Sample records for rapid magma transport

  1. Morphological Transition in Rapidly Expanding Magmas (United States)

    Kolinski, J.; Chakraborty, P.; Gioia, G.; Kieffer, S. W.


    Many explosive eruptions are initiated by rapid decompression of bubbly magma, which behaves as an elastic material during the decompression and fragments into discrete pieces following the decompression. To emulate the rapid decompression of bubbly magma, we subject a two-dimensional foam of soap bubbles to quasi-static expansion. A recent theory predicts that where a two-dimensional foam of soap bubbles is first subjected to expansion, the foam expands homogeneously. After a critical value of expansion is attained, the foam undergoes a morphological transition and separates into a large number of small bubbles immersed in a background of a few large bubbles [Vainchtein and Aref, Physics of Fluids 13, 2001]. In our experiments we verify the phenomenon of morphological transition under area expansion. We verity the predictions of Vainchtein and Aref, compare our results with the experimental results on rapidly expanding bubble-bearing viscoelastic fluids reported by [Namiki and Manga, Earth and Planetary Science Letters 236, 2005], and discuss the implications of our results for the rapid decompression of magmas.

  2. Deep magma transport at Kilauea volcano, Hawaii (United States)

    Wright, T.L.; Klein, F.W.


    The shallow part of Kilauea's magma system is conceptually well-understood. Long-period and short-period (brittle-failure) earthquake swarms outline a near-vertical magma transport path beneath Kilauea's summit to 20 km depth. A gravity high centered above the magma transport path demonstrates that Kilauea's shallow magma system, established early in the volcano's history, has remained fixed in place. Low seismicity at 4-7 km outlines a storage region from which magma is supplied for eruptions and intrusions. Brittle-failure earthquake swarms shallower than 5 km beneath the rift zones accompany dike emplacement. Sparse earthquakes extend to a decollement at 10-12 km along which the south flank of Kilauea is sliding seaward. This zone below 5 km can sustain aseismic magma transport, consistent with recent tomographic studies. Long-period earthquake clusters deeper than 40 km occur parallel to and offshore of Kilauea's south coast, defining the deepest seismic response to magma transport from the Hawaiian hot spot. A path connecting the shallow and deep long-period earthquakes is defined by mainshock-aftershock locations of brittle-failure earthquakes unique to Kilauea whose hypocenters are deeper than 25 km with magnitudes from 4.4 to 5.2. Separation of deep and shallow long-period clusters occurs as the shallow plumbing moves with the volcanic edifice, while the deep plumbing is centered over the hotspot. Recent GPS data agrees with the volcano-propagation vector from Kauai to Maui, suggesting that Pacific plate motion, azimuth 293.5?? and rate of 7.4 cm/yr, has been constant over Kilauea's lifetime. However, volcano propagation on the island of Hawaii, azimuth 325??, rate 13 cm/yr, requires southwesterly migration of the locus of melting within the broad hotspot. Deep, long-period earthquakes lie west of the extrapolated position of Kilauea backward in time along a plate-motion vector, requiring southwesterly migration of Kilauea's magma source. Assumed ages of 0

  3. Large-volume lateral magma transport from the Mull volcano: An insight to magma chamber processes (United States)

    Ishizuka, Osamu; Taylor, Rex N.; Geshi, Nobuo; Mochizuki, Nobutatsu


    Long-distance lateral magma transport within the crust has been inferred for various magmatic systems including oceanic island volcanoes, mid-oceanic ridges, and large igneous provinces. However, studying the physical and chemical properties of active fissure systems is difficult. Hence, this study investigates the movement of magma away from the Mull volcano in the North Atlantic Igneous Province, where erosion has exposed its upper crustal dike networks. Magmatic lineations within dikes indicate that the magma flow in the Mull dike suite changed from near vertical to horizontal within 30 km of the volcanic center. This implies that distal dikes were fed by lateral magma transport from Mull. Geochemical characteristics indicate that many assimilation in Lewisian basement. Following crystallization and assimilation in the lower crust, magma fed an upper crustal reservoir, where further fractionation and incorporation of Moinian rocks generated felsic compositions. Distal dikes are andesitic and reflect events in which large volumes of mafic and felsic magma were combined by mixing between lower and upper crustal reservoirs to generate the 30-80 km3 required to supply the long-distance dikes. Once propagated, compositions along dikes were not significantly affected by assimilation and crystallization. Supplying the distal dikes with magma would have required a large-scale evacuation of the crustal reservoirs that acted as a potential trigger for explosive volcanism and the caldera formation recorded in Mull central complex.

  4. A reverse energy cascade for crustal magma transport (United States)

    Karlstrom, Leif; Paterson, Scott R.; Jellinek, A. Mark


    Direct constraints on the ascent, storage and eruption of mantle melts come primarily from exhumed, long-frozen intrusions. These structures, relics of a dynamic magma transport network, encode how Earth's crust grows and differentiates over time. Furthermore, they connect mantle melting to an evolving distribution of surface volcanism. Disentangling magma transport processes from the plutonic record is consequently a seminal but unsolved problem. Here we use field data analyses, scaling theory and numerical simulations to show that the size distribution of intrusions preserved as plutonic complexes in the North American Cordillera suggests a transition in the mechanical response of crustal rocks to protracted episodes of magmatism. Intrusion sizes larger than about 100 m follow a power-law scaling expected if energy delivered from the mantle to open very thin dykes and sills is transferred to intrusions of increasing size. Merging, assimilation and mixing of small intrusions into larger ones occurs until irreversible deformation and solidification dissipate available energy. Mantle magma supply over tens to hundreds of thousands of years will trigger this regime, a type of reverse energy cascade, depending on the influx rate and efficiency of crustal heating by intrusions. Identifying regimes of magma transport provides a framework for inferring subsurface magmatic processes from surface patterns of volcanism, information preservation in the plutonic record, and related effects including climate.

  5. Linking magma transport structures at Kīlauea volcano (United States)

    Wech, Aaron G.; Thelen, Weston A.


    Identifying magma pathways is important for understanding and interpreting volcanic signals. At Kīlauea volcano, seismicity illuminates subsurface plumbing, but the broad spectrum of seismic phenomena hampers event identification. Discrete, long-period events (LPs) dominate the shallow (5-10 km) plumbing, and deep (40+ km) tremor has been observed offshore. However, our inability to routinely identify these events limits their utility in tracking ascending magma. Using envelope cross-correlation, we systematically catalog non-earthquake seismicity between 2008-2014. We find the LPs and deep tremor are spatially distinct, separated by the 15-25 km deep, horizontal mantle fault zone (MFZ). Our search corroborates previous observations, but we find broader-band (0.5-20 Hz) tremor comprising collocated earthquakes and reinterpret the deep tremor as earthquake swarms in a volume surrounding and responding to magma intruding from the mantle plume beneath the MFZ. We propose the overlying MFZ promotes lateral magma transport, linking this deep intrusion with Kīlauea’s shallow magma plumbing.

  6. Deep intrusions, lateral magma transport and related uplift at ocean island volcanoes (United States)

    Klügel, Andreas; Longpré, Marc-Antoine; García-Cañada, Laura; Stix, John


    Oceanic intraplate volcanoes grow by accumulation of erupted material as well as by coeval or discrete magmatic intrusions. Dykes and other intrusive bodies within volcanic edifices are comparatively well studied, but intrusive processes deep beneath the volcanoes remain elusive. Although there is geological evidence for deep magmatic intrusions contributing to volcano growth through uplift, this has rarely been demonstrated by real-time monitoring. Here we use geophysical and petrological data from El Hierro, Canary Islands, to show that intrusions from the mantle and subhorizontal transport of magma within the oceanic crust result in rapid endogenous island growth. Seismicity and ground deformation associated with a submarine eruption in 2011-2012 reveal deep subhorizontal intrusive sheets (sills), which have caused island-scale uplift of tens of centimetres. The pre-eruptive intrusions migrated 15-20 km laterally within the lower oceanic crust, opening pathways that were subsequently used by the erupted magmas to ascend from the mantle to the surface. During six post-eruptive episodes between 2012 and 2014, further sill intrusions into the lower crust and upper mantle have caused magma to migrate up to 20 km laterally, resulting in magma accumulation exceeding that of the pre-eruptive phase. A comparison of geobarometric data for the 2011-2012 El Hierro eruption with data for other Atlantic intraplate volcanoes shows similar bimodal pressure distributions, suggesting that eruptive phases are commonly accompanied by deep intrusions of sills and lateral magma transport. These processes add significant material to the oceanic crust, cause uplift, and are thus fundamentally important for the growth and evolution of volcanic islands. We suggest that the development of such a magma accumulation zone in the lower oceanic crust begins early during volcano evolution, and is a consequence of increasing size and complexity of the mantle reservoir system, and potentially

  7. Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions (United States)

    Wotzlaw, Jörn-Frederik; Bindeman, Ilya N.; Stern, Richard A.; D'Abzac, Francois-Xavier; Schaltegger, Urs


    Large-volume caldera-forming eruptions of silicic magmas are an important feature of continental volcanism. The timescales and mechanisms of assembly of the magma reservoirs that feed such eruptions as well as the durations and physical conditions of upper-crustal storage remain highly debated topics in volcanology. Here we explore a comprehensive data set of isotopic (O, Hf) and chemical proxies in precisely U-Pb dated zircon crystals from all caldera-forming eruptions of Yellowstone supervolcano. Analysed zircons record rapid assembly of multiple magma reservoirs by repeated injections of isotopically heterogeneous magma batches and short pre-eruption storage times of 103 to 104 years. Decoupled oxygen-hafnium isotope systematics suggest a complex source for these magmas involving variable amounts of differentiated mantle-derived melt, Archean crust and hydrothermally altered shallow-crustal rocks. These data demonstrate that complex magma reservoirs with multiple sub-chambers are a common feature of rift- and hotspot related supervolcanoes. The short duration of reservoir assembly documents rapid crustal remelting and two to three orders of magnitude higher magma production rates beneath Yellowstone compared to continental arc volcanoes. The short pre-eruption storage times further suggest that the detection of voluminous reservoirs of eruptible magma beneath active supervolcanoes may only be possible prior to an impending eruption.

  8. Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions (United States)

    Wotzlaw, Jörn-Frederik; Bindeman, Ilya N.; Stern, Richard A.; D’Abzac, Francois-Xavier; Schaltegger, Urs


    Large-volume caldera-forming eruptions of silicic magmas are an important feature of continental volcanism. The timescales and mechanisms of assembly of the magma reservoirs that feed such eruptions as well as the durations and physical conditions of upper-crustal storage remain highly debated topics in volcanology. Here we explore a comprehensive data set of isotopic (O, Hf) and chemical proxies in precisely U-Pb dated zircon crystals from all caldera-forming eruptions of Yellowstone supervolcano. Analysed zircons record rapid assembly of multiple magma reservoirs by repeated injections of isotopically heterogeneous magma batches and short pre-eruption storage times of 103 to 104 years. Decoupled oxygen-hafnium isotope systematics suggest a complex source for these magmas involving variable amounts of differentiated mantle-derived melt, Archean crust and hydrothermally altered shallow-crustal rocks. These data demonstrate that complex magma reservoirs with multiple sub-chambers are a common feature of rift- and hotspot related supervolcanoes. The short duration of reservoir assembly documents rapid crustal remelting and two to three orders of magnitude higher magma production rates beneath Yellowstone compared to continental arc volcanoes. The short pre-eruption storage times further suggest that the detection of voluminous reservoirs of eruptible magma beneath active supervolcanoes may only be possible prior to an impending eruption. PMID:26356304

  9. Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions. (United States)

    Wotzlaw, Jörn-Frederik; Bindeman, Ilya N; Stern, Richard A; D'Abzac, Francois-Xavier; Schaltegger, Urs


    Large-volume caldera-forming eruptions of silicic magmas are an important feature of continental volcanism. The timescales and mechanisms of assembly of the magma reservoirs that feed such eruptions as well as the durations and physical conditions of upper-crustal storage remain highly debated topics in volcanology. Here we explore a comprehensive data set of isotopic (O, Hf) and chemical proxies in precisely U-Pb dated zircon crystals from all caldera-forming eruptions of Yellowstone supervolcano. Analysed zircons record rapid assembly of multiple magma reservoirs by repeated injections of isotopically heterogeneous magma batches and short pre-eruption storage times of 10(3) to 10(4) years. Decoupled oxygen-hafnium isotope systematics suggest a complex source for these magmas involving variable amounts of differentiated mantle-derived melt, Archean crust and hydrothermally altered shallow-crustal rocks. These data demonstrate that complex magma reservoirs with multiple sub-chambers are a common feature of rift- and hotspot related supervolcanoes. The short duration of reservoir assembly documents rapid crustal remelting and two to three orders of magnitude higher magma production rates beneath Yellowstone compared to continental arc volcanoes. The short pre-eruption storage times further suggest that the detection of voluminous reservoirs of eruptible magma beneath active supervolcanoes may only be possible prior to an impending eruption.

  10. Mathematical and numerical modelling of fractional crystallization coupled with chemical exchanges and differential magma-solid transport in magma chambers (United States)

    Lakhssassi, Morad; Guy, Bernard; Cottin, Jean-Yves; Touboul, Eric


    The knowledge of the chemical evolution of magmas is a major concern in geochemistry and petrology. The jumps (or discontinuities) of chemical composition observed in volcanic series from the same province are also the subject of many studies. In particular the phenomenon of "Daly gap" (Daly 1910, 1925), the name given to the jump in chemical composition between the mafic rocks (basalt) and felsic rocks (trachyte, rhyolite, phonolite), corresponding to the absence or scarcity of rocks of intermediate composition (andesite), in both ocean and continental series. Some authors explain these compositional jumps thanks to the intervention of various geological phenomena which follow in time. For example, when a magma chamber turns from a closed to an open system, the lava of a specific composition is ejected to the surface, favoring the rise of the lightest, the most volatile-rich and the less sticky magmas to the surface of the earth (Geist et al., 1995, Thompson et al., 2001). The various explanations offered, although they agree satisfactorily with the natural data, most often lead us away from basic phenomena of melting / solidification, relative migration and chemical equilibrium between solid and liquid and involve various additional phenomena. In our study, we propose a numerical modelling of the crystallization of a closed magma chamber. The physical and mathematical model distinguishes three main classes of processes occurring simultaneously: - heat transfer and solidification, - relative migration between the solid and the liquid magma, - chemical reactions between the two (solid and liquid) phases. Writing the partial differential equations with dimensionless numbers makes two parameters appear, they express the respective ratios of the solidification velocity on the transport velocity, and the kinetics of chemical exchange on the transport velocity. The speed of relative movement between the solid and the liquid, the solidification velocity and the chemical

  11. Rapid differentiation in a sill-like magma reservoir: a case study from the campi flegrei caldera. (United States)

    Pappalardo, Lucia; Mastrolorenzo, Giuseppe


    In recent decades, geophysical investigations have detected wide magma reservoirs beneath quiescent calderas. However, the discovery of partially melted horizons inside the crust is not sufficient to put constraints on capability of reservoirs to supply cataclysmic eruptions, which strictly depends on the chemical-physical properties of magmas (composition, viscosity, gas content etc.), and thus on their differentiation histories. In this study, by using geochemical, isotopic and textural records of rocks erupted from the high-risk Campi Flegrei caldera, we show that the alkaline magmas have evolved toward a critical state of explosive behaviour over a time span shorter than the repose time of most volcanic systems and that these magmas have risen rapidly toward the surface. Moreover, similar results on the depth and timescale of magma storage were previously obtained for the neighbouring Somma-Vesuvius volcano. This consistency suggests that there might be a unique long-lived magma pool beneath the whole Neapolitan area.

  12. Upper mantle magma storage and transport under a Canarian shield-volcano, Teno, Tenerife (Spain) (United States)

    Longpré, Marc-Antoine; Troll, Valentin R.; Hansteen, Thor H.


    We use clinopyroxene-liquid thermobarometry, aided by petrography and mineral major element chemistry, to reconstruct the magma plumbing system of the late Miocene, largely mafic Teno shield-volcano on the island of Tenerife. Outer rims of clinopyroxene and olivine phenocrysts show patterns best explained by decompression-induced crystallization upon rapid ascent of magmas from depth. The last equilibrium crystallization of clinopyroxene occurred in the uppermost mantle, from ˜20 to 45 km depth. We propose that flexural stresses or, alternatively, thermomechanical contrasts create a magma trap that largely confines magma storage to an interval roughly coinciding with the Moho at ˜15 km and the base of the long-term elastic lithosphere at ˜40 km below sea level. Evidence for shallow magma storage is restricted to the occurrence of a thick vitric tuff of trachytic composition emplaced before the Teno shield-volcano suffered large-scale flank collapses. The scenario developed in this study may help shed light on some unresolved issues of magma supply to intraplate oceanic volcanoes characterized by relatively low magma fluxes, such as those of the Canary, Madeira and Cape Verde archipelagoes, as well as Hawaiian volcanoes in their postshield stage. The data presented also support the importance of progressive magmatic underplating in the Canary Islands.

  13. Comparative assessment of five potential sites for hydrothermal-magma systems: energy transport

    Energy Technology Data Exchange (ETDEWEB)

    Hardee, H.C.


    A comparative assessment of five sites is being prepared as part of a Continental Scientific Drilling Program (CSDP) review of thermal regimes for the purpose of scoping areas for future research and drilling activities. This background report: discusses the various energy transport processes likely to be encountered in a hydrothermal-magma system, reviews related literature, discusses research and field data needs, and reviews the sites from an energy transport viewpoint. At least three major zones exist in the magma-hydrothermal transport system: the magma zone, the hydrothermal zone, and the transition zone between the two. Major energy transport questions relate to the nature and existence of these zones and their evolution with time. Additional energy transport questions are concerned with the possible existence of critical state and super-critical state permeable convection in deep geothermal systems. A review of thermal transport models emphasizes the fact that present transport models and computational techniques far outweigh the scarcity and quality of deep field data.

  14. Linking rapid magma reservoir assembly and eruption trigger mechanisms at evolved Yellowstone-type supervolcanoes (United States)

    Wotzlaw, J.F.; Bindeman, I.N.; Watts, Kathryn E.; Schmitt, A.K.; Caricchi, L.; Schaltegger, U.


    The geological record contains evidence of volcanic eruptions that were as much as two orders of magnitude larger than the most voluminous eruption experienced by modern civilizations, the A.D. 1815 Tambora (Indonesia) eruption. Perhaps nowhere on Earth are deposits of such supereruptions more prominent than in the Snake River Plain–Yellowstone Plateau (SRP-YP) volcanic province (northwest United States). While magmatic activity at Yellowstone is still ongoing, the Heise volcanic field in eastern Idaho represents the youngest complete caldera cycle in the SRP-YP, and thus is particularly instructive for current and future volcanic activity at Yellowstone. The Heise caldera cycle culminated 4.5 Ma ago in the eruption of the ∼1800 km3 Kilgore Tuff. Accessory zircons in the Kilgore Tuff display significant intercrystalline and intracrystalline oxygen isotopic heterogeneity, and the vast majority are 18O depleted. This suggests that zircons crystallized from isotopically distinct magma batches that were generated by remelting of subcaldera silicic rocks previously altered by low-δ18O meteoric-hydrothermal fluids. Prior to eruption these magma batches were assembled and homogenized into a single voluminous reservoir. U-Pb geochronology of isotopically diverse zircons using chemical abrasion–isotope dilution–thermal ionization mass spectrometry yielded indistinguishable crystallization ages with a weighted mean 206Pb/238U date of 4.4876 ± 0.0023 Ma (MSWD = 1.5; n = 24). These zircon crystallization ages are also indistinguishable from the sanidine 40Ar/39Ar dates, and thus zircons crystallized close to eruption. This requires that shallow crustal melting, assembly of isolated batches into a supervolcanic magma reservoir, homogenization, and eruption occurred extremely rapidly, within the resolution of our geochronology (103–104 yr). The crystal-scale image of the reservoir configuration, with several isolated magma batches, is very similar to the

  15. Diapiric flow at subduction zones: a recipe for rapid transport. (United States)

    Hall, P S; Kincaid, C


    Recent geochemical studies of uranium-thorium series disequilibrium in rocks from subduction zones require magmas to be transported through the mantle from just above the subducting slab to the surface in as little as approximately 30,000 years. We present a series of laboratory experiments that investigate the characteristic time scales and flow patterns of the diapiric upwelling model of subduction zone magmatism. Results indicate that the interaction between buoyantly upwelling diapirs and subduction-induced flow in the mantle creates a network of low-density, low-viscosity conduits through which buoyant flow is rapid, yielding transport times commensurate with those indicated by uranium-thorium studies.

  16. Rapid changes in magma storage beneath the Klyuchevskoy group of volcanoes inferred from time-dependent seismic tomography (United States)

    Koulakov, Ivan; Gordeev, Evgeniy I.; Dobretsov, Nikolay L.; Vernikovsky, Valery A.; Senyukov, Sergey; Jakovlev, Andrey; Jaxybulatov, Kayrly


    We present the results of time-dependent local earthquake tomography for the Kluchevskoy group of volcanoes in Kamchatka, Russia. We consider the time period from 1999 to 2009, which covers several stages of activity of Kluchevskoy and Bezymianny volcanoes. The results are supported by synthetic tests that recover a common 3D model based on data corresponding to different time windows. Throughout the period, we observe a robust feature below 25 km depth with anomalously high Vp/Vs values (up to 2.2). We interpret this feature as a channel bringing deep mantle materials with high fluid and melt content to the bottom of the crust. This mantle channel directly or indirectly determines the activity of all volcanoes of the Kluchevskoy group. In the crust, we model complex structure that varies over time. During the pre-eruptive period, we detected two levels of potential magma storage: one in the middle crust at 10-12 km depth and one close to the surface just below Kluchevskoy volcano. In 2005, a year of powerful eruptions of Kluchevskoy and Besymiyanny volcanoes, we observe a general increase in Vp/Vs throughout the crust. In the relaxation period following the eruption, the Vp/Vs values are generally low, and no strong anomalous zones in the crust are observed. We propose that very rapid variations in Vp/Vs are most likely due to abrupt changes in the stress and deformation states, which cause fracturing and the active transport of fluids. These fluids drive more fracturing in a positive feedback system that ultimately leads to eruption. We envision the magma reservoirs beneath the Kluchevskoy group as sponge-structured volumes that may quickly change the content of the molten phases as fluids pulse rapidly through the system.

  17. Fractal hierarchies of magma transport in Hawaii and critical self-organization of tremor (United States)

    Shaw, Herbert R.; Chouet, Bernard


    A hierarchical model of magma transport in Hawaii is developed from the seismic records of deep (30-60 km) and intermediate-depth (5-15 km) harmonic tremor between January 1, 1962, and December 31, 1983. We find two kinds of spatial distributions of magma fractions at depths below 5 km, defined by the fractal dimension D3, where the subscript is the embedding dimension. The first is a focused distribution with D3 = 0.28, and the second is a dispersed distribution with D3 = 1.52. The former dimension reflects conduitlike structures where the magma flow converges toward a summit magma chamber and the fractal dimension tends to zero. The latter dimension reflects multifractal clustering of dendritic fractures where hypocentral domains represent subsets of fractures within spherical domains with an average radius of about 1 km. These geometries constitute a percolation network of clustered intermittent fracture and magma transport. The magma volume of the average fracture is about 2 × 104 m3. A tremor model of magma transport is developed from mass balances of percolation that are proportional to tremor durations. It gives reasonable magma fractions and residence times for a vertical drift velocity of 4 km yr-1 and yields patterns of intermittency that are in accord with singularity analyses of the 22-year time series record. According to the model, sustained tremor is generated by the relaxation oscillations of the percolation network with a dominant frequency of about 1 Hz to obtain internally consistent values of fracture geometry, fracture opening force, and magma supply rate. Calculated tremor frequencies are higher in fracture networks of small volume in harmony with the observed relation between seismic amplitude and dominant frequency of tremor. Tectonic relaxation times of rock stresses versus magma pressures are in fair agreement with the average length of tremor episodes and average period of tremor intermittencies. These observations suggest that a high

  18. Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions


    Jörn-Frederik Wotzlaw; Bindeman, Ilya N.; Richard A. Stern; Francois-Xavier D’Abzac; Urs Schaltegger


    Large-volume caldera-forming eruptions of silicic magmas are an important feature of continental volcanism. The timescales and mechanisms of assembly of the magma reservoirs that feed such eruptions as well as the durations and physical conditions of upper-crustal storage remain highly debated topics in volcanology. Here we explore a comprehensive data set of isotopic (O, Hf) and chemical proxies in precisely U-Pb dated zircon crystals from all caldera-forming eruptions of Yellowstone supervo...

  19. Magma Plumbing and Transport at Yellowstone--Implications from Geodesy and Geochemistry (Invited) (United States)

    Dzurisin, D.; Wicks, C. W.; Lowenstern, J. B.


    Surface deformation, thermal activity, and outgassing at the Yellowstone caldera are manifestations of a vigorous magmatic system that has been active for more than 2 million years. Viable models for Yellowstone's magma plumbing and transport system must account for: (1) high contemporary fluxes of heat and CO2; (2) ground deformation sources beneath each of two resurgent domes, and a third near the intersection of the north caldera rim and Norris-Mammoth corridor; (3) interplay among these sources, as suggested by the timing of major changes in deformation mode; (4) repeated cycles of uplift and subsidence and sudden changes from uplift to subsidence or vice versa; (5) spatial and temporal relationships between changes in deformation mode and earthquake swarms; and (6) lateral dimensions of all three deforming areas that indicate source depths in the range 5-15 km. Seismic tomography studies have imaged a partly molten silicic magma body in the upper crust beneath the caldera and a mantle feeder zone for mafic magma. A model in which surface displacements are caused primarily by variations in the flux of mafic magma into the crust satisfies known thermal, geochemical, and geodetic constraints. In the model, a conduit system centered beneath the northeast part of the caldera supplies basalt from a mantle source to an accumulation zone 5-10 km deep, perhaps at a rheological boundary beneath a crystal-rich rhyolite body remnant from past eruptions. Increases in magma flux favor surface uplift and decreases favor subsidence. A delicate equilibrium exists among the mass and heat flux from basaltic intrusions, heat and volatile loss from the rhyolite, and the overlying hydrothermal system. In the absence of basalt input, steady subsidence should occur as a result of fluid loss from the rhyolite, but if a self-sealing zone in the deep hydrothermal system prevents fluid escape the resulting pressure increase contributes to surface uplift. Such episodes end when the seal

  20. Toward computational models of magma genesis and geochemical transport in subduction zones (United States)

    Katz, R.; Spiegelman, M.


    The chemistry of material erupted from subduction-related volcanoes records important information about the processes that lead to its formation at depth in the Earth. Self-consistent numerical simulations provide a useful tool for interpreting this data as they can explore the non-linear feedbacks between processes that control the generation and transport of magma. A model capable of addressing such issues should include three critical components: (1) a variable viscosity solid flow solver with smooth and accurate pressure and velocity fields, (2) a parameterization of mass transfer reactions between the solid and fluid phases and (3) a consistent fluid flow and reactive transport code. We report on progress on each of these parts. To handle variable-viscosity solid-flow in the mantle wedge, we are adapting a Patankar-based FAS multigrid scheme developed by Albers (2000, J. Comp. Phys.). The pressure field in this scheme is the solution to an elliptic equation on a staggered grid. Thus we expect computed pressure fields to have smooth gradient fields suitable for porous flow calculations, unlike those of commonly used penalty-method schemes. Use of a temperature and strain-rate dependent mantle rheology has been shown to have important consequences for the pattern of flow and the temperature structure in the wedge. For computing thermal structure we present a novel scheme that is a hybrid of Crank-Nicholson (CN) and Semi-Lagrangian (SL) methods. We have tested the SLCN scheme on advection across a broad range of Peclet numbers and show the results. This scheme is also useful for low-diffusivity chemical transport. We also describe our parameterization of hydrous mantle melting [Katz et. al., G3, 2002 in review]. This parameterization is designed to capture the melting behavior of peridotite--water systems over parameter ranges relevant to subduction. The parameterization incorporates data and intuition gained from laboratory experiments and thermodynamic

  1. Duration of the Banco Bonito Rhyolite Eruption, Vales Caldera, New Mexico based on magma transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Benjamin R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baldridge, W. Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gable, Carl W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sicilian, James M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Finite volume calculations of the flow of rhyolite are presented to investigate the fate of viscous magmas flowing in planar fractures with realistic length to width ratios of up to 2500:1. Heat and mass transfer for a melt with a temperature dependent viscosity and the potential to undergo phase change are considered. Magma driving pressures and dike widths are chosen to satisfy simple elastic considerations. These models are applied within a parameter space relevant to the Banco Bonito rhyolite flow, Valles caldera, New Mexico. We estimate a maximum eruption duration for the event of ~200 days, realized at a minimum possible dike width of 5-6 m and driving pressure of 7-8 MPa. Simplifications in the current model may warrant scaling of these results. However, we demonstrate the applicability of our model to magma dynamics issues and suggest that such models may be used to infer information about both the timing of an eruption and the evolution of the associated magma source.

  2. From a long-lived upper-crustal magma chamber to rapid porphyry copper emplacement: Reading the geochemistry of zircon crystals at Bajo de la Alumbrera (NW Argentina) (United States)

    Buret, Yannick; von Quadt, Albrecht; Heinrich, Christoph; Selby, David; Wälle, Markus; Peytcheva, Irena


    cathodoluminescence imaging reveals the presence of intermediate low luminescent (dark) growth zones in many crystals from all intrusions, characterised by anomalously high Th, U and REE concentrations and transient excursions in trace element ratios. A return to the same fractionation trend after this excursion excludes external compositional forcing such as magma mixing. Instead we interpret the ;dark-zones; to record zircon crystallisation during a transient event of rapid growth that resulted from mafic magma injection into the base of the magma chamber, releasing a CO2-rich vapour phase into the dacitic crystal mush. We propose that this vapour phase then migrated upwards to the apical part of the magma chamber from where it was expelled, together with successive batches of magma, to form the porphyry copper deposit within a short time-span of less than a few 10,000 years. The short duration of host rock emplacement, hydrothermal alteration and mineralisation presented in this study provides critical constraints on fluid storage in magma chambers and the genesis of large porphyry copper deposits.

  3. Magma transport and olivine crystallization depths in Kīlauea’s East Rift Zone inferred from experimentally rehomogenized melt inclusions (United States)

    Tuohy, Robin M; Wallace, Paul J.; Loewen, Matthew W; Swanson, Don; Kent, Adam J R


    Concentrations of H2O and CO2 in olivine-hosted melt inclusions can be used to estimate crystallization depths for the olivine host. However, the original dissolved CO2concentration of melt inclusions at the time of trapping can be difficult to measure directly because in many cases substantial CO2 is transferred to shrinkage bubbles that form during post-entrapment cooling and crystallization. To investigate this problem, we heated olivine from the 1959 Kīlauea Iki and 1960 Kapoho (Hawai‘i) eruptions in a 1-atm furnace to temperatures above the melt inclusion trapping temperature to redissolve the CO2 in shrinkage bubbles. The measured CO2 concentrations of the experimentally rehomogenized inclusions (⩽590 ppm for Kīlauea Iki [n=10]; ⩽880 ppm for Kapoho, with one inclusion at 1863 ppm [n=38]) overlap with values for naturally quenched inclusions from the same samples, but experimentally rehomogenized inclusions have higher within-sample median CO2 values than naturally quenched inclusions, indicating at least partial dissolution of CO2 from the vapor bubble during heating. Comparison of our data with predictions from modeling of vapor bubble formation and published Raman data on the density of CO2 in the vapor bubbles suggests that 55-85% of the dissolved CO2 in the melt inclusions at the time of trapping was lost to post-entrapment shrinkage bubbles. Our results combined with the Raman data demonstrate that olivine from the early part of the Kīlauea Iki eruption crystallized at crystallized over a much wider range of depths (∼1-16 km). The wider depth range requires magma transport during the Kapoho eruption from deep beneath the summit region and/or from deep beneath Kīlauea’s east rift zone. The deeply derived olivine crystals and their host magma mixed with stored, more evolved magma in the rift zone, and the mixture was later erupted at Kapoho.

  4. Evidence from gabbro of the Troodos ophiolite for lateral magma transport along a slow-spreading mid-ocean ridge. (United States)

    Abelson, M; Baer, G; Agnon, A


    The lateral flow of magma and ductile deformation of the lower crust along oceanic spreading axes has been thought to play a significant role in suppressing both mid-ocean ridge segmentation and variations in crustal thickness. Direct investigation of such flow patterns is hampered by the kilometres of water that cover the oceanic crust, but such studies can be made on ophiolites (fragments of oceanic crust accreted to a continent). In the Oman ophiolite, small-scale radial patterns of flow have been mapped along what is thought to be the relict of a fast-spreading mid-ocean ridge. Here we present evidence for broad-scale along-axis flow that has been frozen into the gabbro of the Troodos ophiolite in Cyprus (thought to be representative of a slow-spreading ridge axis). The gabbro suite of Troodos spans nearly 20 km of a segment of a fossil spreading axis, near a ridge-transform intersection. We mapped the pattern of magma flow by analysing the rocks' magnetic fabric at 20 sites widely distributed in the gabbro suite, and by examining the petrographic fabric at 9 sites. We infer an along-axis magma flow for much of the gabbro suite, which indicates that redistribution of melt occurred towards the segment edge in a large depth range of the oceanic crust. Our results support the magma plumbing structure that has been inferred indirectly from a seismic tomography experiment on the slow-spreading Mid-Atlantic Ridge.

  5. Two populations of amphibole in dacite magmas at Volcan Aucanquilcha, Chile: A case for rapid and repeated mixing of a tiered magmatic system (United States)

    Klemetti, E. W.; Grunder, A. L.


    Magmatic amphibole is a ubiquitous phase in most dacitic magmas in continental arc systems. Amphibole can react quickly to changes in P, T and water content caused by processes such as underplating of new magma, degassing, ascension and mixing of magma. This allows amphibole to be a valuable and sensitive barometer, thermometer and hygrometer in silicic magmatic systems. It can be especially suitable for disentangling the potential geometry of subvolcanic systems and limiting the timescales that these processes can occur. Volcán Aucanquilcha (Chile) is a Quaternary volcano that has erupted dacite lavas (63-67 wt% SiO2) that contain two populations of amphibole during its entire 1 M.y. eruptive history. The amphibole is found as phenocrysts of hornblende and pargasite that range in size from 0.5 mm to 1 cm. The amphibole populations exhibit a variety of textures: (1) thin opacite rims; (2) thick reaction rims of pyroxene, plagioclase and opaque oxides; (3) cored" with other phases such as plagioclase, biotite and anhydride; and (4) unrimmed. Representative electron microprobe analyses of amphibole find that very few of the phenocrysts are compositionally zoned, i.e., the two populations are not pargasite cores with hornblende rims. The presence of two populations of amphibole such as those found at Aucanquilcha appears to be rare; there are documented occurrences of two amphibole populations found in lavas from continental-arc related volcanoes. Sajama, Parinacota and Porquesa in Central Andes of Chile exhibit the same two populations of amphibole phenocrysts as Aucanquilcha. Evidence from Aucanquilcha suggest that the populations of amphibole crystallized at different pressures: 0.5-2 kb and 3-6 kb. Textures of the amphibole imply that the processes that mix the amphibole occur quickly before eruption, possibly in a timescales of days. The constant presence of these amphibole in all Aucanquilcha lavas indicate that the processes that juxtapose pargasite and

  6. Mush Column Magma Chambers (United States)

    Marsh, B. D.


    Magma chambers are a necessary concept in understanding the chemical and physical evolution of magma. The concept may well be similar to a transfer function in circuit or time series analysis. It does what needs to be done to transform source magma into eruptible magma. In gravity and geodetic interpretations the causative body is (usually of necessity) geometrically simple and of limited vertical extent; it is clearly difficult to `see' through the uppermost manifestation of the concentrated magma. The presence of plutons in the upper crust has reinforced the view that magma chambers are large pots of magma, but as in the physical representation of a transfer function, actual magma chambers are clearly distinct from virtual magma chambers. Two key features to understanding magmatic systems are that they are vertically integrated over large distances (e.g., 30-100 km), and that all local magmatic processes are controlled by solidification fronts. Heat transfer considerations show that any viable volcanic system must be supported by a vertically extensive plumbing system. Field and geophysical studies point to a common theme of an interconnected stack of sill-like structures extending to great depth. This is a magmatic Mush Column. The large-scale (10s of km) structure resembles the vertical structure inferred at large volcanic centers like Hawaii (e.g., Ryan et al.), and the fine scale (10s to 100s of m) structure is exemplified by ophiolites and deeply eroded sill complexes like the Ferrar dolerites of the McMurdo Dry Valleys, Antarctica. The local length scales of the sill reservoirs and interconnecting conduits produce a rich spectrum of crystallization environments with distinct solidification time scales. Extensive horizontal and vertical mushy walls provide conditions conducive to specific processes of differentiation from solidification front instability to sidewall porous flow and wall rock slumping. The size, strength, and time series of eruptive behavior

  7. Rapid Passenger Transport in North America in 21st Century

    Directory of Open Access Journals (Sweden)

    Wolf Tietze


    Full Text Available The occurrence of outstanding transport innovations maylead to monumental reconstruction in large urbanised regionssuch as North America. The decisive factor in this is the introductionofTransrapid, a new rapid transport technology basedon the principle of magnetic levitation (Maglev.This paper uses the urban network of North America Eastof the 1 O(Jh meridian, together with the smaller region of California,to demonstrate the advantages of innovative transporttechnology as the optimal link between road and air transport.Despite requiring less energy input, achieving better adaptationto the topography of the country, causing less noise and beingsubject to less wear and tear, Transrapid achieves almost twicethe speed of conventional trains.

  8. An AMS study of magma transport and emplacement mechanisms in mafic dykes from the Etendeka Province, Namibia (United States)

    Wiegand, Miriam; Trumbull, Robert B.; Kontny, Agnes; Greiling, Reinhard O.


    The Henties Bay Outjo dyke swarm (HOD) in NW Namibia is part of the early Cretaceous Paraná-Etendeka Large Igneous Province. The dykes are dominantly doleritic, compositionally equivalent to the erupted lava series and thus the HOD provides a look at the feeder systems of a flood basalt province. The subvertical dykes mostly strike NE-SW and minor NW-SE, parallel or perpendicular to the Damara Belt in which they intruded. We present a magnetic fabric study using the anisotropies of low-field magnetic susceptibility (AMS) and of anhysteretic remanent magnetization (AARM) with the aim to derive magma flow directions and better constrain emplacement mechanisms within the dyke swarm. Magnetic susceptibility and its anisotropy in the dykes is mainly controlled by distribution anisotropy of titanomagnetite that mimics the flow-oriented silicate fabric. The anisotropy is low in most samples, supporting a magmatic origin. In 66 of 110 investigated samples the AMS fabric is ;normal;, with the κmax axis (inferred flow orientation) within the dyke plane. Most samples yielded vertical to subvertical flow orientations regardless of location near or distant from the former rifted margin. The ;anomalous; magnetic fabrics, where κmax is inclined to the dyke plane, are attributed to two mechanisms. One is the single-domain effect of titanomagnetite, which was found by unequal orientations of AMS and AARM fabrics. The other case anomalous fabric is rotation of the AMS axes by shear within the magma, producing symmetric imbrication of AMS fabric on opposite dyke walls; or more commonly, asymmetric magnetic fabrics, which we relate to tectonic shear at the dyke walls during emplacement. Field support for syn-emplacement shear is given by dyke segmentation geometries including locally curved segment tips, en-echelon arrangements and left/right-stepping displacements. Regionally, syn-emplacement shear is consistent with the observed reactivation during Gondwana breakup of

  9. The Chaitén rhyolite lava dome: Eruption sequence, lava dome volumes, rapid effusion rates and source of the rhyolite magma (United States)

    Pallister, John S.; Diefenbach, Angela K.; Burton, William C.; Munoz, Jorge; Griswold, Julia P.; Lara, Luis E.; Lowenstern, Jacob B.; Valenzuela, Carolina E.


    and relatively low viscosity enabled rapid magma ascent and high effusion rates during the dome-forming phases of the 2008-2009 eruption.

  10. Rapid magma evolution constrained by zircon petrochronology and 40Ar/39Ar sanidine ages for the Huckleberry Ridge Tuff, Yellowstone, USA

    DEFF Research Database (Denmark)

    Rivera, Tiffany; Storey, Michael; Schmitz, Mark


    Understanding the time scales of magmatic differentiation, storage, and eruption of large volume silicic magmas is a primary goal of igneous petrology. Within the Huckleberry Ridge Tuff (HRT; Idaho, USA), representing the earliest and largest caldera-forming eruption associated with Yellowstone...... of single zircon crystals demonstrates an absence of pre-Pleistocene xenocrysts, but reveals the presence of antecrysts recycled from pre-caldera rhyolites in the HRT magma. The petrochronologic interpretation of autocrystic zircon thermal, chemical, and temporal characteristics suggests that HRT member B...

  11. Two hundred years of magma transport and storage at Kīlauea Volcano, Hawai'i, 1790-2008 (United States)

    Wright, Thomas L.; Klein, Fred W.


    This publication summarizes the evolution of the internal plumbing of Kīlauea Volcano on the Island of Hawaiʻi from the first documented eruption in 1790 to the explosive eruption of March 2008 in Halemaʻumaʻu Crater. For the period before the founding of the Hawaiian Volcano Observatory in 1912, we rely on written observations of eruptive activity, earthquake swarms, and periodic draining of magma from the lava lake present in Kīlauea Caldera. After 1912 the written observations are supplemented by continuous measurement of tilting of the ground at Kīlauea’s summit and by a continuous instrumental record of earthquakes, both measurements made during 1912–56 by a single pendulum seismometer housed on the northeast edge of Kīlauea’s summit. Interpretations become more robust following the installation of seismic and deformation networks in the 1960s. A major advance in the 1990s was the ability to continuously record and telemeter ground deformation to allow its precise correlation with seismic activity before and after eruptions, intrusions, and large earthquakes.

  12. Open-system behaviour of magmatic fluid phase and transport of copper in arc magmas at Krakatau and Batur volcanoes, Indonesia (United States)

    Agangi, Andrea; Reddy, Steven M.


    The Sunda arc of Indonesia is an excellent example of how volcanic processes at convergent plate margins affect the distribution of metals and control the distribution of ore deposits. In this paper, we report microtextural observations and microanalytical data (SEM-EDS and LA-ICP-MS) of silicate and sulfide melt inclusions from fresh samples of volcanic rocks from the 2008 eruption of Mt. Krakatau and 1963 eruption of Mt. Batur, Sunda arc, Indonesia that bear implications on the concentration and transport of Cu and other chalcophile elements in mafic-intermediate magmas in arc settings. These multi-phase inclusions contain glass, amphibole and plagioclase, together with co-trapped apatite, magnetite, sulfides and lobed, drop-like Fe-oxide. We observed two stages of sulfide formation: 1) early-formed sulfide globules (pyrrhotite and intermediate solid solution), which derived from an immiscible sulfide melt and only occur as inclusions in phenocrysts; and 2) late-formed, irregular Cu-rich sulfides (intermediate solid solution to bornite), which were deposited in the presence of an aqueous fluid, and are contained as fluid phase precipitates in vapour bubbles of melt inclusions and in vesicles, as well as finely dispersed grains in the groundmass. Microtextural observations and X-ray elemental maps show that interaction between sulfide globules and aqueous fluid resulted in partial oxidation and transfer of Cu between the fluid and the sulfide phase. A compilation of whole-rock analyses from the Sunda arc indicates that Cu reaches 250-300 ppm in mafic samples (SiO2 ≤ 52 wt.%), and then suddenly drops with progressive fractionation to < 50 ppm in intermediate-felsic samples. This behaviour can be explained by sulfide melt exsolution or degassing and scavenging of Cu occurring at various stages of magma fractionation (at MgO 8-2.5 wt.%). These trends can be effectively modelled by sulfide saturation during fractional crystallisation at oxygen fugacities varying

  13. Dopamine transporter imaging in rapid eye movement sleep behavior disorder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Kyeong; Yoon, In Young; Kim, Jong Min; Jeong, Seok Hoon; Kim, Ji Sun; Lee, Byung Chul; Lee, Won Woo; Kim, Sang Eun [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)


    The pathogenesis of rapid eye movement (REM) sleep behavior disorder (RBD) is still unknown. However, involvement of dopaminergic system in RBD has been hypothesized because of frequent association with degenerative movement disorders such as Parkinson's disease. The purpose of this study was to examine the extent and pattern of loss of dopamine transporter in RBD using FP-CIT SPECT. Fourteen patient with idiopathic RBD (mean age:665 yrs, M:F=10:3) participated in this study. Polysonmography confirmed loss of REM atonia and determined RBD severities by amount of tonic/phasic muscle activity during REM sleep in all cases. To compare with RBD, 14 early idiopathic Parkinson's disease rated as Hoehn and Yahr stage 1 (IPD) and 12 healthy controls were also selected. All participants performed single-photon emission computed tomography (SPECT) imaging 3 hours after injection of [123I]FP-CIT. Regions of interest were drawn on bilateral caudate and putamen, whole striatum and occipital cortex. Specific binding for dopamine transporters (DAT) were calculated using region to occipital uptake ratio based on the transient equilibrium method. Overall mean of DAT density in the striatum was lower in RBD group than controls, and higher than IPD group, However, DAT density in most individual RBD was still within normal range, and total striatal DAT density was not correlated with severity of RBD. Meanwhile, the caudate to putamen uptake ratio (C/P ratio) in RBD group was insignificantly higher than those in healthy controls. Nevertheless, C/P ratio within RBD group was reversely correlated with the RBD severity. Our study suggested that nigrostriatal dopaminergic degeneration could be a part of the pathogenesis of RBD, but not essential for the development of RBD. Further longitudinal evaluation of presynaptic dopaminergic system in idiopathic RBD may guarantee the more understanding for RBD and associated neurodegenerative disease.

  14. Rapid pre-eruptive thermal rejuvenation in a large silicic magma body: the case of the Masonic Park Tuff, Southern Rocky Mountain volcanic field, CO, USA (United States)

    Sliwinski, J. T.; Bachmann, O.; Dungan, M. A.; Huber, C.; Deering, C. D.; Lipman, P. W.; Martin, L. H. J.; Liebske, C.


    Determining the mechanisms involved in generating large-volume eruptions (>100 km3) of silicic magma with crystallinities approaching rheological lock-up ( 50 vol% crystals) remains a challenge for volcanologists. The Cenozoic Southern Rocky Mountain volcanic field, in Colorado and northernmost New Mexico, USA, produced ten such crystal-rich ignimbrites within 3 m.y. This work focuses on the 28.7 Ma Masonic Park Tuff, a dacitic ( 62-65 wt% SiO2) ignimbrite with an estimated erupted volume of 500 km3 and an average of 45 vol% crystals. Near-absence of quartz, titanite, and sanidine, pronounced An-rich spikes near the rims of plagioclase, and reverse zoning in clinopyroxene record the reheating (from 750 to >800 °C) of an upper crustal mush in response to hotter recharge from below. Zircon U-Pb ages suggest prolonged magmatic residence, while Yb/Dy vs temperature trends indicate co-crystallization with titanite which was later resorbed. High Sr, Ba, and Ti concentrations in plagioclase microlites and phenocryst rims require in-situ feldspar melting and concurrent, but limited, mass addition provided by the recharge, likely in the form of a melt-gas mixture. The larger Fish Canyon Tuff, which erupted from the same location 0.7 m.y. later, also underwent pre-eruptive reheating and partial melting of quartz, titanite, and feldspars in a long-lived upper crustal mush following the underplating of hotter magma. The Fish Canyon Tuff, however, records cooler pre-eruptive temperatures ( 710-760 °C) and a mineral assemblage indicative of higher magmatic water contents (abundant resorbed sanidine and quartz, euhedral amphibole and titanite, and absence of pyroxene). These similar pre-eruptive mush-reactivation histories, despite differing mineral assemblages and pre-eruptive temperatures, indicate that thermal rejuvenation is a key step in the eruption of crystal-rich silicic volcanics over a wide range of conditions.

  15. Rapid intercontinental air pollution transport associated with a meteorological bomb

    Directory of Open Access Journals (Sweden)

    A. Stohl


    Full Text Available Intercontinental transport (ICT of trace substances normally occurs on timescales ranging from a few days to several weeks. In this paper an extraordinary episode in November 2001 is presented, where pollution transport across the North Atlantic took only about one day. The transport mechanism, termed here an intercontinental pollution express highway because of the high wind speeds, was exceptional, as it involved an explosively generated cyclone, a so-called meteorological "bomb''. To the authors' knowledge, this is the first study describing pollution transport in a bomb. The discovery of this event was based on tracer transport model calculations and satellite measurements of NO2, a species with a relatively short lifetime in the atmosphere, which could be transported that far only because of the high wind speeds produced by the bomb. A 15-year transport climatology shows that intercontinental express highways are about four times more frequent in winter than in summer, in agreement with bomb climatologies. The climatology furthermore suggests that intercontinental express highways may be important for the budget of short-lived substances in the remote troposphere. For instance, for a substance with a lifetime of 1 day, express highways may be responsible for about two thirds of the total ICT. We roughly estimate that express highways connecting North America with Europe enhance the average NOx mixing ratios over Europe, due to North American emissions, by about 2-3 pptv in winter.

  16. The location and timing of magma degassing during Plinian eruptions (United States)

    Giachetti, T.; Gonnermann, H. M.


    Water is the most abundant volatile species in explosively erupting silicic magmas and significantly affects magma viscosity, magma fragmentation and the dynamics of the eruption column. The effect that water has on these eruption processes can be modulated by outgassing degassing from a permeable magma. The magnitude, rate and timing of outgassing during magma ascent, in particular in relation to fragmentation, remains a subject of debate. Here we constrain how much, how fast and where the erupting magma lost its water during the 1060 CE Plinian phase of the Glass Mountain eruption of Medicine Lake Volcano, California. Using thermogravimetric analysis coupled with numerical modeling, we show that the magma lost >90% of its initial water upon eruption. Textural analyses of natural pumices, together with numerical modeling of magma ascent and degassing, indicate that 65-90% of the water exsolved before fragmentation, but very little was able to outgas before fragmentation. The magma attained permeability only within about 1 to 10 seconds before fragmenting and during that time interval permeable gas flow resulted in only a modest amount of gas flux from the un-fragmented magma. Instead, most of the water is lost shortly after fragmentation, because gas can escape rapidly from lapilli-size pyroclasts. This results in an efficient rarefaction of the gas-pyroclast mixture above the fragmentation level, indicating that the development of magma permeability and ensuing permeable outgassing are a necessary condition for sustain explosive eruptions of silicic magma. Magma permeability is thus a double-edged sword, it facilitates both, the effusive and the explosive eruption of silicic magma.

  17. The Meaning of "Magma" (United States)

    Bartley, J. M.; Glazner, A. F.; Coleman, D. S.


    Magma is a fundamental constituent of the Earth, and its properties, origin, evolution, and significance bear on issues ranging from volcanic hazards to planetary evolution. Unfortunately, published usages indicate that the term "magma" means distinctly different things to different people and this can lead to miscommunication among Earth scientists and between scientists and the public. Erupting lava clearly is magma; the question is whether partially molten rock imaged at depth and too crystal-rich to flow should also be called magma. At crystal fractions > 50%, flow can only occur via crystal deformation and solution-reprecipitation. As the solid fraction increases to 90% or more, the material becomes a welded crystal framework with melt in dispersed pores and/or along grain boundaries. Seismic images commonly describe such volumes of a few % melt as magma, yet the rheological differences between melt-rich and melt-poor materials make it vital not to confuse a large rock volume that contains a small melt fraction with melt-rich material. To ensure this, we suggest that "magma" be reserved for melt-rich materials that undergo bulk fluid flow on timescales consonant with volcanic eruptions. Other terms should be used for more crystal-rich and largely immobile partially molten rock (e.g., "crystal mush," "rigid sponge"). The distinction is imprecise but useful. For the press, the public, and even earth scientists who do not study magmatic systems, "magma" conjures up flowing lava; reports of a large "magma" body that contains a few percent melt can engender the mistaken perception of a vast amount of eruptible magma. For researchers, physical processes like crystal settling are commonly invoked to account for features in plutonic rocks, but many such processes are only possible in melt-rich materials.

  18. Discovering Mathematics with Magma Reducing the Abstract to the Concrete

    CERN Document Server

    Bosma, Wieb


    With a design based on the ontology and semantics of algebra, Magma enables users to rapidly formulate and perform calculations in the more abstract parts of mathematics. This book introduces the role Magma plays in advanced mathematical research through 14 case studies which, in most cases, describe computations underpinning theoretical results.

  19. Unprecedentedly rapid transport of single-file rolling water molecules (United States)

    Qiu, Tong; Huang, Ji-Ping


    The realization of rapid and unidirectional single-file water-molecule flow in nanochannels has posed a challenge to date. Here, we report unprecedentedly rapid unidirectional single-file water-molecule flow under a translational terahertz electric field, which is obtained by developing a Debye doublerelaxation theory. In addition, we demonstrate that all the single-file molecules undergo both stable translation and rotation, behaving like high-speed train wheels moving along a railway track. Independent molecular dynamics simulations help to confirm these theoretical results. The mechanism involves the resonant relaxation dynamics of H and O atoms. Further, an experimental demonstration is suggested and discussed. This work has implications for the design of high-efficiency nanochannels or smaller nanomachines in the field of nanotechnology, and the findings also aid in the understanding and control of water flow across biological nanochannels in biology-related research.

  20. The cyclopentyl group, as a small but bulky terminal group, allows rapid and efficient active transport. (United States)

    Nishiyama, Junya; Makita, Yoshimasa; Kihara, Nobuhiro


    Secondary ammonium salts bearing a cyclopentyl terminal group rapidly formed pseudorotaxane with 1.5 equiv of DB24C8. Acylation of the pseudorotaxane with 50 equiv of benzoyl chloride in the presence of 50 equiv of triethylamine in toluene afforded rotaxane, the product of active transport, in 95% yield. The cyclopentyl group is small enough to allow rapid formation of pseudorotaxane, and bulky enough to facilitate the quantitative active transport by steric repulsion.

  1. Complex subvolcanic magma plumbing system of an alkali basaltic maar-diatreme volcano (Elie Ness, Fife, Scotland) (United States)

    Gernon, T. M.; Upton, B. G. J.; Ugra, R.; Yücel, C.; Taylor, R. N.; Elliott, H.


    Alkali basaltic diatremes such as Elie Ness (Fife, Scotland) expose a range of volcanic lithofacies that points to a complex, multi-stage emplacement history. Here, basanites contain phenocrysts including pyrope garnet and sub-calcic augites from depths of 60 km. Volcanic rocks from all units, pyroclastic and hypabyssal, are characterised by rare earth element (REE) patterns that show continuous enrichment from heavy REE (HREE) to light REE (LREE), and high Zr/Y that are consistent with retention of garnet in the mantle source during melting of peridotite in a garnet lherzolite facies. Erupted garnets are euhedral and unresorbed, signifying rapid ascent through the lithosphere. The magmas also transported abundant pyroxenitic clasts, cognate with the basanite host, from shallower depths ( 35-40 km). These clasts exhibit wide variation in texture, mode and mineralogy, consistent with growth from a range of compositionally diverse melts. Further, clinopyroxene phenocrysts from both the hypabyssal and pyroclastic units exhibit a very wide compositional range, indicative of polybaric fractionation and magma mixing. This is attributed to stalling of earlier magmas in the lower crust - principally from 22 to 28 km - as indicated by pyroxene thermobarometry. Many clinopyroxenes display chemical zoning profiles, occasionally with mantles and rims of higher magnesium number (Mg#) suggesting the magmas were mobilised by juvenile basanite magma. The tuffs also contain alkali feldspar megacrysts together with Fe-clinopyroxene, zircon and related salic xenoliths, of the 'anorthoclasite suite' - inferred to have crystallised at upper mantle to lower crustal depths from salic magma in advance of the mafic host magmas. Despite evidence for entrainment of heterogeneous crystal mushes, the rapidly ascending melts experienced negligible crustal contamination. The complex association of phenocrysts, megacrysts and autoliths at Elie Ness indicates thorough mixing in a dynamic system

  2. Erythrocyte adenosine transport. A rapid screening test for cardiovascular drugs. (United States)

    Yeung, P K; Mosher, S J; Li, R; Farmer, P S; Klassen, G A; Pollak, P T; McMullen, M; Ferrier, G


    An erythrocyte (RBC) model based on whole blood was used to investigate the effect of cardiovascular drugs on the uptake of adenosine in vitro. Fresh whole blood obtained from healthy volunteers was allowed to equilibrate with various concentrations (5-1000 microM) of a tested agent. (2-3H)-Adenosine was used as a substrate, and the reaction was terminated after 2 sec of incubation at room temperature by rapid addition of a "Stopping Solution" which was a mixture of erythro-9-(2-hydroxy-3-nonyl)adenine, dipyridamole, and EDTA. The mixture was centrifuged (1760 g, 4 degrees C, 10 min), and the radioactivity of an aliquot of the supernatant was determined by a scintillation counter. The results showed that dipyridamole was the most potent agent tested (IC50 = 0.2 microM). Amongst the calcium antagonists studied, isradipine was most potent, followed by verapamil, clentiazem, diltiazem, and then nifedipine. The racemates of two metabolites of diltiazem, MX and MB, were more potent than the parent drug. The antiarrhythmic agents, amiodarone and sotalol, the two new lipid peroxidation inhibitors, U-74389F and U-78517F, and the anxiolytic agent, alprazolam, were as active as verapamil. The beta-receptor antagonist propranolol and the angiotensin converting enzyme (ACE) inhibitor, enalapril, were practically inactive. In addition, the model was stereoselective such that the S(-)-enantiomer of verapamil was considerably more potent than the R(+)-antipote, whereas d(+)-sotalol was practically inactive compared to racemic sotalol.

  3. Watching magma from space (United States)

    Lu, Zhong; Wicks, Charles W.; Dzurisin, Daniel; Thatcher, Wayne R.; Freymueller, Jeffrey T.; McNutt, Stephen R.; Mann, Dorte


    Westdahl is a broad shield volcano at the western end of Unimak Island in the Aleutian chain. It has apparently been dormant since a 1991-92 eruption and seismicity levels have been low. However, satellite radar imaging shows that in the years following 1992 the upper flanks of Westdahl have risen several centimeters, probably from the influx of new magma deep below its summit. Until now, deep magma reservoirs have been difficult to detect beneath most volcanoes. But using space geodetic technologies, specifically interferometric synthetic aperture radar (InSAR), we have discovered a deep magmatic source beneath Westdahl. 

  4. Rapid transporter regulation prevents substrate flow traffic jams in boron transport (United States)

    Sotta, Naoyuki; Duncan, Susan; Tanaka, Mayuki; Sato, Takafumi


    Nutrient uptake by roots often involves substrate-dependent regulated nutrient transporters. For robust uptake, the system requires a regulatory circuit within cells and a collective, coordinated behaviour across the tissue. A paradigm for such systems is boron uptake, known for its directional transport and homeostasis, as boron is essential for plant growth but toxic at high concentrations. In Arabidopsis thaliana, boron uptake occurs via diffusion facilitators (NIPs) and exporters (BORs), each presenting distinct polarity. Intriguingly, although boron soil concentrations are homogenous and stable, both transporters manifest strikingly swift boron-dependent regulation. Through mathematical modelling, we demonstrate that slower regulation of these transporters leads to physiologically detrimental oscillatory behaviour. Cells become periodically exposed to potentially cytotoxic boron levels, and nutrient throughput to the xylem becomes hampered. We conclude that, while maintaining homeostasis, swift transporter regulation within a polarised tissue context is critical to prevent intrinsic traffic-jam like behaviour of nutrient flow. PMID:28870285

  5. Fe in magma - An overview

    Directory of Open Access Journals (Sweden)

    M. Wilke


    Full Text Available The strong influence of physical conditions during magma formation on Fe equilibria offers a large variety of possibilities to deduce these conditions from Fe-bearing phases and phase assemblages found in magmatic rocks. Conditions of magma genesis and their evolution are of major interest for the understanding of volcanic eruptions. A brief overview on the most common methods used is given together with potential problems and limitations. Fe equilibria are not only sensitive to changes in intensive parameters (especially T and fO2 and extensive parameters like composition also have major effects, so that direct application of experimentally calibrated equilibria to natural systems is not always possible. Best estimates for pre-eruptive conditions are certainly achieved by studies that relate field observations directly to experimental observations for the composition of interest using as many constraints as possible (phase stability relations, Fe-Ti oxides, Fe partitioning between phases, Fe oxidation state in glass etc.. Local structural environment of Fe in silicate melts is an important parameter that is needed to understand the relationship between melt transport properties and melt structure. Assignment of Fe co-ordination and its relationship to the oxidation state seems not to be straightforward. In addition, there is considerable evidence that the co-ordination of Fe in glass differs from that in the melt, which has to be taken into account when linking melt structure to physical properties of silicate melts at T and P.

  6. Generation of Deccan Trap magmas

    Indian Academy of Sciences (India)

    Deccan Trap; giant Plagioclase basalt; age; contamination; fractional crystallization; magma generation. ... Deccan magmas were produced by 15-30% melting of a Fe-rich lherzolitic source at ∼3-2 GPa;; Parent magmas of the relatively uncontaminated Ambenali formation had a primitive composition with 16% MgO, 47% ...

  7. Krafla Magma Testbed: An International Project Crossing The Scientific Frontier From Geothermal System Into Magma (United States)

    Eichelberger, J. C.; Dingwell, D. B.; Ludden, J. N.; Mandeville, C. W.; Markusson, S.; Papale, P.; Sigmundsson, F.


    Few Earth regimes are subject to as much inference and as little direct knowledge as magma. Among the most important mysteries is the transition from hydrothermal to magmatic, i.e. from aqueous fluid-present to silicate melt-present, regimes. Because solid rock is ductile at near-solidus temperature, fractures should have fleeting existence and therefore heat transfer should be by conduction. Heat and mass transport across this zone influences evolution of magma bodies. The hydrothermal regime influences eruptive behavior when magma intrudes it and propagation of the transition zone toward magma is demonstrated by physical and chemical evidence. Both drilling observations and heat-balance considerations indicate that the melt- and fluid-absent transition zone is thin. Drilling of Iceland Deep Drilling Project's IDDP-1, 2 km into Krafla Caldera, showed that the transition from deep-solidus fine-grained granite to liquidus rhyolite is less than 30 m thick, probably much less. For the first time, we have the opportunity to interrogate an entire system of heat and mass transport, from magmatic source through the hydrothermal zone to surface volcanism, and in so doing unite the disciplines of volcanology and geothermal energy. With support from industry, national geoscience agencies, community stakeholders, and the International Continental Scientific Drilling Program (ICDP), we are developing a broad program to push the limits of knowledge and technology in extremely hot Earth. We use the term "testbed" for two reasons: Surface and borehole observations used in volcano monitoring and geothermal exploration will be tested and reinterpreted in light of the first "ground-truth" about magma. More than "observing", magma and the transition zone will be manipulated through fluid injection and extraction to understand time-dependent behavior. Sensor technology will be pushed to measure magmatic conditions directly. Payoffs are in fundamental planetary science, volcano

  8. Comparative Magma Oceanography (United States)

    Jones, J. H.


    The question of whether the Earth ever passed through a magma ocean stage is of considerable interest. Geochemical evidence strongly suggests that the Moon had a magma ocean and the evidence is mounting that the same was true for Mars. Analyses of martian (SNC) meteorites have yielded insights into the differentiation history of Mars, and consequently, it is interesting to compare that planet to the Earth. Three primary features of Mars contrast strongly to those of the Earth: (i) the extremely ancient ages of the martian core, mantle, and crust (about 4.55 b.y.); (ii) the highly depleted nature of the martian mantle; and (iii) the extreme ranges of Nd isotopic compositions that arise within the crust and depleted mantle. The easiest way to explain the ages and diverse isotopic compositions of martian basalts is to postulate that Mars had an early magma ocean. Cumulates of this magma ocean were later remelted to form the SNC meteorite suite and some of these melts assimilated crustal materials enriched in incompatible elements. The REE pattern of the crust assimilated by these SNC magmas was LREE enriched. If this pattern is typical of the crust as a whole, the martian crust is probably similar in composition to melts generated by small degrees of partial melting (about 5%) of a primitive source. Higher degrees of partial melting would cause the crustal LREE pattern to be essentially flat. In the context of a magma ocean model, where large degrees of partial melting presumably prevailed, the crust would have to be dominated by late-stage, LREE-enriched residual liquids. Regardless of the exact physical setting, Nd and W isotopic evidence indicates that martian geochemical reservoirs must have formed early and that they have not been efficiently remixed since. The important point is that in both the Moon and Mars we see evidence of a magma ocean phase and that we recognize it as such. Several lines of theoretical inference point to an early Earth that was also hot

  9. Management of patients with acute aortic syndrome through a regional rapid transport system. (United States)

    Manzur, Miguel; Han, Sukgu M; Dunn, Joie; Elsayed, Ramsey S; Fleischman, Fernando; Casagrande, Yolee; Weaver, Fred A


    The objective of this study was to describe the outcomes of patients with acute aortic syndrome (AAS) during and after transfer to a regional aortic center by a rapid transport system. Review of patients with AAS who were transferred by a rapid transport system to a regional aortic center was performed. Data regarding demographics, diagnosis, comorbidities, transportation, and hospital course were acquired. Severity of existing comorbidities was determined by the Society for Vascular Surgery Comorbidity Severity Score (SVSCSS). The Acute Physiology and Chronic Health Evaluation II (APACHE II) score assessed physiologic instability on admission. Risk factors associated with system-related (transfer and hospital) mortality were identified by univariate and multivariate linear regression analysis. During a recent 18-month period (December 2013-July 2015), 183 patients were transferred by a rapid transport system; 148 (81%) patients were transported by ground and 35 (19%) by air. Median distance traveled was 24 miles (range, 3.6-316 miles); median transport time was 42 minutes (range, 10-144 minutes). Two patients died during transport, one with a type A dissection, the other of a ruptured abdominal aortic aneurysm. There were 118 (66%) patients who received operative intervention. Median time to operation was 6 hours. Type B dissections had the longest median time to operation, 45 hours, with system-related mortality of 1.9%; type A dissections had the shortest median time, 3 hours, and a system-related mortality of 16%. Overall, system-related mortality was 15%. On univariate analysis, factors associated with system-related mortality were age ≥65 years (P = .026), coronary artery disease (P = .030), prior myocardial infarction (P = .049), prior coronary revascularization (P = .002), SVSCSS of >8 (P 10 (P = .004). Distance traveled and transport mode and duration were not associated with increased risk of system-related mortality. Only SVSCSS of >8 (odds

  10. Rapid landslide risk assessment of transport infrastructure following the 13 November 2016 Kaikoura, New Zealand, earthquake (United States)

    Robinson, Tom; Rosser, Nick


    Earthquake-generated landslides pose a significant risk to critical infrastructure, especially transport networks. For post-earthquake emergency response, identifying where landslides have affected transport networks is vital for understanding the ground access available to affected locations. However, post-earthquake landslide mapping is a difficult and time-consuming task, hindered by issues relating to the collection and processing of satellite images, cloud cover, and manual mapping. The development of rapid landslide modelling techniques for post-earthquake application can allow landslide hazard and risk to be modelled within hours of the earthquake occurring, leading to faster understanding of the likely losses to transport infrastructure. This study presents the results of efforts to rapidly model the extent of and losses related to landsliding following the 13 November 2016 Kaikoura earthquake in New Zealand. Using previously published data on landslide pre-disposing factors, the landslide hazard resulting from this earthquake was modelled in order to identify locations where landslides were most likely. This was combined with a simple horizon-scanning method along critical transport lines to identify zones in which landslides could potentially impact the networks. Landslide hazard in these zones was subsequently weighted by the reach angle to the respective network and averaged for the entire zone. The results show the relative risk of landslides impacting different sections of the transport networks and were derived within 48 hours of the earthquake occurring. These models rapidly and correctly highlighted the numerous blockages along the vital State Highway 1 link between Christchurch and Kaikoura, as well as those on the only alternative inland route. This demonstrates that accurate and rapid analysis of landslide losses can be undertaken immediately post-earthquake, with results potentially available within hours of the event, far sooner than current

  11. Fractional crystallization and replenishment of the magma chamber at the East Pacific Rise 9°50' N (United States)

    Horne, R. C.; Hebert, L. B.; Liu, L.; Lowell, R. P.


    Petrological data collected from the 1991-1992 and 2005-2006 eruptions provide a record of the compositional evolution of erupted magmas over a 14-15 year period at the East Pacific Rise near 9°50’ N. This data, when coupled with mathematical modeling of convection and replenishment, present a unique opportunity to understand coupled magmatic and hydrothermal processes at a fast-spreading oceanic ridge. We use the multicomponent geochemical modeling software MELTS (Ghiorso and Sack, 1995; Asimow and Ghiorso, 1998) to determine how the sub-axial magma lens has evolved as a result of cooling, crystal fractionation, and melt replenishment in the period between the 1991 and 2005 eruptions. Following a spreading rate-dependent permeability barrier model for lateral melt transport and extraction (Hebert and Montesi, submitted), and utilizing an initial depleted mantle source (DMM, Workman and Hart, 2005) under anhydrous conditions and with a potential temperature of 1375°C, we obtain a starting composition for the sub-axial magma lens. A liquid line of descent involving simple fractionation for this composition passes through the 1991-1992 lava dataset. We then implemented isobaric fractionation calculations, using MELTS. We tested an array of scenarios including simple fractionation, replenishment with both more and less evolved magmas, the addition of water, and changes in oxygen fugacity. Our initial temperature conditions were set by the results of a 2-D geodynamic ridge model, and replenishment timescales and cooling rates were guided by the modeling study of Liu and Lowell (2009). Simple fractionation can explain the evolution of the magmas for some of the major elements, but not all of them. Therefore, we argue that some amount of replenishment must have occurred in the magma chamber between eruptions to explain the small change in composition as well as temperature. The results are independent of whether the replenishment is continuous or periodic. The

  12. Reversible inhibition of rapid axonal transport in vivo by lidocaine hydrochloride. (United States)

    Fink, B R; Kish, S J


    Rats were given standardized injections of 3H-L-proline into the trigeminal ganglion and 14C-lidocaine hydrochloride at the infraorbital foramen. The 3H-L-proline was always injected 2.5 h before removal of the nerve. Lidocaine, 1, 2, and 4%, produced a concentration-related inhibition of entry of 3H-labeled rapid axonal transport into the distal portions of the nerve. Addition of epinephrine, 1:200,000, doubled the intensity of the effect. The time delay of recovery was also concentration-related, and with 4% lidocaine recovery still seemed incomplete after 4.5. h. It is concluded that inhibition of rapid axonal transport is probably a usual byproduct of nerve block with local anesthetics such as lidocaine. The inhibition seems attributable in part to a disturbance of the energy metabolism of the nerve.

  13. Lymphatic transport of exosomes as a rapid route of information dissemination to the lymph node. (United States)

    Srinivasan, Swetha; Vannberg, Fredrik O; Dixon, J Brandon


    It is well documented that cells secrete exosomes, which can transfer biomolecules that impact recipient cells' functionality in a variety of physiologic and disease processes. The role of lymphatic drainage and transport of exosomes is as yet unknown, although the lymphatics play critical roles in immunity and exosomes are in the ideal size-range for lymphatic transport. Through in vivo near-infrared (NIR) imaging we have shown that exosomes are rapidly transported within minutes from the periphery to the lymph node by lymphatics. Using an in vitro model of lymphatic uptake, we have shown that lymphatic endothelial cells actively enhanced lymphatic uptake and transport of exosomes to the luminal side of the vessel. Furthermore, we have demonstrated a differential distribution of exosomes in the draining lymph nodes that is dependent on the lymphatic flow. Lastly, through endpoint analysis of cellular distribution of exosomes in the node, we identified macrophages and B-cells as key players in exosome uptake. Together these results suggest that exosome transfer by lymphatic flow from the periphery to the lymph node could provide a mechanism for rapid exchange of infection-specific information that precedes the arrival of migrating cells, thus priming the node for a more effective immune response.

  14. Rapid transport of plasmid DNA into the nucleolus via actin depolymerization using the HVJ envelope vector. (United States)

    Suvanasuthi, Saroj; Tamai, Katsuto; Kaneda, Yasufumi


    Although nuclear transport of therapeutic genes is an essential requirement of human gene therapy, factors required for nuclear entry of DNA remain to be elucidated. Non-viral vector systems have led to numerous improvements in the efficiency of delivery of exogenous DNA into cells. However, nuclear transport of plasmid is difficult to achieve. We examined nuclear translocation efficiency of Cy3-labeled plasmid DNA (Cy3-pDNA) delivered by the hemagglutinating virus of Japan envelope (HVJ-E) vector, Lipofectamine or microinjection. We also examined the effect of actin depolymerization on nuclear transport of Cy3-pDNA. Cy3-pDNA reached the nucleus, particularly in the nucleolus, in 30 min after fusion-mediated delivery using the HVJ-E vector, while the DNA was retained in the cytoplasm during the observed period after the delivery by cationic liposomes. HVJ-E treatment transiently depolymerized actin filaments, and acceleration of nucleolar entry of microinjected DNA was achieved when treated with either empty HVJ-E or cytochalasin D, an inhibitor of actin depolymerization, prior to microinjection. These results suggest that plasmid DNA can be transported rapidly from the cytoplasm to the nucleolus when actin filaments are depolymerized. Thus, the HVJ-E vector can accelerate the transport of DNA to the nucleolus by actin depolymerization. Copyright 2006 John Wiley & Sons, Ltd.

  15. Rapid transpacific transport in autumn observed by the A-train satellites (United States)

    Hsu, N. Christina; Li, Can; Krotkov, Nickolay A.; Liang, Qing; Yang, Kai; Tsay, Si-Chee


    Transpacific transport of dust and pollutants is well documented for spring but less so for other seasons. Here we investigate rapid transpacific transport in autumn utilizing the A-train satellites. In three episodes studied as examples, SO2 plumes over East Asia were detected by the Ozone Monitoring Instrument aboard the Aura satellite and found to reach North America in 5-6 days. They were likely derived from anthropogenic sources, given that identical transport patterns of CO, a tracer for incomplete combustion, were simultaneously observed by the Aqua satellite. Trajectory analysis and meteorological data were employed to explore the meteorological circumstances surrounding these events: like many of their counterparts in spring, all three plumes were lifted to the free troposphere in warm conveyor belts associated with midlatitude wave cyclones, and their migration to the downwind region was regulated by the meteorology over the east Pacific. These cases provide further evidence that a fraction of SO2 could escape wet scavenging and be transported at much greater efficiency than could NOx (NO + NO2). An analysis of the SO2 and CO data from September to November during 2005-2008 found 16 SO2 long-range transport episodes, out of 62 Asian outflow events. While the counts are sensitive to the choice of criteria, they suggest that the long-range transport of Asian sulfur species occurs quite frequently and could exert strong impacts on large downstream areas. This study also highlights the importance of transpacific transport in autumn, which has thus far been rarely studied and deserves more attention from the community.

  16. Specific changes in rapidly transported proteins during regeneration of the goldfish optic nerve. (United States)

    Benowitz, L I; Shashoua, V E; Yoon, M G


    Double labeling methods were used to identify changes in the complement of proteins synthesized in the retinal ganglion cells and transported down the optic nerve during the process of axonal regeneration. Eight to 62 days after goldfish underwent a unilateral optic nerve crush, one eye was labeled with [3H]-, the other with [14C]proline. Control and regenerating optic nerves were dissected out and homogenized together after 5 hr, a time which allowed us to examine selectively membrane-bound components which migrate in the rapid phase of axoplasmic transport. Proteins from the two sides were so-purified and separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Analysis of the 3H and 14C incorporation patterns along the gels revealed a radical shift away from the normal labeling spectrum during regeneration, with selective changes in labeling at particular molecular weights varying over a 3-fold range. Eight days after crushing the optic nerve, the greatest increases in labeling were seen for material with apparent molecular weights of 24,000 to 27,000, 44,000, and 210,000 daltons. These peaks declined thereafter, and on days 29 to 39, the most prominent increases were at 110,000 to 140,000 daltons. These studies indicate a continuously changing pattern in the synthesis and/or degradation of proteins that are rapidly transported down the optic nerve during regeneration and point to molecular species potential significance in the establishment of the visual map upon the brain.

  17. Specific changes in rapidly transported proteins during regeneration of the goldfish optic nerve

    Energy Technology Data Exchange (ETDEWEB)

    Benowitz, L.I.; Shashoua, V.E.; Yoon, M.G.


    Double labeling methods were used to identify changes in the complement of proteins synthesized in the retinal ganglion cells and transported down the optic nerve during the process of axonal regeneration. Eight to 62 days after goldfish underwent a unilateral optic nerve crush, one eye was labeled with (3H)-, the other with (14C)proline. Control and regenerating optic nerves were dissected out and homogenized together after 5 hr, a time which allowed us to examine selectively membrane-bound components which migrate in the rapid phase of axoplasmic transport. Proteins from the two sides were so-purified and separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Analysis of the 3H and 14C incorporation patterns along the gels revealed a radical shift away from the normal labeling spectrum during regeneration, with selective changes in labeling at particular molecular weights varying over a 3-fold range. Eight days after crushing the optic nerve, the greatest increases in labeling were seen for material with apparent molecular weights of 24,000 to 27,000, 44,000, and 210,000 daltons. These peaks declined thereafter, and on days 29 to 39, the most prominent increases were at 110,000 to 140,000 daltons. These studies indicate a continuously changing pattern in the synthesis and/or degradation of proteins that are rapidly transported down the optic nerve during regeneration and point to molecular species potential significance in the establishment of the visual map upon the brain.

  18. Rapid transport from the surface to wells in fractured rock: a unique infiltration tracer experiment. (United States)

    Levison, Jana K; Novakowski, Kent S


    A unique infiltration tracer experiment was performed whereby a fluorescent dye was applied to the land surface in an agricultural field, near Perth, Ontario, Canada, to simulate the transport of solutes to two pumped monitoring wells drilled into the granitic gneiss aquifer. This experiment, interpreted using the discrete-fracture capability of the numerical model HydroGeoSphere, showed that solute transport from the surface through thin soil (less than 2m) to wells in fractured bedrock can be extremely rapid (on the order of hours). Also, it was demonstrated that maximum concentrations of contaminants originating from the ground surface will not necessarily be the highest in the shallow aquifer horizon. These are important considerations for both private and government-owned drinking water systems that draw water from shallow fractured bedrock aquifers. This research illustrates the extreme importance of protecting drinking water at the source. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. El Hierro's floating stones as messengers of crust-magma interaction at depth (United States)

    Burchardt, S.; Troll, V. R.; Schmeling, H.; Koyi, H.; Blythe, L. S.; Longpré, M. A.; Deegan, F. M.


    During the early stages of the submarine eruption that started on October 10 2011 south of El Hierro, Canary Islands, Spain, peculiar eruption products were found floating on the sea surface. These centimetre- to decimetre-sized "bombs" have been termed "restingolites" after the nearby village La Restinga and consist of a basaltic rind and a white to light grey core that resembles pumice in texture. According to Troll et al. (2011; see also Troll et al. EGU 2012 Abstracts), this material consists of a glassy matrix hosting extensive vesicle networks, which results in extremely low densities allowing these rocks to float on sea water. Mineralogical and geochemical analyses reveal that the "restingolites" originate from the sedimentary rocks (sand-, silt-, and mudstones) that form layer 1 of the oceanic crust beneath El Hierro. During the onset and early stages of the eruption, magma ponded at the base of this sedimentary sequence, breaking its way through the sedimentary rocks to the ocean floor. The textures of the "restingolites" reveal that crust-magma interaction during fragmentation and transport of the xenoliths involved rapid partial melting and volatile exsolution. Xenoliths strikingly similar to those from El Hierro are known from eruptions on other Canary Islands (e.g. La Palma, Gran Canaria, and Lanzarote). In fact, they resemble in texture xenoliths of various protoliths from volcanic areas worldwide (e.g. Krakatao, Indonesia, Cerro Quemado, Guatemala, Laacher See, Germany). This indicates that the process of partial melting and volatile exsolution, which the "restingolites" bear witness of, is probably occurring frequently during shallow crustal magma emplacement. Thermomechanical numerical models of the effect of the density decrease associated with the formation of vesicle networks in partially molten xenoliths show that xenoliths of crustal rocks initially sink in a magma chamber, but may start to float to the chamber roof once they start to heat up

  20. A cellular automaton model for the rise of magma (United States)

    Piegari, Ester; di Maio, Rosa; Milano, Leopoldo; Scandone, Roberto


    Eruptions of volcanoes are complex natural events highly variable in size and time. Over the last couple of decades, statistical analyses of erupted volume and repose time catalogues have been performed for a large number of volcanoes. The aim of such analyses is either to predict future eruptive events or to define physical models for improving our understanding of the volcanic processes that cause eruptions. In particular, for this latter purpose we study a statistical model of eruption triggering caused by the fracturing of the crust above a magma reservoir residing in the crust. When the fracturing reaches the reservoir, magma is allowed to ascend because of its buoyancy. It will be found in batches along the transport region and it will ascend as long as fractures are developed to its tip; when a path is opened to the surface, an eruption occurs involving all batches connected to the opening. We model the vertical section of a volcanic edifice by means of a two-dimensional grid and characterize the state of each cell of the grid by assigning the values of two dynamical variables: a time dependent variable e describing the status of the local stress and a time-dependent variable n describing the presence of magma. At first step of approximation, we treat the magma presence field n as a diffusing lattice gas, and, therefore, we assume its value to be either zero or one if the corresponding cell is empty or filled by magma, respectively. We study the probability distribution, P(V), of eruptions of volume V and the probability distribution, P(t), of inter-event time t and find that the model is able to reproduce, at least in a descriptive way, the essential statistical features of the activity of volcanoes. A key component of magma is the quantity of dissolved gas as it gives magma its explosive character, because the volume of gas expands as the pressure decreases on raising towards the surface. Then, to more accurately describe the rise of magma in a volcanic

  1. Outgassing from Open and Closed Magma Foams

    Directory of Open Access Journals (Sweden)

    Felix W. von Aulock


    Full Text Available During magma ascent, bubbles nucleate, grow, coalesce, and form a variably permeable porous network. The reorganization, failing and sealing of bubble walls may contribute to the opening and closing of the volcanic system. In this contribution we cause obsidian to nucleate and grow bubbles to high gas volume fraction at atmospheric pressure by heating samples to 950°C for different times and we image the growth through a furnace. Following the experiment, we imaged the internal pore structure of selected samples in 3D and then dissected for analysis of textures and dissolved water content remnant in the glass. We demonstrate that in these high viscosity systems, during foaming and subsequent foam-maturation, bubbles near a free surface resorb via diffusion to produce an impermeable skin of melt around a foam. The skin thickens non-linearly through time. The water concentrations at the outer and inner skin margins reflect the solubility of water in the melt at the partial pressure of water in atmospheric and water-rich bubble conditions, respectively. In this regime, mass transfer of water out of the system is diffusion limited and the sample shrinks slowly. In a second set of experiments in which we polished off the skin of the foamed samples and placed them back in the furnace to allow open system outgassing, we observe rapid sample contraction and collapse of the connected pore network under surface tension as the system efficiently outgasses. In this regime, mass transfer of water is permeability limited. We conclude that diffusion-driven skin formation can efficiently seal connectivity in foams. When rupture of melt film around gas bubbles (i.e., skin removal occurs, then rapid outgassing and consequent foam collapse modulate gas pressurization in the vesiculated magma. The mechanisms described here are relevant to the evolution of pore network heterogeneity in permeable magmas.

  2. Failed magmatic eruptions: Late-stage cessation of magma ascent (United States)

    Moran, S.C.; Newhall, C.; Roman, D.C.


    When a volcano becomes restless, a primary question is whether the unrest will lead to an eruption. Here we recognize four possible outcomes of a magmatic intrusion: "deep intrusion", "shallow intrusion", "sluggish/viscous magmatic eruption", and "rapid, often explosive magmatic eruption". We define "failed eruptions" as instances in which magma reaches but does not pass the "shallow intrusion" stage, i. e., when magma gets close to, but does not reach, the surface. Competing factors act to promote or hinder the eventual eruption of a magma intrusion. Fresh intrusion from depth, high magma gas content, rapid ascent rates that leave little time for enroute degassing, opening of pathways, and sudden decompression near the surface all act to promote eruption, whereas decreased magma supply from depth, slow ascent, significant enroute degassing and associated increases in viscosity, and impingement on structural barriers all act to hinder eruption. All of these factors interact in complex ways with variable results, but often cause magma to stall at some depth before reaching the surface. Although certain precursory phenomena, such as rapidly escalating seismic swarms or rates of degassing or deformation, are good indicators that an eruption is likely, such phenomena have also been observed in association with intrusions that have ultimately failed to erupt. A perpetual difficulty with quantifying the probability of eruption is a lack of data, particularly on instances of failed eruptions. This difficulty is being addressed in part through the WOVOdat database. Papers in this volume will be an additional resource for scientists grappling with the issue of whether or not an episode of unrest will lead to a magmatic eruption.

  3. FY 1984 and FY 1985 geochemistry and materials studies in support of the Magma Energy Extraction Program

    Energy Technology Data Exchange (ETDEWEB)

    Westrich, H.R.; Weirick, L.J.; Cygan, R.T.; Reece, M.; Hlava, P.F.; Stockman, H.W.; Gerlach, T.M.


    Geochemistry and materials studies are being performed in support of the Magma Energy Extraction Program. The work is largely restricted to: (1) characterizing magmatic environments at sites of interest, (2) testing engineering materials in laboratory simulated magmatic environments, (3) investigating chemical mass transport effects inherent in designs for direct contact heat exchangers, and (4) evaluating degassing hazards associated with drilling into and extracting energy from shallow magma. Magma characterization studies have been completed for shallow magma at Long Valley, Coso volcanic field, and Kilauea volcano. The behavior of 17 commercially available materials has been examined in rhyolite magma at 850/sup 0/C and 200 MPa for periods up to seven days. Analysis of reaction products from materials tests to date indicate that oxidation is the main corrosion problem for most alloys in rhyolitic magma. Considerations of corrosion resistance, high-temperature strength, and cost indicate nickel-base superalloys offer the most promise as candidates for use in rhyolitic magma.

  4. Bounds on Heat Transport in Rapidly Rotating Rayleigh-B\\'{e}nard Convection

    CERN Document Server

    Grooms, Ian


    The heat transport in rotating Rayleigh-B\\'enard convection is considered in the limit of rapid rotation (small Ekman number $E$) and strong thermal forcing (large Rayleigh number $Ra$). The analysis proceeds from a set of asymptotically reduced equations appropriate for rotationally constrained dynamics; the conjectured range of validity for these equations is $Ra \\lesssim E^{-8/5}$. A rigorous bound on heat transport of $Nu \\le 20.56Ra^3E^4$ is derived in the limit of infinite Prandtl number using the background method. We demonstrate that the exponent in this bound cannot be improved on using a piece-wise monotonic background temperature profile like the one used here. This is true for finite Prandtl numbers as well, i.e. $Nu \\lesssim Ra^3$ is the best upper bound for this particular setup of the background method. The feature that obstructs the availability of a better bound in this case is the appearance of small-scale thermal plumes emanating from (or entering) the thermal boundary layer.

  5. Malaria rapid diagnostic test transport and storage conditions in Burkina Faso, Senegal, Ethiopia and the Philippines

    Directory of Open Access Journals (Sweden)

    Albertini Audrey


    Full Text Available Abstract Background As more point of care diagnostics become available, the need to transport and store perishable medical commodities to remote locations increases. As with other diagnostics, malaria rapid diagnostic tests (RDTs must be highly reliable at point of use, but exposure to adverse environmental conditions during distribution has the potential to degrade tests and accuracy. In remote locations, poor quality diagnostics and drugs may have significant negative health impact that is not readily detectable by routine monitoring. This study assessed temperature and humidity throughout supply chains used to transport and store health commodities, such as RDTs. Methods Monitoring devices capable of recording temperature and humidity were deployed to Burkina Faso (8, Senegal (10, Ethiopia (13 and the Philippines (6 over a 13-month period. The devices travelled through government supply chains, usually alongside RDTs, to health facilities where RDTs are stored, distributed and used. The recording period spanned just over a year, in order to avoid any biases related to seasonal temperature variations. Results In the four countries, storage and transport temperatures regularly exceeded 30.0°C; maximum humidity level recorded was above 94% for the four countries. In three of the four countries, temperatures recorded at central storage facilities exceeded pharmaceutical storage standards for over 20% of the time, in another case for a majority of the time; and sometimes exceeded storage temperatures at peripheral sites. Conclusions Malaria RDTs were regularly exposed to temperatures above recommended limits for many commercially-available RDTs and other medical commodities such as drugs, but rarely exceeded the recommended storage limits for particular products in use in these countries. The results underline the need to select RDTs, and other commodities, according to expected field conditions, actively manage the environmental conditions in

  6. Percolating magmas in three dimensions

    Directory of Open Access Journals (Sweden)

    H. Gaonac'h


    Full Text Available The classical models of volcanic eruptions assume that they originate as a consequence of critical stresses or critical strain rates being exceeded in the magma followed by catastrophic fragmentation. In a recent paper (Gaonac'h et al., 2003 we proposed an additional mechanism based on the properties of complex networks of overlapping bubbles; that extreme multibubble coalescence could lead to catastrophic changes in the magma rheology at a critical vesicularity. This is possible because at a critical vesicularity Pc (the percolation threshold, even in the absence of external stresses the magma fragments. By considering 2-D percolation with the (observed extreme power law bubble distributions, we showed numerically that P2c had the apparently realistic value ≈0.7.

    The properties of percolating systems are, however, significantly different in 2-D and 3-D. In this paper, we discuss various new features relevant to 3-D percolation and compare the model predictions with empirical data on explosive volcanism. The most important points are a bubbles and magma have different 3-D critical percolation points; we show numerically that with power law bubble distributions that the important magma percolation threshold P3c,m has the high value ≈0.97±0.01, b a generic result of 3-D percolation is that the resulting primary fragments will have power law distributions with exponent B3f≈1.186±0.002, near the empirical value (for pumice ≈1.1±0.1; c we review the relevant percolation literature and point out that the elastic properties may have lower – possibly more realistic – critical vesicularities relevant to magmas; d we explore the implications of long range correlations (power law bubble distributions and discuss this in combination with bubble anisotropy; e we propose a new kind of intermediate "elliptical" dimensional percolation involving differentially

  7. Chlorine solubility in evolved alkaline magmas

    Directory of Open Access Journals (Sweden)

    M. R. Carroll


    Full Text Available Experimental studies of Cl solubility in trachytic to phonolitic melts provide insights into the capacity of alkaline magmas to transport Cl from depth to the earth?s surface and atmosphere, and information on Cl solubility variations with pressure, temperature and melt or fluid composition is crucial for understanding the reasons for variations in Cl emissions at active volcanoes. This paper provides a brief review of Cl solubility experiments conducted on a range of trachytic to phonolitic melt compositions. Depending on the experimental conditions the melts studied were in equilibrium with either a Cl-bearing aqueous fluid or a subcritical assemblage of low- Cl aqueous fluid + Cl-rich brine. The nature of the fluid phase(s was identified by examination of fluid inclusions present in run product glasses and the fluid bulk composition was calculated by mass balance. Chlorine concentrations in the glass increase with increasing Cl molality in the fluid phase until a plateau in Cl concentration is reached when melt coexists with aqueous fluid + brine. With fluids of similar Cl molality, higher Cl concentrations are observed in peralkaline phonolitic melts compared with peraluminous phonolitic melts; overall the Cl concentrations observed in phonolitic and trachytic melts are approximately twice those found in calcalkaline rhyolitic melts under similar conditions. The observed negative pressure dependence of Cl solubility implies that Cl contents of melts may actually increase during magma decompression if the magma coexists with aqueous fluid and Cl-rich brine (assuming melt-vapor equilibrium is maintained. The high Cl contents (approaching 1 wt% Cl observed in some melts/glasses from the Vesuvius and Campi Flegrei areas suggest saturation with a Cl-rich brine prior to eruption.

  8. Generation of Deccan Trap magmas

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Para˜na basalts of South America, Siberian Traps. (Russia), Karoo (Africa), Columbia River Basalts. (North America), Caribbean Sea-floor basalts, and the Ontong Java plateau (western Pacific Ocean). Keywords. Deccan Trap; giant Plagioclase basalt; age; contamination; fractional crystallization; magma generation. Proc.

  9. Impact of thermodynamic properties and heat loss on ignition of transportation fuels in rapid compression machines

    KAUST Repository

    Ahmed, Ahfaz


    Rapid compression machines (RCM) are extensively used to study autoignition of a wide variety of fuels at engine relevant conditions. Fuels ranging from pure species to full boiling range gasoline and diesel can be studied in an RCM to develop a better understanding of autoignition kinetics in low to intermediate temperature ranges. In an RCM, autoignition is achieved by compressing a fuel/oxidizer mixture to higher pressure and temperature, thereby initiating chemical reactions promoting ignition. During these experiments, the pressure is continuously monitored and is used to deduce significant events such as the end of compression and the onset of ignition. The pressure profile is also used to assess the temperature evolution of the gas mixture with time using the adiabatic core hypothesis and the heat capacity ratio of the gas mixture. In such RCM studies, real transportation fuels containing many components are often represented by simpler surrogate fuels. While simpler surrogates such as primary reference fuels (PRFs) and ternary primary reference fuel (TPRFs) can match research and motor octane number of transportation fuels, they may not accurately replicate thermodynamic properties (including heat capacity ratio). This non-conformity could exhibit significant discrepancies in the end of compression temperature, thereby affecting ignition delay (τign) measurements. Another aspect of RCMs that can affect τign measurement is post compression heat loss, which depends on various RCM parameters including geometry, extent of insulation, pre-heating temperature etc. To, better understand the effects of these non-chemical kinetic parameters on τign, thermodynamic properties of a number of FACE G gasoline surrogates were calculated and simulated in a multi-zone RCM model. The problem was further investigated using a variance based analysis and individual sensitivities were calculated. This study highlights the effects on τign due to thermodynamic properties of

  10. The Taylor-Proudman column in a rapidly-rotating compressible fluid I. energy transports

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Sang [Halla University, Wonju (Korea, Republic of)


    A theoretical study is made of the steady flow of a compressible fluid in a rapidly rotating finite cylinder. Flow is generated by imposing mechanical and/or thermal disturbances at the rotating endwall disks. Both the Ekman and Rossby numbers are small. An examination is made of the energy budget for a control volume in the Ekman boundary layer. A combination of physical variables, which is termed the energy flux content, consisting of temperature and modified angular momentum, emerges to be relevant. The distinguishing features of a compressible fluid, in contrast to those of an incompressible fluid, are noted. A plausible argument is given to explain the difficulty in achieving the Taylor-Proudman column in a compressible rotating fluid. For the Taylor-Proudman column to be sustained, in the interior, it is shown that the net energy transport between the solid disk wall and the interior fluid should vanish. Physical rationalizations are facilitated by resorting to the concept of the afore-stated energy flux content.

  11. Caldera resurgence driven by magma viscosity contrasts. (United States)

    Galetto, Federico; Acocella, Valerio; Caricchi, Luca


    Calderas are impressive volcanic depressions commonly produced by major eruptions. Equally impressive is the uplift of the caldera floor that may follow, dubbed caldera resurgence, resulting from magma accumulation and accompanied by minor eruptions. Why magma accumulates, driving resurgence instead of feeding large eruptions, is one of the least understood processes in volcanology. Here we use thermal and experimental models to define the conditions promoting resurgence. Thermal modelling suggests that a magma reservoir develops a growing transition zone with relatively low viscosity contrast with respect to any newly injected magma. Experiments show that this viscosity contrast provides a rheological barrier, impeding the propagation through dikes of the new injected magma, which stagnates and promotes resurgence. In explaining resurgence and its related features, we provide the theoretical background to account for the transition from magma eruption to accumulation, which is essential not only to develop resurgence, but also large magma reservoirs.

  12. Mantle Calcium Dominates Continental Magmas (United States)

    Simon, J. I.; Depaolo, D. J.; Bachmann, O.


    Trace element and isotopic compositions of continental igneous rocks are often used to model the generation and evolution of crustal magmas. Here we report new Ca isotopic measurements of crystal-poor (35%) rhyolites from the Oligocene San Juan Volcanic Field (SJVF) and Pliocene to Pleistocene tuffs from Yellowstone Caldera. Because both volcanic fields are located within the North American craton the extruded magmas could have assimilated old crustal source components with radiogenic Ca that would be clearly distinguishable from that of the mantle. New Ca data are also reported for two crustal xenoliths found within the 28.2 Ma Fish Canyon Tuff (FCT) of the SJVF that yield ɛCa values of 3.8±0.6 (2 σ, n=3) and 7.5±0.4 (2 σ, n=3), respectively. The 40Ca excesses of these possible source rocks are due to long-term in situ 40K decay and suggest that they are Precambrian in age. In contrast to the excess radiogenic Ca signatures, most Cenozoic basalts and many silicic igneous rocks from Earth yield initial ɛCa values close to zero, which indicates that the 40Ca/44Ca ratio of the Earth’s mantle is well defined and virtually invariant at the resolution of our measurements. The crystal-rich FCT, inferred to result from batholith-scale remobilization of a shallow subvolcanic magma chamber, exhibits an ɛCai value of 0.32±0.02 (2 σ, n=5) that is indistinguishable from Ca in clinopyroxene from an ultramafic xenolith that has a mantle-like ɛCai value of -0.35±0.62 (2 σ, n=2). Simple mass balance calculations indicate that Ca in the FCT is greater than ~75% mantle derived. Similar mixing models based on published Nd data for the FCT that consider the range of possible crustal source components can deviate substantially from the Ca models. At face value the Nd data indicate that the FCT magma underwent significant crustal assimilation (i.e., at least ~10% and possibly ~75% of the Nd appears to have come from an enriched source component). So even in cases where a

  13. Dynamics of Bubbly-magma Flow in Conduits: Stress and Expansion Regimes of Magma Fragmentation (United States)

    Mitani, N. K.; Koyaguchi, T.; Ida, Y.


    Explosive volcanic eruptions are characterized by magma fragmentation, that is, the process through which a bubbly magma is changed into a gas-pyroclast dispersion. Two criteria of mechanisms have been proposed for the magma fragmentation so far. First, magma fragments when stress or strain rate of magma around bubbles exceeds a critical value. Second, magma disrupts due to the instability of thin magma-foam. Which criterion is actually applicable is not yet known. In order to clarify the physics of the magma fragmentation, we numerically study one-dimensional steady flows with bubble growth in conduits. The spherical cell model is used to calculate expansion of bubbles in ascending visco-elastic magma. The stress around bubbles generally grows as magma ascends and the pressure difference between bubbles and surrounding magma increases. In some conditions, the stress becomes critically large only when the flow velocity approaches the sound speed meeting the choking condition. In other conditions, the stress becomes large enough as magma pressure drops with bubble pressure kept almost unchanged. These two distinct types may correspond to the above two criteria of fragmentation mechanisms. In the former case, void fraction becomes close to unity before the stress reaches the strength of magma. In such case, the magma does not fragment due to the visco-elastic deformations but fragments by the instability of the thin magma-foam (`expansion' regime). In the latter case, on the other hand, the stress reaches the magma strength at much lower void fractions. In such case, the magma fragments due to the visco-elastic deformation around bubbles (`stress' regime). The `expansion' and `stress' regimes occur when the ratio of the initial wall-friction stress to the magma strength is sufficiently smaller and greater than unity, respectively.

  14. Rapid bacteriophage MS2 transport in an oxic sandy aquifer in cold climate: Field experiments and modeling (United States)

    Kvitsand, Hanne M. L.; Ilyas, Aamir; Østerhus, Stein W.


    Virus removal during rapid transport in an unconfined, low-temperature (6°C) sand and gravel aquifer was investigated at a riverbank field site, 25 km south of Trondheim in central Norway. The data from bacteriophage MS2 inactivation and transport experiments were applied in a two-site kinetic transport model using HYDRUS-1D, to evaluate the mechanisms of virus removal and whether these mechanisms were sufficient to protect the groundwater supplies. The results demonstrated that inactivation was negligible to the overall removal and that irreversible MS2 attachment to aquifer grains, coated with iron precipitates, played a dominant role in the removal of MS2; 4.1 log units of MS2 were removed by attachment during 38 m travel distance and less than 2 days residence time. Although the total removal was high, pathways capable of allowing virus migration at rapid velocities were present in the aquifer. The risk of rapid transport of viable viruses should be recognized, particularly for water supplies without permanent disinfection.

  15. An in vitro transport model for rapid screening and predicting the permeability of candidate compounds at blood-brain barrier. (United States)

    Yang, Zhi-Hong; Sun, Xiao; Mei, Chao; Sun, Xiao-Bo; Liu, Xiao-Dong; Chang, Qi


    The aim of this study was to design and develop a simple in vitro blood-brain barrier (BBB) permeation model for elementarily and rapidly predicting the permeability of candidate compounds at BBB and further evaluating whether P-glycoprotein (P-gp) affects them across BBB. The model was mainly composed of cultured rat brain microvascular endothelial cells (rBMECs), glass contraption, and micropore membrane. First, we evaluated the model by morphological observation. Second, the restriction effects of paracellular transport were verified by measuring marker probes transport, and monitoring transendothelial electrical resistance (TEER) and leakage. Finally, protein expression and activity of P-gp were confirmed by carrying out Western blot analysis and polarized transport of rhodamine-123 (Rho123) in rBMECs. The rBMECs retained both endothelial cells and BBB features. The rBMECs model reproducibly attained approximately 130 Ω cm² on the steady-state TEER value, and displayed a barrier function to marker probes transport by decreasing the permeability. Protein band of 170 kDa manifested the existence of P-gp in the rBMECs, and the findings of cyclosporin A-sensitive decrease of Rho123 efflux confirmed the presence of P-gp activity. A simple, rapid, and convenient in vitro BBB permeation model was successfully established and applied to evaluate the BBB transport profiles of three natural flavonoids: quercetin, naringenin, and rutin.

  16. Source-Related Chemical And Isotopic Heterogeneities In Granitoid Magmas (United States)

    Helps, P. A.; Clemens, J. D.; Petford, N.


    A survey of a large number of post-orogenic plutons, shows that regional-scale, intraplutonic isotope heterogeneities (initial 87Sr/86Sr and/or eNd) are common in crustally derived granitic rocks. This is expected since the source materials, from which the granitic magmas were created by partial melting, are themselves heterogeneous, especially from metasedimentary sources. If we accept models of granite emplacement involving the rapid ascent of magma along dykes, there must be potential for the preservation of source-inherited chemical and isotopic heterogeneities. However, their preservation will depend on the extent of post-emplacement homogenisation processes, such as diffusion and convective mixing, in the magma chambers. Micro-sampling of feldspar crystals in granites has revealed complex internal Sr and Nd isotope variations thought to reveal subtle variations in the isotopic composition of the melt from which particular zones crystallised. We therefore have evidence of both macro-scale (regional) and micro-scale isotopic variation within granitic magmas. What is unknown is the extent of chemical and isotopic variation on the meso-scale. We have obtained high-precision geochemical and isotopic (Sr, Nd, and O) analyses for spatially well constrained samples, from two granitic intrusions from the UK, to study the scales over which isotope heterogeneities are preserved, and the maximum volumes of magma over which isotope and elemental homogenisation may have been achieved. These data provide important constraints on the physical and chemical characteristics of processes that occur during magma genesis, ascent, and emplacement. The Criffell pluton (SW Scotland) has previously been shown to be isotopically heterogeneous on the regional scale, with initial 87Sr/86Sr varying from 0.70521 to 0.70728, generally increasing inward, towards the centre of the pluton. This was interpreted as representing isotopic heterogeneity within the source region. Our study has

  17. Mapping the ductile-brittle transition of magma (United States)

    Kendrick, J. E.; Lavallee, Y.; Dingwell, D. B.


    During volcanic unrest, eruptive activity can switch rapidly from effusive to explosive. Explosive eruptions require the fragmentation of magma, in which, if deformation rate is too fast to be relaxed, magma undergoes a transition in deformation mechanism from viscous and/or ductile to brittle. Our knowledge of the deformation mechanisms of magma ascent and eruption remains, to date, poor. Many studies have constrained the glass transition (Tg) of the interstitial melt phase; yet the effect of crystals and bubbles are unresolved. During ascent, magma undergoes P-T changes which induce crystallization, thereby inducing a transition from viscous to ductile and, in some cases, to brittle deformation. Here, we explore the deformation mechanisms of magma involved in the dome-building eruptions and explosions that occurred at Volcán de Colima (Mexico) since 1998. For this purpose, we investigated the rheology of dome lavas, containing 10-45 vol.% rhyolitic interstitial melt, 55-90 vol.% crystals and 5-20 vol.% bubbles. The interstitial glass is characterized by electron microprobe and Tg is characterized using a differential scanning calorimeter and a dilatometer. The population of crystals (fraction, shape and size distribution) is described optically and quantified using ImageJ and AMOCADO. The rheological effects of crystals on the deformation of magmas are constrained via acoustic emission (AE) and uniaxial deformation experiments at temperature above Tg (900-980 °C) and at varied applied stresses (and strain rates: 10-6 to 10-2 s-1). The ratio of ductile to brittle deformation across the ductile-brittle transition is quantified using the output AE energy and optical and SEM analysis. We find that individual dome lava sample types have different mechanical responses, yielding a significant range of measured strain rates under a given temperature and applied stress. Optical analysis suggests that at low strain rates, ductile deformation is mainly controlled by the

  18. Silicic magma entering a basaltic magma chamber: eruptive dynamics and magma mixing — an example from Salina (Aeolian islands, Southern Tyrrhenian Sea) (United States)

    Calanchi, Natale; de Rosa, Rosanna; Mazzuoli, Roberto; Rossi, Pierluigi; Santacroce, Roberto; Ventura, Guido


    The Pollara tuff-ring resulted from two explosive eruptions whose deposits are separated by a paleosol 13 Ka old. The oldest deposits (LPP, about 0.2 km3) consist of three main fall units (A, B, C) deposited from a subplinian column whose height (7 14 km) increased with time from A to C, as a consequence of the increased magma discharge rate during the eruption (1 8x106 kg/s). A highly variable juvenile population characterizes the eruption. Black, dense, highly porphyritic, mafic ejecta (SiO2=50 55%) almost exclusively form A deposits, whereas grey, mildly vesiculated, mildly porphyritic pumice (SiO2=56 67%) and white, highly vesiculated, nearly aphyric pumice (SiO2=66 71%) predominate in B and C respectively. Mafic cumulates are abundant in A, while crystalline lithic ejecta first appear in B and increase upward. The LPP result from the emptying of an unusual and unstable, compositionally zoned, shallow magma chamber in which high density mafic melts capped low density salic ones. Evidence of the existence of a short crystal fractionation series is found in the mafic rocks; the andesitic pumice results from complete blending between rhyolitic and variously fractionated mafic melts (salic component up to 60 wt%), whereas bulk dacitic compositions mainly result from the presence of mafic xenocrysts within rhyolitic glasses. Viscosity and composition-mixing diagrams show that blended liquids formed when the visosities of the two end members had close values. The following model is suggested: 1. A rhyolitic magma rising through the metamorphic basement enterrd a mafic magma chamber whose souter portions were occupied by a highly viscous, mafic crystal mush. 2. Under the pressure of the rhyolitic body the nearly rigid mush was pushed upwards and mafic melts were squeezed against the walls of the chamber, beginning roof fracturing and mingling with silicic melts. 3. When the equilibrium temperature was reached between mafic and silicic melts, blended liquids rapidly

  19. Rapid transport of nano-particles having a fractional elementary charge on average in capacitively-coupled rf discharges by amplitude-modulating discharge voltage. (United States)

    Shiratani, Masaharu; Koga, Kazunori; Iwashita, Shinya; Nunomura, Syota


    We have observed transport of nano-particles having, on average, a fractional elementary charge in single pulse and double pulse capacitively-coupled rf discharges both without and with an Amplitude Modulation (AM) of the discharge voltage, using a two-dimensional laser-light scattering method. Rapid transport of nano-particles towards the grounded electrode is realized using rf discharges with AM. Two important parameters for the rapid transport of nano-particles are the discharge voltage and the period of AM. An important key of the rapid transport is fast redistribution of ion current over the whole discharge region; that is, fast change of spatial distribution of forces exerted on nano-particles. The longer period of the modulation is needed for rapid transport for the larger nano-particles. The higher discharge voltage of the modulation is needed for rapid transport of nano-particles having a smaller mean charge. Local perturbation of electric potential using a probe does not bring about global rapid transport of nano-particles, whereas it leads to their local transport near the probe.

  20. Magma Energy Research Project, FY80 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Colp, J.L. (ed.)


    The technical feasibility of extracting energy from magma bodies is explored. Five aspects of the project are studied: resource location and definition, source tapping, magma characterization, magma/material compatibility, and energy extraction.

  1. A review of rapid transport of pesticides from sloping farmland to surface waters: processes and mitigation strategies. (United States)

    Tang, Xiangyu; Zhu, Bo; Katou, Hidetaka


    Pesticides applied to sloping farmland may lead to surface water contamination through rapid transport processes as influenced by the complex topography and high spatial variability of soil properties and land use in hilly or mountainous regions. However, the fate of pesticides applied to sloping farmland has not been sufficiently elucidated. This article reviews the current understanding of pesticide transport from sloping farmland to surface water. It examines overland flow and subsurface lateral flow in areas where surface soil is underlain by impervious subsoil or rocks and tile drains. It stresses the importance of quantifying and modeling the contributions of various pathways to rapid pesticide loss at catchment and regional scales. Such models could be used in scenario studies for evaluating the effectiveness of possible mitigation strategies such as constructing vegetated strips, depressions, wetlands and drainage ditches, and implementing good agricultural practices. Field monitoring studies should also be conducted to calibrate and validate the transport models as well as biophysical-economic models, to optimize mitigation measures in areas dominated by sloping farmland.

  2. Rapid Assessment of Environmental Health Impacts for Policy Support: The Example of Road Transport in New Zealand

    Directory of Open Access Journals (Sweden)

    David Briggs


    Full Text Available An integrated environmental health impact assessment of road transport in New Zealand was carried out, using a rapid assessment. The disease and injury burden was assessed from traffic-related accidents, air pollution, noise and physical (inactivity, and impacts attributed back to modal source. In total, road transport was found to be responsible for 650 deaths in 2012 (2.1% of annual mortality: 308 from traffic accidents, 283 as a result of air pollution, and 59 from noise. Together with morbidity, these represent a total burden of disease of 26,610 disability-adjusted life years (DALYs. An estimated 40 deaths and 1874 DALYs were avoided through active transport. Cars are responsible for about 52% of attributable deaths, but heavy goods vehicles (6% of vehicle kilometres travelled, vkt accounted for 21% of deaths. Motorcycles (1 per cent of vkt are implicated in nearly 8% of deaths. Overall, impacts of traffic-related air pollution and noise are low compared to other developed countries, but road accident rates are high. Results highlight the need for policies targeted at road accidents, and especially at heavy goods vehicles and motorcycles, along with more general action to reduce the reliance on private road transport. The study also provides a framework for national indicator development.

  3. Heterogeneity of Rapid Sand Filters and Its Effect on Contaminant Transport and Nitrification Performance

    DEFF Research Database (Denmark)

    Lopato, Laure Rose; Galaj, Zofia; Delpont, Sébastien


    flow. A first-order nitrification reaction with spatially variable pore-water velocity could be interpreted as a zero-order reaction with a constant pore-water velocity. A model demonstrated that filter heterogeneity could result in higher filter outlet ammonium concentrations.......Laboratory and full-scale experiments were conducted to investigate the development and effect of heterogeneity caused by filter media nonuniformity, biofilm, particles, precipitates, and gas bubbles in rapid sand filters used for drinking-water treatment. Salt tracer experiments were conducted...... dispersivity of more than 33% in the 116 h after the start of filtration with a constant pore-water velocity and a zero-order nitrification rate of 9 mgN=L=h. The full-scale experiments showed that the rapid sand filter was heterogeneous with pore-water velocities ranging from 2.2 to 3:3 m=h for the same inlet...

  4. Recent Voyager Evidence for Rapid Transport of Flare-Generated Disturbances by Polar Coronal Hole Streams (United States)

    Intriligator, D. S.; Miller, W. D.; Intriligator, J.; Webber, W.; Sun, W.; Detman, T.; Dryer, M.; Deehr, C.


    Disturbances observed by Voyagers 1 and 2 during the past five years or more may have been transported by plasma emitted from polar coronal holes, thereby having travelled much faster from the Sun to the termination shock than previously recognized. Estimating the average speed to the shock as 750 km/s has produced consistently good associations between solar flares, or groups of them, and dynamic pressure increases at Voyager 2 and plasma wave events at Voyager 1. Furthermore, magnetograph observations confirm that polar coronal holes were present around the times of the flares to which the events at the Voyagers have been attributed. These calculations also provide revised estimates of the transport of heliospheric current sheet fluctuations. We discuss the possibilities that extrapolations from past observations and simulations based on them may provide insight into currently challenging issues and possible future developments.

  5. Syneruptive deep magma transfer and shallow magma remobilization during the 2011 eruption of Shinmoe-dake, Japan—Constraints from melt inclusions and phase equilibria experiments (United States)

    Suzuki, Yuki; Yasuda, Atsushi; Hokanishi, Natsumi; Kaneko, Takayuki; Nakada, Setsuya; Fujii, Toshitsugu


    The 2011 Shinmoe-dake eruption started with a phreatomagmatic eruption (Jan 19), followed by climax sub-Plinian events and subsequent explosions (Jan 26-28), lava accumulation in the crater (end of January), and vulcanian eruptions (February-April). We have studied a suite of ejecta to investigate the magmatic system beneath the volcano and remobilization processes in the silicic magma mush. Most of the ejecta, including brown and gray colored pumice clasts (Jan 26-28), ballistically ejected dense lava (Feb 1), and juvenile particles in ash from the phreatomagmatic and vulcanian events are magma mixing products (SiO2 = 57-58 wt.%; 960-980 °C). Mixing occurred between silicic andesite (SA) and basaltic andesite (BA) magmas at a fixed ratio (40%-30% SA and 60%-70% BA). The SA magma had SiO2 = 62-63 wt.% and a temperature of 870 °C, and contains 43 vol.% phenocrysts of pyroxene, plagioclase, and Fe-Ti oxide. The BA magma had SiO2 = 55 wt.% and a temperature of 1030 °C, and contains 9 vol.% phenocrysts of olivine and plagioclase. The SA magma partly erupted without mixing as white parts of pumices and juvenile particles. The two magmatic end-members crystallized at different depths, requiring the presence of two separate magma reservoirs; shallower SA reservoir and deeper BA reservoir. An experimental study reveals that the SA magma had been stored at a pressure of 125 MPa, corresponding to a depth of 5 km. The textures and forms of phenocrysts from the BA magma indicate rapid crystallization directly related to the 2011 eruptive activity. The wide range of H2O contents of olivine melt inclusions (5.5-1.6 wt.%) indicates that rapid crystallization was induced by decompression, with olivine crystallization first (≤ 250 MPa), followed by plagioclase addition. The limited occurrence of olivine melt inclusions trapped at depths of existed in the SA reservoir in the precursor stage, were finally erupted together. Magnetite phenocrysts in the Feb 18 ash reveal the

  6. Change in Magma Dynamics at Okataina Rhyolite Caldera revealed by Plagioclase Textures and Geochemistry (United States)

    Shane, P. A. R.


    A fundamental reorganization of magma dynamics at Okataina volcano, New Zealand, occurred at 26 ka involving a change from smaller volume, high-temperature rhyodacite magmas to a lower eruptive tempo of larger volume, low-temperature, rhyolite magmas. Zircon studies demonstrate the presence of a periodically active, long-lived (100,000 yr) magmatic reservoir. However, there is little correlation between periods of zircon crystallization and eruption events. In contrast, the changing magmatic dynamics is revealed in plagioclase growth histories. Crystals from the ~0.7 ka Kaharoa eruption are characterized by resorbed cores displaying a cellular-texture of high-An (>40) zones partially replaced by low-An (cellular texture of variable An content (An 40-50). The crystals display step-wise re-growth of successively higher An, Fe, Mg and Ti content, consistent with progressive mafic recharge. Two crystal groups are distinguished by trace element chemistry indicating growth in separate melts and co-occurrence via magma-mingling. The contrasting zoning patterns in plagioclase correspond to the evolutionary history of magmatism at Okataina. Emptying of the magma reservoir following caldera eruption at 46 ka reduced barriers to mafic magma ascent. This is recorded by the frequent resorption and recharge episodes in Hauparu crystals. Subsequent re-development of a more silicic reservoir zone (post-26 ka) dampened thermal and mass perturbations, resulting in simpler growth histories of the Kaharoa crystals. The plagioclase lack features associated with rapid decompression events that are common in andesite systems.

  7. Thermal and Chemical Gradients Along the Slab Interface Control Across-Arc Patterns in Compositions of Primitive Arc Magmas (United States)

    Mather, T. A.; Pyle, D. M.; Watt, S. F.; Naranjo, J. A.


    Several studies of primitive mafic arc rocks have shown systematic across-arc variations in the volatile and trace element contents of primary arc magmas. Most of these studies used olivine-hosted melt inclusions in mafic scoria that had been transported rapidly to the surface from depth. These inclusions bypass upper crustal modifications, and constrain the chemical composition of parental magmas in equilibrium with the mantle. The patterns preserved in these melts can be used to explore spatial variation in the volatile-rich flux that enters the mantle wedge, sourced from the subducting plate. Variability in the composition of this flux provides information about fluid and melt transport through the mantle wedge, and of the mineral breakdown or melting processes occurring within the downgoing slab. We analysed olivine-hosted melt inclusions from scoria cones in southern Chile (40 - 42 S), including picrites with unzoned Mg-rich olivine (Fo88) from volcan Apagado. Samples show systematic variations in water, CO2, and trace element content that suggests that the primary-melt chemistry reflects the pattern of element release at the subducting slab interface. This down-slab chemical gradient is consistent with predictions from modelling and experiments. Down-slab, the flux feeding the arc magmas becomes progressively water-poor over a distance of a few km. We suggest that this change marks the onset of significant water-fluxed melting of sediment at the downgoing slab-surface. The short length scale of the across-arc chemical patterns in southern Chile is surprising. The fact that such changes are preserved within our sampled rocks suggests that there is limited across-arc mixing and focussing of fluids or melts as they ascend through the mantle wedge. Our results suggest that slab-surface inputs exert a first-order control on arc-magma chemistry. The chemical patterns that we observe are replicated in other arcs (e.g. Kamchatka, Izu-Bonin), despite the plate

  8. Evaluation of magma mixing in the subvolcanic rocks of Ghansura Felsic Dome of Chotanagpur Granite Gneiss Complex, eastern India (United States)

    Gogoi, Bibhuti; Saikia, Ashima; Ahmad, Mansoor; Ahmad, Talat


    The subvolcanic rocks exposed in the Ghansura Felsic Dome (GFD) of the Bathani volcano-sedimentary sequence at the northern fringe of the Rajgir fold belt in the Proterozoic Chotanagpur Granite Gneiss Complex preserves evidence of magma mixing and mingling in mafic (dolerite), felsic (microgranite) and intermediate (hybrid) rocks. Structures like crenulated margins of mafic enclaves, felsic microgranular enclaves and ocelli with reaction surfaces in mafic rocks, hybrid zones at mafic-felsic contacts, back-veining and mafic flows in the granitic host imply magma mingling phenomena. Textural features like quartz and titanite ocelli, acicular apatite, rapakivi and anti-rapakivi feldspar intergrowths, oscillatory zoned plagioclase, plagioclase with resorbed core and intact rim, resorbed crystals, mafic clots and mineral transporting veins are interpreted as evidence of magma mixing. Three distinct hybridized rocks have formed due to varied interactions of the intruding mafic magma with the felsic host, which include porphyritic diorite, mingled rocks and intermediate rocks containing felsic ocelli. Geochemical signatures confirm that the hybrid rocks present in the study area are mixing products formed due to the interaction of mafic and felsic magmas. Physical parameters like temperature, viscosity, glass transition temperature and fragility calculated for different rock types have been used to model the relative contributions of mafic and felsic end-member magmas in forming the porphyritic diorite. From textural and geochemical investigations it appears that the GFD was a partly solidified magma chamber when mafic magma intruded it leading to the formation of a variety of hybrid rock types.

  9. Temporal Evolution of Surface Deformation and Magma Sources at Pacaya Volcano, Guatemala Revealed by InSAR (United States)

    Wnuk, K.; Wauthier, C.


    Pacaya Volcano, Guatemala is a persistently active volcano whose western flank is unstable. Despite continuous activity since 1961, a lack of high temporal resolution geodetic surveying has prevented detailed modeling of Pacaya's underlying magmatic plumbing system. A new, temporally dense dataset of Interferometric Synthetic Aperture Radar (InSAR) RADARSAT-2 images, spanning December 2012 to March 2014, shows magmatic deformation before and during major eruptions in January and March 2014. Inverse modeling of InSAR surface displacements suggest that three magma bodies are responsible for observed deformation: (1) a 3.7 km deep spherical reservoir located northwest of the summit, (2) a 0.4 km deep spherical source located directly west of the summit, and (3) a shallow dike below the summit that provides the primary transport pathway for erupted materials. Periods of heightened activity are brought on by magma pulses at depth, which result in rapid inflation of the edifice. We observe an intrusion cycle at Pacaya that consists of deflation of one or both magma reservoirs followed by dike intrusion. Intrusion volumes are proportional to reservoir volume loss, and do not always result in an eruption. Periods of increased activity culminate with larger dike fed eruptions. Large eruptions are followed by inter eruptive periods marked by a decrease in crater explosions and a lack of deformation. A full understanding of magmatic processes at Pacaya is required to assess potential impacts on other aspects of the volcano such as the unstable western flank. Co-eruptive flank motion appears to have initiated a new stage of volcanic rifting at Pacaya defined by repeated NW-SE dike intrusions. This creates a positive feedback relationship whereby magmatic forcing from eruptive dike intrusions induces flank motion

  10. Peripheral blood mononuclear cell gene expression in healthy adults rapidly transported to high altitude

    Directory of Open Access Journals (Sweden)

    Herman NM


    Full Text Available Nicole M Herman,1 Diane E Grill,2 Paul J Anderson,1 Andrew D Miller,1 Jacob B Johnson,1 Kathy A O’Malley,1 Maile L Ceridon Richert,1 Bruce D Johnson1 1Department of Cardiovascular Diseases, 2Department of Biostatistics, Mayo Clinic Rochester, MN, USA Abstract: Although mechanisms of high altitude illness have been studied extensively, the processes behind the development of these conditions are still unclear. Few genome-wide studies on rapid exposure to high altitude have been performed. Each year, scientists and support workers are transferred by plane from McMurdo Station in Antarctica (sea level to the Amundsen-Scott South Pole Station at 2,835 meters. This uniform and rapid transfer to altitude provides a unique opportunity to study the effects of hypobaric hypoxia on gene expression that may help illustrate the body's adaptations to these conditions. We hypothesized that an extensive number of genes would change with rapid exposure to altitude and further expected that these genes would correspond to inflammatory pathways proposed as a mechanism in development of acute mountain sickness. Peripheral venous blood samples were drawn from 98 healthy subjects at sea level and again on day two at altitude. Microarray analysis was performed on these samples. In total, 1,118 probe sets with significant P-values and fold changes (90% upregulated were identified and entered into MetaCore™ software. Several pathways, including oxidative phosphorylation, cytoskeleton remodeling, and platelet aggregation, were significantly represented by the data set and all were upregulated. Many genes changed expression, and the vast majority of these increased. Increased metabolism in peripheral blood mononuclear cells suggests increased inflammatory activity. Keywords: peripheral blood mononuclear cells, microarray, gene expression, acute mountain sickness

  11. Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. (United States)

    Druitt, T H; Costa, F; Deloule, E; Dungan, M; Scaillet, B


    Caldera-forming volcanic eruptions are low-frequency, high-impact events capable of discharging tens to thousands of cubic kilometres of magma explosively on timescales of hours to days, with devastating effects on local and global scales. Because no such eruption has been monitored during its long build-up phase, the precursor phenomena are not well understood. Geophysical signals obtained during recent episodes of unrest at calderas such as Yellowstone, USA, and Campi Flegrei, Italy, are difficult to interpret, and the conditions necessary for large eruptions are poorly constrained. Here we present a study of pre-eruptive magmatic processes and their timescales using chemically zoned crystals from the 'Minoan' caldera-forming eruption of Santorini volcano, Greece, which occurred in the late 1600s BC. The results provide insights into how rapidly large silicic systems may pass from a quiescent state to one on the edge of eruption. Despite the large volume of erupted magma (40-60 cubic kilometres), and the 18,000-year gestation period between the Minoan eruption and the previous major eruption, most crystals in the Minoan magma record processes that occurred less than about 100 years before the eruption. Recharge of the magma reservoir by large volumes of silicic magma (and some mafic magma) occurred during the century before eruption, and mixing between different silicic magma batches was still taking place during the final months. Final assembly of large silicic magma reservoirs may occur on timescales that are geologically very short by comparison with the preceding repose period, with major growth phases immediately before eruption. These observations have implications for the monitoring of long-dormant, but potentially active, caldera systems.

  12. Shallow and deep crustal control on differentiation of calc-alkaline and tholeiitic magma (United States)

    Hora, John M.; Singer, Brad S.; Wörner, Gerhard; Beard, Brian L.; Jicha, Brian R.; Johnson, Clark M.


    The role of changing crustal interaction and plumbing geometry in modulating calc-alkaline vs. tholeiitic magma affinity is well illustrated by the influence of 70 km thick crust beneath Volcán Parinacota. Changes in petrologic affinity correlate with periods of cone-building, sector collapse, and rebuilding of the volcano over the last 52 ka, and are well explained by changes in magma recharge regime. With increasing recharge and magma output, lavas transition from low-Fe, strongly calc-alkaline, phenocryst-rich silicic compositions to medium-Fe, near-tholeiitic, mafic, and aphanitic characteristics. Strontium isotope data show that the change in magma regime did not affect all parts of the system simultaneously; these are characterized by distinctive 87Sr/ 86Sr ratios, which suggest an initially compartmentalized system. Relatively high ( 230Th/ 232Th) activity ratios of ~ 0.72 in early-erupted calc-alkaline lavas are consistent with interaction with high-U upper crust. Low ( 230Th/ 232Th) activity ratios of ~ 0.55 and up to 33% Th-excess in younger near-tholeiitic lavas correlate with steep REE patterns, indicating lower-crustal interaction. Thorium-excesses at the time of eruption approach the maximum that can be generated via small-degree garnet-residual melting in the lower crust or mantle and imply that transit time through the crustal column for the most tholeiitic magmas had to be short, on the order of secular equilibrium, suggesting stagnation times > 3 × 10 5 yr in the upper crust. In addition to more traditional explanations tied to magma source, expression of low-Fe 'calc-alkaline' (CA) vs. medium-Fe 'near-tholeiitic' (TH) magma series at the scale of individual volcanoes is likely to be modulated by transitions from compartmentalized, stagnant, assimilation-prone 'dirty' systems (CA) to 'clean' systems (TH) that are characterized by rapid magma throughput and minimal opportunity for upper-crustal contamination.

  13. Rapid atmospheric transport and large-scale deposition of recently synthesized plant waxes (United States)

    Nelson, Daniel B.; Ladd, S. Nemiah; Schubert, Carsten J.; Kahmen, Ansgar


    Sedimentary plant wax 2H/1H ratios are important tools for understanding hydroclimate and environmental changes, but large spatial and temporal uncertainties exist about transport mechanisms from ecosystem to sediments. To assess atmospheric pathways, we collected aerosol samples for two years at four locations within a ∼60 km radius in northern Switzerland. We measured n-alkane distributions and 2H/1H ratios in these samples, and from local plants, leaf litter, and soil, as well as surface sediment from six nearby lakes. Increased concentrations and 2H depletion of long odd chain n-alkanes in early summer aerosols indicate that most wax aerosol production occurred shortly after leaf unfolding, when plants synthesize waxes in large quantities. During autumn and winter, aerosols were characterized by degraded n-alkanes lacking chain length preferences diagnostic of recent biosynthesis, and 2H/1H values that were in some cases more than 100‰ higher than growing season values. Despite these seasonal shifts, modeled deposition-weighted average 2H/1H values of long odd chain n-alkanes primarily reflected summer values. This was corroborated by n-alkane 2H/1H values in lake sediments, which were similar to deposition-weighted aerosol values at five of six sites. Atmospheric deposition rates for plant n-alkanes on land were ∼20% of accumulation rates in lakes, suggesting a role for direct deposition to lakes or coastal oceans near similar production sources, and likely a larger role for deposition on land and transport in river systems. This mechanism allows mobilization and transport of large quantities of recently produced waxes as fine-grained material to low energy sedimentation sites over short timescales, even in areas with limited topography. Widespread atmospheric transfer well before leaf senescence also highlights the importance of the isotopic composition of early season source water used to synthesize waxes for the geologic record.

  14. Magma Beneath Yellowstone National park. (United States)

    Eaton, G P; Christiansen, R L; Iyer, H M; Pitt, A D; Mabey, D R; Blank, H R; Zietz, I; Gettings, M E


    The Yellowstone plateau volcanic field is less than 2 million years old, lies in a region of intense tectonic and hydrothermal activity, and probably has the potential for further volcanic activity. The youngest of three volcanic cycles in the field climaxed 600,000 years ago with a voluminous ashflow eruption and the collapse of two contiguous cauldron blocks. Doming 150,000 years ago, followed by voluminous rhyolitic extrusions as recently as 70,000 years ago, and high convective heat flow at present indicate that the latest phase of volcanism may represent a new magmatic insurgence. These observations, coupled with (i) localized postglacial arcuate faulting beyond the northeast margin of the Yellowstone caldera, (ii) a major gravity low with steep bounding gradients and an amplitude regionally atypical for the elevation of the plateau, (iii) an aeromagnetic low reflecting extensive hydrothermal alteration and possibly indicating the presence of shallow material above its Curie temperature, (iv) only minor shallow seismicity within the caldera (in contrast to a high level of activity in some areas immediately outside), (v) attenuation and change of character of seismic waves crossing the caldera area, and (vi) a strong azimuthal pattern of teleseismic P-wave delays, strongly suggest that a body composed at least partly of magma underlies the region of the rhyolite plateau, including the Tertiary volcanics immediately to its northeast. The Yellowstone field represents the active end of a system of similar volcanic foci that has migrated progressively northeastward for 15 million years along the trace of the eastern Snake River Plain (8). Regional aeromagnetic patterns suggest that this course was guided by the structure of the Precambrian basement. If, as suggested by several investigators (24), the Yellowstone magma body marks a contemporary deep mantle plume, this plume, in its motion relative to the North American plate, would appear to be "navigating" along a

  15. Volatiles Which Increase Magma Viscosity (United States)

    Webb, S.


    The standard model of an erupting volcano is one in which the viscosity of a decompressing magma increases as the volatiles leave the melt structure to form bubbles. It has now been observed that the addition of the "volatiles" P, Cl and F result in an increase in silicate melt viscosity. This observation would mean that the viscosity of selected degassing magmas would decrease rather than increase. Here we look at P, Cl and F as three volatiles which increase viscosity through different structural mechanisms. In all three cases the volatiles increase the viscosity of peralkaline composition melts, but appear to always decrease the viscosity of peraluminous melts. Phosphorus causes the melt to unmix into a Na-P rich phase and a Na-poor silicate phase. Thus as the network modifying Na (or Ca) are removed to the phosphorus-rich melt, the matrix melt viscosity increases. With increasing amounts of added phosphorus (at network modifying Na ~ P) the addition of further phosphorus causes a decrease in viscosity. The addition of chlorine to Fe-free aluminosilicate melts results in an increase in viscosity. NMR data on these glass indicates that the chlorine sits in salt-like structures surrounded by Na and/or Ca. Such structures would remove network-modifying atoms from the melt structure and thus result in an increase in viscosity. The NMR spectra of fluorine-bearing glasses shows that F takes up at least 5 different structural positions in peralkaline composition melts. Three of these positions should result in a decrease in viscosity due to the removal of bridging oxygens. Two of the structural positons of F, however, should result in an increase in viscosity as they require the removal of network-modifying atoms from the melt structure (with one of the structures being that observed for Cl). This would imply that increasing amounts of F might result in an increase in viscosity. This proposed increase in viscosity with increasing F has now been experimentally confirmed.

  16. Interaction of coeval felsic and mafic magmas from the Kanker ...

    Indian Academy of Sciences (India)

    Blobs of mafic magma form as MMEs in the felsic magma and they scatter throughout the pluton due to convection. At a later stage, if mafic magma enters the system after partial crystallization of felsic phase, mechanical interaction between the magmas leads to the formation of fragmented dyke or syn-plutonic mafic dyke.

  17. Thermal stress fracturing of magma simulant materials

    Energy Technology Data Exchange (ETDEWEB)

    Wemple, R.P.; Longcope, D.B.


    Direct contact heat exchanger concepts for the extraction of energy from magma chambers are being studied as part of the DOE-funded Magma Energy Research Program at Sandia National Laboratories. These concepts require the solidification of molten material by a coolant circulated through a borehole drilled into the magma and subsequent fracture of the solid either as a natural consequence of thermal stress or by deliberate design (intentional flaws, high pressure, etc.). This report summarizes the results of several thermal stress fracturing experiments performed in the laboratory and compares the results with an analysis developed for use as a predictive tool. Information gained from this test series has been the basis for additional work now under way to simulate magma melt solidification processes.

  18. A Rapid Empirical Method for Estimating the Gross Takeoff Weight of a High Speed Civil Transport (United States)

    Mack, Robert J.


    During the cruise segment of the flight mission, aircraft flying at supersonic speeds generate sonic booms that are usually maximum at the beginning of cruise. The pressure signature with the shocks causing these perceived booms can be predicted if the aircraft's geometry, Mach number, altitude, angle of attack, and cruise weight are known. Most methods for estimating aircraft weight, especially beginning-cruise weight, are empirical and based on least- square-fit equations that best represent a body of component weight data. The empirical method discussed in this report used simplified weight equations based on a study of performance and weight data from conceptual and real transport aircraft. Like other weight-estimation methods, weights were determined at several points in the mission. While these additional weights were found to be useful, it is the determination of beginning-cruise weight that is most important for the prediction of the aircraft's sonic-boom characteristics.

  19. Shallow Chamber & Conduit Behavior of Silicic Magma: A Thermo- and Fluid- Dynamic Parameterization Model of Physical Deformation as Constrained by Geodetic Observations: Case Study; Soufriere Hills Volcano, Montserrat (United States)

    Gunn de Rosas, C. L.


    The Soufrière Hills Volcano, Montserrat (SHV) is an active, mainly andesitic and well-studied stratovolcano situated at the northern end of the Lesser Antilles Arc subduction zone in the Caribbean Sea. The goal of our research is to create a high resolution 3D subsurface model of the shallow and deeper aspects of the magma storage and plumbing system at SHV. Our model will integrate inversions using continuous and campaign geodetic observations at SHV from 1995 to the present as well as local seismic records taken at various unrest intervals to construct a best-fit geometry, pressure point source and inflation rate and magnitude. We will also incorporate a heterogeneous media in the crust and use the most contemporary understanding of deep crustal- or even mantle-depth 'hot-zone' genesis and chemical evolution of silicic and intermediate magmas to inform the character of the deep edifice influx. Our heat transfer model will be constructed with a modified 'thin shell' enveloping the magma chamber to simulate the insulating or conducting influence of heat-altered chamber boundary conditions. The final forward model should elucidate observational data preceding and proceeding unrest events, the behavioral suite of magma transport in the subsurface environment and the feedback mechanisms that may contribute to eruption triggering. Preliminary hypotheses suggest wet, low-viscosity residual melts derived from 'hot zones' will ascend rapidly to shallower stall-points and that their products (eventually erupted lavas as well as stalled plutonic masses) will experience and display two discrete periods of shallow evolution; a rapid depressurization crystallization event followed by a slower conduction-controlled heat transfer and cooling crystallization. These events have particular implications for shallow magma behaviors, notably inflation, compressibility and pressure values. Visualization of the model with its inversion constraints will be affected with Com

  20. Evidence of Rapid Localized Groundwater Transport in Volcanic Tuffs Beneath Yucca Mountain, Nevada (United States)

    Freifeld, B.; Walker, J.; Doughty, C.; Kryder, L.; Gilmore, K.; Finsterle, S.; Sampson, J.


    At Yucca Mountain, Nevada, the proposed location for a national high-level nuclear waste repository radionuclides, if released from breached waste storage canisters, could make their way down through the unsaturated zone (where the repository would be located) into the underlying groundwater and eventually back to the biosphere (i.e., where they could adversely affect human health). The compliance boundary, 18 km south of the proposed repository, is defined as the location where a human being using groundwater would be maximally exposed to radionuclides outside of an exclusion zone set around the repository. It is thus important to predict how these radionuclides would be transported by the groundwater flow, and to predict both the concentration of and the rate at which any leaked radionuclides would arrive at the compliance boundary. We recently conducted a study of groundwater flux in the saturated zone through the Crater Flat Group, in a wellbore 15 km south of the proposed repository. The Crater Flat Group, a sequence of ash-flow tuff formations, is laterally extensive beneath the footprint of the proposed repository. Because of its intense fracturing and high permeabilities, the Bullfrog tuff is the primary unit within the Crater Flat Group through which radionuclides would be transported, as indicated by groundwater models. In a new wellbore, NC-EWDP- 24PB, we conducted flowing electrical conductivity logging (FEC), an open-wellbore logging technique, to identify flowing fractures prior to wellbore completion. While the FEC logs have identified transmissive zones, quantitative interpretation of the FEC results was difficult because differences in hydraulic heads in different flowing intervals created significant intraborehole fluid flow. The well was subsequently backfilled and completed with a distributed thermal perturbation sensor (DTPS), which introduces a thermal pulse to the wellbore and uses the thermal transient to estimate groundwater flux

  1. Stress-related psychosocial factors at work, fatigue, and risky driving behavior in bus rapid transport (BRT) drivers. (United States)

    Useche, Sergio A; Ortiz, Viviola Gómez; Cendales, Boris E


    There is consistent scientific evidence that professional drivers constitute an occupational group that is highly exposed to work related stressors. Furthermore, several recent studies associate work stress and fatigue with unsafe and counterproductive work behaviors. This study examines the association between stress-related work conditions of Bus Rapid Transport (BRT) drivers and risky driving behaviors; and examines whether fatigue is a mechanism that mediates the association between the two. A sample of 524 male Bus Rapid Transit (BRT) operators were drawn from four transport companies in Bogotá, Colombia. The participants answered a survey which included an adapted version of the Driver Behavior Questionnaire (DBQ) for BRT operators, as well as the Effort-Reward Imbalance and Job Content Questionnaires, the Subjective Fatigue subscale of the Checklist Individual Strength (CIS) and the Need for Recovery after Work Scale (NFR). Utilizing Structural Equation Models (SEM) it was found that risky driving behaviors in BRT operators could be predicted through job strain, effort-reward imbalance and social support at work. It was also found that fatigue and need for recovery fully mediate the associations between job strain and risky driving, and between social support and risky driving, but not the association between effort/reward imbalance (ERI) and risky driving. The results of this study suggest that a) stress related working conditions (Job Strain, Social Support and ERI) are relevant predictors of risky driving in BRT operators, and b) that fatigue is the mechanism which links another kind of stress related to working conditions (job strain and low social support) with risky driving. The mechanism by which ERI increases risky driving in BRT operators remains unexplained. This research suggests that in addition to the individual centered stress-reduction occupational programs, fatigue management interventions aimed to changing some working conditions may reduce

  2. Radiographic visualization of magma dynamics in an erupting volcano. (United States)

    Tanaka, Hiroyuki K M; Kusagaya, Taro; Shinohara, Hiroshi


    Radiographic imaging of magma dynamics in a volcanic conduit provides detailed information about ascent and descent of magma, the magma flow rate, the conduit diameter and inflation and deflation of magma due to volatile expansion and release. Here we report the first radiographic observation of the ascent and descent of magma along a conduit utilizing atmospheric (cosmic ray) muons (muography) with dynamic radiographic imaging. Time sequential radiographic images show that the top of the magma column ascends right beneath the crater floor through which the eruption column was observed. In addition to the visualization of this magma inflation, we report a sequence of images that show magma descending. We further propose that the monitoring of temporal variations in the gas volume fraction of magma as well as its position in a conduit can be used to support existing eruption prediction procedures.

  3. PhoU Allows Rapid Adaptation to High Phosphate Concentrations by Modulating PstSCAB Transport Rate in Sinorhizobium meliloti. (United States)

    diCenzo, George C; Sharthiya, Harsh; Nanda, Anish; Zamani, Maryam; Finan, Turlough M


    Maintenance of cellular phosphate homeostasis is essential for cellular life. The PhoU protein has emerged as a key regulator of this process in bacteria, and it is suggested to modulate phosphate import by PstSCAB and control activation of the phosphate limitation response by the PhoR-PhoB two-component system. However, a proper understanding of PhoU has remained elusive due to numerous complications of mutating phoU, including loss of viability and the genetic instability of the mutants. Here, we developed two sets of strains of Sinorhizobium meliloti that overcame these limitations and allowed a more detailed and comprehensive analysis of the biological and molecular activities of PhoU. The data showed that phoU cannot be deleted in the presence of phosphate unless PstSCAB is inactivated also. However, phoU deletions were readily recovered in phosphate-free media, and characterization of these mutants revealed that addition of phosphate to the environment resulted in toxic levels of PstSCAB-mediated phosphate accumulation. Phosphate uptake experiments indicated that PhoU significantly decreased the PstSCAB transport rate specifically in phosphate-replete cells but not in phosphate-starved cells and that PhoU could rapidly respond to elevated environmental phosphate concentrations and decrease the PstSCAB transport rate. Site-directed mutagenesis results suggested that the ability of PhoU to respond to phosphate levels was independent of the conformation of the PstSCAB transporter. Additionally, PhoU-PhoU and PhoU-PhoR interactions were detected using a bacterial two-hybrid screen. We propose that PhoU modulates PstSCAB and PhoR-PhoB in response to local, internal fluctuations in phosphate concentrations resulting from PstSCAB-mediated phosphate import.IMPORTANCE Correct maintenance of cellular phosphate homeostasis is critical in all kingdoms of life and in bacteria involves the PhoU protein. This work provides novel insights into the role of the Sinorhizobium

  4. Magma Emplacement Rates and Porphyry Copper Deposits: Thermal Modelling of the Yerington Batholith, Nevada, USA (United States)

    Schöpa, Anne; Annen, Catherine; Dilles, John H.; Sparks, R. Stephen J.; Blundy, Jon D.


    Many porphyry copper deposits are associated with granitoid plutons. Their genesis is attributed to the degassing of pluton-forming intermediate to silicic magma chambers. These plutons are commonly envisioned as resulting from the slow cooling and crystallization of large magma chambers. Most of the models combine the formation of ore deposits and the cooling of a magma chamber. However, they do not consider neither how typically hundreds of cubic kilometres of magma were emplaced into the upper crust, nor the prolonged growth of plutons involving simultaneous cooling and crystallization together with the release of exsolved volatiles, which may contribute to ore formation. We use numerical simulations of thermal evolution due to pluton growth to investigate the links between pluton construction, magma accumulation, solidification, volatile exsolution, volatile release and porphyry copper formation. The Jurassic Yerington batholith in western Nevada, USA, is used as a case study because it is associated with economic porphyry copper deposits, it shows an exceptional exposure revealing the geometry of the intrusion, and petrological and geochronological analysis have shed light on its emplacement style and duration. Our conductive heat flow model simulates the growth of the ˜1000 km3 batholith emplaced at 2-8 km crustal depth by step-wise intrusions of vertically stacked sills. Different emplacement rates and repose times of no melt injection between the three main Yerington intrusions were tested. Our numerical simulations show that to comply with the conceptual model linking porphyry copper deposits with the presence of large, highly molten magma chambers, magmas must be emplaced at a high rate of several cm/yr. In plutonic records, such high rates are uncommon. It follows that either the current conceptual model is incorrect or that porphyry copper deposits are only produced by the rare, rapidly emplaced plutons. The fact that many granitoid plutons are barren

  5. Hydrogen, Oxygen and Silicon Isotope Systematics of Groundwater-Magma Interaction in Icelandic Hydrothermal Systems (United States)

    Kleine, B. I.; Stefansson, A.; Halldorsson, S. A.; Martin, W.; Barnes, J.; Jónasson, K.; Franzson, H.


    Magma often encounters groundwater (meteoric or seawater derived) when intruded into the crust. Magma-groundwater interactions result in the formation of hydrothermal fluids which can lead to contact metamorphism and elemental transport in the country rock. In fact, magma-hydrothermal fluid interaction (rather than magma-magmatic fluid interaction) may lead to classic contact metamorphic reactions. In order to explore the importance of hydrothermal fluid during contact metamorphism we use stable isotopes (δD, δ18O, δ30Si) from both active and extinct magma chambers and hydrothermal systems from across Iceland. Quartz grains from various hydrothermal systems, from crustal xenoliths from the Askja central volcano and from the Hafnarfjall pluton, as well as quartz grains associated with low-T zeolites were analysed for δ18O and δ30Si in-situ using SIMS. Whole rock material of these samples was analysed for δD values using a TCEA coupled to an IRMS. Our results indicate that low-T quartz (300°C). Combining the results from the analyses of δ18O and δD allows further division of samples into (i) seawater and/or rock dominated and (ii) meteoric water dominated hydrothermal systems. In order to isolate the effects of fluid-rock interaction, fluid source and formation temperature at the magma-groundwater contact, δD, δ18O and δ30Si values of rocks and fluids were modeled using the PHREEQC software. Comparison of analytical and model results shows that the isotopic compositions are influenced by multiple processes. In some cases, groundwater penetrates the contact zone and causes alteration at >400°C by groundwater-magma heat interaction. Other cases document "baked" contact zones without groundwater. Our analyses and modeling demonstrates that groundwater flow and permeability are crucial in setting the style of contact metamorphism around high T intrusions.

  6. A Functional Thinking Approach to the Design of Future Transportation Systems: Taxis as a Proxy for Personal Rapid Transit in South Korea

    DEFF Research Database (Denmark)

    Thompson, Mary Kathryn; Bae, Hyun Hye


    For over 50 years, personal rapid transit (PRT) has been viewed as one of the most promising ways to provide sustainable, economical, and convenient transportation while reducing reliance on personal automobiles. However, despite concerted efforts around the world, the promise of PRT has yet...... taxis can be used as an alternative embodiment of personal rapid transit and can serve as a test bed to support PRT-related design, research, and development. The paper then explores the transportation patterns and characteristics of cities in South Korea and the United States in order to determine...... the conditions necessary to create and maintain a PRT-like taxi system and to demonstrate the differences between ‘normal’ and PRT-like taxi systems. Finally, the future of personal rapid transit as a functional and physical transportation paradigm is discussed....

  7. Pressure of Partial Crystallization of Katla Magmas: Implications for Magma Chamber Depth and for the Magma Plumbing System (United States)

    Tenison, A.; Kelley, D. F.; Barton, M.


    Iceland is home to some of the most active volcanoes in the world, and recent eruptions emphasize the need for additional studies to better understand the volcanism and tectonics in this region. Historical patterns of eruptive activity and an increase in seismic activity suggest that Katla is showing signs of an impending eruption. The last major eruption in 1918 caused massive flooding and deposited enough sediment to extend part of Iceland's southern shoreline by 5 km. It also generated sufficient ash over many weeks to cause a brief drop in global temperature. A future eruption similar to the 1918 event could have serious global consequences, including severe disruptions in air travel, short-term global cooling, and shortened growing seasons. Relatively few studies have focused on establishing the depth of the main magma chamber beneath Katla, although knowledge of magma chamber depth is essential for constraining models for magma evolution and for understanding the eruption dynamics of this volcano. The results of seismic and geodetic studies suggest the presence of a shallow magma body at a depth of 2-4 km, but do not provide firm evidence for the presence of deeper chambers in contrast to results obtained for other volcanoes in Iceland. Studies of volcanic ash layers reveal a history of alternating cycles of basaltic and silicic eruptions. We suggest that the shallow magma chamber is primarily the source of silica-rich magma, and postulate that there must be one or more additional chambers in the middle or deep crust that serve as the storage site of the basaltic magma erupted as lava and ash. We have tested this proposal by calculating the pressures of partial crystallization for basalts erupted at Katla using petrological methods. These pressures can be converted to depths and the results provide insight into the likely configuration of the magma plumbing system. Published analyses of volcanic glasses (lava, ash and hyaloclastite) were used as input data

  8. Rapid transport of muco-inert nanoparticles in cystic fibrosis sputum treated with N-acetyl cysteine. (United States)

    Suk, Jung Soo; Lai, Samuel K; Boylan, Nicholas J; Dawson, Michelle R; Boyle, Michael P; Hanes, Justin


    Sputum poses a critical diffusional barrier that strongly limits the efficacy of drug and gene carriers in the airways of individuals with cystic fibrosis (CF). Previous attempts to enhance particle penetration of CF sputum have focused on either reducing its barrier properties via mucolytics, or decreasing particle adhesion to sputum constituents by coating the particle surface with non-mucoadhesive polymers, including polyethylene glycol (PEG). Neither approach has enabled particles to penetrate expectorated sputum at rates previously observed for non-mucoadhesive nanoparticles in human cervicovaginal mucus. Here, we sought to investigate whether a common mucolytic, N-acetyl cysteine (NAC), in combination with dense PEG coatings on particles, can synergistically enhance particle penetration across fresh undiluted CF sputum. We used high-resolution multiple particle tracking to measure the diffusion of uncoated and PEG-coated nanoparticles in native and NAC-treated CF sputum. We discovered that 200 nm particles, if densely coated with PEG, were able to penetrate CF sputum pretreated with NAC with average speeds approaching their theoretical speeds in water. Based on the rapid penetration of PEG-coated particles in NAC-treated sputum, we determined that the average spacing between sputum mesh elements was increased from 145 ± 50 nm to 230 ± 50 nm upon NAC treatment. Mathematical models based on particle transport rates suggest as much as 75 and 30% of 200 and 500 nm PEG-coated particles, respectively, may penetrate a physiologically thick NAC-treated CF sputum layer within 20 min. Uncoated particles were trapped in CF sputum pretreated with NAC nearly to the same extent as in native sputum, suggesting that NAC treatment alone offered little improvement to particle penetration. NAC facilitated rapid diffusion of PEG-coated, muco-inert nanoparticles in CF sputum. Our results provide a promising strategy to improve drug and gene carrier penetration in CF sputum

  9. Short residence times for alkaline Vesuvius magmas in a multi-depth supply system: Evidence from geochemical and textural studies (United States)

    Pappalardo, Lucia; Mastrolorenzo, Giuseppe


    It is crucial to understand magma chamber chemico-physical conditions and residence times for high-risk volcanoes because these factors control the occurrence and size of future eruptions. In order to define magmatic pressure-temperature conditions and residence times at the Somma-Vesuvius volcano, we studied the geochemistry and texture of selected past eruptions that are representative of the entire volcanic history. Our petrological model indicates a multi-depth magma chamber composed of a deeper tephritic (350-400 Mpa) magma layer, which fed Strombolian and effusive eruptions during open-conduit activity, and an upper (200-250 Mpa) phonolitic level, which supplied the high explosive events that followed closed-conduit repose time. This upper reservoir matches the inferred transition between sedimentary sequences and metamorphic basement. At this level, the presence of a structural and lithological discontinuity favors magma storage during closed-conduit periods. The prevalent differentiation process was fractional crystallization during the magma cooling associated with upward migration of less dense, evolved liquids. Our results indicate that major steam exolution occurred during the late crystallization stage of phonolites, which accounts for the high Volcanic Explosivity Index (VEI) of eruptions supplied by these melts. Moreover, our phenocryst CSD data reveal the rapid crystallization and differentiation (decades to centuries) of alkaline Somma-Vesuvius magmas. This implies that the 400 km 2 partial melting zone detected by tomography studies at 8-10 km depth beneath Vesuvius should consist of differentiated magma that is already capable of generating a large-scale (plinian) explosive event if renewed activity develops out of the present closed-conduit state. Additionally, because our microlite CSD data indicate rapid magma migration from the chamber toward the surface, precursory activity could appear only short time before a major eruption.

  10. Rapid ammonia gas transport accounts for futile transmembrane cycling under NH3/NH4+ toxicity in plant roots. (United States)

    Coskun, Devrim; Britto, Dev T; Li, Mingyuan; Becker, Alexander; Kronzucker, Herbert J


    Futile transmembrane NH3/NH4(+) cycling in plant root cells, characterized by extremely rapid fluxes and high efflux to influx ratios, has been successfully linked to NH3/NH4(+) toxicity. Surprisingly, the fundamental question of which species of the conjugate pair (NH3 or NH4(+)) participates in such fluxes is unresolved. Using flux analyses with the short-lived radioisotope (13)N and electrophysiological, respiratory, and histochemical measurements, we show that futile cycling in roots of barley (Hordeum vulgare) seedlings is predominately of the gaseous NH3 species, rather than the NH4(+) ion. Influx of (13)NH3/(13)NH4(+), which exceeded 200 µmol g(-1) h(-1), was not commensurate with membrane depolarization or increases in root respiration, suggesting electroneutral NH3 transport. Influx followed Michaelis-Menten kinetics for NH3 (but not NH4(+)), as a function of external concentration (Km = 152 µm, Vmax = 205 µmol g(-1) h(-1)). Efflux of (13)NH3/(13)NH4(+) responded with a nearly identical Km. Pharmacological characterization of influx and efflux suggests mediation by aquaporins. Our study fundamentally revises the futile-cycling model by demonstrating that NH3 is the major permeating species across both plasmalemma and tonoplast of root cells under toxicity conditions.

  11. Insights From the Kilgore Tuff: Surprising Homogeneity of Supervolcanic Magmas in Yellowstone Hotspot Calderas (United States)

    Watts, K. E.; Bindeman, I. N.; Schmitt, A. K.; Morgan, L. A.


    Supervolcanic eruptions in the late Miocene Heise volcanic field in eastern Idaho concluded ~4.5Ma with the eruption of the Kilgore Tuff, an extremely voluminous (1,800km3) caldera-forming ignimbrite. The Heise volcanic field represents the most recently extinct phase of volcanism over the Yellowstone hotspot and is the most immediate predecessor to the active Yellowstone Plateau volcanic field in western Wyoming. Thus, the climactic Kilgore Tuff of the Heise field is an important example of silicic magma genesis in the Yellowstone hotspot track, and may serve as an analog to large volume, late-stage magmatism in the Yellowstone Plateau volcanic field. We present major and trace element analyses, oxygen isotope ratios of bulk and individual phenocrysts, strontium isotope ratios of whole rock powders, and uranium-lead zircon crystallization ages of five geographically discrete and compositionally diverse samples of the Kilgore Tuff. Despite the presence of both high and low-silica rhyolites, with and without quartz phenocrysts, our isotopic and geochronologic data indicate that the Kilgore Tuff was erupted from a remarkably homogeneous silicic magma chamber with a constant and low δ18O value of 3.32±0.02‰, a 87Sr/86Sr ratio of 0.7105±0.0001, and a 238U-206Pb crystallization age of 4.64±0.05Ma (uncertainties are 1σ). Our new data support a shallow crustal recycling model of magma genesis for the Kilgore Tuff, in which low-δ18O intracaldera fill, consisting of hydrothermally altered and buried volcanic rocks from three previous caldera-forming eruptions, is remelted in batches and rapidly assembled into one voluminous, well-mixed magma chamber. Following isotopic homogenization by convection, fractional crystallization resulted in low and high-silica magma types in the parental Kilgore batholith. Similar processes may also explain effusive, large volume silicic magma genesis of the low-δ18O Central Plateau Member rhyolites (0.25-0.07Ma, 700km3) in the

  12. Multiple magma emplacement and its effect on the superficial deformation: hints from analogue models (United States)

    Montanari, Domenico; Bonini, Marco; Corti, Giacomo; del Ventisette, Chiara


    To test the effect exerted by multiple magma emplacement on the deformation pattern, we have run analogue models with synchronous, as well as diachronous magma injection from different, aligned inlets. The distance between injection points, as well as the activation in time of injection points was varied for each model. Our model results show how the position and activation in time of injection points (which reproduce multiple magma batches in nature) strongly influence model evolution. In the case of synchronous injection at different inlets, the intrusions and associated surface deformation were elongated. Forced folds and annular bounding reverse faults were quite elliptical, and with the main axis of the elongated dome trending sub-parallel to the direction of the magma input points. Model results also indicate that the injection from multiple aligned sources could reproduce the same features of systems associated with planar feeder dikes, thereby suggesting that caution should be taken when trying to infer the feeding areas on the basis of the deformation features observed at the surface or in seismic profiles. Diachronous injection from different injection points showed that the deformation observed at surface does not necessarily reflect the location and/or geometry of their feeders. Most notably, these experiments suggest that coeval magma injection from different sources favor the lateral migration of magma rather than the vertical growth, promoting the development of laterally interconnected intrusions. Recently, some authors (Magee et al., 2014, 2016; Schofield et al., 2015) have suggested that, based on seismic reflection data analysis, interconnected sills and inclined sheets can facilitate the transport of magma over great vertical distances and laterally for large distances. Intrusions and volcanoes fed by sill complexes may thus be laterally offset significantly from the melt source. Our model results strongly support these findings, by reproducing

  13. Magma ascent pathways associated with large mountains on Io (United States)

    McGovern, P. J.; Kirchoff, M. R.; White, O. L.; Schenk, P.


    While Jupiter's moon Io is the most volcanically active body in the solar system, the largest mountains seen on Io are created by tectonic forces rather than volcanic construction. Pervasive compression, brought about by subsidence induced by sustained volcanic resurfacing and aided by thermal stress, creates the mountains, but at the same time inhibits magma ascent in vertical conduits (dikes). We superpose stress solutions for subsidence and thermal stress (from the 'crustal conveyor belt' resurfacing) in Io's lithosphere with stresses from Io mountain-sized loads (in a shallow spherical shell solution) in order to evaluate magma ascent pathways. We use stress orientation (least compressive stress horizontal) and stress gradient (compression decreasing upwards) criteria to identify ascent pathways through the lithosphere. For nominal 'conveyor belt' stress states, the ascent criteria are satisfied only in a narrow (5 km or so), roughly mid-lithosphere band. Superposed stresses from loading of a 150-km wide mountain (comparable to Boösaule Mons) on a lithosphere with thickness Te = 50 km results in a thickening of the ascent-favorable (AF) zone beneath the center of the edifice, with a total thickness of 38 km for an 18 km tall (post-flexure) edifice. Most of the thickening is upward, although some is downward. Widening the edifice to 200 km produces a 'U-shaped' AF zone, thin and depressed at r = 0 but intersecting the surface at distances of about 20 to 40 km from the center. Increasing edifice width increases the radial distance at which the AF zone intersects the surface. Thinner lithospheres create generally thinner AF zones, and U-shaped AF zones for narrower edifices. There are several configurations for which viable ascent paths transit nearly the entire lithosphere, arriving at the base of the mountain, where magma can be transported through thrust faults or perhaps thermally erode flank sections, the latter consistent with observations of paterae in

  14. Probing magma reservoirs to improve volcano forecasts (United States)

    Lowenstern, Jacob B.; Sisson, Thomas W.; Hurwitz, Shaul


    When it comes to forecasting eruptions, volcano observatories rely mostly on real-time signals from earthquakes, ground deformation, and gas discharge, combined with probabilistic assessments based on past behavior [Sparks and Cashman, 2017]. There is comparatively less reliance on geophysical and petrological understanding of subsurface magma reservoirs.

  15. Iron Redox Systematics of Martian Magmas (United States)

    Righter, K.; Danielson, L.; Martin, A.; Pando, K.; Sutton, S.; Newville, M.


    Martian magmas are known to be FeO-rich and the dominant FeO-bearing mineral at many sites visited by the Mars Exploration rovers (MER) is magnetite [1]. Morris et al. [1] propose that the magnetite appears to be igneous in origin, rather than of secondary origin. However, magnetite is not typically found in experimental studies of martian magmatic rocks [2,3]. Magnetite stability in terrestrial magmas is well understood, as are the stability of FeO and Fe2O3 in terrestrial magmas [4,5]. In order to better understand the variation of FeO and Fe2O3, and the stability of magnetite (and other FeO-bearing phases) in martian magmas we have undertaken an experimental study with two emphases. First we document the stability of magnetite with temperature and fO2 in a shergottite bulk composition. Second, we determine the FeO and Fe2O3 contents of the same shergottite bulk composition at 1 bar and variable fO2 at 1250 C, and at variable pressure. These two goals will help define not only magnetite stability, but pyroxene-melt equilibria that are also dependent upon fO2.

  16. Unusual Iron Redox Systematics of Martian Magmas (United States)

    Danielson, L.; Righter, K.; Pando, K.; Morris, R. V.; Graff, T.; Agresti, D.; Martin, A.; Sutton, S.; Newville, M.; Lanzirotti, A.


    Martian magmas are known to be FeO-rich and the dominant FeO-bearing mineral at many sites visited by the Mars Exploration rovers (MER) is magnetite. Morris et al. proposed that the magnetite appears to be igneous in origin, rather than of secondary origin. However, magnetite is not typically found in experimental studies of martian magmatic rocks. Magnetite stability in terrestrial magmas is well understood, as are the stabilities of FeO and Fe2O3 in terrestrial magmas. In order to better understand the variation of FeO and Fe2O3, and the stability of magnetite (and other FeO-bearing phases) in martian magmas, we have undertaken an experimental study with two emphases. First, we determine the FeO and Fe2O3 contents of super- and sub-liquidus glasses from a shergottite bulk composition at 1 bar to 4 GPa, and variable fO2. Second, we document the stability of magnetite with temperature and fO2 in a shergottite bulk composition.


    Directory of Open Access Journals (Sweden)

    A. V. Radkevich


    Full Text Available In the article there are considered the issues on necessity of creation of mobile accident-rescue subdivisions of the State Special Service of Transport for their operative use in elimination of aftermaths of accidents and catastrophes with dangerous freights during transportation by railway transport.

  18. The mechanics of shallow magma reservoir outgassing (United States)

    Parmigiani, A.; Degruyter, W.; Leclaire, S.; Huber, C.; Bachmann, O.


    Magma degassing fundamentally controls the Earth's volatile cycles. The large amount of gas expelled into the atmosphere during volcanic eruptions (i.e., volcanic outgassing) is the most obvious display of magmatic volatile release. However, owing to the large intrusive:extrusive ratio, and considering the paucity of volatiles left in intrusive rocks after final solidification, volcanic outgassing likely constitutes only a small fraction of the overall mass of magmatic volatiles released to the Earth's surface. Therefore, as most magmas stall on their way to the surface, outgassing of uneruptible, crystal-rich magma storage regions will play a dominant role in closing the balance of volatile element cycling between the mantle and the surface. We use a numerical approach to study the migration of a magmatic volatile phase (MVP) in crystal-rich magma bodies ("mush zones") at the pore scale. Our results suggest that buoyancy-driven outgassing is efficient over crystal volume fractions between 0.4 and 0.7 (for mm-sized crystals). We parameterize our pore-scale results for MVP migration in a thermomechanical magma reservoir model to study outgassing under dynamical conditions where cooling controls the evolution of the proportion of crystal, gas, and melt phases and to investigate the role of the reservoir size and the temperature-dependent viscoelastic response of the crust on outgassing efficiency. We find that buoyancy-driven outgassing allows for a maximum of 40-50% volatiles to leave the reservoir over the 0.4-0.7 crystal volume fractions, implying that a significant amount of outgassing must occur at high crystal content (>0.7) through veining and/or capillary fracturing.

  19. Transport of Nutrients Determines Growth in Tissue Culture; Why apple shoots grow rapidly and tulip shoots grow slowly

    NARCIS (Netherlands)

    Klerk, de G.J.M.


    Tulip growth in vitro is seriously impaired by inferior transport in the shoots. As a result, tulip cannot be micropropagated commercially using conventional means. In contrast, apple shoots show high transport and are easily micropropagated.

  20. Carbonate-derived CO 2 purging magma at depth: Influence on the eruptive activity of Somma-Vesuvius, Italy (United States)

    Dallai, Luigi; Cioni, Raffaello; Boschi, Chiara; D'Oriano, Claudia


    Mafic phenocrysts from selected products of the last 4 ka volcanic activity at Mt. Vesuvius were investigated for their chemical and O-isotope composition, as a proxy for primary magmas feeding the system. 18O/ 16O ratios of studied Mg-rich olivines suggest that near-primary shoshonitic to tephritic melts experienced a flux of sedimentary carbonate-derived CO 2, representing the early process of magma contamination in the roots of the volcanic structure. Bulk carbonate assimilation (physical digestion) mainly occurred in the shallow crust, strongly influencing magma chamber evolution. On a petrological and geochemical basis the effects of bulk sedimentary carbonate digestion on the chemical composition of the near-primary melts are resolved from those of carbonate-released CO 2 fluxed into magma. An important outcome of this process lies in the effect of external CO 2 in changing the overall volatile solubility of the magma, enhancing the ability of Vesuvius mafic magmas to rapidly rise and explosively erupt at the surface.

  1. Extremely rapid increase in fatty acid transport and intramyocellular lipid accumulation but markedly delayed insulin resistance after high fat feeding in rats. (United States)

    Bonen, Arend; Jain, Swati S; Snook, Laelie A; Han, Xiao-Xia; Yoshida, Yuko; Buddo, Kathryn H; Lally, James S; Pask, Elizabeth D; Paglialunga, Sabina; Beaudoin, Marie-Soleil; Glatz, Jan F C; Luiken, Joost J F P; Harasim, Ewa; Wright, David C; Chabowski, Adrian; Holloway, Graham P


    The mechanisms for diet-induced intramyocellular lipid accumulation and its association with insulin resistance remain contentious. In a detailed time-course study in rats, we examined whether a high-fat diet increased intramyocellular lipid accumulation via alterations in fatty acid translocase (FAT/CD36)-mediated fatty acid transport, selected enzymes and/or fatty acid oxidation, and whether intramyocellular lipid accretion coincided with the onset of insulin resistance. We measured, daily (on days 1-7) and/or weekly (for 6 weeks), the diet-induced changes in circulating substrates, insulin, sarcolemmal substrate transporters and transport, selected enzymes, intramyocellular lipids, mitochondrial fatty acid oxidation and basal and insulin-stimulated sarcolemmal GLUT4 and glucose transport. We also examined whether upregulating fatty acid oxidation improved glucose transport in insulin-resistant muscles. Finally, in Cd36-knockout mice, we examined the role of FAT/CD36 in intramyocellular lipid accumulation, insulin sensitivity and diet-induced glucose intolerance. Within 2-3 days, diet-induced increases occurred in insulin, sarcolemmal FAT/CD36 (but not fatty acid binding protein [FABPpm] or fatty acid transporter [FATP]1 or 4), fatty acid transport and intramyocellular triacylglycerol, diacylglycerol and ceramide, independent of enzymatic changes or muscle fatty acid oxidation. Diet-induced increases in mitochondria and mitochondrial fatty acid oxidation and impairments in insulin-stimulated glucose transport and GLUT4 translocation occurred much later (≥21 days). FAT/CD36 ablation impaired insulin-stimulated fatty acid transport and lipid accumulation, improved insulin sensitivity and prevented diet-induced glucose intolerance. Increasing fatty acid oxidation in insulin-resistant muscles improved glucose transport. High-fat feeding rapidly increases intramyocellular lipids (in 2-3 days) via insulin-mediated upregulation of sarcolemmal FAT/CD36 and fatty acid

  2. Illuminating magma shearing processes via synchrotron imaging (United States)

    Lavallée, Yan; Cai, Biao; Coats, Rebecca; Kendrick, Jackie E.; von Aulock, Felix W.; Wallace, Paul A.; Le Gall, Nolwenn; Godinho, Jose; Dobson, Katherine; Atwood, Robert; Holness, Marian; Lee, Peter D.


    Our understanding of geomaterial behaviour and processes has long fallen short due to inaccessibility into material as "something" happens. In volcanology, research strategies have increasingly sought to illuminate the subsurface of materials at all scales, from the use of muon tomography to image the inside of volcanoes to the use of seismic tomography to image magmatic bodies in the crust, and most recently, we have added synchrotron-based x-ray tomography to image the inside of material as we test it under controlled conditions. Here, we will explore some of the novel findings made on the evolution of magma during shearing. These will include observations and discussions of magma flow and failure as well as petrological reaction kinetics.

  3. Lithospheric magma dynamics beneath the El Hierro Volcano, Canary Islands: insights from fluid inclusions (United States)

    Oglialoro, E.; Frezzotti, M. L.; Ferrando, S.; Tiraboschi, C.; Principe, C.; Groppelli, G.; Villa, I. M.


    At active volcanoes, petrological studies have been proven to be a reliable approach in defining the depth conditions of magma transport and storage in both the mantle and the crust. Based on fluid inclusion and mineral geothermobarometry in mantle xenoliths, we propose a model for the magma plumbing system of the Island of El Hierro (Canary Islands). The peridotites studied here were entrained in a lava flow exposed in the El Yulan Valley. These lavas are part of the rift volcanism that occurred on El Hierro at approximately 40-30 ka. The peridotites are spinel lherzolites, harzburgites, and dunites which equilibrated in the shallow mantle at pressures between 1.5 and 2 GPa and at temperatures between 800 and 950 °C (low-temperature peridotites; LT), as well as at higher equilibration temperatures of 900 to 1100 °C (high-temperature peridotites; HT). Microthermometry and Raman analyses of fluid inclusions reveal trapping of two distinct fluid phases: early type I metasomatic CO2-N2 fluids ( X N2 = 0.01-0.18; fluid density (d) = 1.19 g/cm3), coexisting with silicate-carbonate melts in LT peridotites, and late type II pure CO2 fluids in both LT (d = 1.11-1.00 and 0.75-0.65 g/cm3) and HT ( d = 1.04-1.11 and 0.75-0.65 g/cm3) peridotites. While type I fluids represent metasomatic phases in the deep oceanic lithosphere (at depths of 60-65 km) before the onset of magmatic activity, type II CO2 fluids testify to two fluid trapping episodes during the ascent of xenoliths in their host mafic magmas. Identification of magma accumulation zones through interpretation of type II CO2 fluid inclusions and mineral geothermobarometry indicate the presence of a vertically stacked system of interconnected small magma reservoirs in the shallow lithospheric mantle between a depth of 22 and 36 km (or 0.67 to 1 GPa). This magma accumulation region fed a short-lived magma storage region located in the lower oceanic crust at a depth of 10-12 km (or 0.26-0.34 GPa). Following our model

  4. Determination of Magma Ascent Rates From D/H Fractionation in Olivine-Hosted Melt Inclusions (United States)

    Gaetani, G. A.; Bucholz, C. E.; Le Roux, V.; Klein, F.; Ghiorso, M. S.; Wallace, P. J.; Sims, K. W. W.


    The depths at which magmas are stored and the rates at which they ascend to Earth's surface are important controls on the dynamics of volcanic eruptions. Eruptive style is influenced by the rate at which magma ascends from the reservoir to the surface through its effect on vapor bubble nucleation, growth, and coalescence. However, ascent rates are difficult to quantify because few accurate geospeedometers are appropriate for a process occurring on such short timescales. We developed a new approach to determining ascent rates on the basis of D/H fraction associated with diffusive H2O loss from olivine-hosted melt inclusions. The utility of this approach was demonstrated on olivine-hosted melt inclusions in a hyaloclastite recovered from within Dry Valley Drilling Project core 3 from Hut Point Peninsula, Antarctica. All of the melt inclusions are glassy and contain vapor bubbles. The volumes of melt inclusions and vapor bubbles were determined by X-ray microtomography, and the density of CO2 within each bubble was determined using Raman spectroscopy. Olivines were then polished to expose individual inclusions and analyzed for volatiles and dDVSMOW by secondary ion mass spectrometry. Total CO2 was reconstructed by summing CO2 in the included glass and vapor bubble. Entrapment pressures calculated on the basis of reconstructed CO2 and maximum H2O concentrations using the MagmaSat solubility model [1] indicate a depth of origin of 24 km - in good agreement with the seismically determined depth to the Moho beneath Ross Island [2]. Magma ascent rates were determined using a finite difference model for melt inclusion dehydration during magma ascent. The positive correlation between H2O and CO2 is consistent with diffusive loss during ascent, but does not provide direct information on magma ascent rate. In contrast, the slope of the negative correlation between H2O and dDVSMOW is a reflection of transport time and, therefore, ascent rate. If it is assumed that magmas did

  5. Pressure waves in a supersaturated bubbly magma (United States)

    Kurzon, I.; Lyakhovsky, V.; Navon, O.; Chouet, B.


    We study the interaction of acoustic pressure waves with an expanding bubbly magma. The expansion of magma is the result of bubble growth during or following magma decompression and leads to two competing processes that affect pressure waves. On the one hand, growth in vesicularity leads to increased damping and decreased wave amplitudes, and on the other hand, a decrease in the effective bulk modulus of the bubbly mixture reduces wave velocity, which in turn, reduces damping and may lead to wave amplification. The additional acoustic energy originates from the chemical energy released during bubble growth. We examine this phenomenon analytically to identify conditions under which amplification of pressure waves is possible. These conditions are further examined numerically to shed light on the frequency and phase dependencies in relation to the interaction of waves and growing bubbles. Amplification is possible at low frequencies and when the growth rate of bubbles reaches an optimum value for which the wave velocity decreases sufficiently to overcome the increased damping of the vesicular material. We examine two amplification phase-dependent effects: (1) a tensile-phase effect in which the inserted wave adds to the process of bubble growth, utilizing the energy associated with the gas overpressure in the bubble and therefore converting a large proportion of this energy into additional acoustic energy, and (2) a compressive-phase effect in which the pressure wave works against the growing bubbles and a large amount of its acoustic energy is dissipated during the first cycle, but later enough energy is gained to amplify the second cycle. These two effects provide additional new possible mechanisms for the amplification phase seen in Long-Period (LP) and Very-Long-Period (VLP) seismic signals originating in magma-filled cracks.

  6. Transportation (United States)


    container. It now permits free transit of shipping containers from their western ports, if transported by rail directly to the U.S. ( Mireles , 2005, p...Transportation Industry Study Seminar. Mireles , Richard, Castillo. (2005, January). A Cure for West Coast Congestion. Logistics Today, Vol. 46, Issue 1. 1

  7. Geochemical Evidence for a Terrestrial Magma Ocean (United States)

    Agee, Carl B.


    The aftermath of phase separation and crystal-liquid fractionation in a magma ocean should leave a planet geochemically differentiated. Subsequent convective and other mixing processes may operate over time to obscure geochemical evidence of magma ocean differentiation. On the other hand, core formation is probably the most permanent, irreversible part of planetary differentiation. Hence the geochemical traces of core separation should be the most distinct remnants left behind in the mantle and crust, In the case of the Earth, core formation apparently coincided with a magma ocean that extended to a depth of approximately 1000 km. Evidence for this is found in high pressure element partitioning behavior of Ni and Co between liquid silicate and liquid iron alloy, and with the Ni-Co ratio and the abundance of Ni and Co in the Earth's upper mantle. A terrestrial magma ocean with a depth of 1000 km will solidify from the bottom up and first crystallize in the perovskite stability field. The largest effect of perovskite fractionation on major element distribution is to decrease the Si-Mg ratio in the silicate liquid and increase the Si-Mg ratio in the crystalline cumulate. Therefore, if a magma ocean with perovskite fractionation existed, then one could expect to observe an upper mantle with a lower than chondritic Si-Mg ratio. This is indeed observed in modern upper mantle peridotites. Although more experimental work is needed to fully understand the high-pressure behavior of trace element partitioning, it is likely that Hf is more compatible than Lu in perovskite-silicate liquid pairs. Thus, perovskite fractionation produces a molten mantle with a higher than chondritic Lu-Hf ratio. Arndt and Blichert-Toft measured Hf isotope compositions of Barberton komatiites that seem to require a source region with a long-lived, high Lu-Hf ratio. It is plausible that that these Barberton komatiites were generated within the majorite stability field by remelting a perovskite

  8. Transport of H2S and HS(-) across the human red blood cell membrane: rapid H2S diffusion and AE1-mediated Cl(-)/HS(-) exchange. (United States)

    Jennings, Michael L


    The rates of H2S and HS(-) transport across the human erythrocyte membrane were estimated by measuring rates of dissipation of pH gradients in media containing 250 μM H2S/HS(-). Net acid efflux is caused by H2S/HS(-) acting analogously to CO2/HCO3(-) in the Jacobs-Stewart cycle. The steps are as follows: 1) H2S efflux through the lipid bilayer and/or a gas channel, 2) extracellular H2S deprotonation, 3) HS(-) influx in exchange for Cl(-), catalyzed by the anion exchange protein AE1, and 4) intracellular HS(-) protonation. Net acid transport by the Cl(-)/HS(-)/H2S cycle is more efficient than by the Cl(-)/HCO3(-)/CO2 cycle because of the rapid H2S-HS(-) interconversion in cells and medium. The rates of acid transport were analyzed by solving the mass flow equations for the cycle to produce estimates of the HS(-) and H2S transport rates. The data indicate that HS(-) is a very good substrate for AE1; the Cl(-)/HS(-) exchange rate is about one-third as rapid as Cl(-)/HCO3(-) exchange. The H2S permeability coefficient must also be high (>10(-2) cm/s, half time <0.003 s) to account for the pH equilibration data. The results imply that H2S and HS(-) enter erythrocytes very rapidly in the microcirculation of H2S-producing tissues, thereby acting as a sink for H2S and lowering the local extracellular concentration, and the fact that HS(-) is a substrate for a Cl(-)/HCO3(-) exchanger indicates that some effects of exogenous H2S/HS(-) may not result from a regulatory role of H2S but, rather, from net acid flux by H2S and HS(-) transport in a Jacobs-Stewart cycle.

  9. Volcanic systems of Iceland and their magma source (United States)

    Sigmarsson, Olgeir


    Several active hot-spot volcanoes produce magma from mantle sources which composition varies on decadal time scale. This is probably best demonstrated by the recent work of Pietruszka and collaborators on Kilauea, Hawaii. In marked contrast, basalt lavas from volcanic system in Iceland located above the presumed centre of the Iceland mantle plume have uniform isotope composition over the last 10 thousand years. Volcanic systems are composed of a central volcano and a fissure swarm, or a combination of both and they represent a fundamental component of the neovolcanic zones in Iceland. Four such systems, those of Askja, Bárðarbunga, Kverkfjöll and Grímsvötn in central Iceland were chosen for investigation. The last three have central volcanoes covered by the Vatnajökull ice-sheet whereas part of their fissure swarms is ice-free. Tephra produced during subglacial eruptions together with lavas from the fissure swarms of Holocene age have been collected and analysed for Sr, Nd and Th isotope ratios. Those volcanic formations that can be univocally correlated to a given volcanic system display uniform isotope ratio but different from one volcanic system to another. An exception to this regularity is that Askja products have isotope ratios indistinguishable from those of Gímsvötn, but since these volcanic systems lies far apart their lava fields do not overlap. A practical aspect of these findings was demonstrated during the rifting event of Bárðarbunga and fissure eruption forming the Holuhraun lava field. Relatively low, O isotope ratios in these basalts and heterogeneous macrocrystal composition have been ascribed to important metabasaltic crustal contamination with or without crystal mush recycling. In that case a surprisingly efficient magma mixing and melt homogenization must have occurred in the past beneath the volcanic systems. One possibility is that during the rapid deglaciation much mantle melting occurred and melts accumulated at the mantle

  10. Magma Energy Research Project, FY 1979 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Colp, J.L.


    The objective of the Magma Energy Research Project is to define the scientific feasibility of extracting energy from magma bodies. Activities to accomplish the objective are divided into five tasks: resource location and identification; source tapping; magma characterization; materials compatibility; and energy extraction. The program activities of FY 1979 are summarized here according to the individual tasks. Major emphasis of the program in the last year was on field experimentation with the United States Geological Survey in geoscience and technological studies at the Kilauea Iki lava lake. Other major efforts included installation of the magma simulation facility and magma-metal compatibility studies. The Magma Energy Advisory Panel also met during this period. Efforts and results are summarized.

  11. Rheology of Magma at Tungurahua, from the Magma Chamber to the Eruption (United States)

    Hanson, J. B.; Goldstein, F.; Lavallee, Y.; Kueppers, U.; Hess, K.; Castro, J. M.; Dingwell, D. B.


    Tungurahua volcano (Ecuador) is one of the most active volcanoes in the world, and since 1999 has posed a large threat to the local population as well as to air traffic in South America. Notable explosive eruptions have generated pyroclastic density currents in July and August 2006, February 2008 and May 2010. The August 2006 Plinian eruption triggered 10s of pyroclastic density currents. Markedly, the activity terminated with the effusion of a 3-km long lava flow. Rheological behaviour of ascending magma is a chief determinant of eruptive style. The viscosity of magma is strongly dependent on temperature and chemical composition of the melt; moreover, it is heavily influenced by the presence of crystals and bubbles, inducing strain rate dependence. Rheologically, crystallization is especially important as it selectively modifies the composition of the interstitial melt while adding rigid particles. The varied eruptive style at Tungurahua represents an excellent opportunity to characterize the evolution of the rheological properties of the magma as it ascended and crystallized. Here, we combine geothermobarometry and rheology measurements using a concentric cylinder rheometer, a dilatometer, a uniaxial deformation press and a fragmentation apparatus to map the flow behavior of magma through its ascent from the magma chamber until eruption. The temperature conditions for the progression of the eruption have been bracketed using two methods. First, a combination of pyroxene geothermobarometers helped constrain conditions in the magma chamber to ca. 1025 °C and ~700 MPa. Second, differential scanning calorimetry was used to estimate the glass transition temperature (~730°C); the temperature at which viscous behavior ceased. Chemically, eruptive products during 2006-2008 have been highly homogeneous in terms of bulk composition(57% SiO2). It follows that the rheological properties of the crystal-free magma present in the reservoir before onset of crystallization

  12. Generation, ascent and eruption of magma on the Moon: New insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 2: Predicted emplacement processes and observations) (United States)

    Head, James W.; Wilson, Lionel


    We utilize a theoretical analysis of the generation, ascent, intrusion and eruption of basaltic magma on the Moon to develop new insights into magma source depths, supply processes, transport and emplacement mechanisms via dike intrusions, and effusive and explosive eruptions. We make predictions about the intrusion and eruption processes and compare these with the range of observed styles of mare volcanism, and related features and deposits. Density contrasts between the bulk mantle and regions with a greater abundance of heat sources will cause larger heated regions to rise as buoyant melt-rich diapirs that generate partial melts that can undergo collection into magma source regions; diapirs rise to the base of the anorthositic crustal density trap (when the crust is thicker than the elastic lithosphere) or, later in history, to the base of the lithospheric rheological trap (when the thickening lithosphere exceeds the thickness of the crust). Residual diapiric buoyancy, and continued production and arrival of diapiric material, enhances melt volume and overpressurizes the source regions, producing sufficient stress to cause brittle deformation of the elastic part of the overlying lithosphere; a magma-filled crack initiates and propagates toward the surface as a convex upward, blade-shaped dike. The volume of magma released in a single event is likely to lie in the range 102 km3 to 103 km3, corresponding to dikes with widths of 40-100 m and both vertical and horizontal extents of 60-100 km, favoring eruption on the lunar nearside. Shallower magma sources produce dikes that are continuous from the source region to the surface, but deeper sources will propagate dikes that detach from the source region and ascend as discrete penny-shaped structures. As the Moon cools with time, the lithosphere thickens, source regions become less abundant, and rheological traps become increasingly deep; the state of stress in the lithosphere becomes increasingly contractional

  13. Magma storage and evolution of the most recent effusive and explosive eruptions from Yellowstone Caldera (United States)

    Befus, Kenneth S.; Gardner, James E.


    Between 70 and 175 ka, over 350 km3 of high-silica rhyolite magma erupted both effusively and explosively from within the Yellowstone Caldera. Phenocrysts in all studied lavas and tuffs are remarkably homogenous at the crystal, eruption, and caldera-scale, and yield QUILF temperatures of 750 ± 25 °C. Phase equilibrium experiments replicate the observed phenocryst assemblage at those temperatures and suggest that the magmas were all stored in the upper crust. Quartz-hosted glass inclusions contain 1.0-2.5 % H2O and 50-600 ppm CO2, but some units are relatively rich in CO2 (300-600 ppm) and some are CO2-poor (50-200 ppm). The CO2-rich magmas were stored at 90-150 MPa and contained a fluid that was 60-75 mol% CO2. CO2-poor magmas were stored at 50-70 MPa, with a more H2O-rich fluid (X_{{{text{CO}}2 }} = 40-60 %). Storage pressures and volatiles do not correlate with eruption age, volume, or style. Trace-element contents in glass inclusions and host matrix glass preserve a systematic evolution produced by crystal fractionation, estimated to range from 36 ± 12 to 52 ± 12 wt%. Because the erupted products contain eruption. In the Tuffs of Bluff Point and Cold Mountain Creek, matrix glass is less evolved than most inclusions, which may indicate that more primitive rhyolite was injected into the reservoir just before those eruptions. The presence and dissolution of granophyre in one flow may record evidence for heating prior to eruption and also demonstrate that the Yellowstone magmatic system may undergo rapid changes. The variations in depth suggest the magmas were sourced from multiple chambers that follow similar evolutionary paths in the upper crust.

  14. Simple and rapid quantification of serotonin transporter binding using [11C]DASB bolus plus constant infusion. (United States)

    Gryglewski, G; Rischka, L; Philippe, C; Hahn, A; James, G M; Klebermass, E; Hienert, M; Silberbauer, L; Vanicek, T; Kautzky, A; Berroterán-Infante, N; Nics, L; Traub-Weidinger, T; Mitterhauser, M; Wadsak, W; Hacker, M; Kasper, S; Lanzenberger, R


    In-vivo quantification of serotonin transporters (SERT) in human brain has been a mainstay of molecular imaging in the field of neuropsychiatric disorders and helped to explore the underpinnings of several medical conditions, therapeutic and environmental influences. The emergence of PET/MR hybrid systems and the heterogeneity of SERT binding call for the development of efficient methods making the investigation of larger or vulnerable populations with limited scanner time and simultaneous changes in molecular and functional measures possible. We propose [11C]DASB bolus plus constant infusion for these applications and validate it against standard analyses of dynamic PET data. [11C]DASB bolus/infusion optimization was performed on data acquired after [11C]DASB bolus in 8 healthy subjects. Subsequently, 16 subjects underwent one scan using [11C]DASB bolus plus constant infusion with Kbol 160-179min and one scan after [11C]DASB bolus for inter-method reliability analysis. Arterial blood sampling and metabolite analysis were performed for all scans. Distribution volumes (VT) were obtained using Logan plots for bolus scans and ratios between tissue and plasma parent activity for bolus plus infusion scans for different time spans of the scan (VT-70 for 60-70min after start of tracer infusion, VT-90 for 75-90min, VT-120 for 100-120min) in 9 subjects. Omitting blood data, binding potentials (BPND) obtained using multilinear reference tissue modeling (MRTM2) and cerebellar gray matter as reference region were compared in 11 subjects. A Kbol of 160min was observed to be optimal for rapid equilibration in thalamus and striatum. VT-70 showed good intraclass correlation coefficients (ICCs) of 0.61-0.70 for thalamus, striatal regions and olfactory cortex with bias ≤5.1% compared to bolus scans. ICCs increased to 0.72-0.78 for VT-90 and 0.77-0.93 for VT-120 in these regions. BPND-90 had negligible bias ≤2.5%, low variability ≤7.9% and ICCs of 0.74-0.87; BPND-120 had ICCs

  15. Image-based modelling of lateral magma flow: the Basement Sill, Antarctica. (United States)

    Petford, Nick; Mirhadizadeh, Seyed


    The McMurdo Dry Valleys magmatic system, Antarctica, provides a world-class example of pervasive lateral magma flow on a continental scale. The lowermost intrusion (Basement Sill) offers detailed sections through the now frozen particle microstructure of a congested magma slurry. We simulated the flow regime in two and three dimensions using numerical models built on a finite-element mesh derived from field data. The model captures the flow behaviour of the Basement Sill magma over a viscosity range of 1-10(4) Pa s where the higher end (greater than or equal to 10(2) Pa s) corresponds to a magmatic slurry with crystal fractions varying between 30 and 70%. A novel feature of the model is the discovery of transient, low viscosity (less than or equal to 50 Pa s) high Reynolds number eddies formed along undulating contacts at the floor and roof of the intrusion. Numerical tracing of particle orbits implies crystals trapped in eddies segregate according to their mass density. Recovered shear strain rates (10(-3)-10(-5) s(-1)) at viscosities equating to high particle concentrations (around more than 40%) in the Sill interior point to shear-thinning as an explanation for some types of magmatic layering there. Model transport rates for the Sill magmas imply a maximum emplacement time of ca 10(5) years, consistent with geochemical evidence for long-range lateral flow. It is a theoretically possibility that fast-flowing magma on a continental scale will be susceptible to planetary-scale rotational forces.

  16. Image-based modelling of lateral magma flow: the Basement Sill, Antarctica (United States)

    Mirhadizadeh, Seyed


    The McMurdo Dry Valleys magmatic system, Antarctica, provides a world-class example of pervasive lateral magma flow on a continental scale. The lowermost intrusion (Basement Sill) offers detailed sections through the now frozen particle microstructure of a congested magma slurry. We simulated the flow regime in two and three dimensions using numerical models built on a finite-element mesh derived from field data. The model captures the flow behaviour of the Basement Sill magma over a viscosity range of 1–104 Pa s where the higher end (greater than or equal to 102 Pa s) corresponds to a magmatic slurry with crystal fractions varying between 30 and 70%. A novel feature of the model is the discovery of transient, low viscosity (less than or equal to 50 Pa s) high Reynolds number eddies formed along undulating contacts at the floor and roof of the intrusion. Numerical tracing of particle orbits implies crystals trapped in eddies segregate according to their mass density. Recovered shear strain rates (10−3–10−5 s−1) at viscosities equating to high particle concentrations (around more than 40%) in the Sill interior point to shear-thinning as an explanation for some types of magmatic layering there. Model transport rates for the Sill magmas imply a maximum emplacement time of ca 105 years, consistent with geochemical evidence for long-range lateral flow. It is a theoretically possibility that fast-flowing magma on a continental scale will be susceptible to planetary-scale rotational forces. PMID:28573002

  17. Special relativity derived from spacetime magma. (United States)

    Greensite, Fred


    We present a derivation of relativistic spacetime largely untethered from specific physical considerations, in constrast to the many physically-based derivations that have appeared in the last few decades. The argument proceeds from the inherent magma (groupoid) existing on the union of spacetime frame components [Formula: see text] and Euclidean [Formula: see text] which is consistent with an "inversion symmetry" constraint from which the Minkowski norm results. In this context, the latter is also characterized as one member of a class of "inverse norms" which play major roles with respect to various unital [Formula: see text]-algebras more generally.

  18. Special relativity derived from spacetime magma.

    Directory of Open Access Journals (Sweden)

    Fred Greensite

    Full Text Available We present a derivation of relativistic spacetime largely untethered from specific physical considerations, in constrast to the many physically-based derivations that have appeared in the last few decades. The argument proceeds from the inherent magma (groupoid existing on the union of spacetime frame components [Formula: see text] and Euclidean [Formula: see text] which is consistent with an "inversion symmetry" constraint from which the Minkowski norm results. In this context, the latter is also characterized as one member of a class of "inverse norms" which play major roles with respect to various unital [Formula: see text]-algebras more generally.

  19. Breaking the paradigm at magma-poor and magma-rich rifted margins (United States)

    Tugend, Julie; Manatschal, Gianreto; Gillard, Morgane; Nirrengarten, Michael; Epin, Marie-Eva; Sauter, Daniel; Autin, Julia; Harkin, Caroline; Kusznir, Nick


    Rifted margins used to be classified into volcanic or non-volcanic passive margins. Because magmatism is evidenced even in so-called 'non-volcanic' settings, this terminology was later adjusted to magma-poor and magma-rich rifted margins. This classification represents a simplification into end-member magmatic types depending on the magmatic budget related to rifting and/or breakup processes. New observations derived from higher quality geophysical data sets and drill-hole data revealed the great diversity of rifted margin architecture and highly variable distribution of rift-related and/or breakup related magmatism. Recent studies suggest that rifted margins have a more complex tectono-magmatic evolution than previously assumed and cannot be characterized based on the observed volume of magma alone. In this study, we present seismic observations from 2D high resolution long-offset deep reflection seismic profiles across the East-Indian and South-Atlantic rifted margins. We aim to compare structural similarities between rifted margins with different magmatic budgets. We apply a systematic seismic interpretation approach to describe and characterize the first-order architecture and magmatic budget of our case examples. The identification of magmatic additions based on seismic observations only is indeed not unequivocal, in spite of the high-resolution dataset. Interpretations are related to large uncertainties in particular at ocean-continent transitions (i.e. outer highs) where most of the magmatism seems to be located. For each line, we present three different interpretations based on offshore and/or onshore field analogues. These interpretations illustrate scenarios for the nature of the outer highs that we believe are geologically meaningful and reasonable, and imply different magmatic budgets at breakup. Based on these interpretations we discuss different mechanisms for lithospheric breakup involving either a gradual or more instantaneous process independently

  20. Magma evolution inside the 1631 Vesuvius magma chamber and eruption triggering (United States)

    Stoppa, Francesco; Principe, Claudia; Schiazza, Mariangela; Liu, Yu; Giosa, Paola; Crocetti, Sergio


    Vesuvius is a high-risk volcano and the 1631 Plinian eruption is a reference event for the next episode of explosive unrest. A complete stratigraphic and petrographic description of 1631 pyroclastics is given in this study. During the 1631 eruption a phonolite was firstly erupted followed by a tephritic phonolite and finally a phonolitic tephrite, indicating a layered magma chamber. We suggest that phonolitic basanite is a good candidate to be the primitive parental-melt of the 1631 eruption. Composition of apatite from the 1631 pyroclastics is different from those of CO2-rich melts indicating negligible CO2 content during magma evolution. Cross checking calculations, using PETROGRAPH and PELE software, accounts for multistage evolution up to phonolite starting from a phonolitic basanite melt similar to the Vesuvius medieval lavas. The model implies crystal settling of clinopyroxene and olivine at 6 kbar and 1220°C, clinopyroxene plus leucite at a pressure ranging from 2.5 to 0.5 kbar and temperature ranging from 1140 to 940°C. Inside the phonolitic magma chamber K-feldspar and leucite would coexist at a temperature ranging from from 940 to 840°C and at a pressure ranging from 2.5 to0.5 kbar. Thus crystal fractionation is certainly a necessary and probably a sufficient condition to evolve the melt from phono tephritic to phonolitic in the 1631 magma chamber. We speculate that phonolitic tephrite magma refilling from deeper levels destabilised the chamber and triggered the eruption, as testified by the seismic precursor phenomena before 1631 unrest.

  1. High security ion-lithium batteries with rapid recharge for the terrestrial transport and energy storage; Batteries de type ion-lithium de haute securite a recharge rapide pour le transport terrestre et le stockage d'energie

    Energy Technology Data Exchange (ETDEWEB)

    Zaghib, Karim; Dontigny, M.; Charest, P.; Guerfi, A.; Trotier, J.; Mathieu, M.C.; Zhu, W.; Petitclerc, M.; Veillette, R.; Serventi, A.; Hovington, P.; Lagace, M.; Trudeau, M.; Vijh, A.


    Electrical terrestrial transport is today a hub of innovation and growth for Hydro-Quebec. In the perspective of electrification of terrestrial transports, battery remains the critical factor of future success of rechargeable electrical vehicles. For nearly 20 years, Hydro-Quebec, via its research institute, has worked at developing battery material for the lithium-ion technology. Two types of Li-ion batteries have been developed: the energy battery and the power battery. [French] Le transport terrestre electrique est aujourd'hui un pole d'innovation et de croissance pour Hydro-Quebec. Dans la perspective de l'electrification des transports terrestres, la batterie demeure le facteur critique du succes futur des vehicules electriques rechargeables. Depuis pres de 20 ans, Hydro-Quebec, par le biais de son Institut de recherche, travaille au developpement de materiaux de batteries destinees a la technologie lithium-ion. Deux types de batteries Li-ion ont ete mises au point : la batterie d'energie et la batterie de puissance.

  2. Multiple rhyolite magmas and basalt injection in the 17.7 ka Rerewhakaaitu eruption episode from Tarawera volcanic complex, New Zealand (United States)

    Shane, Phil; Martin, S. B.; Smith, V. C.; Beggs, K. F.; Darragh, M. B.; Cole, J. W.; Nairn, I. A.


    . However, the rhyolite magma bodies and conduits modelled for each episode have considerable differences in characteristics and geometry. Our preferred model for the Rerewhakaaitu episode is that eruptions occurred from three laterally and vertically isolated rhyolite magma bodies that were initially primed and triggered by basalt intrusion during a regional rifting event. The ascending hotter and less viscous T1 rhyolite magma intersected and further invigorated a stagnant pond of cooler, denser and more viscous T2 magma, and lubricated its transport to the surface.

  3. Compositional dependence of sulfur speciation in Terrestrial and Martian magmas (United States)

    Nash, William; Wood, Bernard; Smythe, Duane


    The capacity of magmas to transport sulfur from mantle to crust strongly influences a planet's surface chemistry. Sulfur is perhaps exceptional among the elements in the diversity of it's chemical speciation, exhibiting four redox species at geologically relevant conditions: sulfide (2-), elemental sulfur (0), sulfite (4+) and sulphate (6+). Furthermore, the solubility of sulfur in a magma (and hence the magma's capacity for delivering mantle-derived sulfur to the crust) depends critically on it's oxidation state. Our aim with this experimental study was to quantitatively determine the chemical speciation of sulfur within several common magmas, as a function of oxygen fugacity (fO2). We have performed a series of experiments on six sulfur-bearing silicate melts, which together represent a broad range of naturally occurring compositions: two putative Martian basalts, two terrestrial MORBs (one primitive, one evolved), an andesite, and a dacite. These melts were equilibrated together (at one-atmosphere pressure, 1300°C) with various CO-CO2-SO2 gas mixtures, which imposed a range of fO2s. This range spanned -2 to +1.6 log units (relative to the Quartz-Fayalite-Magnetite or QFM buffer), and the step-size was 0.25 log units. The quenched glasses were analyzed by X-ray Absorption Spectroscopy (specifically XANES) at the Diamond synchrotron (UK), and the spectra obtained were used to determine the species of sulfur present in each glass. The chemical composition of each glass (including their sulfur contents) was characterized by electron-probe microanalysis. Despite the generally low concentrations of sulfur in our glasses (never exceeding 0.24 wt%), we have clearly resolved the crossover between reduced (S2-) and oxidized (S6+) species for three of our basalts. The other three melts yielded more noisy XANES spectra, and as a result their redox crossovers are visible, but less clearly resolved. For every melt composition, the redox crossover is a continuous (though

  4. Transportes

    Directory of Open Access Journals (Sweden)

    Hidalgo Fernández-Cano, Amalio


    Full Text Available El movimiento de materiales dentro de la Factoría está atendido por tres principales medios de transporte, en consonancia con las características del material y de los desplazamientos. Así se han establecido: sistemas de cintas transportadoras, una red ferroviaria de ancho normal y una completa malla de caminos enlazando funcionalmente las instalaciones.

  5. Selective entrainment of peritectic garnet into S-type granitic magmas: Evidence from Archaean mid-crustal anatectites (United States)

    Taylor, Jeanne; Stevens, Gary


    Entrainment of restite is commonly invoked to explain both the origin of relatively mafic granites and granodiorites, as well as the chemical connection between granite magmas and their sources. This concept has become linked to models for magma migration out of the source, as restite entrainment is considered to take place when diatexitic sources mobilise en masse. This is at odds with the common occurrence of relatively mafic granites as high level intrusions in the crust or their eruptive equivalents that must have formed from markedly water-undersaturated magmas that ascended through narrow conduits. We investigate pelitic migmatites from the Mkhondo Valley Metamorphic Suite (MVMS) in Swaziland, where a mid-crustal heating event produced metatexitic migmatites with minimal post-anatectic recrystallisation. In these rocks all the garnet is peritectic, having arisen through biotite fluid-absent melting, which produced garnet poikiloblasts characterised by inclusions of melt, quartz and biotite. Leucosomes that represent sites of melt transfer carry similar, smaller (typically accessory phases, while the recrystallised garnet in the larger melt-filled structures became progressively better equilibrated with these minerals. Thus, peritectic garnet in the source grew sufficiently rapidly to prevent trace element equilibrium with the bulk-rock composition, and, concurrent rapid magma segregation prevented the development of diatexitic source conditions. The segregated magma consisted of melt, the peritectic assemblage (principally garnet) and the accessory minerals monazite and zircon. These rocks illustrate that mafic granites may arise purely as mixtures of melt and the peritectic assemblage produced by the incongruent melting reaction. Importantly, under the circumstances which produced the MVMS anatectites, peritectic garnet is entrained as < 1 mm poikiloblasts, demonstrating how mafic granitic magmas can migrate out of the source without the source becoming

  6. Petrological cannibalism: the chemical and textural consequences of incremental magma body growth (United States)

    Cashman, Kathy; Blundy, Jon


    The textures of minerals in volcanic and plutonic rocks testify to a complexity of processes in their formation that is at odds with simple geochemical models of igneous differentiation. Zoning in plagioclase feldspar is a case in point. Very slow diffusion of the major components in plagioclase means that textural evidence for complex magmatic evolution is preserved, almost without modification. Consequently, plagioclase affords considerable insight into the processes by which magmas accumulate in the crust prior to their eventual eruption or solidification. Here, we use the example of the 1980-1986 eruptions of Mount St. Helens to explore the causes of textural complexity in plagioclase and associated trapped melt inclusions. Textures of individual crystals are consistent with multiple heating and cooling events; changes in total pressure ( P) or volatile pressure () are less easy to assess from textures alone. We show that by allying textural and chemical analyses of plagioclase and melt inclusions, including volatiles (H2O, CO2) and slow-diffusing trace elements (Sr, Ba), to published experimental studies of Mount St. Helens magmas, it is possible to disambiguate the roles of pressure and temperature to reconstruct magmatic evolutionary pathways through temperature-pressure-melt fraction ( T-- F) space. Our modeled crystals indicate that (1) crystallization starts at > 300 MPa, consistent with prior estimates from melt inclusion volatile contents, (2) crystal cores grow at = 200-280 MPa at F = 0.65-0.7, (3) crystals are transferred to = 100-130 MPa (often accompanied by 10-20 °C of heating), where they grow albitic rims of varying thicknesses, and (4) the last stage of crystallization occurs after minor heating at ~ 100 MPa to produce characteristic rim compositions of An50. We hypothesize that modeled decreases in excess of ~50 MPa most likely represent upward transport through the magmatic system. Small variations in modeled , in contrast, can be effected by

  7. Zircons reveal magma fluxes in the Earth's crust. (United States)

    Caricchi, Luca; Simpson, Guy; Schaltegger, Urs


    Magma fluxes regulate the planetary thermal budget, the growth of continents and the frequency and magnitude of volcanic eruptions, and play a part in the genesis and size of magmatic ore deposits. However, because a large fraction of the magma produced on the Earth does not erupt at the surface, determinations of magma fluxes are rare and this compromises our ability to establish a link between global heat transfer and large-scale geological processes. Here we show that age distributions of zircons, a mineral often present in crustal magmatic rocks, in combination with thermal modelling, provide an accurate means of retrieving magma fluxes. The characteristics of zircon age populations vary significantly and systematically as a function of the flux and total volume of magma accumulated in the Earth's crust. Our approach produces results that are consistent with independent determinations of magma fluxes and volumes of magmatic systems. Analysis of existing age population data sets using our method suggests that porphyry-type deposits, plutons and large eruptions each require magma input over different timescales at different characteristic average fluxes. We anticipate that more extensive and complete magma flux data sets will serve to clarify the control that the global heat flux exerts on the frequency of geological events such as volcanic eruptions, and to determine the main factors controlling the distribution of resources on our planet.

  8. Challenges and Successes in the Application of Universal Access Principles in the Development of Bus Rapid Transport Sytems in South Africa. (United States)

    Thompson, Phillip


    The National Department of Transport started a programme to upgrade public transport systems throughout South Africa in 2008, which included the upgrading of transport systems for host cities of the 2010 World Cup. This was the first time there was a clear commitment to produce universally accessible public transport systems in South Africa. The requirement to achieve universal access was reinforced by National Treasuries stipulation, that universal access was a precondition for the approval of all funding for these projects. In the absence of any specific legislation in the transport sector to address universal access and the South African National Building Regulations and the associated deemed to satisfy code, South African National Standard (SANS) 10400 Part S: "Facilities for Persons with Disabilities", providing the only associated standards, there has been a need to revisit traffic engineering codes. This has created an opportunity to look at the functionality and safety of commuters, especially those who have functional limitations, at traffic intersections and midblock pedestrian crossings, especially as the commuters have to access predominately median located Bus Rapid Transport (BRT) trunk stations. Included in the specific areas of focus that impact on the issues of pedestrian safety, has been the application and functionality of tactile wayfinding and warning surfaces and other support systems for commuters with functional sight limitations and the integration of the systems with other infrastructure and the safety of all commuter. In addition to the issues of functionality, this paper will address the influence of misdirected foreign expertise that set the initial BRT Systems on a high floor vehicle modality, which has created operational challenges that have seriously compromised functional universal access. This presentation will highlight these challenges, opportunities and solutions, the procedural complexities, as well as the inherent resistance

  9. Rapid Preparation of a Plasma Membrane Fraction: Western Blot Detection of Translocated Glucose Transporter 4 from Plasma Membrane of Muscle and Adipose Cells and Tissues. (United States)

    Yamamoto, Norio; Yamashita, Yoko; Yoshioka, Yasukiyo; Nishiumi, Shin; Ashida, Hitoshi


    Membrane proteins account for 70% to 80% of all pharmaceutical targets, indicating their clinical relevance and underscoring the importance of identifying differentially expressed membrane proteins that reflect distinct disease properties. The translocation of proteins from the bulk of the cytosol to the plasma membrane is a critical step in the transfer of information from membrane-embedded receptors or transporters to the cell interior. To understand how membrane proteins work, it is important to separate the membrane fraction of cells. This unit provides a protocol for rapidly obtaining plasma membrane fractions for western blot analysis. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  10. Experimental Constraints on a Vesta Magma Ocean (United States)

    Hoff, C.; Jones, J. H.; Le, L.


    A magma ocean model was devised to relate eucrites (basalts) and diogenites (orthopyroxenites), which are found mixed together as clasts in a suite of polymict breccias known as howardites. The intimate association of eucritic and diogenitic clasts in howardites argues strongly that these three classes of achondritic meteorites all originated from the same planetoid. Reflectance spectral evidence (including that from the DAWN mission) has long suggested that Vesta is indeed the Eucrite Parent Body. Specifically, the magma ocean model was generated as follows: (i) the bulk Vesta composition was taken to be 0.3 CV chondrite + 0.7 L chondrite but using only 10% of the Na2O from this mixture; (ii) this composition is allowed to crystallize at 500 bar until approx. 80% of the system is solid olivine + low-Ca pyroxene; (iii) the remaining 20% liquid crystallizes at one bar from 1250C to 1110C, a temperature slightly above the eucrite solidus. All crystallization calculations were performed using MELTS. In this model, diogenites are produced by cocrystallization of olivine and pyroxene in the >1250C temperature regime, with Main Group eucrite liquids being generated in the 1300-1250C temperature interval. Low-Ca pyroxene reappears at 1210C in the one-bar calculations and fractionates the residual liquid to produce evolved eucrite compositions (Stannern Trend). We have attempted to experimentally reproduce the <1250C portion of the MELTS Vesta magma ocean. In the MELTS calculation, the change from 500 bar to one bar results in a shift of the olivine:low-Ca pyroxene boundary so that the 1250C liquid is now in the olivine field and, consequently, olivine should be the first-crystallizing phase, followed by low-Ca pyroxene at 1210C, and plagioclase at 1170C. Because at one bar the olivine:low-Ca pyroxene boundary is a peritectic, fractional crystallization of the 1210C liquid proceeds with only pyroxene crystallization until plagioclase appears. Thus, the predictions of the

  11. The timing of compositionally-zoned magma reservoirs and mafic 'priming' weeks before the 1912 Novarupta-Katmai rhyolite eruption (United States)

    Singer, Brad S.; Costa, Fidel; Herrin, Jason S.; Hildreth, Wes; Fierstein, Judy


    The June, 6, 1912 eruption of more than 13 km3 of dense rock equivalent (DRE) magma at Novarupta vent, Alaska was the largest of the 20th century. It ejected >7 km3 of rhyolite, ∼1.3 km3 of andesite and ∼4.6 km3 of dacite. Early ideas about the origin of pyroclastic flows and magmatic differentiation (e.g., compositional zonation of reservoirs) were shaped by this eruption. Despite being well studied, the timing of events that led to the chemically and mineralogically zoned magma reservoir remain poorly known. Here we provide new insights using the textures and chemical compositions of plagioclase and orthopyroxene crystals and by reevaluating previous U-Th isotope data. Compositional zoning of the magma reservoir likely developed a few thousand years before the eruption by several additions of mafic magma below an extant silicic reservoir. Melt compositions calculated from Sr contents in plagioclase fill the compositional gap between 68 and 76% SiO2 in whole pumice clasts, consistent with uninterrupted crystal growth from a continuum of liquids. Thus, our findings support a general model in which large volumes of crystal-poor rhyolite are related to intermediate magmas through gradual separation of melt from crystal-rich mush. The rhyolite is incubated by, but not mixed with, episodic recharge pulses of mafic magma that interact thermochemically with the mush and intermediate magmas. Hot, Mg-, Ca-, and Al-rich mafic magma intruded into, and mixed with, deeper parts of the reservoir (andesite and dacite) multiple times. Modeling the relaxation of the Fe-Mg concentrations in orthopyroxene and Mg in plagioclase rims indicates that the final recharge event occurred just weeks prior to the eruption. Rapid addition of mass, volatiles, and heat from the recharge magma, perhaps aided by partial melting of cumulate mush below the andesite and dacite, pressurized the reservoir and likely propelled a ∼10 km lateral dike that allowed the overlying rhyolite to reach the

  12. Magma Reservoirs: How Well do We Know Them, Why Does it Matter, and How Can We Do Better? (United States)

    Lowenstern, J. B.; Sisson, T. W.; Hurwitz, S.


    Worldwide, magma erupts through volcanoes scores of times per year, but it remains rare that we successfully image high-melt fraction bodies in pre-eruptive subsurface reservoirs. Largely, this stems from a problem of scale: only a few tenths of a km3 of magma typically erupt, and the resolution of state-of-the-art tomographic images rarely permits imaging such small volumes. Even where we expect significant magma reservoirs, we are challenged to create definitive images. Success is enhanced in the submarine environment where high-resolution seismic reflection experiments have been combined with a suite of other geophysical techniques. But at subaerial volcanoes, where we must forecast hazards and respond to unrest, we cannot reliably incorporate data on the nature and status of subvolcanic magmas. An example is Yellowstone, where we observe anomalously high heat flow covering thousands of square kms, prolific gas discharge, abundant seismicity, and persistent uplift-subsidence cycles. Nowhere on earth is there such compelling evidence for a large crustal magma body. Yet the inferred percentage of "mushbound" melt is still low, 5-15% according to the most recent tomographic study. Other similar studies infer up to 30% melt, still 50% less than melt fractions from lavas and tuffs in the geologic record at Yellowstone. Could there be significant undetected molten regions within a broader batholith of more crystalline residue? Or as suggested by some petrologic studies, can mush transition rapidly to eruptible magma on short timescales (years to decades) prior to eruption? Even so, pre-eruptive reservoirs should be detectable. At Yellowstone, the lower crust is yet more problematic. Mantle gas flux requires degassing of >0.1 cubic km of basalt per year, presumably from >10-km-depths, but tomography infers 2% melt fractions. How can gas transfer through such a crystal-dominated matrix? It seems likely that our ability to image magma in the upper and lower crust remains

  13. Comportement biomécanique des usagers des transports lors de chargements rapides ex vivo et in vivo


    BERMOND, François


    Ce mémoire constitue une synthèse des travaux de recherche que j'ai menés à l'Institut National de Recherche sur les Transports et leur Sécurité (Inrets) puis à l'Institut Français des Sciences et Technologies des Transports de l'Aménagement et des Réseaux (Ifsttar) au sein du Laboratoire de Biomécanique et Mécanique des Chocs (LBMC) depuis janvier 1991. Ils portent essentiellement sur la biomécanique des chocs appliquée à la sécurité passive pour améliorer la protection des usagers des trans...

  14. MAGMA: a multiagent architecture for metaheuristics. (United States)

    Milano, Michela; Roli, Andrea


    In this work, we introduce a multiagent architecture called the MultiAGent Metaheuristic Architecture (MAGMA) conceived as a conceptual and practical framework for metaheuristic algorithms. Metaheuristics can be seen as the result of the interaction among different kinds of agents: The basic architecture contains three levels, each hosting one or more agents. Level-0 agents build solutions, level-1 agents improve solutions, and level-2 agents provide the high level strategy. In this framework, classical metaheuristic algorithms can be smoothly accommodated and extended. The basic three level architecture can be enhanced with the introduction of a fourth level of agents (level-3 agents) coordinating lower level agents. With this additional level, MAGMA can also describe, in a uniform way, cooperative search and, in general, any combination of metaheuristics. We describe the entire architecture, the structure of agents in each level in terms of tuples, and the structure of their coordination as a labeled transition system. We propose this perspective with the aim to achieve a better and clearer understanding of metaheuristics, obtain hybrid algorithms, suggest guidelines for a software engineering-oriented implementation and for didactic purposes. Some specializations of the general architecture will be provided in order to show that existing metaheuristics [e.g., greedy randomized adaptive procedure (GRASP), ant colony optimization (ACO), iterated local search (ILS), memetic algorithms (MAs)] can be easily described in our framework. We describe cooperative search and large neighborhood search (LNS) in the proposed framework exploiting level-3 agents. We show also that a simple hybrid algorithm, called guided restart ILS, can be easily conceived as a combination of existing components in our framework.

  15. Crystal Histories and Crustal Magmas: Insights into Magma Storage from U-Series Crystal Ages (United States)

    Cooper, K. M.


    The dynamic processes operating within crustal magma reservoirs control many aspects of the chemical composition of erupted magmas, and crystals in volcanic rocks can provide a temporally-constrained archive of these changing environments. A new compilation of 238U-230Th ages of accessory phases and 238U-230Th-226Ra ages of bulk mineral separates of major phases documents that crystals in individual samples often have ages spanning most of the history of a volcanic center. Somewhat surprisingly, this observation holds for surface analyses as well as interior analyses, indicating that the latest stages of growth took place at different times for different grains. Nevertheless, average ages of surfaces are younger than interiors (as expected), and the dominant surface age population is often within error of eruption age. In contrast to accessory phase ages, less than half of the bulk separate 238U-230Th-226Ra ages for major phases are more than 10 kyr older than eruption. This suggests that major phases may in general reflect a later stage of development of an eruptible magma body than do accessory phases, or that the extent of discordance between ages of major and accessory phases reflects the extent to which a crystal mush was remobilized during processes leading to eruption. Crystal ages are most useful for illuminating magmatic processes when combined with crystal-scale trace-element or isotopic data, and I will present several case studies where such combined data sets exist. For example, at Yellowstone and at Okataina Caldera Complex, New Zealand, the combination zircon surface and interior analyses (of age, Hf isotopic, and trace-element data) with bulk dating and in-situ trace-element and isotopic compositions of feldspar allows a comparison of the early history of storage in a crystal mush with the later history of melt extraction and further crystallization prior to eruption, thus tracking development of erupted magma bodies from storage through eruption.

  16. On the longevity of silicic magma based on multi-isotope investigation of zircons and modeling their survivals destinies (United States)

    Bindeman, I. N.; Wotzlaw, J. F.; Melnik, O. E.


    Large volumes of crystal poor, near-liquidus rhyolites are erupted worldwide as tuffs and lavas in rift and hot spots more common previously on early earth, creating temporally very high magma production rates. In this contribution we combine results of IDTIMS dating of zircons with numerical modeling of zircon crystallization. New investigation of zircons in major Yellowstone tuffs: Huckleberry Ridge (Members A,B,C), Mesa Falls, and Lava Creek (A,B) tuffs was done by a combination of in situ measurements of oxygen isotopes followed by ID-TIMS U-Pb dating, Hf isotopes and trace elemental investigation of single crystals. We discover that nearly all zircons are of eruption age, but display significant isotope (O,Hf) diversity and often show decoupled O and Hf isotope systematics. This record rapid (~103yrs) double or triple remelting and sequestration from diverse Archean crust and hydrothermally altered shallow-crustal rocks from previous eruptive cycles, followed by effective mixing of co-existing magma reservoirs with diverse zircons prior to eruptions. Similar results characterize other studied Snake River Plain rhyolites in pre-Yellowstone Heise complex. These results collectively suggest that zircons crystallize after reheating above saturation rejuvenation in isotopically-diverse areas of the crust in the magma plumbing system. Modeling of zircon and quartz dissolution and crystallization trajectories outline conditions of survival (inheritance) vs complete dissolution on conductive timescales, and when combined with a phase diagram, magma T-t paths can be computed. Zircon rejuvenation requires hot, >770-800°C peak temperatures lasting 10-102yrs. We speculate that near liquidus hot and dry Yellowstone rhyolites are kept alive in a multi-batch state by a series of interconnected pods and sills that can rapidly get thermomechanically assembled into large, shallow and eruptable supervolcanoic magma bodies. We suggest that overpressure and roof dynamics and

  17. The Perils of Partition: Erroneous Results from Applying D Mineral/Magma to Rocks that Equilibrated Without Magma (United States)

    Treiman, A. H.


    Compositions of extraterrestrial magmas are commonly derived from mineral compositions using, using experimentally determined mineral/basalt partition coefficients, Dmineral/basalt [1]. However, Dmineral/basalts cannot be applied to minerals which have experienced post-magmatic (subsolidus or metamorphic) chemical equilibration [2]. A failure to recognize post-magmatic equilibration can lead to wildly erroneous estimates of magma compositions and unrealistic scenarios of magmatic and planetary evolution [3]. To judge the effects of subsolidus chemical equilibration, consider REE distributions in a eucrite basalt, formed from a magma with CREE = 10 x CI. Let this magma crystallize and chemically equilibrate just below its solidus to a rock consisting of 49.5% plagioclase, 49.5% pigeonite, 0.1% whitlockite (a Ca phosphate), and 0.9% minor phases no REE content (silica, Fe metal, troilite); exact proportions are not critical. The total REE content ofthe rock is unchanged at 10 x CI, and distributions of REE among its minerals can be calculated from solidus-temperature Ds, e.g., Dpigeonite/plagioclase = Dpigeonite/basalt / Dplagioclase/basalt (where Dmineral/basalts are chosen to reflect the same magma compositions and temperature). REE abundances in minerals of this equilibrated rock (Figure 1 [5]) are significantly higher than they would be in the presence of magma. For instance, if this eucrite basalt system consisted of 50% magma, 25% pigeonite, and 25% plagioclase, one calculates C(La)Pigeonite = 0 04 x CI and C(La)Plagioclase = 0.8 x CI; with no magma present (Figure 1), C(La)Pigeonite = 0.4 x CI and CLaPIagioclase = 9 x CI! In the absence of magma, the incompatible REE must go somewhere!! If a mineral grain from this rock were used with Dmineral/basalts to derive a magma composition, that "Hparent basalt" would be rich in REE (130-200 x CI), enrichmed in light REE (La/Lu = 1.6 x CI), and strongly depleted in Eu. Compare this to the original eucrite, with REE at

  18. A planar conducting micro-loop structure for transportation of magnetic beads: An approach towards rapid sensing and quantification of biological entities

    KAUST Repository

    Gooneratne, Chinthaka Pasan


    Magnetic beads are utilized effectively in a wide variety of medical applications due to their small size, biocompatibility and large surface to volume ratio. Microfluidic lab-on-a-chip (LOC) devices, which utilize magnetic beads, are promising tools for accurate and rapid cell sorting and counting. Effective manipulation of beads is a critical factor for the performance of LOC devices. In this paper we propose a planar conducting micro-loop structure to trap, manipulate and transport magnetic beads. Current through the micro-loops produces magnetic field gradients that are proportional to the force required to manipulate the beads. Numerical analyses were performed to study the magnetic forces and their spatial distributions. Experimental results showed that magnetic beads could not only be transported towards a target region, e.g., for sensing purposes, but also the trapping rate could be increased by switching current between the different loops in the micro-loop structure. This method could lead to rapid and accurate quantification of biological entities tagged with magnetic beads. Copyright © 2012 American Scientific Publishers. All rights reserved.

  19. Crystallization of a compositionally stratified basal magma ocean (United States)

    Laneuville, Matthieu; Hernlund, John; Labrosse, Stéphane; Guttenberg, Nicholas


    Earth's ∼3.45 billion year old magnetic field is regenerated by dynamo action in its convecting liquid metal outer core. However, convection induces an isentropic thermal gradient which, coupled with a high core thermal conductivity, results in rapid conducted heat loss. In the absence of implausibly high radioactivity or alternate sources of motion to drive the geodynamo, the Earth's early core had to be significantly hotter than the melting point of the lower mantle. While the existence of a dense convecting basal magma ocean (BMO) has been proposed to account for high early core temperatures, the requisite physical and chemical properties for a BMO remain controversial. Here we relax the assumption of a well-mixed convecting BMO and instead consider a BMO that is initially gravitationally stratified owing to processes such as mixing between metals and silicates at high temperatures in the core-mantle boundary region during Earth's accretion. Using coupled models of crystallization and heat transfer through a stratified BMO, we show that very high temperatures could have been trapped inside the early core, sequestering enough heat energy to run an ancient geodynamo on cooling power alone.

  20. Advancement of magma fragmentation by inhomogeneous bubble distribution. (United States)

    Kameda, M; Ichihara, M; Maruyama, S; Kurokawa, N; Aoki, Y; Okumura, S; Uesugi, K


    Decompression times reported in previous studies suggest that thoroughly brittle fragmentation is unlikely in actual explosive volcanic eruptions. What occurs in practice is brittle-like fragmentation, which is defined as the solid-like fracture of a material whose bulk rheological properties are close to those of a fluid. Through laboratory experiments and numerical simulation, the link between the inhomogeneous structure of bubbles and the development of cracks that may lead to brittle-like fragmentation was clearly demonstrated here. A rapid decompression test was conducted to simulate the fragmentation of a specimen whose pore morphology was revealed by X-ray microtomography. The dynamic response during decompression was observed by high-speed photography. Large variation was observed in the responses of the specimens even among specimens with equal bulk rheological properties. The stress fields of the specimens under decompression computed by finite element analysis shows that the presence of satellite bubbles beneath a large bubble induced the stress concentration. On the basis of the obtained results, a new mechanism for brittle-like fragmentation is proposed. In the proposed scenario, the second nucleation of bubbles near the fragmentation surface is an essential process for the advancement of fragmentation in an upward magma flow in a volcanic conduit.

  1. Peripartal progesterone and prolactin have little effect on the rapid transport of immunoglobulin G into colostrum of dairy cows

    DEFF Research Database (Denmark)

    Gross, J J; Kessler, E C; Bjerre-Harpøth, Vibeke


    Colostrum formation and lactogenesis in the mammary gland and the timing of parturition are regulated by endocrine signals. Changes in progesterone (P4) and prolactin (PRL) are considered key events that inhibit colostrum formation, trigger parturition, and signal the onset of lactation. The goal...... changes occurring during colostrogenesis and lactogenesis in dairy cows. The considerably rapid transfer of immunoglobulins into colostrum of prepartum-milked cows within a few hours leads to the hypothesis that the transfer of IgG can be very fast and—contrary to earlier findings—persist at least until...

  2. From seismic network optimization to real-time diagnosis of magma migration (United States)

    Taisne, B.; Aoki, Y.


    Triggering mechanism of a seismic swarm has to be identified with great confidence in real time. Crisis response will not be the same whether magma is involved or not. The method based on the Seismic Amplitude Ratio Analysis enables a rapid and unambiguous diagnosis to detect migrating micro-seismicity. Combined with other measurements, this migrating seismicity could be linked to complex motions of magma within the volcanic edifice. The beauty of this method lies in the fact that the ratio of seismic energy recorded at different stations is independent of the seismic energy radiated at the source. Drastic changes in attenuation are unlikely to occur at the time scale of magma intrusion, therefore temporal evolutions in the measured ratio have to be explained by a change in the source location. Based on a simple assumption this technique can be used to assess the potential of existing monitoring seismic network to detect migrating events in real-time. It can also be used to design monitoring seismic network based on the available number of sensors as well as from field constraints. Network capability also depends on the noise level at each station, therefore this noise is used to define the magnitude threshold that can be detected as a function of the distance.

  3. Forecasting magma-chamber rupture at Santorini volcano, Greece. (United States)

    Browning, John; Drymoni, Kyriaki; Gudmundsson, Agust


    How much magma needs to be added to a shallow magma chamber to cause rupture, dyke injection, and a potential eruption? Models that yield reliable answers to this question are needed in order to facilitate eruption forecasting. Development of a long-lived shallow magma chamber requires periodic influx of magmas from a parental body at depth. This redistribution process does not necessarily cause an eruption but produces a net volume change that can be measured geodetically by inversion techniques. Using continuum-mechanics and fracture-mechanics principles, we calculate the amount of magma contained at shallow depth beneath Santorini volcano, Greece. We demonstrate through structural analysis of dykes exposed within the Santorini caldera, previously published data on the volume of recent eruptions, and geodetic measurements of the 2011-2012 unrest period, that the measured 0.02% increase in volume of Santorini's shallow magma chamber was associated with magmatic excess pressure increase of around 1.1 MPa. This excess pressure was high enough to bring the chamber roof close to rupture and dyke injection. For volcanoes with known typical extrusion and intrusion (dyke) volumes, the new methodology presented here makes it possible to forecast the conditions for magma-chamber failure and dyke injection at any geodetically well-monitored volcano.

  4. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon (United States)

    Bacon, C.R.; Druitt, T.H.


    The climactic eruption of Mount Mazama has long been recognized as a classic example of rapid eruption of a substantial fraction of a zoned magma body. Increased knowledge of eruptive history and new chemical analyses of ???350 wholerock and glass samples of the climactic ejecta, preclimactic rhyodacite flows and their inclusions, postcaldera lavas, and lavas of nearby monogenetic vents are used here to infer processes of chemical evolution of this late Pleistocene - Holocene magmatic system. The 6845??50 BP climactic eruption vented ???50 km3 of magma to form: (1) rhyodacite fall deposit; (2) welded rhyodacite ignimbrite; and (3) lithic breccia and zoned ignimbrite, these during collapse of Crater Lake caldera. Climactic ejecta were dominantly homogeneous rhyodacite (70.4??0.3% SiO2), followed by subordinate andesite and cumulate scoriae (48-61% SiO2). The gap in wholerock composition reflects mainly a step in crystal content because glass compositions are virtually continuous. Two types of scoriae are distinguished by different LREE, Rb, Th, and Zr, but principally by a twofold contrast in Sr content: High-Sr (HSr) and low-Sr (LSr) scoriae. HSr scoriae were erupted first. Trace element abundances indicate that HSr and LSr scoriae had different calcalkaline andesite parents; basalt was parental to some mafic cumulate scoriae. Parental magma compositions reconstructed from scoria wholerock and glass data are similar to those of inclusions in preclimactic rhyodacites and of aphyric lavas of nearby monogenetic vents. Preclimactic rhyodacite flows and their magmatic inclusions give insight into evolution of the climactic chamber. Evolved rhyodacite flows containing LSr andesite inclusions were emplaced between ???30000 and ???25000 BP. At 7015??45 BP, the Llao Rock vent produced a zoned rhyodacite pumice fall, then rhyodacite lava with HSr andesite inclusions. The Cleetwood rhyodacite flow, emplaced immediately before the climactic eruption and compositionally

  5. A cascade of magmatic events during the assembly and eruption of a super-sized magma body (United States)

    Allan, Aidan. S. R.; Barker, Simon J.; Millet, Marc-Alban; Morgan, Daniel J.; Rooyakkers, Shane M.; Schipper, C. Ian; Wilson, Colin J. N.


    We use comprehensive geochemical and petrological records from whole-rock samples, crystals, matrix glasses and melt inclusions to derive an integrated picture of the generation, accumulation and evacuation of 530 km3 of crystal-poor rhyolite in the 25.4 ka Oruanui supereruption (New Zealand). New data from plagioclase, orthopyroxene, amphibole, quartz, Fe-Ti oxides, matrix glasses, and plagioclase- and quartz-hosted melt inclusions, in samples spanning different phases of the eruption, are integrated with existing data to build a history of the magma system prior to and during eruption. A thermally and compositionally zoned, parental crystal-rich (mush) body was developed during two periods of intensive crystallisation, 70 and 10-15 kyr before the eruption. The mush top was quartz-bearing and as shallow as 3.5 km deep, and the roots quartz-free and extending to >10 km depth. Less than 600 year prior to the eruption, extraction of large volumes of 840 °C low-silica rhyolite melt with some crystal cargo (between 1 and 10%), began from this mush to form a melt-dominant (eruptible) body that eventually extended from 3.5 to 6 km depth. Crystals from all levels of the mush were entrained into the eruptible magma, as seen in mineral zonation and amphibole model pressures. Rapid translation of crystals from the mush to the eruptible magma is reflected in textural and compositional diversity in crystal cores and melt inclusion compositions, versus uniformity in the outermost rims. Prior to eruption the assembled eruptible magma body was not thermally or compositionally zoned and at temperatures of 790 °C, reflecting rapid cooling from the 840 °C low-silica rhyolite feedstock magma. A subordinate but significant volume (3-5 km3) of contrasting tholeiitic and calc-alkaline mafic material was co-erupted with the dominant rhyolite. These mafic clasts host crystals with compositions which demonstrate that there was some limited pre-eruptive physical interaction of mafic

  6. The Role and Behavior of Exsolved Volatiles in Magma Reservoirs (United States)

    Edmonds, M.; Woods, A.


    There is an abundance of evidence for complex, vertically protracted and frequently recharged magma reservoirs in a range of tectonic settings. Geophysical evidence suggests that vertically protracted mushy zones with liquid-rich regions may extend throughout much of the crust and even beyond the Moho. Geochemical evidence suggests that magma mixing, as well as extensive fractional crystallization, dominates the differentiation of crystal-rich magmas. These magmas may reside for long timescales close to their solidus temperatures in the crust before being recharged by mafic magmas, which supply heat and volatiles. The volatile budgets and gas emissions associated with eruptions from these long-lived reservoirs typically show that there is an abundance of magmatic vapor emitted, far above that expected from syn-eruptive degassing of the erupted, crystal-rich intermediate or evolved melts. Eruptions are often associated with muted ground deformation, far less than expected to account for the volumes erupted, suggesting a compressible magma. Breccia pipes in a number of mafic layered intrusion settings, thought to be the expression of diatreme-like volcanism, testify to the importance of gas overpressure in slowly crystallizing magmas. These observations are all consistent with the existence of a substantial fraction of exsolved magmatic vapor throughout much of the upper crustal zones of the magma reservoir, which holds much of the sulfur, as well as carbon dioxide, chlorine and metal species. Reconstruction of the distribution and form of this exsolved vapor phase is a challenge, as there is little geochemical record in the erupted rocks, beyond that which may be established from melt inclusion studies. The most promising approach to understand the distribution and role of exsolved vapor in magma reservoir dynamics is through analogue experiments, which have yielded valuable insights into the role of crystals in modulating gas storage and flow in the plutonic and

  7. Rapid in-focus corrections on quantitative amplitude and phase imaging using transport of intensity equation method. (United States)

    Meng, X; Tian, X; Kong, Y; Sun, A; Yu, W; Qian, W; Song, X; Cui, H; Xue, L; Liu, C; Wang, S


    Transport of intensity equation (TIE) method can acquire sample phase distributions with high speed and accuracy, offering another perspective for cellular observations and measurements. However, caused by incorrect focal plane determination, blurs and halos are induced, decreasing resolution and accuracy in both retrieved amplitude and phase information. In order to obtain high-accurate sample details, we propose TIE based in-focus correction technique for quantitative amplitude and phase imaging, which can locate focal plane and then retrieve both in-focus intensity and phase distributions combining with numerical wavefront extraction and propagation as well as physical image recorder translation. Certified by both numerical simulations and practical measurements, it is believed the proposed method not only captures high-accurate in-focus sample information, but also provides a potential way for fast autofocusing in microscopic system. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  8. A framework for rapid post-earthquake assessment of bridges and restoration of transportation network functionality using structural health monitoring (United States)

    Omenzetter, Piotr; Ramhormozian, Shahab; Mangabhai, Poonam; Singh, Ravikash; Orense, Rolando


    Quick and reliable assessment of the condition of bridges in a transportation network after an earthquake can greatly assist immediate post-disaster response and long-term recovery. However, experience shows that available resources, such as qualified inspectors and engineers, will typically be stretched for such tasks. Structural health monitoring (SHM) systems can therefore make a real difference in this context. SHM, however, needs to be deployed in a strategic manner and integrated into the overall disaster response plans and actions to maximize its benefits. This study presents, in its first part, a framework of how this can be achieved. Since it will not be feasible, or indeed necessary, to use SHM on every bridge, it is necessary to prioritize bridges within individual networks for SHM deployment. A methodology for such prioritization based on structural and geotechnical seismic risks affecting bridges and their importance within a network is proposed in the second part. An example using the methodology application to selected bridges in the medium-sized transportation network of Wellington, New Zealand is provided. The third part of the paper is concerned with using monitoring data for quick assessment of bridge condition and damage after an earthquake. Depending on the bridge risk profile, it is envisaged that data will be obtained from either local or national seismic monitoring arrays or SHM systems installed on bridges. A method using artificial neural networks is proposed for using data from a seismic array to infer key ground motion parameters at an arbitrary bridges site. The methodology is applied to seismic data collected in Christchurch, New Zealand. Finally, how such ground motion parameters can be used in bridge damage and condition assessment is outlined.

  9. The role of crystallization-driven exsolution on the sulfur mass balance in volcanic arc magmas (United States)

    Su, Yanqing; Huber, Christian; Bachmann, Olivier; Zajacz, Zoltán; Wright, Heather M.; Vazquez, Jorge A.


    The release of large amounts of sulfur to the stratosphere during explosive eruptions affects the radiative balance in the atmosphere and consequentially impacts climate for up to several years after the event. Quantitative estimations of the processes that control the mass balance of sulfur between melt, crystals, and vapor bubbles is needed to better understand the potential sulfur yield of individual eruption events and the conditions that favor large sulfur outputs to the atmosphere. The processes that control sulfur partitioning in magmas are (1) exsolution of volatiles (dominantly H2O) during decompression (first boiling) and during isobaric crystallization (second boiling), (2) the crystallization and breakdown of sulfide or sulfate phases in the magma, and (3) the transport of sulfur-rich vapor (gas influx) from deeper unerupted regions of the magma reservoir. Vapor exsolution and the formation/breakdown of sulfur-rich phases can all be considered as closed-system processes where mass balance arguments are generally easier to constrain, whereas the contribution of sulfur by vapor transport (open system process) is more difficult to quantify. The ubiquitous “excess sulfur” problem, which refers to the much higher sulfur mass released during eruptions than what can be accounted for by amount of sulfur originally dissolved in erupted melt, as estimated from melt inclusion sulfur concentrations (the “petrologic estimate”), reflects the challenges in closing the sulfur mass balance between crystals, melt, and vapor before and during a volcanic eruption. In this work, we try to quantify the relative importance of closed- and open-system processes for silicic arc volcanoes using kinetic models of sulfur partitioning during exsolution. Our calculations show that crystallization-induced exsolution (second boiling) can generate a significant fraction of the excess sulfur observed in crystal-rich arc magmas. This result does not negate the important role of

  10. Primary magmas and mantle temperatures through time (United States)

    Ganne, Jérôme; Feng, Xiaojun


    Chemical composition of mafic magmas is a critical indicator of physicochemical conditions, such as pressure, temperature, and fluid availability, accompanying melt production in the mantle and its evolution in the continental or oceanic lithosphere. Recovering this information has fundamental implications in constraining the thermal state of the mantle and the physics of mantle convection throughout the Earth's history. Here a statistical approach is applied to a geochemical database of about 22,000 samples from the mafic magma record. Potential temperatures (Tps) of the mantle derived from this database, assuming melting by adiabatic decompression and a Ti-dependent (Fe2O3/TiO2 = 0.5) or constant redox condition (Fe2+/∑Fe = 0.9 or 0.8) in the magmatic source, are thought to be representative of different thermal "horizons" (or thermal heterogeneities) in the ambient mantle, ranging in depth from a shallow sublithospheric mantle (Tp minima) to a lower thermal boundary layer (Tp maxima). The difference of temperature (ΔTp) observed between Tp maxima and minima did not change significantly with time (˜170°C). Conversely, a progressive but limited cooling of ˜150°C is proposed since ˜2.5 Gyr for the Earth's ambient mantle, which falls in the lower limit proposed by Herzberg et al. [2010] (˜150-250°C hotter than today). Cooling of the ambient mantle after 2.5 Ga is preceded by a high-temperature plateau evolution and a transition from dominant plumes to a plate tectonics geodynamic regime, suggesting that subductions stabilized temperatures in the Archaean mantle that was in warming mode at that time.Plain Language SummaryThe Earth's upper mantle constitutes a major interface between inner and outer envelops of the planet. We explore at high resolution its thermal state evolution (potential temperature of the ambient mantle, Tp) in depth and time using a multi-dimensional database of mafic lavas chemistry (>22,000 samples formed in the last 4 billion years

  11. 24,25-dihydroxyvitamin D3 suppresses the rapid actions of 1, 25-dihydroxyvitamin D3 and parathyroid hormone on calcium transport in chick intestine. (United States)

    Nemere, I


    Studies were undertaken to determine whether 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) modulates the rapid effects of 1, 25-dihydroxyvitamin D3 (1,25(OH)2D3) and parathyroid hormone (PTH) on calcium transport in the perfused chick intestine. Perfusion with control media resulted in a transport ratio (treated/average basal) of 1.07 +/- 0.06 at t = 40 minutes, while perfusion with 65, 130, 300, or 650 pM 1,25(OH)2D3 yielded ratios of 1.92 +/- 0.23, 2.6 +/- 0.4, 2.8 +/- 0.08, and 3.34 +/- 0.37, respectively. Simultaneous perfusion with each of these doses and 6.5 nM 24,25(OH)2D3 reduced treated/average basal ratios to approximately 1.4 after 40 minutes of perfusion. Vascular perfusion with 65 pM bovine PTH [bPTH(1-34)] stimulated intestinal calcium transport ratios to 3.0 +/- 0.5 after 40 minutes, while the inclusion of 6.5 nM 24,25(OH)2D3 reduced ratios at this time point to 0.56 +/- 0.19. To investigate the effect of these agents on signal transduction, isolated intestinal cells were monitored for intracellular calcium changes using the indicator dye fura-2. After establishing a stable baseline, addition of 130 pM 1,25(OH)2D3 induced rapid calcium oscillations. Intestinal cells exposed to 6.5 nM 24,25(OH)2D3 also exhibited rapid oscillations in fluorescence, which were not further altered by subsequent addition of 1,25(OH)2D3. Incubation of isolated cells with 130 pM 1,25(OH)2D3 was found to increase protein kinase C (PKC) activity within 5 minutes, and protein kinase A (PKA) activity within 7 minutes. Exposure of cells to 65 pM bPTH(1-34) had minimal effect on PKC activity, but resulted in pronounced increases in PKA activity. Stimulation of protein kinases by either secosteroid or peptide hormone was inhibited in the presence of 6.5 nM 24,25(OH)2D3. It is concluded that 24,25(OH)2D3 may exert endocrine actions on intestine.

  12. Magma chamber processes in central volcanic systems of Iceland

    DEFF Research Database (Denmark)

    Þórarinsson, Sigurjón Böðvar; Tegner, Christian


    New field work and petrological investigations of the largest gabbro outcrop in Iceland, the Hvalnesfjall gabbro of the 6-7 Ma Austurhorn intrusive complex, have established a stratigraphic sequence exceeding 800 m composed of at least 8 macrorhythmic units. The bases of the macrorhythmic units...... olivine basalts from Iceland that had undergone about 20% crystallisation of olivine, plagioclase and clinopyroxene and that the macrorhythmic units formed from thin magma layers not exceeding 200-300 m. Such a "mushy" magma chamber is akin to volcanic plumbing systems in settings of high magma supply...... rate including the mid-ocean ridges and present-day magma chambers over the Iceland mantle plume. The Austurhorn central volcano likely formed in an off-rift flank zone proximal to the Iceland mantle plume during a major rift relocation....

  13. The Role of Magma Mixing in Creating Magmatic Diversity (United States)

    Davidson, J. P.; Collins, S.; Morgan, D. J.


    Most magmas derived from the mantle are fundamentally basaltic. An assessment of actual magmatic rock compositions erupted at the earth's surface, however, shows greater diversity. While still strongly dominated by basalts, magmatic rock compositions extend to far more differentiated (higher SiO2, LREE enriched) compositions. Magmatic diversity is generated by differentiation processes, including crystal fractionation/ accumulation, crustal contamination and magma mixing. Among these, magma mixing is arguably inevitable in magma systems that deliver magmas from source-to-surface, since magmas will tend to multiply re-occupy plumbing systems. A given mantle-derived magma type will mix with any residual magmas (and crystals) in the system, and with any partial melts of the wallrock which are generated as it is repeatedly flushed through the system. Evidence for magma mixing can be read from the petrography (identification of crystals derived from different magmas), a technique which is now well-developed and supplemented by isotopic fingerprinting (1,2) As a means of creating diversity, mixing is inevitably not efficient as its tendency is to blend towards a common composition (i.e. converging on homogeneity rather than diversity). It may be surprising then that many systems do not tend to homogenise with time, meaning that the timescales of mixing episodes and eruption must be similar to external magma contributions of distinct composition (recharge?). Indeed recharge and mixing/ contamination may well be related. As a result, the consequences of magma mixing may well bear on eruption triggering. When two magmas mix, volatile exsolution may be triggered by retrograde boiling, with crystallisation of anhydrous phase(s) in either of the magmas (3) or volatiles may be generated by thermal breakdown of a hydrous phase in one of the magmas (4). The generation of gas pressures in this way probably leads to geophysical signals too (small earthquakes). Recent work pulling

  14. Magma Dynamics at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. Krier


    Small-volume basaltic volcanic activity at Yucca Mountain has been identified as one of the potential events that could lead to release of radioactive material from the U.S. Department of Energy (DOE) designated nuclear waste repository at Yucca Mountain. Release of material could occur indirectly as a result of magmatic dike intrusion into the repository (with no associated surface eruption) by changing groundwater flow paths, or as a result of an eruption (dike intrusion of the repository drifts, followed by surface eruption of contaminated ash) or volcanic ejection of material onto the Earth's surface and the redistribution of contaminated volcanic tephra. Either release method includes interaction between emplacement drifts and a magmatic dike or conduit, and natural (geologic) processes that might interrupt or halt igneous activity. This analysis provides summary information on two approaches to evaluate effects of disruption at the repository by basaltic igneous activity: (1) descriptions of the physical geometry of ascending basaltic dikes and their interaction with silicic host rocks similar in composition to the repository host rocks; and (2) a summary of calculations developed to quantify the response of emplacement drifts that have been flooded with magma and repressurized following blockage of an eruptive conduit. The purpose of these analyses is to explore the potential consequences that could occur during the full duration of an igneous event.

  15. Diatexite Deformation and Magma Extraction on Kangaroo Island, South Australia (United States)

    Hasalova, Pavlina; Weinberg, Roberto; Ward, Lindsay; Fanning, Mark


    Migmatite terranes are structurally complex because of strong rheological contrast between layers with different melt contents and because of magma migration leading to volume changes. Migmatite deformation is intimately linked with magma extraction and the origin of granitoids. We investigate here the relationships between an evolving deformation and magma extraction in migmatites formed during the ca. 500Ma Delamerian orogeny, exposed on Kangaroo Island, South Australia. Here, several phases of deformation occurred in the presence of melt. During an early upright, non-cylindrical folding event, magma was channeled towards the hinge zones of antiforms. Funnel-shaped networks of leucosomes form a root zone that link up towards a central axial planar channel, forming the main magma extraction paths during folding. Extraction was associated with fold limb collapse, and antiformal hinge disruption by magma accumulation and transfer. During a later deformation phase, melt-rich diatexites were deformed, and schollen were disaggregated into smaller blocks and schlieren, and deformed into asymmetric, sigmoidal shapes indicative of dextral shearing flow. During flow, magma accumulated preferentially along shear planes, indicating a dilatational component during shearing (transtension) and in strain shadows of schollen. As deformation waned, magma extraction from these diatexites gave rise to N-trending, steeply dipping, funnel-shaped channels not associated to any deformational feature. The funnel-shape of these structures indicates the direction of magma flow. Structures developed during this phase are comparable with those formed during dewatering of soft sediments. Despite a high degree of complexity, magma migration and extraction features record distinct responses to the evolving deformation which can be used to understand deformation, and nature and direction of melt extraction. The oldest and youngest magmatic rocks from migmatites were dated (U-Pb monazite, SHRIMP

  16. The role of turbulence in explosive magma-water mixing (United States)

    Mastin, L. G.; Walder, J. S.; Stern, L. A.


    Juvenile tephra from explosive hydromagmatic eruptions differs from that of dry magmatic eruptions by its fine average grain size and highly variable vesicularity. These characteristics are generally interpreted to indicate that fragmentation, which occurs in dry magmas by bubble growth, is supplemented in hydromagmatic eruptions by quench-fracturing. Quench fragmentation is thought to accelerate heat transfer to water, driving violent steam expansion and increasing eruptive violence. Although some observed hydromagmatic events (e.g. at Surtsey) are indeed violent, others (e.g. quiescent entry of lava into the ocean at Kilauea) are not. We suggest that the violence of magma-water mixing and the grain size and dispersal of hydromagmatic tephras are controlled largely by the turbulence of magma-water mixing. At Surtsey, fine-grained, widely dispersed hydromagmatic tephras were produced primarily during continuous uprush events in which turbulent jets of magma and gas passed through shallow water (Thorarinsson, 1967). During Kilauea's current eruption, videos show generation of fine-grained tephras when turbulent jets of magma, steam, and seawater exited through skylights at the coastline. Turbulence intensity, or the fraction of total jet kinetic energy contained in fine-scale turbulent velocity oscillations, has long been known to control the scale of atomization in spray nozzles and the rate of heat transfer and chemical reaction in fuel injectors. We hypothesize that turbulence intensity also influences grain size and heat transfer rate in magma-water mixing, though such processes are complicated by boiling (in water) and quench fracturing (in magma). We are testing this hypothesis in experiments involving turbulent injection of water (a magma analog) into liquid nitrogen (a water analog). We also suggest that turbulent mixing influences relative proportions of magma and water in hydromagmatic eruptions. Empirical studies indicate that pressure-neutral turbulent

  17. Experimental Fractional Crystallization of the Lunar Magma Ocean (United States)

    Rapp, J. F.; Draper, D. S.


    The current paradigm for lunar evolution is of crystallization of a global scale magma ocean, giving rise to the anorthositic crust and mafic cumulate interior. It is thought that all other lunar rocks have arisen from this differentiated interior. However, until recently this paradigm has remained untested experimentally. Presented here are the first experimental results of fractional crystallization of a Lunar Magma Ocean (LMO) using the Taylor Whole Moon (TWM) bulk lunar composition [1].

  18. Low- 18O silicic magmas: why are they so rare? (United States)

    Balsley, Steven D.; Gregory, Robert T.


    Low- 18O silicic magmas are reported from only a small number of localities (e.g., Yellowstone and Iceland), yet petrologic evidence points to upper crustal assimilation coupled with fractional crystallization (AFC) during magma genesis for nearly all silicic magmas. The rarity of low- 18O magmas in intracontinental caldera settings is remarkable given the evidence of intense low- 18O meteoric hydrothermal alteration in the subvolcanic remnants of larger caldera systems. In the Platoro caldera complex, regional ignimbrites (150-1000 km 3) have plagioclase δ 18O values of 6.8±0.1‰, whereas the Middle Tuff, a small-volume (est. 50-100 km 3) post-caldera collapse pyroclastic sequence, has plagioclase δ 18O values between 5.5 and 6.8‰. On average, the plagioclase phenocrysts from the Middle Tuff are depleted by only 0.3‰ relative to those in the regional tuffs. At Yellowstone, small-volume post-caldera collapse intracaldera rhyolites are up to 5.5‰ depleted relative to the regional ignimbrites. Two important differences between the Middle Tuff and the Yellowstone low- 18O rhyolites elucidate the problem. Middle Tuff magmas reached water saturation and erupted explosively, whereas most of the low- 18O Yellowstone rhyolites erupted effusively as domes or flows, and are nearly devoid of hydrous phenocrysts. Comparing the two eruptive types indicates that assimilation of low- 18O material, combined with fractional crystallization, drives silicic melts to water oversaturation. Water saturated magmas either erupt explosively or quench as subsurface porphyries before the magmatic 18O can be dramatically lowered. Partial melting of low- 18O subvolcanic rocks by near-anhydrous magmas at Yellowstone produced small-volume, low- 18O magmas directly, thereby circumventing the water saturation barrier encountered through normal AFC processes.

  19. Low-(18)O Silicic Magmas: Why Are They So Rare?

    Energy Technology Data Exchange (ETDEWEB)

    Balsley, S.D.; Gregory, R.T.


    LOW-180 silicic magmas are reported from only a small number of localities (e.g., Yellowstone and Iceland), yet petrologic evidence points to upper crustal assimilation coupled with fractional crystallization (AFC) during magma genesis for nearly all silicic magmas. The rarity of 10W-l `O magmas in intracontinental caldera settings is remarkable given the evidence of intense 10W-l*O meteoric hydrothermal alteration in the subvolcanic remnants of larger caldera systems. In the Platoro caldera complex, regional ignimbrites (150-1000 km3) have plagioclase 6180 values of 6.8 + 0.1%., whereas the Middle Tuff, a small-volume (est. 50-100 km3) post-caldera collapse pyroclastic sequence, has plagioclase 8]80 values between 5.5 and 6.8%o. On average, the plagioclase phenocrysts from the Middle Tuff are depleted by only 0.3%0 relative to those in the regional tuffs. At Yellowstone, small-volume post-caldera collapse intracaldera rhyolites are up to 5.5%o depleted relative to the regional ignimbrites. Two important differences between the Middle Tuff and the Yellowstone 10W-180 rhyolites elucidate the problem. Middle Tuff magmas reached water saturation and erupted explosively, whereas most of the 10W-l 80 Yellowstone rhyolites erupted effusively as domes or flows, and are nearly devoid of hydrous phenocrysts. Comparing the two eruptive types indicates that assimilation of 10W-180 material, combined with fractional crystallization, drives silicic melts to water oversaturation. Water saturated magmas either erupt explosively or quench as subsurface porphyrins bejiire the magmatic 180 can be dramatically lowered. Partial melting of low- 180 subvolcanic rocks by near-anhydrous magmas at Yellowstone produced small- volume, 10W-180 magmas directly, thereby circumventing the water saturation barrier encountered through normal AFC processes.

  20. Recent developments and applications of a real-time tool to detect magma migration in different volcanic settings (United States)

    Taisne, Benoit; Caudron, Corentin; Aoki, Yosuke


    Triggering mechanism of a seismic swarm has to be identified with great confidence in real time. Crisis response will not be the same whether magma is involved or not. The recent developments of the method based on the Seismic Amplitude Ratio Analysis enable a rapid and unambiguous diagnosis to detect migrating micro-seismicity. Combined with other measurements, this migrating seismicity could be linked to complex motions of magma within the volcanic edifice. The beauty of this method lies in the fact that the ratio of seismic energy, recorded at different stations, is independent of the seismic energy radiated at the source and depends only on the location of the source and attenuation of the medium. Since drastic changes in attenuation are unlikely to occur at the time scale of magma intrusion, temporal evolutions in the measured ratio have to be explained by a change in the source location. Based on simple assumptions this technique can be used to assess the potential of existing monitoring seismic network to detect migrating events in real-time. It can also be used to design monitoring seismic network based on the available number of sensors as well as from field constraints. Network capability will depend on the noise level at each station, therefore this noise is used to define the magnitude threshold that can be detected as a function of the distance. A basic set of parameters will be implemented in this tool to tackle magma migration in basaltic systems, as well as acidic ones.

  1. Peripartal progesterone and prolactin have little effect on the rapid transport of immunoglobulin G into colostrum of dairy cows. (United States)

    Gross, J J; Kessler, E C; Bjerre-Harpoth, V; Dechow, C; Baumrucker, C R; Bruckmaier, R M


    slightly affected yield and quality of colostrum emphasizes the complex interactions of numerous endocrine and morphological changes occurring during colostrogenesis and lactogenesis in dairy cows. The considerably rapid transfer of immunoglobulins into colostrum of prepartum-milked cows within a few hours leads to the hypothesis that the transfer of IgG can be very fast and-contrary to earlier findings-persist at least until parturition. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Turbulent transport of a passive contaminant in an initially anisotropic turbulence subjected to rapid rotation: an analytical study using linear theory (United States)

    El Bach, A.; Salhi, A.; Cambon, Claude


    The linear effect of rapid rotation is studied on the transport by homogeneous turbulence of a passive scalar with vertical mean scalar gradient. Connection with one-particle diffusion studied by Cambon et al. [C. Cambon, F.S. Godeferd, F. Nicolleau, J.C. Vassilicos, Turbulent diffusion in rapidly rotating turbulence with and without stable stratification, J. Fluid Mech. 499 (2004) 231-255] is discussed. The input of the initial anisotropy of the velocity field is then investigated in the axisymmetric case, using a general and systematic way to construct axisymmetric initial data: a classical expansion in terms of scalar spherical harmonics for the 3D spectral density of kinetic energy and a modified expansion for the polarization anisotropy. The scalar variance exhibits a quadratic evolution (∝t) for short times and a linear one (∝t) for larger times. The long-time behaviour looks similar to the classical 'Brownian' evolution but it has a very different origin: a linear impact of dispersive inertial waves via phase-mixing instead of a nonlinearly-induced random walk. It is shown that this trend is not altered by the polarization anisotropy. The vertical scalar flux varies linearly with time for short times and tends to a plateau for larger times. To cite this article: A. El Bach et al., C. R. Mecanique 336 (2008).

  3. Doxorubicin in vivo rapidly alters expression and translation of myocardial electron transport chain genes, leads to ATP loss and caspase 3 activation.

    Directory of Open Access Journals (Sweden)

    Amy V Pointon

    Full Text Available BACKGROUND: Doxorubicin is one of the most effective anti-cancer drugs but its use is limited by cumulative cardiotoxicity that restricts lifetime dose. Redox damage is one of the most accepted mechanisms of toxicity, but not fully substantiated. Moreover doxorubicin is not an efficient redox cycling compound due to its low redox potential. Here we used genomic and chemical systems approaches in vivo to investigate the mechanisms of doxorubicin cardiotoxicity, and specifically test the hypothesis of redox cycling mediated cardiotoxicity. METHODOLOGY/PRINCIPAL FINDINGS: Mice were treated with an acute dose of either doxorubicin (DOX (15 mg/kg or 2,3-dimethoxy-1,4-naphthoquinone (DMNQ (25 mg/kg. DMNQ is a more efficient redox cycling agent than DOX but unlike DOX has limited ability to inhibit gene transcription and DNA replication. This allowed specific testing of the redox hypothesis for cardiotoxicity. An acute dose was used to avoid pathophysiological effects in the genomic analysis. However similar data were obtained with a chronic model, but are not specifically presented. All data are deposited in the Gene Expression Omnibus (GEO. Pathway and biochemical analysis of cardiac global gene transcription and mRNA translation data derived at time points from 5 min after an acute exposure in vivo showed a pronounced effect on electron transport chain activity. This led to loss of ATP, increased AMPK expression, mitochondrial genome amplification and activation of caspase 3. No data gathered with either compound indicated general redox damage, though site specific redox damage in mitochondria cannot be entirely discounted. CONCLUSIONS/SIGNIFICANCE: These data indicate the major mechanism of doxorubicin cardiotoxicity is via damage or inhibition of the electron transport chain and not general redox stress. There is a rapid response at transcriptional and translational level of many of the genes coding for proteins of the electron transport chain

  4. The Amyloid Precursor Protein is rapidly transported from the Golgi apparatus to the lysosome and where it is processed into beta-amyloid (United States)


    the lysosome) using siRNA, we are able to reduce this lysosomal transport. Blocking lysosomal transport of APP reduces Aβ production by more than a third. Conclusion These data suggests that AP-3 mediates rapid delivery of APP to lysosomes, and that the lysosome is a likely site of Aβ production. PMID:25085554

  5. Volatile Evolution of Magma Associated with the Solchiaro Eruption in the Phlegrean Volcanic District (Italy) (United States)

    Esposito, R.; Bodnar, R. J.; de Vivo, B.; Lima, A.; Fedele, L.; Shimizu, N.; Hunter, J.


    assuming a pressure gradient of 270 bar/Km. Pressures of crystallization of intermediate melts correlate with magma evolution associated with FCA processes. At the moment of the eruption, melt saturated in volatiles at 8 km continuously lost volatiles during its rapid ascent to the surface. Glass embayments and glass at the crystal/melt interface shows higher volatiles (especially CO2), compared to highly vesiculated matrix glass. Magma compositions relative to some MIs hosted in forsterite-rich olivine show extremely low contents of both K2O and Na2O and high CaO (0.5, 1.90 and 13.89 wt% respectively). Similar compositions have not been previously reported from the PVD but are characteristic of the Aeolian Arc.

  6. Primary and secondary fragmentation of crystal-bearing intermediate magma (United States)

    Jones, Thomas J.; McNamara, Keri; Eychenne, Julia; Rust, Alison C.; Cashman, Katharine V.; Scheu, Bettina; Edwards, Robyn


    Crystal-rich intermediate magmas are subjected to both primary and secondary fragmentation processes, each of which may produce texturally distinct tephra. Of particular interest for volcanic hazards is the extent to which each process contributes ash to volcanic plumes. One way to address this question is by fragmenting pyroclasts under controlled conditions. We fragmented pumice samples from Soufriere Hills Volcano (SHV), Montserrat, by three methods: rapid decompression in a shock tube-like apparatus, impact by a falling piston, and milling in a ball mill. Grain size distributions of the products reveal that all three mechanisms produce fractal breakage patterns, and that the fractal dimension increases from a minimum of 2.1 for decompression fragmentation (primary fragmentation) to a maximum of 2.7 by repeated impact (secondary fragmentation). To assess the details of the fragmentation process, we quantified the shape, texture and components of constituent ash particles. Ash shape analysis shows that the axial ratio increases during milling and that particle convexity increases with repeated impacts. We also quantify the extent to which the matrix is separated from the crystals, which shows that secondary processes efficiently remove adhering matrix from crystals, particularly during milling (abrasion). Furthermore, measurements of crystal size distributions before (using x-ray computed tomography) and after (by componentry of individual grain size classes) decompression-driven fragmentation show not only that crystals influence particular size fractions across the total grain size distribution, but also that free crystals are smaller in the fragmented material than in the original pumice clast. Taken together, our results confirm previous work showing both the control of initial texture on the primary fragmentation process and the contributions of secondary processes to ash formation. Critically, however, our extension of previous analyses to characterisation

  7. The Magma Chamber Simulator: Modeling the Impact of Wall Rock Composition on Mafic Magmas during Assimilation-Fractional Crystallization (United States)

    Creamer, J. B.; Spera, F. J.; Bohrson, W. A.; Ghiorso, M. S.


    Although stoichiometric titration is often used to model the process of concurrent Assimilation and Fractional Crystallization (AFC) within a compositionally evolving magma body, a more complete treatment of the problem involves simultaneous and self-consistent determination of stable phase relationships and separately evolving temperatures of both Magma (M) and Wall Rock (WR) that interact as a composite M-WR system. Here we present results of M-WR systems undergoing AFC forward modeled with the Magma Chamber Simulator (MCS), which uses the phase modeling capabilities of MELTS (Ghiorso & Sack 1995) as the thermodynamic basis. Simulations begin with one of a variety of mafic magmas (e.g. HAB, MORB, AOB) intruding a set mass of Wall Rock (e.g. lherzolite, gabbro, diorite, granite, metapelite), and heat is exchanged as the M-WR system proceeds towards thermal equilibrium. Depending on initial conditions, the early part of the evolution can involve closed system FC while the WR heats up. The WR behaves as a closed system until it is heated beyond the solidus to critical limit for melt fraction extraction (fc), ranging between 0.08 and 0.12 depending on WR characteristics including composition and, rheology and stress field. Once fc is exceeded, a portion of the anatectic liquid is assimilated into the Magma. The MCS simultaneously calculates mass and composition of the mineral assemblage (Magma cumulates and WR residue) and melt (anatectic and Magma) at each T along the equilibration trajectory. Sensible and latent heat lost or gained plus mass gained by the Magma are accounted for by the MCS via governing Energy Constrained- Recharge Assimilation Fractional Crystallization (EC-RAFC) equations. In a comparison of two representative MCS results, consider a granitic WR intruded by HAB melt (51 wt. % SiO2) at liquidus T in shallow crust (0.1 GPa) with a WR/M ratio of 1.25, fc of 0.1 and a QFM oxygen buffer. In the first example, the WR begins at a temperature of 100o

  8. Eddy Flow during Magma Emplacement: The Basemelt Sill, Antarctica (United States)

    Petford, N.; Mirhadizadeh, S.


    The McMurdo Dry Valleys magmatic system, Antarctica, forms part of the Ferrar dolerite Large Igneous Province. Comprising a vertical stack of interconnected sills, the complex provides a world-class example of pervasive lateral magma flow on a continental scale. The lowermost intrusion (Basement Sill) offers detailed sections through the now frozen particle macrostructure of a congested magma slurry1. Image-based numerical modelling where the intrusion geometry defines its own unique finite element mesh allows simulations of the flow regime to be made that incorporate realistic magma particle size and flow geometries obtained directly from field measurements. One testable outcome relates to the origin of rhythmic layering where analytical results imply the sheared suspension intersects the phase space for particle Reynolds and Peclet number flow characteristic of macroscopic structures formation2. Another relates to potentially novel crystal-liquid segregation due to the formation of eddies locally at undulating contacts at the floor and roof of the intrusion. The eddies are transient and mechanical in origin, unrelated to well-known fluid dynamical effects around obstacles where flow is turbulent. Numerical particle tracing reveals that these low Re number eddies can both trap (remove) and eject particles back into the magma at a later time according to their mass density. This trapping mechanism has potential to develop local variations in structure (layering) and magma chemistry that may otherwise not occur where the contact between magma and country rock is linear. Simulations indicate that eddy formation is best developed where magma viscosity is in the range 1-102 Pa s. Higher viscosities (> 103 Pa s) tend to dampen the effect implying eddy development is most likely a transient feature. However, it is nice to think that something as simple as a bumpy contact could impart physical and by implication chemical diversity in igneous rocks. 1Marsh, D.B. (2004), A

  9. Fluid flow and degassing in high temperature magma (United States)

    Gaunt, H. E.; Sammonds, P.; Kilburn, C.; Meredith, P.; Smith, R.


    Dacitic volcanoes such as Mount St Helens are commonly associated with plinian eruptions. They can also erupt magma as lava domes that, in addition to simple effusion, frequently pass through episodes of major collapse and can also explode in vulcanian eruptions under suitable increases in gas pressure. Both dome collapse and vulcanian events can propagate pyroclastic flows and so extend the hazardous range of a dome far beyond the radius of the dome itself. As magma rises in the conduit it becomes supersaturated with dissolved volatiles and, during decompression, exsolution occurs creating gas bubbles within the melt. The ability of gases to escape the rising magma depends strongly on its permeability. It is common in highly viscous magma for gas pressure to build up until, under a sufficient amount of depressurisation, the tensile strength of the magma is exceeded and fragmentation occurs. However effusion of lava domes requires magma to reach the surface in a relatively volatile free state and the processes that control this gas escape in high temperature magma are still poorly understood. To investigate the controls on degassing processes, we have measured how permeability varies progressively with increasing temperature on samples from the 2004-2008 lava dome at Mount St Helens. Permeability was measured on cylindrical samples 25 mm in diameter in a high temperature triaxial deformation apparatus at temperatures up to 900oC, confining pressures of 10 MPa and pore fluid pressures of 5 MPa. Samples of intact dacite from the interior of Spine 4 were used to test temperature effects on fluid flow. Our preliminary results show that fluid flow in the dacite lava at the core of the lava dome is reduced by over two orders of magnitude when the temperature is increased from 30oC to 400oC, with no apparent discontinuity when the pore fluid water flashes to steam at 264oC. During ascent in the conduit the magma is cooled from around 850oC and depressurisation causes

  10. Oxygen Isotope Trajectories of Crystallizing Arc Magmas (United States)

    Bucholz, C. E.; Jagoutz, O. E.; VanTongeren, J. A.; Wang, Z.


    Oxygen isotopes are essential to quantify mantle-derived versus 'recycled' crustal contributions to arc magmas. High δ18O values in igneous rocks (i.e., δ18OSMOW > ~5.7) are generally used to identify supra-crustal inputs, but a melt can also become enriched in 18O due to magmatic differentiation [1,2]. To assess magmatic δ18O values of plutonic rocks, δ18Ozircon values, which are resilient to secondary alteration, are often used. Thus, to disentangle the effects of assimilation versus fractionation, both the absolute increase in melt δ18O due to differentiation and ∆18O(WR-zircon) must be determined. However, existing constraints on the effect of magmatic fractionation on melt δ18O are model-based [2] and calculated relationships between WR SiO2, δ18Ozircon, and δ18Omelt do not incorporate complex melt SiO2, H2O, and temperature (T) relationships [3]. To build upon these initial constraints, we combine the first high-precision δ18O data set on natural samples documenting changes in δ18O melt values with increasing extent of differentiation and modeling which incorporates experimentally constrained melt SiO2, H2O, and T relationships. We analyzed 55 mineral separates with infrared laser-fluorination [4] across large fractionation intervals of two well-studied cumulate sequences: (I) a relatively dry (~1 wt.% H2O initial) tholeiitic sequence (analyzed minerals include plag, opx, cpx, & Fe-rich ol) from the Bushveld Complex and (II) a hydrous high-K sequence (analyzed minerals include ol, cpx, bt, fsp, & qtz) from the Dariv paleoarc in Mongolia. Our results indicate that multiple per mil increases in melt δ18O can occur during magmatic fractionation that in detail depend strongly on melt composition and T. Calculated relationships between WR SiO2 and δ18Ozircon for experimental melt compositions show that wet, 'cool' and dry, 'hot' melts are characterized by larger and smaller ∆18O (melt-zircon) fractionations, respectively. Applying our results to

  11. Effects of magma and conduit conditions on transitions between effusive and explosive activity: a numerical modeling approach (United States)

    Carr, B. B.; De'Michieli Vitturi, M.; Clarke, A. B.; Voight, B.


    shallow Merapi system is a plausible cause of explosivity in the 2010 eruption, the most violent at Merapi since 1872. Transitions in eruptive activity were also observed during the 2010 eruptive sequence, where explosive episodes lasting on the scale of hours alternated with longer periods of rapid effusive dome growth. Our modeling suggests these transitions could have been controlled by (1) the degassing behavior of the shallow conduit system without changing the magma supply rate, or (2) alternating conduit magma batches with different H2O content that reflect converging extraction patterns in a volatile-heterogeneous chamber. The latter condition reflects the inevitability for a large eruption to sample, nearly simultaneously, from a wide vertical and horizontal range of locations in a zoned chamber.

  12. Basalt Magma, Whisky and Tequila: finely-crafted mixes of small liquid batches that defy the parent liquid concept but whose complexities teach us much (United States)

    Rubin, K. H.; Sinton, J. M.; Perfit, M. R.


    Basalt is the most ubiquitous magma type we know of in the solar system. It comes in various varieties manifested as compositional sub groups, erupts from a wide variety of volcanic systems and tectonic settings, and its eruptions span many order of magnitude in duration and volume. Igneous petrology, thermodynamics, geochemistry, and geodynamical modelling have been used to develop a sophisticated understanding of source lithologies, compositions and formation conditions (e.g., pressure and temperature) for parent melts and their subsequent transport, storage and evolution. These demonstrate some striking systematics as a function of volcano tectonic setting (on Earth). Yet much like Whisky, what makes it into the bottle, or the eruption, is a mixture of different liquids with unique characteristics, sometimes stirred so well that successive batches are indistinguishable, and sometimes stirred more incompletely, preserving small batch characters that are unique. Recently, geochemical and petrological studies in high spatial density within the products of individual eruptions have shown chemical and mineralogical evidence for incompletely mixed heterogeneous magmas in a majority of systems examined, begging the question of when, if ever, is it realistic to speak of a single parent magma composition, and even in cases where it apparently is, if these are instead just more thoroughly stirred multi-parent magmas. For instance, do monogenetic fields really erupt basalts of more varied parent melt compositions than large hot spot and flood basalt eruptions, or are they just more poorly stirred? This presentation will focus on work by ourselves and others constraining spatial and temporal single-eruption basaltic magma histories at different settings, using them to unravel the time and space scales of magma formation and mixing, how these translate to the assembly of an erupted basalt magma, and the implications for deducing things about and from presumed parents.

  13. The effect of pressurized magma chamber growth on melt migration and pre-caldera vent locations through time at Mount Mazama, Crater Lake, Oregon (United States)

    Karlstrom, Leif; Wright, Heather M.; Bacon, Charles R.


    The pattern of eruptions at long-lived volcanic centers provides a window into the co-evolution of crustal magma transport, tectonic stresses, and unsteady magma generation at depth. Mount Mazama in the Oregon Cascades has seen variable activity over the last 400 ky, including the 50 km3 climactic eruption at ca. 7.7 ka that produced Crater Lake caldera. The physical mechanisms responsible for the assembly of silicic magma reservoirs that are the precursors to caldera-forming eruptions are poorly understood. Here we argue that the spatial and temporal distribution of geographically clustered volcanic vents near Mazama reflects the development of a centralized magma chamber that fed the climactic eruption. Time-averaged eruption rates at Mount Mazama imply an order of magnitude increase in deep magma influx prior to the caldera-forming event, suggesting that unsteady mantle melting triggered a chamber growth episode that culminated in caldera formation. We model magma chamber–dike interactions over ∼50 ky preceding the climactic eruption to fit the observed distribution of surface eruptive vents in space and time, as well as petrologically estimated deep influx rates. Best fitting models predict an expanding zone of dike capture caused by a growing, oblate spheroidal magma chamber with 10–30 MPa of overpressure. This growing zone of chamber influence causes closest approaching regional mafic vent locations as well as more compositionally evolved Mazama eruptions to migrate away from the climactic eruptive center, returning as observed to the center after the chamber drains during the caldera-forming eruption.

  14. The effect of pressurized magma chamber growth on melt migration and pre-caldera vent locations through time at Mount Mazama, Crater Lake, Oregon (United States)

    Karlstrom, Leif; Wright, Heather M.; Bacon, Charles R.


    The pattern of eruptions at long-lived volcanic centers provides a window into the co-evolution of crustal magma transport, tectonic stresses, and unsteady magma generation at depth. Mount Mazama in the Oregon Cascades has seen variable activity over the last 400 ky, including the 50 km3 climactic eruption at ca. 7.7 ka that produced Crater Lake caldera. The physical mechanisms responsible for the assembly of silicic magma reservoirs that are the precursors to caldera-forming eruptions are poorly understood. Here we argue that the spatial and temporal distribution of geographically clustered volcanic vents near Mazama reflects the development of a centralized magma chamber that fed the climactic eruption. Time-averaged eruption rates at Mount Mazama imply an order of magnitude increase in deep magma influx prior to the caldera-forming event, suggesting that unsteady mantle melting triggered a chamber growth episode that culminated in caldera formation. We model magma chamber-dike interactions over ∼50 ky preceding the climactic eruption to fit the observed distribution of surface eruptive vents in space and time, as well as petrologically estimated deep influx rates. Best fitting models predict an expanding zone of dike capture caused by a growing, oblate spheroidal magma chamber with 10-30 MPa of overpressure. This growing zone of chamber influence causes closest approaching regional mafic vent locations as well as more compositionally evolved Mazama eruptions to migrate away from the climactic eruptive center, returning as observed to the center after the chamber drains during the caldera-forming eruption.

  15. Iron Redox Systematics of Shergottites and Martian Magmas (United States)

    Righter, Kevin; Danielson, L. R.; Martin, A. M.; Newville, M.; Choi, Y.


    Martian meteorites record a range of oxygen fugacities from near the IW buffer to above FMQ buffer [1]. In terrestrial magmas, Fe(3+)/ SigmaFe for this fO2 range are between 0 and 0.25 [2]. Such variation will affect the stability of oxides, pyroxenes, and how the melt equilibrates with volatile species. An understanding of the variation of Fe(3+)/SigmaFe for martian magmas is lacking, and previous work has been on FeO-poor and Al2O3-rich terrestrial basalts. We have initiated a study of the iron redox systematics of martian magmas to better understand FeO and Fe2O3 stability, the stability of magnetite, and the low Ca/high Ca pyroxene [3] ratios observed at the surface.

  16. The magma ocean as an impediment to lunar plate tectonics (United States)

    Warren, Paul H.


    The primary impediment to plate tectonics on the moon was probably the great thickness of its crust and particularly its high crust/lithosphere thickness ratio. This in turn can be attributed to the preponderance of low-density feldspar over all other Al-compatible phases in the lunar interior. During the magma ocean epoch, the moon's crust/lithosphere thickness ratio was at the maximum theoretical value, approximately 1, and it remained high for a long time afterwards. A few large regions of thin crust were produced by basin-scale cratering approximately contemporaneous with the demise of the magma ocean. However, these regions probably also tend to have uncommonly thin lithosphere, since they were directly heated and indirectly enriched in K, Th, and U by the same cratering process. Thus, plate tectonics on the moon in the form of systematic lithosphere subduction was impeded by the magma ocean.

  17. Magma storage in a strike-slip caldera. (United States)

    Saxby, J; Gottsmann, J; Cashman, K; Gutiérrez, E


    Silicic calderas form during explosive volcanic eruptions when magma withdrawal triggers collapse along bounding faults. The nature of specific interactions between magmatism and tectonism in caldera-forming systems is, however, unclear. Regional stress patterns may control the location and geometry of magma reservoirs, which in turn may control the spatial and temporal development of faults. Here we provide new insight into strike-slip volcano-tectonic relations by analysing Bouguer gravity data from Ilopango caldera, El Salvador, which has a long history of catastrophic explosive eruptions. The observed low gravity beneath the caldera is aligned along the principal horizontal stress orientations of the El Salvador Fault Zone. Data inversion shows that the causative low-density structure extends to ca. 6 km depth, which we interpret as a shallow plumbing system comprising a fractured hydrothermal reservoir overlying a magmatic reservoir with vol% exsolved vapour. Fault-controlled localization of magma constrains potential vent locations for future eruptions.

  18. Magma chamber and mantle reflections - East Pacific Rise (United States)

    Herron, Thomas J.; Stoffa, Paul L.; Buhl, Peter


    A multichannel seismic reflection profile of stacked and migrated common depth point data across the East Pacific Rise near the Siqueiros Fracture Zone supports and extends previous observations (at two crossings 27 to 50 km to the south) of reflections assumed to be from the top of a magma chamber and of reflections from the M-discontinuity. The reflection assumed to be associated with the top of the magma chamber is 1-1/2 to 2 km below the sea floor. The combined results of the three crossings suggest that the chamber is continuous along the Rise crest and that its width, which varies from 2 to 8 km, correlates with the width of the Rise crest as indicated by the bathymetric contours. The reflections from the crust-mantle boundary can be detected beneath the raised axial block of the East Pacific Rise and although weak, can be detected beneath the magma chamber.

  19. Decoding magma plumbing and geochemical evolution beneath the Lastarria volcanic complex (Northern Chile)-Evidence for multiple magma storage regions (United States)

    Stechern, André; Just, Tobias; Holtz, François; Blume-Oeste, Magdalena; Namur, Olivier


    The petrology of quaternary andesites and dacites from Lastarria volcano was investigated to reconstruct the magma plumbing and storage conditions beneath the volcano. The mineral phase compositions and whole-rock major and trace element compositions were used to constrain temperature, pressure and possible mechanisms for magma differentiation. The applied thermobarometric models include two-pyroxene thermobarometry, plagioclase-melt thermometry, amphibole composition thermobarometry, and Fe-Ti oxide thermo-oxybarometry. The overall temperature estimation is in the range 840 °C to 1060 °C. Calculated oxygen fugacity ranges between NNO to NNO + 1. Results of the geo-barometric calculations reveal multiple magma storage regions, with a distinct storage level in the uppermost crust ( 6.5-8 km depth), a broad zone at mid-crustal levels ( 10-18 km depth), and a likely deeper zone at intermediate to lower crustal levels (> 20 km depth). The highest temperatures in the range 940-1040 °C are recorded in minerals stored in the mid-crustal levels ( 10-18 km depth). The whole-rock compositions clearly indicate that magma mixing is the main parameter controlling the general differentiation trends. Complex zoning patterns and textures in the plagioclase phenocrysts confirm reheating and remobilization processes due to magma replenishment.

  20. Lunar Magma Ocean Crystallization: Constraints from Fractional Crystallization Experiments (United States)

    Rapp, J. F.; Draper, D. S.


    The currently accepted paradigm of lunar formation is that of accretion from the ejecta of a giant impact, followed by crystallization of a global scale magma ocean. This model accounts for the formation of the anorthosite highlands crust, which is globally distributed and old, and the formation of the younger mare basalts which are derived from a source region that has experienced plagioclase extraction. Several attempts at modelling the crystallization of such a lunar magma ocean (LMO) have been made, but our ever-increasing knowledge of the lunar samples and surface have raised as many questions as these models have answered. Geodynamic models of lunar accretion suggest that shortly following accretion the bulk of the lunar mass was hot, likely at least above the solidus]. Models of LMO crystallization that assume a deep magma ocean are therefore geodynamically favorable, but they have been difficult to reconcile with a thick plagioclase-rich crust. A refractory element enriched bulk composition, a shallow magma ocean, or a combination of the two have been suggested as a way to produce enough plagioclase to account for the assumed thickness of the crust. Recently however, geophysical data from the GRAIL mission have indicated that the lunar anorthositic crust is not as thick as was initially estimated, which allows for both a deeper magma ocean and a bulk composition more similar to the terrestrial upper mantle. We report on experimental simulations of the fractional crystallization of a deep (approximately 100km) LMO with a terrestrial upper mantle-like (LPUM) bulk composition. Our experimental results will help to define the composition of the lunar crust and mantle cumulates, and allow us to consider important questions such as source regions of the mare basalts and Mg-suite, the role of mantle overturn after magma ocean crystallization and the nature of KREEP

  1. Essential roles of GABA transporter-1 in controlling rapid eye movement sleep and in increased slow wave activity after sleep deprivation.

    Directory of Open Access Journals (Sweden)

    Xin-Hong Xu

    Full Text Available GABA is the major inhibitory neurotransmitter in the mammalian central nervous system that has been strongly implicated in the regulation of sleep. GABA transporter subtype 1 (GAT1 constructs high affinity reuptake sites for GABA and regulates GABAergic transmission in the brain. However, the role of GAT1 in sleep-wake regulation remains elusive. In the current study, we characterized the spontaneous sleep-wake cycle and responses to sleep deprivation in GAT1 knock-out (KO mice. GAT1 KO mice exhibited dominant theta-activity and a remarkable reduction of EEG power in low frequencies across all vigilance stages. Under baseline conditions, spontaneous rapid eye movement (REM sleep of KO mice was elevated both during the light and dark periods, and non-REM (NREM sleep was reduced during the light period only. KO mice also showed more state transitions from NREM to REM sleep and from REM sleep to wakefulness, as well as more number of REM and NREM sleep bouts than WT mice. During the dark period, KO mice exhibited more REM sleep bouts only. Six hours of sleep deprivation induced rebound increases in NREM and REM sleep in both genotypes. However, slow wave activity, the intensity component of NREM sleep was briefly elevated in WT mice but remained completely unchanged in KO mice, compared with their respective baselines. These results indicate that GAT1 plays a critical role in the regulation of REM sleep and homeostasis of NREM sleep.

  2. Rapid Ammonia Gas Transport Accounts for Futile Transmembrane Cycling under NH3/NH4+ Toxicity in Plant Roots1[C][W (United States)

    Coskun, Devrim; Britto, Dev T.; Li, Mingyuan; Becker, Alexander; Kronzucker, Herbert J.


    Futile transmembrane NH3/NH4+ cycling in plant root cells, characterized by extremely rapid fluxes and high efflux to influx ratios, has been successfully linked to NH3/NH4+ toxicity. Surprisingly, the fundamental question of which species of the conjugate pair (NH3 or NH4+) participates in such fluxes is unresolved. Using flux analyses with the short-lived radioisotope 13N and electrophysiological, respiratory, and histochemical measurements, we show that futile cycling in roots of barley (Hordeum vulgare) seedlings is predominately of the gaseous NH3 species, rather than the NH4+ ion. Influx of 13NH3/13NH4+, which exceeded 200 µmol g–1 h–1, was not commensurate with membrane depolarization or increases in root respiration, suggesting electroneutral NH3 transport. Influx followed Michaelis-Menten kinetics for NH3 (but not NH4+), as a function of external concentration (Km = 152 µm, Vmax = 205 µmol g–1 h–1). Efflux of 13NH3/13NH4+ responded with a nearly identical Km. Pharmacological characterization of influx and efflux suggests mediation by aquaporins. Our study fundamentally revises the futile-cycling model by demonstrating that NH3 is the major permeating species across both plasmalemma and tonoplast of root cells under toxicity conditions. PMID:24134887

  3. Magma mixing and high fountaining during the 1959 Kīlauea Iki eruption, Hawai‘i (United States)

    Sides, I.; Edmonds, M.; Maclennan, J.; Houghton, Bruce F.; Swanson, Don; Steele-MacInnis, M.J.


    The 1959 Kīlauea Iki eruption provides a unique opportunity to investigate the process of shallow magma mixing, its impact on the magmatic volatile budget and its role in triggering and driving episodes of Hawaiian fountaining. Melt inclusions hosted by olivine record a continuous decrease in H2O concentration through the 17 episodes of the eruption, while CO2 concentrations correlate with the degree of post-entrapment crystallization of olivine on the inclusion walls. Geochemical data, when combined with the magma budget and with contemporaneous eruption observations, show complex mixing between episodes involving hot, geochemically heterogeneous melts from depth, likely carrying exsolved vapor, and melts which had erupted at the surface, degassed and drained-back into the vent. The drained-back melts acted as a coolant, inducing rapid cooling of the more primitive melts and their olivines at shallow depths and inducing crystallization and vesiculation and triggering renewed fountaining. A consequence of the mixing is that the melts became vapor-undersaturated, so equilibration pressures cannot be inferred from them using saturation models. After the melt inclusions were trapped, continued growth of vapor bubbles, caused by enhanced post-entrapment crystallization, sequestered a large fraction of CO2 from the melt within the inclusions. This study, while cautioning against accepting melt inclusion CO2 concentrations “as measured” in mixed magmas, also illustrates that careful analysis and interpretation of post-entrapment modifications can turn this apparent challenge into a way to yield novel useful insights into the geochemical controls on eruption intensity.

  4. Halogen degassing during ascent and eruption of water-poor basaltic magma (United States)

    Edmonds, M.; Gerlach, T.M.; Herd, Richard A.


    A study of volcanic gas composition and matrix glass volatile concentrations has allowed a model for halogen degassing to be formulated for K??lauea Volcano, Hawai'i. Volcanic gases emitted during 2004-2005 were characterised by a molar SO2/HCl of 10-64, with a mean of 33; and a molar HF/HCl of 0-5, with a mean of 1.0 (from approximately 2500 measurements). The HF/HCl ratio was more variable than the SO2/HCl ratio, and the two correlate weakly. Variations in ratio took place over rapid timescales (seconds). Matrix glasses of Pele's tears erupted in 2006 have a mean S, Cl and F content of 67, 85 and 173??ppm respectively, but are associated with a large range in S/F. A model is developed that describes the open system degassing of halogens from parental magmas, using the glass data from this study, previously published results and parameterisation of sulphur degassing from previous work. The results illustrate that halogen degassing takes place at pressures of pressure, virtually at the top of the magma column. This model reproduces the volcanic gas data and other observations of volcanic activity well and is consistent with other studies of halogen degassing from basaltic magmas. The model suggests that variation in volcanic gas halogen ratios is caused by exsolution and gas-melt separation at low pressures in the conduit. There is no evidence that either diffusive fractionation or near-vent chemical reactions involving halogens is important in the system, although these processes cannot be ruled out. The fluxes of HCl and HF from K??lauea during 2004-5 were ~ 25 and 12??t/d respectively. ?? 2008 Elsevier B.V.

  5. Eutectic propeties of primitive Earth's magma ocean (United States)

    Lo Nigro, G.; Andrault, D.; Bolfan-Casanova, N.; Perillat, J.-P.


    It is widely accepted that the early Earth was partially molten (if not completely) due to the high energy dissipated by terrestrial accretion [1]. After core formation, subsequent cooling of the magma ocean has led to fractional crystallization of the primitive mantle. The residual liquid corresponds to what is now called the fertile mantle or pyrolite. Melting relations of silicates have been extensively investigated using the multi-anvil press, for pressures between 3 and 25 GPa [2,3]. Using the quench technique, it has been shown that the pressure affects significantly the solidus and liquidus curves, and most probably the composition of the eutectic liquid. At higher pressures, up to 65 GPa, melting studies were performed on pyrolite starting material using the laser-heated diamond anvil cell (LH-DAC) technique [4]. However, the quench technique is not ideal to define melting criteria, and furthermore these studies were limited in pressure range of investigation. Finally, the use of pyrolite may not be relevant to study the melting eutectic temperature. At the core-mantle boundary conditions, melting temperature is documented by a single data point on (Mg,Fe)2SiO4 olivine, provided by shock wave experiments at around 130-140 GPa [5]. These previous results present large uncertainties of ~1000 K. The aim of this study is to determine the eutectic melting temperature in the chemically simplified system composed of the two major lower mantle phases, the MgSiO3 perovskite and MgO periclase. We investigated melting in-situ using the laser-heated diamond anvil cell coupled with angle dispersive X-ray diffraction at the ID27 beamline of the ESRF [6]. Melting relations were investigated in an extended P-T range comparable to those found in the Earth's lower mantle, i.e. from 25 to 120 GPa and up to more than 5000 K. Melting was evidenced from (a) disappearance of one of the two phases in the diffraction pattern, (b) drastic changes of the diffraction image itself, and

  6. Exploring the links between volcano flank collapse and magma evolution: Fogo oceanic shield volcano, Cape Verde (United States)

    Cornu, Melodie-Neige; Paris, Raphael; Doucelance, Regis; Bachelery, Patrick; Guillou, Hervé


    Mass wasting of oceanic shield volcanoes is largely documented through the recognition of collapse scars and submarine debris fans. However, it is actually difficult to infer the mechanisms controlling volcano flank failures that potentially imply tens to hundreds of km3. Studies coupling detailed petrological and geochemical analyses of eruptive products hold clues for better understanding the relationships between magma sources, the plumbing system, and flank instability. Our study aims at tracking potential variations of magma source, storage and transport beneath Fogo shield volcano (Cape Verde) before and after its major flank collapse. We also provide a geochronological framework of this magmatic evolution through new radiometric ages (K-Ar and Ar-Ar) of both pre-collapse and post-collapse lavas. The central part of Fogo volcanic edifice is truncated by an 8 km-wide caldera opened to the East, corresponding to the scar of the last flank collapse (Monte Amarelo collapse, Late Pleistocene, 150 km3). Lavas sampled at the base of the scar (the so-called Bordeira) yielded ages between 158 and 136 ka. The age of the collapse is constrained between 68 ka (youngest lava flow cut by the collapse scar) and 59 ka (oldest lava flow overlapping the scar). The collapse walls display a complex structural, intrusive and eruptive history. Undersaturated volcanism (SiO2elements analyses indicate that the pre-collapse lavas are significantly less differentiated than post-collapse lavas, with a peak of alkalis at the collapse. Rare-earth elements concentration decreases with time, with a notable positive anomaly before the collapse. The evolution of the isotopic ratios (Sr, Nd and Pb) through time displays unusual V-shaped profiles centered around the collapse. The occurrence of the Monte Amarelo collapse is thus not disconnected from the magmatic evolution, both at the crustal and mantellic levels. Our results also point out the importance and relative frequency of explosive

  7. Contrasting plagioclase textures and geochemistry in response to magma dynamics in an intra-caldera rhyolite system, Okataina volcano (United States)

    Shane, Phil


    The changing magmatic dynamics of the rhyolite caldera volcano, Okataina Volcanic Centre, New Zealand, is revealed in plagioclase growth histories. Crystals from the ~ 0.7 ka Kaharoa eruption are characterized by resorbed cores displaying a cellular texture of high-An (> 40) zones partially replaced by low-An (cellular texture of variable An content (An40-50). The crystals display step-wise regrowth of successively higher An, Fe, Mg, and Ti content, consistent with progressive mafic recharge. Two crystal groups are distinguished by trace element chemistry, indicating growth in separate melts and co-occurrence via magma mingling. For plagioclase in both eruption deposits, partition coefficients (D) estimated from crystal rim-groundmass glass analyses, produce melt compositions similar to the array of rock and glass compositions erupted and are consistent with the processes of fractional crystallization and recharge. However, D values estimated from some published formulations based on An content and temperature produce unrealistic melts. The contrasting zoning patterns in plagioclase correspond to the evolutionary history of magmatism at Okataina. Emptying of the magma reservoir following caldera eruption at 46 ka reduced barriers to mafic magma ascent. This is recorded by the frequent resorption and recharge episodes in Hauparu crystals. Subsequent redevelopment of a more silicic reservoir zone (post-26 ka) dampened thermal and mass perturbations, resulting in simpler growth histories of the Kaharoa crystals. The plagioclase lack features associated with rapid decompression events that are common in andesite systems. This reflects the rapid ascent of the rhyolite magmas and lack of precursory eruptions that could decompressed the system.

  8. Magma energy research project: state-of-the-project report, October 1, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Colp, J.L.; Traeger, R.K.


    The feasibility of extracting energy from magma bodies is investigated. The work done in FY 76, 77, and 78 in the following tasks are summarized; resource location and definition, source tapping, magma characterization and materials compatibility, and energy extraction. (MHR)

  9. Evolution of magma feeding system in Kumanodake agglutinate activity, Zao Volcano, northeastern Japan (United States)

    Takebe, Yoshinori; Ban, Masao


    The Kumanodake agglutinate of Zao Volcano in northeastern Japan consists of pyroclastic surge layers accumulated during the early part of the newest stage of activity (ca. 33 ka to present). Our petrologic study of this agglutinate based on systematically collected samples aims to reveal the evolution of magma feeding system. To understand the magma evolution, we have examined samples from the agglutinate by using petrologic data including, petrography, analysis of minerals (plagioclase, pyroxene, and olivine), glass compositions, and whole rock major element and trace element (Ba, Sr, Cr, Ni, V, Rb, Zr, Nb, and Y) compositions. Agglutinate are mixed, medium-K, calc-alkaline olv-cpx-opx basaltic andesite (55.2-56.2% SiO2). Results show that the magma feeding system comprised a shallow felsic chamber injected by mafic magma from depth. The felsic magma (59-62% SiO2, 950-990 °C), which was stored at a shallower depth, had orthopyroxene (Mg# = 60-69), clinopyroxene (Mg# = 65-71), and low-An plagioclase (Anca. 58-70). The mafic magma is further divisible into two types: less-differentiated and more-differentiated, designed respectively as an initial mafic magma-1 and a second mafic magma-2. The original mafic magma-1 was olivine (Fo 84) basalt (ca. 48-51% SiO2, 1110-1140 °C). The second mafic magma-2, stored occasionally at 4-6 km depth, was basalt (1070-1110 °C) having Foca. 80 olivine and high-An (Anca. 90) plagioclase phenocrysts. These two magmas mixed (first mixing) to form hybrid mafic magma. The forced injections of the hybrid mafic magmas activated the felsic magma, and these two were mixed (second mixing) shortly before eruptions. The explosivity is inferred to have increased over time because the abundance of large scoria increased. Furthermore, the erupted magma composition became more mafic, which reflects increased percentage of the hybrid mafic magma involved in the second mixing. At the beginning of activity, the mafic magma also acted as a heat

  10. Timescales of mixing and storage for Keanakāko`i Tephra magmas (1500-1820 C.E.), Kīlauea Volcano, Hawai`i (United States)

    Lynn, Kendra J.; Garcia, Michael O.; Shea, Thomas; Costa, Fidel; Swanson, Donald A.


    The last 2500 years of activity at Kīlauea Volcano (Hawai`i) have been characterized by centuries-long periods dominated by either effusive or explosive eruptions. The most recent period of explosive activity produced the Keanakāko`i Tephra (KT; ca. 1500-1820 C.E.) and occurred after the collapse of the summit caldera (1470-1510 C.E.). Previous studies suggest that KT magmas may have ascended rapidly to the surface, bypassing storage in crustal reservoirs. The storage conditions and rapid ascent hypothesis are tested here using chemical zoning in olivine crystals and thermodynamic modeling. Forsterite contents (Fo; [Mg/(Mg + Fe) × 100]) of olivine core and rim populations are used to identify melt components in Kīlauea's prehistoric (i.e., pre-1823) plumbing system. Primitive (≥Fo88) cores occur throughout the 300+ years of the KT period; they originated from mantle-derived magmas that were first mixed and stored in a deep crustal reservoir. Bimodal olivine populations (≥Fo88 and Fo83-84) record repeated mixing of primitive magmas and more differentiated reservoir components shallower in the system, producing a hybrid composition (Fo85-87). Phase equilibria modeling using MELTS shows that liquidus olivine is not stable at depths >17 km. Thus, calculated timescales likely record mixing and storage within the crust. Modeling of Fe-Mg and Ni zoning patterns (normal, reverse, complex) reveal that KT magmas were mixed and stored for a few weeks to several years before eruption, illustrating a more complex storage history than direct and rapid ascent from the mantle as previously inferred for KT magmas. Complexly zoned crystals also have smoothed compositional reversals in the outer 5-20 µm rims that are out of Fe-Mg equilibrium with surrounding glasses. Diffusion models suggest that these rims formed within a few hours to a few days, indicating that at least one additional, late-stage mixing event may have occurred shortly prior to eruption. Our study

  11. Extension by faulting, stretching and magma intrusion in Ethiopia (United States)

    Bastow, I. D.; Keir, D.


    The 2001-2004 Ethiopia Afar Geoscientific Lithospheric Experiment showed that high seismic wavespeed, dense, mafic crustal intrusions exist beneath many zones of Quaternary magmatism in the Main Ethiopian rift, and that crustal thinning is minimal. From these observations, a consensus quickly emerged that extension presently occurs not by ductile stretching and brittle faulting but by magma intrusion. Striking InSAR images and accompanying seismic data from the 2005 Afar diking episode provided further compelling evidence in support of the magma assisted rifting hypothesis. Patterns of mantle seismic anisotropy, constrained by a combination of body and surface-wave analysis showed that melt intrusion likely also plays an important role in accommodating extension at greater depths in the extending plate. Evidence from further north in Afar, however, where crustal thickness decreases abruptly into the Danakil Depression, is not so easily explained by the magma assisted rifting hypothesis. Subsidence of the newly forming margin towards and below sea level, and eruption of voluminous basalt flows, is likely the result of late-stage thinning of the heavily intruded, weakened plate just before the onset of seafloor spreading. Faulting, stretching and magma intrusion are thus each important, but at different times during breakup. Combining, not isolating, these mechanisms of strain in new rifting models and appreciating how plate strength varies during rifting is essential in developing a clearer understanding of the incomplete geological record that documents continental breakup over time.

  12. The crystal's view of upper-crustal magma reservoirs (United States)

    Cooper, K. M.; Kent, A. J.; Huber, C.; Stelten, M. E.; Rubin, A. E.; Schrecengost, K.


    Upper-crustal magma reservoirs are important sites of magma mixing, crustal refining, and magma storage. Crystals residing in these reservoirs have been shown to represent valuable archives of the chemical and physical evolution of reservoirs, and the time scales of this evolution. This presentation addresses the question of "What do crystals "see" and record about processes within the upper crust? And how is that view similar or different between plutonic and volcanic records?" Three general observations emerge from study of the ages of crystals, combined with crystal-scale geochemical data: 1) Patterns of isotopic and trace-element data over time in zircon crystals from a given magmatic system (e.g., Yellowstone, WY, and Taupo Volcanic Zone, New Zealand) can show systematic changes in the degree of heterogeneity, consistent with extraction of melts from a long-lived (up to 100s of kyr), heterogeneous crystal mush and in some cases continued crystallization and homogenization of the magma during a short period (eruption. 2) Thermal histories of magma storage derived from crystal records also show that the vast majority of time recorded by major phases was spent in storage as a crystal mush, perhaps at near-solidus conditions. 3) Comparison of ages of accessory phases in both plutonic blocks and host magmas that brought them to the surface do not show a consistent relationship between the two. In some cases, zircons from plutonic blocks have age spectra much older than zircon in the host magma. In other cases, host and plutonic block zircons have similar age spectra and chemical characteristics, suggesting a closer genetic connection between the two. These observations suggest that crystals in plutonic bodies, if examined at similar spatial and temporal scales to those in volcanic rocks, would show records that are highly heterogeneous in chemistry and age on the scale of a pluton or a lobe of a pluton, but that local regions of limited chemical and age variability

  13. Oxygen isotope geochemistry of mafic magmas at Mt. Vesuvius (United States)

    Dallai, Luigi; Raffaello, Cioni; Chiara, Boschi; Claudia, D'oriano


    Pumice and scoria from different eruptive layers of Mt. Vesuvius volcanic products contain mafic minerals consisting of High-Fo olivine and Diopsidic Pyroxene. These phases were crystallized in unerupted trachibasaltic to tephritic magmas, and were brought to surface by large phonolitic/tephri-phonolitic (e.g. Avellino and Pompei) and/or of tephritic and phono-tephritic (Pollena) eruptions. A large set of these mm-sized crystals was accurately separated from selected juvenile material and measured for their chemical compositions (EPMA, Laser Ablation ICP-MS) and 18O/16O ratios (conventional laser fluorination) to constrain the nature and evolution of the primary magmas at Mt. Vesuvius. Uncontaminated mantle δ18O values are hardly recovered in Italian Quaternary magmas, mostly due to the widespread occurrence of crustal contamination of the primary melts during their ascent to the surface (e.g. Alban Hills, Ernici Mts., and Aeolian Islands). At Mt. Vesuvius, measured olivine and clinopyroxene share quite homogeneous chemical compositions (Olivine Fo 85-90 ; Diopside En 45-48, respectively), and represent phases crystallized in near primary mafic magmas. Trace element composition constrains the near primary nature of the phases. Published data on volatile content of melt inclusions hosted in these crystals reveal the coexistence of dissolved water and carbon dioxide, and a minimum trapping pressure around 200-300 MPa, suggesting that crystal growth occurred in a reservoir at about 8-10 km depth. Recently, experimental data have suggested massive carbonate assimilation (up to about 20%) to derive potassic alkali magmas from trachybasaltic melts. Accordingly, the δ18O variability and the trace element content of the studied minerals suggest possible contamination of primary melts by an O-isotope enriched, REE-poor contaminant like the limestone of Vesuvius basement. Low, nearly primitive δ18O values are observed for olivine from Pompeii eruption, although still

  14. Staged storage and magma convection at Ambrym volcano, Vanuatu (United States)

    Sheehan, Fionnuala; Barclay, Jenni


    New mineral-melt thermobarometry and mineral chemistry data are presented for basaltic scoriae erupted from the Mbwelesu crater of Ambrym volcano, Vanuatu, during persistent lava lake activity in 2005 and 2007. These data reveal crystallisation conditions and enable the first detailed attempt at reconstruction of the central magma plumbing system of Ambrym volcano. Pressures and temperatures of magma crystallisation at Ambrym are poorly constrained. This study focuses on characterising the magma conditions underlying the quasi-permanent lava lakes at the basaltic central vents, and examines petrological evidence for magma circulation. Mineral-melt equilibria for clinopyroxene, olivine and plagioclase allow estimation of pressures and temperatures of crystallisation, and reveal two major regions of crystallisation, at 24-29 km and 11-18 km depth, in agreement with indications from earthquake data of crustal storage levels at c. 25-29 km and 12-21 km depth. Temperature estimates are 1150-1170 °C for the deeper region, and 1110-1140 °C in the mid-crustal region, with lower temperatures of 1090-1100 °C for late-stage crystallisation. More primitive plagioclase antecrysts are thought to sample a slightly more mafic melt at sub-Moho depths. Resorption textures combined with effectively constant mafic mineral compositions suggest phenocryst convection in a storage region of consistent magma composition. In addition, basalt erupted at Ambrym has predominantly maintained a constant composition throughout the volcanic succession. This, coupled with recurrent periods of elevated central vent activity on the scale of months, suggest frequent magmatic recharge via steady-state melt generation at Ambrym.

  15. Hydrogen isotope investigation of amphibole and glass in dacite magmas erupted in 1980-1986 and 2005 at Mount St. Helens, Washington (United States)

    Underwood, S.J.; Feeley, T.C.; Clynne, M.A.


    In active, shallow, sub-volcanic magma conduits the extent of the dehydrogenation–oxidation reaction in amphibole phenocrysts is controlled by energetic processes that cause crystal lattice damage or conditions that increase hydrogen diffusivity in magmatic phases. Amphibole phenocrysts separated from dacitic volcanic rocks erupted from 1980 to 1986 and in 2005 at Mount St. Helens (MSH) were analyzed for δD, water content and Fe3+/Fe2+, and fragments of glassy groundmass were analyzed for δD and water content. Changes in amphibole δD values through time are evaluated within the context of carefully observed volcanic eruption behavior and published petrological and geochemical investigations. Driving forces for amphibole dehydrogenation include increase in magma oxygen fugacity, decrease in amphibole hydrogen fugacity, or both. The phenocryst amphibole (δD value c. –57‰ and 2 wt % H2O) in the white fallout pumice of the May 18, 1980 plinian eruptive phase is probably little modified during rapid magma ascent up an ∼7 km conduit. Younger volcanic rocks incorporate some shallowly degassed dacitic magma from earlier pulses, based on amphibole phenocryst populations that exhibit varying degrees of dehydrogenation. Pyroclastic rocks from explosive eruptions in June–October 1980 have elevated abundances of mottled amphibole phenocrysts (peaking in some pyroclastic rocks erupted on July 22, 1980), and extensive amphibole dehydrogenation is linked to crystal damage from vesiculation and pyroclastic fountain collapse that increased effective hydrogen diffusion in amphibole. Multiple amphibole δD populations in many 1980 pyroclastic rocks combined with their groundmass characteristics (e.g. mixed pumice textures) support models of shallow mixing prior to, or during, eruption as new, volatile-rich magma pulses blended with more oxidized, degassed magma. Amphibole dehydrogenation is quenched at the top surface of MSH dacite lava lobes, but the diversity in the

  16. The extimated presence of differentiated higly explosive magmas beneath Vesuvius and Campi Flegrei: evidence from geochemical and textural studies. (United States)

    Pappalardo, Lucia; Mastrolorenzo, Giuseppe


    rapid crystallization and differentiation time for alkaline Campanian magmas (in the order of decades to few centuries). This evidence implies that the 400 km2 partial melting zone detected by tomography study at 8-10 km depth beneath Vesuvius and Campi Flegrei, should consist of differentiated magma already capable to produce also large scale (plinian) explosive events in case of renewal of the activity from the present closed-conduit state.

  17. Magma genesis, storage and eruption processes at Aluto volcano, Ethiopia: lessons from remote sensing, gas emissions and geochemistry (United States)

    Hutchison, William; Biggs, Juliet; Mather, Tamsin; Pyle, David; Gleeson, Matthew; Lewi, Elias; Yirgu, Gezahgen; Caliro, Stefano; Chiodini, Giovanni; Fischer, Tobias


    One of the most intriguing aspects of magmatism during the transition from continental rifting to sea-floor spreading is that large silicic magmatic systems develop within the rift zone. In the Main Ethiopian Rift (MER) these silicic volcanoes not only pose a significant hazard to local populations but they also sustain major geothermal resources. Understanding the journey magma takes from source to surface beneath these volcanoes is vital for determining its eruption style and for better evaluating the geothermal resources that these complexes host. We investigate Aluto, a restless silicic volcano in the MER, and combine a wide range of geochemical and geophysical techniques to constrain magma genesis, storage and eruption processes and shed light on magmatic-hydrothermal-tectonic interactions. Magma genesis and storage processes at Aluto were evaluated using new whole-rock geochemical data from recent eruptive products. Geochemical modelling confirms that Aluto's peralkaline rhyolites, that constitute the bulk of recent erupted products, are generated from protracted fractionation (>80 %) of basalt that is compositionally similar to rift-related basalts found on the margins of the complex. Crustal melting did not play a significant role in rhyolite genesis and melt storage depths of ~5 km can reproduce almost all aspects of their geochemistry. InSAR methods were then used to investigate magma storage and fluid movement at Aluto during an episode of ground deformation that took place between 2008 and 2010. Combining new SAR imagery from different viewing geometries we identified an accelerating uplift pulse and found that source models support depths of magmatic and/or fluid intrusion at ~5 km for the uplift and shallower depths of ~4 km for the subsidence. Finally, gas samples collected on Aluto in 2014 were used to evaluate magma and fluid transport processes. Our results show that gases are predominantly emanating from major fault zones on Aluto and that they

  18. The petrogenesis of anorogenic felsic magmas and AMCG suites: Insights on element mobility and mutual cryptic contamination from polythermal experiments (United States)

    Martin, Robert F.


    The close association of mantle-derived mafic rocks and crust-derived felsic rocks in AMCG suites the world over is now interpreted in terms of delamination of the lithospheric keel of an orogen within a short time after the cessation of a major collision. The stage is set for the ascent of an asthenospheric diapir, which is accompanied by the ascent of a stream of H2O-CO2 representing regional degassing of the mantle in the ensuing extensional setting. The crust gets variably metasomatized prior to melting, and this episode of melting seems to involve almost complete melting rather than the expected films of leucosome. Results of polythermal experiments with a large array of target rocks (pulverized) + H2O show that it is possible to mobilize the major elements K, Na, Al, Si and Fe such that the transported fractions resembles an A-type granite or syenite. The open-system process increases in efficiency with increasing temperature and increasing pressure. A stream of such fluid interacting with gabbro or basic magma could create anorthositic and ultrabasic assemblages that are candidates for contamination of pools of basic magma in the uppermost mantle and lower crust. The same stream continues its buoyant rise and makes over the sterile granulitic lower and middle crust into a geochemically fertile protolith for the generation of A-type felsic magmas by wholesale anatexis.

  19. Interaction of coeval felsic and mafic magmas from the Kanker granite, Pithora region, Bastar Craton, Central India (United States)

    Elangovan, R.; Krishna, Kumar; Vishwakarma, Neeraj; Hari, K. R.; Ram Mohan, M.


    Field and petrographic studies are carried out to characterize the interactions of mafic and felsic magmas from Pithora region of the northeastern part of the Bastar Craton. The MMEs, syn-plutonic mafic dykes, cuspate contacts, magmatic flow textures, mingling and hybridization suggest the coeval emplacement of end member magmas. Petrographic evidences such as disequilibrium assemblages, resorption textures, quartz ocelli, rapakivi and poikilitic textures suggest magma mingling and mixing phenomena. Such features of mingling and mixing of the felsic and mafic magma manifest the magma chamber processes. Introduction of mafic magmas into the felsic magmas before initiation of crystallization of the latter, results in hybrid magmas under the influence of thermal and chemical exchange. The mechanical exchange occurs between the coexisting magmas due to viscosity contrast, if the mafic magma enters slightly later into the magma chamber, then the felsic magma starts to crystallize. Blobs of mafic magma form as MMEs in the felsic magma and they scatter throughout the pluton due to convection. At a later stage, if mafic magma enters the system after partial crystallization of felsic phase, mechanical interaction between the magmas leads to the formation of fragmented dyke or syn-plutonic mafic dyke. All these features are well-documented in the study area. Field and petrographic evidences suggest that the textural variations from Pithora region of Bastar Craton are the outcome of magma mingling, mixing and hybridization processes.

  20. Oxygen isotope composition of mafic magmas at Vesuvius (United States)

    Dallai, L.; Cioni, R.; Boschi, C.; D'Oriano, C.


    The oxygen isotope composition of olivine and clinopyroxene from four plinian (AD 79 Pompeii, 3960 BP Avellino), subplinian (AD 472 Pollena) and violent strombolian (Middle Age activity) eruptions were measured to constrain the nature and evolution of the primary magmas of the last 4000 years of Mt. Vesuvius activity. A large set of mm-sized crystals was accurately separated from selected juvenile material of the four eruptions. Crystals were analyzed for their major and trace element compositions (EPMA, Laser Ablation ICP-MS), and for 18O/16O ratios. As oxygen isotope composition of uncontaminated mantle rocks on world-wide scale is well constrained (δ18Oolivine = 5.2 ± 0.3; δ18Ocpx = 5.6 ± 0.3 ‰), the measured values can be conveniently used to monitor the effects of assimilation/contamination of crustal rocks in the evolution of the primary magmas. Instead, typically uncontaminated mantle values are hardly recovered in Italian Quaternary magmas, mostly due to the widespread occurrence of crustal contamination of the primary magmas during their ascent to the surface (e.g. Alban Hills, Ernici Mts., and Aeolian Islands). Low δ18O values have been measured in olivine from Pompeii eruption (δ18Oolivine = 5.54 ± 0.03‰), whereas higher O-compositions are recorded in mafic minerals from pumices or scoria of the other three eruptions. Measured olivine and clinopyroxene share quite homogeneous chemical compositions (Olivine Fo 85-90 ; Diopside En 45-48, respectively), and represent phases crystallized in near primary mafic magmas, as also constrained by their trace element compositions. Data on melt inclusions hosted in crystals of these compositions have been largely collected in the past demonstrating that they crystallized from mafic melt, basaltic to tephritic in composition. Published data on volatile content of these melt inclusions reveal the coexistence of dissolved water and carbon dioxide, and a minimum trapping pressure around 200-300 MPa, suggesting

  1. Magma Energy Research Project. Project summary, July 1, 1974--June 30, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Colp, J.L.; Davis, M.J.; Graeber, E.J.; Hardee, H.C.


    The objective of the Magma Energy Research Project now under way at Sandia Laboratories is to investigate the feasibility of extracting energy directly from deeply buried circulating magma sources. Project plans describe a concept whereby a fully closed heat exchanger system is inserted directly into such a magma source to allow the heat energy to be brought to the surface with minimal environmental impact. A summary of previous efforts is given. The achievements and future plans for source location and definition, source tapping, magma characterization, magma materials compatibilities studies, and energy extraction studies are outlined. (LBS)

  2. Seismological evidence for Lateral magma intrusion during the July 1978 deflation of the Krafla volcano in NE-Iceland

    Energy Technology Data Exchange (ETDEWEB)

    Einarsson, Pall; Brandsdottir, Bryndis


    The July 1978 deflation of the Krafla volcano in the volcanic rift zone of NE-Iceland was in most respects typical of the many deflation events that have occurred at Krafla since December 1975. Separated by periods of slow inflation, the deflation events are characterized by rapid subsidence in the caldera region, volcanic tremor and extensive rifting in the fault swarm that transects the volcano. Earthquakes increase in the caldera region shortly after deflation starts and propagate along the fault swarm away from the central part of the volcano, sometimes as far as 65 km. The deflation events are interpreted as the result of subsurface magmatic movements, when magma from the Krafla reservoir is injected laterally into the fault swarm to form a dyke. In the July 1978 event magma was injected a total distance of 30 km into the northern fault swarm. The dyke tip propagated with the velocity of 0.4-0.5 m/sec during the first 9 hours, but the velocity decreased as the length of the dyke increased. Combined with surface deformation data, these data can be used to estimate the cross sectional area of the dyke and the driving pressure of the magma. The cross sectional area is variable along the dyke and is largest in the regions of maximum earthquake activity. The average value is about 1200 m{sup 2}. The pressure difference between the magma reservoir and the dyke tip was of the order of 10-40 bars and did not change much during the injection.

  3. Permeability of alkaline magmas: a study from Campi Flegrei, Italy (United States)

    Polacci, M.; Bouvet de Maissoneuve, C.; Giordano, D.; Piochi, M.; Degruyter, W.; Bachmann, O.; Mancini, L.


    Knowledge of permeability is of paramount importance for understanding the evolution of magma degassing during pre-, syn- and post-eruptive volcanic processes. Most permeability estimates existing to date refer to magmas of calc-alkaline compositions. We report here the preliminary results of permeability measurements performed on alkali-trachyte products erupted from the Campanian Ignimbrite (CI) and Monte Nuovo (MTN), two explosive eruptions from Campi Flegrei (CF), an active, hazardous caldera west of Naples, Southern Italy. Darcian (viscous) permeability spans a wide range between 10^-11 and 10^-14 m^2. We observe that the most permeable samples are the scoria clasts from the upper units of MTN; pumice samples from the Breccia Museo facies of CI are instead the least permeable. Non-Darcian (inertial) permeability follows the same trend as Darcian permeability. The first implication of this study is that porosity in alkaline as well as calc-alkaline magmas does not exert a first order control on permeability (e.g. the MTN samples are the most permeable but not the most porous). Second, sample geometry exhibits permeability anisotropy (higher permeability in the direction of vesicle elongation), suggesting stronger degassing in the vertical direction in the conduit. In addition, inertial effects are higher across the sample. As inertial effects are potentially generated by tortuosity (or tortuous vesicle paths), tortuosity is likely higher horizontally than vertically in the conduit. Finally, the measured CF permeability values overlap with those of rhyolitic pumice clasts from the Kos Plateau Tuff (Bouvet de Maisonneuve et al., 2009), together with CI one of the major Quaternary explosive eruptions of the Mediterranean region. This indicates that gas flow is strongly controlled by the geometry of the porous media, which is generated by the bubble dynamics during magma ascent. Therefore, permeability will depend on composition through the rheological properties

  4. Parametric investigation of a brine lens formation above degassing magma chamber (United States)

    Afanasyev, Andrey; Melnik, Oleg; Utkin, Ivan; Tsvetkova, Yulia


    Formation of porphyry-type ore deposits is associated with degassing of crustal magma chambers. Saline, metal-rich magmatic fluid penetrates into a shallow region saturated with cold meteoric water where the metals concentrate in brine lenses. The formation of the lenses and, thus, of the deposits occurs due to phase transitions [1]. The evaporation of H2O results in enrichment of residual fluid in NaCl. At a depth of 1-2 km precipitation of solid halite blocks the pore space and facilitates formation of concentrated brine lenses. In order to investigate lens formation, we developed an extension of our multiphase simulator MUFITS [2] for NaCl-H2O mixture flows. We applied the code in a simple axisymmetric scenario with a high permeability zone in the central part of the domain surrounded by low permeable rocks. The high permeability zone simulates a volcanic conduit above a magma body. The degassing of magma is simulated with a point source of hot supercritical fluid that ascends rapidly up the conduit, undergoing phase transitions en route. Evaporation and rapid ascend of vapor results in increasing from bottom to top salinity of the fluid. As temperature and pressure decline closer to the surface, solid halite precipitates blocking the conduit. Convection of meteoric water in surrounding rocks favors compact location of the brine lens beneath the region of precipitation. Typical temperature in the lens is 450-550°C and overpressure above lithostatic is a few MPa. We conducted a parametric analysis, investigating the influence of model parameters on accumulation of halite and metals. We found that a higher permeability in the conduit, a smaller permeability in the surrounding rocks and a higher salinity of magmatic fluid favor larger lenses. A smaller magmatic fluid temperature T , i.e. temperature in the chamber, results in a smaller lens that disappears abruptly at a threshold value Ta≈ 650˚ C, and it does not form at T Ta the lens parameters are most

  5. Pressure evolution in shallow magma chambers upon buoyancy-driven replenishment (United States)

    Papale, P.; Montagna, C. P.; Longo, A.


    The invasion of active magma chambers by primitive magma of deeper provenance is a frequent occurrence in volcanic systems, and it is commonly associated with pressurization. Chamber replenishment is driven by pressure and buoyancy forces that cause magma ascent towards shallow depths. We examine the end-member case of pure buoyancy-driven (natural) convection in crustal reservoirs deriving from the presence of degassed, dense magma at shallow level, that can originate a gravitational instability. Space-time-dependent numerical simulations of magma dynamics in composite underground systems reveal highly nonlinear pressure evolution dominated by decompression at shallow depths. This counterintuitive result originates from the compressible nature of multiphase magmas and their complex convection and mixing dynamics. Shallow magma chamber decompression on replenishment is favored by large volatile contents of the uprising magma, resulting in large density contrasts among the resident and the incoming components. These results show that the intuitive concept of magma chamber pressurization upon replenishment may not always hold in real situations dominated by buoyancy, and provide new perspectives for the interpretation of geophysical records at active volcanoes.Plain Language SummaryA common process at active volcanoes worldwide is the arrival of magma from depth of tens of kilometers into shallower (depths of some km) reservoirs ("magma chambers"), containing themselves magma that can be different in terms of gas content and composition. We present numerical simulations that describe this process, with particular reference to the Campi Flegrei volcano in Italy. Our results show that, depending on the specific conditions and the gas contents of the two magma types, this process can lead to a decrease in pressure of the shallow chamber. When interpreting ground deformation signals, very often magma rise toward shallow depths is linked to inflation, caused by pressure

  6. Evolution of the magma feeding system during a Plinian eruption: The case of Pomici di Avellino eruption of Somma-Vesuvius, Italy (United States)

    Massaro, S.; Costa, A.; Sulpizio, R.


    The current paradigm for volcanic eruptions is that magma erupts from a deep magma reservoir through a volcanic conduit, typically modelled with fixed rigid geometries such as cylinders. This simplistic view of a volcanic eruption does not account for the complex dynamics that usually characterise a large explosive event. Numerical simulations of magma flow in a conduit combined with volcanological and geological data, allow for the first description of a physics-based model of the feeding system evolution during a sustained phase of an explosive eruption. The method was applied to the Plinian phase of the Pomici di Avellino eruption (PdA, 3945 ±10 cal yr BP) from Somma-Vesuvius (Italy). Information available from volcanology, petrology, and lithology studies was used as input data and as constraints for the model. In particular, Mass Discharge Rates (MDRs) assessed from volcanological methods were used as target values for numerical simulations. The model solutions, which are non-unique, were constrained using geological and volcanological data, such as volume estimates and types of lithic components in the fall deposits. Three stable geometric configurations of the feeding system (described assuming elliptical cross-section of variable dimensions) were assessed for the Eruptive Units 2 and 3 (EU2, EU3), which form the magmatic Plinian phase of PdA eruption. They describe the conduit system geometry at time of deposition of EU2 base, EU2 top, and EU3. A 7-km deep dyke (length 2 a = 200-4 00 m, width 2 b = 10- 12 m), connecting the magma chamber to the surface, characterised the feeding system at the onset of the Plinian phase (EU2 base). The feeding system rapidly evolved into hybrid geometric configuration, with a deeper dyke (length 2 a = 600- 800 m, width 2 b = 50 m) and a shallower cylindrical conduit (diameter D = 50 m, dyke-to-cylinder transition depth ∼2100 m), during the eruption of the EU2 top. The deeper dyke reached the dimensions of 2 a = 2000 m and

  7. Feasibility of a magma ocean dynamo on Mars (United States)

    Helffrich, George


    Crustal magnetization of rocks in regions of Mars surface testifies to an era of dynamo activity. I examine the possibility that the dynamo that operated then, in the first 400-600 Ma after Mars formed, was powered by a crystallizing subsurface magma ocean. Of the ways that a magma ocean dynamo could operate, on Mars only turbulent and magnetostrophic dynamos seem feasible; geostrophic dynamos do not seem so unless very high heat flows, 100-1000 times present, are invoked. Given the anticipated information from the future InSight lander mission, it will be difficult to assess where the dynamo originated unless an inner core is discovered, rendering the dynamo likely to have operated in the core. [Figure not available: see fulltext.

  8. What can Fe stable isotopes tell us about magmas?

    DEFF Research Database (Denmark)

    Stausberg, Niklas

    in magmas, Fe. Fe isotope compositions of magmatic rocks exhibit systematic differences, where the heaviest compositions are found in rhyolites and granites. Understanding of these systematics is complicated by a lack of constraints on Fe isotope fractionation among minerals and liquids under magmatic...... the differentiation of magmas from the perspective of Fe stable isotopes, integrated with petrology, by studying igneous rocks and their constituent phases (minerals and glasses) from the Bushveld Complex, South Africa, Thingmuli, Iceland, Pantelleria, Italy, and the Bishop Tuff, USA. The findings are interpreted...... in terms of available theory, experiments and forward modeling incorporating petrologic constraints. Mafic cumulate rocks from the Bushveld Complex exhibit resolvable whole rock Fe isotopic variation with modal mineralogy and mineral composition, to a 1st order reflecting partitioning of Fe3+ and Fe2...

  9. Oxygen regime of Siberian alkaline-ultramafic magmas (United States)

    Ryabchikov, Igor; Kogarko, Liya


    Regimes of S2 and O2 are decisive factors controlling behavior of chalcophile and siderophile elements in magmatic processes. These parameters play important role during magmagenesis and in the course of crystallization and fluid mass transfer in magma chamber. Alkaline-ultramafic magmatism in Maymecha-Kotuy Province (Polar Siberia) is represented by giant intrusive complexes as well as by volcanics and dyke rocks, which include a well-known variety - meimechites. The latter are considered primary magmas of alkaline-ultramafic plutons in the region like for instance Guli intrusive complex. Sulfur content in primitive magmas estimated from the analyses of melt inclusions in olivine megacrysts from meimechites is close to 0.1 %. fO2 values calculated using olivine+clinopyroxene+spinel and spinel+melt oxygen barometers (1, 2) are 2-3 log units above QFM buffer. The relatively high oxygen potential at the early magmatic stage of alkaline-ultramafic Guli pluton provide predominance of sulfates among other forms of sulfur in the melt. This leads to the almost complete absence of sulfides in highly magnesian rocks. The oxidizing conditions exert important effect on behavior of many ore metals. At the stage of magma generation absence of sulfides in mantle materialresults in the presence of siderophile elements in metallic form and saturation of primary magmas in respect of metallic phases at an early stage of injection of the melt into the magma chamber. Later, under favorable circumstances during magma crystallization nuggets of precious metals may be formed. During further evolution of magmatic system fO2 and activity of oxidized sulfur decrease due to intensive crystallization of magnetite during the formation of koswites, then oxygen fugacity becomes even lower as a result serpentinization at a postmagmatic stage. These serpentization processes are caused by the displacement of reactions in the aqueous phase due to cooling towards the formation of methane and other

  10. Magma evolution and ascent at the Craters of the Moon and neighboring volcanic fields, southern Idaho, USA: implications for the evolution of polygenetic and monogenetic volcanic fields (United States)

    Putirka, Keith D.; Kuntz, Mel A.; Unruh, Daniel M.; Vaid, Nitin


    The evolution of polygenetic and monogenetic volcanic fields must reflect differences in magma processing during ascent. To assess their evolution we use thermobarometry and geochemistry to evaluate ascent paths for neighboring, nearly coeval volcanic fields in the Snake River Plain, in south-central Idaho, derived from (1) dominantly Holocene polygenetic evolved lavas from the Craters of the Moon lava field (COME) and (2) Quaternary non-evolved, olivine tholeiites (NEOT) from nearby monogenetic volcanic fields. These data show that NEOT have high magmatic temperatures (1205 + or - 27 degrees C) and a narrow temperature range (50 degrees C). Prolonged storage of COME magmas allows them to evolve to higher 87Sr/86Sr and SiO2, and lower MgO and 143Nd/144Nd. Most importantly, ascent paths control evolution: NEOT often erupt near the axis of the plain where high-flux (Yellowstone-related), pre-Holocene magmatic activity replaces granitic middle crust with basaltic sills, resulting in a net increase in NEOT magma buoyancy. COME flows erupt off-axis, where felsic crustal lithologies sometimes remain intact, providing a barrier to ascent and a source for crustal contamination. A three-stage ascent process explains the entire range of erupted compositions. Stage 1 (40-20 km): picrites are transported to the middle crust, undergoing partial crystallization of olivine + or - clinopyroxene. COME magmas pass through unarmored conduits and assimilate 1% or less of ancient gabbroic crust having high Sr and 87Sr/86Sr and low SiO2. Stage 2 (20-10 km): magmas are stored within the middle crust, and evolve to moderate MgO (10%). NEOT magmas, reaching 10% MgO, are positively buoyant and migrate through the middle crust. COME magmas remain negatively buoyant and so crystallize further and assimilate middle crust. Stage 3 (15-0 km): final ascent and eruption occurs when volatile contents, increased by differentiation, are sufficient (1-2 wt % H2O) to provide magma buoyancy through the

  11. MAGMA: Generalized Gene-Set Analysis of GWAS Data (United States)

    de Leeuw, Christiaan A.; Mooij, Joris M.; Heskes, Tom; Posthuma, Danielle


    By aggregating data for complex traits in a biologically meaningful way, gene and gene-set analysis constitute a valuable addition to single-marker analysis. However, although various methods for gene and gene-set analysis currently exist, they generally suffer from a number of issues. Statistical power for most methods is strongly affected by linkage disequilibrium between markers, multi-marker associations are often hard to detect, and the reliance on permutation to compute p-values tends to make the analysis computationally very expensive. To address these issues we have developed MAGMA, a novel tool for gene and gene-set analysis. The gene analysis is based on a multiple regression model, to provide better statistical performance. The gene-set analysis is built as a separate layer around the gene analysis for additional flexibility. This gene-set analysis also uses a regression structure to allow generalization to analysis of continuous properties of genes and simultaneous analysis of multiple gene sets and other gene properties. Simulations and an analysis of Crohn’s Disease data are used to evaluate the performance of MAGMA and to compare it to a number of other gene and gene-set analysis tools. The results show that MAGMA has significantly more power than other tools for both the gene and the gene-set analysis, identifying more genes and gene sets associated with Crohn’s Disease while maintaining a correct type 1 error rate. Moreover, the MAGMA analysis of the Crohn’s Disease data was found to be considerably faster as well. PMID:25885710

  12. Apatite: a new redox proxy for silicic magmas?


    Miles, A.J.; Graham, C M; Hawkesworth, C.J.; Gillespie, M.R.; Hinton, R.W.; Bromiley, G.D.


    The oxidation states of magmas provide valuable information about the release and speciation of volatile elements during volcanic eruptions, metallogenesis, source rock compositions, open system magmatic processes, tectonic settings and potentially titanium (Ti) activity in chemical systems used for Ti-dependent geothermometers and geobarometers. In this paper we explore the use of Mn in apatite as an oxybarometer in intermediate and silicic igneous rocks. Increased Mn concentrations in apati...

  13. The chlorine isotope fingerprint of the lunar magma ocean. (United States)

    Boyce, Jeremy W; Treiman, Allan H; Guan, Yunbin; Ma, Chi; Eiler, John M; Gross, Juliane; Greenwood, James P; Stolper, Edward M


    The Moon contains chlorine that is isotopically unlike that of any other body yet studied in the Solar System, an observation that has been interpreted to support traditional models of the formation of a nominally hydrogen-free ("dry") Moon. We have analyzed abundances and isotopic compositions of Cl and H in lunar mare basalts, and find little evidence that anhydrous lava outgassing was important in generating chlorine isotope anomalies, because (37)Cl/(35)Cl ratios are not related to Cl abundance, H abundance, or D/H ratios in a manner consistent with the lava-outgassing hypothesis. Instead, (37)Cl/(35)Cl correlates positively with Cl abundance in apatite, as well as with whole-rock Th abundances and La/Lu ratios, suggesting that the high (37)Cl/(35)Cl in lunar basalts is inherited from urKREEP, the last dregs of the lunar magma ocean. These new data suggest that the high chlorine isotope ratios of lunar basalts result not from the degassing of their lavas but from degassing of the lunar magma ocean early in the Moon's history. Chlorine isotope variability is therefore an indicator of planetary magma ocean degassing, an important stage in the formation of terrestrial planets.

  14. Deep degassing and the eruptibility of flood basalt magmas (United States)

    Black, B. A.; Manga, M.


    Individual flood basalt lavas often exceed 103 km3 in volume, and many such lavas erupt during emplacement of flood basalt provinces. The large volume of individual flood basalt lavas demands correspondingly large magma reservoirs within or at the base of the crust. To erupt, some fraction of this magma must become buoyant and overpressure must be sufficient to encourage failure and dike propagation. Because the overpressure associated with a new injection of magma is inversely proportional to the total reservoir volume, buoyancy overpressure has been proposed as a trigger for flood basalt eruptions. To test this hypothesis, we develop a new one-dimensional model for buoyancy overpressure-driven eruptions that combines volatile exsolution, bubble growth and rise, assimilation, and permeable fluid escape through the surrounding country rocks. Degassing during emplacement of flood basalt provinces may have major environmental repercussions. We investigate the temporal evolution of permeable degassing through the crust and degassing during eruptive episodes. We find that assimilation of volatile-rich country rocks strongly enhances flood basalt eruptibility, implying that the eruptive dynamics of flood basalts may be intertwined with their climatic consequences.

  15. Flow mechanism and viscosity in basaltic magma chambers (United States)

    Nicolas, A.; Ildefonse, B.

    Magmatic flow in the dense suspension of crystallizing gabbros below the free surface of basaltic magma chambers is considered from the point of view of flow mechanisms and rheology. Hyperdense suspensions (˜20% melt fraction) may arise if flat plagioclase crystals develop a strong preferred orientation induced by magmatic flow. With the help of Nomarski differential interference contrast and back scattered electron figures, we show that suspension flow is possible even for smaller melt fractions if impingements between moving crystals are reduced by chemical dissolution at their contact points. This dissolution process is rate controlling. With strain rates near 10-9 s-1 and viscosities near 1014-16 Pa.s, such crystalline mushes should be closer to plastically deforming solids than to the overlying basaltic suspension. If we characterize magma chambers by suspension flow, no matter how small the melt fraction, magma chambers below oceanic fast spreading centers should not be restricted to a perched melt lens, but should extend to the Moho and comprise the entire volume of observed strong seismic attenuation.

  16. The shallow magma chamber of Stromboli Volcano (Italy) (United States)

    Patanè, D.; Barberi, G.; De Gori, P.; Cocina, O.; Zuccarello, L.; Garcia-Yeguas, A.; Castellano, M.; D'Alessandro, A.; Sgroi, T.


    In this work, we integrate artificial and natural seismic sources data to obtain high-resolution images of the shallow inner structure of Stromboli Volcano. Overall, we used a total of 21,953 P readings from an active seismic experiment and an additional 2731 P and 992 S readings deriving from 269 local events. The well-defined Vp, Vs, and Vp/Vs tomograms have highlighted the following: (i) the region where magma cumulates at shallow depths (2-4 km below sea level (bsl)), forming an elongated NE-SW high-velocity body (Vp ≥ 6.0 km/s and Vs ≥ 3.5 km/s), with a very fast velocity core (6.5 ≤ Vp vertical pipe-like structures, characterized by relatively high P velocities values, mainly linked to past activity (e.g., Strombolicchio); and (iii) a near-vertical pipe-like volume with high Vp/Vs (1.78 ÷ 1.85), located beneath to the craters (down to 1.0 km bsl), overlying a deeper region (1.0 to 3.0 km bsl) with low Vp/Vs (1.64 ÷ 1.69), interpreted as the actual and preferential pathway of magma toward the surface. Our results demonstrate the importance of combining passive and active seismic data to improve, in a tomographic inversion, the resolution of the volcanic structures and to discover where magma may be stored.

  17. Magma ascent and lava dome evolution at Volcán de Colima, Mexico (United States)

    Varley, N. R.; Arámbula, R.; Lavallée, Y.; Bernstein, M.; Ryan, A. G.; Maskell, A.


    The transition between explosive and effusive activity can be triggered by subtle variations in parameters which dictate the efficiency and speed of degassing from an ascending magma body. Indirect methods have to be utilized to constrain these parameters, to test and refine numerical models, which ultimately permit a more powerful interpretation of monitoring data. Recent activity at Volcán de Colima has included many transitions between different regimes, offering a great opportunity to examine conduit processes. Explosive activity peaked in 2005 with 30 Vulcanian eruptions producing pyroclastic flows, some reaching >5km from the volcano. Each event was associated with a swarm of long-period (LP) seismic events. A poor correlation between swarm characteristics and the size of the explosion suggests independence between the source mechanisms of each phenomenon. The LP events were divided into 10 families, all of which reappeared in different swarms and the majority continued to occur after the Vulcanian explosion. This is evidence of the complexity of the upper edifice, with the source regions for the LP events remaining unaffected by the explosions. We believe they are produced by brittle deformation once a certain strain-rate threshold has been surpassed. The explosions were associated with rapidly ascending magma bodies that were degassing and crystallizing near the surface, each one being destroyed in the subsequent explosion. Magma sometimes reached the crater, with small short-lived domes being observed. In some cases a post-explosion increase in amplitude of the LP events might have reflected an increase in effusion rate after an unloading of material higher in the vent. Volcán de Colima has produced 5 episodes of effusive activity in the last 11 years. These have been of variable duration and intensity, with over 2 orders of magnitude variation in the effusion rate. The current phase has been characterised by a remarkably sustained (from Jan. 07 to at

  18. The Yellowstone magma reservoir is 50% larger than previously imaged (United States)

    Farrell, J.; Smith, R. B.; Husen, S.


    Earlier tomographic studies of the Yellowstone crustal magma system have revealed a low P-wave crustal anomaly beneath the 0.64 Ma Yellowstone caldera that has been interpreted to be the magma reservoir of partial melt that provides the thermal energy for Yellowstone's youthful volcanic and hydrothermal systems. The Yellowstone seismic network has evolved over the last decade into a modern real-time volcano monitoring system that consists of 36 short-period, broadband, and borehole seismometers that cover the entire Yellowstone volcanic field and surrounding tectonic areas. Until recently, limited seismograph coverage did not provide for adequate resolution of the velocity structure northeast of the caldera, an area of the largest negative Bouguer gravity field of -60 mGal whose 3D density model reveals a shallow, low density body that extends ~20 km northeast of the caldera. Recent upgrades to the Yellowstone Seismic Network (YSN), including the addition of nine 3-component and broadband seismic stations providing much better ray coverage of the entire Yellowstone area with greater bandwidth data. This allows much-expanded and improved resolution coverage of the Yellowstone crustal velocity structure. We have compiled waveforms for the Yellowstone earthquake catalog from 1984-2011 with 45,643 earthquakes and 1,159,724 waveforms to analyze P-wave arrival times with an automatic picker based on an adaptive high-fidelity human mimicking algorithm. Our analysis reduced the data to the 4,520 best-located earthquakes with 48,622 P-wave arrival times to invert for the velocity structure. The resulting 3D P-wave model reveals a low Vp body (up to -7% ΔVp) that is interpreted to be the Yellowstone crustal magma reservoir and is ~50% larger than previously imaged. It extends as an oblong shaped anomalous body ~90 km NE-SW, ~20 km NE of the 0.64 Ma caldera, and up to 30 km wide and markedly shallowing from 15 km depth beneath the caldera to less than ~2 km deep northeast of

  19. The memory of volcanic waters: Shallow magma degassing revealed by halogen monitoring in thermal springs of La Soufrière volcano (Guadeloupe, Lesser Antilles) (United States)

    Villemant, Benoît; Hammouya, Gilbert; Michel, Agnès; Semet, Michel P.; Komorowski, Jean-Christophe; Boudon, Georges; Cheminée, Jean-Louis


    The halogen contents of thermal waters collected since 1979 at La Soufrière volcano (Guadeloupe, Lesser Antilles) are interpreted as a retarded record of magma degassing pulses dispersed into the hydrothermal system. The further the spring is located from the source, the larger the time delay and the older the event recorded in water chemistry. Using advection-dispersion transport models in porous media, we reconstruct the time-series of degassing pulses for the period 1971-1992 and show that it correlates with the seismic records. The 1975-1977 sismo-volcanic crisis at La Soufrière is thereby interpreted as the result of a magma intrusion at shallow depth (˜3 km) which likely began in approximately 1973 and degassed in a pulsatory regime during ˜15 yr. The recent recrudescence of fumarolic and seismic activity could represent the initial stage of new magma injection. Measurement of halogen contents in hydrothermal waters collected around active volcanoes may provide a powerful tool for detection of the initial stages of magma intrusions.

  20. Transfer of volatiles and metals from mafic to felsic magmas in composite magma chambers: An experimental study (United States)

    Guo, Haihao; Audétat, Andreas


    In order to determine the behavior of metals and volatiles during intrusion of mafic magma into the base of silicic, upper crustal magma chambers, fluid-rock partition coefficients (Dfluid/rock) of Li, B, Na, S, Cl, K, Mn, Fe, Rb, Sr, Ba, Ce, Cu, Zn, Ag, Cd, Mo, As, Se, Sb, Te, W, Tl, Pb and Bi were determined experimentally at 2 kbar and 850 °C close to the solidus of mafic magma. In a first step, volatile-bearing mafic glasses were prepared by melting a natural basaltic trachyandesite in the presence of volatile-bearing fluids at 1200 °C/10 kbar in piston cylinder presses. The hydrous glasses were then equilibrated in subsequent experiments at 850 °C/2 kbar in cold-seal pressure vessels, which caused 80-90% of the melt to crystallize. After 0.5-2.0 days of equilibration, the exsolved fluid was trapped by means of in-situ fracturing in the form of synthetic fluid inclusions in quartz. Both the mafic rock residue and the fluid inclusions were subsequently analyzed by laser-ablation ICP-MS for major and trace elements. Reverse experiments were conducted by equilibrating metal-bearing aqueous solutions with rock powder and then trapping the fluid. In two additional experiments, information on relative element mobilities were obtained by reacting fluids that exsolved from crystallizing mafic magma with overlying silicic melts. The combined results suggest that under the studied conditions S, Cl, Cu, Se, Br, Cd and Te are most volatile (Dfluid/rock >10), followed by Li, B, Zn, As, Ag, Sb, Cs, W, Tl, Pb and Bi (Dfluid/rock = 1-10). Less volatile are Na, Mg, K, Ca, Mn, Fe, Rb, Sr, Mo and Rb (Dfluid/rock 0.1-1), and the least fluid-mobile elements are Al, Si, Ti, Zr, Ba and Ce (Dfluid/rock apatite.

  1. Origin of magmas in subduction zones: a review of experimental studies. (United States)

    Kushiro, Ikuo


    Studies of the origin of magmas in subduction zones, particularly in the Japanese island arc, have been significantly advanced by petrological, geochemical, geophysical and experimental studies during last 50 years. Kuno's original model(1)) for magma generation in the Japanese island arc, that tholeiite magmas are formed at relatively shallow levels in the mantle on the Pacific Ocean side whereas alkali basalt magmas are formed in deeper levels on the Japan Sea side, stimulated subsequent studies, particularly high-pressure experimental studies in which the author participated. Recent seismic tomographic studies of regions beneath the Japanese island arc demonstrate that seismic low-velocity zones where primary magmas are formed have finger-like shapes and rise obliquely from the Japan Sea side toward the Pacific Ocean side. Based on experimental studies, it is suggested that the compositions of primary magmas depend mainly on the H2O content and degree of melting in the melting zones, and that primary tholeiite magmas are formed by 10-25% melting of the source mantle containing less than 0.2 wt.% H2O. High-alumina basalt and alkali basalt magmas are formed by smaller degrees of melting of similar mantle, whereas primary boninite magmas are formed by more than 20% melting of the source mantle with more than 0.2 wt.% H2O, and finally, high-magnesia andesite magmas are formed by smaller degrees of melting of similar mantle.

  2. The Torres del Paine intrusion as a model for a shallow magma chamber (United States)

    Baumgartner, Lukas; Bodner, Robert; Leuthold, Julien; Muntener, Othmar; Putlitz, Benita; Vennemann, Torsten


    dykes emanating from the roof of the intrusion into the host rocks. The dykes are perpendicular to the contact, radially shooting into the country rocks. Since the oldest granite is found in the roof, it is also permeated by dykes of successive intrusions. Contact metamorphism can be used to constrain the granite intrusion temperature to ca. 1000°C. Intrusion occurred in multiple pulses along the granite-host rock contact, in rapid succession, before significant cooling occurred in the aureole. Hydration of the biotite and feldspar of the immature sediments in the outer aureole contributed significantly to the overall thermal signature of the host-rock-TPIC system. In contrast, stable isotopes do not document significant fluid circulation. Leuthold, J., Müntener, O., Baumgartner, L., Putlitz, B., Ovtcharova, M., Schaltegger, U. (2012) Time resolved construction of a granitic to mafic laccolith (Torres del Paine, Patagonia). Earth Plan Sci Lett. 325. 85-92 Leuthold J., Müntener O., Baumgartner L.P., Putlitz B., (2014) Recycling of mafic crystal mush, transport and emplacement in the Torres del Paine mafic complex (Patagonia). J. Petrology; accepted pending revision Michel, J., Baumgartner, L.P. Putlitz, B., Ovtcharova, M., Schaltegger, U. (2008) Incremental growth of a shallow crustal laccolith over 80 kyrs: the Torres del Paine Granite, Patagonia. Geology vol. 36, 459-462

  3. Magma-serpentinite interaction as the origin of diatremes: a case study from the Hyblean Plateau (southeastern Sicily) (United States)

    Manuella, Fabio Carmelo; Carbone, Serafina; Ferlito, Carmelo; Hovland, Martin


    Some diatremes formed in the Hyblean Plateau in a time span from 6.5 to 9.4 Ma, producing volcaniclastic deposits, which host deep-seated xenoliths. The origin of the explosive activity that has brecciated the magma and the country rocks is controversial, two are the prevalent models: phreatomagmatic and magmatic brecciation. We propose an alternative explanation based on the thermal and mechanical interaction of a rising basaltic magma with serpentinized mantle rocks, representing the main lithologies in the Permo-Triassic Hyblean basement. We suggest that magma-serpentinite interaction could have remobilized fluids from serpentinites that reached the overpressure necessary for the brecciation of country rocks. The possible depth of this interaction has been estimated considering variations of porosity and permeability at different depths in the Hyblean lithosphere. These properties have been taken into account in the dimensionless parameter V e (Jamtveit et al. in Physical geology of high-level magmatic systems, vol 234. Geological Society, London, Special Publications, London, pp 233-241, 2004), which reflects the relative rates of heat and fluid transport, since a high fluid flux is enhanced by a high boiling temperature of pore water raised by magma-rock heat exchange. V e remains less than 1 up to a depth of 7 km, corresponding to the average thickness of the sedimentary-volcanic sequence, characterized by a high permeability ( k = 10-12-10-14 m2) that inhibits fluid overpressure built up, in contrast to both phreatomagmatic and magmatic models. At deeper levels ( k ~ 10-19 m2), from 8 km downward, the value of V e is greater than 1. Therefore, we propose that the dehydration of serpentinites, upon heating by hot basaltic magma, would have liberated huge amounts of fluids whose accumulation at an average depth of 8 km beneath the impermeable serpentinized level induced supercritical fluid overpressure, strong enough to exceed the lithospheric pressure. Fluid

  4. Juvenile magma recognition and eruptive dynamics inferred from the analysis of ash time series: The 2015 reawakening of Cotopaxi volcano (United States)

    Gaunt, H. Elizabeth; Bernard, Benjamin; Hidalgo, Silvana; Proano, Antonio; Wright, Heather M.; Mothes, Patricia; Criollo, Evelyn; Kueppers, Ulrich


    Forecasting future activity and performing hazard assessments during the reactivation of volcanoes remain great challenges for the volcanological community. On August 14, 2015 Cotopaxi volcano erupted for the first time in 73 years after approximately four months of precursory activity, which included an increase in seismicity, gas emissions, and minor ground deformation. Here we discuss the use of near real-time petrological monitoring of ash samples as a complementary aid to geophysical monitoring, in order to infer eruption dynamics and evaluate possible future eruptive activity at Cotopaxi. Twenty ash samples were collected between August 14 and November 23, 2015 from a monitoring site on the west flank of the volcano. These samples contain a range of grain types that we classified as: hydrothermal/altered, lithic, juvenile, and free crystals. The relative proportions of theses grains evolved as the eruption progressed, with increasing amounts of juvenile material and a decrease in hydrothermally altered material. In samples from the initial explosion, juvenile grains are glassy, microlite-poor and contain hydrothermal minerals (opal and alunite). The rising magma came in contact with the hydrothermal system under confinement, causing hydro-magmatic explosions that cleared the upper part of the plumbing system. Subsequently, the magmatic column produced a thermal aureole in the conduit and dried out the hydrothermal system, allowing for dry eruptions. Magma ascent rates were low enough to allow for efficient outgassing and microlite growth. Constant supply of magma from below caused quasi-continuous disruption of the uppermost magma volume through a combination of shear-deformation and gas expansion. The combination of increasing crystallinity of juvenile grains, and high measured SO2 flux indicate decreasing integrated magma ascent rates and clearing of the hydrothermal system along transport pathways in a system open to gas loss. The near real

  5. Shear zone-controlled magma emplacement or magma-assisted nucleation of shear zones? Insights from northeast Brazil (United States)

    Neves, S. P.; Vauchez, A.; Archanjo, C. J.


    In the Borborema province of northeast Brazil, neoproterozoic granitoids and large-scale transcurrent shear zones are spatially associated, suggesting a genetic link between magma bodies and shear zones. In some cases magma emplacement was clearly favored by shear zone activity, but for several plutons this model is not satisfactory. In these plutons, pre-full crystallization strike-slip deformation, evidenced by parallelism of magmatic foliations and lineations with the solid-state mylonitic fabric, and by a transition from magmatic to solid-state flow, is restricted to the vicinity of the shear zones. Evidence of shear zone activity prior to magma emplacement is lacking, and the magmatic foliation away from the shear zones is in most cases shallowly dipping and concordant with the slightly older, gently-dipping, regional gneissic foliation. Field and anisotropy of magnetic susceptibility mapping, together with petrographic and geochemical studies performed in one of the magmatic complexes of the Borborema province have revealed a structure and a magmatic fabric incompatible with the shear zone-controlled emplacement model. Away from the shear zones, this complex has retained a stratification inherited from the mixing of crystal-poor magmas of contrasting composition, and a magmatic fabric characterized by low-to moderate-dip magmatic foliations bearing a NW-trending lineation, which contrast with vertical foliations bearing NE- or E-W-trending stretching lineations in the shear zones and indicates that crystallization started prior to shear zone development. Based on evidence that magma emplacement predated strike-slip shearing and on information about the transition from magmatic to solid-state deformation observed in the studied plutons, we suggest that incompletely solidified plutons within the crust represent rheological heterogeneities that may induce strain localization and favor shear zone nucleation. We propose that in the studied cases deformation first

  6. Degassing of basaltic magma: decompression experiments and implications for interpreting the textures of volcanic rocks (United States)

    Le Gall, Nolwenn; Pichavant, Michel; Cai, Biao; Lee, Peter; Burton, Mike


    Decompression experiments were performed to simulate the ascent of basaltic magma, with the idea of approaching the textural features of volcanic rocks to provide insights into degassing processes. The experiments were conducted in an internally heated pressure vessel between NNO-1.4 and +0.9. H2O-only (4.9 wt%) and H2O-CO2-bearing (0.71-2.45 wt% H2O, 818-1094 ppm CO2) melts, prepared from Stromboli pumice, were synthesized at 1200°C and 200 MPa, continuously decompressed between 200 and 25 MPa at a rate of either 39 or 78 kPa/s (or 1.5 and 3 m/s, respectively), and rapidly quenched. Run products were characterized both texturally (by X-ray computed tomography and scanning electron microscopy) and chemically (by IR spectroscopy and electron microprobe analysis), and then compared with products from basaltic Plinian eruptions and Stromboli paroxysms (bubble textures, glass inclusions). The obtained results demonstrate that textures are controlled by the kinetics of nucleation, growth, coalescence and outgassing of the bubbles, as well as by fragmentation, which largely depend on the presence of CO2 in the melt and the achievement in chemical equilibrium. Textures of the H2O-only melts result from two nucleation events, the first at high pressure (200 X-ray imaging. The obtained 4D (3D + time) data will help us refine our understanding of magma ascent processes. This experimental programme requires first technology adaptation and development, which is in progress.

  7. Segregating gas from melt: an experimental study of the Ostwald ripening of vapor bubbles in magmas (United States)

    Lautze, Nicole C.; Sisson, Thomas W.; Mangan, Margaret T.; Grove, Timothy L.


    Diffusive coarsening (Ostwald ripening) of H2O and H2O-CO2 bubbles in rhyolite and basaltic andesite melts was studied with elevated temperature–pressure experiments to investigate the rates and time spans over which vapor bubbles may enlarge and attain sufficient buoyancy to segregate in magmatic systems. Bubble growth and segregation are also considered in terms of classical steady-state and transient (non-steady-state) ripening theory. Experimental results are consistent with diffusive coarsening as the dominant mechanism of bubble growth. Ripening is faster in experiments saturated with pure H2O than in those with a CO2-rich mixed vapor probably due to faster diffusion of H2O than CO2 through the melt. None of the experimental series followed the time1/3 increase in mean bubble radius and time-1 decrease in bubble number density predicted by classical steady-state ripening theory. Instead, products are interpreted as resulting from transient regime ripening. Application of transient regime theory suggests that bubbly magmas may require from days to 100 years to reach steady-state ripening conditions. Experimental results, as well as theory for steady-state ripening of bubbles that are immobile or undergoing buoyant ascent, indicate that diffusive coarsening efficiently eliminates micron-sized bubbles and would produce mm-sized bubbles in 102–104 years in crustal magma bodies. Once bubbles attain mm-sizes, their calculated ascent rates are sufficient that they could transit multiple kilometers over hundreds to thousands of years through mafic and silicic melt, respectively. These results show that diffusive coarsening can facilitate transfer of volatiles through, and from, magmatic systems by creating bubbles sufficiently large for rapid ascent.

  8. Xenocryst assimilation and formation of peritectic crystals during magma contamination: An experimental study


    Erdmann, Saskia; Scaillet, Bruno; Kellett, D.A.


    International audience; Contamination of magmas by country rocks may contribute xenoliths and xenocrysts to the magma, but also melt and peritectic crystals that form through incongruent melting or dissolution of the original contaminants. Identifying contaminant-derived peritectic crystals and former melt components in igneous rocks is particularly challenging, but also particularly important, because their assimilation significantly affects melt composition and magma temperature. To facilit...

  9. Lithospheric Evolution of Magmas from the Northern Galapagos Province (United States)

    Miller, M.; Geist, D.; Harpp, K. S.; Mittelstaedt, E. L.


    Volcanoes of the Northern Galapagos Providence (NGP) are crucial to understanding the interaction between the Galapagos Plume and the Galapagos Spreading Center (GSC). The NGP consists of five islands and nine volcanic lineaments, all located south of the GSC. Major and trace element compositions of seamounts within the NGP provide insight into the lithospheric evolution of magma within the province. The FLAMINGO cruise (June, 2010) dredged forty-seven localities in the NGP. Major element compositions were determined by XRF and microprobe analysis of submarine rocks and glasses. Crystallization as a function of pressure and temperature is modeled with MELTS and projections into ternary phase diagrams. The Wolf-Darwin Lineament (WDL) is divided into three groups for evaluation of the lavas’ petrology: Northern Wolf-Darwin lineament (that closest to the GSC including Darwin Island), Middle Wolf-Darwin lineament (MWDL, which includes Wolf Island), and Southern Wolf-Darwin lineament (that closest to the Galapagos Platform). Lavas from two other lineaments to the east of the WDL and around Pinta Island are assessed as well. Two parental compositions are modeled, one enriched and one depleted (K2O/TiO2 >0.23 as enriched and K2O/TiO2 =0.04 as depleted). CaO/Al2O3 and Al2O3 variations with Mg# vary considerably as a function of pressure. Magmas from most of the subregions of the NGP evolved by crystallization of olivine and plagioclase, with little CPX crystallization. This indicates that crystallization beneath these volcanoes is limited to pressures 16.5% could be from very low extents of partial melting. The dominantly shallow crystallization depths within the NGP contrast with the deep crustal crystallization that characterizes magmas from the Galapagos Platform. We attribute the rarity of deep crustal fractionation as due to the relatively thin lithosphere south of the GSC as well as the extensional tectonic regime.

  10. Predicting changes in volcanic activity through modelling magma ascent rate. (United States)

    Thomas, Mark; Neuberg, Jurgen


    It is a simple fact that changes in volcanic activity happen and in retrospect they are easy to spot, the dissimilar eruption dynamics between an effusive and explosive event are not hard to miss. However to be able to predict such changes is a much more complicated process. To cause altering styles of activity we know that some part or combination of parts within the system must vary with time, as if there is no physical change within the system, why would the change in eruptive activity occur? What is unknown is which parts or how big a change is needed. We present the results of a suite of conduit flow models that aim to answer these questions by assessing the influence of individual model parameters such as the dissolved water content or magma temperature. By altering these variables in a systematic manner we measure the effect of the changes by observing the modelled ascent rate. We use the ascent rate as we believe it is a very important indicator that can control the style of eruptive activity. In particular, we found that the sensitivity of the ascent rate to small changes in model parameters surprising. Linking these changes to observable monitoring data in a way that these data could be used as a predictive tool is the ultimate goal of this work. We will show that changes in ascent rate can be estimated by a particular type of seismicity. Low frequency seismicity, thought to be caused by the brittle failure of melt is often linked with the movement of magma within a conduit. We show that acceleration in the rate of low frequency seismicity can correspond to an increase in the rate of magma movement and be used as an indicator for potential changes in eruptive activity.

  11. Workshop on magma/hydrothermal drilling and instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Varnado, S.G.; Colp, J.L. (eds.)


    The discussions, conclusions, and recommendations of the Magma/Hydrothermal Drilling and Instrumentation Workshop, Albuquerque, NM, May 31--June 2, 1978 are summarized. Three working groups were organized as follows: Drilling Location and Environment, Drilling and Completion Technology, and Logging and Instrumentation Technology. The first group discussed potential drilling sites and the environment that could be expected in drilling to magma depth at each site. Sites suggested for early detailed evaluation as candidate drilling sites were The Geysers-Clear Lake, CA, Kilauea, HI, Long Valley-Mono Craters, CA, and Yellowstone, WY. Magma at these sites is expected to range from 3 to 10 km deep with temperatures of 800 to 1100{sup 0}C. Detailed discussions of the characteristics of each site are given. In addition, a list of geophysical measurements desired for the hole is presented. The Drilling and Completion Group discussed limitations on current rotary drilling technology as a function of depth and temperature. The group concluded that present drilling systems can be routinely used to temperatures of 200{sup 0}C and depths to 10 km; drilling to 350{sup 0}C can be accomplished with modifications of present techniques, drilling at temperatures from 350{sup 0}C to 1100{sup 0}C will require the development of new drilling techniques. A summary of the limiting factors in drilling systems is presented, and recommendations for a program directed at correcting these limitations is described. The third group discussed requirements for instrumentation and established priorities for the development of the required instruments. Of highest priority for development were high resolution temperature tools, sampling techniques (core, formation fluids), chemical probes, and communications techniques. A description of instrumentation requirements for the postulated hole is given, and the tasks necessary to develop the required devices are delineated.

  12. The percolation threshold and permeability evolution of ascending magmas (United States)

    Burgisser, Alain; Chevalier, Laure; Gardner, James E.; Castro, Jonathan M.


    The development of gas permeability in magmas is a complex phenomenon that directly influences the style of a volcanic eruption. The emergence of permeability is linked to the concept of percolation threshold, which is the point beyond which gas bubbles are connected in a continuous network that allows gas escape. Measurements of the percolation threshold, however, range from ∼30 to 78 vol%. No known combination of parameters can explain such a wide range of threshold values, which affects our understanding of the relationship between percolation and permeability. We present permeability calculations on bubble-bearing rhyolitic melts that underwent experimental decompression. Samples were analyzed by X-ray microtomography to image the bubble networks in 3D. We develop a percolation threshold for magmas that depends on the bubble network characteristics of this sample set. This relationship recovers the behavior of a wide range of volcanic samples by separating permeable samples from impermeable ones with a success rate of 88%. We use this percolation threshold to propose simplified permeability relationships that rely on parameters widely used in numerical modeling of magma flow. These relationships are valid within one order of magnitude for the viscous permeability coefficient and within two orders of magnitude for the inertial coefficient. They recover the ranges of values previously covered by isolated relationships, reassembling them within a single framework. We test the implications of such unification on eruptive dynamics with a 1D, two-phase conduit flow model. This test shows that varying the percolation threshold has little influence on vertical gas loss and ascent dynamics.

  13. Chapter 9 The magma feeding system of Somma-Vesuvius (Italy) strato-volcano: new inferences from a review of geochemical and Sr, Nd, Pb and O isotope data (United States)

    Piochi, M.; de Vivo, B.; Ayuso, R.A.


    A large database of major, trace and isotope (Sr, Nd, Pb, O) data exists for rocks produced by the volcanic activity of Somma-Vesuvius volcano. Variation diagrams strongly suggest a major role for evolutionary processes such as fractional crystallization, contamination, crystal trapping and magma maxing, occurring after magma genesis in the mantle. Most mafic magmas are enriched in LILE (Light Ion Lithophile Elements; K. Rb, Ba), REE (Ce, Sm) and Y, show small Nb-Ta negative anomalies, and have values of Nb/Zr at about 0.15. Enrichments in LILE, REE, Nb and Ta do not correlate with Sr isotope values or degree of both K enrichment and silica undersaturation. The results indicate mantle source heterogeneity produced by slab-derived components beneath the volcano. However, the Sr isotope values of Somma-Vesuvius increase from 0.7071 up to 0.7081 with transport through the uppermost 11-12 km of the crust. The Sr isotope variation suggests that the crustal component affected the magmas during ascent through the lithosphere to the surface. Our new geochemical assessment based on chemical, isotopic and fluid inclusion data points to the existence of three main levels of magma storage. Two of the levels are deep and may represent long-lived reservoirs; the uppermost crustal level probably coincides with the volcanic conduit. The deeper level of magma storage is deeper than 12 km and fed the 1944 AD eruption. The intermediate level coincides with the seismic discontinuity detected by Zollo et al. (1996) at about 8 km. This intermediate level supplies magmas with 87Sr/86Sr values between 0.7071 and 0.7074, and ??O18<8% that typically erupted both during interplinian (i.e. 1906 AD) and sub-plinian (472 AD, 1631 AD) events. The shallowest level of magma storage at about 5 km was the site of magma chambers for the Pompei and Avellino plinian eruptions. New investigations are necessary to verify the proposed magma feeding system. ?? 2006 Elsevier B.V. All rights reserved.

  14. Monensin mediates a rapid and selective transport of Pb(2+). Possible application of monensin for the treatment of Pb(2+) intoxication. (United States)

    Hamidinia, Shawn A; Shimelis, Olga I; Tan, Bo; Erdahl, Warren L; Chapman, Clifford J; Renkes, Gordon D; Taylor, Richard W; Pfeiffer, Douglas R


    The carboxylic acid ionophore monensin, known as an electroneutral Na(+) ionophore, an anticoccidial agent, and a growth-promoting feed additive in agriculture, is shown to be highly efficient as an ionophore for Pb(2+) and to be highly selective for Pb(2+) compared with other divalent cations. Monensin transports Pb(2+) by an electroneutral mechanism in which the complex PbMonOH is the transporting species. Electrogenic transport via the species PbMon(+) may also be possible. Monensin catalyzed Pb(2+) transport is little affected by Ca(2+), Mg(2+), or K(+) concentrations that are encountered in living systems. Na(+) is inhibitory, but its effectiveness at 100 mm does not exceed approximately 50%. The poor activity of monensin as an ionophore for divalent cations other than Pb(2+) is consistent with the pattern of complex formation constants observed in the mixed solvent 80% methanol/water. This pattern also explains why Ca(2+), Mg(2+), and K(+) are ineffective as inhibitors of Pb(2+) transport, but it does not fully explain the actions of Na(+), where kinetic features of the transport mechanism may also be important. When given to rats at 100 ppm in feed together with Pb(2+) at 100 ppm in drinking water, monensin reduces Pb accumulation in several organs and tissues. It also accelerates the excretion of Pb that was accumulated previously and produces this effect without depleting the organs of zinc or copper. Monensin, used alone or in combination with other agents, may be useful for the treatment of Pb intoxication.

  15. Growth rates of lava domes with respect to viscosity of magmas

    Directory of Open Access Journals (Sweden)

    I. Yokoyama


    Full Text Available In the discussion of lava dome formation, viscosity of magma plays an important role. Measurements of viscosity of magmas in field and laboratory are briefly summarized. The types of lava dome emplacements are classified into two, squeeze- and spine-type, by kinetic processes. The squeeze-type is the formation of a dome as a result of squeezes of magma through conduits and the latter is solidified magma forced to ascend by underlying fluid magma. An important parameter in the formation of such lava domes is their growth rates. Lava domes of squeeze-type are governed by the Hagen-Poiseuille Law which involves their viscosoties and other eruption parameters. At present, the real viscosity of magmas at the site of lava dome is still inaccessible. In order to avoid uncertainty in viscosity of magmas, a conception of «macroscopic viscosity» is proposed, which involves effects of chemical components, mainly SiO2 and volatile material, crystals and temperature, and their changes with time. Lava dome formations during the 20th century are briefly examined and their growth rates are estimated. The relationship between the growth rates and the SiO2 content of the magma is statistically studied, and the macroscopic viscosity is empirically expressed as a function of SiO2 content. The linearity between the two parameters is reasonably interpreted. This means that formation processes of lava domes are dominantly controlled by macroscopic viscosity of magma.

  16. Grain to outcrop-scale frozen moments of dynamic magma mixing in the syenite magma chamber, Yelagiri Alkaline Complex, South India

    Directory of Open Access Journals (Sweden)

    M.L. Renjith


    Full Text Available Magma mixing process is unusual in the petrogenesis of felsic rocks associated with alkaline complex worldwide. Here we present a rare example of magma mixing in syenite from the Yelagiri Alkaline Complex, South India. Yelagiri syenite is a reversely zoned massif with shoshonitic (Na2O + K2O=5–10 wt.%, Na2O/K2O = 0.5–2, TiO2 <0.7 wt.% and metaluminous character. Systematic modal variation of plagioclase (An11–16 Ab82–88, K-feldspar (Or27–95 Ab5–61, diopside (En34–40Fs11–18Wo46–49, biotite, and Ca-amphibole (edenite build up three syenite facies within it and imply the role of in-situ fractional crystallization (FC. Evidences such as (1 disequilibrium micro-textures in feldspars, (2 microgranular mafic enclaves (MME and (3 synplutonic dykes signify mixing of shoshonitic mafic magma (MgO = 4–5 wt.%, SiO2 = 54–59 wt.%, K2O/Na2O = 0.4–0.9 with syenite. Molecular-scale mixing of mafic magma resulted disequilibrium growth of feldspars in syenite. Physical entity of mafic magma preserved as MME due to high thermal-rheological contrast with syenite magma show various hybridization through chemical exchange, mechanical dilution enhanced by chaotic advection and phenocryst migration. In synplutonic dykes, disaggregation and mixing of mafic magma was confined within the conduit of injection. Major-oxides mass balance test quantified that approximately 0.6 portions of mafic magma had interacted with most evolved syenite magma and generated most hybridized MME and dyke samples. It is unique that all the rock types (syenite, MME and synplutonic dykes share similar shoshonitic and metaluminous character; mineral chemistry, REE content, coherent geochemical variation in Harker diagram suggest that mixing of magma between similar composition. Outcrop-scale features of crystal accumulation and flow fabrics also significant along with MME and synplutonic dykes in syenite suggesting that Yelagiri syenite magma chamber had evolved

  17. Iron isotopic compositions of adakitic and non-adakitic granitic magmas: Magma compositional control and subtle residual garnet effect (United States)

    He, Yongsheng; Wu, Hongjie; Ke, Shan; Liu, Sheng-Ao; Wang, Qiang


    Here we present iron (Fe) isotopic compositions of 51 well-characterized adakitic and non-adakitic igneous rocks from the Dabie orogen, Central China and Panama/Costa Rica, Central America. Twelve I-type non-adakitic granitoid samples from the Dabie orogen yield δ56Fe ranging from -0.015‰ to 0.184‰. The good correlations between δ56Fe and indices of magma differentiation (e.g., SiO2, FeOt, Mg#, and Fe3+/ΣFe) suggest Fe2+-rich silicate and oxide minerals dominated fractional crystallization with Δ56Femelt-crystal ∼ 0.06‰ may account for the δ56Fe variation in these samples. One A-type granite sample from the Dabie orogen has δ56Fe as high as 0.447‰, likely indicating less magnetite crystallization and an increase in 103lnβmelt with magma (Na + K)/(Ca + Mg). Combined with the literature data, most high silica (SiO2 ⩾ 71 wt.%) granitic rocks define a good positive linear correlation between δ56Fe and (Na + K)/(Ca + Mg): δ56Fe = 0.0062‰ × (Na + K)/(Ca + Mg) + 0.130‰ (R2 = 0.66). Given that fractional crystallization also tends to increase δ56Fe with (Na + K)/(Ca + Mg), this correlation can serve as the maximum estimate of the magma compositional control on Fe isotope fractionation. Low-Mg adakitic samples (LMA) have δ56Fe ranging from 0.114‰ to 0.253‰. The melt compositional control on LMA δ56Fe could be insignificant due to their limited (Na + K)/(Ca + Mg) variation. Except for one sample that may be affected by late differentiation, 14 out of 15 LMA have δ56Fe increasing with (Dy/Yb)N, reflecting a subtle but significant effect of residual garnet proportion. This serves as evidence for that source mineralogy may play an important role in fractionating Fe isotopes during partial melting. Dabie and Central America high-Mg adakitic samples have homogeneous Fe isotopic compositions with mean δ56Fe of 0.098 ± 0.038‰ (2SD, N = 11) and 0.085 ± 0.045‰ (2SD, N = 11), respectively. These samples have undergone melt-mantle interaction

  18. Initiation of Magma Fragmentation Leading to Vulcanian Explosions (United States)

    Sacks, S. I.; Hidayat, D.; Linde, A. T.; Voight, B.


    The SHV volcano on Montserrat island in the Caribbean has been active since 1995. More than half the island has been made uninhabitable because of continuing dome collapses, pyroclastic flows and vulcanian explosions. In 2003, a small network of borehole strainmeters was installed at ~5 km to ~9 km from the volcano. Since then the strain changes caused by many vulcanian explosions have been recorded. These explosions are short-lived, and result from a sudden decompression of high pressure, vesiculated magma in the conduit. The strain data indicates a decrease in conduit pressure throughout the fragmentation and ejection process that typically occurs in less than 200 seconds. The dense rock equivalent material ejected is usually in the range pressure reduction in the conduit of ~0.5 MPa. This is followed by a strong strain change and vigorous seismic disturbance as is usually observed during vulcanian explosions. The initial pressure reduction is rather similar to the pressure threshold determined for equivalent conditions in the laboratory study. We postulate that a crack in the plug sealing the conduit allows gas to escape, decreasing the pressure at the top of the magma column sufficiently to initiate fragmentation.

  19. Triple oxygen isotope composition of the Campi Flegrei magma systems (United States)

    Iovine, Raffaella Silvia; Wörner, Gerhard; Pack, Andreas; Sengupta, Sukanya; Carmine Mazzeo, Fabio; Arienzo, Ilenia; D'Antonio, Massimo


    Sr-O isotope relationships in igneous rocks are a powerful tool to distinguish magma sources and quantify assimilation processes in magmatic rocks. Isotopic (87Sr/86Sr and 18O/16O-17O/16O) data have been acquired on whole rocks and separated minerals (feldspar, Fe-cpx, Mg-cpx, olivine phenocrysts) from pyroclastic products of the Campi Flegrei volcanic complex (Gulf of Naples, Southern Italy). Oxygen isotope ratios were measured by infrared laser fluorination using a Thermo MAT253 gas source isotope ratio mass spectrometer in dual inlet mode, on ˜2 mg of hand-picked phenocrysts. Variations in triple oxygen isotope ratios (17O/16O, 18O/16O) are expressed as the δ notation relative to VSMOW. Sr isotopic compositions were determined by thermal ionization mass spectrometry after standard cation-exchange methods on separated hand-picked phenocrysts (˜300 mg), and on whole rocks, in case of insufficient sample size to separate crystals. Sr-isotopes in Campi Flegrei minerals range from 0.707305 to 0.707605 and δ18O varies from 6.5 to 8.3‰ . Recalculated δ18Omelt values accordingly show a large range between 7.2 and 8.6‰ . Our data, compared with published δ18O-isotope data from other Italian volcanic centers (Alban Hills, Mts. Ernici, Ischia, Mt. Vesuvius, Aeolian Islands, Tuscany and Sardinia) and from subduction zones worldwide (Kamchatka, Lesser Antilles, Indonesia and Central Andean ignimbrites), show compositions that are very different from typical mantle values. Distinct trends and sources are recognized in our compilation from global data: (1) serpentinized mantle (Kamchatka), (2) sediment-enrichment in the mantle source (Indonesia, Lesser Antilles, Eolian arc), (3) assimilation of old radiogenic continental crust affecting magmas derived from sediment-modified mantle sources (Tuscany, Sardinia), (4) assimilation of lower crustal lithologies (Central Andes, Alban Hills, Mts. Ernici, Ischia). Sr-O-isotope values of Campi Flegrei and Vesuvius magmas

  20. Saccharomyces cerevisiae–Based Platform for Rapid Production and Evaluation of Eukaryotic Nutrient Transporters and Transceptors for Biochemical Studies and Crystallography

    DEFF Research Database (Denmark)

    Scharff-Poulsen, Peter; Pedersen, Per Amstrup


    To produce large quantities of high quality eukaryotic membrane proteins in Saccharomyces cerevisiae, we modified a highcopy vector to express membrane proteins C-terminally-fused to a Tobacco Etch Virus (TEV) protease detachable Green Fluorescent Protein (GFP)-8His tag, which facilitates......-cell GFPfluorescence showed that induction of GFP-fusion synthesis from a galactose-inducible promoter at 15uC resulted in stable accumulation of the fusions in the plasma membrane and in intracellular membranes. Expression levels of the 12 fusions estimated by GFP-fluorescence were in the range of 0.4 mg to 1.7 mg...... yielded partially purified full-length fusions. Most of the fusions were readily cleaved at a TEV protease site between the membrane protein and the GFP-8His tag. Using the yeast oligopeptide transporter Ptr2 as an example, we further demonstrate that almost pure transporters, free of the GFP-8His tag...

  1. Can MODIS data calibrate and validate coastal sediment transport models? Rapid prototyping using 250 m data and the ECOMSED model for Lake Pontchartrain, LA USA. (United States)

    Miller, R. L.; Glorioso, M. V.; Georgiou, I.; McCorquodale, J. A.; Crower, K.


    Field measurements from small boats and sparse arrays of instrumented buoys often do not provide sufficient data to capture the dynamic nature of bio-geophysical parameters in many coastal aquatic environments. Several investigators have shown that MODIS 250 m images can provide daily synoptic views of suspended sediment concentration in coastal waters to determine sediment transport and fate. However, the use of MODIS for coastal environments can be limited due to a lack of cloud-free images. Sediment transport models are not constrained by sky conditions but often suffer from a lack of in situ observations for model calibration or validation. We will demonstrate the utility of MODIS 250 m to calibrate (set model parameters), validate output, and set or re-set initial conditions of a hydrodynamic and sediment transport model (ECOMSED) developed for Lake Pontchartrain, LA USA. We will present our approach to quickly assess or `prototype' the application of NASA data to support environmental managers and decision makers. The combination of daily MODIS imagery and model simulations offer a more robust monitoring and prediction system of suspended sediments than available from either system alone. We will also present a brief introduction of how this approach will be implemented to assess the future use of NPOES-VIIRS images for monitoring coastal sediment processes.

  2. Timescales of Quartz Crystallization and the Longevity of the Bishop Giant Magma Body (United States)

    Gualda, Guilherme A. R.; Pamukcu, Ayla S.; Ghiorso, Mark S.; Anderson, Alfred T.; Sutton, Stephen R.; Rivers, Mark L.


    Supereruptions violently transfer huge amounts (100 s–1000 s km3) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted ∼760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain the timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of crystal-poor magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies. PMID:22666359

  3. Timescales of Quartz Crystallization and the Longevity of the Bishop Giant Magma Body

    Energy Technology Data Exchange (ETDEWEB)

    Gualda, Guilherme A.R.; Pamukcu, Ayla S.; Ghiorso, Mark S.; Anderson, Jr. , Alfred T.; Sutton, Stephen R.; Rivers, Mark L. (OFM Res.); (Vanderbilt); (UC)


    Supereruptions violently transfer huge amounts (100 s-1000 s km{sup 3}) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted {approx}760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain the timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of <10,000 years, more typically within 500-3,000 years before eruption. We conclude that large-volume, crystal-poor magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies.

  4. Compressible magma flow in a two-dimensional elastic-walled dike

    NARCIS (Netherlands)

    Woods, A.W.; Bokhove, Onno; de Boer, A; Hill, B.E.


    The ascent of magma to the Earth's surface is commonly modeled by assuming a fixed dike or flow geometry from a deep subsurface reservoir to the surface. In practice, however, this flow geometry is produced by deformation of the crust by ascending overpressured magma. Here, we explore how this

  5. Timescales of quartz crystallization and the longevity of the Bishop giant magma body. (United States)

    Gualda, Guilherme A R; Pamukcu, Ayla S; Ghiorso, Mark S; Anderson, Alfred T; Sutton, Stephen R; Rivers, Mark L


    Supereruptions violently transfer huge amounts (100 s-1000 s km(3)) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted ~760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain the timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of <10,000 years, more typically within 500-3,000 years before eruption. We conclude that large-volume, crystal-poor magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies.

  6. Protracted near-solidus storage and pre-eruptive rejuvenation of large magma reservoirs (United States)

    Szymanowski, Dawid; Wotzlaw, Jörn-Frederik; Ellis, Ben S.; Bachmann, Olivier; Guillong, Marcel; von Quadt, Albrecht


    Building super-eruptive magma reservoirs in the cold, upper parts of Earth's crust requires a significant influx of magma over an extended period, sufficient to allow the magma to accumulate, differentiate and periodically erupt. Some models favour magma storage in a cold non-eruptible state, requiring extensive reactivation of the reservoirs before eruption, whereas others suggest storage at higher temperature and lower crystallinity, implying that magma in such reservoirs is readily eruptible. Consequently, constraining volcanic hazards requires observations directly linking magma residence timescales to the thermal state and crystallinity of storage. Here we simultaneously determine crystallization temperatures and ages of magmatic crystals of zircon and titanite in the 900 km3 Kneeling Nun Tuff (New Mexico, USA), which allows us to place tight constraints on the long-term thermal evolution of the magma reservoir. We show that zircon and titanite crystals record more than 600,000 years of magma assembly and constrain the dominant storage conditions to low temperatures, set between the granitic solidus (680 to 700 °C) and the temperature of the onset of titanite crystallization (about 720 to 730 °C). We apply the zircon-titanite systematics to a suite of other super-eruptions and suggest that protracted low-temperature storage culminating in late-stage reheating is a widespread feature of large crystal-rich eruptions.

  7. The magma budget of Volcan Arenal, Costa Rica from 1968 to 1980 (United States)

    Wadge, G.


    The magma volume emitted by Volcan Arenal, Costa Rica, has been calculated to be 304 x 10 to the 6th cu m. A near-continuous rise from very deep within the crust is proposed as an explanation for Arenal's magma supply, and the long-term seismic pattern is interpreted as individual batches of magma using previously fractured pathways. During a break in activity (1973) the effusion site moved from Crater A to Crater C, approximately 400 m higher. It is maintained that the steady downward tilting of the volcano's summit was caused by the loading of the volcano's western side by about 19 x 10 to the 6th cu m of lava. Also noted is the abrupt decrease in effusion rate compatible with the increased magmatic head needed to reach Crater C. It is concluded that the constancy of magma composition and effusion rate from 1974 to 1980 indicates a homogeneous magma reservoir.

  8. Evidence for variations in magma production along oceanic spreading centers - A critical appraisal (United States)

    Karson, J. A.; Elthon, D.


    Recent studies of the oceanic lithosphere near fracture zones have resulted in the proposal that the 'magma budget', defined as the amount of magma delivered to magma chambers or conduits beneath a spreading center for a given amount of spreading, decreases as fracture zones are approached. Geochemical variations in basaltic glasses collected near fracture zones are consistent with a decrease in partial melting as fracture zones are approached, but they could also be produced by variations in open-system magmatic processes with no change in the extent of partial melting. Although a decrease in the magma budget as fracture zones are approached is consistent with these data, so are alternative models that incorporate a constant magma budget.

  9. «Magma»: as origens de Guimarães Rosa

    Directory of Open Access Journals (Sweden)

    Luiz Cláudio Vieira de Oliveira


    Full Text Available Resumo: Leitura de Magma, de Guimarães Rosa, com o objetivo de indicar a presença de temas, fragmentos, personagens, expressões e recursos estilísticos ali existentes, em outros textos do autor, cronologicamente posteriores.Palavras-chave: Literatura brasileira; Guimarães Rosa; Magma.Résumé: Lecture de Magma, de Guimarães Rosa, ayant l’objectif de montrer la présence de quelques sujets, fragments, personnages, expressions et traits stylistiques, que y sont présents, et aussi dans autres textes du même auteur, chronologiquement postérieurs.Mots-clés: Littérature brésilienne; Guimarães Rosa; Magma.Keywords: Brazilian literature; Guimarães Rosa; Magma.

  10. The Effect of Thermal Cycling on Crystal-Liquid Separation During Lunar Magma Ocean Differentiation (United States)

    Mills, Ryan D.


    Differentiation of magma oceans likely involves a mixture of fractional and equilibrium crystallization [1]. The existence of: 1) large volumes of anorthosite in the lunar highlands and 2) the incompatible- rich (KREEP) reservoir suggests that fractional crystallization may have dominated during differentiation of the Moon. For this to have occurred, crystal fractionation must have been remarkably efficient. Several authors [e.g. 2, 3] have hypothesized that equilibrium crystallization would have dominated early in differentiation of magma oceans because of crystal entrainment during turbulent convection. However, recent numerical modeling [4] suggests that crystal settling could have occurred throughout the entire solidification history of the lunar magma ocean if crystals were large and crystal fraction was low. These results indicate that the crystal size distribution could have played an important role in differentiation of the lunar magma ocean. Here, I suggest that thermal cycling from tidal heating during lunar magma ocean crystallization caused crystals to coarsen, leading to efficient crystal-liquid separation.

  11. Slab melting and magma formation beneath the southern Cascade arc (United States)

    Walowski, Kristina J.; Wallace, Paul J.; Clynne, Michael A.; Rasmussen, D.J.; Weis, D.


    The processes that drive magma formation beneath the Cascade arc and other warm-slab subduction zones have been debated because young oceanic crust is predicted to largely dehydrate beneath the forearc during subduction. In addition, geochemical variability along strike in the Cascades has led to contrasting interpretations about the role of volatiles in magma generation. Here, we focus on the Lassen segment of the Cascade arc, where previous work has demonstrated across-arc geochemical variations related to subduction enrichment, and H-isotope data suggest that H2O in basaltic magmas is derived from the final breakdown of chlorite in the mantle portion of the slab. We use naturally glassy, olivine-hosted melt inclusions (MI) from the tephra deposits of eight primitive (MgO>7 wt%) basaltic cinder cones to quantify the pre-eruptive volatile contents of mantle-derived melts in this region. The melt inclusions have B concentrations and isotope ratios that are similar to mid-ocean ridge basalt (MORB), suggesting extensive dehydration of the downgoing plate prior to reaching sub-arc depths and little input of slab-derived B into the mantle wedge. However, correlations of volatile and trace element ratios (H2O/Ce, Cl/Nb, Sr/Nd) in the melt inclusions demonstrate that geochemical variability is the result of variable addition of a hydrous subduction component to the mantle wedge. Furthermore, correlations between subduction component tracers and radiogenic isotope ratios show that the subduction component has less radiogenic Sr and Pb than the Lassen sub-arc mantle, which can be explained by melting of subducted Gorda MORB beneath the arc. Agreement between pMELTS melting models and melt inclusion volatile, major, and trace element data suggests that hydrous slab melt addition to the mantle wedge can produce the range in primitive compositions erupted in the Lassen region. Our results provide further evidence that chlorite-derived fluids from the mantle portion of the

  12. Developing a Natural Gas-Powered Bus Rapid Transit Service: A Case Study on Leadership: Roaring Fork Transportation Authority (Presentation); NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, A.


    The Roaring Fork Transportation Authority (RFTA) represents a series of unique successes in alternative fuel deployment by pushing the envelope with innovative solutions. In the last year, RFTA demonstrated the ability to utilize compressed natural gas buses at a range of altitudes, across long distances, in extreme weather conditions and in a modern indoor fueling and maintenance facility - allwhile saving money and providing high-quality customer service. This case study will highlight how the leadership of organizations and communities that are implementing advances in natural gas vehicle technology is paving the way for broader participation.

  13. Saccharomyces cerevisiae-based platform for rapid production and evaluation of eukaryotic nutrient transporters and transceptors for biochemical studies and crystallography. (United States)

    Scharff-Poulsen, Peter; Pedersen, Per Amstrup


    To produce large quantities of high quality eukaryotic membrane proteins in Saccharomyces cerevisiae, we modified a high-copy vector to express membrane proteins C-terminally-fused to a Tobacco Etch Virus (TEV) protease detachable Green Fluorescent Protein (GFP)-8His tag, which facilitates localization, quantification, quality control, and purification. Using this expression system we examined the production of a human glucose transceptor and 11 nutrient transporters and transceptors from S. cerevisiae that have not previously been overexpressed in S. cerevisiae and purified. Whole-cell GFP-fluorescence showed that induction of GFP-fusion synthesis from a galactose-inducible promoter at 15°C resulted in stable accumulation of the fusions in the plasma membrane and in intracellular membranes. Expression levels of the 12 fusions estimated by GFP-fluorescence were in the range of 0.4 mg to 1.7 mg transporter pr. liter cell culture. A detergent screen showed that n-dodecyl-ß-D-maltopyranoside (DDM) is acceptable for solubilization of the membrane-integrated fusions. Extracts of solubilized membranes were prepared with this detergent and used for purifications by Ni-NTA affinity chromatography, which yielded partially purified full-length fusions. Most of the fusions were readily cleaved at a TEV protease site between the membrane protein and the GFP-8His tag. Using the yeast oligopeptide transporter Ptr2 as an example, we further demonstrate that almost pure transporters, free of the GFP-8His tag, can be achieved by TEV protease cleavage followed by reverse immobilized metal-affinity chromatography. The quality of the GFP-fusions was analysed by fluorescence size-exclusion chromatography. Membranes solubilized in DDM resulted in preparations containing aggregated fusions. However, 9 of the fusions solubilized in DDM in presence of cholesteryl hemisuccinate and specific substrates, yielded monodisperse preparations with only minor amounts of aggregated membrane

  14. Magma-Assisted Continental Break-up Encroached on Previously Stretched Continental Lithosphere - the NE Greenland Composite Passive Margin (United States)

    Mazur, S.; Rippington, S.; Houghton, P.


    Volcanic continental margins have a number of distinctive features that are different from those typical of magma-poor continental margins. However, in some places volcanic margins may develop parallel to older, highly extended rift systems. In such situations the resultant continental margin shows a complex structure that merges the characteristics of volcanic and non-volcanic margins. Furthermore, the evolution of this younger magma-rich margin is restricted by the pre-existing lithospheric architecture, causing it to diverge from the generally assumed formation model. We use the case of NE Greenland to demonstrate the structure of a composite margin firstly subjected to extensive extension and later overprinted by magma-assisted continental break-up. The NE Greenland continental margin is a highly extended margin, that is up to 250km wide, with crystalline crust attaining the maximum thickness near to the coast of Greenland and at the Danmarkshaven Ridge. The latter represents a major basement horst formed during an Early Cretaceous rifting event. To the east of the Danmarkshaven Ridge, crust is stretched and onlapped by the Early Cretaceous sedimentary basin. The effects of Tertiary break-up are observable in a relatively narrow zone 80 km wide that usually includes an extended edge of continental crust and an adjacent section of oceanic crust. A volcano-sedimentary succession produced during the break-up reaches the maximum thickness of c. 8000 m above a continent-ocean transition (COB). Oceanic crust overlain by mixed volcanic and sedimentary rocks is thicker than usual. No observable SDRs or igneous transitional crust are present near to the COB. Instead, a chain of high density bodies follow the COB at the base of crust. The features observed suggest relatively little extension associated with the Tertiary break-up. Instead localised mantle melting presumably led to rapid break-up with crustal dilatation promptly balanced by production of thick oceanic

  15. Volatile contents of mafic-to-intermediate magmas at San Cristóbal volcano in Nicaragua (United States)

    Robidoux, P.; Aiuppa, A.; Rotolo, S. G.; Rizzo, A. L.; Hauri, E. H.; Frezzotti, M. L.


    San Cristóbal volcano in northwest Nicaragua is one of the most active basaltic-andesitic stratovolcanoes of the Central American Volcanic Arc (CAVA). Here we provide novel constraints on the volcano's magmatic plumbing system, by presenting the first direct measurements of major volatile contents in mafic-to-intermediate glass inclusions from Holocene and historic-present volcanic activity. Olivine-hosted (forsterite [Fo] parental melts at 1889 μg/g, which is consistent with the less-CO2-degassed melt inclusions (MI) (> 1500 μg/g) found in Nicaragua at Cerro Negro, Nejapa, and Granada. Models of H2O and CO2 solubilities constrain the degassing pathway of magmas up to 425 MPa ( 16 km depth), which includes a deep CO2 degassing step (only partially preserved in the MI record), followed by coupled degassing of H2O and S plus crystal fractionation at magma volatile saturation pressures from ∼ 195 to < 10 MPa. The variation in volatile contents from San Cristóbal MI is interpreted to reflect (1) Holocene eruptive cycles characterized by the rapid emplacement of basaltic magma batches, saturated in volatiles, at depths of 3.8-7.4 km, and (2) the ascent of more-differentiated and cogenetic volatile-poor basaltic andesites during historic-present eruptions, having longer residence times in the shallowest (< 3.4 km) and hence coolest regions of the magmatic plumbing system. We also report the first measurements of the compositions of noble-gas isotopes (He, Ne, and Ar) in fluid inclusions in olivine and pyroxene crystals. While the measured 40Ar/36Ar ratios (300-304) and 4He/20Ne ratios (9-373) indicate some degree of air contamination, the 3He/4He ratios (7.01-7.20 Ra) support a common mantle source for Holocene basalts and historic-present basaltic andesites. The magmatic source is interpreted as generated by a primitive MORB-like mantle, that is influenced to variable extents by distinct slab fluid components for basalts (Ba/La 76 and U/Th 0.8) and basaltic

  16. Relativistic electron transport in a solid target: study of heating in the framework of inertial fusion; Transport d'electrons relativistes dans une cible solide: etude du chauffage dans le cadre de l'allumage rapide

    Energy Technology Data Exchange (ETDEWEB)

    Martinolli, E


    This work is dedicated to the study of the energy deposition of fast electrons in matter. This topic is of prime importance for inertial fusion driven by laser since relativistic electrons are produced in laser-matter interaction for a laser operating in ultra-intense regime. This thesis is made up of: a theoretical chapter dealing with the generation and transport of fast electrons, of 2 chapters reporting experimental data obtained with optical and X-rays diagnostics at the laser facilities of LULI in France and RAL in U.K., and of a chapter dedicated to the simulation of electron transport by using a Monte-Carlo code combined to a hybrid collisional-electromagnetic PIC code. A new spectrometer has been designed: the detection of K{alpha} rays coming from a fluorescent layer embedded in the target has allowed us to assess the size of the electron beam and the level of ionisation. (A.C.)

  17. Across-arc patterns in mafic-magma chemistry controlled by thermal and chemical gradients at the slab interface (United States)

    Mather, Tamsin; Watt, Sebastian; Pyle, David; Naranjo, Jose


    A range of recent studies demonstrate systematic across-arc variations in the volatile and trace element contents of primary arc magmas. Most of these studies used olivine-hosted melt inclusions to bypass upper crustal modifications, and thereby estimate the chemical composition of parental magmas in equilibrium with the mantle. The patterns preserved in these melts can be used to investigate variation in the volatile-rich flux that enters the core of the mantle wedge, and which is sourced from the subducting plate. Similarly, the implied variability in the composition of this flux provides information about fluid and melt transport through the mantle wedge, and of the mineral breakdown processes occurring within the downgoing slab. Here, we report on results from a detailed study of olivine-hosted melt inclusions sampled from a set of scoria cones in southern Chile. These samples include some highly primitive rocks from Apagado, with picritic composition and containing unzoned highly-forsteritic olivine (Fo88). Such rocks are extremely rare in continental arcs. The Chilean rocks display a variation in their water, CO2, and trace element content that suggests that the primary-melt chemistry reflects the pattern of element release at the subducting slab interface. This down-slab chemical gradient is consistent with predictions from modelling, geothermometry and experiments. The flux feeding the arc magmas becomes progressively less water-rich and increasingly dominated by hydrous melts over a distance of a few kilometres. We suggest that this change marks the onset of significant water-fluxed melting of sediment at the downgoing slab-surface. The short length scale of the across-arc chemical patterns in southern Chile is perhaps surprising. The fact that such changes are preserved within our sampled rocks suggests that there is limited across-arc mixing and focussing of fluids or melts as they ascend through the mantle wedge. Our results suggest that slab

  18. Contrasting sediment melt and fluid signatures for magma components in the Aeolian Arc: Implications for numerical modeling of subduction systems (United States)

    Zamboni, Denis; Gazel, Esteban; Ryan, Jeffrey G.; Cannatelli, Claudia; Lucchi, Federico; Atlas, Zachary D.; Trela, Jarek; Mazza, Sarah E.; De Vivo, Benedetto


    The complex geodynamic evolution of Aeolian Arc in the southern Tyrrhenian Sea resulted in melts with some of the most pronounced along the arc geochemical variation in incompatible trace elements and radiogenic isotopes worldwide, likely reflecting variations in arc magma source components. Here we elucidate the effects of subducted components on magma sources along different sections of the Aeolian Arc by evaluating systematics of elements depleted in the upper mantle but enriched in the subducting slab, focusing on a new set of B, Be, As, and Li measurements. Based on our new results, we suggest that both hydrous fluids and silicate melts were involved in element transport from the subducting slab to the mantle wedge. Hydrous fluids strongly influence the chemical composition of lavas in the central arc (Salina) while a melt component from subducted sediments probably plays a key role in metasomatic reactions in the mantle wedge below the peripheral islands (Stromboli). We also noted similarities in subducting components between the Aeolian Archipelago, the Phlegrean Fields, and other volcanic arcs/arc segments around the world (e.g., Sunda, Cascades, Mexican Volcanic Belt). We suggest that the presence of melt components in all these locations resulted from an increase in the mantle wedge temperature by inflow of hot asthenospheric material from tears/windows in the slab or from around the edges of the sinking slab.

  19. Precise relocation of low-frequency earthquakes in Northeast Japan: new insight into arc magma and fluids (United States)

    Niu, Xiongwei; Zhao, Dapeng; Li, Jiabiao


    High-resolution (˜10-20 km) P- and S-wave velocity (Vp, Vs) tomography of the crust and uppermost mantle is determined to relocate precisely a large number of low-frequency earthquakes (LFEs) which occurred in Hokkaido and Tohoku during 2002-2016. The LFEs and seismic tomography are combined to study the arc magma and fluids in the study region. We divide the 4036 LFEs in Hokkaido and 4946 LFEs in Tohoku into 43 groups. Most of the LFEs are located in or around low-Vp, low-Vs and high Poisson's ratio anomalies beneath active arc volcanoes, which indicate the existence of abundant fluids and magmatic activities in the crust and uppermost mantle beneath the volcanoes. Our results also reveal the influence of large crustal earthquakes on the spatial and temporal distributions of the LFEs. Many of the LFEs occurred at edges of the low-Vp and low-Vs zones within ˜15 km of the active volcanoes, indicating transportation and/or cooling of the arc magmas.

  20. Skaergaard parental magma constrained by melt inclusions of cumulus plagioclase (United States)

    Jakobsen, J. K.; Kent, A. J. R.; Tegner, C.; Brooks, C. K.


    Cumulus plagioclase of the 55 Ma Skaergaard intrusion, East Greenland, contains two types melt inclusions. Their form varies from rounded to elongate bodies up to 250 micrometer long often parallel to albite twins. Type-1 inclusions are polycrystalline and composed of plagioclase, augite, magnetite, ilmenite and accessory K-feldspar, biotite, and amphibole. Their abundance varies throughout the intrusion but it is greatest in the Middle Zone but absent in the Hidden Zone. A previous study of type-1 inclusions of the Middle Zone estimated they represent SiO2-poor (46 wt%) and FeO-rich (17 wt%) ferrobasalt calculated by summing mineral compositions weighted by mode (Hanghøj et al., 1995, CMP 120, 265-269). Our study aims to homogenise the crystallised melt inclusion by experimental reheating. Preliminary data of Lower Zone C shows higher SiO2 (50 wt%) and lower FeO (11-12 wt%) and lower titanium than Hanghøj et al. (1995) and all other estimates of Skaergaard magmas. We presently speculate that the unusual composition of the homogenised inclusions is an artefact of overshooting the homogenization temperature (1160°C which is higher than the expected liquidus temperature of 1100 °C) and/or diffusional exchange between host crystal and the melt inclusions. We will continue to test these hypothesis. Type-2 inclusions are glassy or microcrystalline with small oxide crystals. They are found in very high abundance in autoliths thought to represent the Hidden Zone. Homogenised type-2 inclusions have 48 wt% SiO2 and 12 wt% FeO which is similar to chilled margin samples suggested as parental Skaergaard magmas. The rare earth element patterns of the type-2 inclusions are similar to coeval continental flood basalts of the Blosseville coast. We conclude that type-2 melt inclusions represent the parental liquid to the Skaergaard intrusion.

  1. Deciphering magma histories through phosphorus zoning in olivine (United States)

    Ersoy, Ö.; Nikogosian, I.; Mason, P. R. D.; van Bergen, M.


    Since olivine is usually the first major phase to crystallize from basaltic magma, its primary chemistry is a sensitive tracer of the early evolution of volcanic systems. However, fast diffusion and homogenization under magmatic conditions frequently modifies the original composition of olivine, which hampers the reconstruction of cooling histories and magma evolution from the chemistry and zoning patterns of phenocrysts in erupted products. Phosphorous is a notable exception due to its sluggish diffusion in olivine crystals and silicate melts, as igneous olivines almost always display complex zoning patterns. Phosphorus zoning in olivine has been linked either to crystallization rate variations and diffusion controlled growth or to strong compositional controls on melt-mineral partitioning. We illuminate the versatility of P-in-olivine with a comprehensive EPMA and LA-ICPMS dataset on olivines from Italian potassium rich mafic lavas and the primitive melt inclusions (MI) that they host. The olivines are characterized by P concentrations from limit of quantification (22 ppm) to 435 ppm P with MIs containing up to 2.2 wt.% P2O5. High resolution (1-2 μm per pixel) element maps show both fine oscillatory and large scale sector zoning in P, which is uncorrelated with zoning in any other element. The MIs are virtually always surrounded by P-depleted zones that are also depleted in Cr and enriched in Al and Ti, which we attribute to a combination of supply-limited slow growth and melt compositional controls on partitioning behavior imposed by the boundary layer. We demonstrate that P zoning carries valuable information on the nature and timing of magmatic events such as mingling/mixing, wall-rock assimilation and subsequent re-equilibration processes. P-in-olivine is most promising to distinguish multiple generations of MIs, as a guide to study their mode of entrapment and to disclose the origin of primary heterogeneities.

  2. Saccharomyces cerevisiae–Based Platform for Rapid Production and Evaluation of Eukaryotic Nutrient Transporters and Transceptors for Biochemical Studies and Crystallography

    DEFF Research Database (Denmark)

    Scharff-Poulsen, Peter; Pedersen, Per Amstrup


    localization, quantification, quality control, and purification. Using this expression system we examined the production of a human glucose transceptor and 11 nutrient transporters and transceptors from S. cerevisiae that have not previously been overexpressed in S. cerevisiae and purified. Whole...... of the fusions solubilized in DDM in presence of cholesteryl hemisuccinate and specific substrates, yielded monodisperse preparations with only minor amounts of aggregated membrane proteins. In conclusion, we developed a new effective S. cerevisiae expression system that may be used for production of high-quality......To produce large quantities of high quality eukaryotic membrane proteins in Saccharomyces cerevisiae, we modified a highcopy vector to express membrane proteins C-terminally-fused to a Tobacco Etch Virus (TEV) protease detachable Green Fluorescent Protein (GFP)-8His tag, which facilitates...

  3. Timescale and morphology of Martian mantle overturn immediately following magma ocean solidification (United States)

    Scheinberg, A.; Elkins-Tanton, L. T.; Zhong, S. J.


    Energy of accretion in terrestrial planets is expected to create liquid silicate magma oceans. Their solidification processes create silicate differentiation and set the initial mantle structure for the planet. Solidification may result in a compositionally unstable density profile, leading to cumulate Rayleigh-Taylor overturn if a sluggish rather than stagnant lithosphere existed in the early stages of planetary history. The pattern and timescale of overturn, in which cold, dense surface material sinks to the core-mantle boundary, have implications for core dynamo production, volatile escape, and fundamental differences between differently sized bodies. Our fully spherical mantle models reaffirm previous work suggesting that harmonic degree of overturn is dependent on viscosity contrast and layer thickness. We find that cumulate overturn would likely have occurred with short wavelengths. In an isoviscous model, thermal convection ensues rapidly after overturn; however, when viscosity is temperature dependent, compositional stability in the mantle suppresses the onset of whole-mantle thermal convection. For a viscosity of 1018 Pa s, the mantle could fully overturn in as little as 3 Ma.

  4. Magma plumbing system and seismicity of an active mid-ocean ridge volcano. (United States)

    Schmid, Florian; Schlindwein, Vera; Koulakov, Ivan; Plötz, Aline; Scholz, John-Robert


    At mid-ocean ridges volcanism generally decreases with spreading rate but surprisingly massive volcanic centres occur at the slowest spreading ridges. These volcanoes can host unexpectedly strong earthquakes and vigorous, explosive submarine eruptions. Our understanding of the geodynamic processes forming these volcanic centres is still incomplete due to a lack of geophysical data and the difficulty to capture their rare phases of magmatic activity. We present a local earthquake tomographic image of the magma plumbing system beneath the Segment 8 volcano at the ultraslow-spreading Southwest Indian Ridge. The tomography shows a confined domain of partial melt under the volcano. We infer that from there melt is horizontally transported to a neighbouring ridge segment at 35 km distance where microearthquake swarms and intrusion tremor occur that suggest ongoing magmatic activity. Teleseismic earthquakes around the Segment 8 volcano, prior to our study, indicate that the current magmatic spreading episode may already have lasted over a decade and hence its temporal extent greatly exceeds the frequent short-lived spreading episodes at faster opening mid-ocean ridges.

  5. Rapid Migration of Radionuclides Leaked from High-Level Water Tanks; A Study of Salinity Gradients, Wetted Path Geometry and Water Vapor Transport

    Energy Technology Data Exchange (ETDEWEB)

    Anderson l. Ward; Glendon W. Gee; John S. Selker; Clay Cooper


    The basis of this study was the hypothesis that the physical and chemical properties of hypersaline tank waste could lead to wetting from instability and fingered flow following a tank leak. Thus, the goal of this project was to develop an understanding of the impacts of the properties of hypersaline fluids on transport through the unsaturated zone beneath Hanford's Tank Farms. There were three specific objectives (i) to develop an improved conceptualization of hypersaline fluid transport in laboratory (ii) to identify the degree to which field conditions mimic the flow processes observed in the laboratory and (iii) to provide a validation data set to establish the degree to which the conceptual models, embodied in a numerical simulator, could explain the observed field behavior. As hypothesized, high ionic strength solutions entering homogeneous pre-wetted porous media formed unstable wetting fronts atypical of low ionic strength infiltration. In the field, this mechanism could for ce flow in vertical flow paths, 5-15 cm in width, bypassing much of the media and leading to waste penetration to greater depths than would be predicted by current conceptual models. Preferential flow may lead to highly accelerated transport through large homogeneous units, and must be included in any conservative analysis of tank waste losses through coarse-textured units. However, numerical description of fingered flow using current techniques has been unreliable, thereby precluding tank-scale 3-D simulation of these processes. A new approach based on nonzero, hysteretic contract angles and fluid-dependent liquid entry has been developed for the continuum scale modeling of fingered flow. This approach has been coupled with and adaptive-grid finite-difference solver to permit the prediction of finger formation and persistence form sub centimeter scales to the filed scale using both scalar and vector processors. Although laboratory experiments demonstrated that elevated surface

  6. Rapid Migration of Radionuclides Leaked from High-Level Water Tanks: A Study of Salinity Gradients, Wetted Path Geometry and Water Vapor Transport

    Energy Technology Data Exchange (ETDEWEB)

    Anderson L. Ward; Glendon W. Gee; John S. Selker; Caly Cooper


    The basis of this study was the hypothesis that the physical and chemical properties of hypersaline tank waste could lead to wetting from instability and fingered flow following a tank leak. Thus, the goal of this project was to develop an understanding of the impacts of the properties of hypersaline fluids on transport through the unsaturated zone beneath Hanford's Tank Farms. There were three specific objectives (i) to develop an improved conceptualization of hypersaline fluid transport in laboratory (ii) to identify the degree to which field conditions mimic the flow processes observed in the laboratory and (iii) to provide a validation data set to establish the degree to which the conceptual models, embodied in a numerical simulator, could explain the observed field behavior. As hypothesized, high ionic strength solutions entering homogeneous pre-wetted porous media formed unstable wetting fronts a typical of low ionic strength infiltration. In the field, this mechanism could force flow in vertical flow paths, 5-15 cm in width, bypassing much of the media and leading to waste penetration to greater depths than would be predicted by current conceptual models. Preferential flow may lead to highly accelerated transport through large homogeneous units, and must be included in any conservative analysis of tank waste losses through coarse-textured units. However, numerical description of fingered flow using current techniques has been unreliable, thereby precluding tank-scale 3-D simulation of these processes. A new approach based on nonzero, hysteretic contact angles and fluid-dependent liquid entry has been developed for the continuum scale modeling of fingered flow. This approach has been coupled with and adaptive-grid finite-difference solver to permit the prediction of finger formation and persistence form sub centimeter scales to the filed scale using both scalar and vector processors. Although laboratory experiments demonstrated that elevated surface

  7. Magma buoyancy and volatile ascent driving autocyclic eruptivity at Hekla Volcano (Iceland) (United States)

    Hautmann, Stefanie; Sacks, I. Selwyn; Linde, Alan T.; Roberts, Matthew J.


    Volcanic eruptions are typically accompanied by ground deflation due to the withdrawal of magma from depth and its effusion at the surface. Here, based on continuous high-resolution borehole strain data, we show that ground deformation was absent during the major effusion phases of the 1991 and 2000 eruptions of Hekla Volcano, Iceland. This lack of surface deformation challenges the classic model of magma intrusion/withdrawal as source for volcanic ground uplift/subsidence. We incorporate geodetic and geochemical observables into theoretical models of magma chamber dynamics in order to constrain quantitatively alternative co- and intereruptive physical mechanisms that govern magma propagation and system pressurization. We find the lack of surface deformation during lava effusion to be linked to chamber replenishment from below whilst magma migrates as a buoyancy-driven flow from the magma chamber towards the surface. We further demonstrate that intereruptive pressure build-up is likely to be generated by volatile ascent within the chamber rather than magma injection. Our model explains the persistent periodic eruptivity at Hekla throughout historic times with self-initiating cycles and is conceptually relevant to other volcanic systems.

  8. Lifetime and size of shallow magma bodies controlled by crustal-scale magmatism (United States)

    Karakas, Ozge; Degruyter, Wim; Bachmann, Olivier; Dufek, Josef


    Magmatic processes on Earth govern the mass, energy and chemical transfer between the mantle, crust and atmosphere. To understand magma storage conditions in the crust that ultimately control volcanic activity and growth of continents, an evaluation of the mass and heat budget of the entire crustal column during magmatic episodes is essential. Here we use a numerical model to constrain the physical conditions under which both lower and upper crustal magma bodies form. We find that over long durations of intrusions (greater than 105 to 106 yr), extensive lower crustal mush zones develop, which modify the thermal budget of the upper crust and reduce the flux of magma required to sustain upper crustal magma reservoirs. Our results reconcile physical models of magma reservoir construction and field-based estimates of intrusion rates in numerous volcanic and plutonic localities. Young igneous provinces (less than a few hundred thousand years old) are unlikely to support large upper crustal reservoirs, whereas longer-lived systems (active for longer than 1 million years) can accumulate magma and build reservoirs capable of producing super-eruptions, even with intrusion rates smaller than 10-3 to 10-2 km3 yr-1. Hence, total duration of magmatism should be combined with the magma intrusion rates to assess the capability of volcanic systems to form the largest explosive eruptions on Earth.

  9. Magma transfer at Campi Flegrei caldera (Italy) before the 1538 AD eruption. (United States)

    Di Vito, Mauro A; Acocella, Valerio; Aiello, Giuseppe; Barra, Diana; Battaglia, Maurizio; Carandente, Antonio; Del Gaudio, Carlo; de Vita, Sandro; Ricciardi, Giovanni P; Ricco, Ciro; Scandone, Roberto; Terrasi, Filippo


    Calderas are collapse structures related to the emptying of magmatic reservoirs, often associated with large eruptions from long-lived magmatic systems. Understanding how magma is transferred from a magma reservoir to the surface before eruptions is a major challenge. Here we exploit the historical, archaeological and geological record of Campi Flegrei caldera to estimate the surface deformation preceding the Monte Nuovo eruption and investigate the shallow magma transfer. Our data suggest a progressive magma accumulation from ~1251 to 1536 in a 4.6 ± 0.9 km deep source below the caldera centre, and its transfer, between 1536 and 1538, to a 3.8 ± 0.6 km deep magmatic source ~4 km NW of the caldera centre, below Monte Nuovo; this peripheral source fed the eruption through a shallower source, 0.4 ± 0.3 km deep. This is the first reconstruction of pre-eruptive magma transfer at Campi Flegrei and corroborates the existence of a stationary oblate source, below the caldera centre, that has been feeding lateral eruptions for the last ~5 ka. Our results suggest: 1) repeated emplacement of magma through intrusions below the caldera centre; 2) occasional lateral transfer of magma feeding non-central eruptions within the caldera. Comparison with historical unrest at calderas worldwide suggests that this behavior is common.

  10. Surface morphological, electrical and transport properties of rapidly annealed double layers Ru/Cr Schottky structure on n-type InP (United States)

    Shanthi Latha, K.; Rajagopal Reddy, V.


    The electrical and transport properties of a fabricated bilayer Ru/Cr/ n-InP Schottky diode (SD) have been investigated at different annealing temperatures. Atomic force microscopy results have showed that the overall surface morphology of the Ru/Cr/ n-InP SD is fairly smooth at elevated temperatures. High barrier height is achieved for the diode annealed at 300 °C compared to the as-deposited, annealed at 200 and 400 °C diodes. The series resistance and shunt resistance of the Ru/Cr/ n-InP SD are estimated by current-voltage method at different annealing temperatures. The barrier heights and series resistance are also determined by Cheung's and modified Norde functions. The interface state density of the Ru/Cr/ n-InP SD is found to be decreased after annealing at 300 °C and then slightly increased upon annealing at 400 °C. The difference between barrier heights obtained from current-voltage and capacitance-voltage is also discussed. Experimental results have showed that the Poole-Frenkel emission is found to be dominant in the lower bias region whereas Schottky emission is dominant in the higher bias region for the Ru/Cr/ n-InP SDs irrespective of annealing temperatures.

  11. The influences of incremental pluton growth on magma crystallinity and aureole rheology: numerical modeling of growth of the Papoose Flat pluton, California (United States)

    Chen, Yanying; Nabelek, Peter I.


    The Papoose Flat pluton in the White-Inyo Range, California, is one of the best examples of forcefully emplaced plutons within an arc crust, having internal fabrics and a contact aureole that deformed in a ductile manner. A 2-D numerical model for the thermo-rheological evolution of the pluton-wall rock system is proposed. We explore how the frequency of magma input, from instantaneous, episodic to continuous, affects magma chamber crystallinity and rheology of both the pluton and its contact aureole. We model pluton growth in the depth range of 10-13 km, which is at the brittle-ductile transition of the crust, and in the 7-4 km depth range, where the host rocks are initially brittle. For incremental growth (episodic and continuous), the pluton begins as a sill. With subsequent injections to the bottom, the pluton grows into a laccolith. Results of mid-crustal models show that the ductile region above the Papoose Flat pluton is related to thermal weakening. The ductile region during incremental growth is 100-150 m thick, matching the observed thickness. It is ten times thinner than in the instantaneous growth model. In episodic and continuous models, the upper part of the pluton is fully or quasi-crystalline throughout growth. During continuous growth, it is likely to remain ductile with potential for the development of solid-state fabrics. During episodic growth, strain rates within the pluton during each injection may become sufficiently high to cause embrittlement of magma. In no case a ductile aureole develops above the pluton at the upper-crustal level, but may develop below the pluton, which serves as thermal insulator. Thus, the pluton's floor may sag. During incremental growth, most of the pluton is below the solidus and brittle. The results suggest that large volcanic eruptions are unlikely to occur by slow pressurization of magma chambers; instead they require rapid injections of large melt volumes.

  12. Long-period seismicity at Redoubt Volcano, Alaska, 1989-1990 related to magma degassing (United States)

    Morrissey, M.M.


    The mass of exsolved magmatic H2O is estimated and compared to the mass of superheated steam (25-50 Mtons) released through the resonating crack producing the December 13-14, 1989 swarm of long-period seismic events at Redoubt Volcano. Results indicate degassing of a H2O-CO2-SO2-saturated magma upon ascending from at least 12 km to 3-4 km beneath the crater as the source of the superheated steam. The mass of exsolved H2O (3.2-250 Mtons) is estimated from solubility diagrams of H2O-CO2-saturated silicate melts for the ascent history of the Redoubt magmas. Crystal size distribution, seismological, petrological, and geochemical data are used to constrain the ascent history of the two andesitic magmas prior to the eruption. Two stages of crystallization are inferred from crystal size distributions of plagioclase crystals in andesites erupted in December 1989. The first stage occurred 30-150 years before the eruption in both magmas and the second stage occurred at least 8 years and 15 years before the eruption in the dacitic andesite and rhyolitic andesite, respectively. The depths of crystallization are constrained from the spatial and temporal variations of volcano-tectonic earthquakes locations (Lahr et al., 1994) and from the P-wave and S-wave velocity structures (Benz et al., 1996). These data suggest that the rhyolitic andesite magma ascended to a depth of 7-8 km within at least 15 years of the eruption. Within at least 8 years of the eruption, the dacitic andesite magma migrated to a depth just below the other magma body where it resided until hours to days of the eruption. At this time, the dacitic andesite magma mixed with the rhyolitic andesite magma and established the reservoir for the eruption. Near the top of the reservoir, some of the mixed magma was displaced into fractures which extended 4-5 km toward the surface. This displaced magma created the eruption conduit and released the fluids related to the resonating crack. This scenario is consistent with

  13. Generation and transport of fast electrons in the interaction of high intensity laser with matter; Generation et transport des electrons rapides dans l'interaction laser-matiere a haut flux

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, H


    The general context of this study is the Inertial Confinement for thermonuclear controlled fusion and, more precisely, the Fast Igniter (FI). In this context the knowledge of the generation and transport of fast electrons is crucial. This thesis is an experimental study of the generation and transport of fast electrons in the interaction of a high intensity laser ({>=} 10{sup 19} W/cm{sup 2}) with a solid target. The main diagnostic used here is the transition radiation. This radiation depends on the electrons which produce it and thus it gives important information on the electrons: energy, temperature, propagation geometry, etc. The spectral, temporal and spatial analysis permitted to put in evidence the acceleration of periodic electron bunches which, in this case, emit a Coherent Transition Radiation (CTR). During this thesis we have developed some theoretical models in order to explain the experimental results. We find this way two kinds of electron bunches, emitted either at the laser frequency ({omega}{sub 0}), either at the double of this frequency (2{omega}{sub 0}), involving several acceleration mechanisms: vacuum heating / resonance absorption and Lorentz force, respectively. These bunches are also observed in the PIC (particle-in-cell) simulations. The electron temperature is of about 2 MeV in our experimental conditions. The electrons are emitted starting from a point source (which is the laser focal spot) and then propagate in a ballistic way through the target. In some cases they can be re-injected in the target by the electrostatic field from the target edges. This diagnostic is only sensitive to the coherent relativistic electrons, which explains the weak total energy that they contain (about a few mJ). The CTR signal emitted by those fast electrons is largely dominating the signal emitted by the less energetic electrons, even if they contain the major part of the energy (about 1 J). (author)

  14. A spatter-forming, large-scale paroxysm at Stromboli Volcano (Aeolian Islands, Italy): insight into magma evolution and eruption dynamics (United States)

    La Felice, Sonia; Landi, Patrizia


    This study focuses on a pyroclastic sequence related to a large-scale paroxysm that occurred during the seventeenth century ad and which can be considered one of the most powerful and hazardous explosive events at the volcano in the past few centuries. Paroxysms are energetic, short-lived explosions which sporadically interrupt normal Strombolian activity at Stromboli and commonly erupt a deep-derived, volatile-rich crystal-poor high-potassium basalt ("low porphyricity" (LP)), together with a shallow, degassed crystal-rich high-potassium to shoshonitic basalt ("high porphyricity" (HP)), which feed normal activity at the volcano. The studied deposit, crops out along the flanks of Sciara del Fuoco and, from base to top, consists of: (1) a layer of HP and LP ash and lapilli; (2) an unwelded layer of coarse HP lapilli and flattened dark scoriae; (3) weakly welded spatter made up of dense HP pyroclasts at the base, overlain by strongly vesicular LP clasts. The textural and chemical zoning of minerals and the glass chemistry of the LP products record repeated mafic recharge events, mixing with an old mushy body and episodes of rapid crystallization due to sudden degassing. Collapse of a foam layer originated by deep degassing probably triggered this large-scale, spatter-forming paroxysm. Decompression induced rapid degassing and vesiculation of the deep volatile-rich magma. The rapid ascent of the foamy magma blob pushed the shallow HP magma out and finally produced a fire fountain that emplaced the LP portion of the spatter.

  15. Deciphering Magma Flow Directions From Complex Magnetic Fabrics (United States)

    Plenier, G.; Glen, J. M.


    A simple relation is generally presumed to exist between an igneous rock's anisotropy of magnetic susceptibility (AMS) fabric and magma flow. In such cases (termed " normal "), the magnetic fabric displays a magnetic foliation pole, given by the minimum AMS axis, that lies perpendicular to the flow plane (i.e., dike walls, or lava flow top or bottom) and a magnetic lineation (AMS maximum axis) aligned with the flow direction. However, abnormal fabrics differing significantly from the normal case are more common than is generally accepted, possibly biasing the interpretation of flow directions. Surprisingly, such cases often have AMS axes that are aligned with the flow coordinates but are flipped (through 90 degrees) with respect to each other. One of the most compelling causes for these " permuted " fabrics involves mixtures of uniaxial single domain (SD) and multi-domain (MD) titanomagnetites (Rochette et al., 1992; Ferre, 2002). In cases where grain size mixtures are responsible for the permuted fabrics, magnetic anisotropy techniques, that isolate the influence of different grain size fractions on magnetic fabric, might allow the true flow directions to be recovered (Plenier and Glen 2005). We will present two such methods that can be used to achieve this goal. The first method acts on the pseudo-single domain (PSD) grain size fraction. The presence of a sub-saturating field tends to saturate the PSD grains that in turn behave more like SD grains. The second method is particularly suited for samples that contain a fraction of super paramagnetic (SP) grains. It involves cooling samples below the SP-blocking temperature in order to increase their fraction of single domain grains. These treatments both result in changes of the sample's AMS fabric that might allow one to recover the true flow directions. We will discuss results from both of these methods, along with independent measurements made to assess magnetic mineralogy and grain size, to determine magma flow

  16. NVP melt/magma viscosity: insight on Mercury lava flows (United States)

    Rossi, Stefano; Morgavi, Daniele; Namur, Olivier; Vetere, Francesco; Perugini, Diego; Mancinelli, Paolo; Pauselli, Cristina


    After more than four years of orbiting Mercury, NASA's MESSENGER spacecraft came to an end in late April 2015. MESSENGER has provided many new and surprising results. This session will again highlight the latest results on Mercury based on MESSENGER observations or updated modelling. The session will further address instrument calibration and science performance both retrospective on MESSENGER and on the ESA/JAXA BepiColombo mission. Papers covering additional themes related to Mercury are also welcomed. Please be aware that this session will be held as a PICO session. This will allow an intensive exchange of expertise and experience between the individual instruments and mission. NVP melt/magma viscosity: insight on Mercury lava flows S. Rossi1, D. Morgavi1, O. Namur2, D. Perugini1, F.Vetere1, P. Mancinelli1 and C. Pauselli1 1 Dipartimento di Fisica e Geologia, Università di Perugia, piazza Università 1, 06123 Perugia, Italy 2 Uni Hannover Institut für Mineralogie, Leibniz Universität Hannover, Callinstraβe 3, 30167 Hannover, Germany In this contribution we report new measurements of viscosity of synthetic komatitic melts, used the behaviour of silicate melts erupted at the surface of Mercury. Composition of Mercurian surface magmas was calculated using the most recent maps produced from MESSENGER XRS data (Weider et al., 2015). We focused on the northern hemisphere (Northern Volcanic Province, NVP, the largest lava flow on Mercury and possibly in the Solar System) for which the spatial resolution of MESSENGER measurements is high and individual maps of Mg/Si, Ca/Si, Al/Si and S/Si were combined. The experimental starting material contains high Na2O content (≈7 wt.%) that strongly influences viscosity. High temperature viscosity measurements were carried out at 1 atm using a concentric cylinder apparatus equipped with an Anton Paar RheolabQC viscometer head at the Department of Physics and Geology (PVRG_lab) at the University of Perugia (Perugia, Italy

  17. Seismic tomography reveals magma chamber location beneath Uturuncu volcano (Bolivia) (United States)

    Kukarina, Ekaterina; West, Michael; Koulakov, Ivan


    Uturuncu volcano belongs to the Altiplano-Puna Volcanic Complex in the central Andes, the product of an ignimbrite ''flare-up''. The region has been the site of large-scale silicic magmatism since 10 Ma, producing 10 major eruptive calderas and edifices, some of which are multiple-eruption resurgent complexes as large as the Yellowstone or Long Valley caldera. Satellite measurements show that the hill has been rising more than half an inch a year for almost 20 years, suggesting that the Uturuncu volcano, which has erupted last time more than 300,000 years ago, is steadily inflating, which makes it fertile ground for study. In 2009 an international multidisciplinary team formed a project called PLUTONS to study Uturuncu. Under this project a 100 km wide seismic network was set around the volcano by seismologists from University of Alaska Fairbanks. Local seismicity is well distributed and provides constraints on the shallow crust. Ray paths from earthquakes in the subducting slab complement this with steep ray paths that sample the deeper crust. Together the shallow and deep earthquakes provide strong 3D coverage of Uturuncu and the surrounding region. To study the deformation source beneath the volcano we performed simultaneous tomographic inversion for the Vp and Vs anomalies and source locations, using the non-linear passive source tomographic code, LOTOS. We estimated both P and S wave velocity structures beneath the entire Uturuncu volcano by using arrival times of P and S waves from more than 600 events registered by 33 stations. To show the reliability of the results, we performed a number of different tests, including checkerboard synthetic tests and tests with odd/even data. Obtained Vp/Vs ratio distribution shows increased values beneath the south Uturuncu, at a depth of about 15 km. We suggest the high ratio anomaly is caused by partial melt, presented in expanding magma chamber, responsible for the volcano inflation. The resulting Vp, Vs and the ratio

  18. Apatite: a new redox proxy for silicic magmas? (United States)

    Miles, Andrew; Graham, Colin; Hawkesworth, Chris; Gillespie, Martin; Bromiley, Geoff; Hinton, Richard


    The oxidation states of magmas provide valuable information about the release and speciation of volatile elements during volcanic eruptions, metallogenesis, source rock compositions, open system magmatic processes, tectonic settings and potentially titanium (Ti) activity in chemical systems used for Ti-dependent geothermometers and geobarometers. In this presentation we explore the use of Mn in apatite as an oxybarometer in intermediate and silicic igneous rocks. Increased Mn concentrations in apatite in granitic rocks from the zoned Criffell granitic pluton (southern Scotland) correlate with decreasing Fe2O3 (Fe3+) and Mn in the whole-rock and likely reflect increased Mn2+/Mn3+and greater compatibility of Mn2+ relative to Mn3+ in apatite under reduced conditions. Fe3+/Fe2+ ratios in biotites have previously been used to calculate oxygen fugacities (fO2) in the outer zone granodiorites and inner zone granites where redox conditions have been shown to change from close to the magnetite-hematite buffer to close to the nickel-nickel oxide buffer respectively[1]. This trend is apparent in apatite Mn concentrations from a range of intermediate to silicic volcanic rocks that exhibit varying redox states and are shown to vary linearly and negatively with log fO2, such that logfO2=-0.0022(±0.0003)Mn(ppm)-9.75(±0.46) Variations in the Mn concentration of apatites appear to be largely independent of differences in the Mn concentration of the melt. Apatite Mn concentrations may therefore provide an independent oxybarometer that is amenable to experimental calibration, with major relevance to studies on detrital mineral suites, particularly those containing a record of early Earth redox conditions, and on the climatic impact of historic volcanic eruptions[2]. [1] Stephens, W. E., Whitley, J. E., Thirlwall, M. F. and Halliday, A. N. (1985) The Criffell zoned pluton: correlated behaviour of rare earth element abundances with isotopic systems. Contributions to Mineralogy and

  19. Magma-poor and magma-rich segments along the hyperextended, pre-Caledonian passive margin of Baltica (United States)

    Andersen, Torgeir B.; Alsaif, Manar; Corfu, Fernando; Jakob, Johannes; Planke, Sverre; Tegner, Christian


    The Scandinavian Caledonides constitute a more than 1850 km long 'Himalayan-type' orogen, formed by collision between Baltica-Avalonia and Laurentia. Subduction-related magmatism in the Iapetus ended at ~430 Ma and continental convergence continued for ~30 Myr until ~400 Ma. The collision produced a thick orogenic wedge comprising the stacked remnants of the rifted to hyperextended passive Baltican margin (Andersen et al. 2012), as well as suspect, composite and outboard terranes, which were successively emplaced as large-scale nappe complexes onto Baltica during the Scandian collision (see Corfu et al. 2014 for a recent review). Large parts (~800 km) of the mountain-belt in central Scandinavia, particularly in the Särv and Seve Nappes and their counterparts in Troms, are characterised by spectacular dyke complexes emplaced into continental sediments (e.g. Svenningsen 2001, Hollocher et al. 2007). These constitute a magma-rich segment formed along the margin of Baltica or within hyperextended continental slivers outboard of Baltica. The intensity of the pre-Caledonian magmatism is comparable to that of the present NE-Atlantic and other volcanic passive margins. The volumes and available U-Pb ages of 610-597 Ma (Baird et al. 2014 and refs therein) suggest that the magmatism was short lived, intense and therefore compatible with a large igneous province (LIP). By analogy with present-day margins this LIP may have been associated with continental break-up and onset of sea-floor spreading. The remnants of the passive margin both north and south of the magma-rich segment have different architectures, and are almost devoid of rift/drift related magmatic rocks. Instead, these magma-poor segments are dominated by heterogeneous sediment-filled basins characterised by the abundant presence of solitary bodies of variably altered mantle peridotites, also commonly present as detrital serpentinites. These basins are interpreted to have formed by hyperextension. We suggest that

  20. Crystallization conditions in the Upper Pollara magma chamber, Salina Island, Southern Tyrrhenian Sea (United States)

    Donato, P.; Behrens, H.; de Rosa, R.; Holtz, F.; Parat, F.


    Pyroclastites erupted from the Upper Pollara magma chamber (13 ka, Salina Island, Aeolian Archipelago) resulted from mingling and mixing of rhyolitic and andesitic magmas. An experimental study has been conducted on the rhyolitic end-member to constrain the pre-eruptive conditions of the magma. In order to check for the role of mixing on the equilibrium phase assemblage, three different starting compositions, corresponding to three different mixing degrees, have been used. The crystallization experiments were conducted at two different oxygen fugacities and at variable temperature and fluid contents. The results indicate that the natural mineralogical assemblage can only be reproduced from a composition showing a certain degree of mixing. Assuming a pressure of 200 MPa (generally accepted for the Aeolian Islands), the pre-eruptive temperature of the magmas is estimated between 755 and 800 °C and the water content of the melt was higher than 4 4.5 wt.%.

  1. Adjustment of the basin-scale circulation at 26° N to variations in Gulf Stream, deep western boundary current and Ekman transports as observed by the Rapid array

    Directory of Open Access Journals (Sweden)

    S. A. Cunningham


    Full Text Available The Rapid instrument array across the Atlantic Ocean along 26° N provides unprecedented monitoring of the basin-scale circulation. A unique feature of the Rapid array is the combination of full-depth moorings with instruments measuring temperature, salinity, pressure time series at many depths with co-located bottom pressure measurements so that dynamic pressure can be measured from surface to bottom. Bottom pressure measurements show a zonally uniform rise (and fall of bottom pressure of 0.015 dbar on a 5 to 10 day time scale, suggesting that the Atlantic basin is filling and draining on a short time scale. After removing the zonally uniform bottom pressure fluctuations, bottom pressure variations at 4000 m depth against the western boundary compensate instantaneously for baroclinic fluctuations in the strength and structure of the deep western boundary current so there is no basin-scale mass imbalance resulting from variations in the deep western boundary current. After removing the mass compensating bottom pressure, residual bottom pressure fluctuations at the western boundary just east of the Bahamas balance variations in Gulf Stream transport. Again the compensation appears to be especially confined close to the western boundary. Thus, fluctuations in either Gulf Stream or deep western boundary current transports are compensated in a depth independent (barotropic manner very close to the continental slope off the Bahamas. In contrast, compensation for variations in wind-driven surface Ekman transport appears to involve fluctuations in both western basin and eastern basin bottom pressures, though the bottom pressure difference fluctuations appear to be a factor of 3 too large, perhaps due to an inability to resolve small bottom pressure fluctuations after removal of larger zonal average, baroclinic, and Gulf Stream pressure components. For 4 tall moorings where time series dynamic height (geostrophic pressure profiles can be estimated from

  2. Are Ferroan Anorthosites Direct Products of the Lunar Magma Ocean? (United States)

    Neal, C. R.; Draper, D. S.


    According to Lunar Magma Ocean (LMO) theory, lunar samples that fall into the ferroan anorthosite (FAN) category represent the only samples we have of of the primordial crust of the Moon. Modeling indicates that plagioclase crystallizes after >70% LMO crystallization and formed a flotation crust, depending upon starting composition. The FAN group of highlands materials has been subdivided into mafic-magnesian, mafic-ferroan, anorthositic- sodic, and anorthositic-ferroan, although it is not clear how these subgroups are related. Recent radiogenic isotope work has suggested the range in FAN ages and isotopic systematics are inconsistent with formation of all FANs from the LMO. While an insulating lid could have theoretically extend the life of the LMO to explain the range of the published ages, are the FAN compositions consistent with crystallization from the LMO? As part of a funded Emerging Worlds proposal (NNX15AH76G), we examine this question through analysis of FAN samples. We compare the results with various LMO crystallization models, including those that incorporate the influence of garnet.

  3. Mantles of terrestrial planets immediately following magma ocean solidification (United States)

    Scheinberg, A. L.; Elkins-Tanton, L. T.; Zhong, S.; Parmentier, E.


    Energy of accretion in terrestrial planets is expected to create liquid silicate magma oceans. Their solidification processes create silicate differentiation and set the initial mantle structure for the planet. Solidification results in a compositionally unstable density profile, leading to cumulate Rayleigh-Taylor overturn in the early stages of planetary history. The pattern and timescale of overturn, in which cold, dense surface material sinks to the core mantle boundary, has implications for core dynamo production, volatile escape and fundamental differences between differently-sized bodies. Our fully spherical mantle models reaffirm previous work suggesting harmonic degree of overturn is dependent on viscosity contrast and layer thickness. We then explore the dependence of overturn morphology in the early mantles of Mars, Earth, Mercury and the Moon on these parameters and on the respective planets’ characteristics using a composition- and temperature-dependent viscosity model. Initial results indicate that fractional solidification and overturn in terrestrial planets always creates some radius range in which the mantle is azimuthally compositionally heterogeneous. After overturn, compositional stability in the mantle suppresses the onset of thermal convection; the broad conclusions of this work indicate that the earliest solid mantle of terrestrial planets is compositionally differentiated and stable.

  4. Chlorine and hydrogen degassing in Vesta's magma ocean (United States)

    Sarafian, Adam R.; John, Timm; Roszjar, Julia; Whitehouse, Martin J.


    The hydrophilic nature of halogens makes these elements ideal for probing potential hydrous geologic processes. Generally, in magmatic settings the stable isotopes of Cl may fractionate when H is in low concentrations and little fractionation occurs when the H concentration is high. We determined the Cl isotope composition and halogen content (F, Cl, Br, and I) of apatite and merrillite in seven basaltic eucrites, which are meteorites linked to the asteroid 4-Vesta, by using secondary ion mass spectrometry. We compare our halogen results with H isotope data, existing bulk rock concentrations, and petrologic models. The inferred Cl isotope composition of eucrites from this study, expressed in standard δ37 Cl notation, which ranges from -3.8 to 7.7‰, correlates with the bulk major- and trace-element content, e.g., the Cl isotope composition positively correlates with Mg and Sc, while Cl isotope composition negatively correlates with K, V, and Cr. Here we suggest that eucrites preserve evidence of a degassing magma ocean as evidenced by the decreasing bulk rock K content with increasing δ37 Cl . If the eucrite parent body, 4-Vesta, accreted with a negative δ37 Cl of - 3.8 ± 1.1 ‰, at least some parts of the solar nebula would have been isotopically light compared to most estimates of the Earth, which on average is close to 0‰.

  5. Numerical investigation of permeability models for low viscosity magmas: Application to the 2007 Stromboli effusive eruption (United States)

    La Spina, G.; Polacci, M.; Burton, M.; de'Michieli Vitturi, M.


    Magma permeability is the most important factor controlling the transition between effusive and explosive styles during magma ascent at active volcanoes. When magma permeability is low, gas bubbles in the melt expand as the pressure decreases; above a critical gas volume fraction threshold, magma fragments, generating an explosive eruption. On the contrary, if magma is sufficiently permeable, gas ascends through the conduit towards the surface faster than the magma ascent speed, producing decoupling of gas and magma and reducing the maximum vesicularity. This decoupled flow inhibits fragmentation and leads to either an effusive eruption or quiescent degassing. Accurate modelling of permeability behaviour is therefore fundamental when simulating magma ascent processes. In this work, we compare different permeability models for low viscosity magmas using a 1D steady-state model. We use, as a test case, the 2007 effusive eruption at Stromboli volcano, Italy. We compare the numerical solutions computed using the linear Darcy's law with those obtained using the non-linear Forchheimer relation. Our numerical results show that, using Darcy's law and appropriate permeability models, it is possible to obtain an effusive eruption in agreement with observations. However, we found that, in the shallow conduit, the limit of applicability of Darcy's law (that is the modified Reynolds number Rem gas flow rates. Furthermore, we show that using Forchheimer's law and some parametric expressions for viscous and inertial permeabilities, results can be compatible with an effusive eruption, once appropriate values are chosen. However, one of the parameters required to obtain an effusive eruption, the friction coefficient between gas and melt, is several orders of magnitude lower than that determined from measurements of solid erupted samples. This result requires further experimental verification. We propose that our novel permeability modelling regime is suitable for basaltic volcanism

  6. Magma Storage, Recharge and the Caldera Cycle at Rabaul, Papua New Guinea (United States)

    Fabbro, G.; Bouvet de Maisonneuve, C.; Sindang, M.


    Many calderas have a history of repeated caldera-forming eruptions, interspersed with periods of more minor activity. Rabaul, for instance, has had at least 11 ignimbrite-forming eruptions over the last 200 ky. The most recent of these was the '1400 BP' eruption, which led to caldera collapse. Since then, there has been multiple smaller eruptions, including the ongoing activity from Tavurvur and Vulcan. An important question facing volcanology today is what controls the size of eruptions at calderas such as Rabaul.Detailed stratigraphic sampling of the 1400BP eruption reveals that prior to eruption, the magma reservoir below Rabaul contained a well-mixed dacite with whole-rock SiO2 contents of 65.0-66.4 wt%. The dacite contains a single phenocryst assemblage of plag (An44-52), cpx (En43-46Fs13-15Wo40-41), opx (En69-71Fs25-28Wo3) and magnetite, along with minor apatite. The homogeneity of the dacite is underscored by the narrow range of compositions of both the matrix glass and the melt inclusions (67.8-69.0 wt% SiO2). The only exception to this is at the top of the ignimbrite, representing some of the last magma to have been withdrawn. Dispersed throughout the dacitic pumices are darker, more mafic blebs. Streaks of mingled magma with a range of SiO2 contents, down to 59.9 wt% SiO2 are also found in the pumice, suggesting that a mafic recharge magma was intruded into the base of the reservoir shortly before eruption. High TiO2 contents rule out the direct involvement of basalt, and instead imply the magma that intruded into the reservoir was an andesite with at least 56 wt% SiO2. Phenocrysts related to this recharge magma are rare, and the crystals found in the dark blebs are identical in composition to those found in the dacite, indicating that the recharge was aphyric. The present-day, post-caldera recharge magma is different to the pre-1400 BP recharge magma: it is basaltic. This suggests that the plumbing system of Rabaul is different during the pre-caldera and

  7. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins


    Benson, Thomas R.; Coble, Matthew A.; Rytuba, James J.; Mahood, Gail A.


    The omnipresence of lithium-ion batteries in mobile electronics, and hybrid and electric vehicles necessitates discovery of new lithium resources to meet rising demand and to diversify the global lithium supply chain. Here we demonstrate that lake sediments preserved within intracontinental rhyolitic calderas formed on eruption and weathering of lithium-enriched magmas have the potential to host large lithium clay deposits. We compare lithium concentrations of magmas formed in a variety of te...

  8. Lifetime and size of shallow magma bodies controlled by crustal-scale magmatism


    Karakas, Ozge; Degruyter, Wim; Bachmann, Olivier; Dufek, Josef


    Magmatic processes on Earth govern the mass, energy and chemical transfer between the mantle, crust and atmosphere. To understand magma storage conditions in the crust that ultimately control volcanic activity and growth of continents, an evaluation of the mass and heat budget of the entire crustal column during magmatic episodes is essential. Here we use a numerical model to constrain the physical conditions under which both lower and upper crustal magma bodies form. We find that over long d...

  9. A Microsoft Excel interface for rhyolite-MELTS: a tool for research and teaching of magma properties and evolution (United States)

    Gualda, G. A.; Ghiorso, M. S.


    The thermodynamic modeling software MELTS (and its derivatives) is a powerful and much utilized tool for investigating crystallization and melting in natural magmatic systems. Rhyolite-MELTS (Gualda et al. 2012, J. Petrol. 53:875-890) is a recent recalibration of MELTS aimed at better capturing the evolution of magmas present in the upper crust (up to ~400 MPa pressure). Currently, most users of rhyolite-MELTS rely on a graphical user interface (GUI), which can be run on UNIX/LINUX and Mac OS X computers. While the interface is powerful and flexible, it can be somewhat cumbersome for the novice and the output is in the form of text files that need to be processed offline. This situation is probably the main reason why MELTS - despite great potential - has not been used more frequently for teaching purposes. We are currently developing an alternative GUI for rhyolite-MELTS using web services consumed by a VBA backend in Microsoft Excel©. The goal is to create a much more interactive tool, that is easy to use that can be made available to a widespread audience, and that will be useful for both research and teaching. The interface is contained within a macro-enabled workbook, which includes editable cells where the user can insert the model input information. Interface buttons initiate computations that are executed on a central server at OFM Research in Seattle (WA). Results of simple calculations are shown immediately within the interface itself. For instance, a user can very rapidly determine the temperature at which a magma of a given composition is completely molten (i.e. find the liquidus); or determine which phases are present, in what abundances, their compositions, and their physical properties (e.g. density, viscosity) at any given combination of temperature, pressure and oxygen fugacity. We expect that using the interface in this mode will greatly facilitate building intuition about magmas and their properties. It is also possible to combine a sequence of

  10. Superhot fluids circulating close to magma intrusions: a contribution from analogue modelling (United States)

    Montanari, Domenico; Agostini, Andrea; Bonini, Marco; Corti, Giacomo


    Magma overpressure at the time of the emplacement at shallow crustal levels may lead to deformation (i.e. forced folding, fracturing and faulting) in the country rock, both at local and regional scale. To get insights into this process, we reproduced and analysed in the laboratory the fracture/fault network associated with the emplacement of magma at shallow crustal levels. We used a mixture of quartz sand and K-feldspar fine sand as an analogue for the brittle crust, and polyglycerols for the magma. The models were able to reproduce complex 3D architectures of deformation resulting from magma emplacement, with different deformation patterns -invariably dominated by forced folding and associated brittle faulting/fracturing- resulting from variable parameters. These results provide useful hints into geothermal researches. Fractures and faults associated with magma emplacement are indeed expected to significantly influence the distribution and migration of superhot geothermal fluids near the edge of the magma intrusion. These structures can therefore be considered as potential targets for geothermal or mineral deposits exploration. In this perspective, the results of analogue models may provide useful geometric and conceptual constraints for field work, numerical modeling, and particularly seismic interpretation for achieving a better understanding and tuning of the integrated conceptual model concerning the circulation of supercritical fluids. The research leading to these results has received funding from the European Community's Seventh Framework Programme under grant agreement No. 608553 (Project IMAGE).

  11. Thermomechanical controls on magma supply and volcanic deformation: application to Aira caldera, Japan. (United States)

    Hickey, James; Gottsmann, Joachim; Nakamichi, Haruhisa; Iguchi, Masato


    Ground deformation often precedes volcanic eruptions, and results from complex interactions between source processes and the thermomechanical behaviour of surrounding rocks. Previous models aiming to constrain source processes were unable to include realistic mechanical and thermal rock properties, and the role of thermomechanical heterogeneity in magma accumulation was unclear. Here we show how spatio-temporal deformation and magma reservoir evolution are fundamentally controlled by three-dimensional thermomechanical heterogeneity. Using the example of continued inflation at Aira caldera, Japan, we demonstrate that magma is accumulating faster than it can be erupted, and the current uplift is approaching the level inferred prior to the violent 1914 Plinian eruption. Magma storage conditions coincide with estimates for the caldera-forming reservoir ~29,000 years ago, and the inferred magma supply rate indicates a ~130-year timeframe to amass enough magma to feed a future 1914-sized eruption. These new inferences are important for eruption forecasting and risk mitigation, and have significant implications for the interpretations of volcanic deformation worldwide.

  12. Mushy magma processes in the Tuolumne intrusive complex, Sierra Nevada, California (United States)

    Memeti, V.; Paterson, S. R.


    Debates continue on the nature of volcanic-plutonic connections and the mechanisms of derivation of large volcanic eruptions, which require large volumes of magma to be readily available within a short period of time. Our focus to understand these magma plumbing systems has been to study the nature of their mid-to upper crustal sections, such as the 1,000 km2, 95-85 Ma old Tuolumne intrusive complex in the Sierra Nevada, California, USA. The Tuolumne intrusive complex is a great example where the magma mush model nicely explains observations derived from several datasets. These data suggest that a magma mush body was present and may have been quite extensive especially at times when the Tuolumne intrusive complex was undergoing waxing periods of magmatism (increased magma input), which alternated with waning periods of magmatism (decreased magma addition) and thus a smaller mush body, essentially mimicking in style periodic flare-ups and lulls at the arc scale. During waxing stages, magma erosion and mixing were the dominant processes, whereas waning stages allowed mush domains to continue to undergo fractional crystallization creating additional compositional variations. Over time, the imprint left behind by previous waxing and waning stages was partly overprinted, but individual crystals successfully recorded the compositions of these earlier magmas. Waxing periods in the Tuolumne intrusive complex during which large magma mush bodies formed are supported by the following evidence: 1) Hybrid units and gradational contacts are commonly present between major Tuolumne units. 2) CA-TIMS U/Pb zircon geochronology data demonstrate that antecrystic zircon recycling took place unidirectional from the oldest, marginal unit toward the younger, interior parts of the intrusion, where increasing zircon age spread encompasses the entire age range of the Tuolumne. 3) The younger, interior units also show an increasing scatter and complexity in geochemical element and isotope

  13. Experimental Study into the Stability of Whitlockite in Basaltic Magmas (United States)

    McCubbin, F. M.; Barnes, J. J.; Srinivasan, P.; Whitson, E. S.; Vander Kaaden, K. E.; Boyce, J. W.


    latter treatment resulted in the dehydrogenation of whitlockite to form merrillite. The presence of merrillite vs. whitlockite was widely thought to serve as an indication that magmas were anhydrous [e.g., 6-7]. However, McCubbin et al., [8] determined that merrillite in the martian meteorite Shergotty had no discernible whitlockite component despite its coexistence with OH-rich apatite. Consequently, McCubbin et al., (2014) speculated that the absence of a whitlockite component in Shergotty merrillite and other planetary merrillites may be a consequence of the limited thermal stability of H in whitlockite (stable only at T less than1050degC), which would prohibit merrillite-whitlockite solid-solution at high temperatures. In the present study, we have aimed to test this hypothesis experimentally by examining the stability of whitlockite in basaltic magmas at 1.2 GPa and a temperature range of -1000- 1300degC.

  14. Bonding of xenon to oxygen in magmas at depth (United States)

    Leroy, Clémence; Sanloup, Chrystèle; Bureau, Hélène; Schmidt, Burkhard C.; Konôpková, Zuzana; Raepsaet, Caroline


    The field of noble gases chemistry has witnessed amazing advances in the last decade with over 100 compounds reported including Xe oxides and Xe-Fe alloys stable at the pressure-temperature conditions of planetary interiors. The chemistry of Xe with planetary materials is nonetheless still mostly ignored, while Xe isotopes are used to trace a variety of key planetary processes from atmosphere formation to underground nuclear tests. It is indeed difficult to incorporate the possibility of Xe reactivity at depth in isotopic geochemical models without a precise knowledge of its chemical environment. The structure of Xe doped hydrous silica-rich melts is investigated by in situ high energy synchrotron X-ray diffraction using resistive heating diamond anvil cells. Obtained pair distribution functions reveal the oxidation of Xe between 0.2 GPa and 4 GPa at high T up to 1000 K. In addition to the usual interatomic distances, a contribution at 2.05 ± 0.05 Å is observed. This contribution is not observed in the undoped melt, and is interpreted as the Xe-O bond, with a coordination number of about 12 consistent with Xe insertion in rings of the melt structure. Xe solubility measurements by electron microprobe and particle induced X-rays emission analysis confirm that Xe and Ar have similar solubility values in wt% in silicate melts. These values are nonetheless an order of magnitude higher than those theoretically calculated for Xe. The formation of Xe-O bonds explains the enhanced solubility of Xe in deep continental crust magmas, revealing a mechanism that could store Xe and fractionate its isotopes. Xenon is indeed atypical among noble gases, the atmosphere being notably depleted in elemental Xe, and very strongly depleted in Xe light isotopes. These observations are known as the 'missing' Xe paradox, and could be solved by the present findings.

  15. Generation, ascent and eruption of magma on the Moon: New insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 1: Theory) (United States)

    Wilson, Lionel; Head, James W.


    We model the ascent and eruption of lunar mare basalt magmas with new data on crustal thickness and density (GRAIL), magma properties, and surface topography, morphology and structure (Lunar Reconnaissance Orbiter). GRAIL recently measured the broad spatial variation of the bulk density structure of the crust of the Moon. Comparing this with the densities of lunar basaltic and picritic magmas shows that essentially all lunar magmas were negatively buoyant everywhere within the lunar crust. Thus positive excess pressures must have been present in melts at or below the crust-mantle interface to enable them to erupt. The source of such excess pressures is clear: melt in any region experiencing partial melting or containing accumulated melt, behaves as though an excess pressure is present at the top of the melt column if the melt is positively buoyant relative to the host rocks and forms a continuously interconnected network. The latter means that, in partial melt regions, probably at least a few percent melting must have taken place. Petrologic evidence suggests that both mare basalts and picritic glasses may have been derived from polybaric melting of source rocks in regions extending vertically for at least a few tens of km. This is not surprising: the vertical extent of a region containing inter-connected partial melt produced by pressure-release melting is approximately inversely proportional to the acceleration due to gravity. Translating the ∼25 km vertical extent of melting in a rising mantle diapir on Earth to the Moon then implies that melting could have taken place over a vertical extent of up to 150 km. If convection were absent, melting could have occurred throughout any region in which heat from radioisotope decay was accumulating; in the extreme this could have been most of the mantle. The maximum excess pressure that can be reached in a magma body depends on its environment. If melt percolates upward from a partial melt zone and accumulates as a magma

  16. Phenocryst complexity in andesites and dacites from the Tequila volcanic field, Mexico: resolving the effects of degassing vs. magma mixing (United States)

    Frey, Holli M.; Lange, Rebecca A.


    The petrology of five phenocryst-poor (2-5%) andesites and dacites, all of which were erupted from different short-lived, monogenetic vents, is compared to that of phenocryst-rich (10-25%) andesites erupted from the adjacent stratovolcano, Volcán Tequila, in the Mexican arc. Despite differences in phenocryst abundances, these magmas have comparable phase assemblages (plagioclase + orthopyroxene + titanomagnetite + ilmenite + apatite ± augite ± hornblende), and similarly wide variations in phenocryst compositions, coupled to complex zoning patterns. For the phenocryst-poor lavas, equilibrium pairs of two Fe-Ti oxides lead to a narrow range of calculated temperatures for each sample that range from 934 (±24) to 1,073 (±6)°C and oxygen fugacities that range from +0.1 to +0.7 log units relative to the Ni-NiO buffer. Application of the plagioclase-liquid hygrometer to each sample at these calculated temperatures leads to maximum melt water concentrations of 4.6-3.1 wt% during plagioclase crystallization, indicating that the magmas were fluid saturated at depths ≥6.4-4.5 km. There is a wide, continuous range in the composition of plagioclase (≤44 mol% An) and orthopyroxene (≤16% Mg#) phenocrysts in each sample, which is consistent with a loss of dissolved water (≤2.8 wt%) from the melt phase during degassing as the magmas ascended rapidly to the surface. Evidence is presented that shows the effect of dissolved water is to reduce the activity of MgO relative to FeO in the melt phase, which indicates that degassing will also affect the Mg# of pyroxene phenocrysts, with higher melt water concentrations favoring Fe-rich pyroxene. Both plagioclase and orthopyroxene commonly display diffusion-limited growth textures (e.g., skeletal and hopper crystals, large interior melt hollows, and swallow tails), which are consistent with large undercoolings produced by degassing-induced crystallization. Therefore, degassing is proposed as a possible cause for the phenocryst

  17. Volcanic flood simulation of magma effusion using FLO-2D for drainage of a caldera lake at the Mt. Baekdusan (United States)

    Lee, Khil-Ha; Kim, Sung-Wook; Kim, Sang-Hyun


    Many volcanic craters and calderas are filled with large amounts of water that can pose significant flood hazards to downstream communities due to their high elevation and the potential for catastrophic releases of water. Recent reports pointed out the Baekdusan volcano that is located between the border of China and North Korea as a potential active volcano. Since Millennium Eruption around 1000 AD, smaller eruptions have occurred at roughly 100-year intervals, with the last one in 1903. Sudden release of huge volume of water stored in temporarily elevated caldera lakes are a recurrent feature of volcanic environments, due to the case with which outlet channels are blocked by and re-cut through, unwelded pyroclastic deposits. The volcano is showing signs of waking from a century-long slumber recently. Volcanic floods, including breakouts from volcanic lakes, can affect communities beyond the areas immediately affected by a volcanic eruption and cause significant hydrological hazards because floods from lake-filled calderas may be particularly large and high. Although a number of case studies have been presented in the literature, investigation of the underlying physical processes is required as well as a method for interpreting the process of the rapid release of water stored in a caldera lake. The development of various forecasting techniques to prevent and minimize economic and social damage is in urgent need. This study focuses on constructing a flood hazard map triggered by the magma effusion in the Baekdusan volcano. A physically-based uplift model was developed to compute the amount of water and time to peak flow. The ordinary differential equation was numerically solved using the finite difference method and Newton-Raphson iteration method was used to solve nonlinear equation. The magma effusion rate into the caldera lake is followed by examples at other volcanic activities. As a result, the hydrograph serves as an upper boundary condition when hydrodynamic

  18. Frontal Arc Migration, Forearc Subduction Erosion and Adakitic-like Magmas: Examples From the Andean Margin and Implications for Other Arcs (United States)

    Kay, S. M.; Goss, A.; Kay, R.; Mpodozis, C.


    Geochemical evidence for forearc subduction erosion linked to crustal modification of the mantle wedge is most evident in arc magmas erupted at times of frontal arc migration. The most convincing signals are from changes in isotopic ratios in mafic magmas erupted in the same place before and after arc migration, and from transient steep REE patterns and strong HFSE depletions in magmas erupted near times of arc migration. Such patterns are well seen on the margins of the Chilean flat-slab around 27S and 34S lat. where the arc front migrated about 50 km to the east in the last 8 Ma. The best evidence comes from increasing 87Sr/86Sr in mafic lavas that cannot be explained by enriched mantle, subducted sediments or in situ crust. Transient steep adakitic-like REE patterns at times of arc migration fit with a model in which forearc crust is transported down the subduction channel, enters the tip of the asthenospheric wedge and is incorporated into the arc mantle source. Sharp increases in 87Sr/86Sr ratios and transient steep REE patterns in Andean arc rocks between 21S and 26S lat. described by Haschke et al. (2002) and Mathews and Cornejo (2004) also occur in the final stages of magmatic cycles near times of frontal arc migration at about 130 (?), 85, 65-60 and 40-35 Ma. These patterns are interpreted by the authors as reflecting contractional crustal thickening at the end of the magmatic cycles. The sharp changes near the end of these cycles could additionally reflect crust introduced into the mantle source by subduction erosion at the time of arc migration. Transient adakitic-like arc magmas with steep REE patterns erupted elsewhere at times of arc instability and front migration could also reflect crustal contamination of the mantle source by forearc subduction erosion. Forearc subduction erosion often provides a better explanation for adakitic magmas in arcs with thin crust than slab melting as has been argued for Aleutian and Central America arc rocks.

  19. Quaternary fault-controlled volcanic vents and crustal thinning: new insights from the magma-rich Tyrrhenian passive margin (Italy) (United States)

    Cardello, Giovanni Luca; Conti, Alessia; Consorti, Lorenzo; Do Couto, Damien


    The discover of monogenic Quaternary volcanic vents, that were recently mapped along major fault zones both inland and offshore the Tyrrhenian magma-rich passive margin, poses questions about: timing and role they had into Plio-Pleistocene crustal thinning with relevant consequences for the hazard assessment of an area inhabited by some 0.5 million people. The present-day margin is stretched over 100 km between the Volsci Range (VR) and the Pontian escarpment, being defined by moderate shallow seismicity (Mw≤4.6), relative high geothermal gradient and ongoing hydrothermal activity. Although major central volcanoes (e.g., Colli Albani), occurring at major fault intersections are well studied, smaller volcanic fields were so far unconstrained. Both field survey in the VR and offshore high-resolution geophysical data, allow us to: 1) better define the anatomy of the poorly known VR volcanic field; 2) furnish new insights on the regional Quaternary dynamics; 3) propose modes and reason of magma emplacement. The VR is composed of about 40 punctual and linear monogenic and mostly phreatomagmatic vents occurring at the edges of the Apennine carbonate fold-and-thrust belt and within the VR backbone. Volcanites are characterized by zeolitized to incoherent tuffs and surge deposits locally covered by lavas and slope deposits. Most explosive units host carbonate-rich lithics with different degrees of rounding and decarbonation, which frequently belong to Albian-Cenomanian aquifers. By comparing cross-section with lithic analyses we demonstrate that fragmentation, transport, progressive disintegration and decarbonation occur at multiple depths, depending on the fold-and-thrust belt setting. Thus, along the same vent zone, juvenile lithic composition proves repeated fragmentation within pressured-aquifers, testifying for fissural activity with implications for local seismic and volcanic assessment. Pyroclastic deposits occur as well in the Pontina and Fondi coastal plains at


    Directory of Open Access Journals (Sweden)

    Mattia ePistone


    Full Text Available The transition from viscous to brittle behaviour in magmas plays a decisive role in determining the style of volcanic eruptions. While this transition has been determined for one- or two-phase systems, it remains poorly constrained for natural magmas containing silicic melt, crystals, and gas bubbles. Here we present new experimental results on shear-induced fracturing of three-phase magmas obtained at high-temperature (673-1023 K and high-pressure (200 MPa conditions over a wide range of strain-rates (5·10-6 s-1 to 4·10-3 s-1. During the experiments bubbles are deformed (i.e. capillary number are in excess of 1 enough to coalesce and generate a porous network that potentially leads to outgassing. A physical relationship is proposed that quantifies the critical stress required for magmas to fail as a function of both crystal (0.24 to 0.65 and bubble volume fractions (0.09 to 0.12. The presented results demonstrate efficient outgassing for low crystal fraction ( 0.44 promote gas bubble entrapment and inhibit outgassing. The failure of bubble-free, crystal-bearing systems is enhanced by the presence of bubbles that lower the critical failure stress in a regime of efficient outgassing, while the failure stress is increased if bubbles remain trapped within the crystal framework. These contrasting behaviours have direct impact on the style of volcanic eruptions. During magma ascent, efficient outgassing reduces the potential for an explosive eruption and favours brittle behaviour, contributing to maintain low overpressures in an active volcanic system resulting in effusion or rheological flow blockage of magma at depth. Conversely, magmas with high crystallinity experience limited loss of exsolved gas, permitting the achievement of larger overpressures prior to a potential sudden transition to brittle behaviour, which could result in an explosive volcanic eruption.

  1. Role for syn-eruptive plagioclase disequilibrium crystallisation in basaltic magma ascent dynamics (United States)

    La Spina, Giuseppe; Burton, Mike; de'Michieli Vitturi, Mattia; Arzilli, Fabio


    Magma ascent dynamics in volcanic conduits play a key role in determining the eruptive style of a volcano. The lack of direct observations inside the conduit means that numerical conduit models, constrained with observational data, provide invaluable tools for quantitative insights into complex magma ascent dynamics. The highly nonlinear, interdependent processes involved in magma ascent dynamics require several simplifications when modelling their ascent. For example, timescales of magma ascent in conduit models are typically assumed to be much longer than crystallisation and gas exsolution for basaltic eruptions. However, it is now recognized that basaltic magmas may rise fast enough for disequilibrium processes to play a key role on the ascent dynamics. The quantification of the characteristic times for crystallisation and exsolution processes are fundamental to our understanding of such disequilibria and ascent dynamics. Using observations from Mount Etna's 2001 eruption and a magma ascent model we are able to constrain timescales for crystallisation and exsolution processes. Our results show that plagioclase reaches equilibrium in 1-2 h, whereas ascent times were 1 h. Furthermore, we have related the amount of plagioclase in erupted products with the ascent dynamics of basaltic eruptions. We find that relatively high plagioclase content requires crystallisation in a shallow reservoir, whilst a low plagioclase content reflects a disequilibrium crystallisation occurring during a fast ascent from depth to the surface. Using these new constraints on disequilibrium plagioclase crystallisation we also reproduce observed crystal abundances for different basaltic eruptions: Etna 2002/2003, Stromboli 2007 (effusive eruption) and 1930 (paroxysm) and different Pu'u' O'o eruptions at Kilauea (episodes 49-53). Therefore, our results show that disequilibrium processes play a key role on the ascent dynamics of basaltic magmas and cannot be neglected when describing basaltic

  2. Rapid laccolith intrusion driven by explosive volcanic eruption. (United States)

    Castro, Jonathan M; Cordonnier, Benoit; Schipper, C Ian; Tuffen, Hugh; Baumann, Tobias S; Feisel, Yves


    Magmatic intrusions and volcanic eruptions are intimately related phenomena. Shallow magma intrusion builds subsurface reservoirs that are drained by volcanic eruptions. Thus, the long-held view is that intrusions must precede and feed eruptions. Here we show that explosive eruptions can also cause magma intrusion. We provide an account of a rapidly emplaced laccolith during the 2011 rhyolite eruption of Cordón Caulle, Chile. Remote sensing indicates that an intrusion began after eruption onset and caused severe (>200 m) uplift over 1 month. Digital terrain models resolve a laccolith-shaped body ∼0.8 km3. Deformation and conduit flow models indicate laccolith depths of only ∼20-200 m and overpressures (∼1-10 MPa) that likely stemmed from conduit blockage. Our results show that explosive eruptions may rapidly force significant quantities of magma in the crust to build laccoliths. These iconic intrusions can thus be interpreted as eruptive features that pose unique and previously unrecognized volcanic hazards.


    Directory of Open Access Journals (Sweden)

    S. V. Khromykh


    Full Text Available The paper reports on studies of the Preobrazhensky gabbro‐granitoid intrusion, East Kazakhstan, com‐ posed of the rocks that belong to four phases of intrusion, from quartz monzonites and gabbroids to granite‐ leucogranites. Specific relationships between basite and granitoid rocks are usually classified as the result of interac‐ tions and mixing of liquid magmas, i.e. magma mingling and mixing. Basite rocks are represented by a series from biotite gabbros to monzodiorites. Granitoids rocks are biotite‐amphibole granites. Porphyric granosyenites, com‐ bining the features of both granites and monzodiorites, are also involved in mingling. It is established that the primary granitoid magmas contained granosyenite/quartz‐monzonite and occurred in the lower‐medium‐crust conditions in equilibrium with the garnet‐rich restite enriched with plagioclase. Monzodiorites formed during fractionation of the parent gabbroid magma that originated from the enriched mantle source. We propose a magma interaction model describing penetration of the basite magma into the lower horizons of the granitoid source, which ceased below the viscoplastic horizon of granitoids. The initial interaction assumes the thermal effect of basites on the almost crystal‐ lized granitic magma and saturation of the boundary horizons of the basite magma with volatile elements, which can change the composition of the crystallizing melt from gabbroid to monzodiorite. A ‘boundary’ layer of monzodiorite melt is formed at the boundary of the gabbroid and granitoid magmas, and interacts with granitoids. Due to chemical interactions, hybrid rocks – porphyric granosyenites – are formed. The heterogeneous mixture of monzodiorites and granosyenites is more mobile in comparison with the overlying almost crystallized granites. Due to contraction frac‐ turing in the crystallized granites, the heterogeneous mixture of monzodiorites and granosyenites penetrate into the

  4. Numerical Simulation of Magma Effects on Hydrothermal Venting at Ultra-Slow Spreading Southwest Indian Ridge (United States)

    Zang, Hong; Niu, Xiongwei; Ruan, Aiguo; Li, Jiabiao; Meng, Lin


    Finite element method is used to numerically simulate oceanic crust thermal dynamics in order to understand the hydrothermal venting mechanism at ultra-slow spreading ridge, whether is the ancient magma chamber still living and supplying hot magma for vents or have surrounding hotspots been affecting on the ridge continually with melting and hot magma. Two models are simulated, one is a horizontal layered oceanic crust model and the other is a model derived from wide angle seismic experiment of OBS at the ultra-slow spreading Southwest Indian Ridge (50°E, Zhao et al., 2013; Li et al., 2015; Niu et al., 2015). For the former two cases are simulated: without magma from upper mantel or with continuous magma supply, and for the latter supposing magma supply occurs only once in short period. The main conclusions are as follows: (1) Without melt magma supply at the oceanic crust bottom, a magma chamber can live only thousands ten thousand years. According to the simulated results in this case, the magma chamber revealed by seismic data at the mid-east shallow section of the Southwest Indian Ridge could only last 0.8Ma, the present hydrothermal venting is impossible to be the caused by the magma activity occurred during 8-11Ma (Sauter et al., 2009). (2) The magma chamber can live long time with continuous hot magma supply beneath the oceanic crust due to the melting effects of surrounding ridge hotspots, and would result hydrothermal venting with some tectonic structures condition such as detachment faults. We suggest that the present hydrothermal activities at the mid-east shallow section of the Southwest Indian Ridge are the results of melting effects or magma supply from surrounding hotspots. This research was granted by the National Basic Research program of China (grant 2012CB417301) and the National Natural Science Foundation of China (grants 41176046, 91228205). References Zhao, M., Qiu, X., Li, J., et al., 2013. Three-dimensional seismic structure of the Dragon

  5. A mantle-driven surge in magma supply to Kīlauea Volcano during 2003--2007 (United States)

    Poland, Michael P.; Miklius, Asta; Sutton, A. Jeff; Thornber, Carl R.


    The eruptive activity of a volcano is fundamentally controlled by the rate of magma supply. At Kīlauea Volcano, Hawai‘i, the rate of magma rising from a source within Earth’s mantle, through the Hawaiian hotspot, was thought to have been relatively steady in recent decades. Here we show that the magma supply to Kīlauea at least doubled during 2003–2007, resulting in dramatic changes in eruptive activity and the formation of new eruptive vents. An initial indication of the surge in supply was an increase in CO2 emissions during 2003–2004, combined with the onset of inflation of Kīlauea’s summit, measured using the Global Positioning System and interferometric synthetic aperture radar. Inflation was not limited to the summit magma reservoirs, but was recorded as far as 50 km from the summit, implying the existence of a connected magma system over that distance. We also record increases in SO2 emissions, heightened seismicity, and compositional and temperature variations in erupted lavas. The increase in the volume of magma passing through and stored within Kīlauea, coupled with increased CO2 emissions, indicate a mantle source for the magma surge. We suggest that magma supply from the Hawaiian hotspot can vary over timescales of years, and that CO2 emissions could be a valuable aid for assessing variations in magma supply at Kīlauea and other volcanoes.

  6. Storage of Explosive versus Effusive Rhyolite Magma at the Yellowstone Volcanic Center (United States)

    Gardner, J. E.


    The Yellowstone volcanic center has erupted more than 900 km3 of rhyolitic magma in the last 600,000 years (1). Most of that magma extruded as large lava flows, with only a few known explosive eruptions. Why have explosive eruptions been so rare in the recent history of the Yellowstone volcanic system? To explore that question, we focus on the Tuff of Bluff Point (TBP), about 50 km3 of magma that explosively erupted 173 ka, forming the West Thumb caldera (1). Like most other recent eruptions of Yellowstone, TBP is high silica rhyolite, with phenocrysts of quartz, sanidine, and minor ferro-pyroxenes and Fe-Ti oxides. Fe-Ti oxide and pyroxene compositions indicate that the magma had equilibrated at an oxygen fugacity equal to the QFM buffer. Rehomogenized glass inclusions (n=7) in quartz contain 2.2-3.1 wt.% water and between 400-650 ppm CO2. Those volatile contents indicate storage pressures of 90-160 MPa. Ubiquitous pyrrhotite shows that the magma was sulfur saturated, and most likely volatile saturated. The co-existing fluid would be only 42-47% water. Cathodoluminescence (CL) images of quartz phenocrysts reveal mainly concentric growth zones, with occasional dissolution boundaries present. Ti contents in quartz generally decrease from core to rim, indicating cooling of the magma, although the relative temperature changes recorded are only 10-15°, with only minor changes across dissolution boundaries. To put our observations in perspective of the recent Yellowstone magma system, we have begun examining some of the recent rhyolitic lavas, including the Pitchstone Plateau (PP), a single homogeneous lava flow of 70 km3 that erupted 79 ka (1). CL images also reveal mainly concentric quartz growth, with few dissolution boundaries obvious. Ti contents in quartz also generally decrease from core to rim, but are uniformly lower than in those in TBP, suggesting that PP magma was colder than TBP magma. Glass inclusions (n=20) in PP are generally water poor and rarely

  7. Slip on serpentine detachments at magma-poor margins (United States)

    Reston, Timothy; Lymer, Gael; Cresswell, Derren; Stevenson, Carl; Bull, Jonathan; Sawyer, Dale; Morgan, Julia; Galicia 3D working Group


    At magma-poor margins, the structures formed during rifting are not obscured by thick lavas, allowing detailed analysis of the tectonics of rifting and breakup. At most of these margins, the mantle beneath the thin crust has unusually low velocities, interpreted as a consequence of serpentinization following the embrittlement of the crust during rifting; models for the onset of serpentinization predict the thicknesses of crust that are observed at the landward limit of the serpentinized mantle. At a handful of margins the top of the serpentinized mantle appears to have acted as a detachment or decollement: faults that bound the overlying crustal blocks root on a bright reflection at the base of these blocks. Examples include the P reflection west of Ireland, the H reflection west of northern Portugal, and the S reflector west of Galicia. Corrugations observed on a 3D volume collected in 2013 above the S reflector strongly support its interpretation as a slip surface. A remaining question is whether slip on these "serpentine detachments" occurred at low-angle or not: for typical friction coefficients of 0.7, normal faults should lock-up and be replaced by steeper faults once they have rotated to perhaps 35°, an observation consistent with earthquake data. This angle can be reduced to 20-25° if the fault zone is composed of weak minerals such as serpentine. One possibility is that the detachment is actually composed of segments of faults that were active sequentially in a rolling hinge model. Beneath the centre of the Porcupine basin, the P reflection is sub-horizontal but its western continuation dips beneath the Porcupine bank at 20-25°, consistent with slip on serpentine-weakened rolling hinge system. West of Galicia, based on the geometrical relationships between late synrift wedges and their bounding faults which root on S, S has been interpreted to have slipped at angles below 20-25°. However, a 3D dataset collected over S in 2013 provides the opportunity

  8. Rapid Prototyping (United States)


    Javelin, a Lone Peak Engineering Inc. Company has introduced the SteamRoller(TM) System as a commercial product. The system was designed by Javelin during a Phase II NASA funded small commercial product. The purpose of the invention was to allow automated-feed of flexible ceramic tapes to the Laminated Object Manufacturing rapid prototyping equipment. The ceramic material that Javelin was working with during the Phase II project is silicon nitride. This engineered ceramic material is of interest for space-based component.

  9. Magmatic architecture within a rift segment: Articulate axial magma storage at Erta Ale volcano, Ethiopia (United States)

    Xu, Wenbin; Rivalta, Eleonora; Li, Xing


    Understanding the magmatic systems beneath rift volcanoes provides insights into the deeper processes associated with rift architecture and development. At the slow spreading Erta Ale segment (Afar, Ethiopia) transition from continental rifting to seafloor spreading is ongoing on land. A lava lake has been documented since the twentieth century at the summit of the Erta Ale volcano and acts as an indicator of the pressure of its magma reservoir. However, the structure of the plumbing system of the volcano feeding such persistent active lava lake and the mechanisms controlling the architecture of magma storage remain unclear. Here, we combine high-resolution satellite optical imagery and radar interferometry (InSAR) to infer the shape, location and orientation of the conduits feeding the 2017 Erta Ale eruption. We show that the lava lake was rooted in a vertical dike-shaped reservoir that had been inflating prior to the eruption. The magma was subsequently transferred into a shallower feeder dike. We also find a shallow, horizontal magma lens elongated along axis inflating beneath the volcano during the later period of the eruption. Edifice stress modeling suggests the hydraulically connected system of horizontal and vertical thin magmatic bodies able to open and close are arranged spatially according to stresses induced by loading and unloading due to topographic changes. Our combined approach may provide new constraints on the organization of magma plumbing systems beneath volcanoes in continental and marine settings.

  10. Timing of Crystallisation of the Lunar Magma Ocean Constrained by the Oldest Zircon (United States)

    Nemchin, A.; Timms, N.; Pidgeon, R.; Geisler, T.; Reddy, S.; Meyer, C.


    The presently favoured concept for the early evolution of the Moon involves consolidation of debris from a giant impact of a Mars sized body with Earth forming a primitive Moon with a thick global layer of melt referred to as the Lunar Magma Ocean1 . It is widely accepted that many significant features observed on the Moon today are the result of crystallisation of this magma ocean. However, controversy exists over the precise timing and duration of the crystallisation process. Resolution of this problem depends on the establishment of precise and robust key crystallisation time points. We report a 4417 6 Myr old zircon in lunar breccia sample 72215,195, which provides a precisely determined younger limit for the solidification of the Lunar Magma Ocean. A model based on these data, together with the age of the Moon forming giant impact, defines an exponential time frame for crystallisation and suggests formation of anorthositic crust after about 80-85% of the magma ocean was solidified. In combination with other zircon ages the 4417 +/- 6 Myr age also suggests that the very small (less than a few per cent) residual portion of the magma ocean continued to solidify during the following 300-500 m.y.

  11. Onset of solid state mantle convection and mixing during magma ocean solidification (United States)

    Maurice, Maxime; Tosi, Nicola; Samuel, Henri; Plesa, Ana-Catalina; Hüttig, Christian; Breuer, Doris


    The fractional crystallization of a magma ocean can cause the formation of a compositional layering that can play a fundamental role for the subsequent long-term dynamics of the interior, for the evolution of geochemical reservoirs, and for surface tectonics. In order to assess to what extent primordial compositional heterogeneities generated by magma ocean solidification can be preserved, we investigate the solidification of a whole-mantle Martian magma ocean, and in particular the conditions that allow solid state convection to start mixing the mantle before solidification is completed. To this end, we performed 2-D numerical simulations in a cylindrical geometry. We treat the liquid magma ocean in a parametrized way while we self-consistently solve the conservation equations of thermochemical convection in the growing solid cumulates accounting for pressure-, temperature- and, where it applies, melt-dependent viscosity as well as parametrized yield stress to account for plastic yielding. By testing the effects of different cooling rates and convective vigor, we show that for a lifetime of the liquid magma ocean of 1 Myr or longer, the onset of solid state convection prior to complete mantle crystallization is likely and that a significant part of the compositional heterogeneities generated by fractionation can be erased by efficient mantle mixing.

  12. Timescales of magma ascent and degassing and the role of crustal assimilation at Merapi volcano (2006-2010), Indonesia: Constraints from uranium-series and radiogenic isotopic compositions (United States)

    Handley, H. K.; Reagan, M.; Gertisser, R.; Preece, K.; Berlo, K.; McGee, L. E.; Barclay, J.; Herd, R.


    the more explosive behaviour of Merapi in 2010 (as has been previously suggested) and instead indicate that relatively rapid ascent of a more undegassed magma was the primary difference responsible for the transition in explosive behaviour. This interpretation is in good agreement with gas monitoring data, previous petrological studies (mineral, microlite and melt inclusion work) and maximum calculated timescale estimates using Fe-Mg compositional gradients in clinopyroxene, that also suggest more rapid movement of relatively undegassed magma in 2010 relative to 2006.

  13. Oxygen isotope evolution of the Lake Owyhee volcanic field, Oregon, and implications for low-δ18O magmas of the Snake River Plain - Yellowstone hotspot (United States)

    Blum, T.; Kitajima, K.; Nakashima, D.; Valley, J. W.


    fluxes on active extensional structures (OIG extension in the LOVF, and Basin and Range rifting in the CSRP) thereby increasing meteoric water transport to depth and generating conditions for regional scale hydrothermal alteration of the crust. The intricacies of deformation rate and style, and the resulting crustal permeability-depth relations along the hotspot track, offer a qualitative explanation for low-δ18O magmas being pervasive in the CSRP, but restricted to post-caldera and late stage ignimbrites in the eastern SRP centers. This model has significant implications for the evolution of SRP-Y systems, as the thermal inputs required to drive both hydrothermal alteration and crustal melting complicate production of long-lived shallow crustal magma chambers. In addition, this model adds to a growing data set (e.g. Tangbai-Dabie-Sulu province, British Tertiary Igneous Province, etc.) demonstrating low-δ18O magmas can be generated in conjunction with regional scale hydrothermal alteration of the crust, and that this process has occurred throughout the geologic past where extensional tectonics and high thermal fluxes are superimposed.

  14. Short Magma Residence Times at Mt. Rainier and the Probable Absence of a Large, Integrated, and Long-lived Magma Reservoir System (United States)

    Sisson, T. W.; Lanphere, M. A.


    Intensive, high-precision K-Ar and 40Ar/39Ar geochronology have proven essential for producing modern geologic maps of volcanoes and from these determining the volcanoes' time-volume histories. If sufficiently abundant, these data can also reveal aspects of the magma supply system. For Cascade volcanoes a general result has been the demonstration that edifice growth is highly episodic. Mount Rainier grew in the last 500,000 years atop the remains of an ancestral edifice that was active in the same location 1 - 2 Myr ago. The 500,000 year history of the modern edifice falls into four stages of alternating high and low magmatic output of subequal duration, but major and trace element compositions of eruptives show no correlation with volcano growth stages. Instead, the same spectrum of magmas (andesite to low-Si dacite) erupted throughout the history of the volcano with compositions in the same relative abundances. Superimposed on this seemingly null result are at least 6 brief but pronounced excursions in magma trace-element compositions. Concentrations of Zr, Ba, or Sr can double and then return to background values passing into and out of a single flow or flow-group. Some excursions are tightly bracketed by mapping and by measured ages and have durations no more than the geochronologic measurement precision of about 10,000 years. True excursion durations are potentially much shorter. The brevity and abrupt onsets and cessations of these compositional excursions are evidence against the presence of a sizeable, long-lived magma reservoir anywhere beneath the volcano, including a MASH zone in the lower crust, that would have attenuated, dampened, and homogenized compositional excursions introduced into the magmatic system. Instead, we take 10,000 years as a probable upper limit to the average residence time of magma batches transiting the crustal portion of Mount Rainier's plumbing system. A consistent scenario is that parental magmas enter the crust, differentiate

  15. Petrogenesis of the Elephant Moraine A79001 meteorite Multiple magma pulses on the shergottite parent body (United States)

    Mcsween, H. Y., Jr.; Jarosewich, E.


    The EETA 79001 achondrite consists of two distinct igneous lithologies joined along a planar, non-brecciated contact. Both are basaltic rocks composed primarily of pigeonite, augite, and maskelynite, but one contains zoned megacrysts of olivine, orthopyroxene, and chromite that represent disaggregated xenoliths of harzburzite. Both lithologies probably formed from successive volcanic flows or multiple injections of magma into a small, shallow chamber. Many similarities between the two virtually synchronous magmas suggest that they are related. Possible mechanisms to explain their differences involve varying degrees of assimilation, fractionation from similar parental magmas, or partial melting of a similar source peridotite; of these, assimilation of the observed megacryst assemblage seems most plausible. However, some isotopic contamination may be required in any of these petrogenetic models. The meteorite has suffered extensive shock metamorphism and localized melting during a large impact event that probably excavated and liberated it from its parent body.

  16. The 2009 paroxysmal explosions at Stromboli (Italy): magma mixing and eruption dynamics (United States)

    La Felice, Sonia; Landi, Patrizia


    Three small-scale paroxysmal explosions (also called major explosions) interrupted ordinary mild Strombolian activity at Stromboli on May 3, November 8 and 24, 2009. Products were largely confined to the summit area, except in the November 24 event, during which coarse pumiceous lapilli reached the coast. Emission of crystal-poor pumice closely mingled with crystal-rich products characterized the three events. The textural and chemical study of minerals and glassy matrices revealed that the two end-members are mingled together physically in the May 3 and November 24 pumice, whereas November 8 products contain heterogeneous glass with intermediate compositions derived from chemical mixing between crystal-rich and crystal-poor magmas. We here discuss the different degrees of interaction between the two magmas in the three explosions in terms of magma dynamics during small-scale paroxysms.

  17. Lava lake level as a gauge of magma reservoir pressure and eruptive hazard (United States)

    Patrick, Matthew R.; Anderson, Kyle R.; Poland, Michael P.; Orr, Tim R.; Swanson, Donald A.


    Forecasting volcanic activity relies fundamentally on tracking magma pressure through the use of proxies, such as ground surface deformation and earthquake rates. Lava lakes at open-vent basaltic volcanoes provide a window into the uppermost magma system for gauging reservoir pressure changes more directly. At Kīlauea Volcano (Hawaiʻi, USA) the surface height of the summit lava lake in Halemaʻumaʻu Crater fluctuates with surface deformation over short (hours to days) and long (weeks to months) time scales. This correlation implies that the lake behaves as a simple piezometer of the subsurface magma reservoir. Changes in lava level and summit deformation scale with (and shortly precede) changes in eruption rate from Kīlauea's East Rift Zone, indicating that summit lava level can be used for short-term forecasting of rift zone activity and associated hazards at Kīlauea.

  18. Syn-eruptive breakdown of pyrrhotite: a record of magma fragmentation, air entrainment, and oxidation (United States)

    Matsumoto, Keiko; Nakamura, Michihiko


    Air entrainment in fragmented magmas controls the dynamics of volcanic eruptions. Pyroclast oxidation kinetics may be applied to quantify the degree of magma-air interaction. Pyrrhotite (Po) in volcanic rocks is often oxidized to form magnetite (Mt) and hematite (Hm), and its reaction mechanisms are well constrained. To test utilizing Po oxidation as a marker for magma-air interactions, we compared the occurrence of Po oxidation products from three different eruption styles during the Sakurajima 1914-1915 eruption. Pumices from the Plinian eruption include columnar-type Fe oxides (Mt with subordinate width of Hm) often accompanied by relict Po. This columnar type is also found in clastogenic lava, where it is almost completely oxidized to Hm. The effusive lava contains framboidal aggregates of subhedral to anhedral Mt crystals without Hm. The formation mechanisms of columnar and framboidal Fe oxides were estimated. The columnar type Fe oxides were formed syn-eruptively through gaseous reactions, as opposed to the melt in a magma chamber, as demonstrated by the Ti-free nature of the columnar Mt and its synchronous oxidation to Hm. By contrast, the framboidal type was formed in a melt with decreasing fS2. The calculation of Hm growth in a conductively cooling pumice clast constrains the surface temperature of pumice in the eruption column. The paragenesis and oxidation degree of Po and Fe oxides are consistent with the eruption processes in terms of magma fragmentation, air entrainment, and welding, and can, therefore, be a responsive marker for the magma-air interaction.

  19. Rapid fluid disruption: A source for self-potential anomalies on volcanoes (United States)

    Johnston, M.J.S.; Byerlee, J.D.; Lockner, D.


    Self-potential (SP) anomalies observed above suspected magma reservoirs, dikes, etc., on various volcanoes (Kilauea, Hawaii; Mount Unzen, Japan; Piton de la Fournaise, Reunion Island, Miyake Jima, Japan) result from transient surface electric fields of tens of millivolts per kilometer and generally have a positive polarity. These SP anomalies are usually attributed to electrokinetic effects where properties controlling this process are poorly constrained. We propose an alternate explanation that contributions to electric fields of correct polarity should be expected from charge generation by fluid vaporization/disruption. As liquids are vaporized or removed as droplets by gas transport away from hot dike intrusions, both charge generation and local increase in electrical resistivity by removal of fluids should occur. We report laboratory observations of electric fields in hot rock samples generated by pulses of fluid (water) through the rock at atmospheric pressure. These indicate the relative amplitudes of rapid fluid disruption (RFD) potentials and electrokinetic potentials to be dramatically different and the signals are opposite in sign. Above vaporization temperatures, RFD effects of positive sign in the direction of gas flow dominate, whereas below these temperatures, effects of negative sign dominate. This suggests that the primary contribution to observed self-potential anomalies arises from gas-related charge transport processes at temperatures high enough to produce vigorous boiling and vapor transport. At lower temperatures, the primary contribution is from electrokinetic effects modulated perhaps by changing electrical resistivity and RFD effects from high-pressure but low-temperature CO2 and SO2 gas flow ripping water molecules from saturated crustal rocks. If charge generation is continuous, as could well occur above a newly emplaced dike, positive static potentials will be set up that could be sustained for many years, and the simplest method for

  20. Phase equilibria and trace element partitioning in a magma ocean to 260 kilobars (United States)

    Herzberg, Claude


    A magma ocean can solidify in a way that is intermediate between perfect equilibrium and perfect fractional crystallization. In order to model quantitatively any fractional crystallization scenario, it is necessary to understand the geochemical characteristics of the phases that crystallize from a magma ocean, and how they vary with pressure. The crystallizing phase is called the liquidus phase, and their identities were determined by numerous experiments utilizing the multianvil apparatus. For chondritic compositions the liquidus phases are as follows: olivine at 1 atmosphere to 100 kilobars; garnet from 100 to about 260 kilobars; silicate perovskite from 260 kilobars to possibly the core-mantle boundary in the Earth.

  1. The Donkerhuk batholith (Namibia): Evolution of and processes in a giant magma reservoir (United States)

    Clemens, John; Jung, Stefan; Kisters, Alex; Buick, Ian


    The Donkerhuk batholith represents a gigantic accumulation of felsic magma and thus provides insight into the processes and outcomes in at least some huge felsic magma bodies. The largely S-type batholith, which intrudes amphibolite-facies metaturbidites of the Kuiseb Formation, was emplaced at about 530 Ma, in the Southern Zone of the Damara Belt, following the collision of the Kalahari Craton with the Congo Craton (to the north) in the earliest Phanerozoic. It is a vast, elongate body, > 200 km long and 15 to 40 km wide, trending NE-SW, parallel to the Okahandja Lineament and the general structural grain of the Belt. Our current tectonic model for the Donkerhuk magmatism involves intense and prolonged crustal heating due to the opening of a slab window. Over large areas, the granitic rocks carry variably developed magmatic foliations and, in places, solid-state fabrics, underlining its syn- to late-tectonic emplacement, during northwest shortening and pure-shear-dominated transpression. The magmas were not derived through melting of the Kuiseb schists, but rather from older metasedimentary crust just a few km below emplacement level. They were added to the 'magma chamber' as thousands of separate pulses, preserved as sheets that retain their individuality, at least near the margins and roof zones. In the core of the batholith there was evidently some greater degree of thermal insulation and individual sheets are less easily identified. Thus, the 'magma reservoir' was never a large molten mass, but grew over perhaps 14 Myr, in small increments. This set of processes meant that only very local differentiation look place, that there was little or no mixing between magma batches, even in the core of the batholith where the individuality of the pulses became blurred due to a prolonged crystallisation history. As a result, the Donkerhuk rocks preserve a remarkably high degree of source-inherited elemental and isotopic heterogeneity. We suggest that great caution be

  2. Aseismic magma supply inferred from geodetic Finite Element inversions: the case of the 2001-2002 non-eruptive unrest at Cotopaxi volcano (United States)

    Hickey, James; Gottsmann, Jo; Mothes, Patricia


    The complex interplay between magma supply, storage and transportation, and how these processes interact with the host rock dictate the unrest signals we observe at the surface. Mechanical modelling allows us to link our recorded geophysical signals to subsurface processes and constrain a causative mechanism. We carry out this analysis for the 2001-2002 non-eruptive unrest episode at Cotopaxi volcano, Ecuador. During this period the volcano underwent a general inflation of its iconic edifice, recorded by an Electronic Distance Meter (EDM) network, and was accompanied by increased seismicity beneath the north-east flank. To solve for the optimum deformation source parameters we use an inverse Finite Element method accounting for subsurface material heterogeneity and surface topography. The model solutions favour a shallow source beneath the south-west flank, in contradiction to the seismicity locations in the north-east. The best-fit deformation model is a small, oblate shaped source approximately 1 km above sea level with a 20 x 106 m3 volume increase. To reconcile the deformation and seismicity simultaneously further Finite Element models were employed, incorporating an additional temperature-dependent rheology. These were used to assess the viscosity of the host rock surrounding the source. By comparing the elastic and viscous timescales associated with a small magma intrusion (implied by the best-fit deformation source in the south-west), we can infer this process occurred aseismically. To explain the recorded seismicity in the north-east we propose a mechanism of fluid migration from the south-west to the north-east along fault systems. Our analysis further shows that if future unrest crises are accompanied by measurable seismicity around the deformation source, this could indicate a higher magma supply rate and a critical level of unrest with increased likelihood of a forthcoming eruption. This research received funding through the EC FP7 "VUELCO" (#282759

  3. Structure of Urea Transporters


    Levin, Elena J.; Zhou, Ming


    Members of the urea transporter (UT) family mediate rapid, selective transport of urea down its concentration gradient. To date, crystal structures of two evolutionarily distant UTs have been solved. These structures reveal a common UT fold involving two structurally homologous domains that encircle a continuous membrane-spanning pore, and indicate that UTs transport urea via a channel-like mechanism. Examination of the conserved architecture of the pore, combined with crystal structures of l...

  4. Petrogenesis of the granitic Donkerhuk batholith in the Damara Belt of Namibia: protracted, syntectonic, short-range, crustal magma transfer (United States)

    Clemens, J. D.; Buick, I. S.; Kisters, A. F. M.; Frei, D.


    The areally extensive (>5000 km2), syn-tectonic, ca. 520 Ma, mainly S-type Donkerhuk batholith was constructed through injection of thousands of mainly sheet-like magma pulses over 20-25 Myr. It intruded schists of the Southern Zone accretionary prism in the Damara Belt of Namibia. Each magma pulse had at least partly crystallised prior to the arrival of the following batch. However, much of the batholith may have remained partially molten for long periods, close to the H2O-saturated granite solidus. The batholith shows extreme variation in chemistry, while having limited mineralogical variation, and seems to be the world's most heterogeneous granitic mass. The Nd model ages of 2 Ga suggest that Eburnean rocks of the former magmatic arc, structurally overlain by the accretionary wedge, are the most probable magma sources. Crustal melting was initiated by mantle heat flux, probably introduced by thermal diffusion rather than magma advection. The granitic magmas were transferred from source to sink, with minimal intermediate storage; the whole process having occurred in the middle crust, resulting in feeble crustal differentiation despite the huge volume of silicic magma generated. Source heterogeneity controlled variation in the magmas and neither mixing nor fractionation was prominent. However, due to the transpressional emplacement régime, local filter pressing formed highly silicic liquids, as well as felsic cumulate rocks. The case of the Donkerhuk batholith demonstrates that emplacement-level tectonics can significantly influence compositional evolution of very large syn-tectonic magma bodies.

  5. Volcano seismicity and ground deformation unveil the gravity-driven magma discharge dynamics of a volcanic eruption. (United States)

    Ripepe, Maurizio; Donne, Dario Delle; Genco, Riccardo; Maggio, Giuseppe; Pistolesi, Marco; Marchetti, Emanuele; Lacanna, Giorgio; Ulivieri, Giacomo; Poggi, Pasquale


    Effusive eruptions are explained as the mechanism by which volcanoes restore the equilibrium perturbed by magma rising in a chamber deep in the crust. Seismic, ground deformation and topographic measurements are compared with effusion rate during the 2007 Stromboli eruption, drawing an eruptive scenario that shifts our attention from the interior of the crust to the surface. The eruption is modelled as a gravity-driven drainage of magma stored in the volcanic edifice with a minor contribution of magma supplied at a steady rate from a deep reservoir. Here we show that the discharge rate can be predicted by the contraction of the volcano edifice and that the very-long-period seismicity migrates downwards, tracking the residual volume of magma in the shallow reservoir. Gravity-driven magma discharge dynamics explain the initially high discharge rates observed during eruptive crises and greatly influence our ability to predict the evolution of effusive eruptions.

  6. Nonexplosive and explosive magma/wet-sediment interaction during emplacement of Eocene intrusions into Cretaceous to Eocene strata, Trans-Pecos igneous province, West Texas (United States)

    Befus, K.S.; Hanson, R.E.; Miggins, D.P.; Breyer, J.A.; Busbey, A.B.


    Eocene intrusion of alkaline basaltic to trachyandesitic magmas into unlithified, Upper Cretaceous (Maastrichtian) to Eocene fluvial strata in part of the Trans-Pecos igneous province in West Texas produced an array of features recording both nonexplosive and explosive magma/wet-sediment interaction. Intrusive complexes with 40Ar/39Ar dates of ~ 47-46??Ma consist of coherent basalt, peperite, and disrupted sediment. Two of the complexes cutting Cretaceous strata contain masses of conglomerate derived from Eocene fluvial deposits that, at the onset of intrusive activity, would have been > 400-500??m above the present level of exposure. These intrusive complexes are inferred to be remnants of diatremes that fed maar volcanoes during an early stage of magmatism in this part of the Trans-Pecos province. Disrupted Cretaceous strata along diatreme margins record collapse of conduit walls during and after subsurface phreatomagmatic explosions. Eocene conglomerate slumped downward from higher levels during vent excavation. Coherent to pillowed basaltic intrusions emplaced at the close of explosive activity formed peperite within the conglomerate, within disrupted Cretaceous strata in the conduit walls, and within inferred remnants of the phreatomagmatic slurry that filled the vents during explosive volcanism. A younger series of intrusions with 40Ar/39Ar dates of ~ 42??Ma underwent nonexplosive interaction with Upper Cretaceous to Paleocene mud and sand. Dikes and sills show fluidal, billowed, quenched margins against the host strata, recording development of surface instabilities between magma and groundwater-rich sediment. Accentuation of billowed margins resulted in propagation of intrusive pillows into the adjacent sediment. More intense disruption and mingling of quenched magma with sediment locally produced fluidal and blocky peperite, but sufficient volumes of pore fluid were not heated rapidly enough to generate phreatomagmatic explosions. This work suggests that

  7. Recent developments and applications of a real-time tool to detect magma migration in different volcanic settings and network optimization. (United States)

    Taisne, B.; Aoki, Y.; Caudron, C.


    Triggering mechanism of a seismic swarm has to be identified with great confidence in real time. Crisis response will not be the same whether magma is involved or not. The recent developments of a method based on the Seismic Amplitude Ratio Analysis enable a rapid and unambiguous diagnosis to detect migrating micro-seismicity. The beauty of this method lies in the fact that the ratio of seismic energy, recorded at different stations, is independent of the seismic energy radiated at the source and depends only on the location of the source and attenuation of the medium. Since drastic changes in attenuation are unlikely to occur at the time scale of magma intrusion, temporal evolutions in the measured ratio have to be explained by a change in the source location. Based on simple assumptions, this technique can be used to assess the potential of existing monitoring seismic network to detect migrating events in real-time. Of much importance, it can also be used to design monitoring seismic network based on the available number of sensors, as well as from field constraints. The method will be implemented in MSNoise software ( This allows us to mine existing datasets, to compare the different noise-based techniques, but also to use the method for monitoring purposes. We will present how the key question: "Migration or No Migration" could be answered in real time without need of complex calculation nor full knowledge of the site effect and attenuation of the medium.

  8. Amphibole and apatite insights into the evolution and mass balance of Cl and S in magmas associated with porphyry copper deposits (United States)

    Chelle-Michou, Cyril; Chiaradia, Massimo


    Chlorine and sulfur are of paramount importance for supporting the transport and deposition of ore metals at magmatic-hydrothermal systems such as the Coroccohuayco Fe-Cu-Au porphyry-skarn deposit, Peru. Here, we used recent partitioning models to determine the Cl and S concentration of the melts from the Coroccohuayco magmatic suite using apatite and amphibole chemical analyses. The pre-mineralization gabbrodiorite complex hosts S-poor apatite, while the syn- and post-ore dacitic porphyries host S-rich apatite. Our apatite data on the Coroccohuayco magmatic suite are consistent with an increasing oxygen fugacity (from the gabbrodiorite complex to the porphyries) causing the dominant sulfur species to shift from S2- to S6+ at upper crustal pressure where the magmas were emplaced. We suggest that this change in sulfur speciation could have favored S degassing, rather than its sequestration in magmatic sulfides. Using available partitioning models for apatite from the porphyries, pre-degassing S melt concentration was 20-200 ppm. Estimates of absolute magmatic Cl concentrations using amphibole and apatite gave highly contrasting results. Cl melt concentrations obtained from apatite (0.60 wt% for the gabbrodiorite complex; 0.2-0.3 wt% for the porphyries) seems much more reasonable than those obtained from amphibole which are very low (0.37 wt% for the gabbrodiorite complex; 0.10 wt% for the porphyries). In turn, relative variations of the Cl melt concentrations obtained from amphibole during magma cooling are compatible with previous petrological constraints on the Coroccohuayco magmatic suite. This confirms that the gabbrodioritic magma was initially fluid undersaturated upon emplacement, and that magmatic fluid exsolution of the gabbrodiorite and the pluton rooting the porphyry stocks and dikes were emplaced and degassed at 100-200 MPa. Finally, mass balance constraints on S, Cu and Cl were used to estimate the minimum volume of magma required to form the

  9. Formation and evolution of a lunar core from ilmenite-rich magma ocean cumulates

    NARCIS (Netherlands)

    de Vries, J.; van den Berg, A.P.; van Westrenen, W.


    In the absence of comprehensive seismic data coverage, the size, composition and physical state of the lunar core are still debated. It has been suggested that a dense ilmenite-rich layer, which originally crystallised near the top of the lunar magma ocean, may have sunk to the centre of the Moon to

  10. Can Fractional Crystallization of a Lunar Magma Ocean Produce the Lunar Crust? (United States)

    Rapp, Jennifer F.; Draper, David S.


    New techniques enable the study of Apollo samples and lunar meteorites in unprecedented detail, and recent orbital spectral data reveal more about the lunar farside than ever before, raising new questions about the supposed simplicity of lunar geology. Nevertheless, crystallization of a global-scale magma ocean remains the best model to account for known lunar lithologies. Crystallization of a lunar magma ocean (LMO) is modeled to proceed by two end-member processes - fractional crystallization from (mostly) the bottom up, or initial equilibrium crystallization as the magma is vigorously convecting and crystals remain entrained, followed by crystal settling and a final period of fractional crystallization [1]. Physical models of magma viscosity and convection at this scale suggest that both processes are possible. We have been carrying out high-fidelity experimental simulations of LMO crystallization using two bulk compositions that can be regarded as end-members in the likely relevant range: Taylor Whole Moon (TWM) [2] and Lunar Primitive Upper Mantle (LPUM) [3]. TWM is enriched in refractory elements by 1.5 times relative to Earth, whereas LPUM is similar to the terrestrial primitive upper mantle, with adjustments made for the depletion of volatile alkalis observed on the Moon. Here we extend our earlier equilibrium-crystallization experiments [4] with runs simulating full fractional crystallization

  11. The Yellowstone hotspot in space and time: Nd and Hf isotopes insilici magmas

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Barbara P.; Perkins, Michael E.; Christensen, John N.; Lee,Den-Chuen; Halliday, A.N.


    Over the course of its 16 m.y. history, the Yellowstonehotspot has produced silicic magmas exhibiting systematic, and oftensympathetic, variations in isotopic and chemical composition, temperatureand frequency of eruption. Nd and Hf isotopic ratios vary systematicallyfrom initial eruptions at ~;16 Ma, contemporaneous with basalticvolcanism in eastern Oregon and Washington, to the present dayYellowstone Volcanic Plateau. Nd and Hf isotopic ratios co-vary and spanthe range of most terrestrial samples, reflecting mixing of mantle andcrustal sources. Earliest erupted silicic magmas were hot (in excess of1050oC), relatively less evolved and have isotopic ratios within therange of contemporaneous Columbia River flood basalts. The transit of thehotspot across the lithospheric boundary between the western accretedoceanic terrain and the Precambrian craton at 15 Ma is marked by shiftsin eNd from +4 to -11 and in ?Hf from +10 to -10. The duration of thetransit yields a crustal magma source diameter of ~;70 km. In theinterval from 14 to 9 Ma, ?Nd systematically increases from -11 to -7,recording a minimum increase in the mantle component from 5 percent to 30percent. The mantle component could be twice as great, depending upon theisotopic composition of crust and mantle reservoirs. In this sameinterval, peak temperatures of ~;1000oC occurred at 9 Ma. The last 8 m.y.are characterized by less frequent eruption of lower temperature(830-900oC) and more compositionally evolved magmas.

  12. Mantle to surface degassing of alkalic magmas at Erebus volcano, Antarctica (United States)

    Oppenheimer, C.; Moretti, R.; Kyle, P.R.; Eschenbacher, A.; Lowenstern, J. B.; Hervig, R.L.; Dunbar, N.W.


    Continental intraplate volcanoes, such as Erebus volcano, Antarctica, are associated with extensional tectonics, mantle upwelling and high heat flow. Typically, erupted magmas are alkaline and rich in volatiles (especially CO2), inherited from low degrees of partial melting of mantle sources. We examine the degassing of the magmatic system at Erebus volcano using melt inclusion data and high temporal resolution open-path Fourier transform infrared (FTIR) spectroscopic measurements of gas emissions from the active lava lake. Remarkably different gas signatures are associated with passive and explosive gas emissions, representative of volatile contents and redox conditions that reveal contrasting shallow and deep degassing sources. We show that this unexpected degassing signature provides a unique probe for magma differentiation and transfer of CO2-rich oxidised fluids from the mantle to the surface, and evaluate how these processes operate in time and space. Extensive crystallisation driven by CO2 fluxing is responsible for isobaric fractionation of parental basanite magmas close to their source depth. Magma deeper than 4kbar equilibrates under vapour-buffered conditions. At shallower depths, CO2-rich fluids accumulate and are then released either via convection-driven, open-system gas loss or as closed-system slugs that ascend and result in Strombolian eruptions in the lava lake. The open-system gases have a reduced state (below the QFM buffer) whereas the closed-system gases preserve their deep oxidised signatures (close to the NNO buffer). ?? 2011 Elsevier B.V.

  13. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins. (United States)

    Benson, Thomas R; Coble, Matthew A; Rytuba, James J; Mahood, Gail A


    The omnipresence of lithium-ion batteries in mobile electronics, and hybrid and electric vehicles necessitates discovery of new lithium resources to meet rising demand and to diversify the global lithium supply chain. Here we demonstrate that lake sediments preserved within intracontinental rhyolitic calderas formed on eruption and weathering of lithium-enriched magmas have the potential to host large lithium clay deposits. We compare lithium concentrations of magmas formed in a variety of tectonic settings using in situ trace-element measurements of quartz-hosted melt inclusions to demonstrate that moderate to extreme lithium enrichment occurs in magmas that incorporate felsic continental crust. Cenozoic calderas in western North America and in other intracontinental settings that generated such magmas are promising new targets for lithium exploration because lithium leached from the eruptive products by meteoric and hydrothermal fluids becomes concentrated in clays within caldera lake sediments to potentially economically extractable levels.Lithium is increasingly being utilized for modern technology in the form of lithium-ion batteries. Here, using in situ measurements of quartz-hosted melt inclusions, the authors demonstrate that preserved lake sediments within rhyolitic calderas have the potential to host large lithium-rich clay deposits.

  14. Geometry Properties of Porosity Waves during Magma Migration: The Influence of Viscosities and Damage (United States)

    Cai, Z.; Bercovici, D.


    Partial melting occurs along grain boundaries and migrates through porous flow, leading to magma segregation in the mantle. Solitary porosity waves created by a perturbation in melting have been studied in the flow of a low viscosity fluid in a deformable matrix (McKenzie 1984, Scott and Stevenson 1986, Barcilon and Richter 1986, Spiegelman 1993, Wiggins and Spiegelman 1995). However, in a fairly complicated multi-physics, multi-scale process of magma migration, the geometry and instability of porosity waves can be affected by both mechanical and thermal factors, leaving different propagation signatures. In this work we develop a two-dimensional, two-phase damage model of magma-fracturing, and study the influence of viscosities and damage (void generation and microcracking) on the geometry properties of porosity waves. We first benchmark our solitary solutions with previous works and solve 2-D finite-amplitude waves numerically using spectral and semi-spectral method. We show that damage, decompaction weakening of the matrix and porosity-driven viscosities can alter the geometry of stable porosity waves, and result in an elongated or flattened wave front with a trail of smaller porosity. Such trails may localize subsequent waves and form porosity passage in the matrix. Scaling analysis of the time-dependent porosity waves are conducted and amount of magma reaching to the top of the melting region are estimated. Future work will include evaluating the thermal and seismic signatures during and after melt migration in two-phase porous flow.

  15. Tüüri "Magma" kuuplaat. Pärt Saksa romaani kangelasena

    Index Scriptorium Estoniae


    Erkki-Sven Tüüri heliplaat "Magma" oli kuuplaat nii BBC Music Magazine'is kui ka Gramophone'is. Saksa kirjanik Adam Thorpe avaldas romaani "Taktverschiebung" ("Taktimuutus"), mille peategelast, inglise heliloojat Jack Middletoni iseloomustatakse Arvo Pärdi suure austajana

  16. In situ visualization of magma deformation at high temperature using time-lapse 3D tomography (United States)

    Godinho, jose; Lee, Peter; Lavallee, Yan; Kendrick, Jackie; Von-Aulock, Felix


    We use synchrotron based x-ray computed micro-tomography (sCT) to visualize, in situ, the microstructural evolution of magma samples 3 mm diameter with a resolution of 3 μm during heating and uniaxial compression at temperatures up to 1040 °C. The interaction between crystals, melt and gas bubbles is analysed in 4D (3D + time) during sample deformation. The ability to observe the changes of the microstructure as a function of time allow us to: a) study the effect of temperature in the ability of magma to fracture or deform; b) quantify bubble nucleation and growth rates during heating; c) study the relation between crystal displacement and volatile exsolution. We will show unique beautiful videos of how bubbles grow and coalescence, how samples and crystals within the sample fracture, heal and deform. Our study establishes in situ sCT as a powerful tool to quantify and visualize with micro-scale resolution fast processes taking place in magma that are essential to understand ascent in a volcanic conduit and validate existing models for determining the explosivity of volcanic eruptions. Tracking simultaneously the time and spatial changes of magma microstructures is shown to be primordial to study disequilibrium processes between crystals, melt and gas phases.

  17. Chemical evolution of a high-level magma system: the Black Mountain volcanic center, southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, T.A.; Noble, D.C.; Younker, L.W.


    A comprehensive study of stratigraphically controlled samples of both lavas and ash-flow tuffs from the Black Mountain volcanic center enables us to evaluate magmatic processes. The results of this study are used to: (1) determine how this high-level magma system developed; (2) compare this system with other similar systems; and (3) correlate ash-flow sheets using their chemical characteristics.

  18. Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: Implications for Mars (United States)

    Elkins-Tanton, L. T.; Parmentier, E. M.; Hess, P. C.


    Crystallization of a magma ocean on a large terrestrial planet that is significantly melted by the energy of accretion may lead to an unstable cumulate density stratification, which may overturn to a stable configuration. Overturn of the initially unstable stratification may produce an early basaltic crust and differentiated mantle reservoirs. Such a stable compositional stratification can have important implications for the planet's subsequent evolution by delaying or suppressing thermal convection and by influencing the distribution of radiogenic heat sources. We use simple models for fractional crystallization of a martian magma ocean, and calculate the densities of the resulting cumulates. While the simple models presented do not include all relevant physical processes, they are able to describe to first order a number of aspects of martian evolution. The models describe the creation of magma source regions that differentiated early in the history of Mars, and present the possibility of an early, brief magnetic field initiated by cold overturned cumulates falling to the core- mantle boundary. In a model that includes the density inversion at about 7.5 GPa, where olivine and pyroxene float in the remaining magma ocean liquids while garnet sinks, cumulate overturn sequesters alumina in the deep martian interior. The ages and compositions of source regions are consistent with SNC meteorite data.

  19. On the role of slab de- and re-hydration and temperature on magmas genesis (United States)

    Bouilhol, P.; Magni, V.; Van Hunen, J.; Kaislaniemi, L.


    Understanding the metamorphic reactions that occurs within the slab is a must to constrain subduction zone processes. Slab dehydration reactions ultimately permit the mantle wedge to melt, by lowering its solidus, thus forming arcs above descending slabs. Alternatively the slab crust may cross its solidus in warm (young) slabs. Moreover, slab dehydration allows chemical fractionation to occur between residual phases and transferred fluid phase, giving arc magmas part of their typical subduction zone chemical characteristics. To better comprehend such complex thermo-chemical open system, we are using a numerical model that reproduces the thermo-mechanical behaviour of a subducting slab and computes the thermodynamic equilibrium paragenesis at each P-T-X conditions of the system. Hence we generate a 'paragenetic map' of a subduction system, allowing us to track the fate of water during dehydration and subsequent re-hydration or melting reactions. Here we highlight the role of dehydration and re-hydration reactions occurring in the slab's igneous crust and mantle and the mantle wedge for different slab ages at fixed rate and dip, hence presenting the evolution of a subduction paragenetic map for different thermal regimes. We intend to show the key roles of a) antigorite and chlorite breakdown in the hydrated part of the slab mantle, b) amphibole and lawsonite in the slab crust, and c) the role of amphibole and chlorite in the mantle wedge. Furthermore, we demonstrate the importance of dehydration / re-hydration reactions occurring within the slab and mantle wedge as a main process for water transport and melting reactions. As a whole, as the slab age decreases, dehydration reactions are occurring in a narrower PT window at shallower depth, and because of early slab dehydration, the role of hydrous phases in the metasomatized mantle wedge become more important. The younger the slab is, the less lawsonite plays a role in the transferred fluid, inducing drastic changes

  20. There's more than one way to build a caldera magma chamber: Evidence from volcanic-plutonic relationships at three faulted Rio-Grande-rift calderas (United States)

    Zimmerer, M. J.; McIntosh, W. C.


    The temporal and chemical relationships of volcanic and plutonic rocks of the Questa (NM), Mt. Aetna (CO), and Organ caldera (NM) complexes were investigated to establish the origin of these silicic magmas. Rio Grande Rift faulting at these systems has exposed both intracaldera sequences and subvolcanic plutons. Ar/Ar and U/Pb ages reveal the timing of volcanic activity and pluton emplacement and cooling. We observe a link between ignimbrite zoning patterns and the temporal-chemical relationship of volcanic and plutonic rocks. The Questa caldera erupted the high-SiO2 peralkaline Amalia Tuff (AT) at 25.4 Ma. Volumetrically minor phases of two resurgent plutons and a ring dike are compositionally similar to the AT. The age of the ring dike (25.4 Ma) is indistinguishable to AT, suggesting that the peralkaline intrusions are nonerupted AT. The remaining pluton ages are 100 ka to 6.1 Ma younger than AT and are too young to be the AT residual crystal mush. The Mt. Princeton batholith and nested Mt. Aetna caldera are interpreted to be the sources for the 37.3 Ma, low-SiO2 rhyolitic Wall Mountain Tuff (WMT) and the 34.3 Ma, dacitic Badger Creek Tuff (BCT). U/Pb and Ar/Ar ages of Mt. Princeton batholith (36.5 to 35.1 Ma) indicate that it was emplaced and rapidly cooled during the interval between the WMT and BCT eruptions, and that any WMT age intrusions are now eroded. During the eruption of the BCT, the fully crystallized Mt. Princeton batholith collapsed into the Mt. Aetna caldera. Intrusions along the margins of the Mt. Aetna caldera are compositionally identical the BCT and contain zircons 100 to 500 ka older than the tuff, suggesting that the BCT magma chamber was incrementally emplaced prior to caldera eruption. The Organ caldera complex erupted three ignimbrites: a basal high-silica 36.5 Ma rhyolite, a middle intermediate-silica 36.2 Ma rhyolite, and an upper 36.0 Ma low-silica rhyolite. The intracaldera sequence is intruded by the Organ Needle pluton. U/Pb zircon

  1. Petrology of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon (United States)

    Druitt, T.H.; Bacon, C.R.


    Evolution of the magma chamber at Mount Mazama involved repeated recharge by two types of andesite (high-Sr and low-Sr), crystal fractionation, crystal accumulation, assimilation, and magma mixing (Bacon and Druitt 1988). This paper addresses the modal compositions, textures, mineral chemistry and magmatic temperatures of (i) products of the 6845??50 BP climactic eruption, (ii) blocks of partially fused granitoid wallrock found in the ejecta, and (iii) preclimactic rhyodacitic lavas leaked from the chamber in late Pleistocene and early Holocene time. Immediately prior to the climactic eruption the chamber contained ??? 40 km3 of rhyodacite (10 vol% plag + opx + aug + hb + mt + ilm, ???880?? C) overlying high-Sr andesite and cumulus-crystal mush (28-51 vol% plag + hb ?? opx ?? aug + mt ?? ilm, 880?? to ???950?? C), which in turn overlay low-Sr crystal mush (50-66 vol% plag + opx + aug ?? hb ?? ol + mt + ilm, 890?? to ???950??? C). Despite the well known compositional gap in the ejecta, no thermal discontinuity existed in the chamber. Pre-eruptive water contents of pore liquids in most high-Sr and low-Sr mushes were 4-6 wt%, but on average the high-Sr mushes were slightly richer in water. Although parental magmas of the crystal mushes were andesitic, xenocrysts of bytownite and Ni-rich magnesian olivine in some scoriae record the one-time injection of basalt into the chamber. Textures in ol-bearing scoriae preserve evidence for the reactions ol + liq = opx and ol + aug + liq(+ plag?) = hb, which occurred in andesitic liquids at Mount Mazama. Strontium abundances in plagioclase phenocrysts constrain the petrogenesis of preclimactic and climactic rhyodacites. Phenocryst cores derived from high-Sr and low-Sr magmas have different Sr contents which can be resolved by microprobe. Partition coefficients for plagioclase in andesitic to rhyolitic glasses range from 2 to 7, and increase as glass %SiO2 increases. Evolved Pleistocene rhyodacites (???30-25,000 BP) and

  2. Magma dynamics during the 2007 Stromboli eruption (Aeolian Islands, Italy): Mineralogical, geochemical and isotopic data (United States)

    Landi, P.; Corsaro, R. A.; Francalanci, L.; Civetta, L.; Miraglia, L.; Pompilio, M.; Tesoro, R.


    After the 6 month-long effusive event of 2002-2003, a new lava effusion occurred at Stromboli between 27 February and 2 April 2007. Despite the different durations, approximately the same volume of magma was emitted in both eruptions, in the order of 10 7 m 3. A paroxysmal eruption occurred at the summit craters in both the 2002-2003 and 2007 episodes, during which a significant amount of low porphyritic (LP), volatile-rich magma was erupted. In both cases, the paroxysm did not interrupt the lava emission. Here, we present compositional data, including texture, mineralogy, chemistry and Sr and Nd isotope ratios of bulk-rock, groundmass and separated minerals of lavas erupted in 2007, together with chemistry and Sr and Nd isotope composition of the pumices emitted during the 15 March paroxysm. As a whole, the lavas have the same texture and chemistry that characterize the highly porphyritic (HP) products usually erupted at Stromboli during normal Strombolian activity and effusive events. Compared to the previous HP products, the 2007 lavas show minor but systematic mineralogical and isotopic variations which are consistent with a modest increase of the magma supply rate of the volcano. Compositional variations during the entire duration of the event are very modest. Glass chemistry changes in lavas erupted in the second half of March can be explained by the minor mixing between the volatile-rich LP magma rising through the shallow magmatic system during the 15 March paroxysm and the degassed residing HP magma. A first conclusion of this study is that there is no compositional evidence supporting major changes in the magma dynamics of the volcano accompanying the effusive activity, as also suggested for the 2002-2003 event. The activity of Stromboli is controlled by a steady state feeding system in which refilling, mixing, degassing and crystallization at shallow level continuously operate, with modest oscillations in the magma supply rate. Switching between normal

  3. Assimilation of preexisting Pleistocene intrusions at Long Valley by periodic magma recharge accelerates rhyolite generation: rethinking the remelting model (United States)

    Simon, Justin I.; Weis, Dominique; DePaolo, Donald J.; Renne, Paul R.; Mundil, Roland; Schmitt, Axel K.


    Rhyolite flows and tuffs from the Long Valley area of California, which were erupted over a two-million-year time period, exhibit systematic trends in Nd, Hf, and Pb isotopes, trace element composition, erupted volume, and inferred magma residence time that provide evidence for a new model for the production of large volumes of silica-rich magma. Key constraints come from geochronology of zircon crystal populations combined with a refined eruption chronology from Ar-Ar geochronology; together these data give better estimates of magma residence time that can be evaluated in the context of changing magma compositions. Here, we report Hf, Nd, and Sr isotopes, major and trace element compositions, 40Ar/39Ar ages, and U-Pb zircon ages that combined with existing data suggest that the chronology and geochemistry of Long Valley rhyolites can be explained by a dynamic interaction of crustal and mantle-derived magma. The large volume Bishop Tuff represents the culmination of a period of increased mantle-derived magma input to the Long Valley volcanic system; the effect of this input continued into earliest postcaldera time. As the postcaldera evolution of the system continued, new and less primitive crustal-derived magmas dominated the system. A mixture of varying amounts of more mafic mantle-derived and felsic crustal-derived magmas with recently crystallized granitic plutonic materials offers the best explanation for the observed chronology, secular shifts in Hf and Nd isotopes, and the apparently low zircon crystallization and saturation temperatures as compared to Fe-Ti oxide eruption temperatures. This scenario in which transient crustal magma bodies remained molten for varying time periods, fed eruptions before solidification, and were then remelted by fresh recharge provides a realistic conceptual framework that can explain the isotopic and geochemical evidence. General relationships between crustal residence times and magma sources are that: (1) precaldera rhyolites

  4. Heterogeneity in lunar anorthosite meteorites: implications for the lunar magma ocean model. (United States)

    Russell, Sara S; Joy, Katherine H; Jeffries, Teresa E; Consolmagno, Guy J; Kearsley, Anton


    The lunar magma ocean model is a well-established theory of the early evolution of the Moon. By this model, the Moon was initially largely molten and the anorthositic crust that now covers much of the lunar surface directly crystallized from this enormous magma source. We are undertaking a study of the geochemical characteristics of anorthosites from lunar meteorites to test this model. Rare earth and other element abundances have been measured in situ in relict anorthosite clasts from two feldspathic lunar meteorites: Dhofar 908 and Dhofar 081. The rare earth elements were present in abundances of approximately 0.1 to approximately 10× chondritic (CI) abundance. Every plagioclase exhibited a positive Eu-anomaly, with Eu abundances of up to approximately 20×CI. Calculations of the melt in equilibrium with anorthite show that it apparently crystallized from a magma that was unfractionated with respect to rare earth elements and ranged in abundance from 8 to 80×CI. Comparisons of our data with other lunar meteorites and Apollo samples suggest that there is notable heterogeneity in the trace element abundances of lunar anorthosites, suggesting these samples did not all crystallize from a common magma source. Compositional and isotopic data from other authors also suggest that lunar anorthosites are chemically heterogeneous and have a wide range of ages. These observations may support other models of crust formation on the Moon or suggest that there are complexities in the lunar magma ocean scenario to allow for multiple generations of anorthosite formation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. Magma Mixing Chronometry: Quantitative 3D Tomographic Analysis of Biotite Breakdown in Heating Experiments (United States)

    Grocke, S. B.; Andrews, B. J.; Manga, M.; Quinn, E. T.


    Dacite lavas from Chaos Crags, Lassen Volcanic Center, CA contain inclusions of more mafic magmas, suggesting that mixing or mingling of magmas occurred just prior to lava dome extrusion, and perhaps triggered the eruption. The timescales between the mixing event and eruption are unknown, but reaction rims on biotite grains hosted in the Chaos Crags dacite may provide a record of the timescale (i.e., chronometer) between mixing and eruption. To quantify the effect of pre-eruptive heating on the formation of reaction rims on biotite, we conducted isobaric (150 MPa), H2O-saturated, heating experiments on the dacite end-member. In heating experiments, we held the natural dacite at 800°C and 150MPa for 96 hours and then isobarically heated the experiments to 825 and 850°C (temperatures above the biotite liquidus, <815°C at 150MPa) for durations ≤96 hours. We analyzed run products using high-resolution SEM imaging and synchrotron-based X-ray tomography, which provides a 3-dimensional rendering of biotite breakdown reaction products and textures. X-ray tomography images of experimental run products reveal that in all heating experiments, biotite breakdown occurs and reaction products include orthopyroxenes, Fe-Ti oxides, and vapor (inferred from presence of bubbles). Experiments heated to 850°C for 96 h show extensive breakdown, consisting of large orthopyroxene crystals, Fe-Ti oxide laths (<100μm), and bubbles. When the process of biotite breakdown goes to completion, the resulting H2O bubble comprises roughly the equivalent volume of the original biotite crystal. This observation suggests that biotite breakdown can add significant water to the melt and lead to extensive bubble formation. Although bubble expansion and magma flow may disrupt the reaction products in some magmas, our experiments suggest that biotite breakdown textures in natural samples can be used as a chronometer for pre-eruptive magma mixing.

  6. The importance of mixing in the evolution of silicic magmas in northern Costa Rica (United States)

    Szymanski, D. W.; Patino, L. C.; Vogel, T. A.; Alvarado, G. E.


    Silicic volcanism in the northern Costa Rican segment of the Central American volcanic arc was widespread from the Miocene through the Middle Pleistocene. Ignimbrites in the Bagaces formation are among the earliest high- silica products in this part of the arc (Azucar Tuffs outcrop north of the Nicoya Peninsula in northern Costa Rica. The Papagayo Tuff contains mingled pumice fragments. Petrography, whole-rock chemistry and microprobe data are consistent with the mingling and eruption of rhyolitic and andesitic magma batches. Dacitic pumice fragments from the Pan de Azucar unit are more homogeneous and chemically similar to intermediate bulk-rock compositions of mingled Papagayo pumice samples, supporting a model in which the Pan de Azucar magma was a homogenized part of the Papagayo magmas. However, small differences in composition require modification of the Pan de Azucar magma by some other process (e.g. magma mixing or assimilation). The data supporting mingling and mixing in these units provide an ideal test case for Polytopic Vector Analysis (PVA). Relatively new to igneous petrology, PVA is a multivariate statistical program that can incorporate all available geochemical analytes to simultaneously unmix samples, finding the number and composition of end members required to explain the variation within the population. For the Papagayo samples alone, PVA yields a three end member solution. One end member is andesitic (57 wt.% SiO2) and the other two are both rhyolitic (71 wt.% SiO2), but have different trace element compositions. When the Pan de Azucar samples are included with the Papagayo samples, PVA generates a four end member solution that indicates mixing among two rhyolitic end members (71 and 72 wt.% SiO2), a dacitic end member (66 wt.% SiO2), and a basaltic end member (52 wt.% SiO2). These solutions are mutually consistent and supported by petrographic and chemical data from the rocks.

  7. Magma decompression rates during explosive eruptions of Kīlauea volcano, Hawaii, recorded by melt embayments (United States)

    Ferguson, David J.; Gonnermann, Helge M.; Ruprecht, Philipp; Plank, Terry; Hauri, Erik H.; Houghton, Bruce F.; Swanson, Donald A.


    The decompression rate of magma as it ascends during volcanic eruptions is an important but poorly constrained parameter that controls many of the processes that influence eruptive behavior. In this study, we quantify decompression rates for basaltic magmas using volatile diffusion in olivine-hosted melt tubes (embayments) for three contrasting eruptions of Kīlauea volcano, Hawaii. Incomplete exsolution of H2O, CO2, and S from the embayment melts during eruptive ascent creates diffusion profiles that can be measured using microanalytical techniques, and then modeled to infer the average decompression rate. We obtain average rates of ~0.05–0.45 MPa s−1 for eruptions ranging from Hawaiian style fountains to basaltic subplinian, with the more intense eruptions having higher rates. The ascent timescales for these magmas vary from around ~5 to ~36 min from depths of ~2 to ~4 km, respectively. Decompression-exsolution models based on the embayment data also allow for an estimate of the mass fraction of pre-existing exsolved volatiles within the magma body. In the eruptions studied, this varies from 0.1 to 3.2 wt% but does not appear to be the key control on eruptive intensity. Our results do not support a direct link between the concentration of pre-eruptive volatiles and eruptive intensity; rather, they suggest that for these eruptions, decompression rates are proportional to independent estimates of mass discharge rate. Although the intensity of eruptions is defined by the discharge rate, based on the currently available dataset of embayment analyses, it does not appear to scale linearly with average decompression rate. This study demonstrates the utility of the embayment method for providing quantitative constraints on magma ascent during explosive basaltic eruptions.

  8. On precisely modelling surface deformation due to interacting magma chambers and dykes (United States)

    Pascal, Karen; Neuberg, Jurgen; Rivalta, Eleonora


    Combined data sets of InSAR and GPS allow us to observe surface deformation in volcanic settings. However, at the vast majority of volcanoes, a detailed 3-D structure that could guide the modelling of deformation sources is not available, due to the lack of tomography studies, for example. Therefore, volcano ground deformation due to magma movement in the subsurface is commonly modelled using simple point (Mogi) or dislocation (Okada) sources, embedded in a homogeneous, isotropic and elastic half-space. When data sets are too complex to be explained by a single deformation source, the magmatic system is often represented by a combination of these sources and their displacements fields are simply summed. By doing so, the assumption of homogeneity in the half-space is violated and the resulting interaction between sources is neglected. We have quantified the errors of such a simplification and investigated the limits in which the combination of analytical sources is justified. We have calculated the vertical and horizontal displacements for analytical models with adjacent deformation sources and have tested them against the solutions of corresponding 3-D finite element models, which account for the interaction between sources. We have tested various double-source configurations with either two spherical sources representing magma chambers, or a magma chamber and an adjacent dyke, modelled by a rectangular tensile dislocation or pressurized crack. For a tensile Okada source (representing an opening dyke) aligned or superposed to a Mogi source (magma chamber), we find the discrepancies with the numerical models to be insignificant (translates into surprisingly large errors when inverting deformation data for source parameters such as depth and volume change. Beyond 8 radii however, we demonstrate that the summation of analytical sources represents adjacent magma chambers correctly.

  9. Magma fluxes and recurreance rate of eruptions at Nevado de Toluca volcano (Mexico) (United States)

    Weber, Gregor; Probst, Line; Arce, José L.; Caricchi, Luca


    Forecasting the frequency and size of volcanic eruptions is a long-term goal for hazard mitigation. The frequency at which a given crustal magmatic system is driven towards a critical state and the magnitude of the resulting volcanic events are linked to the supply rate of fresh magma, crustal properties, and tectonic setting. Our ability to forecast the recurrence rate of eruptions is hampered by the lack of data on key variables such as the average magma flux locally and globally. The aim of this project is to identify the average magma supply rate and injection frequency for eruptions of different magnitude and eruptive style. We centred our study at Nevado de Toluca in Mexico, a subduction-related volcano with an eruptive history spanning about 1.5 million years of comparatively well documented effusive and explosive eruptions dominantly of dacitic composition. We carry out in-situ high precision zircon geochronology for a sequence of eruptions of different magnitude to obtain a distribution of crystal ages from which average crustal magma fluxes can be calculated. Eruptive fluxes will be constrained by extracting lava flow volumes from a digital elevation model. A combination of whole rock and mineral chemistry will provide quantitative insights on petrogenetic processes and on the frequency at which intensive parameters changed within the magma reservoir before the eruptions. Our results will be integrated in a global database including other volcanic systems and literature data to attempt to identify similarities and differences between magmatic reservoirs feeding volcanic eruptions of different magnitude. The final target of this project is to identify the physical factors controlling the recurrence rate of volcanic eruptions at regional and global scale.

  10. Source contamination and tectonomagmatic signals of overlapping Early to Middle Miocene orogenic magmas associated with shallow continental subduction and asthenospheric mantle flows in Western Anatolia: A record from Simav (Kütahya) region (United States)

    Çoban, Hakan; Karacık, Zekiye; Ece, Ömer Işık


    evolved silicic rocks. The petrogenesis of the Simav magmatism was triggered by multiple driving forces with kinematic linkage: such as asthenospheric mantle flows, trench retreat, shallow continental subduction, regional extensional uplifting (e.g., Menderes Massif), and concomitant extension and delaminations of subducted (accreted) crust and mantle lithosphere. Considering the Late Tertiary geodynamic picture of the Western Anatolia back-arc extensional province, the initiation of post-collisional potassic and ultrapotassic magma pulses, as a tectonomagmatic precursor, provide evidence for (i) the timing of last stage of regional uplifting (e.g., Menderes Massif) and onset of extensional basin formations in different periods, and (ii) rapid tectonic transitions.

  11. Dynamic observations of vesiculation reveal the role of silicate crystals in bubble nucleation and growth in andesitic magmas

    Energy Technology Data Exchange (ETDEWEB)

    Pleše, P.; Higgins, M. D.; Mancini, L.; Lanzafame, G.; Brun, F.; Fife, J. L.; Casselman, J.; Baker, D. R.


    Bubble nucleation and growth control the explosivity of volcanic eruptions, and the kinetics of these processes are generally determined from examinations of natural samples and quenched experimental run products. These samples, however, only provide a view of the final state, from which the initial conditions of a time-evolving magmatic system are then inferred. The interpretations that follow are inexact due to the inability of determining the exact conditions of nucleation and the potential detachment of bubbles from their nucleation sites, an uncertainty that can obscure their nucleation location – either homogeneously within the melt or heterogeneously at the interface between crystals and melts. We present results of a series of dynamic, real-time 4D X-ray tomographic microscopy experiments where we observed the development of bubbles in crystal bearing silicate magmas. Experimentally synthesized andesitic glasses with 0.25–0.5 wt% H2O and seed silicate crystals were heated at 1 atm to induce bubble nucleation and track bubble growth and movement. In contrast to previous studies on natural and experimentally produced samples, we found that bubbles readily nucleated on plagioclase and clinopyroxene crystals, that their contact angle changes during growth and that they can grow to sizes many times that of the silicate on whose surface they originated. The rapid heterogeneous nucleation of bubbles at low degrees of supersaturation in the presence of silicate crystals demonstrates that silicates can affect when vesiculation ensues, influencing subsequent permeability development and effusive vs. explosive transition in volcanic eruptions.

  12. Hopping transport in solids

    CERN Document Server

    Pollak, M


    The hopping process, which differs substantially from conventional transport processes in crystals, is the central process in the transport phenomena discussed in this book. Throughout the book the term ``hopping'' is defined as the inelastic tunneling transfer of an electron between two localized electronic states centered at different locations. Such processes do not occur in conventional electronic transport in solids, since localized states are not compatible with the translational symmetry of crystals.The rapid growth of interest in hopping transport has followed in the footsteps of the

  13. Effect of pressure on Fe3+/ΣFe ratio in a mafic magma and consequences for magma ocean redox gradients (United States)

    Zhang, H. L.; Hirschmann, M. M.; Cottrell, E.; Withers, A. C.


    Experiments establishing the effect of pressure on the Fe3+/ΣFe ratio of andesitic silicate melts buffered by coexisting Ru and RuO2 were performed from 100 kPa to 7 GPa and 1400-1750 °C. Fe3+/ΣFe ratios were determined by room temperature Mössbauer spectroscopy, but corrected for the effects of recoilless fraction. Fe3+/ΣFe ratios in quenched glasses decrease with increasing pressure consistent with previous results between 100 kPa and 3 GPa (O'Neill et al., 2006), but show only small pressure effects above 5 GPa. Ratios also decrease with increasing temperature. Mössbauer hyperfine parameters indicate mean coordination of Fe3+ ions of ∼5 in glasses, with no dependence on the pressure from which the glasses were quenched, but show an increase with pressure in mean coordination of Fe2+ ions, from ∼5 to ∼6. XANES spectra on these glasses show variations in pre-edge intensities and centroid positions that are systematic with Fe3+/ΣFe, but are displaced from those established from otherwise identical andesitic glasses quenched at 100 kPa (Zhang et al., 2016). These systematics permit construction of a new XANES calibration curve relating pre-edge sub-peak intensities to Fe3+/ΣFe applicable to high pressure glasses. Consistent with interpretations of the Mössbauer hyperfine parameters, XANES pre-edge peak features in high pressure glasses are owing chiefly to the effects of pressure on the coordination of Fe2+ ions from ∼5.5 to ∼6, with negligible effects evident for Fe3+ ions. We use the new data to construct a thermodynamic model relating the effects of oxygen fugacity and pressure on Fe3+/ΣFe. We apply this model to calculate variations in oxygen fugacity in isochemical (constant Fe3+/ΣFe) columns of magma representative of magma oceans, in which fO2 is fixed at the base by equilibration with molten Fe. These calculations indicate that oxygen fugacities at the surface of shallow magma oceans are more reduced than at depth. For magma oceans in

  14. Effect of pressure on Fe3+/ΣFe ratio in a mafic magma and consequences for magma ocean redox gradients

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H. L.; Hirschmann, M. M.; Cottrell, E.; Withers, A. C.


    Experiments establishing the effect of pressure on the Fe3+/ΣFe ratio of andesitic silicate melts buffered by coexisting Ru and RuO2 were performed from 100 kPa to 7 GPa and 1400–1750 °C. Fe3+/ΣFe ratios were determined by room temperature Mössbauer spectroscopy, but corrected for the effects of recoilless fraction. Fe3+/ΣFe ratios in quenched glasses decrease with increasing pressure consistent with previous results between 100 kPa and 3 GPa (O’Neill et al., 2006), but show only small pressure effects above 5 GPa. Ratios also decrease with increasing temperature. Mössbauer hyperfine parameters indicate mean coordination of Fe3+ ions of ~5 in glasses, with no dependence on the pressure from which the glasses were quenched, but show an increase with pressure in mean coordination of Fe2+ ions, from ~5 to ~6. XANES spectra on these glasses show variations in pre-edge intensities and centroid positions that are systematic with Fe3+/ΣFe, but are displaced from those established from otherwise identical andesitic glasses quenched at 100 kPa (Zhang et al., 2016). These systematics permit construction of a new XANES calibration curve relating pre-edge sub-peak intensities to Fe3+/ΣFe applicable to high pressure glasses. Consistent with interpretations of the Mössbauer hyperfine parameters, XANES pre-edge peak features in high pressure glasses are owing chiefly to the effects of pressure on the coordination of Fe2+ ions from ~5.5 to ~6, with negligible effects evident for Fe3+ ions. We use the new data to construct a thermodynamic model relating the effects of oxygen fugacity and pressure on Fe3+/ΣFe. We apply this model to calculate variations in oxygen fugacity in isochemical (constant Fe3+/ΣFe) columns of magma representative of magma oceans, in which fO2 is fixed at the base by equilibration with molten Fe. These calculations

  15. Melt-Bubble Surface Tension in Hydrous Magmas and the Effects of Alkalinity, Temperature, and Water Content (United States)

    Lewis, A. E.; Gardner, J. E.


    Understanding the kinetics and controls on bubble nucleation in hydrous magmas is of fundamental importance to understanding volcanic eruptions. Eruptive style, whether explosive or effusive, may in fact be intrinsically linked to the nature of the nucleation of bubbles in the melt. The most abundant dissolved volatile to form bubbles in magma is H2O. To first order, melt-bubble surface tension (σ) and the supersaturation (ΔP) of water in the melt govern the onset and rate of bubble nucleation, assuming homogenous nucleation. The sensitivity of σ and its ability to significantly impact when nucleation occurs and ΔP warrants closer investigation. From the limited published data gathered, we know that surface tension varies in response to changes in temperature, water content, and melt composition, but their full impact is poorly constrained. For our analysis of σ we focus on the impact of melt composition, and have begun by using a trachytic melt with similar SiO2 content yet elevated alkali contents in comparison to available dacitic melt data (Mangan and Sisson, 2005). We have approached the problem by subjecting the trachyte melt to several hydrothermal decompression experiments at a single water content. We first hydrated the melt at super-liquidus conditions (1050° C and 150 MPa) for 5 days. Fourier transform infrared spectroscopy reveal consistent dissolved water contents of 4.70 (± 0.07) wt.% H2O in all samples. Five decompressions have been executed at 900°C, from the initial pressure of 150 MPa to various lower final pressures corresponding to ΔP values ranging from 94 MPa to 114 MPa. All samples were nearly instantaneously decompressed to the final pressure and held for 60 seconds before being rapidly quenched. Preliminary results tentatively indicate a σ of 0.078 N/m for hydrous trachyte. This value correlates well with the dacitic data, although those experiments were not conducted isothermally, suggesting the greater proportion of alkalis

  16. U-Th zircon dating of the great Millennium eruption of Changbaishan volcano: Evidence for rapid development of a catastrophic eruption (United States)

    Zou, H.; Fan, Q.; Zhang, H.


    The Changbaishan volcano extending across the border of northeast China and North Korea erupted about 100 km3 peralkaline rhyolites around 1000 AD. This Millennium eruption is one of the two largest explosive eruptions in the past 2000 years. We conducted uranium-thorium dating of zircons from the Changbaishan volcanic rocks. Zircon isochron ages are 9.2±1.2 ka. The rhyolitic magma chamber beneath Changbaishan was formed at 9.2 ka BP (before present) by closed-system fractionation of parental trachytic magmas, and explosively erupted at 1 ka BP. The magma storage time is about 8 ka, which is significantly short compared with typical residence times of large volume explosive eruptions (50-135 ka). This work demonstrates that peralkaline rhyolitic magmas from the Changbaishan volcano can develop into a catastrophic eruptive phase quite quickly. Based on titanium-in-zircon geothermometer and alkali feldspar-glass geothermometer, the rhyolitic magmas were formed at a relatively low temperature (~ 740±40 °C). The short magma storage time and low magma temperature may have helped the Changbaishan large volume rhyolitic magma escape crustal contamination. Changbaishan volcano is still an active volcano. There is a low seismic velocity zone below Changbaishan volcano extending from 10 to over 65 km depth. An electrical conductivity anomaly exists at 20 km depth below the volcano. Numerous hot springs and fumaroles are present on the volcano. Although short storage time of 8000 years does not necessarily mean that the next eruption is imminent, our present study does indicate that the still dangerous Changbaishan volcano is capable of rapidly producing catastrophic, explosive eruptions in the foreseeable future.

  17. Mechanical Anisotropies and Mechanisms of Mafic Magma Ascent in Middle Continental Crust: The Sondalo Gabbroic Complex (N Italy) (United States)

    Petri, B.; Mohn, G.; Skrzypek, E.; Mateeva, T.; Robion, P.; Schulmann, K.; Manatschal, G.; Müntener, O.


    The ascent mechanisms of magma through the continental crust remain a long standing controversy. The pathways of intermediate to felsic magmas can be continuously traced through the crust, however mafic magma transfer between lower and upper crustal levels is rarely documented. To fill this gap, we explore the mechanisms of mafic magma ascent and emplacement in middle continental crust. We characterize the structure and anisotropy of magnetic susceptibility (AMS) fabrics of a mid-crustal mafic complex (Sondalo gabbroic complex, N-Italy) together with Anisotropy of Anhysteretic Remanent Magnetization (AARM) and Crystallographic Preferred Orientation (CPO) data. Field data indicate concentric gabbroic to dioritic intrusions emplaced in sub-vertically foliated metasedimentary host-rocks. The petrofabrics and magnetic fabrics of the pluton (foliations and lineations) are coaxial, syn-magmatic and sub-vertical. U-Pb dating of zircons along with the structural record of the plutonic rocks indicate two major pulses of magma emplacement in sub-vertical channels. (1) The concordant orientation between the magmatic foliation and the host-rock xenoliths in the center of the pluton suggest that the early emplacement phase occurred through magma fracture opening subparallel to the vertical fabric of the host rocks at 289-288 Ma. (2) The second magma ascent phase was controlled by a change in the rheology of the host-rock and the mafic magma. The temperature increase in the contact aureole induced partial melting and decreased its mechanical strength, whereas the viscosity of the mafic magma increased due to progressive cooling and crystallization. This caused an en-masse rise of the crystal mush and drag forces resulting in the formation of a vertical foliation in the metamorphic aureole and a weaker but concordant magmatic foliation at the rim of the pluton. This ascent phase is slightly younger (288-285 Ma) and accounts for the contrasted P-T evolution recorded by

  18. Rapid chemical separations

    CERN Document Server

    Trautmann, N


    A survey is given on the progress of fast chemical separation procedures during the last few years. Fast, discontinuous separation techniques are illustrated by a procedure for niobium. The use of such techniques for the chemical characterization of the heaviest known elements is described. Other rapid separation methods from aqueous solutions are summarized. The application of the high speed liquid chromatography to the separation of chemically similar elements is outlined. The use of the gas jet recoil transport method for nuclear reaction products and its combination with a continuous solvent extraction technique and with a thermochromatographic separation is presented. Different separation methods in the gas phase are briefly discussed and the attachment of a thermochromatographic technique to an on-line mass separator is shown. (45 refs).

  19. Road Transport Entrepreneurs and Road Transportation Revolution ...

    African Journals Online (AJOL)


    Abstract. Between 1990 and 1924, the British colonial administration embarked upon a massive road-building programme throughout the colony. The rapid expansion of road development was accompanied by the introduction of motor vehicles. Motor transport industry was dominated by expatriates in the 1920s. From the ...

  20. Seismic Images of Active Magma Systems Beneath the East Pacific Rise Between 17{degrees}05' and 17{degrees}35'S. (United States)

    Mutter, J C; Carbotte, S M; Su, W; Xu, L; Buhl, P; Detrick, R S; Kent, G M; Orcutt, J A; Harding, A J


    Seismic reflection data from the East Pacific Rise between 17 degrees 05' and 17 degrees 35'S image a magma lens that varies regularly in depth and width as ridge morphology changes, confirming the notion that axial morphology can be used to infer ridge magmatic state. However, at 17 degrees 26'S, where the ridge is locally shallow and broad, the magma lens is markedly shallower and wider than predicted from regional trends. In this area, submersible dives reveal recent volcanic eruptions. These observations indicate that it is where the width and depth of the magma chamber differ from regional trends, indicating an enhanced magmatic budget, that is diagnostic of current magmatism.

  1. Contrasting mechanisms of magma fragmentation during coeval magmatic and hydromagmatic activity: the Hverfjall Fires fissure eruption, Iceland (United States)

    Liu, E. J.; Cashman, K. V.; Rust, A. C.; Höskuldsson, A.


    Growing evidence for significant magmatic vesiculation prior to magma-water interaction (MWI) has brought into question the use of `diagnostic' features, such as low vesicularities and blocky morphologies, to identify hydromagmatic pyroclasts. We address this question by quantifying co-variations in particle size, shape and texture in both magmatic and hydromagmatic deposits from the Hverfjall Fires fissure eruption, Iceland. Overlapping vesicularity and bubble number density distributions measured in rapidly quenched magmatic and hydromagmatic pyroclasts indicate a shared initial history of bubble nucleation and growth, with substantial vesiculation prior to MWI. Hydromagmatic fragmentation occurred principally by brittle mechanisms, where the length scale and geometry of fracturing was controlled by the bubble population. This suggests that the elevated fragmentation efficiency of hydromagmatic deposits is driven, at least in part, by brittle disintegration of vesicular pyroclasts due to high thermal stress generated during rapid cooling. In this way, the shape and size distributions of hydromagmatic pyroclasts, both critical input parameters for ash dispersion models, are strongly influenced by the dynamics of vesiculation prior to MWI. This result underlines the need to analyse multiple grain-size fractions to characterise the balance between magmatic and hydromagmatic processes. During the Hverfjall Fires eruption, the external water supply was sufficient to maintain MWI throughout the eruption, with no evidence for progressive exhaustion of a water reservoir. We suggest that both the longevity and the spatial distribution of MWI were determined by the pre-existing regional hydrology and represent continuous interaction between a propagating dike and a strong groundwater flow system hosted within permeable basalt lavas.

  2. Geochemistry and volatile content of magmas feeding explosive eruptions at Telica volcano (Nicaragua) (United States)

    Robidoux, P.; Rotolo, S. G.; Aiuppa, A.; Lanzo, G.; Hauri, E. H.


    Telica volcano, in north-west Nicaragua, is a young stratovolcano of intermediate magma composition producing frequent Vulcanian to phreatic explosive eruptions. The Telica stratigraphic record also includes examples of (pre)historic sub-Plinian activity. To refine our knowledge of this very active volcano, we analyzed major element composition and volatile content of melt inclusions from some stratigraphically significant Telica tephra deposits. These include: (1) the Scoria Telica Superior (STS) deposit (2000 to 200 years Before Present; Volcanic Explosive Index, VEI, of 2-3) and (2) pyroclasts from the post-1970s eruptive cycle (1982; 2011). Based on measurements with nanoscale secondary ion mass spectrometry, olivine-hosted (forsterite [Fo] > 80) glass inclusions fall into 2 distinct clusters: a group of H2O-rich (1.8-5.2 wt%) inclusions, similar to those of nearby Cerro Negro volcano, and a second group of CO2-rich (360-1700 μg/g CO2) inclusions (Nejapa, Granada). Model calculations show that CO2 dominates the equilibrium magmatic vapor phase in the majority of the primitive inclusions (XCO2 > 0.62-0.95). CO2, sulfur (generally 400 MPa) and early crystallization of magmas. Chlorine exhibits a wide concentration range (400-2300 μg/g) in primitive olivine-entrapped melts (likely suggesting variable source heterogeneity) and is typically enriched in the most differentiated melts (1000-3000 μg/g). Primitive, volatile-rich olivine-hosted melt inclusions (entrapment pressures, 5-15 km depth) are exclusively found in the largest-scale Telica eruptions (exemplified by STS in our study). These eruptions are thus tentatively explained as due to injection of deep CO2-rich mafic magma into the shallow crustal plumbing system. More recent (post-1970), milder (VEI 1-2) eruptions, instead, do only exhibit evidence for low-pressure (P < 50-60 MPa), volatile-poor (H2O < 0.3-1.7 wt%; CO2 < 23-308 μg/g) magmatic conditions. These are manifested as andesitic magmas, recording

  3. Effects of Magma Supply on Volcanic Morphology along the Hotspot-Influenced Galapagos Spreading Center (United States)

    White, S. M.; Meyer, J. D.; Haymon, R. M.; Anderson, P.; MacDonald, K. C.


    The relationship between lava morphology and spreading rate, with a predominance of pillows at slow- spreading ridges and sheets at fast-spreading ridges, is well known although not well understood. New EM300 and DSL-120A sonar data collected along the GSC from {94.5°}-{89.5°} W in 2006 reveals that increasing magma supply decreases the tendency for eruptions to focus to point-source volcanic vents, and ultimately produces fissure-fed sheet flow eruptions. The change in spreading rate is insignificant over this area, thus the additional magma supply provided by the Galapagos hotspot is the main variable. The high- resolution sonar data images volcanic vents clearly so that their morphology may be analyzed. Approaching the focus of hotspot influence on the GSC at {91.5°}W from {95°}W, volcanic vents become progressively lower in relief and more elongate. Volcanic vent morphology consists primarily of individual cones from {95°}-{92.5°}W presumably produced by eruptions that focus quickly to point-source vents, although the average size of the cones decreases toward the east, as magma supply increases. Where the ridge topography changes from an axial valley to axial rise, the volcanic morphology also becomes dominated by axial volcanic ridges rather than cones. Finally, along the ridge segment farthest east we find that the volcanic vents are simply expressed as fissures. Although the volcanic vent morphology progressively changes, it is only along this last, easternmost segment at {91.5°}W that we find a significant abundance of sheet lava flows based on extensive visual coverage with Medea. Elsewhere, the ridge is composed almost exclusively of pillow lava flows. These results suggest that magma supply, rather than other variables, is responsible for the relationship between lava morphology and spreading rate. Unlike true fast-spreading ridges, each ridge segment on the GSC from {93°}- {91°}W contains a single large volcanic cone centered at the segment

  4. Pre-1991 sulfur transfer between mafic injections and dacite magma in the Mt. Pinatubo reservoir (United States)

    Di, Muro A.; Pallister, J.; Villemant, B.; Newhall, C.; Semet, M.; Martinez, M.; Mariet, C.


    Before the 1991-1992 activity, a large andesite lava dome belonging to the penultimate Pinatubo eruptive period (Buag ??? 500??BP) formed the volcano summit. Buag porphyritic andesite contains abundant amphibole-bearing microgranular enclaves of basaltic-andesite composition. Buag enclaves have lower K2O and incompatible trace element (LREE, U, Th) contents than mafic pulses injected in the Pinatubo reservoir during the 1991-1992 eruptive cycle. This study shows that Buag andesite formed by mingling of a hot, water-poor and reduced mafic magma with cold, hydrous and oxidized dacite. Depending on their size, enclaves experienced variable re-equilibration during mixing/mingling. Re-equilibration resulted in hydration, oxidation and transfer of mobile elements (LILE, Cu) from the dacite to the mafic melts and prompted massive amphibole crystallization. In Buag enclaves, S-bearing phases (sulfides, apatite) and melt inclusions in amphibole and plagioclase record the evolution of sulfur partition among melt, crystal and fluid phases during magma cooling and oxidation. At high temperature, sulfur is partitioned between andesitic melt and sulfides (Ni-pyrrhotite). Magma cooling, oxidation and hydration resulted in exsolution of a S-Cl-H2O vapor phase at the S-solubility minimum near the sulfide-sulfate redox boundary. Primary magmatic sulfide (pyrrhotite) and xenocrystic sulfide grains (pyrite), recycled together with olivines and pyroxenes from old mafic intrusives, were replaced by Cu-rich phases (chalcopyrite, cubanite) and, partially, by Ba-Sr sulfate. Sulfides degassed and transformed into residual spongy magnetite in response to fS2 drop during final magma ascent and decompression. Our research suggests that a complete evaluation of the sulfur budget at Pinatubo must take into account the en route S assimilation from the country rocks. Moreover, this study shows that the efficiency of sulfur transfer between mafic recharges and injected magmas is controlled by the

  5. Formation of anorthosite on the Moon through magma ocean fractional crystallization

    Directory of Open Access Journals (Sweden)

    Tatsuyuki Arai


    Full Text Available Lunar anorthosite is a major rock of the lunar highlands, which formed as a result of plagioclase-floatation in the lunar magma ocean (LMO. Constraints on the sufficient conditions that resulted in the formation of a thick pure anorthosite (mode of plagioclase >95 vol.% is a key to reveal the early magmatic evolution of the terrestrial planets. To form the pure lunar anorthosite, plagioclase should have separated from the magma ocean with low crystal fraction. Crystal networks of plagioclase and mafic minerals develop when the crystal fraction in the magma (φ is higher than ca. 40–60 vol.%, which inhibit the formation of pure anorthosite. In contrast, when φ is small, the magma ocean is highly turbulent, and plagioclase is likely to become entrained in the turbulent magma rather than separated from the melt. To determine the necessary conditions in which anorthosite forms from the LMO, this study adopted the energy criterion formulated by Solomatov. The composition of melt, temperature, and pressure when plagioclase crystallizes are constrained by using MELTS/pMELTS to calculate the density and viscosity of the melt. When plagioclase starts to crystallize, the Mg# of melt becomes 0.59 at 1291 °C. The density of the melt is smaller than that of plagioclase for P > 2.1 kbar (ca. 50 km deep, and the critical diameter of plagioclase to separate from the melt becomes larger than the typical crystal diameter of plagioclase (1.8–3 cm. This suggests that plagioclase is likely entrained in the LMO just after the plagioclase starts to crystallize. When the Mg# of melt becomes 0.54 at 1263 °C, the density of melt becomes larger than that of plagioclase even for 0 kbar. When the Mg# of melt decreases down to 0.46 at 1218 °C, the critical diameter of plagioclase to separate from the melt becomes 1.5–2.5 cm, which is nearly equal to the typical plagioclase of the lunar anorthosite. This suggests that plagioclase could separate from the

  6. Eruptive and Intrusive History of Mount Mazama and the Crater Lake Region Explains Growth of a Young Silicic Magma Body (United States)

    Bacon, C. R.; Lanphere, M. A.; Lowenstern, J. B.


    Crater Lake caldera (subsidence area >25 km2) collapsed into a shallow long-lived magmatic system during the ~7.7 ka climactic eruption of Mount Mazama that ejected ~50 km3 of magma dominated by homogeneous crystal-poor rhyodacite pumice. Geologic mapping, Ar and U-Th geochronology, and geochemistry provide volume-time-composition information on the growth and evolution of the Mazama system. Granodiorite and related plutonic rocks in the climactic ejecta give a window into the intrusive component of that system. We interpret the eruptive and intrusive history in terms of the competition between (1) crystallization driven by degassing and hydrothermal cooling and (2) thermal input from a regional magma flux focused at Mazama. Throughout its ~400 kyr history, the andesite-dacite volcano known as Mount Mazama, built astride an earlier silicic dome field, was accompanied by nearby basaltic to andesitic effusive volcanism representing a range of differentiation of melts of depleted mantle containing varied amounts of water and subduction-related fluid-mobile elements. Similar parent magmas appear to have differentiated to form the products of Mount Mazama. The Mazama edifice was constructed in many comparatively brief episodes, some of the more voluminous being approximately coeval with volcanic pulses in the surrounding region. Magmas as evolved as dacite erupted many times, commonly associated with or following voluminous andesite effusion. It was not until ~30 ka, after 400 kyr of preconditioning, that a shallow rhyodacite-dominated magma reservoir began to grow. Between ~30 ka and the climactic eruption, rhyodacitic magmas vented mainly north of the edifice, unaccompanied by other compositions. From ~35 ka into postglacial time unusually primitive lavas (magnesian basaltic andesite and tholeiitic basalt) erupted west of Mazama suggest increased thermal input. Reconstruction of the Mazama climactic magma chamber from preclimactic rhyodacites and their enclaves and

  7. Zircon from historic eruptions in Iceland: Reconstructing storage and evolution of silicic magmas (United States)

    Carley, T.L.; Miller, C.F.; Wooden, J.L.; Bindeman, I.N.; Barth, A.P.


    Zoning patterns, U-Th disequilibria ages, and elemental compositions of zircon from eruptions of Askja (1875 AD), Hekla (1158 AD), ??r??faj??kull (1362 AD) and Torfaj??kull (1477 AD, 871 AD, 3100 BP, 7500 BP) provide insights into the complex, extended, histories of silicic magmatic systems in Iceland. Zircon compositions, which are correlated with proximity to the main axial rift, are distinct from those of mid-ocean ridge environments and fall at the low-Hf edge of the range of continental zircon. Morphology, zoning patterns, compositions, and U-Th ages all indicate growth and storage in subvolcanic silicic mushes or recently solidified rock at temperatures above the solidus but lower than that of the erupting magma. The eruptive products were likely ascending magmas that entrained a zircon "cargo" that formed thousands to tens of thousands of years prior to the eruptions. ?? 2011 Springer-Verlag.

  8. Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow. (United States)

    Gudmundsson, Magnús T; Jónsdóttir, Kristín; Hooper, Andrew; Holohan, Eoghan P; Halldórsson, Sæmundur A; Ófeigsson, Benedikt G; Cesca, Simone; Vogfjörd, Kristín S; Sigmundsson, Freysteinn; Högnadóttir, Thórdís; Einarsson, Páll; Sigmarsson, Olgeir; Jarosch, Alexander H; Jónasson, Kristján; Magnússon, Eyjólfur; Hreinsdóttir, Sigrún; Bagnardi, Marco; Parks, Michelle M; Hjörleifsdóttir, Vala; Pálsson, Finnur; Walter, Thomas R; Schöpfer, Martin P J; Heimann, Sebastian; Reynolds, Hannah I; Dumont, Stéphanie; Bali, Eniko; Gudfinnsson, Gudmundur H; Dahm, Torsten; Roberts, Matthew J; Hensch, Martin; Belart, Joaquín M C; Spaans, Karsten; Jakobsson, Sigurdur; Gudmundsson, Gunnar B; Fridriksdóttir, Hildur M; Drouin, Vincent; Dürig, Tobias; Aðalgeirsdóttir, Guðfinna; Riishuus, Morten S; Pedersen, Gro B M; van Boeckel, Tayo; Oddsson, Björn; Pfeffer, Melissa A; Barsotti, Sara; Bergsson, Baldur; Donovan, Amy; Burton, Mike R; Aiuppa, Alessandro


    Large volcanic eruptions on Earth commonly occur with a collapse of the roof of a crustal magma reservoir, forming a caldera. Only a few such collapses occur per century, and the lack of detailed observations has obscured insight into the mechanical interplay between collapse and eruption. We use multiparameter geophysical and geochemical data to show that the 110-square-kilometer and 65-meter-deep collapse of Bárdarbunga caldera in 2014-2015 was initiated through withdrawal of magma, and lateral migration through a 48-kilometers-long dike, from a 12-kilometers deep reservoir. Interaction between the pressure exerted by the subsiding reservoir roof and the physical properties of the subsurface flow path explain the gradual, near-exponential decline of both collapse rate and the intensity of the 180-day-long eruption. Copyright © 2016, American Association for the Advancement of Science.

  9. Numerical linear algebra on emerging architectures: The PLASMA and MAGMA projects

    Energy Technology Data Exchange (ETDEWEB)

    Agullo, Emmanuel; Demmel, Jim; Dongarra, Jack; Hadri, Bilel; Kurzak, Jakub; Langou, Julien; Ltaief, Hatem; Luszczek, Piotr [Department of Electrical Engineering and Computer Science, University of Tennessee (United States); Tomov, Stanimire, E-mail: eagullo@eecs.utk.ed, E-mail: dongarra@eecs.utk.ed, E-mail: hadri@eecs.utk.ed, E-mail: kurzak@eecs.utk.ed, E-mail: ltaief@eecs.utk.ed, E-mail: luszczek@eecs.utk.ed, E-mail: tomov@eecs.utk.ed, E-mail: demmel@cs.berkeley.ed, E-mail: julien.langou@ucdenver.ed


    The emergence and continuing use of multi-core architectures and graphics processing units require changes in the existing software and sometimes even a redesign of the established algorithms in order to take advantage of now prevailing parallelism. Parallel Linear Algebra for Scalable Multi-core Architectures (PLASMA) and Matrix Algebra on GPU and Multics Architectures (MAGMA) are two projects that aims to achieve high performance and portability across a wide range of multi-core architectures and hybrid systems respectively. We present in this document a comparative study of PLASMA's performance against established linear algebra packages and some preliminary results of MAGMA on hybrid multi-core and GPU systems.

  10. A Magma Accretion Model for the Formation of Oceanic Lithosphere: Implications for Global Heat Loss

    CERN Document Server

    Hamza, V M; Alexandrino, C H


    A simple magma accretion model of the oceanic lithosphere is proposed and its implications for understanding the thermal field of oceanic lithosphere examined. The new model (designated VBA) assumes existence of lateral variations in magma accretion rates and temperatures at the boundary zone between the lithosphere and the asthenosphere. Heat flow and bathymetry variations calculated on the basis of the VBA model provide vastly improved fits to respective observational datasets. The improved fits have been achieved for the entire age range and without the need to invoke the ad-hoc hypothesis of large-scale hydrothermal circulation in stable ocean crust. The results suggest that estimates of global heat loss need to be downsized by at least 25%.

  11. Empirical constraints on partitioning of platinum group elements between Cr-spinel and primitive terrestrial magmas (United States)

    Park, Jung-Woo; Kamenetsky, Vadim; Campbell, Ian; Park, Gyuseung; Hanski, Eero; Pushkarev, Evgeny


    Recent experimental studies and in situ LA-ICP-MS analysis on natural Cr-spinel have shown that Rh and IPGEs (Ir-group platinum group elements: Ru, Ir, Os) are enriched in the lattice of Cr-spinel. However, the factors controlling the partitioning behaviour of these elements are not well constrained. In this study, we report the Rh, IPGE, and trace element contents in primitive Cr-spinel, measured by LA-ICP-MS, from nine volcanic suites covering various tectonic settings including island arc picrites, boninites, large igneous province picrites and mid-ocean ridge basalts. The aim is to understand the factors controlling the enrichment of Rh and IPGEs in Cr-spinels, to estimate empirical partition coefficients between Cr-spinel and silicate melts, and to investigate the role of Cr-spinel fractional crystallization on the PGE geochemistry of primitive magmas during the early stages of fractional crystallization. There are systematic differences in trace elements, Rh and IPGEs in Cr-spinels from arc-related magmas (Arc Group Cr-spinel), intraplate magmas (Intraplate Group Cr-spinel), and mid-ocean ridge magmas (MORB Group Cr-spinel). Arc Group Cr-spinels are systematically enriched in Sc, Co and Mn and depleted in Ni compared to the MORB Group Cr-spinels. Intraplate Group Cr-spinels are distinguished from the Arc Group Cr-spinels by their high Ni contents. Both the Arc and Intraplate Group Cr-spinels have total Rh and IPGE contents of 22-689 ppb whereas the MORB Group Cr-spinels are depleted in Rh and IPGE (total diagrams the Arc Group Cr-spinels are characterized by a fractionated pattern with high Rh and low Os. The Intraplate Group Cr-spinels show flat patterns with positive Ru anomalies. Our results, together with the experimental and empirical data from previous studies, show that PGE patterns of Cr-spinel largely mimic that of the rock in which they are found, and that Rh, Ir and Os contents increase with increasing Fe3+ contents (i.e. magnetite component) in Cr

  12. Next steps in using accessory minerals to date the evolution of silicic magmas (United States)

    Vazquez, J. A.


    Over the past decade, 238U-230Th-206Pb isotopic dating of accessory minerals using the high spatial resolution and sensitivity of ion microprobe analysis has provided new insights into the longevity and thermochemical evolution of silicic magmas, but has also created new questions about the generation, differentiation, and construction of silicic magma chambers. An important conclusion from in situ dating is that accessory minerals such as zircon and allanite in silicic magmas may be 10's to 100's of thousands of years older than their age of eruption. Whether these relatively "old" crystals are derived from long-lived crystal-rich magma reservoirs or inherited due to remelting of frozen intrusions remains a difficult question to answer because long-lived centers of magmatism are characteristically dynamic and are open systems. Nevertheless, not all rhyolites from loci of repeated silicic magmatism carry a dominant "cargo" of antecrystic zircon (or other accessory minerals). Crystal-poor high-silica rhyolites from Coso volcanic field, eastern California, contain a bimodal population of young zircon that yield 238U-230Th ages concordant with their respective late Pleistocene 40Ar/39Ar eruption ages, and a population of Mesozoic zircon that are obvious xenocrysts derived from wallrocks. Rhyolites erupted from La Primavera caldera, Mexico, contain zircon and chevkinite that yield 238U-230Th ages that are within 10's of k.y. of their corresponding eruption ages between ca. 125-85 ka. Antecrysts from intrusions related to older episodes of rhyolitic magmatism appear absent or exceedingly rare. The relatively short timescales between crystallization and eruption suggest that these rhyolites, unlike otherwise similar rhyolites from other systems, were tapped shortly after highly effective differentiation and/or reheating. It is apparent that zircon ages alone are insufficient for resolving the thermochemical and differentiation histories of silicic magmas, and need to be

  13. The role of mantle-derived magmas in the isotopic evolution of Yellowstone's magmatic system (United States)

    Stelten, Mark E.; Cooper, Kari M.; Wimpenny, Josh B.; Vazquez, Jorge A.; Yin, Qing-Zhu


    Injection of mantle-derived magmas into the Earth's crust provides the heat necessary to develop and maintain large silicic magmatic systems. However, the role of mantle-derived magmas in controlling the compositional evolution of large silicic systems remains poorly understood. Here we examine the role of mantle-derived magmas in the postcaldera magmatic system at Yellowstone Plateau, the youngest magmatism associated with the Yellowstone hotspot. Using microbeam techniques, we characterize the age and Hf isotope composition of single zircon crystals hosted in rhyolites from the most recent eruptive episode at Yellowstone Plateau, which produced the Central Plateau Member rhyolites. We place these zircon data into context by comparing them to new solution Hf isotope data for the Central Plateau Member glasses, Yellowstone basalts, and potential local crustal sources. Zircons in the Central Plateau Member rhyolites record a wide range of Hf isotope compositions relative to their host melts and extend from values similar to previously erupted Yellowstone rhyolites to values similar to Yellowstone basalts. Most zircons (˜90%) are in isotopic equilibrium with their host melt, but a significant proportion show ɛHf values higher than their host melt, thus providing the direct evidence that silicic derivatives of mantle-derived basalts have recharged Yellowstone's magmatic system. Mixing models confirm that the isotopic characteristics of the youngest Yellowstone rhyolites can be explained by recharge of Yellowstone's magma reservoir with silicic derivatives of underplating, mantle-derived basalts (˜5-10% material added by mass). This process helps drive the long-term isotopic evolution of Yellowstone's magmatic system.

  14. Dynamics of a large, restless, rhyolitic magma system at Laguna del Maule, southern Andes, Chile (United States)

    Singer, Brad S.; Andersen, Nathan L.; Le Mével, Hélène; Feigl, Kurt L.; DeMets, Charles; Tikoff, Basil; Thurber, Clifford H.; Jicha, Brian R.; Cardonna, Carlos; Córdova, Loreto; Gil, Fernando; Unsworth, Martyn J.; Williams-Jones, Glyn; Miller, Craig W.; Fierstein, Judith; Hildreth, Edward; Vazquez, Jorge A.


    Explosive eruptions of large-volume rhyolitic magma systems are common in the geologic record and pose a major potential threat to society. Unlike other natural hazards, such as earthquakes and tsunamis, a large rhyolitic volcano may provide warning signs long before a caldera-forming eruption occurs. Yet, these signs—and what they imply about magma-crust dynamics—are not well known. This is because we have learned how these systems form, grow, and erupt mainly from the study of ash flow tuffs deposited tens to hundreds of thousands of years ago or more, or from the geophysical imaging of the unerupted portions of the reservoirs beneath the associated calderas. The Laguna del Maule Volcanic Field, Chile, includes an unusually large and recent concentration of silicic eruptions. Since 2007, the crust there has been inflating at an astonishing rate of at least 25 cm/yr. This unique opportunity to investigate the dynamics of a large rhyolitic system while magma migration, reservoir growth, and crustal deformation are actively under way is stimulating a new international collaboration. Findings thus far lead to the hypothesis that the silicic vents have tapped an extensive layer of crystal-poor, rhyolitic melt that began to form atop a magmatic mush zone that was established by ca. 20 ka with a renewed phase of rhyolite eruptions during the Holocene. Modeling of surface deformation, magnetotelluric data, and gravity changes suggest that magma is currently intruding at a depth of ~5 km. The next phase of this investigation seeks to enlarge the sets of geophysical and geochemical data and to use these observations in numerical models of system dynamics.

  15. Geochemical constraints on magma processes in a peralkaline system - The Paisano volcano, west Texas (United States)

    Mcdonough, W. F.; Nelson, D. O.


    Petrographic and trace element data from a continuous stratigraphic sequence of flows from the peralkaline Paisano Volcano in west Texas are used to delineate magnetic processes responsible for the chemical evolution of this volcano. It is shown that crystal fractionation of the phenocrystic assemblage explains the main compositional variation, but magma mixing of a less evolved melt composition also affected the chemical evolution of the volcano.

  16. Low- δ18O tephra from a compositionally zoned magma body: Fisher Caldera, Unimak Island, Aleutians (United States)

    Bindeman, Ilya N.; Fournelle, John H.; Valley, John W.


    We present the results of an oxygen isotope study of phenocrysts in pumice clasts and ash layers produced by the 9100 yr BP composite dacite-basaltic andesite climactic eruption that formed Fisher Caldera in the eastern Aleutians. Products of the eruption represent a low-δ18O magma with δ18O plagioclase (+4.79±0.24‰) and clinopyroxene (3.81±0.23‰) corresponding to equilibrium at magmatic temperatures. Dacitic and overlying basaltic-andesitic tephra of the climactic eruption, subsequent intracaldera basaltic to andesitic lavas, and a cumulate inclusion, are similarly low in δ18O. Other analyzed lavas and pyroclastics of Unimak island and the lower Alaska peninsula, as well as precaldera Fisher basalt, have normal δ18O magmatic values (>+5.5‰). We propose a model in which prior to 9100 yr BP, normal mantle-derived basaltic magma coalesced in a large shallow precaldera magma chamber during Late Wisconsin glaciation. Lowering of magmatic δ18O resulted then from long-term assimilation of ∼5-10% of syn-glacial hydrothermally-altered country rocks. Differentiation of basaltic magma was concurrent with this assimilation and produced low-δ18O Fisher dacites, cumulates, and post-caldera crystal-richer lavas. We propose the use of δ18O values of phenocrysts (especially alteration-resistant pyroxene) in tephra as a tool for tephrochronological and tephrostratigraphic correlation. Distinctly low-δ18O values are useful in identification of the Fisher ash in the eastern Aleutians and in the lower Alaska Peninsula.

  17. Description and operating procedure for magma characterization data acquisition and control system

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, M H


    A computerized data acquisition and control system used in a Sandia National Laboratories' facility for molten rock (magma) and metallurgical pressure bonding experiments is described. The system is based on a Hewlett-Packard 9826A Desktop Computer and a Hewlett-Packard 3497A Data Acquisition/Control Unit. Operating procedures are included, and detailed instructions for implementing the procedures are given.

  18. Fitful and protracted magma assembly leading to a giant eruption, Youngest Toba Tuff, Indonesia (United States)

    Reid, Mary R; Vazquez, Jorge A.


    The paroxysmal eruption of the 74 ka Youngest Toba Tuff (YTT) of northern Sumatra produced an extraordinary 2800 km3 of non-welded to densely welded ignimbrite and co-ignimbrite ash-fall. We report insights into the duration of YTT magma assembly obtained from ion microprobe U-Th and U-Pb dates, including continuous age spectra over >50% of final zircon growth, for pumices and a welded tuff spanning the compositional range of the YTT. A relatively large subpopulation of zircon crystals nucleated before the penultimate caldera-related eruption at 501 ka, but most zircons yielded interior dates 100-300 ka thereafter. Zircon nucleation and growth was likely episodic and from diverse conditions over protracted time intervals of >100 to >500 ka. Final zircon growth is evident as thin rim plateaus that are in Th/U chemical equilibrium with hosts, and that give crystallization ages within tens of ka of eruption. The longevity and chemical characteristics of the YTT zircons, as well as evidence for intermittent zircon isolation and remobilization associated with magma recharge, is especially favored at the cool and wet eutectoid conditions that characterize at least half of the YTT, wherein heat fluxes could dissolve major phases but have only a minor effect on larger zircon crystals. Repeated magma recharge may have contributed to the development of compositional zoning in the YTT but, considered together with limited allanite, quartz, and other mineral dating and geospeedometry, regular perturbations to the magma reservoir over >400 ka did not lead to eruption until 74 ka ago.

  19. Apollo 17 high-Ti mare basalts - New bulk compositional data, magma types, and petrogenesis (United States)

    Warner, R. D.; Taylor, G. J.; Conrad, G. H.; Northrop, H. R.; Barker, S.; Keil, K.; Ma, M.-S.; Schmitt, R.


    Bulk compositional and mineral chemical data for 28 previously unanalyzed samples support the classification of Apollo-17 high-Ti mare basalts into three-types (A, B, and C), defined on the basis of analyses of fine-grained basalts. The most MgO- and TiO2-rich fine-grained basalts of these types appear to be the best choices for representing the compositions of the parent magmas.

  20. The Yellowstone hotspot in space and time: Nd and Hf isotopes in silicic magmas (United States)

    Nash, Barbara P.; Perkins, Michael E.; Christensen, John N.; Lee, Der-Chuen; Halliday, A. N.


    Over the course of its 16 m.y. history, the Yellowstone hotspot has produced silicic magmas exhibiting systematic, and often sympathetic, variations in isotopic and chemical composition, temperature and frequency of eruption. Nd and Hf isotopic ratios vary systematically from initial eruptions at ˜ 16 Ma, contemporaneous with basaltic volcanism in eastern Oregon and Washington, to the present day Yellowstone Volcanic Plateau. Nd and Hf isotopic ratios co-vary and span the range of most terrestrial samples, reflecting mixing of mantle and crustal sources. Earliest erupted silicic magmas were hot (in excess of 1050 °C), relatively less evolved and have isotopic ratios within the range of contemporaneous Columbia River flood basalts. The transit of the hotspot across the lithospheric boundary between the western accreted oceanic terrain and the Precambrian craton at 15 Ma is marked by shifts in ɛNd from + 4 to - 11 and in ɛHf from + 10 to - 10. The duration of the transit yields a crustal magma source diameter of ˜ 70 km. In the interval from 14 to 9 Ma, ɛNd systematically increases from - 11 to - 7, recording a minimum increase in the mantle component from 5% to 30%. The mantle component could be twice as great, depending upon the isotopic composition of crust and mantle reservoirs. In this same interval, peak temperatures of ˜ 1000 °C occurred at 9 Ma. The last 8 m.y. are characterized by less frequent eruption of lower temperature (830-900 °C) and more compositionally evolved magmas.

  1. Magma Intrusion at Mount St. Helens, Washington, from Temporal Gravity Variations (United States)

    Battaglia, Maurizio; Lisowski, Mike; Dzursin, Dan; Poland, Mike; Schilling, Steve; Diefenbach, Angie; Wynn, Jeff


    Mount St. Helens is a stratovolcano in the Pacific Northwest region of the United States, best known for its explosive eruption in May 1980 - deadliest and most economically destructive volcanic event in US history. Volcanic activity renewed in September 2004 with a dome forming eruption that lasted until 2008. This eruption was surprising because the preceding four years had seen the fewest earthquakes and no significant deformation since the 1980-86 eruption ended. After the dome forming eruption ended in July 2008, the volcano seismic activity and deformation went back to background values. Time-dependent gravimetric measurements can detect subsurface processes long before magma flow leads to earthquakes or other eruption precursors. A high-precision gravity monitoring network (referenced to a base station 36 km NW of the volcano) was set up at Mount St Helens in 2010. Measurements were made at 12 sites on the volcano (at altitudes between 1200 and 2350 m a.s.l.) and 4 sites far afield during the summers of 2010, 2012, and 2014. The repeated gravity measurements revealed an increase in gravity between 2010 and 2014. Positive residual gravity anomalies remained after accounting for changes in surface height, in the Crater Glacier, and in the shallow hydrothermal aquifer. The pattern of residual gravity changes, with a maximum of 57±12 μGal from 2010 to 2014, is radially symmetric and centered on the 2004-08 lava dome. Inversion of the residual gravity signal points to a source 2.5-4 km beneath the crater floor (i.e., in the magma conduit that fed eruptions in 1980-86 and 2004-08). We attribute the gravity increase to re-inflation of the magma plumbing system following the 2004-8 eruption. Recent seismic activity (e.g., the seismic swarm of March 2016) has been interpreted as a response to the slow recharging of the volcano magma chamber.

  2. Pressures of Partial Crystallization of Magmas Along Transforms: Implications for Crustal Accretion (United States)

    Scott, J. L.; Zerda, C.; Brown, D.; Ciaramitaro, S. C.; Barton, M.


    Plate spreading at mid-ocean ridges is responsible for the creation of most of the crust on earth. The ridge system is very complex and many questions remain unresolved. Among these is the nature of magma plumbing systems beneath transform faults. Pervious workers have suggested that increased conductive cooling along transforms promotes higher pressures of partial crystallization, and that this explains the higher partial pressures of crystallization inferred for magmas erupted along slow spreading ridges compared to magmas erupted along faster spreading ridges. To test this hypothesis, we undertook a detailed analysis of pressures of partial crystallization for magmas erupted at 3 transforms along the fast to intermediate spreading East Pacific Rise(Blanco, Clipperton, and Siqueiros) and 3 transforms along the slow spreading Mid Atlantic Ridge(Famous Transform B, Kane, and 15°20'N). Pressures of partial crystallization were calculated from the compositions of glasses (quenched liquids) lying along the P (and T) dependent olivine, plagioclase, and augite cotectic using the method described by Kelley and Barton (2008). Published analyses of mid-ocean ridge basalt glasses sampled from these transforms and surrounding ridge segments were used as input data. Samples with anomalous chemical compositions and samples that yielded pressures associated with unrealistically large uncertainties were filtered out of the database. The pressures of partial crystallization for the remaining 916 samples ranged from 0 to 520 MPa with the great majority ( 95%) of sample returning pressures of less than 300 MPa. Pressures of 300 MPa) are associated with a small number of samples from the Pacific segments. Except for the Blanco, pressures of partial crystallization do not increase as transforms are approached. These observations contrast with those of previous workers, who reported anomalously high pressures (up to 1000 MPa) for a large number of samples erupted near both Atlantic

  3. Magma evolution along the East Pacific Rise between 11⁰N and 15⁰N (United States)

    Miyakawa, Y.; Zerda, C.; Barton, M.


    The fast spreading East Pacific Rise (EPR) between 11°N and 14°N is characterized by several discontinuities. Previous work suggests that magmas erupted at ridge discontinuities partially crystallize at higher pressures than magmas erupted along "normal" ridge segments. We have determined the pressures of partial crystallization of erupted magmas using 922 glass analyses compiled from Gale et al., (2013). The results indicate crystallization at a wide range of pressures (1 bar to ~ 700 MPa) over the whole length of this ridge segment with no apparent correlation between pressure and ridge discontinuities. This might indicate that some magmas begin to crystallize in the mantle. Alternatively, the compositions of some magmas have been modified by interaction with preexisting crust so that the calculated pressures may not represent the true pressure of partial crystallization. We compiled geochemical data for 178 whole-rock samples from Gale et al., (2013) to examine the possibility that some magmas have interacted with oceanic crust. We found no systematic changes in composition with latitude or ridge discontinuities, and values of Na8 suggest near-constant degrees of melting at near constant temperature in the mantle beneath the ridge. However, normalizing trace element concentrations to the composition of average NMORB reveals that the southern and northern ridge segments have compositions similar to NMORB, although some samples are enriched in highly incompatible elements. In contrast, samples from the middle segment are depleted in highly incompatible elements relative to NMORB. The simplest interpretation is that magmas were ultimately derived from mantle sources variably depleted in highly incompatible elements. Plots of P2O5 and TiO2 versus K2O suggest that crystallization was not the only process occurring in the crust, and some magmas assimilated preexisting oceanic crust during ascent. This suggests the possibility that all magmas were ultimately derived

  4. Crustal movements due to Iceland's shrinking ice caps mimic magma inflow signal at Katla volcano. (United States)

    Spaans, Karsten; Hreinsdóttir, Sigrún; Hooper, Andrew; Ófeigsson, Benedikt Gunnar


    Many volcanic systems around the world are located beneath, or in close proximity to, ice caps. Mass change of these ice caps causes surface movements, which are typically neglected when interpreting surface deformation measurements around these volcanoes. These movements can however be significant, and may closely resemble movements due to magma accumulation. Here we show such an example, from Katla volcano, Iceland. Horizontal movements observed by GPS on the flank of Katla have led to the inference of significant inflow of magma into a chamber beneath the caldera, starting in 2000, and continuing over several years. We use satellite radar interferometry and GPS data to show that between 2001 and 2010, the horizontal movements seen on the flank can be explained by the response to the long term shrinking of ice caps, and that erratic movements seen at stations within the caldera are also not likely to signify magma inflow. It is important that interpretations of geodetic measurements at volcanoes in glaciated areas consider the effect of ice mass change, and previous studies should be carefully reevaluated.

  5. Widespread magma oceans on asteroidal bodies in the early Solar System. (United States)

    Greenwood, Richard C; Franchi, Ian A; Jambon, Albert; Buchanan, Paul C


    Immediately following the formation of the Solar System, small planetary bodies accreted, some of which melted to produce igneous rocks. Over a longer timescale (15-33 Myr), the inner planets grew by incorporation of these smaller objects through collisions. Processes operating on such asteroids strongly influenced the final composition of these planets, including Earth. Currently there is little agreement about the nature of asteroidal igneous activity: proposals range from small-scale melting, to near total fusion and the formation of deep magma oceans. Here we report a study of oxygen isotopes in two basaltic meteorite suites, the HEDs (howardites, eucrites and diogenites, which are thought to sample the asteroid 4 Vesta) and the angrites (from an unidentified asteroidal source). Our results demonstrate that these meteorite suites formed during early, global-scale melting (> or = 50 per cent) events. We show that magma oceans were present on all the differentiated Solar System bodies so far sampled. Magma oceans produced compositionally layered planetesimals; the modification of such bodies before incorporation into larger objects can explain some anomalous planetary features, such as Earth's high Mg/Si ratio.

  6. Viscous heating in fluids with temperature-dependent viscosity: implications for magma flows

    Directory of Open Access Journals (Sweden)

    A. Costa


    Full Text Available Viscous heating plays an important role in the dynamics of fluids with strongly temperature-dependent viscosity because of the coupling between the energy and momentum equations. The heat generated by viscous friction produces a local temperature increase near the tube walls with a consequent decrease of the viscosity which may dramatically change the temperature and velocity profiles. These processes are mainly controlled by the Peclét number, the Nahme number, the flow rate and the thermal boundary conditions. The problem of viscous heating in fluids was investigated in the past for its practical interest in the polymer industry, and was invoked to explain some rheological behaviours of silicate melts, but was not completely applied to study magma flows. In this paper we focus on the thermal and mechanical effects caused by viscous heating in tubes of finite lengths. We find that in magma flows at high Nahme number and typical flow rates, viscous heating is responsible for the evolution from Poiseuille flow, with a uniform temperature distribution at the inlet, to a plug flow with a hotter layer near the walls. When the temperature gradients  induced by viscous heating are very pronounced, local instabilities may occur and the triggering of secondary flows is possible. For completeness, this paper also describes magma flow in infinitely long tubes both at steady state and in transient phase.

  7. Magma reservoir dynamics at Toba caldera, Indonesia, recorded by oxygen isotope zoning in quartz. (United States)

    Budd, David A; Troll, Valentin R; Deegan, Frances M; Jolis, Ester M; Smith, Victoria C; Whitehouse, Martin J; Harris, Chris; Freda, Carmela; Hilton, David R; Halldórsson, Sæmundur A; Bindeman, Ilya N


    Quartz is a common phase in high-silica igneous rocks and is resistant to post-eruptive alteration, thus offering a reliable record of magmatic processes in silicic magma systems. Here we employ the 75 ka Toba super-eruption as a case study to show that quartz can resolve late-stage temporal changes in magmatic δ(18)O values. Overall, Toba quartz crystals exhibit comparatively high δ(18)O values, up to 10.2‰, due to magma residence within, and assimilation of, local granite basement. However, some 40% of the analysed quartz crystals display a decrease in δ(18)O values in outermost growth zones compared to their cores, with values as low as 6.7‰ (maximum ∆core-rim = 1.8‰). These lower values are consistent with the limited zircon record available for Toba, and the crystallisation history of Toba quartz traces an influx of a low-δ(18)O component into the magma reservoir just prior to eruption. Here we argue that this late-stage low-δ(18)O component is derived from hydrothermally-altered roof material. Our study demonstrates that quartz isotope stratigraphy can resolve magmatic events that may remain undetected by whole-rock or zircon isotope studies, and that assimilation of altered roof material may represent a viable eruption trigger in large Toba-style magmatic systems.

  8. Magma reservoir dynamics at Toba caldera, Indonesia, recorded by oxygen isotope zoning in quartz (United States)

    Budd, David A.; Troll, Valentin R.; Deegan, Frances M.; Jolis, Ester M.; Smith, Victoria C.; Whitehouse, Martin J.; Harris, Chris; Freda, Carmela; Hilton, David R.; Halldórsson, Sæmundur A.; Bindeman, Ilya N.


    Quartz is a common phase in high-silica igneous rocks and is resistant to post-eruptive alteration, thus offering a reliable record of magmatic processes in silicic magma systems. Here we employ the 75 ka Toba super-eruption as a case study to show that quartz can resolve late-stage temporal changes in magmatic δ18O values. Overall, Toba quartz crystals exhibit comparatively high δ18O values, up to 10.2‰, due to magma residence within, and assimilation of, local granite basement. However, some 40% of the analysed quartz crystals display a decrease in δ18O values in outermost growth zones compared to their cores, with values as low as 6.7‰ (maximum ∆core-rim = 1.8‰). These lower values are consistent with the limited zircon record available for Toba, and the crystallisation history of Toba quartz traces an influx of a low-δ18O component into the magma reservoir just prior to eruption. Here we argue that this late-stage low-δ18O component is derived from hydrothermally-altered roof material. Our study demonstrates that quartz isotope stratigraphy can resolve magmatic events that may remain undetected by whole-rock or zircon isotope studies, and that assimilation of altered roof material may represent a viable eruption trigger in large Toba-style magmatic systems.

  9. Iron and lithium isotope systematics of the Hekla volcano, Iceland - Evidence for Fe isotope fractionation during magma differentiation


    J. A. Schuessler; R. Schönberg; O. Sigmarsson; [Amhurst, Nicholas] 


    In this study potential iron isotope fractionation by magmatic processes in the Earth's crust was systematically investigated. High precision iron isotope analyses by MC-ICP-MS were performed on a suite of rock samples representative for the volcanic evolution of the Hekla volcano, Iceland. The whole series of Hekla's rocks results from several processes. (i) Basaltic magmas rise and induce partial melting of metabasalts in the lower part of the Icelandic crust. The resulting dacitic magma ev...

  10. Transportation and its Infrastructure


    Ribeiro, Suzana K; Kobayashi, Shigeki; Beuthe, Michel; Gasca, Jorge; Greene, David; Lee, David S.; Muromachi, Yasunori; Newton, Peter J.; Plotkin, Steven; Sperling, Daniel; Wit, Ron; Zhou, Peter J


    Transport activity, a key component of economic development and human welfare, is increasing around the world as economies grow. For most policymakers, the most pressing problems associated with this increasing transport activity are traffic fatalities and injuries, congestion, air pollution and petroleum dependence. These problems are especially acute in the most rapidly growing economies of the developing world. Mitigating greenhouse gas (GHG) emissions can take its place among these other ...

  11. Magma accumulation and segregation during regional-scale folding: The Holland's dome granite injection complex, Damara belt, Namibia (United States)

    Kruger, Tolene; Kisters, Alexander


    The regional-scale, upright fold of the Holland's dome in the Damara belt of central Namibia contains a kilometre-scale network of intrusive, highly fractionated uraniferous leucogranites. Three broadly orthogonal and intersecting sets of leucogranite sheets that intruded parallel and at right angles to the axial plane of the first-order fold can be distinguished. The granites are internally sheeted and illustrate the growth of the injection complex through the successive addition of thousands of smaller magma batches. Spatial and timing relationships point to a stepwise evolution of the injection complex. Early dilatancy-driven segregation and accumulation of granitic magmas in the core of the fold, above a basal detachment, was followed by compaction-driven segregation of a melt phase during fold tightening. The intersecting leucogranite sets provide a suitably organized permeability structure for melt segregation, while the successive injection of magma batches ensures compatibility between regional strain rates during folding and the rates of magma segregation. The three-dimensional network of melt-bearing structures further assisted regional shortening past the lock-up of the fold. The Holland's dome injection complex illustrates the geometric complexity of magma transfer pathways and the significance of regional-scale folding for the accumulation, segregation and fractionation of granitic magmas in suprasolidus crust.

  12. Mechanical interaction between gas bubbles and micro-crystals in magma (United States)

    Dinger, Florian; Bobrowski, Nicole; Bredemeyer, Stefan; Arellano, Santiago; Platt, Ulrich; Wagner, Thomas


    The magnitude of volcanic gas emissions from low viscosity magmas is controlled by many factors. The buoyancy driven ascent of gas bubbles in the volcanic conduit is one of them. During the ascent the bubbles may collide with micro-crystals, slide along the crystal faces, and finally leave the crystal at the crystal tip. We investigate the mechanical consequences of this interaction in a static volume of magma assuming constant pressure, temperature and chemical composition and neglecting thermodynamic processes between bubbles and crystals. Explicitly, we focus on tabular crystals whose extensions are about one order of magnitude larger than the bubbles. The mechanical interaction changes the motion of both the bubbles and the crystals. The buoyancy force of the bubbles results in a torque on the crystal which ultimately orients the long axis of the crystal to the vertical direction. On the other hand, bubbles change their ascent path and velocity if they slide along a crystal face. This change in the bubble motion may have two opposing impacts on the magnitude of volcanic emissions: First, the reduced ascent velocity results in a bubble accumulation and thus enhanced bubble coalescence rate in the proximity of crystals. Second, the crystals align the bubbles in rise channels starting at the crystal tips while no bubbles access the magma volume immediately located above the crystal cross section, which we call "crystal shadow". Now, volatile degassing from supersaturated magma is a diffusive short-distance process which accelerate in the proximity of pre-existing gas bubbles. We thus infer that the orientation of the crystals influences the bulk volatile degassing rate and thus the volcanic gas emission rate due to the crystal shadow. The mechanical model suggests that all crystals get erected by the bubble-induced torque within time periods in the order of weeks to months. This has to be compared to the crystal nucleation rate in order to obtain a steady state

  13. A Ground Deformation Monitoring Approach to Understanding Magma Chamber Systems and Eruptive Cycles of Mount Cameroon (United States)

    Riley, S.; Clarke, A.


    Mount Cameroon is a 13,400ft basanite volcano on the passive margin of West Africa. It has erupted seven times in the past century making it one of the most active volcanoes in Africa. Most recently Mount Cameroon erupted in 1999 and 2000 first issuing strombolian explosions from vents near the summit, and later erupting effusively from a fissure running southwest from the summit (Suh et al., 2003). Prior to 2004, the only monitoring equipment on Mount Cameroon was a small seismometer network installed following the 1982 eruption. By 1999 only a single seismometer in the network was functional. Seismic activity did not rise above background levels until the few days immediately preceding the eruption. In an effort to raise awareness of the volcano's condition and provide a more efficient warning of impending eruptions we have begun constructing a ground deformation network on Mount Cameroon. The new network currently consists of two Applied Geomechanics 711-2A(4X) biaxial tiltmeters capable of resolving 0.1 microradians of tilt. One station is located approximately 500 m from the 2000 summit vent, and the other is approximately 1km away from the central fissure approximately 5km southwest of the 2000 summit vent. Three primary processes could precede eruptions at Mt. Cameroon, offering the opportunity for detection and prediction by our network. These processes are magma chamber pressurization, magma ascent via a central conduit, and/or propagation of magma along the central fissure. Magma chamber location, if a significant chamber exists, is poorly constrained, however, previous petrologic studies on Mount Cameroon (Suh et al., 2003; Fitton et al., 1983) suggest Mount Cameroon magmas originate at a depth less than 40km. Published seismic data (Ambeh, 1989) contains evidence of magmatic activity and possible chambers at depths ranging from 10km to 70km. Preliminary calculations using a simple Mogi model suggest deformation caused by pressurization of a large

  14. The Non-Newtonian Rheology of Real Magmas: insights into 3D microstructures (United States)

    Pistone, M.; Caricchi, L.; Ulmer, P.; Reusser, E.; Marone, F.; Burlini, L.


    We present high-resolution 3D microstructures of three-phase magmas composed of melt, bubbles and crystals in different proportions deformed at magmatic pressure and temperature conditions. This study aims to constrain the dependence of rheological and physical properties of magmas on the viscosity of the silicate melt, the applied deformation rate, the relative contents of crystals and bubbles and on the interactions between these phases. The starting material is composed of a hydrous haplogranitic melt containing H2O (2.26 wt%) and CO2 (624 ppm) and different proportions of quartz crystals (between 24 and 65 vol%; 63-125 μm in diameter) and bubbles (between 9 and 12 vol%; 5-150 μm in diameter). Experiments were performed in simple shear using a HT-HP internally-heated Paterson-type rock deformation apparatus (Paterson and Olgaard, 2000) at strain rates ranging between 5×10-5 s-1 and 4×10-3 s-1, at a constant pressure of 200 MPa and temperatures ranging between 723 and 1023 K. Synchrotron based X-ray tomographic microscopy performed at the TOMCAT beamline (Stampanoni et al., 2006) at the Swiss Light Source enabled quantitative evaluation of the 3D microstructure. At high temperature and low strain rate conditions the silicate melt behaves as a Newtonian liquid (Webb and Dingwell, 1990). Higher deformation rates and the contemporary presence of gas bubbles and solid crystals make magma rheology more complex and non-Newtonian behaviour occurs. In all experimental runs two different non-Newtonian effects were observed: shear thinning (decrease of viscosity with increasing strain rate) in high crystal-content magmas (55-65 vol% crystals; 9-10 vol% bubbles) and shear thickening (increase of viscosity with increasing strain rate) in magmas at lower degree of crystallinity (24 vol% crystals; 12 vol% bubbles). Both behaviours were observed at intermediate crystal-content (44 vol% crystals; 12 vol% bubbles), with an initial thickening that subsequently gives way to

  15. Incremental growth of an upper crustal, A-type pluton, Argentina: Evidence of a re-used magma pathway (United States)

    Alasino, Pablo H.; Larrovere, Mariano A.; Rocher, Sebastián; Dahlquist, Juan A.; Basei, Miguel A. S.; Memeti, Valbone; Paterson, Scott; Galindo, Carmen; Macchioli Grande, Marcos; da Costa Campos Neto, Mario


    Carboniferous igneous activity in the Sierra de Velasco (NW Argentina) led to the emplacement of several magmas bodies at shallow levels (< 2 kbar). One of these, the San Blas intrusive complex formed over millions of years (≤ 2-3 m.y.) through three periods of magma additions that are characterized by variations in magma sources and emplacement style. The main units, mostly felsic granitoids, have U-Pb zircon crystallization ages within the error range. From older to younger (based on cross-cutting relationships) intrusive units are: (1) the Asha unit (340 ± 7 Ma): a tabular to funnel-shaped intrusion emplaced during a regional strain field dominated by WSW-ENE shortening with contacts discordant to regional host-rock structures; (2) the San Blas unit (344 ± 2 Ma): an approximate cylindrical-shaped intrusion formed by multiple batches of magmas, with a roughly concentric fabric pattern and displacement of the host rock by ductile flow of about 35% of shortening; and (3) the Hualco unit (346 ± 6 Ma): a small body with a possible mushroom geometry and contacts concordant to regional host-rock structures. The magma pulses making up these units define two groups of A-type granitoids. The first group includes the peraluminous granitic rocks of the Asha unit generated mostly by crustal sources (εNdt = - 5.8 and εHft in zircon = - 2.9 to - 4.5). The second group comprises the metaluminous to peraluminous granitic rocks of the youngest units (San Blas and Hualco), which were formed by a heterogeneous mixture between mantle and crustal sources (εNdt = + 0.6 to - 4.8 and εHft in zircon = + 3 to - 6). Our results provide a comprehensive view of the evolution of an intrusive complex formed from multiple non-consanguineous magma intrusions that utilized the same magmatic plumbing system during downward transfer of host materials. As the plutonic system matures, the ascent of magmas is governed by the visco-elastic flow of host rock that for younger batches include

  16. Ultrahigh-pressure structure of GeO2 glass with coordination number >6: implications for structure of magma at the core-mantle boundary (United States)

    Kono, Y.; Kenney-Benson, C.; Ikuta, D.; Shibazaki, Y.; Wang, Y.; Shen, G.


    Silicate magma at the core-mantle boundary is one of the most important components in understanding nature and evolution of the Earth's deep interior. However, structure and properties of silicate magmas at the pressure condition of the core-mantle boundary remain poorly understood, because of experimental challenges. Pioneering work by Murakami and Bass (2010) showed a kink in the pressure dependence of shear-wave velocity in SiO2 glass around 140 GPa, which was interpreted as evidence of ultrahigh pressure structural transition. However, no structural information is available under such high pressures. Here we show new experimental evidence of ultrahigh pressure structural transition in GeO2 glass with Ge-O coordination number (CN) significantly greater than 6, investigated using a newly developed double-stage large volume cell combined with multi-angle energy dispersive X-ray diffraction technique for in situ amorphous structure measurement (Kono et al., 2016). The Ge-O coordination number (CN) is found to remain constant at 6 between 22.6 and 37.9 GPa. At higher pressures, CN begins to increase rapidly to 6.4 at 49.4 GPa and reaches 7.4 at 91.7 GPa. The structural change to CN higher than 6 is closely associated with the change in oxygen packing fraction (OPF). This transformation begins when the OPF in GeO2 glass is close to the maximal dense packing state (the Kepler conjecture= 0.74), which provides new insights into structural changes in network-forming glasses and liquids with CN higher than 6 at ultrahigh pressure conditions. For example, extrapolation of OPF-pressure trend in SiO2 glass shows that OPF of SiO2glass reaches to 0.74 around 108 GPa, where structural change to CN higher than 6 is expected. The data imply that silicate magma at the core-mantle boundary may possess ultrahigh-pressure structure with CN higher than 6. References Kono, Y., Kenney-Benson, C., Ikuta, D., Shibazaki, Y., Wang, Y., & Shen, G. (2016). Ultrahigh-pressure polyamorphism in

  17. Ireland's Atlantic Margin: An Investigation of the Structure of Magma-rich and Magma-poor Margins using Gravity, Magnetic and Seismic Data (United States)

    Rippington, S.; Warner, J.; Rands, J.; Herbert, H.


    Ireland and its continental shelves are located in a structurally complex part of the European North Atlantic Margin. The northern part of the margin (e.g. the Rockall Basin) is considered to be magma-rich, whereas the southern part of the margin (e.g. the Porcupine Basin) is relatively magma-poor. Despite this fundamental difference, the Rockall and Porcupine regions have much in common: both have a dominant structural grain inherited from the Caledonian Orogeny, and were variably deformed by Variscan compression and multiple phases of extension and rifting. Rifting culminated in continental breakup between the North American and European plates in the Paleogene. Following continental breakup, both regions were further deformed by phases of Cenozoic compression, which have been attributed to many different causes, including the Alpine Orogeny. Hydrocarbon exploration in the region has met with limited success. This is in part due to the complex structure of the margin, and a number of persisting questions regarding the location, age, and nature of potential source and reservoir rocks, and the timing and evolution of structural traps. This study aims to re-evaluate the structural framework that underpins hydrocarbon exploration in the region. The study is based on a compilation of georeferenced maps and cross-sections, a newly merged set of marine gravity and aeromagnetic data, as well as published seismic and public domain data gravity and magnetic data, all of which are integrated in GIS. The integration of seismic and potential field data allows us to use the strengths of these different geophysical methods to investigate the crustal architecture from the seabed to the Moho. Quantitative interpretation of the crust is achieved by 2D gravity and magnetic modelling along key B.I.R.P.S seismic lines in the Rockall and Porcupine basins. These models are used to highlight similarities and differences between these areas and to suggest how the structure of the Irish

  18. Petrographic, geochemical and isotopic constraints on magma dynamics and mixing in the Miocene Monte Capanne monzogranite (Elba Island, Italy) (United States)

    Gagnevin, D.; Daly, J. S.; Poli, G.


    The Monte Capanne pluton (Tuscan Magmatic Province, Elba Island, Italy) displays a great variety of magmatic products. Mafic microgranular enclaves (MME) are widespread and display variable size, texture and composition. Petrographic and mineralogical features highlight the importance of magma mixing in their genesis. In particular, patchy-zoned phenocrysts and corroded An-rich plagioclase are common in the MME, which, together with their abundance in the monzogranitic host, suggest that mixing between mantle and crustal-derived magmas occurred relatively early in the crystallisation history of the pluton. A gabbroic enclave is characterised by the abundance of An-rich plagioclase and amphibole, the latter possibly replacing former clinopyroxene. Differences in biotite composition between MME reflect the heterogeneous nature of the mafic magmas prior to the enclave formation. The importance of magma mixing is also evident in K-feldspar megacrysts, which commonly exhibit resorption surfaces followed rimward by a high-Ba zone. Hybrid Orano dykes, which are the latest magmas injected into the Monte Capanne pluton, display specific disequilibrium textures (i.e. sieve-textured plagioclase phenocrysts) and mineral content (i.e. abundance of amphibole) compared to the MME. The genesis of most MME, which display a wide spectrum of major and trace element compositions compared to the host monzogranite, involves a complex interplay between mixing and crystallisation following the input of mantle-derived magma into a silicic magma chamber. Possible loss of the liquid phase from the evolving basic magma may have produced MME distinctively depleted in LREE and enriched in MgO. Fingerprinting the chemical and isotopic signature of the basic magma involved in the genesis of the MME is further complicated by subsequent (but limited) exchange between MME and host. The basic magma is inferred to be similar to coeval high-K calc-alkaline volcanic rocks occurring on Capraia Island

  19. The 12.4 ka Upper Apoyeque Tephra, Nicaragua: stratigraphy, dispersal, composition, magma reservoir conditions and trigger of the plinian eruption (United States)

    Wehrmann, Heidi; Freundt, Armin; Kutterolf, Steffen


    Upper Apoyeque Tephra (UAq) was formed by a rhyodacitic plinian eruption in west-central Nicaragua at 12.4 ka BP. The fallout tephra was dispersed from a progressively rising plinian eruption column that became exposed to different wind speeds and directions at different heights in the stratosphere, leading to an asymmetric tephra fan with different facies in the western and southern sector. Tephra dispersal data integrated with geochemical compositions of lava flows in the area facilitate delimitation of the source vent to the south of Chiltepe Peninsula. UAq, Lower Apoyeque Tephra, Apoyeque Ignimbrite, and two lava lithic clasts in San Isidro Tephra together form a differentiation trend distinct from that of the younger tephras and lavas at Chiltepe Volcanic Complex in a TiO2 versus K2O diagram, compositionally precluding a genetic relationship of UAq with the present-day Apoyeque stratovolcano. Apoyeque Volcano in its present shape did not exist at the time of the UAq eruption. The surface expression of the UAq vent is now obscured by younger eruption products and lake water. Pressure-temperature constraints based on mineral-melt equilibria and fluid inclusions in plagioclase indicate at least two magma storage levels. Clinopyroxenes crystallised in a deep crustal reservoir at ˜24 km depth as inferred from clinopyroxene-melt inclusion pairs. Chemical disequilibrium between clinopyroxenes and matrix glasses indicates rapid magma ascent to the shallower reservoir at ˜5.4 km depth, where magnesiohornblendes and plagioclase fractionated at a temperature of ˜830 °C. Water concentrations were ˜5.5 wt.% as derived from congruent results of amphibole and plagioclase-melt hygrometry. The eruption was triggered by injection of a hotter, more primitive melt into a water-supersaturated reservoir.

  20. Building a large magma chamber at Mount Mazama, Crater Lake, Oregon (United States)

    Wright, H. M.; Karlstrom, L.; Bacon, C. R.


    Crater Lake caldera, Oregon, a structure produced by the 50 km3 eruption of Mount Mazama ~7.7 ka, is one of only three identified Quaternary calderas in the Cascades volcanic chain (Hildreth 2007). What were the conditions necessary to build a large volume magma chamber capable of producing this caldera-forming eruption at Mount Mazama? Using the well-documented >400,000 year volcanic history at Mazama (Bacon and Lanphere 2006), an approximation of vent locations for each eruptive unit (Bacon 2008), and a compilation of over 900 whole-rock compositions from Mount Mazama and regional volcanic rocks, we examine questions of magma chamber assembly in an active volcanic arc. These questions include: (1) is magmatic input approximately constant in composition between Mazama and regional monogenetic volcanic centers? (2) how did melt evolution differ in the two cases (Mazama vs. regional volcanism)? (3) is there spatiotemporal evidence in eruption data (including eruptive volume and chemistry) for a growing magma chamber at depth? and (4) does stability of that chamber require pre-warming of the surrounding country rock? An assumption of approximately constant major-element composition magmatic input is consistent with observed compositional overlap between basaltic to basaltic andesitic eruptive products at Mount Mazama and its vicinity (within 15 km of the volcano). MELTS modeling (Ghiorso and Sack 1995) from an initial composition of magnesian basaltic andesite of monogenetic Red Cone (erupted at a distance of ~8 km from the climactic vent) is consistent with water-saturated magmatic evolution at relatively shallow depths (<500 MPa, with the caveat that shallow pressure calibration data are largely lacking from MELTS models). Within this pressure range, differences in whole-rock compositions indicate that regional magmatic rocks evolved at shallower depths and/or drier conditions than those at the Mazama center. Observations of eruptive ages, compositions, vent

  1. The redox states of basic and silicic magmas: a reflection of their source regions? (United States)

    Carmichael, Ian S. E.


    At present the best estimates of the oxygen fugacity of spinel-lherzolites that could be the source material of basic magmas is about five log units below the Ni-NiO buffer to one above it. However partially glassy basic lavas, ranging from MORBs to minettes, all with olivine on their liquidus, cover a wider range, and may have oxygen fugacities that extend to four log units above NNO. Surprisingly the range of oxygen fugacities observed in silicic lavas and ashflows with quartz phenocrysts is smaller, despite a crustal dominated evolution. The peralkaline silicic lava type pantellerite is the most reduced, equivalent to MORBs, whereas the large volume ashflows with phenocrysts of hornblende and/or sphene are the most oxidised. As the concentration of water in the basic lavas is correlated with increase in their redox state, it would seem that water could be the agent of this increase. That this is unlikely is seen in the behavior of silicic ashflows and lavas, particularly those of Yellowstone. Here the silicic magmas of the last 2Ma contain about 2 wt% FeO(total), and typically phenocrysts of fayalite, quartz and Fe-Ti oxides. Despite extensive exchange of the 18O of the magma with meteoric water after caldera collapse (Hildreth et al. 1984), there is no displacement of the redox equilibria. Thus the thermal dissociation of molecular H2O to H2, and its subsequent diffusive loss to cause oxidation must have been minimal. This could only be so if the activity of water was small, as it would be if H2O reacted with the silicate liquid to form OH groups (Stolper 1982). The conclusion is that silicic magmas with small amounts of iron and large amounts of water do not have their redox states reset, which in turn presumably reflect their generation. By analogy basic magmas with large amounts of iron and far less water are even less likely to have their redox equilibria disturbed, so that their oxygen fugacities will also reflect their source regions. The effect of


    DEFF Research Database (Denmark)

    Transport emissions are growing, while climate targets are getting stricter: the gap is closing. We are rapidly approaching a future where transport could occupy or even exceed all of the ‘allowed’ CO2 emissions, if measures are not taken. Many potential climate policies and strategies for transp...

  3. Radiation Transport

    Energy Technology Data Exchange (ETDEWEB)

    Urbatsch, Todd James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  4. Sulfur isotopic zoning in apatite crystals: A new record of dynamic sulfur behavior in magmas (United States)

    Economos, Rita; Boehnke, Patrick; Burgisser, Alain


    The mobility and geochemical behavior of sulfur in magmas is complex due to its multi-phase (solid, immiscible liquid, gaseous, dissolved ions) and multi-valent (from S2- to S6+) nature. Sulfur behavior is closely linked with the evolution of oxygen fugacity (fO2) in magmas; the record of fO2 evolution is often enigmatic to extract from rock records, particularly for intrusive systems. We apply a novel method of measuring S isotopic ratios in zoned apatite crystals that we interpret as a record of open-system magmatic processes. We interrogate the S concentration and isotopic variations preserved in multiple apatite crystals from single hand specimens from the Cadiz Valley Batholith, CA via electron microprobe and ion microprobe. Isotopic variations in single apatite crystals ranged from 0 to 3.8‰ δ34S and total variation within a single hand sample was 6.1‰ δ34S. High S concentration cores yielded high isotopic ratios while low S concentration rims yielded low isotopic ratios. We discuss a range of possible natural scenarios and favor an explanation of a combination of magma mixing and open-system, ascent-driven degassing under moderately reduced conditions: fO2 at or below NNO+1, although the synchronous crystallization of apatite and anhydrite is also a viable scenario. Our conclusions have implications for the coupled S and fO2 evolution of granitic plutons and suggest that in-situ apatite S isotopic measurements could be a powerful new tool for evaluating redox and S systematics in magmatic systems.

  5. A compositional tipping point governing the mobilization and eruption style of rhyolitic magma. (United States)

    Di Genova, D; Kolzenburg, S; Wiesmaier, S; Dallanave, E; Neuville, D R; Hess, K U; Dingwell, D B


    The most viscous volcanic melts and the largest explosive eruptions on our planet consist of calcalkaline rhyolites. These eruptions have the potential to influence global climate. The eruptive products are commonly very crystal-poor and highly degassed, yet the magma is mostly stored as crystal mushes containing small amounts of interstitial melt with elevated water content. It is unclear how magma mushes are mobilized to create large batches of eruptible crystal-free magma. Further, rhyolitic eruptions can switch repeatedly between effusive and explosive eruption styles and this transition is difficult to attribute to the rheological effects of water content or crystallinity. Here we measure the viscosity of a series of melts spanning the compositional range of the Yellowstone volcanic system and find that in a narrow compositional zone, melt viscosity increases by up to two orders of magnitude. These viscosity variations are not predicted by current viscosity models and result from melt structure reorganization, as confirmed by Raman spectroscopy. We identify a critical compositional tipping point, independently documented in the global geochemical record of rhyolites, at which rhyolitic melts fluidize or stiffen and that clearly separates effusive from explosive deposits worldwide. This correlation between melt structure, viscosity and eruptive behaviour holds despite the variable water content and other parameters, such as temperature, that are inherent in natural eruptions. Thermodynamic modelling demonstrates how the observed subtle compositional changes that result in fluidization or stiffening of the melt can be induced by crystal growth from the melt or variation in oxygen fugacity. However, the rheological effects of water and crystal content alone cannot explain the correlation between composition and eruptive style. We conclude that the composition of calcalkaline rhyolites is decisive in determining the mobilization and eruption dynamics of Earth

  6. A compositional tipping point governing the mobilization and eruption style of rhyolitic magma (United States)

    di Genova, D.; Kolzenburg, S.; Wiesmaier, S.; Dallanave, E.; Neuville, D. R.; Hess, K. U.; Dingwell, D. B.


    The most viscous volcanic melts and the largest explosive eruptions on our planet consist of calcalkaline rhyolites. These eruptions have the potential to influence global climate. The eruptive products are commonly very crystal-poor and highly degassed, yet the magma is mostly stored as crystal mushes containing small amounts of interstitial melt with elevated water content. It is unclear how magma mushes are mobilized to create large batches of eruptible crystal-free magma. Further, rhyolitic eruptions can switch repeatedly between effusive and explosive eruption styles and this transition is difficult to attribute to the rheological effects of water content or crystallinity. Here we measure the viscosity of a series of melts spanning the compositional range of the Yellowstone volcanic system and find that in a narrow compositional zone, melt viscosity increases by up to two orders of magnitude. These viscosity variations are not predicted by current viscosity models and result from melt structure reorganization, as confirmed by Raman spectroscopy. We identify a critical compositional tipping point, independently documented in the global geochemical record of rhyolites, at which rhyolitic melts fluidize or stiffen and that clearly separates effusive from explosive deposits worldwide. This correlation between melt structure, viscosity and eruptive behaviour holds despite the variable water content and other parameters, such as temperature, that are inherent in natural eruptions. Thermodynamic modelling demonstrates how the observed subtle compositional changes that result in fluidization or stiffening of the melt can be induced by crystal growth from the melt or variation in oxygen fugacity. However, the rheological effects of water and crystal content alone cannot explain the correlation between composition and eruptive style. We conclude that the composition of calcalkaline rhyolites is decisive in determining the mobilization and eruption dynamics of Earth

  7. Chemical Zoning of Feldspars in Lunar Granitoids: Implications for the Origins of Lunar Silicic Magmas (United States)

    Mills, R. D; Simon, J. I.; Alexander, C.M. O'D.; Wang, J.; Christoffersen, R.; Rahman, Z..


    Fine-scale chemical and textural measurements of alkali and plagioclase feldspars in the Apollo granitoids (ex. Fig. 1) can be used to address their petrologic origin(s). Recent findings suggest that these granitoids may hold clues of global importance, rather than of only local significance for small-scale fractionation. Observations of morphological features that resemble silicic domes on the unsampled portion of the Moon suggest that local, sizable net-works of high-silica melt (>65 wt % SiO2) were present during crust-formation. Remote sensing data from these regions suggest high concentrations of Si and heat-producing elements (K, U, and Th). To help under-stand the role of high-silica melts in the chemical differentiation of the Moon, three questions must be answered: (1) when were these magmas generated?, (2) what was the source material?, and (3) were these magmas produced from internal differentiation. or impact melting and crystallization? Here we focus on #3. It is difficult to produce high-silica melts solely by fractional crystallization. Partial melting of preexisting crust may therefore also have been important and pos-sibly the primary mechanism that produced the silicic magmas on the Moon. Experimental studies demonstrate that partial melting of gabbroic rock under mildly hydrated conditions can produce high-silica compositions and it has been suggested by that partial melting by basaltic underplating is the mechanism by which high-silica melts were produced on the Moon. TEM and SIMS analyses, coordinated with isotopic dating and tracer studies, can help test whether the minerals in the Apollo granitoids formed in a plutonic setting or were the result of impact-induced partial melting. We analyzed granitoid clasts from 3 Apollo samples: polymict breccia 12013,141, crystalline-matrix breccia 14303,353, and breccia 15405,78

  8. Subterranean fragmentation of magma during conduit initiation and evolution in the shallow plumbing system of the small-volume Jagged Rocks volcanoes (Hopi Buttes Volcanic Field, Arizona, USA) (United States)

    Re, Giuseppe; White, James D. L.; Muirhead, James D.; Ort, Michael H.


    Monogenetic volcanoes have limited magma supply and lack long-lived sustained magma plumbing systems. They erupt once, often from multiple vents and sometimes over several years, and are rarely or never re-activated. Eruptive behavior is very sensitive to physical processes (e.g., volatile exsolution, magma-water interaction) occurring in the later stages of magma ascent at shallow crustal depths (shapes, dense groundmasses, and composite clasts (loaded and cored). The extent of fragmentation and the formation of subterranean open space controlled the nature of the particles and the architecture and geometry of these conduit structures and their deposits.

  9. Magma Chamber Model of Batur Caldera, Bali, Indonesia: Compositional Variation of Two Facies, Large-Volume Dacitic Ignimbrites

    Directory of Open Access Journals (Sweden)

    Igan S. Sutawidjaja


    Full Text Available DOI:10.17014/ijog.2.2.111-124Batur is one of the finest known calderas on Earth, and is the source of at least two major ignimbrite eruptions with a combined volume of some 84 km3 and 19 km3. These ignimbrites have a similar compositions, raising the question of whether they are geneticaly related. The Batur Ignimbrite-1 (BI-1 is crystal poor, containing rhyodacitic (68 - 70wt % SiO2, white to grey pumices and partly welded and unwelded. The overlying Batur Ignimbrite-2 (BI-2 is a homogeneous grey to black dacitic pumices (64 - 66 wt % SiO2, unwelded and densely welded (40 - 60% vesicularity, crystal and lithic rich. Phase equilibria indicate that the Batur magma equilibrated at temperatures of 1100 - 1300oC with melt water contents of 3 - 6 wt%. The post-eruptive Batur magma was cooler (<1100oC and it is melt more water rich (> 6 wt % H2O. A pressure of 20 kbar is infered from mineral barometry for the Batur magma chamber. Magmatic chamber model is one in which crystals and melt separate from a convecting Batur magma by density differences, resulting in a stratified magma chamber with a homogeneous central zone, a crystal-rich accumulation zone near the walls or base, and a buoyant, melt-rich zone near the top. This is consistent with the estimated magma temperatures and densities: the pre-eruptive BI-1 magma was hoter (1300oC and more volatile rich (6 wt % H2O with density 2.25 g/cm3 than the BI-2 magma (1200oC; 4 wt % H2O in density was higher (2.50 g/cm3. Batur melt characteristics and intensive parameters are consistent with a volatile oversaturation-driven eruption. However, the higher H2O content, high viscosity and low crystal content of the BI-1 magma imply an external eruption trigger.

  10. Discerning Subvolcanic Deformation and Magma Emplacement Geometries: The utility of Combined Paleomagnetic and Anisotropy of Magnetic Susceptibility Studies (United States)

    Petronis, M. S.; Van Wyk de Vries, B.; Lindline, J.; Rapprich, V.


    Here we report paleomagnetic and anisotropy of magnetic susceptibility (AMS) data from three monogenic volcanic centers. Our data reveal that monogenic magma feeder systems are far more complex in terms of the evolution of the magma plumbing system, subvolcanic deformation, and the intrinsic and extrinsic controls on the final magma source geometry, outer cinder cone morphology, and eruptive dynamics. We hypothesize that these various factors collectively orchestrate the development of monogenic volcanic constructs and their associated subvolcanic magma feeder systems. Paleomagnetic and AMS data from the 1) Lemptégy Volcano, France, 2) Trosky Volcano, Czech Republic, and 3) Cienega Volcano, USA indicate that monogenic volcanoes, although commonly perceived as simple evolve in a complex manner. The question we pose here is what governs the evolution of the volcanic construct and the magma feeder system? As we show, the regional tectonics, and hence the regional stress/strain field, do not have a strong control on the upper emplacement geometries and magma flow path even if feeder dykes do follow the trend. We argue that the dynamics of the magma flow once it nears the eruptive edifice remains poorly understood, thus producing a large gap in our current knowledge on active volcanic evolution. Combining detailed paleomagnetic, AMS, and structural studies as well as basic field mapping provide the needed data to constrain the evolution of these systems. We suggest that shallow magmatic systems beneath monogenetic volcanoes, and likely other shallow magma systems (e.g., laccoliths), and even large edifices, are not strongly controlled by the local and regional stress fields and bear little on the growth of the shallow magma feeder systems (<1km). The simple external structure of monogenetic volcanoes hides a rather complex magmatic plumbing system that dynamically evolves during the life of the volcano. As we show, the well-exposed roots of these volcanoes reveal that

  11. The oxygen isotope composition of earth's oldest rocks and evidence of a terrestrial magma ocean

    DEFF Research Database (Denmark)

    Rumble, D.; Bowring, S.; Iizuka, T.


    such long-lived consistency was most easily established by mixing in a terrestrial magma ocean. The measured identical oxygen isotope mass fractionation lines for Earth and Moon suggest that oxygen isotope reservoirs of both bodies were homogenized at the same time during a giant moon-forming impact....... But other sources of heat for global melting cannot be excluded such as bolide impacts during early accretion of proto-Earth, the decay of short-lived radioactive isotopes, or the energy released during segregation of core from mantle....

  12. Magma storage and evolution of the Central Plateau Member Rhyolites, Yellowstone caldera, USA (United States)

    Befus, K. S.


    We use volatile and trace element contents from quartz-hosted melt inclusions to place constraints on the pre-eruptive storage and evolution of 6 lavas and 3 tuffs from the Central Plateau Member Rhyolites, Yellowstone. Overall, inclusions contain 1.0-2.5% H2O and 50-600 ppm CO2. Individual units have more restricted volatile contents, and define regions in H2O and CO2 space with internal variability of ±0.5 wt.% and ±100 ppm, respectively. Water contents in both lavas and pyroclastic units are similar, but CO2 contents vary and can be used to separate the units as CO2-rich and CO2-poor. CO2-rich units contain 300 to 600 ppm CO2 (Tuff of Bluff Point, Pitchstone Plateau, Trischmann Knob, Buffalo Lake, Summit Lake). CO2-poor units contain 50 to 200 ppm CO2 (Solfatara Plateau, West Yellowstone, Tuff of Cold Mountain Creek, unnamed tuff on Douglas Knob). Volatile contents do not correlate with eruption age, volume, or style. Inclusions from individual units contain incompatible trace-element concentrations that range from primitive to evolved. Incompatible elements within each unit increase systematically from primitive inclusions (units differ by <20%), to more evolved inclusions, and finally to highly evolved matrix. The inclusions preserve a systematic evolution produced by crystal fractionation, which we estimate to range from 38±8 wt.% to 54±11 wt.%. Inclusions from the Tuffs of Bluff Point and Cold Mountain Creek display similar evolution, except that matrix glass in those tuffs is less evolved than the inclusions. We infer the magmas were volatile-saturated at depth because H2O and CO2 do not correlate positively with incompatible elements. If true, then the CO2-rich magmas were stored at 90 to 150 MPa and contained a fluid that was 60-75 mol.% CO2, whereas CO2-poor magmas were stored at 50 to 70 MPa and contained a more H2O-rich fluid (XCO2 = 40-60%). The variations in pressure/depth suggest the magmas were at least temporarily stored as separate batches

  13. Comparative assessment of five potential sites for hydrothermal magma systems: geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    White, A.F.


    A brief discussion is given of the geochemical objectives and questions that must be addressed in such an evaluation. A summary of the currently published literature that is pertinent in answering these questions is presented for each of the five areas: The Geysers-Clear Lake region, Long Valley, Rio Grand Rift, Roosevelt Hot Springs, and the Salton Trough. The major geochemical processes associated with proposed hydrothermal sites are categorized into three groups for presentation: geochemistry of magma and associated volcanic rocks, geochemistry of hydrothermal solutions, and geochemistry of hydrothermal alteration. (MHR)

  14. Magma Supply System at Batur Volcano Inferred from Volcano-Tectonic Earthquakes and Their Focal Mechanism

    Directory of Open Access Journals (Sweden)

    Sri Hidayati


    Full Text Available DOI: 10.17014/ijog.v8i2.159The Volcano-Tectonic (VT earthquakes occurring during September - November 2009 were analyzed. The result shows that the epicentres aligning in NE- SW direction coincided with the weak zone of Batur Volcano Complex. The focal zone is located at the depth around 1.5 - 5.5 km beneath the summit. Migration of magma was detected by ground deformation measured by GPS and focal mechanism. Mechanism of VT earthquake shows mostly normal fault types during the swarm in November 2009.

  15. Magma differentiation in shallow sills controlled by compaction and surface tension: San Rafael desert, Utah