WorldWideScience

Sample records for rapid near-infrared diffuse

  1. Visible near infrared diffuse reflectance spectroscopy (VisNIR DRS) for rapid measurement of organic matter in compost.

    Science.gov (United States)

    McWhirt, Amanda L; Weindorf, David C; Chakraborty, Somsubhra; Li, Bin

    2012-10-01

    Commercial compost is the inherently variable organic product of a controlled decomposition process. In the USA, assessment of compost's physicochemical parameters presently relies on standard laboratory analyses set forth in Test Methods for the Examination of Composting and Compost (TMECC). A rapid, field-portable means of assessing the organic matter (OM) content of compost products would be useful to help producers ensure optimal uniformity in their compost products. Visible near infrared diffuse reflectance spectroscopy (VisNIR DRS) is a rapid, proximal-sensing technology proven effective at quantifying organic matter levels in soils. As such, VisNIR DRS was evaluated to assess its applicability to compost. Thirty-six compost samples representing a wide variety of source materials and moisture content were collected and scanned with VisNIR DRS under moist and oven-dry conditions. Partial least squares (PLS) regression and principal component regression (PCR) were used to relate the VisNIR DRS spectra with laboratory-measured OM to build compost OM prediction models. Raw reflectance, and first- and second-derivatives of the reflectance spectra were considered. In general, PLS regression outperformed PCR and the oven-dried first-derivative PLS model produced an r(2) value of 0.82 along with a residual prediction deviation value of 1.72. As such, VisNIR DRS shows promise as a suitable technique for the analysis of compost OM content for dried samples.

  2. Development of a new diffuse near-infrared food measuring

    Science.gov (United States)

    Zhang, Jun; Piao, Renguan

    2006-11-01

    Industries from agriculture to petrochemistry have found near infrared (NIR) spectroscopic analysis useful for quality control and quantitative analysis of materials and products. The general chemical, polymer chemistry, petrochemistry, agriculture, food and textile industries are currently using NIR spectroscopic methods for analysis. In this study, we developed a new sort NIR instrument for food measuring. The instrument consists of a light source, 12 filters to the prismatic part. The special part is that we use a mirror to get two beams of light. And two PbS detectors were used. One detector collected the radiation of one light beam directly and the value was set as the standard instead the standard white surface. Another light beam irradiate the sample surface, and the diffuse light was collected by another detector. The value of the two detectors was compared and the absorbency was computed. We tested the performance of the NIR instrument in determining the protein and fat content of milk powder. The calibration showed the accuracy of the instrument in practice.

  3. Rapid identification of three varieties of Chrysanthemum with near infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Cun-wu Chen

    Full Text Available A total of 139 batches of Chrysanthemum samples were randomly divided into calibration set (92 batches and prediction set (47 batches. The near infrared diffuses reflectance spectra of Chrysanthemum varieties were preprocessed by a first order derivative (D1 and autoscaling, and a modelwas built using partial least squares analysis. In this study, three Chrysanthemum varieties were identified, the accuracy rates in calibration sets of Dabaiju, Huju, and Xiaobaiju are 97.60, 96.65, and 94.70%, respectively; And 95.16, 86.11, and 93.46% accuracy rate in prediction sets was obtained. The research results demonstrate that the qualitative analysis can be conducted by machine learning combined with Near-Infrared Spectroscopy, which provides a new method for rapid and non-invasive identification of Chrysanthemum varieties.

  4. [Studies on identification of Gryllotalpa by near-infrared diffuse reflectance spectrometry].

    Science.gov (United States)

    Wei, Dao-zhi; Guo, Cheng; Wu, Qiu-ye; Liu, Gao-lin; Zhang, Chun; Zheng, Han-chen

    2004-07-01

    To identify and analyse the different species, same species in different regions and confusion species. Near-infrared diffuse reflectance spectrometry was used. Clustering analysis showed that clustering relations were far among different Gryllotalpa species and close among the same species from different regions, and there were close relations among the same species from near regions and between Teleogryllus emmus and G. orientalis. Near-infrared diffuse reflectance spectrometry method can be used in classification and identification of Gryllotalpa.

  5. Rapid near infrared spectroscopy for prediction of enzymatic hydrolysis of corn bran after various pretreatments

    DEFF Research Database (Denmark)

    Baum, Andreas; Wittrup Agger, Jane; Meyer, Anne S.

    2012-01-01

    step is to increase the responsivity of the substrate to enzymatic attack and the type of pretreatment affects the enzymatic conversion efficiency. Destarched corn bran is a fibrous, heteroxylan-rich side-stream from the starch industry which may be used as a feedstock for bioethanol production...... or as a source of xylose for other purposes. In the present study we demonstrate the use of diffuse reflectance near infrared spectroscopy (NIR) as a rapid and non-destructive analytical tool for evaluation of pretreatment effects on destarched corn bran. NIR was used to achieve classification between 43...... differently pretreated corn bran samples using principal component analysis (PCA) and hierarchal clustering algorithms. Quantification of the enzymatically released monosaccharides by HPLC was used to design multivariate calibration models (biPLS) on the NIR spectra. The models could predict the enzymatic...

  6. [Rapid identification of Coix seed varieties by near infrared spectroscopy].

    Science.gov (United States)

    Liu, Xing; Mao, Dan-Zhuo; Wang, Zheng-Wu; Yang, Yong-Jian

    2014-05-01

    Unsupervised learning algorithm-principal component analysis (PCA), and supervised learning algorithm-learning vector quantization (LVQ) neural network and support vector machine (SVM) were used to carry out qualitative discriminant analysis of different varieties of coix seed from different regions. Since nutrient compositions of different varieties coix seed samples from different origins were complex and the contents were similar, characteristic variables of two kinds of coix seed were alike, the scores plot of their principal components seriously overlapped and the categories of coix seed were difficult to distinguish While satisfactory results were obtained by LVQ neural network and SVM. The accuracy of LVQ neural network prediction is 90. 91%, while the classification accuracy of SVM, whose penalty parameter and kernel function parameter were optimized, can be up to 100%. The results show that NIRS combined with chemometrics can be used as a rapid, nondestructive and reliable method to identify coix seed varieties and provide technical reference for market regulation.

  7. Rapid Prediction of Moisture Content in Intact Green Coffee Beans Using Near Infrared Spectroscopy.

    Science.gov (United States)

    Adnan, Adnan; Hörsten, Dieter von; Pawelzik, Elke; Mörlein, And Daniel

    2017-05-19

    Moisture content (MC) is one of the most important quality parameters of green coffee beans. Therefore, its fast and reliable measurement is necessary. This study evaluated the feasibility of near infrared (NIR) spectroscopy and chemometrics for rapid and non-destructive prediction of MC in intact green coffee beans of both Coffea arabica (Arabica) and Coffea canephora (Robusta) species. Diffuse reflectance (log 1/R) spectra of intact beans were acquired using a bench top Fourier transform NIR instrument. MC was determined gravimetrically according to The International Organization for Standardization (ISO) 6673. Samples were split into subsets for calibration ( n = 64) and independent validation ( n = 44). A three-component partial least squares regression (PLSR) model using raw NIR spectra yielded a root mean square error of prediction (RMSEP) of 0.80% MC; a four component PLSR model using scatter corrected spectra yielded a RMSEP of 0.57% MC. A simplified PLS model using seven selected wavelengths (1155, 1212, 1340, 1409, 1724, 1908, and 2249 nm) yielded a similar accuracy (RMSEP: 0.77% MC) which opens the possibility of creating cheaper NIR instruments. In conclusion, NIR diffuse reflectance spectroscopy appears to be suitable for rapid and reliable MC prediction in intact green coffee; no separate model for Arabica and Robusta species is needed.

  8. [Study on rapid determination and analysis of rocket kerosene by near infrared spectrum and chemometrics].

    Science.gov (United States)

    Xia, Ben-Li; Cong, Ji-Xin; Li, Xia; Wang, Xuan-Jun

    2011-06-01

    The rocket kerosene quality properties such as density, distillation range, viscosity and iodine value were successfully measured based on their near-infrared spectrum (NIRS) and chemometrics. In the present paper, more than 70 rocket kerosene samples were determined by near infrared spectrum, the models were built using the partial least squares method within the appropriate wavelength range. The correlation coefficients (R2) of every rocket kerosene's quality properties ranged from 0.862 to 0.999. Ten unknown samples were determined with the model, and the result showed that the prediction accuracy of near infrared spectrum method accords with standard analysis requirements. The new method is well suitable for replacing the traditional standard method to rapidly determine the properties of the rocket kerosene.

  9. Automatic and Rapid Discrimination of Cotton Genotypes by Near Infrared Spectroscopy and Chemometrics

    Directory of Open Access Journals (Sweden)

    Hai-Feng Cui

    2012-01-01

    Full Text Available This paper reports the application of near infrared (NIR spectroscopy and pattern recognition methods to rapid and automatic discrimination of the genotypes (parent, transgenic, and parent-transgenic hybrid of cotton plants. Diffuse reflectance NIR spectra of representative cotton seeds (n=120 and leaves (n=123 were measured in the range of 4000–12000 cm−1. A practical problem when developing classification models is the degradation and even breakdown of models caused by outliers. Considering the high-dimensional nature and uncertainty of potential spectral outliers, robust principal component analysis (rPCA was applied to each separate sample group to detect and exclude outliers. The influence of different data preprocessing methods on model prediction performance was also investigated. The results demonstrate that rPCA can effectively detect outliers and maintain the efficiency of discriminant analysis. Moreover, the classification accuracy can be significantly improved by second-order derivative and standard normal variate (SNV. The best partial least squares discriminant analysis (PLSDA models obtained total classification accuracy of 100% and 97.6% for seeds and leaves, respectively.

  10. Rapid Detection of Volatile Oil in Mentha haplocalyx by Near-Infrared Spectroscopy and Chemometrics.

    Science.gov (United States)

    Yan, Hui; Guo, Cheng; Shao, Yang; Ouyang, Zhen

    2017-01-01

    Near-infrared spectroscopy combined with partial least squares regression (PLSR) and support vector machine (SVM) was applied for the rapid determination of chemical component of volatile oil content in Mentha haplocalyx. The effects of data pre-processing methods on the accuracy of the PLSR calibration models were investigated. The performance of the final model was evaluated according to the correlation coefficient (R) and root mean square error of prediction (RMSEP). For PLSR model, the best preprocessing method combination was first-order derivative, standard normal variate transformation (SNV), and mean centering, which had of 0.8805, of 0.8719, RMSEC of 0.091, and RMSEP of 0.097, respectively. The wave number variables linking to volatile oil are from 5500 to 4000 cm-1 by analyzing the loading weights and variable importance in projection (VIP) scores. For SVM model, six LVs (less than seven LVs in PLSR model) were adopted in model, and the result was better than PLSR model. The and were 0.9232 and 0.9202, respectively, with RMSEC and RMSEP of 0.084 and 0.082, respectively, which indicated that the predicted values were accurate and reliable. This work demonstrated that near infrared reflectance spectroscopy with chemometrics could be used to rapidly detect the main content volatile oil in M. haplocalyx. The quality of medicine directly links to clinical efficacy, thus, it is important to control the quality of Mentha haplocalyx. Near-infrared spectroscopy combined with partial least squares regression (PLSR) and support vector machine (SVM) was applied for the rapid determination of chemical component of volatile oil content in Mentha haplocalyx. For SVM model, 6 LVs (less than 7 LVs in PLSR model) were adopted in model, and the result was better than PLSR model. It demonstrated that near infrared reflectance spectroscopy with chemometrics could be used to rapidly detect the main content volatile oil in Mentha haplocalyx. Abbreviations used: 1(st) der: First

  11. [The rapid analysis of fatty acids in vegetable oils by near infrared spectrum].

    Science.gov (United States)

    Yu, Yan-Bo; Zang, Peng; Fu, Yuan-Hua; Zhang, Lu-Da; Yan, Yan-Lu; Chen, Bin

    2008-07-01

    In this research, The functional components of vegetable oils were analyzed by near infrared (NIR) spectral technology. The optimum conditions of mathematics model of four components (C16 : 0, C18 : 0, C18 : 1, C18 : 2) were studied, including the sample set selection, chemical value analysis, the detection methods and condition. Chemical value was analyzed by HPLC. 52 samples were selected, 41 for modeling set and 11 for testing set. All samples were placed in 5mm thick sample pools and swept by near infrared (NIR) with discrimination factor 8 cm(-1) without any other disposal. Using PLS methods sated model. Data were processed by first derivative method and centering method. 5 000-9 000 cm(-1) spectral region was analyzed. Correlating index (r), RMSECV and RMSEP were chose as evaluation index. The result demonstrated that the correlation between the reference value of the modeling sample set and the near infrared predictive value were r(C16 : 0) = 0.891, r(C18 : 0) = 0.837, r(C18 : 1) = 0.982, r(C18 : 2) = 0.971, respectively. And the correlation between the reference value of the testing sample set and the near infrared predictive value were 0.921, 0.891, 0.946 and 0.949, respectively. It proved that the near infrared predictive value was linear with chemical value and the mathematical model established for components of vegetable oils was feasible. For validation, 8 unknown samples were selected to be analysis by infrared (NIR). The result demonstrated that error between predict value and chemical value was less than 10%. That was to say infrared (NIR) had a good veracity in analysis components of vegetable oil. Because infrared (NIR) spectral technology is convenient, rapid than HPLC in oil components analysis, moreover, infrared (NIR) can analyze many components at the same time. It must have great application prospect in vegetable oil components analysis.

  12. Safety assessment of near infrared light emitting diodes for diffuse optical measurements

    Directory of Open Access Journals (Sweden)

    Onaral Banu

    2004-03-01

    Full Text Available Abstract Background Near infrared (NIR light has been used widely to monitor important hemodynamic parameters in tissue non-invasively. Pulse oximetry, near infrared spectroscopy, and diffuse optical tomography are examples of such NIR light-based applications. These and other similar applications employ either lasers or light emitting diodes (LED as the source of the NIR light. Although the hazards of laser sources have been addressed in regulations, the risk of LED sources in such applications is still unknown. Methods Temperature increase of the human skin caused by near infrared LED has been measured by means of in-vivo and in-vitro experiments. Effects of the conducted and radiated heat in the temperature increase have been analyzed separately. Results Elevations in skin temperature up to 10°C have been observed. The effect of radiated heat due to NIR absorption is low – less than 0.5°C – since emitted light power is comparable to the NIR part of sunlight. The conducted heat due to semiconductor junction of the LED can cause temperature increases up to 9°C. It has been shown that adjusting operational parameters by amplitude modulating or time multiplexing the LED decreases the temperature increase of the skin significantly. Conclusion In this study, we demonstrate that the major risk source of the LED in direct contact with skin is the conducted heat of the LED semiconductor junction, which may cause serious skin burns. Adjusting operational parameters by amplitude modulating or time multiplexing the LED can keep the LED within safe temperature ranges.

  13. Diffuse reflectance near infrared-chemometric methods development and validation of amoxicillin capsule formulations

    Directory of Open Access Journals (Sweden)

    Ahmed Nawaz Khan

    2016-01-01

    Full Text Available Objective: The aim of present study was to establish near infrared-chemometric methods that could be effectively used for quality profiling through identification and quantification of amoxicillin (AMOX in formulated capsule which were similar to commercial products. In order to evaluate a large number of market products easily and quickly, these methods were modeled. Materials and Methods: Thermo Scientific Antaris II near infrared analyzer with TQ Analyst Chemometric Software were used for the development and validation of the identification and quantification models. Several AMOX formulations were composed with four excipients microcrystalline cellulose, magnesium stearate, croscarmellose sodium and colloidal silicon dioxide. Development includes quadratic mixture formulation design, near infrared spectrum acquisition, spectral pretreatment and outlier detection. According to prescribed guidelines by International Conference on Harmonization (ICH and European Medicine Agency (EMA developed methods were validated in terms of specificity, accuracy, precision, linearity, and robustness. Results: On diffuse reflectance mode, an identification model based on discriminant analysis was successfully processed with 76 formulations; and same samples were also used for quantitative analysis using partial least square algorithm with four latent variables and 0.9937 correlation of coefficient followed by 2.17% root mean square error of calibration (RMSEC, 2.38% root mean square error of prediction (RMSEP, 2.43% root mean square error of cross-validation (RMSECV. Conclusion: Proposed model established a good relationship between the spectral information and AMOX identity as well as content. Resulted values show the performance of the proposed models which offers alternate choice for AMOX capsule evaluation, relative to that of well-established high-performance liquid chromatography method. Ultimately three commercial products were successfully evaluated

  14. Diffuse reflectance near infrared-chemometric methods development and validation of amoxicillin capsule formulations.

    Science.gov (United States)

    Khan, Ahmed Nawaz; Khar, Roop Krishen; Ajayakumar, P V

    2016-01-01

    The aim of present study was to establish near infrared-chemometric methods that could be effectively used for quality profiling through identification and quantification of amoxicillin (AMOX) in formulated capsule which were similar to commercial products. In order to evaluate a large number of market products easily and quickly, these methods were modeled. Thermo Scientific Antaris II near infrared analyzer with TQ Analyst Chemometric Software were used for the development and validation of the identification and quantification models. Several AMOX formulations were composed with four excipients microcrystalline cellulose, magnesium stearate, croscarmellose sodium and colloidal silicon dioxide. Development includes quadratic mixture formulation design, near infrared spectrum acquisition, spectral pretreatment and outlier detection. According to prescribed guidelines by International Conference on Harmonization (ICH) and European Medicine Agency (EMA) developed methods were validated in terms of specificity, accuracy, precision, linearity, and robustness. On diffuse reflectance mode, an identification model based on discriminant analysis was successfully processed with 76 formulations; and same samples were also used for quantitative analysis using partial least square algorithm with four latent variables and 0.9937 correlation of coefficient followed by 2.17% root mean square error of calibration (RMSEC), 2.38% root mean square error of prediction (RMSEP), 2.43% root mean square error of cross-validation (RMSECV). Proposed model established a good relationship between the spectral information and AMOX identity as well as content. Resulted values show the performance of the proposed models which offers alternate choice for AMOX capsule evaluation, relative to that of well-established high-performance liquid chromatography method. Ultimately three commercial products were successfully evaluated using developed methods.

  15. [Pretreatment method of near-infrared diffuse reflection spectra used for sugar content prediction of pears].

    Science.gov (United States)

    Wang, Wei-Ming; Dong, Da-Ming; Zheng, Wen-Gang; Zhao, Xian-De; Jiao, Lei-Zi; Wang, Ming-Fei

    2013-02-01

    The content of sugar is an important quality index for pears. However, the traditional sugar measurement methods are time-consuming and destructive. In the present study, the authors measured the sugar content of pears using visible and near infrared diffuse reflection spectroscopy. The pretreatment methods of multiplicative scatter correction (MSC), baseline correction, standard normal variate (SNV) transformation, and moving average algorithms were used on the original absorbance spectrum. Results indicate that the absorbance spectra after pretreatment are better than the original absorbance spectra for prediction. Partial least squares (PLS) regression was also used on the original absorbance spectrum and the absorbance spectrum after moving average and baseline correction. It follows that the forecast accuracy of the absorbance spectra after moving average is higher than that of the original absorbance spectra. The models gave good predictions of the sugar content of pears, with corresponding r values of 0.990 8, and standard errors of predictions of 0.019 0.

  16. Rapid Characterization of Fatty Acids in Oleaginous Microalgae by Near-Infrared Spectroscopy

    Science.gov (United States)

    Liu, Bin; Liu, Jin; Chen, Tianpeng; Yang, Bo; Jiang, Yue; Wei, Dong; Chen, Feng

    2015-01-01

    The key properties of microalgal biodiesel are largely determined by the composition of its fatty acid methyl esters (FAMEs). The gas chromatography (GC) based techniques for fatty acid analysis involve energy-intensive and time-consuming procedures and thus are less suitable for high-throughput screening applications. In the present study, a novel quantification method for microalgal fatty acids was established based on the near-infrared spectroscopy (NIRS) technique. The lyophilized cells of oleaginous Chlorella containing different contents of lipids were scanned by NIRS and their fatty acid profiles were determined by GC-MS. NIRS models were developed based on the chemometric correlation of the near-infrared spectra with fatty acid profiles in algal biomass. The optimized NIRS models showed excellent performances for predicting the contents of total fatty acids, C16:0, C18:0, C18:1 and C18:3, with the coefficient of determination (R2) being 0.998, 0.997, 0.989, 0.991 and 0.997, respectively. Taken together, the NIRS method established here bypasses the procedures of cell disruption, oil extraction and transesterification, is rapid, reliable, and of great potential for high-throughput applications, and will facilitate the screening of microalgal mutants and optimization of their growth conditions for biodiesel production. PMID:25826532

  17. Rapid assessment of selected free amino acids during Edam cheese ripening by near infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Jiří Mlček

    2013-01-01

    Full Text Available The study focuses on rapid determination of free amino acids produced during the ripening of cheese, by using near infrared spectroscopy. Analyses of 96 samples of Edam cheese (30% and 45% of fat in dry matter were performed at monthly intervals up to the ripening age of 6 months. In total, 19 amino acids were analysed with infrared spectrometer using two different methods, either in the regime of reflectance in the integrating sphere of the apparatus or using a fibre optic apparatus with the fibre optic probe. Reference data based on high-performance liquid chromatography were used for calibration of the spectrophotometer. Calibration models were developed using a partial least square algorithm and tested by means of cross-validation. When measured with the integrating sphere and with the probe, the values of correlation coefficients ranged from 0.835 to 0.993 and from 0.739 to 0.995, respectively. Paired t-test did not show significant differences between the reference and predicted values (P < 0.05. The results of this new calibration method showed the possibility of near infrared technology for fast determination of free amino acids, which occur during the ripening of Edam cheese. The content of free amino acids allow us to prepare Edam cheese quickly and efficiently for sale or to prepare the material for processed cheese.

  18. Rapid Characterization of Fatty Acids in Oleaginous Microalgae by Near-Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Bin Liu

    2015-03-01

    Full Text Available The key properties of microalgal biodiesel are largely determined by the composition of its fatty acid methyl esters (FAMEs. The gas chromatography (GC based techniques for fatty acid analysis involve energy-intensive and time-consuming procedures and thus are less suitable for high-throughput screening applications. In the present study, a novel quantification method for microalgal fatty acids was established based on the near-infrared spectroscopy (NIRS technique. The lyophilized cells of oleaginous Chlorella containing different contents of lipids were scanned by NIRS and their fatty acid profiles were determined by GC-MS. NIRS models were developed based on the chemometric correlation of the near-infrared spectra with fatty acid profiles in algal biomass. The optimized NIRS models showed excellent performances for predicting the contents of total fatty acids, C16:0, C18:0, C18:1 and C18:3, with the coefficient of determination (R2 being 0.998, 0.997, 0.989, 0.991 and 0.997, respectively. Taken together, the NIRS method established here bypasses the procedures of cell disruption, oil extraction and transesterification, is rapid, reliable, and of great potential for high-throughput applications, and will facilitate the screening of microalgal mutants and optimization of their growth conditions for biodiesel production.

  19. Application of a voltammetric electronic tongue and near infrared spectroscopy for a rapid umami taste assessment.

    Science.gov (United States)

    Bagnasco, Lucia; Cosulich, M Elisabetta; Speranza, Giovanna; Medini, Luca; Oliveri, Paolo; Lanteri, Silvia

    2014-08-15

    The relationships between sensory attribute and analytical measurements, performed by electronic tongue (ET) and near-infrared spectroscopy (NIRS), were investigated in order to develop a rapid method for the assessment of umami taste. Commercially available umami products and some aminoacids were submitted to sensory analysis. Results were analysed in comparison with the outcomes of analytical measurements. Multivariate exploratory analysis was performed by principal component analysis (PCA). Calibration models for prediction of the umami taste on the basis of ET and NIR signals were obtained using partial least squares (PLS) regression. Different approaches for merging data from the two different analytical instruments were considered. Both of the techniques demonstrated to provide information related with umami taste. In particular, ET signals showed the higher correlation with umami attribute. Data fusion was found to be slightly beneficial - not so significantly as to justify the coupled use of the two analytical techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Rapid authentication of adulteration of olive oil by near-infrared spectroscopy using support vector machines

    Science.gov (United States)

    Wu, Jingzhu; Dong, Jingjing; Dong, Wenfei; Chen, Yan; Liu, Cuiling

    2016-10-01

    A classification method of support vector machines with linear kernel was employed to authenticate genuine olive oil based on near-infrared spectroscopy. There were three types of adulteration of olive oil experimented in the study. The adulterated oil was respectively soybean oil, rapeseed oil and the mixture of soybean and rapeseed oil. The average recognition rate of second experiment was more than 90% and that of the third experiment was reach to 100%. The results showed the method had good performance in classifying genuine olive oil and the adulteration with small variation range of adulterated concentration and it was a promising and rapid technique for the detection of oil adulteration and fraud in the food industry.

  1. Moisture assay of an antifungal by near-infrared diffuse reflectance spectroscopy.

    Science.gov (United States)

    Dunko, Adam; Dovletoglou, Angelos

    2002-04-01

    Near-infrared (NIR) diffuse reflectance spectroscopy was employed in the method development and validation of a moisture assay for the novel antifungal caspofungin acetate. Spectra were obtained over the entire spectral region available (950-1650 nm) using an InGaAs photodiode array detector equipped with a diffuse reflectance probe. No sample pre-treatment was required and the analysis time was less than 1 min. Primary reference data were obtained using a Karl Fischer (KF) titration (coulometric, volumetric or both). The investigated range of water content was 2.6-9.9% (w/w) with a standard error of prediction (SEP) of 0.2%. The predictive capabilities of the partial least-squares (PLS) regression calibration model used in the moisture assay were verified using independent test sets. The NIR predicted values of the developed method were equivalent to the reference method sets and the prediction error was equivalent to the reference method error. These results reveal that the predictive model constructed by means of a PLS regression is valid, rugged and could be used to determine moisture levels on-line in caspofungin acetate drug substance.

  2. Room-temperature near-infrared electroluminescence from boron-diffused silicon pn junction diodes

    Directory of Open Access Journals (Sweden)

    Si eLi

    2015-02-01

    Full Text Available Silicon pn junction diodes with different doping concentrations were prepared by boron diffusion into Czochralski (CZ n-type silicon substrate. Their room-temperature near-infrared electroluminescence (EL was measured. In the EL spectra of the heavily boron doped diode, a luminescence peak at ~1.6 m (0.78 eV was observed besides the band-to-band line (~1.1eV under the condition of high current injection, while in that of the lightly boron doped diode only the band-to-band line was observed. The intensity of peak at 0.78 eV increases exponentially with current injection with no observable saturation at room temperature. Furthermore, no dislocations were found in the cross-sectional transmission electron microscopy image, and no dislocation-related luminescence was observed in the low-temperature photoluminescence spectra. We deduce the 0.78 eV emission originates from the irradiative recombination in the strain region of diodes caused by the diffusion of large number of boron atoms into silicon crystal lattice.

  3. Near infrared photoimmunotherapy rapidly elicits specific host immunity against cancer cells (Conference Presentation)

    Science.gov (United States)

    Kobayashi, Hisataka

    2017-02-01

    Near infrared photoimmunotherapy (NIR-PIT) is a new molecularly-targeted cancer photo-therapy based on conjugating a near infrared silica-phthalocyanine dye, IR700, to a monoclonal antibody (mAb) targeting cell-surface molecules. When exposed to NIR light, the conjugate induces a highly-selective necrotic/immunogenic cell death (ICD) only in target-positive, mAb-IR700-bound cancer cells. This cell death occurs as early as 1 minute after exposure to NIR light. Meanwhile, immediately adjacent target-negative cells are unharmed. Dynamic 3D-microscopy of live tumor cells undergoing NIR-PIT showed rapid swelling in treated cells immediately after light exposure, followed by irreversible morphologic changes such as bleb formation, and rupture of vesicles within several minutes. Furthermore, biological markers of ICD including relocation of HSP70/90 and calreticulin, and release of ATP and High Mobility Group Box 1 (HMGB1), were clearly detected immediately after NIR-PIT. When NIR-PIT was performed in a mixture of cancer cells and immature dendritic cells, maturation of immature dendritic cells was strongly induced rapidly after NIR-PIT. Alternatively, NIR-PIT can also target negative regulatory immune cells such as Treg only in the tumor bed. Treg targeting NIR-PIT against CD25 can deplete >80% of Treg in tumor bed within 20 min that induces activation of tumor cell-specific CD8+-T and NK cells within 1.5 hour, and then these activated cells killed cancer cells in local tumor within 1 day and also in distant tumors of the same cell origin within 2 days. In summary, cancer cell-targeting and immuno-suppressor cell-targeting NIR-PITs effectively induce innate and acquired immunity specifically against cancer cells growing in patients, respectively.

  4. On mimicking diffuse reflectance spectra in the visible and near-infrared ranges for tissue-like phantom design

    NARCIS (Netherlands)

    Debernardi, N.; Dunias, P.; El, B. van; Statham, A.E.

    2014-01-01

    A novel methodology is presented to mimic diffuse reflectance spectra of arbitrary biological tissues in the visible and near-infrared ranges. The prerequisite for this method is that the spectral information of basic components is sufficient to mimic an arbitrary tissue. Using a sterile disposable

  5. Cerebral monitoring during carotid endarterectomy using near-infrared diffuse optical spectroscopies and electroencephalogram

    Energy Technology Data Exchange (ETDEWEB)

    Shang Yu; Cheng Ran; Dong Lixin; Yu Guoqiang [Center for Biomedical Engineering, University of Kentucky, KY (United States); Ryan, Stephen J [Department of Neurology, University of Kentucky, KY (United States); Saha, Sibu P, E-mail: guoqiang.yu@uky.edu [Division of Cardiothoracic Surgery, University of Kentucky, KY (United States)

    2011-05-21

    Intraoperative monitoring of cerebral hemodynamics during carotid endarterectomy (CEA) provides essential information for detecting cerebral hypoperfusion induced by temporary internal carotid artery (ICA) clamping and post-CEA hyperperfusion syndrome. This study tests the feasibility and sensitivity of a novel dual-wavelength near-infrared diffuse correlation spectroscopy technique in detecting cerebral blood flow (CBF) and cerebral oxygenation in patients undergoing CEA. Two fiber-optic probes were taped on both sides of the forehead for cerebral hemodynamic measurements, and the instantaneous decreases in CBF and electroencephalogram (EEG) alpha-band power during ICA clamping were compared to test the measurement sensitivities of the two techniques. The ICA clamps resulted in significant CBF decreases (-24.7 {+-} 7.3%) accompanied with cerebral deoxygenation at the surgical sides (n = 12). The post-CEA CBF were significantly higher (+43.2 {+-} 16.9%) than the pre-CEA CBF. The CBF responses to ICA clamping were significantly faster, larger and more sensitive than EEG responses. Simultaneous monitoring of CBF, cerebral oxygenation and EEG power provides a comprehensive evaluation of cerebral physiological status, thus showing potential for the adoption of acute interventions (e.g., shunting, medications) during CEA to reduce the risks of severe cerebral ischemia and cerebral hyperperfusion syndrome.

  6. Detection of canine skin and subcutaneous tumors by visible and near-infrared diffuse reflectance spectroscopy

    Science.gov (United States)

    Cugmas, Blaž; Plavec, Tanja; Bregar, Maksimilijan; Naglič, Peter; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran

    2015-03-01

    Cancer is the main cause of canine morbidity and mortality. The existing evaluation of tumors requires an experienced veterinarian and usually includes invasive procedures (e.g., fine-needle aspiration) that can be unpleasant for the dog and the owner. We investigate visible and near-infrared diffuse reflectance spectroscopy (DRS) as a noninvasive optical technique for evaluation and detection of canine skin and subcutaneous tumors ex vivo and in vivo. The optical properties of tumors and skin were calculated in a spectrally constrained manner, using a lookup table-based inverse model. The obtained optical properties were analyzed and compared among different tumor groups. The calculated parameters of the absorption and reduced scattering coefficients were subsequently used for detection of malignant skin and subcutaneous tumors. The detection sensitivity and specificity of malignant tumors ex vivo were 90.0% and 73.5%, respectively, while corresponding detection sensitivity and specificity of malignant tumors in vivo were 88.4% and 54.6%, respectively. The obtained results show that the DRS is a promising noninvasive optical technique for detection and classification of malignant and benign canine skin and subcutaneous tumors. The method should be further investigated on tumors with common origin.

  7. Intraoperative evaluation of revascularization effect on ischemic muscle hemodynamics using near-infrared diffuse optical spectroscopies

    Science.gov (United States)

    Yu, Guoqiang; Shang, Yu; Zhao, Youquan; Cheng, Ran; Dong, Lixin; Saha, Sibu P.

    2011-02-01

    Arterial revascularization in patients with peripheral arterial disease (PAD) reestablishes large arterial blood supply to the ischemic muscles in lower extremities via bypass grafts or percutaneous transluminal angioplasty (PTA). Currently no gold standard is available for assessment of revascularization effects in lower extremity muscles. This study tests a novel near-infrared diffuse correlation spectroscopy flow-oximeter for monitoring of blood flow and oxygenation changes in medial gastrocnemius (calf) muscles during arterial revascularization. Twelve limbs with PAD undergoing revascularization were measured using a sterilized fiber-optic probe taped on top of the calf muscle. The optical measurement demonstrated sensitivity to dynamic physiological events, such as arterial clamping/releasing during bypass graft and balloon inflation/deflation during PTA. Significant elevations in calf muscle blood flow were observed after revascularization in patients with bypass graft (+48.1 +/- 17.5%) and patients with PTA (+43.2 +/- 11.0%), whereas acute post-revascularization effects in muscle oxygenation were not evident. The decoupling of flow and oxygenation after revascularization emphasizes the need for simultaneous measurement of both parameters. The acute elevations/improvements in calf muscle blood flow were associated with significant improvements in symptoms and functions. In total, the investigation corroborates potential of the optical methods for objectively assessing the success of arterial revascularization.

  8. Cerebral monitoring during carotid endarterectomy using near-infrared diffuse optical spectroscopies and electroencephalogram

    Science.gov (United States)

    Shang, Yu; Cheng, Ran; Dong, Lixin; Ryan, Stephen J.; Saha, Sibu P.; Yu, Guoqiang

    2011-05-01

    Intraoperative monitoring of cerebral hemodynamics during carotid endarterectomy (CEA) provides essential information for detecting cerebral hypoperfusion induced by temporary internal carotid artery (ICA) clamping and post-CEA hyperperfusion syndrome. This study tests the feasibility and sensitivity of a novel dual-wavelength near-infrared diffuse correlation spectroscopy technique in detecting cerebral blood flow (CBF) and cerebral oxygenation in patients undergoing CEA. Two fiber-optic probes were taped on both sides of the forehead for cerebral hemodynamic measurements, and the instantaneous decreases in CBF and electroencephalogram (EEG) alpha-band power during ICA clamping were compared to test the measurement sensitivities of the two techniques. The ICA clamps resulted in significant CBF decreases (-24.7 ± 7.3%) accompanied with cerebral deoxygenation at the surgical sides (n = 12). The post-CEA CBF were significantly higher (+43.2 ± 16.9%) than the pre-CEA CBF. The CBF responses to ICA clamping were significantly faster, larger and more sensitive than EEG responses. Simultaneous monitoring of CBF, cerebral oxygenation and EEG power provides a comprehensive evaluation of cerebral physiological status, thus showing potential for the adoption of acute interventions (e.g., shunting, medications) during CEA to reduce the risks of severe cerebral ischemia and cerebral hyperperfusion syndrome.

  9. NEAR INFRARED DIFFUSE INTERSTELLAR BANDS TOWARD THE CYGNUS OB2 ASSOCIATION

    Energy Technology Data Exchange (ETDEWEB)

    Hamano, Satoshi; Kondo, Sohei; Sameshima, Hiroaki; Nakanishi, Kenshi; Kawakita, Hideyo [Laboratory of Infrared High-resolution Spectroscopy, Koyama Astronomical Observatory, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan); Kobayashi, Naoto [Institute of Astronomy, School of Science, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Ikeda, Yuji [Photocoding, 460-102 Iwakura-Nakamachi, Sakyo-ku, Kyoto, 606-0025 (Japan); Yasui, Chikako; Mizumoto, Misaki; Matsunaga, Noriyuki; Fukue, Kei; Yamamoto, Ryo; Izumi, Natsuko [Department of Astronomy, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Mito, Hiroyuki [Kiso Observatory, Institute of Astronomy, School of Science, The University of Tokyo, 10762-30 Mitake, Kiso-machi, Kiso-gun, Nagano, 397-0101 (Japan); Nakaoka, Tetsuya; Kawanishi, Takafumi; Kitano, Ayaka; Otsubo, Shogo [Department of Physics, Faculty of Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan); Kinoshita, Masaomi, E-mail: hamano@cc.kyoto-su.ac.jp [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 (Japan)

    2016-04-10

    We obtained the near-infrared (NIR) high-resolution (R ≡ λ/Δλ ∼ 20,000) spectra of the seven brightest early-type stars in the Cygnus OB2 association for investigating the environmental dependence of diffuse interstellar bands (DIBs). The WINERED spectrograph mounted on the Araki 1.3 m telescope in Japan was used to collect data. All 20 of the known DIBs within the wavelength coverage of WINERED (0.91 < λ < 1.36 μm) were clearly detected along all lines of sight because of their high flux density in the NIR wavelength range and the large extinction. The equivalent widths (EWs) of DIBs were not correlated with the column densities of C{sub 2} molecules, which trace the patchy dense component, suggesting that the NIR DIB carriers are distributed mainly in the diffuse component. On the basis of the correlations among the NIR DIBs both for stars in Cyg OB2 and stars observed previously, λλ10780, 10792, 11797, 12623, and 13175 are found to constitute a “family,” in which the DIBs are correlated well over the wide EW range. In contrast, the EW of λ10504 is found to remain almost constant over the stars in Cyg OB2. The extinction estimated from the average EW of λ10504 (A{sub V} ∼ 3.6 mag) roughly corresponds to the lower limit of the extinction distribution of OB stars in Cyg OB2. This suggests that λ10504 is absorbed only by the foreground clouds, implying that the carrier of λ10504 is completely destroyed in Cyg OB2, probably by the strong UV radiation field. The different behaviors of the DIBs may be caused by different properties of the DIB carriers.

  10. Baseline Correction of Diffuse Reflection Near-Infrared Spectra Using Searching Region Standard Normal Variate (SRSNV).

    Science.gov (United States)

    Genkawa, Takuma; Shinzawa, Hideyuki; Kato, Hideaki; Ishikawa, Daitaro; Murayama, Kodai; Komiyama, Makoto; Ozaki, Yukihiro

    2015-12-01

    An alternative baseline correction method for diffuse reflection near-infrared (NIR) spectra, searching region standard normal variate (SRSNV), was proposed. Standard normal variate (SNV) is an effective pretreatment method for baseline correction of diffuse reflection NIR spectra of powder and granular samples; however, its baseline correction performance depends on the NIR region used for SNV calculation. To search for an optimal NIR region for baseline correction using SNV, SRSNV employs moving window partial least squares regression (MWPLSR), and an optimal NIR region is identified based on the root mean square error (RMSE) of cross-validation of the partial least squares regression (PLSR) models with the first latent variable (LV). The performance of SRSNV was evaluated using diffuse reflection NIR spectra of mixture samples consisting of wheat flour and granular glucose (0-100% glucose at 5% intervals). From the obtained NIR spectra of the mixture in the 10 000-4000 cm(-1) region at 4 cm intervals (1501 spectral channels), a series of spectral windows consisting of 80 spectral channels was constructed, and then SNV spectra were calculated for each spectral window. Using these SNV spectra, a series of PLSR models with the first LV for glucose concentration was built. A plot of RMSE versus the spectral window position obtained using the PLSR models revealed that the 8680–8364 cm(-1) region was optimal for baseline correction using SNV. In the SNV spectra calculated using the 8680–8364 cm(-1) region (SRSNV spectra), a remarkable relative intensity change between a band due to wheat flour at 8500 cm(-1) and that due to glucose at 8364 cm(-1) was observed owing to successful baseline correction using SNV. A PLSR model with the first LV based on the SRSNV spectra yielded a determination coefficient (R2) of 0.999 and an RMSE of 0.70%, while a PLSR model with three LVs based on SNV spectra calculated in the full spectral region gave an R2 of 0.995 and an RMSE of

  11. Rapid identification of illegal synthetic adulterants in herbal anti-diabetic medicines using near infrared spectroscopy

    Science.gov (United States)

    Feng, Yanchun; Lei, Deqing; Hu, Changqin

    We created a rapid detection procedure for identifying herbal medicines illegally adulterated with synthetic drugs using near infrared spectroscopy. This procedure includes a reverse correlation coefficient method (RCCM) and comparison of characteristic peaks. Moreover, we made improvements to the RCCM based on new strategies for threshold settings. Any tested herbal medicine must meet two criteria to be identified with our procedure as adulterated. First, the correlation coefficient between the tested sample and the reference must be greater than the RCCM threshold. Next, the NIR spectrum of the tested sample must contain the same characteristic peaks as the reference. In this study, four pure synthetic anti-diabetic drugs (i.e., metformin, gliclazide, glibenclamide and glimepiride), 174 batches of laboratory samples and 127 batches of herbal anti-diabetic medicines were used to construct and validate the procedure. The accuracy of this procedure was greater than 80%. Our data suggest that this protocol is a rapid screening tool to identify synthetic drug adulterants in herbal medicines on the market.

  12. Rapid determination of hyaluronic acid concentration in fermentation broth with near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Qin Dong

    2014-11-01

    Full Text Available Hyaluronic acid (HA concentration is an important parameter in fermentation process. Currently, carbazole assay is widely used for HA content determination in routine analysis. However, this method is time-consuming, environment polluting and has the risk of microbial contamination, as well as the results lag behind fermentation process. This paper attempted the feasibility to predict the concentration of HA in fermentation broth by using near infrared (NIR spectroscopy in transmission mode. In this work, a total of 56 samples of fermentation broth from 7 batches were analyzed, which contained HA in the range of 2.35–9.69 g/L. Different data preprocessing methods were applied to construct calibration models. The final optimal model was obtained with first derivative using Savitzky–Golay smoothing (9 points window, second-order polynomial and partial least squares (PLS regression with leave-one-block-out cross validation. The correlation coefficient and Root Mean Square Error of prediction set is 0.98 and 0.43 g/L, respectively, which show the possibility of NIR as a rapid method for microanalysis and to be a promising tool for a rapid assay in HA fermentation.

  13. Galactic Latitude Dependence of Near-infrared Diffuse Galactic Light: Thermal Emission or Scattered Light?

    Science.gov (United States)

    Sano, K.; Matsuura, S.

    2017-11-01

    Near-infrared (IR) diffuse Galactic light (DGL) consists of scattered light and thermal emission from interstellar dust grains illuminated by the interstellar radiation field (ISRF). At 1.25 and 2.2 μ {{m}}, a recent observational study shows that intensity ratios of the DGL to interstellar 100 μ {{m}} dust emission steeply decrease toward high Galactic latitudes (b). In this paper, we investigate the origin(s) of the b-dependence on the basis of models of thermal emission and scattered light. Combining a thermal emission model with the regional variation of the polycyclic aromatic hydrocarbon abundance observed with Planck, we show that the contribution of the near-IR thermal emission component to the observed DGL is lower than ∼ 20 % . We also examine the b-dependence of the scattered light, assuming a plane–parallel Galaxy with smooth distributions of the ISRF and dust density along the vertical direction, and assuming a scattering phase function according to a recently developed model of interstellar dust. We normalize the scattered light intensity to the 100 μ {{m}} intensity corrected for deviation from the cosecant-b law according to the Planck observation. As the result, the present model that considers the b-dependence of dust and the ISRF properties can account for the observed b-dependence of the near-IR DGL. However, the uncertainty in the correction for the 100 μ {{m}} emission is large, and other normalizing quantities may be appropriate for a more robust analysis of the DGL.

  14. Interhemispheric connectivity in amyotrophic lateral sclerosis: A near-infrared spectroscopy and diffusion tensor imaging study.

    Science.gov (United States)

    Kopitzki, Klaus; Oldag, Andreas; Sweeney-Reed, Catherine M; Machts, Judith; Veit, Maria; Kaufmann, Jörn; Hinrichs, Hermann; Heinze, Hans-Jochen; Kollewe, Katja; Petri, Susanne; Mohammadi, Bahram; Dengler, Reinhard; Kupsch, Andreas R; Vielhaber, Stefan

    2016-01-01

    Aim of the present study was to investigate potential impairment of non-motor areas in amyotrophic lateral sclerosis (ALS) using near-infrared spectroscopy (NIRS) and diffusion tensor imaging (DTI). In particular, we evaluated whether homotopic resting-state functional connectivity (rs-FC) of non-motor associated cortical areas correlates with clinical parameters and disease-specific degeneration of the corpus callosum (CC) in ALS. Interhemispheric homotopic rs-FC was assessed in 31 patients and 30 healthy controls (HCs) for 8 cortical sites, from prefrontal to occipital cortex, using NIRS. DTI was performed in a subgroup of 21 patients. All patients were evaluated for cognitive dysfunction in the executive, memory, and visuospatial domains. ALS patients displayed an altered spatial pattern of correlation between homotopic rs-FC values when compared to HCs (p = 0.000013). In patients without executive dysfunction a strong correlation existed between the rate of motor decline and homotopic rs-FC of the anterior temporal lobes (ATLs) (ρ = - 0.85, p = 0.0004). Furthermore, antero-temporal homotopic rs-FC correlated with fractional anisotropy in the central corpus callosum (CC), corticospinal tracts (CSTs), and forceps minor as determined by DTI (p < 0.05). The present study further supports involvement of non-motor areas in ALS. Our results render homotopic rs-FC as assessed by NIRS a potential clinical marker for disease progression rate in ALS patients without executive dysfunction and a potential anatomical marker for ALS-specific degeneration of the CC and CSTs.

  15. Application of near-infrared spectroscopy for the rapid quality assessment of Radix Paeoniae Rubra

    Science.gov (United States)

    Zhan, Hao; Fang, Jing; Tang, Liying; Yang, Hongjun; Li, Hua; Wang, Zhuju; Yang, Bin; Wu, Hongwei; Fu, Meihong

    2017-08-01

    Near-infrared (NIR) spectroscopy with multivariate analysis was used to quantify gallic acid, catechin, albiflorin, and paeoniflorin in Radix Paeoniae Rubra, and the feasibility to classify the samples originating from different areas was investigated. A new high-performance liquid chromatography method was developed and validated to analyze gallic acid, catechin, albiflorin, and paeoniflorin in Radix Paeoniae Rubra as the reference. Partial least squares (PLS), principal component regression (PCR), and stepwise multivariate linear regression (SMLR) were performed to calibrate the regression model. Different data pretreatments such as derivatives (1st and 2nd), multiplicative scatter correction, standard normal variate, Savitzky-Golay filter, and Norris derivative filter were applied to remove the systematic errors. The performance of the model was evaluated according to the root mean square of calibration (RMSEC), root mean square error of prediction (RMSEP), root mean square error of cross-validation (RMSECV), and correlation coefficient (r). The results show that compared to PCR and SMLR, PLS had a lower RMSEC, RMSECV, and RMSEP and higher r for all the four analytes. PLS coupled with proper pretreatments showed good performance in both the fitting and predicting results. Furthermore, the original areas of Radix Paeoniae Rubra samples were partly distinguished by principal component analysis. This study shows that NIR with PLS is a reliable, inexpensive, and rapid tool for the quality assessment of Radix Paeoniae Rubra.

  16. Rapid estimation of nutritional elements on citrus leaves by near infrared reflectance spectroscopy

    Science.gov (United States)

    Galvez-Sola, Luis; García-Sánchez, Francisco; Pérez-Pérez, Juan G.; Gimeno, Vicente; Navarro, Josefa M.; Moral, Raul; Martínez-Nicolás, Juan J.; Nieves, Manuel

    2015-01-01

    Sufficient nutrient application is one of the most important factors in producing quality citrus fruits. One of the main guides in planning citrus fertilizer programs is by directly monitoring the plant nutrient content. However, this requires analysis of a large number of leaf samples using expensive and time-consuming chemical techniques. Over the last 5 years, it has been demonstrated that it is possible to quantitatively estimate certain nutritional elements in citrus leaves by using the spectral reflectance values, obtained by using near infrared reflectance spectroscopy (NIRS). This technique is rapid, non-destructive, cost-effective and environmentally friendly. Therefore, the estimation of macro and micronutrients in citrus leaves by this method would be beneficial in identifying the mineral status of the trees. However, to be used effectively NIRS must be evaluated against the standard techniques across different cultivars. In this study, NIRS spectral analysis, and subsequent nutrient estimations for N, K, Ca, Mg, B, Fe, Cu, Mn, and Zn concentration, were performed using 217 leaf samples from different citrus trees species. Partial least square regression and different pre-processing signal treatments were used to generate the best estimation against the current best practice techniques. It was verified a high proficiency in the estimation of N (Rv = 0.99) and Ca (Rv = 0.98) as well as achieving acceptable estimation for K, Mg, Fe, and Zn. However, no successful calibrations were obtained for the estimation of B, Cu, and Mn. PMID:26257767

  17. AO–MW–PLS method applied to rapid quantification of teicoplanin with near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Jiemei Chen

    2017-01-01

    Full Text Available Teicoplanin (TCP is an important lipoglycopeptide antibiotic produced by fermenting Actinoplanes teichomyceticus. The change in TCP concentration is important to measure in the fermentation process. In this study, a reagent-free and rapid quantification method for TCP in the TCP–Tris–HCl mixture samples was developed using near-infrared (NIR spectroscopy by focusing our attention on the fermentation process for TCP. The absorbance optimization (AO partial least squares (PLS was proposed and integrated with the moving window (MW PLS, which is called AO–MW–PLS method, to select appropriate wavebands. A model set that includes various wavebands that were equivalent to the optimal AO–MW–PLS waveband was proposed based on statistical considerations. The public region of all equivalent wavebands was just one of the equivalent wavebands. The obtained public regions were 1540–1868nm for TCP and 1114–1310nm for Tris. The root-mean-square error and correlation coefficient for leave-one-out cross validation were 0.046mg mL−1 and 0.9998mg mL−1 for TCP, and 0.235mg mL−1 and 0.9986mg mL−1 for Tris, respectively. All the models achieved highly accurate prediction effects, and the selected wavebands provided valuable references for designing specialized spectrometers. This study provided a valuable reference for further application of the proposed methods to TCP fermentation broth and to other spectroscopic analysis fields.

  18. Rapid analysis of methanol in grape-derived distillation products using near-infrared transmission spectroscopy.

    Science.gov (United States)

    Dambergs, Robert G; Kambouris, Ambrosias; Francis, I Leigh; Gishen, Mark

    2002-05-22

    Samples of distillates derived from the production of wine-fortifying spirit were analyzed for methanol by gas chromatography (GC) and near-infrared spectroscopy (NIRS). NIRS calibration models were developed which could accurately predict methanol concentrations in samples of fortifying spirit that had been produced over a period of three years from four different commercial distillation facilities. The best accuracy of the predictive models, as measured by the standard error of prediction value, was 0.06 g/L methanol. Other distillation fractions, produced during preparation of commercial fortifying spirit, were also examined. The most useful NIRS calibration models used partial least squares regression on continuous spectra from a scanning instrument, but it was demonstrated that calibrations could also be developed with a smaller number of fixed wavelengths, using multiple linear regression models. NIRS offers the advantages of rapid analysis, with simple routine operation, and may offer the potential for in-line process control in the operation of a commercial distillation facility.

  19. Hemodynamic measurements in rat brain and human muscle using diffuse near-infrared absorption and correlation spectroscopies

    Science.gov (United States)

    Yu, Guoqiang; Durduran, Turgut; Furuya, D.; Lech, G.; Zhou, Chao; Chance, Britten; Greenberg, J. H.; Yodh, Arjun G.

    2003-07-01

    Measurement of concentration, oxygenation, and flow characteristics of blood cells can reveal information about tissue metabolism and functional heterogeneity. An improved multifunctional hybrid system has been built on the basis of our previous hybrid instrument that combines two near-infrared diffuse optical techniques to simultaneously monitor the changes of blood flow, total hemoglobin concentration (THC) and blood oxygen saturation (StO2). Diffuse correlation spectroscopy (DCS) monitors blood flow (BF) by measuring the optical phase shifts caused by moving blood cells, while diffuse photon density wave spectroscopy (DPDW) measures tissue absorption and scattering. Higher spatial resolution, higher data acquisition rate and higher dynamic range of the improved system allow us to monitor rapid hemodynamic changes in rat brain and human muscles. We have designed two probes with different source-detector pairs and different separations for the two types of experiments. A unique non-contact probe mounted on the back of a camera, which allows continuous measurements without altering the blood flow, was employed to in vivo monitor the metabolic responses in rat brain during KCl induced cortical spreading depression (CSD). A contact probe was used to measure changes of blood flow and oxygenation in human muscle during and after cuff occlusion or exercise, where the non-contact probe is not appropriate for monitoring the moving target. The experimental results indicate that our multifunctional hybrid system is capable of in vivo and non-invasive monitoring of the hemodynamic changes in different tissues (smaller tissues in rat brain, larger tissues in human muscle) under different conditions (static versus moving). The time series images of flow during CSD obtained by our technique revealed spatial and temporal hemodynamic changes in rat brain. Two to three fold longer recovery times of flow and oxygenation after cuff occlusion or exercise from calf flexors in a

  20. NEAR-INFRARED AUTOFLUORESCENCE IN BILATERAL DIFFUSE UVEAL MELANOCYTIC PROLIFERATION ASSOCIATED WITH ESOPHAGEAL CARCINOMA AND CHOROIDAL METASTASIS.

    Science.gov (United States)

    Golshahi, Azadeh; Bornfeld, Norbert; Weinitz, Silke; Kellner, Ulrich

    2016-01-01

    To investigate the advantage of near-infrared autofluorescence (787 nm) for the detection of melanocytic lesions in a patient with bilateral diffuse uveal melanocytic proliferation in association with esophageal carcinoma complicated by most likely unilateral choroidal metastasis. In this retrospective case report, a 55-year-old woman referred for the evaluation of sudden visual loss underwent normal ophthalmological evaluation and, in addition, was examined with near-infrared reflectance, near-infrared autofluorescence, fundus autofluorescence (Heidelberg Retina Angiograph II [HRA2; Heidelberg Engineering]), spectral domain optical coherence tomography (Spectralis OCT; Heidelberg Engineering), and multifocal electroretinography (RetiScan; Roland Consult). The patient had been diagnosed with esophageal carcinoma 3 months before the onset of visual symptoms. The visual acuity was 20/40 in the right eye and 20/20 in the left eye. Bilateral patchy melanocytic proliferation was detected on ophthalmoscopy. The extent of lesions was best detected with near-infrared reflectance and near-infrared autofluorescence, whereas fundus autofluorescence and spectral domain optical coherence tomography did not reveal alterations of the outer retina or retinal pigment epithelium in this early stage of bilateral diffuse uveal melanocytic proliferation. The right eye showed in addition to the findings on the left eye choroidal folds in the fovea and an elevated lesion inferotemporal of the fovea suspicious of a choroidal metastasis. In the B-scan ultrasonography, a homogenous lesion was seen. Spectral domain optical coherence tomography demonstrated a mild accumulation of subretinal fluid adjacent to and over the choroidal metastasis. Transretinal biopsy of this elevated lesion revealed a low differentiated carcinoma of squamous epithelium, compatible with choroidal metastasis of the esophageal carcinoma. The choroidal metastasis increased within 3 months after the first visit. The

  1. [Rapid determination of fatty acids in soybean oils by transmission reflection-near infrared spectroscopy].

    Science.gov (United States)

    Song, Tao; Zhang, Feng-ping; Liu, Yao-min; Wu, Zong-wen; Suo, You-rui

    2012-08-01

    In the present research, a novel method was established for determination of five fatty acids in soybean oil by transmission reflection-near infrared spectroscopy. The optimum conditions of mathematics model of five components (C16:0, C18:0, C18:1, C18:2 and C18:3) were studied, including the sample set selection, chemical value analysis, the detection methods and condition. Chemical value was analyzed by gas chromatography. One hundred fifty eight samples were selected, 138 for modeling set, 10 for testing set and 10 for unknown sample set. All samples were placed in sample pools and scanned by transmission reflection-near infrared spectrum after sonicleaning for 10 minute. The 1100-2500 nm spectral region was analyzed. The acquisition interval was 2 nm. Modified partial least square method was chosen for calibration mode creating. Result demonstrated that the 1-VR of five fatty acids between the reference value of the modeling sample set and the near infrared spectrum predictive value were 0.8839, 0.5830, 0.9001, 0.9776 and 0.9596, respectively. And the SECV of five fatty acids between the reference value of the modeling sample set and the near infrared spectrum predictive value were 0.42, 0.29, 0.83, 0.46 and 0.21, respectively. The standard error of the calibration (SECV) of five fatty acids between the reference value of testing sample set and the near infrared spectrum predictive value were 0.891, 0.790, 0.900, 0.976 and 0.942, respectively. It was proved that the near infrared spectrum predictive value was linear with chemical value and the mathematical model established for fatty acids of soybean oil was feasible. For validation, 10 unknown samples were selected for analysis by near infrared spectrum. The result demonstrated that the relative standard deviation between predict value and chemical value was less than 5.50%. That was to say that transmission reflection-near infrared spectroscopy had a good veracity in analysis of fatty acids of soybean oil.

  2. Combining Near-Infrared Spectroscopy and Chemometrics for Rapid Recognition of an Hg-Contaminated Plant

    Directory of Open Access Journals (Sweden)

    Bang-Cheng Tang

    2016-01-01

    Full Text Available The feasibility of rapid recognition of an Hg-contaminated plant as a soil pollution indicator was investigated using near-infrared spectroscopy (NIRS and chemometrics. The stem and leave of a native plant, Miscanthus floridulus (Labill. Warb. (MFLW, were collected from Hg-contaminated areas (n1=125 as well as from regular areas (n2=116. The samples were dried and crushed and the powders were sieved through an 80-mesh sieve. Reference analysis of Hg levels was performed using inductively coupled plasma-atomic emission spectrometry (ICP-AES. The actual Hg contents of contaminated and normal samples were 16.2–30.5 and 0.0–0.1 mg/Kg, respectively. The NIRS measurements of impacted sample powders were collected in the mode of reflectance. The DUPLEX algorithm was utilized to split the NIRS data into representative training and test sets. Different spectral preprocessing methods were performed to remove the unwanted and noncomposition-correlated spectral variations. Classification models were developed using partial least squares discrimination analysis (PLSDA based on the raw, smoothed, second-order derivative (D2, and standard normal variate (SNV data, respectively. The prediction accuracy obtained by PLSDA with each data preprocessing option was 100%, indicating pattern recognition of Hg-contaminated MFLW samples using NIRS data was in perfect consistence with the ICP-AES results. NIRS combined with chemometrics will provide a tool to screen the Hg-contaminated MFLW, which can be potentially used as an indicator of soil pollution.

  3. Rapid biochemical methane potential prediction of urban organic waste with near-infrared reflectance spectroscopy

    DEFF Research Database (Denmark)

    Fitamo, Temesgen Mathewos; Triolo, Jin Mi; Boldrin, Alessio

    2017-01-01

    . The aim of the present study is to develop a fast and reliable model based on near-infrared reflectance spectroscopy (NIRS) for the BMP prediction of urban organic waste (UOW). The model comprised 87 UOW samples. Additionally, 88 plant biomass samples were included, to develop a combined model predicting...

  4. Rapid Determination of Biochar Energy Quality Based on Visible and Near-infrared Spectroscopy (400-1000nm)

    OpenAIRE

    Yang Hai-Qing; Guo Geng-Xin; Ji Jian-Bing

    2016-01-01

    Rapid determination of biochar energy quality is fundamental for the purpose of biomass efficient utilization. In this work, visible and near-infrared spectroscopy was used to measure ash, volatile matter, fixed carbon content and calorific value of biochar samples produced at different pyrolysis temperatures from agricultural biomass feedstocks. Biochar samples were detected by a USB4000 spectrometer with 400-1000nm reflectance spectra recorded for investigation. The spectra were transformed...

  5. [Rapidly determination of compositions of animal manure compost using near infrared reflectance spectroscopy].

    Science.gov (United States)

    Huang, Guang-Qun; Han, Lu-Jia; Yang, Zeng-Ling

    2007-11-01

    Composting is a process of aerobic thermophilic microbial degradation or an exothermic biological oxidation of various wastes by many populations of the indigenous microorganisms, which lead to a stabilized, mature, deodorized and hygienic product, free of pathogens and plant seeds, rich in humic substances, less volume, easy to store and marketable as organic amendment or fertilizer. Compared to the conventional wet chemical method, near-infrared reflectance spectroscopy (NIRS), a rapid, nondestructive, cost-effective technique, has been extensively used for qualitative and quantitative analysis in the field of agriculture. This study was to explore the capability of NIRS to analyze the compositions of Chinese animal manure compost. A representative population of 120 animal manure compost samples from 22 provinces in China was selected as research object, and this study explored the feasibility of analyzing animal manure compost compositions, which included moisture (Moist), volatile solid (VS), total organic carbon (TOC), total nitrogen (TN), C : N, pH and Electronic conductivity (EC) using NIRS. Original samples were scanned with a SPECTRUM ONE NTS (Perkin Elmer, New Jersey, USA) from 10 000 to 4 000 cm(-1). NIRS calibrations of a series of chemical parameters were developed by means of partial least-squares (PLS) regression. Results showed that the determination coefficient of calibration (r2) and the standard error of estimate (SEE) were Moist (0.981 6, 21.98), VS (0.936 5, 37.29), TOC (0.961 0, 16.46), TN (0.987 4, 1.61), C : N (0.741 0, 2.29), pH (0.788 0, 0.48) and EC (0.870 4, 1.74), respectively. The determination coefficient of validation (r2(V)) and the standard error of prediction (SEP) were Moist (0.983 2, 20.99), VS (0.938 1, 35.07), TOC (0.912 8, 26.34), TN (0.973 5, 3.96), C : N (0.830 8, 2.01), pH (0. 615 8, 0.60) and EC (0.895 3, 1.87), respectively. The value of RPD (SD/SEP) for Moist, VS, TOC, TN and EC were all greater than 3.0, 2.39 for C : N

  6. Potential of Visible and Near Infrared Spectroscopy and Pattern Recognition for Rapid Quantification of Notoginseng Powder with Adulterants

    Directory of Open Access Journals (Sweden)

    Yidan Bao

    2013-10-01

    Full Text Available Notoginseng is a classical traditional Chinese medical herb, which is of high economic and medical value. Notoginseng powder (NP could be easily adulterated with Sophora flavescens powder (SFP or corn flour (CF, because of their similar tastes and appearances and much lower cost for these adulterants. The objective of this study is to quantify the NP content in adulterated NP by using a rapid and non-destructive visible and near infrared (Vis-NIR spectroscopy method. Three wavelength ranges of visible spectra, short-wave near infrared spectra (SNIR and long-wave near infrared spectra (LNIR were separately used to establish the model based on two calibration methods of partial least square regression (PLSR and least-squares support vector machines (LS-SVM, respectively. Competitive adaptive reweighted sampling (CARS was conducted to identify the most important wavelengths/variables that had the greatest influence on the adulterant quantification throughout the whole wavelength range. The CARS-PLSR models based on LNIR were determined as the best models for the quantification of NP adulterated with SFP, CF, and their mixtures, in which the rP values were 0.940, 0.939, and 0.867 for the three models respectively. The research demonstrated the potential of the Vis-NIR spectroscopy technique for the rapid and non-destructive quantification of NP containing adulterants.

  7. [Rapid diagnostics of early phosphorus deficiency in mini-cucumber plants under protected cultivation by near infrared spectroscopy].

    Science.gov (United States)

    Shi, Ji-yong; Zou, Xiao-bo; Zhao, Jie-wen; Mao, Han-ping; Wang, Kai-liang; Chen, Zheng-wei; Huang, Xiao-wei

    2011-12-01

    The morphological symptom of phosphorus deficiency at early stage is similar to the appearance of leaf aging process in preliminary phase, so that visual diagnostics of phosphorus deficiency in mini-cucumber plants at early stage is practically impossible. Near infrared reflectance spectra contain information about differences in compositions of leaf tissues between phosphorus-deficient plants and healthy plants. In the present paper, near infrared reflectance spectroscopy was used to provide diagnostic information on phosphorus deficiency of mini-cucumber plants grown under non-soil conditions. Near infrared spectra was collected from 90 leaves of mini-cucumber plants. Raw cucumber spectra was preprocessed by SNV and divided into 27 intervals. The top 10 principal components (PCs) were extracted as the input of BP-ANN classifiers by principal component analysis (PCA) while the values of nutrient deficient were used as the output variables of BP-ANN and three layers BP-ANN discrimination model was built. The best experiment results were based on the top 3 principal components of No. 7 interval when the spectra was divided into 27 intervals and identification rates of the ANN model are 100% in both training set and the prediction set. The overall results show that NIR spectroscopy combined with BP-ANN can be efficiently utilized for rapid and early diagnostics of phosphorus deficiency in mini-cucumber plants.

  8. Rapid determination of crocins in saffron by near-infrared spectroscopy combined with chemometric techniques.

    Science.gov (United States)

    Li, Shuailing; Shao, Qingsong; Lu, Zhonghua; Duan, Chengli; Yi, Haojun; Su, Liyang

    2018-02-05

    Saffron is an expensive spice. Its primary effective constituents are crocin I and II, and the contents of these compounds directly affect the quality and commercial value of saffron. In this study, near-infrared spectroscopy was combined with chemometric techniques for the determination of crocin I and II in saffron. Partial least squares regression models were built for the quantification of crocin I and II. By comparing different spectral ranges and spectral pretreatment methods (no pretreatment, vector normalization, subtract a straight line, multiplicative scatter correction, minimum-maximum normalization, eliminate the constant offset, first derivative, and second derivative), optimum models were developed. The root mean square error of cross-validation values of the best partial least squares models for crocin I and II were 1.40 and 0.30, respectively. The coefficients of determination for crocin I and II were 93.40 and 96.30, respectively. These results show that near-infrared spectroscopy can be combined with chemometric techniques to determine the contents of crocin I and II in saffron quickly and efficiently. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Near-infrared background anisotropies from diffuse intrahalo light of galaxies.

    Science.gov (United States)

    Cooray, Asantha; Smidt, Joseph; De Bernardis, Francesco; Gong, Yan; Stern, Daniel; Ashby, Matthew L N; Eisenhardt, Peter R; Frazer, Christopher C; Gonzalez, Anthony H; Kochanek, Christopher S; Kozłowski, Szymon; Wright, Edward L

    2012-10-25

    Unresolved anisotropies of the cosmic near-infrared background radiation are expected to have contributions from the earliest galaxies during the epoch of reionization and from faint, dwarf galaxies at intermediate redshifts. Previous measurements were unable to pinpoint conclusively the dominant origin because they did not sample spatial scales that were sufficiently large to distinguish between these two possibilities. Here we report a measurement of the anisotropy power spectrum from subarcminute to one-degree angular scales, and find the clustering amplitude to be larger than predicted by the models based on the two existing explanations. As the shot-noise level of the power spectrum is consistent with that expected from faint galaxies, a new source population on the sky is not necessary to explain the observations. However, a physical mechanism that increases the clustering amplitude is needed. Motivated by recent results related to the extended stellar light profile in dark-matter haloes, we consider the possibility that the fluctuations originate from intrahalo stars of all galaxies. We find that the measured power spectrum can be explained by an intrahalo light fraction of 0.07 to 0.2 per cent relative to the total luminosity in dark-matter haloes of 10(9) to 10(12) solar masses at redshifts of about 1 to 4.

  10. AOTF-based near-infrared imaging spectrometer for rapid identification of camouflaged target

    Science.gov (United States)

    Gao, Zhifan; Zeng, Libo; Wu, Qiongshui

    2014-11-01

    Acousto-optic tunable filter (AOTF) is a novel device for spectrometer. The electronic tunability qualifies it with the most compelling advantages of higher wavelength scan rate over the conventional spectrometers that are mechanically tuned, and the feature of large angular aperture makes the AOTF particularly suitable in imaging applications. In this research, an AOTF-based near-infrared imaging spectrometer was developed. The spectrometer consists of a TeO2 AOTF module, a near-infrared imaging lens assembly, an AOTF controller, an InGaAs array detector, an image acquisition card, and a PC. A precisely designed optical wedge is placed at the emergent surface of the AOTF to deal with the inherent dispersion of the TeO2 that may degrade the spatial resolution. The direct digital synthesizer (DDS) techniques and the phase locked loop (PLL) techniques are combined for radio frequency (RF) signal synthesis. The PLL is driven by the DDS to take advantage of both their merits of high frequency resolution, high frequency scan rate and strong spurious signals resistance capability. All the functions relating to wavelength scan, image acquisition, processing, storge and display are controlled by the PC. Calibration results indicate that the spectral range is 898~1670 nm, the spectral resolution is 6.8 nm(@1064 nm), the wavelength separation between frames in the spectral image assembly is 1.0 nm, and the processing time of a single image is less than 1 ms if a TV camera with 640×512 detector is incorporated. A prototype device was assembled to test the capability of differentiating samples with similar appearances, and satisfactory results were achieved. By this device, the chemical compositions and the distribution information can be obtained simultaneously. This system has the most advantages of no moving parts, fast wavelength scan and strong vibration resistance. The proposed imaging spectrometer has a significant application prospect in the area of identification of

  11. Rapid Differential Diagnosis of Breast Microcalcification Using Targeted Near-Infrared Fluorophores.

    Science.gov (United States)

    Park, Min Ho; Lim, Wonbong; Jo, Danbi; Jung, Jin Seok; Kim, Subin; Kim, Jangho; Lim, Hyo Soon; Lee, Ji Shin; Min, Jung-Joon; Hyun, Hoon

    2017-12-06

    Early detection and differential diagnosis of breast microcalcifications are of significant importance in effective treatment of early breast cancer, because mineral composition of breast calcification is directly associated with different pathological states. However, applying image-based modalities for component identification in breast calcification remains challenging, because no calcification-specific contrast agent is available to distinguish between benign and malignant (type I and type II, respectively) calcifications of breast lesions. In this study, real-time near-infrared (NIR) fluorescence imaging of breast microcalcifications using targeted NIR fluorophores in combination with dual-channel NIR fluorescence imaging system is reported. This strategy can be used to solve major problem in mammography and ultrasonography methods for the differentiation of benign and malignant microcalcifications. Thus, this novel technology shows significant potential for breast cancer diagnosis and image-guided surgery performed with increased precision and efficiency by providing differential diagnosis of breast microcalcifications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy

    Science.gov (United States)

    Seong, Myeongsu; Phillips, Zephaniah; Mai, Phuong Minh; Yeo, Chaebeom; Song, Cheol; Lee, Kijoon; Kim, Jae Gwan

    2016-02-01

    A combined diffuse speckle contrast analysis (DSCA)-near-infrared spectroscopy (NIRS) system is proposed to simultaneously measure qualitative blood flow and blood oxygenation changes in human tissue. The system employs an optical switch to alternate two laser sources at two different wavelengths and a CCD camera to capture the speckle image. Therefore, an optical density can be measured from two wavelengths for NIRS measurements and a speckle contrast can be calculated for DSCA measurements. In order to validate the system, a flow phantom test and an arm occlusion protocol for arterial and venous occlusion were performed. Shorter exposure times (oxyhemoglobin (OHb) and deoxyhemoglobin (RHb) during arterial occlusion (max RHb=0.0085±0.0024 mM/DPF, min OHb=-0.0057±0.0044 mM/DPF). The sensitivity of the system makes it a suitable modality to observe qualitative hemodynamic trends during induced physiological changes.

  13. Diffusion of intensity-modulated near-infrared light in turbid media

    Science.gov (United States)

    Fishkin, Joshua B.; Gratton, Enrico; vandeVen, Martin J.; Mantulin, William W.

    1991-05-01

    Light propagation in turbid media can be described by photon diffusion. In the frequency domain, sinusoidally intensity-modulated light gives rise to diffusive waves which have a coherent front. In a homogeneous medium, the wave front propagates with a constant phase velocity and the amplitude attenuates exponentially as the diffusional wave advances. We have studied the diffusion approximation to the one-speed linear transport equation with a sinusoidally intensity modulated point source of particles and performed experiments using frequency domain detection methods on homogeneous scattering and absorbing media to test the applicability of the above mentioned transport equation to photon migration in turbid media. We have used the analytical solutions of the linear transport equation in homogeneous, infinite media to determine via a simple analysis of our frequency domain data the linear scattering and absorption coefficients.

  14. Rapid classification of Chinese quince (Chaenomeles speciosa Nakai) fruit provenance by near-infrared spectroscopy and multivariate calibration.

    Science.gov (United States)

    Shao, Wenhao; Li, Yanjie; Diao, Songfeng; Jiang, Jingmin; Dong, Ruxiang

    2017-01-01

    The quality of Chinese quince fruit is a significant factor for medicinal materials, influencing the quality of the medicine. However, it is difficult to distinguish different types of Chinese quince fruit. The main objective of this work was to use near-infrared (NIR) spectroscopy, which is a rapid and non-destructive analysis method, to classify the varieties of Chinese quince fruits. Raw spectra in the range of 1000 to 2500 nm were combined with linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and support vector machines (SVMs) for classification. The first three principal component analysis (PCA) scores were used as input variables to build LDA, QDA, and SVM discriminant models. The results indicate that all three of these methods are effective for distinguishing the different types of Chinese quince fruit. The classification accuracies for LDA, QDA, and SVM are 94, 96, and 98 %, respectively. QDA led to high-level classification accuracy of Chinese quince fruit.

  15. The limitation of the proposed collection efficiency for fiber probes on the visible and near-infrared diffuse spectroscopy

    Science.gov (United States)

    Zhang, Linna; Ding, Hongyan; Lin, Ling; Wang, Yimin; Guo, Xin

    2017-12-01

    A fiber is usually used as a probe in visible and near-infrared diffuse spectra measurement. However, the use of different fiber probes in the same measurement may cause data mismatch problems. Our group has researched the influence of the parameters of fiber probe, including the aperture angle, on the diffuse spectrum by a modified Monte Carlo model. To eliminate the influence of the aperture angle, we proposed a fitted equation of correction coefficient to correct its difference in practical range. However, we did not discuss the limitation of this method. In this work, we explored the collection efficiency in different optical environment with Monte Carlo simulation method, and find the suitable conditions-weak absorbing and strong scattering media, for the proposed collection efficiency. Furthermore, we tried to explain the stability of the collection efficiency in this condition. This work gives suitable conditions for the collection efficiency. The use of collection efficiency can help reduce the influence of different measurement systems and is also helpful to the model translation.

  16. Diffuse near-infrared reflectance spectroscopy during heatstroke in a mouse model: pilot study

    Science.gov (United States)

    Abookasis, David; Zafrir, Elad; Nesher, Elimelech; Pinhasov, Albert; Sternklar, Shmuel; Mathews, Marlon S.

    2012-10-01

    Heatstroke, a form of hyperthermia, is a life-threatening condition characterized by an elevated core body temperature that rises above 40°C (104°F) and central nervous system dysfunction that results in delirium, convulsions, or coma. Without emergency treatment, the victim lapses into a coma and death soon follows. The study presented was conducted with a diffuse reflectance spectroscopy (DRS) setup to assess the effects of brain dysfunction that occurred during heatstroke in mice model (n=6). It was hypothesized that DRS can be utilized in small animal studies to monitor change in internal brain tissue temperature during heatstroke injury since it induces a sequence of pathologic changes that change the tissue composition and structure. Heatstroke was induced by exposure of the mice body under general anesthesia, to a high ambient temperature. A type of DRS in which the brain tissue was illuminated through the intact scalp with a broadband light source and diffuse reflected spectra was employed, taking in the spectral region between 650 and 1000 nm and acquired at an angle of 90 deg at a position on the scalp ˜12 mm from the illumination site. The temperature at the onset of the experiment was ˜34°C (rectal temperature) with increasing intervals of 1°C until mouse death. The increase in temperature caused optical scattering signal changes consistent with a structural alteration of brain tissue, ultimately resulting in death. We have found that the peak absorbance intensity and its second derivative at specific wavelengths correlate well with temperature with an exponential dependence. Based on these findings, in order to estimate the influence of temperature on the internal brain tissue a reflectance-temperature index was established and was seen to correlate as well with measured temperature. Overall, results indicate variations in neural tissue properties during heatstroke and the feasibility to monitor and assess internal temperature variations using

  17. Probing Milky Way Structure with Near-Infrared Diffuse Interstellar Bands

    Science.gov (United States)

    Zasowski, Gail; Ménard, Brice; Bizyaev, Dmitry; Garcia-Hernandez, D.; García Pérez, Ana; Hayden, Michael R.; Hearty, Fred; Holtzman, Jon A.; Johnson, Jennifer; Kinemuchi, Karen; Majewski, Steven R.; Nidever, David L.; Sellgren, Kristen; Shetrone, Matthew D.; Whelan, David G.; Wilson, John C.

    2015-01-01

    Astronomers have studied the set of interstellar absorption features known as the diffuse interstellar bands (DIBs) for nearly a century, characterizing them into families and using them as probes of local interstellar medium (ISM) conditions even while trying to understand their origin. Though most DIB studies have focused on the optical features, recent DIB identifications at infrared (IR) wavelengths -- where extinction by interstellar dust is significantly decreased -- provide us with tracers of ISM along heavily extincted, previously inaccessible sightlines. This talk will briefly summarize results from a project using the strongest of these IR DIBs (detected in more than 60,000 sightlines towards cool, distant giant stars observed as part of the SDSS-III/APOGEE survey) to characterize the large-scale distribution and properties of the Galactic ISM, including in the heavily reddened bulge and inner disk. The DIB absorption's tight correlation with foreground reddening makes it a powerful, independent probe of line-of-sight dust extinction. For the first time, we map the velocity field of a DIB on large scales and find that it displays the signature of the rotating Galactic disk. Three-dimensional modeling of the carrier distribution reveals not only large-scale gradients consistent with other ISM components, but also substructures that coincide with particular Galactic bulge and disk features. Finally, we find that features that are outliers in the distribution of DIB profile shapes may have an origin in circumstellar, rather than interstellar, environments along these particular sightlines, and the properties of these atypical features may contain clues towards identifying the currently-unknown carrier molecule of this DIB.

  18. Monitoring closed head injury induced changes in brain physiology with orthogonal diffuse near-infrared reflectance spectroscopy

    Science.gov (United States)

    Abookasis, David; Shochat, Ariel; Mathews, Marlon S.

    2014-03-01

    We applied an orthogonal diffuse reflectance spectroscopy (o-DRS) to assess brain physiology following closed head injury (CHI). CHI was induced in anesthetized male mice by weight-drop device using ~50gram cylindrical metal falling from a height of 90 cm onto the intact scalp. A total of twenty-six mice were used in the experiments divided randomly into three groups as follows: Group 1 (n=11) consisted of injured mice monitored for 1 hour every 10 minutes. Group 2 (n=10) were the control mice not experience CHI. Group 3 (n=5) consisted of injured mice monitored every minute up to 20 minutes. Measurement of optical quantities of brain tissue (absorption and reduced scattering coefficients) in the near-infrared window from 650 to 1000 nm were carried out by employing different source-detector distances and locations to provide depth sensitivity. With respect to baseline, we found difference in brain hemodynamic properties following injury. In addition, o-DRS successfully evaluate the structural variations likely from evolving cerebral edema throughout exploring the scattering spectral shape.

  19. Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy.

    Science.gov (United States)

    Seong, Myeongsu; Phillips, Zephaniah; Mai, Phuong Minh; Yeo, Chaebeom; Song, Cheol; Lee, Kijoon; Kim, Jae Gwan

    2016-02-01

    A combined diffuse speckle contrast analysis (DSCA)-near-infrared spectroscopy (NIRS) system is proposed to simultaneously measure qualitative blood flow and blood oxygenation changes in human tissue. The system employs an optical switch to alternate two laser sources at two different wavelengths and a CCD camera to capture the speckle image. Therefore, an optical density can be measured from two wavelengths for NIRS measurements and a speckle contrast can be calculated for DSCA measurements. In order to validate the system, a flow phantom test and an arm occlusion protocol for arterial and venous occlusion were performed. Shorter exposure times (<1 ms ) show a higher drop (between 50% and 66%) and recovery of 1/K²S values after occlusion (approximately 150%), but longer exposure time (3 ms) shows more consistent hemodynamic changes. For four subjects, the 1/K²S values dropped to an average of 82.1±4.0% during the occlusion period and the average recovery of 1/K²S values after occlusion was 109.1±0.8% . There was also an approximately equivalent amplitude change in oxyhemoglobin (OHb) and deoxyhemoglobin (RHb) during arterial occlusion (max RHb=0.0085±0.0024 mM/DPF, min OHb=-0.0057±0.0044 mM/DPF). The sensitivity of the system makes it a suitable modality to observe qualitative hemodynamic trends during induced physiological changes.

  20. Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy.

    Science.gov (United States)

    Verdecchia, Kyle; Diop, Mamadou; Lee, Ting-Yim; St Lawrence, Keith

    2013-02-01

    Preterm infants are highly susceptible to ischemic brain injury; consequently, continuous bedside monitoring to detect ischemia before irreversible damage occurs would improve patient outcome. In addition to monitoring cerebral blood flow (CBF), assessing the cerebral metabolic rate of oxygen (CMRO2) would be beneficial considering that metabolic thresholds can be used to evaluate tissue viability. The purpose of this study was to demonstrate that changes in absolute CMRO2 could be measured by combining diffuse correlation spectroscopy (DCS) with time-resolved near-infrared spectroscopy (TR-NIRS). Absolute CBF was determined using bolus-tracking TR-NIRS to calibrate the DCS measurements. Cerebral venous blood oxygenation (SvO2) was determined by multiwavelength TR-NIRS measurements, the accuracy of which was assessed by directly measuring the oxygenation of sagittal sinus blood. In eight newborn piglets, CMRO2 was manipulated by varying the anesthetics and by injecting sodium cyanide. No significant differences were found between the two sets of SvO2 measurements obtained by TR-NIRS or sagittal sinus blood samples and the corresponding CMRO2 measurements. Bland-Altman analysis showed a mean CMRO2 difference of 0.0268 ± 0.8340 mLO2/100 g/min between the two techniques over a range from 0.3 to 4 mL O2/100 g/min.

  1. Rapid Determination of Biochar Energy Quality Based on Visible and Near-infrared Spectroscopy (400-1000nm

    Directory of Open Access Journals (Sweden)

    Yang Hai-Qing

    2016-01-01

    Full Text Available Rapid determination of biochar energy quality is fundamental for the purpose of biomass efficient utilization. In this work, visible and near-infrared spectroscopy was used to measure ash, volatile matter, fixed carbon content and calorific value of biochar samples produced at different pyrolysis temperatures from agricultural biomass feedstocks. Biochar samples were detected by a USB4000 spectrometer with 400-1000nm reflectance spectra recorded for investigation. The spectra were transformed by Savitzky-Golay smoothing followed by baseline offset correction (BOC. The BOC-transformed spectra of calibration set were subjected to a partial least squares regression (PLSR algorithm for obtaining a PLSR calibration model for each biochar property. Prediction result shows that the PLSR models developed for 400-1000nm spectra achieve good prediction performance with coefficient of determination (R2 of 0.85, 0.86, 0.87 and residual prediction deviation (RPD of 2.61, 2.64, 2.85 for ash, volatile matter and fixed carbon content, respectively. For the prediction of biochar calorific value, the PLSR model developed for 400-780nm spectra performs better with R2 of 0.82 and RPD of 2.51 compared with the 400-1000nm spectra. It is suggested that biochar energy quality can be rapidly measured with acceptable accuracy based on a 400-1000nm spectrum which can be obtained by a low-cost spectrometer.

  2. Fat and Moisture Content in Chinese Fried Bread Sticks: Assessment and Rapid Near-Infrared Spectroscopic Method Development

    Directory of Open Access Journals (Sweden)

    Zhuqing Xiao

    2013-01-01

    Full Text Available Fried bread sticks (FBS are one of the most widely consumed deep fried food products in China. Understanding the fat and moisture content in FBS will help consumers make healthy food choices as well as assist food processors to provide FBS with desirable quality. Rapid Fourier transform near-infrared methods (FT-NIR were developed for determining fat and moisture content in FBS collected from 123 different vendors in Shanghai, China. FBS samples with minimum sample preparation (either finely or coarsely ground were used for NIR analyses. Spectra of FBS were treated with different mathematic pretreatments before being used to build models between the spectral information and fat (7.71%–30.89% or moisture (17.39%–32.65% content in FBS. Finely ground samples may lead to slightly more robust PLS models, but the particle sizes of ground FBS samples did not seriously affect the predictability of the models with appropriate mathematical treatments. The fat and moisture content in FBS predicted by FT-NIR methods had very good correlation with their values determined via traditional methods (fat, R2=0.965; moisture, R2=0.983, which clearly indicated that FT-NIR methods could be used as an effective tool for rapid determination of fat and moisture content in FBS.

  3. Near-infrared spectroscopy, a rapid method for predicting the age of male and female wild-type and Wolbachia infected Aedes aegypti

    Science.gov (United States)

    Estimating the age distribution of mosquito populations is crucial for assessing their capacity to transmit disease and for evaluating the efficacy of available vector control programs. This study reports on the capacity of near-infrared spectroscopy (NIRS) technique to rapidly predict the ages of t...

  4. Rapid maturation of voice and linguistic processing systems in preschool children: a near-infrared spectroscopic study.

    Science.gov (United States)

    Yamasaki, Takao; Ogata, Katsuya; Maekawa, Toshihiko; Ijichi, Ikue; Katagiri, Masatoshi; Mitsudo, Takako; Kamio, Yoko; Tobimatsu, Shozo

    2013-12-01

    To better understand how voice and linguistic processing systems develop during the preschool years, changes in cerebral oxygenation were measured bilaterally from temporal areas using multi-channel near-infrared spectroscopy (NIRS). NIRS was recorded while children listened to their mothers' voice (MV), an unfamiliar female voice (UV) and environmental sound (ES) stimuli. Twenty typical children (aged 3-6years) were divided into younger (Y) (n=10, male=5; aged 3-4.5years) and older (O) (n=10, male=5; aged 4.5-6years) groups. In the Y group, while MV stimuli significantly activated anterior temporal areas with a right predominance compared to ES stimuli, they significantly activated left mid-temporal areas compared to UV stimuli. These temporal activations were significantly higher in the Y group compared to the O group. Furthermore, only the O group exhibited significant habituation and gender differences in the left mid-temporal area during MV perception. These findings suggest that the right voice-related and the left language-related temporal areas already exist in the Y group, and that MV stimuli modulate these areas differently in the two age groups. Therefore, we conclude that a mother's voice plays an important role in the maturation of the voice and linguistic processing systems, particularly during the first half of the preschool-aged period. This role may decrease during the latter half of the preschool-aged period due to rapid development of these systems as children age. © 2013.

  5. Rapid and non-destructive assessment of polyunsaturated fatty acids contents in Salmon using near-infrared hyperspectral imaging

    Science.gov (United States)

    Tao, Feifei; Mba, Ogan; Liu, Li; Ngadi, Michael

    2017-04-01

    Polyunsaturated fatty acids (PUFAs) are important nutrients present in Salmon. However, current methods for quantifying the fatty acids (FAs) contents in foods are generally based on gas chromatography (GC) technique, which is time-consuming, laborious and destructive to the tested samples. Therefore, the capability of near-infrared (NIR) hyperspectral imaging to predict the PUFAs contents of C20:2 n-6, C20:3 n-6, C20:5 n-3, C22:5 n-3 and C22:6 n-3 in Salmon fillets in a rapid and non-destructive way was investigated in this work. Mean reflectance spectra were first extracted from the region of interests (ROIs), and then the spectral pre-processing methods of 2nd derivative and Savitzky-Golay (SG) smoothing were performed on the original spectra. Based on the original and the pre-processed spectra, PLSR technique was employed to develop the quantitative models for predicting each PUFA content in Salmon fillets. The results showed that for all the studied PUFAs, the quantitative models developed using the pre-processed reflectance spectra by "2nd derivative + SG smoothing" could improve their modeling results. Good prediction results were achieved with RP and RMSEP of 0.91 and 0.75 mg/g dry weight, 0.86 and 1.44 mg/g dry weight, 0.82 and 3.01 mg/g dry weight for C20:3 n-6, C22:5 n-3 and C20:5 n-3, respectively after pre-processing by "2nd derivative + SG smoothing". The work demonstrated that NIR hyperspectral imaging could be a useful tool for rapid and non-destructive determination of the PUFA contents in fish fillets.

  6. [Determination of alpha-cellulose content of natural cellulose pulp in a new clean pulping process using near infrared diffuse reflectance spectroscopy].

    Science.gov (United States)

    Huang, Jun; Yuan, Hong-Fu; Song, Chun-Feng; Li, Xiao-Yu; Xie, Jin-Chun; Du, Jun-Qi

    2013-01-01

    A new near infrared diffuse reflectance spectroscopy method is proposed to rapidly detect alpha-cellulose content of natural cellulose (plant fiber: cotton, wood) pulp in a new clean pulping process. One hundred forty two samples were collected and their alpha-cellulose content data were determined by standard method GB/T 9107-1999. The samples were homogenized by grinding pretreatment to improve spectroscopy measurement accuracy. Effective classification models were built by SIMCA, with the total correct identification. Using partial least squares (PLS) quantitative calibration, alpha-cellulose of the whole and separate cotton and wood pulp was established, with the correlation coefficients of 0.954, 0.911, 0.839, SEP, 0.024, 0.012 and 0.016, respectively. The repeatability results obtained by the new method are in agreement with the results from GB/T 9107-1999. The new method is feasible for determining alpha-cellulose content of natural cellulose (plant fiber: cotton, wood) in clean pulping process.

  7. An efficient near infrared spectroscopy based on aquaphotomics technique for rapid determining the level of Cadmium in aqueous solution

    Science.gov (United States)

    Putra, Alfian; Vassileva, Maria; Santo, Ryoko; Tsenkova, Roumina

    2017-06-01

    Cadmium (Cd) is a common industrial pollutant with long biological half-life, which makes it as a cumulative toxicant. Near-infrared spectroscopy has been successfully used for quick and accurate assessment of Cd content in agricultural materials, but the development of a quick detection method for ground and drinking water samples is equal importance for pollution monitoring. Metals have no absorbance in the NIR spectral range, thus the methods developed so far have focused on detection of metal-organic complexes (move to intro). This study focuses on the use of Aquaphotomics technique to measure Cd in aqueous solutions by analyzing the changes in water spectra that occur due to water-metal interaction. Measurements were performed with Cd (II) in 0.1 M HNO3, in the 680-1090 nm (water second and third overtones) and 1110-1800 nm (water first overtone) spectral regions, and were subjected to partial least-square regression analysis. It was found/determined that A concentration of Cd from 1 mg L-1 to 10 mg L-1 could be predicted by this model with average prediction correlation coefficient of 0.897. The model was tested by perturbations with temperature and other metal presence in the solution. The regression coefficient showed consistent peaks at 728, 752, 770, 780, 1362, 1430,1444, 1472/1474 and 1484 nm under various perturbations, indicating that metal to influence the water spectra. The residual predictive deviation values (RPD) were greater than 2, indicating that the model is appropriate for practical use. The result suggested that this newly proposed approach is capable of detecting metal ion in a much simpler, rapid and reliable way.

  8. Rapid on-line detection and grading of wooden breast myopathy in chicken fillets by near-infrared spectroscopy.

    Science.gov (United States)

    Wold, Jens Petter; Veiseth-Kent, Eva; Høst, Vibeke; Løvland, Atle

    2017-01-01

    The main objective of this work was to develop a method for rapid and non-destructive detection and grading of wooden breast (WB) syndrome in chicken breast fillets. Near-infrared (NIR) spectroscopy was chosen as detection method, and an industrial NIR scanner was applied and tested for large scale on-line detection of the syndrome. Two approaches were evaluated for discrimination of WB fillets: 1) Linear discriminant analysis based on NIR spectra only, and 2) a regression model for protein was made based on NIR spectra and the estimated concentrations of protein were used for discrimination. A sample set of 197 fillets was used for training and calibration. A test set was recorded under industrial conditions and contained spectra from 79 fillets. The classification methods obtained 99.5-100% correct classification of the calibration set and 100% correct classification of the test set. The NIR scanner was then installed in a commercial chicken processing plant and could detect incidence rates of WB in large batches of fillets. Examples of incidence are shown for three broiler flocks where a high number of fillets (9063, 6330 and 10483) were effectively measured. Prevalence of WB of 0.1%, 6.6% and 8.5% were estimated for these flocks based on the complete sample volumes. Such an on-line system can be used to alleviate the challenges WB represents to the poultry meat industry. It enables automatic quality sorting of chicken fillets to different product categories. Manual laborious grading can be avoided. Incidences of WB from different farms and flocks can be tracked and information can be used to understand and point out main causes for WB in the chicken production. This knowledge can be used to improve the production procedures and reduce today's extensive occurrence of WB.

  9. Rapid on-line detection and grading of wooden breast myopathy in chicken fillets by near-infrared spectroscopy.

    Directory of Open Access Journals (Sweden)

    Jens Petter Wold

    Full Text Available The main objective of this work was to develop a method for rapid and non-destructive detection and grading of wooden breast (WB syndrome in chicken breast fillets. Near-infrared (NIR spectroscopy was chosen as detection method, and an industrial NIR scanner was applied and tested for large scale on-line detection of the syndrome. Two approaches were evaluated for discrimination of WB fillets: 1 Linear discriminant analysis based on NIR spectra only, and 2 a regression model for protein was made based on NIR spectra and the estimated concentrations of protein were used for discrimination. A sample set of 197 fillets was used for training and calibration. A test set was recorded under industrial conditions and contained spectra from 79 fillets. The classification methods obtained 99.5-100% correct classification of the calibration set and 100% correct classification of the test set. The NIR scanner was then installed in a commercial chicken processing plant and could detect incidence rates of WB in large batches of fillets. Examples of incidence are shown for three broiler flocks where a high number of fillets (9063, 6330 and 10483 were effectively measured. Prevalence of WB of 0.1%, 6.6% and 8.5% were estimated for these flocks based on the complete sample volumes. Such an on-line system can be used to alleviate the challenges WB represents to the poultry meat industry. It enables automatic quality sorting of chicken fillets to different product categories. Manual laborious grading can be avoided. Incidences of WB from different farms and flocks can be tracked and information can be used to understand and point out main causes for WB in the chicken production. This knowledge can be used to improve the production procedures and reduce today's extensive occurrence of WB.

  10. Rapid and simultaneous analysis of five alkaloids in four parts of Coptidis Rhizoma by near-infrared spectroscopy

    Science.gov (United States)

    Jintao, Xue; Yufei, Liu; Liming, Ye; Chunyan, Li; Quanwei, Yang; Weiying, Wang; Yun, Jing; Minxiang, Zhang; Peng, Li

    2018-01-01

    Near-Infrared Spectroscopy (NIRS) was first used to develop a method for rapid and simultaneous determination of 5 active alkaloids (berberine, coptisine, palmatine, epiberberine and jatrorrhizine) in 4 parts (rhizome, fibrous root, stem and leaf) of Coptidis Rhizoma. A total of 100 samples from 4 main places of origin were collected and studied. With HPLC analysis values as calibration reference, the quantitative analysis of 5 marker components was performed by two different modeling methods, partial least-squares (PLS) regression as linear regression and artificial neural networks (ANN) as non-linear regression. The results indicated that the 2 types of models established were robust, accurate and repeatable for five active alkaloids, and the ANN models was more suitable for the determination of berberine, coptisine and palmatine while the PLS model was more suitable for the analysis of epiberberine and jatrorrhizine. The performance of the optimal models was achieved as follows: the correlation coefficient (R) for berberine, coptisine, palmatine, epiberberine and jatrorrhizine was 0.9958, 0.9956, 0.9959, 0.9963 and 0.9923, respectively; the root mean square error of validation (RMSEP) was 0.5093, 0.0578, 0.0443, 0.0563 and 0.0090, respectively. Furthermore, for the comprehensive exploitation and utilization of plant resource of Coptidis Rhizoma, the established NIR models were used to analysis the content of 5 active alkaloids in 4 parts of Coptidis Rhizoma and 4 main origin of places. This work demonstrated that NIRS may be a promising method as routine screening for off-line fast analysis or on-line quality assessment of traditional Chinese medicine (TCM).

  11. Novel, Rapid Identification, and Quantification of Adulterants in Extra Virgin Olive Oil Using Near-Infrared Spectroscopy and Chemometrics.

    Science.gov (United States)

    Azizian, Hormoz; Mossoba, Magdi M; Fardin-Kia, Ali Reza; Delmonte, Pierluigi; Karunathilaka, Sanjeewa R; Kramer, John K G

    2015-07-01

    A new, rapid Fourier transform near infrared (FT-NIR) spectroscopic procedure is described to screen for the authenticity of extra virgin olive oils (EVOO) and to determine the kind and amount of an adulterant in EVOO. To screen EVOO, a partial least squares (PLS1) calibration model was developed to estimate a newly created FT-NIR index based mainly on the relative intensities of two unique carbonyl overtone absorptions in the FT-NIR spectra of EVOO and other mixtures attributed to volatile (5280 cm(-1)) and non-volatile (5180 cm(-1)) components. Spectra were also used to predict the fatty acid (FA) composition of EVOO or samples spiked with an adulterant using previously developed PLS1 calibration models. Some adulterated mixtures could be identified provided the FA profile was sufficiently different from those of EVOO. To identify the type and determine the quantity of an adulterant, gravimetric mixtures were prepared by spiking EVOO with different concentrations of each adulterant. Based on FT-NIR spectra, four PLS1 calibration models were developed for four specific groups of adulterants, each with a characteristic FA composition. Using these different PLS1 calibration models for prediction, plots of predicted vs. gravimetric concentrations of an adulterant in EVOO yielded linear regression functions with four unique sets of slopes, one for each group of adulterants. Four corresponding slope rules were defined that allowed for the determination of the nature and concentration of an adulterant in EVOO products by applying these four calibration models. The standard addition technique was used for confirmation.

  12. Rapid identification of soil cadmium pollution risk at regional scale based on visible and near-infrared spectroscopy

    NARCIS (Netherlands)

    Chen, T.; Changa, Q.; Clevers, J.G.P.W.; Kooistra, L.

    2015-01-01

    Soil heavy metal pollution due to long-term sewage irrigation is a serious environmental problem in many irrigation areas in northern China. Quickly identifying its pollution status is an important basis for remediation. Visible-near-infrared reflectance spectroscopy (VNIRS) provides a useful tool.

  13. Rapid and non-destructive detection and identification two strains of Wolbachia in Aedes aegypti by near-infrared spectroscopy

    Science.gov (United States)

    We investigated the potential of using near-infrared spectroscopy (NIRS) to detect the presence of Wolbachia pipientis (wMel) in male and female laboratory-reared Aedes aegypti mosquitoes. The release of Wolbachia transinfected mosquitoes is likely to form a key component of disease control strategi...

  14. Rapid identification of soil cadmium pollution risk at regional scale based on visible and near-infrared spectroscopy.

    Science.gov (United States)

    Chen, Tao; Chang, Qingrui; Clevers, J G P W; Kooistra, L

    2015-11-01

    Soil heavy metal pollution due to long-term sewage irrigation is a serious environmental problem in many irrigation areas in northern China. Quickly identifying its pollution status is an important basis for remediation. Visible-near-infrared reflectance spectroscopy (VNIRS) provides a useful tool. In a case study, 76 soil samples were collected and their reflectance spectra were used to estimate cadmium (Cd) concentration by partial least squares regression (PLSR) and back propagation neural network (BPNN). To reduce noise, six pre-treatments were compared, in which orthogonal signal correction (OSC) was first used in soil Cd estimation. Spectral analysis and geostatistics were combined to identify Cd pollution hotspots. Results showed that Cd was accumulated in topsoil at the study area. OSC can effectively remove irrelevant information to improve prediction accuracy. More accurate estimation was achieved by applying a BPNN. Soil Cd pollution hotspots could be identified by interpolating the predicted values obtained from spectral estimates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Rapid in situ repeatable analysis of drugs in powder form using reflectance near-infrared spectroscopy and multivariate calibration.

    Science.gov (United States)

    Melucci, Dora; Monti, Dario; D'Elia, Marcello; Luciano, Giorgio

    2012-01-01

    This study takes the first step toward in situ analysis of powder drugs which does not require any alteration of the samples. A fast, inexpensive analytical method based on reflectance near-infrared (NIR) spectrometry and multivariate calibration was applied. A diode-array fiber-optic portable spectrometer in the 900-1700 nm range was employed. Samples were laboratory-prepared ternary powders (diacetylmorphine, caffeine, and paracetamol). Partial least squares regression was applied. The choice of the standard samples for calibration and validation was performed through a D-optimal experimental design. The explained variance was higher than 90%, and the relative root mean square errors were <2%. The number of principal components (6) was very low when compared with the number of raw variables (356 absorbance values). Response plots showed slopes and intercepts were very close to optimal values. Correlation coefficients ranged between 0.909 and 0.989. The method here proposed proved to be competitive with Fourier transform NIR spectrometry. © 2011 American Academy of Forensic Sciences.

  16. A rapid integrated bioactivity evaluation system based on near-infrared spectroscopy for quality control of Flos Chrysanthemi.

    Science.gov (United States)

    Ding, Guoyu; Li, Baiqing; Han, Yanqi; Liu, Aina; Zhang, Jingru; Peng, Jiamin; Jiang, Min; Hou, Yuanyuan; Bai, Gang

    2016-11-30

    For quality control of herbal medicines or functional foods, integral activity evaluation has become more popular in recent studies. The majority of researchers focus on the relationship between chromatography/mass spectroscopy and bioactivity, but the connection with spectrum-activity is easily ignored. In this paper, the near infrared reflection spectra (NIRS) of Flos Chrysanthemi samples were collected as a representative spectrum technology, and corresponding anti-inflammation activities were utilized to illustrate the spectrum-activity study. HPLC/Q-TOF-MS identification and heat map clustering were used to select the quality markers (Q-marker) from five cultivars of Flos Chrysanthemi. Using boxplot analysis and the interval limits of detection (LODs) theory, six crucial markers, namely, chlorogenic acid, 3,5-dicaffeoylquinic acid, 1,5-dicaffeoylquinic acid, luteoloside, apigenin-7-O-β-d-glucoside, and luteolin-7-O-6-malonylglucoside were screened out. Then partial least squares regression (PLSR) calibration models combined with synergy interval partial least squares (siPLS) and 12 different spectral pretreatment methods were developed for the parameters optimization of these Q-markers in Flos Chrysanthemi powder. After comparing the relationship between Q-marker contents and anti-inflammation activity via three machine learning approaches and PLSR, back-propagation neural network (BP-ANN) displayed a more excellent non-linear fitting effect, as its R for new batches reached 0.89. These results indicated that the integrated NIRS and bioactive strategy was suitable for fast quality management in Flos Chrysanthemi, and also applied to other botanical food quality control. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Rapid near-infrared fluorescence excitation-emission matrix spectroscopy for multifluorophore characterization using an acousto-optic tunable filter technique.

    Science.gov (United States)

    Li, Hao; Zheng, Wei; Huang, Zhiwei

    2010-01-01

    We report on a novel acousto-optic tunable filter (AOTF)-based near-infrared (NIR) fluorescence excitation-emission matrix (EEM) spectroscopy technique for rapid multifluorophore characterization. We implement a unique light filtering module design by using cascaded AOTFs coupled with three orthogonally oriented polarizers to effectively remove the side-ripple artifacts of AOTFs as well as by using a pair of AOTFs coupled with two orthogonally oriented polarizers to improve detection efficiency for high-quality fluorescence EEM acquisitions. NIR fluorescence EEM spectroscopy (41 excitation wavelengths ranging from 550 to 950 nm in 10-nm increments; fluorescence emission from 570 to 1000 nm at 10-nm intervals) can be acquired from fluorescence dyes [e.g., diethylthiatricarbocyanine (DTTC) iodide, oxazine 750, and IR 140] within 10 s or even less, illustrating the potential of the AOTF-based NIR EEM technique developed for rapid multifluorophore analysis and characterization in biochemical and biomedical systems.

  18. Quality Degradation of Chinese White Lotus Seeds Caused by Dampening during Processing and Storage: Rapid and Nondestructive Discrimination Using Near-Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Lu Xu

    2015-01-01

    Full Text Available Dampening during processing or storage can largely influence the quality of white lotus seeds (WLS. This paper investigated the feasibility of using near-infrared (NIR spectroscopy and chemometrics for rapid and nondestructive discrimination of the dampened WLS. Regular (n=167 and dampened (n=118 WLS objects were collected from five main producing areas and NIR reflectance spectra (4000–12000 cm−1 were measured for bare kernels. The influence of spectral preprocessing methods, including smoothing, taking second-order derivatives (D2, and standard normal variate (SNV, on partial least squares discrimination analysis (PLSDA was compared to select the optimal data preprocessing method. A moving-window strategy was combined with PLSDA (MWPLSDA to select the most informative wavelength intervals for classification. Based on the selected spectral ranges, the sensitivity, specificity, and accuracy were 0.927, 0.950, and 0.937 for SNV-MWPLSDA, respectively.

  19. Rapid determination of major bioactive isoflavonoid compounds during the extraction process of kudzu (Pueraria lobata) by near-infrared transmission spectroscopy

    Science.gov (United States)

    Wang, Pei; Zhang, Hui; Yang, Hailong; Nie, Lei; Zang, Hengchang

    2015-02-01

    Near-infrared (NIR) spectroscopy has been developed into an indispensable tool for both academic research and industrial quality control in a wide field of applications. The feasibility of NIR spectroscopy to monitor the concentration of puerarin, daidzin, daidzein and total isoflavonoid (TIF) during the extraction process of kudzu (Pueraria lobata) was verified in this work. NIR spectra were collected in transmission mode and pretreated with smoothing and derivative. Partial least square regression (PLSR) was used to establish calibration models. Three different variable selection methods, including correlation coefficient method, interval partial least squares (iPLS), and successive projections algorithm (SPA) were performed and compared with models based on all of the variables. The results showed that the approach was very efficient and environmentally friendly for rapid determination of the four quality indices (QIs) in the kudzu extraction process. This method established may have the potential to be used as a process analytical technological (PAT) tool in the future.

  20. Effect of simulated precompression, compression pressure and tableting speed on an offline diffuse transmittance and reflectance near-infrared spectral information of model intact caffeine tablets.

    Science.gov (United States)

    Vranic, Branko Z; Vandamme, Thierry F

    2015-01-01

    Near-infrared spectroscopy (NIRS) is used in the pharmaceutical industry for monitoring drug content during the tablet manufacturing process. It is of critical importance to understand the effect of process factors on NIRS performance. Design of Experiments (DoE) methodology was applied in this work for the systematic study of the effects of compression pressure, precompression pressure and tableting speed on an average Euclidean distance (AED), which reflects spectral features of the tablets, and root mean-squared error of prediction (RMSEP) as key performance indicator of NIRS calibration models. Caffeine tablets were manufactured in 17 experimental runs in accordance with D-optimal design. Developed diffuse transmittance (DT) and diffuse reflectance (DR) calibration models were tested on five independent test sets to confirm the conclusions of the DoE. Compression pressure and tableting speed have shown significant effect on the studied responses in DT mode, whereas all three studied factors have shown a significant effect in DR mode. Significant factors were considered in the development of the global calibration models. The authors suggest further study of RMSEP and AED responses to draw reliable conclusions on the effects of tableting process factors. The global calibration model in DT mode has shown superior performance compared to DR mode.

  1. Near-infrared diffuse interstellar bands in APOGEE telluric standard star spectra . Weak bands and comparisons with optical counterparts

    Science.gov (United States)

    Elyajouri, M.; Lallement, R.; Monreal-Ibero, A.; Capitanio, L.; Cox, N. L. J.

    2017-04-01

    Aims: Information on the existence and properties of diffuse interstellar bands (DIBs) outside the optical domain is still limited. Additional infra-red (IR) measurements and IR-optical correlative studies are needed to constrain DIB carriers and locate various absorbers in 3D maps of the interstellar matter. Methods: We extended our study of H-band DIBs in Apache Point Observatory Galactic Evolution Experiment (APOGEE) Telluric Standard Star (TSS) spectra. We used the strong λ15273 band to select the most and least absorbed targets. We used individual spectra of the former subsample to extract weaker DIBs, and we searched the two stacked series for differences that could indicate additional bands. High-resolution NARVAL and SOPHIE optical spectra for a subsample of 55 TSS targets were additionally recorded for NIR/optical correlative studies. Results: From the TSS spectra we extract a catalog of measurements of the poorly studied λλ15617, 15653, and 15673 DIBs in ≃300 sightlines, we obtain a first accurate determination of their rest wavelength and constrained their intrinsic width and shape. In addition, we studied the relationship between these weak bands and the strong λ15273 DIB. We provide a first or second confirmation of several other weak DIBs that have been proposed based on different instruments, and we add new constraints on their widths and locations. We finally propose two new DIB candidates. Conclusions: We compared the strength of the λ15273 absorptions with their optical counterparts λλ5780, 5797, 6196, 6283, and 6614. Using the 5797-5780 ratio as a tracer of shielding against the radiation field, we showed that the λ15273 DIB carrier is significantly more abundant in unshielded (σ-type) clouds, and it responds even more strongly than the λ5780 band carrier to the local ionizing field. Full Table 5 is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc

  2. Diffuse Reflectance Spectroscopy of Hidden Objects, Part I: Interpretation of the Reflection-Absorption-Scattering Fractions in Near-Infrared (NIR) Spectra of Polyethylene Films.

    Science.gov (United States)

    Pomerantsev, Alexey L; Rodionova, Oxana Ye; Skvortsov, Alexej N

    2017-08-01

    Investigation of a sample covered by an interfering layer is required in many fields, e.g., for process control, biochemical analysis, and many other applications. This study is based on the analysis of spectra collected by near-infrared (NIR) diffuse reflectance spectroscopy. Each spectrum is a composition of a useful, target spectrum and a spectrum of an interfering layer. To recover the target spectrum, we suggest using a new phenomenological approach, which employs the multivariate curve resolution (MCR) method. In general terms, the problem is very complex. We start with a specific problem of analyzing a system, which consists of several layers of polyethylene (PE) film and underlayer samples with known spectral properties. To separate information originating from PE layers and the target, we modify the system versus both the number of the PE layers as well as the reflectance properties of the target sample. We consider that the interfering spectrum of the layer can be modeled using three components, which can be tentatively called transmission, absorption, and scattering contributions. The novelty of our approach is that we do not remove the reflectance and scattering effects from the spectra, but study them in detail aiming to use this information to recover the target spectrum.

  3. Nontargeted, Rapid Screening of Extra Virgin Olive Oil Products for Authenticity Using Near-Infrared Spectroscopy in Combination with Conformity Index and Multivariate Statistical Analyses.

    Science.gov (United States)

    Karunathilaka, Sanjeewa R; Kia, Ali-Reza Fardin; Srigley, Cynthia; Chung, Jin Kyu; Mossoba, Magdi M

    2016-10-01

    A rapid tool for evaluating authenticity was developed and applied to the screening of extra virgin olive oil (EVOO) retail products by using Fourier-transform near infrared (FT-NIR) spectroscopy in combination with univariate and multivariate data analysis methods. Using disposable glass tubes, spectra for 62 reference EVOO, 10 edible oil adulterants, 20 blends consisting of EVOO spiked with adulterants, 88 retail EVOO products and other test samples were rapidly measured in the transmission mode without any sample preparation. The univariate conformity index (CI) and the multivariate supervised soft independent modeling of class analogy (SIMCA) classification tool were used to analyze the various olive oil products which were tested for authenticity against a library of reference EVOO. Better discrimination between the authentic EVOO and some commercial EVOO products was observed with SIMCA than with CI analysis. Approximately 61% of all EVOO commercial products were flagged by SIMCA analysis, suggesting that further analysis be performed to identify quality issues and/or potential adulterants. Due to its simplicity and speed, FT-NIR spectroscopy in combination with multivariate data analysis can be used as a complementary tool to conventional official methods of analysis to rapidly flag EVOO products that may not belong to the class of authentic EVOO. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  4. Rapid Classification Of Agricultural Products Based On Their Electro-Optic Properties Using Near Infrared Reflectance And Chemometrics

    Directory of Open Access Journals (Sweden)

    Agus A. Munawar

    2015-04-01

    Abstract. Aplikasi teknologi near infra red (NIR telah digunakan dalam banyak bidang, termasuk untuk bidang pertanian terutama pada proses sortasi dan grading. Keunggulan metode ini antara lain : rapid, efektif, simultan dan tanpa merusak objek yang dikaji. Tujuan utama dari studi ini adalah untuk mengkaji potensi NIR dalam mengklasifikasi beberapa produk pertanian berdasarkan karakteristik sifat elektro-optik dari produk tersebut. Spektrum NIR pada panjang gelombang 1000 – 2500 nm dengan increment 2 nm diakuisisi untuk produk pertanian : apel, pisang, manga, bawang putih, tomat, anggur hijau, anggur merah dan jeruk. Metode chemo metrics digunakan dalam studi ini untuk dikombinasikan dengan spektrum NIR. Klasifikasi produk pertanian dilakukan dengan menerapkan metode principal component analysis (PCA yang disertai dengan metode non-iterative partial least square (NIPALS cross validation. Hasil studi menunjukkan bahwa kombinasi NIR dan chemo metrics mampu membedakan dan mengklasifikasi produk pertanian tersebut dengan menggunakan dua latent variable pada PCA (2 PCs dengan total explained variance 97% (88% PC1 dan 9% PC2. Selain itu, dari studi ini juga didapatkan bahwa perbaikan data spectrum dengan metode multiplicative scatter correction (MSC sebelum klasifikasi mampu meningkatkan akurasi hasil klasifikasi. Secara umum, dapat disimpulkan bahwa teknologi NIR dan chemo metrics dapat dijadikan sebagai metode yang efektif untuk sortasi dan atau grading produk pertanian.

  5. Fourier transform mid-infrared (MIR) and near-infrared (NIR) spectroscopy for rapid quality assessment of Chinese medicine preparation Honghua Oil.

    Science.gov (United States)

    Wu, Yan-Wen; Sun, Su-Qin; Zhou, Qun; Leung, Hei-Wun

    2008-02-13

    Honghua Oil (HHO), a traditional Chinese medicine (TCM) oil preparation, is a mixture of several plant essential oils. In this text, the extended ranges of Fourier transform mid-infrared (FT-MIR) and near infrared (FT-NIR) were recorded for 48 commercially available HHOs of different batches from nine manufacturers. The qualitative and quantitative analysis of three marker components, alpha-pinene, methyl salicylate and eugenol, in different HHO products were performed rapidly by the two vibrational spectroscopic methods, i.e. MIR with horizontal attenuated total reflection (HATR) accessory and NIR with direct sampling technique, followed by partial least squares (PLS) regression treatment of the set of spectra obtained. The results indicated that it was successful to identify alpha-pinene, methyl salicylate and eugenol in all of the samples by simple inspection of the MIR-HATR spectra. Both PLS models established with MIR-HATR and NIR spectral data using gas chromatography (GC) peak areas as calibration reference showed a good linear correlation for each of all three target substances in HHO samples. The above spectroscopic techniques may be the promising methods for the rapid quality assessment/quality control (QA/QC) of TCM oil preparations.

  6. A Rapid Identification Method for Calamine Using Near-Infrared Spectroscopy Based on Multi-Reference Correlation Coefficient Method and Back Propagation Artificial Neural Network.

    Science.gov (United States)

    Sun, Yangbo; Chen, Long; Huang, Bisheng; Chen, Keli

    2017-07-01

    As a mineral, the traditional Chinese medicine calamine has a similar shape to many other minerals. Investigations of commercially available calamine samples have shown that there are many fake and inferior calamine goods sold on the market. The conventional identification method for calamine is complicated, therefore as a result of the large scale of calamine samples, a rapid identification method is needed. To establish a qualitative model using near-infrared (NIR) spectroscopy for rapid identification of various calamine samples, large quantities of calamine samples including crude products, counterfeits and processed products were collected and correctly identified using the physicochemical and powder X-ray diffraction method. The NIR spectroscopy method was used to analyze these samples by combining the multi-reference correlation coefficient (MRCC) method and the error back propagation artificial neural network algorithm (BP-ANN), so as to realize the qualitative identification of calamine samples. The accuracy rate of the model based on NIR and MRCC methods was 85%; in addition, the model, which took comprehensive multiple factors into consideration, can be used to identify crude calamine products, its counterfeits and processed products. Furthermore, by in-putting the correlation coefficients of multiple references as the spectral feature data of samples into BP-ANN, a BP-ANN model of qualitative identification was established, of which the accuracy rate was increased to 95%. The MRCC method can be used as a NIR-based method in the process of BP-ANN modeling.

  7. Rapid discrimination of geographical origin and evaluation of antioxidant activity of Salvia miltiorrhiza var. alba by Fourier transform near infrared spectroscopy

    Science.gov (United States)

    Duan, Xiaoju; Zhang, Danlu; Nie, Lei; Zang, Hengchang

    2014-03-01

    Radix Salvia miltiorrhiza Bge. var. alba C.Y. Wu and H.W. Li and Radix S. miltrorrhiza belong to the same genus. S. miltiorrhiza var. alba has a unique effectiveness for thromboangiitis besides therapeutical efficay of S. miltrorrhiza. It exhibits antioxidant activity (AA), while its quality and efficacy also vary with geographic locations. Therefore, a rapid and nondestructive method based on Fourier transform near infrared spectroscopy (FT-NIRS) was developed for discrimination of geographical origin and evaluation of AA of S. miltiorrhiza var. alba. The discrimination of geographical origin was achieved by using discriminant analysis and the accuracy was 100%. Partial least squares (PLS) regression was employed to establish the model for evaluation of AA by NIRS. The spectral regions were selected by interval PLS (i-PLS) method. Different pre-treated methods were compared for the spectral pre-processing. The final optimal results of PLS model showed that correlation coefficients in the calibration set (Rc) and the prediction set (Rp), root mean square error of prediction (RMSEP) and residual prediction deviation (RPD) were 0.974, 0.950, 0.163 mg mL-1 and 2.66, respectively. The results demonstrated that NIRs combined with chemometric methods could be a rapid and nondestructive tool to discriminate geographical origin and evaluate AA of S. miltiorrhiza var. alba. The developed NIRS method might have a potential application to high-throughput screening of a great number of raw S. miltiorrhiza var. alba samples for AA.

  8. Rapid measurement of total acid content (TAC) in vinegar using near infrared spectroscopy based on efficient variables selection algorithm and nonlinear regression tools.

    Science.gov (United States)

    Chen, Quansheng; Ding, Jiao; Cai, Jianrong; Zhao, Jiewen

    2012-11-15

    Total acid content (TAC) is an important index in assessing vinegar quality. This work attempted to determine TAC in vinegar using near infrared spectroscopy. We systematically studied variable selection and nonlinear regression in calibrating regression models. First, the efficient spectra intervals were selected by synergy interval PLS (Si-PLS); then, two nonlinear regression tools, which were extreme learning machine (ELM) and back propagation artificial neural network (BP-ANN), were attempted. Experiments showed that the model based on ELM and Si-PLS (Si-ELM) was superior to others, and the optimum results were achieved as follows: the root mean square error of prediction (RMSEP) was 0.2486 g/100mL, and the correlation coefficient (R(p)) was 0.9712 in the prediction set. This work demonstrated that the TAC in vinegar could be rapidly measured by NIR spectroscopy and Si-ELM algorithm showed its superiority in model calibration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. UV-pretreatment- and near-infrared rapid thermal annealing-enhanced dehydrogenation for a-Si:H thin films at 400 °C

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Sanghyun [AP Systems Corp., 15-5 Dongtansandan 8-gil, Dongtanmyeon, Hwaseongsi, Gyeonggido 445-811 (Korea, Republic of); Dept. of Chem. and Biomol. Engng., Sogang Univ., 35 Baekbeomro, Mapogu, Seoul 121-742 (Korea, Republic of); Hwang, Chi-Sun [ETRI, 138 Gajeongro, Yuseonggu, Daejeon 305-350 (Korea, Republic of); Jeong, Pilseong; Lee, Sungyong [AP Systems Corp., 15-5 Dongtansandan 8-gil, Dongtanmyeon, Hwaseongsi, Gyeonggido 445-811 (Korea, Republic of); Lee, Kwang Soon, E-mail: kslee@sogang.ac.kr [Dept. of Chem. and Biomol. Engng., Sogang Univ., 35 Baekbeomro, Mapogu, Seoul 121-742 (Korea, Republic of)

    2016-01-01

    A new dehydrogenation processing method was developed for the low-temperature polysilicon process. This method can reduce both the process temperature and time through the combination of an ultraviolet pretreatment (UVP) process with near-infrared rapid thermal annealing (NIR-RTA). NIR-RTA using tungsten-halogen lamps was observed to reduce the dehydrogenation time by approximately two thirds and the temperature by approximately 20 °C compared to conventional furnace processing. The UVP process was able to lower the dehydrogenation temperature by a further 20 °C. Thus, the new dehydrogenation process, consisting of UVP followed by NIR-RTA, could achieve a hydrogen concentration of 1.97 at.% in 20 min at 360 °C. - Highlights: • An enhanced dehydrogenation process for flexible substrates as well as glass substrates is proposed.. • UV pretreatment and NIR-RTA are used.. • Temperature of the LTPS process for a-Si:H thin films could be reduced by 40 °C.. • Dehydrogenation time of the LTPS process could be reduced by 20 min..

  10. The Feasibility of Using Near Infrared Spectroscopy for Rapid Discrimination of Aged Shiitake Mushroom (Lentinula edodes after Long-Term Storage

    Directory of Open Access Journals (Sweden)

    Lu Xu

    2015-01-01

    Full Text Available Long-term storage can largely degrade the taste and quality of dried shiitake mushroom (Lentinula edodes. This paper aimed at developing a rapid method for discrimination of the regular and aged shiitake by near infrared (NIR spectroscopic analysis and chemometrics. Regular (n=197 and aged (n=133 samples of shiitake were collected from six main producing areas in two successive years (2013 and 2014. NIR reflectance spectra (4000–12000 cm−1 were measured with finely ground powders. Different data preprocessing method including smoothing, taking second-order derivatives (D2, and standard normal variate (SNV were investigated to reduce the unwanted spectral variations. Partial least squares discriminant analysis (PLSDA and least squares support vector machine (LS-SVM were used to develop classification models. The results indicate that SNV and D2 can largely enhance the classification accuracy. The best sensitivity, specificity, and accuracy of classification were 0.967, 0.953, and 0.961 obtained by SNV-LS-SVM and 0.933, 0.930, and 0.932 obtained by SNV-PLSDA, respectively. Moreover, the low model complexity and the high accuracy in predicting objects produced in different years demonstrate that the classification models had a good generalization performance.

  11. Monitoring hemodynamic and morphologic responses to closed head injury in a mouse model using orthogonal diffuse near-infrared light reflectance spectroscopy

    Science.gov (United States)

    Abookasis, David; Shochat, Ariel; Mathews, Marlon S.

    2013-04-01

    The authors' aim is to assess and quantitatively measure brain hemodynamic and morphological variations during closed-head injury (CHI) in mice using orthogonal diffuse near-infrared reflectance spectroscopy (o-DRS). CHI is a type of injury to the head that does not penetrate the skull. Usually, it is caused by mechanical blows to the head and frequently occurs in traffic accidents, falls, and assaults. Measurements of brain optical properties, namely absorption and reduced scattering coefficients in the wavelength range from 650 to 1000 nm were carried out by employing different source-detector distance and locations to provide depth sensitivity on an intact scalp over the duration of the whole experiment. Furthermore, alteration in both cortical hemodynamics and morphologic markers, i.e., scattering power and amplitude properties were derived. CHI was induced in anesthetized male mice by a weight-drop model using ˜50 g cylindrical metal falling from a height of 90 cm onto the intact scalp producing an impact of 4500 g cm. With respect to baseline, difference in brain physiological properties was observed following injury up to 1 h post-trauma. Additionally, the reduced scattering spectral shapes followed Mie scattering theory was quantified and clearly shows changes in both scattering amplitude and power from baseline indicating structural variations likely from evolving cerebral edema during CHI. We further demonstrate high correlation between scattering amplitude and scattering power, with more than 20% difference in slope in comparison to preinjury. This result indicates the possibility of using the slope also as a marker for detection of structural changes. Finally, experiments investigating brain function during the first 20 min postinjury were conducted and changes in chromophore concentrations and scattering were observed. Overall, our experiments demonstrate the potential of using the proposed technique as a valuable quantitative noninvasive tool for

  12. Near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Virendra Jain

    2015-01-01

    Full Text Available Tissue ischaemia can be a significant contributor to increased morbidity and mortality. Conventional oxygenation monitoring modalities measure systemic oxygenation, but regional tissue oxygenation is not monitored. Near-infrared spectroscopy (NIRS is a non-invasive monitor for measuring regional oxygen saturation which provides real-time information. There has been increased interest in the clinical application of NIRS following numerous studies that show improved outcome in various clinical situations especially cardiac surgery. Its use has shown improved neurological outcome and decreased postoperative stay in cardiac surgery. Its usefulness has been investigated in various high risk surgeries such as carotid endarterectomy, thoracic surgeries, paediatric population and has shown promising results. There is however, limited data supporting its role in neurosurgical population. We strongly feel, it might play a key role in future. It has significant advantages over other neuromonitoring modalities, but more technological advances are needed before it can be used more widely into clinical practice.

  13. The potential of mid- and near-infrared diffuse reflectance spectroscopy for determining major- and trace-element concentrations in soils from a geochemical survey of North America

    Science.gov (United States)

    Reeves, J. B.; Smith, D.B.

    2009-01-01

    In 2004, soils were collected at 220 sites along two transects across the USA and Canada as a pilot study for a planned soil geochemical survey of North America (North American Soil Geochemical Landscapes Project). The objective of the current study was to examine the potential of diffuse reflectance (DR) Fourier Transform (FT) mid-infrared (mid-IR) and near-infrared (NIRS) spectroscopy to reduce the need for conventional analysis for the determination of major and trace elements in such continental-scale surveys. Soil samples (n = 720) were collected from two transects (east-west across the USA, and north-south from Manitoba, Canada to El Paso, Texas (USA), n = 453 and 267, respectively). The samples came from 19 USA states and the province of Manitoba in Canada. They represented 31 types of land use (e.g., national forest, rangeland, etc.), and 123 different land covers (e.g., soybeans, oak forest, etc.). The samples represented a combination of depth-based sampling (0-5 cm) and horizon-based sampling (O, A and C horizons) with 123 different depths identified. The set was very diverse with few samples similar in land use, land cover, etc. All samples were analyzed by conventional means for the near-total concentration of 49 analytes (Ctotal, Ccarbonate and Corganic, and 46 major and trace elements). Spectra were obtained using dried, ground samples using a Digilab FTS-7000 FT spectrometer in the mid- (4000-400 cm-1) and near-infrared (10,000-4000 cm-1) at 4 cm-1 resolution (64 co-added scans per spectrum) using a Pike AutoDIFF DR autosampler. Partial least squares calibrations were develop using: (1) all samples as a calibration set; (2) samples evenly divided into calibration and validation sets based on spectral diversity; and (3) samples divided to have matching analyte concentrations in calibration and validation sets. In general, results supported the conclusion that neither mid-IR nor NIRS would be particularly useful in reducing the need for conventional

  14. A rapid method for the quantification of fatty acids in fats and oils with emphasis on trans fatty acids using Fourier Transform near infrared spectroscopy (FT-NIR).

    Science.gov (United States)

    Azizian, Hormoz; Kramer, John K G

    2005-08-01

    A rapid method was developed for classifying and quantifying the FA composition of edible oils and fats using Fourier Transform near infrared spectroscopy (FT-NIR). The FT-NIR spectra showed unique fingerprints for saturated FA, cis and trans monounsaturated FA, and all n-6 and n-3 PUFA within TAG to permit qualitative and quantitative comparisons of fats and oils. The quantitative models were based on incorporating accurate GC data of the different fats and oils and FT-NIR spectral information into the calibration model using chemometric analysis. FT-NIR classification models were developed based on chemometric analyses of 55 fats, oils, and fat/oil mixtures that were used in the identification of similar materials. This database was used to prepare three calibration models-one suitable for the analysis of common fats and oils with low levels of trans FA, and the other two for fats and oils with intermediate and high levels of trans FA. The FT-NIR method showed great potential to provide the complete FA composition of unknown fats and oils in minutes. Compared with the official GC method, the FT-NIR method analyzed fats and oils directly in their neat form and required no derivatization of the fats to volatile FAME, followed by time-consuming GC separations and analyses. The FT-NIR method also compared well with the official FTIR method using an attenuated total reflectance (ATR) cell; the latter provided only quantification of specific functional groups, such as the total trans FA content, whereas FT-NIR provided the complete FA profile. The FT-NIR method has the potential to be used for rapid screening and/or monitoring of fat products, trans FA determinations for regulatory labeling purposes, and detection of contaminants. The quantitative FT-NIR results for various edible oils and fats and their mixtures are presented based on the FT-NIR models developed.

  15. Near-Infrared Spectroscopy, a Rapid Method for Predicting the Age of Male and Female Wild-Type and Wolbachia Infected Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Maggy T Sikulu-Lord

    2016-10-01

    Full Text Available Estimating the age distribution of mosquito populations is crucial for assessing their capacity to transmit disease and for evaluating the efficacy of available vector control programs. This study reports on the capacity of the near-infrared spectroscopy (NIRS technique to rapidly predict the ages of the principal dengue and Zika vector, Aedes aegypti. The age of wild-type males and females, and males and females infected with wMel and wMelPop strains of Wolbachia pipientis were characterized using this method. Calibrations were developed using spectra collected from their heads and thoraces using partial least squares (PLS regression. A highly significant correlation was found between the true and predicted ages of mosquitoes. The coefficients of determination for wild-type females and males across all age groups were R2 = 0.84 and 0.78, respectively. The coefficients of determination for the age of wMel and wMelPop infected females were 0.71 and 0.80, respectively (P< 0.001 in both instances. The age of wild-type female Ae. aegypti could be identified as < or ≥ 8 days old with an accuracy of 91% (N = 501, whereas female Ae. aegypti infected with wMel and wMelPop were differentiated into the two age groups with an accuracy of 83% (N = 284 and 78% (N = 229, respectively. Our results also indicate NIRS can distinguish between young and old male wild-type, wMel and wMelPop infected Ae. aegypti with accuracies of 87% (N = 253, 83% (N = 277 and 78% (N = 234, respectively. We have demonstrated the potential of NIRS as a predictor of the age of female and male wild-type and Wolbachia infected Ae. aegypti mosquitoes under laboratory conditions. After field validation, the tool has the potential to offer a cheap and rapid alternative for surveillance of dengue and Zika vector control programs.

  16. A Biphasic Change of Regional Blood Volume in the Frontal Cortex during Non-Rapid Eye Movement Sleep: A Near-Infrared Spectroscopy Study.

    Science.gov (United States)

    Zhang, Zhongxing; Khatami, Ramin

    2015-08-01

    Current knowledge on hemodynamics in sleep is limited because available techniques do not allow continuous recordings and mainly focus on cerebral blood flow while neglecting other important parameters, such as blood volume (BV) and vasomotor activity. Observational study. Continuous measures of hemodynamics over the left forehead and biceps were performed using near-infrared spectroscopy (NIRS) during nocturnal polysomnography in 16 healthy participants in sleep laboratory. Temporal dynamics and mean values of cerebral and muscular oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (HHb), and BV during different sleep stages were compared. A biphasic change of cerebral BV was observed which contrasted a monotonic increase of muscular BV during non-rapid eye movement sleep. A significant decrement in cerebral HbO2 and BV accompanied by an increase of HHb was recorded at sleep onset (Phase I). Prior to slow wave sleep (SWS) HbO2 and BV turned to increase whereas HHb began to decrease in subsequent Phase II suggested increased brain perfusion during SWS. The cerebral HbO2 slope correlated to BV slope in Phase I and II, but it only correlated to HHb slope in Phase II. The occurrence time of inflection points correlated to SWS latencies. Initial decrease of brain perfusion with decreased blood volume (BV) and oxygenated hemoglobin (HbO2) together with increasing muscular BV fit thermoregulation process at sleep onset. The uncorrelated and correlated slopes of HbO2 and deoxygenated hemoglobin indicate different mechanisms underlying the biphasic hemodynamic process in light sleep and slow wave sleep (SWS). In SWS, changes in vasomotor activity (i.e., increased vasodilatation) may mediate increasing cerebral and muscular BV. © 2015 Associated Professional Sleep Societies, LLC.

  17. Rapid discrimination and determination of antibiotics drugs in plastic syringes using near infrared spectroscopy with chemometric analysis: Application to amoxicillin and penicillin.

    Science.gov (United States)

    Lê, Laetitia Minh Mai; Eveleigh, Luc; Hasnaoui, Ikram; Prognon, Patrice; Baillet-Guffroy, Arlette; Caudron, Eric

    2017-05-10

    The aim of this study was to investigate near infrared spectroscopy (NIRS) combined to chemometric analysis to discriminate and quantify three antibiotics by direct measurement in plastic syringes.Solutions of benzylpenicillin (PENI), amoxicillin (AMOX) and amoxicillin/clavulanic acid (AMOX/CLAV) were analyzed at therapeutic concentrations in glass vials and plastic syringes with NIR spectrometer by direct measurement. Chemometric analysis using partial least squares regression and discriminative analysis was conducted to develop qualitative and quantitative calibration models. Discrimination of the three antibiotics was optimal for concentrated solutions with 100% of accuracy. For quantitative analysis, the three antibiotics furnished a linear response (R²>0.9994) for concentrations ranging from 0.05 to 0.2 g/mL for AMOX, 0.1 to 1.0 MUI/mL for PENI and 0.005 to 0.05 g/mL for AMOX/CLAV with excellent repeatability (maximum 1.3%) and intermediate precision (maximum of 3.2%). Based on proposed models, 94.4% of analyzed AMOX syringes, 80.0% of AMOX/CLAV syringes and 85.7% of PENI syringes were compliant with a relative error including the limit of ± 15%.NIRS as rapid, non-invasive and non-destructive analytical method represents a potentially powerful tool to further develop for securing the drug administration circuit of healthcare institutions to ensure that patients receive the correct product at the right dose. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Discrimination of various paper types using diffuse reflectance ultraviolet-visible near-infrared (UV-Vis-NIR) spectroscopy: forensic application to questioned documents.

    Science.gov (United States)

    Kumar, Raj; Kumar, Vinay; Sharma, Vishal

    2015-06-01

    Diffuse reflectance ultraviolet-visible-near-infrared (UV-Vis-NIR) spectroscopy is applied as a means of differentiating various types of writing, office, and photocopy papers (collected from stationery shops in India) on the basis of reflectance and absorbance spectra that otherwise seem to be almost alike in different illumination conditions. In order to minimize bias, spectra from both sides of paper were obtained. In addition, three spectra from three different locations (from one side) were recorded covering the upper, middle, and bottom portions of the paper sample, and the mean average reflectivity of both the sides was calculated. A significant difference was observed in mean average reflectivity of Side A and Side B of the paper using Student's pair >t-test. Three different approaches were used for discrimination: (1) qualitative features of the whole set of samples, (2) principal component analysis, and (3) a combination of both approaches. On the basis of the first approach, i.e., qualitative features, 96.49% discriminating power (DP) was observed, which shows highly significant results with the UV-Vis-NIR technique. In the second approach the discriminating power is further enhanced by incorporating the principal component analysis (PCA) statistical method, where this method describes each UV-Vis spectrum in a group through numerical loading values connected to the first few principal components. All components described 100% variance of the samples, but only the first three PCs are good enough to explain the variance (PC1 = 51.64%, PC2 = 47.52%, and PC3 = 0.54%) of the samples; i.e., the first three PCs described 99.70% of the data, whereas in the third approach, the four samples, C, G, K, and N, out of a total 19 samples, which were not differentiated using qualitative features (approach no. 1), were therefore subjected to PCA. The first two PCs described 99.37% of the spectral features. The discrimination was achieved by using a loading plot between

  19. Rapid determination of chemical composition and classification of bamboo fractions using visible-near infrared spectroscopy coupled with multivariate data analysis.

    Science.gov (United States)

    Yang, Zhong; Li, Kang; Zhang, Maomao; Xin, Donglin; Zhang, Junhua

    2016-01-01

    During conversion of bamboo into biofuels and chemicals, it is necessary to efficiently predict the chemical composition and digestibility of biomass. However, traditional methods for determination of lignocellulosic biomass composition are expensive and time consuming. In this work, a novel and fast method for quantitative and qualitative analysis of chemical composition and enzymatic digestibilities of juvenile bamboo and mature bamboo fractions (bamboo green, bamboo timber, bamboo yellow, bamboo node, and bamboo branch) using visible-near infrared spectra was evaluated. The developed partial least squares models yielded coefficients of determination in calibration of 0.88, 0.94, and 0.96, for cellulose, xylan, and lignin of bamboo fractions in raw spectra, respectively. After visible-near infrared spectra being pretreated, the corresponding coefficients of determination in calibration yielded by the developed partial least squares models are 0.994, 0.990, and 0.996, respectively. The score plots of principal component analysis of mature bamboo, juvenile bamboo, and different fractions of mature bamboo were obviously distinguished in raw spectra. Based on partial least squares discriminant analysis, the classification accuracies of mature bamboo, juvenile bamboo, and different fractions of bamboo (bamboo green, bamboo timber, bamboo yellow, and bamboo branch) all reached 100 %. In addition, high accuracies of evaluation of the enzymatic digestibilities of bamboo fractions after pretreatment with aqueous ammonia were also observed. The results showed the potential of visible-near infrared spectroscopy in combination with multivariate analysis in efficiently analyzing the chemical composition and hydrolysabilities of lignocellulosic biomass, such as bamboo fractions.

  20. Near-infrared forest fire detection concept.

    Science.gov (United States)

    Thomas, P J; O, N

    1993-09-20

    A system concept is described for a pushbroom airborne optical fire detection instrument operating in the visible and near-infrared spectral regions. In the design concept, several detection modules are used simultaneously, each having a camera lens, beam splitter, spectral filters, silicon linear array, InGaAs linear array, and signal processing. Calculations indicate that dual-wavelength signal processing should allow cool (600 K) incipient fires as small as 0.1 m in extent to be identified against the expected background of diffuse and specular sunlight.

  1. Rapid and Cost-Effective Quantification of Glucosinolates and Total Phenolic Content in Rocket Leaves by Visible/Near-Infrared Spectroscopy.

    Science.gov (United States)

    Toledo-Martín, Eva María; Font, Rafael; Obregón-Cano, Sara; De Haro-Bailón, Antonio; Villatoro-Pulido, Myriam; Del Río-Celestino, Mercedes

    2017-05-20

    The potential of visible-near infrared spectroscopy to predict glucosinolates and total phenolic content in rocket ( Eruca vesicaria ) leaves has been evaluated. Accessions of the E. vesicaria species were scanned by NIRS as ground leaf, and their reference values regressed against different spectral transformations by modified partial least squares (MPLS) regression. The coefficients of determination in the external validation (R²VAL) for the different quality components analyzed in rocket ranged from 0.59 to 0.84, which characterize those equations as having from good to excellent quantitative information. These results show that the total glucosinolates, glucosativin and glucoerucin equations obtained, can be used to identify those samples with low and high contents. The glucoraphanin equation obtained can be used for rough predictions of samples and in case of total phenolic content, the equation showed good correlation. The standard deviation (SD) to standard error of prediction ratio (RPD) and SD to range (RER) were variable for the different quality compounds and showed values that were characteristic of equations suitable for screening purposes or to perform accurate analyses. From the study of the MPLS loadings of the first three terms of the different equations, it can be concluded that some major cell components such as protein and cellulose, highly participated in modelling the equations for glucosinolates.

  2. Rapid and Cost-Effective Quantification of Glucosinolates and Total Phenolic Content in Rocket Leaves by Visible/Near-Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Eva María Toledo-Martín

    2017-05-01

    Full Text Available The potential of visible-near infrared spectroscopy to predict glucosinolates and total phenolic content in rocket (Eruca vesicaria leaves has been evaluated. Accessions of the E. vesicaria species were scanned by NIRS as ground leaf, and their reference values regressed against different spectral transformations by modified partial least squares (MPLS regression. The coefficients of determination in the external validation (R2VAL for the different quality components analyzed in rocket ranged from 0.59 to 0.84, which characterize those equations as having from good to excellent quantitative information. These results show that the total glucosinolates, glucosativin and glucoerucin equations obtained, can be used to identify those samples with low and high contents. The glucoraphanin equation obtained can be used for rough predictions of samples and in case of total phenolic content, the equation showed good correlation. The standard deviation (SD to standard error of prediction ratio (RPD and SD to range (RER were variable for the different quality compounds and showed values that were characteristic of equations suitable for screening purposes or to perform accurate analyses. From the study of the MPLS loadings of the first three terms of the different equations, it can be concluded that some major cell components such as protein and cellulose, highly participated in modelling the equations for glucosinolates.

  3. Near-infrared neuroimaging with NinPy

    Directory of Open Access Journals (Sweden)

    Gary E Strangman

    2009-05-01

    Full Text Available There has been substantial recent growth in the use of non-invasive optical brain imaging in studies of human brain function in health and disease. Near-infrared neuroimaging (NIN is one of the most promising of these techniques and, although NIN hardware continues to evolve at a rapid pace, software tools supporting optical data acquisition, image processing, statistical modeling and visualization remain less refined. Python, a modular and computationally efficient development language, can support functional neuroimaging studies of diverse design and implementation. In particular, Python's easily readable syntax and modular architecture allow swift prototyping followed by efficient transition to stable production systems. As an introduction to our ongoing efforts to develop Python software tools for structural and functional neuroimaging, we discuss: (i the role of noninvasive diffuse optical imaging in measuring brain function, (ii the key computational requirements to support NIN experiments, (iii our collection of software tools to support near-infrared neuroimaging, called NinPy, and (iv future extensions of these tools that will allow integration of optical with other structural and functional neuroimaging data sources. Source code for the software discussed here will be made available at www.nmr.mgh.harvard.edu/Neural_SystemsGroup/software.html.

  4. Interferometric near-infrared spectroscopy (Conference Presentation)

    Science.gov (United States)

    Borycki, Dawid; Kholiqov, Oybek; Chong, Shau Poh; Srinivasan, Vivek J.

    2016-03-01

    We introduce and implement interferometric near-infrared spectroscopy (iNIRS), which simultaneously extracts the optical and dynamic properties of turbid media from the analysis of the spectral interference fringe pattern. The spectral interference fringe pattern is measured using a Mach-Zehnder interferometer with a frequency swept narrow bandwidth light source such that the temporal intensity autocorrelations can be determined for all photon path lengths. This approach enables time-of-flight (TOF) resolved measurement of scatterer motion, which is a feature inaccessible in well-established diffuse correlation spectroscopy techniques. We prove this by analyzing intensity correlations of the light transmitted through diffusive fluid phantoms with photon random walks of up to 55 (approximately 110 scattering events) using laser sweep rates on the order of 100kHz. Thus, the results we present here advance diffuse optical methods by enabling simultaneous determination of depth-resolved optical properties and dynamics in highly scattering samples.

  5. Mid-infrared and near-infrared spectroscopy for rapid detection of Gardeniae Fructus by a liquid-liquid extraction process.

    Science.gov (United States)

    Tao, Lingyan; Lin, Zhonglin; Chen, Jiashan; Wu, Yongjiang; Liu, Xuesong

    2017-10-25

    Gardeniae Fructus is widely used in the pharmaceutical industry, and many studies have confirmed its medical and economic value. In this study, samples collected from different liquid-liquid extraction batches of Gardeniae Fructus were detected by mid-infrared (MIR) and near-infrared (NIR) spectroscopy. Seven analytes, neochlorogenic acid (5-CQA), cryptochlorogenic acid (4-CQA), chlorogenic acid (3-CQA), geniposidic acid (GEA), deacetyl-asperulosidic acid methyl ester (DAAME), genipin-gentiobioside (GGB), and gardenoside (GA), were chosen as quality property indexes of Gardeniae Fructus. The two kinds of spectra were each used to build models by single partial least squares (PLS). Additionally, both spectral data were combined and modeled by multiblock PLS. For single spectroscopy modeling results, NIR had a better prediction for high-concentration analytes (3-CQA, DAAME, GGB, and GA) whereas MIR performed better for low-concentration analytes (5-CQA, 4-CQA, and GEA). The multiblock methodology was found to be better compared to single spectroscopy models for all seven analytes. Specifically, the coefficients of determination (R2) of the NIR, MIR, and multiblock PLS calibration models of all seven components were higher than 0.95. Relative standard errors of prediction (RSEP) were all less than 7%, except for models of GGB, which were 10.36%, 13.24%, and 8.15% for the NIR-PLS, MIR-PLS, and multiblock models, respectively. These results indicate that MIR and NIR spectrographic techniques could provide a new choice for quality control in industrial production of Gardeniae Fructus. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Advances in near-infrared measurements

    CERN Document Server

    Patonay, Gabor

    1991-01-01

    Advances in Near-Infrared Measurements, Volume 1 provides an overview of near-infrared spectroscopy. The book is comprised of six chapters that tackle various areas of near-infrared measurement. Chapter 1 discusses remote monitoring techniques in near-infrared spectroscopy with an emphasis on fiber optics. Chapter 2 covers the applications of fibers using Raman techniques, and Chapter 3 tackles the difficulties associated with near-infrared data analysis. The subsequent chapters present examples of the capabilities of near-infrared spectroscopy from various research groups. The text wi

  7. X-Shooter Survey of Near-Infrared DIBs

    NARCIS (Netherlands)

    Cox, N.L.J.; Cami, J.; Kaper, L.; Foing, B.H.; Ehrenfreund, P.; Ochsendorf, B.B.; van Hooff, S.H.M.; Salama, F.

    2014-01-01

    We present the first results of an exploratory VLT/X-Shooter survey of near-infrared diffuse interstellar bands (DIBs) in diffuse to translucent interstellar clouds. These observations confirm the presence of recently discoved NIR DIBs and provide more accurate rest wavelengths and line widths.

  8. Cropland Field Monitoring: MMV Page 1 Montana Cropland Enrolled Farm Fields Carbon Sequestration Field Sampling, Measurement, Monitoring, and Verification: Application of Visible-Near Infrared Diffuse Reflectance Spectroscopy (VNIR) and Laser-induced Breakdown Spectroscopy (LIBS)

    Energy Technology Data Exchange (ETDEWEB)

    Lee Spangler; Ross Bricklemyer; David Brown

    2012-03-15

    There is growing need for rapid, accurate, and inexpensive methods to measure, and verify soil organic carbon (SOC) change for national greenhouse gas accounting and the development of a soil carbon trading market. Laboratory based soil characterization typically requires significant soil processing, which is time and resource intensive. This severely limits application for large-region soil characterization. Thus, development of rapid and accurate methods for characterizing soils are needed to map soil properties for precision agriculture applications, improve regional and global soil carbon (C) stock and flux estimates and efficiently map sub-surface metal contamination, among others. The greatest gains for efficient soil characterization will come from collecting soil data in situ, thus minimizing soil sample transportation, processing, and lab-based measurement costs. Visible and near-infrared diffuse reflectance spectroscopy (VisNIR) and laser-induced breakdown spectroscopy (LIBS) are two complementary, yet fundamentally different spectroscopic techniques that have the potential to meet this need. These sensors have the potential to be mounted on a soil penetrometer and deployed for rapid soil profile characterization at field and landscape scales. Details of sensor interaction, efficient data management, and appropriate statistical analysis techniques for model calibrations are first needed. In situ or on-the-go VisNIR spectroscopy has been proposed as a rapid and inexpensive tool for intensively mapping soil texture and organic carbon (SOC). While lab-based VisNIR has been established as a viable technique for estimating various soil properties, few experiments have compared the predictive accuracy of on-the-go and lab-based VisNIR. Eight north central Montana wheat fields were intensively interrogated using on-the-go and lab-based VisNIR. Lab-based spectral data consistently provided more accurate predictions than on-the-go data. However, neither in situ

  9. Near infrared autofluorescence imaging of retinal diseases.

    Science.gov (United States)

    Skondra, Dimitra; Papakostas, Thanos D; Hunter, Rebecca; Vavvas, Demetrios G

    2012-01-01

    Near infrared autofluorescence (excitation 787 nm, emission >800 nm) is a non-invasive imaging technology that provides information on the distribution of melanin within the retinal pigment epithelial cell/choroid complex. This review contains an introduction to near infrared autofluorescence imaging methods. Characteristics of near infrared imaging in a variety of retinal diseases, including age-related macular degeneration, choroidal nevus, retinal degenerations, retinal dystrophies, central serous chorioretinopathy, pseudoxanthoma elasticum and chloroquine retinopathy, are summarized.

  10. Fundus near infrared fluorescence correlates with fundus near infrared reflectance.

    Science.gov (United States)

    Weinberger, Andreas W A; Lappas, Alexandra; Kirschkamp, Thomas; Mazinani, Babac A E; Huth, Julia K; Mohammadi, Babak; Walter, Peter

    2006-07-01

    To analyze the occurrence of near infrared (NIR) fluorescence in relation to NIR reflectance, blue-light-excited autofluorescence, angiograms, and funduscopy. Observational consecutive case series in patients with macular diseases. Imaging was performed with a confocal scanning laser ophthalmoscope for NIR reflectance, blue-light-excited autofluorescence, NIR fluorescence, and fluorescein and indocyanine green (ICG) angiograms. In cases in which NIR fluorescence was observed, five to nine images were averaged. The leakage of the scanning laser ophthalmoscope was analyzed. In the 291 eyes analyzed, NIR fluorescence was observed in 51 and was graded weak in 27 with wet age-related macular degeneration (AMD, 10 cases), dry AMD with pigment clumping (n=7), chronic central serous choroidopathy (CSC; n=5), choroidal nevi (n=2), subretinal hemorrhages (n=2), and chloroquine maculopathy (n=1). Strong NIR fluorescence was found in 24 eyes, with wet AMD (n=14), subretinal hemorrhages (n=8), and choroidal nevi (n=2). Except for four eyes, we observed a strong correlation of NIR fluorescence and increased NIR reflectance at identical fundus location (92.2%). NIR fluorescence corresponded with increased blue-light-excited autofluorescence in 21 of 31 patients with AMD and in 4 of 5 patients with chronic CSC, but in none of the 4 patients with nevi. Funduscopy showed that structures with NIR fluorescence were pigmented or consisted of degraded blood. Barrier filter leakage of the imaging system was 6.2x10(-6). The high correlation of NIR fluorescence and reflectance indicated that part of the observed NIR fluorescence is pseudofluorescence, whereas gray-scale analysis indicated that both NIR autofluorescence and pseudofluorescence contribute to the NIR fluorescence images. Quantification of leakage of the imaging system indicated a significant part of the observed NIR fluorescence is NIR autofluorescence. As NIR fluorescence derives from pigmented lesions, melanin is a possible

  11. Near infrared spectroscopy and exercise

    Energy Technology Data Exchange (ETDEWEB)

    Angus, Caroline

    2002-07-01

    Near infrared spectroscopy (NIRS) provides a non-invasive method for the continuous monitoring of changes in tissue oxygenation and blood volume during aerobic exercise. During incremental exercise in adult subjects there was a positive correlation between lactate threshold (measured by blood sampling) and changes in the rate of muscle deoxygenation (measured by NIRS). However, the 7% failure rate for the NIRS test mitigated against the general use of this method. NIRS did not provide a valid method for LT determination in an adolescent population. NIRS was then used to examine whether haemodynamic changes could be a contributing factor to the mechanism underlying the cross-transfer effect. During a one-legged incremental aerobic exercise test the muscle was more deoxygenated in the exercising leg than in the non-exercising leg, consistent with oxygen consumption outstripping blood flow to the exercising limb. However, muscle blood volume increased equally in both legs. This suggests that blood flow may be raised to similar levels in both the legs; although local factors may signal an increase in blood volume, this effect is expressed in both legs. Muscle blood flow and changes in muscle blood volume were then measured directly by NIRS during an incremental one-arm aerobic exercise test. There was no significant difference in either blood volume or blood flow in the two arms at the end of the test. In the non-exercising arm changes in blood flow and blood volume were measured throughout the protocol. At higher exercise intensities, blood volume continued to rise as muscle blood flow plateaued, indicating that blood volume changes become independent of changes in blood flow. Finally, the effect of different training regimes on changes in muscle blood volume was examined. Subjects were assigned to a training group; two-arm training, one-arm training or a control group. Training did not affect blood volume changes during two-arm exercise. However, during one

  12. Near-infrared brightening of BL Lacertae

    Science.gov (United States)

    Carnerero, M. I.; Gonzalez, A. I.; Pulido, J. A. Acosta; Raiteri, C. M.; Villata, M.

    2012-07-01

    Near-infrared observations at the Teide Observatory, in the framework of the GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT) confirm a rapid brightening of BL Lacertae, as reported by ATel#4271. Here we report on four observations obtained at the Carlos Sanchez Telescope in a week period, according to which the source has increased its brightness by 0.7 mag. On 2012 July 20.14 the source was observed at J=11.25 +/-0.01 (H=10.27+/-0.01 and Ks=9.46+/-0.01), on July 21.15 at J=11.00+/-0.02 (H=10.02+/-0.02, Ks=9.21+/-0,02), on July 24.98 at J=10.72+/-0.01 (H=9.76+/-0.01, Ks=8.94+/-0.01), and on July 26.12 at J=10.57+/-0.01 (H=9.58+/-0.01, Ks=8.77+/-0.01).

  13. Near infrared lasers in flow cytometry.

    Science.gov (United States)

    Telford, William G

    2015-07-01

    Technology development in flow cytometry has closely tracked laser technology, the light source that flow cytometers almost exclusively use to excite fluorescent probes. The original flow cytometers from the 1970s and 1980s used large water-cooled lasers to produce only one or two laser lines at a time. Modern cytometers can take advantage of the revolution in solid state laser technology to use almost any laser wavelength ranging from the ultraviolet to the near infrared. Commercial cytometers can now be equipped with many small solid state lasers, providing almost any wavelength needed for cellular analysis. Flow cytometers are now equipped to analyze 20 or more fluorescent probes simultaneously, requiring multiple laser wavelengths. Instrument developers are now trying to increase this number by designing fluorescent probes that can be excited by laser wavelength at the "edges" of the visible light range, in the near ultraviolet and near-infrared region. A variety of fluorescent probes have been developed that excite with violet and long wavelength ultraviolet light; however, the near-infrared range (660-800 nm) has yet seen only exploitation in flow cytometry. Fortunately, near-infrared laser diodes and other solid state laser technologies appropriate for flow cytometry have been in existence for some time, and can be readily incorporated into flow cytometers to accelerate fluorescent probe development. The near infrared region represents one of the last "frontiers" to maximize the number of fluorescent probes that can be analyzed by flow cytometry. In addition, near infrared fluorescent probes used in biomedical tracking and imaging could also be employed for flow cytometry with the correct laser wavelengths. This review describes the available technology, including lasers, fluorescent probes and detector technology optimal for near infrared signal detection. Published by Elsevier Inc.

  14. [Application of near infrared spectroscopy technology (NIRS) in forage field].

    Science.gov (United States)

    Yan, Xu; Bai, Shi-Qie; Yan, Jia-Jun; Gan, You-Min; Dao, Zhi-Xue

    2012-07-01

    The majority of nutrients in ruminants and other herbivores come from forages. Forage quality not only affects the growth and production efficiency of livestock, but also determines the final output and quality of livestock products. Forage quality mainly depends on nutrient concentrations and their digestibility, palatability and the level of presence of antiquality factors and mycotoxins in forage. Near infrared reflectance spectroscopy (NIRS) has been widely used in many research areas because it is a inexpensive, rapid, simple and nondestructive technique offering the potential for qualitative and quantitative analysis. The present paper briefly introduces the principle and characteristics of NIRS, detailedly expounds the application of NIRS in forage quality. In addition, other applications of near infrared spectroscopy technique in forage are also discussed, including forage breeding, identification of variety and classification by kind. This paper comprehensively reviews the status quo of application of NIRS in forage filed, in order to contribute to promoting development of NIRS in this field in China.

  15. Influence of earlobe thickness on near infrared spectroscopy

    Science.gov (United States)

    Jiang, Jingying; Wang, Tianpei; Li, Si; Li, Lin; Liu, Jiajia; Xu, Kexin

    2017-03-01

    Near-infrared spectroscopy has been recognized as a potential technology for noninvasive blood glucose sensing. However, the detected spectral signal is unstable mainly because of (1) the weak light absorption of glucose itself within NIR range, (2) the influence of temperature and individual differences of biotissue. Our previous results demonstrated that the synergistic effect of both transmittance and reflectance could enhance the strength of the detection signal. In this talk, we design a set of experiments to analyze the effect of earlobe thickness on Near Infrared spectroscopic measurement by using home-made optical fiber probe within the wavelength of 1000-1600nm. Firstly, we made a MC simulation of single-layer skin model and five-layer skin model to get the diffused transmittance spectra and diffused reflectance spectra under different optaical path lengths. And then we obtain the spectra of the earlobes from different volunteers by the same way. The experimental results showed that with the increase of the thickness,the light intensity of diffused transmittance decreases, and the light intensity of diffused reflectance remaines substantially unchanged.

  16. PARTIAL LEAST SQUARES−NEAR INFRARED SPECTROMETRIC ...

    African Journals Online (AJOL)

    prediction (RMSEP) = 0.06 for ethanol and R2 = 0.929 and RMSEP = 0.08 for methanol, respectively. The percentage ... KEY WORDS: Distilled alcoholic beverages, Ethanol, Methanol, Near infrared spectrophotometry, Partial least ..... Mendes, L.S.; Oliveira, F.C.C.; Suarez, P.A.Z.; Rubim, J.C. Determination of ethanol in fuel.

  17. Near infrared face recognition: A literature survey

    Czech Academy of Sciences Publication Activity Database

    Farokhi, Sajad; Flusser, Jan; Sheikh, U. U.

    2016-01-01

    Roč. 21, č. 1 (2016), s. 1-17 ISSN 1574-0137 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Literature survey * Biometrics * Face recognition * Near infrared * Illumination invariant Subject RIV: JD - Computer Applications, Robotics http://library.utia.cas.cz/separaty/2016/ZOI/flusser-0461834.pdf

  18. Comparing near-infrared conventional diffuse reflectance spectroscopy and hyperspectral imaging for determination of the bulk properties of solid samples by multivariate regression: determination of Mooney viscosity and plasticity indices of natural rubber.

    Science.gov (United States)

    Juliano da Silva, Carlos; Pasquini, Celio

    2015-01-21

    Conventional reflectance spectroscopy (NIRS) and hyperspectral imaging (HI) in the near-infrared region (1000-2500 nm) are evaluated and compared, using, as the case study, the determination of relevant properties related to the quality of natural rubber. Mooney viscosity (MV) and plasticity indices (PI) (PI0 - original plasticity, PI30 - plasticity after accelerated aging, and PRI - the plasticity retention index after accelerated aging) of rubber were determined using multivariate regression models. Two hundred and eighty six samples of rubber were measured using conventional and hyperspectral near-infrared imaging reflectance instruments in the range of 1000-2500 nm. The sample set was split into regression (n = 191) and external validation (n = 95) sub-sets. Three instruments were employed for data acquisition: a line scanning hyperspectral camera and two conventional FT-NIR spectrometers. Sample heterogeneity was evaluated using hyperspectral images obtained with a resolution of 150 × 150 μm and principal component analysis. The probed sample area (5 cm(2); 24,000 pixels) to achieve representativeness was found to be equivalent to the average of 6 spectra for a 1 cm diameter probing circular window of one FT-NIR instrument. The other spectrophotometer can probe the whole sample in only one measurement. The results show that the rubber properties can be determined with very similar accuracy and precision by Partial Least Square (PLS) regression models regardless of whether HI-NIR or conventional FT-NIR produce the spectral datasets. The best Root Mean Square Errors of Prediction (RMSEPs) of external validation for MV, PI0, PI30, and PRI were 4.3, 1.8, 3.4, and 5.3%, respectively. Though the quantitative results provided by the three instruments can be considered equivalent, the hyperspectral imaging instrument presents a number of advantages, being about 6 times faster than conventional bulk spectrometers, producing robust spectral data by ensuring sample

  19. Multiphoton microscopy with near infrared contrast agents

    Science.gov (United States)

    Yazdanfar, Siavash; Joo, Chulmin; Zhan, Chun; Berezin, Mikhail Y.; Akers, Walter J.; Achilefu, Samuel

    2010-05-01

    While multiphoton microscopy (MPM) has been performed with a wide range of excitation wavelengths, fluorescence emission has been limited to the visible spectrum. We introduce a paradigm for MPM of near-infrared (NIR) fluorescent molecular probes via nonlinear excitation at 1550 nm. This all-NIR system expands the range of available MPM fluorophores, virtually eliminates background autofluorescence, and allows for use of fiber-based, turnkey ultrafast lasers developed for telecommunications.

  20. Carbon nanotubes as near infrared laser susceptors

    OpenAIRE

    Bahrami, Amir

    2011-01-01

    The coupling efficiency of carbon nanotubes with near infrared laser radiation at 940nm wavelength was investigated. Nanotubes treated with different post processing methods were irradiated at different laser power intensities as dry samples and suspensions in water or ethanol. The interaction with the laser beam was measured and quantified based on the temperature increase in the samples as well as the amount of energy transmitted through them. Parallel experiments using carbon black reveale...

  1. [Near infrared light irradiator using halogen lamp].

    Science.gov (United States)

    Ide, Yasuo

    2012-07-01

    The practical electric light bulb was invented by Thomas Alva Edison in 1879. Halogen lamp is the toughest and brightest electric light bulb. With light filter, it is used as a source of near infrared light. Super Lizer and Alphabeam are made as near infrared light irradiator using halogen lamp. The light emmited by Super Lizer is linear polarized near infrared light. The wave length is from 600 to 1,600 nm and strongest at about 1,000 nm. Concerning Super Lizer, there is evidence of analgesic effects and normalization of the sympathetic nervous system. Super Lizer has four types of probes. SG type is used for stellate ganglion irradiation. B type is used for narrow area irradiation. C and D types are for broad area irradiation. The output of Alphabeam is not polarized. The wave length is from 700 to 1,600 nm and the strongest length is about 1,000nm. Standard attachment is used for spot irradiation. Small attachment is used for stellate ganglion irradiation. Wide attachment is used for broad area irradiation. The effects of Alphabeam are thought to be similar to that of Super Lizer.

  2. A Near-Infrared Optical Tomography System Based on Photomultiplier Tube

    Directory of Open Access Journals (Sweden)

    Huacheng Feng

    2007-01-01

    Full Text Available Diffuse optical tomography (DOT is a rapidly growing discipline in recent years. It plays an important role in many fields, such as detecting breast cancer and monitoring the cerebra oxygenation. In this paper, a relatively simple, inexpensive, and conveniently used DOT system is presented in detail, in which only one photomultiplier tube is employed as the detector and an optical multiplexer is used to alter the detector channels. The 32-channel imager is consisted of 16-launch fibers and 16-detector fibers bundles, which works in the near-infrared (NIR spectral range under continuous-wave (CW model. The entire imaging system can work highly automatically and harmoniously. Experiments based on the proposed imaging system were performed, and the desired results can be obtained. The experimental results suggested that the proposed imaging instrumentation is effective.

  3. Determining water content in human nails with a portable near-infrared spectrometer.

    Science.gov (United States)

    Egawa, Mariko; Fukuhara, Tadao; Takahashi, Motoji; Ozaki, Yukihiro

    2003-04-01

    The water content of human nail plates was determined using a portable near-infrared (NIR) spectrometer with an InGaAs photodiode array detector. NIR diffuse reflectance (DR) spectra were collected from 108 cut nail plates with different relative humidity and in vivo from fingernails. Partial least-squares (PLS) regression was applied to the NIR spectra in the 1115-1645 nm region to develop calibration models that determine the water content in the cut nail plates and fingernails. A good correlation was obtained between the NIR spectra and the water content measured by nuclear magnetic resonance (NMR) for the NIR measurement of both cut nail plates and fingernails. The results indicate that the water content in the nails can be determined very rapidly (1 s) by means of the portable NIR spectrometer and PLS regression.

  4. Monitoring Key Parameters in Bioprocesses Using Near-Infrared Technology

    Directory of Open Access Journals (Sweden)

    Elena Tamburini

    2014-10-01

    Full Text Available Near-infrared spectroscopy (NIRS is known to be a rapid and non-destructive technique for process monitoring. Bioprocesses are usually complex, from both the chemical (ill-defined medium composition and physical (multiphase matrix aspects, which poses an additional challenge to the development of robust calibrations. We investigated the use of NIRS for on-line and in-line monitoring of cell, substrate and product concentrations, during aerobic and anaerobic bacterial fermentations, in different fermentation strategies. Calibration models were built up, then validated and used for the automated control of fermentation processes. The capability of NIR in-line to discriminate among differently shaped bacteria was tested.

  5. Monitoring key parameters in bioprocesses using near-infrared technology.

    Science.gov (United States)

    Tamburini, Elena; Marchetti, Maria Gabriella; Pedrini, Paola

    2014-10-13

    Near-infrared spectroscopy (NIRS) is known to be a rapid and non-destructive technique for process monitoring. Bioprocesses are usually complex, from both the chemical (ill-defined medium composition) and physical (multiphase matrix) aspects, which poses an additional challenge to the development of robust calibrations. We investigated the use of NIRS for on-line and in-line monitoring of cell, substrate and product concentrations, during aerobic and anaerobic bacterial fermentations, in different fermentation strategies. Calibration models were built up, then validated and used for the automated control of fermentation processes. The capability of NIR in-line to discriminate among differently shaped bacteria was tested.

  6. Near-infrared receiver for advanced ophthalmology

    Science.gov (United States)

    Myers, Richard A.; Farrell, Richard; Zhang, Yuhua; Roorda, Austin

    2010-02-01

    We will present research on the development of an optical receiver module with a wide frequency bandwidth and excellent response to near-infrared radiation. This module is being produced to promote new imaging modalities, allowing retinal specialist to utilize established diagnostic instruments, such as scanning laser ophthalmoscopes (SLO) in a unique or more effective manner. In particular, it can be applied towards more accurate visual threshold studies in both the healthy and diseased eye. With this goal in mind, measurements of the targeted receiver's performance with and without additional amplification are presented, as is a survey of available APD detectors.

  7. Near-infrared scintillation of liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, T. [Fermilab; Escobar, C. O. [Campinas State U.; Lippincott, W. H. [Fermilab; Rubinov, P. [Fermilab

    2016-03-03

    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 $\\mu$m < $\\lambda$; < 1.5$\\mu$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  8. Recent developments in near infrared instrumentation

    OpenAIRE

    Gregory Mosby

    2017-01-01

    The core questions that drive astronomy stem from an eagerness to understand the details of the universe and to learn our place within it. These questions range from the smallest scales: how are planets formed, how are stars formed? And they continue to the largest scales: how do galaxies form and how do they change with time? These questions can only be answered with the cutting edge instrumentation that has been developed over time to understand the universe from its light. Near infrared in...

  9. [Near-infrared Raman spectroscopy for diagnosis of gastric cancer].

    Science.gov (United States)

    Jin, Shaoqin; Mao, Hua

    2014-03-01

    To establish a method for early diagnosis of gastric cancer using near-infrared Raman spectroscopy. A rapid near-infrared Raman system was used to examine the tissue specimens of pathologically confirmed gastric cancer (33 cases), gastric precancerous lesions (27 cases), and normal gastric mucosa (45 cases). All the specimens were obtained from 105 patients undergoing gastrectomy or endoscopic biopsy of suspected gastric lesions. High-quality Raman spectra ranging from 700 to 1800 cm(-1) were acquired from the gastric tissues within 5 s. The distribution pattern of Raman spectra in gastric cancer differed significantly from those of gastric precancerous lesions and normal gastric mucosa, particularly in the spectral ranges of 853 cm(-1), 936 cm(-1), 1003 cm(-1), 1032 cm(-1), 1174 cm(-1), 1208 cm(-1), 1323 cm(-1), 1335 cm(-1), 1450 cm(-1), and 1655 cm(-1), which contained signals related to proteins, nucleic acids and lipids. The diagnostic decision algorithm based on the Raman peak intensity ratios of I1003/ I1337, I1003/I1445, I1003/I1655, and I1156/I1655 yielded remarkable differences in gastric cancer from gastric precancerous lesions and normal gastric mucosa, and the ratios were significantly higher in normal gastric tissues (Pinfrared Raman spectroscopy using PCA-LDA algorithms associated with leave- one-out and cross-validation method showed diagnostic sensitivities of 81.5%, 85.3%, and 100%, and specificities of 86.4%, 100%, and 97.4% for normal gastric mucosa, precancerous lesions and gastric cancer, respectively. near-infrared Raman spectroscopy in conjunction with intensity ratio algorithms shows the potential for noninvasive diagnosis and detection of gastric malignancy at the molecular level.

  10. Rapid innovation diffusion in social networks.

    Science.gov (United States)

    Kreindler, Gabriel E; Young, H Peyton

    2014-07-22

    Social and technological innovations often spread through social networks as people respond to what their neighbors are doing. Previous research has identified specific network structures, such as local clustering, that promote rapid diffusion. Here we derive bounds that are independent of network structure and size, such that diffusion is fast whenever the payoff gain from the innovation is sufficiently high and the agents' responses are sufficiently noisy. We also provide a simple method for computing an upper bound on the expected time it takes for the innovation to become established in any finite network. For example, if agents choose log-linear responses to what their neighbors are doing, it takes on average less than 80 revision periods for the innovation to diffuse widely in any network, provided that the error rate is at least 5% and the payoff gain (relative to the status quo) is at least 150%. Qualitatively similar results hold for other smoothed best-response functions and populations that experience heterogeneous payoff shocks.

  11. Prediction of Canola Residue Characteristics Using Near-Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Tami L. Stubbs

    2017-01-01

    Full Text Available Little work has been done to characterize and quantify the residue traits affecting decomposition of winter and spring canola (Brassica napus L. residue in dryland farming systems of the Pacific Northwest United States. Traditional methods of characterizing residue fiber and nutrients are time-consuming and expensive and require large quantities of chemical reagents. The goal of this research was to determine whether near-infrared spectroscopy (NIRS could accurately predict neutral detergent fiber (NDF, acid detergent fiber (ADF, acid detergent lignin (ADL, carbon (C, and nitrogen (N of canola stems, litter, and roots and decomposition of canola stems. Canola residue varied in decomposition, fiber, and nutrients by year, location, and type. NIRS predictions were successful for NDF and ADF in 2011 (standard error of prediction SEP0.95 and NDF, ADF, and N in 2012 (SEP0.91. Other predictions for residue fiber and nutrient characteristics were considered moderately successful. Prediction of canola residue decomposition with NIRS was useful for screening purposes. Near-infrared spectroscopy shows promise for rapidly and reproducibly predicting some canola residue fiber and nutrient traits and may be useful for estimating residue decomposition potential in dryland conservation cropping systems.

  12. Jupiter in blue, ultraviolet and near infrared

    Science.gov (United States)

    2000-01-01

    These three images of Jupiter, taken through the narrow angle camera of NASA's Cassini spacecraft from a distance of 77.6 million kilometers (48.2 million miles) on October 8, reveal more than is apparent to the naked eye through a telescope.The image on the left was taken through the blue filter. The one in the middle was taken in the ultraviolet. The one on the right was taken in the near infrared.The blue-light filter is within the part of the electromagnetic spectrum detectable by the human eye. The appearance of Jupiter in this image is, consequently, very familiar. The Great Red Spot (below and to the right of center) and the planet's well-known banded cloud lanes are obvious. The brighter bands of clouds are called zones and are probably composed of ammonia ice particles. The darker bands are called belts and are made dark by particles of unknown composition intermixed with the ammonia ice.Jupiter's appearance changes dramatically in the ultraviolet and near infrared images. These images are near negatives of each other and illustrate the way in which observations in different wavelength regions can reveal different physical regimes on the planet.All gases scatter sunlight efficiently at short wavelengths; this is why the sky appears blue on Earth. The effect is even more pronounced in the ultraviolet. The gases in Jupiter's atmosphere, above the clouds, are no different. They scatter strongly in the ultraviolet, making the deep banded cloud layers invisible in the middle image. Only the very high altitude haze appears dark against the bright background. The contrast is reversed in the near infrared, where methane gas, abundant on Jupiter but not on Earth, is strongly absorbing and therefore appears dark. Again the deep clouds are invisible, but now the high altitude haze appears relatively bright against the dark background. High altitude haze is seen over the poles and the equator.The Great Red Spot, prominent in all images, is obviously a feature whose

  13. Theoretical design of near - infrared organic compounds

    Science.gov (United States)

    Brymora, Katarzyna; Ducasse, Laurent; Dautel, Olivier; Lartigau-Dagron, Christine; Castet, FréDéRic

    The world follows the path of digital development faster than ever before. In consequence, the Human Machine Interfaces (HMI) market is growing as well and it requires some innovations. The goal of our work is to achieve an organic Infra-Red (IR) photodetectors hitting the performance requirements for HMI applications. The quantum chemical calculations are used to guide the synthesis and technology development. In this work, in the framework of density functional theory (DFT) and time-dependent density functional theory (TD-DFT), we consider a large variety of materials exploring small donor-acceptor-donor molecules and copolymers alternating donor and acceptor monomers. We provide a structure-property relationship in view of designing new Near-Infrared (NIR) absorbing organic molecules and polymers.

  14. Near Infrared Spectroscopy Systems for Tissue Oximetry

    DEFF Research Database (Denmark)

    Petersen, Søren Dahl

    for other medical applications. The tissue oximeters are realised by incorporation of pn-diodes into the silicon in order to form arrays of infrared detectors. These arrays can then be used for spatially resolved spectroscopy measurements, with the targeted end user being prematurely born infant children......We present exible silicon device platforms, which combine polyimide with polydimethylsiloxane in order to add flexibility and biocompatibility to the silicon devices. The device platforms are intended as tissue oximeters, using near infrared spectroscopy, but could potentially also be used...... of aluminium oxide, as passivation on the detectors, the reverse bias current could be reduced by 30 % for small devices. Quantum efficiencies of 80- 85 % were measured for the best detectors. By using black silicon nanostructures, the reflectance from the detector surfaces could be reduced for all angles...

  15. Determination of Oxygen Saturation and Photoplethysmogram from Near Infrared Scattering Images

    CERN Document Server

    Ri, Yong-U; Sin, Kye-Ryong

    2016-01-01

    The near infrared scattering images of human muscle include some information on bloodstream and hemoglobin concentration according to skin depth and time. This paper addressed a method of determining oxygen saturation and photoplethysmogram from the near infrared (NIR) scattering images of muscle. Depending on the modified Beer-Lambert Law and the diffuse scattering model of muscular tissue, we determined an extinction coefficient matrix of hemoglobin from the near infrared scattering images and analyzed distribution of oxygen saturation of muscle with a depth from the extinction coefficient matrix. And we determined a dynamic attenuation variation curve with respect to fragmentary image frames sensitive to bloodstream from scattering image frames of muscle with time and then obtained the photoplethysmogram and heart rate by Fourier transformation and inverse transformation. This method based on the NIR scattering images can be applied in measurement of an average oxygen saturation and photoplethysmogram even...

  16. Near-infrared quantum dots for HER2 localization and imaging of cancer cells.

    Science.gov (United States)

    Rizvi, Sarwat B; Rouhi, Sepideh; Taniguchi, Shohei; Yang, Shi Yu; Green, Mark; Keshtgar, Mo; Seifalian, Alexander M

    2014-01-01

    Quantum dots are fluorescent nanoparticles with unique photophysical properties that allow them to be used as diagnostic, therapeutic, and theranostic agents, particularly in medical and surgical oncology. Near-infrared-emitting quantum dots can be visualized in deep tissues because the biological window is transparent to these wavelengths. Their small sizes and free surface reactive groups that can be conjugated to biomolecules make them ideal probes for in vivo cancer localization, targeted chemotherapy, and image-guided cancer surgery. The human epidermal growth factor receptor 2 gene (HER2/neu) is overexpressed in 25%-30% of breast cancers. The current methods of detection for HER2 status, including immunohistochemistry and fluorescence in situ hybridization, are used ex vivo and cannot be used in vivo. In this paper, we demonstrate the application of near-infrared-emitting quantum dots for HER2 localization in fixed and live cancer cells as a first step prior to their in vivo application. Near-infrared-emitting quantum dots were characterized and their in vitro toxicity was established using three cancer cell lines, ie, HepG2, SK-BR-3 (HER2-overexpressing), and MCF7 (HER2-underexpressing). Mouse antihuman anti-HER2 monoclonal antibody was conjugated to the near-infrared-emitting quantum dots. In vitro toxicity studies showed biocompatibility of SK-BR-3 and MCF7 cell lines with near-infrared-emitting quantum dots at a concentration of 60 μg/mL after one hour and 24 hours of exposure. Near-infrared-emitting quantum dot antiHER2-antibody bioconjugates successfully localized HER2 receptors on SK-BR-3 cells. Near-infrared-emitting quantum dot bioconjugates can be used for rapid localization of HER2 receptors and can potentially be used for targeted therapy as well as image-guided surgery.

  17. [Application and prospect of near infrared reflectance spectroscopy in forage analysis].

    Science.gov (United States)

    Ren, Xiu-Zhen; Guo, Hong-Ru; Jia, Yu-Shan; Ge, Gen-Tu; Wang, Kun

    2009-03-01

    Forage was the material basis of animal husbandry production, and its quality is directly related to the quality of animal products. It was very important to control the forage quality and detect the composition of forage raw materials in forage production. Predication of forage quality was often completed by the traditional and classical methods in the past, which were complex, time consuming and expensive, and could not acquire the nutritional value of forage timely. Near infrared reflectance spectroscopy was a highly efficient and rapid modern analysis technique developed in 1970's. It comprehensively applied the latest research results of computer technique, spectroscopy and chemometrics, and has been widely used in various fields owing to its unique advantages such as being timely, less expensive, non-destructive, and so on. Near infrared reflectance spectroscopy has gained more and more importance though its application to forage analysis was very late. Presently, not only conventional composition (such as moisture, dry matter, crude protein, crude fiber, crude fat, crude ash neutral detergent fiber, acid detergent fiber, etc.), but also non-conventional composition (including minerals, trace elements, enzyme and anti-nutritional factors etc. ) and anti-nutritional factors in forage were determined by means of near infrared reflectance spectroscopy. Testing and analyzing the conventional composition in forage was the traditional applied field of near infrared reflectance spectroscopy, a lot of studies of which were done and it has already been one of the standard methods of testing the conventional composition. Forage bioavaibility was also evaluated by near infrared reflectance spectroscopy, so as to assess the utilization rate and nutritional value of forage. Moreover, near infrared spectroscopy could be used successfully to predict the botanical composition in grassland and leaf/stem ratios. Near infrared spectroscopy technique and its application and

  18. Discrimination of seasonality in cheeses by near-infrared technology.

    Science.gov (United States)

    González-Martín, Inmaculada; Hernández-Hierro, José Miguel; Salvador-Esteban, Javier; González-Pérez, Claudio; Revilla, Isabel; Vivar-Quintana, Ana

    2011-04-01

    Owing to the importance of the season of collection of milk for cheese quality, a study was made of the usefulness of near-infrared spectroscopy (NIRS) for discriminating the seasonal origin (winter or summer) of milk and quantifying the fat content of cheeses, since fat is one of the components most affected by the season of collection of milk for the elaboration of cheeses. In the internal validation, 96% of samples from winter milk and 97% of samples from summer milk were correctly classified, while in the external validation the prediction rate of samples correctly classified was 92%. Moreover, quantitative models allowed the determination of fat in winter, summer and winter + summer cheeses. Rapid prediction of the fat content of cheeses and the seasonal origin (winter or summer) of milk was achieved using NIRS without previous destruction or treatment of samples. Copyright © 2011 Society of Chemical Industry.

  19. Modelling of nectarine drying under near infrared - Vacuum conditions.

    Science.gov (United States)

    Alaei, Behnam; Chayjan, Reza Amiri

    2015-01-01

    Drying of nectarine slices was performed to determine the thermal and physical properties in order to reduce product deterioration due to chemical reactions, facilitate storage and lower transportation costs. Because nectarine slices are sensitive to heat with long drying period, the selection of a suitable drying approach is a challenging task. Infrared-vacuum drying can be used as an appropriate method for susceptible materials with high moisture content such as nectarine slices. Modelling of nectarine slices drying was carried out in a thin layer near infraredvacuum conditions. Drying of the samples was implemented at the absolute pressures of 20, 40 and 60 kPa and drying temperatures of 50, 60 and 70°C. Drying behaviour of nectarine slices, as well as the effect of drying conditions on moisture loss trend, drying rate, effective diffusion coefficient, activation energy, shrinkage, colour and energy consumption of nectarine slices, dried in near infrared-vacuum dryer are discussed in this study. Six mathematical models were used to predict the moisture ratio of the samples in thin layer drying. The Midilli model had supremacy in prediction of nectarine slices drying behaviour. The maximum drying rates of the samples were between 0.014-0.047 gwater/gdry material·min. Effective moisture diffusivity of the samples was estimated in the ranges of 2.46·10-10 to 6.48·10-10 m2/s. Activation energy were computed between 31.28 and 35.23 kJ/mol. Minimum shrinkage (48.4%) and total colour difference (15.1) were achieved at temperature of 50°C and absolute pressure of 20 kPa. Energy consumption of the tests was estimated in the ranges of 0.129 to 0.247 kWh. Effective moisture diffusivity was increased with decrease of vacuum pressure and increase of drying temperature but effect of drying temperature on effective moisture diffusivity of nectarine slices was more than vacuum pressure. Activation energy was decreased with decrease in absolute pressure. Total colour

  20. Near-infrared SN Ia Cosmology

    Science.gov (United States)

    Avelino, Arturo; Kirshner, Robert; Mandel, Kaisey; Challis, Peter; Friedman, Andrew; RAISIN Team

    2018-01-01

    Observations of SN Ia in the near infrared (NIR) are a promising way to construct an accurate cosmic expansion history to constrain the properties of dark energy. SN Ia are more nearly standard candles in NIR than in optical bands, while dust absorption is less of a problem at NIR wavelengths. This allows us to investigate the dark energy properties in a way that is less sensitive to systematic errors due to the variations in the intrinsic brightness of SN Ia or the properties of dust in their host galaxies. In this talk, I present preliminary results from our RAISIN 1 (HST GO-13046) and RAISIN 2 (HST GO-14216) programs with the Hubble Space Telescope, where we have constructed a Hubble diagram combining optical + NIR photometric data using a sample of low and high redshift SN Ia. I will discuss our current results, challenges, and the advantage of using optical + NIR data to derive accurate cosmic distances and improve knowledge of the dark energy equation of state. This research is supported by NSF grants AST-156854 and AST-1211196.

  1. Near-Infrared Intraoperative Chemiluminescence Imaging

    KAUST Repository

    Büchel, Gabriel E.

    2016-08-03

    Intraoperative imaging technologies recently entered the operating room, and their implementation is revolutionizing how physicians plan, monitor, and perform surgical interventions. In this work, we present a novel surgical imaging reporter system: intraoperative chemiluminescence imaging (ICI). To this end, we have leveraged the ability of a chemiluminescent metal complex to generate near-infrared light upon exposure to an aqueous solution of Ce4+ in the presence of reducing tissue or blood components. An optical camera spatially resolves the resulting photon flux. We describe the construction and application of a prototype imaging setup, which achieves a detection limit as low as 6.9pmolcm-2 of the transition-metal-based ICI agent. As a proof of concept, we use ICI for the invivo detection of our transition metal tracer following both systemic and subdermal injections. The very high signal-to-noise ratios make ICI an interesting candidate for the development of new intraoperative imaging technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Near-infrared spectroscopy for detection of hailstorm damage on olive fruit

    Science.gov (United States)

    A rapid, robust, unbiased and inexpensive discriminant method capable of classifying olive fruit (Olea europaea L.) on the basis of the presence of hailstorm damage is economically important to the olive oil milling industry. Thus, in the present study, the feasibility of Near-Infrared (NIR) spectro...

  3. High resolution scanning of radial strips cut from increment cores by near infrared spectroscopy

    Science.gov (United States)

    P. David Jones; Laurence R. Schimleck; Chi-Leung So; Alexander III Clark; Richard F. Daniels

    2007-01-01

    Near infrared (NIR) spectroscopy provides a rapid method for the determination of wood properties of radial strips. The spatial resolution of the NIR measurements has generally been limited to sections 10 mm wide and as a consequence the estimation of wood properties of individual rings or within rings has not been possible. Many different NIR instruments can be used...

  4. Species authentication and geographical origin discrimination of herbal medicines by near infrared spectroscopy: A review

    Directory of Open Access Journals (Sweden)

    Pei Wang

    2015-10-01

    Full Text Available Near infrared (NIR spectroscopy as a rapid and nondestructive analytical technique, integrated with chemometrics, is a powerful process analytical tool for the pharmaceutical industry and is becoming an attractive complementary technique for herbal medicine analysis. This review mainly focuses on the recent applications of NIR spectroscopy in species authentication of herbal medicines and their geographical origin discrimination.

  5. The use of near infrared spectroscopy (NIRS) to predict the chemical ...

    African Journals Online (AJOL)

    The wet chemical analysis of feed samples is time consuming and expensive. Near infrared spectroscopy (NIRS) was developed as a rapid technique to predict the chemical composition of feeds. The prediction of accuracy of NIRS relies heavily on obtaining a calibration set which represents the variation in the main ...

  6. Application of near-infrared spectroscopy to preservative-treated wood

    Science.gov (United States)

    Chi-Leung So; Stan T. Lebow; Thomas L. Eberhardt; Leslie H. Groom; Todd F. Shupe

    2009-01-01

    Near infrared (NIR) spectroscopy is now a widely-used technique in the field of forest products, especially for physical and mechanical property determinations. This technique is also ideal for the chemical analysis of wood. There has been a growing need to find a rapid, inexpensive and reliable method to distinguish between preservative-treated and untreated waste...

  7. Near infrared absorbing near infrared emitting highly-sensitive luminescent nanothermometer based on Nd(3+) to Yb(3+) energy transfer.

    Science.gov (United States)

    Marciniak, Ł; Bednarkiewicz, A; Stefanski, M; Tomala, R; Hreniak, D; Strek, W

    2015-10-07

    A new type of near infrared absorbing near infrared emitting (NANE) luminescent nanothermometer is presented, with a physical background that relies on efficient Nd(3+) to Yb(3+) energy transfer under 808 nm photo-excitation. The emission spectra of LiLa0.9-xNd0.1YbxP4O12 (x = 0.05, 0.1, 0.2, 0.3, 0.5) nanocrystals were measured in a wide 100-700 °C temperature range. The ratio between the Nd(3+) ((4)F3/2→(4)I9/2) and Yb(3+) ((2)F5/2→(2)F7/2) luminescence bands, and the thermometer sensitivity were found to be strongly dependent on the Yb(3+) concentration. These phenomenological relations were discussed in terms of the competition between three phenomena, namely (a) Nd(3+)→ Yb(3+) phonon assisted energy transfer, (b) Yb(3+)→ Nd(3+) back energy transfer and (c) energy diffusion between Yb(3+) ions. The highest sensitivity of the temperature measurement was found for x = 0.5 (LiLa0.4Nd0.1Yb0.5P4O12), which was equal to 4 × 10(-3) K(-1) at 330 K. In stark contrast to conventional approaches, the proposed phosphate host matrix allows for a high level of doping, and thus, owing to the negligible concentration quenching, the presented luminophores exhibit a high absorption cross section and bright emission. Moreover, such optical remote thermometers, whose excitation and emission wavelengths are weakly scattered or absorbed and fall into the optical transmission window of the skin, may therefore become a practical solution for biomedical applications, such as remote control of thermotherapy.

  8. Taxonomic Classification of Asteroids via Broadband Near-Infrared Photometry

    NARCIS (Netherlands)

    Petersen, Eric; Thomas, C.; Trilling, D.; Emery, J.; Delbo, M.; Mueller, M.; Dave, R.

    2010-01-01

    For faint asteroids, it is not practical to obtain near-infrared spectra. However, it may be possible to use broadband photometry to infer spectral classifications and study composition. As a test of this, we processed SpeX near-infrared asteroid spectral data to simulate colors that would be

  9. NEAR-INFRARED SPECTROSCOPY OF POST-AGB STARS

    NARCIS (Netherlands)

    OUDMAIJER, RD; WATERS, LBFM; VANDERVEEN, WECJ; GEBALLE, TR

    The results of a medium resolution near-infrared spectral survey of 18 post-AGB candidate stars are presented. Most of the stars have near-infrared hydrogen lines in absorption, which is normal for their spectral types. Three stars, HD 101584, HD 179821 and HD 170756 have the CO first overtone bands

  10. Prediction of pork quality attributes from near infrared reflectance spectra

    NARCIS (Netherlands)

    Geesink, G.H.; Schreutelkamp, F.H.; Frankhuizen, R.; Vedder, H.W.; Faber, N.M.; Kranen, R.W.; Gerritzen, M.A.

    2003-01-01

    Near infrared spectroscopy (NIRS) is one of the most promising techniques for large-scale meat quality evaluation. We investigated the potential of NIRS-based models to predict drip loss and shear force of pork samples. Near infrared reflectance spectra (1000¿2500 nm), water-holding capacity, shear

  11. Near-infrared spectroscopy during peripheral vascular surgery

    DEFF Research Database (Denmark)

    Eiberg, J P; Schroeder, T V; Vogt, K C

    1997-01-01

    Near-infrared spectroscopy was performed perioperatively on the dorsum of the foot in 14 patients who underwent infrainguinal bypass surgery using a prosthesis or the greater saphenous vein. Dual-wavelength continuous light spectroscopy was used to assess changes in tissue saturation before, during...... that near-infrared spectroscopy is appropriate for perioperative monitoring during vascular grafting....

  12. The application of near infrared spectroscopy (NIR technique for

    Directory of Open Access Journals (Sweden)

    Sandor Barabassy

    2001-06-01

    Full Text Available The production of cow’s milk in Hungary fluctuates by 15-20 % annualy. Surplus milk is dried into powder and can also be converted to modified milk powders using techniques such as ultra filtration. From approximetely 20.000 tonnes, of all milk powder types, 3.000 tonnes, is converted using ultra filtration technology. Multivariable near infrared (NIR calibration was performed on powder mixtures of whole milk, skimmed milk, whey, retenate (protein concentrate and lactose for rapid fat, protein, lactose, water and ash content determination. More than 150 samples were prepared and measured in two NIRS labs (Scottish Agriculture College – SAC – Aberdeen and University of Horticulture and Food Science - UHFS – Budapest. The results obtained from the same samples were compared. The aims of the study were: 1. Rapid quantitative and qualitative determination of mixtures of milk powder products using NIR technique. 2. Comparison of the results achieved in Aberdeen (SAC and Budapest (UHFS institutes. The mass per cent varied between 0.0-2.8% for fat, 0.0-80% for protein, 6.6-100 % for lactose, 0.0-5.0 % for water and 0.0-8.0 % for ash. High correlation coefficients (0.97-0.99 were found for all five components.

  13. Near-infrared spectroscopy is feasible to discriminate hazelnut cultivars

    Directory of Open Access Journals (Sweden)

    Elisabetta Stella

    2013-09-01

    Full Text Available The study demonstrated the feasibility of the near infrared (NIR spectroscopy use for hazelnut-cultivar sorting. Hazelnut spectra were acquired from 600 fruit for each cultivar sample, two diffuse reflectance spectra were acquired from opposite sides of the same hazelnut. Spectral data were transformed into absorbance before the computations. A different variety of spectral pretreatments were applied to extract characteristics for the classification. An iterative Linear Discriminant Analysis (LDA algorithm was used to select a relatively small set of variables to correctly classify samples. The optimal group of features selected for each test was analyzed using Partial Least Squares Discriminant Analysis (PLS-DA. The spectral region most frequently chosen was the 1980-2060 nm range, which corresponds to best differentiation performance for a total minimum error rate lower than 1.00%. This wavelength range is generally associated with stretching and bending of the N-H functional group of amino acids and proteins. The feasibility of using NIR Spectroscopy to distinguish different hazelnut cultivars was demonstrated.

  14. Subsurface thermal coagulation of tissues using near infrared lasers

    Science.gov (United States)

    Chang, Chun-Hung Jack

    Noninvasive laser therapy is currently limited primarily to cosmetic dermatological applications such as skin resurfacing, hair removal, tattoo removal and treatment of vascular birthmarks. In order to expand applications of noninvasive laser therapy, deeper optical penetration of laser radiation in tissue as well as more aggressive cooling of the tissue surface is necessary. The near-infrared laser wavelength of 1075 nm was found to be the optimal laser wavelength for creation of deep subsurface thermal lesions in liver tissue, ex vivo, with contact cooling, preserving a surface tissue layer of 2 mm. Monte Carlo light transport, heat transfer, and Arrhenius integral thermal damage simulations were conducted at this wavelength, showing good agreement between experiment and simulations. Building on the initial results, our goal is to develop new noninvasive laser therapies for application in urology, specifically for treatment of female stress urinary incontinence (SUI). Various laser balloon probes including side-firing and diffusing fibers were designed and tested for both transvaginal and transurethral approaches to treatment. The transvaginal approach showed the highest feasibility. To further increase optical penetration depth, various types and concentrations of optical clearing agents were also explored. Three cadavers studies were performed to investigate and demonstrate the feasibility of laser treatment for SUI.

  15. Optical coherence tomography – near infrared spectroscopy system and catheter for intravascular imaging

    OpenAIRE

    Fard, Ali M.; Vacas-Jacques, Paulino; Hamidi, Ehsan; Wang, Hao; Carruth, Robert W.; Gardecki, Joseph A.; Tearney, Guillermo J.

    2013-01-01

    Owing to its superior resolution, intravascular optical coherence tomography (IVOCT) is a promising tool for imaging the microstructure of coronary artery walls. However, IVOCT does not identify chemicals and molecules in the tissue, which is required for a more complete understanding and accurate diagnosis of coronary disease. Here we present a dual-modality imaging system and catheter that uniquely combines IVOCT with diffuse near-infrared spectroscopy (NIRS) in a single dual-modality imagi...

  16. Near-Infrared Imaging Using a High-Speed Monitoring Near Infrared Hyperspectral Camera (Compovision).

    Science.gov (United States)

    Ishikawa, Daitaro; Motomura, Asako; Igarashi, Yoko; Ozaki, Yukihiro

    2015-04-01

    This review paper reports near-infrared (NIR) imaging studies using a newly-developed NIR camera, Compovision. Compovision can measure a significantly wide area of 150 mmX 250 mm at high speed of between 2 and 5 s. It enables a wide spectral region measurement in the 1,000-2,350 nm range at 6 nm intervals. We investigated the potential of Compovision in the applications to industrial problems such as the evaluation of pharmaceutical tablets and polymers. Our studies have demonstrated that NIR imaging based on Compovision can solve several issues such as long acquisition times and relatively low sensitivity of detection. NIR imaging with Compovision is strongly expected to be applied not only to pharmaceutical tablet monitoring and polymer characterization but also to various applications such as those to food products, biomedical substances and organic and inorganic materials.

  17. Cerebral near infrared spectroscopy oximetry in extremely preterm infants

    DEFF Research Database (Denmark)

    Hyttel-Sørensen, Simon; Pellicer, Adelina; Alderliesten, Thomas

    2015-01-01

    OBJECTIVE: To determine if it is possible to stabilise the cerebral oxygenation of extremely preterm infants monitored by cerebral near infrared spectroscopy (NIRS) oximetry. DESIGN: Phase II randomised, single blinded, parallel clinical trial. SETTING: Eight tertiary neonatal intensive care units...

  18. Near-infrared branding efficiently correlates light and electron microscopy.

    Science.gov (United States)

    Bishop, Derron; Nikić, Ivana; Brinkoetter, Mary; Knecht, Sharmon; Potz, Stephanie; Kerschensteiner, Martin; Misgeld, Thomas

    2011-06-05

    The correlation of light and electron microscopy of complex tissues remains a major challenge. Here we report near-infrared branding (NIRB), which facilitates such correlation by using a pulsed, near-infrared laser to create defined fiducial marks in three dimensions in fixed tissue. As these marks are fluorescent and can be photo-oxidized to generate electron contrast, they can guide re-identification of previously imaged structures as small as dendritic spines by electron microscopy.

  19. Tissue blood flow and oxygen consumption measured with near-infrared frequency-domain spectroscopy

    Science.gov (United States)

    Paunescu, Lelia Adelina

    2001-12-01

    For decades, researchers have contributed with new ways of applying physics' principles to medicine. Moreover, researchers were involved in developing new, non-invasive instrumentation for medical applications. Recently, application of optical techniques in biology and medicine became an important field. Researchers found a non- invasive approach of using visible and near-infrared light as a probe for tissue investigation. Optical methods can contribute to medicine by offering the possibility of rapid, low-resolution, functional images and real-time devices. Near-infrared spectroscopy (NIRS) is a useful technique for the investigation of biological tissues because of the relatively low absorption of water and high absorption of oxy- and deoxy-hemoglobin in the near- infrared region of 750-900 nm. Due to these properties, the near-infrared light can penetrate biological tissues in the range of 0.5-2 cm, offering investigation possibility of deep tissues and differentiate among healthy and diseased tissues. This work represents the initial steps towards understanding and improving of the promising near- infrared frequency-domain technique. This instrument has a very important advantage: it can be used non-invasively to investigate many parts of the human body, including the brain. My research consists primarily of in vivo measurements of optical parameters such as absorption and reduced scattering coefficients and consequently, blood parameters such as oxy, deoxy, and total hemoglobin concentrations, tissue oxygen saturation, blood flow and oxygen consumption of skeletal muscle of healthy and diseased subjects. This research gives a solid background towards a ready- to-use instrument that can continuously, in real-time, measure blood parameters and especially blood oxygenation. This is a very important information in emergency medicine, for persons under intensive care, or undergoing surgery, organ transplant or other interventions.

  20. RAPID COMMUNICATION: Diffusion thermopower in graphene

    Science.gov (United States)

    Vaidya, R. G.; Kamatagi, M. D.; Sankeshwar, N. S.; Mulimani, B. G.

    2010-09-01

    The diffusion thermopower of graphene, Sd, is studied for 30 < T < 300 K, considering the electrons to be scattered by impurities, vacancies, surface roughness and acoustic and optical phonons via deformation potential couplings. Sd is found to increase almost linearly with temperature, determined mainly by vacancy and impurity scatterings. A departure from linear behaviour due to optical phonons is noticed. As a function of carrier concentration, a change in the sign of |Sd| is observed. Our analysis of recent thermopower data obtains a good fit. The limitations of Mott formula are discussed. Detailed analysis of data will enable a better understanding of the scattering mechanisms operative in graphene.

  1. Near-infrared spectroscopy in schizophrenia: A possible biomarker for predicting clinical outcome and treatment response

    OpenAIRE

    Shinsuke eKoike; Yukika eNishimura; Ryu eTakizawa; Noriaki eYahata; Kiyoto eKasai

    2013-01-01

    Functional near-infrared spectroscopy (fNIRS) is a relatively new technique that can measure hemoglobin changes in brain tissues, and its use in psychiatry has been progressing rapidly. Although it has several disadvantages (e.g., relatively low spatial resolution and the possibility of shallow coverage in the depth of brain regions) compared with other functional neuroimaging techniques (e.g., functional magnetic resonance imaging and positron emission tomography), fNIRS may be a candidate i...

  2. Near-Infrared Spectroscopy in Schizophrenia: A Possible Biomarker for Predicting Clinical Outcome and Treatment Response

    OpenAIRE

    Koike, Shinsuke; NISHIMURA, Yukika; Takizawa, Ryu; Yahata, Noriaki; Kasai, Kiyoto

    2013-01-01

    Functional near-infrared spectroscopy (fNIRS) is a relatively new technique that can measure hemoglobin changes in brain tissues, and its use in psychiatry has been progressing rapidly. Although it has several disadvantages (e.g., relatively low spatial resolution and the possibility of shallow coverage in the depth of brain regions) compared with other functional neuroimaging techniques (e.g., functional magnetic resonance imaging and positron emission tomography), fNIRS may be a candidate i...

  3. Hybrid Nanoclusters for Near-Infrared to Near-Infrared Upconverted Persistent Luminescence Bioimaging.

    Science.gov (United States)

    Qiu, Xiaochen; Zhu, Xingjun; Xu, Ming; Yuan, Wei; Feng, Wei; Li, Fuyou

    2017-09-27

    Persistent luminescence (PL) bioimaging provides an optimal method of eliminating autofluorescence for a higher resolution and sensitivity because of the absence of excitation light. However, ultraviolet light is still necessary in common energy charging processes, which limits its reactivation in vivo because of its low penetration depth. In the present study, we introduce a type of hybrid nanocluster (UCPL-NC) composed of upconversion nanoparticles, β-NaYbF4:Tm@NaYF4, and persistent nanoparticles, Zn1.1Ga1.8Ge0.1O4:0.5%Cr, which can be activated by a 980 nm laser and exhibits an afterglow at 700 nm to realize near-infrared (NIR) to NIR UCPL bioimaging. The PL of the UCPL-NCs can be reactivated even when covered with a 10 mm pork. We demonstrate that these polyethylene glycol-modified phospholipid-functionalized UCPL-NCs can be reactivated in vivo and applied in the PL lymphatic imaging on small animals.

  4. Prediction of biogas yield and its kinetics in reed canary grass using near infrared reflectance spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Kandel, Tanka Prasad; Gislum, René; Jørgensen, Uffe

    2013-01-01

    A rapid method is needed to assess biogas and methane yield potential of various kinds of substrate prior to anaerobic digestion. This study reports near infrared reflectance spectroscopy (NIRS) as a rapid alternative method to the conventional batch methods for prediction of specific biogas yiel...

  5. Intraoperative near-infrared autofluorescence imaging of parathyroid glands.

    Science.gov (United States)

    Ladurner, Roland; Sommerey, Sandra; Arabi, Nora Al; Hallfeldt, Klaus K J; Stepp, Herbert; Gallwas, Julia K S

    2017-08-01

    To identify parathyroid glands intraoperatively by exposing their autofluorescence using near-infrared light. Fluorescence imaging was carried out during minimally invasive and open parathyroid and thyroid surgery. After identification, the parathyroid glands as well as the surrounding tissue were exposed to near-infrared (NIR) light with a wavelength of 690-770 nm using a modified Karl Storz near-infrared/indocyanine green (NIR/ICG) endoscopic system. Parathyroid tissue was expected to show near-infrared autofluorescence, captured in the blue channel of the camera. Whenever possible the visual identification of parathyroid tissue was confirmed histologically. In preliminary investigations, using the original NIR/ICG endoscopic system we noticed considerable interference of light in the blue channel overlying the autofluorescence. Therefore, we modified the light source by interposing additional filters. In a second series, we investigated 35 parathyroid glands from 25 patients. Twenty-seven glands were identified correctly based on NIR autofluorescence. Regarding the extent of autofluorescence, there were no noticeable differences between parathyroid adenomas, hyperplasia and normal parathyroid glands. In contrast, thyroid tissue, lymph nodes and adipose tissue revealed no substantial autofluorescence. Parathyroid tissue is characterized by showing autofluorescence in the near-infrared spectrum. This effect can be used to distinguish parathyroid glands from other cervical tissue entities.

  6. Effectiveness of near-infrared transillumination in early caries diagnosis

    Directory of Open Access Journals (Sweden)

    Mirela Marinova-Takorova

    2016-11-01

    Full Text Available Early caries detection is essential for minimal intervention dentistry, since it could give the opportunity to reverse the process and eliminate or at least postpone the surgical treatment. The aim of the present study was to evaluate the effectiveness of near-infrared transillumination in early caries diagnosis for both occlusal and proximal lesions. Thirty-eight adult patients were included in the study. The results from the visual, radiological and near-infrared transillumination examination for proximal caries lesions were compared. The diagnostic abilities of these methods for occlusal lesions were assayed on 60 teeth. The three methods showed a very high level of correlation when there were caries lesions involving the enamel and dentin. Concerning proximal caries involving only the enamel, the visual--tactile diagnosis proved to be insufficiently sensitive even with the use of magnification. Radiographic examination and near-infrared transillumination correlated significantly, but the latter was more sensitive. Radiographic examination proved to be insufficiently sensitive for occlusal lesions. The results obtained with the near-infrared fluorescence correlated most with the visual–tactile examination. These results suggest that near-infrared transillumination is an effective method for diagnosis of lesions both involving only the enamel and involving the enamel and dentin. It could be used for both occlusal and proximal caries lesions and it could eventually substitute radiographic bitewings, especially in children and pregnant women, due to its efficiency as a diagnostic tool and the absence of radiation.

  7. Near infrared spectroscopy of food systems using a supercontinuum laser

    DEFF Research Database (Denmark)

    Ringsted, Tine

    Mid-infrared and particularly near-infrared spectroscopy is extremely useful for food analysis because they measure chemical and physical properties fast and non-destructively. The advancement of a supercontinuum light source covering the near-infrared and parts of the ultraviolet and mid......)) can be obtained, (c) that the supercontinuum light is fiber compatible i.e. it can couple directly to fibers, and (d) that the fast repetition rate of the supercontinuum pulses makes it possible to do very fast measurements. For these reasons, the supercontinuum light stands out from the commonly...... applied near- and mid-infrared incandescent light bulbs. This thesis aim to explore the utility of using a supercontinuum source in two food applications. (1) The supercontinuum light was applied for the first time to barley seeds in transmission mode in the long wavelength near-infrared region from 2260...

  8. Differences in visible and near-infrared light reflectance between orange fruit and leaves

    Science.gov (United States)

    Gausman, H. W.; Escobar, D. E.; Berumen, A.

    1975-01-01

    The objective was to find the best time during the season (April 26, 1972 to January 8, 1973) to distinguish orange fruit from leaves by spectrophotometrically determining at 10-day intervals when the difference in visible (550- and 650-nm wavelengths) and near-infrared (850-nm wavelength) light reflectance between fruit and nearby leaves was largest. December 5 to January 8 was the best time to distinguish fruit from leaves. During this period the fruit's color was rapidly changing from green to yellow, and the difference in visible light reflectance between fruit and leaves was largest. The difference in near-infrared reflectance between leaves and fruit remained essentially constant during ripening when the difference in visible light reflectance between leaves and fruit was largest.

  9. AKARI OBSERVATION OF THE SUB-DEGREE SCALE FLUCTUATION OF THE NEAR-INFRARED BACKGROUND

    Energy Technology Data Exchange (ETDEWEB)

    Seo, H. J.; Lee, Hyung Mok; Lee, Myung Gyoon [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Matsumoto, T. [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan (China); Jeong, W.-S.; Pyo, J., E-mail: hjseo@astro.snu.ac.kr [Korea Astronomy and Space Science Institute (KASI), Daejeon 305-348 (Korea, Republic of)

    2015-07-10

    We report spatial fluctuation analysis of the sky brightness in the near-infrared from observations toward the north ecliptic pole (NEP) by the AKARI at 2.4 and 3.2 μm. As a follow-up study of our previous work on the Monitor field of AKARI, we used NEP deep survey data, which covered a circular area of about 0.4 square degrees, in order to extend fluctuation analysis at angular scales up to 1000″. We found residual fluctuation over the estimated shot noise at larger angles than the angular scale of the Monitor field. The excess fluctuation of the NEP deep field smoothly connects with that of the Monitor field at angular scales of a few hundred arcseconds and extends without any significant variation to larger angular scales up to 1000″. By comparing excess fluctuations at two wavelengths, we confirm a blue spectral feature similar to the result of the Monitor field. We find that the result of this study is consistent with Spitzer Space Telescope observations at 3.6 μm. The origin of the excess fluctuation in the near-infrared background remains to be determined, but we could exclude zodiacal light, diffuse Galactic light, and unresolved faint galaxies at low redshift based on the comparison with mid- and far-infrared brightness, ground-based near-infrared images.

  10. [Near infrared spectroscopy analysis method of maize hybrid seed purity discrimination].

    Science.gov (United States)

    Huang, Hua-Jun; Yan, Yan-Lu; Shen, Bing-Hui; Liu, Zhe; Gu, Jian-Cheng; Li, Shao-Ming; Zhu, De-Hai; Zhang, Xiao-Dong; Ma, Qin; Li, Lin; An, Dong

    2014-05-01

    Near infrared spectroscopy analysis method of discrimination of maize hybrid seed purity was studied with the sample of Nong Hua 101 (NH101) from different origins and years. Spectral acquisition time lasted for 10 months. Using Fourier transform (FT) near infrared spectroscopy instruments, including 23 days in different seasons (divided into five time periods), a total of 920 near infrared diffuse reflectance spectra of single corn grain of those samples were collected. Moving window average, first derivative and vector normalization were used to pretreat all original spectra, principal component analysis (PCA) and linear discriminant analysis (LDA) were applied to reduce data dimensionality, and the discrimination model was established based on biomimetic pattern recognition (BPR) method. Spectral distortion was calibrated by spectra pretreatment, which makes characteristics spatial distribution range of sample spectra set contract. The relative distance between hybrid and female parent increased by nearly 70-fold, and the discrimination model achieved the identification of hybrid and female parent seeds. Through the choice of representative samples, the model's response capacity to the changes in spectral acquisition time, place and environment, etc. was improved. Besides, the model's response capacity to the changes in time and site of seed production was also improved, and the robustness of the model was enhanced. The average correct acceptance rate (CAR) of the test set reached more than 95% while the average correct rejection rate (CRR) of the test set also reached 85%.

  11. Noncontact blood species identification method based on spatially resolved near-infrared transmission spectroscopy

    Science.gov (United States)

    Zhang, Linna; Sun, Meixiu; Wang, Zhennan; Li, Hongxiao; Li, Yingxin; Li, Gang; Lin, Ling

    2017-09-01

    The inspection and identification of whole blood are crucially significant for import-export ports and inspection and quarantine departments. In our previous research, we proved Near-Infrared diffuse transmitted spectroscopy method was potential for noninvasively identifying three blood species, including macaque, human and mouse, with samples measured in the cuvettes. However, in open sampling cases, inspectors may be endangered by virulence factors in blood samples. In this paper, we explored the noncontact measurement for classification, with blood samples measured in the vacuum blood vessels. Spatially resolved near-infrared spectroscopy was used to improve the prediction accuracy. Results showed that the prediction accuracy of the model built with nine detection points was more than 90% in identification between all five species, including chicken, goat, macaque, pig and rat, far better than the performance of the model built with single-point spectra. The results fully supported the idea that spatially resolved near-infrared spectroscopy method can improve the prediction ability, and demonstrated the feasibility of this method for noncontact blood species identification in practical applications.

  12. Quantitative Analysis of Salidroside and p-Tyrosol in the Traditional Tibetan Medicine Rhodiola crenulata by Fourier Transform Near-Infrared Spectroscopy.

    Science.gov (United States)

    Li, Tao; He, Xuan

    2016-01-01

    A nondestructive, efficient, and rapid method for quantitative analysis of two bioactive components (salidroside and p-tyrosol) in Rhodiola crenulata, a traditional Tibetan medicine, by Fourier transform near-infrared (FT-NIR) spectroscopy was developed. Near-infrared diffuse reflectance spectra in the range of 4000 to 10000 cm(-1) of 50 samples of Rhodiola crenulata with different sources were measured. To get a satisfying result, partial least squares regression (PLSR) was used to establish NIR models for salidroside and p-tyrosol content determination. Different preprocessing methods, including smoothing, taking a second derivative, standard normal variate (SNV) transformation, and multiplicative scatter correction (MSC), were investigated to improve the model accuracy of PLSR. The performance of the two final models (salidroside model and p-tyrosol model) was evaluated by factors such as the values of correlation coefficient (R(2)), root mean square error of prediction (RMSEP), and root mean square error of calibration (RMSEC). The optimal results of the PLSR model of salidroside showed that R(2), RMSEP and RMSEC were 0.99572, 0.0294 and 0.0309, respectively. Meanwhile, in the optimization model of p-tyrosol, the R(2), RMSEP and RMSEC were 0.99714, 0.0154 and 0.0168, respectively. These results demonstrate that FT-NIR spectroscopy not only provides a precise, rapid method for quantitative analysis of major effective constituents in Rhodiola crenulata, but can also be applied to the quality control of Rhodiola crenulata.

  13. Carbon monoxide reduces near-infrared spectroscopy determined 'total' hemoglobin

    DEFF Research Database (Denmark)

    Niemann, Mads J; Sørensen, Henrik; Siebenmann, Christoph

    2017-01-01

    Carbon monoxide (CO) increases middle cerebral artery mean flow velocity (MCAVmean), but the effect of CO on the near-infrared spectroscopy (NIRS) determined cerebral oxygenation (ScO2) is not detailed. In our study, 11 non-smoking subjects breathed 100% O2 through a closed circuit. A CO2 scrubbe...

  14. Near-infrared spectroscopic tissue imaging for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Demos; Stavros (Livermore, CA), Staggs; Michael C. (Tracy, CA)

    2006-03-21

    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  15. Near-infrared spectroscopic tissue imaging for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Demos, Stavros (Livermore, CA); Staggs, Michael C. (Tracy, CA)

    2006-12-12

    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  16. Electromagnetically induced transparency in metamaterials at near-infrared frequency

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Xiao, Sanshui; Jeppesen, Claus

    2010-01-01

    We employ a planar metamaterial structure composed of a splitring-resonator (SRR) and paired nano-rods to experimentally realize a spectral response at near-infrared frequencies resembling that of electromagnetically induced transparency. A narrow transparency window associated with low loss...

  17. Near infrared photoacoustic detection of heptane in synthetic air

    DEFF Research Database (Denmark)

    Duggen, Lars; Albu, Mihaela; Willatzen, Morten

    2013-01-01

    Trace contaminations of n-heptane in synthetic air is measured in the parts-per-billion (ppb) range using near infrared photoacoustic detection. We describe the fundamental theory used in the design of the photoacoustic cell for trace gas analysis and determine the detection limit of the cell. On...

  18. Near Infrared Photoacoustic Detection of Heptane in Synthetic Air

    DEFF Research Database (Denmark)

    Duggen, Lars; Albu, Mihaela; Willatzen, Morten

    2013-01-01

    Trace contaminations of n-heptane in synthetic air is measured in the parts-per-billion (ppb) range using near infrared photoacoustic detection. We describe the fundamental theory used in the design of the photoacoustic cell for trace gas analysis and determine the detection limit of the cell. On...

  19. Gemini Near-infrared Spectroscopy of Luminous z~6 Quasars

    DEFF Research Database (Denmark)

    Jiang, Linhua; Fan, Xiaohui; Vestergaard, Marianne

    2007-01-01

    We present Gemini near-infrared spectroscopic observations of six luminous quasars at z=5.8$\\sim$6.3. Five of them were observed using Gemini-South/GNIRS, which provides a simultaneous wavelength coverage of 0.9--2.5 $\\mu$m in cross dispersion mode. The other source was observed in K band with Ge...

  20. Quantifying cerebral hypoxia by near-infrared spectroscopy tissue oximetry

    DEFF Research Database (Denmark)

    Rasmussen, Martin B.; Eriksen, Vibeke R.; Andresen, Bjørn

    2017-01-01

    Tissue oxygenation estimated by near-infrared spectroscopy (NIRS) is a volume-weighted mean of the arterial and venous hemoglobin oxygenation. In vivo validation assumes a fixed arterial-to-venous volume-ratio (AV-ratio). Regulatory cerebro-vascular mechanisms may change the AV-ratio. We used...

  1. Visible/Near Infrared Spectroscopic Method for the Prediction of ...

    African Journals Online (AJOL)

    The aim of the present study was to predict the potential of visible and near infrared (Vis/NIR) Spectroscopy in estimating the amount of lycopene in intact tomato. Eight tomato varieties from loose and cluster type were selected and harvested at commercial ripening stage for the study. The tomato cultivars were prepared ...

  2. Broadband dye-sensitized upconversion of near-infrared light

    NARCIS (Netherlands)

    Zou, Wenqiang; Visser, Cindy; Maduro, Jeremio A.; Pshenichnikov, Maxim S.; Hummelen, Jan C.

    Photon upconversion of near-infrared photons is a promising way to overcome the Shockley-Queisser efficiency limit of 32% of a single-junction solar cell. However, the practical applicability of the most efficient known upconversion materials at moderate light intensities is limited by their

  3. Near-infrared transillumination photography of intraocular tumours.

    Science.gov (United States)

    Krohn, Jørgen; Ulltang, Erlend; Kjersem, Bård

    2013-10-01

    To present a technique for near-infrared transillumination imaging of intraocular tumours based on the modifications of a conventional digital slit lamp camera system. The Haag-Streit Photo-Slit Lamp BX 900 (Haag-Streit AG) was used for transillumination photography by gently pressing the tip of the background illumination cable against the surface of the patient's eye. Thus the light from the flash unit was transmitted into the eye, leading to improved illumination and image resolution. The modification for near-infrared photography was done by replacing the original camera with a Canon EOS 30D (Canon Inc) converted by Advanced Camera Services Ltd. In this camera, the infrared blocking filter was exchanged for a 720 nm long-pass filter, so that the near-infrared part of the spectrum was recorded by the sensor. The technique was applied in eight patients: three with anterior choroidal melanoma, three with ciliary body melanoma and two with ocular pigment alterations. The good diagnostic quality of the photographs made it possible to evaluate the exact location and extent of the lesions in relation to pigmented intraocular landmarks such as the ora serrata and ciliary body. The photographic procedure did not lead to any complications. We recommend near-infrared transillumination photography as a supplementary diagnostic tool for the evaluation and documentation of anteriorly located intraocular tumours.

  4. Near-infrared spectroscopy for monitoring muscle oxygenation

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Piantadosi, C A

    2000-01-01

    Near-infrared spectroscopy (NIRS) is a non-invasive method for monitoring oxygen availability and utilization by the tissues. In intact skeletal muscle, NIRS allows semi-quantitative measurements of haemoglobin plus myoglobin oxygenation (tissue O2 stores) and the haemoglobin volume. Specialized...

  5. Social Perception in Infancy: A Near Infrared Spectroscopy Study

    Science.gov (United States)

    Lloyd-Fox, Sarah; Blasi, Anna; Volein, Agnes; Everdell, Nick; Elwell, Claire E.; Johnson, Mark H.

    2009-01-01

    The capacity to engage and communicate in a social world is one of the defining characteristics of the human species. While the network of regions that compose the social brain have been the subject of extensive research in adults, there are limited techniques available for monitoring young infants. This study used near infrared spectroscopy to…

  6. Quantitative Determination of Germinability of Puccinia striiformis f. sp. tritici Urediospores Using Near Infrared Spectroscopy Technology

    Directory of Open Access Journals (Sweden)

    Yaqiong Zhao

    2015-01-01

    Full Text Available Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst is an important disease on wheat. In this study, quantitative determination of germinability of Pst urediospores was investigated by using near infrared reflectance spectroscopy (NIRS combined with quantitative partial least squares (QPLS and support vector regression (SVR. The near infrared spectra of the urediospore samples were acquired using FT-NIR MPA spectrometer and the germination rate of each sample was measured using traditional spore germination method. The best QPLS model was obtained with vector correction as the preprocessing method of the original spectra and 4000–12000 cm−1 as the modeling spectral region while the modeling ratio of the training set to the testing set was 4 : 1. The best SVR model was built when vector normalization was used as the preprocessing method, the modeling ratio was 5 : 1 and the modeling spectral region was 8000–11000 cm−1. The results showed that the effect of the best model built using QPLS or SVR was satisfactory. This indicated that quantitative determination of germinability of Pst urediospores using near infrared spectroscopy technology is feasible. A new method based on NIRS was provided for rapid, automatic, and nondestructive determination of germinability of Pst urediospores.

  7. Use of Near-Infrared Spectroscopy to Age-Grade and Identify Siblings of Anopheles Gambiae Complex

    Science.gov (United States)

    We used near-infrared spectroscopy (NIRS) to rapidly and non-destructively determine species and age of Anopheles gambiae ss (G3, Mali-NIH, Kisumu, ZANU, and Ifakara strains) and An. arabiensis (Dongola, KGB, and Ifakara strains). We developed NIR calibrations using mosquitoes reared and scanned at ...

  8. Pinus taeda L. wood property calibrations based on variable numbers of near infrared spectra per core and cores per plantation

    Science.gov (United States)

    Laurence R. Schimleck; Justin A. Tyson; David Jones; Gary F. Peter; Richard F. Daniels; Alexander III Clark

    2007-01-01

    Near infrared (NIR) spectroscopy provides a rapid, non-destructive method for the estimation of several wood properties of increment cores. MR spectra are collected from adjacent sections of the same core; however, not all spectra are required for calibration purposes as spectra from the same core are autocorrelated. Previously, we showed that wood property...

  9. Design and Near-Infrared Actuation of a Gold Nanorod–Polymer Microelectromechanical Device for On-Demand Drug Delivery

    Directory of Open Access Journals (Sweden)

    John Jackson

    2018-01-01

    Full Text Available Polymeric drug delivery systems usually deliver drugs by diffusion with an initial burst of release followed by a slower prolonged release phase. An optimal system would release exact doses of drugs using an on-demand external actuation system. The purpose of this study was to design and characterize a novel drug-delivery device that utilizes near infrared (NIR 800 nm laser-actuated drug release. The device was constructed from biocompatible polymers comprising a reservoir of drug covered by an elastic perforated diaphragm composed of a bilayer of two polymers with different thermal expansion coefficients (ethylenevinylacetate (EVA and polydimethylsiloxane (PDMS containing gold nanoparticles. Upon illumination with a NIR laser, the gold nanoparticles rapidly heated the bilayer resulting in bending and a drug-pumping action through the perforated bilayer, following sequential laser-actuation cycles. Devices filled with the anti-proliferative drug docetaxel were seen to release only small amounts of drug by diffusion but to release large and reproducible amounts of drug over 20 s laser-actuation periods. Because NIR 800 nm is tissue-penetrating without heating tissue, suitable geometry drug-delivery devices might be implanted in the body to be actuated by an externally applied NIR laser to allow for on-demand exact drug dosing in vivo.

  10. [Study on brand traceability of vinegar based on near infrared spectroscopy technology].

    Science.gov (United States)

    Guan, Xiao; Liu, Jing; Gu, Fang-Qing; Yang, Yong-Jian

    2014-09-01

    In the present paper, 152 vinegar samples with four different brands were chosen as research targets, and their near infrared spectra were collected by diffusion reflection mode and transmission mode, respectively. Furthermore, the brand traceability models for edible vinegar were constructed. The effects of the collection mode and pretreatment methods of spectrum on the precision of traceability models were investigated intensively. The models constructed by PLS1-DA modeling method using spectrum data of 114 training samples were applied to predict 38 test samples, and R2, RMSEC and RMSEP of the model based on transmission mode data were 0.92, 0.113 and 0.127, respectively, with recognition rate of 76.32%, and those based on diffusion reflection mode data were 0.97, 0.102 and 0.119, with recognition rate of 86.84%. The results demonstrated that the near infrared spectrum combined with PLS1-DA can be used to establish the brand traceability models for edible vinegar, and diffuse reflection mode is more beneficial for predictive ability of the model.

  11. Near-infrared fundus autofluorescence in subclinical best vitelliform macular dystrophy.

    Science.gov (United States)

    Parodi, Maurizio Battaglia; Iacono, Pierluigi; Del Turco, Claudia; Bandello, Francesco

    2014-12-01

    To describe fundus autofluorescence (FAF) on short-wavelength FAF and near-infrared FAF in the subclinical form of Best vitelliform macular dystrophy. Cross-sectional prospective study. Patients affected by the subclinical form of Best vitelliform macular dystrophy (positive testing for BEST1 gene mutation, fully preserved best-corrected visual acuity, normal fundus appearance) were recruited. Each patient underwent a complete ophthalmologic examination, including electro-oculogram (EOG), short-wavelength FAF, near-infrared FAF, spectral-domain OCT (SD OCT), and microperimetry. Main outcome measure was the identification of abnormal FAF patterns. Forty-six patients showing mutations in the BEST1 gene were examined. Forty patients presented a bilateral Best vitelliform macular dystrophy, 2 patients showed a unilateral Best vitelliform macular dystrophy, and 4 patients had a bilateral subclinical form. Patients with the unilateral form (2 eyes) and patients with the subclinical form (8 eyes) were analyzed. Three BEST1 sequence variants were identified: c.73C>T (p.Arg25Trp), c.28G>A (p.Ala10Thr), and c.652C>G (p.Arg218Gly). Short-wavelength FAF was normal in all eyes. Near-infrared FAF detected a pattern consisting of a central hypo-autofluorescence surrounded by a round area of hyper-autofluorescence. A bilateral reduced EOG response was detected in 1 patient. SD OCT revealed a thicker, well-defined, and more reflective interdigitation zone in 2 patients (4 eyes, 40%). Microperimetry of the central 10 degrees revealed a slight, diffuse reduction of retinal sensitivity. Mean retinal sensitivity within the central 2 and 4 degrees was lower and matched the hypo-autofluorescent area detected on near-infrared FAF. Additional relative scotomata were detected within the 10-degree area. No change in clinical, functional, or FAF pattern was found over the follow-up. Subclinical Best vitelliform macular dystrophy is characterized by the absence of biomicroscopic fundus

  12. Near infrared spectroscopy in animal science production: principles and applications

    Directory of Open Access Journals (Sweden)

    Roberto Riovanto

    2010-01-01

    Full Text Available Near infrared (NIR is one of the techniques belonging to vibrational spectroscopy. Its radiation (750 to 2500nm interacts with organic matter, and the absorption spectrum is rich in chemical and physical information of organic molecules. In order to extract valuable information on the chemical properties of samples, it is necessary to mathematically process spectral data by chemometric tools. The most important part in the development of an NIR method is building the predicting model generally called calibration. NIR spectroscopy has several advantages over other analytical techniques: rapidity of analysis, no use of chemicals, minimal or no samples preparation, easily applicable in different work environments (on/in/at line applications. On the other hand, NIR spectroscopy has some disadvantages: low ability to predict compounds at low concentration (<0.1%, necessity of accurate analysis as reference, development of calibration models required high trained personnel, need of a large and up-to-date calibration data set (often difficult to obtain, difficulties to transfer calibration among instruments, initial high financial investments. In the feed industry, NIR spectroscopy is used for: feed composition, digestibility (in vivo, in vitro, in situ, traceability assessment (to avoid possible frauds. As far as animal products are concerned, NIR spectroscopy has been used to determine the main composition of meat, milk, fish, cheese, eggs. Furthermore, it was also used to predict some physical properties (tenderness, WHC (Water Holding Capacity, drip loss, colour and pH in meat; coagulation ability in milk; freshness, flavour and other sensorial parameters in cheese. Interesting applications of NIR spectroscopy regard issues like: determination of animal products’ authenticity and the detection of adulteration (in order to prevent frauds, discrimination PDO (Protected Designation of Origin and PGI (Protected Geographical Indication from other non

  13. Investigations of near infrared reflective behaviour of TiO2 nanopowders synthesized by arc discharge

    Science.gov (United States)

    Fang, Fang; Kennedy, John; Carder, Damian; Futter, John; Rubanov, Sergey

    2014-05-01

    Titanium dioxide (TiO2) nanopowders with different polymorphic phases were successfully synthesized by an arc discharge method. Samples were characterized using synchrotron radiation X-ray diffraction, high resolution scanning electron microscopy, high resolution transmission electron microscope and near infrared diffuse reflectance spectroscopy. Spherical structures were obtained after arc discharge. A mixture of both anatase and rutile phases was discovered in TiO2 samples synthesized at an arc current of 50 A, showing a majority particle size of 34 nm with size distribution between 5 nm and 60 nm. Completed anatase to rutile phase transformation was observed when the arc current increased from 50 A to 74 A. The crystallite size of the TiO2 nanopowders was significant effected by the arc discharge current during synthesis. After the arc current increased from 74 A to 110 A, the majority particle size of the obtained TiO2 increased to 85 nm with a size distribution in the range between 50 nm and 1800 nm. Diffuse reflectance of the TiO2 nanopowders synthesized at different arc discharge currents was measured. Broadband near infrared reflection (800-950 nm) of up to 50% was observed for TiO2 nanopowders synthesized at an arc current of 74 A. It is considered that rutile phase together with an appropriate mean crystallite size of the TiO2 nanopowders synthesized at an arc current of 74 A contributes to the best near infrared reflectivity in this study. The developed TiO2 nanoppowders will be of immense use in NIR reflective pigment.

  14. Discrimination of mineral waters using near infrared spectroscopy and aquaphotomics

    Directory of Open Access Journals (Sweden)

    Munćan Jelena S.

    2014-01-01

    Full Text Available Despite that water is one of the most studied materials today its dynamic properties are still not well understood. Water state in human organism is of high importance for normal healthy functioning of human body. Different kinds of water are usually classified according to its present solutes, and concentrations of these solutes, but though it is known that water molecules can form clusters around present solutes, classification of waters based on types of water molecular organization and present clusters is not present in current literature. In this study we used multivariate analysis for classification of commercial mineral waters based on their near infrared spectra (NIR. Further, we applied Aquaphotomics, a new approach for interpretation of near infrared spectra of water, which gives insight into organization of water molecules in each of these waters.

  15. Near-infrared Mueller matrix imaging for colonic cancer detection

    Science.gov (United States)

    Wang, Jianfeng; Zheng, Wei; Lin, Kan; Huang, Zhiwei

    2016-03-01

    Mueller matrix imaging along with polar decomposition method was employed for the colonic cancer detection by polarized light in the near-infrared spectral range (700-1100 nm). A high-speed (5s) Muller matrix imaging system with dual-rotating waveplates was developed. 16 (4 by 4) full Mueller matrices of the colonic tissues (i.e., normal and caner) were acquired. Polar decomposition was further implemented on the 16 images to derive the diattentuation, depolarization, and the retardance images. The decomposed images showed clear margin between the normal and cancerous colon tissue samples. The work shows the potential of near-infrared Mueller matrix imaging for the early diagnosis and detection of malignant lesions in the colon.

  16. Near-infrared spectroscopy of 133P/Elst-Pizarro

    Science.gov (United States)

    Rousselot, P.; Dumas, C.; Merlin, F.

    2011-01-01

    Comet 133P/Elst-Pizarro, known to be a main-belt asteroid with a cometary activity, was observed with the near-infrared integral field spectrograph SINFONI at the 8.2-m Very Large Telescope in J, H, and K bands during its 2007 perihelion passage. The goal of these observations was to attempt detection of water ice absorption bands. We present here the details of the data processing, the results of these observations, and our compositional modeling of the final spectrum. No water ice absorptions were detected within the noise of the spectrum but we show that this spectrum is compatible with a reasonable near-infrared albedo value of 7-10% and a mixture of water ice, black carbon, Tholin and silicates. This interpretation, nevertheless, is not unique.

  17. Near-infrared photodetector with reduced dark current

    Science.gov (United States)

    Klem, John F; Kim, Jin K

    2012-10-30

    A photodetector is disclosed for the detection of near-infrared light with a wavelength in the range of about 0.9-1.7 microns. The photodetector, which can be formed as either an nBp device or a pBn device on an InP substrate, includes an InGaAs light-absorbing layer, an InAlGaAs graded layer, an InAlAs or InP barrier layer, and an InGaAs contact layer. The photodetector can detect near-infrared light with or without the use of an applied reverse-bias voltage and is useful as an individual photodetector, or to form a focal plane array.

  18. Near-Infrared Fluorescent Nanoprobes for in Vivo Optical Imaging

    Directory of Open Access Journals (Sweden)

    Chai-Hoon Quek

    2012-03-01

    Full Text Available Near-infrared (NIR fluorescent probes offer advantages of high photon penetration, reduced light scattering and minimal autofluorescence from living tissues, rendering them valuable for noninvasive mapping of molecular events, assessment of therapeutic efficacy, and monitoring of disease progression in animal models. This review provides an overview of the recent development of the design and optical property of the different classes of NIR fluorescent nanoprobes associated with in vivo imaging applications.

  19. Near-Infrared Fluorescent Nanoprobes for in Vivo Optical Imaging

    Science.gov (United States)

    Quek, Chai-Hoon; Leong, Kam W.

    2012-01-01

    Near-infrared (NIR) fluorescent probes offer advantages of high photon penetration, reduced light scattering and minimal autofluorescence from living tissues, rendering them valuable for noninvasive mapping of molecular events, assessment of therapeutic efficacy, and monitoring of disease progression in animal models. This review provides an overview of the recent development of the design and optical property of the different classes of NIR fluorescent nanoprobes associated with in vivo imaging applications. PMID:28348298

  20. Predicting Digestibilities of Alfalfa Hays with Near Infrared Reflectance Spectroscopy

    OpenAIRE

    Clark, David H.

    1985-01-01

    Forty-four alfalfa hays from different cuttings, maturities, and locations were fed to sheep in a digestion study. Subsamples of the hays along with corresponding fecal samples were ground and analyzed for dry matter, (DM), organic matter (OM), crude protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF), and permanganate lignin. In vivo digestibility (IVDMD) were also determined fro each hay. The hay and fecal samples were scanned with a near infrared reflectance spectrop...

  1. Near-infrared fundus autoflorescence imaging in solar retinopathy.

    Science.gov (United States)

    Czepita, Maciej; Machalińska, Anna; Czepita, Damian

    2017-01-01

    Solar retinopathy is a rare clinical entity caused by photochemical damage to the retinal pigment epithelium layer and photoreceptors of the fovea. Here we describe a case of a 33-year-old female patient diagnosed by near-infrared fundus autofluorescence imaging for signs of damage to the melanosomes of the retinal pigment epithelium of the fovea. The patient was advised to discontinue looking at the sun with the naked eye.

  2. Near-infrared fundus autoflorescence imaging in solar retinopathy

    Directory of Open Access Journals (Sweden)

    Czepita, Maciej

    2017-03-01

    Full Text Available Solar retinopathy is a rare clinical entity caused by photochemical damage to the retinal pigment epithelium layer and photoreceptors of the fovea. Here we describe a case of a 33-year-old female patient diagnosed by near-infrared fundus autofluorescence imaging for signs of damage to the melanosomes of the retinal pigment epithelium of the fovea. The patient was advised to discontinue looking at the sun with the naked eye.

  3. Intrinsic Near-Infrared Spectroscopic Markers of Breast Tumors

    OpenAIRE

    Kukreti, Shwayta; Cerussi, Albert; Tromberg, Bruce; Gratton, Enrico

    2009-01-01

    We have discovered quantitative optical biomarkers unique to cancer by developing a double-differential spectroscopic analysis method for near-infrared (NIR, 650–1000 nm) spectra acquired non-invasively from breast tumors. These biomarkers are characterized by specific NIR absorption bands. The double-differential method removes patient specific variations in molecular composition which are not related to cancer, and reveals these specific cancer biomarkers. Based on the spectral regions of a...

  4. Practical guide to interpretive near-infrared spectroscopy

    CERN Document Server

    Workman, Jr, Jerry

    2007-01-01

    Containing focused, comprehensive coverage, Practical Guide to Interpretive Near-Infrared Spectroscopy gives you the tools necessary to interpret NIR spectra. The authors present extensive tables, charts, and figures with NIR absorption band assignments and structural information for a broad range of functional groups, organic compounds, and polymers. They include visual spectral representation of all major compound functional groupings and NIR frequency ranges. Organized by functional group type and chemical structure, based on standard compound classification, the chapters are easy to

  5. [Near infrared spectroscopy study on water content in turbine oil].

    Science.gov (United States)

    Chen, Bin; Liu, Ge; Zhang, Xian-Ming

    2013-11-01

    Near infrared (NIR) spectroscopy combined with successive projections algorithm (SPA) was investigated for determination of water content in turbine oil. Through the 57 samples of different water content in turbine oil scanned applying near infrared (NIR) spectroscopy, with the water content in the turbine oil of 0-0.156%, different pretreatment methods such as the original spectra, first derivative spectra and differential polynomial least squares fitting algorithm Savitzky-Golay (SG), and successive projections algorithm (SPA) were applied for the extraction of effective wavelengths, the correlation coefficient (R) and root mean square error (RMSE) were used as the model evaluation indices, accordingly water content in turbine oil was investigated. The results indicated that the original spectra with different water content in turbine oil were pretreated by the performance of first derivative + SG pretreatments, then the selected effective wavelengths were used as the inputs of least square support vector machine (LS-SVM). A total of 16 variables selected by SPA were employed to construct the model of SPA and least square support vector machine (SPA-LS-SVM). There is 9 as The correlation coefficient was 0.975 9 and the root of mean square error of validation set was 2.655 8 x 10(-3) using the model, and it is feasible to determine the water content in oil using near infrared spectroscopy and SPA-LS-SVM, and an excellent prediction precision was obtained. This study supplied a new and alternative approach to the further application of near infrared spectroscopy in on-line monitoring of contamination such as water content in oil.

  6. Near-Infrared Fluorescent Materials for Sensing of Biological Targets

    Directory of Open Access Journals (Sweden)

    Julia Xiaojun Zhao

    2008-05-01

    Full Text Available Near-infrared fluorescent (NIRF materials are promising labeling reagents for sensitive determination and imaging of biological targets. In the near-infrared region biological samples have low background fluorescence signals, providing high signal to noise ratio. Meanwhile, near-infrared radiation can penetrate into sample matrices deeply due to low light scattering. Thus, in vivo and in vitro imaging of biological samples can be achieved by employing the NIRF probes. To take full advantage of NIRF materials in the biological and biomedical field, one of the key issues is to develop intense and biocompatible NIRF probes. In this review, a number of NIRF materials are discussed including traditional NIRF dye molecules, newly developed NIRF quantum dots and single-walled carbon nanotubes, as well as rare earth metal compounds. The use of some NIRF materials in various nanostructures is illustrated. The enhancement of NIRF using metal nanostructures is covered as well. The fluorescence mechanism and bioapplications of each type of the NIRF materials are discussed in details.

  7. Near infrared spectral imaging of explosives using a tunable laser source

    Energy Technology Data Exchange (ETDEWEB)

    Klunder, G L; Margalith, E; Nguyen, L K

    2010-03-26

    Diffuse reflectance near infrared hyperspectral imaging is an important analytical tool for a wide variety of industries, including agriculture consumer products, chemical and pharmaceutical development and production. Using this technique as a method for the standoff detection of explosive particles is presented and discussed. The detection of the particles is based on the diffuse reflectance of light from the particle in the near infrared wavelength range where CH, NH, OH vibrational overtones and combination bands are prominent. The imaging system is a NIR focal plane array camera with a tunable OPO/laser system as the illumination source. The OPO is programmed to scan over a wide spectral range in the NIR and the camera is synchronized to record the light reflected from the target for each wavelength. The spectral resolution of this system is significantly higher than that of hyperspectral systems that incorporate filters or dispersive elements. The data acquisition is very fast and the entire hyperspectral cube can be collected in seconds. A comparison of data collected with the OPO system to data obtained with a broadband light source with LCTF filters is presented.

  8. Determination of diazepam in intact diazepam tablets using near infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H.C.; Kang, S.J.; Youn, M.O.; Lee, S.J.; Kim, H.J.; Kim, J.Y. [Korea Food and Drug Administration, Seoul (Korea); Cha, K.W. [Inha University, Inchon (Korea)

    2002-06-01

    A rapid and simple determination of diazepam in intact diazepam tablets has been investigated using the near infrared spectroscopy(NIRS) combined with partial least squares regression. The separate calibration curves of 2 mg and 5 mg diazepam tablets were studied, as well as the linearity, concentration range and reproducibility of those calibration curves were evaluated. The correlation coefficients of calibration curves of 2 mg and 5 mg diazepam tablets are 0.99416 and 0.9159, respectively and the standard errors of calibration curves(SEC) are 0.018% and 0.032%, respectively. (author). 13 refs., 4 tabs., 4 figs.

  9. [Testing of germination rate of hybrid rice seeds based on near-infrared reflectance spectroscopy].

    Science.gov (United States)

    Li, Yi-nian; Jiang, Dan; Liu, Ying-ying; Ding, Wei-min; Ding, Qi-shuo; Zha, Liang-yu

    2014-06-01

    Germination rate of rice seeds was measured according to technical stipulation of germination testing for agricultural crop seeds at present. There existed many faults for this technical stipulation such as long experimental period, more costing and higher professional requirement. A rapid and non-invasive method was put forward to measure the germination rate of hybrid rice seeds based on near-infrared reflectance spectroscopy. Two varieties of hybrid rice seeds were aged artificially at temperature 45 degrees C and humidity 100% condition for 0, 24, 48, 72, 96, 120 and 144 h. Spectral data of 280 samples for 2 varieties of hybrid rice seeds with different aging time were acquired individually by near-infrared spectra analyzer. Spectral data of 280 samples for 2 varieties of hybrid rice seeds were randomly divided into calibration set (168 samples) and prediction set (112 samples). Gormination rate of rice seed with different aging time was tested. Regression model was established by using partial least squares (PLS). The effect of the different spectral bands on the accuracy of models was analyzed and the effect of the different spectral preprocessing methods on the accuracy of models was also compared. Optimal model was achieved under the whole bands and by using standardization and orthogonal signal correction (OSC) preprocessing algorithms with CM2000 software for spectral data of 2 varieties of hybrid rice seeds, the coefficient of determination of the calibration set (Rc) and that of the prediction set (Rp) were 0.965 and 0.931 individually, standard error of calibration set (SEC) and that of prediction set (SEP) were 1.929 and 2.899 respectively. Relative error between tested value and predicted value for prediction set of rice seeds is below 4.2%. The experimental results show that it is feasible that rice germination rate is detected rapidly and nondestructively by using the near-infrared spectroscopy analysis technology.

  10. [Online determination of pH in fresh pork by visible/near-infrared spectroscopy].

    Science.gov (United States)

    Liao, Yi-Tao; Fan, Yu-Xia; Wu, Xue-Qian; Cheng, Fang

    2010-03-01

    The present research was focused on determination of the pH value online by visible and near-infrared spectroscopy. In the part of data gathering, fresh pork longissimus dorsi was moving at the constant velocity of 0.25 m x s(-1) on the conveyor belt, and the visible and near-infrared diffuse reflectance spectrum (350-1 000 nm) was captured. In the part of data processing, band of 510-980 nm of the spectra was chosen to calibrate reflex distance, then to set up online detection model of pH value in fresh pork by partial least squares regression (PLSR). Kennard-stone algorithm was applied to divide the samples to the calibration set and validation set. The performances of several PLSR models employing various preprocessing methods including multiple scatter correction, derivative and both of them combined were compared. Further, the best performance model was optimized by interval PLSR to decrease the modeling variables of wavelength. The results indicated that the PLSR model based on preprocessing of multiple scatter correction (MSC) combined with first derivative gave the best performance with 0.905 of the correlation coefficient for validation set and 0.051 of the root of mean square errors for validation set. For the best PLSR model performance, the correlation coefficient of validation set increased to 0.926 and the root of mean square errors for validation set to 0.045 in the optimization interval PLSR model. However, only half of variables were used. The research demonstrates that using visible and near-infrared spectroscopy to determine fresh pork pH online is feasible.

  11. Broadband frequency-domain near-infrared spectral tomography using a mode-locked Ti:sapphire laser

    OpenAIRE

    Wang, Jia; Jiang, Shudong; Paulsen, Keith D.; Pogue, Brian W.

    2009-01-01

    Frequency-domain near-infrared (NIR) diffuse spectral tomography with a mode-locked Ti:sapphire laser is presented, providing tunable multiwavelength quantitative spectroscopy with maximal power for thick tissue imaging. The system was developed to show that intrinsically high stability can be achieved with many wavelengths in the NIR range, using a mode-locked signal of 80 MHz with heterodyned lock-in detection. The effect of cumulative noise from multiple wavelengths of data on the reconstr...

  12. Application of visible/near-infrared reflectance spectroscopy to uranium ore concentrates for nuclear forensic analysis and attribution.

    Science.gov (United States)

    Klunder, Gregory L; Plaue, Jonathan W; Spackman, Paul E; Grant, Patrick M; Lindvall, Rachel E; Hutcheon, Ian D

    2013-09-01

    Uranium ore concentrates (UOCs) are produced at mining facilities from the various types of uranium-bearing ores using several processes that can include different reagents, separation procedures, and drying conditions. The final UOC products can consist of different uranium species, which are important to identify to trace interdicted samples back to their origins. Color has been used as a simple indicator; however, visual determination is subjective and no chemical information is provided. In this work, we report the application of near-infrared (NIR) spectroscopy as a non-contact, non-destructive method to rapidly analyze UOC materials for species and/or process information. Diffuse reflectance spectra from 350 to 2500 nm were measured from a number UOC samples that were also characterized by X-ray diffraction. Combination and overtone bands were used to identify the amine and hydroxyl-containing species, such as ammonium uranates or ammonium uranyl carbonate, while other uranium oxide species (e.g., uranium trioxide [UO3] and triuranium octoxide [U3O8]) exhibit absorption bands arising from crystal field effects and electronic transitions. Principal component analysis was used to classify the different UOC materials.

  13. On the geometry dependence of differential pathlength factor for near-infrared spectroscopy. I. Steady-state with homogeneous medium

    Science.gov (United States)

    Piao, Daqing; Barbour, Randall L.; Graber, Harry L.; Lee, Daniel C.

    2015-01-01

    Abstract. This work analytically examines some dependences of the differential pathlength factor (DPF) for steady-state photon diffusion in a homogeneous medium on the shape, dimension, and absorption and reduced scattering coefficients of the medium. The medium geometries considered include a semi-infinite geometry, an infinite-length cylinder evaluated along the azimuthal direction, and a sphere. Steady-state photon fluence rate in the cylinder and sphere geometries is represented by a form involving the physical source, its image with respect to the associated extrapolated half-plane, and a radius-dependent term, leading to simplified formula for estimating the DPFs. With the source-detector distance and medium optical properties held fixed across all three geometries, and equal radii for the cylinder and sphere, the DPF is the greatest in the semi-infinite and the smallest in the sphere geometry. When compared to the results from finite-element method, the DPFs analytically estimated for 10 to 25 mm source–detector separations on a sphere of 50 mm radius with μa=0.01  mm−1 and μs′=1.0  mm−1 are on average less than 5% different. The approximation for sphere, generally valid for a diameter ≥20 times of the effective attenuation pathlength, may be useful for rapid estimation of DPFs in near-infrared spectroscopy of an infant head and for short source–detector separation. PMID:26465613

  14. [Detection of Adulteration in Milk Powder with Starch Near Infrared].

    Science.gov (United States)

    Wang, Ning-ning; Shen, Bing-hui; Guan, Jian-jun; Zhao, Zhong-rui; Zhu, Ye-wei; Zhang, Lu-da; Yan, Yan-lu; Zheng, Yu-yan; Dong, Cheng-yu; Kang, Ding-ming

    2015-08-01

    Three China trademarks of milk powder called Mengniu, Yili, Wandashan were taken as testing samples. Each of them mixed varied amount of starch in different gradient, which were consisted of 32 adulterated milk powder samples mixed with starch, was taken as standard samples for constructing predicted model. To those 32 samples, the reflecting spectrum characteristics in middle wave of near infrared spectrum with Near Infrared Spectrum Analyzer (Micro NIR 1700) produced by JDSU Ltd. USA were collected for five repeats in five different days. The time span was nearly two months. Firstly, we build the model used the reflecting spectrum characteristics of those samples with biomimetic pattern recognition (BPR) arithmetic to do the qualitative analysis. The analysis included the reliability of testing result and stability of the model. When we took ninety percent as the evaluation threshold of testing result of CAR (Correct Acceptance Rate) and CRR (Correct Rejection Rate), the lowest starch content of adulterate milk powder in all tested samples which the tested result were bigger than that abovementioned threshold was designated CAR threshold (CAR-T) and CRR threshold (CRR-T). CAR means the correct rate of accepting a sample which is belong to itself, CRR means correct rate of refusing to accept a sample which is not belong to itself. The results were shown that, when we constructed a model based on the near infrared spectrum data from each of three China trademark milk powders, respectively, if we constructed a model with infrared spectrum data tested in a same day, both the CAR-T and CRR-T of adulterate starch content of a sample can reach 0.1% in predicting the remainder infrared spectrum data tested within a same day. The three China trademarks of milk powder had the same result. In addition, when we ignored the trademarks, put the spectrum data of adulterate milk powder samples mixed with the same content of starch of three China trademarks milk powder together

  15. [Application of near-infrared spectroscopy technology in quality control of TCM manufacturing process].

    Science.gov (United States)

    Tu, Yaosheng; Liu, Jun; Zhang, Jianjun

    2011-09-01

    With the development of research in near-infrared spectroscopy technology, near-infrared spectroscopy are increasingly employed in quality control of traditional Chinese medicine (TCM) manufacturing process. The recent researches in relative field were summarized in this paper. Perspective of near-infrared spectroscopy technology in quality control of TCM manufacturing process was also presented in this paper.

  16. Near infrared fluorescence imaging of rabbit thyroid and parathyroid glands.

    Science.gov (United States)

    Antakia, Ramez; Gayet, Pascal; Guillermet, Stephanie; Stephenson, Tim J; Brown, Nicola J; Harrison, Barney J; Balasubramanian, Saba P

    2014-12-01

    Near infrared fluorescence imaging using intravenous methylene blue (MB) is a novel technique that has potential to aid the parathyroid gland (PG) localization during thyroid and parathyroid surgery. The aim of this study was to examine MB fluorescence in the rabbit neck and determine the influence of MB dose and time following administration on fluorescence from thyroid and PGs. Thyroid and external PGs were exposed in six New Zealand white rabbits under anesthesia. Varying doses of MB (0.025-3 mg/kg) were injected through the marginal ear vein. Near infrared fluorescence from exposed tissues was recorded at different time intervals (10-74 min) using Fluobeam 700. Specimens of identified glands were then resected for histologic assessment. Histology confirmed accurate identification of all excised thyroid and PGs; these were the only neck structures to demonstrate significant fluorescence. The parathyroid demonstrated lower fluorescence intensities and reduced washout times at all MB doses compared with the thyroid gland. A dose of 0.1 mg/kg MB was adequate to identify fluorescence; this also delineated the blood supply of the external PGs. The study demonstrates that near infrared fluorescence with intravenous MB helps differentiate between thyroid and PGs in the rabbit. This has potential to improve outcomes in thyroid and parathyroid surgery by increasing the accuracy of parathyroid identification; however, the findings require replication in human surgery. The use of low doses of MB may also avoid the side effects associated with currently used doses in humans (3-7 mg/kg). Copyright © 2014 Elsevier Inc. All rights reserved.

  17. [Application of near infrared spectroscopy in analysis of wood properties].

    Science.gov (United States)

    Yao, Sheng; Pu, Jun-wen

    2009-04-01

    There is substantial interest in the improvement of wood properties through genetic selection or a change in silviculture prescription. Tree breeding purpose requires measurement of a large number of samples. However, traditional methods of assessing wood properties are both time consuming and destructive, limiting the numbers of samples that can be processed, so new method would be needed to find. Near infrared spectroscopy (NIR) is an advanced spectroscopic tool for nondestructive evaluation of wood and it can quickly, accurately estimate the properties of increment core, solid wood or wood meal. The present paper reviews the advances in the research on the wood chemistry properties and anatomical properties using NIR.

  18. Compressive Acquisition of Color and Near-Infrared Images

    OpenAIRE

    Sadeghipoor Kermani, Zahra; Lu, Yue; Süsstrunk, Sabine

    2014-01-01

    We propose using a single silicon sensor and a modified Bayer CFA for joint acquisition of color and near-infrared (NIR) images. Silicon sensors, which are placed in most color cameras, are inherently sensitive to NIR. Hence, our proposed design is very similar to consumer color cameras in terms of hardware. The main contribution of this work is an algorithm that estimates full-resolution color and NIR images from subsampled and mixed sensor measurements. Our method results in high-quality RG...

  19. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals

    DEFF Research Database (Denmark)

    Ding, Fei; Dai, Jin; Chen, Yiting

    2016-01-01

    demonstrate thin, broadband, polarization-insensitive and omnidirectional absorbers working in the near-infrared range. We choose titanium (Ti) instead of the commonly used gold (Au) to construct nano-disk arrays on the top of a silicon dioxide (SiO2) coated Au substrate, with the quality (Q) factor......Radiation absorbers have increasingly been attracting attention as crucial components for controllable thermal emission, energy harvesting, modulators, etc. However, it is still challenging to realize thin absorbers which can operate over a wide spectrum range. Here, we propose and experimentally...... materials....

  20. Near-infrared fluorescence imaging for colonic cancer detection

    Science.gov (United States)

    Shao, Xiaozhuo; Mo, Jianhua; Zheng, Wei; Huang, Zhiwei

    2008-02-01

    Near-infrared (NIR) fluorescence imaging is a novel optical technique with an ability of probing larger volume of tissues or lesions located in deep tissue areas. An integrated fluorescence and reflectance imaging system was developed to evaluate its potential for cancer diagnosis. The results show that the NIR autofluorescence intensity of normal colon tissues is significantly higher than that of cancer, and the diagnostic accuracy of 92.8% can be achieved using NIR autofluorescence/reflectance imaging. This work demonstrates that NIR autofluorescence/NIR reflectance imaging technique has potential for colonic cancer diagnosis and detection.

  1. Near-infrared organic materials and emerging applications

    CERN Document Server

    Wang, Zhi Yuan

    2013-01-01

    Highlighting emerging applications of near-infrared (NIR) organic materials that are currently receiving great attention due to their potential use in optical communications, biomedicine, and camouflage materials, this cutting-edge book reviews important recent advances in an accessible style suitable for researchers and graduates in the field on organic/polymer solar cells, optical communications, and advanced optoelectronics. A beacon in the field literature, this comprehensive work discusses several areas of research and development including thermal control and emission detectors in which

  2. Near-infrared tunable lasers with polymer waveguide Bragg gratings.

    Science.gov (United States)

    Son, Nam-Seon; Kim, Kyung-Jo; Kim, Jun-Whee; Oh, Min-Cheol

    2012-01-16

    Wavelength tunable lasers operating at near infrared (NIR) wavelength are demonstrated through the thermo-optic (TO) refractive index tuning of polymer waveguide Bragg reflectors. The polymer-waveguide device has superior TO efficiency for substantially changing the refractive index, and it enables direct tuning of the Bragg reflection wavelength over a wide range. The waveguide is optimized for NIR wavelengths, and a third-order Bragg reflector is incorporated for facilitating fabrication of the grating. The laser exhibits an output power of 0 dBm, a side-mode suppression ratio of 40 dB, and a tuning range of 21 nm.

  3. Ensemble Variability of Near-Infrared-Selected Active Galactic Nuclei

    OpenAIRE

    Kouzuma, Shinjirou; Yamaoka, Hitoshi

    2011-01-01

    We present the properties of the ensemble variability $V$ for nearly 5000 near-infrared (NIR) AGNs selected from the catalog of Quasars and Active Galactic Nuclei (13th Ed.) and the SDSS-DR7 quasar catalog. From 2MASS, DENIS, and UKIDSS/LAS point source catalogs, we extract 2MASS-DENIS and 2MASS-UKIDSS counterparts for cataloged AGNs by catalog cross-identification. We further select variable AGNs based on an optimal criterion for selecting the variable sources. The sample objects are divided...

  4. Efficient Cryogenic Near-Infrared Tm: YLF Laser

    Science.gov (United States)

    2016-12-22

    Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 µm in thulium-doped fluorozirconate fiber,” Electron. Lett. 25(24), 1660-1662 (1989). 10. J. N...Girard, J. L. Doualan, and R. Moncorgé, “ Spectroscopy and fluorescence dynamics of (Tm3+, Tb3+) and (Tm3+, Eu3+) doped LiYF4 single crystals for 1.5...1. Introduction The near-infrared ( NIR ) spectral region around 0.8 μm lacks efficient laser sources with highly scalable diffraction-limited

  5. NIRS - Near infrared spectroscopy - investigations in neurovascular diseases

    DEFF Research Database (Denmark)

    Schytz, Henrik Winther

    2015-01-01

    The purpose of this thesis was to explore and develop methods, where continuous wave near infrared spectroscopy (CW-NIRS) can be applied in different neurovascular diseases, in order to find biological markers that are useful in clinical neurology. To develop a new method to detect changes......, but this requires an acceptable LFOs variation between hemispheres and over time in the healthy brain. The second study therefore investigated day-to-day and hemispheric variations in LFOs with NIRS. It was shown that NIRS might be useful in assessing LFOs between hemispheres, as well as interhemispheric phase...

  6. Imaging bacterial peptidoglycan with near-infrared fluorogenic azide probes

    Science.gov (United States)

    Shieh, Peyton; Siegrist, M. Sloan; Cullen, Andrew J.; Bertozzi, Carolyn R.

    2014-01-01

    Fluorescent probes designed for activation by bioorthogonal chemistry have enabled the visualization of biomolecules in living systems. Such activatable probes with near-infrared (NIR) emission would be ideal for in vivo imaging but have proven difficult to engineer. We present the development of NIR fluorogenic azide probes based on the Si-rhodamine scaffold that undergo a fluorescence enhancement of up to 48-fold upon reaction with terminal or strained alkynes. We used the probes for mammalian cell surface imaging and, in conjunction with a new class of cyclooctyne d-amino acids, for visualization of bacterial peptidoglycan without the need to wash away unreacted probe. PMID:24706769

  7. [Estimation of modulus of elasticity of Eucalyptus pellita wood by near infrared spectroscopy].

    Science.gov (United States)

    Zhao, Rong-jun; Huo, Xiao-mei; Zhang, Li

    2009-09-01

    In the present study, the rapid prediction of wood modulus of elasticity (MOE) of Eucalyptus pellita by near infrared (NIR) spectroscopy is described. Fast Fourier transform (FFT) and conventional mechanical testing methods were used to measure modulus of elasticity of small clear wood samples of Eucalyptus pellita. After collecting the near-infrared reflectance spectra of each sample from radial and tangential faces, the NIR spectra were preprocessed with the second-derivative methods, and regression models were built between 410 to 2 480 nm. The calibration models were established using two thirds of whole samples with the partial least squares method, and validation models were developed on an independent set (one third of whole samples). The analysis results showed that high correlation coefficients were obtained between the laboratory-determined MOE values and NIR prediction values of Eucalyptus pellita. The correlation coefficients of prediction model for MOE were 0.93 and 0.81, and RPD were 2.70 and 1.71. NIR analysis technique can realize the rapid prediction of the MOE of small clear wood samples of Eucalyptus pellita.

  8. [Design of high-efficiency double compound parabolic concentrator system in near infrared noninvasive biochemical analysis].

    Science.gov (United States)

    Gao, Jing; Lu, Qi-Peng; Peng, Zhong-Qi; Ding, Hai-Quan; Gao, Hong-Zhi

    2013-05-01

    High signal-to-noise ratio (SNR) of system is necessary to obtain accurate blood components in near infrared noninvasive biochemical analysis. In order to improve SNR of analytical system, high-efficiency double compound parabolic concentrator (DCPC) system was researched, which was aimed at increasing light utilization efficiency. Firstly, with the request of collection efficiency in near infrared noninvasive biochemical analysis, the characteristic of emergent rays through compound parabolic concentrator (CPC) was analyzed. Then the maximum focusing angle range of the first stage CPC was determined. Secondly, the light utilization efficiency of truncated type was compared with standard DCPC, thus the best structure parameters of DCPC system were optimized. Lastly, combined with optical parameters of skin tissue, calculations were operated when incident wavelength is 1 000 nm. The light utilization efficiency of DCPC system, CPC-focusing mirror system, and non-optical collecting system was calculated. The results show that the light utilization efficiency of the three optical systems is 1.46%, 0.84% and 0.26% respectively. So DCPC system enhances collecting ability for human diffuse reflection light, and helps improve SNR of noninvasive biochemical analysis system and overall analysis accuracy effectively.

  9. NIRS3: The Near Infrared Spectrometer on Hayabusa2

    Science.gov (United States)

    Iwata, Takahiro; Kitazato, Kohei; Abe, Masanao; Ohtake, Makiko; Arai, Takehiko; Arai, Tomoko; Hirata, Naru; Hiroi, Takahiro; Honda, Chikatoshi; Imae, Naoya; Komatsu, Mutsumi; Matsunaga, Tsuneo; Matsuoka, Moe; Matsuura, Shuji; Nakamura, Tomoki; Nakato, Aiko; Nakauchi, Yusuke; Osawa, Takahito; Senshu, Hiroki; Takagi, Yasuhiko; Tsumura, Kohji; Takato, Naruhisa; Watanabe, Sei-ichiro; Barucci, Maria Antonietta; Palomba, Ernesto; Ozaki, Masanobu

    2017-07-01

    NIRS3: The Near Infrared Spectrometer is installed on the Hayabusa2 spacecraft to observe the target C-type asteroid 162173 Ryugu at near infrared wavelengths of 1.8 to 3.2 μm. It aims to obtain reflectance spectra in order to detect absorption bands of hydrated and hydroxide minerals in the 3 μm-band. We adopted a linear-image sensor with indium arsenide (InAs) photo diodes and a cooling system with a passive radiator to achieve an optics temperature of 188 K (-85°C), which enables to retaining sufficient sensitivity and noise level in the 3 μm wavelength region. We conducted ground performance tests for the NIRS3 flight model (FM) to confirm its baseline specifications. The results imply that the properties such as the signal-to-noise ratio (SNR) conform to scientific requirements to determine the degree of aqueous alteration, such as CM or CI chondrite, and the stage of thermal metamorphism on the asteroid surface.

  10. Patient identification using a near-infrared laser scanner

    Science.gov (United States)

    Manit, Jirapong; Bremer, Christina; Schweikard, Achim; Ernst, Floris

    2017-03-01

    We propose a new biometric approach where the tissue thickness of a person's forehead is used as a biometric feature. Given that the spatial registration of two 3D laser scans of the same human face usually produces a low error value, the principle of point cloud registration and its error metric can be applied to human classification techniques. However, by only considering the spatial error, it is not possible to reliably verify a person's identity. We propose to use a novel near-infrared laser-based head tracking system to determine an additional feature, the tissue thickness, and include this in the error metric. Using MRI as a ground truth, data from the foreheads of 30 subjects was collected from which a 4D reference point cloud was created for each subject. The measurements from the near-infrared system were registered with all reference point clouds using the ICP algorithm. Afterwards, the spatial and tissue thickness errors were extracted, forming a 2D feature space. For all subjects, the lowest feature distance resulted from the registration of a measurement and the reference point cloud of the same person. The combined registration error features yielded two clusters in the feature space, one from the same subject and another from the other subjects. When only the tissue thickness error was considered, these clusters were less distinct but still present. These findings could help to raise safety standards for head and neck cancer patients and lays the foundation for a future human identification technique.

  11. Length-free near infrared measurement of newborn malnutrition

    Science.gov (United States)

    Mustafa, Fatin Hamimi; Bek, Emily J.; Huvanandana, Jacqueline; Jones, Peter W.; Carberry, Angela E.; Jeffery, Heather E.; Jin, Craig T.; McEwan, Alistair L.

    2016-11-01

    Under-nutrition in neonates can cause immediate mortality, impaired cognitive development and early onset adult disease. Body fat percentage measured using air-displacement-plethysmography has been found to better indicate under-nutrition than conventional birth weight percentiles. However, air-displacement-plethysmography equipment is expensive and non-portable, so is not suited for use in developing communities where the burden is often the greatest. We proposed a new body fat measurement technique using a length-free model with near-infrared spectroscopy measurements on a single site of the body - the thigh. To remove the need for length measurement, we developed a model with five discrete wavelengths and a sex parameter. The model was developed using air-displacement-plethysmography measurements in 52 neonates within 48 hours of birth. We identified instrumentation required in a low-cost LED-based screening device and incorporated a receptor device that can increase the amount of light collected. This near-infrared method may be suitable as a low cost screening tool for detecting body fat levels and monitoring nutritional interventions for malnutrition in neonates and young children in resource-constrained communities.

  12. Near-Infrared Camera Calibration for Optical Surgical Navigation.

    Science.gov (United States)

    Cai, Ken; Yang, Rongqian; Lin, Qinyong; Liu, Sujuan; Chen, Huazhou; Ou, Shanxing; Huang, Wenhua; Zhou, Jing

    2016-03-01

    Near-infrared optical tracking devices, which are important components of surgical navigation systems, need to be calibrated for effective tracking. The calibration results has a direct influence on the tracking accuracy of an entire system. Therefore, the study of calibration techniques is of theoretical significance and practical value. In the present work, a systematic calibration method based on movable plates is established, which analyzes existing calibration theories and implements methods using calibration reference objects. First, the distortion model of near-infrared cameras (NICs) is analyzed in the implementation of this method. Second, the calibration images from different positions and orientations are used to establish the required linear equations. The initial values of the NIC parameters are calculated with the direct linear transformation method. Finally, the accurate internal and external parameters of the NICs are obtained by conducting nonlinear optimization. Analysis results show that the relative errors of the left and right NICs in the tracking system are 0.244 and 0.282 % for the focal lengths and 0.735 and 1.111 % for the principal points, respectively. The image residuals of the left and right image sets are both less than 0.01 pixel. The standard error of the calibration result is lower than 1, and the measurement error of the tracking system is less than 0.3 mm. The experimental data show that the proposed method of calibrating NICs is effective and can generate favorable calibration results.

  13. Micro-electro-mechanically switchable near infrared complementary metamaterial absorber

    Energy Technology Data Exchange (ETDEWEB)

    Pitchappa, Prakash; Pei Ho, Chong [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Institute of Microelectronics (IME), 11 Science Park Road, Singapore 117685 (Singapore); Kropelnicki, Piotr; Singh, Navab; Kwong, Dim-Lee [Institute of Microelectronics (IME), 11 Science Park Road, Singapore 117685 (Singapore); Lee, Chengkuo, E-mail: elelc@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore)

    2014-05-19

    We experimentally demonstrate a micro-electro-mechanically switchable near infrared complementary metamaterial absorber by integrating the metamaterial layer to be the out of plane movable microactuator. The metamaterial layer is electrostatically actuated by applying voltage across the suspended complementary metamaterial layer and the stationary bottom metallic reflector. Thus, the effective spacing between the metamaterial layer and bottom metal reflector is varied as a function of applied voltage. With the reduction of effective spacing between the metamaterial and reflector layers, a strong spectral blue shift in the peak absorption wavelength can be achieved. With spacing change of 300 nm, the spectral shift of 0.7 μm in peak absorption wavelength was obtained for near infrared spectral region. The electro-optic switching performance of the device was characterized, and a striking switching contrast of 1500% was achieved at 2.1 μm. The reported micro-electro-mechanically tunable complementary metamaterial absorber device can potentially enable a wide range of high performance electro-optical devices, such as continuously tunable filters, modulators, and electro-optic switches that form the key components to facilitate future photonic circuit applications.

  14. Single Pixel Black Phosphorus Photodetector for Near-Infrared Imaging.

    Science.gov (United States)

    Miao, Jinshui; Song, Bo; Xu, Zhihao; Cai, Le; Zhang, Suoming; Dong, Lixin; Wang, Chuan

    2018-01-01

    Infrared imaging systems have wide range of military or civil applications and 2D nanomaterials have recently emerged as potential sensing materials that may outperform conventional ones such as HgCdTe, InGaAs, and InSb. As an example, 2D black phosphorus (BP) thin film has a thickness-dependent direct bandgap with low shot noise and noncryogenic operation for visible to mid-infrared photodetection. In this paper, the use of a single-pixel photodetector made with few-layer BP thin film for near-infrared imaging applications is demonstrated. The imaging is achieved by combining the photodetector with a digital micromirror device to encode and subsequently reconstruct the image based on compressive sensing algorithm. Stationary images of a near-infrared laser spot (λ = 830 nm) with up to 64 × 64 pixels are captured using this single-pixel BP camera with 2000 times of measurements, which is only half of the total number of pixels. The imaging platform demonstrated in this work circumvents the grand challenges of scalable BP material growth for photodetector array fabrication and shows the efficacy of utilizing the outstanding performance of BP photodetector for future high-speed infrared camera applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Near Infrared Spectroscopy: fundamentals, practical aspects and analytical applications

    Directory of Open Access Journals (Sweden)

    Pasquini Celio

    2003-01-01

    Full Text Available This paper intends to review the basic theory of Near Infrared (NIR Spectroscopy and its applications in the field of Analytical Science. It is addressed to the reader who does not have a profound knowledge of vibrational spectroscopy but wants to be introduced to the analytical potentialities of this fascinating technique and, at same time, be conscious of its limitations. Essential theory background, an outline of modern instrument design, practical aspects, and applications in a number of different fields are presented. This work does not intend to supply an intensive bibliography but refers to the most recent, significant and representative material found in the technical literature. Because this paper has been produced as consequence of the First Workshop on Near Infrared Spectroscopy, whose venue was Campinas - Brazil, as a pre-conference activity of the XI National Meeting on Analytical Chemistry (ENQA, it also depicts the state of the art of NIR spectroscopy in Brazil, pointing out the current achievements and the need to take the technology to a level consistent with this country's economical activities.

  16. Transscrotal Near Infrared Spectroscopy as a Diagnostic Test for Testis Torsion in Pediatric Acute Scrotum: A Prospective Comparison to Gold Standard Diagnostic Test Study.

    Science.gov (United States)

    Schlomer, Bruce J; Keays, Melise A; Grimsby, Gwen M; Granberg, Candace F; DaJusta, Daniel G; Menon, Vani S; Ostrov, Lauren; Sheth, Kunj R; Hill, Martinez; Sanchez, Emma J; Harrison, Clanton B; Jacobs, Micah A; Huang, Rong; Burgu, Berk; Hennes, Halim; Baker, Linda A

    2017-09-01

    A rapid test for testicular torsion in children may obviate the delay for testicular ultrasound. In this study we assessed testicular tissue percent oxygen saturation (%StO2) measured by transscrotal near infrared spectroscopy as a diagnostic test for pediatric testicular torsion. This was a prospective comparison to a gold standard diagnostic test study that evaluated near infrared spectroscopy %StO2 readings to diagnose testicular torsion. The gold standard for torsion diagnosis was standard clinical care. From 2013 to 2015 males with acute scrotum for more than 1 month and who were less than 18 years old were recruited. Near infrared spectroscopy %StO2 readings were obtained for affected and unaffected testes. Near infrared spectroscopy Δ%StO2 was calculated as unaffected minus affected reading. The utility of near infrared spectroscopy Δ%StO2 to diagnose testis torsion was described with ROC curves. Of 154 eligible patients 121 had near infrared spectroscopy readings. Median near infrared spectroscopy Δ%StO2 in the 36 patients with torsion was 2.0 (IQR -4.2 to 9.8) vs -1.7 (IQR -8.7 to 2.0) in the 85 without torsion (p=0.004). AUC for near infrared spectroscopy as a diagnostic test was 0.66 (95% CI 0.55-0.78). Near infrared spectroscopy Δ%StO2 of 20 or greater had a positive predictive value of 100% and a sensitivity of 22.2%. Tanner stage 3-5 cases without scrotal edema or with pain for 12 hours or less had an AUC of 0.91 (95% CI 0.86-1.0) and 0.80 (95% CI 0.62-0.99), respectively. In all children near infrared spectroscopy readings had limited utility in diagnosing torsion. However, in Tanner 3-5 cases without scrotal edema or with pain 12 hours or less, near infrared spectroscopy discriminated well between torsion and nontorsion. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  17. [Quality anlysis of the before redrying raw tobacco & after redrying sheet tobacco by using online near infrared spectroscopy].

    Science.gov (United States)

    Tang, Zhao-qi; Liu, Ying; Shu, Ru-xin; Yang, Kai; Zhao, Long-lian; Zhang, Lu-da; Zhang Ye-hui; Li, Jun-hui

    2014-12-01

    In this paper, the 7 different origin before redrying raw tobacco & after redrying sheet tobacco's online near infrared spectroscopy were collected from sorting & redrying production line specifically for "ZHONGHUA" brand. By using the projection model bulit by different origin tobacco's online spectroscopy and the method of variance and correlation analysis, we studied the uniformity and similarity quality characteristics change before and after the redrying of tobacco, which can provide support for understanding the quality of the tobacco material and cigarette product formulations. This study show that selecting about 10,000 by equally spaced sampling time from a huge number of online near infrared spectroscopy, for modeling are feasible, and representative. After manual sorting, threshing, and redrying, the uiformity of each origin tobacco near-infrared spectroscopy can be increased by 10%~35%, homogeneity of the tobacco leaf has been significantly improved. After redrying, the similar relationship embodied in the origin also have significant changes, overall it reduce significantly, that shows the quality differences embodied by origin significantly improve, which can provide greater space for formulations, it shows the need for high-quality Chinese cigarette production requires large amounts of financial and human resources to implement cured tobacco processing. The traditional means of chemical analysis, it takes a lot of time and effort, it is difficult to control the entire processing chain, Near Infrared Spectroscopy with its rapid, non-destructive advantage, not only can achieve real-time detection and quality control, but also can take full advantage of near-infrared spectroscopy information created in the production process, which is a very promising online analytical detection technology in many industries especially in the agricultural and food processing industries.

  18. Quantitative analysis of cefalexin based on artificial neural networks combined with modified genetic algorithm using short near-infrared spectroscopy.

    Science.gov (United States)

    Huan, Yanfu; Feng, Guodong; Wang, Bin; Ren, Yulin; Fei, Qiang

    2013-05-15

    In this paper, a novel chemometric method was developed for rapid, accurate, and quantitative analysis of cefalexin in samples. The experiments were carried out by using the short near-infrared spectroscopy coupled with artificial neural networks. In order to enhancing the predictive ability of artificial neural networks model, a modified genetic algorithm was used to select fixed number of wavelength. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Control of quality and silo storage of sunflower seeds using near infrared technology

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Martin, I.; Vilaescusa-Garcia, V.; Lopez-Gonzalez, F.; Oiz-Jimenez, C.; Lobos-Ortega, I. A.; Gordillo, B.; Hernandez-Hierro, J. M.

    2013-05-01

    This work assesses the application of near infrared spectroscopy technology for the quality control of sunflower seeds direct from farmers and from a storage silo. The results show that the analytical method employing near infrared spectroscopy can be used as a rapid and non-destructive tool for the determination of moisture, fat and high/low oleic acid contents in samples of sunflower seeds. The ranges obtained were comparable to those reported for classic chemical methods, and were between 4.6-21.4% for moisture; 38.4-49.6% for fat, and 60.0-93.1% for oleic acid expressed as percentage of total fatty acids. A stepwise discriminant analysis was performed to determine the most useful wavelengths for classifying sunflower seeds in terms of their (high/low) oleic acid composition. The discriminant model allows the acid contents, with a prediction rate of 90.5% for internal validation and of 89.4% for cross-validation. (Author) 23 refs.

  20. [Application of near infrared spectral fingerprint technique in lamb meat origin traceability].

    Science.gov (United States)

    Sun, Shu-Min; Guo, Bo-Li; Wei, Yi-Min; Fan, Ming-Tao

    2011-04-01

    Near infrared spectra of 99 lamb meat samples from three pasturing areas and two farming areas of China were scanned and analyzed to seek a cheap, rapid and effective method for lamb meat origin traceability. Two chemometric methods including linear discriminant analysis based on principal component analysis (PCA+LDA) and partial least squares discriminant analysis (PLS-DA) were used to develop the discriminate models. It was showed that there were significantly differences among the lamb meat samples from five regions based on NIR spectra after second derivative (Savitzky-Golay, 9 point) and multiplicative scattering correction (MSC) transformation in the whole wavelength. The discrimination of two models was best for classification of pasturing area and farming area, with both correctly classified by 100%. The correct classification rate of samples from five different regions using PCA+LDA model was 91.2%, higher than using PLS-DA model (76.7%). These results demonstrate that near infrared reflectance spectroscopy (NIRS) combined with chemometric analysis can be used as an effective method to classify lamb meat according to its geographical origin.

  1. Tunable broadband near-infrared absorber based on ultrathin phase-change material

    Science.gov (United States)

    Hu, Er-Tao; Gu, Tong; Guo, Shuai; Zang, Kai-Yan; Tu, Hua-Tian; Yu, Ke-Han; Wei, Wei; Zheng, Yu-Xiang; Wang, Song-You; Zhang, Rong-Jun; Lee, Young-Pak; Chen, Liang-Yao

    2017-11-01

    In this work, a tunable broadband near-infrared light absorber was designed and fabricated with a simple and lithography free approach by introducing an ultrathin phase-change material Ge2Sb2Te5 (GST) layer into the metal-dielectric multilayered film structure with the structure parameters as that: SiO2 (72.7 nm)/Ge2Sb2Te5 (6.0 nm)/SiO2 (70.2 nm)/Cu (>100.0 nm). The film structure exhibits a modulation depth of ∼72.6% and an extinction ratio of ∼8.8 dB at the wavelength of 1410 nm. The high light absorption (95%) of the proposed film structure at the wavelength of 450 nm in both of the amorphous and crystalline phase of GST, indicates that the intensity of the reflectance in the infrared region can be rapidly tuned by the blue laser pulses. The proposed planar layered film structure with layer thickness as the only controllable parameter and large reflectivity tuning range shows the potential for practical applications in near-infrared light modulation and absorption.

  2. Quantification of simvastatin in mice plasma by near-infrared and chemometric analysis of spectral data

    Directory of Open Access Journals (Sweden)

    Fahmy UA

    2016-08-01

    Full Text Available Usama A Fahmy Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: Time and cost saving is an essential requirement in pharmacokinetics and bioequivalence studies. The aim of this study is to use a simple, fast, and nondestructive near-infrared transmission spectroscopic method to quantify simvastatin (SMV concentrations in mice plasma and also to improve SMV bioavailability by using alpha-lipoic acid as a carrier. Calibration curve was built at a concentration range of 10–250 ng/mL, and HPLC method was considered as a reference method. A partial least squares regression analysis model was used for method development, which gave less root mean square error cross-validation. Comparison of SMV concentrations obtained from both instruments showed no statistically significant differences between all the data. Near-infrared spectroscopy was utilized as a rapid, simple accurate method to quantify drug–plasma concentrations without need for any extraction protocols, and the significant effect of alpha-lipoic acid as a novel carrier to enhance SMV bioavailability is also addressed. Keywords: alpha lipoic acid, bioavailability, non invasive, FTIR, pharmacokinetics

  3. Identification of pesticide varieties by testing microalgae using Visible/Near Infrared Hyperspectral Imaging technology.

    Science.gov (United States)

    Shao, Yongni; Jiang, Linjun; Zhou, Hong; Pan, Jian; He, Yong

    2016-04-13

    In our study, the feasibility of using visible/near infrared hyperspectral imaging technology to detect the changes of the internal components of Chlorella pyrenoidosa so as to determine the varieties of pesticides (such as butachlor, atrazine and glyphosate) at three concentrations (0.6 mg/L, 3 mg/L, 15 mg/L) was investigated. Three models (partial least squares discriminant analysis combined with full wavelengths, FW-PLSDA; partial least squares discriminant analysis combined with competitive adaptive reweighted sampling algorithm, CARS-PLSDA; linear discrimination analysis combined with regression coefficients, RC-LDA) were built by the hyperspectral data of Chlorella pyrenoidosa to find which model can produce the most optimal result. The RC-LDA model, which achieved an average correct classification rate of 97.0% was more superior than FW-PLSDA (72.2%) and CARS-PLSDA (84.0%), and it proved that visible/near infrared hyperspectral imaging could be a rapid and reliable technique to identify pesticide varieties. It also proved that microalgae can be a very promising medium to indicate characteristics of pesticides.

  4. Near infrared spectroscopy is suitable for the classification of hazelnuts according to Protected Designation of Origin.

    Science.gov (United States)

    Moscetti, Roberto; Radicetti, Emanuele; Monarca, Danilo; Cecchini, Massimo; Massantini, Riccardo

    2015-10-01

    This study investigates the possibility of using near infrared spectroscopy for the authentication of the 'Nocciola Romana' hazelnut (Corylus avellana L. cvs Tonda Gentile Romana and Nocchione) as a Protected Designation of Origin (PDO) hazelnut from central Italy. Algorithms for the selection of the optimal pretreatments were tested in combination with the following discriminant routines: k-nearest neighbour, soft independent modelling of class analogy, partial least squares discriminant analysis and support vector machine discriminant analysis. The best results were obtained using a support vector machine discriminant analysis routine. Thus, classification performance rates with specificities, sensitivities and accuracies as high as 96.0%, 95.0% and 95.5%, respectively, were achieved. Various pretreatments, such as standard normal variate, mean centring and a Savitzky-Golay filter with seven smoothing points, were used. The optimal wavelengths for classification were mainly correlated with lipids, although some contribution from minor constituents, such as proteins and carbohydrates, was also observed. Near infrared spectroscopy could classify hazelnut according to the PDO 'Nocciola Romana' designation. Thus, the experimentation lays the foundations for a rapid, online, authentication system for hazelnut. However, model robustness should be improved taking into account agro-pedo-climatic growing conditions. © 2014 Society of Chemical Industry.

  5. [Discrimination of Rice Syrup Adulterant of Acacia Honey Based Using Near-Infrared Spectroscopy].

    Science.gov (United States)

    Zhang, Yan-nan; Chen, Lan-zhen; Xue, Xiao-feng; Wu, Li-ming; Li, Yi; Yang, Juan

    2015-09-01

    At present, the rice syrup as a low price of the sweeteners was often adulterated into acacia honey and the adulterated honeys were sold in honey markets, while there is no suitable and fast method to identify honey adulterated with rice syrup. In this study, Near infrared spectroscopy (NIR) combined with chemometric methods were used to discriminate authenticity of honey. 20 unprocessed acacia honey samples from the different honey producing areas, mixed? with different proportion of rice syrup, were prepared of seven different concentration gradient? including 121 samples. The near infrared spectrum (NIR) instrument and spectrum processing software have been applied in the? spectrum? scanning and data conversion on adulterant samples, respectively. Then it was analyzed by Principal component analysis (PCA) and canonical discriminant analysis methods in order to discriminating adulterated honey. The results showed that after principal components analysis, the first two principal components accounted for 97.23% of total variation, but the regionalism of the score plot of the first two PCs was not obvious, so the canonical discriminant analysis was used to make the further discrimination, all samples had been discriminated correctly, the first two discriminant functions accounted for 91.6% among the six canonical discriminant functions, Then the different concentration of adulterant samples can be discriminated correctly, it illustrate that canonical discriminant analysis method combined with NIR spectroscopy is not only feasible but also practical for rapid and effective discriminate of the rice syrup adulterant of acacia honey.

  6. Near-infrared fluorescent probe for detection of thiophenols in water samples and living cells.

    Science.gov (United States)

    Yu, Dehuan; Huang, Feihu; Ding, Shuangshuang; Feng, Guoqiang

    2014-09-02

    The development of probes for rapid, selective, and sensitive detection of the highly toxic thiophenols is of great importance in both environmental and biological science. Despite the appealing advantages of near-infrared (NIR) fluorescent detection, no NIR fluorescent probes have been reported for thiophenols to date. Using the chemical properties of thiophenols that are able to cleave sulfonamide selectively and efficiently under mild conditions, we herein report a dicyanomethylene-benzopyran (DCMB)-based NIR fluorescent probe for thiophenols. This probe features remarkable large Stokes shift and shows a rapid, highly selective, and sensitive detection process for thiophenols with significant NIR fluorescent turn-on responses. The potential applications of this new NIR fluorescent probe were demonstrated by the quantitative detection of thiophenol in real water samples and by fluorescent imaging of thiophenol in living cells.

  7. Near-near-infrared thermal lens spectroscopy to assess overtones and combination bands of sulfentrazone pesticide

    Science.gov (United States)

    Ventura, M.; Silva, J. R.; Andrade, L. H. C.; Scorza Júnior, R. P.; Lima, S. M.

    2018-01-01

    Thermal lens spectroscopy (TLS) in the near-near-infrared region was used to explore the absorptions of overtones and combination bands of sulfentrazone (SFZ) herbicide diluted in methanol. This spectroscopic region was chosen in order to guarantee that only thermal lens effect is noted during the experimental procedure. The results showed that it was possible to detect very low concentrations ( 2 ng/μL) of SFZ in methanol by determining its thermal diffusivity or the absorption coefficient due to the 3ν(NH) + 1δ(CH) combination band. This minimum SFZ concentration is the limit observed by chromatography method. The findings demonstrated that the TLS can be used for precise and accurate assessment of pesticides in ecosystems. Besides, the 3ν(NH) + 1δ(CH) combination band at 960 nm can be used as a marker for SFZ in methanol.

  8. Versatile visualization of individual single-walled carbon nanotubes with near-infrared fluorescence microscopy.

    Science.gov (United States)

    Tsyboulski, Dmitri A; Bachilo, Sergei M; Weisman, R Bruce

    2005-05-01

    Fluorescence microscopy in the near-infrared between 950 and 1600 nm has been developed as a novel method to image and study single-walled carbon nanotubes (SWNTs) in a variety of environments. Intrinsic photoluminescence of disaggregated pristine SWNTs was excited by a diode laser and detected with a two-dimensional InGaAs photodiode array. Individual nanotubes were visualized with a spatial resolution of ca. 1 microm and characterized with polarization measurements and emission spectroscopy. Spatially resolved emission spectra allowed (n,m) identification of single nanotubes and revealed small environmentally induced spectral shifts between segments of long tubes. Nanotube motions in aqueous surfactant were visualized with a time resolution of 50 ms and used to estimate the diffusion coefficient.

  9. Development of a Machine-cut Metal Grating for Near-Infrared Spectroscopy

    Science.gov (United States)

    Goto, Miwa; Motohara, Kentaro; Imanishi, Masatoshi; Sugiyama, Kouji; Tomita, Kazuhisa; Iwamuro, Fumihide; Maihara, Toshinori

    1998-07-01

    We have developed a special grating capable of producing an echellogram (a spectrum arranged in raster form) in the 30th or even higher order in the near-infrared wavelength region. The grating substrate is made of an aluminum alloy that has been carved mechanically with a high-precision shaving machine. The optical efficiency, measured with a special spectrophotometer at about 2 mum, is ~70%. The diffuse light component, possibly attributable to scattering on the grating surface, has been estimated to be at most ~5% when the grating is incorporated in an actual spectrograph system. The measured efficiency of the fabricated grating is compared with that given by a numerical analysis. The comparison shows remarkable agreement in both the optical efficiency and the distribution of energy diffracted to various orders.

  10. Cerebral near infrared spectroscopy oximetry in extremely preterm infants

    DEFF Research Database (Denmark)

    Hyttel-Sorensen, Simon; Pellicer, Adelina; Alderliesten, Thomas

    2015-01-01

    OBJECTIVE: To determine if it is possible to stabilise the cerebral oxygenation of extremely preterm infants monitored by cerebral near infrared spectroscopy (NIRS) oximetry. DESIGN: Phase II randomised, single blinded, parallel clinical trial. SETTING: Eight tertiary neonatal intensive care units...... in eight European countries. PARTICIPANTS: 166 extremely preterm infants born before 28 weeks of gestation: 86 were randomised to cerebral NIRS monitoring and 80 to blinded NIRS monitoring. The only exclusion criterion was a decision not to provide life support. INTERVENTIONS: Monitoring of cerebral...... with 1.1 (0.1-23.4) %hours in the control group (P=0.98). We found no statistically significant differences between the two groups at term corrected age. No severe adverse reactions were associated with the device. CONCLUSIONS: Cerebral oxygenation was stabilised in extremely preterm infants using...

  11. Near-infrared molecular probes for in vivo imaging.

    Science.gov (United States)

    Zhang, Xuan; Bloch, Sharon; Akers, Walter; Achilefu, Samuel

    2012-04-01

    Cellular and tissue imaging in the near-infrared (NIR) wavelengths between 700 and 900 nm is advantageous for in vivo imaging because of the low absorption of biological molecules in this region. This unit presents protocols for small animal imaging using planar and fluorescence lifetime imaging techniques. Included is an overview of NIR fluorescence imaging of cells and small animals using NIR organic fluorophores, nanoparticles, and multimodal imaging probes. The development, advantages, and application of NIR fluorescent probes that have been used for in vivo imaging are also summarized. The use of NIR agents in conjunction with visible dyes and considerations in selecting imaging agents are discussed. We conclude with practical considerations for the use of these dyes in cell and small animal imaging applications.

  12. Near-infrared-responsive, superparamagnetic Au@Co nanochains

    Directory of Open Access Journals (Sweden)

    Varadee Vittur

    2017-08-01

    Full Text Available This manuscript describes a new type of nanomaterial, namely superparamagnetic Au@Co nanochains with optical extinctions in the near infrared (NIR. The Au@Co nanochains were synthesized via a one-pot galvanic replacement route involving a redox-transmetalation process in aqueous medium, where Au salt was reduced to form Au shells on Co seed templates, affording hollow Au@Co nanochains. The Au shells serve not only as a protective coating for the Co nanochain cores, but also to give rise to the optical properties of these unique nanostructures. Importantly, these bifunctional, magneto-optical Au@Co nanochains combine the advantages of nanophotonics (extinction at ca. 900 nm and nanomagnetism (superparamagnetism and provide a potentially useful new nanoarchitecture for biomedical or catalytic applications that can benefit from both activation by light and manipulation using an external magnetic field.

  13. Deep tissue near-infrared imaging for vascular network analysis

    Directory of Open Access Journals (Sweden)

    Kübra Seker

    2017-05-01

    Full Text Available Subcutaneous vein network plays important roles to maintain microcirculation that is related to some diagnostic aspects. Despite developments of optical imaging technologies, still the difficulties about deep skin vascular imaging have been continued. On the other hand, since hemoglobin concentration of human blood has key role in the veins imaging by optical manner, the used wavelength in vascular imaging, must be chosen considering absorption of hemoglobin. In this research, we constructed a near infrared (NIR light source because of lower absorption of hemoglobin in this optical region. To obtain vascular image, reflectance geometry was used. Next, from recorded images, vascular network analysis, such as calculation of width of vascular of interest and complexity of selected region were implemented. By comparing with other modalities, we observed that proposed imaging system has great advantages including nonionized radiation, moderate penetration depth of 0.5–3mm and diameter of 1mm, cost-effective and algorithmic simplicity for analysis.

  14. Functional Near Infrared Spectroscopy: Watching the Brain in Flight

    Science.gov (United States)

    Harrivel, Angela; Hearn, Tristan A.

    2012-01-01

    Functional Near Infrared Spectroscopy (fNIRS) is an emerging neurological sensing technique applicable to optimizing human performance in transportation operations, such as commercial aviation. Cognitive state can be determined via pattern classification of functional activations measured with fNIRS. Operational application calls for further development of algorithms and filters for dynamic artifact removal. The concept of using the frequency domain phase shift signal to tune a Kalman filter is introduced to improve the quality of fNIRS signals in real-time. Hemoglobin concentration and phase shift traces were simulated for four different types of motion artifact to demonstrate the filter. Unwanted signal was reduced by at least 43%, and the contrast of the filtered oxygenated hemoglobin signal was increased by more than 100% overall. This filtering method is a good candidate for qualifying fNIRS signals in real time without auxiliary sensors.

  15. Non-linear calibration models for near infrared spectroscopy

    DEFF Research Database (Denmark)

    Ni, Wangdong; Nørgaard, Lars; Mørup, Morten

    2014-01-01

    -linear models on linear problems, robustness to small or medium sample sets, and robustness to pre-processing, are discussed. The results suggest that GPR and BANN are powerful and promising methods for handling linear as well as nonlinear systems, even when the data sets are moderately small. The LS......-SVM), relevance vector machines (RVM), Gaussian process regression (GPR), artificial neural network (ANN), and Bayesian ANN (BANN). In this comparison, partial least squares (PLS) regression is used as a linear benchmark, while the relationship of the methods is considered in terms of traditional calibration...... by ridge regression (RR). The performance of the different methods is demonstrated by their practical applications using three real-life near infrared (NIR) data sets. Different aspects of the various approaches including computational time, model interpretability, potential over-fitting using the non...

  16. Brain plasticity and rehabilitation by using Near-Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Balconi Michela

    2016-04-01

    Full Text Available The present review elucidated the use of optical imaging technique (Near-Infrared Spectroscopy, NIRS to better explain the brain plasticity for learning mechanisms, rehabilitation and post-traumatic brain recovery. Some recent applications were discussed, with specific focus on the usability of integrated measures (such as electroencephalography, EEG-NIRS; Transcranial Magnet Stimulation, TMS-NIRS to study plasticity and its dynamic effects. NIRS-Neurofeedback and NIRS-BCI (Brain Computer Interface were also explored as possible tools to produce a specific long-lasting learning in relationship with a specific cognitive domain. Finally a proficient domain where NIRS was found to be useful to test neuroplasticity is the interpersonal brain-to-brain coupling, termed “hyperscanning”, a new emerging paradigm in neuroscience which measures brain activity from two or more people simultaneously.

  17. Near-infrared photochemistry at interfaces based on upconverting nanoparticles.

    Science.gov (United States)

    Wu, Si; Butt, Hans-Jürgen

    2017-09-13

    Near-infrared (NIR) light is better suited than ultraviolet (UV) light for biomedical applications because it penetrates deeper into tissue and causes less photodamage to biological systems. The use of NIR light to control biointerfaces has attracted increasing interest. Here, we review NIR photoreactions at interfaces based on upconverting nanoparticles (UCNPs). UCNPs can convert NIR light to UV or visible light, which can then induce photoreactions of photosensitive compounds. This process is referred to as UCNP-assisted photochemistry. Recently, we and others demonstrated UCNP-assisted photochemistry at interfaces to control interfacial properties of nano-carriers, implants, emulsions, and cells. We introduce the fundamentals of UCNP-assisted photochemistry at interfaces, highlight its potential applications, and discuss remaining challenges.

  18. Near infrared reflectance measurement of nitrogen faecal losses.

    Science.gov (United States)

    Benini, L; Caliari, S; Bonfante, F; Guidi, G C; Brentegani, M T; Castellani, G; Sembenini, C; Bardelli, E; Vantini, I

    1992-06-01

    Chemical methods of measuring nitrogen in stools are complex, unpleasant, and therefore rarely performed. Recently, near infrared reflectance (NIRA) has been suggested for stool analysis. The aim of this study was to evaluate the possible application of this method in routine faecal nitrogen measurement. Nitrogen concentration and daily output were measured in the stools of 83 patients using NIRA and, for comparison, the Kjeldahl method. Nitrogen concentration and output ranged between 0.4-2.72 g% and 0.45-8.96 g/day respectively. Correlation coefficients (r), of 0.89 and 0.97 were found between the two methods for concentration and output respectively, and similar values were found in patients on enteral nutrition. Repeated measurements from the same stool collection, requiring only a few minutes, allowed homogenisation to be avoided. NIRA seems to be an easy, fast, and reliable alternative to chemical assays of nitrogen measurement in the management of patients with digestive disorders.

  19. Design of planar chiral metamaterials for near-infrared regime

    Science.gov (United States)

    Kaya, Sabri; Turkmen, Mustafa; Topaktas, Omer

    2017-01-01

    Planar chiral metamaterials (PCMs) comprising double-layer dielectric-metal-dielectric resonant structures in the shape of a windmill are presented for near-infrared regime. The circular dichroism is retrieved from transmission spectra. Effects of used materials on circular dichroism characteristics of PCM arrays are investigated for the first time. The dependence of spectral characteristics on the geometrical parameters of the PCMs is analyzed by the finite-difference time-domain method. The observations indicated that the circular dichroism characteristics of the proposed PCM arrays are strongly dependent on the type of metal and dielectric materials. Due to the enhanced chiroptical near-field response and tunable spectral behavior, proposed PCM arrays may have potential for biosensing applications of chiral biomolecules.

  20. Neuroimaging with functional near infrared spectroscopy: From formation to interpretation

    Science.gov (United States)

    Herrera-Vega, Javier; Treviño-Palacios, Carlos G.; Orihuela-Espina, Felipe

    2017-09-01

    Functional Near Infrared Spectroscopy (fNIRS) is gaining momentum as a functional neuroimaging modality to investigate the cerebral hemodynamics subsequent to neural metabolism. As other neuroimaging modalities, it is neuroscience's tool to understand brain systems functions at behaviour and cognitive levels. To extract useful knowledge from functional neuroimages it is critical to understand the series of transformations applied during the process of the information retrieval and how they bound the interpretation. This process starts with the irradiation of the head tissues with infrared light to obtain the raw neuroimage and proceeds with computational and statistical analysis revealing hidden associations between pixels intensities and neural activity encoded to end up with the explanation of some particular aspect regarding brain function.To comprehend the overall process involved in fNIRS there is extensive literature addressing each individual step separately. This paper overviews the complete transformation sequence through image formation, reconstruction and analysis to provide an insight of the final functional interpretation.

  1. Near infrared reflectance measurement of nitrogen faecal losses.

    Science.gov (United States)

    Benini, L; Caliari, S; Bonfante, F; Guidi, G C; Brentegani, M T; Castellani, G; Sembenini, C; Bardelli, E; Vantini, I

    1992-01-01

    Chemical methods of measuring nitrogen in stools are complex, unpleasant, and therefore rarely performed. Recently, near infrared reflectance (NIRA) has been suggested for stool analysis. The aim of this study was to evaluate the possible application of this method in routine faecal nitrogen measurement. Nitrogen concentration and daily output were measured in the stools of 83 patients using NIRA and, for comparison, the Kjeldahl method. Nitrogen concentration and output ranged between 0.4-2.72 g% and 0.45-8.96 g/day respectively. Correlation coefficients (r), of 0.89 and 0.97 were found between the two methods for concentration and output respectively, and similar values were found in patients on enteral nutrition. Repeated measurements from the same stool collection, requiring only a few minutes, allowed homogenisation to be avoided. NIRA seems to be an easy, fast, and reliable alternative to chemical assays of nitrogen measurement in the management of patients with digestive disorders. PMID:1624153

  2. Predicting rapeseed oil content with near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Roberta Rossato

    2013-12-01

    Full Text Available The objective of this work was to establish a calibration equation and to estimate the efficiency of near-infrared reflectance (NIR spectroscopy for evaluating rapeseed oil content in Southern Brazil. Spectral data from 124 half-sib families were correlated with oil contents determined by the chemical method. The accuracy of the equation was verified by coefficient of determination (R² of 0.92, error of calibration (SEC of 0.78, and error of performance (SEP of 1.22. The oil content of ten genotypes, which were not included in the calibration with NIR, was similar to the one obtained by the standard chemical method. NIR spectroscopy is adequate to differentiate oil content of rapeseed genotypes.

  3. Near-infrared imaging of demineralization under sealants

    Science.gov (United States)

    Tom, Henry; Simon, Jacob C.; Chan, Kenneth H.; Darling, Cynthia L.; Fried, Daniel

    2014-07-01

    Previous studies have shown that near-infrared (NIR) reflectance and transillumination imaging can be used to acquire high contrast images of early caries lesions and composite restorative materials. The aim of the study was to determine the optimum NIR wavelengths for imaging demineralized areas under dental sealants. Fifteen natural human premolars and molars with occlusal lesions were used in this in vitro study. Images before and after application of sealants were acquired using NIR reflectance and NIR transillumination at wavelengths of 1300, 1460, and 1500 to 1700 nm. Images were also acquired using polarization sensitive optical coherence tomography (OCT) for comparison. The highest contrast for NIR reflectance was at 1460 nm and 1500 to 1700 nm. These NIR wavelengths are coincident with higher water absorption. The clear Delton sealant investigated was not visible in either copolarization or cross-polarization OCT images. The wavelength region between 1500 and 1700 nm yielded the highest contrast of lesions under sealants for NIR reflectance measurements.

  4. Diverse Near-Infrared Resonant Gold Nanostructures for Biomedical Applications

    KAUST Repository

    Huang, Jianfeng

    2015-12-08

    The ability of near-infrared (NIR) light to penetrate tissues deeply and to target malignant sites with high specificity via precise temporal and spatial control of light illumination makes it useful for diagnosing and treating diseases. Owing to their unique biocompatibility, surface chemistry and optical properties, gold nanostructures offer advantages as in vivo NIR photosensitizers. This chapter describes the recent progress in the varied use of NIR-resonant gold nanostructures for NIR-light-mediated diagnostic and therapeutic applications. We begin by describing the unique biological, chemical and physical properties of gold nanostructures that make them excellent candidates for biomedical applications. From here, we make an account of the basic principles involved in the diagnostic and therapeutic applications where gold nanostructures have set foot. Finally, we review recent developments in the fabrication and use of diverse NIR-resonant gold nanostructures for cancer imaging and cancer therapy.

  5. Compositional stratigraphy of crustal material from near-infrared spectra

    Science.gov (United States)

    Pieters, Carle M.

    1987-01-01

    An Earth-based telescopic program to acquire near-infrared spectra of freshly exposed lunar material now contains data for 17 large impact craters with central peaks. Noritic, gabbroic, anorthositic and troctolitic rock types can be distinguished for areas within these large craters from characteristic absorptions in individual spectra of their walls and central peaks. Norites dominate the upper lunar crust while the deeper crustal zones also contain significant amounts of gabbros and anorthosites. Data for material associated with large craters indicate that not only is the lunar crust highly heterogeneous across the nearside, but that the compositional stratigraphy of the lunar crust is nonuniform. Crustal complexity should be expected for other planetary bodies, which should be studied using high spatial and spectral resolution data in and around large impact craters.

  6. Biomedical imaging of colorectal cancer by near infrared fluorescent nanoparticles.

    Science.gov (United States)

    Tivony, Ran; Larush, Liraz; Sela-Tavor, Osnat; Magdassi, Shlomo

    2014-06-01

    In this paper we describe the preparation of novel Near Infrared (NIR) fluorescent nanoparticles for application in medical imaging of colorectal tumors. The nanoparticles are prepared by using only non-covalent binding processes of molecules which are approved for clinical use. The preparation process is based on the precipitation of a polycation, Eudragit-RS, followed by sequential adsorption of a blocking protein, sodium caseinate, NIR fluorescent dye, Indocyanine Green (ICG) and optionally, a targeting molecule, anti-CEA antibody. Fluorescence measurements have shown that these nanoparticles have higher resistance to photobleaching and higher quantum yield relatively to free ICG. Imaging experiments in orthotopic colorectal cancer mice models have shown that these fluorescent nanoparticles are capable of binding to LS174T human colon tumors in vivo with high specificity, even without the targeting molecule. These nanoparticles, composed of all FDA approved materials, open the way to clinical bioimaging and diagnostics of colon cancer.

  7. Near-Infrared Coloring via a Contrast-Preserving Mapping Model.

    Science.gov (United States)

    Chang-Hwan Son; Xiao-Ping Zhang

    2017-11-01

    Near-infrared gray images captured along with corresponding visible color images have recently proven useful for image restoration and classification. This paper introduces a new coloring method to add colors to near-infrared gray images based on a contrast-preserving mapping model. A naive coloring method directly adds the colors from the visible color image to the near-infrared gray image. However, this method results in an unrealistic image because of the discrepancies in the brightness and image structure between the captured near-infrared gray image and the visible color image. To solve the discrepancy problem, first, we present a new contrast-preserving mapping model to create a new near-infrared gray image with a similar appearance in the luminance plane to the visible color image, while preserving the contrast and details of the captured near-infrared gray image. Then, we develop a method to derive realistic colors that can be added to the newly created near-infrared gray image based on the proposed contrast-preserving mapping model. Experimental results show that the proposed new method not only preserves the local contrast and details of the captured near-infrared gray image, but also transfers the realistic colors from the visible color image to the newly created near-infrared gray image. It is also shown that the proposed near-infrared coloring can be used effectively for noise and haze removal, as well as local contrast enhancement.

  8. A near-infrared magnetic aptasensor for Ochratoxin A based on near-infrared upconversion nanoparticles and magnetic nanoparticles.

    Science.gov (United States)

    Dai, Shaoliang; Wu, Shijia; Duan, Nuo; Wang, Zhouping

    2016-09-01

    A multiplexed, sensitive and specific detection method is highly desirable for the simultaneous detection of several pathogenic bacteria and bio-toxins. In our previous work, multicolor upconversion nanoparticles (UCNPs) via doping with various rare-earth ions to obtain well-separated emission peaks by means of a solvothermal method were synthesized and were successfully applied as luminescence labels in the detection of three pathogenic bacteria. One of the basic achievements of our group has been to establish that the key to increasing the number of simultaneous detection components is the preparation of more UCNPs, the emission peaks of which can be distinguished from each other. According to this vision, NaYF4:Yb0.2, Tm0.02 UCNPs were obtained via a thermal-decomposition protocol, which has a main near-infrared (NIR) UC emission at 804nm under 980nm excitation. The emission peak at 804nm was well-separated from the emission peaks of UCNPs we have reported at 477nm, 542nm, and 660nm. It means both the excitation and the emission of NaYF4:Yb0.2, Tm0.02 UCNPs are located in the NIR spectral range (NIR-to-NIR UC emission), the so-called biological window. This result establishes the basis of achieving simultaneous detection of four components. To confirm the analytical performance of this NaYF4:Yb0.2, Tm0.02 UCNPs, a novel near-infrared magnetic aptasensor for the detection of Ochratoxin A (OTA) was developed using the OTA aptamer-conjugated near-infrared upconversion nanoparticles (apt-UCNPs) and the complementary oligonucleotide-modified magnetic nanoparticles (cDNA-MNPs). The apt-UCNPs and cDNA-MNPs were hybridized to form a poly-network structure of MNP-UCNP nanocomposites. When the target OTA was introduced, the aptamer combined with the priority target and the cDNA-MNPs were replaced. The proposed method achieved a linear range between 0.01 and 100ngmL(-1), with a detection limit as low as 0.005ngmL(-1). Then, we successfully applied this method to measure

  9. [Research and application progress of near infrared spectroscopy analytical technology in China in the past five years].

    Science.gov (United States)

    Chu, Xiao-Li; Lu, Wan-Zhen

    2014-10-01

    In the past decade, near infrared spectroscopy (NIR) has expanded rapidly and been applied widely in many fields in China. The recent progress of the research and application of NIR analytical technology in China especially in the past five years has been reviewed. It includes hardware and software R&D, Chemometric algorithms and experimental methods research, and quantitative and qualitative applications in the typical fields such as food, agriculture, pharmaceuticals, petrochemicals, forestry, and medical diagnosis. 209 references are cited, which are mainly published in national journals, professional magazines, and book chapters. The developing trend of near infrared spectroscopy and the strategies to further promote its innovation and development in China in the near future are put forward and discussed.

  10. Design and Fabrication of Bilayer Hydrogel System with Self-Healing and Detachment Properties Achieved by Near-Infrared Irradiation

    Directory of Open Access Journals (Sweden)

    Qian Zhao

    2017-06-01

    Full Text Available A novel kind of graphene oxide (GO-containing bilayer hydrogel system with excellent self-healing and detachment properties stimulated by near-infrared irradiation is successively fabricated via a two-step in situ free radical polymerization. In addition to high mechanical strength, as components of a bilayer hydrogel system, a poly N,N-dimethylacrylamide (PDMAA layer with 3 mg/mL GO and a poly N-isopropylacrylamide (PNIPAm layer with 3 mg/mL GO exhibits firm interface bonding. GO in a PDMAA layer transforms under a near-infrared laser into heat, which promotes mutual diffusion of hydrogen bonds and realizes a self-healing property. The irradiation of near infrared laser results in the temperature of PNIPAm layer being higher than the volume phase transition temperature, reducing the corresponding biological viscidity and achieving detachment property. The increase of GO content enhances the self-healing degree and detachment rate. The bilayer hydrogel system fabricated via mold design combines characteristics of PDMAA layer and PNIPAm layer, which can be treated as materials for medical dressings, soft actuators, and robots.

  11. Construction of Models for Nondestructive Prediction of Ingredient Contents in Blueberries by Near-infrared Spectroscopy Based on HPLC Measurements.

    Science.gov (United States)

    Bai, Wenming; Yoshimura, Norio; Takayanagi, Masao; Che, Jingai; Horiuchi, Naomi; Ogiwara, Isao

    2016-06-28

    Nondestructive prediction of ingredient contents of farm products is useful to ship and sell the products with guaranteed qualities. Here, near-infrared spectroscopy is used to predict nondestructively total sugar, total organic acid, and total anthocyanin content in each blueberry. The technique is expected to enable the selection of only delicious blueberries from all harvested ones. The near-infrared absorption spectra of blueberries are measured with the diffuse reflectance mode at the positions not on the calyx. The ingredient contents of a blueberry determined by high-performance liquid chromatography are used to construct models to predict the ingredient contents from observed spectra. Partial least squares regression is used for the construction of the models. It is necessary to properly select the pretreatments for the observed spectra and the wavelength regions of the spectra used for analyses. Validations are necessary for the constructed models to confirm that the ingredient contents are predicted with practical accuracies. Here we present a protocol to construct and validate the models for nondestructive prediction of ingredient contents in blueberries by near-infrared spectroscopy.

  12. Food Safety Evaluation Based on Near Infrared Spectroscopy and Imaging: A Review.

    Science.gov (United States)

    Fu, Xiaping; Ying, Yibin

    2016-08-17

    In recent years, due to the increasing consciousness of food safety and human health, much progress has been made in developing rapid and nondestructive techniques for the evaluation of food hazards, food authentication, and traceability. Near infrared (NIR) spectroscopy and imaging techniques have gained wide acceptance in many fields because of their advantages over other analytical techniques. Following a brief introduction of NIR spectroscopy and imaging basics, this review mainly focuses on recent NIR spectroscopy and imaging applications for food safety evaluation, including (1) chemical hazards detection; (2) microbiological hazards detection; (3) physical hazards detection; (4) new technology-induced food safety concerns; and (5) food traceability. The review shows NIR spectroscopy and imaging to be effective tools that will play indispensable roles for food safety evaluation. In addition, on-line/real-time applications of these techniques promise to be a huge growth field in the near future.

  13. Near-infrared autofluorescence spectroscopy for in vivo diagnosis of cervical precancer

    Science.gov (United States)

    Mo, Jianhua; Zheng, Wei; Low, Jeffrey; Ng, Joseph; Ilancheran, A.; Huang, Zhiwei

    2008-02-01

    The purpose of this study is to explore the feasibility of utilizing near-infrared (NIR) autofluorescence spectroscopy for in vivo diagnosis of precancer (i.e., dysplasia) in the cervix. A rapid NIR spectroscopy system in combination with a fiber-optic probe was developed for the in vivo NIR fluorescence measurements under the 785 nm laser excitation. Multivariate statistical techniques including principal component analysis (PCA) and linear discriminant analysis (LDA) were employed to develop the diagnostic algorithms for spectra classification. Classification result obtained from the PCA-LDA model based on tissue NIR autofluorescence data yielded a diagnostic sensitivity of 84.8% and specificity of 85.1% for discrimination of precancer from normal cervical sites. The results demonstrate that NIR autofluorescence technique has the capacity for the noninvasive, in vivo diagnosis of precancer in the cervix.

  14. Investigating the fermentation of cocoa by correlating denaturing gradient gel electrophoresis profiles and near infrared spectra

    DEFF Research Database (Denmark)

    Nielsen, Dennis Sandris; Snitkjær, Pia; van der Berg, Franciscus Winfried J

    2008-01-01

    Raw cocoa has an astringent, unpleasant taste and flavour, and has to be fermented, dried and roasted in order to obtain the characteristic cocoa flavour and taste. During the fermentation microbial activity outside the cocoa beans induces biochemical and physical changes inside the beans...... of the beans and the chemical processes inside the beans have been carried out previously. Recently it has been shown that Denaturing Gradient Gel Electrophoresis (DGGE) offers an efficient tool for monitoring the microbiological changes taking place during the fermentation of cocoa. Near Infrared (NIR......) spectroscopy has previously been used to determine various components in cocoa beans, offering a rapid alternative compared to traditional analytical methods for obtaining knowledge about changes in the chemical composition of the cocoa beans during fermentation. During a number of cocoa fermentations bean...

  15. Classification of different tomato seed cultivars by multispectral visible-near infrared spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Shrestha, Santosh; Deleuran, Lise Christina; Gislum, René

    2016-01-01

    The feasibility of rapid and non-destructive classification of five different tomato seed cultivars was investigated by using visible and short-wave near infrared (Vis-NIR) spectra combined with chemometric approaches. Vis-NIR spectra containing 19 different wavelengths ranging from 375 nm to 970...... nm were extracted from multispectral images of tomato seeds. Principal component analysis (PCA) was used for data exploration, while partial least squares discriminant analysis (PLS-DA) and support vector machine discriminant analysis (SVM-DA) were used to classify the five different tomato cultivars....... The results showed very good classification accuracy for two independent test sets ranging from 94% to 100% for all tomato cultivars irrespective of chemometric methods. The overall classification error rates were 3.2% and 0.4% for the PLS-DA and SVM-DA calibration models, respectively. The results indicate...

  16. Au-Nanomaterials as a Superior Choice for Near-Infrared Photothermal Therapy

    Directory of Open Access Journals (Sweden)

    Fahmida Jabeen

    2014-12-01

    Full Text Available Photothermal therapy (PPT is a platform to fight cancer by using multiplexed interactive plasmonic nanomaterials as probes in combination with the excellent therapeutic performance of near-infrared (NIR light. With recent rapid developments in optics and nanotechnology, plasmonic materials have potential in cancer diagnosis and treatment, but there are some concerns regarding their clinical use. The primary concerns include the design of plasmonic nanomaterials which are taken up by the tissues, perform their function and then clear out from the body. Gold nanoparticles (Au NPs can be developed in different morphologies and functionalized to assist the photothermal therapy in a way that they have clinical value. This review outlines the diverse Au morphologies, their distinctive characteristics, concerns and limitations to provide an idea of the requirements in the field of NIR-based therapeutics.

  17. Identification of anisodamine tablets by Raman and near-infrared spectroscopy with chemometrics.

    Science.gov (United States)

    Li, Lian; Zang, Hengchang; Li, Jun; Chen, Dejun; Li, Tao; Wang, Fengshan

    2014-06-05

    Vibrational spectroscopy including Raman and near-infrared (NIR) spectroscopy has become an attractive tool for pharmaceutical analysis. In this study, effective calibration models for the identification of anisodamine tablet and its counterfeit and the distinguishment of manufacturing plants, based on Raman and NIR spectroscopy, were built, respectively. Anisodamine counterfeit tablets were identified by Raman spectroscopy with correlation coefficient method, and the results showed that the predictive accuracy was 100%. The genuine anisodamine tablets from 5 different manufacturing plants were distinguished by NIR spectroscopy using partial least squares discriminant analysis (PLS-DA) models based on interval principal component analysis (iPCA) method. And the results showed the recognition rate and rejection rate were 100% respectively. In conclusion, Raman spectroscopy and NIR spectroscopy combined with chemometrics are feasible and potential tools for rapid pharmaceutical tablet discrimination. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Intraoperative near-infrared fluorescent imaging during robotic operations.

    Science.gov (United States)

    Macedo, Antonio Luiz de Vasconcellos; Schraibman, Vladimir

    2016-01-01

    The intraoperative identification of certain anatomical structures because they are small or visually occult may be challenging. The development of minimally invasive surgery brought additional difficulties to identify these structures due to the lack of complete tactile sensitivity. A number of different forms of intraoperative mapping have been tried. Recently, the near-infrared fluorescence imaging technology with indocyanine green has been added to robotic platforms. In addition, this technology has been tested in several types of operations, and has advantages such as safety, low cost and good results. Disadvantages are linked to contrast distribution in certain clinical scenarios. The intraoperative near-infrared fluorescent imaging is new and promising addition to robotic surgery. Several reports show the utility of this technology in several different procedures. The ideal dose, time and site for dye injection are not well defined. No high quality evidence-based comparative studies and long-term follow-up outcomes have been published so far. Initial results, however, are good and safe. RESUMO A identificação intraoperatória de certas estruturas anatômicas, por seu tamanho ou por elas serem ocultas à visão, pode ser desafiadora. O desenvolvimento da cirurgia minimamente invasiva trouxe dificuldades adicionais, pela falta da sensibilidade tátil completa. Diversas formas de detecção intraoperatória destas estruturas têm sido tentadas. Recentemente, a tecnologia de fluorescência infravermelha com verde de indocianina foi associada às plataformas robóticas. Além disso, essa tecnologia tem sido testada em uma variedade de cirurgias, e suas vantagens parecem estar ligadas a baixo custo, segurança e bons resultados. As desvantagens estão associadas à má distribuição do contraste em determinados cenários. A imagem intraoperatória por fluorescência infravermelha é uma nova e promissora adição à cirurgia robótica. Diversas séries mostram

  19. Fast determination of trace dimethyl fumarate in milk with near infrared spectroscopy following fluidized bed enrichment.

    Science.gov (United States)

    Xie, Ya-Jie; Wang, Zhuan; Hu, Wan-Peng; Xu, Song

    2012-12-01

    Near infrared spectroscopy (NIRS) has been proved to be a powerful analytical tool in different fields. However, because of the low sensitivity in near infrared region, it is a significant challenge to detect trace analytes with normal NIRS technique. A novel enrichment technique called fluidized bed enrichment has been developed recently to improve sensitivity of NIRS which allows a large volume solution to pass through within a short time. In this paper, fluidized bed enrichment method was applied in the determination of trace dimethyl fumarate in milk. Macroporous styrene resin HZ-816 was used as adsorbent material, and 1 L solution of dimethyl fumarate was run to pass through the material for concentration. The milk sample was pretreated to remove interference matters such as protein, fat, and then passed through the material for enrichment; after that, diffuse reflection NIR spectra were measured for the analyte concentrated on the material directly without any elution process. The enrichment and spectral measurement procedures were easy to operate. NIR spectra in 900-1,700 nm were collected for dimethyl fumarate solutions in the concentration range of 0.506-5.060 μg/mL and then used for multivariate calibration with partial least squares (PLS) regression. Spectral pretreatment methods such as multiplicative scatter correction, first derivative, second derivative, and their combinations were carried out to select the optimal PLS model. Root mean square error of cross-validation calculated by leave-one-out cross-validation is 0.430 μg/mL with ten PLS factors. Ten samples in an independent test set were predicted by the model with the mean relative error of 5.33%. From the results shown in this work, it can be concluded that the NIR technique coupled with on-line enrichment method can be expanded for the determination of trace analytes, and its applications in real liquid samples like milk and juice may also be feasible.

  20. [A simple design of functional near-infrared spectroscopy system].

    Science.gov (United States)

    Xu, Gang; Li, Xiao-li; Liu, Xiao-min

    2015-02-01

    With the development in last twenty years, functional near-infrared spectroscopy (fNIRS) is a non-invasive brain imaging technique which widely used in cognitive neuroscience studies. Based on mechanism of neurovascular coupling, increased functional neural activities in brain induce higher regional cerebral blood flow, which will cause relative concentration change of oxygenated and deoxygenated hemoglobin. In this paper, a single channel continuous wave fNIRS system based on multi-function data acquisition board was proposed. With the benefits of narrow spectral peaks and low divergence, laser diodes provided a better accuracy for measurement with optimal dual-wavelength of 690 and 830 nm. Frequency multiplexing technique was used to distinguish light sources from different emitters, and remove environmental stable interference sources such as ambient light and line power noise as well. LabVIEW was used to design graphical user interface with functionalities including source sequence schedule, auto gain setting, digital inhase and quadrature demodulation, data visualization and storage. The experimental results during holding breath and mental arithmetic task indicated that our system was capable of monitoring regional concentration change of hemoglobin in real time, and detecting activation associated with advanced brain functions.

  1. Automatic and Accurate Shadow Detection Using Near-Infrared Information.

    Science.gov (United States)

    Rüfenacht, Dominic; Fredembach, Clément; Süsstrunk, Sabine

    2014-08-01

    We present a method to automatically detect shadows in a fast and accurate manner by taking advantage of the inherent sensitivity of digital camera sensors to the near-infrared (NIR) part of the spectrum. Dark objects, which confound many shadow detection algorithms, often have much higher reflectance in the NIR. We can thus build an accurate shadow candidate map based on image pixels that are dark both in the visible and NIR representations. We further refine the shadow map by incorporating ratios of the visible to the NIR image, based on the observation that commonly encountered light sources have very distinct spectra in the NIR band. The results are validated on a new database, which contains visible/NIR images for a large variety of real-world shadow creating illuminant conditions, as well as manually labeled shadow ground truth. Both quantitative and qualitative evaluations show that our method outperforms current state-of-the-art shadow detection algorithms in terms of accuracy and computational efficiency.

  2. Sensitivity analysis of near-infrared functional lymphatic imaging

    Science.gov (United States)

    Weiler, Michael; Kassis, Timothy; Dixon, J. Brandon

    2012-06-01

    Near-infrared imaging of lymphatic drainage of injected indocyanine green (ICG) has emerged as a new technology for clinical imaging of lymphatic architecture and quantification of vessel function, yet the imaging capabilities of this approach have yet to be quantitatively characterized. We seek to quantify its capabilities as a diagnostic tool for lymphatic disease. Imaging is performed in a tissue phantom for sensitivity analysis and in hairless rats for in vivo testing. To demonstrate the efficacy of this imaging approach to quantifying immediate functional changes in lymphatics, we investigate the effects of a topically applied nitric oxide (NO) donor glyceryl trinitrate ointment. Premixing ICG with albumin induces greater fluorescence intensity, with the ideal concentration being 150 μg/mL ICG and 60 g/L albumin. ICG fluorescence can be detected at a concentration of 150 μg/mL as deep as 6 mm with our system, but spatial resolution deteriorates below 3 mm, skewing measurements of vessel geometry. NO treatment slows lymphatic transport, which is reflected in increased transport time, reduced packet frequency, reduced packet velocity, and reduced effective contraction length. NIR imaging may be an alternative to invasive procedures measuring lymphatic function in vivo in real time.

  3. Bundled-Optode Method in Functional Near-Infrared Spectroscopy.

    Directory of Open Access Journals (Sweden)

    Hoang-Dung Nguyen

    Full Text Available In this paper, a theory for detection of the absolute concentrations of oxy-hemoglobin (HbO and deoxy-hemoglobin (HbR from hemodynamic responses using a bundled-optode configuration in functional near-infrared spectroscopy (fNIRS is proposed. The proposed method is then applied to the identification of two fingers (i.e., little and thumb during their flexion and extension. This experiment involves a continuous-wave-type dual-wavelength (760 and 830 nm fNIRS and five healthy male subjects. The active brain locations of two finger movements are identified based on the analysis of the t- and p-values of the averaged HbOs, which are quite distinctive. Our experimental results, furthermore, revealed that the hemodynamic responses of two-finger movements are different: The mean, peak, and time-to-peak of little finger movements are higher than those of thumb movements. It is noteworthy that the developed method can be extended to 3-dimensional fNIRS imaging.

  4. Near-Infrared Spectroscopy for the Evaluation of Anesthetic Depth

    Directory of Open Access Journals (Sweden)

    Gabriela Hernandez-Meza

    2015-01-01

    Full Text Available The standard-of-care guidelines published by the American Society of Anesthesiologists (ASA recommend monitoring of pulse oximetry, blood pressure, heart rate, and end tidal CO2 during the use of anesthesia and sedation. This information can help to identify adverse events that may occur during procedures. However, these parameters are not specific to the effects of anesthetics or sedatives, and therefore they offer little, to no, real time information regarding the effects of those agents and do not give the clinician the lead-time necessary to prevent patient “awareness.” Since no “gold-standard” method is available to continuously, reliably, and effectively monitor the effects of sedatives and anesthetics, such a method is greatly needed. Investigation of the use of functional near-infrared spectroscopy (fNIRS as a method for anesthesia or sedation monitoring and for the assessment of the effects of various anesthetic drugs on cerebral oxygenation has started to be conducted. The objective of this paper is to provide a thorough review of the currently available published scientific studies regarding the use of fNIRS in the fields of anesthesia and sedation monitoring, comment on their findings, and discuss the future work required for the translation of this technology to the clinical setting.

  5. Mental fatigue detection based on the functional near infrared spectroscopy

    Science.gov (United States)

    Zhang, Zhen; Xu, Fenggang; Yang, Hanjun; Jiang, Jin; Cao, Yong; Jiao, Xuejun

    2017-02-01

    Mental fatigue can be induced by long time mental work, mental fatigue caused worse performance and accidents. As a non-invasive technique, functional near-infrared spectroscopy (fNIRS) can measure blood oxygen activity in the cerebral cortex which reflect the cognitive function of brain indirectly. Aiming at investigating whether fNIRS can measure the mental fatigue and study the spatial pattern of hemodynamic response for mental fatigue, we used three sessions of verbal 2-back working memory task for a total of 120 minutes to induce mental fatigue, 15 healthy subjects were recruited and 30 channels including prefrontal cortex (PFC) and motor cortex (MC) were measured by fNIRS. The mean oxyhemoglobin feature for 20s was extracted as well as subjective fatigue level and performance. The results showed significant increase of subjected fatigue level as well as significant decrease performance from session one to three task. With the increased level of fatigue, oxyhemoglobin in PFC increase significantly and the spatial pattern of hemodynamic response in the all 30 channels varied with task duration as well. These findings indicated the potential of fNIRS measured hemodynamic as a mental fatigue indicator.

  6. Giant Planet Interior Physics from Near-Infrared Spectroscopy

    Science.gov (United States)

    Fortney, Jonathan J.; Thorngren, Daniel; Line, Michael R.; Morley, Caroline

    2017-10-01

    Transiting planets give us excellent probes of giant exoplanet structure (from mass and radius) and atmospheres (from transit and occultation spectroscopy). However, the combined power of these observations to understand how the planetary interior structure may impact its atmosphere has not yet been fully exploited. This will change with JWST. In particular, near-infrared wavelengths have less water opacity than mid-IR wavelengths, which allows us to probe thermal emission from deeper, hotter regions of the atmosphere. In some circumstances we should be able to see thermal emission coming from below the radiative-convective boundary in the atmosphere, including the adiabat itself. This adiabat continues into the planet’s very deep interior -- the specific entropy of this adiabat sets the planetary radius at a given mass. Hot internal adiabats, which we should be able to ``see” in thermal emission, should be present for the most inflated hot Jupiters, and planets like warm Neptunes that are strongly influenced by tidal heating (e.g. GJ 436b, Morley et al. 2017). Determining the flux coming from these atmospheric depths can be an important constraint on structure models of planets that have aimed to understand giant planet bulk metal enrichment, which is an important constraint on formation models. These flux detections can also provide novel and reasonably direct constraints on planetary tidal Q for eccentric planets. We highlight how we expect JWST to open up this new window into exoplanetary physics.

  7. Near infrared hyperspectral imaging system for root phenotyping

    Science.gov (United States)

    Arnold, Thomas; Leitner, Raimund; Bodner, Gernot

    2017-05-01

    This paper presents the development and application of a hyper-spectral imaging system for root phenotyping. For sustainable plant production root systems optimized for growing conditions in the field are required. Therefore, the presented system is used for the research in the field of plant drought resistance. The system is used to acquire spatially resolved near infrared (NIR) spectroscopy data of rhizoboxes. In contrast to using visible light (380 nm-780 nm) the NIR wavelength range (900 nm-1700 nm) allows to discriminate essential features for the root segmentation and water distribution mappings. The increased image contrast in the NIR range allows roots to be segmented from soil and additional information, e.g. basic root-architecture, to be extracted. In addition, the water absorption bands in the NIR wavelength range can be used to determine the water content and to estimate the age of the roots. In this paper the hardware setup of the hyper-spectral root imaging system, the data analysis, the soil water content estimations and the root segmentation using different methods to optimize separation between roots and soil, both constituting complex materials of variable properties, are presented.

  8. Near-infrared autofluorescence for the detection of parathyroid glands

    Science.gov (United States)

    Paras, Constantine; Keller, Matthew; White, Lisa; Phay, John; Mahadevan-Jansen, Anita

    2011-06-01

    A major challenge in endocrine surgery is the intraoperative detection of parathyroid glands during both thyroidectomies and parathyroidectomies. Current localization techniques such as ultrasound and sestamibi scan are mostly preoperative and rely on an abnormal parathyroid for its detection. In this paper, we present near-infrared (NIR) autofluorescence as a nonintrusive, real-time, automated in vivo method for the detection of the parathyroid gland. A pilot in vivo study was conducted to assess the ability of NIR fluorescence to identify parathyroid glands during thyroid and parathyroidectomies. Fluorescence measurements at 785 nm excitation were obtained intra-operatively from the different tissues exposed in the neck region in 21 patients undergoing endocrine surgery. The fluorescence intensity of the parathyroid gland was found to be consistently greater than that of the thyroid and all other tissues in the neck of all patients. In particular, parathyroid fluorescence was two to eleven times higher than that of the thyroid tissues with peak fluorescence occurring at 820 to 830 nm. These results indicate that NIR fluorescence has the potential to be an excellent optical tool to locate parathyroid tissue during surgery.

  9. Near-infrared autofluorescence imaging for detection of cancer.

    Science.gov (United States)

    Demos, Stavros G; Gandour-Edwards, Regina; Ramsamooj, Rajen; White, Ralph deVere

    2004-01-01

    Near-infrared autofluorescence imaging of tissues under long-wavelength laser excitation in the green and red spectral region complemented by cross-polarized elastic light scattering was explored for cancer detection. Various types of normal and malignant human tissue samples were utilized in this investigation. A set of images for each tissue sample was recorded that consisted of two autofluorescence images obtained under 532- and 632.8-nm excitation and light-scattering images obtained under linearly polarized illumination at 700, 850, and 1000 nm. These images were compared with the histopathology of the tissue sample. The experimental results indicated that for various tissue types, the intensity of the autofluorescence integrated over the 700 to 1000-nm spectral region was considerably different in cancer tissues than in that of the contiguous non-neoplastic tissues. This difference provided the basis for the detection of cancer and delineation of the tumor margins. Variations on the relative intensity were observed among different tissue types and excitation wavelengths. (c) 2004 Society of Photo-Optical Instrumentation Engineers.

  10. High-Performance Near-Infrared Luminescent Solar Concentrators.

    Science.gov (United States)

    Rondão, Raquel; Frias, Ana R; Correia, Sandra F H; Fu, Lianshe; de Zea Bermudez, Verónica; André, Paulo S; Ferreira, Rute A S; Carlos, Luís D

    2017-04-12

    Luminescent solar concentrators (LSCs) appear as candidates to enhance the performance of photovoltaic (PV) cells and contribute to reduce the size of PV systems, decreasing, therefore, the amount of material needed and thus the cost associated with energy conversion. One way to maximize the device performance is to explore near-infrared (NIR)-emitting centers, resonant with the maximum optical response of the most common Si-based PV cells. Nevertheless, very few examples in the literature demonstrate the feasibility of fabricating LSCs emitting in the NIR region. In this work, NIR-emitting LSCs are reported using silicon 2,3-naphthalocyanine bis(trihexylsilyloxide) (SiNc or NIR775) immobilized in an organic-inorganic tri-ureasil matrix (t-U(5000)). The photophysical properties of the SiNc dye incorporated into the tri-ureasil host closely resembled those of SiNc in tetrahydrofuran solution (an absolute emission quantum yield of ∼0.17 and a fluorescence lifetime of ∼3.6 ns). The LSC coupled to a Si-based PV device revealed an optical conversion efficiency of ∼1.5%, which is among the largest values known in the literature for NIR-emitting LSCs. The LSCs were posteriorly coupled to a Si-based commercial PV cell, and the synergy between the t-U(5000) and SiNc molecules enabled an effective increase in the external quantum efficiency of PV cells, exceeding 20% in the SiNc absorption region.

  11. Near-infrared (NIR) up-conversion optogenetics

    Science.gov (United States)

    Hososhima, Shoko; Yuasa, Hideya; Ishizuka, Toru; Hoque, Mohammad Razuanul; Yamashita, Takayuki; Yamanaka, Akihiro; Sugano, Eriko; Tomita, Hiroshi; Yawo, Hiromu

    2015-11-01

    Non-invasive remote control technologies designed to manipulate neural functions have been long-awaited for the comprehensive and quantitative understanding of neuronal network in the brain as well as for the therapy of neurological disorders. Recently, it has become possible for the neuronal activity to be optically manipulated using biological photo-reactive molecules such as channelrhodopsin (ChR)-2. However, ChR2 and its relatives are mostly reactive to visible light, which does not effectively penetrate through biological tissues. In contrast, near-infrared (NIR) light (650-1450 nm) penetrates deep into the tissues because biological systems are almost transparent to light within this so-called ‘imaging window’. Here we used lanthanide nanoparticles (LNPs), composed of rare-earth elements, as luminous bodies to activate ChRs since they absorb low-energy NIR light to emit high-energy visible light (up-conversion). Here, we created a new type of optogenetic system which consists of the donor LNPs and the acceptor ChRs. The NIR laser irradiation emitted visible light from LNPs, then induced the photo-reactive responses in the near-by cells that expressed ChRs. However, there remains room for large improvements in the energy efficiency of the LNP-ChR system.

  12. Distributed Software for Observations in the Near Infrared

    Science.gov (United States)

    Gavryusev, V.; Baffa, C.; Giani, E.

    We have developed an integrated system that performs astronomical observations in Near Infrared bands operating two-dimensional instruments at the Italian National Infrared Facility's \\htmllink{ARNICA}{http://helios.arcetri.astro.it:/home/idefix/Mosaic/ instr/arnica/arnica.html} and \\htmllink{LONGSP}{http://helios.arcetri.astro.it:/home/idefix/Mosaic/ instr/longsp/longsp.html}. This software consists of several communicating processes, generally executed across a network, as well as on a single computer. The user interface is organized as widget-based X11 client. The interprocess communication is provided by sockets and uses TCP/IP. The processes denoted for control of hardware (telescope and other instruments) should be executed currently on a PC dedicated for this task under DESQview/X, while all other components (user interface, tools for the data analysis, etc.) can also work under UNIX\\@. The hardware independent part of software is based on the Athena Widget Set and is compiled by GNU C to provide maximum portability.

  13. The near-infrared spectrum of ethynyl radical

    CERN Document Server

    Le, Anh T; Sears, Trevor J

    2016-01-01

    Transient diode laser absorption spectroscopy has been used to measure three strong vibronic bands in the near infrared spectrum of the C$_2$H, ethynyl, radical not previously observed in the gas phase. The radical was produced by ultraviolet excimer laser photolysis of either acetylene or (1,1,1)-trifluoropropyne in a slowly flowing sample of the precursor diluted in inert gas, and the spectral resolution was Doppler-limited. The character of the upper states was determined from the rotational and fine structure in the observed spectra and assigned by measurement of ground state rotational combination differences. The upper states include a $^2\\Sigma ^+$ state at 6696 cm$^{-1}$, a second $^2\\Sigma ^+$ state at 7088 cm$^{-1}$, and a $^2\\Pi$ state at 7110 cm$^{-1}$. By comparison with published calculations (R. Tarroni and S. Carter, \\textit{J. Chem. Phys} \\textbf{119}, 12878 (2003) and \\textit{Mol. Phys}. \\textbf{102}, 2167 (2004)), the vibronic character of these levels was also assigned. The observed states...

  14. Intrinsic Near-Infrared Spectroscopic Markers of Breast Tumors

    Directory of Open Access Journals (Sweden)

    Shwayta Kukreti

    2008-01-01

    Full Text Available We have discovered quantitative optical biomarkers unique to cancer by developing a double-differential spectroscopic analysis method for near-infrared (NIR, 650–1000 nm spectra acquired non-invasively from breast tumors. These biomarkers are characterized by specific NIR absorption bands. The double-differential method removes patient specific variations in molecular composition which are not related to cancer, and reveals these specific cancer biomarkers. Based on the spectral regions of absorption, we identify these biomarkers with lipids that are present in tumors either in different abundance than in the normal breast or new lipid components that are generated by tumor metabolism. Furthermore, the O-H overtone regions (980–1000 nm show distinct variations in the tumor as compared to the normal breast. To quantify spectral variation in the absorption bands, we constructed the Specific Tumor Component (STC index. In a pilot study of 12 cancer patients we found 100% sensitivity and 100% specificity for lesion identification. The STC index, combined with other previously described tissue optical indices, further improves the diagnostic power of NIR for breast cancer detection.

  15. DIAGNOcam--a Near Infrared Digital Imaging Transillumination (NIDIT) technology.

    Science.gov (United States)

    Abdelaziz, Marwa; Krejci, Ivo

    2015-01-01

    In developed countries, clinical manifestation of carious lesions is changing: instead of dentists being confronted with wide-open cavities, more and more hidden caries are seen. For a long time, the focus of the research community was on finding a method for the detection of carious lesions without the need for radiographs. The research on Digital Imaging Fiber-Optic Transillumination (DIFOTI) has been an active domain. The scope of the present article is to describe a novel technology for caries diagnostics based on Near Infrared Digital Imaging Transillumination (NIDIT), and to give first examples of its clinical indications. In addition, the coupling of NIDIT with a head-mounted retinal image display (RID) to improve clinical workflow is presented. The novel NIDIT technology was shown to be useful as a diagnostic tool in several indications, including mainly the detection of proximal caries and, less importantly, for occlusal caries, fissures, and secondary decay around amalgam and composite restorations. The coupling of this technology with a head-mounted retinal image system allows for its very efficient implementation into daily practice.

  16. Application of functional near-infrared spectroscopy in psychiatry.

    Science.gov (United States)

    Ehlis, Ann-Christine; Schneider, Sabrina; Dresler, Thomas; Fallgatter, Andreas J

    2014-01-15

    Two decades ago, the introduction of functional near-infrared spectroscopy (fNIRS) into the field of neuroscience created new opportunities for investigating neural processes within the human cerebral cortex. Since then, fNIRS has been increasingly used to conduct functional activation studies in different neuropsychiatric disorders, most prominently schizophrenic illnesses, affective disorders and developmental syndromes, such as attention-deficit/hyperactivity disorder as well as normal and pathological aging. This review article provides a comprehensive overview of state of the art fNIRS research in psychiatry covering a wide range of applications, including studies on the phenomenological characterization of psychiatric disorders, descriptions of life-time developmental aspects, treatment effects, and genetic influences on neuroimaging data. Finally, methodological shortcomings as well as current research perspectives and promising future applications of fNIRS in psychiatry are discussed. We conclude that fNIRS is a valid addition to the range of neuroscientific methods available to assess neural mechanisms underlying neuropsychiatric disorders. Future research should particularly focus on expanding the presently used activation paradigms and cortical regions of interest, while additionally fostering technical and methodological advances particularly concerning the identification and removal of extracranial influences on fNIRS data as well as systematic artifact correction. Eventually, fNIRS might be a useful tool in practical psychiatric settings involving both diagnostics and the complementary treatment of psychological disorders using, for example, neurofeedback applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Near-infrared-light-driven artificial photosynthesis by nanobiocatalytic assemblies.

    Science.gov (United States)

    Lee, Joon Seok; Nam, Dong Heon; Kuk, Su Keun; Park, Chan Beum

    2014-03-24

    Artificial photosynthesis in nanobiocatalytic assemblies aims to reconstruct man-made photosensitizers, electron mediators, electron donors, and redox enzymes for solar synthesis of valuable chemicals through photochemical cofactor regeneration. Herein, we report, for the first time, on nanobiocatalytic artificial photosynthesis in near-infrared (NIR) light, which constitutes over 46% of the solar energy. For NIR-light-driven photoenzymatic synthesis, we synthesized silica-coated upconversion nanoparticles, Si-NaYF4:Yb,Er and Si-NaYF4:Yb,Tm, for efficient photon-conversion through Förster resonance energy transfer (FRET) with rose bengal (RB), a photosensitizer. We observed NIR-induced electron transfer by using linear sweep voltammetric analysis; this indicates that photoexcited electrons of RB/Si-NaYF4:Yb,Er are transferred to NAD+ through a Rh-based electron mediator. RB/Si-NaYF4:Yb,Er nanoparticles, which exhibit higher FRET efficiency due to more spectral overlap than RB/Si-NaYF4:Yb,Tm, perform much better in the photoenzymatic conversion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Portable visible and near-infrared spectrophotometer for triglyceride measurements.

    Science.gov (United States)

    Kobayashi, Takanori; Kato, Yukiko Hakariya; Tsukamoto, Megumi; Ikuta, Kazuyoshi; Sakudo, Akikazu

    2009-01-01

    An affordable and portable machine is required for the practical use of visible and near-infrared (Vis-NIR) spectroscopy. A portable fruit tester comprising a Vis-NIR spectrophotometer was modified for use in the transmittance mode and employed to quantify triglyceride levels in serum in combination with a chemometric analysis. Transmittance spectra collected in the 600- to 1100-nm region were subjected to a partial least-squares regression analysis and leave-out cross-validation to develop a chemometrics model for predicting triglyceride concentrations in serum. The model yielded a coefficient of determination in cross-validation (R2VAL) of 0.7831 with a standard error of cross-validation (SECV) of 43.68 mg/dl. The detection limit of the model was 148.79 mg/dl. Furthermore, masked samples predicted by the model yielded a coefficient of determination in prediction (R2PRED) of 0.6856 with a standard error of prediction (SEP) and detection limit of 61.54 and 159.38 mg/dl, respectively. The portable Vis-NIR spectrophotometer may prove convenient for the measurement of triglyceride concentrations in serum, although before practical use there remain obstacles, which are discussed.

  19. Near-Infrared Fluorescence Lymphatic Imaging in Lymphangiomatosis.

    Science.gov (United States)

    Rasmussen, John C; Fife, Caroline E; Sevick-Muraca, Eva M

    2015-09-01

    Lymphangiomatosis is a rare disorder of the lymphatic system that can impact the dermis, soft tissue, bone, and viscera and can be characterized by lymphangiomas, swelling, and chylous discharge. Whether disordered lymphangiogenesis in lymphangiomatosis affects the function and anatomy of the entire systemic lymphatic circulation or is localized to specific sites is not fully known. A 35-year-old Caucasian female diagnosed with whole-body lymphangiomatosis at 2 months of age and who continues to present with progressive disease was imaged with near-infrared fluorescence lymphatic imaging. While the peripheral lymphatics in the extremities appeared largely normal compared to prior studies, we observed tortuous lymphatic vessels, fluorescence drainage from the peripheral lymphatics into lymphangiomas, and extensive dermal lymphatics in the left thigh and inguinal regions where the subject had previously had surgical assaults, potentially indicating defective systemic lymphangiogenesis. Further research into anatomical and functional lymphatic changes associated with the progression and treatment of lymphangiomatosis could aid in understanding the pathophysiology of the disease as well as point to treatment strategies.

  20. Novel near infrared sensors for hybrid BCI applications

    Science.gov (United States)

    Almajidy, Rand K.; Le, Khang S.; Hofmann, Ulrich G.

    2015-07-01

    This study's goal is to develop a low cost, portable, accurate and comfortable NIRS module that can be used simultaneously with EEG in a dual modality system for brain computer interface (BCI). The sensing modules consist of electroencephalography (EEG) electrodes (at the positions Fp1, Fpz and Fp2 in the international 10-20 system) with eight custom made functional near infrared spectroscopy (fNIRS) channels, positioned on the prefrontal cortex area with two extra channels to measure and eliminate extra-cranial oxygenation. The NIRS sensors were designed to guarantee good sensor-skin contact, without causing subject discomfort, using springs to press them to the skin instead of pressing them by cap fixture. Two open source software packages were modified to carry out dual modality hybrid BCI experiments. The experimental paradigm consisted of a mental task (arithmetic task or text reading) and a resting period. Both oxygenated hemoglobin concentration changes (HbO), and EEG signals showed an increase during the mental task, but the onset, period and amount of that increase depends on each modality's characteristics. The subject's degree of attention played an important role especially during online sessions. The sensors can be easily used to acquire brain signals from different cerebral cortex parts. The system serves as a simple technological test bed and will be used for stroke patient rehabilitation purposes.

  1. The application of near infrared spectroscopy in nutritional intervention studies

    Directory of Open Access Journals (Sweden)

    Philippa A Jackson

    2013-08-01

    Full Text Available Functional near infrared spectroscopy (NIRS is a non-invasive optical imaging technique used to monitor cerebral blood flow (CBF and by proxy neuronal activation. The use of NIRS in nutritional intervention studies is a relatively novel application of this technique, with only a small, but growing, number of trials published to date. These trials—in which the effects on CBF following administration of dietary components such as caffeine, polyphenols and omega-3 polyunsaturated fatty acids are assessed—have successfully demonstrated NIRS as a sensitive measure of change in haemodynamic response during cognitive tasks in both acute and chronic treatment intervention paradigms. The existent research in this area has been limited by the constraints of the technique itself however advancements in the measurement technology, paired with studies endeavouring increased sophistication in number and locations of channels over the head should render the use of NIRS in nutritional interventions particularly valuable in advancing our understanding of the effects of nutrients and dietary components on the brain.

  2. Near-infrared hybrid plasmonic multiple quantum well nanowire lasers.

    Science.gov (United States)

    Wang, Jiamin; Wei, Wei; Yan, Xin; Zhang, Jinnan; Zhang, Xia; Ren, Xiaomin

    2017-04-17

    The lasing characteristics of hybrid plasmonic AlGaAs/GaAs multiple quantum well (MQW) nanowire (NW) lasers beyond diffraction limit have been investigated by 3D finite-difference time-domain simulations. The results show that the hybrid plasmonic MQW NW has lower threshold gain over a broad diameter range in comparison with its photonic counterpart. Beyond the diffraction limit, the hybrid plasmonic MQW NW has a lowest threshold gain of 788 cm-1 at a diameter of 130 nm, and a cutoff diameter of 80 nm, half that of the photonic lasers. In comparison with the hybrid plasmonic core-shell NWs, the hybrid plasmonic MQW NWs exhibit significantly lower threshold gain, higher Purcell factor, and smaller cutoff diameter, which are attributed to the superior overlap between the hybrid plasmonic modes and gain medium, as well as a stronger optical confinement due to the grating-like effect of MQW structures. Moreover, the hybrid plasmonic MQW NW has a lower threshold gain than that of the core-shell NW over a broad wavelength range. The hybrid plasmonic MQW NW structure is promising for ultrasmall and low-consumption near-infrared nanolasers.

  3. Near infrared emission spectroscopy induced by ultrasonic irradiation.

    Science.gov (United States)

    Borges, Sivanildo Silva; Korn, Mauro; Gonzaga, Fabiano Barbieri; Pasquini, Celio

    2006-07-01

    Near infrared emission caused by ultrasonic excitation is demonstrated for the first time in this work. The instrument is constituted of an acousto-optical tunable filter-based spectrometer, an ultrasonic processor connected to a titanium alloy ultrasonic probe and a cylindrical borosilicate flask containing the sample to be excited. The radiation emitted by the sample is collected by a concave mirror and sent to the spectrometer. The effects of the position of the probe extremity in relation to a lateral entrance of the borosilicate flask and of the ultrasonic power on the emission signal were studied. The best results were obtained by positioning the probe extremity up to 2mm from the reflexive body (lateral entrance) using 30% of the full ultrasonic incident power and acquiring spectra after 5 min of sonication. The NIR emission spectra resulting from the ultrasonic excitation were in agreement with that obtained by thermal excitation. The proposed technique was utilized to study different poly(dimethylsiloxane) samples having different viscosities.

  4. Near infrared hyperspectral imaging for forensic analysis of document forgery.

    Science.gov (United States)

    Silva, Carolina S; Pimentel, Maria Fernanda; Honorato, Ricardo S; Pasquini, Celio; Prats-Montalbán, José M; Ferrer, Alberto

    2014-10-21

    Hyperspectral images in the near infrared range (HSI-NIR) were evaluated as a nondestructive method to detect fraud in documents. Three different types of typical forgeries were simulated by (a) obliterating text, (b) adding text and (c) approaching the crossing lines problem. The simulated samples were imaged in the range of 928-2524 nm with spectral and spatial resolutions of 6.3 nm and 10 μm, respectively. After data pre-processing, different chemometric techniques were evaluated for each type of forgery. Principal component analysis (PCA) was performed to elucidate the first two types of adulteration, (a) and (b). Moreover, Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) was used in an attempt to improve the results of the type (a) obliteration and type (b) adding text problems. Finally, MCR-ALS and Partial Least Squares-Discriminant Analysis (PLS-DA), employed as a variable selection tool, were used to study the type (c) forgeries, i.e. crossing lines problem. Type (a) forgeries (obliterating text) were successfully identified in 43% of the samples using both the chemometric methods (PCA and MCR-ALS). Type (b) forgeries (adding text) were successfully identified in 82% of the samples using both the methods (PCA and MCR-ALS). Finally, type (c) forgeries (crossing lines) were successfully identified in 85% of the samples. The results demonstrate the potential of HSI-NIR associated with chemometric tools to support document forgery identification.

  5. Visible and Near Infrared Fluorescence Spectral Flow Cytometry

    Science.gov (United States)

    Nolan, John P.; Condello, Danilo; Duggan, Erika; Naivar, Mark; Novo, David

    2013-01-01

    There is a long standing interest in measuring complete emission spectra from individual cells in flow cytometry. We have developed flow cytometry instruments and analysis approaches to enable this to be done routinely and robustly. Our spectral flow cytometers use a holographic grating to disperse light from single cells onto a CCD for high speed, wavelength-resolved detection. Customized software allows the single cell spectral data to be displayed and analyzed to produce new spectra-derived parameters. We show that familiar reference and calibration beads can be employed to quantitatively assess instrument performance. We use microspheres stained with six different quantum dots to compare a virtual bandpass filter approach with classic least squares (CLS) spectral unmixing, and then use antibody capture beads and CLS unmixing to demonstrate immunophenotyping of peripheral blood mononuclear cells using spectral flow cytometry. Finally, we characterize and evaluate several near infrared (NIR) emitting fluorophores for use in spectral flow cytometry. Spectral flow cytometry offers a number of attractive features for single cell analysis, including a simplified optical path, high spectral resolution, and streamlined approaches to quantitative multiparameter measurements. The availability of robust instrumentation, software, and analysis approaches will facilitate the development of spectral flow cytometry applications. PMID:23225549

  6. Thermal consequences of colour and near-infrared reflectance.

    Science.gov (United States)

    Stuart-Fox, Devi; Newton, Elizabeth; Clusella-Trullas, Susana

    2017-07-05

    The importance of colour for temperature regulation in animals remains controversial. Colour can affect an animal's temperature because all else being equal, dark surfaces absorb more solar energy than do light surfaces, and that energy is converted into heat. However, in reality, the relationship between colour and thermoregulation is complex and varied because it depends on environmental conditions and the physical properties, behaviour and physiology of the animal. Furthermore, the thermal effects of colour depend as much on absorptance of near-infrared ((NIR), 700-2500 nm) as visible (300-700 nm) wavelengths of direct sunlight; yet the NIR is very rarely considered or measured. The few available data on NIR reflectance in animals indicate that the visible reflectance is often a poor predictor of NIR reflectance. Adaptive variation in animal coloration (visible reflectance) reflects a compromise between multiple competing functions such as camouflage, signalling and thermoregulation. By contrast, adaptive variation in NIR reflectance should primarily reflect thermoregulatory requirements because animal visual systems are generally insensitive to NIR wavelengths. Here, we assess evidence and identify key research questions regarding the thermoregulatory function of animal coloration, and specifically consider evidence for adaptive variation in NIR reflectance.This article is part of the themed issue 'Animal coloration: production, perception, function and application'. © 2017 The Author(s).

  7. Near-Infrared Spectroscopy of Small Protonated Water Clusters

    Science.gov (United States)

    Wagner, J. Philipp; McDonald, David C., II; McCoy, Anne B.; Duncan, Michael A.

    2017-06-01

    Small protonated water clusters and their argon tagged analogues of the general formula H^{+}(H_{2}O)_{n}Ar_{m} have been generated in a pulsed electric discharge source. Clusters containing n=1-8 water molecules were mass-selected and their absorptions in the near-infrared were probed with a tunable Nd/colonYAG pumped OPA/OPA laser system in the region from 4850-7350 cm^{-1}. A doublet corresponding to overtones of the free O-H stretches of the external waters was observed around 7200 cm^{-1} that was continuously decreasing in intensity with increasing cluster size. Broad, mostly featureless absorptions were found around 5300 cm^{-1} associated with stretch/bend combinations and with the hydrogen bonded waters in the core of the clusters. Vibrational assignments were substantiated by comparison to anharmonic frequency computations via second-order vibrational perturbation theory (VPT2) at the MP2/aug-cc-pVTZ level of theory.

  8. LED-based near infrared sensor for cancer diagnostics

    Science.gov (United States)

    Bogomolov, Andrey; Ageev, Vladimir; Zabarylo, Urszula; Usenov, Iskander; Schulte, Franziska; Kirsanov, Dmitry; Belikova, Valeria; Minet, Olaf; Feliksberger, E.; Meshkovsky, I.; Artyushenko, Viacheslav

    2016-03-01

    Optical spectroscopic technologies are increasingly used for cancer diagnostics. Feasibility of differentiation between malignant and healthy samples of human kidney using Fluorescence, Raman, MIR and NIR spectroscopy has been recently reported . In the present work, a simplification of NIR spectroscopy method has been studied. Traditional high-resolution NIR spectrometry was replaced by an optical sensor based on a set of light-emitting diodes at selected wavelengths as light sources and a photodiode. Two prototypes of the sensor have been developed and tested using 14 in-vitro samples of seven kidney tumor patients. Statistical evaluation of results using principal component analysis and partial least-squares discriminant analysis has been performed. Despite only partial discrimination between tumor and healthy tissue achieved by the presented new technique, the results evidence benefits of LED-based near-infrared sensing used for oncological diagnostics. Publisher's Note: This paper, originally published on 4 March, 2016, was replaced with a corrected/revised version on 7 April, 2016. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance.

  9. Near-Infrared Grating Spectrometer for Mobile Phone Applications.

    Science.gov (United States)

    Pügner, Tino; Knobbe, Jens; Grüger, Heinrich

    2016-05-01

    Near-infrared (NIR) spectroscopy is a well-established technique for the chemical analysis of organic and inorganic matter. Accordingly, spectroscopic instrumentation of different complexity has been developed and is currently commercially available. However, there are an increasing number of new mobile applications that have come into focus and that cannot be addressed by the existing technology due to size and cost. Therefore, a new miniaturized scanning grating spectrometer for NIR spectroscopy has been developed at Fraunhofer IPMS. It is based on micro-electro-mechanical systems (MEMS) technology, and has been designed to meet the requirements for mobile application, regarding spectral range, resolution, overall size, robustness, and cost. The MEMS spectrometer covers a spectral range from 950 nm to 1900 nm at a resolution of 10 nm. The instrument is extremely small and has a volume of only 2.1 cm(3) Therefore, it is well suited for integration, even into a mobile phone. A first sample of the new spectrometer has been manufactured and put into operation. The results of a series of test measurements are in good agreement with the requirements and specifications. © The Author(s) 2016.

  10. Research on the Effects of Drying Temperature on Nitrogen Detection of Different Soil Types by Near Infrared Sensors.

    Science.gov (United States)

    Nie, Pengcheng; Dong, Tao; He, Yong; Xiao, Shupei

    2018-01-29

    Soil is a complicated system whose components and mechanisms are complex and difficult to be fully excavated and comprehended. Nitrogen is the key parameter supporting plant growth and development, and is the material basis of plant growth as well. An accurate grasp of soil nitrogen information is the premise of scientific fertilization in precision agriculture, where near infrared sensors are widely used for rapid detection of nutrients in soil. However, soil texture, soil moisture content and drying temperature all affect soil nitrogen detection using near infrared sensors. In order to investigate the effects of drying temperature on the nitrogen detection in black soil, loess and calcium soil, three kinds of soils were detected by near infrared sensors after 25 °C placement (ambient temperature), 50 °C drying (medium temperature), 80 °C drying (medium-high temperature) and 95 °C drying (high temperature). The successive projections algorithm based on multiple linear regression (SPA-MLR), partial least squares (PLS) and competitive adaptive reweighted squares (CARS) were used to model and analyze the spectral information of different soil types. The predictive abilities were assessed using the prediction correlation coefficients (R P ), the root mean squared error of prediction (RMSEP), and the residual predictive deviation (RPD). The results showed that the loess (R P = 0.9721, RMSEP = 0.067 g/kg, RPD = 4.34) and calcium soil (R P = 0.9588, RMSEP = 0.094 g/kg, RPD = 3.89) obtained the best prediction accuracy after 95 °C drying. The detection results of black soil (R P = 0.9486, RMSEP = 0.22 g/kg, RPD = 2.82) after 80 °C drying were the optimum. In conclusion, drying temperature does have an obvious influence on the detection of soil nitrogen by near infrared sensors, and the suitable drying temperature for different soil types was of great significance in enhancing the detection accuracy.

  11. Biodiesel classification by base stock type (vegetable oil) using near infrared spectroscopy data

    Energy Technology Data Exchange (ETDEWEB)

    Balabin, Roman M., E-mail: balabin@org.chem.ethz.ch [Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich (Switzerland); Safieva, Ravilya Z. [Gubkin Russian State University of Oil and Gas, 119991 Moscow (Russian Federation)

    2011-03-18

    The use of biofuels, such as bioethanol or biodiesel, has rapidly increased in the last few years. Near infrared (near-IR, NIR, or NIRS) spectroscopy (>4000 cm{sup -1}) has previously been reported as a cheap and fast alternative for biodiesel quality control when compared with infrared, Raman, or nuclear magnetic resonance (NMR) methods; in addition, NIR can easily be done in real time (on-line). In this proof-of-principle paper, we attempt to find a correlation between the near infrared spectrum of a biodiesel sample and its base stock. This correlation is used to classify fuel samples into 10 groups according to their origin (vegetable oil): sunflower, coconut, palm, soy/soya, cottonseed, castor, Jatropha, etc. Principal component analysis (PCA) is used for outlier detection and dimensionality reduction of the NIR spectral data. Four different multivariate data analysis techniques are used to solve the classification problem, including regularized discriminant analysis (RDA), partial least squares method/projection on latent structures (PLS-DA), K-nearest neighbors (KNN) technique, and support vector machines (SVMs). Classifying biodiesel by feedstock (base stock) type can be successfully solved with modern machine learning techniques and NIR spectroscopy data. KNN and SVM methods were found to be highly effective for biodiesel classification by feedstock oil type. A classification error (E) of less than 5% can be reached using an SVM-based approach. If computational time is an important consideration, the KNN technique (E = 6.2%) can be recommended for practical (industrial) implementation. Comparison with gasoline and motor oil data shows the relative simplicity of this methodology for biodiesel classification.

  12. [Determination of steviol in Stevia Rebaudiana leaves by near infrared spectroscopy].

    Science.gov (United States)

    Tang, Qi-Kun; Wang, Yul; Wu, Yue-Jin; Min, Di; Chen, Da-Wei; Hu, Tong-Hua

    2014-10-01

    The objective of the present study is to develop a method for rapid determination of the content of stevioside (ST) and rebaudioside A (RA) in Stevia Rebaudiana leaves. One hundred and five samples of stevia from different areas containing ST of 0.27%-1.40% and RA of 0.61%-3.98% were used. The 105 groups' NIRS diagram was processed by different methods including subtracting a straight line (SLS), multiplicative scatter correction (MSC), first derivative (FD), second derivative (SD) and so on, and then all data were analyzed by partial least square (PLS). The study showed that SLS can be used to extracted spectra information thoroughly to analyze the contents of ST, the correlation coefficients of calibration (Re), the root-mean-square errors of calibration (RMSEC) and prediction (RMSEP), and the residual predictive deviation (RPD) were 0.986, 0.341, 1.00 and 2.8, respectively. The correlation coefficients of RA was 0.967, RMSEC was 1.50, RMSEP was 1.98 and RPD was 4.17. The results indicated that near infrared spectroscopy (NIRS) technique offers effective quantitative capability for ST and RA in Stevia Rebaudiana leaves. Then the model of stevia dried leaves was used to compare with the stevia powder near infrared model whose correlation coefficients of ST was 0.986, RMSEC was 0.32, RMSEP was 0.601 and RPD was 2.86 and the correlation coefficients of RA was 0.968, RMSEC was 1.50, RMSEP was 1.48 and RPD was 4.2. The result showed that there was no significant difference between the model of dried leaves and that of the powders. However, the dried leaves NIR model reduces the unnecessary the steps of drying and grinding in the actual detection process, saving the time and reducing the workload.

  13. In situ continuous visible and near-infrared spectroscopy of an alpine snowpack

    Science.gov (United States)

    Dumont, Marie; Arnaud, Laurent; Picard, Ghislain; Libois, Quentin; Lejeune, Yves; Nabat, Pierre; Voisin, Didier; Morin, Samuel

    2017-05-01

    Snow spectral albedo in the visible/near-infrared range has been continuously measured during a winter season at Col de Porte alpine site (French Alps; 45.30° N, 5.77° E; 1325 m a.s.l.). The evolution of such alpine snowpack is complex due to intensive precipitation, rapid melt events and Saharan dust deposition outbreaks. This study highlights that the resulting intricate variations of spectral albedo can be successfully explained by variations of the following snow surface variables: specific surface area (SSA) of snow, effective light-absorbing impurities content, presence of liquid water and slope. The methodology developed in this study disentangles the effect of these variables on snow spectral albedo. The presence of liquid water at the snow surface results in a spectral shift of the albedo from which melt events can be identified with an occurrence of false detection rate lower than 3.5 %. Snow SSA mostly impacts spectral albedo in the near-infrared range. Impurity deposition mostly impacts the albedo in the visible range but this impact is very dependent on snow SSA and surface slope. Our work thus demonstrates that the SSA estimation from spectral albedo is affected by large uncertainties for a tilted snow surface and medium to high impurity contents and that the estimation of impurity content is also affected by large uncertainties, especially for low values below 50 ng g-1 black carbon equivalent. The proposed methodology opens routes for retrieval of SSA, impurity content, melt events and surface slope from spectral albedo. However, an exhaustive accuracy assessment of the snow black properties retrieval would require more independent in situ measurements and is beyond the scope of the present study. This time series of snow spectral albedo nevertheless already provides a new insight into our understanding of the evolution of snow surface properties.

  14. THE EARLIEST NEAR-INFRARED TIME-SERIES SPECTROSCOPY OF A TYPE Ia SUPERNOVA

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, E. Y.; Phillips, M. M.; Morrell, N.; Contreras, C.; Roth, M. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Marion, G. H.; Kirshner, R. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Burns, C. R.; Freedman, W. L.; Persson, S. E. [Carnegie Observatories, 813 Santa Barbara St, Pasadena, CA 91101 (United States); Winge, C. [Gemini South Observatory, c/o AURA Inc., Casilla 603, La Serena (Chile); Kromer, M.; Gall, E. E. E. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching bei Muenchen (Germany); Gerardy, C. L.; Hoeflich, P. [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Im, M.; Jeon, Y. [CEOU/Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul (Korea, Republic of); Nugent, P. E. [Computational Cosmology Center, Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road MS 50B-4206, Berkeley, CA 94611 (United States); Pignata, G. [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Stanishev, V., E-mail: hsiao@lco.cl [CENTRA - Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal); and others

    2013-04-01

    We present ten medium-resolution, high signal-to-noise ratio near-infrared (NIR) spectra of SN 2011fe from SpeX on the NASA Infrared Telescope Facility (IRTF) and Gemini Near-Infrared Spectrograph (GNIRS) on Gemini North, obtained as part of the Carnegie Supernova Project. This data set constitutes the earliest time-series NIR spectroscopy of a Type Ia supernova (SN Ia), with the first spectrum obtained at 2.58 days past the explosion and covering -14.6 to +17.3 days relative to B-band maximum. C I {lambda}1.0693 {mu}m is detected in SN 2011fe with increasing strength up to maximum light. The delay in the onset of the NIR C I line demonstrates its potential to be an effective tracer of unprocessed material. For the first time in a SN Ia, the early rapid decline of the Mg II {lambda}1.0927 {mu}m velocity was observed, and the subsequent velocity is remarkably constant. The Mg II velocity during this constant phase locates the inner edge of carbon burning and probes the conditions under which the transition from deflagration to detonation occurs. We show that the Mg II velocity does not correlate with the optical light-curve decline rate {Delta}m{sub 15}(B). The prominent break at {approx}1.5 {mu}m is the main source of concern for NIR k-correction calculations. We demonstrate here that the feature has a uniform time evolution among SNe Ia, with the flux ratio across the break strongly correlated with {Delta}m{sub 15}(B). The predictability of the strength and the onset of this feature suggests that the associated k-correction uncertainties can be minimized with improved spectral templates.

  15. Prediction of Cortisol and Progesterone Concentrations in Cow Hair Using Near-Infrared Reflectance Spectroscopy (NIRS).

    Science.gov (United States)

    Tallo-Parra, Oriol; Albanell, Elena; Carbajal, Annais; Monclús, Laura; Manteca, Xavier; Lopez-Bejar, Manel

    2017-08-01

    Concentrations of different steroid hormones have been used in cows as a measure of adrenal or gonadal activity and, thus, as indicators of stress or reproductive state. Detecting cortisol and progesterone in cow hair provides a long-term integrative value of retrospective adrenal or gonadal/placental activity, respectively. Current techniques for steroid detection require a hormone-extraction procedure that involves time, several types of equipment, management of reagents, and some assay procedures (which can also be time-consuming and can destroy the samples). In contrast, near-infrared reflectance spectroscopy (NIRS) is a multi-component predictor technique, characterized as rapid, nondestructive for the sample, and reagent-free. However, as a predictor technique, NIRS needs to be calibrated and validated for each matrix, hormone, and species. The main objective of this study was to evaluate the predictive value of the NIRS technique for hair cortisol and progesterone quantification in cows by using specific enzyme immunoassay as a reference method. Hair samples from 52 adult Friesian lactating cows from a commercial dairy farm were used. Reflectance spectra of hair samples were determined with a NIR reflectance spectrophotometer before and after trimming them. Although similar results were obtained, a slightly better relationship between the reference data and NIRS predicted values was found using trimmed samples. Near infrared reflectance spectroscopy demonstrated its ability to predict cortisol and progesterone concentrations with certain accuracy (R(2 )= 0.90 for cortisol and R(2 )= 0.87 for progesterone). Although NIRS is far from being a complete alternative to current methodologies, the proposed equations can offer screening capability. Considering the advantages of both fields, our results open the possibility for future work on the combination of hair steroid measurement and NIRS methodology.

  16. Biodiesel classification by base stock type (vegetable oil) using near infrared spectroscopy data.

    Science.gov (United States)

    Balabin, Roman M; Safieva, Ravilya Z

    2011-03-18

    The use of biofuels, such as bioethanol or biodiesel, has rapidly increased in the last few years. Near infrared (near-IR, NIR, or NIRS) spectroscopy (>4000cm(-1)) has previously been reported as a cheap and fast alternative for biodiesel quality control when compared with infrared, Raman, or nuclear magnetic resonance (NMR) methods; in addition, NIR can easily be done in real time (on-line). In this proof-of-principle paper, we attempt to find a correlation between the near infrared spectrum of a biodiesel sample and its base stock. This correlation is used to classify fuel samples into 10 groups according to their origin (vegetable oil): sunflower, coconut, palm, soy/soya, cottonseed, castor, Jatropha, etc. Principal component analysis (PCA) is used for outlier detection and dimensionality reduction of the NIR spectral data. Four different multivariate data analysis techniques are used to solve the classification problem, including regularized discriminant analysis (RDA), partial least squares method/projection on latent structures (PLS-DA), K-nearest neighbors (KNN) technique, and support vector machines (SVMs). Classifying biodiesel by feedstock (base stock) type can be successfully solved with modern machine learning techniques and NIR spectroscopy data. KNN and SVM methods were found to be highly effective for biodiesel classification by feedstock oil type. A classification error (E) of less than 5% can be reached using an SVM-based approach. If computational time is an important consideration, the KNN technique (E=6.2%) can be recommended for practical (industrial) implementation. Comparison with gasoline and motor oil data shows the relative simplicity of this methodology for biodiesel classification. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Discriminating oat and groat kernels from other grains using near infrared spectroscopy

    Science.gov (United States)

    Oat and groats can be discriminated from other grains such as barley, wheat, rye, and triticale (non-oats) using near infrared spectroscopy. The two instruments tested were the manual version of the ARS-USDA Single Kernel Near Infrared (SKNIR) and the automated QualySense QSorter Explorer high-speed...

  18. New biomedical devices that use near-infrared technology to assist with phlebotomy and vascular access.

    Science.gov (United States)

    Yen, Kenneth; Gorelick, Marc H

    2013-03-01

    Obtaining intravenous access in children is often challenging. Devices using the novel technology of near-infrared imaging have been developed and marketed to facilitate intravenous catheter placement and phlebotomy. We review the technology of near-infrared imaging and the evidence for its use in the pediatric emergency population.

  19. A near infrared luminescent metal-organic framework for temperature sensing in the physiological range.

    Science.gov (United States)

    Lian, Xiusheng; Zhao, Dian; Cui, Yuanjing; Yang, Yu; Qian, Guodong

    2015-12-28

    A near infrared pumped luminescent metal-organic framework thermometer Nd(0.577)Yb(0.423)BDC-F4, with near infrared fluorescence and excellent sensitivity in the physiological temperature range (293-313 K), has been first realized, and might be potentially applied for biomedical systems.

  20. 7 CFR 801.7 - Reference methods and tolerances for near-infrared spectroscopy (NIRS) analyzers.

    Science.gov (United States)

    2010-01-01

    ... methods and tolerances for near-infrared spectroscopy (NIRS) analyzers. (a) Reference methods. (1) The... 7 Agriculture 7 2010-01-01 2010-01-01 false Reference methods and tolerances for near-infrared spectroscopy (NIRS) analyzers. 801.7 Section 801.7 Agriculture Regulations of the Department of Agriculture...

  1. James Webb Telescope's Near Infrared Camera: Making Models, Building Understanding

    Science.gov (United States)

    Lebofsky, Larry A.; McCarthy, D. W.; Higgins, M. L.; Lebofsky, N. R.

    2010-10-01

    The Astronomy Camp for Girl Scout Leaders is a science education program sponsored by NASA's next large space telescope: The James Webb Space Telescope (JWST). The E/PO team for JWST's Near Infrared Camera (NIRCam), in collaboration with the Sahuaro Girl Scout Council, has developed a long-term relationship with adult leaders from all GSUSA Councils that directly benefits troops of all ages, not only in general science education but also specifically in the astronomical and technology concepts relating to JWST. We have been training and equipping these leaders so they can in turn teach young women essential concepts in astronomy, i.e., the night sky environment. We model what astronomers do by engaging trainers in the process of scientific inquiry, and we equip them to host troop-level astronomy-related activities. It is GSUSA's goal to foster girls’ interest and creativity in Science, Technology, Engineering, and Math, creating an environment that encourages their interests early in their lives while creating a safe place for girls to try and fail, and then try again and succeed. To date, we have trained over 158 leaders in 13 camps. These leaders have come from 24 states, DC, Guam, and Japan. While many of the camp activities are related to the "First Light” theme, many of the background activities relate to two of the other JWST and NIRCam themes: "Birth of Stars and Protoplanetary Systems” and "Planetary Systems and the Origin of Life.” The latter includes our own Solar System. Our poster will highlight the Planetary Systems theme: 1. Earth and Moon: Day and Night; Rotation and Revolution. 2. Earth/Moon Comparisons. 3. Size Model: The Diameters of the Planets. 4. Macramé Planetary (Solar) Distance Model. 5.What is a Planet? 6. Planet Sorting Cards. 7. Human Orrery 8. Lookback Time in Our Daily Lives NIRCam E/PO website: http://zeus.as.arizona.edu/ dmccarthy/GSUSA

  2. Augmented microscopy with near-infrared fluorescence detection

    Science.gov (United States)

    Watson, Jeffrey R.; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G. Michael; Anton, Rein; Romanowski, Marek

    2015-03-01

    Near-infrared (NIR) fluorescence has become a frequently used intraoperative technique for image-guided surgical interventions. In procedures such as cerebral angiography, surgeons use the optical surgical microscope for the color view of the surgical field, and then switch to an electronic display for the NIR fluorescence images. However, the lack of stereoscopic, real-time, and on-site coregistration adds time and uncertainty to image-guided surgical procedures. To address these limitations, we developed the augmented microscope, whereby the electronically processed NIR fluorescence image is overlaid with the anatomical optical image in real-time within the optical path of the microscope. In vitro, the augmented microscope can detect and display indocyanine green (ICG) concentrations down to 94.5 nM, overlaid with the anatomical color image. We prepared polyacrylamide tissue phantoms with embedded polystyrene beads, yielding scattering properties similar to brain matter. In this model, 194 μM solution of ICG was detectable up to depths of 5 mm. ICG angiography was then performed in anesthetized rats. A dynamic process of ICG distribution in the vascular system overlaid with anatomical color images was observed and recorded. In summary, the augmented microscope demonstrates NIR fluorescence detection with superior real-time coregistration displayed within the ocular of the stereomicroscope. In comparison to other techniques, the augmented microscope retains full stereoscopic vision and optical controls including magnification and focus, camera capture, and multiuser access. Augmented microscopy may find application in surgeries where the use of traditional microscopes can be enhanced by contrast agents and image guided delivery of therapeutics, including oncology, neurosurgery, and ophthalmology.

  3. Intraoperative pulmonary neoplasm identification using near-infrared fluorescence imaging.

    Science.gov (United States)

    Kim, Hyun Koo; Quan, Yu Hua; Choi, Byeong Hyeon; Park, Ji-Ho; Han, Kook Nam; Choi, Yeonho; Kim, Beop-Min; Choi, Young Ho

    2016-05-01

    Near-infrared (NIR) fluorescence imaging provides surgeons with real-time visual information during surgery. The purpose of this pilot trial was to evaluate the safety and feasibility of the intraoperative detection of pulmonary neoplasms with NIR fluorescence imaging after low-dose indocyanine green (ICG) injection. Eleven consecutive patients who were scheduled to undergo resection of pulmonary neoplasms were enrolled in this study. ICG (1 mg/kg) was administered intravenously 1 day before surgery, and the retrieved surgical specimens were examined for fluorescence signalling by using NIR fluorescence imaging system on a back table in the operating room. We analysed the fluorescence intensity, pathology, size, depth from the pleural surface and metabolic activity of the pulmonary neoplasms. Fluorescence signalling was detected in all specimens except in one from a patient with primary lung cancer. Two false-positive cases that presented no residual tumour with obstructive pneumonitis, after concurrent chemoradiation therapy for primary lung cancer before the operation, were identified, and their fluorescence intensity was 8.6 ± 0.4. The mean fluorescence intensity of the eight pulmonary tumours was 3.4 ± 1.9, and these tumours did not differ in pathology, size, depth from the pleural surface or metabolic activity. NIR fluorescence imaging could safely identify pulmonary neoplasms after the systemic injection of ICG. In addition, low-dose ICG is sufficient for NIR fluorescence imaging of pulmonary neoplasms. However, because the passive accumulation of ICG could not be used to discriminate tumours with inflammation, tumour-targeted fluorescence should be developed to solve this problem in the future. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  4. Near-infrared (NIR) optogenetics using up-conversion system

    Science.gov (United States)

    Hososhima, Shoko; Yuasa, Hideya; Ishizuka, Toru; Yawo, Hiromu

    2015-03-01

    Non-invasive remote control technologies designed to manipulate neural functions for a comprehensive and quantitative understanding of the neuronal network in the brain as well as for the therapy of neurological disorders have long been awaited. Recently, it has become possible to optically manipulate the neuronal activity using biological photo-reactive molecules such as channelrhodopsin-2 (ChR2). However, ChR2 and its relatives are mostly reactive to visible light which does not effectively penetrate through biological tissues. In contrast, near-infrared (NIR) light penetrates deep into the tissues because biological systems are almost transparent to light within this so-called `imaging window'. Here we used lanthanide nanoparticles (LNPs), which are composed of rare-earth elements, as luminous bodies to activate channelrhodopsins (ChRs) since they absorb low-energy NIR light to emit high-energy visible light (up-conversion). Neuron-glioma-hybrid ND-7/23 cells were cultured with LNP(NaYF4:Sc/Yb/Er) particles (peak emission, 543 nm) and transfected to express C1V1 (peak absorbance, 539 nm), a chimera of ChR1 and VChR1. The photocurrents were generated in response to NIR laser light (976 nm) to a level comparable to that evoked by a filtered Hg lamp (530-550 nm). NIR light pulses also evoked action potentials in the cultured neurons that expressed C1V1. It is suggested that the green luminescent light emitted from LNPs effectively activated C1V1 to generate the photocurrent. With the optimization of LNPs, acceptor photo-reactive biomolecules and optics, this system could be applied to non-invasively actuate neurons deep in the brain.

  5. Near-Infrared Lasing from Small-Molecule Organic Hemispheres.

    Science.gov (United States)

    Wang, Xuedong; Liao, Qing; Li, Hui; Bai, Shuming; Wu, Yishi; Lu, Xiaomei; Hu, Huaiyuan; Shi, Qiang; Fu, Hongbing

    2015-07-29

    Near-infrared (NIR) lasers are key components for applications, such as telecommunication, spectroscopy, display, and biomedical tissue imaging. Inorganic III-V semiconductor (GaAs) NIR lasers have achieved great successes but require expensive and sophisticated device fabrication techniques. Organic semiconductors exhibit chemically tunable optoelectronic properties together with self-assembling features that are well suitable for low-temperature solution processing. Major blocks in realizing NIR organic lasing include low stimulated emission of narrow-bandgap molecules due to fast nonradiative decay and exciton-exciton annihilation, which is considered as a main loss channel of population inversion for organic lasers under high carrier densities. Here we designed and synthesized the small organic molecule (E)-3-(4-(di-p-tolylamino)phenyl)-1-(1-hydroxynaphthalen-2-yl)prop-2-en-1-one (DPHP) with amphiphilic nature, which elaborately self-assembles into micrometer-sized hemispheres that simultaneously serves as the NIR emission medium with a photoluminescence quantum efficiency of ∼15.2%, and the high-Q (∼1.4 × 10(3)) whispering gallery mode microcavity. Moreover, the radiative rate of DPHP hemispheres is enhanced up to ∼1.98 × 10(9) s(-1) on account of the exciton-vibrational coupling in the solid state with the J-type molecular-coupling component, and meanwhile the exciton-exciton annihilation process is eliminated. As a result, NIR lasing with a low threshold of ∼610 nJ/cm(2) is achieved in the single DPHP hemisphere at room temperature. Our demonstration is a major step toward incorporating the organic coherent light sources into the compact optoelectronic devices at NIR wavelengths.

  6. Melanin quantification by in vitro and in vivo analysis of near-infrared fluorescence.

    Science.gov (United States)

    Kalia, Sunil; Zhao, Jianhua; Zeng, Haishan; McLean, David; Kollias, Nikiforos; Lui, Harvey

    2018-01-01

    Objective measurements of melanin can provide important information for differentiating melanoma from benign pigmented lesions and in assessing pigmentary diseases. Herein, we evaluate near-infrared (NIR) fluorescence as a possible tool to quantify melanin. Various concentrations of in vitro Sepia melanin in tissue phantoms were measured with NIR fluorescence and diffuse reflectance spectroscopy. Similar optic measurements were conducted in vivo on 161 normal human skin sites. Diffuse reflectance spectroscopy was used to quantify the melanin content via Stamatas-Kollias algorithm. At physiologic concentrations, increasing in vitro melanin concentrations demonstrated higher fluorescence that was linearly correlated (R 2  = 0.99, p < .001). At higher concentrations, the fluorescence signal plateaued. A linear relationship was also observed with melanin content in human skin (R 2  = 0.59, p < .001). Comparing the fluorescence and reflectance signals with in vitro and in vivo samples, the estimated melanin concentration in human skin ranged between 0 and 1.25 mg/ml, consistent with previous quantitative studies involving invasive methods. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Near-infrared autofluorescence imaging to detect parathyroid glands in thyroid surgery.

    Science.gov (United States)

    Ladurner, R; Al Arabi, N; Guendogar, U; Hallfeldt, Kkj; Stepp, H; Gallwas, Jks

    2018-01-01

    Objective To identify and save parathyroid glands during thyroidectomy by displaying their autofluorescence. Methods Autofluorescence imaging was carried out during thyroidectomy with and without central lymph node dissection. After visual recognition by the surgeon, the parathyroid glands and the surrounding tissue were exposed to near-infrared light with a wavelength of 690-770 nm using a modified Karl Storz near infrared/indocyanine green endoscopic system. Parathyroid tissue was expected to show near infrared autofluorescence at 820 nm, captured in the blue channel of the camera. Results We investigated 41 parathyroid glands from 20 patients; 37 glands were identified correctly based on near-infrared autofluorescence. Neither lymph nodes nor thyroid revealed substantial autofluorescence and nor did adipose tissue. Conclusions Parathyroid tissue is characterised by showing autofluorescence in the near-infrared spectrum. This effect can be used to identify and preserve parathyroid glands during thyroidectomy.

  8. Real-time assessment of cardiac perfusion, coronary angiography, and acute intravascular thrombi using dual-channel near-infrared fluorescence imaging.

    Science.gov (United States)

    Tanaka, Eiichi; Chen, Frederick Y; Flaumenhaft, Robert; Graham, Gwenda J; Laurence, Rita G; Frangioni, John V

    2009-07-01

    We have developed an image-guided surgical system based on invisible near-infrared fluorescent light. Presently, the only clinically available near-infrared fluorophore is indocyanine green, which fluoresces at approximately 800 nm and is used for coronary angiography. Our objective was to determine whether methylene blue, already US Food and Drug Administration approved for other indications, has useful near-infrared fluorescence properties for image-guided cardiac surgery. The optical properties of methylene blue were measured after dissolution in 100% serum. Biodistribution and clearance were quantified in organs and tissue after intravenous bolus injection of 2 mg/kg methylene blue in 3 rats. Coronary arteriography and cardiac perfusion were imaged in real time after intravenous bolus injection of 1 mg/kg methylene blue in 5 pigs with coronary obstructions. Coronary angiography and acute thrombi were assessed by using 800-nm fluorophores, indocyanine green, and IR-786-labeled platelets, respectively. The peak absorbance and emission of methylene blue as a near-infrared fluorophore occur at 667 nm and 686 nm, respectively. After intravenous injection, methylene blue provides highly sensitive coronary angiography. A lipophilic cation, methylene blue is extracted rapidly into tissue, with myocardium displaying unusually high uptake. Methylene blue permits real-time visualization and quantitative assessment of myocardial perfusion. Because of absent spectral overlap, use of 2 independent fluorophores in our imaging system permits simultaneous quantification of perfusion, venous drainage, and/or intravascular thrombi. Methylene blue is an effective near-infrared fluorophore that provides direct visualization of coronary arteriography and cardiac perfusion. In conjunction with approximately 800-nm near-infrared fluorophores, important functional assessments during cardiac surgery are also possible.

  9. Fresh Soil Sensing using Visible and Near Infrared Spectroscopy

    Science.gov (United States)

    Maleki, M. R.

    2009-04-01

    Fast, precise and affordable soil analytical techniques are needed for the determination of soil fertility of each zone of a field in site specific land management. The objective of this poster is to demonstrate how nutrients can be estimated from fresh soil using visible (VIS) and near infrared (NIR) spectroscopy method. This could be carried out by summarizing the methodology to develop a calibration model for soil phosphorus with the VIS-NIR spectroscopy method. Obviously, it can be simply extended for other nutrients with the same methodology. A large samples set should be collected from different fields with a wide range of soil type and texture. The samples in this set should be represented a wide range of moisture content and soil nutrient which is desired to be calibrated by the spectroscopy technique. Immediately after sampling, the samples should be kept in a cold room (± 1 °C) until the time of the spectral measurement and the chemical analysis. The samples should be taken from the cold room one hour before the spectral measurement to ensure that the samples were at room temperature and no condensation occurs on the optical instruments. Each soil sample was thoroughly mixed and debris such as plant material and stones were removed. The soil sample was divided into three parts, one part for spectral measurement, another part for chemical analysis and the rest was archived. The part for chemical analysis should be examined for their soil nutrients. A small amount of soil (about 30 g) should be placed in a small plastic petridish (e.g. 7.5 mm depth and 30 mm diameter). The soil in the petridish should be first pressed and then carefully levelled in order to obtain a smooth surface for a maximum light reflectance. Soil samples should be put under the spectrophotometer. Three reflectance spectra should be measured on each soil specimen by rotating the plastic cups over 120°. Having finished measuring, the reflectance data should be put against the chemical

  10. Near-Infrared Spectroscopy of Ethynyl Radical, C2H

    Science.gov (United States)

    Le, Anh T.; Hall, Gregory; Sears, Trevor

    2016-06-01

    The ethynyl radical, C_2H, is a reactive intermediate important in various combustion processes and also widely observed in the interstellar medium. In spite of extensive previous spectroscopic studies, the characterization of the near infrared transitions from the tilde{X}2Σ+ state to the mixed vibrational overtone and tilde{A}2Π states is incomplete. A strong band of C_2H at 7064 cm-1 was first observed in a neon matrix and assigned as the tilde{A}2Π(002)1 - tilde{X}2Σ+ transition by Forney et al. Subsequent theoretical work of Tarroni and Carter attributed the strong absorptions in this region to transitions terminating in two upper states, each a mixture of vibrationally excited tilde{X} states and different zero-order tilde{A}-state bending levels: a 2Σ+ symmetry combination of tilde{X}(0,20,3) and tilde{A}(0,3,0)0κ and a 2Π symmetry combination of tilde{X}(0,31,3) and tilde{A}(0,0,2)1. Transitions to them from the zero point level of the tilde{X} state are calculated to differ in energy by less than 10 cm-1 and to be within a factor of two in intensity. Diode laser transient absorption was used to record Doppler-limited spectra between 7020 and 7130 cm-1, using 193 nm photolysis of CF_3C_2H as a source of C_2H. Two interleaved, rotationally resolved bands were observed, consistent with a 2Σ - 2Σ transition at 7088 cm-1 and a 2Π - 2Σ transition at 7108 cm-1, in good accord with the Tarroni and Carter calculation. Progress on the assignment and fitting of the spectra will be reported. Acknowledgements: Work at Brookhaven National Laboratory was carried out under Contract No. DE-SC0012704 with the U.S. Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences, and Biosciences. D. Forney, M.E. Jacox, and W.E. Thompson, J. Mol. Spectrosc. 170, 178 (1995). R. Tarroni and S. Carter, Mol. Phys. 102, 2167 (2004)

  11. Enhanced visible and near-infrared capabilities of the JET mirror-linked divertor spectroscopy system.

    Science.gov (United States)

    Lomanowski, B A; Meigs, A G; Conway, N J; Zastrow, K-D; Sharples, R M; Heesterman, P; Kinna, D

    2014-11-01

    The mirror-linked divertor spectroscopy diagnostic on JET has been upgraded with a new visible and near-infrared grating and filtered spectroscopy system. New capabilities include extended near-infrared coverage up to 1875 nm, capturing the hydrogen Paschen series, as well as a 2 kHz frame rate filtered imaging camera system for fast measurements of impurity (Be II) and deuterium Dα, Dβ, Dγ line emission in the outer divertor. The expanded system provides unique capabilities for studying spatially resolved divertor plasma dynamics at near-ELM resolved timescales as well as a test bed for feasibility assessment of near-infrared spectroscopy.

  12. Enhanced visible and near-infrared capabilities of the JET mirror-linked divertor spectroscopy system

    Energy Technology Data Exchange (ETDEWEB)

    Lomanowski, B. A., E-mail: b.a.lomanowski@durham.ac.uk; Sharples, R. M. [Centre for Advanced Instrumentation, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Meigs, A. G.; Conway, N. J.; Zastrow, K.-D.; Heesterman, P.; Kinna, D. [EURATOM/CCFE Fusion Association, Culham Science Center, Abingdon OX14 3DB (United Kingdom); Collaboration: JET-EFDA Team

    2014-11-15

    The mirror-linked divertor spectroscopy diagnostic on JET has been upgraded with a new visible and near-infrared grating and filtered spectroscopy system. New capabilities include extended near-infrared coverage up to 1875 nm, capturing the hydrogen Paschen series, as well as a 2 kHz frame rate filtered imaging camera system for fast measurements of impurity (Be II) and deuterium Dα, Dβ, Dγ line emission in the outer divertor. The expanded system provides unique capabilities for studying spatially resolved divertor plasma dynamics at near-ELM resolved timescales as well as a test bed for feasibility assessment of near-infrared spectroscopy.

  13. Near-infrared reflectance bull's eye maculopathy as an early indication of hydroxychloroquine toxicity.

    Science.gov (United States)

    Wong, Keye L; Pautler, Scott E; Browning, David J

    2015-01-01

    In some patients, hydroxychloroquine ocular toxicity may progress even following cessation of therapy. Any leverage the clinician may use to allow earlier detection may avert significant vision loss. We report three cases suggesting that bull's eye maculopathy seen on near-infrared reflectance with a confocal scanning laser ophthalmoscope could be an early, objective manifestation of hydroxychloroquine ocular toxicity, and with progression of the disease this near-infrared "bull's eye" change may disappear. Alerting clinicians to this observation may allow a larger case series to corroborate the hypothesis that bull's eye maculopathy detected by near-infrared reflectance may represent an early sign of hydroxychloroquine toxicity.

  14. Absolutely nondestructive discrimination of Huoshan Dendrobium nobile species with miniature near-infrared (NIR) spectrometer engine.

    Science.gov (United States)

    Hu, Tian; Yang, Hai-Long; Tang, Qing; Zhang, Hui; Nie, Lei; Li, Lian; Wang, Jin-Feng; Liu, Dong-Ming; Jiang, Wei; Wang, Fei; Zang, Heng-Chang

    2014-10-01

    As one very precious traditional Chinese medicine (TCM), Huoshan Dendrobium has not only high price, but also significant pharmaceutical efficacy. However, different species of Huoshan Dendrobium exhibit considerable difference in pharmaceutical efficacy, so rapid and absolutely non-destructive discrimination of Huoshan Dendrobium nobile according to different species is crucial to quality control and pharmaceutical effect. In this study, as one type of miniature near-infrared (NIR) spectrometer, MicroNIR 1700 was used for absolutely nondestructive determination of NIR spectra of 90 batches of Dendrobium from five species of differ- ent commodity grades. The samples were intact and not smashed. Soft independent modeling of class analogy (SIMCA) pattern recognition based on principal component analysis (PCA) was used to classify and recognize different species of Dendrobium samples. The results indicated that the SIMCA qualitative models established with pretreatment method of standard normal variate transformation (SNV) in the spectra range selected by Qs method had 100% recognition rates and 100% rejection rates. This study demonstrated that a rapid and absolutely non-destructive analytical technique based on MicroNIR 1700 spectrometer was developed for successful discrimination of five different species of Huoshan Dendrobium with acceptable accuracy.

  15. [Application of near-infrared spectroscopy technology in extraction and concentration process of Reduning injection].

    Science.gov (United States)

    Zhang, Ya-Fei; Zuo, Xiang-Yun; Bi, Yu-An; Wu, Jian-Xiong; Wang, Zhen-Zhong; L, Ping; Xiao, Wei

    2014-08-01

    To establish a rapid quantitative analysis method for the content of chlorogenic acid and solid content in the extraction liquid concentration process during the production of Reduning injection by using the near-infrared (NIR) spectroscopy, in order to reflect the concentration state in a real-time manner and really realize the quality control of concentrating process of the extraction and concentration process. The samples during the Jinqing extraction liquid concentration process were collected. After the removal of abnormal samples, the spectra pretreatment and the wave band selection, the quantitative calibration model between NIR spectra and chlorogenic acid HPLC analytical value and solid content was established by using PLS algorithm, and unknown samples were predicted. The correlation coefficients between the chlorogenic acid content and the solid content were respectively 0.992 1 and 0.994 0, and the correlation coefficients of the verification model were respectively 0.994 4 and 0.998 4, with the root mean square error of calibration (RMSEC) of 0.814 6 and 2.656 1 and the root mean square error of prediction (RMSEP) of 0.704 6 and 1.876 7 respectively, and the relative standard errors of predictions (RSEP) were 6.01% and 2.93% respectively. The method is simple, rapid, nondestructive, accurate and reliable, thus could be adopted for the fast monitoring of the chlorogenic acid content and the solid content during the concentration process of Reduning injection extraction liquid.

  16. [A novel method for fast determination of components in Guizhi Fuling capsule by near infrared spectroscopy].

    Science.gov (United States)

    Gong, Kaimin; Li, Jiachun; Xu, Lianmin; Xiao, Wei; Bi, Yu'an; Wang, Zhenzhong; Zhang, Chenfeng

    2011-04-01

    To develop a new method to rapidly determine and identify Guizhi Fuling capsule by portable acousto-optic tunable filter-near infrared spectroscopy. The qualitative model was set up using principal component analysis. The correlation models between the NIR spectra and the reference values of five major constituents were obtained with partial least squares method. The identifying model accurately identified Guizhi Fuling capsule, and quantitative analytical models could precisely predicted the content of ellagic acid, baicalin, benzoylpaenoniflorin, cinnamaldehyde, and paeonol. The correlation coefficients of the calibration models were 0.924 2, 0.938 4, 0.924 2, 0.933 6, 0.934 7, the validation set coefficients of the calibration were 0.924 2, 0.938 4, 0.924 2, 0.933 6, 0.934 7, and the RMSEP were 1.138%, 3.014%, 0.751%, 0.625%, 3.455%, 1.363%, respectively. The results of external validation showed no significant difference between the predictive and the determining values by t-test. The method is accurate, rapid and non-destructive, and can be used for determining and identifying Guizhi Fuling capsule.

  17. Real-time near-infrared spectroscopic inspection system for adulterated sesame oil

    Science.gov (United States)

    Kang, Sukwon; Lee, Kang-jin; Son, Jaeryong; Kim, Moon S.

    2010-04-01

    Sesame seed oil is popular and expensive in Korea and has been often mixed with other less expensive vegetable oils. The objective of this research is to develop an economical and rapid adulteration determination system for sesame seed oil mixed with other vegetable oils. A recently developed inspection system consists of a light source, a measuring unit, a spectrophotometer, fiber optics, and a data acquisition module. A near-infrared transmittance spectroscopic method was used to develop the prediction model using Partial Least Square (PLS). Sesame seed oil mixed with a range of concentrations of corn, or perilla, or soybean oil was measured in 8 mm diameter glass tubes. For the model development, a correlation coefficient value of 0.98 was observed for corn, perilla, and soybean oil mixtures with standard errors of correlation of 6.32%, 6.16%, and 5.67%, respectively. From the prediction model, the correlation coefficients of corn oil, perilla oil, and soybean oil were 0.98, 0.97 and 0.98, respectively. The Standard Error of Prediction (SEP) for corn oil, perilla oil, and soybean oil were 6.52%, 6.89% and 5.88%, respectively. The results indicated that this system can potentially be used as a rapid non-destructive adulteration analysis tool for sesame seed oil mixed with other vegetable oils.

  18. Porphyrin Based Near Infrared-Absorbing Materials for Organic Photovoltaics

    Science.gov (United States)

    Zhong, Qiwen

    The conservation and transformation of energy is essential to the survival of mankind, and thus concerns every modern society. Solar energy, as an everlasting source of energy, holds one of the key solutions to some of the most urgent problems the world now faces, such as global warming and the oil crisis. Advances in technologies utilizing clean, abundant solar energy, could be the steering wheel of our societies. Solar cells, one of the major advances in converting solar energy into electricity, are now capturing people's interest all over the globe. While solar cells have been commercially available for many years, the manufacturing of solar cells is quite expensive, limiting their broad based implementation. The cost of solar cell based electricity is 15-50 cents per kilowatt hour (¢/kwh), depending on the type of solar cell, compared to 0.7 ¢/kwh for fossil fuel based electricity. Clearly, decreasing the cost of electricity from solar cells is critical for their wide spread deployment. This will require a decrease in the cost of light absorbing materials and material processing used in fabricating the cells. Organic photovoltaics (OPVs) utilize organic materials such as polymers and small molecules. These devices have the advantage of being flexible and lower cost than conventional solar cells built from inorganic semiconductors (e.g. silicon). The low cost of OPVs is tied to lower materials and fabrication costs of organic cells. However, the current power conversion efficiencies of OPVs are still below 15%, while convention crystalline Si cells have efficiencies of 20-25%. A key limitation in OPVs today is their inability to utilize the near infrared (NIR) portion of the solar spectrum. This part of the spectrum comprises nearly half of the energy in sunlight that could be used to make electricity. The first and foremost step in conversion solar energy conversion is the absorption of light, which nature has provided us optimal model of, which is

  19. Near infrared spectroscopy--investigations in neurovascular diseases.

    Science.gov (United States)

    Schytz, Henrik Winther

    2015-12-01

    The purpose of this thesis was to explore and develop methods, where continuous wave near infrared spectroscopy (CW-NIRS) can be applied in different neurovascular diseases, in order to find biological markers that are useful in clinical neurology. To develop a new method to detect changes in cerebral blood flow (CBF), the first study investigated a multi-source detector separation configuration and indocyanine green (ICG) as a tracer to calculate a corrected blood flow index (BFI) value. The study showed no correlation between CBF changes measured by 133Xenon single photon emission computer tomography (133Xe-SPECT) and the corrected BFI value. It was concluded, that it was not possible to obtain reliable BFI data with the ICG CW-NIRS method. NIRS measurements of low frequency oscillations (LFOs) may be a reliable method to investigate vascular alterations in neurovascular diseases, but this requires an acceptable LFOs variation between hemispheres and over time in the healthy brain. The second study therefore investigated day-to-day and hemispheric variations in LFOs with NIRS. It was shown that NIRS might be useful in assessing LFOs between hemispheres, as well as interhemispheric phase and gain directly and over time. Migraine may be associated with persistent impairment of neurovascular coupling, but there is no experimental evidence to support this. The third study therefore investigated interictal neurovascular coupling during a mental task by a Stroop test in migraine without aura (MO) patients, which is the most common type of migraine. The study showed intact neurovascular coupling in the prefrontal cortex outside of attacks in patients with MO. The fourth study aimed to investigate possible changes in LFOs amplitude following nitric oxide (NO) donor infusion in familial hemiplegic migraine (FHM), which is a rare Mendelian subtype of migraine with aura. This study showed increased LFOs amplitude only in FHM patients with co-existing common type of migraine

  20. In vivo near-infrared fluorescence three-dimensional positioning system with binocular stereovision.

    Science.gov (United States)

    Song, Bofan; Jin, Wei; Wang, Ying; Jin, Qinhan; Mu, Ying

    2014-01-01

    Fluorescence is a powerful tool for in-vivo imaging in living animals. The traditional in-vivo fluorescence imaging equipment is based on single-view two-dimensional imaging systems. However, they cannot meet the needs for accurate positioning during modern scientific research. A near-infrared in-vivo fluorescence imaging system is demonstrated, which has the capability of deep source signal detecting and three-dimensional positioning. A three-dimensional coordinates computing (TDCP) method including a preprocess algorithm is presented based on binocular stereo vision theory, to figure out the solution for diffusive nature of light in tissue and the emission spectra overlap of fluorescent labels. This algorithm is validated to be efficient to extract targets from multispectral images and determine the spot center of biological interests. Further data analysis indicates that this TDCP method could be used in three-dimensional positioning of the fluorescent target in small animals. The study also suggests that the combination of a large power laser and deep cooling charge-coupled device will provide an attractive approach for fluorescent detection from deep sources. This work demonstrates the potential of binocular stereo vision theory for three-dimensional positioning for living animal in-vivo imaging.

  1. Near-infrared optical imaging of human brain based on the semi-3D reconstruction algorithm

    Science.gov (United States)

    Liu, Ming; Meng, Wei; Qin, Zhuanping; Zhou, Xiaoqing; Zhao, Huijuan; Gao, Feng

    2013-03-01

    In the non-invasive brain imaging with near-infrared light, precise head model is of great significance to the forward model and the image reconstruction. To deal with the individual difference of human head tissues and the problem of the irregular curvature, in this paper, we extracted head structure with Mimics software from the MRI image of a volunteer. This scheme makes it possible to assign the optical parameters to every layer of the head tissues reasonably and solve the diffusion equation with the finite-element analysis. During the solution of the inverse problem, a semi-3D reconstruction algorithm is adopted to trade off the computation cost and accuracy between the full 3-D and the 2-D reconstructions. In this scheme, the changes in the optical properties of the inclusions are assumed either axially invariable or confined to the imaging plane, while the 3-D nature of the photon migration is still retained. This therefore leads to a 2-D inverse issue with the matched 3-D forward model. Simulation results show that comparing to the 3-D reconstruction algorithm, the Semi-3D reconstruction algorithm cut 27% the calculation time consumption.

  2. Near-infrared reflectance spectroscopy as a process analytical technology tool in Ginkgo biloba extract qualification.

    Science.gov (United States)

    Rosa, Sílvia S; Barata, Pedro A; Martins, José M; Menezes, José C

    2008-06-09

    Here, we describe the use of near-infrared diffuse reflectance spectroscopy for qualification of Ginkgo biloba extract as raw material for use in pharmaceutical products. G. biloba extract shows unpredicted and uncontrolled variability in some of its quality specifications, intrinsic to its natural origin, which have influence on the manufacturing process of solid dosage forms (viz. granulation and compression). Some of these properties could not be determined by conventional quality control tests, so we investigated the use of NIR to qualify the batches of Ginkgo extract accordingly to its different features and establish a relationship with some of the manufacturing steps behaviour based on their qualification. Several approaches were evaluated, and the NIR method developed demonstrated to be sensitive to changes in important quality specifications and therefore adequate to qualify incoming batches of G. biloba extract. This could be considered a process analytical technology (PAT) application since it: (1) establishes the source of variability in a qualitative way, (2) explains its propagation to the final product quality attributes and (3) lays the basis for a control strategy to be applied in the manufacturing process.

  3. Near-infrared emission spectrometry measurements for nonintrusive soot diagnostics in flames

    Energy Technology Data Exchange (ETDEWEB)

    Ayranci, Isil [Department of Chemical Engineering, Middle East Technical University, 06531 Ankara (Turkey); Centre de Thermique de Lyon (CETHIL CNRS-INSA Lyon-UCBL), Bat. Sadi Carnot, INSA-Lyon, F-69621 Villeurbanne (France)], E-mail: ayranci.kilinc@gmail.com; Vaillon, Rodolphe [Centre de Thermique de Lyon (CETHIL CNRS-INSA Lyon-UCBL), Bat. Sadi Carnot, INSA-Lyon, F-69621 Villeurbanne (France)], E-mail: rodolphe.vaillon@insa-lyon.fr; Selcuk, Nevin [Department of Chemical Engineering, Middle East Technical University, 06531 Ankara (Turkey)], E-mail: selcuk@metu.edu.tr

    2008-01-15

    The present study focuses on measurement of line-of-sight emission intensity spectra in the near-infrared range by Fourier-transform infrared spectrometry for use in tomographic soot diagnostics. Measurements are carried out on an axisymmetric, laboratory grade, ethylene/air diffusion flame within the 1.1-1.7 {mu}m (9000-6000 cm{sup -1}) spectral range. Presentation of the measurement and calibration methodology is followed by the description of noise and uncertainty assessment procedures. A novel noise characterization approach that accounts for both spectral and spatial fluctuations is introduced. Measured intensities are utilized to infer soot temperature and volume fraction profiles from an inversion technique based on gray refractive index assumption. Predictions at flame axis are found to be in reasonable agreement with properties reported in literature for similar flames, but steep volume fraction peaks at the flame edges are not sufficiently captured due to the expected effects of large beam diameter, suggesting that the present configuration requires improvement in terms of spatial resolution.

  4. Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Tomas [Department of Physics, Lund Institute of Technology, Box 118, SE-221 00 Lund (Sweden); Swartling, Johannes [Department of Physics, Lund Institute of Technology, Box 118, SE-221 00 Lund (Sweden); Taroni, Paola [Politecnico di Milano, Piazza Leonardo da Vinci 32, I-210 33 Milan (Italy); Torricelli, Alessandro [Politecnico di Milano, Piazza Leonardo da Vinci 32, I-210 33 Milan (Italy); Lindblom, Pia [Department of Surgery, Lund University Hospital, SE-221 85 Lund (Sweden); Ingvar, Christian [Department of Surgery, Lund University Hospital, SE-221 85 Lund (Sweden); Andersson-Engels, Stefan [Department of Physics, Lund Institute of Technology, Box 118, SE-221 00 Lund (Sweden)

    2005-06-07

    In recent years, extensive efforts have been made in developing near-infrared optical techniques to be used in detection and diagnosis of breast cancer. Variations in optical properties of normal breast tissue set limits to the performance of such techniques and must therefore be thoroughly examined. In this paper, we present intra- and intersubject as well as contralateral variations of optical and physiological properties in breast tissue as measured by using four-wavelength time-resolved spectroscopy (at 660, 786, 916 and 974 nm). In total, 36 volunteers were examined at five regions at each breast. Optical properties (absorption, {mu}{sub a}, and reduced scattering, {mu}'{sub s}) are derived by employing diffusion theory. The use of four wavelengths enables determination of main tissue chromophores (haemoglobin, water and lipids) as well as haemoglobin oxygenation. Variations in all evaluated properties seen over the entire breast are approximately twice those for small-scale heterogeneity (millimetre scale). Intrasubject variations in optical properties are almost in all cases below 20% for {mu}'{sub s}, and 40% for {mu}{sub a}. Overall variations in water, lipid and haemoglobin concentrations are all in the order of 20%. Oxygenation is the least variable of the quantities evaluated, overall intrasubject variations being 6% on average. Extracted physiological properties confirm differences between pre- and post-menopausal breast tissue. Results do not indicate systematic differences between left and right breast000.

  5. ASTM clustering for improving coal analysis by near-infrared spectroscopy.

    Science.gov (United States)

    Andrés, J M; Bona, M T

    2006-11-15

    Multivariate analysis techniques have been applied to near-infrared (NIR) spectra coals to investigate the relationship between nine coal properties (moisture (%), ash (%), volatile matter (%), fixed carbon (%), heating value (kcal/kg), carbon (%), hydrogen (%), nitrogen (%) and sulphur (%)) and the corresponding predictor variables. In this work, a whole set of coal samples was grouped into six more homogeneous clusters following the ASTM reference method for classification prior to the application of calibration methods to each coal set. The results obtained showed a considerable improvement of the error determination compared with the calibration for the whole sample set. For some groups, the established calibrations approached the quality required by the ASTM/ISO norms for laboratory analysis. To predict property values for a new coal sample it is necessary the assignation of that sample to its respective group. Thus, the discrimination and classification ability of coal samples by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) in the NIR range was also studied by applying Soft Independent Modelling of Class Analogy (SIMCA) and Linear Discriminant Analysis (LDA) techniques. Modelling of the groups by SIMCA led to overlapping models that cannot discriminate for unique classification. On the other hand, the application of Linear Discriminant Analysis improved the classification of the samples but not enough to be satisfactory for every group considered.

  6. Characterization of herbal powder blends homogeneity using near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Wenlong Li

    2014-11-01

    Full Text Available Homogeneity of powder blend is essential to obtain uniform contents for the tablets and capsules. Near-infrared (NIR spectroscopy with fiber-optic probe was used as an on-line technique for monitoring the homogeneity of pharmaceutical blend during the blending process instead of the traditional techniques, such as high performance liquid chromatograph (HPLC method. In this paper NIRS with a SabIR diffuse reflectance fiber-optic probe was used to monitor the blending process of coptis powder and lactose (excipient with different contents, and further qualitative methods, like similarity, moving block of standard deviation and mean square were used for calculation purposes with the collected spectra after the pretreatment of multiplicative signal correction (MSC and second derivative. Correlation spectrum was used for the wavelength selection. Four different coptis were blended with lactose separately to validate the proposed method, and the blending process of "liu wei di huang" pill was also simulated in bottles to verify this method on multiple herbal blends. The overall results suggest that NIRS is a simple, effective and noninvasive technique can be successfully applied to the determination of homogeneity in the herbal blend.

  7. Accurate optical parameter extraction procedure for broadband near-infrared spectroscopy of brain matter

    Science.gov (United States)

    Sultan, Ebraheem; Najafizadeh, Laleh; Gandjbakhche, Amir H.; Pourrezaei, Kambiz; Daryoush, Afshin

    2013-01-01

    Modeling behavior of broadband (30 to 1000 MHz) frequency modulated near-infrared (NIR) photons through a phantom is the basis for accurate extraction of optical absorption and scattering parameters of biological turbid media. Photon dynamics in a phantom are predicted using both analytical and numerical simulation and are related to the measured insertion loss (IL) and insertion phase (IP) for a given geometry based on phantom optical parameters. Accuracy of the extracted optical parameters using finite element method (FEM) simulation is compared to baseline analytical calculations from the diffusion equation (DE) for homogenous brain phantoms. NIR spectroscopy is performed using custom-designed, broadband, free-space optical transmitter (Tx) and receiver (Rx) modules that are developed for photon migration at wavelengths of 680, 780, and 820 nm. Differential detection between two optical Rx locations separated by 0.3 cm is employed to eliminate systemic artifacts associated with interfaces of the optical Tx and Rx with the phantoms. Optical parameter extraction is achieved for four solid phantom samples using the least-square-error method in MATLAB (for DE) and COMSOL (for FEM) simulation by fitting data to measured results over broadband and narrowband frequency modulation. Confidence in numerical modeling of the photonic behavior using FEM has been established here by comparing the transmission mode's experimental results with the predictions made by DE and FEM for known commercial solid brain phantoms.

  8. Estimation of the mechanical properties of wood from Eucalyptus urophylla using near infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Carlos Rogério Andrade

    2010-09-01

    Full Text Available Mechanical properties studies of wood usually involve destructive wood assessments, with time-consuming teststhat use large amounts of resource (wood. Although this is not a limiting factor, it could be attenuated by the use of a nondestructivetechnique known as near infrared spectroscopy (NIRS. This technique has been applied to evaluate compounds containing C-H,N-H, S-H or O-H bonds, and involves quick analyses and can be applied to process control tasks. The objective of this work isto use the NIRS technique to obtain calibrations for mechanical properties of Eucalyptus sp. wood. A natural E. urophylla hybridat age 7 was used as obtained from V&M Florestal crops. Spectra were measured directly in solid wood (radial, tangential andtransverse faces and in ground wood, in diffuse reflectance mode, using a Bruker spectrometer in the 800 to 1,500 nm range. TheNIRS technique proved suitable to estimate modulus of elasticity in solid wood, with values r=0.91 and RPD=2.6, and in groundwood, with values r=0.87 and RPD=2.0. Modulus of rupture and compressive strength presented r values below 0.9. First andsecond derivative pretreatments provided a slight increase in correlation values for the properties in question. Calibrations fordifferent plank faces did not present a defined variation pattern. Solid wood and ground wood presented similar correlation valuesfor all properties.

  9. Near-infrared phase cancellation instrument for fast and accurate localization of fluorescent heterogeneity

    Science.gov (United States)

    Chen, Yu; Mu, Chenpeng; Intes, Xavier; Blessington, Dana; Chance, Britton

    2003-07-01

    Near-infrared (NIR) diffuse optical imaging has become a promising method for noninvasive in vivo detection of breast cancer with intrinsic chromophores. Recent developments in molecular specific targeting fluorescent contrast agents offer high tumor to normal tissue contrast, and are capable of selectively labeling various precancer/cancer signatures, thus enhancing both the sensitivity and specificity of cancer detection. To detect a subsurface tumor labeled by fluorescent contrast agents, we have developed a phase cancellation imaging system for fast localization of fluorescent object embedded several centimeters deep inside the turbid media. The instrument is a frequency domain (50 MHz) phase modulation system with dual out-of-phase sources. The excitation wavelength is 780 nm and the fluorescence photons are collected through an 830±10 nm band-pass filter. Localization of fluorescent objects inside the scattering media is accurate using a phase cancellation device. The localization error for a 5 mm diameter sphere filled with 1 nanomole fluorescent dye and 3 cm deep inside the turbid media is about 2 mm. The accuracy of the localization suggests that this system could be helpful in guiding clinical fine-needle biopsy, and would benefit the early detection of breast tumors.

  10. Biointerfacing polymeric microcapsules for in vivo near-infrared light-triggered drug release

    Science.gov (United States)

    Shao, Jingxin; Xuan, Mingjun; Si, Tieyan; Dai, Luru; He, Qiang

    2015-11-01

    Seeking safe and effective water-soluble drug carriers is of great significance in nanomedicine. To achieve this goal, we present a novel drug delivery system based on biointerfacing hollow polymeric microcapsules for effectively encapsulating water-soluble antitumor drug and gold nanorod (GNR) functionalization for triggered release of therapeutic drugs on-demand using low power near-infrared (NIR) radiation. The surface of polymeric microcapsules is covered with fluidic lipid bilayers to decrease the permeability of the wall of polymeric capsules. The temperature increase upon NIR illumination deconstructs the structure of the lipid membrane and polyelectrolyte multilayers, which in turn results in the rapid release of encapsulated water-soluble drug. In vivo antitumor tests demonstrate that this microcapsule has the effective ability of inhibiting tumor growth and preventing metastases. Real time in vivo fluorescence imaging results confirm that capsules can be excreted gradually from the animal body which in turn demonstrates the biocompatibility and biodegradation of these biointerfacing GNR-microcapsules. This intelligent system provides a novel anticancer platform with the advantages of controlled release, biological friendliness and credible biosafety.Seeking safe and effective water-soluble drug carriers is of great significance in nanomedicine. To achieve this goal, we present a novel drug delivery system based on biointerfacing hollow polymeric microcapsules for effectively encapsulating water-soluble antitumor drug and gold nanorod (GNR) functionalization for triggered release of therapeutic drugs on-demand using low power near-infrared (NIR) radiation. The surface of polymeric microcapsules is covered with fluidic lipid bilayers to decrease the permeability of the wall of polymeric capsules. The temperature increase upon NIR illumination deconstructs the structure of the lipid membrane and polyelectrolyte multilayers, which in turn results in the rapid

  11. A Near-Infrared Photothermal Effect-Responsive Drug Delivery System Based on Indocyanine Green and Doxorubicin-Loaded Polymeric Micelles Mediated by Reversible Diels-Alder Reaction.

    Science.gov (United States)

    Li, Hui; Li, Junjie; Ke, Wendong; Ge, Zhishen

    2015-10-01

    Near-infrared light (NIR) possesses great advantages for light-responsive controllable drug release, such as deep tissue penetration and low damage to healthy tissues. Herein, a NIR-responsive drug delivery system is developed based on a NIR dye, indocyanine green (ICG), and anticancer drug, doxorubicin (DOX)-loaded thermoresponsive block copolymer micelles, in which the drug release can be controlled via NIR irradiation. First, block copolymers, poly(oligo(ethylene glycol) methacrylate)-block-poly(furfuryl methacrylate) (POEGMA-b-PFMA), are synthesized by sequential reversible addition-fragmentation chain-transfer (RAFT) polymerization, followed by modification with N-octyl maleimide through Diels-Alder (DA) reaction to produce POEGMA-b-POMFMA. The self-assembly of POEGMA-b-POMFMA by nano-precipitation in aqueous solution affords the polymeric micelles which are used to simultaneously encapsulate ICG and DOX. Upon irradiation by NIR light (805 nm), the loaded DOX is released rapidly from the micelles due to partial retro DA reaction and local temperature increase-induced faster drug diffusion by the photothermal effect. Cytotoxicity evaluation and intracellular distribution observation demonstrate significant synergistic effects of NIR-triggered drug release, photothermal, and chemotherapy toward cancer cells under NIR irradiation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media.

    Science.gov (United States)

    Ntziachristos, Vasilis; Weissleder, Ralph

    2002-05-01

    We present a novel tomographer for three-dimensional reconstructions of fluorochromes in diffuse media. Photon detection is based on charge-coupled device technology that allows the implementation of a large parallel array of detection channels with high sensitivity. Using this instrument we studied the response and detection limits of near-infrared fluorochromes in diffuse media as a function of light intensity and for a wide range of biologically relevant concentrations. We further examined the resolution of the scanner and the reconstruction linearity achieved. We demonstrate that the instrument attains better than 3 mm resolution, is linear within more than two orders of magnitude of fluorochrome concentration, and can detect fluorescent objects at femto-mole quantities in small animal-like geometries. These measurements delineate detection and reconstruction characteristics associated with imaging of novel classes of fluorescent probes developed for in vivo molecular and functional probing of tissues.

  13. Rapid diffusion of magic-size islands by combined glide and vacancy mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Perez, D [Los Alamos National Laboratory; Voter, A F [Los Alamos National Laboratory; Uche, O U [SNL; Hamilton, J C [SNL

    2009-01-01

    Using molecular dynamics, nudged elastic band, and embedded atom methods, we show that certain 2D Ag islands undergo extremely rapid one-dimensional diffusion on Cu(001) surfaces. Indeed, below 300K, hopping rates for 'magic-size' islands are orders of magnitude faster than hopping rates for single Ag adatoms. This rapid diffusion requires both the c(10 x 2) hexagonally-packed superstructure typical of Ag on Cu(001) and appropriate 'magic-sizes' for the islands. The novel highly-cooperative diffusion mechanism presented here couples vacancy diffusion with simultaneous core glide.

  14. Diagnosis with near infrared spectroscopy during minimally invasive procedures

    NARCIS (Netherlands)

    R. Nachabé (Rami)

    2012-01-01

    textabstract The goal of this dissertation is to present the potential of diffuse optical spectroscopy technique to characterize and differentiate types of tissue, including dysplastic and cancerous tissues, when measuring the tissue spectra during a surgical or an interventional procedure under

  15. Diagnosis with near infrared spectroscopy during minimally invasive procedures

    NARCIS (Netherlands)

    R. Nachabé (Rami)

    2012-01-01

    textabstractThe goal of this dissertation is to present the potential of diffuse optical spectroscopy technique to characterize and differentiate types of tissue, including dysplastic and cancerous tissues, when measuring the tissue spectra during a surgical or an interventional procedure under

  16. A Near-Infrared Photon Counting Camera for High Sensitivity Astronomical Observation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a Near Infrared Photon-Counting Sensor (NIRPCS), an imaging device with sufficient sensitivity to capture the spectral signatures, in the...

  17. Near infrared spectroscopy for frontal lobe oxygenation during non-vascular abdominal surgery

    DEFF Research Database (Denmark)

    Sørensen, Henrik; Grocott, Hilary P; Secher, Niels H

    2016-01-01

    PURPOSE: Cerebral deoxygenation, as determined by near infrared spectroscopy (NIRS), seems to predict postoperative complications following cardiac surgery. We identify the type of non-vascular abdominal surgery associated with cerebral deoxygenation and/or hyperoxygenation, how such deviations a...

  18. Cutaneous vasoconstriction affects near-infrared spectroscopy determined cerebral oxygen saturation during administration of norepinephrine

    DEFF Research Database (Denmark)

    Sørensen, Niels Henrik Breiner; Secher, Niels H; Siebenmann, Christoph

    2012-01-01

    Perioperative optimization of spatially resolved near-infrared spectroscopy determined cerebral frontal lobe oxygenation (scO2) may reduce postoperative morbidity. Norepinephrine is routinely administered to maintain cerebral perfusion pressure and, thereby, cerebral blood flow, but norepinephrine...

  19. UV Written Integrated Optical Beam Combiner for Near Infrared Astronomical Interferometry

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Olivero, Massimo; Jocou, Laurent

    2006-01-01

    A near infrared integrated optical beam combiner for astronomical interferometry is demonstrated for the first time by direct UV writing. High fringe contrast >95%, low total loss (0.7 dB), low crosstalk and broadband performance is demonstrated....

  20. MODIS/Aqua Granule Level 2 Water Vapor Near Infrared Jpeg image

    Data.gov (United States)

    National Aeronautics and Space Administration — This is a Jpeg image product generated from MODIS Level 2 Precipitable Water product (MYD05_L2) using WATER_VAPOR_NEAR_INFRARED parameter. For more information about...

  1. MODIS/Terra Granule Level 2 Water Vapor Near Infrared Jpeg image

    Data.gov (United States)

    National Aeronautics and Space Administration — This is a Jpeg image product generated from MODIS Level 2 Precipitable Water product (MOD05_L2) using WATER_VAPOR_NEAR_INFRARED parameter. For more information about...

  2. Turn-key Near-Infrared Photon-Counting Detector Module for LIDAR Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design and deliver a turn-key photon counting detector module for near-infrared wavelengths, based on large-area InGaAs/InP avalanche photodiodes...

  3. NEAR-INFRARED PHOTOMETRY OF ASTEROIDS FROM DENIS V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The DENIS program (Deep European Near-Infrared southern sky Survey) was a ground-based survey of the southern sky with the aim of providing an extensive I,J,Ks...

  4. REDDY VESTA ROTATIONALLY RESOLVED NEAR-INFRARED SPECTRA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains low-resolution near-infrared (~0.7-2.5 microns) spectra of main belt asteroid (4) Vesta observed with the SpeX instrument on NASA Infrared...

  5. Near-Infrared Wireless Optical Communication with Particulates In-Suspension over the Underwater Channel

    KAUST Repository

    Lee, It Ee

    2017-05-08

    We demonstrate a gigabit near-infrared-based underwater wireless optical communication link using an 808-nm laser diode to mitigate the particle scattering effect in turbid medium. An improvement in the error performance is observed with increasing concentrations.

  6. Near infrared spectroscopy and chemometrics analysis of complex traits in animal physiology

    Science.gov (United States)

    Near infrared reflectance (NIR) applications have been expanding from the traditional framework of small molecule chemical purity and composition (as defined by spectral libraries) to complex system analysis and holistic exploratory approaches to questions in biochemistry, biophysics and environment...

  7. Assessment of near infrared and "software sensor" for biomass monitoring and control

    NARCIS (Netherlands)

    Soons, Z.I.T.A.; Streefland, M.; Straten, van G.; Boxtel, van A.J.B.

    2008-01-01

    Spectroscopic instrumentation is often seen as promising for process analytical technology (PAT) to enhance control of manufacturing (bio)pharmaceuticals. The interpretation of near infrared spectra is challenging due to the large number of wavelengths recorded and the overlapping absorbance

  8. [Application of near-infrared spectrum technology to research of weathering of red sandstone relics].

    Science.gov (United States)

    Jiang, Xiao-Dong; Cao, Jian-Jin; Li, Yi-An; Yin, Jin-Long; Ye, Jin-Long

    2011-08-01

    In the present paper, with near infrared spectroscopy technology, the weathering mechanism of red sandstone relics was studied. Six groups of red sandstone samples were analyzed using near infrared spectroscopy technology. The results show that the near-infrared spectroscopy technology can analyze the material composition of red sandstone before and after weathering, aiming to explore their components changed. So it is a quick and efficient means of research with characteristic of less measurement sample and speed and non-damage and being pollution-free compared with other research techniques. All the characteristic shows that it is also well for studying other stone cultural relics. Especially for those with sampling difficulty and treasure valuable, non-destruction of stone cultural relics is particularly important. So with time advancing, near infrared technology as a research means of stone relics, its meaning will be more prominent.

  9. Chemometrical Contributions Extending the Application of Near-Infrared and Raman Spectroscopy

    NARCIS (Netherlands)

    Groot, P.J. de

    2004-01-01

    Raman and near-infrared (NIR) reflectance spectroscopy are increasingly being applied in industry and laboratories. Examples are: investigation of interactions between DNA molecules, characterizing polymer properties, and separating demolition waste. These applications demand robust systems and

  10. NEAR-INFRARED IMAGES OF COMET 9P/TEMPEL 1 V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset contains raw and reduced near-infrared images of comet 9P/Tempel 1, the target of the Deep Impact mission. Images were obtained from UT July 2-9, 2005...

  11. Transcranial red and near infrared light transmission in a cadaveric model.

    Directory of Open Access Journals (Sweden)

    Jared R Jagdeo

    Full Text Available BACKGROUND AND OBJECTIVE: Low level light therapy has garnered significant interest within the past decade. The exact molecular mechanisms of how red and near infrared light result in physiologic modulation are not fully understood. Heme moieties and copper within cells are red and near infrared light photoreceptors that induce the mitochondrial respiratory chain component cytochrome C oxidase, resulting in a cascade linked to cytoprotection and cellular metabolism. The copper centers in cytochrome C oxidase have a broad absorption range that peaks around 830 nm. Several in vitro and in vivo animal and human models exist that have demonstrated the benefits of red light and near infrared light for various conditions. Clinical applications for low level light therapy are varied. One study in particular demonstrated improved durable functional outcomes status post-stroke in patients treated with near infrared low level light therapy compared to sham treatment [1]. Despite previous data suggesting the beneficial effect in treating multiple conditions, including stroke, with low level light therapy, limited data exists that measures transmission in a human model. STUDY DESIGN/MATERIALS AND METHODS: To investigate this idea, we measured the transmission of near infrared light energy, using red light for purposes of comparison, through intact cadaver soft tissue, skull bones, and brain using a commercially available LED device at 830 nm and 633 nm. RESULTS: Our results demonstrate that near infrared measurably penetrates soft tissue, bone and brain parenchyma in the formalin preserved cadaveric model, in comparison to negligible red light transmission in the same conditions. CONCLUSION: These findings indicate that near infrared light can penetrate formalin fixed soft tissue, bone and brain and implicate that benefits observed in clinical studies are potentially related to direct action of near infrared light on neural tissue.

  12. Enhanced visible and near-infrared capabilities of the JET mirror-linked divertor spectroscopy system.

    OpenAIRE

    Lomanowski, B.A.; Meigs, A.G.; Conway, N. J.; Zastrow, K.-D.; Sharples, R. M.; Heesterman, P.; Kinna, D.; JET EFDA Contributors,

    2014-01-01

    The mirror-linked divertor spectroscopy diagnostic on JET has been upgraded with a new visible and near-infrared grating and filtered spectroscopy system. New capabilities include extended near-infrared coverage up to 1875 nm, capturing the hydrogen Paschen series, as well as a 2 kHz frame rate filtered imaging camera system for fast measurements of impurity (Be II) and deuterium Dα, Dβ, Dγ line emission in the outer divertor. The expanded system provides unique capabilities for studying spat...

  13. Importance of chromophore environment on the near infrared absorption of polymeric waveguides

    OpenAIRE

    Le Duff, Anne-Claire; Ricci, Vincent; Pliska, Tomas; Canva, Michael; Stegeman, George I.; Chan, Kwok Pong; Twieg, Robert

    2000-01-01

    International audience; The near-infrared absorption of two chromophore functionalized polymers and combinations of seventeen different guest chromophores in seven different organic polymer matrices were investigated to assess the effect of chromophore structure and environment on absorption. The near-infrared absorption losses were found to be dramatically larger by as much as 2-3 orders of magnitude in polymer matrices than in solution. Furthermore, the absorption of the long-wavelength tai...

  14. All-semiconductor metamaterial with negative refraction in the near-infrared

    DEFF Research Database (Denmark)

    Naik, Gururaj V.; Liu, Jingjing; Kildishev, Alexander V.

    2012-01-01

    When heavily doped, semiconductors such as ZnO can exhibit metallic properties thus becoming versatile building blocks for optical metamaterials. Here, we design and fabricate an all-semiconductor metamaterial and demonstrate negative refraction in the near-infrared region.......When heavily doped, semiconductors such as ZnO can exhibit metallic properties thus becoming versatile building blocks for optical metamaterials. Here, we design and fabricate an all-semiconductor metamaterial and demonstrate negative refraction in the near-infrared region....

  15. NEAR-INFRARED THERMAL EMISSION DETECTIONS OF A NUMBER OF HOT JUPITERS AND THE SYSTEMATICS OF GROUND-BASED NEAR-INFRARED PHOTOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Croll, Bryce [5525 Olund Road, Abbotsford, B.C. (Canada); Albert, Loic; Lafreniere, David [Département de physique, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7 (Canada); Jayawardhana, Ray [Department of Physics and Astronomy, York University, Toronto, ON L3T 3R1 (Canada); Cushing, Michael [Department of Physics and Astronomy, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Moutou, Claire [Canada-France-Hawaii Telescope Corporation, 65-1238 Mamalahoa Highway, Kamuela, HI 96743 (United States); Johnson, John Asher [Harvard-Smithsonian Center for Astrophysics, Institute for Theory and Computation, 60 Garden St, MS-51, Cambridge, MA 02138 (United States); Bonomo, Aldo S. [INAF-Osservatorio Astrofisico di Torino, via Osservatorio 20, I-10025 Pino Torinese (Italy); Deleuil, Magali [Aix Marseille University, CNRS, LAM (Laboratoire d' Astrophysique de Marseille), UMR 7326, F-13388 Marseille cedex 13 (France); Fortney, Jonathan, E-mail: croll@space.mit.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2015-03-20

    We present detections of the near-infrared thermal emission of three hot Jupiters and one brown dwarf using the Wide-field Infrared Camera (WIRCam) on the Canada-France-Hawaii Telescope (CFHT). These include Ks-band secondary eclipse detections of the hot Jupiters WASP-3b and Qatar-1b and the brown dwarf KELT-1b. We also report Y-band, K {sub CONT}-band, and two new and one reanalyzed Ks-band detections of the thermal emission of the hot Jupiter WASP-12b. We present a new reduction pipeline for CFHT/WIRCam data, which is optimized for high precision photometry. We also describe novel techniques for constraining systematic errors in ground-based near-infrared photometry, so as to return reliable secondary eclipse depths and uncertainties. We discuss the noise properties of our ground-based photometry for wavelengths spanning the near-infrared (the YJHK bands), for faint and bright stars, and for the same object on several occasions. For the hot Jupiters WASP-3b and WASP-12b we demonstrate the repeatability of our eclipse depth measurements in the Ks band; we therefore place stringent limits on the systematics of ground-based, near-infrared photometry, and also rule out violent weather changes in the deep, high pressure atmospheres of these two hot Jupiters at the epochs of our observations.

  16. Development of a neurofeedback protocol targeting the frontal pole using near-infrared spectroscopy.

    Science.gov (United States)

    Kinoshita, Akihide; Takizawa, Ryu; Yahata, Noriaki; Homae, Fumitaka; Hashimoto, Ryuichiro; Sakakibara, Eisuke; Kawasaki, Shingo; Nishimura, Yukika; Koike, Shinsuke; Kasai, Kiyoto

    2016-11-01

    Neurofeedback has been studied with the aim of controlling cerebral activity. Near-infrared spectroscopy is a non-invasive neuroimaging technique used for measuring hemoglobin concentration changes in cortical surface areas with high temporal resolution. Thus, near-infrared spectroscopy may be useful for neurofeedback, which requires real-time feedback of repeated brain activation measurements. However, no study has specifically targeted neurofeedback, using near-infrared spectroscopy, in the frontal pole cortex. We developed an original near-infrared spectroscopy neurofeedback system targeting the frontal pole cortex. Over a single day of testing, each healthy participant (n = 24) received either correct or incorrect (Sham) feedback from near-infrared spectroscopy signals, based on a crossover design. Under correct feedback conditions, significant activation was observed in the frontal pole cortex (P = 0.000073). Additionally, self-evaluation of control and metacognitive beliefs were associated with near-infrared spectroscopy signals (P = 0.006). The neurofeedback system developed in this study might be useful for developing control of frontal pole cortex activation. © 2016 The Authors. Psychiatry and Clinical Neurosciences © 2016 Japanese Society of Psychiatry and Neurology.

  17. Visible-near infrared spectroscopy as a tool to improve mapping of soil properties

    Science.gov (United States)

    Evgrafova, Alevtina; Kühnel, Anna; Bogner, Christina; Haase, Ina; Shibistova, Olga; Guggenberger, Georg; Tananaev, Nikita; Sauheitl, Leopold; Spielvogel, Sandra

    2017-04-01

    Spectroscopic measurements, which are non-destructive, precise and rapid, can be used to predict soil properties and help estimate the spatial variability of soil properties at the pedon scale. These estimations are required for quantifying soil properties with higher precision, identifying the changes in soil properties and ecosystem response to climate change as well as increasing the estimation accuracy of soil-related models. Our objectives were to (i) predict soil properties for nested samples (n = 296) using the laboratory-based visible-near infrared (vis-NIR) spectra of air-dried (sieved through a 2-mm sieve and ground with an agate mortar prior to the elemental analysis. The soil organic carbon and total nitrogen concentrations (in %) were determined using a dry combustion method on the Vario EL cube analyzer (Elementar Analysensysteme GmbH, Germany). Inorganic C was removed from the mineral soil samples with pH values higher than 7 prior to the elemental analysis using the volatilization method (HCl, 6 hours). The pH of soil samples was measured in 0.01 M CaCl2 using a 1:2 soil:solution ratio. However, for soil sample with a high in organic matter content, a 1:10 ratio was applied. We also measured oxalate and dithionite extracted iron, aluminum and manganese oxides and hydroxides using inductively coupled plasma optical emission spectroscopy (Varian Vista MPX ICP-OES, Agilent Technologies, USA). We predicted the above-mentioned soil properties for all nested samples using partial least squares regression, which was performed using R program. We can conclude that vis-NIR spectroscopy can be used effectively in order to describe, estimate and further map the spatial patterns of soil properties using geostatistical methods. This research could also help to improve the global soil spectral library taking into account that only few previous applications of vis-NIR spectroscopy were conducted on permafrost-affected soils of Northern Siberia. Keywords: Visible-near

  18. Visualization of Near-Infrared Spectral Data of Eros Using the Small Body Mapping Tool

    Science.gov (United States)

    Klima, Rachel L.; Ernst, Carolyn

    2016-10-01

    One of the primary drivers for many missions visiting asteroids is to advance our understanding of their composition beyond what can be (and is) already measured by telescopes. Without sample return or lander missions, this task relies primarily on resolved near-infrared spectroscopic measurements. Scientific analysis using spectral data collected by point spectrometers is not as straightforward as for imaging spectrometers, where the local spatial context is immediately available. In the case of Eros and other highly non-spherical bodies, this problem becomes even more severe when trying to locate spectra that cross a mapped feature that bends over an irregularly shaped surface. Thus, it is often the case that outside of the mission teams, few from the community at large delve into these data sets, as they lack the tools necessary to incorporate the spectral information into geological analyses of the asteroids. Ultimately, we seek to make such spectral datasets, which NASA has invested significant amounts of money to obtain, more widely accessible and user-friendly. The Small Bodies Mapping Tool (SBMT) is a Java-based, interactive, three-dimensional visualization tool written and developed at APL to map and analyze features on irregularly shaped solar system bodies. The SBMT can be used to locate and then "drape" spacecraft images, spectra, and laser altimetry around the shape model of such bodies. It provides a means for rapid identification of available data in a region of interest and allows features to be mapped directly onto the shape model. The program allows the free rotation of a shape model (including any overlain data) in all directions, so that the correlation and distribution of mapped features can be easily and globally observed.We will present the results of our work on the NEAR/Near-Infrared Spectrograph (NIS) data, including improvements to the calibration made by using the geometric information provided by the SBMT and improvements to the SMBT

  19. Cerebral reactivity in migraine patients measured with functional near-infrared spectroscopy.

    Science.gov (United States)

    Pourshoghi, Ahmadreza; Danesh, Arash; Tabby, David Stuart; Grothusen, John; Pourrezaei, Kambiz

    2015-12-08

    There are two major theories describing the pathophysiology of migraines. Vascular theory explains that migraines resulted from vasodilation of meningeal vessels irritating the trigeminal nerves and causing pain. More recently, a neural theory of migraine has been proposed, which suggests that cortical hyperexcitability leads to cortical spreading depression (CSD) causing migraine-like symptoms. Chronic migraine requires prophylactic therapy. When oral agents fail, there are several intravenous agents that can be used. Understanding underlying causes of migraine pain would help to improve efficacy of migraine medications by changing their mechanism of action. Yet to date no study has been made to investigate the link between vascular changes in response to medications for migraine versus pain improvements. Functional near-infrared spectroscopy (NIRS) has been used as an inexpensive, rapid, non-invasive and safe technique to monitor cerebrovascular dynamics. In this study, a multi-distance near-infrared spectroscopy device has been used to investigate the cortical vascular reactivity of migraine patients in response to drug infusions and its possible correlation with changes in pain experienced. We used the NIRS on 41 chronic migraine patients receiving three medications: magnesium sulfate, valproate sodium, and dihydroergotamine (DHE). Patients rated their pain on a 1-10 numerical scale before and after the infusion. No significant differences were observed between the medication effects on vascular activity from near channels measuring skin vascularity. However, far channels--indicating cortical vascular activity--showed significant differences in both oxyhemoglobin and total hemoglobin between medications. DHE is a vasoconstrictor and decreased cortical blood volume in our experiment. Magnesium sulfate has a short-lived vasodilatory effect and increased cortical blood volume in our experiment. Valproate sodium had no significant effect on blood volume

  20. Control of quality and silo storage of sunflower seeds using near infrared technology

    Directory of Open Access Journals (Sweden)

    González-Martín, I.

    2013-03-01

    Full Text Available This work assesses the application of near infrared spectroscopy technology for the quality control of sunflower seeds direct from farmers and from a storage silo. The results show that the analytical method employing near infrared spectroscopy can be used as a rapid and non-destructive tool for the determination of moisture, fat and high/low oleic acid contents in samples of sunflower seeds. The ranges obtained were comparable to those reported for classic chemical methods, and were between 4.6-21.4% for moisture; 38.4-49.6% for fat, and 60.0-93.1% for oleic acid expressed as percentage of total fatty acids. A stepwise discriminant analysis was performed to determine the most useful wavelengths for classifying sunflower seeds in terms of their (high/low oleic acid composition. The discriminant model allows the classification of sunflower seeds with high or low oleic acid contents, with a prediction rate of 90.5% for internal validation and of 89.4% for cross-validation.

    En este trabajo se evalúa la espectroscopía de infrarrojo cercano para su uso en el control de calidad y almacenamiento de semillas de girasol. Los resultados indican que el método analítico empleado puede utilizarse como método de determinación rápida de humedad, grasa y contenidos altos/bajos de ácido oleico. Los rangos de aplicación son comparables con los valores que se han determinado mediante métodos clásicos de análisis, encontrándose entre 4.6-21.4% la humedad, 38.4-49.6% la grasa y 60.0- 93.1% de ácido oleico del total de los ácidos grasos. Además se ha utilizado un análisis discriminarte lineal por pasos determinando las longitudes de onda más adecuadas para la clasificación de semillas de girasol en los grupos alto/bajo oleico. El modelo generado permitió la clasificación de semillas de girasol en los grupos alto y bajo oleico con unos porcentajes de muestras correctamente clasificadas de un 90.5% en validación interna y de un 89.4% en

  1. Visible-near-infrared luminescent lanthanide ternary complexes based on beta-diketonate using visible-light excitation.

    Science.gov (United States)

    Sun, Lining; Qiu, Yannan; Liu, Tao; Feng, Jing; Deng, Wei; Shi, Liyi

    2015-11-01

    We used the synthesized dinaphthylmethane (Hdnm) ligand whose absorption extends to the visible-light wavelength, to prepare a family of ternary lanthanide complexes, named as [Ln(dnm)3 phen] (Ln = Sm, Nd, Yb, Er, Tm, Pr). The properties of these complexes were investigated by Fourier transform infrared (FT-IR) spectroscopy, diffuse reflectance (DR) spectroscopy, thermogravimetric analyses, and excitation and emission spectroscopy. Generally, excitation with visible light is much more advantageous than UV excitation. Importantly, upon excitation with visible light (401-460 nm), the complexes show characteristic visible (Sm(3+)) as well as near-infrared (Sm(3+), Nd(3+), Yb(3+), Er(3+), Tm(3+), Pr(3+)) luminescence of the corresponding lanthanide ions, attributed to the energy transfer from the ligands to the lanthanide ions, an antenna effect. Now, using these near-infrared luminescent lanthanide complexes, the luminescent spectral region from 800 to 1650 nm, can be covered completely, which is of particular interest for biomedical imaging applications, laser systems, and optical amplification applications. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Slow spontaneous hemodynamic oscillations during sleep measured with near-infrared spectroscopy

    Science.gov (United States)

    Virtanen, Jaakko; Näsi, Tiina; Noponen, Tommi; Toppila, Jussi; Salmi, Tapani; Ilmoniemi, Risto J.

    2011-07-01

    Spontaneous cerebral hemodynamic oscillations below 100 mHz reflect the level of cerebral activity, modulate hemodynamic responses to tasks and stimuli, and may aid in detecting various pathologies of the brain. Near-infrared spectroscopy (NIRS) is ideally suited for both measuring spontaneous hemodynamic oscillations and monitoring sleep, but little research has been performed to combine these two applications. We analyzed 30 all-night NIRS-electroencephalography (EEG) sleep recordings to investigate spontaneous hemodynamic activity relative to sleep stages determined by polysomnography. Signal power of hemodynamic oscillations in the low-frequency (LF, 40-150 mHz) and very-low-frequency (VLF, 3-40 mHz) bands decreased in slow-wave sleep (SWS) compared to light sleep (LS) and rapid-eye-movement (REM) sleep. No statistically significant (p sleep in line with earlier studies with other modalities. These results increase our knowledge of the physiology of sleep, complement EEG data, and demonstrate the applicability of NIRS to studying spontaneous hemodynamic fluctuations during sleep.

  3. Highly Efficient Near Infrared Photothermal Conversion Properties of Reduced Tungsten Oxide/Polyurethane Nanocomposites

    Science.gov (United States)

    Chala, Tolesa Fita; Wu, Chang-Mou; Chou, Min-Hui; Gebeyehu, Molla Bahiru; Cheng, Kuo-Bing

    2017-01-01

    In this work, novel WO3-x/polyurethane (PU) nanocomposites were prepared by ball milling followed by stirring using a planetary mixer/de-aerator. The effects of phase transformation (WO3 → WO2.8 → WO2.72) and different weight fractions of tungsten oxide on the optical performance, photothermal conversion, and thermal properties of the prepared nanocomposites were examined. It was found that the nanocomposites exhibited strong photoabsorption in the entire near-infrared (NIR) region of 780–2500 nm and excellent photothermal conversion properties. This is because the particle size of WO3-x was greatly reduced by ball milling and they were well-dispersed in the polyurethane matrix. The higher concentration of oxygen vacancies in WO3-x contribute to the efficient absorption of NIR light and its conversion into thermal energy. In particular, WO2.72/PU nanocomposites showed strong NIR light absorption of ca. 92%, high photothermal conversion, and better thermal conductivity and absorptivity than other WO3/PU nanocomposites. Furthermore, when the nanocomposite with 7 wt % concentration of WO2.72 nanoparticles was irradiated with infrared light, the temperature of the nanocomposite increased rapidly and stabilized at 120 °C after 5 min. This temperature is 52 °C higher than that achieved by pure PU. These nanocomposites are suitable functional materials for solar collectors, smart coatings, and energy-saving applications. PMID:28737689

  4. A prototype stationary Fourier transform spectrometer for near-infrared absorption spectroscopy.

    Science.gov (United States)

    Li, Jinyang; Lu, Dan-feng; Qi, Zhi-mei

    2015-09-01

    A prototype stationary Fourier transform spectrometer (FTS) was constructed with a fiber-coupled lithium niobate (LiNbO3) waveguide Mach-Zehnder interferometer (MZI) for the purpose of rapid on-site spectroscopy of biological and chemical measurands. The MZI contains push-pull electrodes for electro-optic modulation, and its interferogram as a plot of intensity against voltage was obtained by scanning the modulating voltage from -60 to +60 V in 50 ms. The power spectrum of input signal was retrieved by Fourier transform processing of the interferogram combined with the wavelength dispersion of half-wave voltage determined for the MZI used. The prototype FTS operates in the single-mode wavelength range from 1200 to 1700 nm and allows for reproducible spectroscopy. A linear concentration dependence of the absorbance at λmax = 1451 nm for water in ethanolic solution was obtained using the prototype FTS. The near-infrared spectroscopy of solid samples was also implemented, and the different spectra obtained with different materials evidenced the chemical recognition capability of the prototype FTS. To make this prototype FTS practically applicable, work on improving its spectral resolution by increasing the maximum optical path length difference is in progress.

  5. Evaluation of chemical components and properties of the jujube fruit using near infrared spectroscopy and chemometrics.

    Science.gov (United States)

    Guo, Ying; Ni, Yongnian; Kokot, Serge

    2016-01-15

    Near-infrared spectroscopy (NIRS) calibrations were developed for the discrimination of spectra of the jujube (Zizyphus jujuba Mill.) fruit samples from four geographical regions. Prediction models were developed for the quantitative prediction of the contents of jujube fruit, i.e., total sugar, total acid, total phenolic content, and total antioxidant activity. Four pattern recognition methods, principal component analysis (PCA), linear discriminant analysis (LDA), least squares-support vector machines (LS-SVM), and back propagation-artificial neural networks (BP-ANN), were used for the geographical origin classification. Furthermore, three multivariate calibration models based on the standard normal variate (SNV) pretreated NIR spectroscopy, partial least squares (PLS), BP-ANN, and LS-SVM were constructed for quantitative analysis of the four analytes described above. PCA provided a useful qualitative plot of the four types of NIR spectra from the fruit. The LS-SVM model produced best quantitative prediction results. Thus, NIR spectroscopy in conjunction with chemometrics, is a very useful and rapid technique for the discrimination of jujube fruit. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Differentiating Oriental Fruit Moth and Codling Moth (Lepidoptera: Tortricidae) Larvae Using Near-Infrared Spectroscopy.

    Science.gov (United States)

    Siegwart, Myriam; Bouvier, Floriane; Maugin, Sandrine; Lecomte, Alain; Lavigne, Claire

    2015-02-01

    Cydia pomonella (L.) and Cydia molesta (Busck) (Lepidoptera: Tortricidae) are two important lepidopteran pests that may co-occur in apple orchards and are difficult to differentiate in the larval stage. We investigate the possibility of using near-infrared spectroscopy (NIRS) coupled with partial least squares analysis to distinguish the larvae of the two species. We further assess whether wild individuals can be differentiated using laboratory strains of the two species for model calibration. The NIRS spectra of C. molesta and C. pomonella differed most in the wavelengths between 1,142 and 1,338 nm. Using these wavelengths, partial least squares analysis allowed the differentiation of C. molesta and C. pomonella at the larval stage with very low error, but only as long as both the calibration and prediction sets for individuals had the same origin (either both from the laboratory or both from the field). Errors that appeared when using laboratory individuals for calibration were owing to the divergence of the C. pomonella laboratory strain, most likely following evolution during rearing. Thus, NIRS appears to be a promising tool for the easy and rapid identification of individuals in the field, provided that it is calibrated based on a subset of field individuals. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Biointerfacing polymeric microcapsules for in vivo near-infrared light-triggered drug release.

    Science.gov (United States)

    Shao, Jingxin; Xuan, Mingjun; Si, Tieyan; Dai, Luru; He, Qiang

    2015-12-07

    Seeking safe and effective water-soluble drug carriers is of great significance in nanomedicine. To achieve this goal, we present a novel drug delivery system based on biointerfacing hollow polymeric microcapsules for effectively encapsulating water-soluble antitumor drug and gold nanorod (GNR) functionalization for triggered release of therapeutic drugs on-demand using low power near-infrared (NIR) radiation. The surface of polymeric microcapsules is covered with fluidic lipid bilayers to decrease the permeability of the wall of polymeric capsules. The temperature increase upon NIR illumination deconstructs the structure of the lipid membrane and polyelectrolyte multilayers, which in turn results in the rapid release of encapsulated water-soluble drug. In vivo antitumor tests demonstrate that this microcapsule has the effective ability of inhibiting tumor growth and preventing metastases. Real time in vivo fluorescence imaging results confirm that capsules can be excreted gradually from the animal body which in turn demonstrates the biocompatibility and biodegradation of these biointerfacing GNR-microcapsules. This intelligent system provides a novel anticancer platform with the advantages of controlled release, biological friendliness and credible biosafety.

  8. Determination of geographical origin and icariin content of Herba Epimedii using near infrared spectroscopy and chemometrics

    Science.gov (United States)

    Yang, Yue; Wu, Yongjiang; Li, Weili; Liu, Xuesong; Zheng, Jiyu; Zhang, Wentao; Chen, Yong

    2018-02-01

    Near infrared (NIR) spectroscopy coupled with chemometrics was used to discriminate the geographical origin of Herba Epimedii in this work. Four different classification models, namely discriminant analysis (DA), back propagation neural network (BPNN), K-nearest neighbor (KNN), and support vector machine (SVM), were constructed, and their performances in terms of recognition accuracy were compared. The results indicated that the SVM model was superior over the other models in the geographical origin identification of Herba Epimedii. The recognition rates of the optimum SVM model were up to 100% for the calibration set and 94.44% for the prediction set, respectively. In addition, the feasibility of NIR spectroscopy with the CARS-PLSR calibration model in prediction of icariin content of Herba Epimedii was also investigated. The determination coefficient (RP2) and root-mean-square error (RMSEP) for prediction set were 0.9269 and 0.0480, respectively. It can be concluded that the NIR spectroscopy technique in combination with chemometrics has great potential in determination of geographical origin and icariin content of Herba Epimedii. This study can provide a valuable reference for rapid quality control of food products.

  9. [Dynamic Detection of Fresh Jujube Based on ELM and Visible/Near Infrared Spectra].

    Science.gov (United States)

    Yang, Yi; Zhang, Shu-juan; He, Yong

    2015-07-01

    Jujube was rich in nutrition and variety. In different varieties, there were very different from the market price to the qualities of internal and external. In order to realize the rapid and non-destructive detection of fresh jujubes' classification, Ban jujube, Jixin jujube and Xiang jujube were selected as research objects to collect their visible/near infrared spectral data dynamically. A combination of Moving Smoothing and Multiplicative Scatter Correction (MSC) was applied as the pretreatment method. After the pretreatment, the characteristic wavelengths extracted by Successive Projections Algorithm (SPA) were 980 nm, 1860, 1341, 1386, 2096, 1831, 1910, 1628, 441, 768 and 601 nm, respectively. And the importance reduced in accordance with the order. The 11 characteristic wavelengths were adopted as input variable to established Extreme Learning Machine (ELM) classification model, which was used for prediction. Comparing the ELM model's classification accuracy with other methods' classification accuracy such as Partial Least Squares Discriminant Analysis (PLS-DA) and Least Squares Support Vecor Machines (LS-SVM), the result indicated that: the R2 and the RMSEC of the SPA-ELM model was 0.97238 and 0.018724, respectively. The classification accuracy of the SPA-ELM model was 100% as good as the SPA-PLS-DA and SPA-LS-SVM. ELM was an effective classification method. This study provides a new theoretical basis for detection of fresh jujubes' classification.

  10. Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection

    Science.gov (United States)

    Qi, Zhiyang; Zhai, Yusheng; Wen, Long; Wang, Qilong; Chen, Qin; Iqbal, Sami; Chen, Guangdian; Xu, Ji; Tu, Yan

    2017-07-01

    The heterojunction between metal and silicon (Si) is an attractive route to extend the response of Si-based photodiodes into the near-infrared (NIR) region, so-called Schottky barrier diodes. Photons absorbed into a metallic nanostructure excite the surface plasmon resonances (SPRs), which can be damped non-radiatively through the creation of hot electrons. Unfortunately, the quantum efficiency of hot electron detectors remains low due to low optical absorption and poor electron injection efficiency. In this study, we propose an efficient and low-cost plasmonic hot electron NIR photodetector based on a Au nanoparticle (Au NP)-decorated Si pyramid Schottky junction. The large-area and lithography-free photodetector is realized by using an anisotropic chemical wet etching and rapid thermal annealing (RTA) of a thin Au film. We experimentally demonstrate that these hot electron detectors have broad photoresponsivity spectra in the NIR region of 1200-1475 nm, with a low dark current on the order of 10-5 A cm-2. The observed responsivities enable these devices to be competitive with other reported Si-based NIR hot electron photodetectors using perfectly periodic nanostructures. The improved performance is attributed to the pyramid surface which can enhance light trapping and the localized electric field, and the nano-sized Au NPs which are beneficial for the tunneling of hot electrons. The simple and large-area preparation processes make them suitable for large-scale thermophotovoltaic cell and low-cost NIR detection applications.

  11. Least square support vector machine for citrus greening by use of near infrared spectroscopy

    Science.gov (United States)

    Liu, Yande; Xiao, Huaichun; Sun, Xudong; Han, Rubing; Ye, Lingyu; Liu, Deli

    2017-02-01

    Citrus greening or Huanglongbing (HLB) is one of most serious citrus diseases in the world. Once a tree is infected, there is no cure. The feasibility was investigated for discriminating citrus greening by use of near infrared (NIR) spectroscopy and least square support vector machine (LS-SVM). The spectra of sound and citrus greening samples were recorded in the wavenumber range of 4000-9000 cm-1. The preprocessing method of second derivative with a gap of seven was adapted to eliminate spectral baseline. The spectral variables were optimized by principal component analysis (PCA) and (UVE) algorithms. The unknown samples were used to access the performance of the models. Compared to the PLS-DA model, the LS-SVM was better with the input vector of the first 15 principal components and linear kernel function. The regularization factor (γ) of linear kernel function was 1.8756, and the operation time of LS-SVM model was 0.86s. The recognition error of the LS-SVM model was zero. The results showed that the combination of LS-SVM and NIR spectroscopy could detect citrus greening nondestructively and rapidly.

  12. Estimation of the critical quality attributes for hydroxypropyl methylcellulose with near-infrared spectroscopy and chemometrics

    Science.gov (United States)

    Guo, Qingli; Nie, Lei; Li, Lian; Zang, Hengchang

    2017-04-01

    With the implementation of quality by design (QbD), critical attributes of raw material (drug substance and excipients) are of significantly importance in pharmaceutical manufacturing process. It is desirable for the quality control of critical material attributes (CMAs) of excipients to ensure the quality of end product. This paper explored the feasibility of an at-line method for the quantitative analysis of hydroxypropoxy group in hydroxypropyl methylcellulose (HPMC) with near infrared spectroscopy (NIRS). Hydroxypropoxy group content can be seen as a CMA of HPMC for quality control. The partial least squares (PLS) model was built with 61 samples including 47 samples as calibration set, 14 samples as validation set by sample set partitioning based on joint x-y distances (SPXY) method. Multiplicative scattering correction (MSC) combined with Savitzkye-Golay (SG) smoothing with first derivative was used as the appropriate pretreatment method. Three variable selection methods including interval partial least-squares (iPLS), competitive adaptive reweighted Sampling (CARS), and the combination of the two methods (iPLS-CARS) were performed for optimizing the model. The results indicated that NIRS could predict rapidly and effectively the content of hydroxypropoxy group in HPMC. NIRS could be a potential method for the quality control of CMAs.

  13. Quality control and assurance in functional near infrared spectroscopy (fNIRS) experimentation

    Energy Technology Data Exchange (ETDEWEB)

    Orihuela-Espina, F; Leff, D R; James, D R C; Darzi, A W [Division of Surgery, Oncology, Reproductive Biology and Anaesthetics (SORA), Imperial College, London (United Kingdom); Yang, G Z, E-mail: f.orihuela-espina@imperial.ac.u [Institute of Biomedical Engineering, Imperial College, London (United Kingdom)

    2010-07-07

    Functional near infrared spectroscopy (fNIRS) is a rapidly developing neuroimaging modality for exploring cortical brain behaviour. Despite recent advances, the quality of fNIRS experimentation may be compromised in several ways: firstly, by altering the optical properties of the tissues encountered in the path of light; secondly, through adulteration of the recovered biological signals (noise) and finally, by modulating neural activity. Currently, there is no systematic way to guide the researcher regarding these factors when planning fNIRS studies. Conclusions extracted from fNIRS data will only be robust if appropriate methodology and analysis in accordance with the research question under investigation are employed. In order to address these issues and facilitate the quality control process, a taxonomy of factors influencing fNIRS data have been established. For each factor, a detailed description is provided and previous solutions are reviewed. Finally, a series of evidence-based recommendations are made with the aim of improving consistency and quality of fNIRS research.

  14. Determination of the Mineral Composition and Toxic Element Contents of Propolis by Near Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    M. Inmaculada González-Martín

    2015-11-01

    Full Text Available The potential of near infrared spectroscopy (NIR with remote reflectance fiber-optic probes for determining the mineral composition of propolis was evaluated. This technology allows direct measurements without prior sample treatment. Ninety one samples of propolis were collected in Chile (Bio-Bio region and Spain (Castilla-León and Galicia regions. The minerals measured were aluminum, calcium, iron, potassium, magnesium, phosphorus, and some potentially toxic trace elements such as zinc, chromium, nickel, copper and lead. The modified partial least squares (MPLS regression method was used to develop the NIR calibration model. The determination coefficient (R2 and root mean square error of prediction (RMSEP obtained for aluminum (0.79, 53, calcium (0.83, 94, iron (0.69, 134 potassium (0.95, 117, magnesium (0.70, 99, phosphorus (0.94, 24 zinc (0.87, 10 chromium (0.48, 0.6 nickel (0.52, 0.7 copper (0.64, 0.9 and lead (0.70, 2 in ppm. The results demonstrated that the capacity for prediction can be considered good for wide ranges of potassium, phosphorus and zinc concentrations, and acceptable for aluminum, calcium, magnesium, iron and lead. This indicated that the NIR method is comparable to chemical methods. The method is of interest in the rapid prediction of potentially toxic elements in propolis before consumption.

  15. Determination of total dietary fiber of intact cereal food products by near-infrared reflectance.

    Science.gov (United States)

    Archibald, D D; Kays, S E

    2000-10-01

    Near-infrared reflectance spectra of cereal food products were acquired with a commercial dual-diode-array (Si, InGaAs) spectrometer customized to allow rapid acquisition of scans of intact breakfast cereals, snack foods, whole grains, and milled products. Substantial gains in the performance of multivariate calibration models generated from these data were obtained by a computational strategy that systematically analyzed the performance of various spectral windows. The calibration model based on 137 cereal food products determined the total dietary fiber (TDF) content of a test set of 45 intact diverse cereal food products with root-mean-squared error of cross-validation of between 1.8 and 2.0% TDF, relative to the laborious enzymatic-gravimetric reference method. The calibration performance is adequate to estimate TDF over the range of values found in diverse types of cereal food products (0.7-50.1%). The method requires no sample preparation and is relatively unaffected by specimen moisture content.

  16. Multifunctional upconversion nanoprobe for tumor fluorescence imaging and near-infrared thermal therapy

    Science.gov (United States)

    Wei, Yanchun; Chen, Qun; Wu, Baoyan; Xing, Da

    2014-09-01

    The combination of diagnostics and therapeutics is growing rapidly in cancer treatment. Here, using upconversion nanoparticles coated with chitosan conjugated with a targeting molecule and loaded with indocyanine green (ICG), an excitation-selectable nanoprobe with highly integrated functionalities, including the emission of visible and near-infrared (NIR) light, strong optical absorption in the NIR region and high photostability was developed. After injected in mice, the nanoprobes targeted to the tumor vascular system. NIR lasers (980 and 808 nm) were then selectively applied to the mice. The results show that, the emitted upconversion fluorescence and NIR fluorescence can be used in a complementary manner for high signal/noise ratio and sensitive tumor imaging for more precise tumor localization; Highly effective photothermal therapy can be realized using 808 nm laser irradiation. The upconversion fluorescence at 654 nm is useful for monitoring treatment effect during thermal therapy. In summary, using the nanoprobes, outstanding therapeutic efficacy could be realized and the nanofabrication strategy would highlight the promise of upconversion nanoparticles in cancer theranostics.

  17. Near infrared hyperspectral imaging of blends of conventional and waxy hard wheats

    Directory of Open Access Journals (Sweden)

    Stephen R. Delwiche

    2018-02-01

    Full Text Available Recent development of hard winter waxy (amylose-free wheat adapted to the North American climate has prompted the quest to find a rapid method that will determine mixture levels of conventional wheat in lots of identity preserved waxy wheat. Previous work documented the use of conventional near infrared (NIR reflectance spectroscopy to determine the mixture level of conventional wheat in waxy wheat, with an examined range, through binary sample mixture preparation, of 0–100% (weight conventional / weight total. The current study examines the ability of NIR hyperspectral imaging of intact kernels to determine mixture levels. Twenty-nine mixtures (0, 1, 2, 3, 4, 5, 10, 15, …, 95, 96, 97, 98, 99, 100% were formed from known genotypes of waxy and conventional wheat. Two-class partial least squares discriminant analysis (PLSDA and statistical pattern recognition classifier models were developed for identifying each kernel in the images as conventional or waxy. Along with these approaches, conventional PLS1 regression modelling was performed on means of kernel spectra within each mixture test sample. Results indicated close agreement between all three approaches, with standard errors of prediction for the better preprocess transformations (PLSDA models or better classifiers (pattern recognition models of approximately 9 percentage units. Although such error rates were slightly greater than ones previously published using non-imaging NIR analysis of bulk whole kernel wheat and wheat meal, the HSI technique offers an advantage of its potential use in sorting operations.

  18. Chain of custody for samples of live crude oil using visible-near-infrared spectroscopy.

    Science.gov (United States)

    Betancourt, Soraya S; Bracey, Jep; Gustavson, Gale; Mathews, Syriac G; Mullins, Oliver C

    2006-12-01

    In order to design oil production facilities and strategies, it is necessary to acquire crude oil samples from subsurface formations in oil wells in so-called openhole prior to production. In some environments, such as deepwater production of oil, decisions of huge economic importance are based on such samples. To date, there has been little quality control to verify that the crude oils collected in the sample bottles and analyzed up to a year later in the laboratory have any relation to the actual crude oils in the subsurface reservoirs. These high-pressure samples can undergo myriad deleterious alterations. Here, we introduce the chain-of-custody concept to the oilfield. The visible-near-infrared spectrum of the crude oil is measured in situ in the wellbore at the point of sample acquisition. This spectrum is compared with the spectrum measured on putatively the same fluid in the laboratory at the start of laboratory sample analysis. First, quantitative assessment is made of whether the fluid in the (high-pressure) sample bottle remains representative of formation fluids. Second, any specific changes in the spectrum of the fluid can be related to possible process control failures. Here, the entire process of chain of custody is proven. The chain of custody process can rapidly become routine in the petroleum industry, thereby significantly improving the reliability of any process that depends on fluid property determination.

  19. Quantitative Identification of Adulterated Sichuan Pepper Powder by Near-Infrared Spectroscopy Coupled with Chemometrics

    Directory of Open Access Journals (Sweden)

    Xi-Yu Wu

    2017-01-01

    Full Text Available Sichuan pepper is a traditional and important flavoring of Chinese cuisine. It has attracted increasing interest in recent years owning to its unique taste and aroma. However, some cheap adulterants have been illegally found in Sichuan pepper powder in the market due to merchants trying to cut costs and gain an extra profit. In order to determine the compositions of Sichuan pepper powder quickly and effectively, a direct detection method using near-infrared (NIR spectroscopy has been developed. 462 samples of adulterated Sichuan pepper powder mixed with different amounts of wheat bran, rice bran, corn flour, and rosin powder were studied. The NIR spectra data was studied using partial least squares (PLS analysis. The method was found to be capable of predicting the compositions of adulterated Sichuan pepper powder. The determination coefficients of prediction set (Rp2 with the best pretreatments were 0.971 for Sichuan pepper powder, 0.948 for rice bran, 0.969 for wheat bran, 0.967 for corn flour, and 0.994 for rosin powder, respectively. The standard errors of prediction (SEP were 2.81%, 2.38%, 3.19%, 2.46%, and 1.10%, respectively. The results showed that NIR spectroscopy with chemometrics is a rapid and nondestructive tool for the quantitative analysis of adulterated Sichuan pepper powder.

  20. Design of practicable phase-change metadevices for near-infrared absorber and modulator applications.

    Science.gov (United States)

    Carrillo, Santiago García-Cuevas; Nash, Geoffrey R; Hayat, Hasan; Cryan, Martin J; Klemm, Maciej; Bhaskaran, Harish; Wright, C David

    2016-06-13

    Phase-change chalcogenide alloys, such as Ge2Sb2Te5 (GST), have very different optical properties in their amorphous and crystalline phases. The fact that such alloys can be switched, optically or electrically, between such phases rapidly and repeatedly means that they have much potential for applications as tunable photonic devices. Here we incorporate chalcogenide phase-change films into a metal-dielectric-metal metamaterial electromagnetic absorber structure and design absorbers and modulators for operation at technologically important near-infrared wavelengths, specifically 1550 nm. Our design not only exhibits excellent performance (e.g. a modulation depth of ~77% and an extinction ratio of ~20 dB) but also includes a suitable means for protecting the GST layer from environmental oxidation and is well-suited, as confirmed by electro-thermal and phase-transformation simulations, to in situ electrical switching. We also present a systematic study of design optimization, including the effects of expected manufacturing tolerances on device performance and, by means of a sensitivity analysis, identify the most critical design parameters.

  1. Nondestructive evaluation of soluble solid content in strawberry by near infrared spectroscopy

    Science.gov (United States)

    Guo, Zhiming; Huang, Wenqian; Chen, Liping; Wang, Xiu; Peng, Yankun

    This paper indicates the feasibility to use near infrared (NIR) spectroscopy combined with synergy interval partial least squares (siPLS) algorithms as a rapid nondestructive method to estimate the soluble solid content (SSC) in strawberry. Spectral preprocessing methods were optimized selected by cross-validation in the model calibration. Partial least squares (PLS) algorithm was conducted on the calibration of regression model. The performance of the final model was back-evaluated according to root mean square error of calibration (RMSEC) and correlation coefficient (R2 c) in calibration set, and tested by mean square error of prediction (RMSEP) and correlation coefficient (R2 p) in prediction set. The optimal siPLS model was obtained with after first derivation spectra preprocessing. The measurement results of best model were achieved as follow: RMSEC = 0.2259, R2 c = 0.9590 in the calibration set; and RMSEP = 0.2892, R2 p = 0.9390 in the prediction set. This work demonstrated that NIR spectroscopy and siPLS with efficient spectral preprocessing is a useful tool for nondestructively evaluation SSC in strawberry.

  2. Quantitative Determination of Fusarium proliferatum Concentration in Intact Garlic Cloves Using Near-Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Elena Tamburini

    2016-07-01

    Full Text Available Fusarium proliferatum is considered to be a pathogen of many economically important plants, including garlic. The objective of this research was to apply near-infrared spectroscopy (NIRS to rapidly determine fungal concentration in intact garlic cloves, avoiding the laborious and time-consuming procedures of traditional assays. Preventive detection of infection before seeding is of great interest for farmers, because it could avoid serious losses of yield during harvesting and storage. Spectra were collected on 95 garlic cloves, divided in five classes of infection (from 1-healthy to 5-very highly infected in the range of fungal concentration 0.34–7231.15 ppb. Calibration and cross validation models were developed with partial least squares regression (PLSR on pretreated spectra (standard normal variate, SNV, and derivatives, providing good accuracy in prediction, with a coefficient of determination (R2 of 0.829 and 0.774, respectively, a standard error of calibration (SEC of 615.17 ppb, and a standard error of cross validation (SECV of 717.41 ppb. The calibration model was then used to predict fungal concentration in unknown samples, peeled and unpeeled. The results showed that NIRS could be used as a reliable tool to directly detect and quantify F. proliferatum infection in peeled intact garlic cloves, but the presence of the external peel strongly affected the prediction reliability.

  3. Functional connectivity in the prefrontal cortex measured by near-infrared spectroscopy during ultrarapid object recognition

    Science.gov (United States)

    Medvedev, Andrei V.; Kainerstorfer, Jana M.; Borisov, Sergey V.; Vanmeter, John

    2011-01-01

    Near-infrared spectroscopy (NIRS) is a developing technology for low-cost noninvasive functional brain imaging. With multichannel optical instruments, it becomes possible to measure not only local changes in hemoglobin concentrations but also temporal correlations of those changes in different brain regions which gives an optical analog of functional connectivity traditionally measured by fMRI. We recorded hemodynamic activity during the Go-NoGo task from 11 right-handed subjects with probes placed bilaterally over prefrontal areas. Subjects were detecting animals as targets in natural scenes pressing a mouse button. Data were low-pass filtered <1 Hz and cardiac/respiration/superficial layers artifacts were removed using Independent Component Analysis. Fisher's transformed correlations of poststimulus responses (30 s) were averaged over groups of channels unilaterally in each hemisphere (intrahemispheric connectivity) and the corresponding channels between hemispheres (interhemispheric connectivity). The hemodynamic response showed task-related activation (an increase/decrease in oxygenated/deoxygenated hemoglobin, respectively) greater in the right versus left hemisphere. Intra- and interhemispheric functional connectivity was also significantly stronger during the task compared to baseline. Functional connectivity between the inferior and the middle frontal regions was significantly stronger in the right hemisphere. Our results demonstrate that optical methods can be used to detect transient changes in functional connectivity during rapid cognitive processes.

  4. Variety identification of brown sugar using short-wave near infrared spectroscopy and multivariate calibration

    Science.gov (United States)

    Yang, Haiqing; Wu, Di; He, Yong

    2007-11-01

    Near-infrared spectroscopy (NIRS) with the characteristics of high speed, non-destructiveness, high precision and reliable detection data, etc. is a pollution-free, rapid, quantitative and qualitative analysis method. A new approach for variety discrimination of brown sugars using short-wave NIR spectroscopy (800-1050nm) was developed in this work. The relationship between the absorbance spectra and brown sugar varieties was established. The spectral data were compressed by the principal component analysis (PCA). The resulting features can be visualized in principal component (PC) space, which can lead to discovery of structures correlative with the different class of spectral samples. It appears to provide a reasonable variety clustering of brown sugars. The 2-D PCs plot obtained using the first two PCs can be used for the pattern recognition. Least-squares support vector machines (LS-SVM) was applied to solve the multivariate calibration problems in a relatively fast way. The work has shown that short-wave NIR spectroscopy technique is available for the brand identification of brown sugar, and LS-SVM has the better identification ability than PLS when the calibration set is small.

  5. Determination of the Mineral Composition and Toxic Element Contents of Propolis by Near Infrared Spectroscopy

    Science.gov (United States)

    González-Martín, M. Inmaculada; Escuredo, Olga; Revilla, Isabel; Vivar-Quintana, Ana M.; Coello, M. Carmen; Palacios Riocerezo, Carlos; Wells Moncada, Guillermo

    2015-01-01

    The potential of near infrared spectroscopy (NIR) with remote reflectance fiber-optic probes for determining the mineral composition of propolis was evaluated. This technology allows direct measurements without prior sample treatment. Ninety one samples of propolis were collected in Chile (Bio-Bio region) and Spain (Castilla-León and Galicia regions). The minerals measured were aluminum, calcium, iron, potassium, magnesium, phosphorus, and some potentially toxic trace elements such as zinc, chromium, nickel, copper and lead. The modified partial least squares (MPLS) regression method was used to develop the NIR calibration model. The determination coefficient (R2) and root mean square error of prediction (RMSEP) obtained for aluminum (0.79, 53), calcium (0.83, 94), iron (0.69, 134) potassium (0.95, 117), magnesium (0.70, 99), phosphorus (0.94, 24) zinc (0.87, 10) chromium (0.48, 0.6) nickel (0.52, 0.7) copper (0.64, 0.9) and lead (0.70, 2) in ppm. The results demonstrated that the capacity for prediction can be considered good for wide ranges of potassium, phosphorus and zinc concentrations, and acceptable for aluminum, calcium, magnesium, iron and lead. This indicated that the NIR method is comparable to chemical methods. The method is of interest in the rapid prediction of potentially toxic elements in propolis before consumption. PMID:26540058

  6. Variable selection based near infrared spectroscopy quantitative and qualitative analysis on wheat wet gluten

    Science.gov (United States)

    Lü, Chengxu; Jiang, Xunpeng; Zhou, Xingfan; Zhang, Yinqiao; Zhang, Naiqian; Wei, Chongfeng; Mao, Wenhua

    2017-10-01

    Wet gluten is a useful quality indicator for wheat, and short wave near infrared spectroscopy (NIRS) is a high performance technique with the advantage of economic rapid and nondestructive test. To study the feasibility of short wave NIRS analyzing wet gluten directly from wheat seed, 54 representative wheat seed samples were collected and scanned by spectrometer. 8 spectral pretreatment method and genetic algorithm (GA) variable selection method were used to optimize analysis. Both quantitative and qualitative model of wet gluten were built by partial least squares regression and discriminate analysis. For quantitative analysis, normalization is the optimized pretreatment method, 17 wet gluten sensitive variables are selected by GA, and GA model performs a better result than that of all variable model, with R2V=0.88, and RMSEV=1.47. For qualitative analysis, automatic weighted least squares baseline is the optimized pretreatment method, all variable models perform better results than those of GA models. The correct classification rates of 3 class of 30% wet gluten content are 95.45, 84.52, and 90.00%, respectively. The short wave NIRS technique shows potential for both quantitative and qualitative analysis of wet gluten for wheat seed.

  7. Identification and Quantitation of Melamine in Milk by Near-Infrared Spectroscopy and Chemometrics

    Directory of Open Access Journals (Sweden)

    Tong Wu

    2016-01-01

    Full Text Available Melamine is a nitrogen-rich substance and has been illegally used to increase the apparent protein content in food products such as milk. Therefore, it is imperative to develop sensitive and reliable analytical methods to determine melamine in human foods. Current analytical methods for melamine are mainly chromatography-based methods, which are time-consuming and expensive and require complex pretreatment and well-trained technicians. The present paper investigated the feasibility of using near-infrared (NIR spectroscopy and chemometrics for identifying and quantifying melamine in liquor milk. A total of 75 samples were prepared. Uninformative variable elimination-partial least square (UVE-PLS and partial least squares-discriminant analysis (PLS-DA were used to construct quantitative and qualitative models, respectively. Based on the ratio of performance to standard deviate (RPD, UVE-PLS model with 3 components resulted in a better solution. The PLS-DA model achieved an accuracy of 100% and outperformed the optimal reference model of soft independent modeling of class analogy (SIMCA. Such a method can serve as a potential tool for rapid screening of melamine in milk products.

  8. Image-Guided Surgery Using Invisible Near-Infrared Light: Fundamentals of Clinical Translation

    Directory of Open Access Journals (Sweden)

    Sylvain Gioux

    2010-09-01

    Full Text Available The field of biomedical optics has matured rapidly over the last decade and is poised to make a significant impact on patient care. In particular, wide-field (typically > 5 cm, planar, near-infrared (NIR fluorescence imaging has the potential to revolutionize human surgery by providing real-time image guidance to surgeons for tissue that needs to be resected, such as tumors, and tissue that needs to be avoided, such as blood vessels and nerves. However, to become a clinical reality, optimized imaging systems and NIR fluorescent contrast agents will be needed. In this review, we introduce the principles of NIR fluorescence imaging, analyze existing NIR fluorescence imaging systems, and discuss the key parameters that guide contrast agent development. We also introduce the complexities surrounding clinical translation using our experience with the Fluorescence-Assisted Resection and Exploration (FLARE™ imaging system as an example. Finally, we introduce state-of-the-art optical imaging techniques that might someday improve image-guided surgery even further.

  9. Determination of hemicellulose, cellulose and lignin content using visible and near infrared spectroscopy in Miscanthus sinensis.

    Science.gov (United States)

    Jin, Xiaoli; Chen, Xiaoling; Shi, Chunhai; Li, Mei; Guan, Yajing; Yu, Chang Yeon; Yamada, Toshihiko; Sacks, Erik J; Peng, Junhua

    2017-10-01

    Lignocellulosic components including hemicellulose, cellulose and lignin are the three major components of plant cell walls, and their proportions in biomass crops, such as Miscanthus sinensis, greatly impact feed stock conversion to liquid fuels or bio-products. In this study, the feasibility of using visible and near infrared (VIS/NIR) spectroscopy to rapidly quantify hemicellulose, cellulose and lignin in M. sinensis was investigated. Initially, prediction models were established using partial least squares (PLS), least squares support vector machine regression (LSSVR), and radial basis function neural network (RBF_NN) based on whole wavelengths. Subsequently, 23, 25 and 27 characteristic wavelengths for hemicellulose, cellulose and lignin, respectively, were found to show significant contribution to calibration models. Three determination models were eventually built by PLS, LS-SVM and ANN based on the characteristic wavelengths. Calibration models for lignocellulosic components were successfully developed, and can now be applied to assessment of lignocellulose contents in M. sinensis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Noninvasive continuous functional near-infrared spectroscopy combined with electroencephalography recording of frontal lobe seizures.

    Science.gov (United States)

    Nguyen, Dang Khoa; Tremblay, Julie; Pouliot, Philippe; Vannasing, Phetsamone; Florea, Olivia; Carmant, Lionel; Lepore, Franco; Sawan, Mohamad; Lesage, Frédéric; Lassonde, Maryse

    2013-02-01

    To investigate spatial and metabolic changes associated with frontal lobe seizures. Functional near-infrared spectroscopy combined with electroencephalography (EEG-fNIRS) recordings of patients with confirmed nonlesional refractory frontal lobe epilepsy (FLE). Eighteen seizures from nine patients (seven male, mean age 27 years, range 13-46 years) with drug-refractory FLE were captured during EEG-fNIRS recordings. All seizures were coupled with significant hemodynamic variations that were greater with electroclinical than with electrical seizures. fNIRS helped in the identification of seizures in three patients with more subtle ictal EEG abnormalities. Hemodynamic changes consisted of local increases in oxygenated (HbO) and total hemoglobin (HbT) but heterogeneous deoxygenated hemoglobin (HbR) behavior. Furthermore, rapid hemodynamic alterations were observed in the homologous contralateral region, even in the absence of obvious propagated epileptic activity. The extent of HbO activation adequately lateralized the epileptogenic side in the majority of patients. EEG-fNIRS reveals complex spatial and metabolic changes during focal frontal lobe seizures. Further characterization of these changes could improve seizure detection, localization, and understanding of the impact of focal seizures. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.

  11. Detection of urinary estrogen conjugates and creatinine using near infrared spectroscopy in Bornean orangutans (Pongo Pygmaeus).

    Science.gov (United States)

    Kinoshita, Kodzue; Kuze, Noko; Kobayashi, Toshio; Miyakawa, Etsuko; Narita, Hiromitsu; Inoue-Murayama, Miho; Idani, Gen'ichi; Tsenkova, Roumiana

    2016-01-01

    For promoting in situ conservation, it is important to estimate the density distribution of fertile individuals, and there is a need for developing an easy monitoring method to discriminate between physiological states. To date, physiological state has generally been determined by measuring hormone concentration using radioimmunoassay or enzyme immunoassay (EIA) methods. However, these methods have rarely been applied in situ because of the requirements for a large amount of reagent, instruments, and a radioactive isotope. In addition, the proper storage of the sample (including urine and feces) on site until analysis is difficult. On the other hand, near infrared (NIR) spectroscopy requires no reagent and enables rapid measurement. In the present study, we attempted urinary NIR spectroscopy to determine the estrogen levels of orangutans in Japanese zoos and in the Danum Valley Conservation Area, Sabah, Malaysia. Reflectance NIR spectra were obtained from urine stored using a filter paper. Filter paper is easy to use to store dried urine, even in the wild. Urinary estrogen and creatinine concentrations measured by EIA were used as the reference data of partial least square (PLS) regression of urinary NIR spectra. High accuracies (R(2) > 0.68) were obtained in both estrogen and creatinine regression models. In addition, the PLS regressions in both standards showed higher accuracies (R(2) > 0.70). Therefore, the present study demonstrates that urinary NIR spectra have the potential to estimate the estrogen and creatinine concentrations.

  12. [Identification of geographical origins of rice with pattern recognition technique by near infrared spectroscopy].

    Science.gov (United States)

    Xia, Li-Ya; Shen, Shi-Gang; Liu, Zheng-Hao; Sun, Han-Wen

    2013-01-01

    A rapid method was developed for discrimination of the geographical origins of rice with pattern recognition technique by near infrared spectrocopy (NIRS). A total of 119 geography signs product Xiangshui rice samples and 90 rice (Non-Xiangshui rice) samples produced from other places were analyzed by NIRS. After first derivative and smooth processing, principal component analysis (PCA) was used to reduce the dimensionality of the spectral data. Through the loading graph of the first three principal components, characteristic wave band (7 700-6 700, 5 700-4 300 cm(-1)) with max-relativity was determined. In whole wave, using agglomerative hierarchical cluster analysis and Fisher's linear discriminant, the discrimination of Xiangshui rice and Non-Xiangshui rice was all 100%. The correct rate of specific geographical origins of Non-Xiangshui rice was 91.9% by cluster analysis and 96.7% by discriminant analysis. For analysis in the characteristic wave bands, the correct rate of discriminant by cluster analysis was higher than the analysis result through the range of the whole band. Therefore, characteristic wave band has strong representativeness. The results indicate that it is feasible to discriminate the geographical origins of rice with pattern recognition technique by NIRS, and selecting characteristic wave band is one of the validated methods to improve the precision of the discrimination mode.

  13. Monitoring of the cellulosic ethanol fermentation process by near-infrared spectroscopy.

    Science.gov (United States)

    Pinto, Ariane S S; Pereira, Sandra C; Ribeiro, Marcelo P A; Farinas, Cristiane S

    2016-03-01

    Rapid, efficient, and low-cost technologies for monitoring the fermentation process during second generation (2G) or cellulosic ethanol production are essential for the successful implementation of this process at the commercial scale. Here, the use of near-infrared (NIR) spectroscopy associated with partial least squares (PLS) regression was investigated as a tool for monitoring the production of 2G ethanol from lignocellulosic sugarcane residues including bagasse, straw, and tops. The spectral data was based on a set of 103 alcoholic fermentation samples. Models based on different pre-processing techniques were evaluated. The best root mean square error of prediction (RMSEP) values obtained in the external validation were around 3.02 g/L for ethanol and 6.60 g/L for glucose. The findings showed that the PLS-NIR methodology was efficient in accurately predicting the glucose and ethanol concentrations during the production of 2G ethanol, demonstrating potential for use in monitoring and control of large-scale industrial processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Dynamic near-infrared imaging reveals transient phototropic change in retinal rod photoreceptors.

    Science.gov (United States)

    Lu, Rongwen; Levy, Alexander M; Zhang, Qiuxiang; Pittler, Steven J; Yao, Xincheng

    2013-10-01

    Stiles-Crawford effect (SCE) is exclusively observed in cone photoreceptors, but why the SCE is absent in rod photoreceptors is still a mystery. In this study, we employed dynamic near infrared light imaging to monitor photoreceptor kinetics in freshly isolated frog and mouse retinas stimulated by oblique visible light flashes. It was observed that retinal rods could rapidly (onset: ∼10 ms for frog and 5 ms for mouse; time-to-peak: ∼200 ms for frog and 30 ms for mouse) shift toward the direction of the visible light, which might quickly compensate for the loss of luminous efficiency due to oblique illumination. In contrast, such directional movement was negligible in retinal cones. Moreover, transient rod phototropism could contribute to characteristic intrinsic optical signal (IOS). We anticipate that further study of the transient rod phototropism may not only provide insight into better understanding of the nature of vision but also promise an IOS biomarker for functional mapping of rod physiology at high resolution.

  15. Determination of geographical origin and icariin content of Herba Epimedii using near infrared spectroscopy and chemometrics.

    Science.gov (United States)

    Yang, Yue; Wu, Yongjiang; Li, Weili; Liu, Xuesong; Zheng, Jiyu; Zhang, Wentao; Chen, Yong

    2017-10-10

    Near infrared (NIR) spectroscopy coupled with chemometrics was used to discriminate the geographical origin of Herba Epimedii in this work. Four different classification models, namely discriminant analysis (DA), back propagation neural network (BPNN), K-nearest neighbor (KNN), and support vector machine (SVM), were constructed, and their performances in terms of recognition accuracy were compared. The results indicated that the SVM model was superior over the other models in the geographical origin identification of Herba Epimedii. The recognition rates of the optimum SVM model were up to 100% for the calibration set and 94.44% for the prediction set, respectively. In addition, the feasibility of NIR spectroscopy with the CARS-PLSR calibration model in prediction of icariin content of Herba Epimedii was also investigated. The determination coefficient (RP(2)) and root-mean-square error (RMSEP) for prediction set were 0.9269 and 0.0480, respectively. It can be concluded that the NIR spectroscopy technique in combination with chemometrics has great potential in determination of geographical origin and icariin content of Herba Epimedii. This study can provide a valuable reference for rapid quality control of food products. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Evaluation of chemical components and properties of the jujube fruit using near infrared spectroscopy and chemometrics

    Science.gov (United States)

    Guo, Ying; Ni, Yongnian; Kokot, Serge

    2016-01-01

    Near-infrared spectroscopy (NIRS) calibrations were developed for the discrimination of spectra of the jujube (Zizyphus jujuba Mill.) fruit samples from four geographical regions. Prediction models were developed for the quantitative prediction of the contents of jujube fruit, i.e., total sugar, total acid, total phenolic content, and total antioxidant activity. Four pattern recognition methods, principal component analysis (PCA), linear discriminant analysis (LDA), least squares-support vector machines (LS-SVM), and back propagation-artificial neural networks (BP-ANN), were used for the geographical origin classification. Furthermore, three multivariate calibration models based on the standard normal variate (SNV) pretreated NIR spectroscopy, partial least squares (PLS), BP-ANN, and LS-SVM were constructed for quantitative analysis of the four analytes described above. PCA provided a useful qualitative plot of the four types of NIR spectra from the fruit. The LS-SVM model produced best quantitative prediction results. Thus, NIR spectroscopy in conjunction with chemometrics, is a very useful and rapid technique for the discrimination of jujube fruit.

  17. Geographical classification of Nanfeng mandarin by near infrared spectroscopy coupled with chemometrics methods

    Directory of Open Access Journals (Sweden)

    Xuan Zhang

    2014-11-01

    Full Text Available Near infrared spectroscopy (NIRS, coupled with principal component analysis and wavelength selection techniques, has been used to develop a robust and reliable reduced-spectrum classification model for determining the geographical origins of Nanfeng mandarins. The application of the changeable size moving window principal component analysis (CSMWPCA provided a notably improved classification model, with correct classification rates of 92.00%, 100.00%, 90.00%, 100.00%, 100.00%, 100.00% and 100.00% for Fujian, Guangxi, Hunan, Baishe, Baofeng, Qiawan, Sanxi samples, respectively, as well as, a total classification rate of 97.52% in the wavelength range from 1007 to 1296 nm. To test and apply the proposed method, the procedure was applied to the analysis of 59 samples in an independent test set. Good identification results (correct rate of 96.61% were also received. The improvement achieved by the application of CSMWPCA method was particularly remarkable when taking the low complexities of the final model (290 variables into account. The results of the study showed the great potential of NIRS as a fast, nondestructive and environmentally acceptable method for the rapid and reliable determination for geographical classification of Nanfeng mandarins.

  18. Near-infrared-light mediated ratiometric luminescent sensor for multimode visualized assays of explosives.

    Science.gov (United States)

    Hu, Xiaoxia; Wei, Ting; Wang, Jie; Liu, Zi-En; Li, Xinyang; Zhang, Binhao; Li, Zhihao; Li, Lele; Yuan, Quan

    2014-10-21

    The development of a portable and easy-to-use device for the detection of explosives with high sensitivity and selectivity is in high demand for homeland security and public safety. In this study, we demonstrate miniaturized devices depending on the upconversion ratiometric luminescent probe for point-of-care (POC) assay of explosives with the naked-eye. When the PEI-coated upconversion nanoparticles (UCNPs) selectively bonded to 2,4,6-trinitrotoluene (TNT) explosives by the formation of Meisenheimer complex, the formed of UCNP-Meisenheimer complexes show turned visible multicolor upconversion luminescence (UCL) on account of TNT-modulating Förster resonance energy transfer process under near-infrared excitation. With UCL emission at 808 nm as internal standard and ratiometric UCL at 477 nm to that at 808 nm (I477/I808) as output signal, the probe can simultaneously meet the accuracy for TNT explosives quantitative analysis. In addition, this easy-to-use visual technique provides a powerful tool for convenient POC assay of rapid explosives identification.

  19. Recent advances in mid- and near-infrared spectroscopy with applications for research and teaching, focusing on petrochemistry and biotechnology relevant products

    Science.gov (United States)

    Heise, H. M.; Fritzsche, J.; Tkatsch, H.; Waag, F.; Karch, K.; Henze, K.; Delbeck, S.; Budde, J.

    2013-11-01

    Mid- and near-infrared spectroscopy is introduced as a versatile analytical method for characterizing liquid and solid chemicals as obtained from petrochemistry and biotechnology processes. Besides normal transmission measurements, special equipment with silver halide fiber-optic probes allowing efficient analysis based on mid-infrared attenuated total reflection, and an accessory for near-infrared diffuse reflection measurements, are presented. The latter technique can be used advantageously for powdered samples such as microalgae biomass and polysaccharides, as well as for different tissues such as meat samples. The advantages and disadvantages of both methods, which can be used for industrial process monitoring and chemical quality control applications, are discussed, and have been used in several research projects of BSc students within their degree course of bio- and nano-technologies of our University of Applied Sciences.

  20. A New Method for Blood NT-proBNP Determination Based on a Near-infrared Point of Care Testing Device with High Sensitivity and Wide Scope.

    Science.gov (United States)

    Zhang, Xiao Guang; Shu, Yao Gen; Gao, Ju; Wang, Xuan; Liu, Li Peng; Wang, Meng; Cao, Yu Xi; Zeng, Yi

    2017-06-01

    To develop a rapid, highly sensitive, and quantitative method for the detection of NT-proBNP levels based on a near-infrared point-of-care diagnostic (POCT) device with wide scope. The lateral flow assay (LFA) strip of NT-proBNP was first prepared to achieve rapid detection. Then, the antibody pairs for NT-proBNP were screened and labeled with the near-infrared fluorescent dye Dylight-800. The capture antibody was fixed on a nitrocellulose membrane by a scribing device. Serial dilutions of serum samples were prepared using NT-proBNP-free serum series. The prepared test strips, combined with a near-infrared POCT device, were validated by known concentrations of clinical samples. The POCT device gave the output of the ratio of the intensity of the fluorescence signal of the detection line to that of the quality control line. The relationship between the ratio value and the concentration of the specimen was plotted as a work curve. The results of 62 clinical specimens obtained from our method were compared in parallel with those obtained from the Roche E411 kit. Based on the log-log plot, the new method demonstrated that there was a good linear relationship between the ratio value and NT-proBNP concentrations ranging from 20 pg/mL to 10 ng/mL. The results of the 62 clinical specimens measured by our method showed a good linear correlation with those measured by the Roche E411 kit. The new LFA detection method of NT-proBNP levels based on the near-infrared POCT device was rapid and highly sensitive with wide scope and was thus suitable for rapid and early clinical diagnosis of cardiac impairment. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  1. Assay of effervescent tablets by near-infrared spectroscopy in transmittance and reflectance mode: acetylsalicylic acid in mono and combination formulations.

    Science.gov (United States)

    Merckle, P; Kovar, K A

    1998-07-01

    Near-infrared spectroscopy (NIRS) was used to determine acetylsalicylic acid (ASA) in three different effervescent tablet formulations. The nominal ASA concentrations were 14.9% in the single substance formulation (ASA Mono), 17.4% in the combination with ascorbic acid (ASA + C) and 8.7% in the combination with paracetamol and ascorbic acid (ASA Combi). In each case the tablet matrix was composed of seven excipients typical of effervescent tablets. All three formulations were measured as intact tablets in diffuse transmittance and reflectance and as powdered tablets in diffuse reflectance. Calibration was carried out by partial least square (PLS) regression of second derivative spectra. High-performance liquid chromatography (HPLC) was used as the reference method. The relative standard errors of calibration (RSEC) achieved for the three NIR methods were between 1.20 and 2.01% for ASA Mono, between 1.91 and 2.21% for ASA + C and between 2.41 and 4.50% for ASA Combi. The results obtained in transmittance mode were comparable with those obtained in reflectance mode, which is normally used in NIRS. In the test sets of ASA Mono and ASA + C relative root mean square (RRMS) values between 2.21 and 3.13% were obtained. The three NIR methods applied are thus suitable for the quantitative determination of ASA in effervescent tablets and have the advantage over HPLC of being rapid and simply carried out with little sample preparation; they are nondestructive and do not require any environmentally harmful reagents.

  2. Determination by near infrared microscopy of the nitrogen and carbon content of tomato (Solanum lycopersicum L.) leaf powder.

    Science.gov (United States)

    Lequeue, Gauthier; Draye, Xavier; Baeten, Vincent

    2016-09-16

    Near infrared microscopy (NIRM) has been developed as a rapid technique to predict the chemical composition of foods, reduce analytical costs and time and ease sample preparation. In this study, NIRM has been evaluated as an alternative to classical chemical analysis to determine the nitrogen and carbon content of small samples of tomato (Solanum lycopersicum L.) leaf powder. Near infrared spectra were obtained by NIRM for independent leaf samples collected on 216 plants grown under six different levels of nitrogen. From these, 30 calibration and 30 validation samples covering the spectral range of the whole set were selected and their nitrogen and carbon contents were determined by a reference method. The calibration model obtained for nitrogen content proved to be excellent, with a coefficient of determination in calibration (R(2)c) higher than 0.9 and a ratio of performance to deviation (RPDc) higher than 3. Statistical indicators of prediction using the validation set were also very high (R(2)p values > 0.90). However, the calibration model obtained for carbon content was much less satisfactory (R(2)c tomato leaf powder.

  3. The fabrication and visible-near-infrared optical modulation of vanadium dioxide/silicon dioxide composite photonic crystal structure

    Science.gov (United States)

    Liang, Jiran; Li, Peng; Song, Xiaolong; Zhou, Liwei

    2017-12-01

    We demonstrated a visible and near-infrared light tunable photonic nanostructure, which is composed of vanadium dioxide (VO2) thin film and silicon dioxide (SiO2) ordered nanosphere arrays. The vanadium films were sputtered on two-dimensional (2D) SiO2 sphere arrays. VO2 thin films were prepared by rapid thermal annealing (RTA) method with different oxygen flow rates. The close-packed VO2 shell formed a continuous surface, the composition of VO2 films in the structure changed when the oxygen flow rates increased. The 2D VO2/SiO2 composite photonic crystal structure exhibited transmittance trough tunability and near-infrared (NIR) transmittance modulation. When the oxygen flow rate increased from 3 slpm to 4 slpm, the largest transmittance trough can be regulated from 904 to 929 nm at low temperature, the transmittance troughs also appear blue shift when the VO2 phase changes from insulator to metal. The composite nanostructure based on VO2 films showed visible transmittance tunability, which would provide insights into the glass color changing in smart windows.

  4. Application of near-infrared hyperspectral imaging to discriminate different geographical origins of Chinese wolfberries.

    Directory of Open Access Journals (Sweden)

    Wenxin Yin

    Full Text Available Near-infrared (874-1734 nm hyperspectral imaging (NIR-HSI technique combined with chemometric methods was used to trace origins of 1200 Chinese wolfberry samples, which from Ningxia, Inner Mongolia, Sinkiang and Qinghai in China. Two approaches, named pixel-wise and object-wise, were investigated to discriminative the origin of these Chinese wolfberries. The pixel-wise classification assigned a class to each pixel from individual Chinese wolfberries, and with this approach, the differences in the Chinese wolfberries from four origins were reflected intuitively. Object-wise classification was performed using mean spectra. The average spectral information of all pixels of each sample in the hyperspectral image was extracted as the representative spectrum of a sample, and then discriminant analysis models of the origins of Chinese wolfberries were established based on these average spectra. Specifically, the spectral curves of all samples were collected, and after removal of obvious noise, the spectra of 972-1609 nm were viewed as the spectra of wolfberry. Then, the spectral curves were pretreated with moving average smoothing (MA, and discriminant analysis models including support vector machine (SVM, neural network with radial basis function (NN-RBF and extreme learning machine (ELM were established based on the full-band spectra, the extracted characteristic wavelengths from loadings of principal component analysis (PCA and 2nd derivative spectra, respectively. Among these models, the recognition accuracies of the calibration set and prediction set of the ELM model based on extracted characteristic wavelengths from loadings of PCA were higher than 90%. The model not only ensured a high recognition rate but also simplified the model and was conducive to future rapid on-line testing. The results revealed that NIR-HSI combined with PCA loadings-ELM could rapidly trace the origins of Chinese wolfberries.

  5. Application of near-infrared hyperspectral imaging to discriminate different geographical origins of Chinese wolfberries.

    Science.gov (United States)

    Yin, Wenxin; Zhang, Chu; Zhu, Hongyan; Zhao, Yanru; He, Yong

    2017-01-01

    Near-infrared (874-1734 nm) hyperspectral imaging (NIR-HSI) technique combined with chemometric methods was used to trace origins of 1200 Chinese wolfberry samples, which from Ningxia, Inner Mongolia, Sinkiang and Qinghai in China. Two approaches, named pixel-wise and object-wise, were investigated to discriminative the origin of these Chinese wolfberries. The pixel-wise classification assigned a class to each pixel from individual Chinese wolfberries, and with this approach, the differences in the Chinese wolfberries from four origins were reflected intuitively. Object-wise classification was performed using mean spectra. The average spectral information of all pixels of each sample in the hyperspectral image was extracted as the representative spectrum of a sample, and then discriminant analysis models of the origins of Chinese wolfberries were established based on these average spectra. Specifically, the spectral curves of all samples were collected, and after removal of obvious noise, the spectra of 972-1609 nm were viewed as the spectra of wolfberry. Then, the spectral curves were pretreated with moving average smoothing (MA), and discriminant analysis models including support vector machine (SVM), neural network with radial basis function (NN-RBF) and extreme learning machine (ELM) were established based on the full-band spectra, the extracted characteristic wavelengths from loadings of principal component analysis (PCA) and 2nd derivative spectra, respectively. Among these models, the recognition accuracies of the calibration set and prediction set of the ELM model based on extracted characteristic wavelengths from loadings of PCA were higher than 90%. The model not only ensured a high recognition rate but also simplified the model and was conducive to future rapid on-line testing. The results revealed that NIR-HSI combined with PCA loadings-ELM could rapidly trace the origins of Chinese wolfberries.

  6. Analysis of total oil and fatty acids composition by near infrared reflectance spectroscopy in edible nuts

    Science.gov (United States)

    Kandala, Chari V.; Sundaram, Jaya

    2014-10-01

    Near Infrared (NIR) Reflectance spectroscopy has established itself as an important tool in quantifying water and oil present in various food materials. It is rapid and nondestructive, easier to use, and does not require processing the samples with corrosive chemicals that would render them non-edible. Earlier, the samples had to be ground into powder form before making any measurements. With the development of new soft ware packages, NIR techniques could now be used in the analysis of intact grain and nuts. While most of the commercial instruments presently available work well with small grain size materials such as wheat and corn, the method present here is suitable for large kernel size products such as shelled or in-shell peanuts. Absorbance spectra were collected from 400 nm to 2500 nm using a NIR instrument. Average values of total oil contents (TOC) of peanut samples were determined by standard extraction methods, and fatty acids were determined using gas chromatography. Partial least square (PLS) analysis was performed on the calibration set of absorption spectra, and models were developed for prediction of total oil and fatty acids. The best model was selected based on the coefficient of determination (R2), Standard error of prediction (SEP) and residual percent deviation (RPD) values. Peanut samples analyzed showed RPD values greater than 5.0 for both absorbance and reflectance models and thus could be used for quality control and analysis. Ability to rapidly and nondestructively measure the TOC, and analyze the fatty acid composition, will be immensely useful in peanut varietal improvement as well as in the grading process of grain and nuts.

  7. Nondestructive determination of lignans and lignan glycosides in sesame seeds by near infrared reflectance spectroscopy.

    Science.gov (United States)

    Kim, Kwan Su; Park, Si Hyung; Choung, Myoung Gun

    2006-06-28

    Sesame (Sesamum indicum L.) contains abundant lignans including lipid-soluble lignans (sesamin and sesamolin) and water-soluble lignan glycosides (sesaminol triglucoside and sesaminol diglucoside) related to antioxidative activity. In this study, near infrared reflectance spectroscopy (NIRS) was used to develop a rapid and nondestructive method for the determination of lignan contents on intact sesame seeds. Ninety-three intact seeds were scanned in the reflectance mode of a scanning monochromator. This scanning procedure did not require the pulverization of samples, allowing each analysis to be completed within minutes. Reference values for lignan contents were obtained by high-performance liquid chromatography analysis. Calibration equations for lignans (sesamin and sesamolin) and lignan glycosides (sesaminol triglucoside and sesaminol diglucoside) contents were developed using modified partial least squares regression with internal cross-validation (n = 63). The equations obtained had low standard errors of cross-validation and moderate R2 (coefficient of determination in calibration). The prediction of an external validation set (n = 30) showed significant correlation between reference values and NIRS predicted values based on the SEP (standard error of prediction), bias, and r2 (coefficient of determination in prediction). The models developed in this study had relatively higher values (more than 2.0) of SD/SEP(C) for all lignans and lignan glycosides except for sesaminol diglucoside, which had a minor amount, indicating good correlation between the reference and the NIRS estimate. The results showed that NIRS, a nondestructive screening method, could be used to rapidly determine lignan and lignan glycoside contents in the breeding programs for high quality sesame.

  8. Classification of Fusarium-Infected Korean Hulled Barley Using Near-Infrared Reflectance Spectroscopy and Partial Least Squares Discriminant Analysis.

    Science.gov (United States)

    Lim, Jongguk; Kim, Giyoung; Mo, Changyeun; Oh, Kyoungmin; Yoo, Hyeonchae; Ham, Hyeonheui; Kim, Moon S

    2017-09-30

    The purpose of this study is to use near-infrared reflectance (NIR) spectroscopy equipment to nondestructively and rapidly discriminate Fusarium -infected hulled barley. Both normal hulled barley and Fusarium -infected hulled barley were scanned by using a NIR spectrometer with a wavelength range of 1175 to 2170 nm. Multiple mathematical pretreatments were applied to the reflectance spectra obtained for Fusarium discrimination and the multivariate analysis method of partial least squares discriminant analysis (PLS-DA) was used for discriminant prediction. The PLS-DA prediction model developed by applying the second-order derivative pretreatment to the reflectance spectra obtained from the side of hulled barley without crease achieved 100% accuracy in discriminating the normal hulled barley and the Fusarium -infected hulled barley. These results demonstrated the feasibility of rapid discrimination of the Fusarium -infected hulled barley by combining multivariate analysis with the NIR spectroscopic technique, which is utilized as a nondestructive detection method.

  9. Near-infrared fluorescence imaging of lymphatics in head and neck lymphedema

    Science.gov (United States)

    Tan, I.-Chih; Maus, Erik A.; Rasmussen, John C.; Marshall, Milton V.; Fife, Caroline E.; Smith, Latisha A.; Sevick-Muraca, Eva M.

    2011-03-01

    Treatment of lymphatic disease is complicated and controversial, due in part to the limited understanding of the lymphatic system. Lymphedema (LE) is a frequent complication after surgical resection and radiation treatment in cancer survivors, and is especially debilitating in regions where treatment options are limited. Although some extremity LE can be effectively treated with manual lymphatic drainage (MLD) therapy or compression devices to direct proximal lymph transport, head and neck LE is more challenging, due to complicated geometry and complex lymphatic structure in head and neck region. Herein, we describe the compassionate use of an investigatory technique of near-infrared (NIR) fluorescence imaging to understand the lymphatic anatomy and function, and to help direct MLD in a patient with head and neck LE. Immediately after 9 intradermal injections of 25 μg indocyanine green each around the face and neck region, NIR fluorescence images were collected using a custom-built imaging system with diffused excitation light illumination. These images were then used to direct MLD therapy. In addition, 3-dimensional (3D) surface profilometry was used to monitor response to therapy. NIR fluorescence images of functioning lymphatic vessels and abnormal structures were obtained. Precise geometries of facial structures were obtained using 3D profilometry, and detection of small changes in edema between therapy sessions was achieved. NIR fluorescence imaging provides a mapping of lymphatic architecture to direct MLD therapy and thus improve treatment efficacy in the head and neck LE, while 3D profilometry allowed longitudinal assessment of edema to evaluate the efficacy of therapy.

  10. Functional near infrared spectroscopy for awake monkey to accelerate neurorehabilitation study

    Science.gov (United States)

    Kawaguchi, Hiroshi; Higo, Noriyuki; Kato, Junpei; Matsuda, Keiji; Yamada, Toru

    2017-02-01

    Functional near-infrared spectroscopy (fNIRS) is suitable for measuring brain functions during neurorehabilitation because of its portability and less motion restriction. However, it is not known whether neural reconstruction can be observed through changes in cerebral hemodynamics. In this study, we modified an fNIRS system for measuring the motor function of awake monkeys to study cerebral hemodynamics during neurorehabilitation. Computer simulation was performed to determine the optimal fNIRS source-detector interval for monkey motor cortex. Accurate digital phantoms were constructed based on anatomical magnetic resonance images. Light propagation based on the diffusion equation was numerically calculated using the finite element method. The source-detector pair was placed on the scalp above the primary motor cortex. Four different interval values (10, 15, 20, 25 mm) were examined. The results showed that the detected intensity decreased and the partial optical path length in gray matter increased with an increase in the source-detector interval. We found that 15 mm is the optimal interval for the fNIRS measurement of monkey motor cortex. The preliminary measurement was performed on a healthy female macaque monkey using fNIRS equipment and custom-made optodes and optode holder. The optodes were attached above bilateral primary motor cortices. Under the awaking condition, 10 to 20 trials of alternated single-sided hand movements for several seconds with intervals of 10 to 30 s were performed. Increases and decreases in oxy- and deoxyhemoglobin concentration were observed in a localized area in the hemisphere contralateral to the moved forelimb.

  11. Blue light and near-infrared fundus autofluorescence in acute Vogt-Koyanagi-Harada disease.

    Science.gov (United States)

    Koizumi, Hideki; Maruyama, Kazuichi; Kinoshita, Shigeru

    2010-11-01

    To investigate the characteristics of fundus autofluorescence (FAF) in acute Vogt-Koyanagi-Harada (VKH) disease. FAF photography with blue light (BL-FAF) and near-infrared light (NIR-FAF) was performed on 10 eyes of five patients using a confocal scanning laser ophthalmoscope before and after treatment. The FAF images were followed for 6 months and retrospectively reviewed with comparisons of the other imaging modalities. At presentation, four eyes of two patients who presented soon after the initial ocular symptoms showed mild and uniform hyperautofluorescence in the macula mixed with hypoautofluorescence in the areas of serous retinal detachment. After immediate treatment with an intravenous high-dose steroid, the abnormal FAF returned to normal at 6 months. The other six eyes of three patients, who presented weeks after the symptoms, initially demonstrated diffuse and mottled hyperautofluorescence over the posterior pole, mixed with hypoautofluorescence induced by serous retinal detachment in four eyes. After treatment with an intravenous high-dose steroid, all six eyes showed scattered and widespread hyperautofluorescence, which gradually became evident and concentrated in the macula, partially resulting in some hypoautofluorescent dots at 6 months. The BL-FAF and the NIR-FAF demonstrated similar FAF patterns, but more evidently in NIR-FAF. FAF photography non-invasively visualised sequential metabolic and functional changes in the retinal pigment epithelium (RPE) in acute VKH disease. The results suggest that early and sufficient treatment with a high-dose steroid might prevent persistent RPE damage. In addition, NIR-FAF can be an alternative method for the early detection of RPE abnormality.

  12. MR imaging biomarkers for evaluating therapeutic effects shortly after near infrared photoimmunotherapy

    Science.gov (United States)

    Nakamura, Yuko; Bernardo, Marcelino; Nagaya, Tadanobu; Sato, Kazuhide; Harada, Toshiko; Choyke, Peter L.; Kobayashi, Hisataka

    2016-01-01

    Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photon absorbers after irradiation with NIR light. The purpose of this study was to determine if MR imaging can detect changes in the MR properties of tumor within several hours of NIR-PIT. A431 cells were injected subcutaneously in the right and left dorsi of 12 mice. Six days later, the mice were injected with a photon absorber, IR700, conjugated to panitumumab, an antibody targeting epidermal growth factor receptor. One day later, only right sided tumor was exposed to NIR light (treated tumor). MRI was performed 1 day before and 1-2 hours after NIR-PIT using gadofosveset for six mice and gadopentetate dimeglumine for another six mice. T2 relaxation times, the apparent diffusion coefficient (ADC) for the following combinations of b-values: 0-1000, 200-1000 and 500-1000 s/mm2 and enhancement indices were compared before and after NIR-PIT using a two-sided paired t-test. For treated tumors, T2 relaxation time increased after NIR-PIT (p < 0.01) and all three ADC values decreased after NIR-PIT (p < 0.01). Moreover, the enhancement area under the curve (AUC) using gadofosveset increased after NIR-PIT (p = 0.02). In conclusion, prolongation of T2, reductions in ADC and increased enhancement using gadofosveset are seen within 2 hours of NIR-PIT treatment of tumors. Thus, MRI can be a useful imaging biomarker for detecting early therapeutic changes after NIR-PIT. PMID:26885619

  13. Miniature near-infrared spectrometer for point-of-use chemical analysis

    Science.gov (United States)

    Friedrich, Donald M.; Hulse, Charles A.; von Gunten, Marc; Williamson, Eric P.; Pederson, Christopher G.; O'Brien, Nada A.

    2014-03-01

    Point-of-use chemical analysis holds tremendous promise for a number of industries, including agriculture, recycling, pharmaceuticals and homeland security. Near infrared (NIR) spectroscopy is an excellent candidate for these applications, with minimal sample preparation for real-time decision-making. We will detail the development of a golf ball-sized NIR spectrometer developed specifically for this purpose. The instrument is based upon a thin-film dispersive element that is very stable over time and temperature, with less than 2 nm change expected over the operating temperature range and lifetime of the instrument. This filter is coupled with an uncooled InGaAs detector array in a small, rugged, environmentally stable optical bench ideally suited to unpredictable environments. The resulting instrument weighs less than 60 grams, includes onboard illumination and collection optics for diffuse reflectance applications in the 900-1700 nm wavelength range, and is USB-powered. It can be driven in the field by a laptop, tablet or even a smartphone. The software design includes the potential for both on-board and cloud-based storage, analysis and decision-making. The key attributes of the instrument and the underlying design tradeoffs will be discussed, focusing on miniaturization, ruggedization, power consumption and cost. The optical performance of the instrument, as well as its fit-for purpose will be detailed. Finally, we will show that our manufacturing process has enabled us to build instruments with excellent unit-to-unit reproducibility. We will show that this is a key enabler for instrumentindependent chemical analysis models, a requirement for mass point-of-use deployment.

  14. Low-cost near-infrared measurement of subcutaneous fat for newborn malnutrition

    Science.gov (United States)

    McEwan, A. L.; Bian, S.; Gargiulo, G. D.; Morhard, R.; Jones, P.; Mustafa, F. H.; Bek, B. Emily; Jeffery, H. E.

    2014-04-01

    Low fat composition in newborns exposes them to an immediate risk of increased mortality and morbidity, inhibited physical and cognitive development and to diabetes and obesity diseases in later life. Information about nutritional and dietary status of newborns can be accessed by measuring the amount of fat composition in the body. The functions of subcutaneous fat involve energy storage, thermo-insulation and a physical buffer. Current technologies for newborn body fat monitoring are: a device based on air displacement plethesmography (PeaPod), dual-energy Xray, and underwater weighting. However they are bulky, expensive, immobile, and require technical expertise. We propose an alternative portable measurement system of in-vitro for subcutaneous fat that uses diffuse near-infrared light reflectance measurement system. We also introduce an in-vitro three-layered tissue model mimicking the subcutaneous fat layer in newborns together with a preliminary study to measure fat using dual-wavelength nearinfrared light. Based on the output data from these measurements, we have proposed a suitable transmission and scattering model. This model estimated the amount of reflected light collected by a photodetector after incident light is scattered in several fat layers. Our portable sensor is low cost and does not require training hence it is suitable for mass use in the developing world. It consists of a single LED and two photodetectors (900 nm and 1000 nm). The photodetectors wavelengths were chosen to be sensitive to fat as it exhibits a peak in the wavelength at 930 nm and to water at which exhibits a peak at 980 nm; the latter is used, to remove hydration bias. Results on a porcine tissue model demonstrate differentiation as low as 2 mm fat which is a relevant screening thickness to indicate low percentage body fat.

  15. Near infrared light absorption in magnetic nanoemulsion under external magnetic field

    Science.gov (United States)

    Brojabasi, Surajit; Mahendran, V.; Lahiri, B. B.; Philip, John

    2014-07-01

    We study the magnetic field dependent near infrared photon absorption behavior in a magnetically polarizable oil-in-water emulsion of droplet radius ~110 nm. The absorption of near infrared photons in magnetic nanoemulsion is found to be dependent on the volume fraction and applied magnetic field, which is attributed to the variation in the Mie absorption efficiency during the structural transitions of nanoemulsion droplets in dispersion. Also, the absorption linearly increases with incident near infrared photon energy up to certain external magnetic field. The imaginary part of the refractive index (k1) of magnetic nanoemulsion obtained from the near infrared absorption profile in the Rayleigh regime is found to vary with external magnetic field and the sample volume fraction (ϕ). The measured k1 follows a power law increment with sample volume fraction (k1~ϕ, where p is the exponent). The exponent (p) decreases with external magnetic field implying that the structural transition of nanoemulsion droplets increases k1. After a critical magnetic field (beyond Rayleigh regime), field induced absorption of near infrared photons decreases because of the increase in the aspect ratio of the chain like aggregates and interchain spacing which in turn reduces the Mie absorption efficiency.

  16. Effect of near-infrared rays on female menstrual pain in Korea.

    Science.gov (United States)

    Lee, Jin-Min; Kim, Kye-Ha

    2017-09-01

    Most Korean women who experience menstrual pain have reported taking pain medicine and making use of complementary alternative therapies. However, because some interventions may cause side effects, more effective pain-relieving measures need to be identified. This study using a non-equivalent group design, evaluated the effects of near-infrared rays on dysmenorrhea among Korean women. The experimental group wore a near-infrared ray abdominal belt for the duration of one menstrual cycle until the end of the menstrual period, while the control group used hot packs. The level of menstrual pain, menstrual pain duration, and pain medicine use were measured. The menstrual pain, average menstrual pain duration, and use of analgesics were reduced in the near-infrared rays group. The results of this study indicate that the near-infrared ray LED belt was effective in reducing menstrual pain, menstrual pain duration compared to the use of analgesics in Korean women with dysmenorrhea. Therefore, near-infrared rays may be used to relieve menstrual pain and improve the quality of life of women with dysmenorrhea in Korea. © 2017 John Wiley & Sons Australia, Ltd.

  17. A Near-Infrared Triggered Nanophotosensitizer Inducing Domino Effect on Mitochondrial Reactive Oxygen Species Burst for Cancer Therapy.

    Science.gov (United States)

    Yu, Zhengze; Sun, Qiaoqiao; Pan, Wei; Li, Na; Tang, Bo

    2015-11-24

    Photodynamic therapy (PDT) is a well-established modality for cancer therapy, which locally kills cancer cells when light irradiates a photosensitizer. However, conventional PDT is often limited by the extremely short lifespan and severely limited diffusion distance of reactive oxygen species (ROS) generated by photosensitizer, as well as the penetration depth of visible light activation. Here, we develop a near-infrared (NIR) triggered nanophotosensitizer based on mitochondria targeted titanium dioxide-coated upconversion nanoparticles for PDT against cancer. When irradiated by NIR laser, the nanophotosensitizer could produce ROS in mitochondria, which induced the domino effect on ROS burst. The overproduced ROS accumulated in mitochondria, resulting in mitochondrial collapse and irreversible cell apoptosis. Confocal fluorescence imaging indicated that the mitochondrial targeting and real-time imaging of ROS burst could be achieved in living cells. The complete removal of tumor in vivo confirmed the excellent therapeutic effect of the nanophotosensitizer.

  18. Near-infrared Thermal Emission Detections of a Number of Hot Jupiters and the Systematics of Ground-based Near-infrared Photometry

    Science.gov (United States)

    Croll, Bryce; Albert, Loic; Jayawardhana, Ray; Cushing, Michael; Moutou, Claire; Lafreniere, David; Johnson, John Asher; Bonomo, Aldo S.; Deleuil, Magali; Fortney, Jonathan

    2015-03-01

    We present detections of the near-infrared thermal emission of three hot Jupiters and one brown dwarf using the Wide-field Infrared Camera (WIRCam) on the Canada-France-Hawaii Telescope (CFHT). These include Ks-band secondary eclipse detections of the hot Jupiters WASP-3b and Qatar-1b and the brown dwarf KELT-1b. We also report Y-band, K CONT-band, and two new and one reanalyzed Ks-band detections of the thermal emission of the hot Jupiter WASP-12b. We present a new reduction pipeline for CFHT/WIRCam data, which is optimized for high precision photometry. We also describe novel techniques for constraining systematic errors in ground-based near-infrared photometry, so as to return reliable secondary eclipse depths and uncertainties. We discuss the noise properties of our ground-based photometry for wavelengths spanning the near-infrared (the YJHK bands), for faint and bright stars, and for the same object on several occasions. For the hot Jupiters WASP-3b and WASP-12b we demonstrate the repeatability of our eclipse depth measurements in the Ks band; we therefore place stringent limits on the systematics of ground-based, near-infrared photometry, and also rule out violent weather changes in the deep, high pressure atmospheres of these two hot Jupiters at the epochs of our observations. Based on observations obtained with WIRCam, a joint project of Canada-France-Hawaii Telescope (CFHT), Taiwan, Korea, Canada, France, at the CFHT, which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  19. Prediction of cereal feed value by near infrared spectroscopy

    DEFF Research Database (Denmark)

    Jørgensen, Johannes Ravn

    . The samples originate from available field trials over a three-year period. The chemical reference analyses are dry matter, crude protein, crude ash, crude oils and fats, EDOM, EDOMi, FEso and FEsv. All samples were ground on a laboratory mill and scans were obtained using a QFA-Flex 400 FT-NIR instrument...... and the harvest year. The feed value is described primarily by: Feed value in form of FEsv (Feed unit / kg dry matter, for piglets) and FEso (Feed unit / kg dry matter, for sows), EDOM (Enzyme Degradable Organic Matter) and EDOMi (Enzyme Degradable Organic Matter, Ileum). The chemical analysis is, however, time......-consuming and costly, and it is therefore desirable to have a rapid and less expensive method, which makes it possible to carry out more analyses in-situ. Near infra-red reflection spectroscopy (NIRS) is appropriate as a standard analysis of dry matter, total N, starch and is today used routinely by grain traders...

  20. Low cost infrared and near infrared sensors for UAVs

    Science.gov (United States)

    Aden, S. T.; Bialas, J. P.; Champion, Z.; Levin, E.; McCarty, J. L.

    2014-11-01

    Thermal remote sensing has a wide range of applications, though the extent of its use is inhibited by cost. Robotic and computer components are now widely available to consumers on a scale that makes thermal data a readily accessible resource. In this project, thermal imagery collected via a lightweight remote sensing Unmanned Aerial Vehicle (UAV) was used to create a surface temperature map for the purpose of providing wildland firefighting crews with a cost-effective and time-saving resource. The UAV system proved to be flexible, allowing for customized sensor packages to be designed that could include visible or infrared cameras, GPS, temperature sensors, and rangefinders, in addition to many data management options. Altogether, such a UAV system could be used to rapidly collect thermal and aerial data, with a geographic accuracy of less than one meter.

  1. Comprehensive study of solid pharmaceutical tablets in visible, near infrared (NIR), and longwave infrared (LWIR) spectral regions using a rapid simultaneous ultraviolet/visible/NIR (UVN) + LWIR laser-induced breakdown spectroscopy linear arrays detection system and a fast acousto-optic tunable filter NIR spectrometer.

    Science.gov (United States)

    Yang, Clayton S C; Jin, Feng; Swaminathan, Siva R; Patel, Sita; Ramer, Evan D; Trivedi, Sudhir B; Brown, Ei E; Hommerich, Uwe; Samuels, Alan C

    2017-10-30

    This is the first report of a simultaneous ultraviolet/visible/NIR and longwave infrared laser-induced breakdown spectroscopy (UVN + LWIR LIBS) measurement. In our attempt to study the feasibility of combining the newly developed rapid LWIR LIBS linear array detection system to existing rapid analytical techniques for a wide range of chemical analysis applications, two different solid pharmaceutical tablets, Tylenol arthritis pain and Bufferin, were studied using both a recently designed simultaneous UVN + LWIR LIBS detection system and a fast AOTF NIR (1200 to 2200 nm) spectrometer. Every simultaneous UVN + LWIR LIBS emission spectrum in this work was initiated by one single laser pulse-induced micro-plasma in the ambient air atmosphere. Distinct atomic and molecular LIBS emission signatures of the target compounds measured simultaneously in UVN (200 to 1100 nm) and LWIR (5.6 to 10 µm) spectral regions are readily detected and identified without the need to employ complex data processing. In depth profiling studies of these two pharmaceutical tablets without any sample preparation, one can easily monitor the transition of the dominant LWIR emission signatures from coating ingredients gradually to the pharmaceutical ingredients underneath the coating. The observed LWIR LIBS emission signatures provide complementary molecular information to the UVN LIBS signatures, thus adding robustness to identification procedures. LIBS techniques are more surface specific while NIR spectroscopy has the capability to probe more bulk materials with its greater penetration depth. Both UVN + LWIR LIBS and NIR absorption spectroscopy have shown the capabilities of acquiring useful target analyte spectral signatures in comparable short time scales. The addition of a rapid LWIR spectroscopic probe to these widely used optical analytical methods, such as NIR spectroscopy and UVN LIBS, may greatly enhance the capability and accuracy of the combined system for a comprehensive analysis.

  2. An Optical Computed Tomography by Means of the Simplified Collimator in Near-infrared Region

    Science.gov (United States)

    Mizumoto, Iwao; Odake, Sotoji; Mashiko, Shinro; Suzuki, Nobutaka

    The optical CT unit which was assembled with the laser diode working at the wavelength of 1.3 μm, and a glass optical fiber and a pin-hole with a diameter of the 100 μm yields the collimated near-infrared light through a scattering medium. Because the spatial collimator system needs no fast response time, a high sensitive Ge-PIN photodetector was employed the CT system. The optical CT image is allowed by use of near-infrared absorption characteristic. When the image construction of a grape was performed using projection data, so the comparatively good experimental results was obtained. The places of a grape seed was found without cutting. By means of the difference in characteristics of near-infrared absorption, the image of a cylindrical oil phantom in gelatin was reproduced.

  3. AKARI/IRC NEAR-INFRARED SPECTRAL ATLAS OF GALACTIC PLANETARY NEBULAE

    Energy Technology Data Exchange (ETDEWEB)

    Ohsawa, Ryou [Institute of Astronomy, Graduate School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Onaka, Takashi; Sakon, Itsuki [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Matsuura, Mikako [School of Physics and Astronomy, Cardiff University, Queen’s Buildings, 5 The Parade, Roath, Cardiff CF24 3AA (United Kingdom); Kaneda, Hidehiro, E-mail: ohsawa@ioa.s.u-tokyo.ac.jp [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan)

    2016-04-15

    Near-infrared (2.5–5.0 μm) low-resolution (λ/Δλ ∼ 100) spectra of 72 Galactic planetary nebulae (PNe) were obtained with the Infrared Camera (IRC) in the post-helium phase. The IRC, equipped with a 1′ × 1′ window for spectroscopy of a point source, was capable of obtaining near-infrared spectra in a slit-less mode without any flux loss due to a slit. The spectra show emission features including hydrogen recombination lines and the 3.3–3.5 μm hydrocarbon features. The intensity and equivalent width of the emission features were measured by spectral fitting. We made a catalog providing unique information on the investigation of the near-infrared emission of PNe. In this paper, details of the observations and characteristics of the catalog are described.

  4. Combined autofluorescence and Raman spectroscopy method for skin tumor detection in visible and near infrared regions

    Science.gov (United States)

    Zakharov, V. P.; Bratchenko, I. A.; Artemyev, D. N.; Myakinin, O. O.; Khristoforova, Y. A.; Kozlov, S. V.; Moryatov, A. A.

    2015-07-01

    The combined application of Raman and autofluorescence spectroscopy in visible and near infrared regions for the analysis of malignant neoplasms of human skin was demonstrated. Ex vivo experiments were performed for 130 skin tissue samples: 28 malignant melanomas, 19 basal cell carcinomas, 15 benign tumors, 9 nevi and 59 normal tissues. Proposed method of Raman spectra analysis allows for malignant melanoma differentiating from other skin tissues with accuracy of 84% (sensitivity of 97%, specificity of 72%). Autofluorescence analysis in near infrared and visible regions helped us to increase the diagnostic accuracy by 5-10%. Registration of autofluorescence in near infrared region is realized in one optical unit with Raman spectroscopy. Thus, the proposed method of combined skin tissues study makes possible simultaneous large skin area study with autofluorescence spectra analysis and precise neoplasm type determination with Raman spectroscopy.

  5. Near infrared single photon avalanche detector with negative feedback and self quenching

    Science.gov (United States)

    Linga, Krishna; Yevtukhov, Yuriy; Liang, Bing

    2009-08-01

    We present the design and development of a negative feedback devices using the internal discrete amplifier approach used for the development of a single photon avalanche photodetector in the near infrared wavelength region. This new family of photodetectors with negative feedback, requiring no quenching mechanism using Internal Discrete Amplification (IDA) mechanism for the realization of very high gain and low excess noise factor in the visible and near infrared spectral regions, operates in the non-gated mode under a constant bias voltage. The demonstrated device performance far exceeds any available solid state Photodetectors in the near infrared wavelength range. The measured devices have Gain > 2×105, Excess noise factor researchers in the field of Ladar/Lidar, free space optical communication, 3D imaging, industrial and scientific instrumentation, night vision, quantum cryptography, and other military, defence and aerospace applications.

  6. Large Magellanic Cloud Near-infrared Synoptic Survey. V. Period–Luminosity Relations of Miras

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Wenlong; Macri, Lucas M. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); He, Shiyuan; Huang, Jianhua Z. [Department of Statistics, Texas A and M University, College Station, TX 77843 (United States); Kanbur, Shashi M. [Department of Physics, The State University of New York at Oswego, Oswego, NY 13126 (United States); Ngeow, Chow-Choong, E-mail: lmacri@tamu.edu [Graduate Institute of Astronomy, National Central University, Jhongli 32001, Taiwan (China)

    2017-10-01

    We study the near-infrared properties of 690 Mira candidates in the central region of the Large Magellanic Cloud, based on time-series observations at JHK{sub s}. We use densely sampled I -band observations from the OGLE project to generate template light curves in the near-infrared and derive robust mean magnitudes at those wavelengths. We obtain near-infrared Period–Luminosity relations for oxygen-rich Miras with a scatter as low as 0.12 mag at K{sub s}. We study the Period–Luminosity–Color relations and the color excesses of carbon-rich Miras, which show evidence for a substantially different reddening law.

  7. Imaging of solid tumor using near-infrared emitting purple bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sung Min; Min, Jung Joon; Kim, Sun A; Choy, Hyon E.; Bom, Hee Seung [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2005-07-01

    Rhodobacter sphaeroides 2.4.1 is {alpha}-3 purple nonsulfur eubacterium with an extensive metabolism. Under anaerobic conditions, it is able to grow by photosynthesis, respiration and fermentation. When grown photosynthetically, it uses wavelengths of light in the near-infrared and contains a reaction center that is the peripheral light-harvesting (LH2) complex. These molecules absorb and emit near-infrared light. Using this near-infrared fluorescent bacterial we investigated its targeting capacity of solid tumor in small animals. R. sphaeroides 2.4.1 strains were cultured in sistrons minimal medium A (SIS) at 32 C. Xenograft tumor model has been established by subcutaneous injection of CT26 mouse colon cancer cell line. 1X10 8 Rhodobacter sphaeroides cells suspended in 100 ul of PBS were injected via tail vein with 1-cc insulin syringe into tumor bearing mouse. In vivo fluorescence imaging has been done after 20 min to 30 days of purple bacteria using indocyanine (ICG) emission filter (Em=810{approx}835 nm). Near-infrared imaging signal from Rhodobacter sphaeroides was initially detected at liver for 3 days but at the necrotic region of tumor mass thereafter. Total photon flux measured 5.5X10{sup 8} (p/s/cm{sup 2}/sr) at Day 1. Also it was increased to 7.8X10{sup 8} (p/s/cm{sup 2}/sr) at 12 day. One of important characteristic is that the signal appeared only at central necrosis area. It has been monitored for 36 day. We successfully imaged cancer with near-infrared fluorescence bacteria. Our result indicate that near-infrared fluorescence purple bacteria are able to be used to monitor bacterial trafficking in living tumor models.

  8. Intraoperative Near-Infrared Fluorescence Imaging using indocyanine green in colorectal carcinomatosis surgery: Proof of concept.

    Science.gov (United States)

    Barabino, G; Klein, J P; Porcheron, J; Grichine, A; Coll, J-L; Cottier, M

    2016-12-01

    This study assesses the value of using Intraoperative Near Infrared Fluorescence Imaging and Indocyanine green to detect colorectal carcinomatosis during oncological surgery. In colorectal carcinomatosis cancer, two of the most important prognostic factors are completeness of staging and completeness of cytoreductive surgery. Presently, intraoperative assessment of tumoral margins relies on palpation and visual inspection. The recent introduction of Near Infrared fluorescence image guidance provides new opportunities for surgical roles, particularly in cancer surgery. The study was a non-randomized, monocentric, pilot "ex vivo" blinded clinical trial validated by the ethical committee of University Hospital of Saint Etienne. Ten patients with colorectal carcinomatosis cancer scheduled for cytoreductive surgery were included. Patients received 0.25 mg/kg of Indocyanine green intravenously 24 h before surgery. A Near Infrared camera was used to detect "ex-vivo" fluorescent lesions. There was no surgical mortality. Each analysis was done blindly. In a total of 88 lesions analyzed, 58 were classified by a pathologist as cancerous and 30 as non-cancerous. Among the 58 cancerous lesions, 42 were correctly classified by the Intraoperative Near-Infrared camera (sensitivity of 72.4%). Among the 30 non-cancerous lesions, 18 were correctly classified by the Intraoperative Near-Infrared camera (specificity of 60.0%). Near Infrared fluorescence imaging is a promising technique for intraoperative tumor identification. It could help the surgeon to determine resection margins and reduce the risk of locoregional recurrence. Copyright © 2016 Elsevier Ltd, BASO ~ the Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.

  9. Optical absorption and near infrared emissions of Nd3+ doped fluorophosphate glass.

    Science.gov (United States)

    Tian, Ying; Zhang, Junjie; Jing, Xufeng; Xu, Shiqing

    2012-12-01

    Fluorophosphate glass doped with Nd(3+) has been synthesized with low OH content. Near infrared emissions centered around 0.9, 1.06, and 1.3 μm have been successfully obtained in present glass excited by a conventional 800 nm laser diode. Based on the absorption spectrum, radiative properties were calculated and discussed using the Judd-Ofelt theory. The luminescence characteristics and energy transfer mechanism were investigated. Desirable low OH(-) concentration and spectroscopic characteristics of Nd(3+)-doped fluorophosphate glass indicate that it is a promising material for near-infrared lasers. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Crude Oil Model Emulsion Characterised by means of Near Infrared Spectroscopy and Multivariate Techniques

    DEFF Research Database (Denmark)

    Kallevik, H.; Hansen, Susanne Brunsgaard; Sæther, Ø.

    2000-01-01

    Water-in-oil emulsions are investigated by means of multivariate analysis of near infrared (NIR) spectroscopic profiles in the range 1100 - 2250 nm. The oil phase is a paraffin-diluted crude oil from the Norwegian Continental Shelf. The influence of water absorption and light scattering of the wa......Water-in-oil emulsions are investigated by means of multivariate analysis of near infrared (NIR) spectroscopic profiles in the range 1100 - 2250 nm. The oil phase is a paraffin-diluted crude oil from the Norwegian Continental Shelf. The influence of water absorption and light scattering...

  11. Study of the FMRI blood oxygen level dependent effect by near-infrared spectroscopy

    Science.gov (United States)

    Toronov, Vladislav; Webb, Andrew; Walker, Scott; Gupta, Rajarsi; Choi, Jee H.; Gratton, Enrico; Hueber, Dennis M.

    2003-10-01

    In order to study the behavior of cerebral physiological parameters and to further the understanding of the fMRI blood-oxygen-level-dependent (BOLD) effect, we have recorded simultaneously multi-source frequency-domain near-infrared and BOLD fMRI signals during motor functional activation in humans. From the near-infrared data we obtained information on the changes in cerebral blood volume and oxygenation. In order to relate our observations to changes in cerebral blood flow we employed the "balloon" model of cerebral perfusion. Our data showed that the deoxyhemoglobin concentration is the major factor determining the time course of the BOLD signal.

  12. Design of a solid state laser for low noise upconversion detection of near infrared light

    DEFF Research Database (Denmark)

    Høgstedt, Lasse; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2015-01-01

    To maximize signal-to-noise ratio for upconversion of near-infrared light we show that the mixing intensity should be 3 GW/m2. With emphasis on the noise contribution from random duty-cycle errors the optimum design parameters is discussed.......To maximize signal-to-noise ratio for upconversion of near-infrared light we show that the mixing intensity should be 3 GW/m2. With emphasis on the noise contribution from random duty-cycle errors the optimum design parameters is discussed....

  13. Artificial metal with effective plasma frequency in near-infrared region.

    Science.gov (United States)

    Wei, Xingzhan; Shi, Haofei; Deng, Qiling; Dong, Xiaochun; Liu, Chunheng; Lu, Yueguang; Du, Chunlei

    2010-02-15

    We have proposed and demonstrated an artificial medium consisting of arrays of circular metal rods embedded in a dielectric host, which holds a real metal behavior but the extracted effective plasma frequency is in near-infrared region. The electromagnetic responses of such medium and the retrieved effective material parameters have been particularly shown. In addition, an analytic model about effective plasma frequency is constructed by uniquely considering the skin effect and introducing the parameter-skin depth, whose predicting results are in well accordance with the FDTD simulation. This artificial material may open possibilities for many metal-based applications in near-infrared regime.

  14. A remote controllable fiber-type near-infrared light-responsive actuator.

    Science.gov (United States)

    Shi, Qiuwei; Li, Jiahui; Hou, Chengyi; Shao, Yuanlong; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi

    2017-10-10

    A novel near-infrared (NIR) light-responsive sodium polyacrylate (PAAS)/graphene oxide (GO) fiber with a torsional pre-deformation structure is reported to realize remote control actuation. The torsional pre-deformed PAAS/GO fiber exhibited various actuation phenomena, under the control of a low powered near-infrared light (50 mW cm(-2)), such as rotating in a low-temperature range (<25 °C), rolling a distance of 10 times of its diameter within 10 s, and even driving the shape change of a fabric (the weight is as high as 20 times of the fiber itself).

  15. Importance of chromophore environment on the near-infrared absorption of polymeric waveguides.

    Science.gov (United States)

    Le Duff, A C; Ricci, V; Pliska, T; Canva, M; Stegeman, G I; Chan, K P; Twieg, R

    2000-02-20

    The near-infrared absorption of two chromophore functionalized polymers and combinations of seventeen different guest chromophores in seven different organic polymer matrices were investigated to assess the effect of chromophore structure and environment on absorption. The near-infrared absorption losses were found to be dramatically larger by as much as 2-3 orders of magnitude in polymer matrices than in solution. Furthermore, the absorption of the long-wavelength tail appears to be related to the glass transition temperature of the polymer matrix that contains the chromophore. These results are interpreted in terms of inhomogeneous broadening.

  16. Characterization of the functional near-infrared spectroscopy response to nociception in a pediatric population.

    Science.gov (United States)

    Olbrecht, Vanessa A; Jiang, Yifei; Viola, Luigi; Walter, Charlotte M; Liu, Hanli; Kurth, Charles D

    2018-02-01

    Near-infrared spectroscopy can interrogate functional optical signal changes in regional brain oxygenation and blood volume to nociception analogous to functional magnetic resonance imaging. This exploratory study aimed to characterize the near-infrared spectroscopy signals for oxy-, deoxy-, and total hemoglobin from the brain in response to nociceptive stimulation of varying intensity and duration, and after analgesic and neuromuscular paralytic in a pediatric population. We enrolled children 6 months-21 years during propofol sedation before surgery. The near-infrared spectroscopy sensor was placed on the forehead and nociception was produced from an electrical current applied to the wrist. We determined the near-infrared spectroscopy signal response to increasing current intensity and duration, and after fentanyl, sevoflurane, and neuromuscular paralytic. Heart rate and arm movement during electrical stimulation was also recorded. The near-infrared spectroscopy signals for oxy-, deoxy-, and total hemoglobin were calculated as optical density*time (area under curve). During electrical stimulation, nociception was evident: tachycardia and arm withdrawal was observed that disappeared after fentanyl and sevoflurane, whereas after paralytic, tachycardia persisted while arm withdrawal disappeared. The near-infrared spectroscopy signals for oxy-, deoxy-, and total hemoglobin increased during stimulation and decreased after stimulation; the areas under the curves were greater for stimulations 30 mA vs 15 mA (13.9 [5.6-22.2], P = .0021; 5.6 [0.8-10.5], P = .0254, and 19.8 [10.5-29.1], P = .0002 for HbO2 , Hb, and HbT , respectively), 50 Hz vs 1 Hz (17.2 [5.8-28.6], P = .0046; 7.5 [0.7-14.3], P = .0314, and 21.9 [4.2-39.6], P = .0177 for HbO2 , Hb, and HbT , respectively) and 45 seconds vs 15 seconds (16.3 [3.4-29.2], P = .0188 and 22.0 [7.5-36.5], P = .0075 for HbO2 and HbT , respectively); the areas under the curves were attenuated by analgesics

  17. Near-Infrared Spectroscopy in Schizophrenia: A Possible Biomarker for Predicting Clinical Outcome and Treatment Response

    Science.gov (United States)

    Koike, Shinsuke; Nishimura, Yukika; Takizawa, Ryu; Yahata, Noriaki; Kasai, Kiyoto

    2013-01-01

    Functional near-infrared spectroscopy (fNIRS) is a relatively new technique that can measure hemoglobin changes in brain tissues, and its use in psychiatry has been progressing rapidly. Although it has several disadvantages (e.g., relatively low spatial resolution and the possibility of shallow coverage in the depth of brain regions) compared with other functional neuroimaging techniques (e.g., functional magnetic resonance imaging and positron emission tomography), fNIRS may be a candidate instrument for clinical use in psychiatry, as it can measure brain activity in naturalistic position easily and non-invasively. fNIRS instruments are also small and work silently, and can be moved almost everywhere including schools and care units. Previous fNIRS studies have shown that patients with schizophrenia have impaired activity and characteristic waveform patterns in the prefrontal cortex during the letter version of the verbal fluency task, and part of these results have been approved as one of the Advanced Medical Technologies as an aid for the differential diagnosis of depressive symptoms by the Ministry of Health, Labor and Welfare of Japan in 2009, which was the first such approval in the field of psychiatry. Moreover, previous studies suggest that the activity in the frontopolar prefrontal cortex is associated with their functions in chronic schizophrenia and is its next candidate biomarker. Future studies aimed at exploring fNIRS differences in various clinical stages, longitudinal changes, drug effects, and variations during different task paradigms will be needed to develop more accurate biomarkers that can be used to aid differential diagnosis, the comprehension of the present condition, the prediction of outcome, and the decision regarding treatment options in schizophrenia. Future fNIRS researches will require standardized measurement procedures, probe settings, analytical methods and tools, manuscript description, and database systems in an fNIRS community

  18. Near-infrared spectroscopy in schizophrenia: A possible biomarker for predicting clinical outcome and treatment response

    Directory of Open Access Journals (Sweden)

    Shinsuke eKoike

    2013-11-01

    Full Text Available Functional near-infrared spectroscopy (fNIRS is a relatively new technique that can measure hemoglobin changes in brain tissues, and its use in psychiatry has been progressing rapidly. Although it has several disadvantages (e.g., relatively low spatial resolution and the possibility of shallow coverage in the depth of brain regions compared with other functional neuroimaging techniques (e.g., functional magnetic resonance imaging and positron emission tomography, fNIRS may be a candidate instrument for clinical use in psychiatry, as it can measure brain activity in naturalistic position easily and noninvasively. fNIRS instruments are also small and work silently, and can be moved almost everywhere including schools and care units. Previous fNIRS studies have shown that patients with schizophrenia have impaired activity and characteristic waveform patterns in the prefrontal cortex during the letter version of the verbal fluency task, and part of these results have been approved as one of the Advanced Medical Technologies as an aid for the differential diagnosis of depressive symptoms by the Ministry of Health, Labor and Welfare of Japan in 2009, which was the first such approval in the field of psychiatry. Moreover, previous studies suggest that the activity in the frontopolar prefrontal cortex is associated with their functions in chronic schizophrenia and is its next candidate biomarker. Future studies aimed at exploring fNIRS differences in various clinical stages, longitudinal changes, drug effects, and variations during different task paradigms will be needed to develop more accurate biomarkers that can be used to aid differential diagnosis, the comprehension of the present condition, the prediction of outcome, and the decision regarding treatment options in schizophrenia. Future fNIRS researches will require standardized measurement procedures, probe settings, analytical methods and tools, manuscript description, and database systems in an

  19. Immediate in vivo target-specific cancer cell death after near infrared photoimmunotherapy

    Directory of Open Access Journals (Sweden)

    Mitsunaga Makoto

    2012-08-01

    Full Text Available Abstract Background Near infrared (NIR photoimmunotherapy (PIT is a new type of cancer treatment based on a monoclonal antibody (mAb-NIR phthalocyanine dye, (IR700 conjugate. In vitro cancer-specific cell death occurs during NIR light exposure in cells previously incubated with mAb-IR700 conjugates. However, documenting rapid cell death in vivo is more difficult. Methods A luciferase-transfected breast cancer cell (epidermal growth factor receptor+, MDA-MB-468luc cells was produced and used for both in vitro and in vivo experiments for monitoring the cell killing effect of PIT. After validation of cytotoxicity with NIR exposure up to 8 J/cm2in vitro, we employed an orthotopic breast cancer model of bilateral MDA-MB-468luc tumors in female athymic mice, which subsequently received a panitumumab-IR700 conjugate in vivo. One side was used as a control, while the other was treated with NIR light of dose ranging from 50 to 150 J/cm2. Bioluminescence imaging (BLI was performed before and after PIT. Results Dose-dependent cell killing and regrowth was successfully monitored by the BLI signal in vitro. Although tumor sizes were unchanged, BLI signals decreased by >95% immediately after PIT in vivo when light intensity was high (>100 J/cm2, however, in mice receiving lower intensity NIR (50 J/cm2, tumors recurred with gradually increasing BLI signal. Conclusion PIT induced massive cell death of targeted tumor cells immediately after exposure of NIR light that was demonstrated with BLI in vivo.

  20. Near-infrared spectroscopy in schizophrenia: a possible biomarker for predicting clinical outcome and treatment response.

    Science.gov (United States)

    Koike, Shinsuke; Nishimura, Yukika; Takizawa, Ryu; Yahata, Noriaki; Kasai, Kiyoto

    2013-01-01

    Functional near-infrared spectroscopy (fNIRS) is a relatively new technique that can measure hemoglobin changes in brain tissues, and its use in psychiatry has been progressing rapidly. Although it has several disadvantages (e.g., relatively low spatial resolution and the possibility of shallow coverage in the depth of brain regions) compared with other functional neuroimaging techniques (e.g., functional magnetic resonance imaging and positron emission tomography), fNIRS may be a candidate instrument for clinical use in psychiatry, as it can measure brain activity in naturalistic position easily and non-invasively. fNIRS instruments are also small and work silently, and can be moved almost everywhere including schools and care units. Previous fNIRS studies have shown that patients with schizophrenia have impaired activity and characteristic waveform patterns in the prefrontal cortex during the letter version of the verbal fluency task, and part of these results have been approved as one of the Advanced Medical Technologies as an aid for the differential diagnosis of depressive symptoms by the Ministry of Health, Labor and Welfare of Japan in 2009, which was the first such approval in the field of psychiatry. Moreover, previous studies suggest that the activity in the frontopolar prefrontal cortex is associated with their functions in chronic schizophrenia and is its next candidate biomarker. Future studies aimed at exploring fNIRS differences in various clinical stages, longitudinal changes, drug effects, and variations during different task paradigms will be needed to develop more accurate biomarkers that can be used to aid differential diagnosis, the comprehension of the present condition, the prediction of outcome, and the decision regarding treatment options in schizophrenia. Future fNIRS researches will require standardized measurement procedures, probe settings, analytical methods and tools, manuscript description, and database systems in an fNIRS community.

  1. Combining near-infrared-excited autofluorescence and Raman spectroscopy improves in vivo diagnosis of gastric cancer.

    Science.gov (United States)

    Bergholt, Mads Sylvest; Zheng, Wei; Lin, Kan; Ho, Khek Yu; Teh, Ming; Yeoh, Khay Guan; So, Jimmy Bok Yan; Huang, Zhiwei

    2011-06-15

    This study aims to evaluate the diagnostic utility of the combined near-infrared (NIR) autofluorescence (AF) and Raman spectroscopy for improving in vivo detection of gastric cancer at clinical gastroscopy. A rapid Raman endoscopic technique was employed for in vivo spectroscopic measurements of normal (n=1098) and cancer (n=140) gastric tissues from 81 gastric patients. The composite NIR AF and Raman spectra in the range of 800-1800 cm(-1) were analyzed using principal component analysis (PCA) and linear discriminant (LDA) to extract diagnostic information associated with distinctive spectroscopic processes of gastric malignancies. High quality in vivo composite NIR AF and Raman spectra can routinely be acquired from the gastric within 0.5s. The integrated intensity over the range of 800-1800 cm(-1) established the diagnostic implications (p=1.6E-14) of the change of NIR AF intensity associated with neoplastic transformation. PCA-LDA diagnostic modeling on the in vivo tissue NIR AF and Raman spectra acquired yielded a diagnostic accuracy of 92.2% (sensitivity of 97.9% and specificity of 91.5%) for identifying gastric cancer from normal tissue. The integration area under the receiver operating characteristic (ROC) curve using the combined NIR AF and Raman spectroscopy was 0.985, which is superior to either the Raman spectroscopy or NIR AF spectroscopy alone. This work demonstrates that the complementary Raman and NIR AF spectroscopy techniques can be integrated together for improving the in vivo diagnosis and detection of gastric cancer at endoscopy. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Near-infrared-excited confocal Raman spectroscopy advances in vivo diagnosis of cervical precancer

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J. H.; Ilancheran, Arunachalam; Huang, Zhiwei

    2013-06-01

    Raman spectroscopy is a unique optical technique that can probe the changes of vibrational modes of biomolecules associated with tissue premalignant transformation. This study evaluates the clinical utility of confocal Raman spectroscopy over near-infrared (NIR) autofluorescence (AF) spectroscopy and composite NIR AF/Raman spectroscopy for improving early diagnosis of cervical precancer in vivo at colposcopy. A rapid NIR Raman system coupled with a ball-lens fiber-optic confocal Raman probe was utilized for in vivo NIR AF/Raman spectral measurements of the cervix. A total of 1240 in vivo Raman spectra [normal (n=993), dysplasia (n=247)] were acquired from 84 cervical patients. Principal components analysis (PCA) and linear discriminant analysis (LDA) together with a leave-one-patient-out, cross-validation method were used to extract the diagnostic information associated with distinctive spectroscopic modalities. The diagnostic ability of confocal Raman spectroscopy was evaluated using the PCA-LDA model developed from the significant principal components (PCs) [i.e., PC4, 0.0023% PC5, 0.00095% PC8, 0.00022%, (p<0.05)], representing the primary tissue Raman features (e.g., 854, 937, 1095, 1253, 1311, 1445, and 1654 cm-1). Confocal Raman spectroscopy coupled with PCA-LDA modeling yielded the diagnostic accuracy of 84.1% (a sensitivity of 81.0% and a specificity of 87.1%) for in vivo discrimination of dysplastic cervix. The receiver operating characteristic curves further confirmed that the best classification was achieved using confocal Raman spectroscopy compared to the composite NIR AF/Raman spectroscopy or NIR AF spectroscopy alone. This study illustrates that confocal Raman spectroscopy has great potential to improve early diagnosis of cervical precancer in vivo during clinical colposcopy.

  3. Near infrared index to assess the effect of soil tillage and fertilizer on soil water content.

    Science.gov (United States)

    Soltani, Ines; Fouad, Youssef; Michot, Didier; Breger, Pascale; Dubois, Remy; Pichelin, Pascal; Cudennec, Christophe

    2017-04-01

    Characterization of soil hydraulic properties is important for assessing soil water regime in agricultural fields. In the laboratory, measurements of soil hydrodynamic properties are costly and time consuming. Numerous studies recently demonstrated that reflectance spectroscopy can give a rapid estimation of several soil properties including those related with soil water content. The main objective of this research study was to show that near infrared spectroscopy (NIRS) is a useful tool to study the combined effect of soil tillage and fertilizer input on soil hydrodynamic properties. The study was carried out on soil samples collected from an experimental station located in Brittany, France. In 2000, the field was designed in a split-plot combining three tillage practices and four sources of fertilizers (mineral and organic). Undisturbed soil blocks were sampled in 2012 from three different depths of topsoil (0-7 cm, 7-15 cm and 15-20 cm) at each treatment. From each soil block, four aggregates with 3-4 cm diameter by 5-6 cm height were collected. Soil aggregates were first saturated and were then drained through 10 matric potential, from saturation up to permanent wilting point (pF=4.2), by successively using a suction table and a pressure chamber. Once the desired water pressure head was reached, soil samples were scanned to acquire reflectance spectra between 400-2500 nm using a handheld spectroradiometer equipped with a contact probe. Each spectrum was transformed into continuum removal, and an index based on the full width at half maximum (FWHM) of the absorption feature around 1920 nm was calculated. This index showed a linear relationship (R2>0.9) with volumetric water content. Moreover our results showed that the slope of the line was well correlated with the range of treatment. Overall, our findings indicate that the absorption feature of continuum removal spectra around 1900 nm can be useful to study the effect, particularly, of tillage on hydrodynamic

  4. Comparison of visible and near infrared reflectance spectroscopy on fat to authenticate dietary history of lambs.

    Science.gov (United States)

    Huang, Y; Andueza, D; de Oliveira, L; Zawadzki, F; Prache, S

    2015-11-01

    Since consumers are showing increased interest in the origin and method of production of their food, it is important to be able to authenticate dietary history of animals by rapid and robust methods used in the ruminant products. Promising breakthroughs have been made in the use of spectroscopic methods on fat to discriminate pasture-fed and concentrate-fed lambs. However, questions remained on their discriminatory ability in more complex feeding conditions, such as concentrate-finishing after pasture-feeding. We compared the ability of visible reflectance spectroscopy (Vis RS, wavelength range: 400 to 700 nm) with that of visible-near-infrared reflectance spectroscopy (Vis-NIR RS, wavelength range: 400 to 2500 nm) to differentiate between carcasses of lambs reared with three feeding regimes, using partial least square discriminant analysis (PLS-DA) as a classification method. The sample set comprised perirenal fat of Romane male lambs fattened at pasture (P, n = 69), stall-fattened indoors on commercial concentrate and straw (S, n = 55) and finished indoors with concentrate and straw for 28 days after pasture-feeding (PS, n = 65). The overall correct classification rate was better for Vis-NIR RS than for Vis RS (99.0% v. 95.1%, P < 0.05). Vis-NIR RS allowed a correct classification rate of 98.6%, 100.0% and 98.5% for P, S and PS lambs, respectively, whereas Vis RS allowed a correct classification rate of 98.6%, 94.5% and 92.3% for P, S and PS lambs, respectively. This study suggests the likely implication of molecules absorbing light in the non-visible part of the Vis-NIR spectra (possibly fatty acids), together with carotenoid and haem pigments, in the discrimination of the three feeding regimes.

  5. Cerebral near-infrared spectroscopy to evaluate anti-G straining maneuvers in centrifuge training.

    Science.gov (United States)

    Kobayashi, Asao; Kikukawa, Azusa; Kimura, Mikihiko; Inui, Takuo; Miyamoto, Yoshinori

    2012-08-01

    Over the past decade, near-infrared spectroscopy (NIRS) has emerged as an easily manageable noninvasive method for the continuous monitoring of cerebral cortical oxygenation during +Gz exposure. NIRS is also used to evaluate pilot trainees' ability to adequately perform anti-G straining maneuvers in the course of centrifuge training. This study aimed to determine the general patterns and individual differences in NIRS recordings during +Gz exposure. There were 22 healthy male cadets who participated in the study. The centrifuge training profiles included a gradual onset run (GOR, onset rate of 0.1 Gz x s(-1)) and short-term repeated exposures, with Gz levels from 4 to 7 Gz at an onset rate of 1.0 Gz x s(-1) (rapid onset run, ROR). Cortical tissue hemoglobin saturation (tissue oxygenation index, TOI) and changes in the concentration of oxygenated hemoglobin (O2Hb) were recorded from the right forehead during the period of Gz exposure. Most of the subjects successfully performed an anti-G straining maneuver and maintained or increased the cerebral oxygenation level during Gz exposure. In four subjects, however, oxygenation decline was observed at levels over 4 Gz, even though their anti-G systems were functioning. In contrast to the O2Hb response, TOI, which reflects intracranial oxygenation changes, was decreased during the anti-G straining maneuver at Gz onset or during the countdown to a ROR exposure. Although NIRS is an effective tool for monitoring anti-G straining maneuver performance, it should be carefully evaluated in terms of intracranial oxygenation results.

  6. A Technique to Define Extrahepatic Biliary Anatomy Using Robotic Near-Infrared Fluorescent Cholangiography.

    Science.gov (United States)

    Maker, Ajay V; Kunda, Nicholas

    2017-11-01

    Bile duct injury is a rare but serious complication of minimally invasive cholecystectomy. Traditionally, intraoperative cholangiogram has been used in difficult cases to help delineate anatomical structures, however, new imaging modalities are currently available to aid in the identification of extrahepatic biliary anatomy, including near-infrared fluorescent cholangiography (NIFC) using indocyanine green (ICG).1-5 The objective of the study was to evaluate if this technique may aid in safe dissection to obtain the critical view. Thirty-five consecutive multiport robotic cholecystectomies using NIFC with ICG were performed using the da Vinci Firefly Fluorescence Imaging System. All patients received 2.5 mg ICG intravenously at the time of intubation, followed by patient positioning, draping, and establishment of pneumoperitoneum. No structures were divided until the critical view of safety was achieved. Real-time toggling between NIFC and bright-light illumination was utilized throughout the case to define the extrahepatic biliary anatomy. ICG was successfully administered to all patients without complication, and in all cases the extrahepatic biliary anatomy was able to be identified in real-time 3D. All procedures were completed without biliary injury, conversion to an open procedure, or need for traditional cholangiography to obtain the critical view. Specific examples of cases where x-ray cholangiography or conversion to open was avoided and NIFC aided in safe dissection leading to the critical view are demonstrated, including (1) evaluation for aberrant biliary anatomy, (2) confirmation of non-biliary structures, and (3) use in cases where the infundibulum is fused to the common bile duct. NIFC using ICG is demonstrated as a useful technique to rapidly identify and aid in the visualization of extrahepatic biliary anatomy. Techniques that selectively utilize this technology specifically in difficult cases where the anatomy is unclear are demonstrated in order

  7. Fast-response optical and near-infrared GRB science with RATIR and RIMAS

    Science.gov (United States)

    Capone, John; RIMAS Collaboration, RATIR project Team

    2016-01-01

    As the Universe's most luminous transient events, long gamma-ray bursts (GRBs) are observed at cosmological distances. The afterglow emission generated by the burst's interaction with the surrounding medium presents the opportunity to study the local environment, as well as intervening systems. The transient nature of these events requires observations starting within minutes of the GRB to maximize the scientific opportunities.This dissertation work comprises efforts to advance the field with a new instrument, the Rapid Infrared Imager and Spectrograph (RIMAS). The optical design is complicated by the broad band coverage (0.97 to 2.39 microns) and the necessity of transmissive optics due to space and weight limitations on the telescope. Additionally, the entire optical system must be cooled to cryogenic temperatures to decrease the background from thermal emission. The completed instrument will be permanently installed on Lowell Observatory's new 4.3 meter Discovery Channel Telescope (DCT) located in Happy Jack, Arizona. The fast slew time of the telescope, combined with the instrument's ability to image in two bands simultaneously and switch to spectroscopic configurations in under a minute will allow observers to obtain photometric data within minutes and spectra within ~ ten minutes.In addition to instrumentation work on RIMAS's optics, early time photometric light curves have been studied primarily using data from the Reionization and Transients Infrared/Optical Project (RATIR). Early time photometric data in six optical and near-infrared (NIR) bands has allowed a study of color evolution in the early to late time SEDs. This study probes possible impacts of the GRB on the local medium as well as intrinsic changes in the afterglow emission.This work is made possible by the RATIR and RIMAS collaborations as well as financial support by the NSF.

  8. [Quality control in liquid-liquid extraction of Reduning injection using near-infrared spectroscopy technology].

    Science.gov (United States)

    Wu, Sha; Liu, Qi-an; Wang, Wei; Su, Guang; Wu, Jian-xiong; Bi, Yu-an; Wang, Zhen-zhong; Xiao, Wei

    2015-02-01

    Quantitative models were established to analyze the content of chlorogenic acid and soluble solid content in the liquid-liquid extraction of Reduning injection by near-infrared (NIR) spectroscopy. Seven batches of extraction solution from the liquid-liquid extraction of Lonicerae Japonicae Flos and Artemisiae Annuae Herba were collected and NIR off-line spectra were acquired. The content of chlorogenic acid and soluble solid content were determined by the reference methods. The partial least square (PLS) and artificial neural networks (ANN) were used to build models to predict the content of chlorogenic acid and soluble solid content in the unknown samples. For PLS models, the R2 of calibration set were 0.9872, 0.9812, RMSEC were 0.1533, 0.7943, the R2 of prediction set were 0.9837, 0.9733, RMSEP were 0.2464, 1.2594, RSEP were 3.25%, 3.31%, for chlorogenic acid and soluble solid content, respectively. For ANN models, the R2 of calibration set were 0.9903, 0.9882, RMSEC were 0.0974, 0.4543, the R2 of prediction set were 0.9868, 0.9699, RMSEP were 0.1920, 0.9427, RSEP were 2.61%, 2.75%, for chlorogenic acid and soluble solid content, respectively. Both the RSEP values of chlorogenic acid and soluble solid content were lower than 6%, which can satisfy the quality control standard in the traditional Chinese medicine production process. The RSEP values of ANN models were lower than PLS models, which indicated the ANN models had better predictive performance for chlorogenic acid and soluble solid content. The established method can rapidly measure the content of chlorogenic acid and soluble solid content. The method is simple, accurate anc reliable, thus can be used for quality control of the liquid-liquid extraction of Reduning injection.

  9. Optical monitoring of testicular torsion using a miniaturized near infrared spectroscopy sensor

    Science.gov (United States)

    Shadgan, Babak; Kajbafzadeh, Majid; Nigro, Mark; Kajbafzadeh, A. M.; Macnab, Andrew

    2017-02-01

    Background: Testicular torsion is an acute urological emergency occurring in children and adolescents. Accurate and fast diagnosis is important as the resulting ischemia can destroy the testis. Currently, Doppler ultrasound is the preferred diagnostic method. Ultrasound is not readily available in all centers which may delay surgical treatment. In this study, a rat model was used to examine the feasibility and sensitivity of using spatially-resolved near infrared spectroscopy (SR-NIRS) with a custom-made miniaturized optical sensor probe to detect and study changes in testicular hemodynamics and oxygenation during three degrees of induced testicular torsion, and after detorsion. Methods: Eight anesthetized rats (16 testes) were studied using SR-NIRS with the miniaturized optical probe applied directly onto the surface of the surgically exposed testis during 360, 720 and 1080 degrees of torsion followed by detorsion. Oxygenated, deoxygenated and total hemoglobin and TOI% were studied pre-and post-manipulations. Results: NIRS monitoring reflected acute testicular ischemia and hypoxia on induction of torsion, and tissue reperfusionreoxygenation after detorsion. Testicular torsion at 720 degrees induced the maximum observed degree of hypoxic changes. In all cases, rhythmic changes were observed in the NIRS signals before inducing torsion; these disappeared after applying 360 degrees of torsion and did not reappear after detorsion. Conclusion: This animal study indicates that SR-NIRS monitoring of the testes using a directly applied miniature sensor is a feasible and sensitive method to detect testicular ischemia and hypoxia immediately after torsion occurs, and testicular reperfusion upon detorsion. This study offers the potential for a SR-NIRS system with a miniaturized sensor to be explored further as a rapid, noninvasive, optical method for detecting testicular torsion in children.

  10. Oil accumulation in intact olive fruits measured by near infrared spectroscopy-acousto-optically tunable filter.

    Science.gov (United States)

    Bellincontro, Andrea; Caruso, Giovanni; Mencarelli, Fabio; Gucci, Riccardo

    2013-04-01

    A field experiment was conducted to test the reliability of the near infrared spectroscopy (NIR)-acousto-optically tunable filter (AOTF) method to measure mesocarp oil content in vivo against nuclear magnetic resonance (NMR) determinations using three different olive cultivars at different stages of ripening. In the partial least squares model carried out for the cultivar 'Arbequina', the coefficient of determination in calibration (R(2)c) was 0.991, while the coefficient of determination in cross-validation (R(2)cv) was 0.979. For the cultivar 'Frantoio' the indexes were 0.982 and 0.971, respectively; while for the cultivar 'Leccino' R(2)c was 0.977 and R(2)cv was 0.965. Finally, for the combined model (sum of the three varieties) these indexes were 0.921 and 0.903, respectively. The residual predictive deviation (RPD) ratio was insufficient for the predictive model of cultivar 'Leccino' only (1.98), whereas in the other cases the RPD ratios were completely sufficient, within the estimation range over 2.5-3 (2.61 in the global model, and 4.23 in the cultivar 'Frantoio'), or in describing a large capacity with values greater than 5, as in the cultivar 'Arbequina' (9.58). NIR-AOTF spectroscopy proved to be a novel, rapid and reliable method to monitor the oil accumulation process in intact olive fruits in the field. The innovative approach of coupling NIR and NMR technologies opens up new scenarios for determining the optimal time for harvesting olive trees to obtain maximum oil production. © 2012 Society of Chemical Industry.

  11. Investigating the impact of biomass quality on near-infrared models for switchgrass feedstocks

    Directory of Open Access Journals (Sweden)

    Lindsey M. Kline

    2015-12-01

    Full Text Available The aim of this study was to determine the impact of incorporating switchgrass samples that have been in long term storage on the development of near-infrared (NIR multivariate calibration models and their predictive capabilities. Stored material contains more variation in their respective spectral signatures due to chemical changes in the bales with storage time. Partial least squares (PLS regression models constructed using NIR spectra of stored switchgrass possessed an instability that interfered with the correlation between the spectral data and measured chemical composition. The models were improved using calibration sample sets of equal parts stored and fresh switchgrass to more accurately predict the chemical composition of stored switchgrass. Acceptable correlation values (rcalibration were obtained using a calibration sample set composed of 25 stored samples and 25 samples of fresh switchgrass for cellulose (0.91, hemicellulose (0.74, total carbohydrates (0.76, lignin (0.98, extractives (0.92, and ash (0.87. Increasing the calibration sample set to 100 samples of equal parts stored to senesced material resulted in statistically increased (p = 0.05 correlations for total carbohydrates (0.89 and ash (0.96. When these models were applied to a separate validation set (equal to 10% of the calibration sample set, high correlation coefficients (r for predicted versus measured constituent content were observed for cellulose (0.94, total carbohydrates (0.98, lignin (0.91, extractives (0.97, and ash (0.90. For optimization of processing economics, the impact of feedstock storage must be investigated for implementation in conversion processes. While NIR is a well-known high-throughput technique for characterization of senesced switchgrass, the selection of appropriate calibration samples and consequent multivariate models must be taken into careful consideration for NIR application in a biomass storage facility for rapid chemical compositional

  12. Near-infrared-excited confocal Raman spectroscopy advances in vivo diagnosis of cervical precancer.

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J H; Ilancheran, Arunachalam; Huang, Zhiwei

    2013-06-01

    Raman spectroscopy is a unique optical technique that can probe the changes of vibrational modes of biomolecules associated with tissue premalignant transformation. This study evaluates the clinical utility of confocal Raman spectroscopy over near-infrared (NIR) autofluorescence (AF) spectroscopy and composite NIR AF/Raman spectroscopy for improving early diagnosis of cervical precancer in vivo at colposcopy. A rapid NIR Raman system coupled with a ball-lens fiber-optic confocal Raman probe was utilized for in vivo NIR AF/Raman spectral measurements of the cervix. A total of 1240 in vivo Raman spectra [normal (n=993), dysplasia (n=247)] were acquired from 84 cervical patients. Principal components analysis (PCA) and linear discriminant analysis (LDA) together with a leave-one-patient-out, cross-validation method were used to extract the diagnostic information associated with distinctive spectroscopic modalities. The diagnostic ability of confocal Raman spectroscopy was evaluated using the PCA-LDA model developed from the significant principal components (PCs) [i.e., PC4, 0.0023%; PC5, 0.00095%; PC8, 0.00022%, (pspectroscopy coupled with PCA-LDA modeling yielded the diagnostic accuracy of 84.1% (a sensitivity of 81.0% and a specificity of 87.1%) for in vivo discrimination of dysplastic cervix. The receiver operating characteristic curves further confirmed that the best classification was achieved using confocal Raman spectroscopy compared to the composite NIR AF/Raman spectroscopy or NIR AF spectroscopy alone. This study illustrates that confocal Raman spectroscopy has great potential to improve early diagnosis of cervical precancer in vivo during clinical colposcopy.

  13. Application of Near Infrared Spectroscopy, Intravascular Ultrasound and the Coronary Calcium Score to Predict Adverse Coronary Events

    Science.gov (United States)

    2015-10-01

    Award Number: W81XWH-11-1-0831 TITLE: Application of Near Infrared Spectroscopy , Intravascular Ultrasound and the Coronary Calcium Score to...3. DATES COVERED 26-SEP-2014 to 25-SEP-2015 4. TITLE AND SUBTITLE Application of Near Infrared Spectroscopy , Intravascular Ultrasound and the...planned. 15. SUBJECT TERMS coronary artery disease, near infrared spectroscopy , calcium scoring, intravascular ultrasound 16. SECURIY CLASSIFICATION OF

  14. Determination of main components and anaerobic rumen digestibility of aquatic plants in vitro using near-infrared-reflectance spectroscopy.

    Science.gov (United States)

    Yue, Zheng-Bo; Zhang, Meng-Lin; Sheng, Guo-Ping; Liu, Rong-Hua; Long, Ying; Xiang, Bing-Ren; Wang, Jin; Yu, Han-Qing

    2010-04-01

    A near-infrared-reflectance (NIR) spectroscopy-based method is established to determine the main components of aquatic plants as well as their anaerobic rumen biodegradability. The developed method is more rapid and accurate compared to the conventional chemical analysis and biodegradability tests. Moisture, volatile solid, Klason lignin and ash in entire aquatic plants could be accurately predicted using this method with coefficient of determination (r(2)) values of 0.952, 0.916, 0.939 and 0.950, respectively. In addition, the anaerobic rumen biodegradability of aquatic plants, represented as biogas and methane yields, could also be predicted well. The algorithm of continuous wavelet transform for the NIR spectral data pretreatment is able to greatly enhance the robustness and predictive ability of the NIR spectral analysis. These results indicate that NIR spectroscopy could be used to predict the main components of aquatic plants and their anaerobic biodegradability. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  15. Combining X-ray computed tomography and visible near-infrared spectroscopy for prediction of soil structural properties

    DEFF Research Database (Denmark)

    Katuwal, Sheela; Hermansen, Cecilie; Knadel, Maria

    2018-01-01

    squares regression (PLSR) using the vis-NIR data (vis-NIR-PLSR) and multiple linear regression (MLR) based on soil texture and OC. The statistical prediction of macroporosity was poor, with both vis-NIR-PLSR and MLR (R2 ... near-infrared (vis-NIR) spectroscopy is a rapid analytical technique used successfully to predict various soil properties. In this study, the potential of using vis-NIR spectroscopy to predict X-ray CT derived soil structural properties was investigated. In this study, 127 soil samples from six...... (19 by 20 cm). Both macroporosity and CTmatix are soil structural properties that affect the degree of preferential transport. Bulk soils from the 127 sampling locations were scanned with a vis-NIR spectrometer (400–2500 nm). Macroporosity and CTmatrix were statistically predicted with partial least...

  16. Detection of melamine adulteration in milk by near-infrared spectroscopy and one-class partial least squares

    Science.gov (United States)

    Chen, Hui; Tan, Chao; Lin, Zan; Wu, Tong

    2017-02-01

    Melamine is a noxious nitrogen-rich substance and has been illegally adulterated in milk to boost the protein content. The present work investigated the feasibility of using near-infrared (NIR) spectrum and one-class partial least squares (OCPLS) for detecting the adulteration of melamine. A total of 102 liquor milks were prepared for experiment. A special variable importance (VI) index was defined to select 40 most significant variables. Thirty-two pure milk samples constitute the training set for constructing a one-class model and the other samples were used for the test set. The results showed that on the independent test set, it can achieve an acceptable performance, i.e., the total accuracy of 89%, the sensitivity of 90%, and the specificity of 88%. It seems that the combination of NIR spectroscopy and OCPLS classifier can serve as a potential tool for rapid and on-site screening melamine in milk samples.

  17. A Review of the Principles and Applications of Near-Infrared Spectroscopy to Characterize Meat, Fat, and Meat Products.

    Science.gov (United States)

    Prieto, Nuria; Pawluczyk, Olga; Dugan, Michael Edward Russell; Aalhus, Jennifer Lynn

    2017-07-01

    Consumer demand for quality and healthfulness has led to a higher need for quality assurance in meat production. This requirement has increased interest in near-infrared (NIR) spectroscopy due to the ability for rapid, environmentally friendly, and noninvasive prediction of meat quality or authentication of added-value meat products. This review includes the principles of NIR spectroscopy, pre-processing methods, and multivariate analyses used for quantitative and qualitative purposes in the meat sector. Recent advances in portable NIR spectrometers that enable new online applications in the meat industry are shown and their performance evaluated. Discrepancies between published studies and potential sources of variability are discussed, and further research is encouraged to face the challenges of using NIRS technology in commercial applications, so that its full potential can be achieved.

  18. Application of near infrared spectroscopy to the analysis and fast quality assessment of traditional Chinese medicinal products

    Science.gov (United States)

    Zhang, Chao; Su, Jinghua

    2014-01-01

    Near infrared spectroscopy (NIRS) has been widely applied in both qualitative and quantitative analysis. There is growing interest in its application to traditional Chinese medicine (TCM) and a review of recent developments in the field is timely. To present an overview of recent applications of NIRS to the identification, classification and analysis of TCM products, studies describing the application of NIRS to TCM products are classified into those involving qualitative and quantitative analysis. In addition, the application of NIRS to the detection of illegal additives and the rapid assessment of quality of TCMs by fast inspection are also described. This review covers over 100 studies emphasizing the application of NIRS in different fields. Furthermore, basic analytical principles and specific examples are used to illustrate the feasibility and effectiveness of NIRS in pattern identification. NIRS provides an effective and powerful tool for the qualitative and quantitative analysis of TCM products. PMID:26579382

  19. [Kinetic models for determination of yeast in fresh jujube using near infrared spectroscopy].

    Science.gov (United States)

    Hu, Yao-Hua; Liu, Cong; He, Yong

    2014-04-01

    The objectives of this study were: (1) to optimize a near-infrared (NIR) spectroscopy model for fresh jujube stored at room temperature to predict the quality change (yeast growth), (2) to establish a kinetic model of yeast growth for fresh jujubes at room temperature according to NIR spectroscopy data and storage time, and (3) to predict the shelf life of fresh jujube at room temperature. The Lizao samples of fresh jujubes were adopted as the research object in the study. The NIR spectral data were achieved before yeast infection level measured. In order to optimize the NIR model, the pretreatment techniques such as Savitzky-Golay smoothing (S-G smoothing), multiplicative scatter correction (MSC), first derivative (1-Der) and second derivative (2-Der) were compared with the raw spectra by using a statistical software package (Unscrambler 9.8), and the regression coefficient (RC) method was used to choose the characteristic wavenumber. Multiple linear regression (MLR) was applied as NIR modeling method. According to the predicted yeast infection level using NIR model, the chemical kinetic models of spectral data and storage time at room temperature with zero-order and first-order reaction were established by using a statistical software package (SPSS 18). The shelf life could be predicted based on the chemical kinetic model. The results showed that the characteristic wave numbers of 10 300, 8 330, 6 900, 5 666, 5 150 and 4 060 cm(-1) in the whole near-infrared range with MSC technique could be chosen to model the quality deterioration of fresh jujube at room temperature. The NIR model that produced the best prediction had the form of B = 320.027 - 233.920(chi1) - 206.663(chi2) - 61.584(chi3) - 14.847(chi4) - 2.680(chi5) - 9.131(chi6), where B is yeast value (lg/cfu x g(-1)), chi1-chi6 are absorbance value of characteristic wavenumber. The correlation coefficient of calibration (R(c)) was 0.950, the root mean square error of calibration (RMSEC) was 2. 560, the

  20. Near infrared study of the star-forming properties of the Rosette Complex

    Science.gov (United States)

    Roman-Zuniga, Carlos G.

    the clusters observed are still embedded in what appear to be very compact parental clump remnants, but in many cases these gaseous envelopes are possibly becoming gravitationally unbound, due to the partial emergence of the young cluster stars. The dense gas maps show features characteristic of the interaction of clusters their local environment, particularly significant offsets of tracer emission peaks, possibly due to chemical differentiation effects. Our near-infrared observations also allowed us to construct an extinction map for the fields observed. The map shows an good agreement with 13 CO emission radio maps, and allowed us to identify the main molecular cores in the complex. Using the mass of stars in the clusters and the mass of the emission cores we calculated star formation efficiencies, which resulted to be significantly larger at the central core of the cloud. Also, extinction appears to be inversely proportional to the size of the clusters, but directly proportional to the fraction of IRX sources, which is suggestive of evolutive effects and a rapid dispersion of the gas after clusters are formed. The cluster emergence time scales could be similar and even shorter than the T Tauri phase of the stars.

  1. [Discriminating and quantifying potential adulteration in virgin olive oil by near infrared spectroscopy with BP-ANN and PLS].

    Science.gov (United States)

    Weng, Xin-Xin; Lu, Feng; Wang, Chuan-Xian; Qi, Yun-Peng

    2009-12-01

    In the present paper, the use of near infrared spectroscopy (NIR) as a rapid and cost-effective classification and quantification techniques for the authentication of virgin olive oil were preliminarily investigated. NIR spectra in the range of 12 000 - 3 700 cm(-1) were recorded for pure virgin olive oil and virgin olive oil samples adulterated with varying concentrations of sesame oil, soybean oil and sunflower oil (5%-50% adulterations in the weight of virgin olive oil). The spectral range from 12 000 to 5 390 cm(-1) was adopted to set up an analysis model. In order to handle these data efficiently, after pretreatment, firstly, principal component analysis (PCA) was used to compress thousands of spectral data into several variables and to describe the body of the spectra, and the analysis suggested that the cumulate reliabilities of the first six components was more than 99.999%. Then ANN-BP was chosen as further research method. The six components were secondly applied as ANN-BP inputs. The experiment took a total of 100 samples as original model examples and left 52 samples as unknown samples to predict. Finally, the results showed that the 52 test samples were discriminated accurately. And the calibration models of quantitative analysis were built using partial-least-square (PLS). The R values for PLS model are 98.77, 99.37 and 99.44 for sesame oil, soybean oil and sunflower oil respectively, the root mean standard errors of cross validation (RMSECV) are 1.3, 1.1 and 1.04 respectively. Overall, the near infrared spectroscopic method in the present paper played a good role in the discrimination and quantification, and offered a new approach to the rapid discrimination of pure and adulterated virgin olive oil.

  2. Experimental study on the influence of the contact pressure to transmittance and reflectance spectra by near infrared spectroscopy

    Science.gov (United States)

    Jiang, Jingying; Li, Si; Wang, Tianpei; Li, Lin; Liu, Jiajia; Xu, Kexin

    2017-03-01

    Near Infrared Spectroscopy (NIRS) technology has been recognized as one of the most promising non-invasive blood glucose measurement methods due to its convenience, high efficiency, noninvasiveness, and real-time monitoring. We build a system to measure transmittance and reflectance within NIR range simultaneously. And contact measuring method has been performed in order to reduce the influence of specular reflectance of the measured skin tissue. However, in this way, the optical probe could press the skin tissue and make it distorted, which might make the internal structure and the constituent distribution of tissue changed and further the tissue optical parameter changed. This could eventually change the distribution of transmittance spectra and reflectance spectra. In this talk, we collect the transmittance spectra and the diffused reflectance spectra of human earlobe within the wavelength of 900-1700nm under the different contact pressures. The results show that the diffused reflectance spectra decrease and the diffused transmittance spectra increase with the increase of the contact pressure between the probe and the earlobe. In order to improve the precision and stability of NIRS, the contact position of the deformation of 0.75mm is determined to be an optimal contact state measurement position.

  3. Is near-infrared spectroscopy clinically useful in the preterm infant?

    DEFF Research Database (Denmark)

    da Costa, Cristine Sortica; Greisen, Gorm; Austin, Topun

    2015-01-01

    Near-infrared spectroscopy (NIRS) has been used to study cerebral haemodynamics and oxygenation in the preterm infant for many years, but its use as a clinical tool has remained elusive. This has partly been due to the challenges of providing a continuous quantitative measurement that is valid...

  4. Use of near infrared spectroscopy to measure the chemical and mechanical properties of solid wood

    Science.gov (United States)

    Stephen S. Kelley; Timothy G. Rials; Rebecca Snell; Leslie H. Groom; Amie Sluiter

    2004-01-01

    Near infrared (NIR) spectroscopy (500 nm-2400 nm), coupled with multivariate analytic (MVA) statistical techniques, have been used to predict the chemical and mechanical properties of solid loblolly pine wood. The samples were selected from different radial locations and heights of three loblolly pine trees grown in Arkansas. The chemical composition and mechanical...

  5. CANDELS : THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY

    NARCIS (Netherlands)

    Grogin, Norman A.; Kocevski, Dale D.; Faber, S. M.; Ferguson, Henry C.; Koekemoer, Anton M.; Riess, Adam G.; Acquaviva, Viviana; Alexander, David M.; Almaini, Omar; Ashby, Matthew L. N.; Barden, Marco; Bell, Eric F.; Bournaud, Frederic; Brown, Thomas M.; Caputi, Karina I.; Casertano, Stefano; Cassata, Paolo; Castellano, Marco; Challis, Peter; Chary, Ranga-Ram; Cheung, Edmond; Cirasuolo, Michele; Conselice, Christopher J.; Cooray, Asantha Roshan; Croton, Darren J.; Daddi, Emanuele; Dahlen, Tomas; Dave, Romeel; de Mello, Duilia F.; Dekel, Avishai; Dickinson, Mark; Dolch, Timothy; Donley, Jennifer L.; Dunlop, James S.; Dutton, Aaron A.; Elbaz, David; Fazio, Giovanni G.; Filippenko, Alexei V.; Finkelstein, Steven L.; Fontana, Adriano; Gardner, Jonathan P.; Garnavich, Peter M.; Gawiser, Eric; Giavalisco, Mauro; Grazian, Andrea; Guo, Yicheng; Hathi, Nimish P.; Haeussler, Boris; Hopkins, Philip F.; Huang, Jia-Sheng; Huang, Kuang-Han; Jha, Saurabh W.; Kartaltepe, Jeyhan S.; Kirshner, Robert P.; Koo, David C.; Lai, Kamson; Lee, Kyoung-Soo; Li, Weidong; Lotz, Jennifer M.; Lucas, Ray A.; Madau, Piero; McCarthy, Patrick J.; McGrath, Elizabeth J.; McIntosh, Daniel H.; McLure, Ross J.; Mobasher, Bahram; Moustakas, Leonidas A.; Mozena, Mark; Nandra, Kirpal; Newman, Jeffrey A.; Niemi, Sami-Matias; Noeske, Kai G.; Papovich, Casey J.; Pentericci, Laura; Pope, Alexandra; Primack, Joel R.; Rajan, Abhijith; Ravindranath, Swara; Reddy, Naveen A.; Renzini, Alvio; Rix, Hans-Walter; Robaina, Aday R.; Rodney, Steven A.; Rosario, David J.; Rosati, Piero; Salimbeni, Sara; Scarlata, Claudia; Siana, Brian; Simard, Luc; Smidt, Joseph; Somerville, Rachel S.; Spinrad, Hyron; Straughn, Amber N.; Strolger, Louis-Gregory; Telford, Olivia; Teplitz, Harry I.; Trump, Jonathan R.; van der Wel, Arjen; Villforth, Carolin; Wechsler, Risa H.; Weiner, Benjamin J.; Wiklind, Tommy; Wild, Vivienne; Wilson, Grant; Wuyts, Stijn; Yan, Hao-Jing; Yun, Min S.

    2011-01-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, over the approximate redshift (z) range 8-1.5. It will image >250,000 distant galaxies using three separate cameras on the Hubble Space Telescope, from the

  6. External carotid artery flow maintains near infrared spectroscopy-determined frontal lobe oxygenation during ephedrine administration

    DEFF Research Database (Denmark)

    Sørensen, H; Rasmussen, P; Sato, K

    2014-01-01

    BACKGROUND: Phenylephrine and ephedrine affect frontal lobe oxygenation ([Formula: see text]) differently when assessed by spatially resolved near infrared spectroscopy. We evaluated the effect of phenylephrine and ephedrine on extra- vs intra-cerebral blood flow and on [Formula: see text]. METHODS...

  7. Capillary-oxygenation-level-dependent near-infrared spectrometry in frontal lobe of humans

    NARCIS (Netherlands)

    Rasmussen, Peter; Dawson, Ellen A.; Nybo, Lars; van Lieshout, Johannes J.; Secher, Niels H.; Gjedde, Albert

    2007-01-01

    Brain function requires oxygen and maintenance of brain capillary oxygenation is important. We evaluated how faithfully frontal lobe near-infrared spectroscopy (NIRS) follows haemoglobin saturation (SCap) and how calculated mitochondrial oxygen tension (PMitoO2) influences motor performance. Twelve

  8. Discrimination between sedimentary rocks from close-range visible and very-near-infrared images

    NARCIS (Netherlands)

    Pozo, Susana Del; Lindenbergh, R.C.; Rodríguez-Gonzálvez, Pablo; Blom, J.C.; González-Aguilera, Diego

    2015-01-01

    Variation in the mineral composition of rocks results in a change of their spectral response capable of being studied by imaging spectroscopy. This paper proposes the use of a low-cost handy sensor, a calibrated visible-very near infrared (VIS-VNIR) multispectral camera for the recognition of

  9. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.

    Science.gov (United States)

    Jain, Astha; Homayoun, Aida; Bannister, Christopher W; Yum, Kyungsuk

    2015-03-01

    Single-walled carbon nanotubes that emit photostable near-infrared fluorescence have emerged as near-infrared optical biosensors for life sciences and biomedicine. Since the discovery of their near-infrared fluorescence, researchers have engineered single-walled carbon nanotubes to function as an optical biosensor that selectively modulates its fluorescence upon binding of target molecules. Here we review the recent advances in the single-walled carbon nanotube-based optical sensing technology for life sciences and biomedicine. We discuss the structure and optical properties of single-walled carbon nanotubes, the mechanisms for molecular recognition and signal transduction in single-walled carbon nanotube complexes, and the recent development of various single-walled carbon nanotube-based optical biosensors. We also discuss the opportunities and challenges to translate this emerging technology into biomedical research and clinical use, including the biological safety of single-walled carbon nanotubes. The advances in single-walled carbon nanotube-based near-infrared optical sensing technology open up a new avenue for in vitro and in vivo biosensing with high sensitivity and high spatial resolution, beneficial for many areas of life sciences and biomedicine. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Visual prey detection by near-infrared cues in a fish

    NARCIS (Netherlands)

    Meuthen, Denis; Rick, Ingolf P.; Thuenken, Timo; Baldauf, Sebastian A.

    2012-01-01

    Many animal species are able to perceive light wavelengths beyond those visible to humans. While numerous species are additionally sensitive to short wavelengths (UV), long wavelengths such as the near-infrared spectrum (NIR) are supposed to be unsuitable for visual perception. Here, we

  11. Silicon based near infrared photodetector using self-assembled organic crystalline nano-pillars

    Energy Technology Data Exchange (ETDEWEB)

    Ajiki, Yoshiharu, E-mail: yoshiharu-ajiki@ot.olympus.co.jp, E-mail: isao@i.u-tokyo.ac.jp [Micromachine Center, 67 Kanda Sakumagashi, Chiyoda-ku, Tokyo 100-0026 (Japan); Kan, Tetsuo [Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Yahiro, Masayuki; Hamada, Akiko; Adachi, Chihaya [Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Adachi, Junji [Office for Strategic Research Planning, Kyushu University, 6-10-1 Hakozaki, Higashi, Fukuoka 812-8581 (Japan); Matsumoto, Kiyoshi [IRT Research Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Shimoyama, Isao, E-mail: yoshiharu-ajiki@ot.olympus.co.jp, E-mail: isao@i.u-tokyo.ac.jp [Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); IRT Research Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan)

    2016-04-11

    We propose a silicon (Si) based near-infrared photodetector using self-assembled organic crystalline nano-pillars, which were formed on an n-type Si substrate and were covered with an Au thin-film. These structures act as antennas for near-infrared light, resulting in an enhancement of the light absorption on the Au film. Because the Schottky junction is formed between the Au/n-type Si, the electron excited by the absorbed light can be detected as photocurrent. The optical measurement revealed that the nano-pillar structures enhanced the responsivity for the near-infrared light by 89 (14.5 mA/W) and 16 (0.433 mA/W) times compared with those of the photodetector without nano-pillars at the wavelengths of 1.2 and 1.3 μm, respectively. Moreover, no polarization dependency of the responsivity was observed, and the acceptable incident angle ranged from 0° to 30°. These broad responses were likely to be due to the organic nano-pillar structures' having variation in their orientation, which is advantageous for near-infrared detector uses.

  12. Optical and near-infrared observations of the GRB 970616 error box

    DEFF Research Database (Denmark)

    Gorosabel, J.; Castro-Tirado, A.J.; Pedersen, Henrik

    1999-01-01

    We report on near-infrared and optical observations of the GRB 970616 error box and of the X-ray sources discovered by ASCA and ROSAT in the region. No optical transient was found either within the IPN band or in the X-ray error boxes, similarly to other bursts, and we suggest that either...

  13. Use of near infrared reflectance spectroscopy (NIRS) for predicting soil fertility and historical management.

    NARCIS (Netherlands)

    Freschet, G.T.; Barthès, B.G.; Brunet, D.; Hien, E.; Masse, D.

    2011-01-01

    This study tests the potential of near infrared reflectance spectroscopy (NIRS) for predicting soil fertility and management history from topsoil (0-10 cm deep) spectra. Soil fertility was assessed by measuring the growth of a test plant, and soil management history was determined through inquiries

  14. A Road Map for the Generation of a Near-Infrared Guide Star ...

    Indian Academy of Sciences (India)

    A Road Map for the Generation of a Near-Infrared Guide Star Catalog for Thirty Meter Telescope Observations. Smitha Subramanian Annapurni Subramaniam T Sivarani Luc Simard G. C. Anupama Kim Gillies A. N. Ramaprakash B. Eswar Reddy. Research Article Volume 37 Issue 3 September 2016 Article ID 24 ...

  15. Remote Sensing of Rock Type in the Visible and Near-Infrared,

    Science.gov (United States)

    Visible and near-infrared spectra of minerals and rocks have been measured and evaluated in terms of remote sensing applications. The authors...difficult or impossible to use in a generalized remote sensing effort in which the composition of all rocks is to be mapped. Instead, this spectral

  16. Measurement of soy contents in ground beef using near-infrared spectroscopy

    Science.gov (United States)

    Models for determining contents of soy products in ground beef were developed using near-infrared (NIR) spectroscopy. Samples were prepared by mixing four kinds of soybean protein products (Arconet, toasted soy grits, Profam and textured vegetable protein (TVP)) with ground beef (content from 0%–100...

  17. Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Langberg, H; Olesen, J

    2001-01-01

    Near infrared spectroscopy (NIRS) is becoming a widely used research instrument to measure tissue oxygen (O2) status non-invasively. Continuous-wave spectrometers are the most commonly used devices, which provide semi-quantitative changes in oxygenated and deoxygenated hemoglobin in small blood v...

  18. Fast determination of the resin and rubber content in Parthenium argentatum biomass using near infrared spectroscopy

    NARCIS (Netherlands)

    Suchat, S.; Pioch, D.; Palu, S.; Tardan, E.; Loo, van E.N.; Davrieux, F.

    2013-01-01

    Guayule (Parthenium argentatum), a plant native of semi-arid regions of northern Mexico and southern Texas, United States, is an under-used source of hypoallergenic latex, a solution to the serious latex allergy IgE problem worldwide. This study aimed to develop near infrared spectroscopy (NIRS)

  19. Near-Infrared Spectroscopy: A Promising Prehospital Tool for Management of Traumatic Brain Injury

    NARCIS (Netherlands)

    Peters, J.H.; Wageningen, B. van; Hoogerwerf, N.; Tan, E.C.T.H.

    2017-01-01

    Introduction Early identification of traumatic brain injury (TBI) is essential. Near-infrared spectroscopy (NIRS) can be used in prehospital settings for non-invasive monitoring and the diagnosis of patients who may require surgical intervention. METHODS: The handheld NIRS Infrascanner (InfraScan

  20. Intact neurovascular coupling during executive function in migraine without aura: interictal near-infrared spectroscopy study

    DEFF Research Database (Denmark)

    Schytz, H W; Ciftçi, K; Akin, A

    2010-01-01

    An altered neurovascular coupling has been proposed in migraine. We aimed to investigate neurovascular coupling during a mental task interictally in patients with migraine without aura (MO) by near-infrared spectroscopy (NIRS). Twelve migraineurs and 12 healthy controls were included. Using NIRS...