ; De Hosson, JTM

    2003-01-01

    Two PVD titanium nitride based coatings; monolayer TiN and multilayer resulting from the stacking of TiN and (Ti,Al)N layers were evaluated with respect to their stress state and microstructure. The TiN was deposited by triode evaporation ion plating, whereas the TiN/(Ti,AI)N was deposited using a

  15. Fabrication and characterization of laminated Ti-(TiB+La2O3/Ti composite

    Directory of Open Access Journals (Sweden)

    Yuanfei Han

    2015-10-01

    Full Text Available The incorporation of ceramic particulate reinforcements into titanium alloys can improve the specific strength and specific stiffness, while inevitably reduce the plasticity and ductility. In this study, in situ synthesized multilayer Ti-(TiB+La2O3/Ti composite was designed by learning from the microstructure of nature biological materials with excellent mechanical properties. The Ti-(TiB+La2O3/Ti composite with unique characteristic of laminated structure was prepared by combined powder metallurgy and hot rolling. The method has the synthesize advantages with in-situ reaction of Ti and LaB6 at high temperature and controllability of reinforcements size and constituent phases in composites. The result shows that the pores in the as sintered laminated structure composite completely disappeared after hot rolling at 1050 °C. The agglomerated reinforcement particles were well dispersed and distributed uniformly along the rolling direction. The thickness of pure Ti layer and (TiB+La2O3/Ti composite layer decreased from 1 mm to about 200 μm. Meanwhile, the grains size was refined obviously after rolling deformation. The room temperature tensile test indicates that the elongation of the laminated Ti-(TiB+La2O3/Ti composite improved from 13% to 17% in comparison with the uniform (TiB+La2O3/Ti composite, while the tensile strength had little change. It provides theoretical and experimental basis for fabricating the novel high performance laminated Ti-(TiB+La2O3/Ti composites.

  16. Rapid chemical analysis of allanite

    International Nuclear Information System (INIS)

    Nishiyama, Goro; Hayashi, Hiroshi

    1981-01-01

    Rapid chemical analysis of allanite was studied by atomic absorption spectrophotometry. Powdered sample was fused with mixture of sodium carbonate anhydrous and borax (4 : 1 weight) in platinum crucible and sample solution was prepared. SiO 2 , Fe 2 O 3 , Al 2 O 3 , MnO and rare earth metals were determined by atomic absorption spectrophotometry, CaO, MgO and Ce 2 O 3 by titration, ThO 2 by colorimetry, and La 2 O 3 by flame photometry respectively. For sample solution treated with hydrofluoric acid and sulfuric acid. Na 2 O and K 2 O were determined by atomic absorption spectrophotometry, TiO 2 and P 2 O 5 by colorimetry. Chemical analyses for four samples were carried out and gave consistent results. (author)

  17. Structural evolution of Ti/TiC multilayers

    International Nuclear Information System (INIS)

    Dahan, I.; Frage, N.; Dariel, M.P.

    2004-01-01

    Hard coatings based on metal/ceramic multilayers with periods in the nanometer range have been shown to possess some potential for improved tribological and mechanical properties. The present work is concerned with the structural evolution of (Ti/TiC) multilayers. Two kinds of multilayers consisting of 30 equithick (40 nm)TiC layers and 20 and 60 nm thick Ti layers, respectively, were sputter deposited on Mo substrates. The structural and the compositional evolution of these multilayers were examined by x-ray diffraction, transition electron microscopy (TEM), high-resolution TEM, Auger electron microscopy spectroscopy and differential thermal analysis (DTA), in the as-deposited state and after various heat treatments up to 500 deg. C. Initially, the Ti layers had a crystalline columnar grain structure displaying a (002) texture. The TiC layers displayed weak crystallinity with a pronounced (111) texture. In the course of the heat treatments, carbon diffused from the carbide layer into the adjacent Ti layers transforming the latter into off-stoichiometric TiC x with x≅0.5 and simultaneously depleting the carbon content of the initial carbide layer. The formed TiC x layers maintained the textural relationship with the neighboring TiC layers, consistent with a transformation that involved only a ABAB to ABC stacking change of the Ti sublattice. Increased mobility of the Ti atoms in carbon-depleted original TiC layers led to their full or partial recrystallization. The thermal effects associated both with the transformation of Ti layers into TiC, due to the influx of carbon atoms, and with the recrystallization of the original TiC layers were clearly revealed by the DTA measurements

  18. Evaluation of mechanical properties of nanocrystalline Ti-Mo-Fe-Sn alloys system; Avaliacao de propriedades mecanicas de ligas nanocristalinas do sistema Ti-Mo-Fe-Sn

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, M.O.A; Vidilli, A.L.; Afonso, C.R.M., E-mail: andre.vidilli@gmail.com [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2014-07-01

    The Ti-6Al-4V, widely used in biomaterials, exhibits elastic modulus (E) of approximately 110GPa, which is significantly higher than the one of human bone (E = 10 to 30 GPa). In this project, a process of rapid solidification was utilized in 4 different alloys of Ti-Mo-Fe-Sn, in order to produce ultrafine nanocrystalline eutectic alloys, which present high strength (1800-2500 MPa), low elastic modulus (50-110 GPa) and good corrosion resistance. The alloys Ti{sub 62}Fe{sub 30}Mo{sub 8}, Ti{sub 56}Fe{sub 30}Mo{sub 8}Sn{sub 6}, Ti{sub 63}Fe{sub 23}Mo{sub 8}Sn{sub 6}, Ti{sub 60}Fe{sub 23}Mo{sub 8}Sn{sub 9} show Vickers microhardness de, respectively, 745 (1mm), 733 (1mm), 609 (1mm) e 651(1mm) HV. The characterization was performed using scanning electron microscopy (SEM) and X- ray diffraction (XRD). The results indicated the presence of a β-Ti (bcc) matrix and the intermetallic TiFe and Ti{sub 3}Sn phases, and the microstructure were formed by dendrites, and eutectic constituents, which were present in the compositions Ti{sub 62}Fe{sub 30}Mo{sub 8}, Ti{sub 56}Fe{sub 30}Mo{sub 8}Sn{sub 6}, Ti{sub 63}Fe{sub 23}Mo{sub 8}Sn{sub 6}, Ti{sub 60}Fe{sub 23}Mo{sub 8}Sn{sub 9}. (author)

  19. Structure of Cu-Ti brazing filler metal in amorphous and crystalline states

    Energy Technology Data Exchange (ETDEWEB)

    Maksymova, S; Khorunov, V [Paton Electric Welding Institute, NASU, 11 Bozhenko Str., Kyiv, 03680 (Ukraine); Zelinskaya, G [G.V. Kurdyumov Institute of Metal Physics, NASU, Kyiv, 03142 (Ukraine)], E-mail: maksymova@paton.kiev.ua

    2008-02-15

    Structure, chemical homogeneity and phase composition of rapidly quenched ribbons of brazing filler metal Ti{sub 57}Cu{sub 43} were investigated. The ribbons were found to be amorphous. The alloy components are uniformly distributed along the thickness of the strip. High-temperature differential thermal analysis was used to determine temperature ranges of the ribbons crystallization. X-ray diffraction analysis was performed to study phase composition of the rapidly quenched ribbons in the initial state and after their isothermal annealing. Two crystalline phases - {gamma}-CuTi and CuTi{sub 3} being identified in the latter case.

  20. Location specific solidification microstructure control in electron beam melting of Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Narra, Sneha P.; Cunningham, Ross; Beuth, Jack; Rollett, Anthony D.

    2018-01-01

    Relationships between prior beta grain size in solidified Ti-6Al-4V and melting process parameters in the Electron Beam Melting (EBM) process are investigated. Samples are built by varying a machine-dependent proprietary speed function to cover the process space. Optical microscopy is used to measure prior beta grain widths and assess the number of prior beta grains present in a melt pool in the raster region of the build. Despite the complicated evolution of beta grain sizes, the beta grain width scales with melt pool width. The resulting understanding of the relationship between primary machine variables and prior beta grain widths is a key step toward enabling the location specific control of as-built microstructure in the EBM process. Control of grain width in separate specimens and within a single specimen is demonstrated.

  1. Lanthanum hexaboride as advanced structural refiner/getter in TiAl-based refractory intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Kartavykh, A.V., E-mail: karta@korolev-net.ru [Technological Institute for Superhard and Novel Carbon Materials (TISNCM), 7a Centralnaya str., 142190 Troitsk, Moscow (Russian Federation); National University of Science and Technology “MISIS”, Leninsky pr. 4, 119049 Moscow (Russian Federation); Asnis, E.A.; Piskun, N.V.; Statkevich, I.I. [The E.O. Paton Electric Welding Institute, 11 Bozhenko str., 03680 Kyiv (Ukraine); Gorshenkov, M.V.; Tcherdyntsev, V.V. [National University of Science and Technology “MISIS”, Leninsky pr. 4, 119049 Moscow (Russian Federation)

    2014-03-05

    Highlights: • Fist application of LaB{sub 6} additive in TiAl-based intermetallics casting. • Pilot synthesis/casting and study of selected TiAl(Nb,Cr,Zr)B,La alloys set. • Dual effect observed: phase structure refinement and oxygen impurity removal. • Co-precipitation of TiB and La{sub 2}O{sub 3} in melt: 2LaB{sub 6} + 12Ti + 3O → 12TiB↓ + La{sub 2}O{sub 3}↓. • Features of structure refinement and oxygen gettering mechanisms reported. -- Abstract: The work is aimed at the study of the formation and refinement of microstructure appearing in the solidifying refractory TiAl-based intermetallics being inoculated with precise boron addition. The novelty of research consists in test application of lanthanum hexaboride (LaB{sub 6}) ligature within semi-continuous electron beam casting process of selected alloys. Two ingots with nominal compositions Ti–44Al–5Nb–2Cr–1.5Zr–0.4B–0.07La and Ti–44Al–5Nb–1Cr–1.5Zr–1B–0.17La (at.%) have been synthesized and cast along with the reference alloy Ti–44Al–5Nb–3Cr–1.5Zr. Their comparative examination suggests (i) essential microstructural phase refinement effect coupled with (ii) threefold/fourfold decrease of background content of undesirable residual oxygen impurity in both alloys containing LaB{sub 6}. This advanced dual activity (i–ii) of LaB{sub 6} is explained by its complete dissolution, dissociation and following re-precipitation of effective Ti-based monoboride nucleants of orthorhombic B27 structure, those being accompanied by strong internal gettering of dissolved oxygen from the melt and from boride-inoculated solid α{sub 2}-Ti{sub 3}Al phase with liberated elemental lanthanum. The phase composition and structure of cast alloys; state and characterization of newly precipitated TiB boride; features of La{sub 2}O{sub 3} micro/nano-dimensional precipitation and oxygen gettering mechanism are reported and discussed.

  2. Pressure-jump induced rapid solidification of melt: a method of preparing amorphous materials

    Science.gov (United States)

    Liu, Xiuru; Jia, Ru; Zhang, Doudou; Yuan, Chaosheng; Shao, Chunguang; Hong, Shiming

    2018-04-01

    By using a self-designed pressure-jump apparatus, we investigated the melt solidification behavior in rapid compression process for several kinds of materials, such as elementary sulfur, polymer polyether-ether-ketone (PEEK) and poly-ethylene-terephthalate, alloy La68Al10Cu20Co2 and Nd60Cu20Ni10Al10. Experimental results clearly show that their melts could be solidified to be amorphous states through the rapid compression process. Bulk amorphous PEEK with 24 mm in diameter and 12 mm in height was prepared, which exceeds the size obtained by melt quenching method. The bulk amorphous sulfur thus obtained exhibited extraordinarily high thermal stability, and an abnormal exothermic transition to liquid sulfur was observed at around 396 K for the first time. Furthermore, it is suggested that the glass transition pressure and critical compression rate exist to form the amorphous phase. This approach of rapid compression is very attractive not only because it is a new technique of make bulk amorphous materials, but also because novel properties are expected in the amorphous materials solidified by the pressure-jump within milliseconds or microseconds.

  3. Rapid shallow breathing

    Science.gov (United States)

    Tachypnea; Breathing - rapid and shallow; Fast shallow breathing; Respiratory rate - rapid and shallow ... Shallow, rapid breathing has many possible medical causes, including: Asthma Blood clot in an artery in the ...

  4. Ammonolysis-induced solvent removal: a facile approach for solidifying emulsion droplets into PLGA microspheres.

    Science.gov (United States)

    Kim, Jayoung; Hong, Dasom; Chung, Younglim; Sah, Hongkee

    2007-12-01

    An ammonolysis-based microencapsulation technique useful for the preparation of biodegradable microspheres was described in this study. A dispersed phase consisting of poly- d, l-lactide- co-glycolide, progesterone, and methyl chloroacetate was emulsified in an aqueous phase. Upon addition of ammonia solution, the emulsion droplets were quickly transformed into poly- d, l-lactide- co-glycolide microspheres laden with progesterone. Rapid solvent removal was accompanied by ammonolysis. The chemical reaction converted water-immiscible methyl chloroacetate to water-miscible chloroacetamide and methanol. Chloroacetamide formation was proved by (1)H NMR and ESI-MS studies. Thermogravimetric analysis showed that the microspheres contained only small amounts of residual methyl chloroacetate. Incorporation efficiencies of progesterone ranged from 64.3 +/- 1.1 to 72.8 +/- 0.3%, depending upon microsphere formulations. X-ray powder diffractometry analysis substantiated that no polymorphic transition of progesterone occurred during microencapsulation. To evaluate the feasibility of this new method against the commonly used microencapsulation method, microspheres were also prepared by a typical dichloromethane-based solvent evaporation process. The important attributes of microspheres prepared from both methods were characterized for comparison. The new ammonolysis-based microencapsulation process showed interesting features distinct from those of the solvent evaporation process. The microencapsulation process reported in this study might be applicable in loading pharmaceuticals into various polymeric microspheres.

  5. Structure observation of single solidified droplet by in situ controllable quenching based on nanocalorimetry

    International Nuclear Information System (INIS)

    Zhao, Bingge; Li, Linfang; Yang, Bin; Yan, Ming; Zhai, Qijie; Gao, Yulai

    2013-01-01

    Highlights: •Controllable quenching rate up to 15,000 K/s was realized by FSC. •FSC sample was novelly characterized by FIB and HRTEM. •Solidification structure with undercooling of 110.9 K was investigated. •This study opens a new approach in rapid solidification and FSC measurement. -- Abstract: Fast scanning calorimetry (FSC) based on nanocalorimetry and thin film technique is a newly developed attractive tool to investigate the solidification behavior of single droplet by in situ controllable ultrafast cooling. In this paper, we introduced this novel technique to in situ control the quenching of single Sn3.5Ag metallic droplet at cooling rate up to 15,000 K/s with corresponding undercooling of 110.9 K. In particular, the solidification structure of this real time quenched single droplet was observed and analyzed with focused ion beam (FIB), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). This research proposed a new approach to research the solidification structure of single droplet with precisely controlled size and extreme cooling rate

  6. The Role of Phase Changes in TiO2/Pt/TiO2 Filaments

    Science.gov (United States)

    Bíró, Ferenc; Hajnal, Zoltán; Dücső, Csaba; Bársony, István

    2018-04-01

    This work analyses the role of phase changes in TiO2/Pt/TiO2 layer stacks for micro-heater application regarding their stability and reliable operation. The polycrystalline Pt layer wrapped in a TiO2 adhesion layer underwent a continuous recrystallisation in a self-heating operation causing a drift in the resistance ( R) versus temperature ( T) performance. Simultaneously, the TiO2 adhesion layer also deteriorates at high temperature by phase changes from amorphous to anatase and rutile crystallite formation, which not only influences the Pt diffusion in different migration phenomena, but also reduces the cross section of the Pt heater wire. Thorough scanning electron microscopy, energy dispersive spectroscopy, cross-sectional transmission electron microscopy (XTEM) and electron beam diffraction analysis of the structures operated at increasing temperature revealed the elemental structural processes leading to the instabilities and the accelerated degradation, resulting in rapid breakdown of the heater wire. Owing to stability and reliability criteria, the conditions for safe operation of these layer structures could be determined.

  7. Formation of equiaxed crystal structures in directionally solidified Al-Si alloys using Nb-based heterogeneous nuclei

    Science.gov (United States)

    Bolzoni, Leandro; Xia, Mingxu; Babu, Nadendla Hari

    2016-01-01

    The design of chemical compositions containing potent nuclei for the enhancement of heterogeneous nucleation in aluminium, especially cast alloys such as Al-Si alloys, is a matter of importance in order to achieve homogeneous properties in castings with complex geometries. We identified that Al3Nb/NbB2 compounds are effective heterogeneous nuclei and are successfully produced in the form of Al-2Nb-xB (x = 0.5, 1 and 2) master alloys. Our study shows that the inoculation of Al-10Si braze alloy with these compounds effectively promotes the heterogeneous nucleation of primary α-Al crystals and reduces the undercooling needed for solidification to take place. Moreover, we present evidences that these Nb-based compounds prevent the growth of columnar crystals and permit to obtain, for the first time, fine and equiaxed crystals in directionally solidified Al-10Si braze alloy. As a consequence of the potent heterogeneous particles, the size of the α-Al crystals was found to be less dependent on the processing conditions, especially the thermal gradient. Finally, we also demonstrate that the enhanced nucleation leads to the refinement of secondary phases such as eutectic silicon and primary silicon particles. PMID:28008967

  8. Long-term reactive transport modelling of stabilized/solidified waste: from dynamic leaching tests to disposal scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Windt, Laurent de [Ecole des Mines de Paris, CG-Hydrodynamics and Reaction Group, 35 R. St-Honore, 77300 Fontainebleau (France)]. E-mail: laurent.dewindt@ensmp.fr; Badreddine, Rabia [INERIS, Direction des Risques Chroniques, Unite Dechets et Sites Pollues, Parc Technologique Alata BP 2, 60550 Verneuil-en-Halatte (France); Lagneau, Vincent [Ecole des Mines de Paris, CG-Hydrodynamics and Reaction Group, 35 R. St-Honore, 77300 Fontainebleau (France)

    2007-01-31

    Environmental impact assessment of hazardous waste disposal relies, among others, on standardized leaching tests characterized by a strong coupling between diffusion and chemical processes. In that respect, this study shows that reactive transport modelling is a useful tool to extrapolate laboratory results to site conditions characterized by lower solution/solid (L/S) ratios, site specific geometry, infiltration, etc. A cement solidified/stabilized (S/S) waste containing lead is investigated as a typical example. The reactive transport model developed in a previous study to simulate the initial state of the waste as well as laboratory batch and dynamic tests is first summarized. Using the same numerical code (HYTEC), this model is then integrated to a simplified waste disposal scenario assuming a defective cover and rain water infiltration. The coupled evolution of the S/S waste chemistry and the pollutant plume migration are modelled assessing the importance of the cracking state of the monolithic waste. The studied configurations correspond to an undamaged and fully sealed system, a few main fractures between undamaged monoliths and, finally, a dense crack-network in the monoliths. The model considers the potential effects of cracking, first the increase of rain water and carbon dioxide infiltration and, secondly, the increase of L/S ratio and reactive surfaces, using either explicit fracture representation or dual porosity approaches.

  9. Mechanism of nucleation and growth of hydrogen porosity in solidifying A356 aluminum alloy: an analytical solution

    International Nuclear Information System (INIS)

    Li, K.-D.; Chang, Edward

    2004-01-01

    This study derives an analytical solution for the mechanism of nucleation and growth of hydrogen pore in the solidifying A356 aluminum alloy. A model of initial transient hydrogen redistribution in the growing dendritic grain is used to modify the lever rule for the mechanism of nucleation of pore. The model predicts the fraction of solid at nucleation, the temperature range of nucleation, the radius of hydrogen diffusion cell, and the supersaturation of hydrogen needed for nucleation. The role of solidus velocity in nucleation is explained. The parameters calculated from the model of nucleation are used for analyzing the mechanism of kinetic diffusion-controlled growth of pore, in which the mathematical transformations of variables are introduced. With the transformations, it is argued that the diffusion problem involving the liquid and solid phases during solidification could be treated as a classic problem of precipitation in the single-phase medium treated by Ham or Avrami. The analytical solution for the nucleation of pore is compared with the mechanism of macrosegregation. The predicted volume percent of porosity and radius of pore based on the mechanism of growth of pore is discussed with respect to the thermodynamic solution, the published experimental data, the numerical solutions, and the role of interdendritic fluid flow governed by Darcy's law

  10. Macrosegregation During Re-melting and Holding of Directionally Solidified Al-7 wt.% Si Alloy in Microgravity

    Science.gov (United States)

    Lauer, M.; Ghods, M.; Angart, S. G.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2017-08-01

    As-cast aluminum-7 wt.% ailicon alloy sample rods were re-melted and directionally solidified on Earth which resulted in uniform dendritically aligned arrays. These arrays were then partially back-melted through an imposed, and constant, temperature gradient in the microgravity environment aboard the International Space Station. The mushy zones that developed in the seed crystals were held for different periods prior to initiating directional solidification. Upon return, examination of the initial mushy-zone regions exhibited significant macrosegregation in terms of a solute-depleted zone that increased as a function of the holding time. The silicon (solute) content in these regions was measured on prepared longitudinal sections by electron microprobe analysis as well as by determining the fraction eutectic on several transverse sections. The silicon content was found to increase up the temperature gradient resulting in significant silicon concentration immediately ahead of the mushy-zone tips. The measured macrosegregation agrees well with calculations from a mathematical model developed to simulate the re-melting and holding process. The results, due to processing in a microgravity environment where buoyancy and thermosolutal convection are minimized, serve as benchmark solidification data.

  11. Sensitive determination of cadmium using solidified floating organic drop microextraction-slotted quartz tube-flame atomic absorption spectroscopy.

    Science.gov (United States)

    Akkaya, Erhan; Chormey, Dotse Selali; Bakırdere, Sezgin

    2017-09-20

    In this study, solidified floating organic drop microextraction (SFODME) by 1-undecanol was combined with slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) for the determination of cadmium at trace levels. Formation of a complex with 4,4'-dimethyl-2,2'-bipyridine facilitated the extraction of cadmium from aqueous solutions. Several chemical variables were optimized in order to obtain high extraction outputs. Parameters such as concentration of the ligand, pH, and amount of buffer solution were optimized to enhance the formation of cadmium complex. The SFODME method was assisted by dispersion of extractor solvent into aqueous solutions using 2-propanol. Under the optimum extraction and instrumental conditions, the limit of detection and limit of quantitation values obtained for cadmium using the combined methods (SFODME-SQT-FAAS) were found to be 0.4 and 1.3 μg L -1 , respectively. Matrix effects on the method were also examined for tap water and wastewater, and spiked recovery results were found to be very satisfactory. Graphical Abstract SFODME-SQT-FAAS system for sensitive determination of cadmium.

  12. Preparation, characterization and applications of novel carbon and nitrogen codoped TiO2 nanoparticles from annealing TiN under CO atmosphere

    International Nuclear Information System (INIS)

    Sun, Mingxuan; Song, Peng; Li, Jing; Cui, Xiaoli

    2013-01-01

    CN-TiO 2 photoanodes in comparison with the commercial P25 (1.61%) and N-TiO 2 (2.44%) photoanodes. This work demonstrates that thermal treatment of TiN nanoparticles under CO atmosphere has shown to be a rapid, direct and clean approach to synthesize photocatalysts with enhanced photocatalytic and photovoltaic performance

  13. Microtexture formation of Ni99B1 alloys solidified on an ESL and an EML-a study based on the EBSP technique

    International Nuclear Information System (INIS)

    Li Mingjun; Ishikawa, Takehiko; Nagashio, Kosuke; Kuribayashi, Kazuhiko; Yoda, Shinichi

    2007-01-01

    We employed an electrostatic levitator (ESL) and an electromagnetic levitator (EML) to solidify Ni 99 B 1 (at.%) alloys at various undercoolings. The microstructures and microtextures were revealed by using the electron backscatter diffraction pattern (EBSP) technique in a scanning electron microscope. It is found that that no significant refinement can be identified at the low and medium undercooling regimes for the primary trunk in the sample solidified on the ESL, while the fragmentation of the secondary and even tertiary branches may take place to generate equiaxed grains. Further investigation by the EBSP reveals that neighboring grains have small misorientation angles, which may be ascribed to the absence of mechanical stirring from electromagnetic eddy current. A sharp contrast is that the samples solidified on the EML at low and medium undercoolings have refined equiaxed microstructures. The EBSP mapping reveals that the equiaxed grains yielded on the EML have a random distribution in crystallographic orientations among neighboring grains, indicating that electromagnetic stirring (EMS) induced by the electromagnetic field in the EML plays a vital role in promoting fragmentation and thus generating refined grains and random distribution in orientation. Regarding to the refined microstructure at high undercoolings, no significant difference arises in the samples processed between the EML and ESL

  14. A comparative EBSP study of microstructure and microtexture formation from undercooled Ni99B1 melts solidified on an electrostatic levitator and an electromagnetic levitator

    International Nuclear Information System (INIS)

    Li Mingjun; Ishikawa, Takehiko; Nagashio, Kosuke; Kuribayashi, Kazuhiko; Yoda, Shinichi

    2006-01-01

    Ni 99 B 1 alloys were solidified by containerless processing at various melt undercoolings on an electrostatic levitator (ESL) and an electromagnetic levitator (EML). A scanning electron microscope in combination with an electron backscatter diffraction pattern mapping technique was employed to reveal microstructures and microtextures formed on these two facilities. The microstructure consists of well-developed primary dendrites with coarse secondary arms in the alloys solidified on the ESL at low and medium undercooling levels, whereas equiaxed grains are yielded in alloys solidified on the EML at almost the same undercoolings. Further analysis indicates that the melt flow induced by the electromagnetic field in the EML may play a significant role in promoting fragmentation of primary dendrites in the mushy zone and thus resulting in equiaxed grains. In contrast, the primary dendrites in the alloy processed on the ESL can fully develop in the absence of melt flow. The fluid flow in the sample on the EML can rotate, move, and displace surviving fragments, yielding a random distribution of grain orientation and thus leading to a random microtexture at low and medium undercoolings. At high undercoolings, refined equiaxed grains can be obtained on both the ESL and the EML and the influence of melt flow on refinement seems negligible due to the enhanced driving force in capillarity and solute effects. A great number of coherent annealing twins are formed, making the pole figures more complex and random

  15. Microtexture formation of Ni{sub 99}B{sub 1} alloys solidified on an ESL and an EML-a study based on the EBSP technique

    Energy Technology Data Exchange (ETDEWEB)

    Li Mingjun [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Tsukuba Space Center, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan)], E-Mail: li.mingjun@aist.go.jp; Ishikawa, Takehiko [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Tsukuba Space Center, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Nagashio, Kosuke [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Sagamihara Campus, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Kuribayashi, Kazuhiko [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Sagamihara Campus, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Yoda, Shinichi [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Tsukuba Space Center, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan)

    2007-03-25

    We employed an electrostatic levitator (ESL) and an electromagnetic levitator (EML) to solidify Ni{sub 99}B{sub 1} (at.%) alloys at various undercoolings. The microstructures and microtextures were revealed by using the electron backscatter diffraction pattern (EBSP) technique in a scanning electron microscope. It is found that that no significant refinement can be identified at the low and medium undercooling regimes for the primary trunk in the sample solidified on the ESL, while the fragmentation of the secondary and even tertiary branches may take place to generate equiaxed grains. Further investigation by the EBSP reveals that neighboring grains have small misorientation angles, which may be ascribed to the absence of mechanical stirring from electromagnetic eddy current. A sharp contrast is that the samples solidified on the EML at low and medium undercoolings have refined equiaxed microstructures. The EBSP mapping reveals that the equiaxed grains yielded on the EML have a random distribution in crystallographic orientations among neighboring grains, indicating that electromagnetic stirring (EMS) induced by the electromagnetic field in the EML plays a vital role in promoting fragmentation and thus generating refined grains and random distribution in orientation. Regarding to the refined microstructure at high undercoolings, no significant difference arises in the samples processed between the EML and ESL.

  16. Microstructure formation and in situ phase identification from undercooled Co-61.8 at.% Si melts solidified on an electromagnetic levitator and an electrostatic levitator

    Energy Technology Data Exchange (ETDEWEB)

    Li Mingjun [National Institute of Advanced Industrial Science and Technology (AIST), Materials Research Institute for Sustainable Development, 2266-98 Shimo-Shidami, Moriyama, Nagoya, Aichi 463-8560 (Japan); Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Tsukuba Space Centre, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan)], E-mail: li.mingjun@aist.go.jp; Nagashio, Kosuke [Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Sagamihara Campus, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Ishikawa, Takehiko [Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Tsukuba Space Centre, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Mizuno, Akitoshi; Adachi, Masayoshi; Watanabe, Masahito [Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima, Tokyo 171-8588 (Japan); Yoda, Shinichi [Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Tsukuba Space Centre, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Kuribayashi, Kazuhiko [Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Sagamihara Campus, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Katayama, Yoshinori [Japan Atomic Energy Agency (JAEA), 1-1-1 Kouto, Mikazuki, Sayo, Hyogo 679-5148 (Japan)

    2008-06-15

    Co-61.8 at.% Si (CoSi-CoSi{sub 2}) eutectic alloys were solidified on an electromagnetic levitator (EML) and an electrostatic levitator (ESL) at different undercooling levels. The results indicated that there is only a single recalescence event at low undercooling with the CoSi intermetallic compound as primary phase, which is independent of processing facilities, on either an EML or an ESL. The microstructure, however, is strongly dependent on the processing facility. The interior melt flow behavior in the sphere solidified at the EML differs substantially from that at the ESL, thus yielding different microstructures. On high undercooling, double recalescence takes place regardless of levitation condition. In situ X-ray diffraction of alloys solidified on the EML demonstrates that the CoSi{sub 2} compound becomes the primary phase upon the first recalescence, and the CoSi intermetallic phase crystallizes during the second recalescence. In addition to phase identification, real-time diffraction patterns can also provide additional evidence of the fragmentation of the primary phase and the ripening feature in the subsequent cooling process in the semisolid state. The phase competition between the CoSi and CoSi{sub 2} compounds is discussed when considering the nucleation barrier. The low interfacial energy of the CoSi{sub 2} phase favors a preferential nucleation event over the CoSi phase, which also plays a critical role in non-reciprocity nucleation and thus yields a double recalescence profile at high undercooling.

  17. Examination of solidified and stabilized matrices as a result of solidification and stabilization process of arseniccontaining sludge with portland cement and lime

    Directory of Open Access Journals (Sweden)

    Tanapon Phenrat

    2004-02-01

    Full Text Available By solidification and stabilization (S/S with Portland cement and lime, it is possible to reduce arsenic concentration in leachate of the arsenic-containing sludge from arsenic removal process by coagulation with ferric chloride. From the initial arsenic concentration in leachate of unsolidified /unstabilized sludge which was around 20.75 mg/L, the arsenic concentrations in leachate of solidified/stabilized waste were reduced to 0.3, 0.58, 1.09, and 1.85 mg/L for the waste-to-binder ratios of 0.15, 0.25, 0.5, and 1, respectively, due tothe formation of insoluble calcium-arsenic compounds. To be more cost effective for the future, alternative uses of these S/S products were also assessed by measurement of compressive strength of the mortar specimens. It was found that the compressive strengths of these matrices were from 28 ksc to 461 ksc. In conclusion, considering compressive strength and leachability of the solidified matrices, some of these solidified/ stabilized products have potential to serve as an interlocking concrete paving block.

  18. Combustion synthesis of TiC-based materials: Mechanisms, densification, and properties

    International Nuclear Information System (INIS)

    LaSalvia, J.C.; Meyers, M.A.

    1995-01-01

    The micromechanisms involved in the combustion synthesis of a Ti-C-Ni-Mo mixture resulting in the formation of a TiC-based composite were examined using the combustion wave quenching technique developed by Rogachev et al. At the micron level, the main reaction occurs at the interface between a Ti-Ni-C melt and C particles, resulting in the formation of a solid TiC x layer on the C particles. This layer undergoes a successive process of rapid growth and decomposition into TiC x spherules until all of the C particle is consumed. This mechanism is consistent with the apparent activation energy (E = 100 kJ/mol) for the process obtained from a macrokinetic investigation of the system. The apparent uniformity in size (d = 1 μm) of the TiC x spherules upon formation indicates a critical condition in the stability of the energetics involved in the process. These TiC x spherules undergo growth due to Ostwald ripening and coalescence mechanisms resulting in a final apparent size of 2.5 μm. For the compositions investigated, the addition of Mo did not affect either the micromechanisms or macrokinetics of the combustion synthesis process. Densification of the porous body after the combustion synthesis process can be carried out while it is still in a easily deformable state. The highly porous body is densified by a combination of fracture (communition), plastic deformation, and sintering. The mechanisms are identified for the case of combustion synthesized TiC. Mechanical properties and microstructures of a number of materials (e.g. TiC, TiB 2 , Al 2 O 3 -TiB 2 , TiB 2 -SiC, TiC-Ni-Mo) produced by combustion synthesis combined with a high-velocity forging step are reviewed

  19. Self-Consolidation Mechanism of Nanostructured Ti5Si3 Compact Induced by Electrical Discharge

    Directory of Open Access Journals (Sweden)

    W. H. Lee

    2015-01-01

    Full Text Available Electrical discharge using a capacitance of 450 μF at 7.0 and 8.0 kJ input energies was applied to mechanical alloyed Ti5Si3 powder without applying any external pressure. A solid bulk of nanostructured Ti5Si3 with no compositional deviation was obtained in times as short as 159 μsec by the discharge. During an electrical discharge, the heat generated is the required parameter possibly to melt the Ti5Si3 particles and the pinch force can pressurize the melted powder without allowing the formation of pores. Followed rapid cooling preserved the nanostructure of consolidated Ti5Si3 compact. Three stepped processes during an electrical discharge for the formation of nanostructured Ti5Si3 compact are proposed: (a a physical breakdown of the surface oxide of Ti5Si3 powder particles, (b melting and condensation of Ti5Si3 powder by the heat and pinch pressure, respectively, and (c rapid cooling for the preservation of nanostructure. Complete conversion yielding a single phase Ti5Si3 is primarily dominated by the solid-liquid mechanism.

  20. Characteristics of laser clad α-Ti/TiC+(Ti,W)C1-x/Ti2SC+TiS composite coatings on TA2 titanium alloy

    Science.gov (United States)

    Zhai, Yong-Jie; Liu, Xiu-Bo; Qiao, Shi-Jie; Wang, Ming-Di; Lu, Xiao-Long; Wang, Yong-Guang; Chen, Yao; Ying, Li-Xia

    2017-03-01

    TiC reinforced Ti matrix composite coating with Ti2SC/TiS lubricant phases in-situ synthesized were prepared on TA2 titanium alloy by laser cladding with different powder mixtures: 40%Ti-19.5%TiC-40.5%WS2, 40%Ti-25.2%TiC-34.8%WS2, 40%Ti-29.4%TiC-30.6%WS2 (wt%). The phase compositions, microstructure, microhardness and tribological behaviors and wear mechanisms of coatings were investigated systematically. Results indicate that the main phase compositions of three coatings are all continuous matrix α-Ti, reinforced phases of (Ti,W)C1-x and TiC, lubricant phases of Ti2SC and TiS. The microhardness of the three different coatings are 927.1 HV0.5, 1007.5 HV0.5 and 1052.3 HV0.5, respectively. Compared with the TA2 titanium alloy (approximately 180 HV0.5), the microhardness of coatings have been improved dramatically. The coefficients of friction and the wear rates of those coatings are 0.41 and 30.98×10-5 mm3 N-1 m-1, 0.30 and 18.92×10-5 mm3 N-1 m-1, 0.34 and 15.98×10-5 mm3 N-1 m-1, respectively. Comparatively speaking, the coating fabricated with the powder mixtures of 40%Ti-25.2%TiC-34.8%WS2 presents superior friction reduction and anti-wear properties and the main wear mechanisms of that are slight plastic deformation and adhesive wear.

  1. Phototoxicity of TiO2 Nanoparticles to Two Aquatic Species: Daphnia magna and Zebrafish (Danio rerio) Embryo

    Science.gov (United States)

    Ecotoxicological studies on TiO2 nanoparticles (nano-TiO2) are expanding rapidly due to their widespread use in both industrial and consumer products. However, few studies have focused on their potential phototoxicity related to the photocatalytic property of the material. In thi...

  2. Independent control of metal cluster and ceramic particle characteristics during one-step synthesis of Pt/TiO2

    DEFF Research Database (Denmark)

    Schulz, H.; Madler, L.; Strobel, R.

    2005-01-01

    Rapid quenching during flame spray synthesis of Pt/TiO2 (0-10 Wt% Pt) is demonstrated as a versatile method for independent control of support (TiO2) and noble metal (Pt)cluster characteristics. Titania grain size, morphology, crystal phase structure, and crystal size were analyzed by nitrogen ad...

  3. Tailoring ultrafine grained and dispersion-strengthened Ti 2 AlC/TiAl ...

    Indian Academy of Sciences (India)

    In situ Ti 2 AlC/TiAl composite was fabricated by hot-pressing method via the reaction system of Ti 3 AlC 2 and Ti-Al pre-alloyed powders at low temperature of 1150 ∘ C. The composite mainly consisted of TiAl, Ti 3 Al and Ti 2 AlC phases. Fine Ti 2 AlC particles were homogeneously distributed and dispersed in the matrix.

  4. Elevated temperature characterization of electron beam freeform fabricated Ti-6Al-4V and dispersion strengthened Ti-8Al-1Er

    Energy Technology Data Exchange (ETDEWEB)

    Bush, R.W., E-mail: ralph.bush@usafa.edu [Department of Engineering Mechanics, 2354 Fairchild Dr., U.S. Air Force Academy, USAF Academy, CO 80840 (United States); Brice, C.A. [Lockheed Martin Aeronautics Co., Fort Worth, TX (United States)

    2012-09-30

    Highlights: Black-Right-Pointing-Pointer Electron beam freeform fabrication process. Black-Right-Pointing-Pointer Ti-6Al-4V and rare-earth dispersion Ti alloy. Black-Right-Pointing-Pointer Tensile, creep, and oxidation properties comparable to alloys made with conventional fabrication methods. Black-Right-Pointing-Pointer Fabrication process allows use of rare-earth dispersion Ti alloy. - Abstract: Electron beam freeform fabrication is an additive manufacturing process that can be used to build fully dense, structural metallic parts directly from a three-dimensional computer model. This technique can replace conventional fabrication methods, such as forging or machining from plate, and enable significant cost, time, and tool savings. Additionally, this method enables the fabrication of alloys with novel compositions that are not well suited to production via ingot metallurgy processes. Ti-8Al-1Er is an experimental dispersion strengthened titanium alloy composition that requires rapid cooling to achieve optimal properties and thus is not amenable to ingot metallurgy production methods. Oxide dispersion strengthened alloys, such as Ti-8Al-1Er are known to have excellent thermal stability and improved high temperature properties. In this work, the room temperature tensile, elevated temperature tensile, creep properties and oxidation resistance of electron beam additive manufactured Ti-6Al-4V and Ti-8Al-1Er were measured and compared to those of laser beam additive manufactured Ti-8Al-1Er and wrought Ti-6Al-4V. Elevated temperature tensile properties were measured between 93 Degree-Sign and 538 Degree-Sign C. Creep tests were performed between 425 Degree-Sign and 455 Degree-Sign C at stresses between 345 and 483 MPa. It was found that the elevated temperature properties of the electron beam additive manufactured products are comparable to those of wrought forms. The elevated temperature strengths of Ti-8Al-1Er are comparable to those of Ti-6Al-4V in percentage of room

  5. Synthesis of Nano-Ilmenite (FeTiO3) doped TiO2/Ti Electrode for Photoelectrocatalytic System

    Science.gov (United States)

    Hikmawati; Watoni, A. H.; Wibowo, D.; Maulidiyah; Nurdin, M.

    2017-11-01

    Ilmenite (FeTiO3) doped on Ti and TiO2/Ti electrodes were successfully prepared by using the sol-gel method. The structure, morphology, and optical properties of FeTiO3 are characterized by XRD, UV-Vis DRS, and SEM. The FeTiO3 and TiO2 greatly affect the photoelectrocatalysis performance characterized by Linear Sweep Voltammetry (LSV) and Cyclic Voltammetry (CV). The characterization result shows a band gap of FeTiO3 is 2.94 eV. XRD data showed that FeTiO3 formed at 2θ were 35.1° (110), 49.9° (024), and 61.2° (214). The morphology of FeTiO3/Ti and FeTiO3.TiO2/Ti using SEM shows that the formation of FeTiO3 thin layer signifies the Liquid Phase Deposition method effectively in the coating process. Photoelectrochemical (PEC) test showed that FeTiO3.TiO2/Ti electrode was highly oxidation responsive under visible light compared to the FeTiO3/Ti electrodes i.e. 7.87×10-4 A and 9.87×10-5 A. Degradation test of FeTiO3/Ti and FeTiO3.TiO2/Ti electrodes on titan yellow showed that the percentages of degradation with photoelectrocatalysis at 0.5 mg/L were 41% and 43%, respectively.

  6. Magnetic anisotropy in rapidly quenched amorphous glass-coated nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Óvári, T.-A.; Rotărescu, C.; Atițoaie, A.; Corodeanu, S.; Lupu, N., E-mail: nicole@phys-iasi.ro; Chiriac, H.

    2016-07-15

    Results on the roles played by the magnetoelastic and magnetostatic anisotropy terms in the magnetic behavior of glass-coated magnetostrictive amorphous nanowires prepared by means of rapid solidification are reported. Their contributions have been analyzed both experimentally, through hysteresis loop measurements, and theoretically, using micromagnetic simulations. All the investigated samples exhibit a magnetically bistable behavior, characterized by a single-step magnetization reversal when the applied field reaches a critical threshold value, called switching field. The combined interpretation of the experimental and theoretical data allows one to understand the effect of the magnetoelastic term on the value of the switching field, on one hand, and the effect of the magnetostatic term on the nucleation mechanism on the other, both with an essential impact on the characteristics of the nanowires’ magnetic bistability. The results are crucial for understanding the basic magnetic properties of these novel rapidly solidified ultrathin magnetic wires, as well as for tailoring their properties according to the specific requirements of various sensing applications. - Highlights: • Glass-coated nanowires have been very recently prepared by rapid solidification. • Amorphous wires change their properties as their diameter reaches the nano range. • Here we report on their main anisotropy terms: magnetoelastic and shape. • The results are essential for tailoring their properties for future applications.

  7. Microstructure and tribological properties of TiAg intermetallic compound coating

    International Nuclear Information System (INIS)

    Guo Chun; Chen Jianmin; Zhou Jiansong; Zhao Jierong; Wang Linqian; Yu Youjun; Zhou Huidi

    2011-01-01

    TiAg intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding using Ag powder as the precursor. It has been found that the prepared coating mainly comprised TiAg and Ti phases. The high resolution transmission electron microscopy results further conform the existence of TiAg intermetallic compound in the prepared coating. The magnified high resolution transmission electron microscopy images shown that the laser cladding coating contains TiAg nanocrystalline with the size of about 4 nm. Tribological properties of the prepared TiAg intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiAg intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiAg intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate increased as the normal load increased.

  8. Microstructure and tribological properties of TiAg intermetallic compound coating

    Energy Technology Data Exchange (ETDEWEB)

    Guo Chun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Chen Jianmin, E-mail: chenjm@lzb.ac.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhou Jiansong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao Jierong; Wang Linqian; Yu Youjun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Zhou Huidi [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2011-10-01

    TiAg intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding using Ag powder as the precursor. It has been found that the prepared coating mainly comprised TiAg and Ti phases. The high resolution transmission electron microscopy results further conform the existence of TiAg intermetallic compound in the prepared coating. The magnified high resolution transmission electron microscopy images shown that the laser cladding coating contains TiAg nanocrystalline with the size of about 4 nm. Tribological properties of the prepared TiAg intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiAg intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiAg intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate increased as the normal load increased.

  9. Synthesis of magnetic graphene oxide–TiO2 and their antibacterial properties under solar irradiation

    International Nuclear Information System (INIS)

    Chang, Ying-Na; Ou, Xiao-Ming; Zeng, Guang-Ming; Gong, Ji-Lai; Deng, Can-Hui; Jiang, Yan; Liang, Jie; Yuan, Gang-Qiang; Liu, Hong-Yu; He, Xun

    2015-01-01

    Highlights: • Magnetic graphene oxide–TiO 2 (MGO–TiO 2 ) composites were synthesized. • MGO–TiO 2 had excellent antibacterial activity toward Escherichia coli. • MGO–TiO 2 could effectively and rapidly separate from aqueous solution. • Carbonates and phosphates significantly reduced the bacterial survival rate. - Abstract: Titanium dioxide (TiO 2 ) has been intensively researched and increasingly used as antibacterial agent, but it suffers from separation inconvenience. Its effective removal from water after reaction while maintaining its high antibacterial activity becomes necessary. In this work, it was the first time the magnetic graphene oxide–TiO 2 (MGO–TiO 2 ) composites were prepared through a simple synthesis method. The results indicated that MGO–TiO 2 exhibited a good antibacterial activity against Escherichia coli. MGO–TiO 2 was found to almost completely inactivate the E. coli within 30 min under solar irradiation. The effect of inorganic ions present in E. coli suspension was also evaluated. Compared with other ions, HCO 3 − and HPO 4 2− had a greater influence on the antibacterial property

  10. Microstructure and grain refining performance of melt-spun Al-5Ti-1B master alloy

    International Nuclear Information System (INIS)

    Zhang Zhonghua; Bian Xiufang; Wang Yan; Liu Xiangfa

    2003-01-01

    In the present work, the microstructure and grain refining performance of the melt-spun Al-5Ti-1B (wt%) master alloy have been investigated, using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and grain refining tests. It has been found that the microstructure of the melt-spun Al-5Ti-1B master alloy is mainly composed of two phases: metastable, supersaturated α-Al solid solution and uniformly dispersed TiB 2 particles, quite different from that of the rod-like alloy consisting of three phases: α-Al, blocky TiAl 3 , and clusters of TiB 2 particles. Quenching temperatures and wheel speeds (cooling rates), however, have no obvious effect on the microstructure of the melt-spun Al-5Ti-1B alloy. Grain refining tests show that rapid solidification has a significant effect on the grain refining performance of Al-5Ti-1B alloy and leads to the great increase of nucleation rate of the alloy. Nevertheless, the melt-spun Al-5Ti-1B master alloy prepared at different wheel speeds and quenching temperatures possesses the similar grain refining performance. The reasons for the microstructure formation and the improvement of the grain refining performance of the melt-spun Al-5Ti-1B master alloy have been also discussed

  11. Photoemission study of the development of the Ti/GaAs(110) interface

    International Nuclear Information System (INIS)

    Ruckman, M.W.; del Giudice, M.; Joyce, J.J.; Weaver, J.H.

    1986-01-01

    Photoemission spectra of the Ga and As 3d core levels, the Ti 3p core levels, and the valence bands have been used to study the formation of the Ti/GaAs(110) interface. These results indicate that a multicomponent interfacial zone forms with reaction initiated at ultralow coverage and a rapid shift of E/sub F/ as the Schottky barrier forms (core-level shift 625 meV). After the onset of reaction, the Ga 3d core level shifts continuously to lower binding energy with increasing coverage (total shift of 1.66 eV by roughly-equal60 A Ti deposition). The As core-level profile indicates immediate reaction, the formation of two Ti: As bonding configurations at low coverage, and the appearance of another which persists to very high Ti coverage (> or =160 A) and is characteristic of a Ti-metal-rich environment. Core-level intensity profiles show preferential out-diffusion of As at every stage of interface formation. Core studies of the evolving Ti 3p emission show gradual convergence to bulk Ti as the overlayer becomes increasingly Ti rich. Likewise, valence-band studies reveal predominantly As-derived states below metal d states at E/sub F/. Comparison to previous results for Cr, V, Ce, and Sm overlayers on GaAs shows parallel trends in interface formation with differences related to the metal overlayer

  12. Cooling thermal parameters and microstructure features of directionally solidified ternary Sn–Bi–(Cu,Ag) solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Bismarck L., E-mail: bismarck_luiz@yahoo.com.br [Department of Materials Engineering, Federal University of São Carlos, UFSCar, 13565-905 São Carlos, SP (Brazil); Garcia, Amauri [Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, 13083-860 Campinas, SP (Brazil); Spinelli, José E. [Department of Materials Engineering, Federal University of São Carlos, UFSCar, 13565-905 São Carlos, SP (Brazil)

    2016-04-15

    Low temperature soldering technology encompasses Sn–Bi based alloys as reference materials for joints since such alloys may be molten at temperatures less than 180 °C. Despite the relatively high strength of these alloys, segregation problems and low ductility are recognized as potential disadvantages. Thus, for low-temperature applications, Bi–Sn eutectic or near-eutectic compositions with or without additions of alloying elements are considered interesting possibilities. In this context, additions of third elements such as Cu and Ag may be an alternative in order to reach sounder solder joints. The length scale of the phases and their proportions are known to be the most important factors affecting the final wear, mechanical and corrosions properties of ternary Sn–Bi–(Cu,Ag) alloys. In spite of this promising outlook, studies emphasizing interrelations of microstructure features and solidification thermal parameters regarding these multicomponent alloys are rare in the literature. In the present investigation Sn–Bi–(Cu,Ag) alloys were directionally solidified (DS) under transient heat flow conditions. A complete characterization is performed including experimental cooling thermal parameters, segregation (XRF), optical and scanning electron microscopies, X-ray diffraction (XRD) and length scale of the microstructural phases. Experimental growth laws relating dendritic spacings to solidification thermal parameters have been proposed with emphasis on the effects of Ag and Cu. The theoretical predictions of the Rappaz-Boettinger model are shown to be slightly above the experimental scatter of secondary dendritic arm spacings for both ternary Sn–Bi–Cu and Sn–Bi–Ag alloys examined. - Highlights: • Dendritic growth prevailed for the ternary Sn–Bi–Cu and Sn–Bi–Ag solder alloys. • Bi precipitates within Sn-rich dendrites were shown to be unevenly distributed. • Morphology and preferential region for the Ag{sub 3}Sn growth depend on Ag

  13. Formulation development and in vitro evaluation of solidified self-microemulsion in the form of tablet containing atorvastatin calcium.

    Science.gov (United States)

    Ali, Kazi Asraf; Mukherjee, Biswajit; Bandyopadhyay, Amal Kumar

    2013-11-01

    The objective of our present study was to prepare solid self-microemulsion in the form of tablet of a poorly water soluble drug, Atorvastatin calcium (ATNC) to increase the solubility, dissolution rate, and minimize the hazards experienced from liquid emulsions. Self-microemulsifying ATNC tablet was formulated mainly by using self-emulsifying base, solidifying agent silicon dioxide and sodium starch glycolate as tablet disintegrant. Self-emulsifying base containing Transcutol P, Gelucire 44/14, and Lutrol F68 with their ratios in the formulation, were best selected by solubility study and ternary phase diagram in different vehicles. Particle size of microemulsion from tablet, physical parameters of the tablet and drug content has been checked. In vitro drug release rate has been carried out in phosphate buffer medium (pH 6.8). Physicochemical characterization of the drug in the optimized formulation has been performed to check drug-excipient incompatibility, if any. Average particle diameter of the emulsions formed from the tablet was found to be below 100 nm in case of formulation F4 and F5, which indicated microemulsions has been formed. In vitro drug release from the formulations F3, F4, and F5 was found to be >90%, indicated the enhancement of solubility of ATNC compared to parent drug. Differential thermal analysis (DTA), Powder X-ray Diffraction (X-RD) and Fourier transform infra red (FTIR) study proved the identity of the drug in the optimized formulation. The tablet form of self-microemulsifying (SME) drug delivery is good for solubility enhancement.

  14. Interconnection of thermal parameters, microstructure and mechanical properties in directionally solidified Sn–Sb lead-free solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Marcelino; Costa, Thiago [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil); Rocha, Otávio [Federal Institute of Education, Science and Technology of Pará — IFPA, 66093-020 Belém, PA (Brazil); Spinelli, José E. [Department of Materials Engineering, Federal University of São Carlos — UFSCar, 13565-905 São Carlos, SP (Brazil); Cheung, Noé, E-mail: cheung@fem.unicamp.br [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil); Garcia, Amauri [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil)

    2015-08-15

    Considerable effort is being made to develop lead-free solders for assembling in environmental-conscious electronics, due to the inherent toxicity of Pb. The search for substitute alloys of Pb–Sn solders has increased in order to comply with different soldering purposes. The solder must not only meet the expected levels of electrical performance but may also have appropriate mechanical strength, with the absence of cracks in the solder joints. The Sn–Sb alloy system has a range of compositions that can be potentially included in the class of high temperature solders. This study aims to establish interrelations of solidification thermal parameters, microstructure and mechanical properties of Sn–Sb alloys (2 wt.%Sb and 5.5 wt.%Sb) samples, which were directionally solidified under cooling rates similar to those of reflow procedures in industrial practice. A complete high-cooling rate cellular growth is shown to be associated with the Sn–2.0 wt.%Sb alloy and a reverse dendrite-to-cell transition is observed for the Sn–5.5 wt.%Sb alloy. Strength and ductility of the Sn–2.0 wt.%Sb alloy are shown not to be affected by the cellular spacing. On the other hand, a considerable variation in these properties is associated with the cellular region of the Sn–5.5 wt.%Sb alloy casting. - Graphical abstract: Display Omitted - Highlights: • The microstructure of the Sn–2 wt.%Sb alloy is characterized by high-cooling rates cells. • Reverse dendrite > cell transition occurs for Sn–5.5 wt.%Sb alloy: cells prevail for cooling rates > 1.2 K/s. • Sn–5.5 wt.%Sb alloy: the dendritic region occurs for cooling rates < 0.9 K/s. • Sn–5.5 wt.%Sb alloy: tensile properties are improved with decreasing cellular spacing.

  15. Effect of a high magnetic field on the microstructures in directionally solidified Zn–Cu peritectic alloys

    International Nuclear Information System (INIS)

    Li, Xi; Gagnoud, Annie; Wang, Jiang; Li, Xiaolong; Fautrelle, Yves; Ren, Zhongming; Lu, Xionggang; Reinhart, Guillaume; Nguyen-Thi, Henri

    2014-01-01

    The effect of an axial high magnetic field on the microstructures in directionally solidified Zn–Cu peritectic alloys was investigated. The experimental results indicated that the magnetic field induced the destabilization of the liquid–solid interface and the formation of a band-like structure. The magnetic field also caused the disruption of the columnar η-Zn and ε-Zn 5 Cu dendrites. As the applied magnetic field increased, the columnar-to-equiaxed transition occurred, and the size of the equiaxed grains gradually decreased. The magnetic effects, the magnetic moment and the thermoelectric magnetic effects during the directional solidification of Zn–Cu peritectic alloys under an axial magnetic field were studied. Regular ε-Zn 5 Cu hexagons appeared on the transverse section of the sample fabricated with a high magnetic field (i.e. 16 T). In addition, electron backscatter diffraction analysis revealed that the 〈0 0 0 1〉-crystal direction of the Zn 5 Cu crystal is not only its easy magnetization direction but also its preferred growth direction. The thermoelectric magnetic effects were numerically simulated. The results indicated that a thermoelectric magnetic force acts on the solid near the liquid–solid interface and increases linearly with an increase in the magnetic field. As the effect of the magnetic moment arising from the magnetic crystalline anisotropy is eliminated, the thermoelectric magnetic effect has a substantial effect on the solidification structure. Therefore, the destabilization of the liquid–solid interface and the disruption of the dendrites during directional solidification under the magnetic field are primarily due to the thermoelectric magnetic force acting on the solid

  16. Glass forming in La2O3-TiO2-ZrO2 ternary system by containerless processing

    Science.gov (United States)

    Kaneko, Masashi; Kentei Yu, Yu; Kumar, Vijaya; Masuno, Atsunobu; Inoue, Hiroyuki; Odawara, Osamu; Yoda, Shinichi

    The containerless processing is an appropriate method to create new glasses, because it sup-presses nucleation at the boundary between liquid and crucible during solidification and it enables molten samples to be solidified without crystallization. Recently, we have succeeded in forming BaTi2 O5 glass in the bulk state by using an aerodynamic levitation furnace. BaTi2 O5 glass includes no traditional glass network former and it possesses high electric permittivity [1, 2]. From the point of view of optical application, BaTi2 O5 glass has high refractive indices over 2.1. BaTi2 O5 glass, however, vitrify only in a small sphere, and it crystallize when its diameter exceed 1.5 mm. In order to synthesize new titanate oxide glasses which possess higher refractive indices and larger diameter than BaTi2 O5 , La and Zr can be used as substitutive components. When Ba is replaced with La, refractive indices are expected to increase because of the heavier element. The addition of a third element is thought to be effective for enhance-ment of glass formation ability and Zr can be a candidate because Ti and Zr are homologous. In this research, we have succeeded in forming new bulk glass in La2 O3 -TiO2 -ZrO2 ternary system by means of the aerodynamic levitation furnace. We investigated the glass forming region, thermal properties and optical properties of La2 O3 -TiO2 -ZrO2 glass. Glass transition temperature, crystallization temperature, density, refractive indices and transmittance spectra were varied depending on the chemical composition. Reference [1] J. Yu et al, "Fabrication of BaTi2O5 Glass-Ceramics with Unusual Dielectric Properties during Crystallization", Chem-istry of Materials, 18 (2006) 2169-2173. [2] J. Yu et al., "Comprehensive Structural Study of Glassy and Metastable Crystalline BaTi2O5", Chemistry of Materials, 21 (2009) 259-263.

  17. Effect of Laser Power and Scan Speed on Melt Pool Characteristics of Commercially Pure Titanium (CP-Ti)

    Science.gov (United States)

    Kusuma, Chandrakanth; Ahmed, Sazzad H.; Mian, Ahsan; Srinivasan, Raghavan

    2017-07-01

    Selective laser melting (SLM) is an additive manufacturing technique that creates complex parts by selectively melting metal powder layer-by-layer using a laser. In SLM, the process parameters decide the quality of the fabricated component. In this study, single beads of commercially pure titanium (CP-Ti) were melted on a substrate of the same material using an in-house built SLM machine. Multiple combinations of laser power and scan speed were used for single bead fabrication, while the laser beam diameter and powder layer thickness were kept constant. This experimental study investigated the influence of laser power, scan speed, and laser energy density on the melt pool formation, surface morphology, geometry (width and height), and hardness of solidified beads. In addition, the observed unfavorable effect such as inconsistency in melt pool width formation is discussed. The results show that the quality, geometry, and hardness of solidified melt pool are significantly affected by laser power, scanning speed, and laser energy density.

  18. Microstructure and tribological properties of TiCu2Al intermetallic compound coating

    International Nuclear Information System (INIS)

    Guo Chun; Zhou Jiansong; Zhao Jierong; Wang Linqian; Yu Youjun; Chen Jianmin; Zhou Huidi

    2011-01-01

    TiCu 2 Al ternary intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding. Tribological properties of the prepared TiCu 2 Al intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiCu 2 Al intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiCu 2 Al intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate first increased and then decreased at normal load from 5 to 15 N.

  19. Microstructural Characterization of Melt Extracted High-Nb-Containing TiAl-Based Fiber

    Directory of Open Access Journals (Sweden)

    Shuzhi Zhang

    2017-02-01

    Full Text Available The microstructure of melt extracted Ti-44Al-8Nb-0.2W-0.2B-1.5Si fiber were investigated. When the rotation speed increased from 2000 to 2600 r/min, the appearance of the wire was uniform with no Rayleigh-wave default. The structure was mainly composed of fine α2 (α phase dendritic crystal and a second phase between dendrite arms and grain boundaries. The precipitated second phases were confirmed to be Ti5Si3 from the eutectic reaction L→Ti5Si3 + α and TiB. As the lower content of Si and higher cooling rate, a divorced eutectic microstructure was obtained. Segregation of Ti, Nb, B, Si, and Al occurred during rapid solidification.

  20. Microstructure and tribological properties of TiCu{sub 2}Al intermetallic compound coating

    Energy Technology Data Exchange (ETDEWEB)

    Guo Chun, E-mail: guochun@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Zhou Jiansong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao Jierong; Wang Linqian; Yu Youjun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Chen Jianmin; Zhou Huidi [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2011-04-15

    TiCu{sub 2}Al ternary intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding. Tribological properties of the prepared TiCu{sub 2}Al intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiCu{sub 2}Al intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiCu{sub 2}Al intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate first increased and then decreased at normal load from 5 to 15 N.

  1. Evaluated (n,p) cross sections of 46Ti, 47Ti and 48Ti

    International Nuclear Information System (INIS)

    Philis, C.; Bersillon, O.; Smith, D.; Smith, A.

    1977-01-01

    Microscopic evaluated neutron cross sections for the reactions 46 Ti(n;p) 46 Sc, 47 Ti(n;p) 47 Sc and 48 Ti(n;p) 48 Sc are obtained from threshold (or zero energy) to 20 MeV. The results are presented in graphical and numerical (ENDF format) form. The microscopic evaluated cross sections are compared with measured fission-spectrum-averaged values

  2. Dispersion strengthening of precipitation hardened Al-Cu-Mg alloys prepared by rapid solidification and mechanical alloying

    Science.gov (United States)

    Gilman, P. S.; Sankaran, K. K.

    1988-01-01

    Several Al-4Cu-1Mg-1.5Fe-0.75Ce alloys have been processed from either rapidly solidified or mechanically alloyed powder using various vacuum degassing parameters and consolidation techniques. Strengthening by the fine subgrains, grains, and the dispersoids individually or in combination is more effective when the alloys contain shearable precipitates; consequently, the strength of the alloys is higher in the naturally aged rather than the artificially aged condition. The strengths of the mechanically alloyed variants are greater than those produced from prealloyed powder. Properties and microstructural features of these dispersion strengthened alloys are discussed in regards to their processing histories.

  3. Effect of Rapid Solidification and Addition of Cu3P on the Mechanical Properties of Hypereutectic Al-Si Alloys

    OpenAIRE

    Suárez-Rosales,Miguel Ángel; Pinto-Segura,Raúl; Palacios-Beas,Elia Guadalupe; Hernández-Herrera,Alfredo; Chávez-Alcalá,José Federico

    2016-01-01

    The combined processes; rapid solidification, addition of Cu3P compound and heat treatments to improve the mechanical properties of the hypereutectic Al-13Si, Al-20Si and Al-20Si-1.5Fe-0.7Mn alloys (in wt. %) was studied. Optical microscopy and scanning electron microscopy were used to characterize the microstructures. The mechanical properties were evaluated by tensile tests. It was found that the cooling rate (20-50°C/s) used to solidify the alloys plus the addition of Cu3P compound favored...

  4. Numerical Simulation of Spheroidization Process of TiAl Alloy Powders in Radio Frequency Plasma

    OpenAIRE

    ZHU Langping; LU Xin; LIU Chengcheng; LI Jianchong; NAN Hai

    2017-01-01

    A numerical simulation method was used to study the radio frequency plasma spheroidization process of TiAl alloy powder. The effects of velocity field and temperature field on the motion trajectory and mass change of TiAl alloy powder with different particle size were analyzed.The results show that the temperature of powder particles increases rapidly under high temperature plasma, surface evaporation cause the reduction of particle size, and particles with small size tend to evaporate quickl...

  5. Evolution process of the synthesis of TiC in the Cu-Ti-C system

    International Nuclear Information System (INIS)

    Liang, Y.H.; Wang, H.Y.; Yang, Y.F.; Wang, Y.Y.; Jiang, Q.C.

    2008-01-01

    The evolution process of TiC formation in the 20 wt.% Cu-Ti-C powder mixtures was studied by using differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The Ti x Cu y compounds (Ti 2 Cu, TiCu, Ti 3 Cu 4 and TiCu 4 ) formed initially via solid-state diffusion reactions between Cu and Ti particles; and then Ti 2 Cu and TiCu can form a Cu-Ti eutectic liquids at about 1233 K. The unreacted Ti and C particles dissolved into the Cu-Ti liquids and led to the formation of Cu-Ti-C ternary liquids; subsequently, TiC particulates precipitated out of the saturated liquids. At the same time, also the formation of Ti 2 Cu occurred at the interface between the Cu-Ti liquids and the unreacted Ti particles. As the temperature increased further, the Ti 2 Cu melted and more Cu-Ti liquids formed; and then C particles continuously dissolved into the Cu-Ti-C liquids and TiC particulates gradually precipitated out of the saturated liquids

  6. Microstructure and mechanical properties of sintered Ti Binary alloys for dental applications

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz Atay, H.; Haro Rodriguez, M.; Amigo Mata, A.; Vicente Escuder, V.; Amigo Borras, V.

    2016-07-01

    Biomaterials have shown rapid growth in the field of elderly population demands with the prolongation of human life. One of those biomaterials, titanium, has excellent properties and biocompatibility though it may cause weakening in the structures due to its higher stiffness. In this study, powder metallurgy process was used to produce Ti-Cr, Ti-Mo and Ti-Cu metal alloys to overcome this problem. Metal powders were mixed by mechanical alloying. After pressing and sintering, alloys structures were investigated. Characterizations were carried out by size analyzer, SEM-EDX, optical microscope and three points bending test. (Author)

  7. Tensile properties and microstructure of direct metal laser-sintered TI6AL4V (ELI alloy

    Directory of Open Access Journals (Sweden)

    Moletsane, M. G.

    2016-11-01

    Full Text Available Direct metal laser sintering (DMLS is an additive manufacturing technology used to melt metal powder by high laser power to produce customised parts, light-weight structures, or other complex objects. During DMLS, powder is melted and solidified track-by-track and layer-by-layer; thus, building direction can influence the mechanical properties of DMLS parts. The mechanical properties and microstructure of material produced by DMLS can depend on the powder properties, process parameters, scanning strategy, and building geometry. In this study, the microstructure, tensile properties, and porosity of DMLS Ti6Al4V (ELI horizontal samples were analysed. Defect analysis by CT scans in pre-strained samples was used to detect the crack formation mechanism during tensile testing of as-built and heat-treated samples. The mechanical properties of the samples before and after stress relieving are discussed.

  8. Microstructure of Fe-Cr-C hardfacing alloys with additions of Nb, Ti and, B

    International Nuclear Information System (INIS)

    Berns, H.; Fischer, A.

    1987-01-01

    The abrasive wear of machine parts and tools used in the mining, earth moving, and transporting of mineral materials can be lowered by filler wire welding of hardfacing alloys. In this paper, the microstructures of Fe-Cr-C and Fe-Cr-C-Nb/Ti hardfacing alloys and deposits and those of newly developed Fe-Cr-C-B and Fe-Ti-Cr-C-B ones are described. They show up to 85 vol.% of primarily solidified coarse hard phases; i.e., Carbides of MC-, M/sub 7/C/sub 3/-, M/sub 3/C-type and Borides of MB/sub 2/-, M/sub 3/B/sub 2/-, M/sub 2/B-, M/sub 3/B-, M/sub 23/B/sub 6/-type, which are embedded in a hard eutectic. This itself consists of eutectic hard phases and a martensitic or austenitic metal matrix. The newly developed Fe-Cr-C-B alloys reach hardness values of up to 1200 HV and are harder than all purchased ones. The primary solidification of the MB/sub 2/-type phase of titanium requires such high amounts of titanium and boron that these alloys are not practical for manufacture as commercial filler wires

  9. Directionally Solidified Multifunctional Ceramics

    Science.gov (United States)

    2006-12-01

    Vidrio , Vol. 44 [5] (2005) pp 347 - 352. 9. F. W. Dynys and A. Sayir, "Self Assemble Silicide Architectures by Directional Solidification," Journal...Sociedad Espanola de Ceramica y Vidrio , Vol. 43 [4] (2004) pp 753 - 758. 21. A. Sayir and F. S. Lowery, "Combustion-Resistance of Silicon-Based Ceramics...Espafiola de Cerdmica y Vidrio , Vol. 43 [3], 2004. ISSN-0366-3175-BSCVB9. 14 37. P. Berger, A. Sayir and M. H. Berger, "Nuclear Microprobe using Elastic

  10. Oxidation behavior of TiC, ZrC, and HfC dispersed in oxide matrices

    International Nuclear Information System (INIS)

    Arun, R.; Subramanian, M.; Mehrotra, G.M.

    1990-01-01

    The oxidation behavior of hot pressed TiC-Al 2 O 3 , TiC-ZrO 2 , ZrC-ZrO 2 , and HfC-HfO 2 composites has been investigated at 1273 K. The oxidation of TiC, ZrC, and HfC in hot-pressed composites containing ZrO 2 and HfO 2 has been found to be extremely rapid. The kinetics of oxidation of TiC and a 90 wt% TiC-Al 2 O 3 composite appear to be faster compared to that of pure TiC. X-ray diffraction results for hot-pressed ZrC-HfO 2 and HfC-HfO 2 composites indicate partial stabilization of tetragonal ZrO 2 and HfO 2 phases in these composites

  11. Enhanced electrochromic properties of TiO2 nanoporous film prepared based on an assistance of polyethylene glycol

    Science.gov (United States)

    Xu, Shunjian; Luo, Xiaorui; Xiao, Zonghu; Luo, Yongping; Zhong, Wei; Ou, Hui; Li, Yinshuai

    2017-01-01

    Polyethylene glycol (PEG) was employed as pore-forming agent to prepare TiO2 nanoporous film based on spin-coating a TiO2 nanoparticle mixed paste on fluorine doped tin oxide (FTO) glass. The electrochromic and optical properties of the obtained TiO2 film were investigated by cyclic voltammetry (CV), chronoamperometry (CA) and UV-Vis spectrophotometer. The results show that the PEG in the mixed paste endows the TiO2 film with well-developed porous structure and improves the uniformity of the TiO2 film, which are helpful for the rapid intercalation and extraction of lithium ions within the TiO2 film and the strengthening of the diffuse reflection of visible light in the TiO2 film. As a result, the TiO2 film derived from the mixed paste with PEG displays higher electrochemical activity and more excellent electrochromic performances compared with the TiO2 film derived from the mixed paste without PEG. The switching times of coloration/bleaching are respectively 10.16/5.65 and 12.77/6.13 s for the TiO2 films with PEG and without PEG. The maximum value of the optical contrast of the TiO2 film with PEG is 21.2% while that of the optical contrast of the TiO2 film without PEG is 14.9%. Furthermore, the TiO2 film with PEG has better stability of the colored state than the TiO2 film without PEG.

  12. Effect of Al substitution for Ga on the mechanical properties of directional solidified Fe-Ga alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yangyang; Li, Jiheng; Gao, Xuexu, E-mail: gaox@skl.ustb.edu.cn

    2017-02-01

    Alloys of Fe{sub 82}Ga{sub 18−x}Al{sub x} (x=0, 4.5, 6, 9, 12, 13.5) were prepared by directional solidification technique and exhibited a <001> preferred orientation along the axis of alloy rods. The saturation magnetostriction value of the Fe{sub 82}Ga{sub 13.5}Al{sub 4.5} alloy was 247 ppm under no pre-stress. The tensile properties of alloys of Fe{sub 82}Ga{sub 18−x}Al{sub x} at room temperature were investigated. The results showed that tensile ductility of binary Fe-Ga alloy was significantly improved with Al addition. The fracture elongation of the Fe{sub 82}Ga{sub 18} alloy was only 1.3%, while that of the Fe{sub 82}Ga{sub 9}Al{sub 9} alloy increased up to 16.5%. Addition of Al increased the strength of grain boundary and cleavage, resulting in the enhancement of tensile ductility of the Fe-Ga-Al alloys. Analysis of deformation microstructure showed that a great number of deformation twins formed in the Fe-Ga-Al alloys, which were thought to be the source of serrated yielding in the stress-strain curves. The effect of Al content in the Fe-Ga-Al alloys on tensile ductility was also studied by the analysis of deformation twins. It indicated that the joint effect of slip and twinning was beneficial to obtain the best ductility in the Fe{sub 82}Ga{sub 9}Al{sub 9} alloy. - Highlights: • Tensile ductility of directional solidified Fe-Ga alloys was significantly improved with Al addition. • The fracture elongation of binary Fe{sub 82}Ga{sub 18} alloy was only 1.3% at room temperature. • The fracture elongation of Fe{sub 82}Ga{sub 9}Al{sub 9} alloy was 16.5% at room temperature. • A great number of deformation twins formed in the Fe-Ga-Al alloys during tensile tests at room temperature.

  13. The potential of solidified molasses-based blocks for the correction of multinutritional deficiencies in buffaloes and other ruminants fed low-quality agro-industrial byproducts

    International Nuclear Information System (INIS)

    Leng, R.A.

    1984-01-01

    The main principles for formulating diets for ruminant animals in developing countries are outlined and examples provided of the successful application of these principles for feeding buffaloes and cattle in India, Philippines and Australia. It is concluded that the provision of a continuous supply of urea in the form of solidified feed blocks to increase the intake and digestibility of roughage-based diets is a management tool that could be used by small farmers in developing countries to improve weight gains and milk yields. Since such blocks can be easily supplemented with macro- and micro-elements needed by ruminants, they could also be useful for correcting multi-nutritional deficiencies. (author)

  14. Large magnetoresistance in a directionally solidified Ni44.5Co5.1Mn37.1In13.3 magnetic shape memory alloy

    Science.gov (United States)

    Li, Zongbin; Hu, Wei; Chen, Fenghua; Zhang, Mingang; Li, Zhenzhuang; Yang, Bo; Zhao, Xiang; Zuo, Liang

    2018-04-01

    Polycrystalline Ni44.5Co5.1Mn37.1In13.3 alloy with coarse columnar-shaped grains and 〈0 0 1〉A preferred orientation was prepared by directional solidification. Due to the strong magnetostructural coupling, inverse martensitic transformation can be induced by the magnetic field, resulting in large negative magnetoresistance up to -58% under the field of 3 T. Such significant field controlled functional behaviors should be attributed to the coarse grains and strong preferred orientation in the directionally solidified alloy.

  15. Determination of performance criteria for high-level solidified nuclear waste from the commercial nuclear fuel cycle: a probabilistic safety analysis

    International Nuclear Information System (INIS)

    Heckman, R.A.

    1978-01-01

    To minimize the radiological risk from the operation of a waste management system for the safe disposal of high-level waste, performance characteristics of the solidified waste form must be specified. The minimum waste form characteristics that must be specified are the radionuclide volatilization fraction, airborne particulate dispersion fraction, and the aqueous dissolution characteristics. The results indicate that the pre-emplacement environs are more limiting in establishing the waste form performance criteria than the post-emplacement environs. The actual values of expected risk are sensitive to modeling assumptions and data base uncertainties. The transportation step appears to be the most limiting in determining the required performance characteristics

  16. An Abnormal Increase of Fatigue Life with Dwell Time during Creep-Fatigue Deformation for Directionally Solidified Ni-Based Superalloy DZ445

    Science.gov (United States)

    Ding, Biao; Ren, Weili; Deng, Kang; Li, Haitao; Liang, Yongchun

    2018-03-01

    The paper investigated the creep-fatigue behavior for directionally solidified nickel-based superalloy DZ445 at 900 °C. It is found that the fatigue life shows an abnormal increase when the dwell time exceeds a critical value during creep-fatigue deformation. The area of hysteresis loop and fractograph explain the phenomenon quite well. The shortest life corresponds to the maximal area of hysteresis loop, i. e. the maximum energy to be consumed during the creep-fatigue cycle. The fractographic observation of failed samples further supports the abnormal behavior of fatigue life.

  17. Mechanical behavior and related microstructural aspects of a nano-lamellar TiAl alloy at elevated temperatures

    International Nuclear Information System (INIS)

    Klein, T.; Usategui, L.; Rashkova, B.; Nó, M.L.; San Juan, J.; Clemens, H.; Mayer, S.

    2017-01-01

    Advanced intermetallic γ-TiAl based alloys, which solidify via the disordered β phase, such as the TNM"+ alloy, are considered as most promising candidates for structural applications at high temperatures in aero and automotive industries, where they are applied increasingly. Particularly creep resistant microstructures required for high-temperature application, i.e. fine fully lamellar microstructures, can be attained via two-step heat-treatments. Thereby, an increasing creep resistance is observed with decreasing lamellar interface spacing. Once lamellar structures reach nano-scaled dimensions, deformation mechanisms are altered dramatically. Hence, this study deals with a detailed characterization of the elevated temperature deformation phenomena prevailing in nano-lamellar TiAl alloys by the use of tensile creep experiments and mechanical spectroscopy. Upon creep exposure, microstructural changes occur in the lamellar structure, which are analyzed by the comparative utilization of X-ray diffraction, scanning and transmission electron microscopy as well as atom probe tomography. Creep activation parameters determined by mechanical characterization suggest the dominance of dislocation climb by a jog-pair formation process. The dislocations involved in deformation are, in nano-lamellar TiAl alloys, situated at the lamellar interfaces. During creep exposure the precipitation of β_o phase and ζ-silicide particles is observed emanating from the α_2 phase, which is due to the accumulation of Mo and Si at lamellar interfaces.

  18. Ligandless, ion pair-based and ultrasound assisted emulsification solidified floating organic drop microextraction for simultaneous preconcentration of ultra-trace amounts of gold and thallium and determination by GFAAS.

    Science.gov (United States)

    Fazelirad, Hamid; Taher, Mohammad Ali

    2013-01-15

    In the present work, a new, simple and efficient method for simultaneous preconcentration of ultra-trace amounts of gold and thallium is developed using an ion pair based-ultrasound assisted emulsification-solidified floating organic drop microextraction procedure before graphite furnace atomic absorption spectrometry determination. This methodology was used to preconcentrate the ion pairs formed between AuCl(4)(-) and TlCl(4)(-) and [C(23)H(42)]N(+) in a microliter-range volume of 1-undecanol. Several factors affecting the microextraction efficiency, such as HCl volume, type and volume of extraction solvent, sonication time, sample volume, temperature, ionic strength and [C(23)H(42)]NCl volume were investigated and optimized. Under the optimized conditions, the enrichment factor of 441 and 443 and calibration graphs of 2.2-89 and 22.2-667 ng L(-1) for gold and thallium were obtained, respectively. The intra- and inter-day precision of ± 4.4 and ± 4.9% for Au and ± 4.8 and ± 5.4% for Tl were obtained. The detection limit was 0.66 ng L(-1) for Au and 4.67 ng L(-1) for Tl. The results show that the liquid-liquid pretreatment using ion pair forming, is sensitive, rapid, simple and safe method for the simultaneous preconcentration of gold and thallium. The method was successfully applied for determination of gold and thallium in natural water and hair samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Enhanced photocatalytic degradation of methylene blue on carbon nanotube-TiO{sub 2}-Pd composites

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Hye; Choi, Hyun Chul [Dept. of Chemistry, Chonnam National University, Gwangju (Korea, Republic of)

    2016-11-15

    Semiconductor-based photocatalysis is recognized as a promising technique for addressing energy and environmental issues. Among various semiconductors, the use of titanium dioxide (TiO-2) as a photocatalyst in solar energy conversion and pollutant degradation has been widely investigated because of its high efficiency, photostability, and low toxicity. However, its practical application is restricted by the intrinsic wide band gap of TiO-2 and the rapid recombination of photogenerated electron–hole pairs. Therefore, several remedial methods have been proposed, such as the doping of TiO{sub 2} with metallic or non-metallic elements, increasing its surface area, sensitization with dyes, and the generation of defect structures. We have successfully prepared CNT–TiO{sub 2}–Pd composites with a simple two-step sol–gel method. We characterized the composites with TEM and XRD, and demonstrated that anatase TiO{sub 2} and metallic Pd nanoparticles were deposited onto the surfaces of the CNTs. The average particle size of these nanoparticles was approximately 3.4 nm. The prepared catalyst was found to exhibit a higher activity in MB photodegradation than the reference systems. The synergy of the combination of CNTs and Pd nanoparticles with TiO{sub 2} provides superior MB degradation. More comprehensive studies of the mechanism for this synergy between the metal nanoparticles and TiO{sub 2} that enhances the photocatalytic activity of CNT–TiO{sub 2} are underway in our laboratory.

  20. Highly efficient indoor air purification using adsorption-enhanced-photocatalysis-based microporous TiO2 at short residence time.

    Science.gov (United States)

    Lv, Jinze; Zhu, Lizhong

    2013-01-01

    A short residence time is a key design parameter for the removal of organic pollutants in catalyst-based indoor air purification systems. In this study, we synthesized a series of TiO2 with different micropore volumes and studied their removal efficiency of indoor carbonyl pollutants at a short residence time. Our results indicated that the superior adsorption capability of TiO2 with micropores improved its performance in the photocatalytic degradation of cyclohexanone, while the photocatalytic removal of the pollutant successfully kept porous TiO2 from becoming saturated. When treated with 1 mg m(-3) cyclohexanone at a relatively humidity of 18%, the adsorption amount on microporous TiO2 was 5.4-7.9 times higher than that on P25. Removal efficiency via photocatalysis followed'the same order as the adsorption amount: TiO2-5 > TiO2-20 > TiO2-60 > TiO2-180 > P25. The advantage of microporous TiO2 over P25 became more pronounced when the residence time declined from 0.072 to 0.036 s. Moreover, as the concentration of cyclohexanone deceased from 1000 ppb to 500 ppb, removal efficiency by microporous TiO2 increased more rapidly than P25.

  1. Microstructure of in-situ Synthesized (TiB+TiC)/Ti Composites Prepared by Hot-pressing

    Institute of Scientific and Technical Information of China (English)

    Zhenzhu ZHENG; Lin GENG; Honglin WANG; Weimin ZHOU; Hongyu XU

    2003-01-01

    In-situ 5 vol.pct TiB whiskers and TiC particulates reinforced Ti composites were fabricated by blending Ti powderand B4C particulates followed by reactive hot-pressing. The microstructure of the composites was investigated byusing differential scanning c

  2. Corrosion behaviour of amorphous Ti 48 Cu 52 , Ti 50 Cu 50 and Ti ...

    Indian Academy of Sciences (India)

    ... Ti60Ni40 in 0.5 M HNO3, 0.5 M H2SO4 and 0.5 M NaOH aqueous media at room temperature. ... maximum for Ti48Cu52 alloy in all the three aqueous media as compared to the remaining two alloys. ... Bulletin of Materials Science | News.

  3. Rapid Prototyping Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The ARDEC Rapid Prototyping (RP) Laboratory was established in December 1992 to provide low cost RP capabilities to the ARDEC engineering community. The Stratasys,...

  4. Microstructure, Wear Resistance and Oxidation Behavior of Ni-Ti-Si Coatings Fabricated on Ti6Al4V by Laser Cladding.

    Science.gov (United States)

    Zhuang, Qiaoqiao; Zhang, Peilei; Li, Mingchuan; Yan, Hua; Yu, Zhishui; Lu, Qinghua

    2017-10-30

    The Ni-Ti-Si composite coatings were successfully fabricated on Ti6Al4V by laser cladding. The microstructure were studied by SEM (scanning electron microscopy) and EDS (energy dispersive spectrometer). It has been found that Ti₂Ni and Ti₅Si₃ phases exist in all coatings, and some samples have TiSi₂ phases. Moreover, due to the existence of these phases, coatings presented relatively higher microhardness than that of the substrate (826 HV (Vickers hardness)) and the microhardness value of coating 3 is about twice larger than that of the substrate. During the dry sliding friction and wear test, due to the distribution of the relatively ductile phase of Ti₂Ni and reinforcement phases of Ti₅Si₃ and TiSi₂, the coatings performed good wear resistance. The oxidation process contains two stages: the rapid oxidation and slow oxidation by high temperature oxidation test at 800 °C for 50 h. Meanwhile, the value of the oxidation weight gain of the substrate is approximately three times larger than that of the coating 4. During the oxidation process, the oxidation film formed on the coating is mainly consisted of TiO₂, Al₂O₃ and SiO₂. Phases Ti₂Ni, Ti₅Si₃, TiSi₂ and TiSi were still found and it could be responsible for the improvement in oxidation resistance of the coatings by laser cladding.

  5. Synthesis and microstructure characterization of Ni-Cr-Co-Ti-V-Al high entropy alloy coating on Ti-6Al-4V substrate by laser surface alloying

    International Nuclear Information System (INIS)

    Cai, Zhaobing; Jin, Guo; Cui, Xiufang; Liu, Zhe; Zheng, Wei; Li, Yang; Wang, Liquan

    2016-01-01

    Ni-Cr-Co-Ti-V-Al high-entropy alloy coating on Ti-6Al-4V was synthesized by laser surface alloying. The coating is composed of a B2 matrix and (Co, Ni)Ti 2 compounds with few β-Ti phases. Focused ion beam technique was utilized to prepare TEM sample and TEM observations agree well with XRD and SEM results. The formation of HEA phases is due to high temperature and rapid cooling rate during laser surface alloying. The thermodynamic parameters, ΔH mix , ΔS mix and δ as well as Δχ, should be used to predict the formation of the BCC solid solution, but they are not the strict criteria. Especially when Δχ reaches a high value (≥ 10%), BCC HEA will be partially decomposed, leading to the formation of (Co, Ni)Ti 2 compound phases. - Highlights: •Preparing HEA coating on Ti-6Al-4V by laser surface alloying is successful. •The synthesized HEA coating mainly consists of BCC HEA and (Co, Ni)Ti 2 compounds. •FIB technology was used to prepare the sample for TEM analysis. • ΔH mix , ΔS mix and δ as well as Δχ, should be all used to predict the formation of solid solution.

  6. The effects of boron in TiAl/Ti3Al

    International Nuclear Information System (INIS)

    Feng, C.R.; Michel, D.J.; Crowe, C.R.

    1989-01-01

    The authors discuss the TiAl/Ti 3 Al interfacial misfit dislocations structures investigated by TEM in Ti-45Al alloy and Ti-45Al/TiB 2 composite. For TiAl with c/a = 1.02, only a single set of misfit dislocation arrays are crystallographically possible; these were observed in Ti-45Al alloy. However, the observation of three sets of misfit dislocation arrays in the Ti-45Al/TiB 2 composite suggests that the occupation of octahedral sites in the TiAl structure by excess boron was responsible for a decrease in the c/a ratio leading to an increased fcc character of the TiAl at the TiAl/Ti 3 Al interface

  7. Comparison of mechanical behavior of TiN, TiNC, CrN/TiNC, TiN/TiNC films on 9Cr18 steel by PVD

    Science.gov (United States)

    Feng, Xingguo; Zhang, Yanshuai; Hu, Hanjun; Zheng, Yugang; Zhang, Kaifeng; Zhou, Hui

    2017-11-01

    TiN, TiNC, CrN/TiNC and TiN/TiNC films were deposited on 9Cr18 steel using magnetron sputtering technique. The morphology, composition, chemical state and crystalline structure of the films were observed and analyzed by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Hardness and adhesion force were tested by nanoindentation and scratch tester, respectively. The friction and wear behavior of TiN, TiNC, CrN/TiNC and TiN/TiNC films sliding against GCr15 balls were investigated and compared synthetically using ball-on-disk tribometer. It was found that Tisbnd N, Tisbnd C, Tisbnd Nsbnd C and Csbnd C bonds were formed. The TiN/TiNC film was composed of TiN, TiC and TiNC phases. Hardness and adhesion force results indicated that although the TiN film possessed the highest hardness, its adhesion force was lowest among all the films. Tribological test results showed that the friction coefficient of TiN/TiNC was much lower than that of TiN and the wear rate decreases remarkably from 2.3 × 10-15 m3/Nm to 7.1 × 10-16 m3/Nm, which indicated the TiN/TiNC film has better wear resistance.

  8. NWTS program criteria for mined geologic disposal of nuclear waste: functional requirements and performance criteria for waste packages for solidified high-level waste and spent fuel

    International Nuclear Information System (INIS)

    1982-07-01

    The Department of Energy (DOE) has primary federal responsibility for the development and implementation of safe and environmentally acceptable nuclear waste disposal methods. Currently, the principal emphasis in the program is on emplacement of nuclear wastes in mined geologic repositories well beneath the earth's surface. A brief description of the mined geologic disposal system is provided. The National Waste Terminal Storage (NWTS) program was established under DOE's predecessor, the Energy Research and Development Administration, to provide facilities for the mined geologic disposal of radioactive wastes. The NWTS program includes both the development and the implementation of the technology necessary for designing, constructing, licensing, and operating repositories. The program does not include the management of processing radioactive wastes or of transporting the wastes to repositories. The NWTS-33 series, of which this document is a part, provides guidance for the NWTS program in the development and implementation of licensed mined geologic disposal systems for solidified high-level and transuranic (TRU) wastes. This document presents the functional requirements and performance criteria for waste packages for solidified high-level waste and spent fuel. A separate document to be developed, NWTS-33(4b), will present the requirements and criteria for waste packages for TRU wastes. The hierarchy and application of these requirements and criteria are discussed in Section 2.2

  9. Effect of pH on the release of radionuclides and chelating agents from cement-solidified decontamination ion-exchange resins collected from operating nuclear power stations

    International Nuclear Information System (INIS)

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.

    1991-06-01

    Data are presented on the physical stability and leachability of radionuclides and chelating agents from cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small-scale waste--form specimens collected during solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station were leach-tested and subjected to compressive strength testing in accordance with the Nuclear Regulatory Commission's ''Technical Position on Waste Form'' (Revision 1). Samples of untreated resin waste collected from each solidification vessel before the solidification process were analyzed for concentrations of radionuclides, selected transition metals, and chelating agents to determine the quantities of these chemicals in the waste-form specimens. The chelating agents included oxalic, citric, and picolinic acids. In order to determine the effect of leachant chemical composition and pH on the stability and leachability of the waste forms, waste-form specimens were leached in various leachants. Results of this study indicate that differences in pH do not affect releases from cement-solidified decontamination ion-exchange resin waste forms, but that differences in leachant chemistry and the presence of chelating agents may affect the releases of radionuclides and chelating agents. Also, this study indicates that the cumulative releases of radionuclides and chelating agents are similar for waste- form specimens that decomposed and those that retained their general physical form. 36 refs., 60 figs., 28 tabs

  10. Influence of Thermal Parameters, Microstructure, and Morphology of Si on Machinability of an Al–7.0 wt.% Si Alloy Directionally Solidified

    Directory of Open Access Journals (Sweden)

    Cássio A. P. Silva

    2018-01-01

    Full Text Available This study aims to correlate the influence of thermal and microstructural parameters such as growth rate and cooling rate (VL and TR and secondary dendrite spacing (λ2, respectively, in the machining cutting temperature and tool wear on the necking process of the Al–7 wt.% Si alloy solidified in a horizontal directional device using a high-speed steel with a tungsten tool. The dependence of λ2 on VL and TR and dependence of the maximum cutting temperature and maximum flank wear on λ2 were determined by power experimental laws given by λ2 = constant (VL and TRn and TMAX, VBMAX = constant (λ2n, respectively. The maximum cutting temperature increased with increasing of λ2. The opposite occurred with the maximum flank wear. The role of Si alloying element on the aforementioned results has also been analyzed. A morphological change of Si along the solidified ingot length has been observed, that is, the morphology of Si in the eutectic matrix has indicated a transition from particles to fibers along the casting together with an increase of the particle diameters with the position from the metal/mold interface.

  11. Corrosion-wear of β-Ti alloy TMZF (Ti-12Mo-6Zr-2Fe) in simulated body fluid.

    Science.gov (United States)

    Yang, Xueyuan; Hutchinson, Christopher R

    2016-09-15

    Titanium alloys are popular metallic implant materials for use in total hip replacements. Although, α+β titanium alloys such as Ti-6Al-4V have been the most commonly used alloys, the high Young's modulus (∼110GPa) leads to an undesirable stress shielding effect. An alternative is to use β titanium alloys that exhibit a significantly lower Young's modulus (∼70GPa). Femoral stems made of a β titanium alloy known as TMZF (Ti-12Mo-6Zr-2Fe (wt.%)) have been used as part of modular hip replacements since the early 2000's but these were recalled in 2011 by the US Food & Drug Administration (FDA) due to unacceptable levels of 'wear debris'. The wear was caused by small relative movement of the stem and neck at the junction where they fit together in the modular hip replacement design. In this study, the corrosion and wear properties of the TMZF alloy were investigated in simulated body fluid to identify the reason for the wear debris generation. Ti64 was used as a control for comparison. It is shown that the interaction between the surfaces of Ti64 and TMZF with simulated body fluid is very similar, both from the point of view of the products formed and the kinetics of the reaction. The dry wear behaviour of TMZF is also close to that of Ti64 and consistent with expectations based on Archard's law for abrasive wear. However, wear of Ti64 and TMZF in simulated body fluid show contrasting behaviours. A type of time-dependent wear test is used to examine the synergy between corrosion and wear of TMZF and Ti64. It is shown that the wear of TMZF accelerated rapidly in SBF whereas that of Ti64 is reduced. The critical role of the strain hardening capacity of the two materials and its role in helping the surface resist abrasion by hydroxyapatite particles formed as a result of the reaction with the SBF is discussed and recommendations are made for modifications that could be made to the TMZF alloy to improve the corrosion-wear response. TMZF is a low modulus β-Ti alloy

  12. Isothermal section of the Ti-Si-B system at 1250 ° C in the Ti-TiSi2-TiB2 region

    OpenAIRE

    Ramos, Alfeu Saraiva; Baldan, Renato; Nunes, Carlos Angelo; Coelho, Gilberto Carvalho; Suzuki, Paulo Atsushi; Rodrigues, Geovani

    2013-01-01

    A partial isothermal section (Ti-TiSi2-TiB2 region) of the ternary Ti-Si-B system at 1250 ° C was determined from heat-treated alloys prepared via arc melting. Microstructural characterization has been carried out through scanning electron microscopy (SEM), x-ray diffraction (xRD) and wavelength dispersive spectrometry (WDS). The results have shown the stability of the near stoichiometric Ti6Si2B phase and a negligible solubility of boron in the Ti-silicides as well as of Si in the Ti-borides...

  13. Rapid Tooling via Stereolithography

    OpenAIRE

    Montgomery, Eva

    2006-01-01

    Approximately three years ago, composite stereolithography (SL) resins were introduced to the marketplace, offering performance features beyond what traditional SL resins could offer. In particular, the high heat deflection temperatures and high stiffness of these highly filled resins have opened the door to several new rapid prototyping (RP) applications, including wind tunnel test modelling and, more recently, rapid tooling.

  14. Nanoscale dynamic wetting and spreading of molten Ti alloy on 6H-SiC

    International Nuclear Information System (INIS)

    Tanaka, Shun-Ichiro; Iwamoto, Chihiro

    2008-01-01

    We have investigated nanoscale features at the reactive wetting front of the molten Ag-27.4 wt.% Cu-4.9 wt.% Ti on 6H-SiC using video movies recorded in situ on a high-temperature stage of a high-resolution transmission electron microscope and also proposed a model of a chemical reaction at each tip. One of the features of reactive wetting and spreading at 1073 K in 4 x 10 -5 Pa was the discontinuous motion of the tip, and the halting time depended on the thickness of an amorphous Si-O layer on SiC, which can be explained by the time needed for the decomposition of the layer by Ti atoms to form TiC nanoparticles since Ti atoms in the molten alloy sufficiently rapidly diffuse to the tip on the SiC surface. Molten Ti and TiC nanolayers preceded the Ti 5 Si 3 nanolayer at the tip. The reaction required to form the TiC nanolayer is also the rate-determining step for spreading. The contact angle of the tip increased up to 60-80 deg. when the tip halted, whereas the tip decreased down to 10 deg. on the nonbasal plane and 20 deg. on the basal plane of SiC when it traveled rapidly. The high traveling angle of the molten tip on the basal polar plane of SiC indicates a high interfacial energy between Ti and SiC(0 0 0 1)

  15. Rapid improvement teams.

    Science.gov (United States)

    Alemi, F; Moore, S; Headrick, L; Neuhauser, D; Hekelman, F; Kizys, N

    1998-03-01

    Suggestions, most of which are supported by empirical studies, are provided on how total quality management (TQM) teams can be used to bring about faster organizationwide improvements. Ideas are offered on how to identify the right problem, have rapid meetings, plan rapidly, collect data rapidly, and make rapid whole-system changes. Suggestions for identifying the right problem include (1) postpone benchmarking when problems are obvious, (2) define the problem in terms of customer experience so as not to blame employees nor embed a solution in the problem statement, (3) communicate with the rest of the organization from the start, (4) state the problem from different perspectives, and (5) break large problems into smaller units. Suggestions for having rapid meetings include (1) choose a nonparticipating facilitator to expedite meetings, (2) meet with each team member before the team meeting, (3) postpone evaluation of ideas, and (4) rethink conclusions of a meeting before acting on them. Suggestions for rapid planning include reducing time spent on flowcharting by focusing on the future, not the present. Suggestions for rapid data collection include (1) sample patients for surveys, (2) rely on numerical estimates by process owners, and (3) plan for rapid data collection. Suggestions for rapid organizationwide implementation include (1) change membership on cross-functional teams, (2) get outside perspectives, (3) use unfolding storyboards, and (4) go beyond self-interest to motivate lasting change in the organization. Additional empirical investigations of time saved as a consequence of the strategies provided are needed. If organizations solve their problems rapidly, fewer unresolved problems may remain.

  16. Rapidly quenched amorphous and microcrystalline solders for atomic power industry

    International Nuclear Information System (INIS)

    Kalin, V.A.; Fedotov, V.T.; Sevryukov, O.N.; Grigor'ev, A.E.; Skuratov, L.A.; Sulaberidze, V.Sh.; Yurchenko, A.D.; Sokolov, V.F.; Rodionov, V.A.

    1996-01-01

    The possibility of using strip amorphous brazing alloys STEMET on Ni, Cu, Ti or Al base to braze various materials (stainless steels - zirconium, ceramics - metal, copper alloys, titanium alloys, cermets, molybdenum, beryllium) is under study. Experimental bench is designed and brazing regimes are developed for various dissimilar materials. Mechanical and corrosion tests of brazed joints show that rapidly quenching STEMET type brazing alloys are promising materials for manufacturing components of irradiating devices [ru

  17. Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB_2 powders

    International Nuclear Information System (INIS)

    Diao, Yunhua; Zhang, Kemin

    2015-01-01

    Highlights: • A TiC/TiB_2 composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB_2 powders. • A maximum hardness of 1100 HV was achieved in the laser clad TiC/TiB_2 composite layer. • Corrosion resistance of the TC2 alloy in NaCl (3.5 wt%) aqueous solution can be improved after laser cladding. - Abstract: In the present work, a TiC/TiB_2 composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB_2 powders. The surface microstructure, phase components and compositions were characterized with methods of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometry (XRD), and energy dispersive spectrometry (EDS). The cladding layer is consisted of Ti, TiC and TiB_2. And the surface microhardness was measured. After laser cladding, a maximum hardness of 1100 HV is achieved in the laser cladding surface layer, which is more three times higher than that of the TC2 substrate (∼300 HV). Due to the formation of TiC and TiB_2 intermetallic compounds in the alloyed region and grain refinement, the microhardness of coating is higher than TC2 Ti alloy. In this paper, the corrosion property of matrix material and treated samples were both measured in NaCl (3.5 wt%) aqueous solution. From the result we can see that the laser cladding specimens’ corrosion property is clearly becoming better than that of the substrate.

  18. Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB{sub 2} powders

    Energy Technology Data Exchange (ETDEWEB)

    Diao, Yunhua, E-mail: 990722012@qq.com; Zhang, Kemin, E-mail: zhangkm@sues.edu.cn

    2015-10-15

    Highlights: • A TiC/TiB{sub 2} composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB{sub 2} powders. • A maximum hardness of 1100 HV was achieved in the laser clad TiC/TiB{sub 2} composite layer. • Corrosion resistance of the TC2 alloy in NaCl (3.5 wt%) aqueous solution can be improved after laser cladding. - Abstract: In the present work, a TiC/TiB{sub 2} composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB{sub 2} powders. The surface microstructure, phase components and compositions were characterized with methods of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometry (XRD), and energy dispersive spectrometry (EDS). The cladding layer is consisted of Ti, TiC and TiB{sub 2}. And the surface microhardness was measured. After laser cladding, a maximum hardness of 1100 HV is achieved in the laser cladding surface layer, which is more three times higher than that of the TC2 substrate (∼300 HV). Due to the formation of TiC and TiB{sub 2} intermetallic compounds in the alloyed region and grain refinement, the microhardness of coating is higher than TC2 Ti alloy. In this paper, the corrosion property of matrix material and treated samples were both measured in NaCl (3.5 wt%) aqueous solution. From the result we can see that the laser cladding specimens’ corrosion property is clearly becoming better than that of the substrate.

  19. Microstructure and mechanical properties of Ti/TiN film coated on AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Park, Ji Yoon; Kim, Kwan Hyu; Choe, Han Cheol

    1999-01-01

    The microstructure and mechanical properties of Ti/TiN film coated on AISI 304 stainless steels have been studied. AISI 304 stainless steels containing 0.1∼1.0 wt% Ti were fabricated by using vacuum furnace and followed by solutionization treatment at 1050 .deg. C for 1hr. The specimens were coated by Ti and TiN with 1 μm and 2 μm thickness by electron-beam PVD method. The microstructure and phase analysis were carried out by using XRD, WDS and SEM. Mechanical properties such as hardness (micro-Vickers) and wear resistance were examined. Coated films showed fine columnar structure and some defects. Surface roughness increased in all specimens after TiN coating. XRD patterns showed that the TiN(111) peak was major in TiN single-layer and the other peaks were very weak, but TiN(220) and TiN(200) peaks were developed in Ti/TiN double-layer. The hardness of the coating film was higher in Ti/TiN double-layer than in TiN single-layer and not affected by the Ti content of substrate. Ti/TiN double-layer showed better wear resistance than TiN single-layer. The observed wear traces were sheared type in all coated specimens

  20. Deposition and characterisation of multilayer hard coatings. Ti/TiNδ/TiCxNy/(TiC) a-C:H/(Ti) a-C:H

    International Nuclear Information System (INIS)

    Burinprakhon, T.

    2001-02-01

    Multilayer hard coatings containing Ti, TiNδ, TiC x N y , (TiC m ) a-C:H, (TiC n ) a-C:H, and (Ti) a-C:H were deposited on commercially pure titanium substrates by using an asymmetric bipolar pulsed-dc reactive magnetron sputtering of a titanium target, with Ar, Ar+N 2 , Ar+N 2 +CH 4 , and Ar+CH 4 gas mixtures. The microstructures, elemental compositions and bonding states of the interlayers and the coating surfaces were studied by using cross-sectional transmission electron microscopy (XTEM), electron energy loss spectroscopy (EELS), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The microstructure development of the multilayer coating was strongly influenced by target poisoning. As a result of the complete poisoning of the titanium target during the deposition of TiNδ and TiC x N y interlayers, the a-C:H interlayers containing graded titanium and nitrogen contents were found to develop successively to the TiC x N y interlayer without the formation of near-stoichiometric TiC. The (TiC m ) a-C:H interlayer consisted of nano-particles of distorted fcc crystal structure embedded in the a-C:H matrix. The (TiC n ) a-C:H and (Ti) a-C:H top layers were found to be a-C:H matrix without nano-particles. In the (Ti) a-C:H top layer there was no measurable amount of Ti observed, regardless of the variation of CH 4 concentration between 37.5 and 60 % flow rate in Ar+-CH4 gas mixture. The top layer (Ti) a-C:H was found to contain approximately 10 atomic % nitrogen, due to N 2 contamination during deposition caused by low conductance of N 2 through the nominally closed valve of the mass flow controller. The change of the CH 4 concentration during deposition of the top layer (Ti) a-C:H, however, showed a strong influence on the hydrogen content. The comparison of the fluorescence background of the Raman spectra revealed that hydrogen-less (Ti) a-C:H was deposited at a CH 4 concentration of less than 50 % flow rate in Ar. The hardness

  1. Study of TiC+TiN Multiple Films On Type of 316L Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    XUE Qi; JIN Yong; HU Dong-ping; HUANG Ben-sheng; DENG Bai-quan

    2004-01-01

    In this paper, the synthesis process of TiC+TiN multiple films on super-low-carbon stainless steels is reported.The TiC layer is coated as the first layer in the multiple film, the change of growth rate of the film on the 316L Stainless steel is not same as the one on carbides substrates, while the mole ratio of CH4 to TiCl4 (mCH4/TiCl4) is changed from 1.2to 2.0. The Ti [C, N], as a kind of inter-layer between TiC and TiN layers, is helpful to improve the adhesion between the TiC and TiN layer. The cooling rate greatly influences the quality of the adhesion between the TiC+TiN film and substrates.

  2. Study of TiC+TiN Multiple Films On Type of 316L Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    XUEQi; JINYong; HUDong-ping; HUANGBen-sheng; DENGBai-quan

    2004-01-01

    In this paper, the synthesis process of TiC+TiN multiple films on super-low-carbon stainless steels is reported. The TiC layer is coated as the first layer in the multiple film, the change of growth rate of the film on the 316L Stainlesss teel is not same as the one on carbides substrates, while the mole ratio of CH4 to TiCl4 (mCH4/TiCl4) is changed from 1.2 to 2.0. The Ti [C,N], as a kind of inter-layer between TiC and TiN layers, is helpful to improve the adhesion hetween the TiC and TiN layer. The cooling rate greatly influences the quality of the adhesion between the TiC+TiN film and substrates.

  3. Rapid response systems.

    Science.gov (United States)

    Lyons, Patrick G; Edelson, Dana P; Churpek, Matthew M

    2018-07-01

    Rapid response systems are commonly employed by hospitals to identify and respond to deteriorating patients outside of the intensive care unit. Controversy exists about the benefits of rapid response systems. We aimed to review the current state of the rapid response literature, including evolving aspects of afferent (risk detection) and efferent (intervention) arms, outcome measurement, process improvement, and implementation. Articles written in English and published in PubMed. Rapid response systems are heterogeneous, with important differences among afferent and efferent arms. Clinically meaningful outcomes may include unexpected mortality, in-hospital cardiac arrest, length of stay, cost, and processes of care at end of life. Both positive and negative interventional studies have been published, although the two largest randomized trials involving rapid response systems - the Medical Early Response and Intervention Trial (MERIT) and the Effect of a Pediatric Early Warning System on All-Cause Mortality in Hospitalized Pediatric Patients (EPOCH) trial - did not find a mortality benefit with these systems, albeit with important limitations. Advances in monitoring technologies, risk assessment strategies, and behavioral ergonomics may offer opportunities for improvement. Rapid responses may improve some meaningful outcomes, although these findings remain controversial. These systems may also improve care for patients at the end of life. Rapid response systems are expected to continue evolving with novel developments in monitoring technologies, risk prediction informatics, and work in human factors. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Microstructure and Properties of (TiB2 + NiTi)/Ti Composite Coating Fabricated by Laser Cladding

    Science.gov (United States)

    Lin, Yinghua; Lei, Yongping; Fu, Hanguang; Lin, Jian

    2015-10-01

    Agglomerated TiB2 particle and network-like structure-reinforced titanium matrix composite coatings were prepared by laser cladding of the Ni + TiB2 + Ti preplaced powders on Ti-6Al-4V alloy. The network-like structure mainly consisted of NiTi and Ni3Ti. Through the experiment, it was found that the size of agglomerated particle gradually decreased with the increase of Ti content, but the number of the network-like structure first increased and then disappeared. In-situ reaction competition mechanism and the formation of network-like structure were discussed. The average micro-hardness gradually decreased with the increase of Ti content, but the average fracture toughness gradually increased. Meanwhile, the wear resistance of the coatings is higher than that of the substrate, but the wear loss of the coatings is gradually increased with the increase of Ti content.

  5. Enhancement of photoelectric catalytic activity of TiO2 film via Polyaniline hybridization

    International Nuclear Information System (INIS)

    Wang Yajun; Xu Jing; Zong Weizheng; Zhu Yongfa

    2011-01-01

    A Polyaniline (PANI)/TiO 2 film coated on titanium foil was successfully prepared using the sol-gel method followed by a facile chemisorption. Compared with pristine TiO 2 , the photocatalytic (PC) and photoelectrocatalytic (PEC) degradation rates of 2,4-dichlorophenol (2,4-DCP) with the PANI/TiO 2 film were enhanced by 22.2% and 57.5%, respectively. 2,4-DCP can be mineralized more effectively in the presence of PANI/TiO 2 film. The best PEC degradation efficiency of 2,4-DCP with the PANI/TiO 2 film was acquired at an external potential of 1.5 V with a layer of 1 nm thick PANI. The PANI/TiO 2 film was characterized by Raman spectra, Fourier transform infrared spectra (FT-IR), Auger electron spectroscopy (AES), and electrochemical analysis. These results indicated that there was a chemical interaction on the interface of PANI and TiO 2 . This interaction may be of significance to promote the migration efficiency of carriers and induce a synergetic effect to enhance the PC and PEC activities. - Graphical abstract: The effect of PANI content on 2,4-DCP degradation with initial concentration of 50 mg/L, external potential=1.5 V. Inset: degradation rate constants of various PANI/TiO 2 films. Highlights: → Polyaniline/TiO 2 film was prepared using the sol-gel method followed by chemisorption. → Photoelectrocatalytic degradation rate of 2,4-dichlorophenol was enhanced by 57.5%. → The modification of Polyaniline to TiO 2 film caused a rapid charge separation. → Best degradation efficiency was acquired at 1.5 V with 1 nm thick PANI.

  6. Characterization of laser deposited Ti6Al4V/TiC composite powders on a Ti6Al4V substrate

    CSIR Research Space (South Africa)

    Mahamood, RM

    2014-01-01

    Full Text Available This paper reports the material characterization of Ti6Al4V/TiC composite produced by laser metal deposition. The Ti6Al4V/TiC composites were deposited with a composition ratio of 50 wt.% Ti64l4V and 50 wt.% TiC. The depositions were achieved...

  7. Fabrication and Characterization of New Ti-TiO2-Al and Ti-TiO2--Pt Tunnel Diodes

    Directory of Open Access Journals (Sweden)

    Yaksh Rawal

    2012-01-01

    Full Text Available Remotely empowered wireless sensor networks use different energy resources including photovoltaic solar cells, wireless power transmission, and batteries. As another option the electromagnetic energy available in the ambient can be harvested to power these remote sensors. This is particularly valuable if it is desirable to harvest the ambient energy available in the wide range of electromagnetic spectrum. This has motivated the research for developing energy harvesting devices which can absorb this energy and produce a DC voltage. Rectenna, an antenna coupled with a rectifier, is the main component used for absorbing electromagnetic radiation at GHz and THz frequencies. Rectifying MIM tunnel diodes are able to operate at tens and hundreds of GHz frequency. As the preliminary steps towards development of high-frequency rectifiers, this paper presents fabrication and DC characterization of two new MIM diodes, Ti-TiO2-Al and Ti-TiO2-Pt. G-V analysis of the fabricated diodes verifies tunneling. Brinkman-Dynes-Rowell model is used to extract oxide thickness of which the derived value is around 9 nm. Ti-TiO2-Pt diode exhibits rectification ratio of 15 at 0.495 V, which is more than rectification ratio reported in earlier works.

  8. Study of excited states in 48Ti, 49Ti and 50Ti by means of radiative neutron capture

    International Nuclear Information System (INIS)

    Ruyl, J.F.A.G.

    1983-12-01

    The γ radiation produced by thermal neutron capture in a natural Ti target and in enriched 47 Ti and 49 Ti targets has been investigated. In the analysis 57 excited states of 48 Ti, 28 of 49 Ti and 31 of 50 Ti have been identified. The values for the 48 Ti and 49 Ti neutron binding energy agree with previous data, the value for 50 Ti differs by five standard deviations. The nature of the neutron capture mechanism has been investigated by comparing the present results with those from previous (d,p) work. It appears that in 47 Ti capture proceeds through a doorway state and that the potential capture mechanism is valid for 48 Ti and 49 Ti. The Fermi gas model gives a good representation of the nuclear level density in all three nuclei. From a measurement of the γ-ray circular polarization resulting from the capture of polarized neutrons, combined with previous (d,p) work, the spins of five 49 Ti levels could be determined, and those of 13 other 49 Ti levels could be confirmed. The combination of nuclear orientation measurements and circular polarization measurements had yielded the unambiguous determination of the spins of one 48 Ti state and of five 50 Ti states. Further spin and parity determinations for six 48 Ti and for five 50 Ti states have been obtained from the analysis of the identified branches together with the results of previous experiments. Shell-model calculations, which yielded excitation energies, branching ratios, lifetimes and (d,p) spectroscopic factors, give a good representation of the experimental data for the low-lying states in both even-even nuclei. (Auth.)

  9. Oxidation Kinetics of Cast TiAl3

    Science.gov (United States)

    Smialek, J. L.; Humphrey, D. L.

    1992-01-01

    The isothermal oxidation kinetics of the TiAl3 compound over a wide temperature range is documented, and these rates are related to exclusive alpha-Al2O3 scale growth. The specific weight change vs time curves are shown. Two abnormalities are immediately apparent. One is that a rapid initial uptake of oxygen occurs at times less than 5 h, followed by a lower oxidation rate at longer times, for tests at 900 C and below. The other is that the final weight changes for the 700, 800, and 900 C tests are not in the sequence expected with respect to temperature. Isothermal oxidation of drop cast TiAl above 1000 C was found to exhibit parabolic oxidation controlled by protective alpha-Al2O3 scale formation. TiAl is the only phase in the binary Ti-Al system that forms exclusive scales of alpha-Al2O3 in isothermal oxidation. High anomalous rates at short times and at temperatures below 1000 C resulted from the internal oxidation of a second phase of aluminum.

  10. Formation Mechanism of Spherical TiC in Ni-Ti-C System during Combustion Synthesis.

    Science.gov (United States)

    Zhu, Guoliang; Wang, Wei; Wang, Rui; Zhao, Chuanbao; Pan, Weitao; Huang, Haijun; Du, Dafan; Wang, Donghong; Shu, Da; Dong, Anping; Sun, Baode; Jiang, Sheng; Pu, Yilong

    2017-08-29

    The formation mechanism of TiC particles in a Ni-Ti-C system were revealed by using differential thermal analysis (DTA), XRD, and SEM to identify the reaction products in different temperature ranges. The results indicated that the synthesis mechanism of TiC in Ni-Ti-C system was complex; several reactions were involved in the combustion synthesis of TiC-Ni composite. The Ni-Ti intermediate phases play important roles during the formation of TiC. Moreover, the influence of heating rate on the size range of TiC was also discussed.

  11. Synthesis of magnetic graphene oxide–TiO{sub 2} and their antibacterial properties under solar irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ying-Na [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Ou, Xiao-Ming [China National Engineering Research Center for Agrochemicals, Hunan Research Institute of Chemical Industry, Changsha 410014 (China); Zeng, Guang-Ming [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Gong, Ji-Lai, E-mail: jilaigong@gmail.com [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Deng, Can-Hui; Jiang, Yan; Liang, Jie; Yuan, Gang-Qiang; Liu, Hong-Yu; He, Xun [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China)

    2015-07-15

    Highlights: • Magnetic graphene oxide–TiO{sub 2} (MGO–TiO{sub 2}) composites were synthesized. • MGO–TiO{sub 2} had excellent antibacterial activity toward Escherichia coli. • MGO–TiO{sub 2} could effectively and rapidly separate from aqueous solution. • Carbonates and phosphates significantly reduced the bacterial survival rate. - Abstract: Titanium dioxide (TiO{sub 2}) has been intensively researched and increasingly used as antibacterial agent, but it suffers from separation inconvenience. Its effective removal from water after reaction while maintaining its high antibacterial activity becomes necessary. In this work, it was the first time the magnetic graphene oxide–TiO{sub 2} (MGO–TiO{sub 2}) composites were prepared through a simple synthesis method. The results indicated that MGO–TiO{sub 2} exhibited a good antibacterial activity against Escherichia coli. MGO–TiO{sub 2} was found to almost completely inactivate the E. coli within 30 min under solar irradiation. The effect of inorganic ions present in E. coli suspension was also evaluated. Compared with other ions, HCO{sub 3}{sup −} and HPO{sub 4}{sup 2−} had a greater influence on the antibacterial property.

  12. Investigation of Ti-Fe-Co bulk alloys with high strength and enhanced ductility

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Louzguina-Luzgina, Larissa V.; Kato, Hidemi; Inoue, Akihisa

    2005-01-01

    High-strength Ti-Fe-Co alloys were produced in the shape of arc-melted ingots with the dimensions of about 20-25mm in diameter and 7-10mm in height. The structure of the Ti-Fe-Co alloys (at Fe/Co ratio >1) studied by X-ray diffractometry and scanning electron microscopy consisted of an ordered Pm3-bar m Ti(FeCo) compound and a disordered body-centered cubic Im3-bar m β-Ti solid solution. The optimization of the Ti-Fe-Co alloy composition is performed from the viewpoint of both high strength and ductility. The strongest Ti-Fe-Co alloys have a hypereutectic structure and exhibit a high strength of about 2000MPa and a plastic deformation of 15%. The high strength and ductility values can be achieved without using the injection mould casting or rapid solidification procedure. The deformation behavior and the fractography of Ti-Fe-Co alloys are studied in detail

  13. Density functional theory studies of TiO2 for photocatalysis and Li storage applications

    Science.gov (United States)

    Kim, Yong-Hoon; Lee, Ji Il; Lee, Dong Ki; Lee, Gyu Heon; Kang, Jeung Ku

    We present two theory-experiment collaboration studies of anatase TiO2 for energy applications. First, we discuss a hydrogen-nitrogen co-doped TiO2 (HN-TiO2) as a photocatalyst, and show that the interstitially introduced HN contributes to the increase of solar-to-fuel conversion efficiency. We find that the variation of valence band maximum (VBM) of NH-TiO2 extends the photoactive spectrum to the visible light, and argue that created mid-gap states produce efficient electron and hole conduction channels. Next, we consider experimentally fabricated hierarchical TiO2 nanocrystals integrated with binder-free porous graphene (PG) network foam for a Li storage application. It was found that the TiO2-PG facilitated rapid ionic transfer during the Li-ion insertion/extraction process. We clarify the mechanisms by showing that Li ion migration into the TiO2-PG interface stabilize the binder-free oxide-graphene interface. Atomistic mechanism of Li ion insertion and migration is discussed by comparing cases between an isolated Li ion, when the crowding effect is included, and when the surface Li ions are present. We found that the supply of additional surface Li ions significantly reduce the Li insertion barrier, driving a spontaneous domino-like concerted Li insertion at the oxide surface region.

  14. Electrophoretic deposition of PEEK-TiO 2 composite coatings on stainless steel

    KAUST Repository

    Seuß, Sigrid

    2012-03-01

    Electrophoretic deposition (EPD) has been successfully used to deposit composite coatings composed of polyetheretherketone (PEEK) and titanium dioxide (TiO 2) nanoparticles on 316L stainless steel substrates. The suspensions of TiO2 nanoparticles and PEEK microparticles for EPD were prepared in ethanol. PEEK-TiO 2 composite coatings were optimized using suspensions containing 6wt% PEEK-TiO 2 in ethanol with a 3:1 ratio of PEEK to TiO 2 in weight and by applying a potential difference of 30 V for 1 minute. A heat-treatment process of the optimized PEEK-TiO 2 composite coatings was erformed at 335°C for 30 minutes with a heating rate of 10°Cmin -1 to densify the deposits. The EPD coatings were microstructurally evaluated by scanning electron microscopy (SEM). It was demonstrated that EPD is a convenient and rapid method to fabricate PEEK/TiO 2 coatings on stainless steel which are interesting for biomedical applications. © (2012) Trans Tech Publications, Switzerland.

  15. Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii.

    Science.gov (United States)

    Chen, Lanzhou; Zhou, Lina; Liu, Yongding; Deng, Songqiang; Wu, Hao; Wang, Gaohong

    2012-10-01

    The toxicological effects of nanometer titanium dioxide (nano-TiO2) on a unicellular green alga Chlamydomonas reinhardtii were assessed by investigating the changes of the physiology and cyto-ultrastructure of this species under treatment. We found that nano-TiO2 inhibited photosynt