WorldWideScience

Sample records for rapid prototyping rp

  1. Rapid Prototyping Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The ARDEC Rapid Prototyping (RP) Laboratory was established in December 1992 to provide low cost RP capabilities to the ARDEC engineering community. The Stratasys,...

  2. Axure RP 6 Prototyping Essentials

    CERN Document Server

    Schwartz, Ezra

    2012-01-01

    Axure RP 6 Prototyping Essentials is a detailed, practical primer on the leading rapid prototyping tool. Short on jargon and high on concepts, real-life scenarios and step-by-step guidance through hands-on examples, this book will show you how to integrate Axure into your UX workflow. This book is written for UX practitioners, business analysts, product managers, and anyone else who is involved in UX projects. The book assumes that you have no or very little familiarity with Axure. It will help you if you are evaluating the tool for an upcoming project or are required to quickly get up to spee

  3. Learning Axure RP interactive prototypes

    CERN Document Server

    Krahenbuhl, John Henry

    2015-01-01

    If you are a user experience professional, designer, information architect, or business analyst who wants to gain interactive prototyping skills with Axure, then this book is ideal for you. Some familiarity with Axure is preferred but not essential.

  4. Development and tendency of rapid prototyping technology

    Science.gov (United States)

    Yan, Yongnian; Hong, Guodong

    1998-08-01

    The definition of the rapid prototyping is given in this paper. Various RP processes, which build the prototypes with 2.5 or 3 dimensional layers, are introduced. The relative techniques of RP and the differences between RP technique and CNC manufacturing are analyzed. The paper discusses the RP's applied fields and methods and presents the RP development in the world. According to the idea that requirements determine the developing, the RP's tendency is discussed.

  5. Rapid Prototyping

    Science.gov (United States)

    1999-01-01

    Javelin, a Lone Peak Engineering Inc. Company has introduced the SteamRoller(TM) System as a commercial product. The system was designed by Javelin during a Phase II NASA funded small commercial product. The purpose of the invention was to allow automated-feed of flexible ceramic tapes to the Laminated Object Manufacturing rapid prototyping equipment. The ceramic material that Javelin was working with during the Phase II project is silicon nitride. This engineered ceramic material is of interest for space-based component.

  6. Composites by rapid prototyping technology

    CSIR Research Space (South Africa)

    Kumar, S

    2010-02-01

    Full Text Available powder is a fiber, problems of manufacturing occur. The method has also been used to make Metal Matrix Composite (MMC), e.g Fe and graphite [17], WC-Co [18,19], WC-Co and Cu [20,21], Fe, Ni and TiC [22] etc and Ceramic Matrix Composite (CMC) e.g. Si... of various materials used. Key words: : Rapid Prototyping (RP), Laser, Composites 1 Introduction Rapid Prototyping (RP) initially focussed on polymers. These were later re- placed/supplemented by ceramics, metals and composites. Composites are used in RP...

  7. Feasibility study on production of Metal Matrix Composite (MMC material for Electrical Discharge Machining (EDM tools using Rapid Prototyping (RP technique

    Directory of Open Access Journals (Sweden)

    Shamsudin S.

    2017-01-01

    Full Text Available In common practice, tools for EDM have traditionally been made by machining copper or graphite to the required profile using CNC machines. Increasing the degree of complexity of any tooling design for any operations results in a corresponding increase in time and cost required. With the advent of rapid prototyping techniques, the problem of making tools with complex shapes becomes much simpler and easy. The main aim of this research was to develop new EDM electrode material through a novel approach by rapid prototyping (RP technique. In this study, the potential application of copper (Cu reinforced alumina (Al2O3 fabricated with various compositions as an EDM electrode was investigated. The electrodes were fabricated by Canon PIXMA IP 1800 printer and underwent sintering temperature at 85 % and 95 % melting point of copper. The EDMed workpiece was aluminium and the electrodes surface was analyzed through scanning electron microscope (SEM. Findings showed that the electrode with Cu - 0 vol. %Al2O3 composite and sintered at temperature 977 °C resulted in highest metal removal rate (MRR and lowest electrode wear rate (EWR while Cu – 10 vol. %Al2O3 composite and sintered at temperature 977 °C revealed a better surface finish than other electrodes. An increase in Al2O3 content in general will increase the hardness of tool, as a trade-off, the conductivity was reduced.

  8. Resource Prospector (RP) - Early Prototyping and Development

    Science.gov (United States)

    Andrews, D.; Colaprete, A.; Quinn, J.; Bluethmann, B.; Trimble, J.

    2015-01-01

    exploration of near-Earth asteroids (NEAs) and Mars. In order to reduce risk and explore system designs, the RP project is attempting two-fold approaches to development as it looks towards flight. We continue to explore flight planning, requirements, and interfaces definition by using Engineering Test Units (ETUs), looking towards lunar deployment, while also using fiscal year 2015 to develop, build and test an earth-terrestrial prototype rover and payload system. This terrestrial prototype, called "RP15", is built to both inform the system design, and to be a partnership advocacy tool for this unique mission. RP15 must be affordable within the resource and time constraints of fiscal year 2015, while working to the following Needs, Goals, and Objectives provided by HEOMD/AES: 1. Demonstrate rover mobility in a 1g environment 2. The Surface Segment (prototype rover + payload system) shall represent the flight system concept with as much fidelity as affordable (limited by cost and schedule) - Surface Segment shall be the approximate size/dimension/footprint -Surface Segment shall package all the expected devices (instruments, systems, etc.), even if some facets are mocked-up due to time/cost constraints -Overall Surface Segment fidelity negotiable to make achievable 3. Priority should be given to illustrating mission functionality over support functionality, which exists solely to support mission functionality This paper will provide an overview of RP project developments, including the design and build, capturing the development and initial integrated testing of RP15 in relevant environments.

  9. Rapid prototype and test

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, D.L.; Hansche, B.D.

    1996-06-01

    In order to support advanced manufacturing, Sandia has acquired the capability to produce plastic prototypes using stereolithography. Currently, these prototypes are used mainly to verify part geometry and ``fit and form`` checks. This project investigates methods for rapidly testing these plastic prototypes, and inferring from prototype test data actual metal part performance and behavior. Performances examined include static load/stress response, and structural dynamic (modal) and vibration behavior. The integration of advanced non-contacting measurement techniques including scanning laser velocimetry, laser holography, and thermoelasticity into testing of these prototypes is described. Photoelastic properties of the epoxy prototypes to reveal full field stress/strain fields are also explored.

  10. Removable partial dentures: use of rapid prototyping.

    Science.gov (United States)

    Lima, Julia Magalhaes Costa; Anami, Lilian Costa; Araujo, Rodrigo Maximo; Pavanelli, Carlos A

    2014-10-01

    The CAD/CAM technology associated with rapid prototyping (RP) is already widely used in the fabrication of all-ceramic fixed prostheses and in the biomedical area; however, the use of this technology for the manufacture of metal frames for removable dentures is new. This work reports the results of a literature review conducted on the use of CAD/CAM and RP in the manufacture of removable partial dentures. © 2014 by the American College of Prosthodontists.

  11. Rapid prototyping-assisted maxillofacial reconstruction.

    Science.gov (United States)

    Peng, Qian; Tang, Zhangui; Liu, Ousheng; Peng, Zhiwei

    2015-05-01

    Rapid prototyping (RP) technologies have found many uses in dentistry, and especially oral and maxillofacial surgery, due to its ability to promote product development while at the same time reducing cost and depositing a part of any degree of complexity theoretically. This paper provides an overview of RP technologies for maxillofacial reconstruction covering both fundamentals and applications of the technologies. Key fundamentals of RP technologies involving the history, characteristics, and principles are reviewed. A number of RP applications to the main fields of oral and maxillofacial surgery, including restoration of maxillofacial deformities and defects, reduction of functional bone tissues, correction of dento-maxillofacial deformities, and fabrication of maxillofacial prostheses, are discussed. The most remarkable challenges for development of RP-assisted maxillofacial surgery and promising solutions are also elaborated.

  12. Rapid Prototyping: Technologies, Materials and Advances

    Directory of Open Access Journals (Sweden)

    Dudek P.

    2016-06-01

    Full Text Available In the context of product development, the term rapid prototyping (RP is widely used to describe technologies which create physical prototypes directly from digital data. Recently, this technology has become one of the fastest-growing methods of manufacturing parts. The paper provides brief notes on the creation of composites using RP methods, such as stereolithography, selective laser sintering or melting, laminated object modelling, fused deposition modelling or three-dimensional printing. The emphasis of this work is on the methodology of composite fabrication and the variety of materials used in these technologies.

  13. Ceramic microfabrication by rapid prototyping process chains

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    fast and inexpensive supply for polymer master models and a ceramic shaping method that enables the replication of the RP model into multiple ceramic materials within a short time. (Knitter et al 1999). 2. Rapid prototyping process chains. The manufacturing of ceramic microparts presented here set out with the 3D-CAD ...

  14. Integrating Rapid Prototyping into Graphic Communications

    Science.gov (United States)

    Xu, Renmei; Flowers, Jim

    2015-01-01

    Integrating different science, technology, engineering, and mathematics (STEM) areas can help students learn and leverage both the equipment and expertise at a single school. In comparing graphic communications classes with classes that involve rapid prototyping (RP) technologies like 3D printing, there are sufficient similarities between goals,…

  15. Rapid prototyping: An innovative technique in dentistry

    Directory of Open Access Journals (Sweden)

    Shakeba Quadri

    2017-01-01

    Full Text Available Emergence of advanced digital technology has opened up new perspectives for design and production in the field of dentistry. Rapid prototyping (RP is a technique to quickly and automatically construct a three-dimensional (3D model of a part or product using 3D printers or stereolithography machines. RP has various dental applications, such as fabrication of implant surgical guides, zirconia prosthesis and molds for metal castings, maxillofacial prosthesis and frameworks for fixed and removable partial dentures, wax patterns for the dental prosthesis and complete denture. Rapid prototyping presents fascinating opportunities, but the process is difficult as it demands a high level of artistic skill, which means that the dental technicians should be able to work with the models obtained after impression to form a mirror image and achieve good esthetics. This review aims to focus on various RP methods and its application in dentistry.

  16. Rapid Prototyping in PVS

    Science.gov (United States)

    Munoz, Cesar A.; Butler, Ricky (Technical Monitor)

    2003-01-01

    PVSio is a conservative extension to the PVS prelude library that provides basic input/output capabilities to the PVS ground evaluator. It supports rapid prototyping in PVS by enhancing the specification language with built-in constructs for string manipulation, floating point arithmetic, and input/output operations.

  17. Rapid Prototyping Reconsidered

    Science.gov (United States)

    Desrosier, James

    2011-01-01

    Continuing educators need additional strategies for developing new programming that can both reduce the time to market and lower the cost of development. Rapid prototyping, a time-compression technique adapted from the high technology industry, represents one such strategy that merits renewed evaluation. Although in higher education rapid…

  18. A review of rapid prototyping techniques for tissue engineering purposes

    NARCIS (Netherlands)

    Peltola, Sanna M.; Melchels, Ferry P. W.; Grijpma, Dirk W.; Kellomaki, Minna

    2008-01-01

    Rapid prototyping (RP) is a common name for several techniques, which read in data from computer-aided design (CAD) drawings and manufacture automatically three-dimensional objects layer-by-layer according to the virtual design. The utilization of RP in tissue engineering enables the production of

  19. Rapid Prototyping and its Application in Dentistry

    Directory of Open Access Journals (Sweden)

    V. N. V. Madhav

    2013-01-01

    Full Text Available Medical implants and biological models have three main characteristics: low volume, complex shape, and can be customized. These characteristics suit very well with Rapid Prototyping (RP and Rapid Manufacturing (RM processes. RP/RM processes are fabricated part layer- by-layer until complete shape finished from 3D model. Biocompatible materials, such as Titanium and Titanium alloy, Zirconium, Cobalt Chromium, PEEK, etc, are used for fabrication process. Reverse Engineering (RE technology greatly affects RP/RM processes. RE is used to capture or scan image of the limb, cranium, tooth, and other biological objects. Three common methods to get the image are 3D laser scanning, Computer Tomography (CT, and Magnetic Resonance Imaging (MRI. Main RP/RM techniques used in Dentistry are Stereotype Lithography Apparatus (SLA, Fused Deposition Modeling (FDM, Selective Laser Sintering (SLS, and ink jet printing. This article reviews the changing scenario of technology in dentistry with special emphasis on Rapid Prototyping and its various applications in Dentistry.

  20. Rapid prototyping and stereolithography in dentistry.

    Science.gov (United States)

    Nayar, Sanjna; Bhuminathan, S; Bhat, Wasim Manzoor

    2015-04-01

    The word rapid prototyping (RP) was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD). To materialize virtual objects using CAD, a computer aided manufacture (CAM) process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena.

  1. Rapid prototyping and stereolithography in dentistry

    Directory of Open Access Journals (Sweden)

    Sanjna Nayar

    2015-01-01

    Full Text Available The word rapid prototyping (RP was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD. To materialize virtual objects using CAD, a computer aided manufacture (CAM process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena.

  2. Rapid prototyping--when virtual meets reality.

    Science.gov (United States)

    Beguma, Zubeda; Chhedat, Pratik

    2014-01-01

    Rapid prototyping (RP) describes the customized production of solid models using 3D computer data. Over the past decade, advances in RP have continued to evolve, resulting in the development of new techniques that have been applied to the fabrication of various prostheses. RP fabrication technologies include stereolithography (SLA), fused deposition modeling (FDM), computer numerical controlled (CNC) milling, and, more recently, selective laser sintering (SLS). The applications of RP techniques for dentistry include wax pattern fabrication for dental prostheses, dental (facial) prostheses mold (shell) fabrication, and removable dental prostheses framework fabrication. In the past, a physical plastic shape of the removable partial denture (RPD) framework was produced using an RP machine, and then used as a sacrificial pattern. Yet with the advent of the selective laser melting (SLM) technique, RPD metal frameworks can be directly fabricated, thereby omitting the casting stage. This new approach can also generate the wax pattern for facial prostheses directly, thereby reducing labor-intensive laboratory procedures. Many people stand to benefit from these new RP techniques for producing various forms of dental prostheses, which in the near future could transform traditional prosthodontic practices.

  3. Rapid prototyping in medical sciences

    Directory of Open Access Journals (Sweden)

    Ákos Márk Horváth

    2015-09-01

    Full Text Available Even if it sound a bit incredible rapid prototyping (RPT as production method has been used for decades in other professions. Nevertheless medical science just started discover the possibilities of this technology and use the offered benefits of 3D printing. In this paper authors have investigated the pharmaceutical usage of rapid prototyping.

  4. Friction Induced Wear of Rapid Prototyping Generated Materials: A Review

    Directory of Open Access Journals (Sweden)

    A. Tsouknidas

    2011-01-01

    Full Text Available Additive manufacturing has been introduced in the early 80s and has gained importance as a manufacturing process ever since. Even though the inception of the implicated processes predominantly focused on prototyping purposes, during the last years rapid prototyping (RP has emerged as a key enabling technology for the fabrication of highly customized, functionally gradient materials. This paper reviews friction-related wear phenomena and the corresponding deterioration mechanisms of RP-generated components as well as the potential of improving the implicated materials' wear resistance without significantly altering the process itself. The paper briefly introduces the concept of RP technologies and the implicated materials, as a premises to the process-dependent wear progression of the generated components for various degeneration scenarios (dry sliding, fretting, etc..

  5. Solid modeling and applications rapid prototyping, CAD and CAE theory

    CERN Document Server

    Um, Dugan

    2016-01-01

    The lessons in this fundamental text equip students with the theory of Computer Assisted Design (CAD), Computer Assisted Engineering (CAE), the essentials of Rapid Prototyping, as well as practical skills needed to apply this understanding in real world design and manufacturing settings. The book includes three main areas: CAD, CAE, and Rapid Prototyping, each enriched with numerous examples and exercises. In the CAD section, Professor Um outlines the basic concept of geometric modeling, Hermite and Bezier Spline curves theory, and 3-dimensional surface theories as well as rendering theory. The CAE section explores mesh generation theory, matrix notion for FEM, the stiffness method, and truss Equations. And in Rapid Prototyping, the author illustrates stereo lithographic theory and introduces popular modern RP technologies. Solid Modeling and Applications: Rapid Prototyping, CAD and CAE Theory is ideal for university students in various engineering disciplines as well as design engineers involved in product...

  6. Rapid Prototyping of wax foundry models in an incremental process

    Directory of Open Access Journals (Sweden)

    B. Kozik

    2011-04-01

    Full Text Available The paper presents an analysis incremental methods of creating wax founding models. There are two methods of Rapid Prototypingof wax models in an incremental process which are more and more often used in industrial practice and in scientific research.Applying Rapid Prototyping methods in the process of making casts allows for acceleration of work on preparing prototypes. It isespecially important in case of element having complicated shapes. The time of making a wax model depending on the size and the appliedRP method may vary from several to a few dozen hours.

  7. Review, Selection and Installation of a Rapid Prototype Machine

    Science.gov (United States)

    McEndree, Caryl

    2008-01-01

    The objective of this paper is to impress upon the reader the benefits and advantages of investing in rapid prototyping (additive manufacturing) technology thru the procurement of one or two new rapid prototyping machines and the creation of a new Prototype and Model Lab at the Kennedy Space Center (KSC). This new resource will be available to all of United Space Alliance, LLC (USA), enabling engineers from around the company to pursue a more effective means of communication and design with our co-workers, and our customer, the National Aeronautics and Space Administration (NASA). The Rapid Protoyping/3D printing industry mirrors the transition the CAD industry made several years ago, when companies were trying to justify the expenditure of converting to a 3D based system from a 2D based system. The advantages of using a 3D system seemed to be outweighed by the cost it would take to convert not only legacy 2D drawings into 3D models but the training of personnel to use the 3D CAD software. But the reality was that when a 3D CAD system is employed, it gives engineers a much greater ability to conceive new designs and the ability to engineer new tools and products much more effectively. Rapid Prototyping (RP) is the name given to a host of related technologies that are used to fabricate physical objects directly from Computer Aided Design (CAD) data sources. These methods are generally similar to each other in that they add and bond materials in a layer wise-fashion to form objects, instead of machining away material. The machines used in Rapid Prototyping are also sometimes referred to as Rapid Manufacturing machines due to the fact that some of the parts fabricated in a RP machine can be used as the finished product. The name "Rapid Prototyping" is really a misnomer. It is much more than prototypes and it is not always rapid.

  8. Methods and systems for rapid prototyping of high density circuits

    Science.gov (United States)

    Palmer, Jeremy A [Albuquerque, NM; Davis, Donald W [Albuquerque, NM; Chavez, Bart D [Albuquerque, NM; Gallegos, Phillip L [Albuquerque, NM; Wicker, Ryan B [El Paso, TX; Medina, Francisco R [El Paso, TX

    2008-09-02

    A preferred embodiment provides, for example, a system and method of integrating fluid media dispensing technology such as direct-write (DW) technologies with rapid prototyping (RP) technologies such as stereolithography (SL) to provide increased micro-fabrication and micro-stereolithography. A preferred embodiment of the present invention also provides, for example, a system and method for Rapid Prototyping High Density Circuit (RPHDC) manufacturing of solderless connectors and pilot devices with terminal geometries that are compatible with DW mechanisms and reduce contact resistance where the electrical system is encapsulated within structural members and manual electrical connections are eliminated in favor of automated DW traces. A preferred embodiment further provides, for example, a method of rapid prototyping comprising: fabricating a part layer using stereolithography and depositing thermally curable media onto the part layer using a fluid dispensing apparatus.

  9. Rapid Prototyping in Instructional Design: Creating Competencies

    Science.gov (United States)

    Fulton, Carolyn D.

    2010-01-01

    Instructional designers working in rapid prototyping environments currently do not have a list of competencies that help to identify the knowledge, skills, and attitudes (KSAs) required in these workplaces. This qualitative case study used multiple cases in an attempt to identify rapid prototyping competencies required in a rapid prototyping…

  10. The Application Trends of Rapid Prototyping Manufacturing

    Directory of Open Access Journals (Sweden)

    Qiu Xiao Lin

    2016-01-01

    characteristics of laser stero lithography (LSL selective laser sintering (SLS, three-dimensional printing (DP, fused deposition modeling (FDM, computer numerical control (CNC and other rapid prototyping technologies. After discussed these five rapid prototyping technology materials, we presented the hotspot and direction of rapid prototyping technology and look forward to the development of its technique, the expansion of its field and the progress of its academic ideology.

  11. Rapid Prototyping of Mobile Learning Games

    Science.gov (United States)

    Federley, Maija; Sorsa, Timo; Paavilainen, Janne; Boissonnier, Kimo; Seisto, Anu

    2014-01-01

    This position paper presents the first results of an on-going project, in which we explore rapid prototyping method to efficiently produce digital learning solutions that are commercially viable. In this first phase, rapid game prototyping and an iterative approach was tested as a quick and efficient way to create learning games and to evaluate…

  12. Development of a definition for Rapid Progression (RP) of renal function in HIV-positive persons

    DEFF Research Database (Denmark)

    Kamara, David A; Nielsen, Lene Ryom; Ross, Michael

    2014-01-01

    No consensus exists on how to define abnormally rapid deterioration in renal function (Rapid Progression, RP). We developed an operational definition of RP in HIV-positive persons with baseline estimated glomerular filtration rate (eGFR) >90ml/min/1.73m2 (using Cockcroft Gault) in the Data Collec...

  13. Ceramic microfabrication by rapid prototyping process chains

    Indian Academy of Sciences (India)

    To avoid high tooling costs in product development, a rapid prototyping process chain has been established that enables rapid manufacturing of ceramic microcomponents from functional models to small lot series within a short time. This process chain combines the fast and inexpensive supply of master models by rapid ...

  14. Rapid prototyping of robotic platforms

    CSIR Research Space (South Africa)

    De Ronde, Willis

    2016-11-01

    Full Text Available of thickness up to 200mm can be cut to create prototype chassis/ bodies or even the final product. One of the few limitations is the cutting of certain laminated materials, as this tends to produce delaminated cutting edges or even fractures in the case... mine inspection robot (Shongololo). Shongololo’s frame is made from engineering plastics while the chassis of Dassie was made from aluminium and cut using abrasive waterjet machining. The advantage of using abrasive waterjet machining is the speed...

  15. Rapid Prototyping Integrated With Nondestructive Evaluation and Finite Element Analysis

    Science.gov (United States)

    Abdul-Aziz, Ali; Baaklini, George Y.

    2001-01-01

    Most reverse engineering approaches involve imaging or digitizing an object then creating a computerized reconstruction that can be integrated, in three dimensions, into a particular design environment. Rapid prototyping (RP) refers to the practical ability to build high-quality physical prototypes directly from computer aided design (CAD) files. Using rapid prototyping, full-scale models or patterns can be built using a variety of materials in a fraction of the time required by more traditional prototyping techniques (refs. 1 and 2). Many software packages have been developed and are being designed to tackle the reverse engineering and rapid prototyping issues just mentioned. For example, image processing and three-dimensional reconstruction visualization software such as Velocity2 (ref. 3) are being used to carry out the construction process of three-dimensional volume models and the subsequent generation of a stereolithography file that is suitable for CAD applications. Producing three-dimensional models of objects from computed tomography (CT) scans is becoming a valuable nondestructive evaluation methodology (ref. 4). Real components can be rendered and subjected to temperature and stress tests using structural engineering software codes. For this to be achieved, accurate high-resolution images have to be obtained via CT scans and then processed, converted into a traditional file format, and translated into finite element models. Prototyping a three-dimensional volume of a composite structure by reading in a series of two-dimensional images generated via CT and by using and integrating commercial software (e.g. Velocity2, MSC/PATRAN (ref. 5), and Hypermesh (ref. 6)) is being applied successfully at the NASA Glenn Research Center. The building process from structural modeling to the analysis level is outlined in reference 7. Subsequently, a stress analysis of a composite cooling panel under combined thermomechanical loading conditions was performed to validate

  16. Effects of Hydrocarbon-Based Grease on Rapid Prototype Material Used for Grease Retention Shrouds

    Science.gov (United States)

    Zakrajsek, Andrew J.; Valco, Daniel J.; Street, Kenneth W., Jr.

    2010-01-01

    Effects of hydrocarbon-based greases on specific rapid prototype (RP) materials used to fabricate grease retention shrouds (GRS) were explored in this study. Grease retention shrouds are being considered as a way to maintain adequate grease lubrication at the gear mesh in a prototype research transmission system. Due to their design and manufacturing flexibility, rapid prototype materials were chosen for the grease retention shrouds. In order to gain a better understanding of the short and long term effects grease pose on RP materials, research was conducted on the interaction of hydrocarbon-based grease with RP materials. The materials used in this study were durable polyamide (nylon), acrylonitrile butadiene styrene (ABS), and WaterClear 10120. Testing was conducted using Mobilgrease 28 and Syn-Tech 3913G grease (gear coupling grease). These greases were selected due to their regular use with mechanical components. To investigate the effect that grease has on RP materials, the following methods were used to obtain qualitative and quantitative data: Fourier transform infrared spectroscopy (FT-IR), interference profilometer measurements, digital camera imaging, physical shape measurement, and visual observations. To record the changes in the RP materials due to contact with the grease, data was taken before and after the grease application. Results showed that the WaterClear 10120 RP material provided the best resistance to grease penetration as compared to nylon and ABS RP materials. The manufacturing process, and thus resulting surface conditions of the RP material, played a key role in the grease penetration properties and resilience of these materials.

  17. Rapid prototyping as a Tool for Designing and Manufacturing of Customised Anatomical Implants

    OpenAIRE

    RM Sherekar; AN Pawar; SV Bhalerao

    2014-01-01

    Rapid prototyping (RP) technologies are mostly related with applications in the product development and the design process as well as with small batch manufacturing. Due to their comparatively high rapidity and flexibility, however, they have also been engaged in various non-manufacturing applications. A field that attracts increasingly more attention by the scientific community is related to the application of technologies in medicine and health care. The associated research is focused both ...

  18. How Rapid is Rapid Prototyping? Analysis of ESPADON Programme Results

    Directory of Open Access Journals (Sweden)

    Ian D. Alston

    2003-05-01

    Full Text Available New methodologies, engineering processes, and support environments are beginning to emerge for embedded signal processing systems. The main objectives are to enable defence industry to field state-of-the-art products in less time and with lower costs, including retrofits and upgrades, based predominately on commercial off the shelf (COTS components and the model-year concept. One of the cornerstones of the new methodologies is the concept of rapid prototyping. This is the ability to rapidly and seamlessly move from functional design to the architectural design to the implementation, through automatic code generation tools, onto real-time COTS test beds. In this paper, we try to quantify the term “rapid” and provide results, the metrics, from two independent benchmarks, a radar and sonar beamforming application subset. The metrics show that the rapid prototyping process may be sixteen times faster than a conventional process.

  19. Web tools for rapid experimental visualization prototyping

    Science.gov (United States)

    Decker, Jonathan W.; Livingstion, Mark A.

    2013-01-01

    Quite often a researcher finds themselves looking at spreadsheets of high-dimensional data generated by experimental models and user studies. We can use analysis to challenge or confirm hypothesis, but unexpected results can easily be lost in the shuffle. For this reason, it would be useful to visualize the results so we can explore our data and make new discoveries. Web browsers have become increasingly capable for creating complex, multi-view applications. Javascript is quickly becoming a de facto standard for scripting, online and offline. This work demonstrates the use of web technologies as a powerful tool for rapid visualization prototyping. We have developed two prototypes: One for high-dimensional results of the abELICIT - multi-agent version of the ELICIT platform tasked with collaborating to identify the parameters of a pending attack. Another prototype displays responses to a user study on the effectiveness of multi-layer visualization techniques. We created coordinated multiple views prototypes in the Google Chrome web browser written in Javascript, CSS and HTML. We will discuss the benefits and shortcomings of this approach.

  20. Rapid prototyping with high power fiber lasers

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, R.M. [Faculty of Sciences and Technology, New University Lisbon (Portugal); IDMEC, Instituto Superior Tecnico, TULISBON, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Lopes, G. [Welding Engineering Research Centre, Building 46, Cranfield University, Bedfordshire, MK43 0AL (United Kingdom); Quintino, L. [IDMEC, Instituto Superior Tecnico, TULISBON, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)], E-mail: lquintino@ist.utl.pt; Rodrigues, J.P. [IDMEC, Instituto Superior Tecnico, TULISBON, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Williams, S. [Welding Engineering Research Centre, Building 46, Cranfield University, Bedfordshire, MK43 0AL (United Kingdom)

    2008-12-15

    Laser rapid prototyping technologies comprise a set of technologies used in a wide range of materials to produce prototypes or small batches of complex shaped components. This paper presents a research work on rapid prototyping technology with laser additive manufacture of wire based alloy Ti-6Al-4V with an 8 kW fiber laser for the production of components with cylindrical geometry. For this, an engineering system was developed, a demonstration part produced and the deposition process was characterized. Two processing parameters were investigated: and these were the relative position between the wire feeding system and the substrate and the laser beam to wire width ratio. The former affects the molten metal transfer mode and the pressure exerted by the wire tip on the molten pool, while the laser beam to wire width ratio affects the process efficiency, since this is a compromise of process stability and process speed. Both parameters control surface finishing and the smoothness of the part. The melting efficiency of the process is low when compared to alternative processes involving powder pre deposition, but the density of the part is improved with homogeneous structural characteristics.

  1. Rapid Prototyping Technologies and their Applications in Prosthodontics, a Review of Literature

    Science.gov (United States)

    Torabi, Kianoosh; Farjood, Ehsan; Hamedani, Shahram

    2015-01-01

    The early computer-aided design/computer-aided manufacturing (CAD/CAM) systems were relied exclusively on subtractive methods. In recent years, additive methods by employing rapid prototyping (RP) have progressed rapidly in various fields of dentistry as they have the potential to overcome known drawbacks of subtractive techniques such as fit problems. RP techniques have been exploited to build complex 3D models in medicine since the 1990s. RP has recently proposed successful applications in various dental fields, such as fabrication of implant surgical guides, frameworks for fixed and removable partial dentures, wax patterns for the dental prosthesis, zirconia prosthesis and molds for metal castings, and maxillofacial prosthesis and finally, complete dentures. This paper aimed to offer a comprehensive literature review of various RP methods, particularly in dentistry, that are expected to bring many improvements to the field. A search was made through MEDLINE database and Google scholar search engine. The keywords; ‘rapid prototyping’ and ‘dentistry’ were searched in title/abstract of publications; limited to 2003 to 2013, concerning past decade. The inclusion criterion was the technical researches that predominately included laboratory procedures. The exclusion criterion was meticulous clinical and excessive technical procedures. A total of 106 articles were retrieved, recited by authors and only 50 met the specified inclusion criteria for this review. Selected articles had used rapid prototyping techniques in various fields in dentistry through different techniques. This review depicted the different laboratory procedures employed in this method and confirmed that RP technique have been substantially feasible in dentistry. With advancement in various RP systems, it is possible to benefit from this technique in different dental practices, particularly in implementing dental prostheses for different applications. PMID:25759851

  2. Rapid prototyping of composite aircraft structures

    Science.gov (United States)

    Bennett, George; Rais-Rohani, Masoud; Hall, Kenneth; Holifield, Walt; Sullivan, Rani; Brown, Scott

    The faculty, staff and students of the Raspet Flight Research Laboratory (RFRL) have developed a rapid prototyping capability in a series of research aircraft and unmanned aircraft development projects. There has been a steady change in the technologies used to accomplish these tasks at the RFRL. The most recent development has been the utilization of computer graphics and a 5-axis gantry robot router to accelerate the design, moldmaking and parts trimming tasks. The composite structure fabrication processes at the RFRL have evolved from wet-lay-up to autoclave curve. Currently, the feasibility of the stitched composite material preform and resin transfer molding process is being explored.

  3. Operative simulation of anterior clinoidectomy using a rapid prototyping model molded by a three-dimensional printer.

    Science.gov (United States)

    Okonogi, Shinichi; Kondo, Kosuke; Harada, Naoyuki; Masuda, Hiroyuki; Nemoto, Masaaki; Sugo, Nobuo

    2017-05-15

    As the anatomical three-dimensional (3D) positional relationship around the anterior clinoid process (ACP) is complex, experience of many surgeries is necessary to understand anterior clinoidectomy (AC). We prepared a 3D synthetic image from computed tomographic angiography (CTA) and magnetic resonance imaging (MRI) data and a rapid prototyping (RP) model from the imaging data using a 3D printer. The objective of this study was to evaluate anatomical reproduction of the 3D synthetic image and intraosseous region after AC in the RP model. In addition, the usefulness of the RP model for operative simulation was investigated. The subjects were 51 patients who were examined by CTA and MRI before surgery. The size of the ACP, thickness and length of the optic nerve and artery, and intraosseous length after AC were measured in the 3D synthetic image and RP model, and reproducibility in the RP model was evaluated. In addition, 10 neurosurgeons performed AC in the completed RP models to investigate their usefulness for operative simulation. The RP model reproduced the region in the vicinity of the ACP in the 3D synthetic image, including the intraosseous region, at a high accuracy. In addition, drilling of the RP model was a useful operative simulation method of AC. The RP model of the vicinity of ACP, prepared using a 3D printer, showed favorable anatomical reproducibility, including reproduction of the intraosseous region. In addition, it was concluded that this RP model is useful as a surgical education tool for drilling.

  4. Comparison of five-axis milling and rapid prototyping for implant surgical templates.

    Science.gov (United States)

    Park, Ji-Man; Yi, Tae-Kyoung; Koak, Jai-Young; Kim, Seong-Kyoon; Park, Eun-Jin; Heo, Seong-Joo

    2014-01-01

    This study aims to compare and evaluate the accuracy of surgical templates fabricated using coordinate synchronization processing with five-axis milling and design-related processing with rapid prototyping (RP). Master phantoms with 10 embedded gutta-percha cylinders hidden under artificial gingiva were fabricated and imaged using cone beam computed tomography. Vectors of the hidden cylinders were extracted and transferred to those of the planned implants through reverse engineering using virtual planning software. An RP-produced template was fabricated by stereolithography in photopolymer at the RP center according to planned data. Metal sleeves were bonded after holes were bored (group RP). For the milled template, milling coordinates were synchronized using the conversion process for the coordinate synchronization platform located on the model's bottom. Metal bushings were set on holes milled on the five-axis milling machine, on which the model was fixed through the coordinate synchronization plate, and the framework was constructed on the model using orthodontic resin (group CS). A computed tomography image was taken with templates firmly fixed on models using anchor pins (RP) or anchor screws (CS). The accuracy was analyzed via reverse engineering. Differences between the two groups were compared by repeated measures two-factor analysis. From the reverse-engineered image of the template on the experimental model, RP-produced templates showed significantly larger deviations than did milled surgical guides. Maximum deviations of the group RP were 1.58 mm (horizontal), 1.68 mm (vertical), and 8.51 degrees (angular); those of the group CS were 0.68 mm (horizontal), 0.41 mm (vertical), and 3.23 degrees (angular). A comparison of milling and RP template production methods showed that a vector-milled surgical guide had significantly smaller deviations than did an RP-produced template. The accuracy of computer-guided milled surgical templates was within the safety

  5. Rapid Prototyping and the Human Factors Engineering Process

    Science.gov (United States)

    2016-08-29

    Rapid prototyping and the human factors • • engineering process David Beevis* and Gaetan St Denist *Senior Human Factors Engineer, Defence and...qr-..2. 9 Rapid prototyping or ’virtual prototyping ’ of human-machine interfaces offers the possibility of putting the human operator ’in the loop...8217 without the effort and cost associated with conventional man-in-the-loop simulation. Advocates suggest that rapid prototyping is compatible with

  6. Sheet metal forming using rapid prototyped tooling

    Science.gov (United States)

    Park, Young-Bin

    The demand for rapid, low-cost die fabrication and modification technology is greater than ever in sheet metal forming industry. One category of rapid tooling technology involves the application of advanced polymers and composites to fabricate metal forming dies. Despite their advantages in lead time and cost reductions, polymer dies for sheet metal forming applications have several drawbacks. Due to their lack of strength as compared to conventional die materials, the use of polymer dies is often limited to prototype or short-run production. In addition, because the mechanisms by which they fail are not fully understood, the dies are designed on the basis of experience and intuition. The research (1) characterized the mechanical behavior of an advanced polymer composite tooling material, (2) developed a method to predict the failure mode and the life of a polymer die, and (3) established optimal die design guidelines. The focus was on rapid prototyped, aluminum trihydrate(ATH)-filled, polyurethane-based dies in sheet metal forming. The study involved the determination of dominant process parameters based on the finite element analyses of 90° V-die bending and cylindrical cup drawing processes. The effects of process parameters on stress distribution in the die provided guidelines to the modification of die design for achieving the desired die life. The presented parametric study lays the groundwork for providing reliable tool failure prediction and design optimization guidelines for advanced polymer tooling materials in metal forming. In addition, the failure mechanisms were investigated to predict the failure mode and the fatigue life of the die. To establish a fundamental understanding of the fatigue behavior of the polyurethane-based die material, extensive material tests were performed, the microstructure was studied, and the fatigue properties were identified experimentally. The test data were incorporated into the local stress-based fatigue analysis to

  7. Application of laser measuring, numerical simulation and rapid prototyping to titanium dental castings.

    Science.gov (United States)

    Wu, M; Tinschert, J; Augthun, M; Wagner, I; Schädlich-Stubenrauch, J; Sahm, P R; Spiekermann, H

    2001-03-01

    This paper describes a method of making titanium dental crowns by means of integrating laser measuring, numerical simulation and rapid prototype (RP) manufacture of wax patterns for the investment casting process. Four real tooth crowns (FDI No. 24, 25, 26, 27) were measured by means of 3D laser scanning. The laser digitized geometry of the crowns was processed and converted into standard CAD models in STL format, which is used by RP systems and numerical simulation software. Commercial software (MAGMASOFT) was used to simulate the casting process and optimize the runner and gating system (sprue) design. RP crowns were 'printed' directly on a ModelMaker II 3D Plotting System. A silicone negative mold (soft tool) was made from the RP crowns, then more than hundreds wax crowns were duplicated. The duplicated crowns were joined to the optimized runner and gating system. By using the investment casting process 20-25 replicas of each crown were made on a centrifugal casting machine. All castings were examined for porosity by X-ray radiographs. By using the integrated scanning, simulation, RP pattern and casting procedure, cast crowns, free of porosity, with excellent functional contour and a smooth surface finish, were obtained from the first casting trial. The coupling of laser digitizing and RP indicates a potential to replace the traditional 'impression taking and waxing' procedure in dental laboratory, with the quality of the cast titanium prostheses also being improved by using the numerically optimized runner and gating system design.

  8. Fabrication of a Cranial Prosthesis Combined with an Ocular Prosthesis Using Rapid Prototyping: A Case Report

    Directory of Open Access Journals (Sweden)

    Gayatri Shankaran

    2016-08-01

    Full Text Available Rapid prototyping (RP is a technique of manufacturing parts by the additive layer manufacturing technology; where, a three-dimensional (3D model created in a computer aided design (CAD system is sectioned into 2D profiles, which are further constructed by RP layer by layer. Its use is not limited to industrial or engineering fields and has extended to the medical field for the manufacturing of custom implants and prostheses, the study of anatomy and surgical planning. Nowadays, dentists are more frequently encountered with the individuals affected with craniofacial defects due to trauma. In such cases, the cranio-maxillofacial rehabilitation is a real challenge to bring the patients back to society and promote their well-being. The conventional impression technique for facial prosthesis fabrication has the disadvantage of deforming the soft tissue and causing discomfort for the patient. Herein, we describe the fabrication of a cranial prosthesis combined with an ocular prosthesis with RP and stereolithography.

  9. The scope of application of incremental rapid prototyping methods in foundry engineering

    Directory of Open Access Journals (Sweden)

    M. Stankiewicz

    2010-01-01

    Full Text Available The article presents the scope of application of selected incremental Rapid Prototyping methods in the process of manufacturing casting models, casting moulds and casts. The Rapid Prototyping methods (SL, SLA, FDM, 3DP, JS are predominantly used for the production of models and model sets for casting moulds. The Rapid Tooling methods, such as: ZCast-3DP, ProMetalRCT and VoxelJet, enable the fabrication of casting moulds in the incremental process. The application of the RP methods in cast production makes it possible to speed up the prototype preparation process. This is particularly vital to elements of complex shapes. The time required for the manufacture of the model, the mould and the cast proper may vary from a few to several dozen hours.

  10. The application of rapid prototyping to improve bone reconstruction in immediate dentoalveolar restoration: a case report.

    Science.gov (United States)

    Martins da Rosa, José Carlos; Fadanelli, Marcos Alexandre; Zimmerman, Diego; de Oliveira Rosa, Ariádene Cristina Pértile

    This article describes the use of rapid prototyping (RP) for diagnosis, planning, and execution of the reconstruction of hard and soft tissue in socket defects using immediate dentoalveolar restoration (IDR). In cases of tissue loss in anterior dental areas, esthetic rehabilitation poses a major challenge with respect to treatment planning with the goal of long-term tissue maintenance. The IDR technique consists of immediate reconstruction in a single procedure of bone and soft tissue around implants placed immediately after extraction, and prosthetic rehabilitation. As this procedure is immediate and flapless, the correct diagnosis of tissue loss and correct graft adaptation are mandatory. RP can increase the precision of the procedure, as demonstrated using a clinical case characterized by total loss of the buccal bone wall and gingival recession. The results were evaluated by clinical assessment, photography, radiography, cone beam computed tomography (CBCT), and prototyping. The application of RP facilitated the execution of IDR as it enabled more accurate diagnosis of the socket defect and more precise adaptation of the tissue graft. A clinical study should be conducted to evaluate the effects of RP on the clinical results of the IDR technique.

  11. 3D Printing for the Rapid Prototyping of Structural Electronics

    National Research Council Canada - National Science Library

    Macdonald, Eric; Salas, Rudy; Espalin, David; Perez, Mireya; Aguilera, Efrain; Muse, Dan; Wicker, Ryan B

    2014-01-01

    .... The use of advanced 3D printing technology enhanced with component placement and electrical interconnect deposition can provide electronic prototypes that now can be rapidly fabricated in comparable...

  12. Rapid prototype modeling in a multimodality world

    Science.gov (United States)

    Bidaut, Luc; Madewell, John; Yasko, Alan

    2006-03-01

    Introduction: Rapid prototype modeling (RPM) has been used in medicine principally for bones - that are easily extracted from CT data sets - for planning orthopaedic, plastic or maxillo-facial interventions, and/or for designing custom prostheses and implants. Based on newly available technology, highly valuable multimodality approaches can now be applied to RPM, particularly for complex musculo-skeletal (MSK) tumors where multimodality often transcends CT alone. Methods: CT data sets are acquired for primary evaluation of MSK tumors in parallel with other modalities (e.g., MR, PET, SPECT). In our approach, CT is first segmented to provide bony anatomy for RPM and all other data sets are then registered to the CT reference. Parametric information relevant to the tumor's characterization is then extracted from the multimodality space and merged with the CT anatomy to produce a hybrid RPM-ready model. This model - that also accommodates digital multimodality visualization - is then produced on the latest generation of 3D printers, which permits both shapes and colors. Results: Multimodality models of complex MSK tumors have been physically produced on modern RPM equipment. This new approach has been found to be a clear improvement over the previously disconnected physical RPM and digital multimodality visualization. Conclusions: New technical developments keep opening doors to sophisticated medical applications that can directly impact the quality of patient care. Although this early work still deals with bones as base models for RPM, its use to encompass soft tissues is already envisioned for future approaches.

  13. Implementation of Additive Rapid Prototyping on Retrofit CNC Mill

    Science.gov (United States)

    Freeform fabrication techniques are gaining popularity as a means of making parts. Layered additive methods are associated with rapid prototyping. Many rapid prototyping methods are commercially proprietary and may cost thousands of dollars. Using a retrofit CNC mill for layered fabrication and C...

  14. Studies on the Process Parameters of Rapid Prototyping Technique (Stereolithography for the Betterment of Part Quality

    Directory of Open Access Journals (Sweden)

    Raju Bangalore Singe Gowda

    2014-01-01

    Full Text Available Rapid prototyping (RP has evolved as frontier technology in the recent times, which allows direct transformation of CAD files into functional prototypes where it tremendously reduces the lead time to produce physical prototypes necessary for design verification, fit, and functional analysis by generating the prototypes directly from the CAD data. Part quality in the rapid prototyping process is a function of build parameters such as hatch cure depth, layer thickness, orientation, and hatch spacing. Thus an attempt was made to identify, study, and optimize the process parameters governing the system which are related to part characteristics using Taguchi experimental design techniques quality. The part characteristics can be divided into physical part and mechanical part characteristics. The physical characteristics are surface finish, dimensional accuracy, distortion, layer thickness, hatch cure, and hatch file, whereas mechanical characteristics are flexural strength, ultimate tensile strength, and impact strength. Thus, this paper proposes to characterize the influence of the physical build parameters over the part quality. An L9 orthogonal array was designed with the minimum number of experimental runs with desired parameter settings and also by analysis tools such as ANOVA (analysis of variance. Establishment of experimentally verified correlations between the physical part characteristics and mechanical part characteristics to obtain an optimal process parameter level for betterment of part quality is obtained. The process model obtained by the empirical relation can be used to determine the strength of the prototype for the given set of parameters that shows the dependency of strength, which are essential for designers and RP machine users.

  15. Rapid Tooling via Investment Casting and Rapid Prototype Patterns

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, Michael D.

    1999-06-01

    The objective of this work to develop the materials processing and design technologies required to reduce the die development time for metal mold processes from 12 months to 3 months, using die casting of Al and Mg as the example process. Sandia demonstrated that investment casting, using rapid prototype patterns produced from Stereo lithography or Selective laser Sintering, was a viable alternative/supplement to the current technology of machining form wrought stock. A demonstration die insert (ejector halt) was investment cast and subsequently tested in the die casting environment. The stationary half of the die insert was machined from wrought material to benchmark the cast half. The two inserts were run in a die casting machine for 3,100 shots of aluminum and at the end of the run no visible difference could be detected between the cast and machined inserts. Inspection concluded that the cast insert performed identically to the machined insert. Both inserts had no indications of heat checking or degradation.

  16. Production of new 3D scaffolds for bone tissue regeneration by rapid prototyping.

    Science.gov (United States)

    Fradique, R; Correia, T R; Miguel, S P; de Sá, K D; Figueira, D R; Mendonça, A G; Correia, I J

    2016-04-01

    The incidence of bone disorders, whether due to trauma or pathology, has been trending upward with the aging of the worldwide population. The currently available treatments for bone injuries are rather limited, involving mainly bone grafts and implants. A particularly promising approach for bone regeneration uses rapid prototyping (RP) technologies to produce 3D scaffolds with highly controlled structure and orientation, based on computer-aided design models or medical data. Herein, tricalcium phosphate (TCP)/alginate scaffolds were produced using RP and subsequently their physicochemical, mechanical and biological properties were characterized. The results showed that 60/40 of TCP and alginate formulation was able to match the compression and present a similar Young modulus to that of trabecular bone while presenting an adequate biocompatibility. Moreover, the biomineralization ability, roughness and macro and microporosity of scaffolds allowed cell anchoring and proliferation at their surface, as well as cell migration to its interior, processes that are fundamental for osteointegration and bone regeneration.

  17. A Rapid Prototyping Environment for Wireless Communication Embedded Systems

    Directory of Open Access Journals (Sweden)

    Bryan A. Jones

    2003-05-01

    Full Text Available This paper introduces a rapid prototyping methodology which overcomes important barriers in the design and implementation of digital signal processing (DSP algorithms and systems on embedded hardware platforms, such as cellular phones. This paper describes rapid prototyping in terms of a simulation/prototype bridge and in terms of appropriate language design. The simulation/prototype bridge combines the strengths of simulation and of prototyping, allowing the designer to develop and evaluate next-generation communications systems, partly in simulation on a host computer and partly as a prototype on embedded hardware. Appropriate language design allows designers to express a communications system as a block diagram, in which each block represents an algorithm specified by a set of equations. Software tools developed for this paper implement both concepts, and have been successfully used in the development of a next-generation code division multiple access (CDMA cellular wireless communications system.

  18. Applying RP-FDM Technology to Produce Prototype Castings Using the Investment Casting Method

    Directory of Open Access Journals (Sweden)

    Macků M.

    2012-09-01

    Full Text Available The research focused on the production of prototype castings, which is mapped out starting from the drawing documentation up to the production of the casting itself. The FDM method was applied for the production of the 3D pattern. Its main objective was to find out what dimensional changes happened during individual production stages, starting from the 3D pattern printing through a silicon mould production, wax patterns casting, making shells, melting out wax from shells and drying, up to the production of the final casting itself. Five measurements of determined dimensions were made during the production, which were processed and evaluated mathematically. A determination of shrinkage and a proposal of measures to maintain the dimensional stability of the final casting so as to meet requirements specified by a customer were the results.

  19. Applying RP-FDM Technology to Produce Prototype Castings Using the Investment Casting Method

    Directory of Open Access Journals (Sweden)

    M. Macků

    2012-09-01

    Full Text Available The research focused on the production of prototype castings, which is mapped out starting from the drawing documentation up to theproduction of the casting itself. The FDM method was applied for the production of the 3D pattern. Its main objective was to find out whatdimensional changes happened during individual production stages, starting from the 3D pattern printing through a silicon mouldproduction, wax patterns casting, making shells, melting out wax from shells and drying, up to the production of the final casting itself.Five measurements of determined dimensions were made during the production, which were processed and evaluated mathematically.A determination of shrinkage and a proposal of measures to maintain the dimensional stability of the final casting so as to meetrequirements specified by a customer were the results.

  20. Development of Experimental Setup of Metal Rapid Prototyping Machine using Selective Laser Sintering Technique

    Science.gov (United States)

    Patil, S. N.; Mulay, A. V.; Ahuja, B. B.

    2016-08-01

    Unlike in the traditional manufacturing processes, additive manufacturing as rapid prototyping, allows designers to produce parts that were previously considered too complex to make economically. The shift is taking place from plastic prototype to fully functional metallic parts by direct deposition of metallic powders as produced parts can be directly used for desired purpose. This work is directed towards the development of experimental setup of metal rapid prototyping machine using selective laser sintering and studies the various parameters, which plays important role in the metal rapid prototyping using SLS technique. The machine structure in mainly divided into three main categories namely, (1) Z-movement of bed and table, (2) X-Y movement arrangement for LASER movements and (3) feeder mechanism. Z-movement of bed is controlled by using lead screw, bevel gear pair and stepper motor, which will maintain the accuracy of layer thickness. X-Y movements are controlled using timing belt and stepper motors for precise movements of LASER source. Feeder mechanism is then developed to control uniformity of layer thickness metal powder. Simultaneously, the study is carried out for selection of material. Various types of metal powders can be used for metal RP as Single metal powder, mixture of two metals powder, and combination of metal and polymer powder. Conclusion leads to use of mixture of two metals powder to minimize the problems such as, balling effect and porosity. Developed System can be validated by conducting various experiments on manufactured part to check mechanical and metallurgical properties. After studying the results of these experiments, various process parameters as LASER properties (as power, speed etc.), and material properties (as grain size and structure etc.) will be optimized. This work is mainly focused on the design and development of cost effective experimental setup of metal rapid prototyping using SLS technique which will gives the feel of

  1. SOT: A rapid prototype using TAE windows

    Science.gov (United States)

    Stephens, Mark; Eike, David; Harris, Elfrieda; Miller, Dana

    1986-01-01

    The development of the window interface extension feature of the Transportable Applications Executive (TAE) is discussed. This feature is being used to prototype a space station payload interface in order to demonstrate and assess the benefits of using windows on a bit mapped display and also to convey the concept of telescience, the control and operation of space station payloads from remote sites. The prototype version of the TAE with windows operates on a DEC VAXstation 100. This workstation has a high resolution 19 inch bit mapped display, a keyboard and a three-button mouse. The VAXstation 100 is not a stand-alone workstation, but is controlled by software executing on a VAX/8600. A short scenario was developed utilizing the Solar Optical Telescope (SOT) as an example payload. In the scenario the end-user station includes the VAXstation 100 plus an image analysis terminal used to display the CCD images. The layout and use of the prototype elements, i.e., the root menu, payload status window, and target acquisition menu is described.

  2. Preliminary Clinical Application of Removable Partial Denture Frameworks Fabricated Using Computer-Aided Design and Rapid Prototyping Techniques.

    Science.gov (United States)

    Ye, Hongqiang; Ning, Jing; Li, Man; Niu, Li; Yang, Jian; Sun, Yuchun; Zhou, Yongsheng

    The aim of this study was to explore the application of computer-aided design and rapid prototyping (CAD/RP) for removable partial denture (RPD) frameworks and evaluate the fitness of the technique for clinical application. Three-dimensional (3D) images of dentition defects were obtained using a lab scanner. The RPD frameworks were designed using commercial dental software and manufactured using selective laser melting (SLM). A total of 15 cases of RPD prostheses were selected, wherein each patient received two types of RPD frameworks, prepared by CAD/RP and investment casting. Primary evaluation of the CAD/RP framework was performed by visual inspection. The gap between the occlusal rest and the relevant rest seat was then replaced using silicone, and the specimens were observed and measured. Paired t test was used to compare the average thickness and distributed thickness between the CAD/RP and investment casting frameworks. Analysis of variance test was used to compare the difference in thickness among different zones. The RPD framework was designed and directly manufactured using the SLM technique. CAD/RP frameworks may meet the clinical requirements with satisfactory retention and stability and no undesired rotation. Although the average gap between the occlusal rest and the corresponding rest seat of the CAD/RP frameworks was slightly larger than that of the investment casting frameworks (P < .05), it was acceptable for clinical application. RPD frameworks can be designed and fabricated directly using digital techniques with acceptable results in clinical application.

  3. Rapid-prototype endoprosthesis for palliative reconstruction of an upper extremity after resection of bone metastasis.

    Science.gov (United States)

    Pruksakorn, Dumnoensun; Chantarapanich, Nattapon; Arpornchayanon, Olarn; Leerapun, Taninit; Sitthiseripratip, Kriskrai; Vatanapatimakul, Natapoom

    2015-03-01

    To present a rapid-prototype (RP) endoprosthesis replacement after tumor resection in patients with bone metastasis of the upper extremity. The short-term complications and functional outcomes were evaluated as well as the survival of patients and endoprosthesis. Bone metastasis patients who required bone resection and endoprosthesis replacement were enrolled and consented before operation. Custom-made endoprosthesis was fabricated from polymethyl methacrylate assisted by RP technology. After surgery was performed, patients were followed up daily until discharge and monthly until 6 months postoperatively for immediate post-operative complications and for signs of endoprosthesis failure. The functional outcome was evaluated 6 months postoperatively by the Musculoskeletal Tumor Society score (MTSS) and the Mankin score. Thereafter, patients' survival and arm condition were monitored every 3 months. Sixteen cases participated on this study. There were nine proximal-, four total- and two distal humerus, and one proximal ulna replacement. The median follow-up period was 486 days. The mean MTSS was 55 % and the Mankin score was good in 64 % and fair in 36 % of the patients. Glenohumeral subluxation was observed in 23 % of the patients; however, a stable shoulder was achieved in all cases. There were no prosthesis failure or systemic breakage. An RP endoprosthesis may have significant advantages when the entire humerus needs to be replaced, or periarticular sites are involved. This technique offers custom-made endoprosthesis with enough durability, and in a relatively short production time at reasonable costs which are suitable for palliative reconstruction.

  4. Rapid Aggregation of Biofuel-Producing Algae by the Bacterium Bacillus sp. Strain RP1137

    Science.gov (United States)

    Powell, Ryan J.

    2013-01-01

    Algal biofuels represent one of the most promising means of sustainably replacing liquid fuels. However, significant challenges remain before alga-based fuels become competitive with fossil fuels. One of the largest challenges is the ability to harvest the algae in an economical and low-energy manner. In this article, we describe the isolation of a bacterial strain, Bacillus sp. strain RP1137, which can rapidly aggregate several algae that are candidates for biofuel production, including a Nannochloropsis sp. This bacterium aggregates algae in a pH-dependent and reversible manner and retains its aggregation ability after paraformaldehyde fixation, opening the possibility for reuse of the cells. The optimal ratio of bacteria to algae is described, as is the robustness of aggregation at different salinities and temperatures. Aggregation is dependent on the presence of calcium or magnesium ions. The efficiency of aggregation of Nannochloropsis oceanica IMET1 is between 70 and 95% and is comparable to that obtained by other means of harvest; however, the rate of harvest is fast, with aggregates forming in 30 s. PMID:23892750

  5. Design and manufacturing of ear prosthesis by means of rapid prototyping technology.

    Science.gov (United States)

    De Crescenzio, F; Fantini, M; Ciocca, L; Persiani, F; Scotti, R

    2011-03-01

    In this paper, the complete procedure to design and construct reusable moulds for implant-based ear prosthesis and manufacture substructures by means of a computer aided design-computer aided manufacturing (CAD-CAM) procedure and rapid prototyping (RP) technology is presented. The scan of the healthy ear, the virtual superimposition of its mirrored image on to the defective side, and the rapid manufacturing of the substructure and of the mould eliminate several steps of traditional procedures (wax, stone, try-in). Moreover, the precise design and customization of the substructure is presented, with the original and engineered shape for the retention of the silicone. The time and cost saving results of this protocol are presented together with a discussion of the main design features that make the prosthesis a stable and reproducible system to improve rehabilitation of patients with auricular defects or absence.

  6. Development of a definition for Rapid Progression (RP) of renal function in HIV-positive persons: the D:A:D study

    NARCIS (Netherlands)

    Kamara, David A.; Ryom, Lene; Ross, Michael; Kirk, Ole; Reiss, Peter; Morlat, Philippe; Moranne, Olivier; Fux, Christoph A.; Mocroft, Amanda; Sabin, Caroline; Lundgren, Jens D.; Smith, Colette J.; Powderly, B.; Shortman, N.; Moecklinghoff, C.; Reilly, G.; Franquet, X.; Ryom, L.; Sabin, C. A.; Kamara, D.; Smith, C.; Phillips, A.; Mocroft, A.; Tverland, J.; Mansfeld, M.; Nielsen, J.; Raben, D.; Lundgren, J. D.; Brandt, R. Salbøl; Rickenbach, M.; Fanti, I.; Krum, E.; Hillebregt, M.; Geffard, S.; Sundström, A.; Delforge, M.; Fontas, E.; Torres, F.; McManus, H.; Wright, S.; Kjær, J.; Sjøl, A.; Meidahl, P.; Helweg-Larsen, J.; Iversen, J. Schmidt; Kirk, O.; Ross, M.; Fux, C. A.; Morlat, P.; Moranne, O.; Kesselring, A. M.; Kamara, D. A.; Weber, R.; Pradier, C.; Friis-Møller, N.; Kowalska, J.; Sabin, C.; Law, M.; d'Arminio Monforte, A.; Dabis, F.; Bruyand, M.; Bower, M.; Fätkenheuer, G.; Donald, A.; Grulich, A.; Zaheri, S.; Gras, L.; Prins, J. M.; Kuijpers, T. W.; Scherpbier, H. J.; van der Meer, J. T. M.; Wit, F. W. M. N.; Godfried, M. H.; van der Poll, dr T.; Nellen, F. J. B.; Lange, J. M. A.; Geerlings, S. E.; van Vugt, M.; Pajkrt, D.; Bos, Drs J. C.; van der Valk, Drs M.; Grijsen, M. L.; Wiersinga, W. J.; Goorhuis, A.; Hovius, J. W. R.; Lowe, S.; Oude Lashof, A.; Posthouwer, D.; Ammerlaan, H. S. M.; Pronk, M. J. H.; van der Ende, M. E.; de Vries-Sluijs, T. E. M. S.; Schurink, C. A. M.; Nouwen, J. L.; Verbon, A.; Rijnders, B. J. A.; van Gorp, E. C. M.; van der Feltz, M.; Driessen, G. J. A.; van Rossum, A. M. C.; Branger, J.; Schippers, F.; van Nieuwkoop, C.; van Elzakker, E. P.; Groeneveld, P. H. P.; Bouwhuis, J. W.; Soetekouw, R.; ten Kate, R. W.; Kroon, F. P.; van Dissel, J. T.; Arend, S. M.; de Boer, M. G. J.; Jolink, H.; ter Vollaard, H. J. M.; Bauer, M. P.; den Hollander, J. G.; Pogany, K.; van Twillert, Drs G.; Kortmann, W.; Stuart, J. W. T. Cohen; Diederen, B. M. W.; Leyten, M. S.; Gelinck, L. B. S.; Kootstra, G. J.; Delsing, C. E.; Brinkman, K.; Blok, W. L.; Frissen, P. H. J.; Schouten, W. E. M.; van den Berk, G. E. L.; van Kasteren, M. E. E.; Brouwer, A. E.; Veenstra, J.; Lettinga, K. D.; Mulder, J. W.; Vrouenraets, S. M. E.; Lauw, F. N.; van Eeden, A.; Verhagen, D. W. M.; Sprenger, H. G.; Doedens, R.; Scholvinck, E. H.; van Assen, S.; Bierman, W. F. W.; Koopmans, P. P.; Keuter, M.; van der Ven, A. J. A. M.; ter Hofstede, H. J. M.; Dofferhoff, A. S. M.; Warris, A.; van Crevel, R.; Hoepelman, A. I. M.; Mudrikova, T.; Schneider, M. M. E.; Ellerbroek, P. M.; Oosterheert, J. J.; Arends, J. E.; Wassenberg, M. W. M.; Barth, R. E.; van Agtmael, M. A.; Perenboom, R. M.; Claessen, F. A. P.; Bomers, M.; Peters, E. J. G.; Geelen, S. P. M.; Wolfs, T. F. W.; Bont, L. J.; Richter, C.; van der Berg, J. P.; Gisolf, E. H.; van den Berge, M.; Stegeman, A.; van Vonderen, M. G. A.; van Houte, D. P. F.; Weijer, S.; el Moussaoui, R.; Winkel, C.; Muskiet, F.; Durand, N. N.; Voigt, R.; Chêne, G.; Lawson-Ayayi, S.; Thiébaut, R.; Bonnal, F.; Bonnet, F.; Bernard, N.; Caunègre, L.; Cazanave, C.; Ceccaldi, J.; Chambon, D.; Chossat, I.; Dauchy, F. A.; de Witte, S.; Dupon, M.; Duffau, P.; Dutronc, H.; Farbos, S.; Gaborieau, V.; Gemain, M. C.; Gerard, Y.; Greib, C.; Hessamfar, M.; Lacoste, D.; Lataste, P.; Lafarie, S.; Lazaro, E.; Malvy, D.; Meraud, J. P.; Mercié, P.; Monlun, E.; Neau, D.; Ochoa, A.; Pellegrin, J. L.; Pistone, T.; Ragnaud, J. M.; Receveur, M. C.; Tchamgoué, S.; Vandenhende, M. A.; Viallard, J. F.; Moreau, J. F.; Pellegrin, I.; Fleury, H.; Lafon, M. E.; Masquelier, B.; Trimoulet, P.; Breilh, D.; Haramburu, F.; Miremont-Salamé, G.; Blaizeau, M. J.; Decoin, M.; Delaune, J.; Delveaux, S.; D'Ivernois, C.; Hanapier, C.; Leleux, O.; Uwamaliya-Nziyumvira, B.; Sicard, X.; Palmer, G.; Touchard, D.; Petoumenos, K.; Bendall, C.; Moore, R.; Edwards, S.; Hoy, J.; Watson, K.; Roth, N.; Nicholson, J.; Bloch, M.; Franic, T.; Baker, D.; Vale, R.; Carr, A.; Cooper, D.; Chuah, J.; Ngieng, M.; Nolan, D.; Skett, J.; Calvo, G.; Mateu, S.; Domingo, P.; Sambeat, M. A.; Gatell, J.; del Cacho, E.; Cadafalch, J.; Fuster, M.; Codina, C.; Sirera, G.; Vaqué, A.; de Wit, S.; Clumeck, N.; Necsoi, C.; Gennotte, A. F.; Gerard, M.; Kabeya, K.; Konopnicki, D.; Libois, A.; Martin, C.; Payen, M. C.; Semaille, P.; van Laethem, Y.; Neaton, J.; Bartsch, G.; El-Sadr, W. M.; Thompson, G.; Wentworth, D.; Luskin-Hawk, R.; Telzak, E.; Abrams, D. I.; Cohn, D.; Markowitz, N.; Arduino, R.; Mushatt, D.; Friedland, G.; Perez, G.; Tedaldi, E.; Fisher, E.; Gordin, F.; Crane, L. R.; Sampson, J.; Baxter, J.; Lundgren, J.; Cozzi-Lepri, A.; Grint, D.; Podlekareva, D.; Peters, L.; Reekie, J.; Fischer, A. H.; Losso, M.; Elias, C.; Vetter, N.; Zangerle, R.; Karpov, I.; Vassilenko, A.; Mitsura, V. M.; Suetnov, O.; Colebunders, R.; Vandekerckhove, L.; Hadziosmanovic, V.; Kostov, K.; Machala, L.; Begovac, J.; Jilich, D.; Sedlacek, D.; Kronborg, G.; Gerstoft, J.; Benfield, T.; Larsen, M.; Katzenstein, T.; Hansen, A.-B. E.; Skinhøj, P.; Pedersen, C.; Ostergaard, L.; Zilmer, K.; Smidt, Jelena; Ristola, M.; Katlama, C.; Viard, J.- P.; Girard, P.- M.; Livrozet, J. M.; Vanhems, P.; Rockstroh, J.; Schmidt, R.; van Lunzen, J.; Degen, O.; Stellbrink, H. J.; Staszewski, S.; Bickel, M.; Kosmidis, J.; Gargalianos, P.; Xylomenos, G.; Perdios, J.; Panos, G.; Filandras, A.; Karabatsaki, E.; Sambatakou, H.; Banhegyi, D.; Mulcahy, F.; Yust, I.; Turner, D.; Burke, M.; Pollack, S.; Hassoun, G.; Maayan, S.; Vella, S.; Esposito, R.; Mazeu, I.; Mussini, C.; Arici, C.; Pristera, R.; Mazzotta, F.; Gabbuti, A.; Vullo, V.; Lichtner, M.; Chirianni, A.; Montesarchio, E.; Gargiulo, M.; Antonucci, G.; Testa, A.; Narciso, P.; Vlassi, C.; Zaccarelli, M.; Lazzarin, A.; Castagna, A.; Gianotti, N.; Galli, M.; Ridolfo, A.; Rozentale, B.; Zeltina, I.; Chaplinskas, S.; Hemmer, R.; Staub, T.; Ormaasen, V.; Maeland, A.; Bruun, J.; Knysz, B.; Gasiorowski, J.; Horban, A.; Bakowska, E.; Grzeszczuk, A.; Flisiak, R.; Boron-Kaczmarska, A.; Pynka, M.; Parczewski, M.; Beniowski, M.; Mularska, E.; Trocha, H.; Jablonowska, E.; Malolepsza, E.; Wojcik, K.; Antunes, F.; Doroana, M.; Caldeira, L.; Mansinho, K.; Maltez, F.; Duiculescu, D.; Rakhmanova, A.; Babes, Victor; Zakharova, N.; Jevtovic, D.; Mokráš, M.; Staneková, D.; Tomazic, J.; González-Lahoz, J.; Soriano, V.; Labarga, P.; Medrano, J.; Moreno, S.; Rodriguez, J. M.; Clotet, B.; Jou, A.; Paredes, R.; Tural, C.; Puig, J.; Bravo, I.; Gatell, J. M.; Miró, J. M.; Gutierrez, M.; Karlsson, A.; Mateo, G.; Flamholc, L.; Ledergerber, B.; Francioli, P.; Cavassini, M.; Hirschel, B.; Boffi, E.; Kravchenko, E.; Furrer, H.; Battegay, M.; Elzi, L.; Chentsova, N.; Frolov, V.; Kutsyna, G.; Servitskiy, S.; Krasnov, M.; Barton, S.; Johnson, A. M.; Mercey, D.; Johnson, M. A.; Murphy, M.; Weber, J.; Scullard, G.; Fisher, M.; Leen, C.; Morfeldt, L.; Thulin, G.; Åkerlund, B.; Koppel, K.; Håkangård, C.; Moroni, M.; Angarano, G.; Antinori, A.; Armignacco, O.; Castelli, F.; Cauda, R.; Di Perri, G.; Iardino, R.; Ippolito, G.; Perno, C. F.; von Schloesser, F.; Viale, P.; Ceccherini-Silberstein, F.; Girardi, E.; Lo Caputo, S.; Puoti, M.; Andreoni, Massimo; Ammassari, Adriana; Antinori, Andrea; Balotta, Claudia; Bonfanti, Paolo; Bonora, Stefano; Borderi, Marco; Capobianchi, M. Rosaria; Castagna, Antonella; Ceccherini-Silberstein, Francesca; Cingolani, Antonella; Cinque, Paola; Cozzi-Lepri, Alessandro; de Luca, Andrea; Di Biagio, Antonio; Girardi, Enrico; Gianotti, Nicola; Gori, Andrea; Guaraldi, Giovanni; Lapadula, Giuseppe; Lichtner, Miriam; Madeddu, Giordano; Maggiolo, Franco; Marchetti, Giulia; Marcotullio, Simone; Monno, Laura; Mussini, Cristina; Puoti, Massimo; Quiros, Eugenia; Rusconi, Stefano; Cicconi, P.; Formenti, T.; Galli, L.; Lorenzini, P.; Giacometti, A.; Costantini, A.; Monno, L.; Santoro, C.; Maggiolo, F.; Suardi, C.; Vanino, E.; Verucchi, G.; Quiros Roldan, E.; Minardi, C.; Quirino, T.; Abeli, C.; Manconi, P. E.; Piano, P.; Vecchiet, J.; Falasca, K.; Sighinolfi, L.; Segala, D.; Cassola, G.; Viscoli, G.; Alessandrini, A.; Piscopo, R.; Mazzarello, G.; Mastroianni, C.; Belvisi, V.; Bonfanti, P.; Caramma, I.; Castelli, A. P.; Rizzardini, G.; Ridolfo, A. L.; Piolini, R.; Salpietro, S.; Carenzi, L.; Moioli, M. C.; Marchetti, G.; Puzzolante, C.; Gori, A.; Onofrio, M.; Lapadula, G.; Abrescia, N.; Guida, M. G.; Baldelli, F.; Francisci, D.; Parruti, G.; Ursini, T.; Magnani, G.; Ursitti, M. A.; Andreoni, M.; Cingolani, A.; d' Avino, A.; Ammassari, A.; Gallo, L.; Nicastri, E.; Acinapura, R.; Capozzi, M.; Libertone, R.; Tebano, G.; Cattelan, A.; Mura, M. S.; Madeddu, G.; Caramello, P.; Orofino, G. C.; Bonora, S.; Sciandra, M.; Pellizzer, G.; Manfrin, V.; Caissotti, C.; Dellamonica, P.; Bernard, E.; Cua, E.; de Salvador- Guillouet, F.; Durant, J.; Ferrando, S.; Mondain-Miton, V.; Naqvi, A.; Perbost, I.; Prouvost-Keller, B.; Pillet, S.; Pugliese, P.; Rahelinirina, V.; Roger, P. M.; Dollet, K.; Aubert, V.; Barth, J.; Bernasconi, E.; Böni, J.; Bucher, H. C.; Burton- Jeangros, C.; Calmy, A.; Egger, M.; Fehr, J.; Fellay, J.; Gorgievski, M.; Günthard, H.; Haerry, D.; Hasse, B.; Hirsch, H. H.; Hösli, I.; Kahlert, C.; Kaiser, L.; Keiser, O.; Klimkait, T.; Kovari, H.; Martinetti, G.; de Tejada, B. Martinez; Metzner, K.; Müller, N.; Nadal, D.; Pantaleo, G.; Rauch, A.; Regenass, A.; Rudin, C.; Schmid, P.; Schultze, D.; Schöni-Affolter, F.; Schüpbach, J.; Speck, R.; Taffé, P.; Tarr, P.; Telenti, A.; Trkola, A.; Vernazza, P.; Yerly, S.

    2014-01-01

    No consensus exists on how to define abnormally rapid deterioration in renal function (Rapid Progression, RP). We developed an operational definition of RP in HIV-positive persons with baseline estimated glomerular filtration rate (eGFR) >90 ml/min/1.73 m2 (using Cockcroft Gault) in the Data

  7. Development of a definition for Rapid Progression (RP) of renal function in HIV-positive persons : the D:A:D study

    NARCIS (Netherlands)

    Kamara, David A; Ryom, Lene; Ross, Michael; Kirk, Ole; Reiss, Peter; Morlat, Philippe; Moranne, Olivier; Fux, Christoph A; Mocroft, Amanda; Sabin, Caroline; Lundgren, Jens D; Smith, Colette J; Schölvinck, Elisabeth H.

    2014-01-01

    BACKGROUND: No consensus exists on how to define abnormally rapid deterioration in renal function (Rapid Progression, RP). We developed an operational definition of RP in HIV-positive persons with baseline estimated glomerular filtration rate (eGFR) >90 ml/min/1.73 m2 (using Cockcroft Gault) in the

  8. Development of a definition for Rapid Progression (RP) of renal function in HIV-positive persons: the D:A:D study

    NARCIS (Netherlands)

    Kamara, D.A.; Ryom, L.; Ross, M.; Kirk, O.; Reiss, P.; Morlat, P.; Moranne, O.; Fux, C.A.; Mocroft, A.; Sabin, C.; Lundgren, J.D.; Smith, C.J.; Koopmans, P.P.; Keuter, M.; Ven, A.J.A.M. van der; Hofstede, H.J.M. ter; Dofferhoff, A.S.M.; Warris, A.; Crevel, R. van

    2014-01-01

    BACKGROUND: No consensus exists on how to define abnormally rapid deterioration in renal function (Rapid Progression, RP). We developed an operational definition of RP in HIV-positive persons with baseline estimated glomerular filtration rate (eGFR) >90 ml/min/1.73 m2 (using Cockcroft Gault) in

  9. A validation study of reconstructed rapid prototyping models produced by two technologies.

    Science.gov (United States)

    Dietrich, Christian Andreas; Ender, Andreas; Baumgartner, Stefan; Mehl, Albert

    2017-09-01

    To determine the accuracy (trueness and precision) of two different rapid prototyping (RP) techniques for the physical reproduction of three-dimensional (3D) digital orthodontic study casts, a comparative assessment using two 3D STL files of two different maxillary dentitions (two cases) as a reference was accomplished. Five RP replicas per case were fabricated using both stereolithography (SLA) and the PolyJet system. The 20 reproduced casts were digitized with a highly accurate reference scanner, and surface superimpositions were performed. Precision was measured by superimposing the digitized replicas within each case with themselves. Superimposing the digitized replicas with the corresponding STL reference files assessed trueness. Statistical significance between the two tested RP procedures was evaluated with independent-sample t-tests (P < .05). The SLA and PolyJet replicas showed statistically significant differences for trueness and precision. The precision of both tested RP systems was high, with mean deviations in stereolithographic models of 23 (±6) μm and in PolyJet replicas of 46 (±13) μm. The mean deviation for trueness in stereolithographic replicas was 109 (±4) μm, while in PolyJet replicas, it was 66 (±14) μm. Comparing the STL reference files, the PolyJet replicas showed higher trueness than the SLA models. But the precision measurements favored the SLA technique. The dimensional errors observed in this study were a maximum of 127 μm. In the present study, both types of reproduced digital orthodontic models are suitable for diagnostics and treatment planning.

  10. Patient specific ankle-foot orthoses using rapid prototyping

    Directory of Open Access Journals (Sweden)

    Sivak Seth

    2011-01-01

    Full Text Available Abstract Background Prefabricated orthotic devices are currently designed to fit a range of patients and therefore they do not provide individualized comfort and function. Custom-fit orthoses are superior to prefabricated orthotic devices from both of the above-mentioned standpoints. However, creating a custom-fit orthosis is a laborious and time-intensive manual process performed by skilled orthotists. Besides, adjustments made to both prefabricated and custom-fit orthoses are carried out in a qualitative manner. So both comfort and function can potentially suffer considerably. A computerized technique for fabricating patient-specific orthotic devices has the potential to provide excellent comfort and allow for changes in the standard design to meet the specific needs of each patient. Methods In this paper, 3D laser scanning is combined with rapid prototyping to create patient-specific orthoses. A novel process was engineered to utilize patient-specific surface data of the patient anatomy as a digital input, manipulate the surface data to an optimal form using Computer Aided Design (CAD software, and then download the digital output from the CAD software to a rapid prototyping machine for fabrication. Results Two AFOs were rapidly prototyped to demonstrate the proposed process. Gait analysis data of a subject wearing the AFOs indicated that the rapid prototyped AFOs performed comparably to the prefabricated polypropylene design. Conclusions The rapidly prototyped orthoses fabricated in this study provided good fit of the subject's anatomy compared to a prefabricated AFO while delivering comparable function (i.e. mechanical effect on the biomechanics of gait. The rapid fabrication capability is of interest because it has potential for decreasing fabrication time and cost especially when a replacement of the orthosis is required.

  11. Rapid Prototyping of Electrically Small Spherical Wire Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2014-01-01

    It is shown how modern rapid prototyping technologies can be applied for quick and inexpensive, but still accurate, fabrication of electrically small wire antennas. A well known folded spherical helix antenna and a novel spherical zigzag antenna have been fabricated and tested, exhibiting the imp...

  12. Rapid Prototyping of Tangibles with a Capacitive Mouse

    DEFF Research Database (Denmark)

    Ramos, Juan David Hincapie; Esbensen, Morten; Kogutowska, Magdalena

    2011-01-01

    lays the capacitive surface and communication capa- bilities of a Microsoft TouchMouse, both of which are ap- propriated to fulfill the mentined requirements. Unlike ex- isting approaches for rapid prototyping of tangibles like the Arduino boards, using the Toki toolkit does not require de- velopers...

  13. Comparison of orbital volume obtained by tomography and rapid prototyping.

    Science.gov (United States)

    Roça, Guilherme Berto; Foggiatto, José Aguiomar; Ono, Maria Cecilia Closs; Ono, Sergio Eiji; da Silva Freitas, Renato

    2013-11-01

    This study aims to compare orbital volume obtained by helical tomography and rapid prototyping. The study sample was composed of 6 helical tomography scans. Eleven healthy orbits were identified to have their volumes measured. The volumetric analysis with the helical tomography utilized the same protocol developed by the Plastic Surgery Unit of the Federal University of Paraná. From the CT images, 11 prototypes were created, and their respective volumes were analyzed in 2 ways: using software by SolidWorks and by direct analysis, when the prototype was filled with saline solution. For statistical analysis, the results of the volumes of the 11 orbits were considered independent. The average orbital volume measurements obtained by the method of Ono et al was 20.51 cm, the average obtained by the SolidWorks program was 20.64 cm, and the average measured using the prototype method was 21.81 cm. The 3 methods demonstrated a strong correlation between the measurements. The right and left orbits of each patient had similar volumes. The tomographic method for the analysis of orbital volume using the Ono protocol yielded consistent values, and by combining this method with rapid prototyping, both reliability validations of results were enhanced.

  14. Application of 3D printing rapid prototyping-assisted percutaneous fixation in the treatment of intertrochanteric fracture.

    Science.gov (United States)

    Zheng, Sheng-Nai; Yao, Qing-Qiang; Mao, Feng-Yong; Zheng, Peng-Fei; Tian, Shu-Chang; Li, Jia-Yi; Yu, Yi-Fan; Liu, Shuai; Zhou, Jin; Hu, Jun; Xu, Yan; Tang, Kai; Lou, Yue; Wang, Li-Ming

    2017-10-01

    The aim of the present study was to investigate the application of 3D printing (3DP) rapid prototyping (RP) technique-assisted percutaneous fixation in the treatment of femoral intertrochanteric fracture (ITF) using proximal femoral nail anti-rotation (PFNA). A total of 39 patients with unstable ITF were included in the current study. Patients were divided into two groups: 19 patients were examined using computed tomography scanning and underwent PFNA with SDP-RP whereas the other 20 patients underwent conventional PFNA treatment. Anatomical data were converted from the Digital Imaging and Communications in Medicine format to the stereolithography format using M3D software. The 3DP-RP model was established using the fused deposition modeling technique and the length and diameter of the main screw blade was measured during the simulation. The postoperative femoral neck-shaft angle (NSA), surgery duration, intraoperative and postoperative blood loss, and the duration of hospital stay were recorded and compared with the corresponding values in conventional surgery. No significant differences were observed in mean PFNA size between the implants used and the preoperative planning estimates. It was demonstrated that the 3DP-RP assisted procedure resulted in more effective reduction of the NSA. Furthermore, patients undergoing 3DP-RP experienced a significant reduction in duration of surgery (P<0.01), as well as reductions in intraoperative (P=0.02) and postoperative (P=0.03) blood loss, compared with conventional surgery. At 6 months post-surgery, no cases of hip varus/vague deformities or implant failure were observed in patients that underwent either the 3DP-RP-assisted or conventional procedure. The results of the present study suggest that the 3DP-RP technique is able to create an accurate model of the ITF, which facilitates surgical planning and fracture reduction, thus improving the efficiency of PFNA surgery for ITFs.

  15. Rapid control prototyping for cylinder pressure indication; Rapid Control Prototyping fuer Zylinderdruckindizierung

    Energy Technology Data Exchange (ETDEWEB)

    Pfluger, Jan [RWTH Aachen Univ. (Germany). Lehrstuhl fuer Verbrennungskraftmaschinen; Andert, Jakob [FEV GmbH, Aachen (Germany). Fahrzeugelektronik/E-Mobilitaet; Ross, Holger; Mertens, Frank [dSpace GmbH, Paderborn (Germany). Rapid Control Prototyping Systems

    2012-11-15

    Cylinder-pressure-based controls that allow cycle-synchronous reactions to events in the combustion chamber are a particularly promising possibility further optimising engine combustion processes. However, the requirements of real-time cylinder indication are fast pushing today's systems up against their limits. The Institute for Combustion Engines at RWTH Aachen University and dSpace together developed a high performance prototype for online indication with cycle-synchronous combustion control. (orig.)

  16. Machine accuracy for rapid prototyping of quality components

    Science.gov (United States)

    Gu, Peihua; Yan, May; Huang, X.; Zhang, Xiaochen

    1998-10-01

    Ever-growing global competition forces manufacturers to deliver more competitive products with better quality, lower price and in short time. One of the most important and challenging tasks faced by value-added product manufacturing industry is substantial reduction of product development time. Rapid prototyping technologies have received significant interests from both research and industrial communities. Due to the model accuracy, integrity and strength problems, their applications are limited. The most common sources of errors in the rapid prototyping and manufacturing systems including Cubital machines can be categorized as mathematical, process-related or material- related errors. In this paper, we present an analysis of accuracy of a Cubital Solider 4600 machine and an application on pattern and mould design and manufacturing. The experimental study determines the relationships between the machine accuracy and dimensions and parameter setting, which can be used to control the accuracy of parts to be built.

  17. Rapid Prototyping as an Auxiliary in Mandibular Reconstructions.

    Science.gov (United States)

    Sales, Pedro Henrique da Hora; Cetira Filho, Edson Luiz; Oliveira Neto, Jair Queiroz de; Silva, Julianne Coelho da; Aguiar, Andrea Silvia Walter de; Mello, Manoel de Jesus Rodrigues

    2017-11-01

    The reconstruction of mandible is a challenge with regard to aesthetic and reconstructive demands. The etiology of mandibular fractures is variable, trauma, pathology, bone infections. There are many materials that provide an excellent form of rehabilitation for these defects, where the autogenous graft presents important characteristics that favor a greater success rate. Furthermore, the rapid prototyping method is quite interesting, because it brings a series of advantages to the surgeon, like reducing the operative time, among others. The purpose of the present article is to describe a clinical case of a patient with mandible bone defect caused by gunshot perforation, treated through iliac crest bone graft with planning through rapid prototyping. The mandibular reconstruction can present a real challenge for the surgeon. Biomodels should be required in complex cases because they help to decrease surgical time and to increase the predictability of the procedure.

  18. Rapid prototyping technology and its application in bone tissue engineering.

    Science.gov (United States)

    Yuan, Bo; Zhou, Sheng-Yuan; Chen, Xiong-Sheng

    Bone defects arising from a variety of reasons cannot be treated effectively without bone tissue reconstruction. Autografts and allografts have been used in clinical application for some time, but they have disadvantages. With the inherent drawback in the precision and reproducibility of conventional scaffold fabrication techniques, the results of bone surgery may not be ideal. This is despite the introduction of bone tissue engineering which provides a powerful approach for bone repair. Rapid prototyping technologies have emerged as an alternative and have been widely used in bone tissue engineering, enhancing bone tissue regeneration in terms of mechanical strength, pore geometry, and bioactive factors, and overcoming some of the disadvantages of conventional technologies. This review focuses on the basic principles and characteristics of various fabrication technologies, such as stereolithography, selective laser sintering, and fused deposition modeling, and reviews the application of rapid prototyping techniques to scaffolds for bone tissue engineering. In the near future, the use of scaffolds for bone tissue engineering prepared by rapid prototyping technology might be an effective therapeutic strategy for bone defects.

  19. Reverse engineering--rapid prototyping of the skull in forensic trauma analysis.

    Science.gov (United States)

    Kettner, Mattias; Schmidt, Peter; Potente, Stefan; Ramsthaler, Frank; Schrodt, Michael

    2011-07-01

    Rapid prototyping (RP) comprises a variety of automated manufacturing techniques such as selective laser sintering (SLS), stereolithography, and three-dimensional printing (3DP), which use virtual 3D data sets to fabricate solid forms in a layer-by-layer technique. Despite a growing demand for (virtual) reconstruction models in daily forensic casework, maceration of the skull is frequently assigned to ensure haptic evidence presentation in the courtroom. Owing to the progress in the field of forensic radiology, 3D data sets of relevant cases are usually available to the forensic expert. Here, we present a first application of RP in forensic medicine using computed tomography scans for the fabrication of an SLS skull model in a case of fatal hammer impacts to the head. The report is intended to show that this method fully respects the dignity of the deceased and is consistent with medical ethics but nevertheless provides an excellent 3D impression of anatomical structures and injuries. © 2011 American Academy of Forensic Sciences.

  20. Gene-modified stem cells combined with rapid prototyping techniques: a novel strategy for periodontal regeneration.

    Science.gov (United States)

    He, Huixia; Cao, Junkai; Wang, Dongsheng; Gu, Bing; Guo, Hong; Liu, Hongchen

    2010-03-01

    Periodontal disease, a worldwide prevalent chronic disease in adults, is characterized by the destruction of the periodontal supporting tissue including the cementum, periodontal ligament and alveolar bone. The regeneration of damaged periodontal tissue is the main goal of periodontal treatment. Because conventional periodontal treatments remain insufficient to attain complete and reliable periodontal regeneration, periodontal tissue engineering has emerged as a prospective alternative method for improving the regenerative capacity of periodontal tissue. However, the potential of periodontal regeneration seems to be limited by the understanding of the cellular and molecular events in the formation of periodontal tissue and by the insufficient collaboration of multi-disciplinary research that periodontal tissue engineering involves. In this paper, we first reviewed the recent advancements in stem cells, signaling factors, and scaffolds that relate to periodontal regeneration. Then we speculate that specific genes would improve regenerative capacity of these stem cells, which could differentiate into cementoblasts, osteoblasts and fibroblasts. In addition, the 3D scaffolds that mimic the different structure and physiologic functions of natural fibro-osseous tissue could be fabricated by rapid prototyping (RP) techniques. It was therefore hypothesized that gene-modified stem cells combined with rapid prototyping techniques would be a new strategy to promote more effective and efficient periodontal regeneration.

  1. Assessment of Mechanical Performance of Bone Architecture Using Rapid Prototyping Models

    Science.gov (United States)

    Saparin, Peter; Woesz, Alexander; Thomsen, Jasper S.; Fratzl, Peter

    2008-06-01

    The aim of this on-going research project is to assess the influence of bone microarchitecture on the mechanical performance of trabecular bone. A testing chain consist-ing of three steps was established: 1) micro computed tomography (μCT) imaging of human trabecular bone; 2) building of models of the bone from a light-sensitive polymer using Rapid Prototyping (RP); 3) mechanical testing of the models in a material testing machine. A direct resampling procedure was developed to convert μCT data into the format of the RP machine. Standardized parameters for production and testing of the plastic models were established by use of regular cellular structures. Next, normal, osteoporotic, and extreme osteoporotic vertebral trabecular bone architectures were re-produced by RP and compression tested. We found that normal architecture of vertebral trabecular bone exhibit behaviour characteristic of a cellular structure. In normal bone the fracture occurs at much higher strain values that in osteoporotic bone. After the fracture a normal trabecular architecture is able to carry much higher loads than an osteoporotic architecture. However, no statistically significant differences were found in maximal stress during uniaxial compression of the central part of normal, osteoporotic, and extreme osteoporotic vertebral trabecular bone. This supports the hypothesis that osteoporotic trabecular bone can compensate for a loss of trabeculae by thickening the remaining trabeculae in the loading direction (compensatory hypertrophy). The developed approach could be used for mechanical evaluation of structural data acquired non-invasively and assessment of changes in performance of bone architecture.

  2. Virtual reality surgical planning for maxillofacial distraction osteogenesis: the role of reverse engineering rapid prototyping and cooperative work.

    Science.gov (United States)

    Robiony, Massimo; Salvo, Iolanda; Costa, Fabio; Zerman, Nicoletta; Bazzocchi, Massimo; Toso, Francesco; Bandera, Camillo; Filippi, Stefano; Felice, Martina; Politi, Massimo

    2007-06-01

    The purpose of this article is the demonstration of virtual reality (VR) and rapid prototyping (RP) in surgical planning in maxillofacial surgery. The authors emphasize the role of reverse engineering (RE) and RP, suggesting a model of cooperative work, with the interaction of maxillofacial surgeons, radiologists, and engineers. Data acquisition is performed using computed tomography. The 3D model is the result of RE practices based on image segmentation, and the real model is produced via stereolithography. Virtual simulations are performed on the 3D model obtained from image segmentation. All these stages require the interaction and collaboration of various experts: maxillofacial surgeons, radiologists, and RE and RP experts. VR and stereolithography models represent a new technology to help the surgeon who has to work in cooperation with engineers and radiologists to improve the results in surgical planning of maxillofacial distraction. When performing the VR simulation, surgeons and engineers operate together in order to optimize the exploitation of the instruments available. Both VR and RP, with different and complementary advantages and limitations, can improve surgical planning activities and this is particularly effective when dealing with complex anatomical structures in maxillofacial surgery.

  3. Rapid Control Prototyping Plataform for Didactic Plant Motor DC

    Directory of Open Access Journals (Sweden)

    Cristian Bazán-Orobio

    2013-06-01

    Full Text Available In this paper a design, implementation and validation of a Rapid Control Prototype platform for a plant based on a DC motor is proposed. This low-cost prototype provides of an electronic card (with a motor DC and sensors manipulated by PC with free software tools using Linux, Scilab / Scicos and RTAI-Lab. This RCP System allows developing speed -position control trainings by using different types of PID industrial controllers with anti – wind up and bump less transfer schemes. We develop a speed control application structured in four steps: identification, controller design, simulation and real time control, where there are pedagogical advantages of a platform that not only allows simulation but also real-time control of a plant.

  4. Focused ion beam lithography for rapid prototyping of metallic films

    Energy Technology Data Exchange (ETDEWEB)

    Osswald, Patrick; Kiermaier, Josef; Becherer, Markus; Schmitt-Landsiedel, Doris [Lehrstuhl fuer Technische Elektronik, TU Muenchen, Munich (Germany)

    2010-07-01

    We present FIB-lithography methods for rapid and cost-effective prototyping of metal structures covering the deep-submicron- to the millimeter-range in a single lithography cycle. Focused ion beam (FIB) systems are widely used in semiconductor industry and research facilities for both analytical testing and prototyping. A typical application is to apply electrical contact to micron-sized sensors/particles by FIB induced metal deposition. However, as for E-beam lithography, patterning times for large area bonding pads are unacceptably long, resulting in cost-intensive prototyping. In this work, we optimized FIB lithography processing for negative and positive imaging mode to form metallic structures for large-areas down do the sub-100 nm range. For negative lithography features are defined by implanting Ga{sup +}-ions into a commercial photo resist, without affecting the underlying structures by impinging ions. The structures are highly suitable for following lift-off processing due to the undercut of the resist.Metallic feature size of down to 150 nm are achievable. For positive lithography a PMMA resist is exposed in FIB irradiation. Due to the very low dose (3.10{sup 12} ions/cm{sup 2}) the writing time for an e.g. 100 {mu}m x 100 {mu}m square is approx. 15 seconds. The developed resist is used for subsequent wet chemical etching, obtaining a 100 nm resolution in metal layers.

  5. Bio rapid prototyping by extruding/aspirating/refilling thermoreversible hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Iwami, K; Noda, T; Ishida, K; Umeda, N [Department of Mechanical Systems and Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588 (Japan); Morishima, K [Department of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588 (Japan); Nakamura, M, E-mail: k_iwami@cc.tuat.ac.j [Department of Life Sciences and Bioengineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555 (Japan)

    2010-03-15

    This paper reports a method for rapid prototyping of cell tissues, which is based on a system that extrudes, aspirates and refills a mixture of cells and thermoreversible hydrogel as a scaffold. In the extruding mode, a cell-mixed scaffold solution in the sol state is extruded from a cooled micronozzle into a temperature-controlled substrate, which keeps the scaffold in the gel state. In the aspiration mode, the opposite process is performed by Bernoulli suction. In the refilling mode, the solution is extruded into a groove created in the aspiration mode. The minimum width of extruded hydrogel pattern is 114 +- 15 mum by employing a nozzle of diameter 100 mum, and that of aspirated groove was 355 +- 10 mum using a 500 mum-diameter nozzle. Gum arabic is mixed with the scaffold solution to avoid peeling-off of the gel pattern from the substrate. Patterning of Sf-9 cell tissue is demonstrated, and the stability of the patterned cell is investigated. This system offers a procedure for rapid prototyping and local modification of cell scaffolds for tissue engineering.

  6. TOPPE: A framework for rapid prototyping of MR pulse sequences.

    Science.gov (United States)

    Nielsen, Jon-Fredrik; Noll, Douglas C

    2017-11-02

    To introduce a framework for rapid prototyping of MR pulse sequences. We propose a simple file format, called "TOPPE", for specifying all details of an MR imaging experiment, such as gradient and radiofrequency waveforms and the complete scan loop. In addition, we provide a TOPPE file "interpreter" for GE scanners, which is a binary executable that loads TOPPE files and executes the sequence on the scanner. We also provide MATLAB scripts for reading and writing TOPPE files and previewing the sequence prior to hardware execution. With this setup, the task of the pulse sequence programmer is reduced to creating TOPPE files, eliminating the need for hardware-specific programming. No sequence-specific compilation is necessary; the interpreter only needs to be compiled once (for every scanner software upgrade). We demonstrate TOPPE in three different applications: k-space mapping, non-Cartesian PRESTO whole-brain dynamic imaging, and myelin mapping in the brain using inhomogeneous magnetization transfer. We successfully implemented and executed the three example sequences. By simply changing the various TOPPE sequence files, a single binary executable (interpreter) was used to execute several different sequences. The TOPPE file format is a complete specification of an MR imaging experiment, based on arbitrary sequences of a (typically small) number of unique modules. Along with the GE interpreter, TOPPE comprises a modular and flexible platform for rapid prototyping of new pulse sequences. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  7. A brief review of dispensing-based rapid prototyping techniques in tissue scaffold fabrication: role of modeling on scaffold properties prediction.

    Science.gov (United States)

    Li, M G; Tian, X Y; Chen, X B

    2009-09-01

    Artificial scaffolds play vital roles in tissue engineering as they provide a supportive environment for cell attachment, proliferation and differentiation during tissue formation. Fabrication of tissue scaffolds is thus of fundamental importance for tissue engineering. Of the variety of scaffold fabrication techniques available, rapid prototyping (RP) methods have attracted a great deal of attention in recent years. This method can improve conventional scaffold fabrication by controlling scaffold microstructure, incorporating cells into scaffolds and regulating cell distribution. All of these contribute towards the ultimate goal of tissue engineering: functional tissues or organs. Dispensing is typically used in different RP techniques to implement the layer-by-layer fabrication process. This article reviews RP methods in tissue scaffold fabrication, with emphasis on dispensing-based techniques, and analyzes the effects of different process factors on fabrication performance, including flow rate, pore size and porosity, and mechanical cell damage that can occur in the bio-manufacturing process.

  8. A brief review of dispensing-based rapid prototyping techniques in tissue scaffold fabrication: role of modeling on scaffold properties prediction

    Energy Technology Data Exchange (ETDEWEB)

    Li, M G; Chen, X B [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A9 (Canada); Tian, X Y, E-mail: mil715@mail.usask.c [Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A9 (Canada)

    2009-09-15

    Artificial scaffolds play vital roles in tissue engineering as they provide a supportive environment for cell attachment, proliferation and differentiation during tissue formation. Fabrication of tissue scaffolds is thus of fundamental importance for tissue engineering. Of the variety of scaffold fabrication techniques available, rapid prototyping (RP) methods have attracted a great deal of attention in recent years. This method can improve conventional scaffold fabrication by controlling scaffold microstructure, incorporating cells into scaffolds and regulating cell distribution. All of these contribute towards the ultimate goal of tissue engineering: functional tissues or organs. Dispensing is typically used in different RP techniques to implement the layer-by-layer fabrication process. This article reviews RP methods in tissue scaffold fabrication, with emphasis on dispensing-based techniques, and analyzes the effects of different process factors on fabrication performance, including flow rate, pore size and porosity, and mechanical cell damage that can occur in the bio-manufacturing process. (topical review)

  9. Rapid laser prototyping of valves for microfluidic autonomous systems

    Science.gov (United States)

    Mohammed, M. I.; Abraham, E.; Y Desmulliez, M. P.

    2013-03-01

    Capillary forces in microfluidics provide a simple yet elegant means to direct liquids through flow channel networks. The ability to manipulate the flow in a truly automated manner has proven more problematic. The majority of valves require some form of flow control devices, which are manually, mechanically or electrically driven. Most demonstrated capillary systems have been manufactured by photolithography, which, despite its high precision and repeatability, can be labour intensive, requires a clean room environment and the use of fixed photomasks, limiting thereby the agility of the manufacturing process to readily examine alternative designs. In this paper, we describe a robust and rapid CO2 laser manufacturing process and demonstrate a range of capillary-driven microfluidic valve structures embedded within a microfluidic network. The manufacturing process described allows for advanced control and manipulation of fluids such that flow can be halted, triggered and delayed based on simple geometrical alterations to a given microchannel. The rapid prototyping methodology has been employed with PMMA substrates and a complete device has been created, ready for use, within 2-3 h. We believe that this agile manufacturing process can be applied to produce a range of complex autonomous fluidic platforms and allows subsequent designs to be rapidly explored.

  10. Epitrochoid Power-Law Nozzle Rapid Prototype Build/Test Project (Briefing Charts)

    Science.gov (United States)

    2015-02-01

    Power-Law Nozzle Rapid Prototype Build/Test Project Mr. Eric J. Paulson-Vehicle Analyst Rocket Propulsion Division Combustion devices Branch Systems...to build axisymmetric cold flow nozzle test articles using plastic-based inexpensive rapid additive manufacturing – Feasible to rapid prototype lobed...Briefing Charts 3. DATES COVERED (From - To) February 2015-March 2015 4. TITLE AND SUBTITLE Epitrochoid Power-Law Nozzle Rapid Prototype Build/Test

  11. Femur Model Reconstruction Based on Reverse Engineering and Rapid Prototyping

    Science.gov (United States)

    Tang, Tongming; Zhang, Zheng; Ni, Hongjun; Deng, Jiawen; Huang, Mingyu

    Precise reconstruction of 3D models is fundamental and crucial to the researches of human femur. In this paper we present our approach towards tackling this problem. The surface of a human femur was scanned using a hand-held 3D laser scanner. The data obtained, in the form of point cloud, was then processed using the reverse engineering software Geomagic and the CAD/CAM software CimatronE to reconstruct a digital 3D model. The digital model was then used by the rapid prototyping machine to build a physical model of human femur using 3D printing. The geometric characteristics of the obtained physical model matched that of the original femur. The process of "physical object - 3D data - digital 3D model - physical model" presented in this paper provides a foundation of precise modeling for the digital manufacturing, virtual assembly, stress analysis, and simulated surgery of artificial bionic femurs.

  12. TOPAZ II Anti-Criticality Device Rapid Prototype

    Science.gov (United States)

    Campbell, Donald R.; Otting, William D.

    1994-07-01

    The Ballistic Missile Defense Organization (BMDO) has been working on a Nuclear Electric Propulsion Space Test Project (NEPSTP) using an existing Russian Topaz II reactor system to power the NEPSTP satellite. Safety investigations have shown that it will be possible to safely launch the Topaz II system in the United States with some modification to preclude water flooded criticality. A ``fuel-out'' water subcriticality concept was selected by the Los Alamos National Laboratory (LANL) as the baseline concept. A fuel-out anti-criticality device (ACD) conceptual design was developed by Rockwell. The concept functions to hold the fuel from the four centermost thermionic fuel elements (TFEs) outside the reactor during launch and reliably inserts the fuel into the reactor once the operational orbit is achieved. A four-tenths scale ACD rapid prototype model, fabricated from the CATIA solids design model, clearly shows in three dimensions the relative size and spatial relationship of the ACD components.

  13. Rapid, Reliable Shape Setting of Superelastic Nitinol for Prototyping Robots.

    Science.gov (United States)

    Gilbert, Hunter B; Webster, Robert J

    Shape setting Nitinol tubes and wires in a typical laboratory setting for use in superelastic robots is challenging. Obtaining samples that remain superelastic and exhibit desired precurvatures currently requires many iterations, which is time consuming and consumes a substantial amount of Nitinol. To provide a more accurate and reliable method of shape setting, in this paper we propose an electrical technique that uses Joule heating to attain the necessary shape setting temperatures. The resulting high power heating prevents unintended aging of the material and yields consistent and accurate results for the rapid creation of prototypes. We present a complete algorithm and system together with an experimental analysis of temperature regulation. We experimentally validate the approach on Nitinol tubes that are shape set into planar curves. We also demonstrate the feasibility of creating general space curves by shape setting a helical tube. The system demonstrates a mean absolute temperature error of 10°C.

  14. Development of a definition for Rapid Progression (RP) of renal function in HIV-positive persons: the D:A:D study.

    Science.gov (United States)

    Kamara, David A; Ryom, Lene; Ross, Michael; Kirk, Ole; Reiss, Peter; Morlat, Philippe; Moranne, Olivier; Fux, Christoph A; Mocroft, Amanda; Sabin, Caroline; Lundgren, Jens D; Smith, Colette J

    2014-03-25

    No consensus exists on how to define abnormally rapid deterioration in renal function (Rapid Progression, RP). We developed an operational definition of RP in HIV-positive persons with baseline estimated glomerular filtration rate (eGFR) >90 ml/min/1.73 m2 (using Cockcroft Gault) in the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) study from 2004 to 2011. Two definitions were evaluated; RP definition A: An average eGFR decline (slope) ≥5 ml/min/1.73 m2/year over four years of follow-up with ≥3 eGFR measurements/year, last eGFR definition B: An absolute annual decline ≥5 ml/min/1.73 m2/year in each year and last eGFR definition A; similar proportions were observed when considering follow-up periods of three (n=195/6375; 3.1%) and two years (n=355/10756; 3.3%). In contrast under RP definition B, greater proportions experienced RP when considering two years (n=476/10756; 4.4%) instead of three (n=48/6375; 0.8%) or four (n=15/3655; 0.4%) years' follow-up. For RP definition A, 13 (12%) individuals who experienced RP progressed to CKD, and only (21) 0.6% of those without RP progressed to CKD (sensitivity 38.2% and specificity 97.4%); whereas for RP definition B, fewer RP individuals progressed to CKD. Our results suggest using three years' follow-up and at least two eGFR measurements per year is most appropriate for a RP definition, as it allows inclusion of a reasonable number of individuals and is associated with the known risk factors. The definition does not necessarily identify all those that progress to incident CKD, however, it can be used alongside other renal measurements to early identify and assess those at risk of developing CKD. Future analyses will use this definition to identify other risk factors for RP, including the role of antiretrovirals.

  15. Fiscal 1997 report on the results of the international standardization R and D. Data format for rapid prototyping systems; 1997 nendo seika hokokusho kokusai hyojun soseigata kenkyu kaihatsu. Sekiso zokei system yo data format

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Concerning the rapid prototyping (RP) system use new RP format and the related software, the paper promoted the international standardization in consideration of relationships with an international standard, STEP. RP, which is a technology to rapidly prototype a solid body based on the three-dimensional CAD data, is used in various fields of product manufacture, medical field, etc., and is expected to further expand its field of application. In this R and D, an international version of the RP software system developed for domestic use was developed, and at the same time a software was trially manufactured so that the data on STEP/AP203/CC5 and CC6 can be delivered to the system. Moreover, a plan on new AIC51X as the STEP/AIC suitable for PR was studied. Relating to these results, the paper conducted the publicity work to the persons concerned in RP in the U.S. and Europe, and also explained those at ISO/TC184/SC4 (STEP Conference). The PR use interface enabling highly rapid and accurate data processing reached to a stage of the international commercialization, and at the same time the study items were materialized for proposal of the new STEP standards suitable for RP. 18 refs., 80 figs., 12 tabs.

  16. Rapid Prototyping of Continuous Fiber Reinforced Ceramic Matrix Composites

    Science.gov (United States)

    Vaidyanathan, R.; Green, C.; Phillips, T.; Cipriani, R.; Yarlagadda, S.; Gillespie, J. W., Jr.; Effinger, M.; Cooper, K. C.

    2003-01-01

    For ceramics to be used as structural components in high temperature applications, their fracture toughness is improved by embedding continuous ceramic fibers. Ceramic matrix composite (CMC) materials allow increasing the overall operating temperature, raising the temperature safety margins, avoiding the need for cooling, and improving the damping capacity, while reducing the weight at the same time. They also need to be reliable and available in large quantities as well. In this paper, an innovative rapid prototyping technique to fabricate continuous fiber reinforced ceramic matrix composites is described. The process is simple, robust and will be widely applicable to a number of high temperature material systems. This technique was originally developed at the University of Delaware Center for Composite Materials (UD-CCM) for rapid fabrication of polymer matrix composites by a technique called automated tow placement or ATP. The results of mechanical properties and microstructural characterization are presented, together with examples of complex shapes and parts. It is believed that the process will be able to create complex shaped parts at an order of magnitude lower cost than current chemical vapor infiltration (CVI) and polymer impregnation and pyrolysis (PIP) processes.

  17. Print your own membrane: direct rapid prototyping of polydimethylsiloxane.

    Science.gov (United States)

    Femmer, Tim; Kuehne, Alexander J C; Wessling, Matthias

    2014-08-07

    Polydimethylsiloxane is a translucent and biologically inert silicone material used in sealants, biomedical implants and microscale lab-on-a-chip devices. Furthermore, in membrane technology, polydimethylsiloxane represents a material for separation barriers as it has high permeabilities for various gases. The facile handling of two component formulations with a silicone base material, a catalyst and a small molecular weight crosslinker makes it widely applicable for soft-lithographic replication of two-dimensional device geometries, such as microfluidic chips or micro-contact stamps. Here, we develop a new technique to directly print polydimethylsiloxane in a rapid prototyping device, circumventing the need for masks or sacrificial mold production. We create a three-dimensional polydimethylsiloxane membrane for gas-liquid-contacting based on a Schwarz-P triple-periodic minimal-surface, which is inaccessible with common machining techniques. Direct 3D-printing of polydimethylsiloxane enables rapid production of novel chip geometries for a manifold of lab-on-a-chip applications.

  18. Digital image capture and rapid prototyping of the maxillofacial defect.

    Science.gov (United States)

    Sabol, Jennifer V; Grant, Gerald T; Liacouras, Peter; Rouse, Stephen

    2011-06-01

    In order to restore an extraoral maxillofacial defect, a moulage impression is commonly made with traditional impression materials. This technique has some disadvantages, including distortion of the site due to the weight of the impression material, changes in tissue location with modifications of the patient position, and the length of time and discomfort for the patient due to the impression procedure and materials used. The use of the commercially available 3dMDface™ System creates 3D images of soft tissues to form an anatomically accurate 3D surface image. Rapid prototyping converts the virtual designs from the 3dMDface™ System into a physical model by converting the data to a ZPrint (ZPR) CAD format file and a stereolithography (STL) file. The data, in conjunction with a Zprinter(®) 450 or a Stereolithography Apparatus (SLA), can be used to fabricate a model for prosthesis fabrication, without the disadvantages of the standard moulage technique. This article reviews this technique and how it can be applied to maxillofacial prosthetics. © 2011 by The American College of Prosthodontists.

  19. Improved rapid prototyping methodology for MPEG-4 IC development

    Science.gov (United States)

    Tang, Clive K. K.; Moseler, Kathy; Levi, Sami

    1998-12-01

    One important factor in deciding the success of a new consumer product or integrated circuit is minimized time-to- market. A rapid prototyping methodology that encompasses algorithm development in the hardware design phase will have great impact on reducing time-to-market. In this paper, a proven hardware design methodology and a novel top-down design methodology based on Frontier Design's DSP Station tool are described. The proven methodology was used during development of the MC149570 H.261/H.263 video codec manufactured by Motorola. This paper discusses an improvement to this method to create an integrated environment for both system and hardware development, thereby further reducing the time-to-market. The software tool chosen is DSP Station tool by Frontier Design. The rich features of DSP Station tool will be described and then it will be shown how these features may be useful in designing from algorithm to silicon. How this methodology may be used in the development of a new MPEG4 Video Communication ASIC will be outlined. A brief comparison with a popular tool, Signal Processing WorkSystem tool by Cadence, will also be given.

  20. Towards rapid prototyped convective microfluidic DNA amplification platform

    Science.gov (United States)

    Ajit, Smrithi; Praveen, Hemanth Mithun; Puneeth, S. B.; Dave, Abhishek; Sesham, Bharat; Mohan, K. N.; Goel, Sanket

    2017-02-01

    Today, Polymerase Chain Reaction (PCR) based DNA amplification plays an indispensable role in the field of biomedical research. Its inherent ability to exponentially amplify sample DNA has proven useful for the identification of virulent pathogens like those causing Multiple Drug-Resistant Tuberculosis (MDR-TB). The intervention of Microfluidics technology has revolutionized the concept of PCR from being a laborious and time consuming process into one that is faster, easily portable and capable of being multifunctional. The Microfluidics based PCR outweighs its traditional counterpart in terms of flexibility of varying reaction rate, operation simplicity, need of a fraction of volume and capability of being integrated with other functional elements. The scope of the present work involves the development of a real-time continuous flow microfluidic device, fabricated by 3D printing-governed rapid prototyping method, eventually leading to an automated and robust platform to process multiple DNA samples for detection of MDRTB-associated mutations. The thermal gradient characteristic to the PCR process is produced using peltier units appropriate to the microfluidic environment fully monitored and controlled by a low cost controller driven by a Data Acquisition System. The process efficiency achieved in the microfluidic environment in terms of output per cycle is expected to be on par with the traditional PCR and capable of earning the additional advantages of being faster and minimizing the handling.

  1. Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging.

    Science.gov (United States)

    Ghassemi, Pejhman; Wang, Jianting; Melchiorri, Anthony J; Ramella-Roman, Jessica C; Mathews, Scott A; Coburn, James C; Sorg, Brian S; Chen, Yu; Pfefer, T Joshua

    2015-01-01

    The emerging technique of rapid prototyping with three-dimensional (3-D) printers provides a simple yet revolutionary method for fabricating objects with arbitrary geometry. The use of 3-D printing for generating morphologically biomimetic tissue phantoms based on medical images represents a potentially major advance over existing phantom approaches. Toward the goal of image-defined phantoms, we converted a segmented fundus image of the human retina into a matrix format and edited it to achieve a geometry suitable for printing. Phantoms with vessel-simulating channels were then printed using a photoreactive resin providing biologically relevant turbidity, as determined by spectrophotometry. The morphology of printed vessels was validated by x-ray microcomputed tomography. Channels were filled with hemoglobin (Hb) solutions undergoing desaturation, and phantoms were imaged with a near-infrared hyperspectral reflectance imaging system. Additionally, a phantom was printed incorporating two disjoint vascular networks at different depths, each filled with Hb solutions at different saturation levels. Light propagation effects noted during these measurements—including the influence of vessel density and depth on Hb concentration and saturation estimates, and the effect of wavelength on vessel visualization depth—were evaluated. Overall, our findings indicated that 3-D-printed biomimetic phantoms hold significant potential as realistic and practical tools for elucidating light–tissue interactions and characterizing biophotonic system performance.

  2. Integrated flexible manufacturing program for manufacturing automation and rapid prototyping

    Science.gov (United States)

    Brooks, S. L.; Brown, C. W.; King, M. S.; Simons, W. R.; Zimmerman, J. J.

    1993-01-01

    The Kansas City Division of Allied Signal Inc., as part of the Integrated Flexible Manufacturing Program (IFMP), is developing an integrated manufacturing environment. Several systems are being developed to produce standards and automation tools for specific activities within the manufacturing environment. The Advanced Manufacturing Development System (AMDS) is concentrating on information standards (STEP) and product data transfer; the Expert Cut Planner system (XCUT) is concentrating on machining operation process planning standards and automation capabilities; the Advanced Numerical Control system (ANC) is concentrating on NC data preparation standards and NC data generation tools; the Inspection Planning and Programming Expert system (IPPEX) is concentrating on inspection process planning, coordinate measuring machine (CMM) inspection standards and CMM part program generation tools; and the Intelligent Scheduling and Planning System (ISAPS) is concentrating on planning and scheduling tools for a flexible manufacturing system environment. All of these projects are working together to address information exchange, standardization, and information sharing to support rapid prototyping in a Flexible Manufacturing System (FMS) environment.

  3. Rapid Prototyping Human Interfaces Using Stretchable Strain Sensor

    Directory of Open Access Journals (Sweden)

    Tokiya Yamaji

    2017-01-01

    Full Text Available In the modern society with a variety of information electronic devices, human interfaces increase their importance in a boundary of a human and a device. In general, the human is required to get used to the device. Even if the device is designed as a universal device or a high-usability device, the device is not suitable for all users. The usability of the device depends on the individual user. Therefore, personalized and customized human interfaces are effective for the user. To create customized interfaces, we propose rapid prototyping human interfaces using stretchable strain sensors. The human interfaces comprise parts formed by a three-dimensional printer and the four strain sensors. The three-dimensional printer easily makes customized human interfaces. The outputs of the interface are calculated based on the sensor’s lengths. Experiments evaluate three human interfaces: a sheet-shaped interface, a sliding lever interface, and a tilting lever interface. We confirm that the three human interfaces obtain input operations with a high accuracy.

  4. Rapid prototyping of replica knee implants for in vitro testing

    Directory of Open Access Journals (Sweden)

    Verjans Mark

    2016-09-01

    Full Text Available The understanding of the complex biomechanics of the knee is a key for an optimal implant design. To easily investigate the influence of prosthetic designs on knee biomechanics a rapid prototyping workflow for knee implants has been developed and evaluated. Therefore, different manufacturing technologies and post-treatment methods have been examined and overall seven different replica knee implants were manufactured. For evaluation, the manufacturing properties such as surface accuracy and roughness were determined and kinematic behaviour was investigated in a novel knee testing rig. It was carried out that PolyJet-Modelling with a sanded surface resulted in changed kinematic patterns compared to a usual CoCr-UHMWPE implant. However, fused deposition modelling using ABS and subsequent surface smoothening with acetone vapor showed the lowest roughness of the manufactured implants and only minor kinematic differences. For this reason this method constitutes a promising approach towards an optimal implant design for improved patient-satisfaction and long lifetime of the implant. Finally the workflow is not only limited to the knee.

  5. Pediatric Dispersible Tablets: a Modular Approach for Rapid Prototyping.

    Science.gov (United States)

    Buck, Jonas; Huwyler, Jörg; Kühl, Peter; Dischinger, Angela

    2016-08-01

    The design of pediatric formulations is challenging. Solid dosage forms for children have to meet the needs of different ages, e.g. high number of dosing increments and strengths. A modular formulation strategy offering the possibility of rapid prototyping was applied. Different tablet compositions and the resulting tablet characteristics were investigated for dispersible tablets using customized analytical methods. Fluid bed granules were blended with extragranular components, and compressed to tablets. Disintegration behavior was studied with a Texture Analyzer and a Tensiometer. Methods for determination of disintegration time and water uptake of tablets were developed with a Texture Analyzer, and a Tensiometer, respectively. Twenty-two different tablet formulations were prepared and analyzed with respect to disintegration time, hardness, friability, and viscosity. Multivariate data analysis revealed a high impact of type and amount of viscosity enhancer on the disintegration behavior of tablets. An optimized formulation was selected with a disintegration time of 24 s. Methods providing additional information on the disintegration behavior of dispersible tablets compared to standard pharmacopoeia methods were established. Selecting the right type and level of viscosity enhancer and superdisintegrant was critical for developing pediatric tablets with a disintegration time of less than 30 s but still pleasant mouth feel.

  6. NGS++: a library for rapid prototyping of epigenomics software tools.

    Science.gov (United States)

    Nordell Markovits, Alexei; Joly Beauparlant, Charles; Toupin, Dominique; Wang, Shengrui; Droit, Arnaud; Gevry, Nicolas

    2013-08-01

    The development of computational tools to enable testing and analysis of high-throughput-sequencing data is essential to modern genomics research. However, although multiple frameworks have been developed to facilitate access to these tools, comparatively little effort has been made at implementing low-level programming libraries to increase the speed and ease of their development. We propose NGS++, a programming library in C++11 specialized in manipulating both next-generation sequencing (NGS) datasets and genomic information files. This library allows easy integration of new formats and rapid prototyping of new functionalities with a focus on the analysis of genomic regions and features. It offers a powerful, yet versatile and easily extensible interface to read, write and manipulate multiple genomic file formats. By standardizing the internal data structures and presenting a common interface to the data parser, NGS++ offers an effective framework for epigenomics tool development. NGS++ was written in C++ using the C++11 standard. It requires minimal efforts to build and is well-documented via a complete docXygen guide, online documentation and tutorials. Source code, tests, code examples and documentation are available via the website at http://www.ngsplusplus.ca and the github repository at https://github.com/NGS-lib/NGSplusplus. nicolas.gevry@usherbrooke.ca or arnaud.droit@crchuq.ulaval.ca.

  7. Procedural Modeling for Rapid-Prototyping of Multiple Building Phases

    Science.gov (United States)

    Saldana, M.; Johanson, C.

    2013-02-01

    RomeLab is a multidisciplinary working group at UCLA that uses the city of Rome as a laboratory for the exploration of research approaches and dissemination practices centered on the intersection of space and time in antiquity. In this paper we present a multiplatform workflow for the rapid-prototyping of historical cityscapes through the use of geographic information systems, procedural modeling, and interactive game development. Our workflow begins by aggregating archaeological data in a GIS database. Next, 3D building models are generated from the ArcMap shapefiles in Esri CityEngine using procedural modeling techniques. A GIS-based terrain model is also adjusted in CityEngine to fit the building elevations. Finally, the terrain and city models are combined in Unity, a game engine which we used to produce web-based interactive environments which are linked to the GIS data using keyhole markup language (KML). The goal of our workflow is to demonstrate that knowledge generated within a first-person virtual world experience can inform the evaluation of data derived from textual and archaeological sources, and vice versa.

  8. The Requirements and Design of the Rapid Prototyping Capabilities System

    Science.gov (United States)

    Haupt, T. A.; Moorhead, R.; O'Hara, C.; Anantharaj, V.

    2006-12-01

    The Rapid Prototyping Capabilities (RPC) system will provide the capability to rapidly evaluate innovative methods of linking science observations. To this end, the RPC will provide the capability to integrate the software components and tools needed to evaluate the use of a wide variety of current and future NASA sensors, numerical models, and research results, model outputs, and knowledge, collectively referred to as "resources". It is assumed that the resources are geographically distributed, and thus RPC will provide the support for the location transparency of the resources. The RPC system requires providing support for: (1) discovery, semantic understanding, secure access and transport mechanisms for data products available from the known data provides; (2) data assimilation and geo- processing tools for all data transformations needed to match given data products to the model input requirements; (3) model management including catalogs of models and model metadata, and mechanisms for creation environments for model execution; and (4) tools for model output analysis and model benchmarking. The challenge involves developing a cyberinfrastructure for a coordinated aggregate of software, hardware and other technologies, necessary to facilitate RPC experiments, as well as human expertise to provide an integrated, "end-to-end" platform to support the RPC objectives. Such aggregation is to be achieved through a horizontal integration of loosely coupled services. The cyberinfrastructure comprises several software layers. At the bottom, the Grid fabric encompasses network protocols, optical networks, computational resources, storage devices, and sensors. At the top, applications use workload managers to coordinate their access to physical resources. Applications are not tightly bounded to a single physical resource. Instead, they bind dynamically to resources (i.e., they are provisioned) via a common grid infrastructure layer. For the RPC system, the

  9. NASA Applied Sciences Program Rapid Prototyping Results and Conclusions

    Science.gov (United States)

    Cox, E. L.

    2007-12-01

    NASA's Applied Sciences Program seeks to expand the use of Earth science research results to benefit current and future operational systems tasked with making policy and management decisions. The Earth Science Division within the Science Mission Directorate sponsors over 1000 research projects annually to answer the fundamental research question: How is the Earth changing and what are the consequences for life on Earth? As research results become available, largely from satellite observations and Earth system model outputs, the Applied Sciences Program works diligently with scientists and researchers (internal and external to NASA) , and other government agency officials (USDA, EPA, CDC, DOE, US Forest Service, US Fish and Wildlife Service, DHS, USAID) to determine useful applications for these results in decision-making, ultimately benefiting society. The complexity of Earth science research results and the breadth of the Applied Sciences Program national priority areas dictate a broad scope and multiple approaches available to implement their use in decision-making. Over the past five years, the Applied Sciences Program has examined scientific and engineering practices and solicited the community for methods and steps that can lead to the enhancement of operational systems (Decision Support Systems - DSS) required for decision-making. In November 2006, the Applied Sciences Program launched an initiative aimed at demonstrating the applicability of NASA data (satellite observations, models, geophysical parameters from data archive centers) being incorporated into decision support systems and their related environments at a low cost and quick turnaround of results., i.e. designed rapid prototyping. Conceptually, an understanding of Earth science research (and results) coupled with decision-making requirements and needs leads to a demonstration (experiment) depicting enhancements or improvements to an operational decisions process through the use of NASA data. Five

  10. Rapid Prototyping of High Performance Signal Processing Applications

    Science.gov (United States)

    Sane, Nimish

    Advances in embedded systems for digital signal processing (DSP) are enabling many scientific projects and commercial applications. At the same time, these applications are key to driving advances in many important kinds of computing platforms. In this region of high performance DSP, rapid prototyping is critical for faster time-to-market (e.g., in the wireless communications industry) or time-to-science (e.g., in radio astronomy). DSP system architectures have evolved from being based on application specific integrated circuits (ASICs) to incorporate reconfigurable off-the-shelf field programmable gate arrays (FPGAs), the latest multiprocessors such as graphics processing units (GPUs), or heterogeneous combinations of such devices. We, thus, have a vast design space to explore based on performance trade-offs, and expanded by the multitude of possibilities for target platforms. In order to allow systematic design space exploration, and develop scalable and portable prototypes, model based design tools are increasingly used in design and implementation of embedded systems. These tools allow scalable high-level representations, model based semantics for analysis and optimization, and portable implementations that can be verified at higher levels of abstractions and targeted toward multiple platforms for implementation. The designer can experiment using such tools at an early stage in the design cycle, and employ the latest hardware at later stages. In this thesis, we have focused on dataflow-based approaches for rapid DSP system prototyping. This thesis contributes to various aspects of dataflow-based design flows and tools as follows: 1. We have introduced the concept of topological patterns, which exploits commonly found repetitive patterns in DSP algorithms to allow scalable, concise, and parameterizable representations of large scale dataflow graphs in high-level languages. We have shown how an underlying design tool can systematically exploit a high

  11. Preoperative planning of thoracic surgery with use of three-dimensional reconstruction, rapid prototyping, simulation and virtual navigation.

    Science.gov (United States)

    Heuts, Samuel; Sardari Nia, Peyman; Maessen, Jos G

    2016-01-01

    For the past decades, surgeries have become more complex, due to the increasing age of the patient population referred for thoracic surgery, more complex pathology and the emergence of minimally invasive thoracic surgery. Together with the early detection of thoracic disease as a result of innovations in diagnostic possibilities and the paradigm shift to personalized medicine, preoperative planning is becoming an indispensable and crucial aspect of surgery. Several new techniques facilitating this paradigm shift have emerged. Pre-operative marking and staining of lesions are already a widely accepted method of preoperative planning in thoracic surgery. However, three-dimensional (3D) image reconstructions, virtual simulation and rapid prototyping (RP) are still in development phase. These new techniques are expected to become an important part of the standard work-up of patients undergoing thoracic surgery in the future. This review aims at graphically presenting and summarizing these new diagnostic and therapeutic tools.

  12. A Language Translator for a Computer Aided Rapid Prototyping System.

    Science.gov (United States)

    1988-03-01

    53 Table 2. TYPICAL FUNCTIONS FOR NAVMACS AND PROPOSED NAVM ACSM ODEL II...development. Second, the use of prototyping in an automated en- vironment to provide guideline models for the entire life cycle. Use of automated tools. Al

  13. Application of Computer-Aided Designing and Rapid Prototyping Technologies in Reconstruction of Blowout Fractures of the Orbital Floor.

    Science.gov (United States)

    Tabaković, Saša Z; Konstantinović, Vitomir S; Radosavljević, Radivoje; Movrin, Dejan; Hadžistević, Miodrag; Hatab, Nur

    2015-07-01

    Traumatology of the maxillofacial region represents a wide range of different types of facial skeletal injuries and encompasses numerous treatment methods. Application of computer-aided design (CAD) in combination with rapid prototyping (RP) technologies and three-dimensional computed tomography techniques facilitates surgical therapy planning for efficient treatment. The purpose of this study is to determine the efficiency of individually designed implants of poly-DL-lactide (PDLLA) in the reconstruction of blowout fractures of the orbital floor. In the course of a surgical treatment, individually designed implants manufactured by CAD/RP technologies were used. Preoperative analysis and postoperative monitoring were conducted to evaluate the successfulness of orbital floor reconstruction using customized PDLLA implants, based on: presence of diplopia, paresthesia of infraorbital nerve, and presence of enophthalmos. In 6 of the 10 patients, diplopia completely disappeared immediately after surgical procedure. Diplopia gradually disappeared after 1 month in 3 patients, whereas in 1, it remained even after 6 months. In 7 patients, paresthesia disappeared within a month after surgery and in 3 patients within 2 months. Postoperative average Orbital volume (OV) of the injured side (13.333 ± 3.177) was significantly reduced in comparison with preoperative OV (15.847 ± 3.361) after reconstruction of the orbital floor with customized PDLLA implant (P virtual preoperative modeling allows easier preoperative preparation and yields satisfactory functional and esthetic outcomes.

  14. Scaffolds for bone tissue engineering fabricated from two different materials by the rapid prototyping technique: PCL versus PLGA.

    Science.gov (United States)

    Park, So Hee; Park, Dae Sung; Shin, Ji Won; Kang, Yun Gyeong; Kim, Hyung Keun; Yoon, Taek Rim; Shin, Jung-Woog

    2012-11-01

    Three dimensional tissue engineered scaffolds for the treatment of critical defect have been usually fabricated by salt leaching or gas forming technique. However, it is not easy for cells to penetrate the scaffolds due to the poor interconnectivity of pores. To overcome these current limitations we utilized a rapid prototyping (RP) technique for fabricating tissue engineered scaffolds to treat critical defects. The RP technique resulted in the uniform distribution and systematic connection of pores, which enabled cells to penetrate the scaffold. Two kinds of materials were used. They were poly(ε-caprolactone) (PCL) and poly(D, L-lactic-glycolic acid) (PLGA), where PCL is known to have longer degradation time than PLGA. In vitro tests supported the biocompatibility of the scaffolds. A 12-week animal study involving various examinations of rabbit tibias such as micro-CT and staining showed that both PCL and PLGA resulted in successful bone regeneration. As expected, PLGA degraded faster than PCL, and consequently the tissues generated in the PLGA group were less dense than those in the PCL group. We concluded that slower degradation is preferable in bone tissue engineering, especially when treating critical defects, as mechanical support is needed until full regeneration has occurred.

  15. ASSESSMENT OF SURFACE FINISH AND DIMENSIONAL ACCURACY OF TOOLS MANUFACTURED BY METAL CASTING IN RAPID PROTOTYPING SAND MOULDS

    Directory of Open Access Journals (Sweden)

    Nyembwe, K.

    2012-11-01

    Full Text Available In this paper, an initial assessment of the quality parameters of the surface finish and dimensional accuracy of tools made by metal casting in rapid prototyping (RP sand moulds is undertaken. A case study from a local tool room, dealing with the manufacturing of an aluminium die for the lost wax process, is employed. Modern techniques, including surface roughness analysis and three dimensional scanning, are used to determine and understand how each manufacturing step influences the final quality of the cast tool. The best surface finish obtained for the cast die had arithmetic average roughness (Ra and mean average roughness (Rz respectively equal to 3.23m and 11.38m. In terms of dimensional accuracy, 82% of cast-die points coincided with the Computer Aided Design (CAD data, which is within the typical tolerances of sand cast products. The investigation shows that mould coating contributes slightly to the improvement of the cast tool surface finish. The study also found that the additive manufacturing of the sand mould was the chief factor responsible for the loss of dimensional accuracy. These findings indicate that machining will always be required to improve the surface finish and the dimensional accuracy of cast tools in RP sand moulds.

  16. Axure RP7 prototyping essentials

    CERN Document Server

    Schwartz, Ezra

    2014-01-01

    A hands-on guide filled with practical examples to device/OS independent User Experience Strategy with Axure 7. If you are a UX practitioner or a business analyst or a product manager involved in UX projects, this book is for you. This book will also be useful to consultants or in-house staff who work for agencies, and individual practitioners or UX team members. Familiarity with Axure will help but is not mandatory.

  17. Rapid diagnostic detection of plum pox virus in Prunus plants by isothermal AmplifyRP(®) using reverse transcription-recombinase polymerase amplification.

    Science.gov (United States)

    Zhang, Shulu; Ravelonandro, Michel; Russell, Paul; McOwen, Nathan; Briard, Pascal; Bohannon, Seven; Vrient, Albert

    2014-10-01

    Plum pox virus (PPV) causes the most destructive viral disease known as plum pox or Sharka disease in stone fruit trees. As an important regulated pathogen, detection of PPV is thus of critical importance to quarantine and eradication of the spreading disease. In this study, the innovative development of two AmplifyRP(®) tests is reported for a rapid isothermal detection of PPV using reverse transcription-recombinase polymerase amplification. In an AmplifyRP(®) test, all specific recombination and amplification reactions occur at a constant temperature without thermal cycling and the test results are either recorded in real-time with a portable fluorescence reader or displayed using a lateral flow strip contained inside an amplicon detection chamber. The major improvement of this assay is that the entire test from sample preparation to result can be completed in as little as 20min and can be performed easily both in laboratories and in the field. The results from this study demonstrated the ability of the AmplifyRP(®) technique to detect all nine PPV strains (An, C, CR, D, EA, M, Rec, T, or W). Among the economic benefits to pathogen surveys is the higher sensitivity of the AmplifyRP(®) to detect PPV when compared to the conventional ELISA and ImmunoStrip(®) assays. This is the first report describing the use of such an innovative technique to detect rapidly plant viruses affecting perennial crops. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Bony defect repair in rabbit using hybrid rapid prototyping polylactic co glycolic acid/β tricalciumphosphate collagen I/apatite scaffold and bone marrow mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Long Pang

    2013-01-01

    Full Text Available Background: In bone tissue engineering, extracellular matrix exerts critical influence on cellular interaction with porous biomaterial and the apatite playing an important role in the bonding process of biomaterial to bone tissue. The aim of this study was to observe the therapeutic effects of hybrid rapid prototyping (RP scaffolds comprising polylactic-co-glycolic acid (PLGA, β-tricalciumphosphate (β-TCP, collagen I and apatite (PLGA/β-TCP-collagen I/apatite on segmental bone defects in conjunction with combination with bone marrow mesenchymal stem cells (BMSCs. Materials and Methods: BMSCs were seeded into the hybrid RP scaffolds to repair 15 mm defect in the radius of rabbits. Radiograph, microcomputed tomography and histology were used to evaluate new bone formation. Results: Radiographic analysis done from 12 to 36 weeks postoperative period demonstrated that new bone formed at the radial defect site and continues to increase until the medullary cavity is recanalized and remodelling is complete. The bone defect remained unconnected in the original RP scaffolds (PLGA/β-TCP during the whole study. Histological observations conformed to the radiographic images. In hybrid RP scaffold group, woven bone united the radial defect at 12 weeks and consecutively remodeled into lamellar bone 24 weeks postoperation and finally matured into cortical bone with normal marrow cavity after another 12 weeks. No bone formation but connective tissue has been detected in RP scaffold at the same time. Conclusion: Collagen I/apatite sponge composite coating could improve new bone formation in vivo. The hybrid RP scaffold of PLGA/β-TCP skeleton with collagen I/apatite sponge composite coating is a promising candidate for bone tissue engineering.

  19. Bony defect repair in rabbit using hybrid rapid prototyping polylactic-co-glycolic acid/β-tricalciumphosphate collagen I/apatite scaffold and bone marrow mesenchymal stem cells

    Science.gov (United States)

    Pang, Long; Hao, Wei; Jiang, Ming; Huang, Jianguo; Yan, Yongnian; Hu, Yunyu

    2013-01-01

    Background: In bone tissue engineering, extracellular matrix exerts critical influence on cellular interaction with porous biomaterial and the apatite playing an important role in the bonding process of biomaterial to bone tissue. The aim of this study was to observe the therapeutic effects of hybrid rapid prototyping (RP) scaffolds comprising polylactic-co-glycolic acid (PLGA), β-tricalciumphosphate (β-TCP), collagen I and apatite (PLGA/β-TCP-collagen I/apatite) on segmental bone defects in conjunction with combination with bone marrow mesenchymal stem cells (BMSCs). Materials and Methods: BMSCs were seeded into the hybrid RP scaffolds to repair 15 mm defect in the radius of rabbits. Radiograph, microcomputed tomography and histology were used to evaluate new bone formation. Results: Radiographic analysis done from 12 to 36 weeks postoperative period demonstrated that new bone formed at the radial defect site and continues to increase until the medullary cavity is recanalized and remodelling is complete. The bone defect remained unconnected in the original RP scaffolds (PLGA/β-TCP) during the whole study. Histological observations conformed to the radiographic images. In hybrid RP scaffold group, woven bone united the radial defect at 12 weeks and consecutively remodeled into lamellar bone 24 weeks postoperation and finally matured into cortical bone with normal marrow cavity after another 12 weeks. No bone formation but connective tissue has been detected in RP scaffold at the same time. Conclusion: Collagen I/apatite sponge composite coating could improve new bone formation in vivo. The hybrid RP scaffold of PLGA/β-TCP skeleton with collagen I/apatite sponge composite coating is a promising candidate for bone tissue engineering. PMID:23960284

  20. Accuracy and precision of polyurethane dental arch models fabricated using a three-dimensional subtractive rapid prototyping method with an intraoral scanning technique.

    Science.gov (United States)

    Kim, Jae-Hong; Kim, Ki-Baek; Kim, Woong-Chul; Kim, Ji-Hwan; Kim, Hae-Young

    2014-03-01

    This study aimed to evaluate the accuracy and precision of polyurethane (PUT) dental arch models fabricated using a three-dimensional (3D) subtractive rapid prototyping (RP) method with an intraoral scanning technique by comparing linear measurements obtained from PUT models and conventional plaster models. Ten plaster models were duplicated using a selected standard master model and conventional impression, and 10 PUT models were duplicated using the 3D subtractive RP technique with an oral scanner. Six linear measurements were evaluated in terms of x, y, and z-axes using a non-contact white light scanner. Accuracy was assessed using mean differences between two measurements, and precision was examined using four quantitative methods and the Bland-Altman graphical method. Repeatability was evaluated in terms of intra-examiner variability, and reproducibility was assessed in terms of inter-examiner and inter-method variability. The mean difference between plaster models and PUT models ranged from 0.07 mm to 0.33 mm. Relative measurement errors ranged from 2.2% to 7.6% and intraclass correlation coefficients ranged from 0.93 to 0.96, when comparing plaster models and PUT models. The Bland-Altman plot showed good agreement. The accuracy and precision of PUT dental models for evaluating the performance of oral scanner and subtractive RP technology was acceptable. Because of the recent improvements in block material and computerized numeric control milling machines, the subtractive RP method may be a good choice for dental arch models.

  1. A low cost rapid prototype platform for a three phase PFC rectifier application

    DEFF Research Database (Denmark)

    Haase, Frerk; Kouchaki, Alireza; Nymand, Morten

    2015-01-01

    In this paper the design and development of a low cost rapid prototype platform for a Three Phase PFC rectifier application is presented. The active rectifier consists of a SiC-MOSFET based PWM converter and a low cost rapid prototype platform for simulating and implementing the digital control...... is then performed using automatic code generation for embedded targets, which provided a close link between simulation and implementation of the PFC controller. The paper shows how this rapid prototype platform developed and how it was used for the design and implementation of the controller for a high efficient Si...

  2. Rapid Prototyping with Fourth Generation Systems - an Empirical Study

    DEFF Research Database (Denmark)

    Grønbæk, Kaj

    1989-01-01

    prototypes appear to stimulate constructive response. Reasons that developers should be aware of the tacit knowledge which plays an important part in users' work practices and should be involved early in the development process. Proposes three techniques to meet the requirements – participation, simulation...

  3. Rapid-Prototyping of Application Specific Signal Processors (RASSP) Education and Facilitation

    National Research Council Canada - National Science Library

    Gadient, Anthony

    2000-01-01

    The Rapid-Prototyping of Application Specific Signal Processors (RASSP) program was a major DARPA/Tri-Service initiative to reinvent the process by which embedded digital signal processors were developed...

  4. Rapid Prototyping — A Tool for Presenting 3-Dimensional Digital Models Produced by Terrestrial Laser Scanning

    Directory of Open Access Journals (Sweden)

    Juho-Pekka Virtanen

    2014-07-01

    Full Text Available Rapid prototyping has received considerable interest with the introduction of affordable rapid prototyping machines. These machines can be used to manufacture physical models from three-dimensional digital mesh models. In this paper, we compare the results obtained with a new, affordable, rapid prototyping machine, and a traditional professional machine. Two separate data sets are used for this, both of which were acquired using terrestrial laser scanning. Both of the machines were able to produce complex and highly detailed geometries in plastic material from models based on terrestrial laser scanning. The dimensional accuracies and detail levels of the machines were comparable, and the physical artifacts caused by the fused deposition modeling (FDM technique used in the rapid prototyping machines could be found in both models. The accuracy of terrestrial laser scanning exceeded the requirements for manufacturing physical models of large statues and building segments at a 1:40 scale.

  5. Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing

    National Research Council Canada - National Science Library

    Gibson, Ian; Rosen, David; Stucker, B

    2015-01-01

    .... This book provides a comprehensive overview of rapid prototyping technologies as well as support technologies such as software systems, vacuum casting, investment casting, plating, infiltration and other systems. This book also...

  6. [Application status of rapid prototyping technology in artificial bone based on reverse engineering].

    Science.gov (United States)

    Fang, Ao; Zheng, Min; Fan, Ding

    2015-02-01

    Artificial bone replacement has made an important contribution to safeguard human health and improve the quality of life. The application requirements of rapid prototyping technology based on reverse engineering in individualized artificial bone with individual differences are particularly urgent. This paper reviewed the current research and applications of rapid prototyping and reverse engineering in artificial bone. The research developments and the outlook of bone kinematics and dynamics simulation are also introduced.

  7. Rapid Prototyping of Simulated VIIRS Data in the SERVIR Fire Rapid Response System

    Science.gov (United States)

    Easson, G.; Kuszmaul, J. S.; Yarbrough, L. D.; Irwin, D.; Cherrington, E.

    2006-12-01

    A rapid prototyping capability experiment has been established involving the application of the SERVIR (Sistema Regional de Visualización y Monitoreo) decision support tool, which is NASA's and its partner agencies' tool to monitor groundcover and climatic conditions in Mesoamerica. As an information system, the SERVIR tool processes data products from multiple sources and the outcome is visualized through interactive digital maps, standard view map outputs or 3D real-time visualization. The focus of this research is one of the SERVIR Fire Rapid Response products known as the MODIS SERVIR Fire Extent Product, which was developed to meet the requirements of the Guatemalan Park Service. The credibility of SERVIR's monitoring tools currently depends upon NASA's MODIS data, which is nearing the end of its availability. This will make it necessary to transition to the planned replacement sensor, VIIRS. The impact of this transition on the performance of SERVIR's fire detection tools is the current focus of our investigation. A quantitative assessment of fire conditions in Guatemala is made using MODIS data and is compared to the anticipated performance using simulated data that would have been produced by a VIIRS-like sensor. Using a low-density geospatial database, the comparison is made for a number of dates from the 2003 Guatemalan fire season, where ground validation data is available. A comparative assessment is also made using the kappa statistic applied to the land classifications resulting from both the MODIS- and VIIRS- based fire detection algorithms.

  8. Rapid BeagleBoard prototyping with MATLAB and Simulink

    CERN Document Server

    Qin, Fei

    2013-01-01

    This book is a fast-paced guide with practical, hands-on recipes which will show you how to prototype Beagleboard-based audio/video applications using Matlab/Simlink and Sourcery Codebench on a Windows host.Beagleboard Embedded Projects is great for students and academic researchers who have practical ideas and who want to build a proof-of-concept system on an embedded hardware platform quickly and efficiently. It is also useful for product design engineers who want to ratify their applications and reduce the time-to-market. It is assumed that you are familiar with Matlab/Simulink and have som

  9. Prototipaje rápido de estructuras craneofaciales Rapid prototyping of craniofacial structures

    Directory of Open Access Journals (Sweden)

    Juan Felipe Isaza

    2008-12-01

    Full Text Available Este artículo presenta una descripción de la tecnología de Prototipaje Rápido o Rapid Prototyping (RP aplicada a la medicina, específicamente a problemas craneofaciales, con la cual se pueden fabricar modelos sólidos 3D por adición de material. A su vez se describe una aplicación a partir de la simulación de una cirugía para insertar cuatro implantes mandibulares, los cuales constituyen la base de una prótesis fija soportada por implantes. La simulación del procedimiento quirúrgico comenzó con la obtención de la geometría mandibular a partir del procesamiento de imágenes biomédicas, provenientes de una Tomografia Axial Computarizada (TAC de una mujer adulta, totalmente edéntula. Dicho proceso se realizó utilizando el software GIB Points 3D, desarrollado dentro del presente trabajo. Con el software se obtuvo un archivo de texto con la nube de puntos 3D de la mandíbula que posteriormente fue exportado a ProEngineer Wildfire 3.0, desde el cual se generó un archivo en formato estándar STL, compatible con la mayoría de máquinas RP. La tecnología usada para la impresión 3D, fue la de “deposición de hilo fundido” o Fused Deposition Modeling (FDM. Se logró obtener un modelo plástico de una mandíbula, de gran calidad anatómica y dimensional, utilizando tecnología disponible enColombia. Además, se simuló con éxito el procedimiento quirúrgico para lainstalación de cuatro implantes utilizando las herramientas que se usarían enla cirugía real. En general, la metodología implementada puede ser utilizadapara la planificación quirúrgica y así evitar procedimientos de ensayo y errorque puedan poner en riesgo la salud del paciente. También como herramientade comunicación para explicarle al paciente los procedimientos quirúrgicos aque será sometido. Además, puede ser usado con fines docentes para el entrenamientode estudiantes, haciendo más efectivos los procesos de aprendizajeen el ámbito clínico que a su

  10. Rapid prototyping for patient-specific surgical orthopaedics guides: A systematic literature review.

    Science.gov (United States)

    Popescu, Diana; Laptoiu, Dan

    2016-06-01

    There has been a lot of hype surrounding the advantages to be gained from rapid prototyping processes in a number of fields, including medicine. Our literature review aims objectively to assess how effective patient-specific surgical guides manufactured using rapid prototyping are in a number of orthopaedic surgical applications. To this end, we carried out a systematic review to identify and analyse clinical and experimental literature studies in which rapid prototyping patient-specific surgical guides are used, focusing especially on those that entail quantifiable outcomes and, at the same time, providing details on the guides' design and type of manufacturing process. Here, it should be mentioned that in this field there are not yet medium- or long-term data, and no information on revisions. In the reviewed studies, the reported positive opinions on the use of rapid prototyping patient-specific surgical guides relate to the following main advantages: reduction in operating times, low costs and improvements in the accuracy of surgical interventions thanks to guides' personalisation. However, disadvantages and sources of errors which can cause patient-specific surgical guide failures are as well discussed by authors. Stereolithography is the main rapid prototyping process employed in these applications although fused deposition modelling or selective laser sintering processes can also satisfy the requirements of these applications in terms of material properties, manufacturing accuracy and construction time. Another of our findings was that individualised drill guides for spinal surgery are currently the favourite candidates for manufacture using rapid prototyping. Other emerging applications relate to complex orthopaedic surgery of the extremities: the forearm and foot. Several procedures such as osteotomies for radius malunions or tarsal coalition could become standard, thanks to the significant assistance provided by rapid prototyping patient-specific surgical

  11. Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques

    NARCIS (Netherlands)

    Hazeveld, Aletta; Huddleston Slater, James J. R.; Ren, Yijin

    INTRODUCTION: Rapid prototyping is a fast-developing technique that might play a significant role in the eventual replacement of plaster dental models. The aim of this study was to investigate the accuracy and reproducibility of physical dental models reconstructed from digital data by several rapid

  12. Teaching Tip: Using Rapid Game Prototyping for Exploring Requirements Discovery and Modeling

    Science.gov (United States)

    Dalal, Nikunj

    2012-01-01

    We describe the use of rapid game prototyping as a pedagogic technique to experientially explore and learn requirements discovery, modeling, and specification in systems analysis and design courses. Students have a natural interest in gaming that transcends age, gender, and background. Rapid digital game creation is used to build computer games…

  13. Rapid prototyping of multiphase microfluidics with robotic cutters

    Science.gov (United States)

    Li, Zidong; Zhao, Zhengtuo; Lo, Joe Fu-jiou

    2014-03-01

    Microfluidic devices offer novel techniques to address biological and biomedical issues. Standard microfluidic fabrication uses photolithography to pattern channels on silicon wafers with high resolution. Even the relatively straightforward SU8 and soft lithography in microfluidics require investing and training in photolithography, which is also time consuming due to complicated thick resist procedures, including sensitive substrate pretreatment, coating, soft bake, expose, post-exposure bake, and developing steps. However, for applications where low resolution (>200 μm) and high turn-around (> 4 designs/day) prototyping are met with little or no lithography infrastructure, robotic cutters [1] offer flexible options for making glass and PDMS microfluidics. We describe the use of robotics cutters for designing microfluidic geometries, and compliment it with safe glass etching, with depths down to 60 μm. Soft lithography patterning of 200 μm thick PDMS membrane was also explored. Without high equipment investment and lengthy student training, both glass and PDMS microfluidics can be achieved in small facilities using this technique.

  14. New layer-based imaging and rapid prototyping techniques for computer-aided design and manufacture of custom dental restoration.

    Science.gov (United States)

    Lee, M-Y; Chang, C-C; Ku, Y C

    2008-01-01

    Fixed dental restoration by conventional methods greatly relies on the skill and experience of the dental technician. The quality and accuracy of the final product depends mostly on the technician's subjective judgment. In addition, the traditional manual operation involves many complex procedures, and is a time-consuming and labour-intensive job. Most importantly, no quantitative design and manufacturing information is preserved for future retrieval. In this paper, a new device for scanning the dental profile and reconstructing 3D digital information of a dental model based on a layer-based imaging technique, called abrasive computer tomography (ACT) was designed in-house and proposed for the design of custom dental restoration. The fixed partial dental restoration was then produced by rapid prototyping (RP) and computer numerical control (CNC) machining methods based on the ACT scanned digital information. A force feedback sculptor (FreeForm system, Sensible Technologies, Inc., Cambridge MA, USA), which comprises 3D Touch technology, was applied to modify the morphology and design of the fixed dental restoration. In addition, a comparison of conventional manual operation and digital manufacture using both RP and CNC machining technologies for fixed dental restoration production is presented. Finally, a digital custom fixed restoration manufacturing protocol integrating proposed layer-based dental profile scanning, computer-aided design, 3D force feedback feature modification and advanced fixed restoration manufacturing techniques is illustrated. The proposed method provides solid evidence that computer-aided design and manufacturing technologies may become a new avenue for custom-made fixed restoration design, analysis, and production in the 21st century.

  15. Dimensional Precision Research of Wax Molding Rapid Prototyping based on Droplet Injection

    Science.gov (United States)

    Mingji, Huang; Geng, Wu; yan, Shan

    2017-11-01

    The traditional casting process is complex, the mold is essential products, mold quality directly affect the quality of the product. With the method of rapid prototyping 3D printing to produce mold prototype. The utility wax model has the advantages of high speed, low cost and complex structure. Using the orthogonal experiment as the main method, analysis each factors of size precision. The purpose is to obtain the optimal process parameters, to improve the dimensional accuracy of production based on droplet injection molding.

  16. Logic Foundry: Rapid Prototyping for FPGA-Based DSP Systems

    Directory of Open Access Journals (Sweden)

    Bhattacharyya Shuvra S

    2003-01-01

    Full Text Available We introduce the Logic Foundry, a system for the rapid creation and integration of FPGA-based digital signal processing systems. Recognizing that some of the greatest challenges in creating FPGA-based systems occur in the integration of the various components, we have proposed a system that targets the following four areas of integration: design flow integration, component integration, platform integration, and software integration. Using the Logic Foundry, a system can be easily specified, and then automatically constructed and integrated with system level software.

  17. Application of computer-aided three-dimensional skull model with rapid prototyping technique in repair of zygomatico-orbito-maxillary complex fracture.

    Science.gov (United States)

    Li, Wei Zhong; Zhang, Mei Chao; Li, Shao Ping; Zhang, Lei Tao; Huang, Yu

    2009-06-01

    With the advent of CAD/CAM and rapid prototyping (RP), a technical revolution in oral and maxillofacial trauma was promoted to benefit treatment, repair of maxillofacial fractures and reconstruction of maxillofacial defects. For a patient with zygomatico-facial collapse deformity resulting from a zygomatico-orbito-maxillary complex (ZOMC) fracture, CT scan data were processed by using Mimics 10.0 for three-dimensional (3D) reconstruction. The reduction design was aided by 3D virtual imaging and the 3D skull model was reproduced using the RP technique. In line with the design by Mimics, presurgery was performed on the 3D skull model and the semi-coronal incision was taken for reduction of ZOMC fracture, based on the outcome from the presurgery. Postoperative CT and images revealed significantly modified zygomatic collapse and zygomatic arch rise and well-modified facial symmetry. The CAD/CAM and RP technique is a relatively useful tool that can assist surgeons with reconstruction of the maxillofacial skeleton, especially in repairs of ZOMC fracture.

  18. Reverse Design and Rapid Prototyping ABS Part Assembly with Hard Material

    Directory of Open Access Journals (Sweden)

    Xu Yaodong

    2016-01-01

    Full Text Available In order to realize the variant design of the existing product , and rapid completion of the manufacturing and assembly, a new product was designed by reverse design method,and manufactured by rapid prototyping technology to finish assembly with hard material part. An experiment of rapid prototyping part with different model scales assembling with metal part was done to find the right scale of 1.008 of the model in H/h tolerance fit and 0.1mm more in size in interference fit. Through the static theory analysis, the amount of the interference fit was calculated by equal torque in contrast with mechanical assembly.The result was further proved by ProE mechanica simulation for stress and strain. Applying the rule of the results in experiment,prototyping part assembly with hard material part in different types of fit can be realized.

  19. [Effects and influential factors of rapid prototyping technology in dental restorations].

    Science.gov (United States)

    Pan, Qiao-Ling; Yuan, Jia-Kan

    2017-06-01

    To explore the effects and influential factors of rapid prototyping technology in dental restorations. From May 2013 to November 2014 in our hospital, 120 patients were divided into experimental group and conventional group. Patients in the experimental group were treated by rapid prototyping technology, while patients in the conventional group were treated by routine methods. The effects of the two groups were compared using SPSS 17.0 software package. The effective rate of the experimental group was significantly higher than that of the conventional group (P<0.05). Complications in the experimental group were significantly lower than those in the conventional group (P<0.05). Rapid prototyping technology can be used in the treatment of patients with dentition defects with satisfactory results and fewer adverse reactions.

  20. Individually Fitted Hearing Aid Device Manufactured Using Rapid Prototyping Based on Ear CT. A Case Report.

    Science.gov (United States)

    Chrzan, R; Miechowicz, S; Urbanik, A; Markowska, O; Kudasik, T

    2009-05-15

    Rapid prototyping is the technology of automatic freeform fabrication of physical objects from virtual CAD (computer aided design) models. For medical objects the models may be created using data from CT, MR or rotational angiography. We descriobe the case of a 83-year-old woman with essential bilateral hearing impairment as the effect of chronic otitis media. An individually fitted hearing aid was produced for the patient using stereolithography technology and vacuum casting based on data obtained during ear CT. Rapid prototyping may help in manufacturing individually adjusted biomedical prostheses, reducing the time of device production and improving its fitting.

  1. Design and optimization of the micro-engine turbine rotor manufacturing using the rapid prototyping technology

    Science.gov (United States)

    Vdovin, R. A.; Smelov, V. G.

    2017-02-01

    This work describes the experience in manufacturing the turbine rotor for the micro-engine. It demonstrates the design principles for the complex investment casting process combining the use of the ProCast software and the rapid prototyping techniques. At the virtual modelling stage, in addition to optimized process parameters, the casting structure was improved to obtain the defect-free section. The real production stage allowed demonstrating the performance and fitness of rapid prototyping techniques for the manufacture of geometrically-complex engine-building parts.

  2. Innovative procedure for computer-assisted genioplasty: three-dimensional cephalometry, rapid-prototyping model and surgical splint.

    Science.gov (United States)

    Olszewski, R; Tranduy, K; Reychler, H

    2010-07-01

    The authors present a new procedure of computer-assisted genioplasty. They determined the anterior, posterior and inferior limits of the chin in relation to the skull and face with the newly developed and validated three-dimensional cephalometric planar analysis (ACRO 3D). Virtual planning of the osteotomy lines was carried out with Mimics (Materialize) software. The authors built a three-dimensional rapid-prototyping multi-position model of the chin area from a medical low-dose CT scan. The transfer of virtual information to the operating room consisted of two elements. First, the titanium plates on the 3D RP model were pre-bent. Second, a surgical guide for the transfer of the osteotomy lines and the positions of the screws to the operating room was manufactured. The authors present the first case of the use of this model on a patient. The postoperative results are promising, and the technique is fast and easy-to-use. More patients are needed for a definitive clinical validation of this procedure. Copyright 2010 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  3. Development of a drivable hybrid drive prototype in a rapid prototyping environment; Entwicklung einer Antriebssteuerung fuer ein Hybridfahrzeug in einer Rapid-Prototyping-Umgebung

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Klaus [ETAS GmbH, Stuttgart (Germany); Escherle, Thomas; Nazareth, Dieter [Hochschule Landshut (Germany). Fakultaet fuer Informatik

    2010-07-01

    At least since the automotive crisis hybrid drives for motor vehicles resound throughout the land. All automobile manufacturers and many suppliers are working on appropriate concepts and components. In order to train students in step with actual practice on this relevant topics, mechanical engineering professor Dr. Prexler hat the idea to develop a drivable hybrid drive prototype with students within three terms. A joint project of the departments of mechanical engineering, electrical engineering and information technology at university of Landshut succeeded in developing a drivable serial plug-in hybrid named ''MBL-ex-drive''. (orig.)

  4. Prototyping

    OpenAIRE

    Corsín Jiménez, Alberto

    2017-01-01

    The prototyping of method calls for, at a minimum, three operations of design: rethinking the proprietary and legal economy of research; rethinking the frontiers that separate those who use methods from those to whom methods are applied to; designing infrastructures of apprenticeships for every problem.

  5. Accurate reconstruction of discontinuous mandible using a reverse engineering/computer-aided design/rapid prototyping technique: a preliminary clinical study.

    Science.gov (United States)

    Zhou, Li-bin; Shang, Hong-tao; He, Li-sheng; Bo, Bin; Liu, Gui-cai; Liu, Yan-pu; Zhao, Jin-long

    2010-09-01

    To improve the reconstructive surgical outcome of a discontinuous mandibular defect, we used reverse engineering (RE), computer-aided design (CAD), and rapid prototyping (RP) technique to fabricate customized mandibular trays to precisely restore the mandibular defects. Autogenous bone grafting was also used to restore the bony continuity for occlusion rehabilitation. Six patients who had undergone block resection of the mandible underwent reconstruction using a custom titanium tray combining autogenous iliac grafts. The custom titanium tray was made using a RE/CAD/RP technique. A virtual 3-dimensional model was obtained by spiral computed tomography scanning. The opposite side of the mandible was mirrored to cover the defect area to restore excellent facial symmetry. A bone grafting tray was designed from the mirrored image and manufactured using RP processing and casting. The mandibular defects were restored using the trays in combination of autologous iliac grafting. An implant denture was made for 1 of the 6 patients at 24 weeks postoperatively for occlusion rehabilitation. The trays fabricated using this technique fit well in all 6 patients. The reconstructive procedures were easy and time saving. Satisfactory facial symmetry was restored. No severe complications occurred in the 5 patients without occlusion rehabilitation during a mean 50-month follow-up period. The reconstruction in the patient with occlusion lasted for only 1 year and failed eventually because of bone resorption and infection. Mandibular reconstruction was facilitated using the RE/CAD/RP technique. Satisfactory esthetic results were achieved. However, the rigidity of the cast tray could cause severe stress shielding to the grafts, which could lead to disuse atrophy. Therefore, some modification is needed for functional reconstruction. Copyright 2010 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  6. A Rapid Prototyping Technique for Microfluidics with High Robustness and Flexibility

    Directory of Open Access Journals (Sweden)

    Zhenhua Liu

    2016-11-01

    Full Text Available In microfluidic device prototyping, master fabrication by traditional photolithography is expensive and time-consuming, especially when the design requires being repeatedly modified to achieve a satisfactory performance. By introducing a high-performance/cost-ratio laser to the traditional soft lithography, this paper describes a flexible and rapid prototyping technique for microfluidics. An ultraviolet (UV laser directly writes on the photoresist without a photomask, which is suitable for master fabrication. By eliminating the constraints of fixed patterns in the traditional photomask when the masters are made, this prototyping technique gives designers/researchers the convenience to revise or modify their designs iteratively. A device fabricated by this method is tested for particle separation and demonstrates good properties. This technique provides a flexible and rapid solution to fabricating microfluidic devices for non-professionals at relatively low cost.

  7. Rapid prototyping of centrifugal microfluidic modules for point of care blood testing

    CSIR Research Space (South Africa)

    Madzivhandila, Phophi

    2016-11-01

    Full Text Available We present modular centrifugal microfluidic devices that enable a series of blood tests to be performed towards a full blood count. The modular approach allows for rapid prototyping of device components in a generic format to complete different...

  8. A prototype Lab Box with DSK 'C6711/13 for rapid DSP algorithm development

    OpenAIRE

    Bertini, Graziano

    2007-01-01

    A system based on the TMS320C6711 DSK Starter Kit, enclosed in a special chassis, designed for real-time DSP algorithms testing, is described. Some evaluation of MATLab software Rapid Prototyping tools for a "Virtual Dubbing" application on damaged speech is also given.

  9. Rapid Prototyping 3D Model in Treatment of Pediatric Hip Dysplasia: A Case Report.

    Science.gov (United States)

    Holt, Andrew M; Starosolski, Zbigniew; Kan, J Herman; Rosenfeld, Scott B

    2017-01-01

    Rapid prototyping is an emerging technology that integrates common medical imaging with specialized production mechanisms to create detailed anatomic replicas. 3D-printed models of musculoskeletal anatomy have already proven useful in orthopedics and their applications continue to expand. We present the case of a 10 year-old female with Down syndrome and left acetabular dysplasia and chronic hip instability who underwent periacetabular osteotomy. A rapid prototyping 3D model was created to better understand the anatomy, counsel the family about the problem and the surgical procedure, as well as guide surgical technique. The intricate detail and size match of the model with the patient's anatomy offered unparalleled, hands-on experience with the patient's anatomy pre-operatively and improved surgical precision. Our experience with rapid prototyping confirmed its ability to enhance orthopedic care by improving the surgeon's ability to understand complex anatomy. Additionally, we report a new application utilizing intraoperative fluoroscopic comparison of the model and patient to ensure surgical precision and minimize the risk of complications. This technique could be used in other challenging cases. The increasing availability of rapid prototyping welcomes further use in all areas of orthopedics.

  10. Low-Cost Rapid Prototyping of Whole-Glass Microfluidic Devices

    Science.gov (United States)

    Yuen, Po Ki; Goral, Vasiliy N.

    2012-01-01

    A low-cost, straightforward, rapid prototyping of whole-glass microfluidic devices is presented using glass-etching cream that can be easily purchased in local stores. A self-adhered vinyl stencil cut out by a desktop digital craft cutter was used as an etching mask for patterning microstructures in glass using the glass-etching cream. A specific…

  11. Compact form fitting small antennas using three-dimensional rapid prototyping

    Science.gov (United States)

    Willis, Bryan Jon

    Three-dimensional (3D) rapid prototyping holds significant promise for future antenna designs. Many complex designs that would be unmanufacturable or costly are realizable on a 3D printing machine. The ability to create 3D designs of virtually any configuration makes it possible to build compact antennas that can form fit to any space. These antennas build on the concept that small antennas can best reach the ideal operating limit when utilizing the entire 3D space in a sphere surrounding the antenna. Antennas require a combination of dielectric and conductive materials. 3D rapid prototyping is already well advanced for plastics and dielectric materials (with more options coming online). Prototyping with conductive materials has lagged behind; due mainly to their higher melting points, but this is advancing as well. This dissertation focuses on 3D rapid prototyping for antenna design. A 3D antenna made from small cubical cells is optimized for 2.4--3GHz using a genetic algorithm (GA). The antennas are built using 3D printing of plastic covered by conductive paint. The effects of the conductivity of the paint and number of layers on the resonance and gain of the antenna are evaluated. These results demonstrate the feasibility of using 3D rapid prototyping for antenna design. A 3D dipole is also optimized using a GA to function from 510--910MHz. The antenna was built using 3D rapid prototyping from plastic. The 3D antenna was covered with a conductive coating and measured, showing good agreement with simulation. The 3D GA is used to design 3D antennas of random shape to fit inside the empty space in a cell phone case and optimized for cell phone bands 800--900MHz and 1.6--3.7GHz. The research also evaluates methods and materials that can be used to produce 3D antennas. In addition to the flexibility that 3D prototyping brings to antenna design, this paper describes how this new and emerging method for building antennas can provide fast and affordable antennas for

  12. Performance of a Micro-UAV lifting system built with the usage of rapid prototyping methods

    Science.gov (United States)

    Dalewski, R. T.; Gumowski, K.; Barczak, T.; Godek, J.

    2014-08-01

    This article presents results of the aerodynamic testing of a micro unmanned aerial vehicle rotor efficiency. The rotors were prepared as a set of two rotors in a counter-rotating ducted drive. Prototypes of the drives were made using two rapid prototyping techniques - FDM - fused deposition modelling method and SLS - selective laser sintering. Rotors were made then treated by introducing additional finishing cyanoacrylate coating and abrasive processing. Main differences between those models were observed in fan shape, porosity, surface roughness and mechanical properties - stiffness. An influence of these factors was observed on an aerodynamic efficiency. For the obtained prototypes both simulations and experimental testing were conducted with thrust, power, torque measurements, as well as the measurement of velocity and pressure distribution at the outlet of the duct. The results show the possibility of using rapid prototyping techniques to produce prototypes of drives operating in the low and medium Reynolds numbers (6000-60000), and the aerodynamic shape relevant factors affecting the preparation and performance of such drives. In addition, simulation studies were performed using the Fluent environment where experimental results were confronted with the results of simulation studies.

  13. The development of silk fibroin scaffolds using an indirect rapid prototyping approach: morphological analysis and cell growth monitoring by spectral-domain optical coherence tomography.

    Science.gov (United States)

    Liu, M J J; Chou, S M; Chua, C K; Tay, B C M; Ng, B K

    2013-02-01

    To date, naturally derived biomaterials are rarely used in advanced tissue engineering (TE) methods despite their superior biocompatibility. This is because these native materials, which consist mainly of proteins and polysaccharides, do not possess the ability to withstand harsh processing conditions. Unlike synthetic polymers, natural materials degrade and decompose rapidly in the presence of chemical solvents and high temperature, respectively. Thus, the fabrication of tissue scaffolds using natural biomaterials is often carried out using conventional techniques, where the efficiency in mass transport of nutrients and removal of waste products within the construct is compromised. The present study identified silk fibroin (SF) protein as a suitable material for the application of rapid prototyping (RP) or additive manufacturing (AM) technology. Using the indirect RP method, via the use of a mould, SF tissue scaffolds with both macro- and micro-morphological features can be produced and qualitatively examined by spectral-domain optical coherence tomography (SD-OCT). The advanced imaging technique showed the ability to differentiate the cells and SF material by producing high contrasting images, therefore suggesting the method as a feasible alternative to the histological analysis of cell growth within tissue scaffolds. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. Additive manufacturing technologies 3D printing, rapid prototyping, and direct digital manufacturing

    CERN Document Server

    Gibson, Ian; Stucker, Brent

    2015-01-01

    This book covers in detail the various aspects of joining materials to form parts. A conceptual overview of rapid prototyping and layered manufacturing is given,  beginning with the fundamentals so that readers can get up to speed quickly. Unusual and emerging applications such as micro-scale manufacturing, medical applications, aerospace, and rapid manufacturing are also discussed. This book provides a comprehensive overview of rapid prototyping technologies as well as support technologies such as software systems, vacuum casting, investment casting, plating, infiltration and other systems. This book also: Reflects recent developments and trends and adheres to the ASTM, SI, and other standards Includes chapters on automotive technology, aerospace technology and low-cost AM technologies Provides a broad range of technical questions to ensure comprehensive understanding of the concepts covered  

  15. Simulation and Rapid Prototyping of Adaptive Control Systems using the Adaptive Blockset for Simulink

    DEFF Research Database (Denmark)

    Ravn, Ole

    1998-01-01

    The paper describes the design considerations and implementational aspects of the Adaptive Blockset for Simulink which has been developed in a prototype implementation. The concept behind the Adaptive Blockset for Simulink is to bridge the gap between simulation and prototype controller...... implementation. This is done using the code generation capabilities of Real Time Workshop in combination with C s-function blocks for adaptive control in Simulink. In the paper the design of each group of blocks normally found in adaptive controllers is outlined. The block types are, identification, controller...... design, controller and state variable filter.The use of the Adaptive Blockset is demonstrated using a simple laboratory setup. Both the use of the blockset for simulation and for rapid prototyping of a real-time controller are shown....

  16. Studying the Technology of Creating Cortical Electrode Instruments using the Rapid Prototyping Technology

    Directory of Open Access Journals (Sweden)

    Ablyaz T. R.

    2017-06-01

    Full Text Available This paper shows the results of studying the technology of manufacturing cortical electrode-instruments (EI with the use of indirect methods of the Rapid Prototyping technology. Functional EI prototypes were made by layered synthesis of the photopolymer material with the use of the stereolithography technology (SLA - Stereo Lithography Apparatus. The article is focused on two methods of indirect EI manufacturing. One of the EI prototypes was used for making a molded wax model for hot investment casting, followed by applying copper coating. The second prototype was used for applying copper plating to a prepared current-conductive layer. As a result of EDMing a steel workpiece, both EIs reached the desired depth, which is 1 mm. The copper plating applied to the EI preserves its integrity. Through the use of the casting technology, there is a possibility to cut the economic costs by 35%. Using a prototype with preliminarily applied conductive coating makes it possible to make geometrically-complex EIs.

  17. Rapid prototyping and 3D-virtual models for operative dentistry education in Brazil.

    Science.gov (United States)

    Soares, Paulo Vinícius; de Almeida Milito, Giovana; Pereira, Fabrícia Araújo; Reis, Bruno Rodrigues; Soares, Carlos José; de Sousa Menezes, Murilo; de Freitas Santos-Filho, Paulo César

    2013-03-01

    Many dental students struggle for visual recognition when first exposed to the study of tooth cavity preparation in the operative dentistry laboratory. Rapid prototypes and virtual models of different cavity preparations were developed for the incoming first-year class of 2010 at the Dental School of Federal University of Uberlândia, Brazil, to help them to visualize the subtle differences in cavity preparations and are described in this article. Rapid prototyping techniques have been used in dental therapy, mainly for the fabrication of models to ease surgical planning in implantology, orthodontics, and maxillofacial prostheses. On the other hand, the application of these technologies associated with 3D-virtual models in dental education is waiting to be exploited, once they have significant potential to complement conventional training methods in dentistry.

  18. A novel low-cost mobile robot for rapid prototyping of precision farming applications

    DEFF Research Database (Denmark)

    Jensen, Kjeld; Neerup, Mathias Mikkel; Larsen, Leon Bonde

    field experiments using field robots which is typically a demanding task in terms of time consumption and logistics. Small indoor robots are sometimes used to emulate the larger field robots which allows for rapid prototyping and intermediate testing in the laboratory before moving to the field...... experiments. In this work we present a novel FrobitPro robot platform designed for rapid prototyping of FroboMind field robot applications. FrobitPro has a fundamental design similar to many current wheeled and tracked robots such as the Kongskilde Robotti, and the workflow of migrating from simulation...... to FrobitPro to field robot is therefore merely a matter of using different low level interface components. The FrobitPro robot is capable of carrying larger sensors such as RTK- GNSS, LIDAR and 3d stereo vision cameras. The platform supports interchangeable wheels for accurate indoor driving as well...

  19. Design of rapid prototype of UAV line-of-sight stabilized control system

    Science.gov (United States)

    Huang, Gang; Zhao, Liting; Li, Yinlong; Yu, Fei; Lin, Zhe

    2018-01-01

    The line-of-sight (LOS) stable platform is the most important technology of UAV (unmanned aerial vehicle), which can reduce the effect to imaging quality from vibration and maneuvering of the aircraft. According to the requirement of LOS stability system (inertial and optical-mechanical combined method) and UAV's structure, a rapid prototype is designed using based on industrial computer using Peripheral Component Interconnect (PCI) and Windows RTX to exchange information. The paper shows the control structure, and circuit system including the inertial stability control circuit with gyro and voice coil motor driven circuit, the optical-mechanical stability control circuit with fast-steering-mirror (FSM) driven circuit and image-deviation-obtained system, outer frame rotary follower, and information-exchange system on PC. Test results show the stability accuracy reaches 5μrad, and prove the effectiveness of the combined line-of-sight stabilization control system, and the real-time rapid prototype runs stable.

  20. Applications of the Rapid Prototyping Technology to Manufacture the Pelton Runners

    Directory of Open Access Journals (Sweden)

    Dorian Nedelcu

    2013-05-01

    Full Text Available The paper presents an application of the Rapid Prototyping technology using Objet Desktop 3D Printer to manufacture two Pelton runners that are destined for experimental measurements on a Pelton microturbine. The runners are different by bucket’s number and the bucket’s geometry of the second runner is similar with those of the first runner, but scaled in all directions with the bucket’s numbers ratio.

  1. Wind Tunnel Model Design and Test Using Rapid Prototype Materials and Processes

    Science.gov (United States)

    2001-07-23

    UNCLASSIFIED WIND TUNNEL MODEL DESIGN AND TEST USING RAPID PROTOTYPE MATERIALS AND PROCESSES Richard R. Heisler and Clifford L. Ratliff The Johns Hopkins...deflection, and attach directly to the strongback with screws. A and tolerance deviations when the material was grown. schematic diagram of the RPM...constructed around the clay to contain the I. R. R. Heisler , "Final Test Report for the Wind pouring of silicon resin. Tunnel Test of the JHU/APL WTM-01 at

  2. Low-Cost Inkjet Printing Technology for the Rapid Prototyping of Transducers

    Science.gov (United States)

    Andò, Bruno; Baglio, Salvatore; Bulsara, Adi R.; Emery, Teresa; Marletta, Vincenzo; Pistorio, Antonio

    2017-01-01

    Recently, there has been an upsurge in efforts dedicated to developing low-cost flexible electronics by exploiting innovative materials and direct printing technologies. This interest is motivated by the need for low-cost mass-production, shapeable, and disposable devices, and the rapid prototyping of electronics and sensors. This review, following a short overview of main printing processes, reports examples of the development of flexible transducers through low-cost inkjet printing technology. PMID:28368318

  3. Low-Cost Inkjet Printing Technology for the Rapid Prototyping of Transducers.

    Science.gov (United States)

    Andò, Bruno; Baglio, Salvatore; Bulsara, Adi R; Emery, Teresa; Marletta, Vincenzo; Pistorio, Antonio

    2017-04-01

    Recently, there has been an upsurge in efforts dedicated to developing low-cost flexible electronics by exploiting innovative materials and direct printing technologies. This interest is motivated by the need for low-cost mass-production, shapeable, and disposable devices, and the rapid prototyping of electronics and sensors. This review, following a short overview of main printing processes, reports examples of the development of flexible transducers through low-cost inkjet printing technology.

  4. Rapid Prototyping of Chemical Microsensors Based on Molecularly Imprinted Polymers Synthesized by Two-Photon Stereolithography.

    Science.gov (United States)

    Gomez, Laura Piedad Chia; Spangenberg, Arnaud; Ton, Xuan-Anh; Fuchs, Yannick; Bokeloh, Frank; Malval, Jean-Pierre; Tse Sum Bui, Bernadette; Thuau, Damien; Ayela, Cédric; Haupt, Karsten; Soppera, Olivier

    2016-07-01

    Two-photon stereolithography is used for rapid prototyping of submicrometre molecularly imprinted polymer-based 3D structures. The structures are evaluated as chemical sensing elements and their specific recognition properties for target molecules are confirmed. The 3D design capability is exploited and highlighted through the fabrication of an all-organic molecularly imprinted polymeric microelectromechanical sensor. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. [Mandibular-driven simultaneous maxillo-mandibular distraction for hemifacial microsomia with rapid prototyping technology].

    Science.gov (United States)

    Gao, Quan-Wen; Song, Hui-Feng; Xu, Ming-Huo; Liu, Chun-Ming; Chai, Jia-Ke

    2013-11-01

    To explore the clinical application of mandibular-driven simultaneous maxillo-mandihular distraction to correct hemifacial microsomia with rapid prototyping technology. The patient' s skull resin model was manufactured with rapid prototyping technology. The osteotomy was designed on skull resin model. According to the preoperative design, the patients underwent Le Fort I osteotomy and mandibular ramus osteotomy. The internal mandible distractor was embedded onto the osteotomy position. The occlusal titanium pin was implanted. Distraction were carried out by mandibular-driven simultaneous maxillo-mandihular distraction 5 days after operation. The distraction in five patients was complete as designed. No infection and dysosteogenesis happened. The longest distance of distraction was 28 mm, and the shortest distance was 16 mm. The facial asymmetry deformity was significantly improved at the end of distraction. The ocelusal plane of patients obviously improved. Rapid prototyping technology is helpful to design precisely osteotomy before operation. Mandibular-driven simultaneous maxillo-mandibular distraction can correct hemifacial microsomia. It is worth to clinical application.

  6. Reconstruction of Frontal Bone With Custom-Made Prosthesis Using Rapid Prototyping.

    Science.gov (United States)

    Florentino, Vinícius Gabriel Barros; Mendonça, Diego Santiago de; Bezerra, Ariel Valente; Silva, Leonardo de Freitas; Pontes, Rafael Figueirêdo; Melo, Carlos Vinícius Mota de; Mello, Manoel de Jesus Rodrigues; de Aguiar, Andréa Silvia Walter

    2016-06-01

    Frontal bone fracture treatment is still an issue of research in craniofacial surgery and neurosurgery. The aims of the treatment are to reduce the complication risks and to keep the aesthetic of the face. Before the management of this fracture type, it is necessary to consider the permanence or not of the frontal sinus function. Rapid prototyping has been an aid tool on planning and simulation of the surgical procedure, improving the diagnostic quality and the implant manufacture, beyond reducing the operative time. Among the used materials on treatment of these fractures, titanium mesh shows large versatility and ease of handling. Poly(methyl methacrylate) has been used in defects of partial thickness or irregularities on cranial surface. The aim of this study is to report a case of a patient presenting sequelae of large fracture of anterior wall of frontal bone, treated by a titanium mesh associated with the customized poly(methyl methacrylate) implant from the rapid prototyping. It could be concluded that the use of this technique showed itself effective on patient treatment, and rapid prototyping demonstrated being a valuable tool showing predictable and satisfactory results.

  7. Implementation of Rapid Prototyping Tools for Power Loss and Cost Minimization of DC-DC Converters

    Directory of Open Access Journals (Sweden)

    Amruta V. Kulkarni

    2016-07-01

    Full Text Available In this paper, power loss and cost models of power electronic converters based on converter ratings and datasheet information are presented. These models aid in creating rapid prototypes which facilitate the component selection process. Through rapid prototyping, users can estimate power loss and cost which are essential in design decisions. The proposed approach treats main power electronic components of a converter as building blocks that can be arranged to obtain multiple topologies to facilitate rapid prototyping. In order to get system-level power loss and cost models, two processes are implemented. The first process automatically provides minimum power loss or cost estimates and identifies components for specific applications and ratings; the second process estimates power losses and costs of each component of interest as well as the whole system. Two examples are used to illustrate the proposed approaches—boost and buck converters in continuous conduction mode. Achieved cost and loss estimates are over 93% accurate when compared to measured losses and real cost data. This research presents derivations of the proposed models, experimental validation of the models and demonstration of a user friendly interface that integrates all the models. Tools presented in this paper are expected to be very useful for practicing engineers, designers, and researchers, and are flexible and adaptable with changing or new technologies and varying component prices.

  8. Rapid Prototyping of Field Programmable Gate Array-Based Discrete Cosine Transform Approximations

    Directory of Open Access Journals (Sweden)

    Trevor W. Fox

    2003-05-01

    Full Text Available A method for the rapid design of field programmable gate array (FPGA-based discrete cosine transform (DCT approximations is presented that can be used to control the coding gain, mean square error (MSE, quantization noise, hardware cost, and power consumption by optimizing the coefficient values and datapath wordlengths. Previous DCT design methods can only control the quality of the DCT approximation and estimates of the hardware cost by optimizing the coefficient values. It is shown that it is possible to rapidly prototype FPGA-based DCT approximations with near optimal coding gains that satisfy the MSE, hardware cost, quantization noise, and power consumption specifications.

  9. Rapid, low-cost prototyping of centrifugal microfluidic devices for effective implementation of various microfluidic components

    Directory of Open Access Journals (Sweden)

    Smith, Suzanne

    2015-05-01

    Full Text Available A centrifugal microfluidic platform to develop various microfluidic operations – the first of its kind in South Africa – is presented. Rapid and low-cost prototyping of centrifugal microfluidic disc devices, as well as a set-up to test the devices using centrifugal forces, is described. Preliminary results show that various microfluidic operations such as fluidic valving, transportation, and microfluidic droplet generation can be achieved. This work provides a complete centrifugal microfluidic platform and the building blocks on which to develop a variety of microfluidic applications and potential products rapidly and at a low cost.

  10. Economical, Plain, and Rapid Authentication of Actaea racemosa L. (syn. Cimicifuga racemosa, Black Cohosh) Herbal Raw Material by Resilient RP-PDA-HPLC and Chemometric Analysis.

    Science.gov (United States)

    Bittner, Marian; Schenk, Regina; Springer, Andreas; Melzig, Matthias F

    2016-11-01

    The medicinal plant Actaea racemosa L. (Ranunculaceae, aka black cohosh) is widely used to treat climacteric complaints as an alternative to hormone substitution. Recent trials prove efficacy and safety of the approved herbal medicinal products from extracts of pharmaceutical quality. This led to worldwide increasing sales. A higher demand for the plant material results in problems with economically motivated adulteration. Thus, reliable tools for herbal drug authentication are necessary. To develop an economical, plain, and rapid method to distinguish between closely related American and Asian Actaea species, using securely established and resilient analytical methods coupled to a chemometric evaluation of the resulting data. We developed and validated a RP-PDA-HPLC method including an extraction by ultra-sonication to determine the genuine contents of partly hydrolysis-sensitive polyphenols in Actaea racemosa roots and rhizomes, and applied it to a large number of 203 Actaea samples consisting of seven species. We were able to generate reliable data with regards to the polyphenolic esters in the samples. The evaluation of this data by principle component analysis (PCA) made a discrimination between Asian Actaea species (sheng ma), one American Actaea species (Appalachian bugbane), and A. racemosa possible. The developed RP-PDA-HPLC method coupled to PCA is an excellent tool for authentication of the Actaea racemosa herbal drug, and can be a powerful addition to the TLC methods used in the dedicated pharmacopoeias, and is a promising alternative to expensive and lots of expertise requiring methods. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Using 3D Printing for Rapid Prototyping of Characterization Tools for Investigating Powder Blend Behavior.

    Science.gov (United States)

    Hirschberg, Cosima; Boetker, Johan P; Rantanen, Jukka; Pein-Hackelbusch, Miriam

    2018-02-01

    There is an increasing need to provide more detailed insight into the behavior of particulate systems. The current powder characterization tools are developed empirically and in many cases, modification of existing equipment is difficult. More flexible tools are needed to provide understanding of complex powder behavior, such as mixing process and segregation phenomenon. An approach based on the fast prototyping of new powder handling geometries and interfacing solutions for process analytical tools is reported. This study utilized 3D printing for rapid prototyping of customized geometries; overall goal was to assess mixing process of powder blends at small-scale with a combination of spectroscopic and mechanical monitoring. As part of the segregation evaluation studies, the flowability of three different paracetamol/filler-blends at different ratios was investigated, inter alia to define the percolation thresholds. Blends with a paracetamol wt% above the percolation threshold were subsequently investigated in relation to their segregation behavior. Rapid prototyping using 3D printing allowed designing two funnels with tailored flow behavior (funnel flow) of model formulations, which could be monitored with an in-line near-infrared (NIR) spectrometer. Calculating the root mean square (RMS) of the scores of the two first principal components of the NIR spectra visualized spectral variation as a function of process time. In a same setup, mechanical properties (basic flow energy) of the powder blend were monitored during blending. Rapid prototyping allowed for fast modification of powder testing geometries and easy interfacing with process analytical tools, opening new possibilities for more detailed powder characterization.

  12. Habitat Demonstration Unit Project: Leadership and Management Strategies for a Rapid Prototyping Project

    Science.gov (United States)

    Kennedy, Kriss J.; Toup, Larry; Gill, Tracy; Tri, Terry; Howe, Scott; Smitherman, David

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project leadership and management strategies being used by the NASA HDU team for a rapid prototyping project. The HDU project team constructed and tested an analog prototype lunar surface habitat/laboratory called the Pressurized Excursion Module (PEM) during 2010. The prototype unit subsystems were integrated in a short amount of time, utilizing a tiger team rapid prototyping approach that brought together over 20 habitation-related technologies and innovations from a variety of NASA centers. This paper describes the leadership and management strategies as well as lessons learned pertaining to leading and managing a multi-center diverse team in a rapid prototype environment. The PEM configuration went from a paper design to an operational surface habitat demonstration unit in less than 12 months. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 HDU-Deep Space Habitat (DSH) configuration will build upon the PEM work, and emphasize validity of crew operations (remote working and living), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The 2011 HDU-DSH will be field-tested during the 2011 Desert Research and Technologies Studies (DRaTS) field tests. The HDU project is a "technology-pull" project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU 2010 demo unit that was field tested in the 2010 DRaTS, adding habitation functionality to the prototype unit. This paper will describe the strategy of establishing a multi-center project

  13. Applications of stereolithography for rapid prototyping of biologically compatible chip-based physiometers

    Science.gov (United States)

    Fuad, Nurul Mohd; Zhu, Feng; Kaslin, Jan; Wlodkowic, Donald

    2016-12-01

    Despite the growing demand and numerous applications for the biomedical community, the developments in millifluidic devices for small model organisms are limited compared to other fields of biomicrofluidics. The main reasons for this stagnanation are difficulties in prototyping of millimeter scale and high aspect ratio devices needed for large metazoan organisms. Standard photolithography is in this context a time consuming procedure not easily adapted for fabrication of molds with vertical dimensions above 1 mm. Moreover, photolithography is still largely unattainable to a gross majority of biomedical laboratories willing to pursue custom development of their own chip-based platforms due to costs and need for dedicated clean room facilities. In this work, we present application of high-definition additive manufacturing systems for fabrication of 3D printed moulds used in soft lithography. Combination of 3D printing with PDMS replica molding appears to be an alternative for millifluidic systems that yields rapid and cost effective prototyping pipeline. We investigated the important aspects on both 3D printed moulds and PDMS replicas such as geometric accuracies and surface topology. Our results demonstrated that SLA technologies could be applied for rapid and accurate fabrication of millifluidic devices for trapping of millimetre-sized specimens such as living zebrafish larvae. We applied the new manufacturing method in a proof-of-concept prototype device capable of trapping and immobilizing living zebrafish larvae for recording heart rate variation in cardio-toxicity experiments.

  14. SOAR telescope control system: a rapid prototype and development in LabVIEW

    Science.gov (United States)

    Ashe, Michael C.; Schumacher, German

    2000-06-01

    A Rapid Prototype and full development plan of the SOAR TCS is reviewed to show advances in: (1) Prototyping speed, which makes implementation and test of features faster than specification under older methods. This allows the development environment and prototype modules to become partners with and part of the specification documents. (2) Real-Time performance and reliability through use of RT Linux. (3) Visually Rich GUI development that allows an emphasis on `seeing' versus `reading'. (4) Long-Term DataLogging and Internet subscription service of all desired variables with instant recall of historical trend data. (5) A `plug-in' software architecture which enables rapid reconfiguration and reuse of the system and/or plug-ins utilizing LabVIEW graphical modules, a scripting language engine (in LabVIEW) and encapsulation of interfaces in `instrument-driver' style `plug-in' modules. (6) A platform- independent development environment and distributed architecture allowing secure internet observation and control via every major OS and hardware platform.

  15. A pilot biomedical engineering course in rapid prototyping for mobile health.

    Science.gov (United States)

    Stokes, Todd H; Venugopalan, Janani; Hubbard, Elena N; Wang, May D

    2013-01-01

    Rapid prototyping of medically assistive mobile devices promises to fuel innovation and provides opportunity for hands-on engineering training in biomedical engineering curricula. This paper presents the design and outcomes of a course offered during a 16-week semester in Fall 2011 with 11 students enrolled. The syllabus covered a mobile health design process from end-to-end, including storyboarding, non-functional prototypes, integrated circuit programming, 3D modeling, 3D printing, cloud computing database programming, and developing patient engagement through animated videos describing the benefits of a new device. Most technologies presented in this class are open source and thus provide unlimited "hackability". They are also cost-effective and easily transferrable to other departments.

  16. Using 3D Printing for Rapid Prototyping of Characterization Tools for Investigating Powder Blend Behavior

    DEFF Research Database (Denmark)

    Hirschberg, Cosima; Boetker, Johan P; Rantanen, Jukka

    2018-01-01

    be monitored with an in-line near-infrared (NIR) spectrometer. Calculating the root mean square (RMS) of the scores of the two first principal components of the NIR spectra visualized spectral variation as a function of process time. In a same setup, mechanical properties (basic flow energy) of the powder......There is an increasing need to provide more detailed insight into the behavior of particulate systems. The current powder characterization tools are developed empirically and in many cases, modification of existing equipment is difficult. More flexible tools are needed to provide understanding...... of complex powder behavior, such as mixing process and segregation phenomenon. An approach based on the fast prototyping of new powder handling geometries and interfacing solutions for process analytical tools is reported. This study utilized 3D printing for rapid prototyping of customized geometries...

  17. CAD – CAM PROCEDURE USING FOR RAPID PROTOTYPING WITH APPLICATION IN BIOMECHANICS

    Directory of Open Access Journals (Sweden)

    BRAUN Barbu

    2015-06-01

    Full Text Available The paper presents a new and efficient method for modeling some components with application in Biomechanics. It is shown the way in which this method could be successfully applied for orthopedic shoes, namely for foot insoles to correct any plantar deformities. The main advantages of the proposed method refer to low costs, successfully applying for different products for Biomechanics. The prototyped models via CAD/CAM method allowed a rapid and efficient improvement of their design. Another advantage refer to the fact that these can be properly and efficiently tested before prototyping by the point of view of mechanical stress, due to prior simulations, eliminating all costs meaning wastes or adjustments.

  18. A comparison of different silver inks for printing of conductive tracks on paper substrates for rapid prototyping of electronic circuits

    CSIR Research Space (South Africa)

    Bezuidenhout, PH

    2015-11-01

    Full Text Available of the selection process of different conductive inks for printing onto paper substrates. These results can be utilized in the development process for fully printable rapidly prototyped electronic systems, which can range from environmental sensing solutions...

  19. Rapid prototyping of biodegradable microneedle arrays by integrating CO2 laser processing and polymer molding

    Science.gov (United States)

    Tu, K. T.; Chung, C. K.

    2016-06-01

    An integrated technology of CO2 laser processing and polymer molding has been demonstrated for the rapid prototyping of biodegradable poly-lactic-co-glycolic acid (PLGA) microneedle arrays. Rapid and low-cost CO2 laser processing was used for the fabrication of a high-aspect-ratio microneedle master mold instead of conventional time-consuming and expensive photolithography and etching processes. It is crucial to use flexible polydimethylsiloxane (PDMS) to detach PLGA. However, the direct CO2 laser-ablated PDMS could generate poor surfaces with bulges, scorches, re-solidification and shrinkage. Here, we have combined the polymethyl methacrylate (PMMA) ablation and two-step PDMS casting process to form a PDMS female microneedle mold to eliminate the problem of direct ablation. A self-assembled monolayer polyethylene glycol was coated to prevent stiction between the two PDMS layers during the peeling-off step in the PDMS-to-PDMS replication. Then the PLGA microneedle array was successfully released by bending the second-cast PDMS mold with flexibility and hydrophobic property. The depth of the polymer microneedles can range from hundreds of micrometers to millimeters. It is linked to the PMMA pattern profile and can be adjusted by CO2 laser power and scanning speed. The proposed integration process is maskless, simple and low-cost for rapid prototyping with a reusable mold.

  20. The development of a prototype of a “rapid test” for detection of equine antibodies against tetanus

    OpenAIRE

    Stelzmann, Mareike

    2011-01-01

    the following dissertation, the prototype of a “rapid test” for detection of equine antibodies against tetanus is developed. This test makes it possible to detect antibodies against tetanus in equine serum within one hour. Moreover the prototype allows making a statement about the antibody titer. The standard values of the OIE (WORLD ORGANISATION FOR ANIMAL HEALTH, 2009) to validate in vitro-diagnostical tests for veterinary medicine were followed. The rapid test achieves results comparabl...

  1. New technologies applied to surgical processes: Virtual Reality and rapid prototyping.

    Science.gov (United States)

    Suárez-Mejías, Cristina; Gomez-Ciriza, Gorka; Valverde, Israel; Parra Calderón, Carlos; Gómez-Cía, Tomás

    2015-01-01

    AYRA is software of virtual reality for training, planning and optimizing surgical procedures. AYRA was developed under a research, development and innovation project financed by the Andalusian Ministry of Health, called VirSSPA. Nowadays AYRA has been successfully used in more than 1160 real cases and after proving its efficiency it has been introduced in the clinical practice at the Virgen del Rocío University Hospital . Furthermore, AYRA allows generating physical 3D biomodels using rapid prototyping technology. They are used for surgical planning support, intraoperative reference or defect reconstruction. In this paper, some of these tools and some real cases are presented.

  2. Novel Applications of Rapid Prototyping in Gamma-ray and X-ray Imaging

    Science.gov (United States)

    Miller, Brian W.; Moore, Jared W.; Gehm, Michael E.; Furenlid, Lars R.; Barrett, Harrison H.

    2010-01-01

    Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for the fabrication of cost-effective, custom components in gamma-ray and x-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components are presented, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum. PMID:22984341

  3. Rapid prototyping tools and methods for all-Topas (R) cyclic olefin copolymer fluidic microsystems

    DEFF Research Database (Denmark)

    Bundgaard, Frederik; Perozziello, Gerardo; Geschke, Oliver

    2006-01-01

    Topas (R), the cyclic olefin copolymer, from Topas Advanced Polymers GmbH has a number of advantages over polymers such as poly(methylmethacrylate), polydimethylsiloxane, and polycarbonate traditionally used in fluid microsystem manufacturing, such as low water absorption, high chemical resistance......, good machinability, and good optical properties. A number of different processes for rapid and low-cost prototyping of all-Topas microfluidic systems, made with desktop machinery, are presented. Among the processes are micromilling of fluidic structures with a width down to 25 p,m and sealing...

  4. Rapid tooling for functional prototyping of metal mold processes: Literature review on cast tooling

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, M.D. [Sandia National Labs., Albuquerque, NM (United States); Hochanadel, P.W. [Colorado School of Mines, Golden, CO (United States). Dept. of Metallurgical and Materials Engineering

    1995-11-01

    This report is a literature review on cast tooling with the general focus on AISI H13 tool steel. The review includes processing of both wrought and cast H13 steel along with the accompanying microstructures. Also included is the incorporation of new rapid prototyping technologies, such as Stereolithography and Selective Laser Sintering, into the investment casting of tool steel. The limiting property of using wrought or cast tool steel for die casting is heat checking. Heat checking is addressed in terms of testing procedures, theories regarding the mechanism, and microstructural aspects related to the cracking.

  5. Development and Validation of a Stability-Indicating RP-HPLC Method for Rapid Determination of Doxycycline in Pharmaceutical Bulk and Dosage Forms

    Directory of Open Access Journals (Sweden)

    Shabnam Pourmoslemi, Soroush Mirfakhraee, Saeid Yaripour, Ali Mohammadi

    2016-06-01

    Full Text Available Background: A rapid stability-indicating RP-HPLC method for analysis of doxycycline in the presence of its degradation products was developed and validated. Methods: Forced degradation studies were carried out on bulk samples and capsule dosage forms of doxycycline using acid, base, H2O2, heat, and UV light as described by ICH for stress conditions to demonstrate the stability-indicating power of the method. Separations were performed on a Perfectsil® Target ODS column (3-5µm, 125 mm×4 mm, using a mobile phase consisting of methanol-50 mM ammonium acetate buffer (containing 0.1% v/v trifluoroacetic acid and 0.1% v/v triethylamine, pH 2.5 (50:50 v/v at room temperature. The flow rate was 0.8 mL/min. Results: The method linearity was investigated in the range of 25–500 µg/mL (r > 0.9999. The LOD and LOQ were 5 and 25 µg/mL, respectively. The method selectivity was evaluated by peak purity test using a diode array detector. There was no interference among detection of doxycycline and its stressed degradation products. Total peak purity numbers were in the range of 0.94-0.99, indicating the homogeneity of DOX peaks. Conclusion: These data show the stability-indicating nature of the method for quality control of doxycycline in bulk samples and capsule dosage forms.

  6. Development and validation of a rapid RP-HPLC method for analysis of (-)-copalic acid in copaíba oleoresin.

    Science.gov (United States)

    Souza, Ariana Borges; Moreira, Monique Rodrigues; Borges, Carly Henrique Gambeta; Simão, Marília Rodrigues; Bastos, Jairo Kenupp; de Sousa, João Paulo Barreto; Ambrosio, Sérgio Ricardo; Veneziani, Rodrigo Cassio Sola

    2013-03-01

    The Copaifera species (Leguminoseae) are popularly known as 'copaíba' or 'copaíva' and are grown in the states of Amazonas, Pará and Ceará in northern Brazil. The oleoresins obtained from these species have been extensively used owing to their pharmacological potential and their application in cosmetic and pharmaceutical preparations. In the present study, the development and validation of a novel, rapid and efficient RP-HPLC methodology for the analysis of the diterpene (-)-copalic acid (CA), pointed out as the only chemical marker of the Copaifera genus, are described. The regression equation (Y = 26,707x - 29,498) was obtained with good linearity (r(2) = 0.9993) and the limits of quantification and detection were 9.182 and 3.032 µg/mL, respectively. The precision and the accuracy of the method were adequate (lower than 4%). Finally, the validation parameters evaluated were satisfactorily met, so the developed method represents a suitable tool for application in the quality control of such natural products. Further studies aiming to develop analytical methodologies for each Copaifera species using a more representative number of chemical markers should be performed. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Rapid prototyping of the Central Safety System for Nuclear Risk in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Scibile, L. [ITER Organization, CS 90 046, St. Paul-lez-Durance, Cedex (France); Ambrosino, G. [Consorzio CREATE, Universita degli Studi di Napoli Federico II, via Claudio 21, 80125, Napoli (Italy); De Tommasi, G., E-mail: detommas@unina.i [Consorzio CREATE, Universita degli Studi di Napoli Federico II, via Claudio 21, 80125, Napoli (Italy); Pironti, A. [Consorzio CREATE, Universita degli Studi di Napoli Federico II, via Claudio 21, 80125, Napoli (Italy)

    2010-07-15

    The Central Safety System for Nuclear Risk (CSS-N) coordinates the safety control systems to ensure nuclear safety for the ITER complex. Since the CSS-N is a safety critical system, its validation and commissioning play a very important role; in particular the required level of reliability must be demonstrated. In such a scenario, it is strongly recommended to use modeling and simulation tools since the early design phase. Indeed, the modeling tools will help in the definition of the control system requirements. Furthermore the models can than be used for the rapid prototyping of the safety system. Hardware-in-the-loop simulations can also be performed in order to assess the performance of the control hardware against a plant simulator. The proposed approach relies on the availability of a plant simulator to develop the prototype of the control system. This paper introduces the methodology used to design and develop both the CSS-N Oriented Plant Simulator and the CSS-N Prototype.

  8. Low-cost rapid prototyping of flexible plastic paper based microfluidic devices

    KAUST Repository

    Fan, Yiqiang

    2013-04-01

    This research presents a novel rapid prototyping method for paper-based flexible microfluidic devices. The microchannels were fabricated using laser ablation on a piece of plastic paper (permanent paper), the dimensions of the microchannels was carefully studied for various laser powers and scanning speeds. After laser ablation of the microchannels on the plastic paper, a transparent poly (methyl methacrylate)(PMMA) film was thermally bonded to the plastic paper to enclose the channels. After connection of tubing, the device was ready to use. An example microfluidic device (droplet generator) was also fabricated using this technique. Due to the flexibility of the fabricated device, this technique can be used to fabricate 3D microfluidic devices. The fabrication process was simple and rapid without any requirement of cleanroom facilities. © 2013 IEEE.

  9. Rapid prototyping of nanotube-based devices using topology-optimized microgrippers

    DEFF Research Database (Denmark)

    Sardan, Özlem; Eichhorn, Volkmar; Petersen, D.H.

    2008-01-01

    Nanorobotic handling of carbon nanotubes (CNTs) using microgrippers is one of the most promising approaches for the rapid characterization of the CNTs and also for the assembly of prototypic nanotube-based devices. In this paper, we present pick-and-place nanomanipulation of multi-walled CNTs...... in a rapid and a reproducible manner. We placed CNTs on copper TEM grids for structural analysis and on AFM probes for the assembly of AFM super-tips. We used electrothermally actuated polysilicon microgrippers designed using topology optimization in the experiments. The microgrippers are able to open...... with an amorphous carbon layer, which is locally removed at the contact points with the microgripper. The assembled AFM super-tips are used for AFM measurements of microstructures with high aspect ratios....

  10. Rapid prototyping of an EEG-based brain-computer interface (BCI).

    Science.gov (United States)

    Guger, C; Schlögl, A; Neuper, C; Walterspacher, D; Strein, T; Pfurtscheller, G

    2001-03-01

    The electroencephalogram (EEG) is modified by motor imagery and can be used by patients with severe motor impairments (e.g., late stage of amyotrophic lateral sclerosis) to communicate with their environment. Such a direct connection between the brain and the computer is known as an EEG-based brain-computer interface (BCI). This paper describes a new type of BCI system that uses rapid prototyping to enable a fast transition of various types of parameter estimation and classification algorithms to real-time implementation and testing. Rapid prototyping is possible by using Matlab, Simulink, and the Real-Time Workshop. It is shown how to automate real-time experiments and perform the interplay between on-line experiments and offline analysis. The system is able to process multiple EEG channels on-line and operates under Windows 95 in real-time on a standard PC without an additional digital signal processor (DSP) board. The BCI can be controlled over the Internet, LAN or modem. This BCI was tested on 3 subjects whose task it was to imagine either left or right hand movement. A classification accuracy between 70% and 95% could be achieved with two EEG channels after some sessions with feedback using an adaptive autoregressive (AAR) model and linear discriminant analysis (LDA).

  11. Selective laser sintering: application of a rapid prototyping method in craniomaxillofacial reconstructive surgery.

    Science.gov (United States)

    Aung, S C; Tan, B K; Foo, C L; Lee, S T

    1999-09-01

    Advances in technology have benefited the medical world in many ways and a new generation of computed tomography (CT) scanners and three-dimensional (3-D) model making rapid prototyping systems (RPS) have taken craniofacial surgical planning and management to new heights. With the development of new rapid prototyping systems and the improvements in CT scan technology, such as the helical scanner, biomedical modelling has improved considerably and accurate 3-D models can now be fabricated to allow surgeons to visualise and physically handle a 3-D model on which simulation surgery can be performed. The principle behind this technology is to first acquire digital data (CT scan data) which is then imported to the RPS to fabricate fine layers or cuts of the model which are gradually built up to form the 3-D models. Either liquid resin or nylon powder or special paper may be used to make these models using the various RPS available today. Selective laser sintering (SLS), which employs a CO2 laser beam to solidify special nylon powder and build up the model in layers is described in this case report, where a 23-year old Chinese female with panfacial fracture and a skull defect benefited from SLS biomodelling in the preoperative workup.

  12. Replication of human tracheobronchial hollow airway models using a selective laser sintering rapid prototyping technique.

    Science.gov (United States)

    Clinkenbeard, Rodney E; Johnson, David L; Parthasarathy, Ramkumar; Altan, M Cengiz; Tan, Kah-Hoe; Park, Seok-Min; Crawford, Richard H

    2002-01-01

    Exposures to toxic or pathogenic aerosols are known to produce adverse health effects. The nature and severity of these effects often are governed in large part by the location and amount of aerosol deposition within the respiratory tract. Morphologically detailed replica hollow lung airway casts are widely used in aerosol deposition research; however, techniques are not currently available that allow replicate deposition studies in identical morphologically detailed casts produced from a common reference anatomy. This project developed a technique for the precision manufacture of morphologically detailed human tracheobronchial airway models based on high-resolution anatomical imaging data. Detailed physical models were produced using the selective laser sintering (SLS) rapid prototyping process. Input to the SLS process was a three-dimensional computer model developed by boundary-based two-dimension to three-dimension conversion of anatomical images from the original National Institutes of Health/National Library of Medicine Visible Human male data set. The SLS process produced identical replicate models that corresponded exactly to the anatomical section images, within the limits of the measurement. At least five airway generations were achievable, corresponding to airways less than 2 mm in diameter. It is anticipated that rapid prototyping manufacture of respiratory tract structures based on reference anatomies such as the Visible Male and Visible Female may provide "gold standard" models for inhaled aerosol deposition studies. Adaptations of the models to represent various disease states may be readily achieved, thereby promoting exploration of pharmaceutical research on targeted drug delivery via inhaled aerosols.

  13. Rapid prototyping prosthetic hand acting by a low-cost shape-memory-alloy actuator.

    Science.gov (United States)

    Soriano-Heras, Enrique; Blaya-Haro, Fernando; Molino, Carlos; de Agustín Del Burgo, José María

    2018-01-08

    The purpose of this article is to develop a new concept of modular and operative prosthetic hand based on rapid prototyping and a novel shape-memory-alloy (SMA) actuator, thus minimizing the manufacturing costs. An underactuated mechanism was needed for the design of the prosthesis to use only one input source. Taking into account the state of the art, an underactuated mechanism prosthetic hand was chosen so as to implement the modifications required for including the external SMA actuator. A modular design of a new prosthesis was developed which incorporated a novel SMA actuator for the index finger movement. The primary objective of the prosthesis is achieved, obtaining a modular and functional low-cost prosthesis based on additive manufacturing executed by a novel SMA actuator. The external SMA actuator provides a modular system which allows implementing it in different systems. This paper combines rapid prototyping and a novel SMA actuator to develop a new concept of modular and operative low-cost prosthetic hand.

  14. Parametric Design and Rapid Prototyping of Installation Box for Vehicle Terminal PCB

    Directory of Open Access Journals (Sweden)

    Wang Xingxing

    2016-01-01

    Full Text Available Installation box for vehicle terminal PCB (Printed Circuit Board was took as research object, which is encountered in the process of project developing. Vehicle terminal PCB in actual development process was set as an example, point cloud data were acquired by three coordinate measuring method; Imageware software was used to reconstruct the vehicle terminal PCB model, basic size parameters of vehicle terminal PCB can be got and then design parameters of installation box for vehicle terminal PCB can be determined. Design of the installation box for vehicle terminal PCB was completed based on Solidworks software, then 3D modeling and 2D drawing of installation box for vehicle terminal PCB was gained. Up Plus 2 rapid prototype machine was used to manufacture installation box for vehicle terminal PCB rapidly based on 3D printing technology, then prototype of installation box for vehicle terminal PCB was obtained. It is of certain engineering significant for single (small amount manufacturing of installation box for general PCB.

  15. Development of novel hybrid poly(l-lactide)/chitosan scaffolds using the rapid freeze prototyping technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, N; Chen, X B [Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan (Canada); Li, M G [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan (Canada); Cooper, D, E-mail: xbc719@mail.usask.ca [Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan (Canada)

    2011-09-15

    Engineered scaffolds have been shown to be critical to various tissue engineering applications. This paper presents the development of a novel three-dimensional scaffold made from a mixture of chitosan microspheres (CMs) and poly(l-lactide) by means of the rapid freeze prototyping (RFP) technique. The CMs were used to encapsulate bovine serum albumin (BSA) and improve the scaffold mechanical properties. Experiments to examine the BSA release were carried out; the BSA release could be controlled by adjusting the crosslink degree of the CMs and prolonged after the CMs were embedded into the PLLA scaffolds, while the examination of the mechanical properties of the scaffolds illustrates that they depend on the ratio of CMs to PLLA in the scaffolds as well as the cryogenic temperature used in the RFP fabrication process. The chemical characteristics of the PLLA/chitosan scaffolds were evaluated by Fourier transform infrared (FTIR) spectroscopy. The morphological and pore structure of the scaffolds were also examined by scanning electron microscopy and micro-tomography. The results obtained show that the scaffolds have higher porosity and enhanced pore size distribution compared to those fabricated by the dispensing-based rapid prototyping technique. This study demonstrates that the novel scaffolds have not only enhanced porous structure and mechanical properties but also showed the potential to preserve the bioactivities of the biomolecules and to control the biomolecule distribution and release rate.

  16. The Java Image Science Toolkit (JIST) for Rapid Prototyping and Publishing of Neuroimaging Software

    Science.gov (United States)

    Lucas, Blake C.; Bogovic, John A.; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L.; Pham, Dzung

    2010-01-01

    Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC). PMID:20077162

  17. Rapid prototyping compliant arterial phantoms for in-vitro studies and device testing

    Directory of Open Access Journals (Sweden)

    Biglino Giovanni

    2013-01-01

    Full Text Available Abstract Background Compliant vascular phantoms are desirable for in-vitro patient-specific experiments and device testing. TangoPlus FullCure 930® is a commercially available rubber-like material that can be used for PolyJet rapid prototyping. This work aims to gather preliminary data on the distensibility of this material, in order to assess the feasibility of its use in the context of experimental cardiovascular modelling. Methods The descending aorta anatomy of a volunteer was modelled in 3D from cardiovascular magnetic resonance (CMR images and rapid prototyped using TangoPlus. The model was printed with a range of increasing wall thicknesses (0.6, 0.7, 0.8, 1.0 and 1.5 mm, keeping the lumen of the vessel constant. Models were also printed in both vertical and horizontal orientations, thus resulting in a total of ten specimens. Compliance tests were performed by monitoring pressure variations while gradually increasing and decreasing internal volume. Knowledge of distensibility was thus derived and then implemented with CMR data to test two applications. Firstly, a patient-specific compliant model of hypoplastic aorta suitable for connection in a mock circulatory loop for in-vitro tests was manufactured. Secondly, the right ventricular outflow tract (RVOT of a patient necessitating pulmonary valve replacement was printed in order to physically test device insertion and assess patient’s suitability for percutaneous pulmonary valve intervention. Results The distensibility of the material was identified in a range from 6.5 × 10-3 mmHg-1 for the 0.6 mm case, to 3.0 × 10-3 mmHg-1 for the 1.5 mm case. The models printed in the vertical orientation were always more compliant than their horizontal counterpart. Rapid prototyping of a compliant hypoplastic aorta and of a RVOT anatomical model were both feasible. Device insertion in the RVOT model was successful. Conclusion Values of distensibility, compared with literature data, show that Tango

  18. Rapid prototyping of a complex model for the manufacture of plaster molds for slip casting ceramic

    Directory of Open Access Journals (Sweden)

    D. P. C. Velazco

    2014-12-01

    Full Text Available Computer assisted designing (CAD is well known for several decades and employed for ceramic manufacturing almost since the beginning, but usually employed in the first part of the projectual ideation processes, neither in the prototyping nor in the manufacturing stages. The rapid prototyping machines, also known as 3D printers, have the capacity to produce in a few hours real pieces using plastic materials of high resistance, with great precision and similarity with respect to the original, based on unprecedented digital models produced by means of modeling with specific design software or from the digitalization of existing parts using the so-called 3D scanners. The main objective of the work is to develop the methodology used in the entire process of building a part in ceramics from the interrelationship between traditional techniques and new technologies for the manufacture of prototypes. And to take advantage of the benefits that allow us this new reproduction technology. The experience was based on the generation of a complex piece, in digital format, which served as the model. A regular 15 cm icosahedron presented features complex enough not to advise the production of the model by means of the traditional techniques of ceramics (manual or mechanical. From this digital model, a plaster mold was made in the traditional way in order to slip cast clay based slurries, freely dried in air and fired and glazed in the traditional way. This experience has shown the working hypothesis and opens up the possibility of new lines of work to academic and technological levels that will be explored in the near future. This technology provides a wide range of options to address the formal aspect of a part to be performed for the field of design, architecture, industrial design, the traditional pottery, ceramic art, etc., which allow you to amplify the formal possibilities, save time and therefore costs when drafting the necessary and appropriate matrixes

  19. Rapid prototyping of flexible intrafascicular electrode arrays by picosecond laser structuring

    Science.gov (United States)

    Mueller, Matthias; de la Oliva, Natalia; del Valle, Jaume; Delgado-Martínez, Ignacio; Navarro, Xavier; Stieglitz, Thomas

    2017-12-01

    Objective. Interfacing the peripheral nervous system can be performed with a large variety of electrode arrays. However, stimulating and recording a nerve while having a reasonable amount of channels limits the number of available systems. Translational research towards human clinical trial requires device safety and biocompatibility but would benefit from design flexibility in the development process to individualize probes. Approach. We selected established medical grade implant materials like precious metals and Parylene C to develop a rapid prototyping process for novel intrafascicular electrode arrays using a picosecond laser structuring. A design for a rodent animal model was developed in conjunction with an intrafascicular implantation strategy. Electrode characterization and optimization was performed first in saline solution in vitro before performance and biocompatibility were validated in sciatic nerves of rats in chronic implantation. Main results. The novel fabrication process proved to be suitable for prototyping and building intrafascicular electrode arrays. Electrochemical properties of the electrode sites were enhanced and tested for long-term stability. Chronic implantation in the sciatic nerve of rats showed good biocompatibility, selectivity and stable stimulation thresholds. Significance. Established medical grade materials can be used for intrafascicular nerve electrode arrays when laser structuring defines structure size in the micro-scale. Design flexibility reduces re-design cycle time and material certificates are beneficial support for safety studies on the way to clinical trials.

  20. FLASH: A rapid method for prototyping paper-based microfluidic devices‡

    Science.gov (United States)

    Martinez, Andres W.; Phillips, Scott T.; Wiley, Benjamin J.; Gupta, Malancha

    2011-01-01

    This article describes FLASH (Fast Lithographic Activation of Sheets), a rapid method for laboratory prototyping of microfluidic devices in paper. Paper-based microfluidic devices are emerging as a new technology for applications in diagnostics for the developing world, where low cost and simplicity are essential. FLASH is based on photolithography, but requires only a UV lamp and a hotplate; no clean-room or special facilities are required (FLASH patterning can even be performed in sunlight if a UV lamp and hotplate are unavailable). The method provides channels in paper with dimensions as small as 200 μm in width and 70 μm in height; the height is defined by the thickness of the paper. Photomasks for patterning paper-based microfluidic devices can be printed using an ink-jet printer or photocopier, or drawn by hand using a waterproof black pen. FLASH provides a straightforward method for prototyping paper-based microfluidic devices in regions where the technological support for conventional photolithography is not available. PMID:19023478

  1. Design and rapid prototyping of DLC coated fractal surfaces for tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Lantada, A; Mosquera, A; Endrino, J L; Lafont, P, E-mail: adiaz@etsii.upm.es

    2010-11-01

    Several medical devices (both implantable and for in vitro diagnosis) benefit greatly from having microtextured surfaces that help to improve and promote phenomena such as osteointegracion and cell / tissue growth on the surface of a device. Normally, the use of abrasives or chemical attacks are employed for obtaining such surface microtextures, however, it is sometimes difficult to precisely control the final surface characteristics (porosity, roughness, among others) and consequently the related biological aspects. In this work, we propose an alternative process based on the use of fractal surface models for designing special surfaces, which helps controlling the desired contact properties (from the design stage) in multiple applications within biomedical engineering, especially regarding tissue engineering tasks. Manufacturing can be directly accomplished by means of rapid prototyping technologies. This method supposes a focus change from a conventional 'top-down' to a more versatile 'bottom-up' approach. Finally, in order to improve the possible biological response, the surfaces of the designed devices were coated with hydrogen-free amorphous carbon (a-C) thin films, known to be highly biocompatible materials. The films were deposited at room temperature using the vacuum filter cathodic arc technique. Our first prototypes have helped verify the viability of the approach and to validate the design, manufacturing and coating processes.

  2. Reconstruction of large cranial defects with poly-methyl-methacrylate (PMMA) using a rapid prototyping model and a new technique for intraoperative implant modeling.

    Science.gov (United States)

    Unterhofer, Claudia; Wipplinger, Christoph; Verius, Michael; Recheis, Wolfgang; Thomé, Claudius; Ortler, Martin

    Reconstruction of large cranial defects after craniectomy can be accomplished by free-hand poly-methyl-methacrylate (PMMA) or industrially manufactured implants. The free-hand technique often does not achieve satisfactory cosmetic results but is inexpensive. In an attempt to combine the accuracy of specifically manufactured implants with low cost of PMMA. Forty-six consecutive patients with large skull defects after trauma or infection were retrospectively analyzed. The defects were reconstructed using computer-aided design/computer-aided manufacturing (CAD/CAM) techniques. The computer file was imported into a rapid prototyping (RP) machine to produce an acrylonitrile-butadiene-styrene model (ABS) of the patient's bony head. The gas-sterilized model was used as a template for the intraoperative modeling of the PMMA cranioplasty. Thus, not the PMMA implant was generated by CAD/CAM technique but the model of the patients head to easily form a well-fitting implant. Cosmetic outcome was rated on a six-tiered scale by the patients after a minimum follow-up of three months. The mean size of the defect was 74.36cm2. The implants fitted well in all patients. Seven patients had a postoperative complication and underwent reoperation. Mean follow-up period was 41 months (range 2-91 months). Results were excellent in 42, good in three and not satisfactory in one patient. Costs per implant were approximately 550 Euros. PMMA implants fabricated in-house by direct molding using a bio-model of the patients bony head are easily produced, fit properly and are inexpensive compared to cranial implants fabricated with other RP or milling techniques. Copyright © 2017 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  3. Product management of making large pieces through Rapid Prototyping PolyJet® technology

    Science.gov (United States)

    Belgiu, G.; Cărăuşu, C.; Şerban, D.; Turc, C. G.

    2017-08-01

    The rapid prototyping process has already become a classic manufacturing process for parts and assemblies, either polymeric or metal parts. Besides the well-known advantages and disadvantages of the process, the use of 3D printers has a great inconvenience: the overall dimensions of the parts are limited. Obviously, there is a possibility to purchase a larger (and more expensive) 3D printer, but there are always larger pieces to be manufactured. One solution to this problem is the splitting of parts into several components that can be manufactured. The component parts can then be assembled in a single piece by known methods such as welding, gluing, screwing, etc. This paper shows our experience in making large pieces on the Strarasys® Objet24 printer, pieces larger than the tray sizes. The results obtained are valid for any 3D printer using the PolyJet® process.

  4. Rapid prototyping and parametric optimization of plastic acoustofluidic devices for blood-bacteria separation.

    Science.gov (United States)

    Silva, R; Dow, P; Dubay, R; Lissandrello, C; Holder, J; Densmore, D; Fiering, J

    2017-09-01

    Acoustic manipulation has emerged as a versatile method for microfluidic separation and concentration of particles and cells. Most recent demonstrations of the technology use piezoelectric actuators to excite resonant modes in silicon or glass microchannels. Here, we focus on acoustic manipulation in disposable, plastic microchannels in order to enable a low-cost processing tool for point-of-care diagnostics. Unfortunately, the performance of resonant acoustofluidic devices in plastic is hampered by a lack of a predictive model. In this paper, we build and test a plastic blood-bacteria separation device informed by a design of experiments approach, parametric rapid prototyping, and screening by image-processing. We demonstrate that the new device geometry can separate bacteria from blood while operating at 275% greater flow rate as well as reduce the power requirement by 82%, while maintaining equivalent separation performance and resolution when compared to the previously published plastic acoustofluidic separation device.

  5. RAPID PROTOTYPING OF EMBEDDED PROGRAMMABLE SYSTEMS ON FPGA FOR MULTIMEDIA APPLICATIONS

    Directory of Open Access Journals (Sweden)

    V. V. Kliuchenia

    2015-01-01

    Full Text Available This paper illustrates rapid prototyping method applied for mobile multimedia systems with L2L (lossless-to-lossy compression scheme. Debug module Xilinx ML-401 based on the FPGA (Filed Programmable Gate Array is taken as the basis. Microblaze soft-processor is used as the main control unit. Proposed DCT-IDCT cores are developed using VHDL hardware description language as FSL (Fast Simples Link coprocessors for Microblaze or standalone PLB (Processor Logical Bus acceleration peripheral. Result of image processing is displayed on the screen connected via VGA interface. Proposed recursive architecture of DCT-IDCT core can be used as a basis of L2L coder.

  6. Colloidal processing and rapid prototyping of Si{sub 3}N{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Liwu Wang

    1998-12-01

    Some progresses have been made in the wet shaping of Si{sub 3}N{sub 4} based on a better understanding of the colloidal behavior of suspensions and by improved pressure casting with porous polystyrene (PS) molds. This work illustrated that the combination of proper colloidal processing and rapid prototyping is an effective way to fabricate high-performance ceramics with complex shapes. In colloidal processing the packing density and microstructure of green bodies can be controlled if the interaction between ceramic particles in suspensions and the conditions under which the suspensions are consolidated are understood. Therefore, detailed studies on the surface chemistry of the Si{sub 3}N{sub 4} powder, the dispersing behavior of Si{sub 3}N{sub 4} suspensions, the influence of dispersants and the mechanism during powder consolidation into complex-shaped green bodies are performed. (orig.)

  7. Novel CAD/CAM rapid prototyping of next-generation biomedical devices

    Science.gov (United States)

    Doraiswamy, Anand

    An aging population with growing healthcare needs demands multifaceted tools for diagnosis and treatment of health conditions. In the near-future, drug-administration devices, implantable devices/sensors, enhanced prosthesis, artificial and unique functional tissue constructs will become increasingly significant. Conventional technologies for mass-produced implants do not adequately take individual patient anatomy into consideration. Development of novel CAD/CAM rapid prototyping techniques may significantly accelerate progress of these devices for next-generation patient-care. In this dissertation, several novel rapid prototyping techniques have been introduced for next-generation biomedical applications. Two-photon polymerization was developed to microfabricate scaffolds for tissue engineering, microneedles for drug-delivery and ossicular replacement prostheses. Various photoplymers were evaluated for feasibility, mechanical properties, cytotoxicity, and surface properties. Laser direct write using MDW was utilized for developing microstructures of bioceramics such as hydroxyapatite, and viable mammalian osteosarcoma cells. CAD/CAM laser micromachining (CLM) was developed to engineer biointerfaces as surface recognition regions for differential adherence of cells and growth into tissue-like networks. CLM was also developed for engineering multi-cellular vascular networks. Cytotoxic evaluations and growth studies demonstrated VEGF-induced proliferation of HAAE-1 human aortic endothelial cells with inhibition of HA-VSMC human aortic smooth muscle cells. Finally, piiezoelectric inkjet printing was developed for controlled administration of natural and synthetic adhesives to overcome several problems associated with conventional tissue bonding materials, and greatly improve wound-repair in next generation eye repair, fracture fixation, organ fixation, wound closure, tissue engineering, and drug delivery devices.

  8. A novel 3D template for mandible and maxilla reconstruction: Rapid prototyping using stereolithography

    Directory of Open Access Journals (Sweden)

    Samir Kumta

    2015-01-01

    Full Text Available Introduction: Replication of the exact three-dimensional (3D structure of the maxilla and mandible is now a priority whilst attempting reconstruction of these bones to attain a complete functional and aesthetic rehabilitation. We hereby present the process of rapid prototyping using stereolithography to produce templates for modelling bone grafts and implants for maxilla/mandible reconstructions, its applications in tumour/trauma, and outcomes for primary and secondary reconstruction. Materials and Methods: Stereolithographic template-assisted reconstruction was used on 11 patients for the reconstruction of the mandible/maxilla primarily following tumour excision and secondarily for the realignment of post-traumatic malunited fractures or deformity corrections. Data obtained from the computed tomography (CT scans with 1-mm resolution were converted into a computer-aided design (CAD using the CT Digital Imaging and Communications in Medicine (DICOM data. Once a CAD model was constructed, it was converted into a stereolithographic format and then processed by the rapid prototyping technology to produce the physical anatomical model using a resin. This resin model replicates the native mandible, which can be thus used off table as a guide for modelling the bone grafts. Discussion: This conversion of two-dimensional (2D data from CT scan into 3D models is a very precise guide to shaping the bone grafts. Further, this CAD can reconstruct the defective half of the mandible using the mirror image principle, and the normal anatomical model can be created to aid secondary reconstructions. Conclusion: This novel approach allows a precise translation of the treatment plan directly to the surgical field. It is also an important teaching tool for implant moulding and fixation, and helps in patient counselling.

  9. Technical Note: Rapid prototyping of 3D grid arrays for image guided therapy quality assurance

    Energy Technology Data Exchange (ETDEWEB)

    Kittle, David; Holshouser, Barbara; Slater, James M.; Guenther, Bob D.; Pitsianis, Nikos P.; Pearlstein, Robert D. [Department of Radiation Medicine, Epilepsy Radiosurgery Research Program, Loma Linda University, Loma Linda, California 92354 (United States); Department of Radiology, Loma Linda University Medical Center, Loma Linda, California 92354 (United States); Department of Radiation Medicine, Loma Linda University, Loma Linda, California 92354 (United States); Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Department of Electrical and Computer Engineering and Department of Computer Science, Duke University, Durham, North Carolina 27708 (United States); Department of Radiation Medicine, Epilepsy Radiosurgery Research Program, Loma Linda University, Loma Linda, California 92354 and Department of Surgery-Neurosurgery, Duke University and Medical Center, Durham, North Carolina 27710 (United States)

    2008-12-15

    Three dimensional grid phantoms offer a number of advantages for measuring imaging related spatial inaccuracies for image guided surgery and radiotherapy. The authors examined the use of rapid prototyping technology for directly fabricating 3D grid phantoms from CAD drawings. We tested three different fabrication process materials, photopolymer jet with acrylic resin (PJ/AR), selective laser sintering with polyamide (SLS/P), and fused deposition modeling with acrylonitrile butadiene styrene (FDM/ABS). The test objects consisted of rectangular arrays of control points formed by the intersections of posts and struts (2 mm rectangular cross section) and spaced 8 mm apart in the x, y, and z directions. The PJ/AR phantom expanded after immersion in water which resulted in permanent warping of the structure. The surface of the FDM/ABS grid exhibited a regular pattern of depressions and ridges from the extrusion process. SLS/P showed the best combination of build accuracy, surface finish, and stability. Based on these findings, a grid phantom for assessing machine-dependent and frame-induced MR spatial distortions was fabricated to be used for quality assurance in stereotactic neurosurgical and radiotherapy procedures. The spatial uniformity of the SLS/P grid control point array was determined by CT imaging (0.6x0.6x0.625 mm{sup 3} resolution) and found suitable for the application, with over 97.5% of the control points located within 0.3 mm of the position specified in CAD drawing and none of the points off by more than 0.4 mm. Rapid prototyping is a flexible and cost effective alternative for development of customized grid phantoms for medical physics quality assurance.

  10. Pulseq: A rapid and hardware-independent pulse sequence prototyping framework.

    Science.gov (United States)

    Layton, Kelvin J; Kroboth, Stefan; Jia, Feng; Littin, Sebastian; Yu, Huijun; Leupold, Jochen; Nielsen, Jon-Fredrik; Stöcker, Tony; Zaitsev, Maxim

    2017-04-01

    Implementing new magnetic resonance experiments, or sequences, often involves extensive programming on vendor-specific platforms, which can be time consuming and costly. This situation is exacerbated when research sequences need to be implemented on several platforms simultaneously, for example, at different field strengths. This work presents an alternative programming environment that is hardware-independent, open-source, and promotes rapid sequence prototyping. A novel file format is described to efficiently store the hardware events and timing information required for an MR pulse sequence. Platform-dependent interpreter modules convert the file to appropriate instructions to run the sequence on MR hardware. Sequences can be designed in high-level languages, such as MATLAB, or with a graphical interface. Spin physics simulation tools are incorporated into the framework, allowing for comparison between real and virtual experiments. Minimal effort is required to implement relatively advanced sequences using the tools provided. Sequences are executed on three different MR platforms, demonstrating the flexibility of the approach. A high-level, flexible and hardware-independent approach to sequence programming is ideal for the rapid development of new sequences. The framework is currently not suitable for large patient studies or routine scanning although this would be possible with deeper integration into existing workflows. Magn Reson Med 77:1544-1552, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  11. Rapid Prototyping of the Central Safety System for Nuclear Risk in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Scibile, L. [ITER Organization, 13 - St. Paul lez Durance (France); Ambrosino, G.; De Tommasi, G.; Pironti, A. [Euratom-ENEA-CREATE, Universita di Napoli Federico II, Napoli (Italy)

    2009-07-01

    Full text of publication follows: In the current ITER Baseline design, the Central Safety System for Nuclear Risk (CSS-N) is the safety control system in charge to assure nuclear safety for the plant, personnel and environment. In particular it is envisaged that the CSS shall interface to the plant safety systems for nuclear risk and shall coordinate the individual protection provided by the intervention of these systems by the activation, where required, of additional protections. The design of such a system, together with its implementation, strongly depends on the requirements, particularly in terms of reliability. The CSS-N is a safety critical system, thus its validation and commissioning play a very important role, since the required level of reliability must be demonstrated. In such a scenario, where a new and non-conventional system has to be deployed, it is strongly recommended to use modeling and simulation tools since the early design phase. Indeed, the modeling tools will help in the definition of the system requirements, and they will be used to test and validate the control logic. Furthermore these tools can be used to rapid design the safety system and to carry out hardware-in-the-loop (HIL) simulations, which permit to assess the performance of the control hardware against a plant simulator. Both a control system prototype and a safety system oriented plant simulator have been developed to assess first the requirements and then the performance of the CSS-N. In particular the presented SW/HW framework permits to design and verify the CSS protection logics and to test and validate these logics by means of HIL simulations. This work introduces both the prototype and plant simulator architectures, together with the methodology adopted to design and implement these validation tools. (authors)

  12. Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment

    NARCIS (Netherlands)

    Li Jiaping, L.; de Wijn, J.R.; van Blitterswijk, Clemens; de Groot, K.

    2006-01-01

    Three-dimensional (3D) fiber deposition (3DF), a rapid prototyping technology, was successfully directly applied to produce novel 3D porous Ti6Al4V scaffolds with fully interconnected porous networks and highly controllable porosity and pore size. A key feature of this technology is the 3D

  13. Planar array stack design aided by rapid prototyping in development of air-breathing PEMFC

    Science.gov (United States)

    Chen, Chen-Yu; Lai, Wei-Hsiang; Weng, Biing-Jyh; Chuang, Huey-Jan; Hsieh, Ching-Yuan; Kung, Chien-Chih

    The polymer electrolyte membrane fuel cell (PEMFC) is one of the most important research topics in the new and clean energy area. The middle or high power PEMFCs can be applied to the transportation or the distributed power system. But for the small power application, it is needed to match the power requirement of the product generally. On the other hand, the direct methanol fuel cell (DMFC) is one of the most common type that researchers are interested in, but recently the miniature or the micro-PEMFCs attract more attention due to their advantages of high open circuit voltage and high power density. The objective of this study is to develop a new air-breathing planar array fuel cell stacked from 10 cells made by rapid prototyping technology which has potential for fast commercial design, low cost manufacturing, and even without converters/inverters for the system. In this paper, the main material of flow field plates is acrylonitrile-butadiene-styrene (ABS) which allows the fuel cell be mass-manufactured by plastic injection molding technology. The rapid prototyping technology is applied to construct the prototype and verify the practicability of the proposed stack design. A 10-cell air-breathing miniature PEMFC stack with a volume of 6 cm × 6 cm × 0.9 cm is developed and tested. Its segmented membrane electrode assembly (MEA) is designed with the active surface area of 1.3 cm × 1.3 cm in each individual MEA. The platinum loading at anode and cathode are 0.2 mg cm -2 and 0.4 mg cm -2, respectively. Results show that the peak power densities of the parallel connected and serial connected stack are 99 mW cm -2 at 0.425 V and 92 mW cm -2 at 4.25 V, respectively under the conditions of 70 °C relative saturated humidity (i.e., dew point temperature), ambient temperature and free convection air. Besides, the stack performance is increased under forced convection. If the cell surface air is blown by an electric fan, the peak power densities of parallel connected and

  14. Planar array stack design aided by rapid prototyping in development of air-breathing PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chen-Yu.; Lai, Wei-Hsiang [Institute of Aeronautics and Astronautics, National Cheng Kung University, No.1, Ta-Hsueh Road, Tainan 701 (China); Weng, Biing-Jyh; Chuang, Huey-Jan; Hsieh, Ching-Yuan; Kung, Chien-Chih [Chung-Shan Institute of Science and Technology, Materials and Electro-Optics Research Division, P.O. Box No. 90008-8-3 Lung-Tan, Tao-Yuan 325 (China)

    2008-04-15

    The polymer electrolyte membrane fuel cell (PEMFC) is one of the most important research topics in the new and clean energy area. The middle or high power PEMFCs can be applied to the transportation or the distributed power system. But for the small power application, it is needed to match the power requirement of the product generally. On the other hand, the direct methanol fuel cell (DMFC) is one of the most common type that researchers are interested in, but recently the miniature or the micro-PEMFCs attract more attention due to their advantages of high open circuit voltage and high power density. The objective of this study is to develop a new air-breathing planar array fuel cell stacked from 10 cells made by rapid prototyping technology which has potential for fast commercial design, low cost manufacturing, and even without converters/inverters for the system. In this paper, the main material of flow field plates is acrylonitrile-butadiene-styrene (ABS) which allows the fuel cell be mass-manufactured by plastic injection molding technology. The rapid prototyping technology is applied to construct the prototype and verify the practicability of the proposed stack design. A 10-cell air-breathing miniature PEMFC stack with a volume of 6 cm x 6 cm x 0.9 cm is developed and tested. Its segmented membrane electrode assembly (MEA) is designed with the active surface area of 1.3 cm x 1.3 cm in each individual MEA. The platinum loading at anode and cathode are 0.2 mg cm{sup -2} and 0.4 mg cm{sup -2}, respectively. Results show that the peak power densities of the parallel connected and serial connected stack are 99 mW cm{sup -2} at 0.425 V and 92 mW cm{sup -2} at 4.25 V, respectively under the conditions of 70 C relative saturated humidity (i.e., dew point temperature), ambient temperature and free convection air. Besides, the stack performance is increased under forced convection. If the cell surface air is blown by an electric fan, the peak power densities of

  15. A microcontroller platform for the rapid prototyping of functional electrical stimulation-based gait neuroprostheses.

    Science.gov (United States)

    Luzio de Melo, Paulo; da Silva, Miguel Tavares; Martins, Jorge; Newman, Dava

    2015-05-01

    Functional electrical stimulation (FES) has been used over the last decades as a method to rehabilitate lost motor functions of individuals with spinal cord injury, multiple sclerosis, and post-stroke hemiparesis. Within this field, researchers in need of developing FES-based control solutions for specific disabilities often have to choose between either the acquisition and integration of high-performance industry-level systems, which are rather expensive and hardly portable, or develop custom-made portable solutions, which despite their lower cost, usually require expert-level electronic skills. Here, a flexible low-cost microcontroller-based platform for rapid prototyping of FES neuroprostheses is presented, designed for reduced execution complexity, development time, and production cost. For this reason, the Arduino open-source microcontroller platform was used, together with off-the-shelf components whenever possible. The developed system enables the rapid deployment of portable FES-based gait neuroprostheses, being flexible enough to allow simple open-loop strategies but also more complex closed-loop solutions. The system is based on a modular architecture that allows the development of optimized solutions depending on the desired FES applications, even though the design and testing of the platform were focused toward drop foot correction. The flexibility of the system was demonstrated using two algorithms targeting drop foot condition within different experimental setups. Successful bench testing of the device in healthy subjects demonstrated these neuroprosthesis platform capabilities to correct drop foot. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  16. Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique.

    Science.gov (United States)

    Ryan, Garrett E; Pandit, Abhay S; Apatsidis, Dimitrios P

    2008-09-01

    One of the main issues in orthopaedic implant design is the fabrication of scaffolds that closely mimic the biomechanical properties of the surrounding bone. This research reports on a multi-stage rapid prototyping technique that was successfully developed to produce porous titanium scaffolds with fully interconnected pore networks and reproducible porosity and pore size. The scaffolds' porous characteristics were governed by a sacrificial wax template, fabricated using a commercial 3D-printer. Powder metallurgy processes were employed to generate the titanium scaffolds by filling around the wax template with titanium slurry. In the attempt to optimise the powder metallurgy technique, variations in slurry concentration, compaction pressure and sintering temperature were investigated. By altering the wax design template, pore sizes ranging from 200 to 400 microm were achieved. Scaffolds with porosities of 66.8 +/- 3.6% revealed compression strengths of 104.4+/-22.5 MPa in the axial direction and 23.5 +/- 9.6 MPa in the transverse direction demonstrating their anisotropic nature. Scaffold topography was characterised using scanning electron microscopy and microcomputed tomography. Three-dimensional reconstruction enabled the main architectural parameters such as pore size, interconnecting porosity, level of anisotropy and level of structural disorder to be determined. The titanium scaffolds were compared to their intended designs, as governed by their sacrificial wax templates. Although discrepancies in architectural parameters existed between the intended and the actual scaffolds, overall the results indicate that the porous titanium scaffolds have the properties to be potentially employed in orthopaedic applications.

  17. Efficacy and accuracy of a novel rapid prototyping drill template for cervical pedicle screw placement.

    Science.gov (United States)

    Lu, Sheng; Xu, Yong Q; Chen, Guo P; Zhang, Yuan Z; Lu, Di; Chen, Yu B; Shi, Ji H; Xu, Xing M

    2011-01-01

    To develop and validate the efficacy and accuracy of a novel drill template for cervical pedicle instrumentation. A CT scan of the cervical vertebrae was performed, and a 3D model of the vertebrae was reconstructed using MIMICS 10.01 software. The 3D vertebral model was then exported in STL format, and opened in a workstation running UGS Imageware 12.0 software to determine the optimal pedicle screw size and orientation. A virtual navigational template was established according to the laminar anatomic trait, and physical navigational templates were manufactured using rapid prototyping. The navigational templates were used intraoperatively to assist in the placement of cervical pedicle screws. In all, 84 pedicle screws were placed, and the accuracy of screw placement was confirmed with postoperative X-rays and CT scans. Eighty-two screws were rated as Grade 0, 2 as Grade 1, and no screws as Grade 2 or 3. Hence, safer screw positioning was accomplished with the drill template technique. This study demonstrates a patient-specific template technique that is easy to use, can simplify the surgical act, and generates highly accurate cervical pedicle screw placement. The advantages of this technology over traditional techniques are that it enables planning of the screw trajectory to be completed prior to surgery, and that the screw can be sized to fit the patient's anatomy.

  18. Rapid prototyping and evaluation of programmable SIMD SDR processors in LISA

    Science.gov (United States)

    Chen, Ting; Liu, Hengzhu; Zhang, Botao; Liu, Dongpei

    2013-03-01

    With the development of international wireless communication standards, there is an increase in computational requirement for baseband signal processors. Time-to-market pressure makes it impossible to completely redesign new processors for the evolving standards. Due to its high flexibility and low power, software defined radio (SDR) digital signal processors have been proposed as promising technology to replace traditional ASIC and FPGA fashions. In addition, there are large numbers of parallel data processed in computation-intensive functions, which fosters the development of single instruction multiple data (SIMD) architecture in SDR platform. So a new way must be found to prototype the SDR processors efficiently. In this paper we present a bit-and-cycle accurate model of programmable SIMD SDR processors in a machine description language LISA. LISA is a language for instruction set architecture which can gain rapid model at architectural level. In order to evaluate the availability of our proposed processor, three common baseband functions, FFT, FIR digital filter and matrix multiplication have been mapped on the SDR platform. Analytical results showed that the SDR processor achieved the maximum of 47.1% performance boost relative to the opponent processor.

  19. Rapid prototyping: porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering.

    Science.gov (United States)

    Warnke, Patrick H; Douglas, Timothy; Wollny, Patrick; Sherry, Eugene; Steiner, Martin; Galonska, Sebastian; Becker, Stephan T; Springer, Ingo N; Wiltfang, Jörg; Sivananthan, Sureshan

    2009-06-01

    Selective laser melting (SLM), a method used in the nuclear, space, and racing industries, allows the creation of customized titanium alloy scaffolds with highly defined external shape and internal structure using rapid prototyping as supporting external structures within which bone tissue can grow. Human osteoblasts were cultured on SLM-produced Ti6Al4V mesh scaffolds to demonstrate biocompatibility using scanning electron microscopy (SEM), fluorescence microscopy after cell vitality staining, and common biocompatibility tests (lactate dihydrogenase (LDH), 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), 5-bromo-2-deoxyuridine (BrdU), and water soluble tetrazolium (WST)). Cell occlusion of pores of different widths (0.45-1.2 mm) was evaluated. Scaffolds were tested for resistance to compressive force. SEM investigations showed osteoblasts with well-spread morphology and multiple contact points. Cell vitality staining and biocompatibility tests confirmed osteoblast vitality and proliferation on the scaffolds. Pore overgrowth increased during 6 weeks' culture at pore widths of 0.45 and 0.5 mm, and in the course of 3 weeks for pore widths of 0.55, 0.6, and 0.7 mm. No pore occlusion was observed on pores of width 0.9-1.2 mm. Porosity and maximum compressive load at failure increased and decreased with increasing pore width, respectively. In summary, the scaffolds are biocompatible, and pore width influences pore overgrowth, resistance to compressive force, and porosity.

  20. New Design for Rapid Prototyping of Digital Master Casts for Multiple Dental Implant Restorations.

    Directory of Open Access Journals (Sweden)

    Luis Romero

    Full Text Available This study proposes the replacement of all the physical devices used in the manufacturing of conventional prostheses through the use of digital tools, such as 3D scanners, CAD design software, 3D implants files, rapid prototyping machines or reverse engineering software, in order to develop laboratory work models from which to finish coatings for dental prostheses. Different types of dental prosthetic structures are used, which were adjusted by a non-rotatory threaded fixing system.From a digital process, the relative positions of dental implants, soft tissue and adjacent teeth of edentulous or partially edentulous patients has been captured, and a maser working model which accurately replicates data relating to the patients oral cavity has been through treatment of three-dimensional digital data.Compared with the conventional master cast, the results show a significant cost savings in attachments, as well as an increase in the quality of reproduction and accuracy of the master cast, with the consequent reduction in the number of patient consultation visits. The combination of software and hardware three-dimensional tools allows the optimization of the planning of dental implant-supported rehabilitations protocol, improving the predictability of clinical treatments and the production cost savings of master casts for restorations upon implants.

  1. Rapid Prototyping of a High Sensitivity Graphene Based Glucose Sensor Strip.

    Directory of Open Access Journals (Sweden)

    Farshad Tehrani

    Full Text Available A rapid prototyping of an inexpensive, disposable graphene and copper nanocomposite sensor strip using polymeric flexible substrate for highly sensitive and selective nonenzymatic glucose detection has been developed and tested for direct oxidization of glucose. The CuNPs were electrochemically deposited on to the graphene sheets to improve electron transfer rates and to enhance electrocatalytic activity toward glucose. The graphene based electrode with CuNPs demonstrated a high degree of sensitivity (1101.3 ± 56 μA/mM.cm2, excellent selectivity (without an interference with Ascorbic Acid, Uric Acid, Dopamine, and Acetaminophen, good stability with a linear response to glucose ranging from 0.1 mM to 0.6 mM concentration, and detection limits of 0.025 mM to 0.9 mM. Characterization of the electrodes was performed by scanning electron microscopy (FESEM and SEM. The electrochemical properties of the modified graphene electrodes were inspected by cyclic voltammetry (CV, electrochemical impedance spectroscopy (EIS, and amperometry.

  2. Rapid Prototyping of a High Sensitivity Graphene Based Glucose Sensor Strip.

    Science.gov (United States)

    Tehrani, Farshad; Reiner, Lisa; Bavarian, Behzad

    2015-01-01

    A rapid prototyping of an inexpensive, disposable graphene and copper nanocomposite sensor strip using polymeric flexible substrate for highly sensitive and selective nonenzymatic glucose detection has been developed and tested for direct oxidization of glucose. The CuNPs were electrochemically deposited on to the graphene sheets to improve electron transfer rates and to enhance electrocatalytic activity toward glucose. The graphene based electrode with CuNPs demonstrated a high degree of sensitivity (1101.3 ± 56 μA/mM.cm2), excellent selectivity (without an interference with Ascorbic Acid, Uric Acid, Dopamine, and Acetaminophen), good stability with a linear response to glucose ranging from 0.1 mM to 0.6 mM concentration, and detection limits of 0.025 mM to 0.9 mM. Characterization of the electrodes was performed by scanning electron microscopy (FESEM and SEM). The electrochemical properties of the modified graphene electrodes were inspected by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometry.

  3. Rapid prototyping of reflectors for vehicle lighting using laser activated remote phosphor

    Science.gov (United States)

    Lachmayer, Roland; Kloppenburg, Gerolf; Wolf, Alexander

    2015-03-01

    Bright white light sources are of significant importance for automotive front lighting systems. Today's upper class vehicles mainly use HID or LED as light source. As a further step in this development laser diode based systems offer high luminance, efficiency and allow the realization of new styling concepts and new dynamic lighting functions. These white laser diode systems can either be realized by mixing different spectral sources or by combining diodes with specific phosphors. Based on the approach of generating light using a laser and remote phosphor, lighting modules are manufactured. Four blue laser diodes (450 nm) are used to activate a phosphor coating and thus to achieve white light. A segmented paraboloid reflector generates the desired light distribution for an additional car headlamp. We use high speed milling and selective laser melting to build the reflector system for this lighting module. We compare the spectral reflection grade of these materials. Furthermore the generated modules are analyzed regarding their efficiency and light distribution. The use of Rapid Prototyping technologies allows an early validation of the chosen concept and is supposed to reduce cost and time in the product development process significantly. Therefor we discuss costs and times of the applied manufacturing technologies.

  4. New Design for Rapid Prototyping of Digital Master Casts for Multiple Dental Implant Restorations

    Science.gov (United States)

    Romero, Luis; Jiménez, Mariano; Espinosa, María del Mar; Domínguez, Manuel

    2015-01-01

    Aim This study proposes the replacement of all the physical devices used in the manufacturing of conventional prostheses through the use of digital tools, such as 3D scanners, CAD design software, 3D implants files, rapid prototyping machines or reverse engineering software, in order to develop laboratory work models from which to finish coatings for dental prostheses. Different types of dental prosthetic structures are used, which were adjusted by a non-rotatory threaded fixing system. Method From a digital process, the relative positions of dental implants, soft tissue and adjacent teeth of edentulous or partially edentulous patients has been captured, and a maser working model which accurately replicates data relating to the patients oral cavity has been through treatment of three-dimensional digital data. Results Compared with the conventional master cast, the results show a significant cost savings in attachments, as well as an increase in the quality of reproduction and accuracy of the master cast, with the consequent reduction in the number of patient consultation visits. The combination of software and hardware three-dimensional tools allows the optimization of the planning of dental implant-supported rehabilitations protocol, improving the predictability of clinical treatments and the production cost savings of master casts for restorations upon implants. PMID:26696528

  5. Rapid prototyping of multi-scale biomedical microdevices by combining additive manufacturing technologies.

    Science.gov (United States)

    Hengsbach, Stefan; Lantada, Andrés Díaz

    2014-08-01

    The possibility of designing and manufacturing biomedical microdevices with multiple length-scale geometries can help to promote special interactions both with their environment and with surrounding biological systems. These interactions aim to enhance biocompatibility and overall performance by using biomimetic approaches. In this paper, we present a design and manufacturing procedure for obtaining multi-scale biomedical microsystems based on the combination of two additive manufacturing processes: a conventional laser writer to manufacture the overall device structure, and a direct-laser writer based on two-photon polymerization to yield finer details. The process excels for its versatility, accuracy and manufacturing speed and allows for the manufacture of microsystems and implants with overall sizes up to several millimeters and with details down to sub-micrometric structures. As an application example we have focused on manufacturing a biomedical microsystem to analyze the impact of microtextured surfaces on cell motility. This process yielded a relevant increase in precision and manufacturing speed when compared with more conventional rapid prototyping procedures.

  6. Virtual Simulator for Autonomous Mobile Robots Navigation System Using Concepts of Control Rapid Prototyping

    Directory of Open Access Journals (Sweden)

    Leonimer Flavio de Melo

    2013-09-01

    Full Text Available This work presents the proposal of virtual environment implementation for project simulation and conception of supervision and control systems for mobile robots, that are capable to operate and adapting in different environments and conditions. This virtual system has as purpose to facilitate the development of embedded architecture systems, emphasizing the implementation of tools that allow the simulation of the kinematic conditions, dynamic and control, with real time monitoring of all important system points. For this, open control architecture is proposal, integrating the two main techniques of robotic control implementation in the hardware level: systems microprocessors and reconfigurable hardware devices. The implemented simulator system is composed of a trajectory generating module, a kinematic and dynamic simulator module and of a analysis module of results and errors. The kinematic and dynamic simulator module makes all simulation of the mobile robot following the pre-determined trajectory of the trajectory generator. All the kinematic and dynamic results shown during the simulation can be evaluated and visualized in graphs and tables formats, in the results analysis module, allowing an improvement in the system, minimizing the errors with the necessary adjustments optimization. For controller implementation in the embedded system, it uses the rapid prototyping, which is the technology that allows, in set with the virtual simulation environment, the development of a controller project for mobile robots. The validation and tests had been accomplishing with nonholonomics mobile robots models with differential transmission.

  7. A rapid, maskless 3D prototyping for fabrication of capillary circuits: Toward urinary protein detection.

    Science.gov (United States)

    Yan, Sheng; Zhu, Yuanqing; Tang, Shi-Yang; Li, Yuxing; Zhao, Qianbin; Yuan, Dan; Yun, Guolin; Zhang, Jun; Zhang, Shiwu; Li, Weihua

    2018-01-02

    Proteinuria is an established risk marker for progressive renal function loss and patients would significantly benefit from a point-of-care testing. Although extensive work has been done to develop the microfluidic devices for the detection of urinary protein, they need the complicated operation and bulky peripherals. Here, we present a rapid, maskless 3D prototyping for fabrication of capillary fluidic circuits using laser engraving. The capillary circuits can be fabricated in a short amount of time (<10 min) without the requirements of clean-room facilities and photomasks. The advanced capillary components (e.g., trigger valves, retention valves and retention bursting valves) were fabricated, enabling the sequential liquid delivery and sample-reagent mixing. With the integration of smartphone-based detection platform, the microfluidic device can quantify the urinary protein via a colorimetric analysis. By eliminating the bulky and expensive equipment, this smartphone-based detection platform is portable for on-site quantitative detection. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Rapid Prototyping of Polymeric Nanopillars by 3D Direct Laser Writing for Controlling Cell Behavior.

    Science.gov (United States)

    Buch-Månson, Nina; Spangenberg, Arnaud; Gomez, Laura Piedad Chia; Malval, Jean-Pierre; Soppera, Olivier; Martinez, Karen L

    2017-08-23

    Mammalian cells have been widely shown to respond to nano- and microtopography that mimics the extracellular matrix. Synthetic nano- and micron-sized structures are therefore of great interest in the field of tissue engineering, where polymers are particularly attractive due to excellent biocompatibility and versatile fabrication methods. Ordered arrays of polymeric pillars provide a controlled topographical environment to study and manipulate cells, but processing methods are typically either optimized for the nano- or microscale. Here, we demonstrate polymeric nanopillar (NP) fabrication using 3D direct laser writing (3D DLW), which offers a rapid prototyping across both size regimes. The NPs are interfaced with NIH3T3 cells and the effect of tuning geometrical parameters of the NP array is investigated. Cells are found to adhere on a wide range of geometries, but the interface depends on NP density and length. The Cell Interface with Nanostructure Arrays (CINA) model is successfully extended to predict the type of interface formed on different NP geometries, which is found to correlate with the efficiency of cell alignment along the NPs. The combination of the CINA model with the highly versatile 3D DLW fabrication thus holds the promise of improved design of polymeric NP arrays for controlling cell growth.

  9. Low-Cost Rotating Experimentation in Compressor Aerodynamics Using Rapid Prototyping

    Directory of Open Access Journals (Sweden)

    Mathias Michaud

    2016-01-01

    Full Text Available With the rapid evolution of additive manufacturing, 3D printed parts are no longer limited to display purposes but can also be used in structural applications. The objective of this paper is to show that 3D prototyping can be used to produce low-cost rotating turbomachinery rigs capable of carrying out detailed flow measurements that can be used, among other things, for computational fluid dynamics (CFD code validation. A fully instrumented polymer two-stage axial-mixed flow compressor test rig was designed and fabricated with stereolithography (SLA technology by a team of undergraduate students as part of a senior-year design course. Experiments were subsequently performed on this rig to obtain both the overall pressure rise characteristics of the compressor and the stagnation pressure distributions downstream of the blade rows for comparison with CFD simulations. In doing so, this work provides a first-of-a-kind assessment of the use of polymer additive technology for low-cost rotating turbomachinery experimentation with detailed measurements.

  10. Rapid Prototyping of Poly(methyl methacrylate) Microfluidic Systems Using Solvent Imprinting and Bonding

    Science.gov (United States)

    Sun, Xiuhua; Peeni, Bridget A.; Yang, Weichun; Becerril, Hector A.

    2011-01-01

    We have developed a method for rapid prototyping of hard polymer microfluidic systems using solvent imprinting and bonding. We investigated the applicability of patterned SU-8 photoresist on glass as an easily fabricated template for solvent imprinting. Poly(methyl methacrylate) (PMMA) exposed to acetonitrile for 2 min then had an SU-8 template pressed into the surface for 10 min, which provided appropriately imprinted channels and a suitable surface for bonding. After a PMMA cover plate had also been exposed to acetonitrile for 2 min, the imprinted and top PMMA pieces could be bonded together at room temperature with appropriate pressure. The total fabrication time was less than 15 min. Under the optimized fabrication conditions, nearly 30 PMMA chips could be replicated using a single patterned SU-8 master with high chip-to-chip reproducibility. Relative standard deviations were 2.3% and 5.4% for the widths and depths of the replicated channels, respectively. Fluorescently labeled amino acid and peptide mixtures were baseline separated using these PMMA microchips in <15 s. Theoretical plate numbers in excess of 5000 were obtained for a ~3 cm separation distance, and the migration time relative standard deviation for an amino acid peak was 1.5% for intra-day and 2.2% for inter-day analysis. This new solvent imprinting and bonding approach significantly simplifies the process for fabricating microfluidic structures in hard polymers such as PMMA. PMID:17466320

  11. Rapid Prototyping of a Cyclic Olefin Copolymer Microfluidic Device for Automated Oocyte Culturing.

    Science.gov (United States)

    Berenguel-Alonso, Miguel; Sabés-Alsina, Maria; Morató, Roser; Ymbern, Oriol; Rodríguez-Vázquez, Laura; Talló-Parra, Oriol; Alonso-Chamarro, Julián; Puyol, Mar; López-Béjar, Manel

    2017-10-01

    Assisted reproductive technology (ART) can benefit from the features of microfluidic technologies, such as the automation of time-consuming labor-intensive procedures, the possibility to mimic in vivo environments, and the miniaturization of the required equipment. To date, most of the proposed approaches are based on polydimethylsiloxane (PDMS) as platform substrate material due to its widespread use in academia, despite certain disadvantages, such as the elevated cost of mass production. Herein, we present a rapid fabrication process for a cyclic olefin copolymer (COC) monolithic microfluidic device combining hot embossing-using a low-temperature cofired ceramic (LTCC) master-and micromilling. The microfluidic device was suitable for trapping and maturation of bovine oocytes, which were further studied to determine their ability to be fertilized. Furthermore, another COC microfluidic device was fabricated to store sperm and assess its quality parameters over time. The study herein presented demonstrates a good biocompatibility of the COC when working with gametes, and it exhibits certain advantages, such as the nonabsorption of small molecules, gas impermeability, and low fabrication costs, all at the prototyping and mass production scale, thus taking a step further toward fully automated microfluidic devices in ART.

  12. Deep proton writing with 12 MeV protons for rapid prototyping of microstructures in polymethylmethacrylate

    Science.gov (United States)

    Ebraert, Evert; Gökçe, Berkcan; Van Vlierberghe, Sandra; Vervaeke, Michael; Meyer, Pascal; Guttmann, Markus; Dubruel, Peter; Thienpont, Hugo; Van Erps, Jürgen

    2016-10-01

    Deep proton writing (DPW) is a fabrication technology developed for the rapid prototyping of polymer microstructures. We use polymethylmethacrylate (PMMA) substrates, which act as a positive resist, for irradiation with a collimated 12-MeV energy proton beam. Using 12 MeV enables the irradiation of increasingly thick PMMA substrates with less conicity of the sidewalls compared to the lower energies used in previous work. A microhole of 47.7 μm diameter over a depth of 1 mm is achieved, leading to a maximum aspect ratio of 21∶1. The sidewalls of the irradiated structures show a slightly conical shape and their root-mean-square surface roughness is lower than 50 nm averaged over 72 measured areas of 56 μm×44 μm. This means that DPW components have optical surface quality sidewalls for wavelengths larger than 400 nm. Based on the trade-off among the sidewall roughness, conicity, and the development time, we determine that the optimal proton fluence for 12-MeV DPW in PMMA is 7.75×106 μm-2. Finally, we discuss some high aspect ratio microstructures with optical surface quality that were created with DPW to be used for a myriad of applications, such as micromirrors, microlenses, optofluidic devices, and high-precision alignment structures for single-mode optical fiber connectors.

  13. Accuracy Assessment of Using Rapid Prototyping Drill Templates for Atlantoaxial Screw Placement: A Cadaver Study

    Directory of Open Access Journals (Sweden)

    Shuai Guo

    2016-01-01

    Full Text Available Purpose. To preliminarily evaluate the feasibility and accuracy of using rapid prototyping drill templates (RPDTs for C1 lateral mass screw (C1-LMS and C2 pedicle screw (C2-PS placement. Methods. 23 formalin-fixed craniocervical cadaver specimens were randomly divided into two groups. In the conventional method group, intraoperative fluoroscopy was used to assist the screw placement. In the RPDT navigation group, specific RPDTs were constructed for each specimen and were used intraoperatively for screw placement navigation. The screw position, the operating time, and the fluoroscopy time for each screw placement were compared between the 2 groups. Results. Compared with the conventional method, the RPDT technique significantly increased the placement accuracy of the C2-PS (p0.05. Moreover, the RPDT technique significantly decreased the operating and fluoroscopy times. Conclusion. Using RPDTs significantly increases the accuracy of C1-LMS and C2-PS placement while decreasing the screw placement time and the radiation exposure. Due to these advantages, this approach is worth promoting for use in the Harms technique.

  14. Fabrication of multi-well chips for spheroid cultures and implantable constructs through rapid prototyping techniques.

    Science.gov (United States)

    Lopa, Silvia; Piraino, Francesco; Kemp, Raymond J; Di Caro, Clelia; Lovati, Arianna B; Di Giancamillo, Alessia; Moroni, Lorenzo; Peretti, Giuseppe M; Rasponi, Marco; Moretti, Matteo

    2015-07-01

    Three-dimensional (3D) culture models are widely used in basic and translational research. In this study, to generate and culture multiple 3D cell spheroids, we exploited laser ablation and replica molding for the fabrication of polydimethylsiloxane (PDMS) multi-well chips, which were validated using articular chondrocytes (ACs). Multi-well ACs spheroids were comparable or superior to standard spheroids, as revealed by glycosaminoglycan and type-II collagen deposition. Moreover, the use of our multi-well chips significantly reduced the operation time for cell seeding and medium refresh. Exploiting a similar approach, we used clinical-grade fibrin to generate implantable multi-well constructs allowing for the precise distribution of multiple cell types. Multi-well fibrin constructs were seeded with ACs generating high cell density regions, as shown by histology and cell fluorescent staining. Multi-well constructs were compared to standard constructs with homogeneously distributed ACs. After 7 days in vitro, expression of SOX9, ACAN, COL2A1, and COMP was increased in both constructs, with multi-well constructs expressing significantly higher levels of chondrogenic genes than standard constructs. After 5 weeks in vivo, we found that despite a dramatic size reduction, the cell distribution pattern was maintained and glycosaminoglycan content per wet weight was significantly increased respect to pre-implantation samples. In conclusion, multi-well chips for the generation and culture of multiple cell spheroids can be fabricated by low-cost rapid prototyping techniques. Furthermore, these techniques can be used to generate implantable constructs with defined architecture and controlled cell distribution, allowing for in vitro and in vivo investigation of cell interactions in a 3D environment. © 2015 Wiley Periodicals, Inc.

  15. Development of a prototype lateral flow immunoassay (LFI for the rapid diagnosis of melioidosis.

    Directory of Open Access Journals (Sweden)

    Raymond L Houghton

    2014-03-01

    Full Text Available Burkholderia pseudomallei is a soil-dwelling bacterium and the causative agent of melioidosis. Isolation of B. pseudomallei from clinical samples is the "gold standard" for the diagnosis of melioidosis; results can take 3-7 days to produce. Alternatively, antibody-based tests have low specificity due to a high percentage of seropositive individuals in endemic areas. There is a clear need to develop a rapid point-of-care antigen detection assay for the diagnosis of melioidosis. Previously, we employed In vivo Microbial Antigen Discovery (InMAD to identify potential B. pseudomallei diagnostic biomarkers. The B. pseudomallei capsular polysaccharide (CPS and numerous protein antigens were identified as potential candidates. Here, we describe the development of a diagnostic immunoassay based on the detection of CPS. Following production of a CPS-specific monoclonal antibody (mAb, an antigen-capture immunoassay was developed to determine the concentration of CPS within a panel of melioidosis patient serum and urine samples. The same mAb was used to produce a prototype Active Melioidosis Detect Lateral Flow Immunoassay (AMD LFI; the limit of detection of the LFI for CPS is comparable to the antigen-capture immunoassay (∼0.2 ng/ml. The analytical reactivity (inclusivity of the AMD LFI was 98.7% (76/77 when tested against a large panel of B. pseudomallei isolates. Analytical specificity (cross-reactivity testing determined that 97.2% of B. pseudomallei near neighbor species (35/36 were not reactive. The non-reactive B. pseudomallei strain and the reactive near neighbor strain can be explained through genetic sequence analysis. Importantly, we show the AMD LFI is capable of detecting CPS in a variety of patient samples. The LFI is currently being evaluated in Thailand and Australia; the focus is to optimize and validate testing procedures on melioidosis patient samples prior to initiation of a large, multisite pre-clinical evaluation.

  16. Mechanical properties and cytotoxicity of a resorbable bioactive implant prepared by rapid prototyping technique.

    Science.gov (United States)

    El-Ghannam, Ahmed; Hart, Amanda; White, Dean; Cunningham, Larry

    2013-10-01

    Bioceramic processing using rapid prototyping technique (RPT) results in a fragile device that requires thermal treatment to improve the mechanical properties. This investigation evaluates the effect of thermal treatment on the mechanical, porosity, and bioactivity properties as well as the cytotoxicity of a porous silica-calcium phosphate nanocomposite (SCPC) implant prepared by RPT. Porous SCPC implant was subject to 3-h treatment at 800°C, 850°C, or 900°C. The compressive strength (s) and modulus of elasticity (E) were doubled when the sintering temperature is raised from 850 to 900°C measuring (s = 15.326 ± 2.95 MPa and E = 1095 ± 164 MPa) after the later treatment. The significant increase in mechanical properties takes place with minimal changes in the surface area and the percentage of pores in the range 1-356 μm. The SCPC implant prepared at 900°C was loaded with rh-BMP-2 and grafted into a segmental defect in the rabbit ulna. Histology analyses showed highly vascularized bone formation inside the defect. Histopathological analyses of the liver, spleen, kidney, heart, and the lung of rabbits grafted with and without SCPC demonstrated healthy tissues with no signs of toxicity or morphology alterations. Results of the study suggest that it is possible to engineering the mechanical properties of the SCPC implant without compromising its bioactivity. The enhanced bone formation inside the porous SCPC facilitated cell-mediated graft resorption and prohibited any accumulation of the material in the body organs. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  17. A Rapid, Stability Indicating RP-UPLC Method for Simultaneous Determination of Ambroxol Hydrochloride, Cetirizine Hydrochloride and Antimicrobial Preservatives in Liquid Pharmaceutical Formulation.

    Science.gov (United States)

    Trivedi, Rakshit Kanubhai; Patel, Mukesh C; Jadhav, Sushant B

    2011-01-01

    A stability indicating reversed phase ultra performance liquid chromatography (RP-UPLC) method was developed for simultaneous determination of ambroxol hydrochloride (AMB), cetirizine hydrochloride (CTZ), methylparaben (MP) and propylparaben (PP) in liquid pharmaceutical formulation. The desired chromatographic separation was achieved on an Agilent Eclipse plus C18, 1.8 μm (50 × 2.1 mm) column using gradient elution at 237 nm detector wavelength. The optimized mobile phase consists of a mixture of 0.01 M phosphate buffer and 0.1 % triethylamine as a solvent-A and acetonitrile as a solvent-B. The developed method separates AMB, CTZ, MP and PP in presence of twelve known impurities/degradation products and one unknown degradation product within 3.5 min. Stability indicating capability was established by forced degradation experiments and seperation of known and unknown degradation products. The lower limit of quantification was established for AMB, CTZ, MP and PP. The developed RP-UPLC method was validated according to the International Conference on Harmonization (ICH) guidelines. This validated method is applied for simultaneous estimation of AMB, CTZ, MP and PP in commercially available syrup samples. Further, the method can be extended for estimation of AMB, CTZ, MP, PP and levo-cetirizine (LCTZ) in various commercially available dosage forms.

  18. Immediate facial rehabilitation in cancer patients using CAD-CAM and rapid prototyping technology: a pilot study.

    Science.gov (United States)

    Ciocca, Leonardo; Fantini, Massimiliano; Marchetti, Claudio; Scotti, Roberto; Monaco, Carlo

    2010-06-01

    This study describes the workflow in a procedure to create a provisional facial prosthesis for cancer patients using digital and rapid prototyping technologies without the need for supporting craniofacial implants. An integrated workflow procedure aimed at the construction of provisional silicone prosthesis was used to rehabilitate a facial disfigurement in a patient who had undergone ablative surgery of the midface. A laser scan of the defect was obtained, and a digital model of the patient's face was constructed using virtual mirroring of the healthy side and referencing the "Nose Digital Library." The missing volume of the face was reconstructed, and a rapid-prototyped mold was devised to process the silicone prosthesis. A provisional eyeglasses-supported prosthesis designed with a CAD/CAM-projected titanium substructure was connected using the micro-components of implant prosthetic devices. The workflow described herein offers a viable procedure for quickly restoring facial defects by means of provisional prosthetic rehabilitation.

  19. A MATLAB Library for Rapid Prototyping of Wireless Communications Algorithms with the Universal Software Radio Peripheral (USRP) Radio Family

    Science.gov (United States)

    2013-06-01

    A MATLAB Library for Rapid Prototyping of Wireless Communications Algorithms with the Universal Software Radio Peripheral ( USRP ) Radio Family...Algorithms with the Universal Software Radio Peripheral ( USRP ) Radio Family Gunjan Verma and Paul Yu Computational and Information Sciences...Universal Software Radio Pheriphal ( USRP ) Radio Family 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Gunjan Verma

  20. A review of the issues surrounding three-dimensional computed tomography for medical modelling using rapid prototyping techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bibb, Richard [Department of Design and Technology, Loughborough University, Ashby Road, Loughborough, Leicestershire LE11 3TU (United Kingdom)], E-mail: r.j.bibb@lboro.ac.uk; Winder, John [Health and Rehabilitation Sciences Research Institute, University of Ulster, Shore Road, Newtownabbey, BT37 0QB (United Kingdom)], E-mail: rj.winder@ulster.ac.uk

    2010-02-15

    This technical note aims to raise awareness amongst radiographers of the application of Computed Tomography data in the production of models using Rapid Prototyping technologies. It also aims to provide radiographers with recommendations that will assist them in providing three-dimensional Computed Tomography data that can fulfil the requirements of medical modelling. Potential problem areas in data acquisition and transfer are discussed and suggestions are given for methods that aim to avoid these.

  1. Rapid prototyping of nano- and micro-patterned substrates for the control of cell neuritogenesis by topographic and chemical cues

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ajay V.; Gailite, Lasma; Vyas, Varun [European School of Molecular Medicine (SEMM), IFOM-IEO Campus, Via Adamello 16, I-20139 Milano (Italy); CIMAINA and Dipartimento di Fisica, Universita di Milano, via Celoria 16, I-20133 Milano (Italy); Lenardi, Cristina, E-mail: cristina.lenardi@mi.infn.it [CIMAINA and Dipartimento di Scienze Molecolari Applicate ai Biosistemi, Universita di Milano, via Trentacoste 2, I-20134 Milano (Italy); Fondazione Filarete, viale Ortles 22/4, I-20139 Milano (Italy); Forti, Stefania [CIMAINA and Dipartimento di Fisica, Universita di Milano, via Celoria 16, I-20133 Milano (Italy); Matteoli, Michela [Dipartimento di Farmacologia, Chemioterapia e Tossicologia Medica, Universita di Milano, via Vanvitelli 32, I-20139 Milano (Italy); Fondazione Filarete, viale Ortles 22/4, I-20139 Milano (Italy); Milani, Paolo, E-mail: paolo.milani@mi.infn.it [CIMAINA and Dipartimento di Fisica, Universita di Milano, via Celoria 16, I-20133 Milano (Italy); Fondazione Filarete, viale Ortles 22/4, I-20139 Milano (Italy)

    2011-07-20

    Rapid prototyping of titania substrates with micro and nanofeatures is obtained by combining nanosphere lithography with supersonic cluster beam deposition on protein-functionalized glass supports. The proliferation and differentiation of PC12 cells were studied on these substrates. The facile control and modification of the substrate structure at the micro- and nanoscale allowed us to characterize the role of functional and structural features on neuritogenesis and to control this phenomenon by identifying the optimal topography.

  2. The MOLGENIS toolkit: rapid prototyping of biosoftware at the push of a button.

    Science.gov (United States)

    Swertz, Morris A; Dijkstra, Martijn; Adamusiak, Tomasz; van der Velde, Joeri K; Kanterakis, Alexandros; Roos, Erik T; Lops, Joris; Thorisson, Gudmundur A; Arends, Danny; Byelas, George; Muilu, Juha; Brookes, Anthony J; de Brock, Engbert O; Jansen, Ritsert C; Parkinson, Helen

    2010-12-21

    There is a huge demand on bioinformaticians to provide their biologists with user friendly and scalable software infrastructures to capture, exchange, and exploit the unprecedented amounts of new *omics data. We here present MOLGENIS, a generic, open source, software toolkit to quickly produce the bespoke MOLecular GENetics Information Systems needed. The MOLGENIS toolkit provides bioinformaticians with a simple language to model biological data structures and user interfaces. At the push of a button, MOLGENIS' generator suite automatically translates these models into a feature-rich, ready-to-use web application including database, user interfaces, exchange formats, and scriptable interfaces. Each generator is a template of SQL, JAVA, R, or HTML code that would require much effort to write by hand. This 'model-driven' method ensures reuse of best practices and improves quality because the modeling language and generators are shared between all MOLGENIS applications, so that errors are found quickly and improvements are shared easily by a re-generation. A plug-in mechanism ensures that both the generator suite and generated product can be customized just as much as hand-written software. In recent years we have successfully evaluated the MOLGENIS toolkit for the rapid prototyping of many types of biomedical applications, including next-generation sequencing, GWAS, QTL, proteomics and biobanking. Writing 500 lines of model XML typically replaces 15,000 lines of hand-written programming code, which allows for quick adaptation if the information system is not yet to the biologist's satisfaction. Each application generated with MOLGENIS comes with an optimized database back-end, user interfaces for biologists to manage and exploit their data, programming interfaces for bioinformaticians to script analysis tools in R, Java, SOAP, REST/JSON and RDF, a tab-delimited file format to ease upload and exchange of data, and detailed technical documentation. Existing databases

  3. The MOLGENIS toolkit: rapid prototyping of biosoftware at the push of a button

    Science.gov (United States)

    2010-01-01

    Background There is a huge demand on bioinformaticians to provide their biologists with user friendly and scalable software infrastructures to capture, exchange, and exploit the unprecedented amounts of new *omics data. We here present MOLGENIS, a generic, open source, software toolkit to quickly produce the bespoke MOLecular GENetics Information Systems needed. Methods The MOLGENIS toolkit provides bioinformaticians with a simple language to model biological data structures and user interfaces. At the push of a button, MOLGENIS’ generator suite automatically translates these models into a feature-rich, ready-to-use web application including database, user interfaces, exchange formats, and scriptable interfaces. Each generator is a template of SQL, JAVA, R, or HTML code that would require much effort to write by hand. This ‘model-driven’ method ensures reuse of best practices and improves quality because the modeling language and generators are shared between all MOLGENIS applications, so that errors are found quickly and improvements are shared easily by a re-generation. A plug-in mechanism ensures that both the generator suite and generated product can be customized just as much as hand-written software. Results In recent years we have successfully evaluated the MOLGENIS toolkit for the rapid prototyping of many types of biomedical applications, including next-generation sequencing, GWAS, QTL, proteomics and biobanking. Writing 500 lines of model XML typically replaces 15,000 lines of hand-written programming code, which allows for quick adaptation if the information system is not yet to the biologist’s satisfaction. Each application generated with MOLGENIS comes with an optimized database back-end, user interfaces for biologists to manage and exploit their data, programming interfaces for bioinformaticians to script analysis tools in R, Java, SOAP, REST/JSON and RDF, a tab-delimited file format to ease upload and exchange of data, and detailed technical

  4. Using INGRES as a rapid prototyping device during development of management information applications

    Energy Technology Data Exchange (ETDEWEB)

    Brice, L.; Connell, J.; Shafer, D.

    1983-01-01

    This paper presents case studies from the Administrative Data Processing Division of the Los Alamos National Laboratory where a prototyping too, the INGRES relational database system, has been used to develop management information systems. The tool has proved valuable in satisfying user requirements and expectations, and in aiding data processing in the analysis and specification phases of the system life cycle. The prototype approach helps enormously in bridging the developer-user communication gap and has been found to add a negligible amount of cost to the entire software development project. Presented here are four case studies of how INGRES has been employed in prototyping. Also presented are examples of specific INGRES features and how they were used in one of the case studies and further examples involving another similar case. Special considerations and cautions are required when using INGRES for prototyping, but the overall conclusion is that it is a tool which has tremendously benefited our organization. Whether the final implemented system is INGRES-based or not, prototyping greatly enhances the possibility of complete, correct and unambiguous specifications prior to final software product development.

  5. Rapid Prototyping for In Vitro Knee Rig Investigations of Prosthetized Knee Biomechanics: Comparison with Cobalt-Chromium Alloy Implant Material

    Directory of Open Access Journals (Sweden)

    Christian Schröder

    2015-01-01

    Full Text Available Retropatellar complications after total knee arthroplasty (TKA such as anterior knee pain and subluxations might be related to altered patellofemoral biomechanics, in particular to trochlear design and femorotibial joint positioning. A method was developed to test femorotibial and patellofemoral joint modifications separately with 3D-rapid prototyped components for in vitro tests, but material differences may further influence results. This pilot study aims at validating the use of prostheses made of photopolymerized rapid prototype material (RPM by measuring the sliding friction with a ring-on-disc setup as well as knee kinematics and retropatellar pressure on a knee rig. Cobalt-chromium alloy (standard prosthesis material, SPM prostheses served as validation standard. Friction coefficients between these materials and polytetrafluoroethylene (PTFE were additionally tested as this latter material is commonly used to protect pressure sensors in experiments. No statistical differences were found between friction coefficients of both materials to PTFE. UHMWPE shows higher friction coefficient at low axial loads for RPM, a difference that disappears at higher load. No measurable statistical differences were found in knee kinematics and retropatellar pressure distribution. This suggests that using polymer prototypes may be a valid alternative to original components for in vitro TKA studies and future investigations on knee biomechanics.

  6. Rapid prototyping and inclined plane technique in the treatment of maxillofacial malformations in a fox.

    Science.gov (United States)

    Freitas, Elisangela P; Rahal, Sheila C; Teixeira, Carlos R; Silva, Jorge V L; Noritomi, Pedro Y; Villela, Carlos H S; Yamashita, Seizo

    2010-03-01

    An approximately 9-month-old fox (Pseudalopex vetulus) was presented with malocclusion and deviation of the lower jaw to the right side. Orthodontic treatment was performed using the inclined plane technique. Virtual 3D models and prototypes of the head were based on computed tomography (CT) image data to assist in diagnosis and treatment.

  7. Rapid Prototyping across the Spectrum: RF to Optical 3D Electromagnetic Structures

    Science.gov (United States)

    2015-11-17

    19 Figure 11: Nanoparticle arrays fabricated using electron...sputtering [138], (b) Small spherical wire antenna covered with conductive paint [73], (c) Optical image of an antenna during the printing process [135...abilities (e.g. nanoparticle loaded polymers that can be ink-jet deposited enable unique plasmonic fields in a device) [59]. Prototyping processes can be

  8. Rapid Prototyping by 3D Printing for Advanced Radio Communications at 80 GHz and Above

    DEFF Research Database (Denmark)

    Salazar, Adrian Ruiz; Rommel, Simon; Anufriyev, Eldar

    2016-01-01

    This paper discusses the potential of 3D printing for the manufacturing of spiral phase plates for the generation of radio vortex beams for advanced radio communications. The design and prototyping of a number of phase plates for communications at 80GHz with radio vortex beams is discussed...

  9. Rapid Prototyping of an Electrically-Small Antenna for Binaural-Hearing Instruments

    DEFF Research Database (Denmark)

    Ruaro, Andrea; Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2015-01-01

    ). This study analyzes the main RF parameters (dielectric constant, loss tangent, surface roughness) and applies the results to the modeling of the prototype of an electrically small (ESA) antenna for binaural hearing instruments applications. After discussing the specific technology choices...... and their relevancies, it is shown how the analyzed parameters can be used to obtain good correlation between simulations and measurements....

  10. Rapid prototyping and inclined plane technique in the treatment of maxillofacial malformations in a fox

    Science.gov (United States)

    Freitas, Elisangela P.; Rahal, Sheila C.; Teixeira, Carlos R.; Silva, Jorge V.L.; Noritomi, Pedro Y.; Villela, Carlos H.S.; Yamashita, Seizo

    2010-01-01

    An approximately 9-month-old fox (Pseudalopex vetulus) was presented with malocclusion and deviation of the lower jaw to the right side. Orthodontic treatment was performed using the inclined plane technique. Virtual 3D models and prototypes of the head were based on computed tomography (CT) image data to assist in diagnosis and treatment. PMID:20514249

  11. An Embedded Systems Laboratory to Support Rapid Prototyping of Robotics and the Internet of Things

    Science.gov (United States)

    Hamblen, J. O.; van Bekkum, G. M. E.

    2013-01-01

    This paper describes a new approach for a course and laboratory designed to allow students to develop low-cost prototypes of robotic and other embedded devices that feature Internet connectivity, I/O, networking, a real-time operating system (RTOS), and object-oriented C/C++. The application programming interface (API) libraries provided permit…

  12. Development of a prototype immunochromatographic test for rapid diagnosis of respiratory adenovirus infection

    Directory of Open Access Journals (Sweden)

    Inarei Paulini

    2017-09-01

    The immunochromatographic assay prototype was sufficiently sensitive to detect B (3, C (2 and 5, and F (41 adenovirus samples. Although based on preliminary data, the test demonstrated the same performance as direct immunofluorescence, but with the advantage of being a point-of-care test. Further studies are still needed to confirm its effectiveness in clinical practice.

  13. [Computer-aided method and rapid prototyping for the personalized fabrication of a silicone bandage digital prosthesis].

    Science.gov (United States)

    Ventura Ferreira, Nuno; Leal, Nuno; Correia Sá, Inês; Reis, Ana; Marques, Marisa

    2014-01-01

    The fabrication of digital prostheses has acquired growing importance not only for the possibility for the patient to overcome psychosocial trauma but also to promote grip functionality. An application method of three dimensional-computer-aided design technologies for the production of passive prostheses is presented by means of a fifth finger amputee clinical case following bilateral hand replantation.Three-dimensional-computerized tomography was used for the collection of anthropometric images of the hands. Computer-aided design techniques were used to develop the digital file-based prosthesis from the reconstruction images by inversion and superimposing the contra-lateral finger images. The rapid prototyping manufacturing method was used for the production of a silicone bandage prosthesis prototype. This approach replaces the traditional manual method by a virtual method that is basis for the optimization of a high speed, accurate and innovative process.

  14. Development and validation of RP-HPLC and UV-spectrophotometric methods for rapid simultaneous estimation of amlodipine and benazepril in pure and fixed dose combination

    Directory of Open Access Journals (Sweden)

    Abhi Kavathia

    2017-05-01

    Full Text Available High-performance liquid chromatographic (HPLC and UV spectrophotometric methods were developed and validated for the quantitative determination of amlodipine besylate (AM and benazepril hydrochloride (BZ. Different analytical performance parameters such as linearity, precision, accuracy, specificity, limit of detection (LOD and limit of quantification (LOQ were determined according to International Conference on Harmonization ICH Q2B guidelines. The RP-HPLC method was developed by the isocratic technique on a reversed-phase Shodex C-18 5e column. The retention time for AM and BZ was 4.43 min and 5.70 min respectively. The UV spectrophotometric determinations were performed at 237 nm and 366 nm for AM and at 237 nm for BZ. Correlation between absorbance of AM at 237 nm and 366 nm was established and based on developed correlation equation estimation of BZ at 237 nm was carried out. The linearity of the calibration curves for each analyte in the desired concentration range was good (r2 > 0.999 by both the HPLC and UV methods. The method showed good reproducibility and recovery with percent relative standard deviation less than 5%. Moreover, the accuracy and precision obtained with HPLC co-related well with the UV method which implied that UV spectroscopy can be a cheap, reliable and less time consuming alternative for chromatographic analysis. The proposed methods are highly sensitive, precise and accurate and hence successfully applied for determining the assay and in vitro dissolution of a marketed formulation.

  15. Rapid and low-cost prototyping of medical devices using 3D printed molds for liquid injection molding.

    Science.gov (United States)

    Chung, Philip; Heller, J Alex; Etemadi, Mozziyar; Ottoson, Paige E; Liu, Jonathan A; Rand, Larry; Roy, Shuvo

    2014-06-27

    Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications.

  16. Creating pathology models from MRI data: a comparison of virtual 3D modelling and rapid prototyping techniques.

    Science.gov (United States)

    Challoner, Alexandra; Erolin, Caroline

    2013-06-01

    This paper discusses a pilot study in collaboration between the Centre for Anatomy and Human Identification and the Pathology Department at Ninewells Hospital, Dundee. Anonymised patient MRI data depicting renal cancer was used to create a virtual 3D model and two rapid prototype models of the kidneys and surrounding anatomy. A questionnaire was conducted to collect feedback from tutors and students in order to evaluate the models and determine user preference. It was found that the majority preferred the physical models to the virtual model.

  17. Open-Source Wax RepRap 3-D Printer for Rapid Prototyping Paper-Based Microfluidics.

    Science.gov (United States)

    Pearce, J M; Anzalone, N C; Heldt, C L

    2016-08-01

    The open-source release of self-replicating rapid prototypers (RepRaps) has created a rich opportunity for low-cost distributed digital fabrication of complex 3-D objects such as scientific equipment. For example, 3-D printable reactionware devices offer the opportunity to combine open hardware microfluidic handling with lab-on-a-chip reactionware to radically reduce costs and increase the number and complexity of microfluidic applications. To further drive down the cost while improving the performance of lab-on-a-chip paper-based microfluidic prototyping, this study reports on the development of a RepRap upgrade capable of converting a Prusa Mendel RepRap into a wax 3-D printer for paper-based microfluidic applications. An open-source hardware approach is used to demonstrate a 3-D printable upgrade for the 3-D printer, which combines a heated syringe pump with the RepRap/Arduino 3-D control. The bill of materials, designs, basic assembly, and use instructions are provided, along with a completely free and open-source software tool chain. The open-source hardware device described here accelerates the potential of the nascent field of electrochemical detection combined with paper-based microfluidics by dropping the marginal cost of prototyping to nearly zero while accelerating the turnover between paper-based microfluidic designs. © 2016 Society for Laboratory Automation and Screening.

  18. Rapid prototyping of microbial cell factories via genome-scale engineering.

    Science.gov (United States)

    Si, Tong; Xiao, Han; Zhao, Huimin

    2015-11-15

    Advances in reading, writing and editing genetic materials have greatly expanded our ability to reprogram biological systems at the resolution of a single nucleotide and on the scale of a whole genome. Such capacity has greatly accelerated the cycles of design, build and test to engineer microbes for efficient synthesis of fuels, chemicals and drugs. In this review, we summarize the emerging technologies that have been applied, or are potentially useful for genome-scale engineering in microbial systems. We will focus on the development of high-throughput methodologies, which may accelerate the prototyping of microbial cell factories. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Low-temperature deposition manufacturing: A novel and promising rapid prototyping technology for the fabrication of tissue-engineered scaffold.

    Science.gov (United States)

    Liu, Wei; Wang, Daming; Huang, Jianghong; Wei, You; Xiong, Jianyi; Zhu, Weimin; Duan, Li; Chen, Jielin; Sun, Rong; Wang, Daping

    2017-01-01

    Developed in recent years, low-temperature deposition manufacturing (LDM) represents one of the most promising rapid prototyping technologies. It is not only based on rapid deposition manufacturing process but also combined with phase separation process. Besides the controlled macropore size, tissue-engineered scaffold fabricated by LDM has inter-connected micropores in the deposited lines. More importantly, it is a green manufacturing process that involves non-heating liquefying of materials. It has been employed to fabricate tissue-engineered scaffolds for bone, cartilage, blood vessel and nerve tissue regenerations. It is a promising technology in the fabrication of tissue-engineered scaffold similar to ideal scaffold and the design of complex organs. In the current paper, this novel LDM technology is introduced, and its control parameters, biomedical applications and challenges are included and discussed as well. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Accuracy of using computer-aided rapid prototyping templates for mandible reconstruction with an iliac crest graft.

    Science.gov (United States)

    Shu, Da-long; Liu, Xiang-zhen; Guo, Bing; Ran, Wei; Liao, Xin; Zhang, Yun-yan

    2014-06-24

    This study aimed to evaluate the accuracy of surgical outcomes in free iliac crest mandibular reconstructions that were carried out with virtual surgical plans and rapid prototyping templates. This study evaluated eight patients who underwent mandibular osteotomy and reconstruction with free iliac crest grafts using virtual surgical planning and designed guiding templates. Operations were performed using the prefabricated guiding templates. Postoperative three-dimensional computer models were overlaid and compared with the preoperatively designed models in the same coordinate system. Compared to the virtual osteotomy, the mean error of distance of the actual mandibular osteotomy was 2.06 ± 0.86 mm. When compared to the virtual harvested grafts, the mean error volume of the actual harvested grafts was 1412.22 ± 439.24 mm3 (9.12% ± 2.84%). The mean error between the volume of the actual harvested grafts and the shaped grafts was 2094.35 ± 929.12 mm3 (12.40% ± 5.50%). The use of computer-aided rapid prototyping templates for virtual surgical planning appears to positively influence the accuracy of mandibular reconstruction.

  1. Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow

    Science.gov (United States)

    Duffy, David C.; Schueller, Olivier J. A.; Brittain, Scott T.; Whitesides, George M.

    1999-09-01

    This paper describes a procedure for rapidly and conveniently prototyping microfluidic devices that are useful with aqueous solutions. A design (with diameters of channels icons/Journals/Common/ge" ALT="ge" ALIGN="TOP"/>20 µm) is created in a computer-aided design program and printed at high resolution on a transparency. This transparency is used as a mask in photolithography to create a master in positive relief photoresist: casting poly(dimethyl siloxane) (PDMS) against this master yields a polymeric replica containing a network of bas-relief channels. The channels are closed and sealed irreversibly by oxidizing the replica and another flat substrate (PDMS, glass, silicon, silicon oxide) in an oxygen plasma and bringing the two surfaces into conformal contact. Oxidation of the polymer allows the formation of a seal without using adhesives; it also generates channels that support electro-osmotic flow (EOF) and fill easily with aqueous solutions. Two microfluidic devices - a fluidic switch and a side channel flow controller - have been fabricated using this rapid prototyping methodology. These devices were tested using aqueous solutions as the test fluid and actuated by EOF.

  2. Pen-on-paper strategy for point-of-care testing: Rapid prototyping of fully written microfluidic biosensor.

    Science.gov (United States)

    Li, Zedong; Li, Fei; Xing, Yue; Liu, Zhi; You, Minli; Li, Yingchun; Wen, Ting; Qu, Zhiguo; Ling Li, Xiao; Xu, Feng

    2017-12-15

    Paper-based microfluidic biosensors have recently attracted increasing attentions in point-of-care testing (POCT) territories benefiting from their affordable, accessible and eco-friendly features, where technologies for fabricating such biosensors are preferred to be equipment free, easy-to-operate and capable of rapid prototyping. In this work, we developed a pen-on-paper (PoP) strategy based on two custom-made pens, i.e., a wax pen and a conductive-ink pen, to fully write paper-based microfluidic biosensors through directly writing both microfluidic channels and electrodes. Particularly, the proposed wax pen is competent to realize one-step fabrication of wax channels on paper, as the melted wax penetrates into paper during writing process without any post-treatments. The practical applications of the fabricated paper-based microfluidic biosensors are demonstrated by both colorimetric detection of Salmonella typhimurium DNA with detection limit of 1nM and electrochemical measurement of glucose with detection limit of 1mM. The developed PoP strategy for making microfluidic biosensors on paper characterized by true simplicity, prominent portability and excellent capability for rapid prototyping shows promising prospect in POCT applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Dimensional Error in Rapid Prototyping with Open Source Software and Low-cost 3D-printer.

    Science.gov (United States)

    Rendón-Medina, Marco A; Andrade-Delgado, Laura; Telich-Tarriba, Jose E; Fuente-Del-Campo, Antonio; Altamirano-Arcos, Carlos A

    2018-01-01

    Rapid prototyping models (RPMs) had been extensively used in craniofacial and maxillofacial surgery, especially in areas such as orthognathic surgery, posttraumatic or oncological reconstructions, and implantology. Economic limitations are higher in developing countries such as Mexico, where resources dedicated to health care are limited, therefore limiting the use of RPM to few selected centers. This article aims to determine the dimensional error of a low-cost fused deposition modeling 3D printer (Tronxy P802MA, Shenzhen, Tronxy Technology Co), with Open source software. An ordinary dry human mandible was scanned with a computed tomography device. The data were processed with open software to build a rapid prototype with a fused deposition machine. Linear measurements were performed to find the mean absolute and relative difference. The mean absolute and relative difference was 0.65 mm and 1.96%, respectively ( P = 0.96). Low-cost FDM machines and Open Source Software are excellent options to manufacture RPM, with the benefit of low cost and a similar relative error than other more expensive technologies.

  4. Rapid prototyping of an automated video surveillance system: a hardware-software co-design approach

    Science.gov (United States)

    Ngo, Hau T.; Rakvic, Ryan N.; Broussard, Randy P.; Ives, Robert W.

    2011-06-01

    FPGA devices with embedded DSP and memory blocks, and high-speed interfaces are ideal for real-time video processing applications. In this work, a hardware-software co-design approach is proposed to effectively utilize FPGA features for a prototype of an automated video surveillance system. Time-critical steps of the video surveillance algorithm are designed and implemented in the FPGAs logic elements to maximize parallel processing. Other non timecritical tasks are achieved by executing a high level language program on an embedded Nios-II processor. Pre-tested and verified video and interface functions from a standard video framework are utilized to significantly reduce development and verification time. Custom and parallel processing modules are integrated into the video processing chain by Altera's Avalon Streaming video protocol. Other data control interfaces are achieved by connecting hardware controllers to a Nios-II processor using Altera's Avalon Memory Mapped protocol.

  5. Rapid and accurate assembly method for a new Laue lens prototype

    Science.gov (United States)

    Wade, Colin; Barrière, Nicolas; Hanlon, Lorraine; Boggs, Steven E.; Brejnholt, Nicolai F.; Massahi, Sonny; Tomsick, John A.; von Ballmoos, Peter

    2015-09-01

    The Laue lens is a technology for gamma-ray astrophysics whereby gamma-rays of particular energies can be focused by a suitable arrangement of crystals. The Laue lens assembly station at UC Berkeley was used to build a technological demonstrator addressing the key issues of crystal mounting speed, crystal position and orientation accuracy, and crystal reflectivity. The new prototype is a lens segment containing a total of 48 5 x 5 mm2 crystals - 36 Iron and 12 Aluminium. The segment is composed of 8 partial rings, each of which is aligned to diffract an energy between 95 and 130 keV from a source at 12:5m with a focal length of 1:5 m.

  6. Rapid Prototyping for Heterogeneous Multicomponent Systems: An MPEG-4 Stream over a UMTS Communication Link

    Directory of Open Access Journals (Sweden)

    Sorel Y

    2006-01-01

    Full Text Available Future generations of mobile phones, including advanced video and digital communication layers, represent a great challenge in terms of real-time embedded systems. Programmable multicomponent architectures can provide suitable target solutions combining flexibility and computation power. The aim of our work is to develop a fast and automatic prototyping methodology dedicated to signal processing application implementation on parallel heterogeneous architectures, two major features required by future systems. This paper presents the whole methodology based on the SynDEx CAD tool that directly generates a distributed implementation onto various platforms from a high-level application description, taking real-time aspects into account. It illustrates the methodology in the context of real-time distributed executives for multilayer applications based on an MPEG-4 video codec and a UMTS telecommunication link.

  7. Rapid Prototyping for Heterogeneous Multicomponent Systems: An MPEG-4 Stream over a UMTS Communication Link

    Science.gov (United States)

    Raulet, M.; Urban, F.; Nezan, J.-F.; Moy, C.; Deforges, O.; Sorel, Y.

    2006-12-01

    Future generations of mobile phones, including advanced video and digital communication layers, represent a great challenge in terms of real-time embedded systems. Programmable multicomponent architectures can provide suitable target solutions combining flexibility and computation power. The aim of our work is to develop a fast and automatic prototyping methodology dedicated to signal processing application implementation on parallel heterogeneous architectures, two major features required by future systems. This paper presents the whole methodology based on the SynDEx CAD tool that directly generates a distributed implementation onto various platforms from a high-level application description, taking real-time aspects into account. It illustrates the methodology in the context of real-time distributed executives for multilayer applications based on an MPEG-4 video codec and a UMTS telecommunication link.

  8. Rapid prototyping 3D virtual world interfaces within a virtual factory environment

    Science.gov (United States)

    Kosta, Charles Paul; Krolak, Patrick D.

    1993-01-01

    On-going work into user requirements analysis using CLIPS (NASA/JSC) expert systems as an intelligent event simulator has led to research into three-dimensional (3D) interfaces. Previous work involved CLIPS and two-dimensional (2D) models. Integral to this work was the development of the University of Massachusetts Lowell parallel version of CLIPS, called PCLIPS. This allowed us to create both a Software Bus and a group problem-solving environment for expert systems development. By shifting the PCLIPS paradigm to use the VEOS messaging protocol we have merged VEOS (HlTL/Seattle) and CLIPS into a distributed virtual worlds prototyping environment (VCLIPS). VCLIPS uses the VEOS protocol layer to allow multiple experts to cooperate on a single problem. We have begun to look at the control of a virtual factory. In the virtual factory there are actors and objects as found in our Lincoln Logs Factory of the Future project. In this artificial reality architecture there are three VCLIPS entities in action. One entity is responsible for display and user events in the 3D virtual world. Another is responsible for either simulating the virtual factory or communicating with the real factory. The third is a user interface expert. The interface expert maps user input levels, within the current prototype, to control information for the factory. The interface to the virtual factory is based on a camera paradigm. The graphics subsystem generates camera views of the factory on standard X-Window displays. The camera allows for view control and object control. Control or the factory is accomplished by the user reaching into the camera views to perform object interactions. All communication between the separate CLIPS expert systems is done through VEOS.

  9. Rapid prototyping for tissue-engineered bone scaffold by 3D printing and biocompatibility study.

    Science.gov (United States)

    He, Hui-Yu; Zhang, Jia-Yu; Mi, Xue; Hu, Yang; Gu, Xiao-Yu

    2015-01-01

    The prototyping of tissue-engineered bone scaffold (calcined goat spongy bone-biphasic ceramic composite/PVA gel) by 3D printing was performed, and the biocompatibility of the fabricated bone scaffold was studied. Pre-designed STL file was imported into the GXYZ303010-XYLE 3D printing system, and the tissue-engineered bone scaffold was fabricated by 3D printing using gel extrusion. Rabbit bone marrow stromal cells (BMSCs) were cultured in vitro and then inoculated to the sterilized bone scaffold obtained by 3D printing. The growth of rabbit BMSCs on the bone scaffold was observed under the scanning electron microscope (SEM). The effect of the tissue-engineered bone scaffold on the proliferation and differentiation of rabbit BMSCs using MTT assay. Universal testing machine was adopted to test the tensile strength of the bone scaffold. The leachate of the bone scaffold was prepared and injected into the New Zealand rabbits. Cytotoxicity test, acute toxicity test, pyrogenic test and intracutaneous stimulation test were performed to assess the biocompatibility of the bone scaffold. Bone scaffold manufactured by 3D printing had uniform pore size with the porosity of about 68.3%. The pores were well interconnected, and the bone scaffold showed excellent mechanical property. Rabbit BMSCs grew and proliferated on the surface of the bone scaffold after adherence. MTT assay indicated that the proliferation and differentiation of rabbit BMSCs on the bone scaffold did not differ significantly from that of the cells in the control. In vivo experiments proved that the bone scaffold fabricated by 3D printing had no acute toxicity, pyrogenic reaction or stimulation. Bone scaffold manufactured by 3D printing allows the rabbit BMSCs to adhere, grow and proliferate and exhibits excellent biomechanical property and high biocompatibility. 3D printing has a good application prospect in the prototyping of tissue-engineered bone scaffold.

  10. 20170313 - Rapid Prototyping of Physiologically-Based Toxicokinetic (PBTK) Models (SOT annual meeting)

    Science.gov (United States)

    Determining the tissue concentrations resulting from chemical exposure (i.e., toxicokinetics (TK)) is essential in emergency or other situations where time and data are lacking. Generic TK models can be created rapidly using in vitro assays and computational approaches to generat...

  11. Rapid prototyping of a double-layer polyurethane-collagen conduit for peripheral nerve regeneration.

    Science.gov (United States)

    Cui, Tongkui; Yan, Yongnian; Zhang, Renji; Liu, Li; Xu, Wei; Wang, Xiaohong

    2009-03-01

    A new technique for preparing double-layer polyurethane (PU)-collagen nerve conduits for peripheral nerve repair via a double-nozzle, low-temperature, deposition manufacturing (DLDM) system has been developed. The DLDM system is based on a digital prototyping approach, and uses a combination of thermally induced phase separation and freeze-drying. With this system, two kinds of biomaterials with different properties can be combined to produce scaffold structures with good biocompatibility in the inner layer and with the desired mechanical strength protruded by the outer. The forming precision is high, the wall thickness can be controlled, and a tight connection between the two layers can be achieved. The effects of changing the processing parameters and the material temperature on the structure of the scaffolds have been investigated. Additionally, the effect of material concentration on the mechanical strength and hydrophilic properties of the scaffolds has also been studied. Ideal peripheral nerve repair conduits, comprising an outer microporous layer of PU and internal oriented filaments of collagen, have been manufactured through optimizing the processing parameters and the biomaterial concentrations.

  12. A Rapid Prototyping Tool for Embedded, Real-Time Hierarchical Control Systems

    Directory of Open Access Journals (Sweden)

    Hugo Andrade

    2008-12-01

    Full Text Available Laboratory Virtual Instrumentation and Engineering Workbench (LabVIEW is a graphical programming tool based on the dataflow language G. Recently, runtime support for a hard real-time environment has become available for LabVIEW, which makes it an option for embedded systems prototyping. Due to its characteristics, the environment presents itself as an ideal tool for both the design and implementation of embedded software. In this paper, we study the design and implementation of embedded software by using G as the specification language and the LabVIEW RT real-time platform. One of the main advantages of this approach is that the environment leads itself to a very smooth transition from design to implementation, allowing for powerful cosimulation strategies (e.g., hardware in the loop, runtime modeling. We characterize the semantics and formal model of computation of G. We compare it to other models of computation and develop design rules and algorithms to propose sound embedded design in the language. We investigate the specification and mapping of hierarchical control systems in LabVIEW and G. Finally, we describe the development of a state-of-the-art embedded motion control system using LabVIEW as the specification, simulation and implementation tool, using the proposed design principles. The solution is state-of-the-art in terms of flexibility and control performance.

  13. A Rapid Prototyping Tool for Embedded, Real-Time Hierarchical Control Systems

    Directory of Open Access Journals (Sweden)

    Ramamoorthy Subramanian

    2008-01-01

    Full Text Available Abstract Laboratory Virtual Instrumentation and Engineering Workbench (LabVIEW is a graphical programming tool based on the dataflow language G. Recently, runtime support for a hard real-time environment has become available for LabVIEW, which makes it an option for embedded systems prototyping. Due to its characteristics, the environment presents itself as an ideal tool for both the design and implementation of embedded software. In this paper, we study the design and implementation of embedded software by using G as the specification language and the LabVIEW RT real-time platform. One of the main advantages of this approach is that the environment leads itself to a very smooth transition from design to implementation, allowing for powerful cosimulation strategies (e.g., hardware in the loop, runtime modeling. We characterize the semantics and formal model of computation of G. We compare it to other models of computation and develop design rules and algorithms to propose sound embedded design in the language. We investigate the specification and mapping of hierarchical control systems in LabVIEW and G. Finally, we describe the development of a state-of-the-art embedded motion control system using LabVIEW as the specification, simulation and implementation tool, using the proposed design principles. The solution is state-of-the-art in terms of flexibility and control performance.

  14. Multi-Resolution Rapid Prototyping of Vehicle Cooling Systems: Approach and Test Results

    Science.gov (United States)

    2014-08-01

    components within the system. 3. System-level: assembly of reduced-order models of components for rapid generation of results for the entire vehicle...using reduced-order models (with increased resolution) on specific components/ assemblies , while using regular reduced-order models for the remaining...Single and Multi-Evaporator Subcritical Vapor Compression Systems”, M.S. Thesis, University of Illinois at Urbana- Champaign. Siegel, J., 2007, Corba

  15. A Software/Hardware Platform For Rapid Prototyping of Video and Multimedia Designs

    OpenAIRE

    Schumacher, Paul; Mattavelli, Marco; Chirila-Rus, Adrian; Turney, Robert

    2005-01-01

    Traditional design and test of complex multimedia systems involves a large number of test vectors and is a difficult and time-consuming task. The simulation times are prohibitively long on current desktop computers. Driving actual design scenarios and timing burst behavior which produce real-time effects is difficult to do with current simulation environments. This paper describes a rapid emulation framework for accessing multiple hardware IP blocks on an FPGA. This solution involves an abstr...

  16. Optimized Design and Testing of a Prototype Military Bridge System for Rapid In-Theater Construction

    Science.gov (United States)

    2006-11-01

    MLC 30 were applied to the system with multiple load cases for each axle, truck, and track loading. The load cases were applied sequentially to...flexural failure due to concrete crushing along the center of slab span. The failure was identified with center span cracking and associated concrete...Layer Prefabricated FRP Grids for Rapid Bridge Deck Construction: Case Study. ASCE Journal of Composites for Construction, 10, 201-121. Berg, A. C

  17. A frame-based domain-specific language for rapid prototyping of FPGA-based software-defined radios

    Science.gov (United States)

    Ouedraogo, Ganda Stephane; Gautier, Matthieu; Sentieys, Olivier

    2014-12-01

    The field-programmable gate array (FPGA) technology is expected to play a key role in the development of software-defined radio (SDR) platforms. As this technology evolves, low-level designing methods for prototyping FPGA-based applications did not change throughout the decades. In the outstanding context of SDR, it is important to rapidly implement new waveforms to fulfill such a stringent flexibility paradigm. At the current time, different proposals have defined, through software-based approaches, some efficient methods to prototype SDR waveforms in a processor-based running environment. This paper describes a novel design flow for FPGA-based SDR applications. This flow relies upon high-level synthesis (HLS) principles and leverages the nascent HLS tools. Its entry point is a domain-specific language (DSL) which handles the complexity of programming an FPGA and integrates some SDR features so as to enable automatic waveform control generation from a data frame model. Two waveforms (IEEE 802.15.4 and IEEE 802.11a) have been designed and explored via this new methodology, and the results are highlighted in this paper.

  18. Correction of hemifacial microsomia with the help of mirror imaging and a rapid prototyping technique: case report.

    Science.gov (United States)

    Zhou, Libin; He, Lisheng; Shang, Hongtao; Liu, Guicai; Zhao, Jinlong; Liu, Yanpu

    2009-09-01

    A 23-year-old man presented with an 8-year history of unilateral hemifacial microsomia. A three-dimensional model of the maxillofacial bones was generated after acquisition of helical computed tomographic data. A customised implant model was designed by projecting a mirror image of the healthy mandible on to the three-dimensional model. A resin model of the implant was then made using a rapid prototyping machine. A polymeric biomaterial was sculpted according to the model and implanted into the affected side of the mandible to restore his facial symmetry. The hemifacial microsomia was corrected and a symmetrical facial contour obtained. No complications developed during the 6-year follow-up.

  19. Rapid prototyping to design a customized locking plate for pancarpal arthrodesis in a giant breed dog.

    Science.gov (United States)

    Petazzoni, M; Nicetto, T

    2014-01-01

    This report describes the treatment of traumatic carpal hyperextension in a giant breed dog by pancarpal arthrodesis using a custom-made Fixin locking plate, created with the aid of a three-dimensional plastic model of the bones of the antebrachium produced by rapid prototyping technology. A three-year-old 104 kg male Mastiff dog was admitted for treatment of carpal hyperextension injury. After diagnosis of carpal instability, surgery was recommended. Computed tomography images were used to create a life-size three-dimensional plastic model of the forelimb. The model was used as the basis for constructing a customized 12-hole Fixin locking plate. The plate was used to attain successful pancarpal arthrodesis in the animal. Radiographic examination after 74 and 140 days revealed signs of osseous union of the arthrodesis. Further clinical and radiographic follow-up examination three years later did not reveal any changes in implant position or complications.

  20. Characterization of a Reconfigurable Free-Space Optical Channel for Embedded Computer Applications with Experimental Validation Using Rapid Prototyping Technology

    Directory of Open Access Journals (Sweden)

    Lim Theodore

    2007-01-01

    Full Text Available Free-space optical interconnects (FSOIs are widely seen as a potential solution to current and future bandwidth bottlenecks for parallel processors. In this paper, an FSOI system called optical highway (OH is proposed. The OH uses polarizing beam splitter-liquid crystal plate (PBS/LC assemblies to perform reconfigurable beam combination functions. The properties of the OH make it suitable for embedding complex network topologies such as completed connected mesh or hypercube. This paper proposes the use of rapid prototyping technology for implementing an optomechanical system suitable for studying the reconfigurable characteristics of a free-space optical channel. Additionally, it reports how the limited contrast ratio of the optical components can affect the attenuation of the optical signal and the crosstalk caused by misdirected signals. Different techniques are also proposed in order to increase the optical modulation amplitude (OMA of the system.

  1. Characterization of a Reconfigurable Free-Space Optical Channel for Embedded Computer Applications with Experimental Validation Using Rapid Prototyping Technology

    Directory of Open Access Journals (Sweden)

    Rafael Gil-Otero

    2007-02-01

    Full Text Available Free-space optical interconnects (FSOIs are widely seen as a potential solution to current and future bandwidth bottlenecks for parallel processors. In this paper, an FSOI system called optical highway (OH is proposed. The OH uses polarizing beam splitter-liquid crystal plate (PBS/LC assemblies to perform reconfigurable beam combination functions. The properties of the OH make it suitable for embedding complex network topologies such as completed connected mesh or hypercube. This paper proposes the use of rapid prototyping technology for implementing an optomechanical system suitable for studying the reconfigurable characteristics of a free-space optical channel. Additionally, it reports how the limited contrast ratio of the optical components can affect the attenuation of the optical signal and the crosstalk caused by misdirected signals. Different techniques are also proposed in order to increase the optical modulation amplitude (OMA of the system.

  2. A digital approach for design and fabrication by rapid prototyping of orthosis for developmental dysplasia of the hip

    Directory of Open Access Journals (Sweden)

    Rodrigo Munhoz

    Full Text Available Abstract Introduction Immobilization in a hip spica cast is required in surgical and nonsurgical treatments for children aged three months to four years diagnosed with developmental dysplasia of the hip. Skin complications are associated with the use of the spica cast in 30% of the cases. This research explores the use of photogrammetry and rapid prototyping for the production of a lighter, shower friendly and hygienic hip orthosis that could replace the hip spica cast. Methods Digitalized data of a plastic dool was used for design and fabrication of a customised hip orthosis following four steps: 1 Digitalization of the external anatomical structure by photogrammetry using a smartphone and open source software; 2 Idealization and 3D modeling of the hip orthosis; 3 Rapid prototyping of a low cost orthosis in polymer polylact acid; 4 Evaluation tests. Results Photogrammetry provided a good 3D reconstruction of the dool's hip and legs. The manufacture method to produce the hip orthosis was accurate in fitting the hip orthosis to the contours of the doll. The orthosis could be easily placed on the doll ensuring mechanical strength to immobilize the region of the hip. Conclusion A new approach and the feasibility of both techniques for hip orthosis fabrication were described. It represents an exciting advance for the development of hip orthosis that could be used in orthopedics. To test the effectiveness of this orthosis for developmental dysplasia of the hip treatment in newborns, material and mechanical tests, design optimization and physical tests with patients should be carried.

  3. Rapid sealing of porcine renal blood vessels, ex vivo, using a high power, 1470-nm laser, and laparoscopic prototype

    Science.gov (United States)

    Hardy, Luke A.; Hutchens, Thomas C.; Larson, Eric R.; Gonzalez, David A.; Chang, Chun-Hung; Nau, William H.; Fried, Nathaniel M.

    2017-05-01

    Energy-based, radiofrequency (RF) and ultrasonic (US) devices currently provide rapid sealing of blood vessels during laparoscopic procedures. We are exploring infrared lasers as an alternate energy modality for vessel sealing, capable of generating less collateral thermal damage. Previous studies demonstrated feasibility of sealing vessels in an in vivo porcine model using a 1470-nm laser. However, the initial prototype was designed for testing in open surgery and featured tissue clasping and light delivery mechanisms incompatible with laparoscopic surgery. In this study, a laparoscopic prototype similar to devices currently in surgical use was developed, and performance tests were conducted on porcine renal blood vessels, ex vivo. The 5-mm outer-diameter laparoscopic prototype featured a traditional Maryland jaw configuration that enables tissue manipulation and blunt dissection. Laser energy was delivered through a 550-μm-core-diameter optical fiber with side-delivery from the lower jaw and beam dimensions of 18-mm length×1.2-mm width. The 1470-nm diode laser delivered 68 W with 3-s activation time, consistent with vessel seal times associated with RF and US-based devices. A total of 69 fresh porcine renal vessels with mean diameter of 3.3±1.7 mm were tested, ex vivo. Vessels smaller than 5-mm diameter were consistently sealed (48/51) with burst pressures greater than malignant hypertension blood pressure (180 mmHg), averaging 1038±474 mmHg. Vessels larger than 5 mm were not consistently sealed (6/18), yielding burst pressures of only 174±221 mmHg. Seal width, thermal damage zone, and thermal spread averaged 1.7±0.8, 3.4±0.7, and 1.0±0.4 mm, respectively. Results demonstrated that the 5-mm optical laparoscopic prototype consistently sealed vessels less than 5-mm diameter with low thermal spread. Further in vivo studies are planned to test the performance across a variety of vessels and tissues.

  4. Workstation-Based Simulation for Rapid Prototyping and Piloted Evaluation of Control System Designs

    Science.gov (United States)

    Mansur, M. Hossein; Colbourne, Jason D.; Chang, Yu-Kuang; Aiken, Edwin W. (Technical Monitor)

    1998-01-01

    The development and optimization of flight control systems for modem fixed- and rotary-. wing aircraft consume a significant portion of the overall time and cost of aircraft development. Substantial savings can be achieved if the time required to develop and flight test the control system, and the cost, is reduced. To bring about such reductions, software tools such as Matlab/Simulink are being used to readily implement block diagrams and rapidly evaluate the expected responses of the completed system. Moreover, tools such as CONDUIT (CONtrol Designer's Unified InTerface) have been developed that enable the controls engineers to optimize their control laws and ensure that all the relevant quantitative criteria are satisfied, all within a fully interactive, user friendly, unified software environment.

  5. High-throughput rapid-prototyping of low-cost paper-based microfluidics.

    Science.gov (United States)

    Ghaderinezhad, Fariba; Amin, Reza; Temirel, Mikail; Yenilmez, Bekir; Wentworth, Adam; Tasoglu, Savas

    2017-06-15

    Paper-based micro analytical devices offer significant advantages compared to the conventional microfluidic chips including cost-effectiveness, ease of fabrication, and ease of use while preserving critical features including strong capillary action and biological compatibility. In this work, we demonstrate an inexpensive, rapid method for high-throughput fabrication of paper-based microfluidics by patterning hydrophobic barriers using a desktop pen plotter integrated with a custom-made, low-cost paper feeder. We tested various types of commercial permanent markers and compared their water-resistant capabilities for creating hydrophobic barriers. Additionally, we studied the performance of markers with different types of paper, plotting speeds, and pattern dimensions. To verify the effectiveness of the presented fabrication method, colorimetric analysis was performed on the results of a glucose assay.

  6. Rapid Prototyping of Slot Die Devices for Roll to Roll Production of EL Fibers.

    Science.gov (United States)

    Bellingham, Alyssa; Bromhead, Nicholas; Fontecchio, Adam

    2017-05-29

    There is a growing interest in fibers supporting optoelectrical properties for textile and wearable display applications. Solution-processed electroluminescent (EL) material systems can be continuously deposited onto fiber or yarn substrates in a roll-to-roll process, making it easy to scale manufacturing. It is important to have precise control over layer deposition to achieve uniform and reliable light emission from these EL fibers. Slot-die coating offers this control and increases the rate of EL fiber production. Here, we report a highly adaptable, cost-effective 3D printing model for developing slot dies used in automatic coating systems. The resulting slot-die coating system enables rapid, reliable production of alternating current powder-based EL (ACPEL) fibers and can be adapted for many material systems. The benefits of this system over dip-coating for roll-to-roll production of EL fibers are demonstrated in this work.

  7. matter: an R package for rapid prototyping with larger-than-memory datasets on disk.

    Science.gov (United States)

    Bemis, Kylie A; Vitek, Olga

    2017-06-15

    We introduce matter , an R package for direct interactions with larger-than-memory datasets, stored in an arbitrary number of files of any size. matter is primarily designed for datasets in new and rapidly evolving file formats, which may lack extensive software support. matter enables a wide variety of data exploration and manipulation steps, and is extensible to many bioinformatics applications. It supports reproducible research by minimizing the need of converting and storing data in multiple formats. We illustrate the performance of matter in conjunction with the Bioconductor package Cardinal for analysis of high-resolution, high-throughput mass spectrometry imaging experiments. The package, vignettes, and examples of applications in several areas of bioinformatics are available open-source at www.bioconductor.org under the Artistic-2.0 license. o.vitek@neu.edu.

  8. Rapid Prototyping of Slot Die Devices for Roll to Roll Production of EL Fibers

    Directory of Open Access Journals (Sweden)

    Alyssa Bellingham

    2017-05-01

    Full Text Available There is a growing interest in fibers supporting optoelectrical properties for textile and wearable display applications. Solution-processed electroluminescent (EL material systems can be continuously deposited onto fiber or yarn substrates in a roll-to-roll process, making it easy to scale manufacturing. It is important to have precise control over layer deposition to achieve uniform and reliable light emission from these EL fibers. Slot-die coating offers this control and increases the rate of EL fiber production. Here, we report a highly adaptable, cost-effective 3D printing model for developing slot dies used in automatic coating systems. The resulting slot-die coating system enables rapid, reliable production of alternating current powder-based EL (ACPEL fibers and can be adapted for many material systems. The benefits of this system over dip-coating for roll-to-roll production of EL fibers are demonstrated in this work.

  9. Parameter optimization and stretch enhancement of AISI 316 sheet using rapid prototyping technique

    Science.gov (United States)

    Moayedfar, M.; Rani, A. M.; Hanaei, H.; Ahmad, A.; Tale, A.

    2017-10-01

    Incremental sheet forming is a flexible manufacturing process which uses the indenter point-to-point force to shape the sheet metal workpiece into manufactured parts in batch production series. However, the problem sometimes arising from this process is the low plastic point in the stress-strain diagram of the material which leads the low stretching amount before ultra-tensile strain point. Hence, a set of experiments is designed to find the optimum forming parameters in this process for optimum sheet thickness distribution while both sides of the sheet are considered for the surface quality improvement. A five-axis high-speed CNC milling machine is employed to deliver the proper motion based on the programming system while the clamping system for holding the sheet metal was a blank mould. Finally, an electron microscope and roughness machine are utilized to evaluate the surface structure of final parts, illustrate any defect may cause during the forming process and examine the roughness of the final part surface accordingly. The best interaction between parameters is obtained with the optimum values which lead the maximum sheet thickness distribution of 4.211e-01 logarithmic elongation when the depth was 24mm with respect to the design. This study demonstrates that this rapid forming method offers an alternative solution for surface quality improvement of 65% avoiding the low probability of cracks and low probability of crystal structure changes.

  10. Application of the rapid prototyping technique to design a customized temporomandibular joint used to treat temporomandibular ankylosis

    Science.gov (United States)

    Chaware, Suresh M.; Bagaria, Vaibhav; Kuthe, Abhay

    2009-01-01

    Anthropometric variations in humans make it difficult to replace a temporomandibular joint (TMJ), successfully using a standard “one-size-fits-all” prosthesis. The case report presents a unique concept of total TMJ replacement with customized and modified TMJ prosthesis, which is cost-effective and provides the best fit for the patient. The process involved in designing and modifications over the existing prosthesis are also described. A 12-year- old female who presented for treatment of left unilateral TMJ ankylosis underwent the surgery for total TMJ replacement. A three-dimensional computed tomography (CT) scan suggested features of bony ankylosis of left TMJ. CT images were converted to a sterolithographic model using CAD software and a rapid prototyping machine. A process of rapid manufacturing was then used to manufacture the customized prosthesis. Postoperative recovery was uneventful, with an improvement in mouth opening of 3.5 cm and painless jaw movements. Three years postsurgery, the patient is pain-free, has a mouth opening of about 4.0 cm and enjoys a normal diet. The postoperative radiographs concur with the excellent clinical results. The use of CAD/CAM technique to design the custom-made prosthesis, using orthopaedically proven structural materials, significantly improves the predictability and success rates of TMJ replacement surgery. PMID:19881026

  11. Unique variability of tocopherol composition in various seed oils recovered from by-products of apple industry: rapid and simple determination of all four homologues (α, β, γ and δ) by RP-HPLC/FLD.

    Science.gov (United States)

    Górnaś, Paweł

    2015-04-01

    The tocochromanol profile was studied in seed oils recovered from by-products of fruit industry, five dessert and seven crab apple varieties grown in Eastern Europe (Latvia). The seed oils obtained from dessert apples were characterized by higher contents of tocopherols (191.05-379.08 mg/100g oil) when compared to seed oils recovered from crab apples (130.55-202.54 mg/100g oil). The predominant homologues of tocopherol in all the studied samples were α and β over γ and δ. However, seed oils recovered from the apple cultivars 'Antej' and 'Beforest' had a unique profile of four tocopherol homologues (α:β:γ:δ) 91.41:80.55:72.46:79.03 and 114.55:112.84:78.69:73.00 mg/100g oil, respectively. A single dilution of seed oils in 2-propanol facilitated the direct use samples in the DPPH assay as well as injection into the RP-HPLC system containing a PFP (pentafluorophenyl) column, which resulted in a rapid separation of all four tocopherol homologues with excellent repeatability and reproducibility. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Geometrical Alignment of Multiple Fabrication Steps for Rapid Prototyping of Microfluidic Paper-Based Analytical Devices.

    Science.gov (United States)

    Rahbar, Mohammad; Nesterenko, Pavel N; Paull, Brett; Macka, Mirek

    2017-11-21

    Three main fabrication steps for microfluidic paper-based analytical devices (μPADs) were fully integrated with accurate geometrical alignment between the individual steps in a simple and rapid manner. A wax printer for creating hydrophobic barriers was integrated with an inexpensive (ca. $300) electronic craft plotter/cutter for paper cutting, followed by colorimetric reagent deposition using technical pens. The principal shortcoming in the lack of accurate and precise alignment of the features created by these three individual fabrication steps was addressed in this work by developing appropriate alignment procedures during the multistep fabrication process. The wax printing step was geometrically aligned with the following cutting and plotting (deposition) steps in a highly accurate and precise manner using optical scanning function of the plotter/cutter based on registration marks printed on the paper using the wax printer and scanned by the plotter/cutter. The accuracy and precision of alignment in a two-dimensional plane were quantified by cutting and plotting cross-shaped features and measuring their center coordinates relative to wax printed reference lines. The average accuracy along the X- and Y-axis was 0.12 and 0.16 mm for cutting and 0.19 and 0.17 mm for plotting, respectively. The potential of this approach was demonstrated by fabricating μPADs for instrument-free determination of cobalt in waters using distance-based readout, with excellent precision (%RSD = 5.7) and detection limit (LOD) of 2.5 ng and 0.5 mg/L (mass and concentration LODs, respectively).

  13. Design and fabrication of standardized hydroxyapatite scaffolds with a defined macro-architecture by rapid prototyping for bone-tissue-engineering research

    NARCIS (Netherlands)

    Wilson, C.E.; Wilson, C.E.; de Bruijn, Joost Dick; van Blitterswijk, Clemens; Verbout, A.J.; Dhert, W.J.A.

    2004-01-01

    This investigation describes the production and characterization of calcium phosphate scaffolds with defined and reproducible porous macro-architectures and their preliminary in vitro and in vivo bone-tissue-engineered response. Fugitive wax molds were designed and produced using a rapid prototyping

  14. Plug-and-play paper-based toolkit for rapid prototyping of microfluidics and electronics towards point-of-care diagnostic solutions

    CSIR Research Space (South Africa)

    Smith, S

    2015-11-01

    Full Text Available -1 RAPDASA 2015 conference, Roodevallei, Pretoria, 4 - 6 November 2015 PLUG-AND-PLAY PAPER-BASED TOOLKIT FOR RAPID PROTOTYPING OF MICROFLUIDICS AND ELECTRONICS TOWARDS POINT-OF-CARE DIAGNOSTIC SOLUTIONS S. Smith1*, K. Moodley2 & K. Land3 1...

  15. Restoring masticatory function in a patient with severe microstomia using rapid prototyped mesh and a custom-made hinge and swing-lock prosthesis.

    Science.gov (United States)

    Tulunoglu, Ibrahim; Lee, Meng Huan; Taifur, Mohammed Louay; Tulunoglu, Ozlem

    2017-10-14

    This clinical report describes the use of rapid prototyped mesh in a complete swing-lock prosthesis to restore masticatory function in an edentulous patient with severe microstomia and perioral scar tissue after an industrial hot tar accident. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  16. Simultaneous repair of two large cranial defects using rapid prototyping and custom computer-designed titanium plates: a case report.

    Science.gov (United States)

    Morrison, D A; Guy, D T; Day, R E; Lee, G Y F

    2011-11-01

    Custom titanium cranioplasty plates, manufactured by a variety of techniques, have been used to repair a range of cranial defects. The authors present a case where two relatively large, adjacent cranial defects were repaired by custom computer-designed titanium plates. The two plates were designed and fabricated simultaneously using a unique methodology. A 28-year-old woman underwent a corpus callosotomy for medically intractable epilepsy. The surgery was complicated by unexpected haemorrhage which necessitated a second craniotomy. Subsequent deep infection required the removal of bilateral bone flaps, presenting a challenge in the reconstruction of extensive, bilateral but asymmetrical cranial defects. The patient underwent a head computed tomography scan, from which a rapid-prototype model of the skull was produced. The surfaces for the missing cranial segments were generated virtually using a combination of software products and two titanium plates that followed these virtual contours were manufactured to cover the defects. The cranioplasty procedure to implant both titanium cranial plates was performed efficiently with no intra-operative complications. Intra-operatively, an excellent fit was achieved. The careful planning of the plates enhanced the relative ease with which the cranial defects were repaired with an excellent cosmetic outcome.

  17. Updates on the Construction of an Eyeglass-Supported Nasal Prosthesis Using Computer-Aided Design and Rapid Prototyping Technology.

    Science.gov (United States)

    Ciocca, Leonardo; Tarsitano, Achille; Marchetti, Claudio; Scotti, Roberto

    2016-01-01

    This study was undertaken to design an updated connection system for an eyeglass-supported nasal prosthesis using rapid prototyping techniques. The substructure was developed with two main endpoints in mind: the connection to the silicone and the connection to the eyeglasses. The mold design was also updated; the mold was composed of various parts, each carefully designed to allow for easy release after silicone processing and to facilitate extraction of the prosthesis without any strain. The approach used in this study enabled perfect transfer of the reciprocal position of the prosthesis with respect to the eyeglasses, from the virtual to the clinical environment. Moreover, the reduction in thickness improved the flexibility of the prosthesis and promoted adaptation to the contours of the skin, even during functional movements. The method described here is a simplified and viable alternative to standard construction techniques for nasal prostheses and offers improved esthetic and functional results when no bone is available for implant-supported prostheses. © 2015 by the American College of Prosthodontists.

  18. Deep Proton Writing for the rapid prototyping of polymer micro-components for optical interconnects and optofluidics

    Science.gov (United States)

    Van Erps, Jürgen; Vervaeke, Michael; Ottevaere, Heidi; Hermanne, Alex; Thienpont, Hugo

    2013-07-01

    The use of photonics in data communication and numerous other industrial applications brought plenty of prospects for innovation and opened up different unexplored market opportunities. This is a major driving force for the fabrication of micro-optical and micro-mechanical structures and their accurate alignment and integration into opto-mechanical modules and systems. To this end, we present Deep Proton Writing (DPW) as a powerful rapid prototyping technology for such micro-components. The DPW process consists of bombarding polymer samples (PMMA or SU-8) with swift protons, which results after chemical processing steps in high-quality micro-optical components. One of the strengths of the DPW micro-fabrication technology is the ability to fabricate monolithic building blocks that include micro-optical and mechanical functionalities which can be precisely integrated into more complex photonic systems. In this paper we comment on how we shifted from using 8.3 to 16.5 MeV protons for DPW and give some examples of micro-optical and micro-mechanical components recently fabricated through DPW, targeting applications in optical interconnections and in optofluidics.

  19. Rapid Tooling for Functional Prototype of Metal Mold Processes Final Report CRADA No. TC-1032-98

    Energy Technology Data Exchange (ETDEWEB)

    Heestand, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jaskolski, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-16

    Production inserts for die-casting were generally fabricated from materials with sufficient strength and· good wear properties at casting temperatures for long life. Frequently tool steels were used and machining was done with a combination of. conventional and Electric Discharge Machining (EDM) with some handwork, an expensive and time consuming process, partilly for prototype work. We proposed electron beam physical vapor deposition (EBPVD) as a process for rapid fabrication of dies. Metals, ranging from low melting point to refractory metals (Ta, Mo, etc.), would be evaporated and deposited at high rates (-2mm/hr.). Alloys could be easily evaporated and deposited if their constituent vapor pressures were similar and with more difficulty if they were not. Of course, layering of different materials was possible if required for a specific application. For example, a hard surface layer followed by a tough steel and backed by a high thermal conductivity (possibly cooled) copper layer could be fabricated. Electron-beam deposits exhibited 100% density and lull strength when deposited at a substrate (mandrel) temperature that was a substantial fraction of the deposited material's melting point. There were several materials that could have the required high temperature properties and ease of fabrication required for such a mandrel. We had successfully used graphite, machined from free formed objects with a replicator, to produce aluminum-bronze test molds. There were several parting layer materials of interest, but the ideal material depended upon the specific application.

  20. Development of Rapid, Continuous Calibration Techniques and Implementation as a Prototype System for Civil Engineering Materials Evaluation

    Science.gov (United States)

    Scott, M. L.; Gagarin, N.; Mekemson, J. R.; Chintakunta, S. R.

    2011-06-01

    Until recently, civil engineering material calibration data could only be obtained from material sample cores or via time consuming, stationary calibration measurements in a limited number of locations. Calibration data are used to determine material propagation velocities of electromagnetic waves in test materials for use in layer thickness measurements and subsurface imaging. Limitations these calibration methods impose have been a significant impediment to broader use of nondestructive evaluation methods such as ground-penetrating radar (GPR). In 2006, a new rapid, continuous calibration approach was designed using simulation software to address these measurement limitations during a Federal Highway Administration (FHWA) research and development effort. This continuous calibration method combines a digitally-synthesized step-frequency (SF)-GPR array and a data collection protocol sequence for the common midpoint (CMP) method. Modeling and laboratory test results for various data collection protocols and materials are presented in this paper. The continuous-CMP concept was finally implemented for FHWA in a prototype demonstration system called the Advanced Pavement Evaluation (APE) system in 2009. Data from the continuous-CMP protocol is processed using a semblance/coherency analysis to determine material propagation velocities. Continuously calibrated pavement thicknesses measured with the APE system in 2009 are presented. This method is efficient, accurate, and cost-effective.

  1. Semi-automated delineation of breast cancer tumors and subsequent materialization using three-dimensional printing (rapid prototyping).

    Science.gov (United States)

    Schulz-Wendtland, Rüdiger; Harz, Markus; Meier-Meitinger, Martina; Brehm, Barbara; Wacker, Till; Hahn, Horst K; Wagner, Florian; Wittenberg, Thomas; Beckmann, Matthias W; Uder, Michael; Fasching, Peter A; Emons, Julius

    2017-03-01

    Three-dimensional (3D) printing has become widely available, and a few cases of its use in clinical practice have been described. The aim of this study was to explore facilities for the semi-automated delineation of breast cancer tumors and to assess the feasibility of 3D printing of breast cancer tumors. In a case series of five patients, different 3D imaging methods-magnetic resonance imaging (MRI), digital breast tomosynthesis (DBT), and 3D ultrasound-were used to capture 3D data for breast cancer tumors. The volumes of the breast tumors were calculated to assess the comparability of the breast tumor models, and the MRI information was used to render models on a commercially available 3D printer to materialize the tumors. The tumor volumes calculated from the different 3D methods appeared to be comparable. Tumor models with volumes between 325 mm 3 and 7,770 mm 3 were printed and compared with the models rendered from MRI. The materialization of the tumors reflected the computer models of them. 3D printing (rapid prototyping) appears to be feasible. Scenarios for the clinical use of the technology might include presenting the model to the surgeon to provide a better understanding of the tumor's spatial characteristics in the breast, in order to improve decision-making in relation to neoadjuvant chemotherapy or surgical approaches. J. Surg. Oncol. 2017;115:238-242. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Scaffolds with a standardized macro-architecture fabricated from several calcium phosphate ceramics using an indirect rapid prototyping technique

    Science.gov (United States)

    Wilson, C. E.; van Blitterswijk, C. A.; Verbout, A. J.; de Bruijn, J. D.

    2010-01-01

    Calcium phosphate ceramics, commonly applied as bone graft substitutes, are a natural choice of scaffolding material for bone tissue engineering. Evidence shows that the chemical composition, macroporosity and microporosity of these ceramics influences their behavior as bone graft substitutes and bone tissue engineering scaffolds but little has been done to optimize these parameters. One method of optimization is to place focus on a particular parameter by normalizing the influence, as much as possible, of confounding parameters. This is difficult to accomplish with traditional fabrication techniques. In this study we describe a design based rapid prototyping method of manufacturing scaffolds with virtually identical macroporous architectures from different calcium phosphate ceramic compositions. Beta-tricalcium phosphate, hydroxyapatite (at two sintering temperatures) and biphasic calcium phosphate scaffolds were manufactured. The macro- and micro-architectures of the scaffolds were characterized as well as the influence of the manufacturing method on the chemistries of the calcium phosphate compositions. The structural characteristics of the resulting scaffolds were remarkably similar. The manufacturing process had little influence on the composition of the materials except for the consistent but small addition of, or increase in, a beta-tricalcium phosphate phase. Among other applications, scaffolds produced by the method described provide a means of examining the influence of different calcium phosphate compositions while confidently excluding the influence of the macroporous structure of the scaffolds. PMID:21069558

  3. Chest-wall reconstruction with a customized titanium-alloy prosthesis fabricated by 3D printing and rapid prototyping.

    Science.gov (United States)

    Wen, Xiaopeng; Gao, Shan; Feng, Jinteng; Li, Shuo; Gao, Rui; Zhang, Guangjian

    2018-01-08

    As 3D printing technology emerge, there is increasing demand for a more customizable implant in the repair of chest-wall bony defects. This article aims to present a custom design and fabrication method for repairing bony defects of the chest wall following tumour resection, which utilizes three-dimensional (3D) printing and rapid-prototyping technology. A 3D model of the bony defect was generated after acquiring helical CT data. A customized prosthesis was then designed using computer-aided design (CAD) and mirroring technology, and fabricated using titanium-alloy powder. The mechanical properties of the printed prosthesis were investigated using ANSYS software. The yield strength of the titanium-alloy prosthesis was 950 ± 14 MPa (mean ± SD), and its ultimate strength was 1005 ± 26 MPa. The 3D finite element analyses revealed that the equivalent stress distribution of each prosthesis was unifrom. The symmetry and reconstruction quality contour of the repaired chest wall was satisfactory. No rejection or infection occurred during the 6-month follow-up period. Chest-wall reconstruction with a customized titanium-alloy prosthesis is a reliable technique for repairing bony defects.

  4. Rapid prototyping of all-solution-processed multi-lengthscale electrodes using polymer-induced thin film wrinkling.

    Science.gov (United States)

    Gabardo, Christine M; Adams-McGavin, Robert C; Fung, Barnabas C; Mahoney, Eric J; Fang, Qiyin; Soleymani, Leyla

    2017-02-13

    Three-dimensional electrodes that are controllable over multiple lengthscales are very important for use in bioanalytical systems that integrate solid-phase devices with solution-phase samples. Here we present a fabrication method based on all-solution-processing and thin film wrinkling using smart polymers that is ideal for rapid prototyping of tunable three-dimensional electrodes and is extendable to large volume manufacturing. Although all-solution-processing is an attractive alternative to vapor-based techniques for low-cost manufacturing of electrodes, it often results in films suffering from low conductivity and poor substrate adhesion. These limitations are addressed here by using a smart polymer to create a conformal layer of overlapping wrinkles on the substrate to shorten the current path and embed the conductor onto the polymer layer. The structural evolution of these wrinkled electrodes, deposited by electroless deposition onto a nanoparticle seed layer, is studied at varying deposition times to understand its effects on structural parameters such as porosity, wrinkle wavelength and height. Furthermore, the effect of structural parameters on functional properties such as electro-active surface area and surface-enhanced Raman scattering is investigated. It is found that wrinkling of electroless-deposited thin films can be used to reduce sheet resistance, increase surface area, and enhance the surface-enhanced Raman scattering signal.

  5. Deep Proton Writing for the rapid prototyping of polymer micro-components for optical interconnects and optofluidics

    Energy Technology Data Exchange (ETDEWEB)

    Van Erps, Jürgen, E-mail: jurgen.van.erps@vub.ac.be; Vervaeke, Michael; Ottevaere, Heidi; Hermanne, Alex; Thienpont, Hugo

    2013-07-15

    The use of photonics in data communication and numerous other industrial applications brought plenty of prospects for innovation and opened up different unexplored market opportunities. This is a major driving force for the fabrication of micro-optical and micro-mechanical structures and their accurate alignment and integration into opto-mechanical modules and systems. To this end, we present Deep Proton Writing (DPW) as a powerful rapid prototyping technology for such micro-components. The DPW process consists of bombarding polymer samples (PMMA or SU-8) with swift protons, which results after chemical processing steps in high-quality micro-optical components. One of the strengths of the DPW micro-fabrication technology is the ability to fabricate monolithic building blocks that include micro-optical and mechanical functionalities which can be precisely integrated into more complex photonic systems. In this paper we comment on how we shifted from using 8.3 to 16.5 MeV protons for DPW and give some examples of micro-optical and micro-mechanical components recently fabricated through DPW, targeting applications in optical interconnections and in optofluidics.

  6. Fabrication of novel Si-doped hydroxyapatite/gelatine scaffolds by rapid prototyping for drug delivery and bone regeneration.

    Science.gov (United States)

    Martínez-Vázquez, F J; Cabañas, M V; Paris, J L; Lozano, D; Vallet-Regí, M

    2015-03-01

    Porous 3-D scaffolds consisting of gelatine and Si-doped hydroxyapatite were fabricated at room temperature by rapid prototyping. Microscopic characterization revealed a highly homogeneous structure, showing the pre-designed porosity (macroporosity) and a lesser in-rod porosity (microporosity). The mechanical properties of such scaffolds are close to those of trabecular bone of the same density. The biological behavior of these hybrid scaffolds is greater than that of pure ceramic scaffolds without gelatine, increasing pre-osteoblastic MC3T3-E1 cell differentiation (matrix mineralization and gene expression). Since the fabrication process of these structures was carried out at mild conditions, an antibiotic (vancomycin) was incorporated in the slurry before the extrusion of the structures. The release profile of this antibiotic was measured in phosphate-buffered saline solution by high-performance liquid chromatography and was adjusted to a first-order release kinetics. Vancomycin released from the material was also shown to inhibit bacterial growth in vitro. The implications of these results for bone tissue engineering applications are discussed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Rapid prototyping of all-solution-processed multi-lengthscale electrodes using polymer-induced thin film wrinkling

    Science.gov (United States)

    Gabardo, Christine M.; Adams-McGavin, Robert C.; Fung, Barnabas C.; Mahoney, Eric J.; Fang, Qiyin; Soleymani, Leyla

    2017-02-01

    Three-dimensional electrodes that are controllable over multiple lengthscales are very important for use in bioanalytical systems that integrate solid-phase devices with solution-phase samples. Here we present a fabrication method based on all-solution-processing and thin film wrinkling using smart polymers that is ideal for rapid prototyping of tunable three-dimensional electrodes and is extendable to large volume manufacturing. Although all-solution-processing is an attractive alternative to vapor-based techniques for low-cost manufacturing of electrodes, it often results in films suffering from low conductivity and poor substrate adhesion. These limitations are addressed here by using a smart polymer to create a conformal layer of overlapping wrinkles on the substrate to shorten the current path and embed the conductor onto the polymer layer. The structural evolution of these wrinkled electrodes, deposited by electroless deposition onto a nanoparticle seed layer, is studied at varying deposition times to understand its effects on structural parameters such as porosity, wrinkle wavelength and height. Furthermore, the effect of structural parameters on functional properties such as electro-active surface area and surface-enhanced Raman scattering is investigated. It is found that wrinkling of electroless-deposited thin films can be used to reduce sheet resistance, increase surface area, and enhance the surface-enhanced Raman scattering signal.

  8. Human Adipose-Derived Stem Cells on Rapid Prototyped Three-Dimensional Hydroxyapatite/Beta-Tricalcium Phosphate Scaffold.

    Science.gov (United States)

    Canciani, Elena; Dellavia, Claudia; Ferreira, Lorena Maria; Giannasi, Chiara; Carmagnola, Daniela; Carrassi, Antonio; Brini, Anna Teresa

    2016-05-01

    In the study, we assess a rapid prototyped scaffold composed of 30/70 hydroxyapatite (HA) and beta-tricalcium-phosphate (β-TCP) loaded with human adipose-derived stem cells (hASCs) to determine cell proliferation, differentiation toward osteogenic lineage, adhesion and penetration on/into the scaffold.In this in vitro study, hASCs isolated from fat tissue discarded after plastic surgery were expanded, characterized, and then loaded onto the scaffold. Cells were tested for: viability assay (Alamar Blue at days 3, 7 and Live/Dead at day 32), differentiation index (alkaline phosphatase activity at day 14), scaffold adhesion (standard error of the mean analysis at days 5 and 18), and penetration (ground sections at day 32).All the hASC populations displayed stemness markers and the ability to differentiate toward adipogenic and osteogenic lineages.Cellular vitality increased between 3 and 7 days, and no inhibitory effect by HA/β-TCP was observed. Under osteogenic stimuli, scaffold increased alkaline phosphatase activity of +243% compared with undifferentiated samples. Human adipose-derived stem cells adhered on HA/β-TCP surface through citoplasmatic extensions that occupied the macropores and built networks among them. Human adipose derived stem cells were observed in the core of HA/β-TCP. The current combination of hASCs and HA/β-TCP scaffold provided encouraging results. If authors' data will be confirmed in preclinical models, the present engineering approach could represent an interesting tool in treating large bone defects.

  9. Rapid prototyping tools

    OpenAIRE

    Birkeland, Petter I

    2016-01-01

    This paper is the description of the method and result of the master project of Petter Ildgruben at the Department of Engineering Design and Materials (IPM) at the Norwegian University of Science and Technology (NTNU) in the spring of 2016. The goal of this master s thesis has been to explore the barriers that novel users face in makerspaces, specifically when interacting with the 3D printer, the laser cutter and the Computer Numerical Control (CNC) mill and how to overcome them. The first...

  10. Materials Research Society Symposium Proceedings, Volume 758 Held in Boston, Massachusetts on December 3-5, 2002. Rapid Prototyping Technologies

    Science.gov (United States)

    2003-04-01

    BioMEMS and Bionanotechnology, L.P. Lee, J.T. Borenstein, R.P. Manginell, M. Okandan, P.J. Hesketh, 2002, ISBN: 1-55899-665-6 Volume 730- Materials for... INTRODUCTION Microstereolithography is the general designation of various microfabrication technologies based on the principle used in stereolithography, a...parts. For Direct Metal Laser Sintering (DMLS) this was enabled by the introduction of the powders for 20 micron layer thickness; steel-based powder in

  11. Calibration of "Babyline" RP instruments

    CERN Multimedia

    2015-01-01

      If you have old RP instrumentation of the “Babyline” type, as shown in the photo, please contact the Radiation Protection Group (Joffrey Germa, 73171) to have the instrument checked and calibrated. Thank you. Radiation Protection Group

  12. Error rate of multi-level rapid prototyping trajectories for pedicle screw placement in lumbar and sacral spine

    Directory of Open Access Journals (Sweden)

    Merc Matjaz

    2014-10-01

    Full Text Available 【Abstract】Objective: Free-hand pedicle screw placement has a high incidence of pedicle perforation which can be reduced with fluoroscopy, navigation or an alternative rapid prototyping drill guide template. In our study the error rate of multi-level templates for pedicle screw placement in lumbar and sacral regions was evaluated. Methods: A case series study was performed on 11 patients. Seventy-two screws were implanted using multilevel drill guide templates manufactured with selective laser sintering. According to the optimal screw direction preoperatively defi ned, an analysis of screw misplacement was performed. Displacement, deviation and screw length difference were measured. The learning curve was also estimated. Results: Twelve screws (17% were placed more than 3.125 mm out of its optimal position in the centre of pedicle. The tip of the 16 screws (22% was misplaced more than 6.25 mm out of the predicted optimal position. According to our predefi ned goal, 19 screws (26% were implanted inaccurately. In 10 cases the screw length was selected incorrectly: 1 (1% screw was too long and 9 (13% were too short. No clinical signs of neurovascular lesion were observed. Learning curve was insignifi cantly noticeable (P=0.129. Conclusion: In our study, the procedure of manufacturing and applying multi-level drill guide templates has a 26% chance of screw misplacement. However, that rate does not coincide with pedicle perforation incidence and neurovascular injury. These facts along with a comparison to compatible studies make it possible to summarize that multi-level templates are satisfactorily accurate and allow precise screw placement with a clinically irrelevant mistake factor. Therefore templates could potentially represent a useful tool for routine pedicle screw placement. Key words: Drill guide; Template; Inaccuracy; Perforation; Radiation exposure

  13. Effect of annealing procedure on the bonding of ceramic to cobalt-chromium alloys fabricated by rapid prototyping.

    Science.gov (United States)

    Tulga, Ayca

    2017-08-22

    An annealing procedure is a heat treatment process to improve the mechanical properties of cobalt-chromium (Co-Cr) alloys. However, information is lacking about the effect of the annealing process on the bonding ability of ceramic to Co-Cr alloys fabricated by rapid prototyping. The purpose of this in vitro study was to evaluate the effects of the fabrication techniques and the annealing procedure on the shear bond strength of ceramic to Co-Cr alloys fabricated by different techniques. Ninety-six cylindrical specimens (10-mm diameter, 10-mm height) made of Co-Cr alloy were prepared by casting (C), milling (M), direct process powder-bed (LaserCUSING) with and without annealing (CL+, CL), and direct metal laser sintering (DMLS) with annealing (EL+) and without annealing (EL). After the application of ceramic to the metal specimens, the metal-ceramic bond strength was assessed using a shear force test at a crosshead speed of 0.5 mm/min. Shear bond strength values were statistically analyzed by 1-way ANOVA and Tukey multiple comparison tests (α=.05). Although statistically significant differences were found among the 3 groups (M, 29.87 ±2.06; EL, 38.92 ±2.04; and CL+, 40.93 ±2.21; P=.002), no significant differences were found among the others (P>.05). The debonding surfaces of all specimens exhibited mixed failure mode. These results showed that the direct process powder-bed method is promising in terms of metal-ceramic bonding ability. The manufacturing technique of Co-Cr alloys and the annealing process influence metal-ceramic bonding. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. Replacing Heavily Damaged Teeth by Third Molar Autotransplantation With the Use of Cone-Beam Computed Tomography and Rapid Prototyping.

    Science.gov (United States)

    Verweij, Jop P; Anssari Moin, David; Wismeijer, Daniel; van Merkesteyn, J P Richard

    2017-09-01

    This article describes the autotransplantation of third molars to replace heavily damaged premolars and molars. Specifically, this article reports on the use of preoperative cone-beam computed tomographic planning and 3-dimensional (3D) printed replicas of donor teeth to prepare artificial tooth sockets. In the present case, an 18-year-old patient underwent autotransplantation of 3 third molars to replace 1 premolar and 2 molars that were heavily damaged after trauma. Approximately 1 year after the traumatic incident, autotransplantation with the help of 3D planning and rapid prototyping was performed. The right maxillary third molar replaced the right maxillary first premolar. The 2 mandibular wisdom teeth replaced the left mandibular first and second molars. During the surgical procedure, artificial tooth sockets were prepared with the help of 3D printed donor tooth copies to prevent iatrogenic damage to the actual donor teeth. These replicas of the donor teeth were designed based on the preoperative cone-beam computed tomogram and manufactured with the help of 3D printing techniques. The use of a replica of the donor tooth resulted in a predictable and straightforward procedure, with extra-alveolar times shorter than 2 minutes for all transplantations. The transplanted teeth were placed in infraocclusion and fixed with a suture splint. Postoperative follow-up showed physiologic integration of the transplanted teeth and a successful outcome for all transplants. In conclusion, this technique facilitates a straightforward and predictable procedure for autotransplantation of third molars. The use of printed analogues of the donor teeth decreases the risk of iatrogenic damage and the extra-alveolar time of the transplanted tooth is minimized. This facilitates a successful outcome. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  15. Properties of made by different methods of RP impeller foundry patterns

    Directory of Open Access Journals (Sweden)

    G. Budzik

    2007-04-01

    Full Text Available This article presents the tests of properties of foundry patterns of turbocharger turbine impeller. Impellers prototypes were predestinated for casting by method losing patterns. There were carried out tests of these prototypes made by different methods of Rapid Prototyping (RP. Two impeller were made by growth methods: stereolitography (SLA and three dimensional printing (3DP. One prototype was made by the method of Vacuum Casting as a wax casting. Tests were executed in the Department of Machine Design of Rzeszow University of Technology in cooperation with WSK PZL Rzeszow and Car Technology Krakow. First impeller was carried out by method of stereolitography on SLA 250 plant. That pattern was also used to carry out silicon matrix for casting of wax pattern. Next pattern was printed by three dimensional printer Z510 from the powder ZP14. Good removability of the pattern from the mould is particularly essential for impellers of small turbines with blades of small thickness of their section. All pattern were tested on their removability from the ceramic mould. The best melting properties had the wax pattern. Patterns made from resin SL5170 (SLA and powder ZP14 (3DP were removed in the process of burning but about 1% of soot was left in the mould.

  16. Treatment of Brodie's Syndrome using parasymphyseal distraction through virtual surgical planning and RP assisted customized surgical osteotomy guide-A mock surgery report

    Science.gov (United States)

    Dahake, Sandeep; Kuthe, Abhaykumar; Mawale, Mahesh

    2017-10-01

    This paper aims to describe virtual surgical planning (VSP), computer aided design (CAD) and rapid prototyping (RP) systems for the preoperative planning of accurate treatment of the Brodie's Syndrome. 3D models of the patient's maxilla and mandible were separately generated based on computed tomography (CT) image data and fabricated using RP. During the customized surgical osteotmy guide (CSOG) design process, the correct position was identified and the geometry of the CSOG was generated based on affected mandible of the patient and fabricated by a RP technique. Surgical approach such as preoperative planning and simulation of surgical procedures was performed using advanced software. The VSP and RP assisted CSOG was used to avoid the damage of the adjacent teeth and neighboring healthy tissues. Finally the mock surgery was performed on the biomodel (i.e. diseased RP model) of mandible with reference to the normal maxilla using osteotomy bur with the help of CSOG. Using this CSOG the exact osteotomy of the mandible and the accurate placement of the distractor were obtained. It ultimately improved the accuracy of the surgery in context of the osteotomy and distraction. The time required in cutting the mandible and placement of the distractor was found comparatively less than the regular free hand surgery.

  17. Low Cost Rapid Response Spacecraft, (LCRRS): A Research Project in Low Cost Spacecraft Design and Fabrication in a Rapid Prototyping Environment

    Science.gov (United States)

    Spremo, Stevan; Bregman, Jesse; Dallara, Christopher D.; Ghassemieh, Shakib M.; Hanratty, James; Jackson, Evan; Kitts, Christopher; Klupar, Pete; Lindsay, Michael; Ignacio, Mas; hide

    2009-01-01

    The Low Cost Rapid Response Spacecraft (LCRRS) is an ongoing research development project at NASA Ames Research Center (ARC), Moffett Field, California. The prototype spacecraft, called Cost Optimized Test for Spacecraft Avionics and Technologies (COTSAT) is the first of what could potentially be a series of rapidly produced low-cost satellites. COTSAT has a target launch date of March 2009 on a SpaceX Falcon 9 launch vehicle. The LCRRS research system design incorporates use of COTS (Commercial Off The Shelf), MOTS (Modified Off The Shelf), and GOTS (Government Off The Shelf) hardware for a remote sensing satellite. The design concept was baselined to support a 0.5 meter Ritchey-Chretien telescope payload. This telescope and camera system is expected to achieve 1.5 meter/pixel resolution. The COTSAT team is investigating the possibility of building a fully functional spacecraft for $500,000 parts and $2,000,000 labor. Cost is dramatically reduced by using a sealed container, housing the bus and payload subsystems. Some electrical and RF designs were improved/upgraded from GeneSat-1 heritage systems. The project began in January 2007 and has yielded two functional test platforms. It is expected that a flight-qualified unit will be finished in December 2008. Flight quality controls are in place on the parts and materials used in this development with the aim of using them to finish a proto-flight satellite. For LEO missions the team is targeting a mission class requiring a minimum of six months lifetime or more. The system architecture incorporates several design features required by high reliability missions. This allows for a true skunk works environment to rapidly progress toward a flight design. Engineering and fabrication is primarily done in-house at NASA Ames with flight certifications on materials. The team currently employs seven Full Time Equivalent employees. The success of COTSATs small team in this effort can be attributed to highly cross trained

  18. CAD/CAM and rapid prototyped scaffold construction for bone regenerative medicine and surgical transfer of virtual planning: a pilot study.

    Science.gov (United States)

    Ciocca, L; De Crescenzio, F; Fantini, M; Scotti, R

    2009-01-01

    We developed a model to test new bone constructs to replace spare skeletal segments originating from new generation scaffolds for bone marrow-derived mesenchymal stem cells. Using computed tomography (CT) data, scaffolds were defined using computer-aided design/computer-aided manufacturing (CAD/CAM) for rapid prototyping by three-dimensional (3D) printing. A bone defect was created in pig mandible ramus by condyle resection for CT and CAD/CAM elaboration of bone volume for cutting and scaffold restoration. The protocol produced a perfect-fitting bone substitute model for rapid prototyped hydroxyapatite (HA) scaffolds. A surgical guide system was developed to accurately reproduce virtually planned bone sectioning procedures in animal models to obtain a perfect fit during surgery.

  19. Obtention of hydroxyapatite submicrometric of bovine origin by vibratory grinding for rapid prototyping; Obtencao de hidroxiapatita submicrometrica de origem bovina por moagem vibratoria visando prototipagem rapida

    Energy Technology Data Exchange (ETDEWEB)

    Meira, C.R.; Purquerio, B.M.; Fortulan, C.A., E-mail: camilameira@sc.usp.br [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Escola de Engenharia; Braga, F.J.C. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Submicron bovine hydroxyapatite was obtained for rapid prototyping. Hydroxyapatite structure originated from bovine mineral bone has great importance among the biomaterials and biocompatibility due to its great similarity with the human bone structure. This study aims to obtain powder for manufacture by rapid prototyping of scaffolds. This technique manufacture requires highly reactive powders to compensate for the absence of pressure forming. Hydroxyapatite was milled in a ball mill and vibratory mill, and analyzed for their average equivalent spherical diameter and surface area. Test specimens were isostatically pressed at 100 MPa and machined into cylindrical test specimens. These specimens were sintered at several temperatures to determine the optimal sintering temperature based on densification and chemistry stability. In grinding ball mill was obtained particles of equivalent diameter of 0.74 micron in vibratory mill of 0.46 micrometers. An average flexural strength of 100 MPa and 99,8% of real density was attained for the sample sintered at 1300 deg C/2h, signaling potential for use in rapid prototyping. (author)

  20. Low-cost Method for Obtaining Medical Rapid Prototyping Using Desktop 3D printing: A Novel Technique for Mandibular Reconstruction Planning.

    Science.gov (United States)

    Velasco, Ignacio; Vahdani, Soheil; Ramos, Hector

    2017-09-01

    Three-dimensional (3D) printing is relatively a new technology with clinical applications, which enable us to create rapid accurate prototype of the selected anatomic region, making it possible to plan complex surgery and pre-bend hardware for individual surgical cases. This study aimed to express our experience with the use of medical rapid prototype (MRP) of the maxillofacial region created by desktop 3D printer and its application in maxillofacial reconstructive surgeries. Three patients with benign mandible tumors were included in this study after obtaining informed consent. All patient's maxillofacial CT scan data was processed by segmentation and isolation software and mandible MRP was printed using our desktop 3D printer. These models were used for preoperative surgical planning and prebending of the reconstruction plate. MRP created by desktop 3D printer is a cost-efficient, quick and easily produced appliance for the planning of reconstructive surgery. It can contribute in patient orientation and helping them in a better understanding of their condition and proposed surgical treatment. It helps surgeons for pre-operative planning in the resection or reconstruction cases and represent an excellent tool in academic setting for residents training. The pre-bended reconstruction plate based on MRP, resulted in decreased surgery time, cost and anesthesia risks on the patients. Key words: 3D printing, medical modeling, rapid prototype, mandibular reconstruction, ameloblastoma.

  1. Assessment of a virtual functional prototyping process for the rapid manufacture of passive-dynamic ankle-foot orthoses.

    Science.gov (United States)

    Schrank, Elisa S; Hitch, Lester; Wallace, Kevin; Moore, Richard; Stanhope, Steven J

    2013-10-01

    Passive-dynamic ankle-foot orthosis (PD-AFO) bending stiffness is a key functional characteristic for achieving enhanced gait function. However, current orthosis customization methods inhibit objective premanufacture tuning of the PD-AFO bending stiffness, making optimization of orthosis function challenging. We have developed a novel virtual functional prototyping (VFP) process, which harnesses the strengths of computer aided design (CAD) model parameterization and finite element analysis, to quantitatively tune and predict the functional characteristics of a PD-AFO, which is rapidly manufactured via fused deposition modeling (FDM). The purpose of this study was to assess the VFP process for PD-AFO bending stiffness. A PD-AFO CAD model was customized for a healthy subject and tuned to four bending stiffness values via VFP. Two sets of each tuned model were fabricated via FDM using medical-grade polycarbonate (PC-ISO). Dimensional accuracy of the fabricated orthoses was excellent (average 0.51 ± 0.39 mm). Manufacturing precision ranged from 0.0 to 0.74 Nm/deg (average 0.30 ± 0.36 Nm/deg). Bending stiffness prediction accuracy was within 1 Nm/deg using the manufacturer provided PC-ISO elastic modulus (average 0.48 ± 0.35 Nm/deg). Using an experimentally derived PC-ISO elastic modulus improved the optimized bending stiffness prediction accuracy (average 0.29 ± 0.57 Nm/deg). Robustness of the derived modulus was tested by carrying out the VFP process for a disparate subject, tuning the PD-AFO model to five bending stiffness values. For this disparate subject, bending stiffness prediction accuracy was strong (average 0.20 ± 0.14 Nm/deg). Overall, the VFP process had excellent dimensional accuracy, good manufacturing precision, and strong prediction accuracy with the derived modulus. Implementing VFP as part of our PD-AFO customization and manufacturing framework, which also includes fit customization, provides a novel and powerful method to

  2. Application of 3D rapid prototyping technology in posterior corrective surgery for Lenke 1 adolescent idiopathic scoliosis patients.

    Science.gov (United States)

    Yang, Mingyuan; Li, Chao; Li, Yanming; Zhao, Yingchuan; Wei, Xianzhao; Zhang, Guoyou; Fan, Jianping; Ni, Haijian; Chen, Ziqiang; Bai, Yushu; Li, Ming

    2015-02-01

    A retrospective study to evaluate the effectiveness of 3-dimensional rapid prototyping (3DRP) technology in corrective surgery for Lenke 1 adolescent idiopathic scoliosis (AIS) patients. 3DRP technology has been widely used in medical field; however, no study has been performed on the effectiveness of 3DRP technology in corrective surgery for Lenke 1 AIS patients. Lenke 1 AIS patients who were preparing to undergo posterior corrective surgery from a single center between January 2010 and January 2012 were included in this analysis. Patients were divided into 2 groups. In group A, 3-dimensional (3D) printing technology was used to create subject-specific spine models in the preoperative planning process. Group B underwent posterior corrective surgery as usual (by free hand without image guidance). Perioperative and postoperative clinical outcomes were compared between 2 groups, including operation time, perioperative blood loss, transfusion volume, postoperative hemoglobin (Hb), postoperative complications, and length of hospital stay. Radiological outcomes were also compared, including the assessment of screw placement, postoperative Cobb angle, coronal balance, sagittal vertical axis, thoracic kyphosis, and lumbar lordosis. Subgroup was also performed according to the preoperative Cobb angle: mean Cobb angle Cobb angle >50°. Besides, economic evaluation was also compared between 2 groups. A total of 126 patients were included in this study (group A, 50 and group B, 76). Group A had significantly shorter operation time, significantly less blood loss and transfusion volume, and higher postoperative Hb (all, P 0.05). There was also no significant difference in misplacement of screws in total populations (16.90% vs 18.82%, P = 0.305), whereas a low misplacement rate of pedicle screws was observed in patients whose mean Cobb angle was >50° (9.15% vs 13.03%, P = 0.02). Besides, using 3DRP increased the economic burden of patients (157,000 ± 9948.85

  3. RP delves underground

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    The LHC’s winter technical stop is rapidly approaching. As in past years, technical staff in their thousands will be flocking to the underground areas of the LHC and the Linac2, Booster, PS and SPS injectors. To make sure they are protected from ionising radiation, members of the Radiation Protection Group will perform an assessment of the levels of radioactivity in the tunnels as soon as the beams have stopped.   Members of the Radiation Protection Group with their precision instruments that measure radioactivity. At 7-00 a.m. on 8 December the LHC and all of the upstream accelerators will begin their technical stop. At 7-30 a.m., members of the Radiation Protection Group will enter the tunnel to perform a radiation mapping, necessary so that the numerous teams can do their work in complete safety. “Before we proceed underground, we always check first to make sure that the readings from the induced radioactivity monitors installed in the tunnels are all normal,&rdqu...

  4. Rapid precision casting for complex thin-walled aluminum alloy parts

    Directory of Open Access Journals (Sweden)

    Xuanpu DONG

    2004-11-01

    Full Text Available Based on Vacuum Differential Pressure Casting (VDPC precision forming technology and the Selective Laser Sintering (SLS Rapid Prototyping (RP technology, a rapid manufacturing method called Rapid Precision Casting (RPC process from computer three-dimensional solid models to metallic parts was investigated. The experimental results showed that the main advantage of RPC was not only its ability to cast higher internal quality and more accurate complex thin-walled aluminum alloy parts, but also the greatly-reduced lead time cycle from Selective Laser Sintering(SLS plastic prototyping to metallic parts. The key forming technology of RPC for complex thin-walled metallic parts has been developed for new casting production and Rapid Tooling (RT, and it is possible to rapidly manufacture high-quality and accurate metallic parts by means of RP in foundry industry.

  5. Dynamic GABAergic afferent modulation of AgRP neurons.

    Science.gov (United States)

    Garfield, Alastair S; Shah, Bhavik P; Burgess, Christian R; Li, Monica M; Li, Chia; Steger, Jennifer S; Madara, Joseph C; Campbell, John N; Kroeger, Daniel; Scammell, Thomas E; Tannous, Bakhos A; Myers, Martin G; Andermann, Mark L; Krashes, Michael J; Lowell, Bradford B

    2016-12-01

    Agouti-related peptide (AgRP) neurons of the arcuate nucleus of the hypothalamus (ARC) promote homeostatic feeding at times of caloric insufficiency, yet they are rapidly suppressed by food-related sensory cues before ingestion. Here we identify a highly selective inhibitory afferent to AgRP neurons that serves as a neural determinant of this rapid modulation. Specifically, GABAergic projections arising from the ventral compartment of the dorsomedial nucleus of the hypothalamus (vDMH) contribute to the preconsummatory modulation of ARCAgRP neurons. In a manner reciprocal to ARCAgRP neurons, ARC-projecting leptin receptor-expressing GABAergic vDMH neurons exhibit rapid activation upon availability of food that additionally reflects the relative value of the food. Thus, leptin receptor-expressing GABAergic vDMH neurons form part of the sensory network that relays real-time information about the nature and availability of food to dynamically modulate ARCAgRP neuron activity and feeding behavior.

  6. Effects of carbon fibres on the life cycle assessment of additively manufactured injection moulding inserts for rapid prototyping

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Bey, Niki; Mischkot, Michael

    2017-01-01

    properties and lifetime. The additively manufactured inserts are compared to the standard materials steel, aluminium and brass. The investigated part of the production and prototyping phase considers the insert itself, the moulded part, and resulting waste material of the injection moulding process....

  7. Application of Rapid Prototyping to the Investment Casting of Test Hardware (MSFC Center Director's Discretionary Fund Final Report, Project No. 98-08)

    Science.gov (United States)

    Cooper, K. G.; Wells, D.

    2000-01-01

    Investment casting masters of a selected propulsion hardware component, a fuel pump housing, were rapid prototyped on the several processes in-house, along with the new Z-Corp process acquired through this project. Also, tensile samples were prototyped and cast using the same significant parameters. The models were then shelled in-house using a commercial grade zircon-based slurry and stucco technique. Next, the shelled models were fired and cast by our in-house foundry contractor (IITRI), with NASA-23, a commonly used test hardware metal. The cast models are compared by their surface finish and overall appearance (i.e., the occurrence of pitting, warping, etc.), as well as dimensional accuracy.

  8. AVSynDEx: A Rapid Prototyping Process Dedicated to the Implementation of Digital Image Processing Applications on Multi-DSP and FPGA Architectures

    Directory of Open Access Journals (Sweden)

    Virginie Fresse

    2002-09-01

    Full Text Available We present AVSynDEx (concatenation of AVS + SynDEx, a rapid prototyping process aiming to the implementation of digital signal processing applications on mixed architectures (multi-DSP + FPGA. This process is based on the use of widely available and efficient CAD tools established along the design process so that most of the implementation tasks become automatic. These tools and architectures are judiciously selected and integrated during the implementation process to help a signal processing specialist without relevant hardware experience. We have automated the translation between the different levels of the process to increase and secure it. One main advantage is that only a signal processing designer is needed, all the other specialized manual tasks being transparent in this prototyping methodology, hereby reducing the implementation time.

  9. Sucrose-based fabrication of 3D-networked, cylindrical microfluidic channels for rapid prototyping of lab-on-a-chip and vaso-mimetic devices.

    Science.gov (United States)

    Lee, Jiwon; Paek, Jungwook; Kim, Jaeyoun

    2012-08-07

    We present a new fabrication scheme for 3D-networked, cylindrical microfluidic (MF) channels based on shaping, bonding, and assembly of sucrose fibers. It is a simple, cleanroom-free, and environment-friendly method, ideal for rapid prototyping of lab-on-a-chip devices. Despite its simplicity, it can realize complex 3D MF channel architectures such as cylindrical tapers, internal loops, end-to-side junctions, tapered junctions, and stenosis. The last two will be of special use for realizing vaso-mimetic MF structures. It also enables molding with polymers incompatible with high-temperature processing.

  10. Rapid virtual prototyping of complex photonic integrated circuits using layout-aware schematic-driven design methodology

    Science.gov (United States)

    Mingaleev, S.; Richter, A.; Sokolov, E.; Savitzki, S.; Polatynski, A.; Farina, J.; Koltchanov, I.

    2017-02-01

    We present our versatile simulation framework for the schematic-driven and layout-aware design of photonic integrated circuits (PICs) realizing a fast and user-friendly design flow for large-scale PICs comprising passive and active building blocks (BBs). We show how the seamless interaction of circuit simulation with photonic layout design tools allows to specify and utilize directly physical locations and orientations of BBs of standardized process design kits (PDKs). We demonstrate how to combine graphical schematic capture and automated waveguide routing, and discuss by means of typical design applications how an optimized design flow can speed-up the virtual prototyping of complex PICs and optoelectronic applications.

  11. Usefulness of computed tomography in pre-surgical evaluation of maxillo-facial pathology with rapid prototyping and surgical pre-planning by virtual reality.

    Science.gov (United States)

    Toso, Francesco; Zuiani, Chiara; Vergendo, Maurizio; Salvo, Iolanda; Robiony, Massimo; Politi, Massimo; Bazzocchi, Massimo

    2005-01-01

    To validate a protocol for creating virtual models to be used in the construction of solid prototypes useful for the planning-simulation of maxillo-facial surgery, in particular for very complex anatomic and pathologic problems. To optimize communications between the radiology, engineering and surgical laboratories. We studied 16 patients with different clinical problems of the maxillo-facial district. Exams were performed with multidetector computed tomography (MDCT) and single slice computed tomography (SDCT) with axial scans and collimation of 0.5-2 mm, and reconstruction interval of 1 mm. Subsequently we performed 2D multiplanar reconstructions and 3D volume-rendering reconstructions. We exported the DICOM images to the engineering laboratory, to recognize and isolate the bony structures by software. With these data the solid prototypes were generated using stereolitography. To date, surgery has been preformed on 12 patients after simulation of the procedure on the stereolithographyc model. The solid prototypes constructed in the difficult cases were sufficiently detailed despite problems related to the artefacts generated by dental fillings an d prostheses. In the remaining cases the MPR/3D images were sufficiently detailed for surgical planning. The surgical results were excellent in all patients who underwent surgery, and the surgeons were satisfied with the improvement in quality and the reduction in time required for the procedure. MDCT enables rapid prototyping using solid replication, which was very helpful in maxillo-facial surgery, despite problems related to artifacts due to dental fillings and prosthesis within the acquisition field; solutions for this problem are work in progress. The protocol used for communication between the different laboratories was valid and reproducible.

  12. PRODUCTION OF PROTOTYPE PARTS USING DIRECT METAL LASER SINTERING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Josef Sedlak

    2015-08-01

    Full Text Available Unconventional methods of modern materials preparation include additive technologies which involve the sintering of powders of different chemical composition, granularity, physical, chemical and other utility properties. The technology called Rapid Prototyping, which uses different technological principles of producing components, belongs to this type of material preparation. The Rapid Prototyping technology facilities use photopolymers, thermoplastics, specially treated paper or metal powders. The advantage is the direct production of metal parts from input data and the fact that there is no need for the production of special tools (moulds, press tools, etc.. Unused powder from sintering technologies is re-used for production 98% of the time, which means that the process is economical, as well as ecological.The present paper discusses the technology of Direct Metal Laser Sintering (DMLS, which falls into the group of additive technologies of Rapid Prototyping (RP. The major objective is a detailed description of DMLS, pointing out the benefits it offers and its application in practice. The practical part describes the production and provides an economic comparison of several prototype parts that were designed for testing in the automotive industry.

  13. Development and Validation of a New RP-HPLC Method for the ...

    African Journals Online (AJOL)

    ... rapid, cost-effective and accurate reverse phase-high performance liquid chromatography (RP-HPLC) method for the determination of aprepitant (APT) in capsule dosage form. Methods: The method developed for the determination of APT in capsule formulation involved using RP-HPLC which incorporated a C18 column ...

  14. Correction of a severe facial asymmetry with computerized planning and with the use of a rapid prototyped surgical template: a case report/technique article.

    Science.gov (United States)

    Seres, Laszlo; Varga, Endre; Kocsis, Andras; Rasko, Zoltan; Bago, Balazs; Varga, Endre; Piffko, Jozsef

    2014-07-11

    Management of significant facial asymmetry presents a challenge due to the geometric complexity of the bony and other facial structures. Manual model surgery is an essential part of treatment planning but it can be complicated, time-consuming and may contain potential errors. Computer-aided surgery has revolutionized the correction of maxillofacial deformities. The aim of this study was to report a case of facial asymmetry when computerised simulation surgery was performed instead of manual model surgery and a virtually planned wafer splint was fabricated. A 26-year-old male was presented with a severe right-sided hemimandibular elongation. Following presurgical orthodontics high-resolution computer tomography scan was performed. The stack images were reformatted into a three-dimensional structure. Virtual Le Fort-I osteotomy was performed and the symmetry of the maxilla was corrected with the help of a three-dimensional planning software. A virtual intermediate surgical wafer was designed and produced with three-dimensional rapid prototyping technology. The mandible was rotated into the correct position following virtual bilateral sagittal split osteotomy to visualize the movements of the osteotomised mandibular segments. The two-jaw procedure was performed according to the virtual plan. The facial symmetry was improved significantly and stable occlusion was achieved. This complex case shows the advantages of computer-aided surgical planning and three-dimensional rapid prototyping for the correction of facial asymmetries.

  15. Immediate mandibular reconstruction via patient-specific titanium mesh tray using electron beam melting/CAD/rapid prototyping techniques: One-year follow-up.

    Science.gov (United States)

    Farid Shehab, Mohamed; Hamid, Nabila Mohammed Abdel; Askar, Nevien Abdullatif; Elmardenly, Ahmed Mokhtar

    2018-02-21

    Immediate mandibular reconstruction was performed using a patient-specific titanium mesh tray fabricated by electron beam melting (EBM) /rapid prototyping techniques. Patient-specific titanium trays were virtually designed and fabricated using EBM technology/rapid prototyping for patients requiring mandibular resection and immediate reconstruction using an iliac crest bone graft. Dental implants were placed in the grafted sites and the patients received prosthetic rehabilitation with a follow-up of one year. Clinical data, postoperative bone formation and complications were evaluated. A symmetric appearance of facial contours was achieved. The titanium tray incorporated the particulate iliac crest bone graft that provided significant bone formation (mean 18.97 ± 1.45 mm) and predictable results. Stability of the dental implants was achieved. The patient-specific titanium meshes and immediate particulate autogenous bone graft showed satisfactory clinical and surgical results in improving patients' quality of life and decreasing the overall treatment time with adequate functional rehabilitation. Copyright © 2018 John Wiley & Sons, Ltd.

  16. Rapid Prototyping of Plastic Lab-on-a-Chip by Femtosecond Laser Micromachining and Removable Insert Microinjection Molding

    Directory of Open Access Journals (Sweden)

    Rebeca Martínez Vázquez

    2017-11-01

    Full Text Available We have introduced a new hybrid fabrication method for lab-on-a-chip devices through the combination of femtosecond laser micromachining and removable insert micro-injection molding. This method is particularly suited for the fast prototyping of new devices, while maintaining a competitive low cost. To demonstrate the effectiveness of our approach, we designed, fabricated, and tested a completely integrated flow cytometer coupled to a portable media device. The system operation was tested with fluorescent plastic micro-bead solutions ranging from 100 beads/μL to 500 beads/μL. We demonstrated that this hybrid lab-on-a-chip fabrication technology is suitable for producing low-cost and portable biological microsystems and for effectively bridging the gap between new device concepts and their mass production.

  17. 3D Rapid Prototyping for Otolaryngology—Head and Neck Surgery: Applications in Image-Guidance, Surgical Simulation and Patient-Specific Modeling

    Science.gov (United States)

    Chan, Harley H. L.; Siewerdsen, Jeffrey H.; Vescan, Allan; Daly, Michael J.; Prisman, Eitan; Irish, Jonathan C.

    2015-01-01

    The aim of this study was to demonstrate the role of advanced fabrication technology across a broad spectrum of head and neck surgical procedures, including applications in endoscopic sinus surgery, skull base surgery, and maxillofacial reconstruction. The initial case studies demonstrated three applications of rapid prototyping technology are in head and neck surgery: i) a mono-material paranasal sinus phantom for endoscopy training ii) a multi-material skull base simulator and iii) 3D patient-specific mandible templates. Digital processing of these phantoms is based on real patient or cadaveric 3D images such as CT or MRI data. Three endoscopic sinus surgeons examined the realism of the endoscopist training phantom. One experienced endoscopic skull base surgeon conducted advanced sinus procedures on the high-fidelity multi-material skull base simulator. Ten patients participated in a prospective clinical study examining patient-specific modeling for mandibular reconstructive surgery. Qualitative feedback to assess the realism of the endoscopy training phantom and high-fidelity multi-material phantom was acquired. Conformance comparisons using assessments from the blinded reconstructive surgeons measured the geometric performance between intra-operative and pre-operative reconstruction mandible plates. Both the endoscopy training phantom and the high-fidelity multi-material phantom received positive feedback on the realistic structure of the phantom models. Results suggested further improvement on the soft tissue structure of the phantom models is necessary. In the patient-specific mandible template study, the pre-operative plates were judged by two blinded surgeons as providing optimal conformance in 7 out of 10 cases. No statistical differences were found in plate fabrication time and conformance, with pre-operative plating providing the advantage of reducing time spent in the operation room. The applicability of common model design and fabrication techniques

  18. 3D Rapid Prototyping for Otolaryngology-Head and Neck Surgery: Applications in Image-Guidance, Surgical Simulation and Patient-Specific Modeling.

    Directory of Open Access Journals (Sweden)

    Harley H L Chan

    Full Text Available The aim of this study was to demonstrate the role of advanced fabrication technology across a broad spectrum of head and neck surgical procedures, including applications in endoscopic sinus surgery, skull base surgery, and maxillofacial reconstruction. The initial case studies demonstrated three applications of rapid prototyping technology are in head and neck surgery: i a mono-material paranasal sinus phantom for endoscopy training ii a multi-material skull base simulator and iii 3D patient-specific mandible templates. Digital processing of these phantoms is based on real patient or cadaveric 3D images such as CT or MRI data. Three endoscopic sinus surgeons examined the realism of the endoscopist training phantom. One experienced endoscopic skull base surgeon conducted advanced sinus procedures on the high-fidelity multi-material skull base simulator. Ten patients participated in a prospective clinical study examining patient-specific modeling for mandibular reconstructive surgery. Qualitative feedback to assess the realism of the endoscopy training phantom and high-fidelity multi-material phantom was acquired. Conformance comparisons using assessments from the blinded reconstructive surgeons measured the geometric performance between intra-operative and pre-operative reconstruction mandible plates. Both the endoscopy training phantom and the high-fidelity multi-material phantom received positive feedback on the realistic structure of the phantom models. Results suggested further improvement on the soft tissue structure of the phantom models is necessary. In the patient-specific mandible template study, the pre-operative plates were judged by two blinded surgeons as providing optimal conformance in 7 out of 10 cases. No statistical differences were found in plate fabrication time and conformance, with pre-operative plating providing the advantage of reducing time spent in the operation room. The applicability of common model design and

  19. 3D Rapid Prototyping for Otolaryngology-Head and Neck Surgery: Applications in Image-Guidance, Surgical Simulation and Patient-Specific Modeling.

    Science.gov (United States)

    Chan, Harley H L; Siewerdsen, Jeffrey H; Vescan, Allan; Daly, Michael J; Prisman, Eitan; Irish, Jonathan C

    2015-01-01

    The aim of this study was to demonstrate the role of advanced fabrication technology across a broad spectrum of head and neck surgical procedures, including applications in endoscopic sinus surgery, skull base surgery, and maxillofacial reconstruction. The initial case studies demonstrated three applications of rapid prototyping technology are in head and neck surgery: i) a mono-material paranasal sinus phantom for endoscopy training ii) a multi-material skull base simulator and iii) 3D patient-specific mandible templates. Digital processing of these phantoms is based on real patient or cadaveric 3D images such as CT or MRI data. Three endoscopic sinus surgeons examined the realism of the endoscopist training phantom. One experienced endoscopic skull base surgeon conducted advanced sinus procedures on the high-fidelity multi-material skull base simulator. Ten patients participated in a prospective clinical study examining patient-specific modeling for mandibular reconstructive surgery. Qualitative feedback to assess the realism of the endoscopy training phantom and high-fidelity multi-material phantom was acquired. Conformance comparisons using assessments from the blinded reconstructive surgeons measured the geometric performance between intra-operative and pre-operative reconstruction mandible plates. Both the endoscopy training phantom and the high-fidelity multi-material phantom received positive feedback on the realistic structure of the phantom models. Results suggested further improvement on the soft tissue structure of the phantom models is necessary. In the patient-specific mandible template study, the pre-operative plates were judged by two blinded surgeons as providing optimal conformance in 7 out of 10 cases. No statistical differences were found in plate fabrication time and conformance, with pre-operative plating providing the advantage of reducing time spent in the operation room. The applicability of common model design and fabrication techniques

  20. AgRP Neurons Regulate Bone Mass

    Directory of Open Access Journals (Sweden)

    Jae Geun Kim

    2015-10-01

    Full Text Available The hypothalamus has been implicated in skeletal metabolism. Whether hunger-promoting neurons of the arcuate nucleus impact the bone is not known. We generated multiple lines of mice to affect AgRP neuronal circuit integrity. We found that mice with Ucp2 gene deletion, in which AgRP neuronal function was impaired, were osteopenic. This phenotype was rescued by cell-selective reactivation of Ucp2 in AgRP neurons. When the AgRP circuitry was impaired by early postnatal deletion of AgRP neurons or by cell autonomous deletion of Sirt1 (AgRP-Sirt1−/−, mice also developed reduced bone mass. No impact of leptin receptor deletion in AgRP neurons was found on bone homeostasis. Suppression of sympathetic tone in AgRP-Sirt1−/− mice reversed osteopenia in transgenic animals. Taken together, these observations establish a significant regulatory role for AgRP neurons in skeletal bone metabolism independent of leptin action.

  1. Rapid prototyping of SoC-based real-time vision system: application to image preprocessing and face detection

    Science.gov (United States)

    Jridi, Maher; Alfalou, Ayman

    2017-05-01

    By this paper, the major goal is to investigate the Multi-CPU/FPGA SoC (System on Chip) design flow and to transfer a know-how and skills to rapidly design embedded real-time vision system. Our aim is to show how the use of these devices can be benefit for system level integration since they make possible simultaneous hardware and software development. We take the facial detection and pretreatments as case study since they have a great potential to be used in several applications such as video surveillance, building access control and criminal identification. The designed system use the Xilinx Zedboard platform. The last is the central element of the developed vision system. The video acquisition is performed using either standard webcam connected to the Zedboard via USB interface or several camera IP devices. The visualization of video content and intermediate results are possible with HDMI interface connected to HD display. The treatments embedded in the system are as follow: (i) pre-processing such as edge detection implemented in the ARM and in the reconfigurable logic, (ii) software implementation of motion detection and face detection using either ViolaJones or LBP (Local Binary Pattern), and (iii) application layer to select processing application and to display results in a web page. One uniquely interesting feature of the proposed system is that two functions have been developed to transmit data from and to the VDMA port. With the proposed optimization, the hardware implementation of the Sobel filter takes 27 ms and 76 ms for 640x480, and 720p resolutions, respectively. Hence, with the FPGA implementation, an acceleration of 5 times is obtained which allow the processing of 37 fps and 13 fps for 640x480, and 720p resolutions, respectively.

  2. Collaborative Prototyping

    DEFF Research Database (Denmark)

    Bogers, Marcel; Horst, Willem

    2014-01-01

    This paper presents an inductive study that shows how collaborative prototyping across functional, hierarchical, and organizational boundaries can improve the overall prototyping process. Our combined action research and case study approach provides new insights into how collaborative prototyping...... can provide a platform for prototype-driven problem solving in early new product development (NPD). Our findings have important implications for how to facilitate multistakeholder collaboration in prototyping and problem solving, and more generally for how to organize collaborative and open innovation...... processes. Our analysis reveals two levels of prototyping. Besides the more formal managerial level, we identify the informal designer level, where the actual practice of prototyping takes place. On this level, collaborative prototyping transforms the act of prototyping from an activity belonging...

  3. Prototype Positive Control Wells for Malaria Rapid Diagnostic Tests: Prospective Evaluation of Implementation Among Health Workers in Lao People's Democratic Republic and Uganda.

    Science.gov (United States)

    Bell, David; Bwanika, John Baptist; Cunningham, Jane; Gatton, Michelle; González, Iveth J; Hopkins, Heidi; Kibira, Simon Peter S; Kyabayinze, Daniel J; Mayxay, Mayfong; Ndawula, Bbaale; Newton, Paul N; Phommasone, Koukeo; Streat, Elizabeth; Umlauf, René

    2017-02-08

    Rapid diagnostic tests (RDTs) are widely used for malaria diagnosis, but lack of quality control at point of care restricts trust in test results. Prototype positive control wells (PCW) containing recombinant malaria antigens have been developed to identify poor-quality RDT lots. This study assessed community and facility health workers' (HW) ability to use PCWs to detect degraded RDTs, the impact of PCW availability on RDT use and prescribing, and preferred strategies for implementation in Lao People's Democratic Republic (Laos) and Uganda. A total of 557 HWs participated in Laos (267) and Uganda (290). After training, most (88% to ≥ 99%) participants correctly performed the six key individual PCW steps; performance was generally maintained during the 6-month study period. Nearly all (97%) reported a correct action based on PCW use at routine work sites. In Uganda, where data for 127,775 individual patients were available, PCW introduction in health facilities was followed by a decrease in antimalarial prescribing for RDT-negative patients ≥ 5 years of age (4.7-1.9%); among community-based HWs, the decrease was 12.2% ( P malaria-endemic areas are able to use prototype PCWs for quality control of malaria RDTs. PCW availability can improve HWs' confidence in RDT results, and benefit malaria diagnostic programs. Lessons learned from this study may be valuable for introduction of other point-of-care diagnostic and quality-control tools. Future work should evaluate longer term impacts of PCWs on patient management. © The American Society of Tropical Medicine and Hygiene.

  4. Radiation Protection Section (SC/SL/RP)

    CERN Multimedia

    2006-01-01

    We should like to inform you that the Radiation Protection Section (SC/SL/RP) located on the Prévessin site has moved from Building 865 (ground floor) to new premises in Wing A of Building 892 (second floor). Telephone numbers remain the same. SC/SL/RP section

  5. Indirect rapid prototyping of sol-gel hybrid glass scaffolds for bone regeneration - Effects of organic crosslinker valence, content and molecular weight on mechanical properties.

    Science.gov (United States)

    Hendrikx, Stephan; Kascholke, Christian; Flath, Tobias; Schumann, Dirk; Gressenbuch, Mathias; Schulze, F Peter; Hacker, Michael C; Schulz-Siegmund, Michaela

    2016-04-15

    We present a series of organic/inorganic hybrid sol-gel derived glasses, made from a tetraethoxysilane-derived silica sol (100% SiO2) and oligovalent organic crosslinkers functionalized with 3-isocyanatopropyltriethoxysilane. The material was susceptible to heat sterilization. The hybrids were processed into pore-interconnected scaffolds by an indirect rapid prototyping method, described here for the first time for sol-gel glass materials. A large panel of polyethylene oxide-derived 2- to 4-armed crosslinkers of molecular weights ranging between 170 and 8000Da were incorporated and their effect on scaffold mechanical properties was investigated. By multiple linear regression, 'organic content' and the 'content of ethylene oxide units in the hybrid' were identified as the main factors that determined compressive strength and modulus, respectively. In general, 3- and 4-armed crosslinkers performed better than linear molecules. Compression tests and cell culture experiments with osteoblast-like SaOS-2 cells showed that macroporous scaffolds can be produced with compressive strengths of up to 33±2MPa and with a pore structure that allows cells to grow deep into the scaffolds and form mineral deposits. Compressive moduli between 27±7MPa and 568±98MPa were obtained depending on the hybrid composition and problems associated with the inherent brittleness of sol-gel glass materials could be overcome. SaOS-2 cells showed cytocompatibility on hybrid glass scaffolds and mineral accumulation started as early as day 7. On day 14, we also found mineral accumulation on control hybrid glass scaffolds without cells, indicating a positive effect of the hybrid glass on mineral accumulation. We produced a hybrid sol-gel glass material with significantly improved mechanical properties towards an application in bone regeneration and processed the material into macroporous scaffolds of controlled architecture by indirect rapid prototyping. We were able to produce macroporous materials

  6. Phenolic Profile of Potentilla anserina L. (Rosaceae) Herb of Siberian Origin and Development of a Rapid Method for Simultaneous Determination of Major Phenolics in P. anserina Pharmaceutical Products by Microcolumn RP-HPLC-UV

    OpenAIRE

    Olennikov,Daniil N.; Kashchenko, Nina I.; Nadezhda K. Chirikova; Sargylana S. Kuz'mina

    2014-01-01

    A chemical study of Potentilla anserina L. herb (Rosaceae) of Siberian origin led to the isolation of 17 compounds. Three ellagitannins—potentillin, agrimonic acid A and B—are reported for the first time in this species. With a view to rapid quantitative analysis, a new method was developed for simultaneous determination of major phenolic compounds in P. anserina, including caffeic acid, myricetin-3-O-glucuronide, agrimoniin, ellagic acid, miquelianin, isorhamnetin-3-O-glucuronide, and kaempf...

  7. A comparison between customized clear and removable orthodontic appliances manufactured using RP and CNC techniques.

    Science.gov (United States)

    Martorelli, Massimo; Gerbino, Salvatore; Giudice, Michele; Ausiello, Pietro

    2013-02-01

    Aim of the research is to compare the orthodontic appliances fabricated by using rapid prototyping (RP) systems, in particular 3D printers, with those manufactured by using computer numerical control (CNC) milling machines. 3D printing is today a well-accepted technology to fabricate orthodontic aligners by using the thermoforming process, instead the potential of CNC systems in dentistry have not yet been sufficiently explored. One patient, with mal-positioned maxillary central and lateral incisors, was initially selected. In the computer aided virtual planning was defined that, for the treatment, the patient needed to wear a series of 7 removable orthodontic appliances (ROA) over a duration of 21 weeks, with one appliance for every 3 weeks. A non-contact reverse engineering (RE) structured-light 3D scanner was used to create the 3D STL model of the impression of the patient's mouth. Numerical FEM simulations were performed varying the position of applied forces (discrete and continuous forces) on the same model, simulating, in this way, 3 models with slice thickness of 0.2 mm, 0.1 mm (RP staircase effect) and without slicing (ideal case). To define the areas of application of forces, two configuration "i" and "i-1" of the treatment were overlapped. 6 patients to which for three steps (3rd, 4th and 5th step) were made to wear aligners fabricated starting from physical models by 3D printing (3DP-ROA) and afterwards, for the next steps (6th, 7th and 8th step), aligners fabricated starting from physical models by CNC milling machine (CNC-ROA), were selected. For the 6 patients wearing the CNC-ROA, it was observed a best fitting of the aligner to the teeth and a more rapid teeth movement than the 3DP-ROA (2 weeks compared to 3 weeks for every appliance). FEM simulations showed a more uniform stress distribution for CNC-ROA than 3DP-ROA. In this research, 6 different case studies and CAD-FEM simulations showed that, to fabricate an efficient clear and removable

  8. Architectural prototyping

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Christensen, Henrik Bærbak; Hansen, Klaus Marius

    2004-01-01

    A major part of software architecture design is learning how specific architectural designs balance the concerns of stakeholders. We explore the notion of "architectural prototypes", correspondingly architectural prototyping, as a means of using executable prototypes to investigate stakeholders......' concerns with respect to a system under development. An architectural prototype is primarily a learning and communication vehicle used to explore and experiment with alternative architectural styles, features, and patterns in order to balance different architectural qualities. The use of architectural...... prototypes in the development process is discussed, and we argue that such prototypes can play a role throughout the entire process. The use of architectural prototypes is illustrated by three distinct cases of creating software systems. We argue that architectural prototyping can provide key insights...

  9. Architectural Prototyping

    DEFF Research Database (Denmark)

    Bardram, Jakob; Christensen, Henrik Bærbak; Hansen, Klaus Marius

    2004-01-01

    A major part of software architecture design is learning how specific architectural designs balance the concerns of stakeholders. We explore the notion of "architectural prototypes", correspondingly architectural prototyping, as a means of using executable prototypes to investigate stakeholders......' concerns with respect to a system under development. An architectural prototype is primarily a learning and communication vehicle used to explore and experiment with alternative architectural styles, features, and patterns in order to balance different architectural qualities. The use of architectural...... prototypes in the development process is discussed, and we argue that such prototypes can play a role throughout the entire process. The use of architectural prototypes is illustrated by three distinct cases of creating software systems. We argue that architectural prototyping can provide key insights...

  10. Nutritive, Post-ingestive Signals Are the Primary Regulators of AgRP Neuron Activity

    Directory of Open Access Journals (Sweden)

    Zhenwei Su

    2017-12-01

    Full Text Available Summary: The brain regulates food intake by processing sensory cues and peripheral physiological signals, but the neural basis of this integration remains unclear. Hypothalamic, agouti-related protein (AgRP-expressing neurons are critical regulators of food intake. AgRP neuron activity is high during hunger and is rapidly reduced by the sight and smell of food. Here, we reveal two distinct components of AgRP neuron activity regulation: a rapid but transient sensory-driven signal and a slower, sustained calorie-dependent signal. We discovered that nutrients are necessary and sufficient for sustained reductions in AgRP neuron activity and that activity reductions are proportional to the calories obtained. This change in activity is recapitulated by exogenous administration of gut-derived satiation signals. Furthermore, we showed that the nutritive value of food trains sensory systems—in a single trial—to drive rapid, anticipatory AgRP neuron activity inhibition. Together, these data demonstrate that nutrients are the primary regulators of AgRP neuron activity. : Su et al. demonstrate that nutrient content in the GI tract is rapidly signaled to hypothalamic neurons activated by hunger. This rapid effect is mediated by three satiation signals that synergistically reduce the activity of AgRP neurons. These findings uncover how hunger circuits in the brain are regulated and raise the possibility that hunger can be pharmacologically controlled. Keywords: calcium imaging, AgRP neurons, calories, satiation signals, sensory regulation, single trial learning, cholecystokinin, CCK, peptide tyrosine tyrosine, PYY, amylin, homeostasis

  11. Shaping ability of Reciproc and TF Adaptive systems in severely curved canals of rapid microCT-based prototyping molar replicas

    Directory of Open Access Journals (Sweden)

    Ronald ORDINOLA-ZAPATA

    2014-12-01

    Full Text Available Objective: To evaluate the shaping ability of Reciproc and Twisted-File Adaptive systems in rapid prototyping replicas. Material and Methods: Two mandibular molars showing S-shaped and 62-degree curvatures in the mesial root were scanned by using a microcomputed tomography (μCT system. The data were exported in the stereolitograhic format and 20 samples of each molar were printed at 16 µm resolution. The mesial canals of 10 replicas of each specimen were prepared with each system. Transportation was measured by overlapping radiographs taken before and after preparation and resin thickness after instrumentation was measured by μCT. Results: Both systems maintained the original shape of the apical third in both anatomies (P>0.05. Overall, considering the resin thickness in the 62-degree replicas, no statistical difference was found between the systems (P>0.05. In the S-shaped curvature replica, Reciproc significantly decreased the thickness of the resin walls in comparison with TF Adaptive. Conclusions: The evaluated systems were able to maintain the original shape at the apical third of severely curved mesial canals of molar replicas.

  12. Characterization of rapidly-prototyped, battery-operated, argon-hydrogen microplasma on a hybrid chip for elemental analysis of microsamples by portable optical emission spectrometry

    Science.gov (United States)

    Weagant, Scott; Dulai, Gurjit; Li, Lu; Karanassios, Vassili

    2015-04-01

    A rapidly-prototyped, battery-operated, atmospheric-pressure, self-igniting Ar-H2 microplasma was interfaced to a portable fiber-optic spectrometer. The microplasma-spectrometer combination was used to document the spectral lines emitted when μL of dilute solutions of single element standards of Ag, Ba, Ca, Eu, Pd, Rb and Sr were first dried and then vaporized into the microplasma. A small-size, electrothermal vaporization system was used for microsample introduction. Identification of the prominent spectral lines for these elements is reported. It was found that the most prominent spectral line for Ba, Ca and Sr was different than that emitted from an inductively coupled plasma (ICP). In general, prominent spectral lines with low excitation energy were dominating, thus resulting in spectra simpler than those emitted from an ICP. Detection limits were between 45 and 180 pg (expressed in absolute amounts). When expressed in relative concentration units, they ranged between 15 and 60 μg/L (obtained using 3 μL diluted standards). Calibration curves were linear (on the average) for 1.5 orders-of-magnitude. Average precision was 15%. Analytical capability and utility was demonstrated using the determination of Ca and Mg in (medicinal) thermal spring water.

  13. Autotransplantation of teeth using computer-aided rapid prototyping of a three-dimensional replica of the donor tooth: a systematic literature review.

    Science.gov (United States)

    Verweij, J P; Jongkees, F A; Anssari Moin, D; Wismeijer, D; van Merkesteyn, J P R

    2017-11-01

    This systematic review provides an overview of studies on autotransplantation techniques using rapid prototyping for preoperative fabrication of donor tooth replicas for preparation of the neo-alveolus. Different three-dimensional autotransplantation techniques and their treatment outcomes are discussed. The systematic literature search yielded 19 articles that satisfied the criteria for inclusion. These papers described one case-control study, four clinical observational studies, one study with a clinical and in vitro part, four in vitro studies, and nine case reports. The in vitro studies reported high accuracy for the printing and planning processes. The case reports all reported successful transplantation without any pathological signs. The clinical studies reported a short extraoral time of the donor tooth, with subsequent success and survival rates of 80.0-91.1% and 95.5-100%, respectively. The case-control study reported a significant decrease in extraoral time and high success rates with the use of donor tooth replicas. In conclusion, the use of a preoperatively designed surgical guide for autotransplantation enables accurate positional planning, increases the ease of surgery, and decreases the extraoral time. However, the quality of the existing body of evidence is low. Further research is therefore required to investigate the clinical advantages of this innovative autotransplantation technique. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  14. Prototyping Practice

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette; Tamke, Martin

    2015-01-01

    This paper examines the role of the prototyping in digital architecture. During the past decade, a new research field has emerged exploring the digital technology’s impact on the way we think, design and build our environment. In this practice the prototype, the pavilion, installation...... or demonstrator, has become a shared research tool. This paper asks how this practice has formed by tracing the different roles of the prototype from ideation and design, to analysis and evaluation. Taking point of departure in CITA’s own prototyping practice, we explore the relationships between physical...... and digital prototyping as a particular means of validation and verification. Here, a breadth of physical prototypes take on varying roles, in turn informing, testing and proving the research enquiry. The paper addresses how we can differentiate between these modes of prototyping and how....

  15. Micro-Rapid Prototyping Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this task is to create a maskless process for sample 500 µm 3-D objects. Specific objectives are to(1) Develop 3-D CAD computer models and...

  16. Rapid prototyping in aortic surgery.

    Science.gov (United States)

    Bangeas, Petros; Voulalas, Grigorios; Ktenidis, Kiriakos

    2016-04-01

    3D printing provides the sequential addition of material layers and, thus, the opportunity to print parts and components made of different materials with variable mechanical and physical properties. It helps us create 3D anatomical models for the better planning of surgical procedures when needed, since it can reveal any complex anatomical feature. Images of abdominal aortic aneurysms received by computed tomographic angiography were converted into 3D images using a Google SketchUp free software and saved in stereolithography format. Using a 3D printer (Makerbot), a model made of polylactic acid material (thermoplastic filament) was printed. A 3D model of an abdominal aorta aneurysm was created in 138 min, while the model was a precise copy of the aorta visualized in the computed tomographic images. The total cost (including the initial cost of the printer) reached 1303.00 euros. 3D imaging and modelling using different materials can be very useful in cases when anatomical difficulties are recognized through the computed tomographic images and a tactile approach is demanded preoperatively. In this way, major complications during abdominal aorta aneurysm management can be predicted and prevented. Furthermore, the model can be used as a mould; the development of new, more biocompatible, less antigenic and individualized can become a challenge in the future. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  17. Impurity gettering by vacancy-type defects in high-energy ion-implanted silicon at Rp /2

    Science.gov (United States)

    Krause-Rehberg, R.; Börner, F.; Redmann, F.

    2000-12-01

    Vacancy-type defects were studied after high-energy self-implantation of Si and subsequent rapid thermal annealing by means of a depth-resolution enhanced positron beam technique. Two different types of open-volume defects were found at a depth of Rp/2 and Rp, respectively. The defect type at Rp/2 is an agglomeration of point defects containing vacancies. This defect getters diffusing copper atoms. The vacancy-type defect observed in a depth of Rp could be connected to the interstitial loops formed there. The positron annihilation parameters suggest that this detected defect is not decorated by diffusing copper atoms.

  18. Deviation analysis of C1-C2 transarticular screw placement assisted by a novel rapid prototyping drill template: a cadaveric study.

    Science.gov (United States)

    Hu, Yong; Yuan, Zhen-Shan; Kepler, Christopher K; Albert, Todd J; Yuan, Jian-Bing; Dong, Wei-Xin; Sun, Xiao-Yang; Wang, Cheng-Tao

    2014-07-01

    Cadaveric study. The aim of this study was to develop and validate the accuracy of a novel navigational template for C1-C2 transarticular screw (C1C2TAS) placement in cadaveric specimens. Currently, C1C2TASs are primarily positioned using a free-hand technique or under fluoroscopic guidance. Screw placement is challenging owing to the small size of the C2 isthmus, which places technical demands on the surgeon. Screw insertion carries a potential risk of neurovascular injury, magnifying the importance of using a precise technique for screw insertion. Computed tomography (CT) scans with 0.625-mm wide cuts were obtained from the 32 cadaveric cervical specimens. The CT data were imported into a computer navigation system. We developed 32 three-dimensional drill templates, which were created by computer modeling using a rapid prototyping technique based on the CT data. We constructed drill templates using a custom trajectory for each level and side based on specimen anatomy. The drill templates were used to guide establishment of a pilot hole for screw placement. The entry point and angular direction of the intended screw positions and inserted screw positions were measured by comparing postoperative and preoperative images after the coordinate axes were synchronized. The average displacement of the entry point of the left and right C1C2TAS in the x-, y-, and z-axis was 0.13±0.90 mm, 0.50±1.50 mm, and -0.22±0.71 mm on the left, and 0.21±1.03 mm, 0.46±1.55 mm, and -0.29±0.58 mm on the right. There was no statistically significant difference in entry point and direction between the intended and actual screw trajectory. The small deviations seen are likely due to human error in the form of small variations in the surgical technique and use of software to design the prototype. This technology improves the safety profile of this fixation technique and should be further studied in clinical applications.

  19. Phenolic Profile of Potentilla anserina L. (Rosaceae Herb of Siberian Origin and Development of a Rapid Method for Simultaneous Determination of Major Phenolics in P. anserina Pharmaceutical Products by Microcolumn RP-HPLC-UV

    Directory of Open Access Journals (Sweden)

    Daniil N. Olennikov

    2014-12-01

    Full Text Available A chemical study of Potentilla anserina L. herb (Rosaceae of Siberian origin led to the isolation of 17 compounds. Three ellagitannins—potentillin, agrimonic acid A and B—are reported for the first time in this species. With a view to rapid quantitative analysis, a new method was developed for simultaneous determination of major phenolic compounds in P. anserina, including caffeic acid, myricetin-3-O-glucuronide, agrimoniin, ellagic acid, miquelianin, isorhamnetin-3-O-glucuronide, and kaempferol-3-O-rhamnoside. The quantitative determination was conducted by microcolumn reversed phase high-performance liquid chromatography with UV detection. Separation was performed using a ProntoSIL-120-5-C18 AQ column (60 mm × 1 mm × 5 μm with six-step gradient elution of aqueous 0.2 М LiClO4 in 0.006 M HClO4 and acetonitrile as mobile phases. The components were quantified by HPLC-UV at 270 nm. All calibration curves showed good linearity (r2 > 0.999 within test ranges. The reproducibility was evaluated by intra- and inter-day assays, and RSD values were less than 2.8%. The recoveries were between 97.15 and 102.38%. The limits of detection ranged from 0.21 to 1.94 μg/mL, and limits of quantification ranged from 0.65 to 5.88 μg/mL, respectively. Various solvents, extraction methods, temperatures, and times were evaluated to obtain the best extraction efficiency. The developed method was successfully applied for the analysis of selected pharmaceutical products: 12 batches of P. anserina herb collected from three Siberian regions (Yakutia, Buryatia, Irkutsk, two commercial samples of P. anserina herb, and some preparations (liquid extract, tincture, decoction, infusion, and dry extract.

  20. Phenolic profile of Potentilla anserina L. (Rosaceae) herb of siberian origin and development of a rapid method for simultaneous determination of major Phenolics in P. anserina pharmaceutical products by microcolumn RP-HPLC-UV.

    Science.gov (United States)

    Olennikov, Daniil N; Kashchenko, Nina I; Chirikova, Nadezhda K; Kuz'mina, Sargylana S

    2014-12-24

    A chemical study of Potentilla anserina L. herb (Rosaceae) of Siberian origin led to the isolation of 17 compounds. Three ellagitannins-potentillin, agrimonic acid A and B-are reported for the first time in this species. With a view to rapid quantitative analysis, a new method was developed for simultaneous determination of major phenolic compounds in P. anserina, including caffeic acid, myricetin-3-O-glucuronide, agrimoniin, ellagic acid, miquelianin, isorhamnetin-3-O-glucuronide, and kaempferol-3-O-rhamnoside. The quantitative determination was conducted by microcolumn reversed phase high-performance liquid chromatography with UV detection. Separation was performed using a ProntoSIL-120-5-C18 AQ column (60 mm × 1 mm × 5 μm) with six-step gradient elution of aqueous 0.2 М LiClO4 in 0.006 M HClO4 and acetonitrile as mobile phases. The components were quantified by HPLC-UV at 270 nm. All calibration curves showed good linearity (r2 > 0.999) within test ranges. The reproducibility was evaluated by intra- and inter-day assays, and RSD values were less than 2.8%. The recoveries were between 97.15 and 102.38%. The limits of detection ranged from 0.21 to 1.94 μg/mL, and limits of quantification ranged from 0.65 to 5.88 μg/mL, respectively. Various solvents, extraction methods, temperatures, and times were evaluated to obtain the best extraction efficiency. The developed method was successfully applied for the analysis of selected pharmaceutical products: 12 batches of P. anserina herb collected from three Siberian regions (Yakutia, Buryatia, Irkutsk), two commercial samples of P. anserina herb, and some preparations (liquid extract, tincture, decoction, infusion, and dry extract).

  1. CERN radiation protection (RP) calibration facilities

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Fabio

    2016-04-14

    Radiation protection calibration facilities are essential to ensure the correct operation of radiation protection instrumentation. Calibrations are performed in specific radiation fields according to the type of instrument to be calibrated: neutrons, photons, X-rays, beta and alpha particles. Some of the instruments are also tested in mixed radiation fields as often encountered close to high-energy particle accelerators. Moreover, calibration facilities are of great importance to evaluate the performance of prototype detectors; testing and measuring the response of a prototype detector to well-known and -characterized radiation fields contributes to improving and optimizing its design and capabilities. The CERN Radiation Protection group is in charge of performing the regular calibrations of all CERN radiation protection devices; these include operational and passive dosimeters, neutron and photon survey-meters, and fixed radiation detectors to monitor the ambient dose equivalent, H*(10), inside CERN accelerators and at the CERN borders. A new state-of-the-art radiation protection calibration facility was designed, constructed and commissioned following the related ISO recommendations to replace the previous ageing (more than 30 years old) laboratory. In fact, the new laboratory aims also at the official accreditation according to the ISO standards in order to be able to release certified calibrations. Four radiation fields are provided: neutrons, photons and beta sources and an X-ray generator. Its construction did not only involve a pure civil engineering work; many radiation protection studies were performed to provide a facility that could answer the CERN calibration needs and fulfill all related safety requirements. Monte Carlo simulations have been confirmed to be a valuable tool for the optimization of the building design, the radiation protection aspects, e.g. shielding, and, as consequence, the overall cost. After the source and irradiator installation

  2. Solution Prototype

    DEFF Research Database (Denmark)

    Efeoglu, Arkin; Møller, Charles; Serie, Michel

    2013-01-01

    This paper outlines an artifact building and evaluation proposal. Design Science Research (DSR) studies usually consider encapsulated artifact that have relationships with other artifacts. The solution prototype as a composed artifact demands for a more comprehensive consideration in its systematic...... environment. The solution prototype that is composed from blending product and service prototype has particular impacts on the dualism of DSR’s “Build” and “Evaluate”. Since the mix between product and service prototyping can be varied, there is a demand for a more agile and iterative framework. Van de Ven...

  3. Prototyping Revisited

    DEFF Research Database (Denmark)

    Hansen, Poul H. Kyvsgård; Hansen, Svend Aage; Hansen, Erik

    2006-01-01

    Until now, prototyping has been developing as a technological discipline. In so it has proven to be a strong means to test specific solutions or physical designs before the launch of a product. The results have been reduced development time and improvement of quality in a broad sense. There are......, however, indications that we should review our perception of prototypes to be broader and to view our application of prototypes in a broader organizational view. This paper presents an initial and explorative review of the changing role of prototypes in product development....

  4. Integrated Use of Tools and Technologies for Rapidly Prototyping Simulated Data Products of Future NASA Observing Systems For Evaluation in Applications of National Importance

    Science.gov (United States)

    O'Hara, C. G.; Moorhead, R.; Shaw, D.; Shrestha, B.; Ross, K.; Prados, D.; Russell, J.; Ryan, R. E.

    2006-12-01

    NASA sponsored "Rapid Prototyping Capability" (RPC) research activities of the Mississippi Research Consortium are aimed at developing infrastructure and experiments to evaluate data products from future NASA observing systems in applications, models or decision support tools of national importance. The RPC will host a wide variety of experiments, many of which will require the simulation of data streams to approximate products from future NASA observing systems. To simulate data from a future observing system, a variety of tools and technologies must be employed in an integrated computational workflow. Future data product simulations will typically involve using data products from currently operational science data mission observing systems to provide inputs to a process wherein data will be extracted and manipulated to provide products that approximate the spectral, spatial, radiometric, and temporal characteristics of planned future sensors. The integration of tools and technologies and adapting interfaces for ease of use will enable researchers to test a variety of simulations to efficiently determine an acceptable set of procedures whereby a simulated data product may be derived from existing data sources. Interactive research and testing of data product simulation scenarios will strongly leverage NASA tools and technologies such as the HDF Extraction to GeoTiff tool (HEG2.7) to extract large volumes of data in batch mode, the Time-Series Product Toolkit (TSPT) to evaluate methods for data fusion, de-noising, and creating multi-temporal composites, and the Application Research Toolbox (ART) to manipulate data product characteristics in the simulation process. Given an accepted simulation configuration generated by a set of methods and a documented process workflow, the process will be computationally implemented using Mississippi State University's Temporal Map Algebra (TMA) tools which will enable handling large data sets, computing efficiently the desired

  5. Minimizing the extra-oral time in autogeneous tooth transplantation: use of computer-aided rapid prototyping (CARP as a duplicate model tooth

    Directory of Open Access Journals (Sweden)

    Seung-Jong Lee

    2012-08-01

    Full Text Available Objectives The maintenance of the healthy periodontal ligament cells of the root surface of donor tooth and intimate surface contact between the donor tooth and the recipient bone are the key factors for successful tooth transplantation. In order to achieve these purposes, a duplicated donor tooth model can be utilized to reduce the extra-oral time using the computer-aided rapid prototyping (CARP technique. Materials and Methods Briefly, a three-dimensional digital imaging and communication in medicine (DICOM image with the real dimensions of the donor tooth was obtained from a computed tomography (CT, and a life-sized resin tooth model was fabricated. Dimensional errors between real tooth, 3D CT image model and CARP model were calculated. And extra-oral time was recorded during the autotransplantation of the teeth. Results The average extra-oral time was 7 min 25 sec with the range of immediate to 25 min in cases which extra-oral root canal treatments were not performed while it was 9 min 15 sec when extra-oral root canal treatments were performed. The average radiographic distance between the root surface and the alveolar bone was 1.17 mm and 1.35 mm at mesial cervix and apex; they were 0.98 mm and 1.26 mm at the distal cervix and apex. When the dimensional errors between real tooth, 3D CT image model and CARP model were measured in cadavers, the average of absolute error was 0.291 mm between real teeth and CARP model. Conclusions These data indicate that CARP may be of value in minimizing the extra-oral time and the gap between the donor tooth and the recipient alveolar bone in tooth transplantation.

  6. Final report on LDRD project: Low-cost Pd-catalyzed metallization technology for rapid prototyping of electronic substrates and devices

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K.S.; Morgan, W.P.; Zich, J.L.

    1998-02-01

    A low-cost, thermally-activated, palladium-catalyzed metallization process was developed for rapid prototyping of polymeric electronic substrates and devices. The process was successfully applied in producing adhesiveless copper/polyimide laminates with high peel strengths and thick copper coating; copper/polyimide laminates are widely used in fabricating interconnects such as printed wiring boards (PWBs) and flexible circuits. Also successfully metallized using this low-cost metallization process were: (1) scaled-down models of radar-and-communication antenna and waveguide; (2) scaled-down model of pulsed-power-accelerator electrode; (3) three-dimensional micro-porous, open-cell vitreous carbon foams. Moreover, additive patterned metallization was successfully achieved by selectively printing or plotting the catalyst ink only on areas where metallization is desired, and by uniform thermal activation. Additive patterned metallization eliminates the time-consuming, costly and environmentally-unfriendly etching process that is routinely carried out in conventional subtractive patterned metallization. A metallization process via ultraviolet (UV) irradiation activation was also demonstrated. In this process palladium-catalyst solution is first uniformly coated onto the substrate. A masking pattern is used to cover the areas where metallization is not wanted. UV irradiation is applied uniformly to activate the palladium catalyst and to cure the polymer carrier in areas that are not covered by the mask. Metal is then deposited by electroless plating only or by a combination of electroless and electrolytic plating. This UV-activation technique is particularly useful in additive fine-line patterned metallization. Lastly, computer models for electrolytic and electroless plating processes were developed to provide guidance in plating-process design.

  7. Prototyping user displays using CLIPS

    Science.gov (United States)

    Kosta, Charles P.; Miller, Ross; Krolak, Patrick; Vesty, Matt

    1990-01-01

    CLIPS is being used as an integral module of a rapid prototyping system. The prototyping system consists of a display manager for object browsing, a graph program for displaying line and bar charts, and a communications server for routing messages between modules. A CLIPS simulation of a physical model provides dynamic control of the user's display. Currently, a project is well underway to prototype the Advanced Automation System (AAS) for the Federal Aviation Administration.

  8. Unikabeton Prototype

    DEFF Research Database (Denmark)

    Søndergaard, Asbjørn; Dombernowsky, Per

    2011-01-01

    The Unikabeton prototype structure was developed as the finalization of the cross-disciplinary research project Unikabeton, exploring the architectural potential in linking the computational process of topology optimisation with robot fabrication of concrete casting moulds. The project was elabor......The Unikabeton prototype structure was developed as the finalization of the cross-disciplinary research project Unikabeton, exploring the architectural potential in linking the computational process of topology optimisation with robot fabrication of concrete casting moulds. The project...... of Architecture was to develop a series of optimisation experiments, concluding in the design and optimisation of a full scale prototype concrete structure....

  9. Autosomal recessive retinitis pigmentosa with RP1 mutations is associated with myopia

    NARCIS (Netherlands)

    Chassine, T.; Bocquet, B.; Daien, V.; Avila-Fernandez, A.; Ayuso, C.; Collin, R.W.J.; Corton, M.; Hejtmancik, J.F.; Born, L.I. van den; Klevering, B.J.; Riazuddin, S.A.; Sendon, N.; Lacroux, A.; Meunier, I.; Hamel, C.P.

    2015-01-01

    OBJECTIVE: To determine the refractive error in patients with autosomal recessive retinitis pigmentosa (arRP) caused by RP1 mutations and to compare it with that of other genetic subtypes of RP. METHODS: Twenty-six individuals had arRP with RP1 mutations, 25 had autosomal dominant RP (adRP) with RP1

  10. Prototyping the Future

    Science.gov (United States)

    1998-01-01

    Advanced Ceramics Research (ACR) of Tucson, Arizona, researches transforming scientific concepts into technological achievement. Through the SBIR (Small Business Innovative Research) program, ACR developed a high pressure and temperature fused deposition system, a prototyping system that is known as extrusion freeform fabrication. This system is useful in manufacturing prosthetics. ACR also developed a three-dimensional rapid prototyping process in which physical models are quickly created directly from computer generated models. Marshall Space Flight Center also contracted ACR to fabricate a set of ceramic engines to be appraised for a solar thermal rocket engine test program.

  11. Expression of wild-type Rp1 protein in Rp1 knock-in mice rescues the retinal degeneration phenotype.

    Directory of Open Access Journals (Sweden)

    Qin Liu

    Full Text Available Mutations in the retinitis pigmentosa 1 (RP1 gene are a common cause of autosomal dominant retinitis pigmentosa (adRP, and have also been found to cause autosomal recessive RP (arRP in a few families. The 33 dominant mutations and 6 recessive RP1 mutations identified to date are all nonsense or frameshift mutations, and almost exclusively (38 out of 39 are located in the 4(th and final exon of RP1. To better understand the underlying disease mechanisms of and help develop therapeutic strategies for RP1 disease, we performed a series of human genetic and animal studies using gene targeted and transgenic mice. Here we report that a frameshift mutation in the 3(rd exon of RP1 (c.686delC; p.P229QfsX35 found in a patient with recessive RP1 disease causes RP in the homozygous state, whereas the heterozygous carriers are unaffected, confirming that haploinsufficiency is not the causative mechanism for RP1 disease. We then generated Rp1 knock-in mice with a nonsense Q662X mutation in exon 4, as well as Rp1 transgenic mice carrying a wild-type BAC Rp1 transgene. The Rp1-Q662X allele produces a truncated Rp1 protein, and homozygous Rp1-Q662X mice experience a progressive photoreceptor degeneration characterized disorganization of photoreceptor outer segments. This phenotype could be prevented by expression of a normal amount of Rp1 protein from the BAC transgene without removal of the mutant Rp1-Q662X protein. Over-expression of Rp1 protein in additional BAC Rp1 transgenic lines resulted in retinal degeneration. These findings suggest that the truncated Rp1-Q662X protein does not exert a toxic gain-of-function effect. These results also imply that in principle gene augmentation therapy could be beneficial for both recessive and dominant RP1 patients, but the levels of RP1 protein delivered for therapy will have to be carefully controlled.

  12. Prototypes in engineering design: Definitions and strategies

    DEFF Research Database (Denmark)

    Jensen, Lasse Skovgaard; Özkil, Ali Gürcan; Mortensen, Niels Henrik

    2016-01-01

    strategies. Due to rapid changes and progressions in the use of prototypes, we conclude conclude that there is a need for more holistic and overview generating research about prototyping. This for product developers to properly manage, select and apply the optimal prototyping process....

  13. Greenbrier Prototype

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-06-18

    This case study describes a prototype home that is the model home for the Homes at Greenbrier in Oakdale, Connecticut, and demonstrates the builder's concept of “attainable sustainable” of offering high performance homes at mid-market prices.

  14. Computer tomography prototyping and virtual procedure simulation in difficult cases of hip replacement surgery.

    Science.gov (United States)

    Parchi, Paolo Domenico; Ferrari, Vincenzo; Piolanti, Nicola; Andreani, Lorenzo; Condino, Sara; Evangelisti, Gisberto; Lisanti, Michele

    2013-09-01

    Each year approximately 1 million total hip replacements (THR) are performed worldwide. A percentage of failure due to surgical approach and imprecise implant placement still exists. These result in several serious complications. We propose an approach to plan, to simulate, and to assist prosthesis implantation for difficult cases of THR based on 3-D virtual models, generated by segmenting patients' CT images, 3-D solid models, obtained by rapid prototyping (RP), and virtual procedure simulation. We carried out 8 THR with the aid of 3-D reconstruction and RP. After each procedure a questionnaire was submitted to the surgeon to assess the perceived added value of the technology. In all cases, the surgeon evaluated the 3-D model as useful in order to perform the planning. The clinical results showed a mean increase in the Harris Hip Score of about 42.5 points. The mean time of prototyping was 7.3 hours, (min 3.5 hours, max 9.3 hours). The mean surgery time was 65 minutes (min 50 minutes, max 88 minutes). Our study suggests that meticulous preoperative planning is necessary in front of a great aberration of the joint and in absence of normal anatomical landmarks, CT scan is mandatory, and 3-D reconstruction with solid model is useful.

  15. A Classification and Bibliography of Software Prototyping.

    Science.gov (United States)

    1992-10-01

    Integrating the Role of Rapid Prototyping and Requirements Specification Using the Object-oriented Paradigm Author: Heisler , K.G.; Tsai, W.T. Source...specification, structured analysis Abstract: A methodology for rapid prototyping is described. Modified data flow diagrams are used as a graphical tool and...problem. The graphical editor under development for the computer aided prototyping system (CAPS) proposes a dataflow- diagram -based model with multiple

  16. Differential pattern of RP1 mutations in retinitis pigmentosa

    Science.gov (United States)

    Zhang, Xin; Chen, Li Jia; Law, Jonathan P.; Lai, Timothy Y.Y.; Chiang, Sylvia W.Y.; Tam, Pancy O.S.; Chu, Kwan Yi; Wang, Ningli; Zhang, Mingzhi

    2010-01-01

    Purpose Retinitis pigmentosa 1 (RP1) is a major gene responsible for both autosomal dominant and autosomal recessive retinitis pigmentosa (RP). We have previously identified three disease-causing mutations out of 174 RP patients. In this study, we investigated a new cohort of Chinese RP patients to further evaluate the contribution of RP1 mutations to cause RP. Methods A group of 55 nonsyndromic RP patients, the majority of them isolated cases or without information on family history, were screened for mutations in the entire coding sequences of RP1, using direct DNA sequencing. All detected variants were genotyped in 190 controls, while the three putative mutations were additionally genotyped in 362 controls subjects. Web-based programs, including PolyPhen, Sorting Intolerant from Tolerant (SIFT), Prediction of Pathological Mutations (PMUT), Single Amino Acid Polymorphism Disease-Association Predictor (SAP), ScanProsite, and ClustalW2, were used to predict the potential functional and structural impacts of the missense variants on RP1. Results A total of 14 sequence changes were identified. Among them, five were novel and found only in the RP patients. Two missense variants (p.K1370E and p.R1652L), which are conserved in primates, were predicted to have functional and structural impacts on the RP1 protein. The other three variants (c.787+34T>C, p.I408L and p.L2015L) were considered benign. Conclusions If these two novel missense variants are in fact pathogenic, then RP1 mutations account for approximately 2.18% (5/229) of RP cases in our Chinese cohort; this is similar to other ethnic groups. However, a relatively higher frequency of missense mutations found in the Chinese patients may suggest an ethnic diversity in the RP1 mutation patterns. PMID:20664799

  17. Can MODIS data calibrate and validate coastal sediment transport models? Rapid prototyping using 250 m data and the ECOMSED model for Lake Pontchartrain, LA USA.

    Science.gov (United States)

    Miller, R. L.; Glorioso, M. V.; Georgiou, I.; McCorquodale, J. A.; Crower, K.

    2006-12-01

    Field measurements from small boats and sparse arrays of instrumented buoys often do not provide sufficient data to capture the dynamic nature of bio-geophysical parameters in many coastal aquatic environments. Several investigators have shown that MODIS 250 m images can provide daily synoptic views of suspended sediment concentration in coastal waters to determine sediment transport and fate. However, the use of MODIS for coastal environments can be limited due to a lack of cloud-free images. Sediment transport models are not constrained by sky conditions but often suffer from a lack of in situ observations for model calibration or validation. We will demonstrate the utility of MODIS 250 m to calibrate (set model parameters), validate output, and set or re-set initial conditions of a hydrodynamic and sediment transport model (ECOMSED) developed for Lake Pontchartrain, LA USA. We will present our approach to quickly assess or `prototype' the application of NASA data to support environmental managers and decision makers. The combination of daily MODIS imagery and model simulations offer a more robust monitoring and prediction system of suspended sediments than available from either system alone. We will also present a brief introduction of how this approach will be implemented to assess the future use of NPOES-VIIRS images for monitoring coastal sediment processes.

  18. The Application of Rapid Prototyping Technology and Quality Functional Deployment (QFD approach in enhancing the Endotracheal Tube Holder Model in Medical Application

    Directory of Open Access Journals (Sweden)

    Way Yusoff

    2015-01-01

    Full Text Available This paper presents a development of a current design the Endotracheal tube holding device. At present, the medical teams have faced a lot of problems when doing the endotracheal intubation. Misplacement of endotracheal tube into the esophagus and extubation due to patient’s movement are among the problems by surgeons during medical treatment. This is important as the successful management of the potential risk can reduce the number of patients who suffer a serious consequence of endtracheal tube therapy such as a potential risk to patient safety, with associated risks varying from minor complications to death. This paper presents a product design specification for endotracheal tube-holding device is translated from user’s requirements by employing Quality Functional Deployment (QFD. Several design concepts are generated by using CATIA software to be evaluated by endotracheal tube-holding device users for concept selection. Selection of design concept was done in two phases which are concept screening and concept scoring. For selecting the design concept for further development, a prototype of endotracheal tube was fabricated by using Fused Deposition Modelling (FDM.

  19. Computer-Aided Designing and Manufacturing of Lingual Fixed Orthodontic Appliance Using 2D/3D Registration Software and Rapid Prototyping

    Directory of Open Access Journals (Sweden)

    Soon-Yong Kwon

    2014-01-01

    Full Text Available The availability of 3D dental model scanning technology, combined with the ability to register CBCT data with digital models, has enabled the fabrication of orthognathic surgical CAD/CAM designed splints, customized brackets, and indirect bonding systems. In this study, custom lingual orthodontic appliances were virtually designed by merging 3D model images with lateral and posterior-anterior cephalograms. By exporting design information to 3D CAD software, we have produced a stereolithographic prototype and converted it into a cobalt-chrome alloy appliance as a way of combining traditional prosthetic investment and cast techniques. While the bonding procedure of the appliance could be reinforced, CAD technology simplified the fabrication process by eliminating the soldering phase. This report describes CAD/CAM fabrication of the complex anteroposterior lingual bonded retraction appliance for intrusive retraction of the maxillary anterior dentition. Furthermore, the CAD/CAM method eliminates the extra step of determining the lever arm on the lateral cephalograms and subsequent design modifications on the study model.

  20. Identification of Rhodiola species by using RP-HPLC*

    Science.gov (United States)

    Wang, Qiang; Ruan, Xiao; Jin, Zhi-hua; Yan, Qi-chuan; Tu, Shan-jun

    2005-01-01

    An approach was established using RP-HPLC (reversed-phase high-performance liquid chromatography) to identify ten species of Rhodiola, R. coccinea A. Bor, R. junggarica C.Y. Yang et N.R. Cui spn., R. heterodonta A. Bor, R. linearifolia A. Bor, R. pamiro alaiucm A. Bor, R. kaschgarica A. Bor, R. litwinowii A. Bor, R. gelida schrenk, R. rosea L. and R. quadrifide Fisch et Mey collected from the Tianshan Mountains areas of China. Chromatograms of alcohol-soluble proteins, generated from these ten Rhodiola spp. were compared. Each chromatogram of alcohol-soluble proteins came from a single seed of one wild species only. The results showed that when using a Waters Delta Pak. C18, 5 μm particle size reversed phase column (150 mm×3.9 mm), a linear gradient of 22%–55% solvent B with a flow rate of 1 ml/min and a run time of 67 min, the chromatography gave optimum separation of Rhodiola alcohol-soluble proteins. Chromatogram of each species was different and could be used to identify those species. Cluster analysis of genetic similarity coefficients of 37% to 60% showed a medium degree of genetic diversity among the species in these eco-areas. Cluster analysis showed that the ten species of Rhodiola can be divided into four clusters and yielded the general and unique biochemical markers of these species. RP-HPLC was shown to be a rapid, repeatable and reliable method for Rhodiola species identification and analysis of genetic diversity. PMID:15909330

  1. Development of a Decision Aid for Cardiopulmonary Resuscitation Involving Intensive Care Unit Patients' and Health Professionals' Participation Using User-Centered Design and a Wiki Platform for Rapid Prototyping: A Research Protocol.

    Science.gov (United States)

    Plaisance, Ariane; Witteman, Holly O; Heyland, Daren Keith; Ebell, Mark H; Dupuis, Audrey; Lavoie-Bérard, Carole-Anne; Légaré, France; Archambault, Patrick Michel

    2016-02-11

    Cardiopulmonary resuscitation (CPR) is an intervention used in cases of cardiac arrest to revive patients whose heart has stopped. Because cardiac arrest can have potentially devastating outcomes such as severe neurological deficits even if CPR is performed, patients must be involved in determining in advance if they want CPR in the case of an unexpected arrest. Shared decision making (SDM) facilitates discussions about goals of care regarding CPR in intensive care units (ICUs). Patient decision aids (DAs) are proven to support the implementation of SDM. Many patient DAs about CPR exist, but they are not universally implemented in ICUs in part due to lack of context and cultural adaptation. Adaptation to local context is an important phase of implementing any type of knowledge tool such as patient DAs. User-centered design supported by a wiki platform to perform rapid prototyping has previously been successful in creating knowledge tools adapted to the needs of patients and health professionals (eg, asthma action plans). This project aims to explore how user-centered design and a wiki platform can support the adaptation of an existing DA for CPR to the local context. The primary objective is to use an existing DA about CPR to create a wiki-based DA that is adapted to the context of a single ICU and tailorable to individual patient's risk factors while employing user-centered design. The secondary objective is to document the use of a wiki platform for the adaptation of patient DAs. This study will be conducted in a mixed surgical and medical ICU at Hôtel-Dieu de Lévis, Quebec, Canada. We plan to involve all 5 intensivists and recruit at least 20 alert and oriented patients admitted to the ICU and their family members if available. In the first phase of this study, we will observe 3 weeks of daily interactions between patients, families, intensivists, and other allied health professionals. We will specifically observe 5 dyads of attending intensivists and alert

  2. Development of a decision aid for cardiopulmonary resuscitation and invasive mechanical ventilation in the intensive care unit employing user-centered design and a wiki platform for rapid prototyping.

    Science.gov (United States)

    Plaisance, Ariane; Witteman, Holly O; LeBlanc, Annie; Kryworuchko, Jennifer; Heyland, Daren Keith; Ebell, Mark H; Blair, Louisa; Tapp, Diane; Dupuis, Audrey; Lavoie-Bérard, Carole-Anne; McGinn, Carrie Anna; Légaré, France; Archambault, Patrick Michel

    2018-01-01

    Upon admission to an intensive care unit (ICU), all patients should discuss their goals of care and express their wishes concerning life-sustaining interventions (e.g., cardiopulmonary resuscitation (CPR)). Without such discussions, interventions that prolong life at the cost of decreasing its quality may be used without appropriate guidance from patients. To adapt an existing decision aid about CPR to create a wiki-based decision aid individually adapted to each patient's risk factors; and to document the use of a wiki platform for this purpose. We conducted three weeks of ethnographic observation in our ICU to observe intensivists and patients discussing goals of care and to identify their needs regarding decision making. We interviewed intensivists individually. Then we conducted three rounds of rapid prototyping involving 15 patients and 11 health professionals. We recorded and analyzed all discussions, interviews and comments, and collected sociodemographic data. Using a wiki, a website that allows multiple users to contribute or edit content, we adapted the decision aid accordingly and added the Good Outcome Following Attempted Resuscitation (GO-FAR) prediction rule calculator. We added discussion of invasive mechanical ventilation. The final decision aid comprises values clarification, risks and benefits of CPR and invasive mechanical ventilation, statistics about CPR, and a synthesis section. We added the GO-FAR prediction calculator as an online adjunct to the decision aid. Although three rounds of rapid prototyping simplified the information in the decision aid, 60% (n = 3/5) of the patients involved in the last cycle still did not understand its purpose. Wikis and user-centered design can be used to adapt decision aids to users' needs and local contexts. Our wiki platform allows other centers to adapt our tools, reducing duplication and accelerating scale-up. Physicians need training in shared decision making skills about goals of care and in using the

  3. Improvement of Dimensional Accuracy of 3-D Printed Parts using an Additive/Subtractive Based Hybrid Prototyping Approach

    Science.gov (United States)

    Amanullah Tomal, A. N. M.; Saleh, Tanveer; Raisuddin Khan, Md.

    2017-11-01

    At present, two important processes, namely CNC machining and rapid prototyping (RP) are being used to create prototypes and functional products. Combining both additive and subtractive processes into a single platform would be advantageous. However, there are two important aspects need to be taken into consideration for this process hybridization. First is the integration of two different control systems for two processes and secondly maximizing workpiece alignment accuracy during the changeover step. Recently we have developed a new hybrid system which incorporates Fused Deposition Modelling (FDM) as RP Process and CNC grinding operation as subtractive manufacturing process into a single setup. Several objects were produced with different layer thickness for example 0.1 mm, 0.15 mm and 0.2 mm. It was observed that pure FDM method is unable to attain desired dimensional accuracy and can be improved by a considerable margin about 66% to 80%, if finishing operation by grinding is carried out. It was also observed layer thickness plays a role on the dimensional accuracy and best accuracy is achieved with the minimum layer thickness (0.1 mm).

  4. CERN Radiation Protection (RP) calibration facilities

    CERN Document Server

    AUTHOR|(CDS)2082069; Macián-Juan, Rafael

    Radiation protection calibration facilities are essential to ensure the correct operation of radiation protection instrumentation. Calibrations are performed in specific radiation fields according to the type of instrument to be calibrated: neutrons, photons, X-rays, beta and alpha particles. Some of the instruments are also tested in mixed radiation fields as often encountered close to high-energy particle accelerators. Moreover, calibration facilities are of great importance to evaluate the performance of prototype detectors; testing and measuring the response of a prototype detector to well-known and -characterized radiation fields contributes to improving and optimizing its design and capabilities. The CERN Radiation Protection group is in charge of performing the regular calibrations of all CERN radiation protection devices; these include operational and passive dosimeters, neutron and photon survey-meters, and fixed radiation detectors to monitor the ambient dose equivalent, H*(10), inside CERN accelera...

  5. MITRE sensor layer prototype

    Science.gov (United States)

    Duff, Francis; McGarry, Donald; Zasada, David; Foote, Scott

    2009-05-01

    The MITRE Sensor Layer Prototype is an initial design effort to enable every sensor to help create new capabilities through collaborative data sharing. By making both upstream (raw) and downstream (processed) sensor data visible, users can access the specific level, type, and quantities of data needed to create new data products that were never anticipated by the original designers of the individual sensors. The major characteristic that sets sensor data services apart from typical enterprise services is the volume (on the order of multiple terabytes) of raw data that can be generated by most sensors. Traditional tightly coupled processing approaches extract pre-determined information from the incoming raw sensor data, format it, and send it to predetermined users. The community is rapidly reaching the conclusion that tightly coupled sensor processing loses too much potentially critical information.1 Hence upstream (raw and partially processed) data must be extracted, rapidly archived, and advertised to the enterprise for unanticipated uses. The authors believe layered sensing net-centric integration can be achieved through a standardize-encapsulate-syndicateaggregate- manipulate-process paradigm. The Sensor Layer Prototype's technical approach focuses on implementing this proof of concept framework to make sensor data visible, accessible and useful to the enterprise. To achieve this, a "raw" data tap between physical transducers associated with sensor arrays and the embedded sensor signal processing hardware and software has been exploited. Second, we encapsulate and expose both raw and partially processed data to the enterprise within the context of a service-oriented architecture. Third, we advertise the presence of multiple types, and multiple layers of data through geographic-enabled Really Simple Syndication (GeoRSS) services. These GeoRSS feeds are aggregated, manipulated, and filtered by a feed aggregator. After filtering these feeds to bring just the type

  6. Differential benefits of rock phosphate (RP) by tomato ...

    African Journals Online (AJOL)

    Phosphorus is one of the critical elements that limit plant production, particularly in humid and semi-humid soils. For realization of African Green Revolution, use of rock phosphate (RP) by resource-poor farmers may be an alternative to more expensive water soluble phosphate (P). Utilization of RP was investigated in ...

  7. ACADEMIC TRAINING (R.P. Walker)

    CERN Multimedia

    Françoise Benz

    2002-01-01

    15, 16, 17 May LECTURE SERIES from 11.00 to 12.00 hrs - Council room, bldg. 503 on 15 May, Auditorium, bldg. 500 on 16 and 17 May Introduction to free electron lasers by R.P. Walker / Rutherford Laboratory, UK The Free-electron laser (FEL) is a source of coherent electromagnetic radiation based on a relativistic electron beam. First operated 25 years ago, the FEL has now reached a stage of maturity for operation in the infra-red region of the spectrum and several facilities provide intense FEL radiation beams for research covering a wide range of disciplines. Several projects both underway and proposed aim at pushing the minimum wavelength from its present limit around 100 nm progressively down to the 1 Angstrom region where the X-ray FEL would open up many new and exciting research possibilities. Other developments aim at increasing power levels to the 10's of kW level. In this series of lectures we give an introduction to the basic principles of FELs and their different modes of operation, and summarise the...

  8. Development and validation of RP-HPLC and RP-UPLC methods for quantification of parathyroid hormones (1-34 in medicinal product formulated with meta-cresol

    Directory of Open Access Journals (Sweden)

    Shaligram S. Rane

    2012-04-01

    Full Text Available Rapid and sensitive reversed phase high performance liquid chromatography (RP-HPLC and ultra performance liquid chromatography (RP-UPLC method with UV detection has been developed and validated for quantification of parathyroid hormone (PTH in presence of meta-cresol as a stabilizer in a pharmaceutical formulation. Chromatography was performed with mobile phase containing 0.1% Trifluoroacetic acid (TFA in MilliQ water and 0.1% TFA in acetonitrile with gradient program and flow rate at 0.3 mL/min for HPLC and 0.4 mL/min for UPLC. Quantification was accomplished with internal reference standard (qualified against innovator product and National Institute for Biological Standards and Control (NIBSC standard. The methods were validated for linearity (correlation coefficient=0.99, range, accuracy, precision and robustness. Robustness was confirmed by considering three factors; mobile phase composition, column temperature and flow rate/age of mobile phase.Intermediate precision was confirmed on different equipments, different columns and on different days. The relative standard deviation (RSD (<2% for RP-HPLC and <1% for UPLC, n=30 indicated a good precision. Retention time was found about 17 min and 2 min by HPLC and UPLC methods, respectively. Both methods are simple, highly sensitive, precise and accurate and have the potential of being useful for routine quality control. Keywords: Parathyroid hormone, Reversed phase high performance liquid chromatography, Ultra performance liquid chromatography, Validation, Meta-cresol

  9. Smashing the Stovepipe: Leveraging the GMSEC Open Architecture and Advanced IT Automation to Rapidly Prototype, Develop and Deploy Next-Generation Multi-Mission Ground Systems

    Science.gov (United States)

    Swenson, Paul

    2017-01-01

    Satellite/Payload Ground Systems - Typically highly-customized to a specific mission's use cases - Utilize hundreds (or thousands!) of specialized point-to-point interfaces for data flows / file transfers Documentation and tracking of these complex interfaces requires extensive time to develop and extremely high staffing costs Implementation and testing of these interfaces are even more cost-prohibitive, and documentation often lags behind implementation resulting in inconsistencies down the road With expanding threat vectors, IT Security, Information Assurance and Operational Security have become key Ground System architecture drivers New Federal security-related directives are generated on a daily basis, imposing new requirements on current / existing ground systems - These mandated activities and data calls typically carry little or no additional funding for implementation As a result, Ground System Sustaining Engineering groups and Information Technology staff continually struggle to keep up with the rolling tide of security Advancing security concerns and shrinking budgets are pushing these large stove-piped ground systems to begin sharing resources - I.e. Operational / SysAdmin staff, IT security baselines, architecture decisions or even networks / hosting infrastructure Refactoring these existing ground systems into multi-mission assets proves extremely challenging due to what is typically very tight coupling between legacy components As a result, many "Multi-Mission" ops. environments end up simply sharing compute resources and networks due to the difficulty of refactoring into true multi-mission systems Utilizing continuous integration / rapid system deployment technologies in conjunction with an open architecture messaging approach allows System Engineers and Architects to worry less about the low-level details of interfaces between components and configuration of systems GMSEC messaging is inherently designed to support multi-mission requirements, and

  10. Development of materials for the rapid manufacture of die cast tooling

    Science.gov (United States)

    Hardro, Peter Jason

    The focus of this research is to develop a material composition that can be processed by rapid prototyping (RP) in order to produce tooling for the die casting process. Where these rapidly produced tools will be superior to traditional tooling production methods by offering one or more of the following advantages: reduced tooling cost, shortened tooling creation time, reduced man-hours for tool creation, increased tool life, and shortened die casting cycle time. By utilizing RP's additive build process and vast material selection, there was a prospect that die cast tooling may be produced quicker and with superior material properties. To this end, the material properties that influence die life and cycle time were determined, and a list of materials that fulfill these "optimal" properties were highlighted. Physical testing was conducted in order to grade the processability of each of the material systems and to optimize the manufacturing process for the downselected material system. Sample specimens were produced and microscopy techniques were utilized to determine a number of physical properties of the material system. Additionally, a benchmark geometry was selected and die casting dies were produced from traditional tool materials (H13 steel) and techniques (machining) and from the newly developed materials and RP techniques (selective laser sintering (SLS) and laser engineered net shaping (LENS)). Once the tools were created, a die cast alloy was selected and a preset number of parts were shot into each tool. During tool creation, the manufacturing time and cost was closely monitored and an economic model was developed to compare traditional tooling to RP tooling. This model allows one to determine, in the early design stages, when it is advantageous to implement RP tooling and when traditional tooling would be best. The results of the physical testing and economic analysis has shown that RP tooling is able to achieve a number of the research objectives, namely

  11. New determination method for sulfonation degree of phthalic anhydride by RP-HPLC.

    Science.gov (United States)

    Zhu, Lijun; Song, Lechun; Liu, Bin; Zhou, Yulu; Xiang, Yuzhi; Xia, Daohong

    2014-01-01

    A novel method was developed to monitor the reaction process and evaluate the sulfonation level in the sulfonation of phthalic anhydride by reversed-phase high-performance liquid chromatography (RP-HPLC). The product peak was identified in chromatograms through product analysis and by comparing its retention time with that of standard compounds. By comparing the hydrolysis and alcoholysis methods, optimized pretreatment of the sample was found for RP-HPLC. Based on the determined percentages of phthalic anhydride and sulfonated phthalic anhydride in the mixture, the degree of sulfonation was calculated. When the sulfonation degree of phthalic anhydride was in the range of 2.8-71%, the recovery of 97-104% was achieved, and the procedure was rapid and accurate.

  12. Virtual Prototyping, Advanced Electric Systems, and Controls for Ships

    National Research Council Canada - National Science Library

    Dougal, Roger A

    2004-01-01

    .... 1) New capabilities for virtual prototyping of advanced electric systems were developed, with emphasis on simulation of uncertain systems, tools for rapid model development, realtime and distributed...

  13. Návrh prototypového dílu s využitím technologií reverzního inženýrství a rapid prototyping

    OpenAIRE

    Luňák, Václav

    2016-01-01

    Bakalářská práce je zaměřena na postup výroby součásti blinkru pro motocykl s využitím technologií reverzního inženýrství a Rapid Prototyping. Práce obsahuje stručný popis dostupných metod těchto technologií. V následujících částech se práce zabývá návrhem součásti a přípravou pro odlévání. Výroba součásti se provádí metodou FDM. Následně probíhá kontrola součásti 3D skenerem ATOS. Součást se porovná s původním návrhem součásti. Pro součást se vyrobí silikonová forma. Forma slouží pro odléván...

  14. Robust formulation for the design of tissue engineering scaffolds: A comprehensive study on structural anisotropy, viscoelasticity and degradation of 3D scaffolds fabricated with customized desktop robot based rapid prototyping (DRBRP) system.

    Science.gov (United States)

    Hoque, M Enamul

    2017-03-01

    This study investigates the scaffolds' structural anisotropy (i.e. the effect of loading direction), viscoelasticity (i.e. the effect of cross head speed or strain rate), and the influence of simulated physiological environment (PBS solution at 37°C) on the mechanical properties. Besides, the in vitro degradation study has also been performed that evaluates the effect of variation in material and lay-down pattern on the scaffolds' degradation kinetics in terms of mass loss, and change in morphological and mechanical properties. Porous three dimensional (3D) scaffolds of polycarprolactone (PCL) and polycarprolactone-polyethylene glycol (PCL-PEG) were developed by laying down the microfilaments directionally layer-by-layer using an in-house built computer-controlled extrusion and deposition process, called desktop robot based rapid prototyping (DRBRP) system. The loading direction, strain rate and physiological environment directly influenced the mechanical properties of the scaffolds. In vitro degradation study demonstrated that both PCL and PCL-PEG scaffolds realized homogeneous hydrolytic degradation via surface erosion resulting in a consistent and predictable mass loss. The linear mass loss caused uniform and linear increase in porosity that accordingly led to the decrease in mechanical properties. The synthetic polymer had the potential to modulate hydrophilicity and/or degradability and consequently, the biomechanical properties of the scaffolds by varying the polymer constituents. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Short vowel placements in RP past and present

    DEFF Research Database (Denmark)

    Fabricius, Anne

    This study addresses diachronic change in the short vowel system of RP. While TRAP lowering and backing in RP has been reported previously, the movements STRUT has undergone have proven more difficult to determine. This study identifies a TRAP/STRUT 'rotation' using acoustic measurements of the s......This study addresses diachronic change in the short vowel system of RP. While TRAP lowering and backing in RP has been reported previously, the movements STRUT has undergone have proven more difficult to determine. This study identifies a TRAP/STRUT 'rotation' using acoustic measurements...... of the short vowel space, showing variation across generations and an identifiable direction of change during the course of the 20th century....

  16. Synthesis of RP 48497, an Impurity of Eszopiclone

    Directory of Open Access Journals (Sweden)

    Mao-Sheng Cheng

    2008-08-01

    Full Text Available Abstract: RP 48497 is a photodegradation product of eszopiclone, a non-benzodiazepine sedative-hypnotic used in the treatment of insomnia. We report herein the first synthesis of RP 48497 via reduction, chlorination, and recyclization of 6-(5-chloropyridin-2-yl-7-hydroxy-6,7-dihydropyrrolo[3,4-b]pyrazin-5-one (3, a key intermediate in the synthesis of eszopiclone. The structure of RP 48497 was confirmed by its 1H-NMR and MS data. The mechanism of the reduction step in the synthesis of RP 48497 was also studied and the key parameters were determined. These findings should be important for quality control purposes in the manufacture of eszopiclone.

  17. Heparin Increases Food Intake through AgRP Neurons

    Directory of Open Access Journals (Sweden)

    Canjun Zhu

    2017-09-01

    Full Text Available Although the widely used anticoagulant drug heparin has been shown to have many other biological functions independent of its anticoagulant role, its effects on energy homeostasis are unknown. Here, we demonstrate that heparin level is negatively associated with nutritional states and that heparin treatment increases food intake and body weight gain. By using electrophysiological, pharmacological, molecular biological, and chemogenetic approaches, we provide evidence that heparin increases food intake by stimulating AgRP neurons and increasing AgRP release. Our results support a model whereby heparin competes with insulin for insulin receptor binding on AgRP neurons, and by doing so it inhibits FoxO1 activity to promote AgRP release and feeding. Heparin may be a potential drug target for food intake regulation and body weight control.

  18. Rapid Prototyping of Nonlinear Controller Designs

    Science.gov (United States)

    1996-03-31

    the Universitä di Roma ) studied two schemes for the adaptive tracking con- trol of MIMO systems with parametric uncertainty in their dynamics. The...problems arise, for example, in highway au- tomation problems, problems of command and control and also more generically in flight control (with many

  19. The Development of a Rapid Prototyping Environment

    Science.gov (United States)

    1989-12-01

    eventually be in the form that the users prefer. The provision of two means for user input is an important human factors feeture. CAPS does not...line(); Line *pick Yiii(); 0139 Line Accenite-li. 0; Nfame *external(), N~ame ’got name(); Time *get time- conat 0; int iasopyickA); imt La -line-pick...nt La valid ad& ido; int is -valid time conat 0); int appendto-op3.is3to( int get-ho3tn&M*(); int qtiityroc 0; int. loadyproco; int dumpscreeno; mnt

  20. Machine Vision Implementation in Rapid PCB Prototyping

    Directory of Open Access Journals (Sweden)

    Yosafat Surya Murijanto

    2012-03-01

    Full Text Available Image processing, the heart of machine vision, has proven itself to be an essential part of the industries today. Its application has opened new doorways, making more concepts in manufacturing processes viable. This paper presents an application of machine vision in designing a module with the ability to extract drills and route coordinates from an un-mounted or mounted printed circuit board (PCB. The algorithm comprises pre-capturing processes, image segmentation and filtering, edge and contour detection, coordinate extraction, and G-code creation. OpenCV libraries and Qt IDE are the main tools used. Throughout some testing and experiments, it is concluded that the algorithm is able to deliver acceptable results. The drilling and routing coordinate extraction algorithm can extract in average 90% and 82% of the whole drills and routes available on the scanned PCB in a total processing time of less than 3 seconds. This is achievable through proper lighting condition, good PCB surface condition and good webcam quality. 

  1. Additive Manufacturing: From Rapid Prototyping to Flight

    Science.gov (United States)

    Prater, Tracie

    2015-01-01

    Additive manufacturing (AM) offers tremendous promise for the rocket propulsion community. Foundational work must be performed to ensure the safe performance of AM parts. Government, industry, and academia must collaborate in the characterization, design, modeling, and process control to accelerate the certification of AM parts for human-rated flight.

  2. Rapid Prototyping Platform for Robotics Applications

    Science.gov (United States)

    Hwang, Kao-Shing; Hsiao, Wen-Hsu; Shing, Gaung-Ting; Chen, Kim-Joan

    2011-01-01

    For the past several years, a team in the Department of Electrical Engineering (EE), National Chung Cheng University, Taiwan, has been establishing a pedagogical approach to embody embedded systems in the context of robotics. To alleviate the burden on students in the robotics curriculum in their junior and senior years, a training platform on…

  3. Rapid prototyping of energy management charging strategies

    Energy Technology Data Exchange (ETDEWEB)

    Ciulavu, Oana [Hella Electronics Romania, Timisoara (Romania); Starkmuth, Timo; Jesolowitz, Reinhard [Hella KGaA Hueck und Co., Lippstadt (Germany)

    2010-07-01

    This paper presents an approach to develop charging strategies to support a vehicle energy management aiming for the reduction of CO{sub 2} emissions and decreased fuel consumption by using the Hardware-in-the-loop (HIL) environment. (orig.)

  4. Reusable Rapid Prototyped Blunt Impact Simulator

    Science.gov (United States)

    2016-08-01

    Based on internal helmet surface deformations recorded using digital image correlation (DIC) from empty helmets against various ballistic threats ...computer-aided manufacturing COTS commercial off the shelf DIC digital image correlation GTB Guidance Technologies Branch OBR onboard recorder...few. The ability to produce highly detailed geometry in very short manufacturing lead times, often less than 24 h, is being used in the early stages

  5. Application of RP-HPLC in Detecting Content of Ferulic Acid in Fuke Qianjin Capsule

    Directory of Open Access Journals (Sweden)

    Ming-zhi WANG

    2015-09-01

    Full Text Available Objective: To establish a method for the determination of ferulic acid content in Fuke Qianjin Capsule. Methods: Reversed phase high performance liquid chromatography (RP-HPLC was applied in this study, with the detection conditions as follows: chromatographic column: Boston green ODS·min-1, detection wavelength: 316 nm, and column temperature: 30℃. C18 (250 mm × 4.6 mm, 5 μm, mobile phase: methanol-0.1% phosphoric acid (25:75, flow velocity: 1.0 mLResults: Ferulic acid, whose sample size was 0.017760-0.10656 μg, was in favorable linear relationship with the integral value of peak area, with correlation coefficient r=0.9998. The average sample-injecting recovery rate and degree of precision (RSD were 97.6% (n=6 and 1.6%, respectively. The results of this study also showed that the specificity of RP-HPLC in this study was excellent; negative samples had no interference on chromatographic peak of target substance (ferulic acid; and RSD of accuracy, repeatability, stability and recovery rate were 1.1%, 1.4%, 1.2% and 1.6%, respectively.Conclusion: RP-HPLC is accurate, rapid, stable and convenient, so it can be used as an optimal method for the detection of ferulic acid content in Fuke Qianjin Capsule.

  6. Architectures of prototypes and architectural prototyping

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius; Christensen, Michael; Sandvad, Elmer

    1998-01-01

    This paper reports from experience obtained through development of a prototype of a global customer service system in a project involving a large shipping company and a university research group. The research group had no previous knowledge of the complex business of shipping and had never worked...... together as a team, but developed a prototype that more than fulfilled the expectations of the shipping company. The prototype should: - complete the first major phase within 10 weeks, - be highly vertical illustrating future work practice, - continuously live up to new requirements from prototyping...... sessions with users, - evolve over a long period of time to contain more functionality - allow for 6-7 developers working intensively in parallel. Explicit focus on the software architecture and letting the architecture evolve with the prototype played a major role in resolving these conflicting...

  7. Rethink! prototyping transdisciplinary concepts of prototyping

    CERN Document Server

    Nagy, Emilia; Stark, Rainer

    2016-01-01

    In this book, the authors describe the findings derived from interaction and cooperation between scientific actors employing diverse practices. They reflect on distinct prototyping concepts and examine the transformation of development culture in their fusion to hybrid approaches and solutions. The products of tomorrow are going to be multifunctional, interactive systems – and already are to some degree today. Collaboration across multiple disciplines is the only way to grasp their complexity in design concepts. This underscores the importance of reconsidering the prototyping process for the development of these systems, particularly in transdisciplinary research teams. “Rethinking Prototyping – new hybrid concepts for prototyping” was a transdisciplinary project that took up this challenge. The aim of this programmatic rethinking was to come up with a general concept of prototyping by combining innovative prototyping concepts, which had been researched and developed in three sub-projects: “Hybrid P...

  8. 3D imaging acquisition, modeling, and prototyping for facial defects reconstruction

    Science.gov (United States)

    Sansoni, Giovanna; Trebeschi, Marco; Cavagnini, Gianluca; Gastaldi, Giorgio

    2009-01-01

    A novel approach that combines optical three-dimensional imaging, reverse engineering (RE) and rapid prototyping (RP) for mold production in the prosthetic reconstruction of facial prostheses is presented. A commercial laser-stripe digitizer is used to perform the multiview acquisition of the patient's face; the point clouds are aligned and merged in order to obtain a polygonal model, which is then edited to sculpture the virtual prothesis. Two physical models of both the deformed face and the 'repaired' face are obtained: they differ only in the defect zone. Depending on the material used for the actual prosthesis, the two prototypes can be used either to directly cast the final prosthesis or to fabricate the positive wax pattern. Two case studies are presented, referring to prostetic reconstructions of an eye and of a nose. The results demonstrate the advantages over conventional techniques as well as the improvements with respect to known automated manufacturing techniques in the mold construction. The proposed method results into decreased patient's disconfort, reduced dependence on the anaplasthologist skill, increased repeatability and efficiency of the whole process.

  9. Development and Validation of New RP-HPLC Method for the Determination of Dexrazoxane

    OpenAIRE

    Basaveswara Rao, M. V.; Prasanthi, V.; Rao, G. Venkata; Raman, B. V.

    2012-01-01

    A new sensitive, precise, rapid and linear RP-HPLC method was developed and validated for the determination of dexrazoxane in formulations and human serum samples. Good chromatographic separation of dexrazoxane was achieved by using Kromasil C18 column. The system was operated at ambient temperature using a mobile phase consisting of methanol, 5% ortho phosphoric acid, 0.01M ammonium dihydrogen phosphate and tetrahydrofuran, pH 4.2 (10:40:30:20, v/v) isocratically at a flow rate of 1 ml/min. ...

  10. Palatability Can Drive Feeding Independent of AgRP Neurons.

    Science.gov (United States)

    Denis, Raphaël G P; Joly-Amado, Aurélie; Webber, Emily; Langlet, Fanny; Schaeffer, Marie; Padilla, Stéphanie L; Cansell, Céline; Dehouck, Bénédicte; Castel, Julien; Delbès, Anne-Sophie; Martinez, Sarah; Lacombe, Amélie; Rouch, Claude; Kassis, Nadim; Fehrentz, Jean-Alain; Martinez, Jean; Verdié, Pascal; Hnasko, Thomas S; Palmiter, Richard D; Krashes, Michael J; Güler, Ali D; Magnan, Christophe; Luquet, Serge

    2015-10-06

    Feeding behavior is exquisitely regulated by homeostatic and hedonic neural substrates that integrate energy demand as well as the reinforcing and rewarding aspects of food. Understanding the net contribution of homeostatic and reward-driven feeding has become critical because of the ubiquitous source of energy-dense foods and the consequent obesity epidemic. Hypothalamic agouti-related peptide-secreting neurons (AgRP neurons) provide the primary orexigenic drive of homeostatic feeding. Using models of neuronal inhibition or ablation, we demonstrate that the feeding response to a fast ghrelin or serotonin receptor agonist relies on AgRP neurons. However, when palatable food is provided, AgRP neurons are dispensable for an appropriate feeding response. In addition, AgRP-ablated mice present exacerbated stress-induced anorexia and palatable food intake--a hallmark of comfort feeding. These results suggest that, when AgRP neuron activity is impaired, neural circuits sensitive to emotion and stress are engaged and modulated by food palatability and dopamine signaling. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Physiological Roles of GPR10 and PrRP Signaling.

    Science.gov (United States)

    Dodd, Garron T; Luckman, Simon M

    2013-01-01

    Prolactin-releasing peptide (PrRP) was first isolated from bovine hypothalamus, and was found to act as an endogenous ligand at the G-protein-coupled receptor 10 (GPR10 or hGR3). Although originally named as it can affect the secretion of prolactin from anterior pituitary cells, the potential functions for this peptide have been greatly expanded over the past decade. Anatomical, pharmacological, and physiological studies indicate that PrRP, signaling via the GPR10 receptor, may have a wide range of roles in neuroendocrinology; such as in energy homeostasis, stress responses, cardiovascular regulation, and circadian function. This review will provide the current knowledge of the PrRP and GPR10 signaling system, its putative functions, implications for therapy, and future perspectives.

  12. Physiological roles of GPR10 and PrRP signalling

    Directory of Open Access Journals (Sweden)

    Garron Thomas Dodd

    2013-03-01

    Full Text Available Prolactin-releasing peptide (PrRP was first isolated from bovine hypothalamus, and was found to actas an endogenous ligand at the G-protein-coupled receptor 10 (GPR10 or hGR3. Although originallynamed as it can affect the secretion of prolactin from anterior pituitary cells, the potential functionsfor this peptide have been greatly expanded over the past decade. Anatomical, pharmacological andphysiological studies indicate that PrRP, signalling via the GPR10 receptor, may have a wide range ofroles in neuroendocrinology; such as in energy homeostasis, stress responses, cardiovascularregulation and circadian function. This review will provide the current knowledge of the PrRP andGPR10 signalling system, its putative functions, implications for therapy and future perspectives.

  13. Swirl Coaxial Injector Testing with LOX/RP-J

    Science.gov (United States)

    Greene, Sandra Elam; Casiano, Matt

    2013-01-01

    Testing was conducted at NASA fs Marshall Space Flight Center (MSFC) in the fall of 2012 to evaluate the operation and performance of liquid oxygen (LOX) and kerosene (RP ]1) in an existing swirl coaxial injector. While selected Russian engines use variations of swirl coaxial injectors, component level performance data has not been readily available, and all previously documented component testing at MSFC with LOX/RP ]1 had been performed using a variety of impinging injector designs. Impinging injectors have been adequate for specific LOX/RP ]1 engine applications, yet swirl coaxial injectors offer easier fabrication efforts, providing cost and schedule savings for hardware development. Swirl coaxial elements also offer more flexibility for design changes. Furthermore, testing with LOX and liquid methane propellants at MSFC showed that a swirl coaxial injector offered improved performance compared to an impinging injector. So, technical interest was generated to see if similar performance gains could be achieved with LOX/RP ]1 using a swirl coaxial injector. Results would allow such injectors to be considered for future engine concepts that require LOX/RP ]1 propellants. Existing injector and chamber hardware was used in the test assemblies. The injector had been tested in previous programs at MSFC using LOX/methane and LOX/hydrogen propellants. Minor modifications were made to the injector to accommodate the required LOX/RP ]1 flows. Mainstage tests were performed over a range of chamber pressures and mixture ratios. Additional testing included detonated gbombs h for stability data. Test results suggested characteristic velocity, C*, efficiencies for the injector were 95 ]97%. The injector also appeared dynamically stable with quick recovery from the pressure perturbations generated in the bomb tests.

  14. Radiation protection Group (SC/RP) desperately seeking...

    CERN Multimedia

    A. Hervé, Y. Donjoux / SC

    2006-01-01

    We are trying to trace two transit permits (passavants), which constitute the customs clearance documentation for two 'AD6'portable radiation detectors. The two permits (No. 1308 and No. 1309) were sent in the same internal mail envelope towards the middle of March 2006 but never reached their final destination. After weeks of searching in vain, we are now appealing for your help. If you have these two permits in your possession, please get in touch with us. Many thanks in advance. A.HERVE - SC/RP- ( 163168 / 70927) Y.DONJOUX - SC/RP - (160105 / 73171)

  15. Choosing optimal rapid manufacturing process for thin-walled products using expert algorithm

    Directory of Open Access Journals (Sweden)

    Filip Gorski

    2010-10-01

    Full Text Available Choosing right Rapid Prototyping technology is not easy, especially for companies inexperienced with that group of manufacturing techniques. Paper summarizes research focused on creating an algorithm for expert system, helping to choose optimal process and determine its parameters for thin-walled products rapid manufacturing. Research was based upon trial manufacturing of different thin-walled items using various RP technologies. Products were categorized, each category was defined by a set of requirements. Basing on research outcome, main algorithm has been created. Next step was developing detailed algorithms for optimizing particular methods. Implementation of these algorithms brings huge benefit for recipients, including cost reduction, supply time decrease and improvements in information flow.

  16. Improved RP-HPLC method for determination of bovine lactoferrin and its proteolytic degradation in simulated gastrointestinal fluids.

    Science.gov (United States)

    Yao, Xudong; Bunt, Craig; Cornish, Jillian; Quek, Siew-Young; Wen, Jingyuan

    2013-02-01

    The objective of this study was to qualitatively and quantitatively evaluate bovine lactoferrin (bLf) and its stability using a rapid RP-HPLC method. bLf could be rapidly detected within 20 min and quantitated at levels down to 5 µg/mL, and the equation of linearity was y = 86.10x + 178.31 with the correlation coefficient (r(2)) 0.9997. Quantitative data obtained in the present study proved the improved RP-HPLC method to be a sensitive and accurate analytical tool for bLf determination. The proteolytic cleavage of bLf in simulated human gastrointestinal fluids was further analyzed by RP-HPLC, and found to follow pseudo-first-order kinetics. The typical equation obtained by pepsin was log(10) [A(t)]/[A(0)] = -0.03x (r(2) = 0.85), and log(10) [A(t)]/[A(0)] = -0.01x (r(2) = 0.81) for trypsin and chymotrypsin combination. Pepsinolysis of bLf in simulated gastric fluid was relatively fast with the half-life t(1/2) 23.1 min. The digestion of bLf in simulated intestinal fluid was slower with about a 3-fold increase in half-life (69.3 min). After the complete proteolysis of bLf, small cleaved peptide fragments were fully separated and identified by RP-HPLC. The proteolytic study indicated that this validated RP-HPLC was able to evaluate bLf stability though monitoring the derivatization products. Copyright © 2012 John Wiley & Sons, Ltd.

  17. CHARTING THE ANATOMY PF LINGUISTIC REALITY R.P. Botha ...

    African Journals Online (AJOL)

    CHARTING. THE ANATOMY PF LINGUISTIC. REALITY. R.P. Botha. Department of Linguistics. University of Stellenbosch. Living dangerously. (Ql I represents the kind of question that should be addressed in the opening paper of a conference with the theme. 'Linguis- tics for the language professions'. (Ql I. Has linguistics.

  18. Validated RP-HPLC Method for Quantification of Phenolic ...

    African Journals Online (AJOL)

    Purpose: To evaluate the total phenolic content and antioxidant potential of the methanol extracts of aerial parts and roots of Thymus sipyleus Boiss and also to determine some phenolic compounds using a newly developed and validated reversed phase high performance liquid chromatography (RP-HPLC) method.

  19. Validated RP-HPLC Method for Quantification of Phenolic ...

    African Journals Online (AJOL)

    method. The antioxidative potential of the samples was evaluated using DPPH and ABTS assays. Phenolics responsible for the antioxidant activity of the plant were quantified by a newly developed and validated RP-HPLC method for the first time. Results: The total phenolic concentration of the aerial parts and roots were ...

  20. Temperature Jump Pyrolysis Studies of RP 2 Fuel

    Science.gov (United States)

    2017-01-09

    Central Florida, Orlando, FL 32816 2 Propellants Branch, Rocket Propulsion Division Aerospace Engineering Directorate, Air Force Research Laboratory, AFRL...Mixture Distribution A: Approved for public release; distribution unlimited. PA Clearance 17026 4 RP-2 Pyrolysis/ Combustion Chemistries? • Recent...restricted fuel flow Leads to increased exposure to thermal stressing Fuel Composition Changes: Liquid to gas transition in cooling channels Causes break

  1. Fabrication and Prototyping Lab

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The Fabrication and Prototyping Lab for composite structures provides a wide variety of fabrication capabilities critical to enabling hands-on research and...

  2. EPCiR prototype

    DEFF Research Database (Denmark)

    2003-01-01

    A prototype of a residential pervasive computing platform based on OSGi involving among other a mock-up of an health care bandage.......A prototype of a residential pervasive computing platform based on OSGi involving among other a mock-up of an health care bandage....

  3. Innovation og prototyper

    DEFF Research Database (Denmark)

    Hansen, Svend Aage; Hansen, Erik; Kyvsgård, Poul H.

    2006-01-01

    Denne artikel advokerer for at danske virksomheder skal (gen)indføre prototyper som middel til at hurtigere at komme fra ide til salg og samtidig skabe et bedre produkt. LEGO og B&O gennemgår deres erfaringer med anvendelse af simple prototyper tidligt i det forløb, der nyudvikler et produkt. De...

  4. Joint Program on Rapid Prototyping. RaPIER (Rapid Prototyping to Investigate End-User Requirements).

    Science.gov (United States)

    1985-03-28

    for reuse. The Ada langauge contains a rich set of features that support reusability. Some of the most important ones are: o packages, o separate...telephone consultants for RaPIER at least through the fifth year of this project. Beyond that, the Computer Sciences Center will need to transfer...motivated to exploit them, can/will become a RaPIER skilled user; 6. deals with requirements; T . deals with new products; 8. is part of the contractor’s

  5. Rapid prototyping tool for tuning of vibration absorbers; Rapid-Prototyping-Tool zur Abstimmung von Schwingungstilgern

    Energy Technology Data Exchange (ETDEWEB)

    Marienfeld, P.M.; Karkosch, H.J. [ContiTech Vibration Control GmbH, Hannover (Germany); Bohn, C. [Technische Univ. Clausthal (Germany); Svaricek, F. [Univ. der Bundeswehr Muenchen (Germany); Knake-Langhorst, S. [Deutsches Zentrum fuer Luft- und Raumfahrt, Braunschweig (Germany)

    2008-07-01

    In the automotive industry passive vibration absorbers are a well established method to reduce structural vibrations in automotive vehicles. Designing a vibration absorber consists of selecting its mechanical properties. Usually extensive tests are necessary with different absorbers in the vehicle and subjective as well as objective evaluation of the results. This requires hardware modifications between different tests. In this paper, an approach is proposed that can assist in the development of vibration absorbers. It is based on tuning an active vibration control system such that it reproduces the behavior of a specified vibration absorber. This behavior can then be changed electronically without modifying the hardware. Two different control approaches are compared. In the first approach, the apparent physical properties of a vibration absorber are directly modified through acceleration, velocity or displacement feedback. In the second approach, a desired dynamic mass transfer function for the vibration absorber is prescribed and an H2-norm optimal model matching problem is solved. Experimental results obtained with this approach are presented. (orig.)

  6. Cooperative Prototyping Experiments

    DEFF Research Database (Denmark)

    Bødker, Susanne; Grønbæk, Kaj

    1989-01-01

    This paper describes experiments with a design technique that we denote cooperative prototyping. The experiments consider design of a patient case record system for municipal dental clinics in which we used HyperCard, an off the shelf programming environment for the Macintosh. In the ecperiments we...... tried to achieve a fluent work-like evaluation of prototypes where users envisioned future work with a computer tool, at the same time as we made on-line modifications of prototypes in cooperation with the users when breakdown occur in their work-like evaluation. The experiments showed...... that it was possible to make a number of direct manipulation changes of prototypes in cooperation with the users, in interplay with their fluent work-like evaluation of these. However, breakdown occurred in the prototyping process when we reached the limits of the direct manipulation support for modification. From...

  7. A new selective pre-column ninhydrin-based derivatization for a RP-HPLC determination of plasma asymmetric dimethyl-L-arginine (ADMA) by fluorescence detection.

    Science.gov (United States)

    Sotgia, Salvatore; Zinellu, Angelo; Pinna, Gerard Aime; Deiana, Luca; Carru, Ciriaco

    2008-05-01

    We report a new selective and direct pre-column ninhydrin-based derivatization reaction for determination of plasma ADMA levels. This original derivatization procedure matched to a validated and rapid RP-HPLC method can be a useful alternative to other assays in which time consuming and expensive extraction and/or purification steps are required.

  8. Thermal Stability of RP-2 for Hydrocarbon Boost Regenerative Cooling

    Science.gov (United States)

    Kleinhenz, Julie E.; Deans, Matthew C.; Stiegemeier, Benjamin R.; Psaras, Peter M.

    2013-01-01

    A series of tests were performed in the NASA Glenn Research Centers Heated Tube Facility to study the heat transfer and thermal stability behavior of RP-2 under conditions similar to those found in rocket engine cooling channels. It has long been known that hydrocarbon fuels, such as RP-2, can decompose at high temperature to form deposits (coke) which can adversely impact rocket engine cooling channel performance. The heated tube facility provides a simple means to study these effects. Using resistively heated copper tubes in a vacuum chamber, flowing RP-2 was heated to explore thermal effects at a range of test conditions. Wall temperature (850-1050F) and bulk fluid temperature (300-500F) were varied to define thermal decomposition and stability at each condition. Flow velocity and pressure were fixed at 75 fts and 1000 psia, respectively. Additionally, five different batches of RP-2 were tested at identical conditions to examine any thermal stability differences resulting from batch to batch compositional variation. Among these tests was one with a potential coke reducing additive known as 1,2,3,4-Tetrahydroquinoline (THQ). While copper tubes were used for the majority of tests, two exploratory tests were performed with a copper alloy known as GRCop-42. Each tube was instrumented with 15 thermocouples to examine the temperature profile, and carbon deposition at each thermocouple location was determined post-test in an oxidation furnace. In many tests, intermittent local temperature increases were observed visually and in the thermocouple data. These hot spots did not appear to correspond with a higher carbon deposition.

  9. Palatability can drive feeding independent of AgRP neurons

    OpenAIRE

    Denis, Raphaël G.P.; Joly-Amado, Aurélie; Webber, Emily; Langlet, Fanny; Schaeffer, Marie; Padilla, Stéphanie L.; Cansell, Céline; Dehouck, Bénédicte; Castel, Julien; Delbès, Anne-Sophie; Martinez, Sarah; Lacombe, Amélie; Rouch, Claude; Kassis, Nadim; Fehrentz, Jean-Alain

    2015-01-01

    Feeding behavior is exquisitely regulated by homeostatic and hedonic neural substrates that integrate energy demand as well as the reinforcing and rewarding aspects of food. Understanding the net contribution of homeostatic and reward-driven feeding has become critical due to the ubiquitous source of energy-dense foods and the consequent obesity epidemic. Hypothalamic, agouti-related peptide-secreting neurons (AgRP neurons) provide primary orexigenic drive of homeostatic feeding. Using models...

  10. Mobile Prototyping Platforms for Remote Engineering Applications

    Directory of Open Access Journals (Sweden)

    Karsten Henke

    2009-08-01

    Full Text Available This paper describes a low-cost mobile communication platform as a universal rapid-prototyping system, which is based on the Quadrocopter concept. At the Integrated Hardware and Software Systems Group at the Ilmenau University of Technology these mobile platforms are used to motivate bachelor and master students to study Computer Engineering sciences. This could be done by increasing their interest in technical issues, using this platform as integral part of a new ad-hoc lab to demonstrate different aspects in the area of Mobile Communication as well as universal rapid prototyping nodes to investigate different mechanisms for self-organized mobile communication systems within the International Graduate School on Mobile Communications. Beside the three fields of application, the paper describes the current architecture concept of the mobile prototyping platform as well as the chosen control mechanism and the assigned sensor systems to fulfill all the required tasks.

  11. Differentiation of atrial tachycardia from other long RP tachycardias by electrocardiographic characteristics

    Directory of Open Access Journals (Sweden)

    Atsuhiko Yagishita, MD

    2014-10-01

    Conclusion: AT accounted for nearly two thirds of long RP tachycardias in this cohort. Electrocardiographic features, including the RP/PR ratio, polarity of the P wave, and P-wave duration were useful in the differentiation of AT.

  12. History of Sulphur Content Effects on the Thermal Stability of RP-1 under Heated Conditions

    National Research Council Canada - National Science Library

    Irvine, Solveig

    2004-01-01

    .... Since the main fuel used in modern liquid hydrocarbon systems is RP-1, there is concern that Standard Grade RP-1 may not be a suitable propellant for future-generation rocket engines due to concern...

  13. Neutron star cooling and the rp process in thermonuclear X-ray bursts

    Science.gov (United States)

    in't Zand, J. J. M.; Visser, M. E. B.; Galloway, D. K.; Chenevez, J.; Keek, L.; Kuulkers, E.; Sánchez-Fernández, C.; Wörpel, H.

    2017-10-01

    When the upper layer of an accreting neutron star experiences a thermonuclear runaway of helium and hydrogen, it exhibits an X-ray burst of a few keV with a cool-down phase of typically 1 min. When there is a surplus of hydrogen, hydrogen fusion is expected to simmer during that same minute due to the rp process, which consists of rapid proton captures and slow β-decays of proton-rich isotopes. We have analyzed the high-quality light curves of 1254X-ray bursts, obtained with the Proportional Counter Array on the Rossi X-ray Timing Explorer between 1996 and 2012, to systematically study the cooling and rp process. This is a follow-up of a study on a selection of 37 bursts from systems that lack hydrogen and show only cooling during the bursts. We find that the bolometric light curves are well described by the combination of a power law and a one-sided Gaussian. The power-law decay index is between 1.3 and 2.1 and similar to that for the 37-bursts sample. There are individual bursters with a narrower range. The Gaussian is detected in half of all bursts, with a typical standard deviation of 50 s and a fluence ranging up to 60% of the total fluence. The Gaussian appears consistent with being due to the rp process. The Gaussian fluence fraction suggests that the layer where the rp process is active is underabundant in H by a factor of at least five with respect to cosmic abundances. Ninety-four percent of all bursts from ultracompact X-ray binaries lack the Gaussian component, and the remaining 6% are marginal detections. This is consistent with a hydrogen deficiency in these binaries. We find no clear correlation between the power law and Gaussian light-curve components. Full Table C.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A130

  14. Virtual prototyping and testing of in-vehicle interfaces.

    Science.gov (United States)

    Bullinger, Hans-Jörg; Dangelmaier, Manfred

    2003-01-15

    Electronic innovations that are slowly but surely changing the very nature of driving need to be tested before being introduced to the market. To meet this need a system for integrated virtual prototyping and testing has been developed. Functional virtual prototypes of various traffic systems, such as driver assistance, driver information, and multimedia systems can now be easily tested in a driving simulator by a rapid prototyping approach. The system has been applied in recent R&D projects.

  15. Influencing Gameplay in Support of Early Synthetic Prototyping Studies

    Science.gov (United States)

    2016-06-01

    design by virtual doing: understanding Early Synthetic Prototyping (ESP). Retrieved from http://ict.usc.edu/pubs/Innovation%20and%20Rapid...release; distribution is unlimited INFLUENCING GAMEPLAY IN SUPPORT OF EARLY SYNTHETIC PROTOTYPING STUDIES by Douglas J. Ross June 2016...DATE June 2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE INFLUENCING GAMEPLAY IN SUPPORT OF EARLY SYNTHETIC PROTOTYPING

  16. Artificial epi-Retinal Prosthesis (AeRP)

    Science.gov (United States)

    Doorish, John F.

    2006-09-01

    There are several research projects going on around the world, which are attempting to develop a prosthetic device to restore sight to the blind. This paper describes the efforts of Second Sight of New York, Inc. The device being developed is called an Artificial epi-Retinal Prosthesis (AeRP), which is basically a small optical computer that fits into the intraocular space of the eye. The AeRP is designed to draw light into the device by specially designed fibre optics. The light is ‘digitized’ by the fibre optic system and then directed to individual photodiode cells making up concentric cylinders thus providing several hundred photodiode cells in the device. The produced electrical stimulation from each cell is then delivered to the retinal ganglion cells by a specially designed delivery system utilizing electrically conducting polymer strands (ECP), which sit on an ‘umbrella’ at the back of the device. The retinal ganglion cells receive the electrical stimulation, which would then be transmitted through the visual system of the brain. There are several innovations in this approach as compared to the other projects. They include, first the design, which will allow for a high number of PC to produce electrical stimulation that will stimulate multiple RGC per PC; the use of the ECP strands has not been used in such an approach before this. Tests have revealed that nerve cells have a good affinity for the material of the ECP. The use of the ECP as well as the fact that the AeRP is completely photovoltaic, with no external power sources, implies that there will not be high heat build-up in the back of the eye, which might damage RGC. A smaller version of the AeRP called the Mini epi-Retinal Prosthesis (MeRP) is the subject of a complimentary paper. It is being built now and will be tested in cell culture studies to determine the efficacy of the design and materials. No actual implants have been performed yet.

  17. PRMS Data Warehousing Prototype

    Science.gov (United States)

    Guruvadoo, Eranna K.

    2002-01-01

    Project and Resource Management System (PRMS) is a web-based, mid-level management tool developed at KSC to provide a unified enterprise framework for Project and Mission management. The addition of a data warehouse as a strategic component to the PRMS is investigated through the analysis, design and implementation processes of a data warehouse prototype. As a proof of concept, a demonstration of the prototype with its OLAP's technology for multidimensional data analysis is made. The results of the data analysis and the design constraints are discussed. The prototype can be used to motivate interest and support for an operational data warehouse.

  18. LHC prototype magnet

    CERN Multimedia

    1991-01-01

    1.5 metre superconducting magnet. This prototype magnet for the LHC was cooled to a few degrees above absolute zero, which allowed it to obtain the world record for the highest magnetic field for an accelerator magnet in 1991.

  19. ICI Showcase House Prototype

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-02-16

    Building Science Corporation collaborated with ICI Homes in Daytona Beach, FL on a 2008 prototype Showcase House that demonstrates the energy efficiency and durability upgrades that ICI currently promotes through its in-house efficiency program called EFactor.

  20. RP - HPLC method for the estimation of Tamsulosin Hydrochloride in Tablet Dosage Form.

    Science.gov (United States)

    Kumari, Richa; Dash, P P; Lal, V K; Mishra, A; Murthy, P N

    2010-11-01

    A rapid and sensitive reverse phase RP-HPLC method is proposed for the estimation of tamsulosin hydrochloride in tablets. Tamsulosin hydrochloride was chromatographed on a reverse phase C18 column with a mobile phase consisting of acetonitrile and water in the ratio of 50:50 v/v. The mobile phase was pumped at a flow rate of 1.5 ml/min. The eluents were monitored at 214 nm. The retention time of the drug was 1.7 min. With this method, linearity was observed between area under curve and concentration of tamsulosin hydrochloride in the injected solution, in the range of 5 to 100 μg/ml. The method was found to be applicable for analysis of the drug in tablets. The results were validated statistically.

  1. A Validated RP – HPLC Method for Simultaneous Estimation of Cefixime and Cloxacillin in Tablets

    Directory of Open Access Journals (Sweden)

    G. Rathinavel

    2008-01-01

    Full Text Available This paper presents a RP-HPLC method for the simultaneous estimation of cefixime and cloxacillin in tablets. The process was carried out on C18 column (5 μm, 25 cm × 4.6 mm, i.d using phosphate buffer (pH 5.0, acetonitrile and methanol in the ratio 80:17:3 respectively as a mobile phase at a flow rate of 2mL/min. Wavelength was fixed at 225 nm. The retention time of cefixime and cloxacillin was found to be 5.657 and 6.200 min, respectively. The developed method is rapid and sensitive and it can be used for estimation of combination of these drugs in tablets.

  2. Novel combination of reverse engineering and vapid prototyping in medicine

    CSIR Research Space (South Africa)

    Schenker, R

    1999-08-01

    Full Text Available The technologies of reverse engineering and rapid prototyping are emerging as useful new tools in medicine. One application is of particular interest in orthopaedic, dental and reconstructive surgery. It involves the imaging, modelling...

  3. RP1 Is a Phosphorylation Target of CK2 and Is Involved in Cell Adhesion

    Science.gov (United States)

    Göttig, Stephan; Henschler, Reinhard; Markuly, Norbert; Kleber, Sascha; Faust, Michael; Mischo, Axel; Bauer, Stefan; Zweifel, Martin; Knuth, Alexander; Renner, Christoph; Wadle, Andreas

    2013-01-01

    RP1 (synonym: MAPRE2, EB2) is a member of the microtubule binding EB1 protein family, which interacts with APC, a key regulatory molecule in the Wnt signalling pathway. While the other EB1 proteins are well characterized the cellular function and regulation of RP1 remain speculative to date. However, recently RP1 has been implicated in pancreatic cancerogenesis. CK2 is a pleiotropic kinase involved in adhesion, proliferation and anti-apoptosis. Overexpression of protein kinase CK2 is a hallmark of many cancers and supports the malignant phenotype of tumor cells. In this study we investigate the interaction of protein kinase CK2 with RP1 and demonstrate that CK2 phosphorylates RP1 at Ser236 in vitro. Stable RP1 expression in cell lines leads to a significant cleavage and down-regulation of N-cadherin and impaired adhesion. Cells expressing a Phospho-mimicking point mutant RP1-ASP236 show a marked decrease of adhesion to endothelial cells under shear stress. Inversely, we found that the cells under shear stress downregulate endogenous RP1, most likely to improve cellular adhesion. Accordingly, when RP1 expression is suppressed by shRNA, cells lacking RP1 display significantly increased cell adherence to surfaces. In summary, RP1 phosphorylation at Ser236 by CK2 seems to play a significant role in cell adhesion and might initiate new insights in the CK2 and EB1 family protein association. PMID:23844040

  4. Prototyping Visual Interface for Maintenance and Supply Databases

    Science.gov (United States)

    1989-06-01

    them, as computer representations. An object in the computer domain consists of some private data and a set of operations that can operate on that data...The primary advantage of using Actor as the implementation langauge for GLAD is that it served as a rapid prototyping tool. Just as rapid prototyping...and edited in Microsoft’s Paintbrush paint program. The Paintbrush files were then converted to MS-Window’s Paint format. A public domain graphics

  5. Development and Validation of a RP-HPLC Method for Determination of Nimodipine in Sustained Release Tablets

    Directory of Open Access Journals (Sweden)

    Xiaojun Shang

    2013-01-01

    Full Text Available A rapid, sensitive, and reproducible reverse phase high performance liquid chromatographic (RP-HPLC method with UV detector for the determination of nimodipine in sustained release tablets was developed. The method involved using a SinoChoom ODS-BP C18 reversed phase column (5 μm, 4.6 mm × 200 mm and mobile phase consisting of methanol-acetonitrile-water (35 : 38 : 27, v/v. The flow rate is 1.0 mL/min, the UV detector was operated at 237 nm, and the column was maintained at 25°C. The method was validated according to official compendia guidelines. The calibration curve of nimodipine for RP-HPLC method was linear over the range of 10–100 μg/mL. The retention time was found at 7.50 min for nimodipine. The variation for interday and intraday assay was found to be less than 0.72%. The proposed RP-HPLC was proved to be suitable for the determination of nimodipine in sustained release tablets.

  6. Power API Prototype

    Energy Technology Data Exchange (ETDEWEB)

    2014-12-04

    The software serves two purposes. The first purpose of the software is to prototype the Sandia High Performance Computing Power Application Programming Interface Specification effort. The specification can be found at http://powerapi.sandia.gov . Prototypes of the specification were developed in parallel with the development of the specification. Release of the prototype will be instructive to anyone who intends to implement the specification. More specifically, our vendor collaborators will benefit from the availability of the prototype. The second is in direct support of the PowerInsight power measurement device, which was co-developed with Penguin Computing. The software provides a cluster wide measurement capability enabled by the PowerInsight device. The software can be used by anyone who purchases a PowerInsight device. The software will allow the user to easily collect power and energy information of a node that is instrumented with PowerInsight. The software can also be used as an example prototype implementation of the High Performance Computing Power Application Programming Interface Specification.

  7. From prototype to product

    DEFF Research Database (Denmark)

    Andersen, Tariq Osman; Bansler, Jørgen P.; Kensing, Finn

    2017-01-01

    This paper delves into the challenges of engaging patients, clinicians and industry stakeholders in the participatory design of an mHealth platform for patient-clinician collaboration. It follows the process from the development of a research prototype to a commercial software product. In particu......This paper delves into the challenges of engaging patients, clinicians and industry stakeholders in the participatory design of an mHealth platform for patient-clinician collaboration. It follows the process from the development of a research prototype to a commercial software product....... In particular, we draw attention to four major challenges of (a) aligning the different concerns of patients and clinicians, (b) designing according to clinical accountability, (c) ensuring commercial interest, and (d) dealing with regulatory constraints when prototyping safety critical health Information...

  8. A Versatile Prototyping System for Capacitive Sensing

    Directory of Open Access Journals (Sweden)

    Daniel HRACH

    2008-04-01

    Full Text Available This paper presents a multi-purpose and easy to handle rapid prototyping platform that has been designed for capacitive measurement systems. The core of the prototype platform is a Digital Signal Processor board that allows for the entire data acquisition, data (pre- processing and storage, and communication with any host computer. The platform is running on uCLinux operating system and features the possibility of a fast design and evaluation of capacitive sensor developments. To show the practical benefit of the prototyping platform, three exemplary applications are presented. For all applications, the platform is just plugged to the electrode structure of the sensor front-end without the need for analogue signal pre-conditioning.

  9. Prototyping a Smart City

    DEFF Research Database (Denmark)

    Korsgaard, Henrik; Brynskov, Martin

    In this paper, we argue that by approaching the so-called Smart City as a design challenge, and an interaction design perspective, it is possible to both uncover existing challenges in the interplay between people, technology and society, as well as prototype possible futures. We present a case...... in which we exposed data about the online communication between the citizens and the municipality on a highly visible media facade, while at the same time prototyped a tool that enabled citizens to report ‘bugs’ within the city....

  10. Prototyping Design and Business

    DEFF Research Database (Denmark)

    Rasmussen, Jørgen; Kramp, Gunnar; Schiønning Mortensen, Bo

    2011-01-01

    to ‘look into the future,’ to find unidentified opportunities through an open process and to validate their decisions through repeated prototyping. Management, on the other hand, is traditionally trained to ‘look into to the past’ and make decisions based on thoroughly analyzing existing information...... for collaboration and interdisciplinary development. Based on the thinking behind a prototype presentation the paper describes a specific case where the model is used in collaboration between a team of designers and the management of a medium-sized company....

  11. Method Development and Validation for Determination of Febuxostat from Spiked Human Plasma Using RP-HPLC with UV Detection

    OpenAIRE

    Monita Gide; Pankaj Sharma; Ravindra Saudagar; Birendra Shrivastava

    2014-01-01

    A rapid, simple, selective, and specific reverse phase high performance liquid chromatography (RP-HPLC) method with UV detection (315 nm) was developed and validated for estimation of febuxostat from spiked human plasma. The analyte and internal standard (diclofenac) were extracted using LLE with diethyl ether. The chromatographic separation was performed on Shodex C-18-4E (5 μm; 250×4.6 mm) with a mobile phase comprised of methanol : acetate buffer pH 4, 20 mM (90 : 10 v/v), at a flow rate o...

  12. Analyses of Total Alkaloid Extract of Corydalis yanhusuo by Comprehensive RP × RP Liquid Chromatography with pH Difference

    Directory of Open Access Journals (Sweden)

    Xiaodong Wei

    2016-01-01

    Full Text Available A comprehensive two-dimensional (2D reverse phase (RP liquid chromatography (LC method is developed for alkaloid analysis. This offline comprehensive 2D method is developed using different pH values. With a pH value of 10.5, most alkaloids appear in the form of neutral molecules possessing high retention factors based on their polarity, while the alkaloid polarity order is changed when the pH value decreased to 3.0. The performance of pH modulated 2D LC is demonstrated with 8 alkaloid standards which resulted in orthogonal separation. The developed method is then applied to total alkaloid separation in Corydalis yanhusuo. The first-dimension separation is carried out using methanol and water containing 1.0% ammonium hydroxide and a strong base-resistant RP column, which afforded a peak capacity of 94. The second-dimension analysis is carried out with a surface positive charge column providing a peak capacity of 205 using a mobile phase consisting of acetonitrile and water with 0.15% formic acid. 2D analyses of total alkaloid extract from C. yanhusuo afford a total peak capacity of 9090. Sixteen compounds were tentatively identified based on their ultraviolet spectrum and MS/MS analyses. The proposed method provides an alternative approach to achieve high peak capacity for analysis of alkaloid extract.

  13. Prototype ATLAS straw tracker

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    This is an early prototype of the straw tracking device for the ATLAS detector at CERN. This detector will be part of the LHC project, scheduled to start operation in 2008. The straw tracker will consist of thousands of gas-filled straws, each containing a wire, allowing the tracks of particles to be followed.

  14. Surrogates-based prototyping

    NARCIS (Netherlands)

    Du Bois, E.; Horvath, I.

    2014-01-01

    The research is situated in the system development phase of interactive software products. In this detailed design phase, we found a need for fast testable prototyping to achieve qualitative change proposals on the system design. In this paper, we discuss a literature study on current software

  15. LEP vacuum chamber, prototype

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Final prototype for the LEP vacuum chamber, see 8305170 for more details. Here we see the strips of the NEG pump, providing "distributed pumping". The strips are made from a Zr-Ti-Fe alloy. By passing an electrical current, they were heated to 700 deg C.

  16. Cost Effective Prototyping

    Science.gov (United States)

    Wickman, Jerry L.; Kundu, Nikhil K.

    1996-01-01

    This laboratory exercise seeks to develop a cost effective prototype development. The exercise has the potential of linking part design, CAD, mold development, quality control, metrology, mold flow, materials testing, fixture design, automation, limited parts production and other issues as related to plastics manufacturing.

  17. RP process studies with radioactive beams at ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, K.E. [Argonne National Lab., Physics Div., Argonne, IL (United States)

    1998-06-01

    Reactions of interest to nuclear astrophysics have been studied with radioactive beams at the ATLAS accelerator. Using a modified ISOL technique, beams of {sup 18}F(T{sub 1/2}=110 min) and {sup 56}Ni(T{sub 1/2}=6.1 d) have been produced. The reactions {sup 18}F(p,{alpha}){sup 15}O, {sup 18}F(p,{gamma}){sup 19}Ne, and {sup 56}Ni(d,p){sup 57}Ni have been investigated. The results indicate that the {sup 18}F(p,{gamma}) route is a small contributor to the breakout from the hot CNO cycle into the rp process, while the {sup 56}Ni(p,{gamma}){sup 57}Cu rate is about ten times larger than previously assumed. (orig.)

  18. [Studies on fingerprinting of Flos Buddleja by RP-HPLC].

    Science.gov (United States)

    Han, Peng; Cui, Ya-jun; Guo, Hong-zhu; Guo, De-an

    2004-10-01

    To establish fingerprinting of Flos Buddleja by using RP-HPLC for the quality control. The HPLC condition was as follows: Inertsil ODS-3 C18 analytical column (4.6 mm x 250 mm, 5 microm), gredient eluation with MeCN (0.1% TFA)-H2O (0.1%TFA), flow rate 1.0 mL x min(-1), detection wavelength 254 nm. 10 commercial samples were analyzed to establish a fingerprinting. Among the obtained fingerprinting, most of the detected peaks were separated effectively. The accuracy, repeatability and stability of this method were satisfied. The RSDs of relative retention time and area of aimed peaks which existed in all samples wereless than 5%. Theresults were in accordance with the request of fingerprinting. The established fingerprinting can be used for the quality control of Flos Buddleja.

  19. Metallized Gelled Propellants: Oxygen/RP-1/Aluminum Rocket Heat Transfer and Combustion Measurements

    Science.gov (United States)

    Palaszewski, Bryan; Zakany, James S.

    1996-01-01

    A series of rocket engine heat transfer experiments using metallized gelled liquid propellants was conducted. These experiments used a small 20- to 40-lb/f thrust engine composed of a modular injector, igniter, chamber and nozzle. The fuels used were traditional liquid RP-1 and gelled RP-1 with 0-, 5-, and 55-percentage by weight loadings of aluminum particles. Gaseous oxygen was used as the oxidizer. Three different injectors were used during the testing: one for the baseline O(2)/RP-1 tests and two for the gelled and metallized gelled fuel firings. Heat transfer measurements were made with a rocket engine calorimeter chamber and nozzle with a total of 31 cooling channels. Each chamber used a water flow to carry heat away from the chamber and the attached thermocouples and flow meters allowed heat flux estimates at each of the 31 stations. The rocket engine Cstar efficiency for the RP-1 fuel was in the 65-69 percent range, while the gelled 0 percent by weight RP-1 and the 5-percent by weight RP-1 exhibited a Cstar efficiency range of 60 to 62% and 65 to 67%, respectively. The 55-percent by weight RP-1 fuel delivered a 42-47% Cstar efficiency. Comparisons of the heat flux and temperature profiles of the RP-1 and the metallized gelled RP-1/A1 fuels show that the peak nozzle heat fluxes with the metallized gelled O2/RP-1/A1 propellants are substantially higher than the baseline O2/RP-1: up to double the flux for the 55 percent by weight RP-1/A1 over the RP-1 fuel. Analyses showed that the heat transfer to the wall was significantly different for the RP-1/A1 at 55-percent by weight versus the RP-1 fuel. Also, a gellant and an aluminum combustion delay was inferred in the 0 percent and 5-percent by weight RP-1/A1 cases from the decrease in heat flux in the first part of the chamber. A large decrease in heat flux in the last half of the chamber was caused by fuel deposition in the chamber and nozzle. The engine combustion occurred well downstream of the injector face

  20. A Validated RP-HPLC Method for the Estimation of Pizotifen in Pharmaceutical Dosage Form

    Directory of Open Access Journals (Sweden)

    M. V. Basaveswara Rao

    2012-01-01

    Full Text Available A simple, selective, linear, precise, and accurate RP-HPLC method was developed and validated for rapid assay of Pizotifen in pharmaceutical dosage form. Isocratic elution at a flow rate of 1.0 mL/min was employed on Chromosil C18 (250 mm × 4.6 mm, 5 μm column at ambient temperature. The mobile phase consists of methanol : acetonitrile in the ratio of 10 : 90 v/v. The UV detection wavelength was 230 nm, and 20 μL sample was injected. The retention time for Pizotifen was 2.019 min. The percent RSD for accuracy of the method was found to be 0.2603%. The method was validated as per the ICH guidelines. The method can be successfully applied for routine analysis of Pizotifen in the rapid and reliable determination of Pizotifen in pharmaceutical dosage form.

  1. Software evolution in prototyping

    OpenAIRE

    Berzins, V.; Qi, Lu

    1996-01-01

    This paper proposes a model of software changes for supporting the evolution of software prototypes. The software evolution steps are decomposed into primitive substeps that correspond to monotonic specification changes. This structure is used to rearrange chronological derivation sequences into structures containing only meaning-preserving changes. The authors indicate how this structure can be used to automatically combine different changes to a specification. A set of examples illustrates ...

  2. A prototype analysis of vengeance

    NARCIS (Netherlands)

    Elshout, Maartje; Nelissen, Rob; van Beest, Ilja

    2015-01-01

    The authors examined the concept of vengeance from a prototype perspective. In 6 studies, the prototype structure of vengeance was mapped. Sixty-nine features of vengeance were identified (Study 1), and rated on centrality (Study 2). Further studies confirmed the prototype structure. Compared to

  3. Integration/evaluation of a HCI prototyping environment

    Science.gov (United States)

    Moore, Loretta A.

    1994-01-01

    Components of a human computer interface (HCI) prototyping environment have been integrated and evaluated. This environment will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially the International Space Station Alpha's on-board displays for payload operations. This environment, which allows for rapid prototyping and evaluation of graphical interfaces, includes four components: (1) a HCI format development tool, (2) a test and evaluation simulator development tool, (3) a dynamic, interactive interface between the HCI prototype and simulator, and (4) an embedded evaluation capability to evaluate the adequacy of a HCI based on a user's performance. The objective of the research was to determine whether or not the functional components could be integrated and could provide the needed functionality for a rapid prototyping environment.

  4. The inhibitory activity of ginsenoside Rp4 in adenosine diphosphate-induced platelet aggregation

    Directory of Open Access Journals (Sweden)

    Young-Min Son

    2017-01-01

    Conclusion: G-Rp4 significantly inhibited ADP-induced platelet aggregation and this is mediated via modulating the intracellular signaling molecules. These results indicate that G-Rp4 could be a potential candidate as a therapeutic agent against platelet-related cardiovascular diseases.

  5. Bioinformatic analysis of Rp1 gene causing visual disparity in humans

    African Journals Online (AJOL)

    Retinitis pigmentosa (RP) is a group of inherited diseases that damage rod and cone cells located in human retina. A nonsense mutation R677X has been identified in RP1 gene which not only causes mRNA degradation but also results in truncated protein production leading towards visual disparity in humans. Secondary ...

  6. Bioinformatic analysis of Rp1 gene causing visual disparity in humans

    African Journals Online (AJOL)

    user

    Bioinformatic analysis of Rp1 gene causing visual disparity in humans. Sana Zahra and Hamid Rashid*. Department of Bioinformatics, Mohammad Ali Jinnah University, Islamabad, Pakistan. Accepted 5 November, 2010. Retinitis pigmentosa (RP) is a group of inherited diseases that damage rod and cone cells located in.

  7. 75 FR 24740 - Recovery Policy RP9523.5, Debris Removal From Waterways

    Science.gov (United States)

    2010-05-05

    ... SECURITY Federal Emergency Management Agency Recovery Policy RP9523.5, Debris Removal From Waterways AGENCY... notice of the availability of the final Recovery Policy RP9523.5, Debris Removal from Waterways. DATES... guidance for determining the eligibility of debris removal from navigable waterways, the coastal and inland...

  8. Experimental and Numerical Investigations of RP-2 Under High Heat Fluxes

    National Research Council Canada - National Science Library

    Billingsley, M. C; Lyu, H. Y; Bates, R. W

    2007-01-01

    ... such as RP-2, an advanced grade of ultra-low sulfur rocket kerosene. This paper reports recent experiments and numerical simulations of RP-2 cooled thermal stability tests conducted in the AFRL High Heat Flux Facility located at Edwards AFB, CA...

  9. Prototypes as Platforms for Participation

    DEFF Research Database (Denmark)

    Horst, Willem

    The development of interactive products in industry is an activity involving different disciplines – such as different kinds of designers, engineers, marketers and managers – in which prototypes play an important role. On the one hand, prototypes can be powerful boundary objects and an effective.......g. interaction designers, are in a position to design it in a way that enables and encourages different stakeholders to take ownership over it. This dissertation consists of a collection of five papers in which I introduce a collaborative approach to prototyping, and describe how designers can design prototypes...... of prototyping, and develop a sense of ownership over the prototype. This has several benefits for the interaction designer. Since participants learn about the design space and limitations of the prototype, they are able to give specific feedback and input, which the interaction designer can implement. Moreover...

  10. Cloning and characterization of the 5'-flanking region of the pig AgRP gene.

    Science.gov (United States)

    Ling, Fei; Wang, Tao; Wei, Liqiong; Zhu, Xiaoping; Chen, Yaosheng; Li, Jiaqi; Zhang, Zongwu; Du, Hongli; Wang, Xiaoning; Wang, Jufang

    2011-04-01

    Agouti-related peptide (AgRP), a brain neuropeptide generated by AgRP/neuropeptide Y (NPY) neurons, plays a vital role in the hypothalamic regulation of energy homeostasis. RT-PCR and real-time PCR were carried out in various tissues to detect the AgRP expression pattern in pigs. Our RT-PCR results showed that the pig AgRP gene was ubiquitously expressed in all examined tissues including heart, liver, spleen, lung, kidney, stomach, bladder, m. longissimus, belly fat, brain, large intestine, lymph, back fat, skin, and hypothalamus. Real-time quantitative PCR experiments revealed that it is in the hypothalamus with the highest expression of AgRP both in adult Lantang and Landrace pigs compared to the back fat and m.longissimus muscle and the cDNA level of AgRP in the hypothalamus of adult Chinese indigenous Lantang pig (fat-type) is significantly higher than that of Landrace pig (lean-type). To understand the regulation of the pig AgRP gene, the 5'-flanking region was isolated from a pig bacterial artificial chromosome library and used in a luciferase reporter assay. A positive cis-acting element for efficient AgRP expression was identified at nucleotides -501 to -479, by 5'-serial deletion of the promoter. Electrophoretic mobility-shift assays (EMSA) with competing oligonucleotides revealed that the critical region contained a cis-acting element for Neurogenic Differentiation (NeuroD), which is a member of the NeuroD family of basic-helix-loop-helix transcription factors. This element has not been reported in human or mouse AgRP genes. Our results indicated that NeuroD might be an essential regulatory factor for transcription of pig AgRP, providing an important clue about energy homeostasis regulation in the porcine and human brain.

  11. Prototyping Augmented Reality

    CERN Document Server

    Mullen, Tony

    2011-01-01

    Learn to create augmented reality apps using Processing open-source programming language Augmented reality (AR) is used all over, and you may not even realize it. Smartphones overlay data onto live camera views to show homes for sale, restaurants, or historical sites. American football broadcasts use AR to show the invisible first-down line on the field to TV viewers. Nike and Budweiser, among others, have used AR in ads. Now, you can learn to create AR prototypes using 3D data, Processing open-source programming language, and other languages. This unique book is an easy-to-follow guide on how

  12. AMS Prototyping Activities

    Science.gov (United States)

    Burleigh, Scott

    2008-01-01

    This slide presentation reviews the activity around the Asynchronous Message Service (AMS) prototype. An AMS reference implementation has been available since late 2005. It is aimed at supporting message exchange both in on-board environments and over space links. The implementation incoroporates all mandatory elements of the draft recommendation from July 2007: (1) MAMS, AMS, and RAMS protocols. (2) Failover, heartbeats, resync. (3) "Hooks" for security, but no cipher suites included in the distribution. The performance is reviewed, and a Benchmark latency test over VxWorks Message Queues is shown as histograms of a count vs microseconds per 1000-byte message

  13. Nightshade Prototype Experiments (Silverleaf)

    Energy Technology Data Exchange (ETDEWEB)

    Danielson, Jeremy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bauer, Amy L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-23

    The Red Sage campaign is a series of subcritical dynamic plutonium experiments designed to measure ejecta. Nightshade, the first experiments in Red Sage scheduled for fiscal year 2019, will measure the amount of ejecta emission into vacuum from a double-­shocked plutonium surface. To address the major technical risks in Nightshade, a Level 2 milestone was developed for fiscal year 2016. Silverleaf, a series of four experiments, was executed at the Los Alamos National Laboratory in July and August 2016 to demonstrate a prototype of the Nightshade package and to satisfy this Level 2 milestone. This report is documentation that Red Sage Level 2 milestone requirements were successfully met.

  14. DataCollection Prototyping

    CERN Multimedia

    Beck, H.P.

    DataCollection is a subsystem of the Trigger, DAQ & DCS project responsible for the movement of event data from the ROS to the High Level Triggers. This includes data from Regions of Interest (RoIs) for Level 2, building complete events for the Event Filter and finally transferring accepted events to Mass Storage. It also handles passing the LVL1 RoI pointers and the allocation of Level 2 processors and load balancing of Event Building. During the last 18 months DataCollection has developed a common architecture for the hardware and software required. This involved a radical redesign integrating ideas from separate parts of earlier TDAQ work. An important milestone for this work, now achieved, has been to demonstrate this subsystem in the so-called Phase 2A Integrated Prototype. This prototype comprises the various TDAQ hardware and software components (ROSs, LVL2, etc.) under the control of the TDAQ Online software. The basic functionality has been demonstrated on small testbeds (~8-10 processing nodes)...

  15. Live Piloting and Prototyping

    Directory of Open Access Journals (Sweden)

    Francesca Rizzo

    2013-07-01

    Full Text Available This paper presents current trends in service design research concerning large scale projects aimed at generating changes at a local scale. The strategy adopted to achieve this, is to co-design solutions including future users in the development process, prototyping and testing system of products and services before their actual implementation. On the basis of experience achieved in the European Project Life 2.0, this paper discusses which methods and competencies are applied in the development of these projects, eliciting the lessons learnt especially from the piloting phase in which the participatory design (PD approach plays a major role. In the first part, the topic is introduced jointly with the theoretical background where the user center design and participatory design methods are presented; then the Life 2.0 project development is described; finally the experience is discussed from a service design perspective, eliciting guidelines for piloting and prototyping services in a real context of use. The paper concludes reflecting on the designers’ role and competencies needed in this process.

  16. Determination of two capsaicinoids in analgesic transdermal patches using RP-HPLC and UV spectroscopy

    Directory of Open Access Journals (Sweden)

    F. Kobarfard

    2017-11-01

    Full Text Available Background and objectives: At the present time, a considerable frontier in the administration of therapeutic medications is transdermal drug delivery. Methods: In this study, a rapid, precise, sensitive and selective reversed-phasehigh performance liquid chromatography (RP-HPLC method has been evaluated, developed and validated to separate and quantitate capsaicin and dihydrocapsaicin (main active agents in analgesic dermal patches produced in Iran. Results: After isolation from laminated adhesive patches, capsaicinoids were analyzed on Lichrospher C18 analytical columns with reversed phase, using a mobile phase composition of methanol and distilled water (70:30 v/v and without any buffer (pH=6.5. The flow rate was 1 mL/min and the UV detector was operating at 281 nm. The assay was found to be linear over the range of 0.1-1.0 mg/mL. All validation parameters were within the acceptable range. Conclusion: It seems that the developed method was fairly sensitive and reliable in measuring capsaicinoids in commercially available analgesic transdermal patches in Iran.

  17. from Spiked Human Plasma Using RP-HPLC with UV Detection

    Directory of Open Access Journals (Sweden)

    Monita Gide

    2014-01-01

    Full Text Available A rapid, simple, selective, and specific reverse phase high performance liquid chromatography (RP-HPLC method with UV detection (315 nm was developed and validated for estimation of febuxostat from spiked human plasma. The analyte and internal standard (diclofenac were extracted using LLE with diethyl ether. The chromatographic separation was performed on Shodex C-18-4E (5 μm; 250×4.6 mm with a mobile phase comprised of methanol : acetate buffer pH 4, 20 mM (90 : 10 v/v, at a flow rate of 1 mL/min. Febuxostat was well resolved from plasma constituents and internal standard. The calibration curve was linear in the range of 250–8000 ng/mL. The heteroscedasticity was minimized by using weighted least square regression with weighing factor of 1/x. The intraday and interday %RSD was less than 15. Results of recovery studies prove the extraction efficiency. Stability data indicated that febuxostat was stable in plasma after three freeze thaw cycles and upon storage at −20°C for 30 days.

  18. RP-HPLC-DAD for simultaneous estimation of mahanine and mahanimbine in Murraya koenigii.

    Science.gov (United States)

    Pandit, Subrata; Kumar, Mythies; Ponnusankar, S; Pal, B C; Mukherjee, Pulok K

    2011-09-01

    Murraya koenigii leaves (Rutaceae) are widely used as food condiments in various food preparations in India. They possess a wide range of biological activities including antioxidant, antibacterial, anticancer, hypoglycemic and hypolipidemic activity. A rapid reverse-phase high-performance liquid chromatography (RP-HPLC) method has been developed for quantitative estimation of mahanine and mahanimbine, two major bioactive alkaloids in this plant. The amounts of mahanine and mahanimbine were detected as 9.56 ± 1.04 and 4.32 ± 0.81% w/w in the extract, with the retention times of 6.26 ± 0.66 and 10.40 ± 0.95 minutes. The limits of detection and quantification were estimated to be 29.30 and 81.12 µg/mL and 1.67 and 6.31 µg/mL, respectively. This specific and precise validated method can be useful for the routine analysis and quantitative determination of mahanine and mahanimbine in this therapeutically potent medicinal plant. Copyright © 2011 John Wiley & Sons, Ltd.

  19. Optimization and validation of RP-HPLC method for simultaneous estimation of palbociclib and letrozole.

    Science.gov (United States)

    Dange, Yuvraj; Bhinge, Somnath; Salunkhe, Vijay

    2017-11-03

    A simple, rapid, and robust RP-HPLC method have been developed and validated to measure palbociclib (PB) and letrozole (LT) at single wavelength (254 nm). A isocratic elution of samples performed on Intersil C8 (4.6 mm × 250 mm particle size 5 μm) column with mobile phase consisting 0.02 M sodium dihydrogen phosphate buffer (pH 5.5): acetonitrile: methanol (80:10:10 v/v/v) delivered at flow rate 1.0 mL min(-1). A good linear response was achieved over the range of 5-50 μg mL(-1). The LODs for PB and LT were found to be 0.098 and 0.0821 µg mL(-1), while the LOQs for PB and LT were 0.381-0.315 µg mL(-1), respectively. The method was quantitatively evaluated in terms of system suitability test, linearity, precision, accuracy (recovery) and robustness as per standard guidelines. The method is simple, convenient and suitable for the analysis of PB and LT in bulk drug.

  20. Cell-free synthetic biology for in vitro prototype engineering.

    Science.gov (United States)

    Moore, Simon J; MacDonald, James T; Freemont, Paul S

    2017-06-15

    Cell-free transcription-translation is an expanding field in synthetic biology as a rapid prototyping platform for blueprinting the design of synthetic biological devices. Exemplar efforts include translation of prototype designs into medical test kits for on-site identification of viruses (Zika and Ebola), while gene circuit cascades can be tested, debugged and re-designed within rapid turnover times. Coupled with mathematical modelling, this discipline lends itself towards the precision engineering of new synthetic life. The next stages of cell-free look set to unlock new microbial hosts that remain slow to engineer and unsuited to rapid iterative design cycles. It is hoped that the development of such systems will provide new tools to aid the transition from cell-free prototype designs to functioning synthetic genetic circuits and engineered natural product pathways in living cells. © 2017 The Author(s).

  1. [Determination of theacrine in rat plasma by RP-HPLC].

    Science.gov (United States)

    Zhang, Wei-Ku; Xu, Jie-Kun; Hu, Jie-Qing; Wang, Su-Bo; Li, Ping; Hiroshi, Kurihara; Yao, Xin-Sheng; Tang, Bing-Hua

    2013-03-01

    To establish a method for the determination of theacrine in rat plasma after ig. administration of theacrine. Blood sample was taken timely from the eyes canthus of rats. Plasma was isolated and the protein was precipitated by ethyl acetate. Then the plasma concentration of theacrine was determined with RP-HPLC. Caffeine was used as the internal standard. The chromatographic conditions were as follows: Phenomenex Luna C18 (4.6 mm x 250 mm, 5 microm) at 25 degrees C, a mixture of methanol-water (25: 75) as the mobile phase, at the flow rate of 1.0 mL x min(-1) and the detection wavelength of 290 nm. The linear range of theacrine was 0.5-100 mg x L(-1) (R2 = 0.998 9). The lower limit of quantification was 0.5 mg x L(-1). The intra-day RSD was 1.49% 4.40% and inter-day RSD was 0.80% -10.27%. The average extraction recoveries of theacrine were 90.3% -95.8% at concentrations of 0.5, 5.0, 50 mg x L(-1). The main pharmacokinetic parameters after ig. administration of theacrine at concentration of 30 mg x kg(-1) were as follow: C(max) (35.45 +/- 30 2.68) mg x L(-1), t(max) (0.51 +/- 0.13) h, t1/2 (3.13 +/- 1.37) h, AUC(0-infinity) (2.65.39 +/- 94.71) mg x L(-1) x h. The method has been confirmed to be simple, stable, reproducible and with high specificity, and can be used for the pharmacokinetic study of theacrine in rats.

  2. Map refinement of locus RP13 to human chromosome 17p13.3 in a second family with autosomal dominant retinitis pigmentosa

    Energy Technology Data Exchange (ETDEWEB)

    Kojis, T.L.; Heinzmann, C.; Ngo, J.T. [UCLA School of Medicine, LA (United States)] [and others

    1996-02-01

    In order to elucidate the genetic basis of autosomal dominant retinitis pigmentosa (adRP) in a large eight-generation family (UCLA-RP09) of British descent, we assessed linkage between the UCLA-RP09 adRP gene and numerous genetic loci, including eight adRP candidate genes, five anonymous adRP-linked DNA loci, and 20 phenotypic markers. Linkage to the UCLA-RP09 disease gene was excluded for all eight candidate genes analyzed, including rhodopsin (RP4) and peripherin/RDS (RP7), for the four adRP loci RP1, RP9, RP10 and RP11, as well as for 17 phenotypic markers. The anonymous DNA marker locus D17S938, linked to adRP locus RP13 on chromosome 17p13.1, yielded a suggestive but not statistically significant positive lod score. Linkage was confirmed between the UCLA-RP09 adRP gene and markers distal to D17S938 in the chromosomal region 17p13.3. A reanalysis of the original RP13 data from a South African adRP family of British descent, in conjunction with our UCLA-RP09 data, suggests that only one adRP locus exists on 17p but that it maps to a more telomeric position, at band 17p13.3, than previously reported. Confirmation of the involvement of RP13 in two presumably unrelated adRP families, both of British descent, suggests that this locus is a distinct adRP gene in a proportion of British, and possibly other, adRP families. 39 refs., 4 figs., 3 tabs.

  3. SXI prototype mirror mount

    Science.gov (United States)

    1995-04-01

    The purpose of this contract was to provide optomechanical engineering and fabrication support to the Solar X-ray Imager (SXI) program in the areas of mirror, optical bench and camera assemblies of the telescope. The Center for Applied Optics (CAO) worked closely with the Optics and S&E technical staff of MSFC to develop and investigate the most viable and economical options for the design and fabrication of a number of parts for the various telescope assemblies. All the tasks under this delivery order have been successfully completed within budget and schedule. A number of development hardware parts have been designed and fabricated jointly by MSFC and UAH for the engineering model of SXI. The major parts include a nickel electroformed mirror and a mirror mount, plating and coating of the ceramic spacers, and gold plating of the contact rings and fingers for the camera assembly. An aluminum model of the high accuracy sun sensor (HASS) was also designed and fabricated. A number of fiber optic tapers for the camera assembly were also coated with indium tin oxide and phosphor for testing and evaluation by MSFC. A large number of the SXI optical bench parts were also redesigned and simplified for a prototype telescope. These parts include the forward and rear support flanges, front aperture plate, the graphite epoxy optical bench and a test fixture for the prototype telescope. More than fifty (50) drawings were generated for various components of the prototype telescope. Some of these parts were subsequently fabricated at UAH machine shop or at MSFC or by the outside contractors. UAH also provide technical support to MSFC staff for a number of preliminary and critical design reviews. These design reviews included PDR and CDR for the mirror assembly by United Technologies Optical Systems (UTOS), and the program quarterly reviews, and SXI PDR and CDR. UAH staff also regularly attended the monthly status reviews, and made a significant number of suggestions to improve

  4. SXI prototype mirror mount

    Science.gov (United States)

    1995-01-01

    The purpose of this contract was to provide optomechanical engineering and fabrication support to the Solar X-ray Imager (SXI) program in the areas of mirror, optical bench and camera assemblies of the telescope. The Center for Applied Optics (CAO) worked closely with the Optics and S&E technical staff of MSFC to develop and investigate the most viable and economical options for the design and fabrication of a number of parts for the various telescope assemblies. All the tasks under this delivery order have been successfully completed within budget and schedule. A number of development hardware parts have been designed and fabricated jointly by MSFC and UAH for the engineering model of SXI. The major parts include a nickel electroformed mirror and a mirror mount, plating and coating of the ceramic spacers, and gold plating of the contact rings and fingers for the camera assembly. An aluminum model of the high accuracy sun sensor (HASS) was also designed and fabricated. A number of fiber optic tapers for the camera assembly were also coated with indium tin oxide and phosphor for testing and evaluation by MSFC. A large number of the SXI optical bench parts were also redesigned and simplified for a prototype telescope. These parts include the forward and rear support flanges, front aperture plate, the graphite epoxy optical bench and a test fixture for the prototype telescope. More than fifty (50) drawings were generated for various components of the prototype telescope. Some of these parts were subsequently fabricated at UAH machine shop or at MSFC or by the outside contractors. UAH also provide technical support to MSFC staff for a number of preliminary and critical design reviews. These design reviews included PDR and CDR for the mirror assembly by United Technologies Optical Systems (UTOS), and the program quarterly reviews, and SXI PDR and CDR. UAH staff also regularly attended the monthly status reviews, and made a significant number of suggestions to improve

  5. Lipid raft modulation by Rp1 reverses multidrug resistance via inactivating MDR-1 and Src inhibition.

    Science.gov (United States)

    Yun, Un-Jung; Lee, Ji-Hye; Koo, Kyung Hee; Ye, Sang-Kyu; Kim, Soo-Youl; Lee, Chang-Hun; Kim, Yong-Nyun

    2013-05-15

    Multidrug resistance (MDR) is a major obstacle to effective cancer therapy. The membrane transporter MDR-1 (P-gp, ABCB1), a member of the ATP-binding cassette (ABC) transporter family, effluxes anti-cancer drugs from cancer cells. Increased activity of MDR-1 is known to be the main mechanism for multidrug resistance. MDR-1 is known to be localized in the cholesterol- and sphingolipid-enriched plasma membrane microdomains, known as lipid rafts. Disruption of lipid rafts by cholesterol depletion alters lipid raft functions, indicating that cholesterol is critical for raft function. Because ginsenosides are structurally similar to cholesterol, in this study, we investigated the effect of Rp1, a novel ginsenoside derivative, on drug resistance using drug-sensitive OVCAR-8 and drug-resistant NCI/ADR-RES and DXR cells. Rp1 treatment resulted in an accumulation of doxorubicin or rhodamine 123 by decreasing MDR-1 activity in doxorubicin-resistant cells. Rp1 synergistically induced cell death with actinomycin D in DXR cells. Rp1 appeared to redistribute lipid rafts and MDR-1 protein. Moreover, Rp1 reversed resistance to actinomycin D by decreasing MDR-1 protein levels and Src phosphorylation with modulation of lipid rafts. Addition of cholesterol attenuated Rp1-induced raft aggregation and MDR-1 redistribution. Rp1 and actinomycin D reduced Src activity, and overexpression of active Src decreased the synergistic effect of Rp1 with actinomycin D. Rp1-induced drug sensitization was also observed with several anti-cancer drugs, including doxorubicin. These data suggest that lipid raft-modulating agents can be used to inhibit MDR-1 activity and thus overcome drug resistance. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Development and Validation of RP-HPLC Method for Quantitative Estimation of Vinpocetine in Pure and Pharmaceutical Dosage Forms

    Directory of Open Access Journals (Sweden)

    Subrata Bhadra

    2011-01-01

    Full Text Available A simple, precise, specific, and accurate reversed phase high performance liquid chromatographic (RP-HPLC method was developed and validated for determination of vinpocetine in pure and pharmaceutical dosage forms. The different analytical performance parameters such as linearity, accuracy, specificity, precision, and sensitivity (limit of detection and limit of quantitation were determined according to International Conference on Harmonization ICH Q2 (R1 guidelines. RP-HPLC was conducted on Zorbax C18 (150 mm length × 4.6 mm ID, 5 μm column. The mobile phase was consisting of buffer (containing 1.54% w/v ammonium acetate solution and acetonitrile in the ratio (40 : 60, v/v, and the flow rate was maintained at 1.0 mLmin−1. Vinpocetine was monitored using Agilent 1200 series equipped with photo diode array detector (λ = 280 nm. Linearity was observed in concentration range of 160–240 μgmL−1, and correlation coefficient was found excellent (R2 = 0.999. All the system suitability parameters were found within the range. The proposed method is rapid, cost-effective and can be used as a quality-control tool for routine quantitative analysis of vinpocetine in pure and pharmaceutical dosage forms.

  7. Simplified RP-HPLC method for multi-residue analysis of abamectin, emamectin benzoate and ivermectin in rice.

    Science.gov (United States)

    Xie, Xianchuan; Gong, Shu; Wang, Xiaorong; Wu, Yinxing; Zhao, Li

    2011-01-01

    A rapid, reliable and sensitive reverse-phase high-performance liquid chromatography method with fluorescence detection (RP-FLD-HPLC) was developed and validated for simultaneous analysis of the abamectin (ABA), emamectin (EMA) benzoate and ivermectin (IVM) residues in rice. After extraction with acetonitrile/water (2 : 1) with sonication, the avermectin (AVMs) residues were directly derivatised by N-methylimidazole (N-NMIM) and trifluoroacetic anhydride (TFAA) and then analysed on RP-FLD-HPLC. A good linear relationship (r(2 )> 0.99) was obtained for three AVMs ranging from 0.01 to 5 microg ml(-1), i.e. 0.01-5.0 microg g(-1) in rice matrix. The limit of detection (LOD) and the limit of quantification (LOQ) were between 0.001 and 0.002 microg g(-1) and between 0.004 and 0.006 microg g(-1), respectively. Recoveries were from 81.9% to 105.4% and precision less than 12.4%. The proposed method was successfully applied to routine analysis of the AVMs residues in rice.

  8. Architectural Prototyping in Industrial Practice

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Hansen, Klaus Marius

    2008-01-01

    , in addressing issues regarding quality attributes, in addressing architectural risks, and in addressing the problem of knowledge transfer and conformance. Little work has been reported so far on the actual industrial use of architectural prototyping. In this paper, we report from an ethnographical study...... prototypes include end-user or business related functionality rather than purely architectural functionality. Based on these observations we provide recommendations for effective industrial architectural prototyping....

  9. Prototype Stilbene Neutron Collar

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shumaker, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Verbeke, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wong, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-26

    A neutron collar using stilbene organic scintillator cells for fast neutron counting is described for the assay of fresh low enriched uranium (LEU) fuel assemblies. The prototype stilbene collar has a form factor similar to standard He-3 based collars and uses an AmLi interrogation neutron source. This report describes the simulation of list mode neutron correlation data on various fuel assemblies including some with neutron absorbers (burnable Gd poisons). Calibration curves (doubles vs 235U linear mass density) are presented for both thermal and fast (with Cd lining) modes of operation. It is shown that the stilbene collar meets or exceeds the current capabilities of He-3 based neutron collars. A self-consistent assay methodology, uniquely suited to the stilbene collar, using triples is described which complements traditional assay based on doubles calibration curves.

  10. The MONOLITH prototype

    CERN Document Server

    Ambrosio, M; Bencivenni, G; Candela, A M; Chiarini, A; Chignoli, F; De Deo, M; D'Incecco, M; Gerli, S; Giusti, P; Gómez, F; Gustavino, C; Lindozzi, M; Mannocchi, G; Menghetti, H; Morello, C; Murtas, F; Paoluzzi, G; Pilastrini, R; Redaelli, N G; Santoni, M; Sartorelli, G; Terranova, F; Trinchero, G C

    2000-01-01

    MONOLITH (Massive Observatory for Neutrino Oscillation or LImits on THeir existence) is the project of an experiment to study atmospheric neutrino oscillations with a massive magnetized iron detector. The baseline option is a 34 kt iron detector based on the use of about 50000 m/sup 2/ of the glass Resistive Plate Chambers (glass RPCs) developed at the Laboratori Nazionali del Gran Sasso (LNGS). An 8 ton prototype equipped with 23 m/sup 2/ of glass RPC has been realized and tested at the T7-PS beam at CERN. The energy resolution for pions follows a 68%/ square root (E(GeV))+2% law for orthogonally incident particles, in the energy range between 2 and 10 GeV. The time resolution and the tracking capability of the glass RPC are suitable for the MONOLITH experiment. (7 refs).

  11. Identification of getter defects in high-energy self-implanted silicon at Rp/2

    Science.gov (United States)

    Krause-Rehberg, R.; Börner, F.; Redmann, F.; Gebauer, J.; Kögler, R.; Kliemann, R.; Skorupa, W.; Egger, W.; Kögel, G.; Triftshäuser, W.

    2001-12-01

    A strong gettering effect appears after high-energy Si self-implantation and subsequent annealing in two zones at the projected range of the silicon ions ( Rp) and in a region at about Rp/2. The defects responsible for the impurity gettering at Rp/2 were studied by means of positron annihilation. It was found that diffusing Cu impurities were captured by small vacancy agglomerates. Monoenergetic positron beams with improved depth resolution were used to characterize the defects. Excellent depth resolution was obtained when samples were wedge-shaped polished and studied using the Munich Scanning Positron Microscope.

  12. Naval Prototype Optical Interferometer (NPOI)

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Used for astrometry and astronomical imaging, the Naval Prototype Optical Interferometer (NPOI) is a distributed aperture optical telescope. It is operated...

  13. Mobile prototyping with Axure 7

    CERN Document Server

    Hacker, Will

    2013-01-01

    This book is a step-by-step tutorial which includes hands-on examples and downloadable Axure files to get you started with mobile prototyping immediately. You will learn how to develop an application from scratch, and will be guided through each and every step.If you are a mobile-centric developer/designer, or someone who would like to take their Axure prototyping skills to the next level and start designing and testing mobile prototypes, this book is ideal for you. You should be familiar with prototyping and Axure specifically, before you read this book.

  14. File list: Pol.Emb.05.RpII215.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.05.RpII215.AllCell dm3 RNA polymerase RpII215 Embryo SRX859013,SRX859009,SR...X859007,SRX859011 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.05.RpII215.AllCell.bed ...

  15. Evaluation of operational incidents in the research reactor RP-10 according to scale INES; Evaluacion de incidentes operacionales en el reactor de investigacion RP-10 segun escala INES

    Energy Technology Data Exchange (ETDEWEB)

    Arrieta, Rolando W.B.; Vela Mora, Mariano, E-mail: rarrieta@ipen.gob.pe, E-mail: mvela@ipen.gob.pe [Instituto Peruano de energia Nuclear, Lima (Peru). Dept. de Operacion de Reactores

    2013-07-01

    This report presents the evaluation of the events in 2011 in the RP-10 Nuclear Reactor Nuclear Center Huarangal from the point of view of safety. To classify these events produced is used Scale International Nuclear and Radiological Event Scale (INES) to facilitate a common understanding between the technical community, the media and the general public. From the results we can say that in 2011 all related to security events that occurred in the RP -10 are classified as 'below scale' or no safety significance. (author)

  16. Printing and Prototyping of Tissues and Scaffolds

    Science.gov (United States)

    Derby, Brian

    2012-11-01

    New manufacturing technologies under the banner of rapid prototyping enable the fabrication of structures close in architecture to biological tissue. In their simplest form, these technologies allow the manufacture of scaffolds upon which cells can grow for later implantation into the body. A more exciting prospect is the printing and patterning in three dimensions of all the components that make up a tissue (cells and matrix materials) to generate structures analogous to tissues; this has been termed bioprinting. Such techniques have opened new areas of research in tissue engineering and regenerative medicine.

  17. CONCEPTUAL PRODUCT DESIGN IN VIRTUAL PROTOTYPING

    Directory of Open Access Journals (Sweden)

    Debeleac Carmen

    2009-07-01

    Full Text Available A conceptual model of the industrial design process for isolation against vibrations is proposed and described. This model can be used to design products subject to functional, manufacturing, ergonomic, aesthetic constraints. In this paper, the main stages of the model, such as component organization, conception shape, product detailing and graphical design are discussed. The work has confirmed the validity of proposed model for rapid generation of aesthetic preliminary product designs using the virtual prototyping technique, by one of its main component that is conceptual product design.

  18. Educational Specifications: Elementary Prototype.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    Because of rising costs and rapid educational change, the architectural design of a school becomes important to the accomplishment of an educational program. The contemporary architect must design a building with one eye on its construction and maintenance costs and the other on new materials and products and on expanding educational programs.…

  19. Effects of AgRP inhibition on energy balance and metabolism in rodent models.

    Directory of Open Access Journals (Sweden)

    Roxanne Dutia

    Full Text Available Activation of brain melanocortin-4 receptors (MC4-R by α-melanocyte-stimulating hormone (MSH or inhibition by agouti-related protein (AgRP regulates food intake and energy expenditure and can modulate neuroendocrine responses to changes in energy balance. To examine the effects of AgRP inhibition on energy balance, a small molecule, non-peptide compound, TTP2515, developed by TransTech Pharma, Inc., was studied in vitro and in rodent models in vivo. TTP2515 prevented AgRP from antagonizing α-MSH-induced increases in cAMP in HEK 293 cells overexpressing the human MC4-R. When administered to rats by oral gavage TTP2515 blocked icv AgRP-induced increases in food intake, weight gain and adiposity and suppression of T4 levels. In both diet-induced obese (DIO and leptin-deficient mice, TTP2515 decreased food intake, weight gain, adiposity and respiratory quotient. TTP2515 potently suppressed food intake and weight gain in lean mice immediately after initiation of a high fat diet (HFD but had no effect on these parameters in lean chow-fed mice. However, when tested in AgRP KO mice, TTP2515 also suppressed food intake and weight gain during HFD feeding. In several studies TTP2515 increased T4 but not T3 levels, however this was also observed in AgRP KO mice. TTP2515 also attenuated refeeding and weight gain after fasting, an effect not evident in AgRP KO mice when administered at moderate doses. This study shows that TTP2515 exerts many effects consistent with AgRP inhibition however experiments in AgRP KO mice indicate some off-target effects of this drug. TTP2515 was particularly effective during fasting and in mice with leptin deficiency, conditions in which AgRP is elevated, as well as during acute and chronic HFD feeding. Thus the usefulness of this drug in treating obesity deserves further exploration, to define the AgRP dependent and independent mechanisms by which TTP2515 exerts its effects on energy balance.

  20. Effects of AgRP inhibition on energy balance and metabolism in rodent models.

    Science.gov (United States)

    Dutia, Roxanne; Kim, Andrea J; Modes, Matthew; Rothlein, Robert; Shen, Jane M; Tian, Ye Edward; Ihbais, Jumana; Victory, Sam F; Valcarce, Carmen; Wardlaw, Sharon L

    2013-01-01

    Activation of brain melanocortin-4 receptors (MC4-R) by α-melanocyte-stimulating hormone (MSH) or inhibition by agouti-related protein (AgRP) regulates food intake and energy expenditure and can modulate neuroendocrine responses to changes in energy balance. To examine the effects of AgRP inhibition on energy balance, a small molecule, non-peptide compound, TTP2515, developed by TransTech Pharma, Inc., was studied in vitro and in rodent models in vivo. TTP2515 prevented AgRP from antagonizing α-MSH-induced increases in cAMP in HEK 293 cells overexpressing the human MC4-R. When administered to rats by oral gavage TTP2515 blocked icv AgRP-induced increases in food intake, weight gain and adiposity and suppression of T4 levels. In both diet-induced obese (DIO) and leptin-deficient mice, TTP2515 decreased food intake, weight gain, adiposity and respiratory quotient. TTP2515 potently suppressed food intake and weight gain in lean mice immediately after initiation of a high fat diet (HFD) but had no effect on these parameters in lean chow-fed mice. However, when tested in AgRP KO mice, TTP2515 also suppressed food intake and weight gain during HFD feeding. In several studies TTP2515 increased T4 but not T3 levels, however this was also observed in AgRP KO mice. TTP2515 also attenuated refeeding and weight gain after fasting, an effect not evident in AgRP KO mice when administered at moderate doses. This study shows that TTP2515 exerts many effects consistent with AgRP inhibition however experiments in AgRP KO mice indicate some off-target effects of this drug. TTP2515 was particularly effective during fasting and in mice with leptin deficiency, conditions in which AgRP is elevated, as well as during acute and chronic HFD feeding. Thus the usefulness of this drug in treating obesity deserves further exploration, to define the AgRP dependent and independent mechanisms by which TTP2515 exerts its effects on energy balance.