WorldWideScience

Sample records for rapid fault shearing

  1. Thermo-Poro-Mechanical Properties of Clayey Gouge and Application to Rapid Fault Shearing

    CERN Document Server

    Sulem, Jean; Vardoulakis, Ioannis

    2008-01-01

    In this paper, the mechanism of fault pressurization in rapid slip events is analyzed on the basis of a complete characterization of the thermo-poro-mechanical behavior of a clayey gouge extracted at 760m depth in Aigion fault in the active seismic zone of the Gulf of Corinth, Greece. It is shown that the thermally collapsible character of this clayey gouge can be responsible for a dramatic reduction of effective stress and a full fluidization of the material. The thickness of the 'ultra localized' zone of highly strained material is a key parameter that controls the competing phenomena of pore pressure increase leading to fluidization of the fault gouge and temperature increase leading to pore fluid vaporization.

  2. Shear heating and clumped isotope reordering in carbonate faults

    Science.gov (United States)

    Siman-Tov, Shalev; Affek, Hagit P.; Matthews, Alan; Aharonov, Einat; Reches, Ze'ev

    2016-07-01

    Natural faults are expected to heat rapidly during seismic slip and to cool quite quickly after the slip event. Here we examine clumped isotope thermometry for its ability to identify such short duration elevated temperature events along frictionally heated carbonate faults. Our approach is based on measured Δ47 values that reflect the distribution of oxygen and carbon isotopes in the calcite lattice, measuring the abundance of 13Csbnd 18O bonds, which is affected by temperature. We examine three types of calcite rock samples: (1) crushed limestone grains that were rapidly heated and then cooled in static laboratory experiments, simulating the temperature cycle experienced by fault rock during an earthquake slip; (2) limestone samples that were experimentally sheared to simulate earthquake slip events; and (3) samples from Fault Mirrors (FMs) collected from principle slip surfaces of three natural carbonate faults. Extensive FM surfaces are believed to form during earthquake slip. Our experimental results show that Δ47 values decrease rapidly (in the course of seconds) with increasing temperature and shear velocity. On the other hand, carbonate shear zones from natural faults do not show such Δ47 decrease. We suggest that the Δ47 response may be controlled by nano-size grains, the high abundance of defects, and highly stressed/strained grain boundaries within the carbonate fault zone that can reduce the activation energy for diffusion, and thus lead to an increased rate of isotopic disordering during shear experiments. In our laboratory experiments the high stress and strain on grain contacts and the presence of nanograins thus allows for rapid disordering so that a change in Δ47 occurs in a very short and relatively low intensity heating events. In natural faults it may also lead to isotopic ordering after the cessation of frictional heating thus erasing the high temperature signature of Δ47.

  3. Spatiotemporal evolution of a fault shear stress patch due to viscoelastic interseismic fault zone rheology

    Science.gov (United States)

    Sone, Hiroki; Uchide, Takahiko

    2016-08-01

    We conducted numerical studies to explore how shear stress anomalies on fault planes (shear stress patches) evolve spatiotemporally during the interseismic period under the influence of viscoelastic rheology assigned to fault zones of finite thickness. 2-D viscoelastic models consisting of a fault zone and host rock were sheared to simulate shear stress accumulation along fault zones due to tectonic loading. No fault slip along a distinct fault planes is implied in the model, thus all fault shear motion is accommodated by distributed deformation in the viscoelastic fault zone. Results show that magnitudes of shear stress patches evolve not only temporally, but also spatially, especially when the stress anomaly is created by a geometrical irregularity (asperity) along the interface of an elastic host rock and viscoelastic fault zone. Such shear stress anomalies diffuse spatially so that the spatial dimension of the shear stress patch appears to grow over time. Models with varying fault zone viscoelastic properties and varying fault zone viscosity both show that such spatial diffusion of shear stress is enhanced by increasing the contribution of the viscous behavior. The absolute rate at which shear stress patches grow spatially is generally not influenced by the size of the shear stress patch. Therefore shear stress patches with smaller dimensions will appear to grow quicker, in the relative sense, compared to larger stress patches. These results suggest that the minimum dimensions of shear stress patches that can exist along a fault could be governed by the effective viscosity of the fault zone. Therefore patterns of accumulated shear stress could vary along faults when viscous properties are heterogeneous, for instance due to depth or material heterogeneity, which has implications on how earthquake rupture behavior could vary along faults.

  4. Shear heating by translational brittle reverse faulting along a single, sharp and straight fault plane

    Indian Academy of Sciences (India)

    Soumyajit Mukherjee

    2017-02-01

    Shear heating by reverse faulting on a sharp straight fault plane is modelled. Increase in temperature (Ti) of faulted hangingwall and footwall blocks by frictional/shear heating for planar rough reverse faults is proportional to the coefficient of friction (μ), density and thickness of the hangingwall block (ρ). Ti increases as movement progresses with time. Thermal conductivity (Ki) and thermal diffusivity (k'i) of faulted blocks govern Ti but they do not bear simple relation. Ti is significant only near the fault plane. If the lithology is dry and faulting brings adjacent hangingwall and footwall blocks of the same lithology in contact, those blocks undergo the same rate of increase in shear heating per unit area per unit time.

  5. Shear heating in creeping faults changes the onset of convection

    Science.gov (United States)

    Tung, R.; Poulet, T.; Alevizos, S.; Veveakis, E.; Regenauer-Lieb, K.

    2017-10-01

    The interaction between mechanical deformation of creeping faults and fluid flow in porous media has an important influence on the heat and mass transfer processes in Earth sciences. Creeping faults can act as heat sources due to the effect of shear heating and as such could be expected to alter the conditions for hydrothermal convection. In this work, we provide a finite element-based numerical framework developed to resolve the problem of heat and mass transfer in the presence of creeping faults. This framework extends the analytical approach of the linear stability analysis (LSA) frequently used to determine the bifurcation criterion for onset of convection, allowing us to study compressible cases with the option of complex geometry and/or material inhomogeneities. We demonstrate the impact of creeping faults on the onset of convection and show that shear heating—expressed through its dimensionless group the Gruntfest number Gr—has exponential influence on the critical value of the Lewis number Le (inversely proportional to the Rayleigh number Ra) required for convection: Lec ˜ Lec0 eGr. In this expression, Lec0 is the critical value of Le in the absence of shear heating. This exponential scaling shows that shear heating increases the critical Lewis number and triggers hydrothermal convection at lower permeability than in situations without it. We also show that the effect of shear heating in a fault significantly alters the pattern of convection in and around the fault zone.

  6. Mathematical modelling on instability of shear fault

    Institute of Scientific and Technical Information of China (English)

    范天佑

    1996-01-01

    A study on mathematical modelling on instability of fault is reported.The fracture mechanics and fracture dynamics as a basis of the discussion,and the method of complex variable function (including the conformal mapping and approximate conformal mapping) are employed,and some analytic solutions of the problem in closed form are found.The fault body concept is emphasized and the characteristic size of fault body is introduced.The effect of finite size of the fault body and the effect of the fault propagating speed (especially the effect of the high speed) and their influence on the fault instability are discussed.These results further explain the low-stress drop phenomena observed in earthquake source.

  7. Slicken 1.0: Program for calculating the orientation of shear on reactivated faults

    Science.gov (United States)

    Xu, Hong; Xu, Shunshan; Nieto-Samaniego, Ángel F.; Alaniz-Álvarez, Susana A.

    2017-07-01

    The slip vector on a fault is an important parameter in the study of the movement history of a fault and its faulting mechanism. Although there exist many graphical programs to represent the shear stress (or slickenline) orientations on faults, programs to quantitatively calculate the orientation of fault slip based on a given stress field are scarce. In consequence, we develop Slicken 1.0, a software to rapidly calculate the orientation of maximum shear stress on any fault plane. For this direct method of calculating the resolved shear stress on a planar surface, the input data are the unit vector normal to the involved plane, the unit vectors of the three principal stress axes, and the stress ratio. The advantage of this program is that the vertical or horizontal principal stresses are not necessarily required. Due to its nimble design using Java SE 8.0, it runs on most operating systems with the corresponding Java VM. The software program will be practical for geoscience students, geologists and engineers and will help resolve a deficiency in field geology, and structural and engineering geology.

  8. Laboratory micro-seismic signature of shear faulting and fault slip in shale

    Science.gov (United States)

    Sarout, J.; Le Gonidec, Y.; Ougier-Simonin, A.; Schubnel, A.; Guéguen, Y.; Dewhurst, D. N.

    2017-03-01

    This article reports the results of a triaxial deformation experiment conducted on a transversely isotropic shale specimen. This specimen was instrumented with ultrasonic transducers to monitor the evolution of the micro-seismic activity induced by shear faulting (triaxial failure) and subsequent fault slip at two different rates. The strain data demonstrate the anisotropy of the mechanical (quasi-static) compliance of the shale; the P-wave velocity data demonstrate the anisotropy of the elastic (dynamic) compliance of the shale. The spatio-temporal evolution of the micro-seismic activity suggests the development of two distinct but overlapping shear faults, a feature similar to relay ramps observed in large-scale structural geology. The shear faulting of the shale specimen appears quasi-aseismic, at least in the 0.5 MHz range of sensitivity of the ultrasonic transducers used in the experiment. Concomitantly, the rate of micro-seismic activity is strongly correlated with the imposed slip rate and the evolution of the axial stress. The moment tensor inversion of the focal mechanism of the high quality micro-seismic events recorded suggests a transition from a non-shear dominated to a shear dominated micro-seismic activity when the rock evolves from initial failure to larger and faster slip along the fault. The frictional behaviour of the shear faults highlights the possible interactions between small asperities and slow slip of a velocity-strengthening fault, which could be considered as a realistic experimental analogue of natural observations of non-volcanic tremors and (very) low-frequency earthquakes triggered by slow slip events.

  9. Evidence for Triassic sinistral shear along the Altyn Tagh fault, northern Tibet (China)

    Science.gov (United States)

    Li, H.; Yang, J.; Wu, C.; Xu, Z.; Tapponnier, P.; Arnaud, N.

    2005-12-01

    The strike-slip faults of north Tibet accommodate part of the Cenozoic convergence between India and Asia. Along the Xorkol basin west-north of Qaidam, the active traces of the Altyn Tagh fault follow narrow belts of granitic and amphibolitic mylonites. The deformation recorded in those mylonites is sinistral strike-slip. Three types of zircon may be sorted out from the mylonites: anatectic (magmatic), long columnar zircons, magmatic columnar zircons, and residual, metamorphic, sub-rounded zircon. Three groups of U-Pb ages measured by ion microprobe (SHRIMP) on single zircon were obtained: 530-550Ma for the columnar, magmatic zircon, 460-510Ma for the sub-rounded, residual metamorphic zircon, and 235-245Ma for the long-columnar anatectic (magmatic) zircon. The latter type of zircon is well oriented with the crystal long axis parallel to the stretching lineation. Mineral inclusions in the oriented zircons are also parallel to the stretching lineation, which coincides with the direction of maximum tectonic stress in the process of the strike-slip. Raman spectrum study indicates that the inclusion minerals show the melting phase feature, and cathodoluminescence images show that this type of zircon has a relatively homogeneous internal structure. Therefore, the long columnar zircons resulted from rapid oriented growth in a partial melting regime in the ductile shear process. It not only denotes the direction of shear strain in the strike-slip shear, but the growth age (crystallization age) of this type of zircon denotes the age of strike-slip shear. 40Ar/39Ar ages of directionaly grown hornblendes and biotite in the same samples are 220-230Ma and 190-200Ma, respectively. This suggest syntectonic anatexis and cooling occurred during strike-slip shear along the Altyn Tagh fault in Triassic time (to Early Jurassic). The Triassic shear may be related to oblique collision between the Bayan Har and the Kunlun- Qaidam blocks. 120Ma (Arnaud, et al., 2003) and 90Ma (Liu, et al

  10. The evolution of faults formed by shearing across joint zones in sandstone

    Science.gov (United States)

    Myers, Rodrick; Aydin, Atilla

    2004-05-01

    The evolution of strike-slip and normal faults formed by slip along joint zones is documented by detailed field studies in the Jurassic Aztec Sandstone in the Valley of Fire State Park, Nevada, USA. Zones of closely spaced planar sub-parallel joints arranged en échelon are sheared, forming faults. Fracturing occurs as a result of shearing, forming new joints. Later shearing along these joints leads to successively formed small faults and newer joints. This process is repeated through many generations of fracturing with increasing fault slip producing a hierarchical array of structures. Strain localization produced by shearing of joint zones at irregularities in joint traces, fracture intersections, and in the span between adjacent sheared joints results in progressive fragmentation of the weakened sandstone, which leads to the formation of gouge along the fault zone. The length and continuity of the gouge and associated slip surfaces is related to the slip magnitude and fault geometry with slip ranging from several millimeters to about 150 m. Distributed damage in a zone surrounding the gouge core is related to the original joint zone configuration (step sense, individual sheared joint overlaps and separation), shear sense, and slip magnitude. Our evolutionary model of fault development helps to explain some outstanding issues concerning complexities in faulting such as, the variability in development of fault rock and fault related fractures, and the failure processes in faults.

  11. Subsurface structure of the Nojima fault from dipole shear velocity/anisotropy and borehole Stoneley wave

    Energy Technology Data Exchange (ETDEWEB)

    Ito, H. [Geological Survey of Japan, Tsukuba (Japan); Yamamoto, H.; Brie, A.

    1996-10-01

    Fracture and permeability in the fault zone of the active fault drilling at the Nojima fault were evaluated from acoustic waveforms. There were several permeable intervals in the fault zone. There was strong Stoneley wave attenuation, very large S-Se below the fault and in the interval above the fault. In the fault zone, there were also several short intervals where S-Se was very large; 667 m-674 m and 706 m-710 m. In these intervals, the Stoneley attenuation was large, but there was no Stoneley reflection from within the interval. Reflections were observed at the upper and lower boundaries, going away from the bed up above, and down below. In this well, the shear wave was very strongly attenuated at and below the fault zone. The fast shear azimuth changed at the fault. The slowness anisotropy was fairly strong above the fault from 602 m to 612 m, but smaller below the fault. The changes in fast shear azimuth were much more pronounced near the fault, which suggested a strong influence of the fault. 6 refs., 5 figs.

  12. Identification of Necessary Conditions for Super-shear Wave Rupture Speeds: The San Andreas Fault

    Science.gov (United States)

    Das, S.

    2007-12-01

    The 2001 Kunlun, Tibet earthquake taught us that the portion of a strike-slip fault most likely to propagate at super-shear speeds are the long straight portions. This is only a necessary (but not sufficient) condition. That is, once a fault accelerates to the maximum permissible speed, it can continue at this speed provided it is straight and there are no obstacles along the way, and provided the fault friction is low. For the Tibet earthquake, the 100 km region of highest rupture speed also had the highest slip rate, the highest slip and the highest stress drop (Robinson et al., JGR, 2006). Off-fault cracks due to the passage of the Mach cone exists in only that portion of the fault identified as travelling at super-shear speed and not in other places along the fault (Bhat et al., JGR, 2007). Re-examination of earlier reports of super-shear rupture speeds on the North Anatolian fault and the Denali fault show that such speeds did occur on the straight section of these faults. Of course all straight portions of faults will not reach super-shear speeds. So what can the Tibet earthquake teach us about the San Andreas fault? Both the 1906 and the 1857 have long, straight portions, the former having been identified by Song et al. (EOS, 2005) as having reached super-shear speeds to the north of San Francisco, the region of highest slip. If the repeat of the 1857 starts in the central valley, as it is believed to have done in 1857, it has the potential to propagate at super-shear speeds through the long, straight portion of the San Andread fault in the Carrizo Plain, the region believed to have had the largest displacement in 1857 based on paleoseismic studies. The resulting shock waves would strike the highly populated regions of Santa Barbara and the Los Angeles Basin (Das, Science, 2007).

  13. Permeability Evolution With Shearing of Simulated Faults in Unconventional Shale Reservoirs

    Science.gov (United States)

    Wu, W.; Gensterblum, Y.; Reece, J. S.; Zoback, M. D.

    2016-12-01

    Horizontal drilling and multi-stage hydraulic fracturing can lead to fault reactivation, a process thought to influence production from extremely low-permeability unconventional reservoir. A fundamental understanding of permeability changes with shear could be helpful for optimizing reservoir stimulation strategies. We examined the effects of confining pressure and frictional sliding on fault permeability in Eagle Ford shale samples. We performed shear-flow experiments in a triaxial apparatus on four shale samples: (1) clay-rich sample with sawcut fault, (2) calcite-rich sample with sawcut fault, (3) clay-rich sample with natural fault, and (4) calcite-rich sample with natural fault. We used pressure pulse-decay and steady-state flow techniques to measure fault permeability. Initial pore and confining pressures are set to 2.5 MPa and 5.0 MPa, respectively. To investigate the influence of confining pressure on fault permeability, we incrementally raised and lowered the confining pressure and measure permeability at different effective stresses. To examine the effect of frictional sliding on fault permeability, we slide the samples four times at a constant shear displacement rate of 0.043 mm/min for 10 minutes each and measure fault permeability before and after frictional sliding. We used a 3D Laser Scanner to image fault surface topography before and after the experiment. Our results show that frictional sliding can enhance fault permeability at low confining pressures (e.g., ≥5.0 MPa) and reduce fault permeability at high confining pressures (e.g., ≥7.5 MPa). The permeability of sawcut faults almost fully recovers when confining pressure returns to the initial value, and increases with sliding due to asperity damage and subsequent dilation at low confining pressures. In contrast, the permeability of natural faults does not fully recover. It initially increases with sliding, but then decreases with further sliding most likely due to fault gouge blocking fluid

  14. Additional Shear Resistance from Fault Roughness and its Role in Determining Stress Levels on Mature and Immature Faults

    Science.gov (United States)

    Fang, Z.; Dunham, E. M.

    2011-12-01

    The majority of crustal faults host earthquakes at τ /(σ - p) ˜ 0.6 (τ is shear stress and (σ - p) is the effective normal stress), while mature plate-boundary faults, like the San Andreas Fault (SAF), host earthquakes at τ /(σ - p) ˜ 0.2. A leading explaination for the weakness of the SAF is the existence of dynamic weakening, which, on planar faults, allows self-sustaining rupture at a critical background stress level τ pulse/(σ - p) ˜ 0.25. Provided that dynamic weakening also occurs on less mature faults, which seems likely given the ubiquity of dynamic weakening in high velocity friction experiments, the stress levels on the less mature faults are puzzling. We offer a self-consistent explanation for the relatively high stress levels on immature faults that is compatible with dynamic weakening and low coseismic strength of all faults. Our explanation is that increased geometrical complexity of less mature faults introduces an additional resistance to slip that must be overcome in order for the fault to host ruptures. Lab and field observations suggest that faults are self-similar surfaces with amplitude-to-wavelength ratio α in the range of 10-3 (mature faults) to 10-2 (immature faults). Slip on such faults induces huge stress perturbations near the fault. Projection of these stress perturbations back onto the rough fault surface results in an additional shear resistance to slip, the 'roughness drag' τ drag, that exists even if the fault is frictionless. A perturbation analysis, accurate to second order in α , shows that τ drag = 8π 3 α 2[G/(1-&nu)][Δ u/λ min], in which G is shear modulus, ν is the Poisson's ratio, Δ u is the amount of slip, and λ min is the minimum wavelength of roughness. Estimates indicate that τ drag is negligible on mature faults (α ˜ 10-3) but can become substantial on immature faults (α ˜ 10-2). We expect that the finite strength of the off-fault material ultimately bounds τ drag to a value determined by the

  15. 40Ar/39Ar dating of shear deformation of the Xianshuihe fault zone in west Sichuan and its tectonic significance

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Yueqiao; CHEN; Wen; YANG; Nong

    2004-01-01

    Based on field geological survey, structural measurements and classical 40Ar/39Ar dating of mica, biotite and K-feldspar, we obtain cooling ages for Miocene left-lateral shear along the Xianshuihe fault zone. The results document two thermal events during the sinistral shear.The early event (12-10 Ma) corresponds to rapid cooling of the Zheduoshan granitic massif from above 700℃ to below 350℃. The late event (5-3.5 Ma) corresponds to cooling of granites intruded along the eastern side of the fault zone. These dating results provide important thermochronological constraint on the timing of late Cenozoic eastward extrusion of the Chuan-Dian Block in the SE Tibetan margin.

  16. Shearing along faults and stratigraphic joints controlled by land subsidence in the Valley of Queretaro, Mexico

    Science.gov (United States)

    Carreón-Freyre, D.; Cerca, M.; Ochoa-González, G.; Teatini, P.; Zuñiga, F. R.

    2016-05-01

    Slip of nearly vertical faults or horizontal stratigraphic joints has provoked the shearing of at least 16 well casings in a period of over 10 years in the Valley of Queretaro aquifer, Mexico. Evidence integrated from field observations, remote surface-deformation monitoring, in-situ monitoring, stratigraphic correlation, and numerical modeling indicate that groundwater depletion and land subsidence induce shearing. Two main factors conditioning the stress distribution and the location of sheared well casings have been identified: (1) slip on fault planes, and (2) slip on stratigraphic joints. Additionally, the distribution of piezometric gradients may be a factor that enhances shearing. Slip on faults can be generated either by the compaction of sedimentary units (passive faulting) or by slip of blocks delimited by pre-existing faults (reactivation). Major piezometric-level declines and the distribution of hydraulic gradients can also be associated with slip at stratigraphic joints. Faults and hydraulic contrasts in the heterogeneous rock sequence, along with groundwater extraction, influence the distribution of the gradients and delimit the compartments of groundwater in the aquifer. Analogue modeling allowed assessment of the distribution of stress-strain and displacements associated with the increase of the vertical stress. Fault-bounded aquifers in grabens are common in the central part of Mexico and the results obtained can be applied to other subsiding, structurally controlled aquifer systems elsewhere.

  17. Rapid Response Fault Drilling Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Demian M. Saffer

    2009-09-01

    Full Text Available New information about large earthquakes can be acquired by drilling into the fault zone quickly following a large seismic event. Specifically, we can learn about the levels of friction and strength of the fault which determine the dynamic rupture, monitor the healing process of the fault, record the stress changes that trigger aftershocks and capture important physical and chemical properties of the fault that control the rupture process. These scientific and associated technical issues were the focus of a three-day workshop on Rapid Response Fault Drilling: Past, Present, and Future, sponsored by the International Continental Scientific Drilling Program (ICDP and the Southern California Earthquake Center (SCEC. The meeting drewtogether forty-four scientists representing ten countries in Tokyo, Japan during November 2008. The group discussed the scientific problems and how they could be addressed through rapid response drilling. Focused talks presented previous work on drilling after large earthquakes and in fault zones in general, as well as the state of the art of experimental techniques and measurement strategies. Detailed discussion weighed the tradeoffs between rapid drilling andthe ability to satisfy a diverse range of scientific objectives. Plausible drilling sites and scenarios were evaluated. This is a shortened summary of the workshop report that discusses key scientific questions, measurement strategies, and recommendations. This report can provide a starting point for quickly mobilizing a drilling program following future large earthquakes. The full report can be seen at http://www.pmc.ucsc.edu/~rapid/.

  18. Quaternary layer anomalies around the Carlsberg Fault zone mapped with high-resolution shear-wave seismics south of Copenhagen

    DEFF Research Database (Denmark)

    Kammann, Janina; Hübscher, Christian; Nielsen, Lars

    . In the Upper Cretaceous growth faulting documents continued rifting. This finding contrasts the Late Cretaceous to Paleogene inversion tectonics in neighboring structures, as the Tornquist Zone. The high-resolution shear-wave seismic method was used to image structures in Quaternary layers in the Carlsberg....... In the shear-wave profile, we imaged the 30 m of the upward continuation of the Carlsberg Fault zone. In our area of investigation, the fault zone appears to comprise normal block faults and one reverse block fault showing the complexity of the fault zone. The observed faults appear to affect both the Danian......The Carlsberg Fault zone is located in the N-S striking Höllviken Graben and traverses the city of Copenhagen. The fault zone is a NNW-SSE striking structure in direct vicinity to the transition zone of the Danish Basin and the Baltic Shield. Recent small earthquakes indicate activity in the area...

  19. Dynamically triggered slip leading to sustained fault gouge weakening under laboratory shear conditions

    Science.gov (United States)

    Johnson, P. A.; Carmeliet, J.; Savage, H. M.; Scuderi, M.; Carpenter, B. M.; Guyer, R. A.; Daub, E. G.; Marone, C.

    2016-02-01

    We investigate dynamic wave-triggered slip under laboratory shear conditions. The experiment is composed of a three-block system containing two gouge layers composed of glass beads and held in place by a fixed load in a biaxial configuration. When the system is sheared under steady state conditions at a normal load of 4 MPa, we find that shear failure may be instantaneously triggered by a dynamic wave, corresponding to material weakening and softening if the system is in a critical shear stress state (near failure). Following triggering, the gouge material remains in a perturbed state over multiple slip cycles as evidenced by the recovery of the material strength, shear modulus, and slip recurrence time. This work suggests that faults must be critically stressed to trigger under dynamic conditions and that the recovery process following a dynamically triggered event differs from the recovery following a spontaneous event.

  20. Energy budget and propagation of faults via shearing and opening using work optimization

    Science.gov (United States)

    Madden, Elizabeth H.; Cooke, Michele L.; McBeck, Jessica

    2017-08-01

    We present numerical models of faults propagating by work optimization in a homogeneous medium. These simulations allow quantification and comparison of the energy budgets of fault growth by shear versus tensile failure. The energy consumed by growth of a fault, Wgrow, propagating by in-line shearing is 76% of the total energy associated with that growth, while 24% is spent on frictional work during propagation. Wgrow for a fault propagating into intact rock by tensile failure, at an angle to the parent fault, consumes 60% of the work budget, while only 6% is consumed by frictional work associated with propagation. Following the conservation of energy, this leaves 34% of the energy budget available for other activities and suggests that out-of-plane propagation of faults in Earth's crust may release energy for other processes, such as permanent damage zone formation or rupture acceleration. Comparison of these estimates of Wgrow with estimates of the critical energy release rate and earthquake fracture energy at several scales underscores their theoretical similarities and their dependence on stress drop.

  1. Evaluating Temporal Variations in Fault Slip-Rate and Fault Interaction in the Eastern California Shear Zone

    Science.gov (United States)

    Amos, C. B.; Jayko, A.; Burgmann, R.

    2008-12-01

    Delineating spatiotemporal patterns of strain accumulation and release within plate boundaries remains fundamental to our understanding of the dynamics of active crustal deformation. The timescales at which active strain varies or remains constant for individual fault systems, however, are often poorly resolved. The origin of large-magnitude strain transients in the Eastern California shear zone remains enigmatic and underpins the importance of quantifying active deformation at multiple geologic timescales along this tectonic boundary. Here, we focus on the Late Pleistocene- Holocene record of slip on the NW-striking Little Lake fault zone, one of the primary structures responsible for transferring Pacific-North American plate motion between the northern Mojave Desert and the east side of the Sierra Nevada block north of the Garlock fault. Discrepancies between geologic and geodetically determined rates of motion along the Little Lake fault zone in the China Lake-Indian Wells Valley area suggest a potentially complex temporal history of slip on this structure with some slip stepping eastward onto structures bounding the west side of the Coso Range. Preliminary reconstruction of a slip-rate history on the Little Lake fault from multiple generations of displaced Quaternary geomorphic features suggests potential variation in fault-slip rates at timescales of 104- 105 years. Two paleochannel margins on a basalt strath in the Little Lake spillway represent the youngest of these features. Each margin exhibits ~30 m of right-lateral displacement and suggests a minimum slip rate of ~1.4 mm/yr during Holocene-Late Pleistocene time. Additionally, a prominent fluvial escarpment or terrace riser along the east side of Little Lake wash is offset at least ~150 to 700 m, depending on how the initial geometry of this feature is reconstructed. Pending geochronologic constraints on the age of this feature, such an offset potentially suggests higher rates of slip averaged over longer

  2. Fan-head shear rupture mechanism as a source of off-fault tensile cracking

    Science.gov (United States)

    Tarasov, Boris

    2016-04-01

    This presentation discusses the role of a recently identified fan-head shear rupture mechanism [1] in the creation of off-fault tensile cracks observed in earthquake laboratory experiments conducted on brittle photoelastic specimens [2,3]. According to the fan-mechanism the shear rupture propagation is associated with consecutive creation of small slabs in the fracture tip which, due to rotation caused by shear displacement of the fracture interfaces, form a fan-structure representing the fracture head. The fan-head combines such unique features as: extremely low shear resistance (below the frictional strength) and self-sustaining tensile stress intensification along one side of the interface. The variation of tensile stress within the fan-head zone is like this: it increases with distance from the fracture tip up to a maximum value and then decreases. For the initial formation of the fan-head high local stresses corresponding to the fracture strength should be applied in a small area, however after completions of the fan-head it can propagate dynamically through the material at low shear stresses (even below the frictional strength). The fan-mechanism allows explaining all unique features associated with the off-fault cracking process observed in photoelastic experiments [2,3]. In these experiments spontaneous shear ruptures were nucleated in a bonded, precut, inclined and pre-stressed interface by producing a local pressure pulse in a small area. Isochromatic fringe patterns around a shear rupture propagating along bonded interface indicate the following features of the off-fault tensile crack development: tensile cracks nucleate and grow periodically along one side of the interface at a roughly constant angle (about 80 degrees) relative to the shear rupture interface; the tensile crack nucleation takes place some distance behind the rupture tip; with distance from the point of nucleation tensile cracks grow up to a certain length within the rupture head zone

  3. Tunnel effect of fractal fault and transient S-wave velocity rupture (TSVR) of in-plane shear fault

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Transient S-wave velocity rupture (TSVR) means the velocity of fault rupture propagation is between S-wave velocity βand P-wave velocity α. Its existing in the rupture of in-plane (i.e. strike-slip) fault has been proved, but in 2-dimensional classical model, there are two difficulties in transient S-wave velocity rupture, i.e., initialization difficulty and divergence difficulty in interpreting the realization of TSVR. The initialization difficulty means, when v↑vR (Rayleigh wave velocity), the dynamic stress strength factor K2(t)→+0, and changes from positive into negative in the interval (vR,β). How v transit the forbidden of (vR,β)? The divergence difficulty means K2(t)→+ when v↓. Here we introduce the concept of fractal and tunnel effect that exist everywhere in fault. The structure of all the faults is fractal with multiple cracks. The velocity of fault rupture is differentiate of the length of the fault respect to time, so the rupture velocity is also fractal. The tunnel effect means the dynamic rupture crosses over the interval of the cracks, and the coalescence of the intervals is slower than the propagation of disturbance. Suppose the area of earthquake nucleation is critical or sub-critical propagation everywhere, the arriving of disturbance triggers or accelerates the propagation of cracks tip at once, and the observation system cannot distinguish the front of disturbance and the tip of fracture. Then the speed of disturbance may be identified as fracture velocity, and the phenomenon of TSVR appears, which is an apparent velocity. The real reason of apparent velocity is that the mathematics model of shear rupture is simplified of complex process originally. The dual character of rupture velocity means that the apparent velocity of fault and the real velocity of micro-crack extending, which are different in physics, but are unified in rupture criterion. Introducing the above-mentioned concept to the calculation of K2 (t), the difficulty of

  4. Geophysical characterization of transtensional fault systems in the Eastern California Shear Zone-Walker Lane Belt

    Science.gov (United States)

    McGuire, M.; Keranen, K. M.; Stockli, D. F.; Feldman, J. D.; Keller, G. R.

    2011-12-01

    The Eastern California Shear Zone (ECSZ) and Walker Lane belt (WL) accommodate ~25% of plate motion between the North American and Pacific plates. Faults within the Mina deflection link the ECSZ and the WL, transferring strain from the Owens Valley and Death Valley-Fish Lake Valley fault systems to the transcurrent faults of the central Walker Lane. During the mid to late Miocene the majority of strain between these systems was transferred through the Silver Peak-Lone Mountain (SPLM) extensional complex via a shallowly dipping detachment. Strain transfer has since primarily migrated north to the Mina Deflection; however, high-angle faults bounding sedimentary basins and discrepancies between geodetic and geologic models indicate that the SPLM complex may still actively transfer a portion of the strain from the ECSZ to the WL on a younger set of faults. Establishing the pattern and amount of active strain transfer within the SPLM region is required for a full accounting of strain accommodation, and provides insight into strain partitioning at the basin scale within a broader transtensional zone. To map the active structures in and near Clayton Valley, within the SPLM region, we collected seismic reflection and refraction profiles and a dense grid of gravity readings that were merged with existing gravity data. The primary goals were to determine the geometry of the high-angle fault system, the amount and sense of offset along each fault set, connectivity of the faults, and the relationship of these faults to the Miocene detachment. Seismic reflection profiles imaged the high-angle basin-bounding normal faults and the detachment in both the footwall and hanging wall. The extensional basin is ~1 km deep, with a steep southeastern boundary, a gentle slope to the northwest, and a sharp boundary on the northwest side, suggestive of another fault system. Two subparallel dip-slip faults bound the southeast (deeper) basin margin with a large lateral velocity change (from ~2

  5. Temperature-dependent ideal strength and stacking fault energy of fcc Ni: a first-principles study of shear deformation.

    Science.gov (United States)

    Shang, S L; Wang, W Y; Wang, Y; Du, Y; Zhang, J X; Patel, A D; Liu, Z K

    2012-04-18

    Variations of energy, stress, and magnetic moment of fcc Ni as a response to shear deformation and the associated ideal shear strength (τ(IS)), intrinsic (γ(SF)) and unstable (γ(US)) stacking fault energies have been studied in terms of first-principles calculations under both the alias and affine shear regimes within the {111} slip plane along the and directions. It is found that (i) the intrinsic stacking fault energy γ(SF) is nearly independent of the shear deformation regimes used, albeit a slightly smaller value is predicted by pure shear (with relaxation) compared to the one from simple shear (without relaxation); (ii) the minimum ideal shear strength τ(IS) is obtained by pure alias shear of {111}; and (iii) the dissociation of the 1/2[110] dislocation into two partial Shockley dislocations (1/6[211] + 1/6[121]) is observed under pure alias shear of {111}. Based on the quasiharmonic approach from first-principles phonon calculations, the predicted γ(SF) has been extended to finite temperatures. In particular, using a proposed quasistatic approach on the basis of the predicted volume versus temperature relation, the temperature dependence of τ(IS) is also obtained. Both the γ(SF) and the τ(IS) of fcc Ni decrease with increasing temperature. The computed ideal shear strengths as well as the intrinsic and unstable stacking fault energies are in favorable accord with experiments and other predictions in the literature.

  6. The Eastern California Shear Zone as the northward extension of the southern San Andreas Fault

    Science.gov (United States)

    Thatcher, Wayne R.; Savage, James C.; Simpson, Robert W.

    2016-01-01

    Cluster analysis offers an agnostic way to organize and explore features of the current GPS velocity field without reference to geologic information or physical models using information only contained in the velocity field itself. We have used cluster analysis of the Southern California Global Positioning System (GPS) velocity field to determine the partitioning of Pacific-North America relative motion onto major regional faults. Our results indicate the large-scale kinematics of the region is best described with two boundaries of high velocity gradient, one centered on the Coachella section of the San Andreas Fault and the Eastern California Shear Zone and the other defined by the San Jacinto Fault south of Cajon Pass and the San Andreas Fault farther north. The ~120 km long strand of the San Andreas between Cajon Pass and Coachella Valley (often termed the San Bernardino and San Gorgonio sections) is thus currently of secondary importance and carries lesser amounts of slip over most or all of its length. We show these first order results are present in maps of the smoothed GPS velocity field itself. They are also generally consistent with currently available, loosely bounded geologic and geodetic fault slip rate estimates that alone do not provide useful constraints on the large-scale partitioning we show here. Our analysis does not preclude the existence of smaller blocks and more block boundaries in Southern California. However, attempts to identify smaller blocks along and adjacent to the San Gorgonio section were not successful.

  7. Shear faults and dislocation core structure simulations in B2 FeAl

    Energy Technology Data Exchange (ETDEWEB)

    Vailhe, C.; Farkas, D. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Materials Science and Engineering

    1997-11-01

    Embedded atom potentials were derived for the Fe-Al system reproducing lattice and elastic properties of B2 FeAl. The structure and energy of vacancies, antisites and anti phase boundaries (APBs) were studied. A significant decrease in the APB energy was obtained for Fe-rich B2 alloys. Shear fault energies along the {l_brace}110{r_brace} and {l_brace}112{r_brace} planes were computed showing that stable planar faults deviated from the exact APB fault. Core structures and critical Peierls stress values were simulated for the <100> and <111> dislocations. The superpartials created in the dissociation reactions were not of the 1/2<111> type, but 1/8<334> in accordance with the stable planar fault in the {l_brace}110{r_brace} planes. The results obtained for these simulations are discussed in terms of the mechanical behavior of FeAl and in comparison with B2 NiAl.

  8. Energy considerations in accelerating rapid shear granular flows

    Directory of Open Access Journals (Sweden)

    S. P. Pudasaini

    2009-05-01

    Full Text Available We present a complete expression for the total energy associated with a rapid frictional granular shear flow down an inclined surface. This expression reduces to the often used energy for a non-accelerating flow of an isotropic, ideal fluid in a horizontal channel, or to the energy for a vertically falling mass. We utilize thickness-averaged mass and momentum conservation laws written in a slope-defined coordinate system. Both the enhanced gravity and friction are taken into account in addition to the bulk motion and deformation. The total energy of the flow at a given spatial position and time is defined as the sum of four energy components: the kinetic energy, gravity, pressure and the friction energy. Total energy is conserved for stationary flow, but for non-stationary flow the non-conservative force induced by the free-surface gradient means that energy is not conserved. Simulations and experimental results are used to sketch the total energy of non-stationary flows. Comparison between the total energy and the sum of the kinetic and pressure energy shows that the contribution due to gravity acceleration and frictional resistance can be of the same order of magnitude, and that the geometric deformation plays an important role in the total energy budget of the cascading mass. Relative importance of the different constituents in the total energy expression is explored. We also introduce an extended Froude number that takes into account the apparent potential energy induced by gravity and pressure.

  9. A High shear stress segment along the San Andreas Fault: Inferences based on near-field stress direction and stress magnitude observations in the Carrizo Plain Area

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, D. A., [Department of Geology and Geophysics, University of Adelaide (Australia); Younker, L.W. [Lawrence Livermore National Lab., CA (United States)

    1997-01-30

    Nearly 200 new in-situ determinations of stress directions and stress magnitudes near the Carrizo plain segment of the San Andreas fault indicate a marked change in stress state occurring within 20 km of this principal transform plate boundary. A natural consequence of this stress transition is that if the observed near-field ``fault-oblique`` stress directions are representative of the fault stress state, the Mohr-Coulomb shear stresses resolved on San Andreas sub-parallel planes are substantially greater than previously inferred based on fault-normal compression. Although the directional stress data and near-hydrostatic pore pressures, which exist within 15 km of the fault, support a high shear stress environment near the fault, appealing to elevated pore pressures in the fault zone (Byerlee-Rice Model) merely enhances the likelihood of shear failure. These near-field stress observations raise important questions regarding what previous stress observations have actually been measuring. The ``fault-normal`` stress direction measured out to 70 km from the fault can be interpreted as representing a comparable depth average shear strength of the principal plate boundary. Stress measurements closer to the fault reflect a shallower depth-average representation of the fault zone shear strength. If this is true, only stress observations at fault distances comparable to the seismogenic depth will be representative of the fault zone shear strength. This is consistent with results from dislocation monitoring where there is pronounced shear stress accumulation out to 20 km of the fault as a result of aseismic slip within the lower crust loading the upper locked section. Beyond about 20 km, the shear stress resolved on San Andreas fault-parallel planes becomes negligible. 65 refs., 15 figs.

  10. Simple shear detachment fault system and marginal grabens in the southernmost Red Sea rift

    Science.gov (United States)

    Tesfaye, Samson; Ghebreab, Woldai

    2013-11-01

    The NNW-SSE oriented Red Sea rift, which separates the African and Arabian plates, bifurcates southwards into two parallel branches, southeastern and southern, collectively referred to as the southernmost Red Sea rift. The southern branch forms the magmatically and seismo-tectonically active Afar rift, while the less active southeastern branch connects the Red Sea to the Gulf of Aden through the strait of Bab el Mandeb. The Afar rift is characterized by lateral heterogeneities in crustal thickness, and along-strike variation in extension. The Danakil horst, a counterclockwise rotating, narrow sliver of coherent continental relic, stands between the two rift branches. The western margin of the Afar rift is marked by a series of N-S aligned right-lateral-stepping and seismo-tectonically active marginal grabens. The tectonic configuration of the parallel rift branches, the alignment of the marginal grabens, and the Danakil horst are linked to the initial mode of stretching of the continental crust and its progressive deformation that led to the breakup of the once contiguous African-Arabian plates. We attribute the initial stretching of the continental crust to a simple shear ramp-flat detachment fault geometry where the marginal grabens mark the breakaway zone. The rift basins represent the ramps and the Danakil horst corresponds to the flat in the detachment fault system. As extension progressed, pure shear deformation dominated and overprinted the initial low-angle detachment fault system. Magmatic activity continues to play an integral part in extensional deformation in the southernmost Red Sea rift.

  11. Frictional evolution, acoustic emissions activity, and off-fault damage in simulated faults sheared at seismic slip rates

    Science.gov (United States)

    Passelègue, François. X.; Spagnuolo, Elena; Violay, Marie; Nielsen, Stefan; Di Toro, Giulio; Schubnel, Alexandre

    2016-10-01

    We present a series of high-velocity friction tests conducted on Westerly granite, using the Slow to HIgh Velocity Apparatus (SHIVA) installed at Istituto Nazionale di Geofisica e Vulcanologia Roma with acoustic emissions (AEs) monitored at high frequency (4 MHz). Both atmospheric humidity and pore fluid (water) pressure conditions were tested, under effective normal stress σneff in the range 5-20 MPa and at target sliding velocities Vs in the range 0.003-3 m/s. Under atmospheric humidity two consecutive friction drops were observed. The first one is related to flash weakening, and the second one to the formation and growth of a continuous layer of melt in the slip zone. In the presence of fluid, a single drop in friction was observed. Average values of fracture energy are independent of effective normal stress and sliding velocity. However, measurements of elastic wave velocities on the sheared samples suggested that larger damage was induced for 0.1 < Vs<0.3 m/s. This observation is supported by AEs recorded during the test, most of which were detected after the initiation of the second friction drop, once the fault surface temperature was high. Some AEs were detected up to a few seconds after the end of the experiments, indicating thermal rather than mechanical cracking. In addition, the presence of pore water delayed the onset of AEs by cooling effects and by reducing of the heat produced, supporting the link between AEs and the production and diffusion of heat during sliding. Using a thermoelastic crack model developed by Fredrich and Wong (1986), we confirm that damage may be induced by heat diffusion. Indeed, our theoretical results predict accurately the amount of shortening and shortening rate, supporting the idea that gouge production and gouge comminution are in fact largely controlled by thermal cracking. Finally, we discuss the contribution of thermal cracking in the seismic energy balance. In fact, while a dichotomy exists in the literature regarding

  12. Coupled effects of dehydration reaction, dilatant strengthening and shear heating on dynamic fault slip

    Science.gov (United States)

    Yamashita, T.

    2012-12-01

    It is believed that dynamic fault slip is affected by thermal pressurization. However, dilatant strengthening and dehydration reaction may significantly affect the degree of thermal pressurization. In addition, it is not clear how such effects influence the fault slip as a whole. We theoretically study how dilatant strengthening, frictional heating and dehydration reaction are coupled and how they affect dynamic slip assuming a fault in a thermoporoelastic medium saturated with fluid. After mathematical analysis is carried out for 1D model, the behavior of 2D fault model is studied numerically. The porosity is assumed to increase with increasing fault slip following Suzuki and Yamashita (2008). Our mathematical formulation of dehydration reaction is based on Brantut et al.(2010); the dehydration reaction is assumed to be endothermic. In addition, starting from the temperature Ts, all the frictional energy is assumed to be absorbed by the dehydration reaction rather than converted into heat. Although Brantut et al.(2010) assumed a constant slip velocity, we consider the temporal evolution of slip assuming the Coulomb law of friction on the fault. We first make the analysis assuming adiabatic and undrained conditions for the 1D model. We find that three nondimensional parameters Su, P0 and G0 determine the system behavior if the initial temperature T0 and dehydration starting temperature Ts are given, where Su (>0) is a parameter proportional to the pore creation rate, P0 (>0) is the initial nondimensional frictional stress and G0 (>0) is a parameter proportional to the mass fraction of fluid released per unit of total rock mass divided by the energy change per unit volume of the slip zone. The nondimensional frictional stress P is defined by the Coulomb frictional stress divided by the initial shear stress, which suggests the relation 0Ts, where Te is the temperature. We find for Te>Ts that the evolution of P is described by the equation dP/dT=(1-P)(Su-G0*P), where

  13. Rapid Post-Miocene tectonic rotation associated with the San Gregorio Fault Zone in central California

    Science.gov (United States)

    Holm, Eric J.; Horns, Daniel M.; Verosub, Kenneth L.

    1991-12-01

    Paleomagnetic measurements of samples from the Mio-Pliocene Purisima Formation demonstrate that the Pomponio tectonic block of central coastal California has rotated clockwise by approximately 35° to 55° within the last 2.5 million years. The most likely interpretation of this data is that the Pomponio block is broken into several small blocks which have rotated by various amounts. The data suggest that rotations contribute to vertical deformation and secondary faulting within the central San Andreas Fault System, and that they play an important role in the accommodation of shear along the fault system.

  14. Chemical controls on fault behavior: weakening of serpentinite sheared against quartz-bearing rocks and its significance for fault creep in the San Andreas system

    Science.gov (United States)

    Moore, Diane E.; Lockner, David A.

    2013-01-01

    The serpentinized ultramafic rocks found in many plate-tectonic settings commonly are juxtaposed against crustal rocks along faults, and the chemical contrast between the rock types potentially could influence the mechanical behavior of such faults. To investigate this possibility, we conducted triaxial experiments under hydrothermal conditions (200-350°C), shearing serpentinite gouge between forcing blocks of granite or quartzite. In an ultramafic chemical environment, the coefficient of friction, µ, of lizardite and antigorite serpentinite is 0.5-0.6, and µ increases with increasing temperature over the tested range. However, when either lizardite or antigorite serpentinite is sheared against granite or quartzite, strength is reduced to µ ~ 0.3, with the greatest strength reductions at the highest temperatures (temperature weakening) and slowest shearing rates (velocity strengthening). The weakening is attributed to a solution-transfer process that is promoted by the enhanced solubility of serpentine in pore fluids whose chemistry has been modified by interaction with the quartzose wall rocks. The operation of this process will promote aseismic slip (creep) along serpentinite-bearing crustal faults at otherwise seismogenic depths. During short-term experiments serpentine minerals reprecipitate in low-stress areas, whereas in longer experiments new Mg-rich phyllosilicates crystallize in response to metasomatic exchanges across the serpentinite-crustal rock contact. Long-term shear of serpentinite against crustal rocks will cause the metasomatic mineral assemblages, which may include extremely weak minerals such as saponite or talc, to play an increasingly important role in the mechanical behavior of the fault. Our results may explain the distribution of creep on faults in the San Andreas system.

  15. Paleoseismic study of the Cathedral Rapids fault in the northern Alaska Range near Tok, Alaska

    Science.gov (United States)

    Koehler, R. D.; Farrell, R.; Carver, G. A.

    2010-12-01

    The Cathedral Rapids fault extends ~40 km between the Tok and Robertson River valleys and is the easternmost fault in a series of active south-dipping imbricate thrust faults which bound the northern flank of the Alaska Range. Collectively, these faults accommodate a component of convergence transferred north of the Denali fault and related to the westward (counterclockwise) rotation of the Wrangell Block driven by relative Pacific/North American plate motion along the eastern Aleutian subduction zone and Fairweather fault system. To the west, the system has been defined as the Northern Foothills Fold and Thrust Belt (NFFTB), a 50-km-wide zone of east-west trending thrust faults that displace Quaternary deposits and have accommodated ~3 mm/yr of shortening since latest Pliocene time (Bemis, 2004). Over the last several years, the eastward extension of the NFFTB between Delta Junction and the Canadian border has been studied by the Alaska Division of Geological & Geophysical Surveys to better characterize faults that may affect engineering design of the proposed Alaska-Canada natural gas pipeline and other infrastructure. We summarize herein reconnaissance field observations along the western part of the Cathedral Rapids fault. The western part of the Cathedral Rapids fault extends 21 km from Sheep Creek to Moon Lake and is characterized by three roughly parallel sinuous traces that offset glacial deposits of the Illinoian to early Wisconsinan Delta glaciations and the late Wisconsinan Donnelly glaciation, as well as, Holocene alluvial deposits. The northern trace of the fault is characterized by an oversteepened, beveled, ~2.5-m-high scarp that obliquely cuts a Holocene alluvial fan and projects into the rangefront. Previous paleoseismic studies along the eastern part of the Cathedral Rapids fault and Dot “T” Johnson fault indicate multiple latest Pleistocene and Holocene earthquakes associated with anticlinal folding and thrust faulting (Carver et al., 2010

  16. Progressive Development of Riedel-Shear on Overburden Soil by Strike-Slip Faulting: Insights from Analogue Model

    Science.gov (United States)

    Chan, Pei-Chen; Wong, Pei-Syuan; Lin, Ming-Lang

    2015-04-01

    According to the investigations of well-known disastrous earthquakes in recent years, ground deformation (ground strain and surface rupture) induced by faulting is one of the causes for engineering structure damages in addition to strong ground motion. However, development and propagation of shear zone were effect of increasing amounts of basal slip faulting. Therefore, mechanisms of near ground deformation due to faulting, and its effect on engineering structures within the influenced zone are worthy of further study. In strike-slip faults model, type of rupture propagation and width of shear zone (W) are primary affecting by material properties (M) and depth (H) of overburden layer, distances of fault slip (Sy) (Lin, A., and Nishikawa, M.,2011, Narges K. et al, 2014). There are few research on trace of development and propagation of trace tip, trace length, and rupture spacing. In this research, we used sandbox model to study the progressive development of riedel-shear on overburden soil by strike-slip faulting. The model can be used to investigate the control factors of the deformation characteristics (such as the evolution of surface rupture). To understand the deformation characteristics (including development and propagation of trace tip(Tt), trace length(Tl), rupture spacing(Ts)) during the early stages of deformation by faulting. We found that an increase in fault slip Sy could result in a greater W, trace length, rupture density and proposed a Tl/H versus Sy/H relationship. Progressive development of riedel-shear showed a similar trend as in the literature that the increase of fault slip resulted in the reduction of Ts, however, the increasing trend became opposite after a peak value of W was reached. The above approaches benefit us in enhancing our understanding on how propagation of fault-tip affects the width of deformation zone near the ground of the soil/rock mass, the spatial distribution of strain and stress within the influenced zone, and the

  17. Electron spin resonance dating of fault gouge from Desamangalam, Kerala: Evidence for Quaternary movement in Palghat gap shear zone

    Indian Academy of Sciences (India)

    T K Gundu Rao; C P Rajendran; George Mathew; Biju John

    2002-06-01

    The field investigations in the epicentral area of the 1994 Wadakkancheri (Desamangalam), Kerala, earthquake (M 4.3) indicate subtle, but clearly recognizable expressions of geologically recent fault zone, consisting of fracture sets showing brittle displacement and a gouge zone. The fracture zone confines to the crystalline basement, and is spatially coincident with the elongation of the isoseismals of the 1994 mainshock and a 10-km-long WNW-ESE trending topographic lineament. The preliminary results from the electron spin resonance (ESR) dating on the quartz grains from the fault gouge indicate that the last major faulting in this site occurred 430 ± 43 ka ago. The experiments on different grain sizes of quartz from the gouge showed consistent decrease in age to a plateau of low values, indicating that ESR signals in finer grains were completely zeroed at the time of faulting due to frictional heat. The results show a relatively young age for displacement on the fault that occurs within a Precambrian shear zone. Discrete reactivated faults in such areas may be characterized by low degree of activity, but considering the ESR age of the last significant faulting event, the structure at Desamangalam may be categorized as a potentially active fault capable of generating moderate earthquakes, separated by very long periods of quiescence.

  18. Cyclical Stress Field Switching and (Total?) Relief of Fault Shear Stress Recorded in Quartz Vein Systems Hosted by Proterozoic Strike-Slip Faults, Mt Isa, Australia

    Science.gov (United States)

    Sibson, R. H.; Begbie, M. J.; Ghisetti, F. C.; Blenkinsop, T. G.

    2003-12-01

    The Proterozoic Mt Isa inlier ( ˜50,000 km2) in NW Queensland, Australia, underwent a complex tectonothermal history involving multiple episodes of intracontinental rifting, sedimentation, and magmatism that culminated in the Isan Orogeny (1590-1500 Ma) where strong E-W shortening led to compressional inversion of former rift basins. The resulting metamorphic complex of subgreenschist to amphibolite facies assemblages is disrupted by brittle, late-orogenic (1500-1450 Ma?) strike-slip faults. The faults occur in two mutually cross-cutting sets; a set of dextral strike-slip faults striking NE-SW to NNE-SSW with offsets cross-cutting relationships occur between all structural components, indicating broad contemporaneity. Recorded dextral separations along shear fracture components are commonly of the order of 1-10 cm, consistent with small-moderate seismic slip increments. A preliminary interpretation is that the differently oriented systematic vein-sets reflect changing orientations of the local stress field at different stages of the earthquake stress cycle. Minimum compressional stress oblique to the fault through the interseismic interval alternates with minimum compression oriented subperpendicular to the fault immediately postfailure, suggesting that each slip episode was accompanied by near-total relief of shear stress along the fault. The presence of amethystine quartz, open-space filling textures, and calcite-quartz intergrowths in the vein sets are consistent with hydrothermal precipitation occurring within 1-2 km of the former ground surface. Consequently, it is not yet clear whether these extensive vein systems developed under hydrostatic or overpresssured fluid conditions.

  19. Rapid transient fault insertion in large digital systems

    NARCIS (Netherlands)

    Rohani, Alireza; Kerkhoff, Hans G.

    2012-01-01

    This paper presents a technique for rapidtransientfault injection, regarding the CPU time, to perform simulation-based fault-injection in complex System-on-Chip Systems (SoCs). The proposed approach can be applied to complex circuits, as it is not required to modify the top-level modules of a design

  20. Rapid Transient Fault Insertion in Large Digital Systems

    NARCIS (Netherlands)

    Rohani, A.; Kerkhoff, Hans G.

    2013-01-01

    This paper presents a technique for rapidtransientfault injection, regarding the CPU time, to perform simulation-based fault-injection in complex System-on-Chip Systems (SoCs). The proposed approach can be applied to complex circuits, as it is not required to modify the top-level modules of a design

  1. Geochemical signature variation of pre-, syn-, and post-shearing intrusives within the Najd Fault System of western Saudi Arabia

    Science.gov (United States)

    Hassan, M.; Abu-Alam, T. S.; Hauzenberger, C.; Stüwe, K.

    2016-10-01

    Late Precambrian intrusive rocks in the Arabian-Nubian Shield emplaced within and around the Najd Fault System of Saudi Arabia feature a great compositional diversity and a variety of degrees of deformation (i.e. pre-shearing deformed, sheared mylonitized, and post-shearing undeformed) that allows placing them into a relative time order. It is shown here that the degree of deformation is related to compositional variations where early, usually pre-shearing deformed rocks are of dioritic, tonalitic to granodioritic, and later, mainly post-shearing undeformed rocks are mostly of granitic composition. Correlation of the geochemical signature and time of emplacement is interpreted in terms of changes in the source region of the produced melts due to the change of the stress regime during the tectonic evolution of the Arabian-Nubian Shield. The magma of the pre-shearing rocks has tholeiitic and calc-alkaline affinity indicating island arc or continental arc affinity. In contrast, the syn- and post-shearing rocks are mainly potassium rich peraluminous granites which are typically associated with post-orogenic uplift and collapse. This variation in geochemical signature is interpreted to reflect the change of the tectonic regime from a compressional volcanic arc nature to extensional within-plate setting of the Arabian-Nubian Shield. Within the context of published geochronological data, this change is likely to have occurred around 605-580 Ma.

  2. Imaging the concealed section of the Whakatane fault below Whakatane city, New Zealand, with a shear wave land streamer system

    Science.gov (United States)

    Polom, Ulrich; Mueller, Christof; Krawczyk, CharLotte M.

    2016-04-01

    The Mw 7.1 Darfield Earthquake in September 2010 ruptured the surface along the Greendale Fault that was not known prior to the earthquake. The subsequent Mw 6.3 Christchurch earthquake in February 2011 demonstrated that concealed active faults have a significant risk potential for urban infrastructure and human life in New Zealand if they are located beneath or close to such areas. Mapping exposures and analysis of active faults incorporated into the National Seismic Hazard Model (NSHM) suggests that several thousands of these active structures are yet to be identified and have the potential to generate moderate to large magnitude earthquakes (i.e. magnitudes >5). Geological mapping suggests that active faults pass beneath, or within many urban areas in New Zealand, including Auckland, Blenheim, Christchurch, Hastings/Napier, Nelson, Rotorua, Taupo, Wellington, and Whakatane. Since no established methodology for routinely locating and assessing the earthquake hazard posed by concealed active faults is available, the principal objective of the presented study was to evaluate the usefulness of high-resolution shear wave seismic reflection profiling using a land streamer to locate buried faults in urban areas of New Zealand. During the survey carried out in the city of Whakatane in February 2015, the method was first tested over a well known surface outcrop of the Edgecumbe Fault 30 km south-west of Whakatane city. This allowed further to investigate the principle shear wave propagation characteristics in the unknown sediments, consisting mainly of effusive rock material of the Taupo volcanic zone mixed with marine transgression units. Subsequently the survey was continued within Whakatane city using night operation time slots to reduce the urban noise. In total, 11 profiles of 5.7 km length in high data quality were acquired, which clearly show concealed rupture structures of obviously different age in the shallow sediments down to 100 m depth. Subject to depth

  3. Are quartz LPOs predictably oriented with respect to the shear zone boundary?: A test from the Alpine Fault mylonites, New Zealand

    Science.gov (United States)

    Little, Timothy A.; Prior, David J.; Toy, Virginia G.

    2016-03-01

    The Alpine fault self-exhumes its own ductile shear zone roots and has a known slip kinematics. Within ˜1 km of the fault, the mylonitic foliation is subparallel to the boundary of the amphibolite-facies ductile shear zone in which it formed. Using EBSD, we analyzed quartz Lattice Preferred Orientations [LPOs) of mylonites along a central part of the Alpine Fault. All LPOs feature a strongest girdle of [c]-axes that is forward-inclined ˜28 ± 4° away from the pole to the fault. A maximum of axes is inclined at the same angle relative the fault. The [c]-axis girdle is perpendicular to extensional (C') shear bands and the maximum is parallel to their slip direction. [c]-axis girdles do not form perpendicular to the SZB. Schmid factor analysis suggests that σ1 was arranged at 60-80° to the Alpine Fault. These observations indicate ductile transpression in the shear zone. The inclined arrangement of [c]-axis girdles, axes, and C' planes relative to the fault can be explained by their alignment relative to planes of maximum shear-strain-rate in a general shear zone, a significant new insight regarding shear zones and how LPO fabrics may generally develop within them. For the Alpine mylonite zone, our data imply a kinematic vorticity number (Wk) of ˜0.7 to ˜0.85. Inversions of seismic focal mechanisms in the brittle crust of the Southern Alps indicate that σ1 is oriented ˜60° to the Alpine Fault; that shear bands form at ˜30° to this direction, and that σ2 and σ3 flip positions between the brittle and ductile parts of the crust.

  4. Characterization of faults and shear zones and their impact on temporary and permanent construction of the MTRC Kwun Tong line extension alignment

    OpenAIRE

    Lam, Chi-han; 林志恆

    2015-01-01

    Direction of the nearby maximum principal stresses and the mass weathering of the surrounding geology have been accepted as some of the most significant factors in the design of underground excavations and structures. However, presence and exact location of localized fault/shear zones is extremely difficult to determine by conventional ground investigation techniques. More often than not, the effect of the fault/shear zones is not fully realized until they become exposed by the actual excavat...

  5. Analecta of structures formed during the 28 June 1992 Landers-Big Bear, California earthquake sequence (including maps of shear zones, belts of shear zones, tectonic ridge, duplex en echelon fault, fault elements, and thrusts in restraining steps)

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.M.; Johnson, N.A.; Johnson, K.M.; Wei, W. [Purdue Univ., West Lafayette, IN (United States). Dept. of Earth and Atmospheric Sciences; Fleming, R.W. [Geological Survey, Denver, CO (United States); Cruikshank, K.M. [Portland State Univ., OR (United States). Dept. of Geology; Martosudarmo, S.Y. [BPP Technologi, Jakarta (Indonesia)

    1997-12-31

    The June 28, 1992, M{sub s} 7.5 earthquake at Landers, California, which occurred about 10 km north of the community of Yucca Valley, California, produced spectacular ground rupturing more than 80 km in length (Hough and others, 1993). The ground rupturing, which was dominated by right-lateral shearing, extended along at least four distinct faults arranged broadly en echelon. The faults were connected through wide transfer zones by stepovers, consisting of right-lateral fault zones and tension cracks. The Landers earthquakes occurred in the desert of southeastern California, where details of ruptures were well preserved, and patterns of rupturing were generally unaffected by urbanization. The structures were varied and well-displayed and, because the differential displacements were so large, spectacular. The scarcity of vegetation, the aridity of the area, the compactness of the alluvium and bedrock, and the relative isotropy and brittleness of surficial materials collaborated to provide a marvelous visual record of the character of the deformation zones. The authors present a series of analecta -- that is, verbal clips or snippets -- dealing with a variety of structures, including belts of shear zones, segmentation of ruptures, rotating fault block, en echelon fault zones, releasing duplex structures, spines, and ramps. All of these structures are documented with detailed maps in text figures or in plates (in pocket). The purpose is to describe the structures and to present an understanding of the mechanics of their formation. Hence, most descriptions focus on structures where the authors have information on differential displacements as well as spatial data on the position and orientation of fractures.

  6. Stress orientation and anisotropy based on shear-wave splitting observations in the Cerro Prieto fault area, Baja California, Mexico

    Science.gov (United States)

    Zúñiga, F. R.; Castro, R. R.; Domínguez, T.

    1995-03-01

    Digital seismograms continuously recorded from 1988 to 1992 by two stations of the RESNOM seismic network in northern Baja California, Mexico, were used to search for probable shear-wave anisotropic characteristics in the region of the Cerro Prieto fault. Shear-wave splitting was identified in many of the three-component records analyzed. We measured the polarization direction of the leading S wave inside the S-wave window as well as the delay times between fast and slow phases on those records displaying shear-wave splitting. For station CPX, which is nearest the Imperial Valley region to the north, the preferred polarization direction found in this study (azimuth 180°±10°) coincides with the direction of the regional maximum compressive stress determined for the region. This polarization direction can be interpreted in terms of the “Extensive Dilatancy Anisotropy” model as the effect of vertical parallel aligned cracks. The preferred polarization direction measured at LMX, however, gives an azimuth of 45°±5°. Thus, it appears that faults and fractures aligned oblique to the main tectonic trend have a greater influence on the anisotropic characteristics of the crust south of Cerro Prieto volcano than that of the regional stress field. Time delays between slow and fast S waves observed at CPX appear constant from 1988 to 1992 while delays measured at LMX for the same interval indicate a small increase with time which cannot be attributed to azimuthal variations of paths.

  7. Faults

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Through the study of faults and their effects, much can be learned about the size and recurrence intervals of earthquakes. Faults also teach us about crustal...

  8. The Sundance fault: A newly recognized shear zone at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Spengler, R.W. [Geological Survey, Denver, CO (United States); Braun, C.A.; Martin, L.G.; Weisenberg, C.W. [Science Applications International Corp., Golden, CO (United States)

    1994-12-31

    Ongoing detailed mapping at a scale of 1:240 of structural features within the potential repository area indicates the presence of several previously unrecognized structural features. Minor north-trending west-side-down faults occur east and west of the Ghost Dance fault and suggest a total width of the Ghost Dance fault system of nearly 366 m (1200 ft). A zone of near-vertical N30{degrees}-40{degrees} W-trending faults, at least 274 m (900 ft) wide, has been identified in the northern part of our study area and may traverse across the potential repository area. On the basis of a preliminary analysis of available data, we propose to name this zone the {open_quotes}Sundance fault system{close_quotes} and the dominant structure, occurring near the middle of the zone, the {open_quotes}Sundance fault{close_quotes}. Some field relations suggest left-stepping deflections of north-trending faults along a pre-existing northwest-trending structural fabric. Other field observations suggest that the {open_quotes}Sundance fault system{close_quotes} offsets the Ghost Dance fault system in an apparent right lateral sense by at least 52 m (170 ft). Additional detailed field studies are needed to better understand structural complexities at Yucca Mountain.

  9. High-resolution shear-wave seismics across the Carlsberg Fault zone south of Copenhagen - Implications for linking Mesozoic and late Pleistocene structures

    Science.gov (United States)

    Kammann, Janina; Hübscher, Christian; Boldreel, Lars Ole; Nielsen, Lars

    2016-07-01

    The Carlsberg Fault zone (CFZ) is a NNW-SSE striking structure close to the transition zone between the Danish Basin and the Baltic Shield. We examine the fault evolution by combining very-high-resolution onshore shear-wave seismic data, one conventional onshore seismic profile and marine reflection seismic profiles. The faulting geometry indicates a strong influence of Triassic subsidence and rifting in the Central European Basin System. Growth strata within the CFZ surrounding Höllviken Graben reveal syntectonic sedimentation in the Lower Triassic, indicating the opening to be a result of Triassic rifting. In the Upper Cretaceous growth faulting documents continued rifting. These findings contrast the Late Cretaceous to Paleogene inversion tectonics in neighboring structures, such as the Tornquist Zone. The high-resolution shear-wave seismic method was used to image faulting in Quaternary and Danian layers in the CFZ. The portable compact vibrator source ElViS III S8 was used to acquire a 1150 m long seismic section on the island Amager, south of Copenhagen. The shallow subsurface in the investigation area is dominated by Quaternary glacial till deposits in the upper 5-11 m and Danian limestone below. In the shear-wave profile, we imaged the uppermost 30 m of the western part of CFZ. The complex fault zone comprises normal block faults and one reverse block fault. The observed faults cut through the Danian as well as the Quaternary overburden. Hence, there are strong indicators for ongoing faulting, like mapped faulting in Quaternary sediments and ongoing subsidence of the eastern block of the CFZ as interpreted by other authors. The lack of earthquakes localized in the fault zone implies that either the frequency of occurring earthquakes is too small to be recorded in the observation time-span, or that the movement of the shallow sub-surface layers may be due to other sources than purely tectonic processes.

  10. Rapid repair of severely earthquake-damaged bridge piers with flexural-shear failure mode

    Science.gov (United States)

    Sun, Zhiguo; Wang, Dongsheng; Du, Xiuli; Si, Bingjun

    2011-12-01

    An experimental study was conducted to investigate the feasibility of a proposed rapid repair technique for severely earthquake-damaged bridge piers with flexural-shear failure mode. Six circular pier specimens were first tested to severe damage in flexural-shear mode and repaired using early-strength concrete with high-fluidity and carbon fiber reinforced polymers (CFRP). After about four days, the repaired specimens were tested to failure again. The seismic behavior of the repaired specimens was evaluated and compared to the original specimens. Test results indicate that the proposed repair technique is highly effective. Both shear strength and lateral displacement of the repaired piers increased when compared to the original specimens, and the failure mechanism of the piers shifted from flexural-shear failure to ductile flexural failure. Finally, a simple design model based on the Seible formulation for post-earthquake repair design was compared to the experimental results. It is concluded that the design equation for bridge pier strengthening before an earthquake could be applicable to seismic repairs after an earthquake if the shear strength contribution of the spiral bars in the repaired piers is disregarded and 1.5 times more FRP sheets is provided.

  11. The effects of lower crustal strength and preexisting midcrustal shear zones on the formation of continental core complexes and low-angle normal faults

    KAUST Repository

    Wu, Guangliang

    2016-08-22

    To investigate the formation of core complexes and low-angle normal faults, we devise thermomechanical simulations on a simplified wedge-like orogenic hinterland that has initial topography, Moho relief, and a preexisting midcrustal shear zone that can accommodate shear at very low angles (<20°). We mainly vary the strength of the lower crust and the frictional strength of the preexisting midcrustal shear zone. We find that the strength of the lower crust and the existence and strength of a preexisting shear zone significantly affect the formation and evolution of core complexes. With increasing lower crustal strength, we recognize varying extensional features with decreasing exhumation rate: these are characterized by bivergent metamorphic massifs, classic Cordilleran metamorphic core complexes, multiple consecutive core complexes (or boudinage structures), and a flexural core complex underlined by a large subsurface low-angle detachment fault with a small convex curvature. Topographic loading and mantle buoyancy forces, together with divergent boundaries, drive a regional lower crustal flow that leads to the exhumation of the lower crust where intensive upper crustal faulting induces strong unloading. The detachment fault is a decoupling zone that accommodates large displacement and accumulates sustained shear strain at very low angle between upper and lower crust. Though the regional stress is largely Andersonian, we find non-Andersonian stress in regions adjacent to the preexisting shear zone and those with high topographic gradient. Our new models provide a view that is generally consistent with geological and geophysical observations on how core complexes form and evolve.

  12. Rapid Assessment of Earthquakes with Radar and Optical Geodetic Imaging and Finite Fault Models (Invited)

    Science.gov (United States)

    Fielding, E. J.; Sladen, A.; Simons, M.; Rosen, P. A.; Yun, S.; Li, Z.; Avouac, J.; Leprince, S.

    2010-12-01

    Earthquake responders need to know where the earthquake has caused damage and what is the likely intensity of damage. The earliest information comes from global and regional seismic networks, which provide the magnitude and locations of the main earthquake hypocenter and moment tensor centroid and also the locations of aftershocks. Location accuracy depends on the availability of seismic data close to the earthquake source. Finite fault models of the earthquake slip can be derived from analysis of seismic waveforms alone, but the results can have large errors in the location of the fault ruptures and spatial distribution of slip, which are critical for estimating the distribution of shaking and damage. Geodetic measurements of ground displacements with GPS, LiDAR, or radar and optical imagery provide key spatial constraints on the location of the fault ruptures and distribution of slip. Here we describe the analysis of interferometric synthetic aperture radar (InSAR) and sub-pixel correlation (or pixel offset tracking) of radar and optical imagery to measure ground coseismic displacements for recent large earthquakes, and lessons learned for rapid assessment of future events. These geodetic imaging techniques have been applied to the 2010 Leogane, Haiti; 2010 Maule, Chile; 2010 Baja California, Mexico; 2008 Wenchuan, China; 2007 Tocopilla, Chile; 2007 Pisco, Peru; 2005 Kashmir; and 2003 Bam, Iran earthquakes, using data from ESA Envisat ASAR, JAXA ALOS PALSAR, NASA Terra ASTER and CNES SPOT5 satellite instruments and the NASA/JPL UAVSAR airborne system. For these events, the geodetic data provided unique information on the location of the fault or faults that ruptured and the distribution of slip that was not available from the seismic data and allowed the creation of accurate finite fault source models. In many of these cases, the fault ruptures were on previously unknown faults or faults not believed to be at high risk of earthquakes, so the area and degree of

  13. Integrated Kinematic Analysis of GPS and Fault Slip Data in the Eastern California Shear Zone, Walker Lane and Sierra Nevada

    Science.gov (United States)

    Hammond, W. C.; Thatcher, W.

    2001-12-01

    The Sierra Nevada (SN) microplate moves roughly N50?W with respect to North America (NA), around an Euler pole that lies in the Pacific (PA) basin to the west and south. Its motion is indicative of processes governing the deformation of the Walker Lane and Eastern California Shear Zone, accommodating east to west expansion of the Basin and Range and approximately 25% of PA/NA dextral shear. To date, estimates for the location of the SN/NA pole obtained by GPS, VLBI and geologic data differ by at least 30 degrees [e.g. Argus and Gordon, 1996; Hearn and Humphreys, 1998]. The difference between these poles may, in part, be attributable to the type of data used in the analyses. The GPS determined velocity field potentially contains artifacts of the earthquake cycle such as recoverable elastic deformation preceded by slip at depth, fault creep, and viscoelastic relaxation following earthquakes on block bounding faults. We use Global Positioning System (GPS), fault strike and slip rate data to constrain the kinematics of the eastern boundary of the Sierra Nevada (SN) microplate, and western Basin and Range province of western North America. Data include previously published GPS measurements [Bennet et al., 1998; Thatcher et al., 1999; Gan et al., 2000; Svarc et al., submitted manuscript 2001], recently collected GPS data, and recently compiled fault maps of Nevada and California that include fault strike, slip sense and slip rate estimates. GPS velocities are refined with the Quasi Observation Combination Analysis algorithm of Dong et al. From these data we constrain the spatial variation in the rate and style of deformation throughout the region, and identify components of the deformation that are relevant to interaction of the PA/NA transform margin and Basin and Range extension. Using two-dimensional viscoelastic finite elements we derive kinematic models representative of the instantaneous (GPS) time scale, in preparation for future modeling of the longer term

  14. Constraining the shear zone along the Dead Sea transform fault in the crust and upper mantle using seismic anisotropy

    Science.gov (United States)

    Kaviani, Ayoub; Rümpker, Georg; Asch, Günter; Desire Group

    2010-05-01

    We study seismic anisotropy along the Dead Sea Transform fault (DST) by shear-wave splitting analysis of SKS and SKKS waveforms recorded at a dense network of broad-band and short-period stations of the DESIRE experiment. The DST accommodates the relative motion between Africa and Arabia through a sinistral strike-slip motion. The Dead Sea is a pull-apart basin formed along the DST as a result of stepwise fault-normal displacement. The DESIRE array of stations cover this portion of the DST. We measured the splitting parameters (delay times between the fast and slow components of the shear wave and fast polarization direction) in different period bands. We observed consistent fast polarization directions varying from N14W to N19E at different stations and delay times ranging between 1.0 and 2.5 s. Our preliminary examination reveals that the splitting parameters do not exhibit significant frequency dependence. However, we observe variations in the splitting parameters (mostly delay times) along an E-W profile crossing the DST, with smaller delay times in the middle of the profile, within the surface exposure of the DST shear zone, and with two lobes of relatively large delay times on both sides of the central region. The fast polarization directions along this profile change from a dominant NNW trend in the western side of the DST to a general N-S orientation in the central part and a dominant NNE trend to the east. Waveform modeling is required to infer the lateral and depth variations of the strength and orientation of anisotropy in the crust and upper mantle from these observations. We will also complement our results with the data from the DESERT experiment to provide an overall pattern of seismic anisotropy and structural fabric beneath the DST and surrounding regions from the north of the Dead Sea down to the Red sea.

  15. Water contents and deformation mechanism in ductile shear zone of middle crust along the Red River fault in southwestern China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using Fourier transform infrared spectroscopy (FTIR), we measured water contents of quartz and feldspar for four thin sections of felsic mylonite and two thin sections of banded granitic gneiss col- lected from a ductile shear zone of middle crust along the Red Rivers-Ailaoshan active fault. The ab- sorbance spectra and peak position suggest that water in quartz and feldspar of granitic gneiss and felsic mylonite occurs mainly as hydroxyl in crystal defect, but also contains inclusion water and grain boundary water. The water contents of minerals were calculated based on the absorbance spectra. Water content of feldspar in granitic gneiss is 0.05 wt%-0.15 wt%, and that of quartz 0.03 wt%-0.09 wt%. Water content of feldspar ribbon and quartz ribbon in felsic mylonite is 0.095 wt%-0.32 wt%, and those of fine-grained feldspar and quartz are 0.004 wt%-0.052 wt%. These data show that the water content of weakly deformed feldspar and quartz ribbons is much higher than that of strongly deformed fine-grained feldspar and quartz. This suggests that strong shear deformation leads to breakage of the structures of constitutional water, inclusion and grain boundary water in feldspar and quartz, and most of water in minerals of mylonite is released to the upper layer in the crust.

  16. Water contents and deformation mechanism in ductile shear zone of middle crust along the Red River fault in southwestern China

    Institute of Scientific and Technical Information of China (English)

    ZHOU YongSheng; HE ChangRong; YANG XiaoSong

    2008-01-01

    Using Fourier transform infrared spectroscopy (FTIR), we measured water contents of quartz and feldspar for four thin sections of felsic mylonite and two thin sections of banded granitic gneiss collected from a ductile shear zone of middle crust along the Red Rivers-Ailaoshan active fault. The absorbance spectra and peak position suggest that water in quartz and feldspar of granitic gneiss and felsic mylonite occurs mainly as hydroxyl in crystal defect, but also contains inclusion water and grain boundary water. The water contents of minerals were calculated based on the absorbance spectra.Water content of feldspar in granitic gneiss is 0,05 wt%-0.15 wt%, and that of quartz 0.03 wt%-0.09wt%. Water content of feldspar ribbon and quartz ribbon in felsic mylonite is 0.095 wt%-0.32 wt%, and those of fine-grained feldspar and quartz are 0.004 wt% -0.052 wt%. These data show that the watercontent of weakly deformed feldspar and quartz ribbons is much higher than that of strongly deformed fine-grained feldspar and quartz. This suggests that strong shear deformation leads to breakage of the structures of constitutional water, inclusion and grain boundary water in feldspar and quartz, and most of water in minerals of mylonite is released to the upper layer in the crust.

  17. The Cotoncello Shear Zone (Elba Island, Italy): The deep root of a fossil oceanic detachment fault in the Ligurian ophiolites

    Science.gov (United States)

    Frassi, Chiara; Musumeci, Giovanni; Zucali, Michele; Mazzarini, Francesco; Rebay, Gisella; Langone, Antonio

    2017-05-01

    The ophiolite sequences in the western Elba Island are classically interpreted as a well-exposed ocean-floor section emplaced during the Apennines orogeny at the top of the tectonic nappe-stack. Stratigraphic, petrological and geochemical features indicate that these ophiolite sequences are remnants of slow-ultraslow spreading oceanic lithosphere analogous to the present-day Mid-Atlantic Ridge and Southwest Indian Ridge. Within the oceanward section of Tethyan lithosphere exposed in the Elba Island, we investigated for the first time a ​10s of meters-thick structure, the Cotoncello Shear Zone (CSZ), that records high-temperature ductile deformation. We used a multidisciplinary approach to document the tectono-metamorphic evolution of the shear zone and its role during spreading of the western Tethys. In addition, we used zircon U-Pb ages to date formation of the gabbroic lower crust in this sector of the Apennines. Our results indicate that the CSZ rooted below the brittle-ductile transition at temperature above 800 °C. A high-temperature ductile fabric was overprinted by fabrics recorded during progressive exhumation up to shallower levers under temperature < 500 °C. We suggest that the CSZ may represent the deep root of a detachment fault that accomplished exhumation of an ancient oceanic core complex (OCC) in between two stages of magmatic accretion. We suggest that the CSZ represents an excellent on-land example enabling to assess relationships between magmatism and deformation when extensional oceanic detachments are at work.

  18. Rapid mapping of ultrafine fault zone topography with structure from motion

    Science.gov (United States)

    Johnson, Kendra; Nissen, Edwin; Saripalli, Srikanth; Arrowsmith, J. Ramón; McGarey, Patrick; Scharer, Katherine M.; Williams, Patrick; Blisniuk, Kimberly

    2014-01-01

    Structure from Motion (SfM) generates high-resolution topography and coregistered texture (color) from an unstructured set of overlapping photographs taken from varying viewpoints, overcoming many of the cost, time, and logistical limitations of Light Detection and Ranging (LiDAR) and other topographic surveying methods. This paper provides the first investigation of SfM as a tool for mapping fault zone topography in areas of sparse or low-lying vegetation. First, we present a simple, affordable SfM workflow, based on an unmanned helium balloon or motorized glider, an inexpensive camera, and semiautomated software. Second, we illustrate the system at two sites on southern California faults covered by existing airborne or terrestrial LiDAR, enabling a comparative assessment of SfM topography resolution and precision. At the first site, an ∼0.1 km2 alluvial fan on the San Andreas fault, a colored point cloud of density mostly >700 points/m2 and a 3 cm digital elevation model (DEM) and orthophoto were produced from 233 photos collected ∼50 m above ground level. When a few global positioning system ground control points are incorporated, closest point vertical distances to the much sparser (∼4 points/m2) airborne LiDAR point cloud are mostly 530 points/m2 and a 2 cm DEM and orthophoto were produced from 450 photos taken from ∼60 m above ground level. Closest point vertical distances to existing terrestrial LiDAR data of comparable density are mostly <6 cm. Each SfM survey took ∼2 h to complete and several hours to generate the scene topography and texture. SfM greatly facilitates the imaging of subtle geomorphic offsets related to past earthquakes as well as rapid response mapping or long-term monitoring of faulted landscapes.

  19. Pseudodynamic Source Characterization for Strike-Slip Faulting Including Stress Heterogeneity and Super-Shear Ruptures

    KAUST Repository

    Mena, B.

    2012-08-08

    Reliable ground‐motion prediction for future earthquakes depends on the ability to simulate realistic earthquake source models. Though dynamic rupture calculations have recently become more popular, they are still computationally demanding. An alternative is to invoke the framework of pseudodynamic (PD) source characterizations that use simple relationships between kinematic and dynamic source parameters to build physically self‐consistent kinematic models. Based on the PD approach of Guatteri et al. (2004), we propose new relationships for PD models for moderate‐to‐large strike‐slip earthquakes that include local supershear rupture speed due to stress heterogeneities. We conduct dynamic rupture simulations using stochastic initial stress distributions to generate a suite of source models in the magnitude Mw 6–8. This set of models shows that local supershear rupture speed prevails for all earthquake sizes, and that the local rise‐time distribution is not controlled by the overall fault geometry, but rather by local stress changes on the faults. Based on these findings, we derive a new set of relations for the proposed PD source characterization that accounts for earthquake size, buried and surface ruptures, and includes local rise‐time variations and supershear rupture speed. By applying the proposed PD source characterization to several well‐recorded past earthquakes, we verify that significant improvements in fitting synthetic ground motion to observed ones is achieved when comparing our new approach with the model of Guatteri et al. (2004). The proposed PD methodology can be implemented into ground‐motion simulation tools for more physically reliable prediction of shaking in future earthquakes.

  20. Shear failure of icy satellites: Present-day implications along Enceladus's Tiger Stripes and indications of past strike-slip faulting on Ganymede's Dardanus Sulcus

    Science.gov (United States)

    Cameron, M. E.; Smith-Konter, B. R.; Pappalardo, R. T.

    2012-12-01

    The icy fractured surfaces of both Enceladus and Ganymede offer many candidate faults for studying both past and potentially present tectonic activity. Recent studies have suggested that Enceladus's "tiger stripe" fractures may be associated with tectonic strike-slip (shear) motions as a result of Coulomb failure, but low coefficients of friction were primarily considered in past stress models. Recent work suggests that friction is highly sensitive to the state of seismic fault slip; low friction (μf = 0.1-0.2) may be applicable in initial slip events and high friction (μf = 0.3-0.6) may be more appropriate for subsequent sliding velocities. On Ganymede, strike-slip tectonics is common, notably where a prominent fault offsets Dardanus Sulcus. We investigate the role of fault friction and orbital eccentricity in the development of Enceladus's tiger stripes and Ganymede's Dardanus Sulcus. We consider both tidal diurnal and non-synchronous rotation (NSR) stresses, as applicable, and compute Coulomb failure conditions for these target fractures. For the Enceladus tiger stripes, previous shear failure models showed that low coefficients of friction (μf = 0.1-0.2) and shallow fracture depths (2-4 km) provide a very active diurnal shear failure scenario. Our new simulations suggest that shear failure is also possible for friction coefficients as high as uf = 0.6 at depths of 2 km, but the lateral extent of failure is suppressed in comparison. For Ganymede's Dardanus Sulcus, we consider tidal stress scenarios for both present (0.0013) and possible past high (~0.05) eccentricity. We find that NSR shear stress resolved along the Dardanus fault is sufficient to induce failure to ~1.4 km depths for μf ~0.3. For past high eccentricity, diurnal stress would have modulated NSR stress by ~100 kPa through Ganymede's tidal cycle, which could have also induced shear heating and tidal walking mechanisms. Together, these tidally driven failure models for Enceladus and Ganymede are

  1. Software for determining the direction of movement, shear and normal stresses of a fault under a determined stress state

    Science.gov (United States)

    Álvarez del Castillo, Alejandra; Alaniz-Álvarez, Susana Alicia; Nieto-Samaniego, Angel Francisco; Xu, Shunshan; Ochoa-González, Gil Humberto; Velasquillo-Martínez, Luis Germán

    2017-07-01

    In the oil, gas and geothermal industry, the extraction or the input of fluids induces changes in the stress field of the reservoir, if the in-situ stress state of a fault plane is sufficiently disturbed, a fault may slip and can trigger fluid leakage or the reservoir might fracture and become damaged. The goal of the SSLIPO 1.0 software is to obtain data that can reduce the risk of affecting the stability of wellbores. The input data are the magnitudes of the three principal stresses and their orientation in geographic coordinates. The output data are the slip direction of a fracture in geographic coordinates, and its normal (σn) and shear (τ) stresses resolved on a single or multiple fracture planes. With this information, it is possible to calculate the slip tendency (τ/σn) and the propensity to open a fracture that is inversely proportional to σn. This software could analyze any compressional stress system, even non-Andersonian. An example is given from an oilfield in southern Mexico, in a region that contains fractures formed in three events of deformation. In the example SSLIPO 1.0 was used to determine in which deformation event the oil migrated. SSLIPO 1.0 is an open code application developed in MATLAB. The URL to obtain the source code and to download SSLIPO 1.0 are: http://www.geociencias.unam.mx/ alaniz/main_code.txt, http://www.geociencias.unam.mx/ alaniz/ SSLIPO_pkg.exe.

  2. Earthquake source parameters and fault kinematics in the Eastern California Shear Zone

    CERN Document Server

    Jones, L E; Jones, Laura E.; Helmberger, Donald V.

    1998-01-01

    Based on waveform data from a profile of aftershocks following the north-south trace of the June 28, 1992 Landers rupture across the Mojave desert, we construct a new velocity model for the Mojave region which features a thin, slow crust. Using this model, we obtain source parameters, including depth and duration, for each of the aftershocks in the profile, and in addition, any significant (M>3.7) Joshua Tree--Landers aftershock between April, 1992 and October, 1994 for which coherent TERRAscope data were available. In all, we determine source parameters and stress-drops for 45 significant (M_w > 4) earthquakes associated with the Joshua Tree and Landers sequences, using a waveform grid-search algorithm. Stress drops for these earthquakes appear to vary systematically with location, with respect to previous seismic activity, proximity to previous rupture (i.e., with respect to the Landers rupture), and with tectonic province. In general, for areas north of the Pinto Mountain fault, stress-drops of aftershocks...

  3. Interferometric synthetic aperture radar-GPS integration: Interseismic strain accumulation across the Hunter Mountain fault in the eastern California shear zone

    Science.gov (United States)

    Gourmelen, Noel; Amelung, Falk; Lanari, Riccardo

    2010-09-01

    The principal limitations of interferometric synthetic aperture radar (InSAR) to measure subtle, long-wavelength deformation are uncertainties associated with the satellite orbits. We propose a method to remove orbital phase errors from the InSAR data by integrating InSAR and continuous GPS time series. We model the along-track variation of the baseline errors as second-order polynomials and estimate the coefficients using the continuous GPS measurements. We apply this method to a 600 km long region encompassing the Basin and Range and the eastern California shear zone. Comparison of the corrected InSAR velocities with independent GPS data shows that this method removes the long-wavelength InSAR errors. The InSAR data reveal a region of sharp variation in the line-of-sight velocity across the Hunter Mountain fault. We model the deformation as interseismic elastic strain accumulation across a strike-slip fault. The modeling suggests a fault slip rate of 4.9 ± 0.8 mm/yr and a locking depth of 2 ± 0.4 km. The shallow locking depth suggests that the Hunter Mountain fault is a transfer fault between low angle normal faults in the area.

  4. Ultransonic velocity measurements in sheared granular layers: Implications for the evolution of dynamic elastic moduli of compositionally-diverse cataclastic fault gouges

    Science.gov (United States)

    Knuth, Matthew William

    The objective of this project was to investigate the mechanical and elastic evolution of laboratory fault gouge analogs during active shear. To do this, I designed, constructed, and implemented a new technique for measuring changes in the elastic properties of granular layers subjected to shear deformation. Granular layers serve as an experimental analog to gouge layers forming in cataclastic faults. The technique combines a double-direct shear configuration with a method of determining ultrasonic elastic compressional and shear wavespeed. Experimental results are divided into chapters based on application to fundamental mechanics or to field cases. The first set of experiments allowed us to develop the technique and apply it to a range of end- member materials including quartz sands, montmorillonite clays, and mixtures of sand and clay. Emphasis is placed on normal stress unload-reload cycles and the resulting behavior as clay content is varied within the layer. We observe consistent decrease in wavespeed with shear for sand, and nonlinear but increasing wavespeed for clay and the sand/clay mixture. The second set of experiments involves the application of this technique to measurements conducted under fluid saturation and controlled pressure conditions, examining the behavior of materials from the Nankai Trough Accretionary Prism under shear. I introduce the effects of variable displacement rate and hold time, with implications for fault stability and rate-and-state frictional sliding. The experiments demonstrate a consistent inverse relationship between sliding velocity and wavespeed, and an increase in wavespeed associated with holds. The third set of experiments deals with velocity through stick-slipping glass beads, which has implications for fundamental granular mechanics questions involving velocity-weakening materials. I find that wavespeed decreases in the time between events and increases at "slips", suggesting a strong control related to changes in

  5. An exceptionally long paleoseismic record of a slow-moving fault: The Alhama de Murcia fault (Eastern Betic shear zone, Spain)

    DEFF Research Database (Denmark)

    Ortuño, María.; Masana, Eulalia.; García-Meléndez, Eduardo.

    2012-01-01

    Most catastrophic earthquakes occur along fast-moving faults, although some of them are triggered by slow-moving ones. Long paleoseismic histories are infrequent in the latter faults. Here, an exceptionally long paleoseismic record (more than 300 k.y.) of a slow-moving structure is presented for ...

  6. No evidence for shallow shear motion on the Mat Fault, a prominent strike slip fault in the Indo-Burmese wedge

    Indian Academy of Sciences (India)

    R P Tiwari; V K Gahalaut; Ch U B Rao; C Lalsawta; B Kundu; Malsawmtluanga

    2015-07-01

    The motion between India and Sunda plates is accommodated along the Churachandpur Mao Fault (CMF) in the Indo-Burmese Wedge (IBW) and Sagaing Fault in the Myanmar region. Within the IBW, the Mat Fault is the most prominent transverse structure with prominent topographic and geomorphic expressions. We undertook Global Positioning System (GPS) measurements across this fault to investigate the current deformation across it. Modelling of these observations using locking depth of up to 4 km yields no resolvable slip (dextral slip rate as 0±5 mm/year) across the fault. Due to limited spatial extent of the GPS measurements, it is not possible to comment on the status of deeper slip, if any.

  7. A closed form solution for the rapid shear of homogeneous turbulence in a rotating frame with and without stratification

    Science.gov (United States)

    Kassinos, S. C.

    2000-11-01

    A closed-form solution for the evolution of one-point statistics is derived for the case of initially two-dimensional three-component (2D-3C) homogeneous turbulence deformed by rapid shear in a rotating frame. Cases with and without stratification are considered. Except for small total shear, the analytical result is shown to be in good agreement with the numerical solution of the governing equations, linearized for rapid distortions, and solved for the more general initial case of 3D-3C isotropic homogeneous turbulence. Based on this agreement, we show that the closed-from solution provides insight into the stabilizing and destabilizing effects of frame rotation on homogeneous stratified shear flow, and provides a useful reference point for the one-point modeling of rotated and stratified shear flows. This analysis provides insights on the stability of stratified homogeneous shear flows that are missed by the standard two-dimensional two-component (2D-2C) treatment of stability issues in these flows.

  8. Seismic attribute detection of faults and fluid pathways within an active strike-slip shear zone: New insights from high-resolution 3D P-Cable™ seismic data along the Hosgri Fault, offshore California

    Science.gov (United States)

    Kluesner, Jared; Brothers, Daniel

    2016-01-01

    Poststack data conditioning and neural-network seismic attribute workflows are used to detect and visualize faulting and fluid migration pathways within a 13.7 km2 13.7 km2 3D P-Cable™ seismic volume located along the Hosgri Fault Zone offshore central California. The high-resolution 3D volume used in this study was collected in 2012 as part of Pacific Gas and Electric’s Central California Seismic Imaging Project. Three-dimensional seismic reflection data were acquired using a triple-plate boomer source (1.75 kJ) and a short-offset, 14-streamer, P-Cable system. The high-resolution seismic data were processed into a prestack time-migrated 3D volume and publically released in 2014. Postprocessing, we employed dip-steering (dip and azimuth) and structural filtering to enhance laterally continuous events and remove random noise and acquisition artifacts. In addition, the structural filtering was used to enhance laterally continuous edges, such as faults. Following data conditioning, neural-network based meta-attribute workflows were used to detect and visualize faults and probable fluid-migration pathways within the 3D seismic volume. The workflow used in this study clearly illustrates the utility of advanced attribute analysis applied to high-resolution 3D P-Cable data. For example, results from the fault attribute workflow reveal a network of splayed and convergent fault strands within an approximately 1.3 km wide shear zone that is characterized by distinctive sections of transpressional and transtensional dominance. Neural-network chimney attribute calculations indicate that fluids are concentrated along discrete faults in the transtensional zones, but appear to be more broadly distributed amongst fault bounded anticlines and structurally controlled traps in the transpressional zones. These results provide high-resolution, 3D constraints on the relationships between strike-slip fault mechanics, substrate deformation, and fluid migration along an active

  9. Contemporary fault mechanics in southern Alaska

    Science.gov (United States)

    Kalbas, James L.; Freed, Andrew M.; Ridgway, Kenneth D.

    Thin-shell finite-element models, constrained by a limited set of geologic slip rates, provide a tool for evaluating the organization of contemporary faulting in southeastern Alaska. The primary structural features considered in our analysis are the Denali, Duke River, Totschunda, Fairweather, Queen Charlotte, and Transition faults. The combination of fault configurations and rheological properties that best explains observed geologic slip rates predicts that the Fairweather and Totschunda faults are joined by an inferred southeast-trending strike-slip fault that crosses the St. Elias Mountains. From a regional perspective, this structure, which our models suggest slips at a rate of ˜8 mm/a, transfers shear from the Queen Charlotte fault in southeastern Alaska and British Columbia northward to the Denali fault in central Alaska. This result supports previous hypotheses that the Fairweather-Totschunda connecting fault constitutes a newly established northward extension of the Queen Charlotte-Fairweather transform system and helps accommodate right-lateral motion (˜49 mm/a) of the Pacific plate and Yakutat microplate relative to stable North America. Model results also imply that the Transition fault separating the Yakutat microplate from the Pacific plate is favorably oriented to accommodate significant thrusting (23 mm/a). Rapid dip-slip displacement on the Transition fault does not, however, draw shear off of the Queen Charlotte-Fairweather transform fault system. Our new modeling results suggest that the Totschunda fault, the proposed Fairweather-Totschunda connecting fault, and the Fairweather fault may represent the youngest stage of southwestward migration of the active strike-slip deformation front in the long-term evolution of this convergent margin.

  10. A New Estimate for Total Offset on the Southern San Andreas Fault: Implications for Cumulative Plate Boundary Shear in the Northern Gulf of California

    Science.gov (United States)

    Darin, M. H.; Dorsey, R. J.

    2012-12-01

    Development of a consistent and balanced tectonic reconstruction for the late Cenozoic San Andreas fault (SAF) in southern California has been hindered for decades by incompatible estimates of total dextral offset based on different geologic cross-fault markers. The older estimate of 240-270 km is based on offset fluvial conglomerates of the middle Miocene Mint Canyon and Caliente Formations west of the SAF from their presumed source area in the northern Chocolate Mountains NE of the SAF (Ehlig et al., 1975; Ehlert, 2003). The second widely cited offset marker is a distinctive Triassic megaporphyritic monzogranite that has been offset 160 ± 10 km between Liebre Mountain west of the SAF and the San Bernadino Mountains (Matti and Morton, 1993). In this analysis we use existing paleocurrent data and late Miocene clockwise rotation in the eastern Transverse Ranges (ETR) to re-assess the orientation of the piercing line used in the 240 km-correlation, and present a palinspastic reconstruction that satisfies all existing geologic constraints. Our reconstruction of the Mint Canyon piercing line reduces the original estimate of 240-270 km to 195 ± 15 km of cumulative right-lateral slip on the southern SAF (sensu stricto), which is consistent with other published estimates of 185 ± 20 km based on correlative basement terranes in the Salton Trough region. Our estimate of ~195 km is consistent with the lower estimate of ~160 km on the Mojave segment because transform-parallel extension along the southwestern boundary of the ETR during transrotation produces ~25-40 km of displacement that does not affect offset markers of the Liebre/San Bernadino correlation located northwest of the ETR rotating domain. Reconciliation of these disparate estimates places an important new constraint on the total plate boundary shear that is likely accommodated in the adjacent northern Gulf of California. Global plate circuit models require ~650 km of cumulative Pacific-North America (PAC

  11. Study on the Evaluation Method for Fault Displacement: Probabilistic Approach Based on Japanese Earthquake Rupture Data - Distributed fault displacements -

    Science.gov (United States)

    Inoue, N.; Kitada, N.; Tonagi, M.

    2016-12-01

    Distributed fault displacements in Probabilistic Fault Displace- ment Analysis (PFDHA) have an important rule in evaluation of important facilities such as Nuclear Installations. In Japan, the Nu- clear Installations should be constructed where there is no possibility that the displacement by the earthquake on the active faults occurs. Youngs et al. (2003) defined the distributed fault as displacement on other faults or shears, or fractures in the vicinity of the principal rup- ture in response to the principal faulting. Other researchers treated the data of distribution fault around principal fault and modeled according to their definitions (e.g. Petersen et al., 2011; Takao et al., 2013 ). We organized Japanese fault displacements data and constructed the slip-distance relationship depending on fault types. In the case of reverse fault, slip-distance relationship on the foot-wall indicated difference trend compared with that on hanging-wall. The process zone or damaged zone have been studied as weak structure around principal faults. The density or number is rapidly decrease away from the principal faults. We contrasted the trend of these zones with that of distributed slip-distance distributions. The subsurface FEM simulation have been carried out to inves- tigate the distribution of stress around principal faults. The results indicated similar trend compared with the distribution of field obser- vations. This research was part of the 2014-2015 research project `Development of evaluating method for fault displacement` by the Secretariat of Nuclear Regulation Authority (S/NRA), Japan.

  12. Finite-fault source inversion using teleseismic P waves: Simple parameterization and rapid analysis

    Science.gov (United States)

    Mendoza, C.; Hartzell, S.

    2013-01-01

    We examine the ability of teleseismic P waves to provide a timely image of the rupture history for large earthquakes using a simple, 2D finite‐fault source parameterization. We analyze the broadband displacement waveforms recorded for the 2010 Mw∼7 Darfield (New Zealand) and El Mayor‐Cucapah (Baja California) earthquakes using a single planar fault with a fixed rake. Both of these earthquakes were observed to have complicated fault geometries following detailed source studies conducted by other investigators using various data types. Our kinematic, finite‐fault analysis of the events yields rupture models that similarly identify the principal areas of large coseismic slip along the fault. The results also indicate that the amount of stabilization required to spatially smooth the slip across the fault and minimize the seismic moment is related to the amplitudes of the observed P waveforms and can be estimated from the absolute values of the elements of the coefficient matrix. This empirical relationship persists for earthquakes of different magnitudes and is consistent with the stabilization constraint obtained from the L‐curve in Tikhonov regularization. We use the relation to estimate the smoothing parameters for the 2011 Mw 7.1 East Turkey, 2012 Mw 8.6 Northern Sumatra, and 2011 Mw 9.0 Tohoku, Japan, earthquakes and invert the teleseismic P waves in a single step to recover timely, preliminary slip models that identify the principal source features observed in finite‐fault solutions obtained by the U.S. Geological Survey National Earthquake Information Center (USGS/NEIC) from the analysis of body‐ and surface‐wave data. These results indicate that smoothing constraints can be estimated a priori to derive a preliminary, first‐order image of the coseismic slip using teleseismic records.

  13. Dielectrophoresis and shear-enhanced sensitivity and selectivity of DNA hybridization for the rapid discrimination of Candida species.

    Science.gov (United States)

    Cheng, I-Fang; Han, Huan-Wen; Chang, Hsien-Chang

    2012-03-15

    We present a dielectrophoresis (DEP)-based microfluidic chip that is capable of enhancing the sensitivity and selectivity of DNA hybridization using an AC electric field and hydrodynamic shear in a continuous through-flow. Molecular DEP was employed to rapidly trap ssDNA molecules in a flowing solution to a cusp-shaped nanocolloid assembly on a microfluidic chip with a locally amplified AC electric field gradient. The detection time can be accelerated to sub-minute periods, and the sensitivity can reach the pico-molar level due to the AC DEP-enhanced molecule concentration (at an optimal AC frequency of 900 kHz) in a small region (∼100 μm(2)) instead of the broad area used in a tank reactor (∼10(6) μm(2)). Continuous flow in a microchannel provides a constant and high shear rate that can shear off most non-specific target-probe binding to promote the discriminating selectivity. On-chip multi-target discrimination of Candida species can be achieved within a few minutes under optimal conditions.

  14. Tectono-geochemistry analyses of fault rocks in shear zone of metamorphic core complex in north Jiangxi, China

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Through a systematic sampling test and mass equilibrium analysis of the three sorts of complex assemblages (intrusive complex, tectonic complex and metamorphic complex) penetrating the metamorphic core complex (MCC) in the Xingzi area of north Jiangxi, the authors find that, like major elements, the trace elements of small ion radius, big specific gravity and high potential form the accumulative series in fault rocks, instead of divergence series. In rare earth elements, ΣREE and HREE are relatively centralized, characteristic of rising and Eu loss in the distribution pattern. Only on the upside of the ductile fault, there exist some phenomena contrary to the general rules, most of which are restricted by the rock rheologic differentiation, coupling of mechanics and chemistry, and inversion of tectonic regime.

  15. Kinematics of syn- and post-exhumational shear zones at Lago di Cignana (Western Alps, Italy): constraints on the exhumation of Zermatt-Saas (ultra)high-pressure rocks and deformation along the Combin Fault and Dent Blanche Basal Thrust

    Science.gov (United States)

    Kirst, Frederik; Leiss, Bernd

    2017-01-01

    Kinematic analyses of shear zones at Lago di Cignana in the Italian Western Alps were used to constrain the structural evolution of units from the Piemont-Ligurian oceanic realm (Zermatt-Saas and Combin zones) and the Adriatic continental margin (Dent Blanche nappe) during Palaeogene syn- and post-exhumational deformation. Exhumation of Zermatt-Saas (U)HP rocks to approximately lower crustal levels at ca. 39 Ma occurred during normal-sense top-(S)E shearing under epidote-amphibolite-facies conditions. Juxtaposition with the overlying Combin zone along the Combin Fault at mid-crustal levels occurred during greenschist-facies normal-sense top-SE shearing at ca. 38 Ma. The scarcity of top-SE kinematic indicators in the hanging wall of the Combin Fault probably resulted from strain localization along the uppermost Zermatt-Saas zone and obliteration by subsequent deformation. A phase of dominant pure shear deformation around 35 Ma affected units in the direct footwall and hanging wall of the Combin Fault. It is interpreted to reflect NW-SE crustal elongation during updoming of the nappe stack as a result of underthrusting of European continental margin units and the onset of continental collision. This phase was partly accompanied and followed by ductile bulk top-NW shearing, especially at higher structural levels, which transitioned into semi-ductile to brittle normal-sense top-NW deformation due to Vanzone phase folding from ca. 32 Ma onwards. Our structural observations suggest that syn-exhumational deformation is partly preserved within units and shear zones exposed at Lago di Cignana but also that the Combin Fault and Dent Blanche Basal Thrust experienced significant post-exhumational deformation reworking and overprinting earlier structures.

  16. The correlation between the temperature dependence of the CRSS and the formation of superlattice-intrinsic stacking faults in the nickel-base superalloy PWA 1480. [critical resolved shear stress

    Science.gov (United States)

    Milligan, Walter W.; Antolovich, Stephen D.

    1989-01-01

    The PWA 1480 nickel-base superalloy is known to exhibit a unique minimum in the critical resolved shear stress (CRSS) at about 400 C. This paper reports an observation of a deformation mechanism whose temperature dependence correlates exactly with the reduction in the CRSS. It was found that, after monotonic or cyclic deformation of PWA 1480 at 20 C, the deformation substructures typically contain high density of superlattice-intrinsic stacking faults (S-ISFs) within the gamma-prime precipitates. As the temperature of deformation is increased, the density of S-ISFs is reduced, until finally no faults are observed after deformation in the range from 400 to 705 C. The reduction in the fault density corresponds exactly to the reduction in the CRSS, and the temperature at which the fault density is zero corresponds with the minimum in the CRRS. Two possible mechanisms related to the presence of the S-ISFs in the alloy are considered.

  17. Stress sensitivity of fault seismicity: A comparison between limited-offset oblique and major strike-slip faults

    Science.gov (United States)

    Parsons, Tom; Stein, Ross S.; Simpson, Robert W.; Reasenberg, Paul A.

    1999-09-01

    We present a new three-dimensional inventory of the southern San Francisco Bay area faults and use it to calculate stress applied principally by the 1989 M = 7.1 Loma Prieta earthquake and to compare fault seismicity rates before and after 1989. The major high-angle right-lateral faults exhibit a different response to the stress change than do minor oblique (right-lateral/thrust) faults. Seismicity on oblique-slip faults in the southern Santa Clara Valley thrust belt increased where the faults were undamped. The strong dependence of seismicity change on normal stress change implies a high coefficient of static friction. In contrast, we observe that faults with significant offset (>50-100 km) behave differently; microseismicity on the Hayward fault diminished where right-lateral shear stress was reduced and where it was undamped by the Loma Prieta earthquake. We observe a similar response on the San Andreas fault zone in southern California after the Landers earthquake sequence. Additionally, the offshore San Gregorio fault shows a seismicity rate increase where right-lateral/oblique shear stress was increased by the Loma Prieta earthquake despite also being clamped by it. These responses are consistent with either a low coefficient of static friction or high pore fluid pressures within the fault zones. We can explain the different behavior of the two styles of faults if those with large cumulative offset become impermeable through gouge buildup; coseismically pressurized pore fluids could be trapped and negate imposed normal stress changes, whereas in more limited offset faults, fluids could rapidly escape. The difference in behavior between minor and major faults may explain why frictional failure criteria that apply intermediate coefficients of static friction can be effective in describing the broad distributions of aftershocks that follow large earthquakes, since many of these events occur both inside and outside major fault zones.

  18. 利用GPS数据研究低纬度环球剪切带的活动性%AN ANALYSIS OF FAULT ACTIVITY IN SHEAR ZONE AT LOW LATITUDES FROM GPS MEASUREMENTS

    Institute of Scientific and Technical Information of China (English)

    朱泽; 孟国杰

    2012-01-01

    Global Positioning System (GPS) measure campaign in shear zone at low-latitudes was conducted in 1991 and 2003, for quantifying the present-day major faults' activity. The results are as follow,the north Antolia fault , Jiali fault, Sagaing fault and Sumatra fault are right lateral motion, the rates are(13.7±0. 6),(5.8±0.5) (7.1 ± 1.0) , (12.7 ±0.2) and(25. 4 ± 0. 5 ) mm/a respectively; while the Sorong fault and Guatemala fault are left lateral motion , the rates are 29.2 ±1.8),(14. 1 ±1.0) mm/a, respectively . Besides, Sumatra fault and Jiali fault also show strong squeezing, (18.5 ±1.0), (15.2±0.6) mm / a, respectively, while Sorong fault show powerful pull, reached to:(10.7±l.l) mm / a. Overall, the shear activity dominats in the shear zone at low-latitudes.%利用GPS速度研究了低纬度环球剪切带主要断裂的活动性,结果显示:北安纳托利亚断裂、北高加索断裂、嘉黎断裂、实皆断裂以及苏门答腊断裂均表现为右旋走滑特征,滑动速率分别为13.7±0.6、5.8±0.5、7.1±1.0、12.7±0.2和25.4±0.5 mm/a;索龙断裂和危地马拉断裂呈现左旋走滑特征,滑动速率分别为29.2±1.8、14.1±1.0 mm/a;嘉黎断裂和苏门答腊断裂表现出强挤压性,挤压量分别为18.5±1.0、15.2±0.6mm/a;索龙断裂表现出强拉张性,拉张量为10.7±1.1 mm/a.低纬度剪切带总体上表现出较强的活动性并以剪切活动为主.

  19. Rapid, decimeter-resolution fault zone topography mapped with Structure from Motion

    Science.gov (United States)

    Johnson, K. L.; Nissen, E.; Saripalli, S.; Arrowsmith, R.; McGarey, P.; Scharer, K. M.; Williams, P. L.

    2013-12-01

    Recent advances in the generation of high-resolution topography have revolutionized our ability to detect subtle geomorphic features related to ground-rupturing earthquakes. Currently, the most popular topographic mapping methods are airborne Light Detection And Ranging (LiDAR) and terrestrial laser scanning (TLS). Though powerful, these laser scanning methods have some inherent drawbacks: airborne LiDAR is expensive and can be logistically complicated, while TLS is time consuming even for small field sites and suffers from patchy coverage due to its restricted field-of-view. An alternative mapping technique, called Structure from Motion (SfM), builds upon traditional photogrammetry to reproduce the topography and texture of a scene from photographs taken at varying viewpoints. The improved availability of cheap, unmanned aerial vehicles (UAVs) as camera platforms further expedites data collection by covering large areas efficiently with optimal camera angles. Here, we introduce a simple and affordable UAV- or balloon-based SfM mapping system which can produce dense point clouds and sub-decimeter resolution digital elevation models (DEMs) registered to geospatial coordinates using either the photograph's GPS tags or a few ground control points across the scene. The system is ideally suited for studying ruptures of prehistoric, historic, and modern earthquakes in areas of sparse or low-lying vegetation. We use two sites from southern California faults to illustrate. The first is the ~0.1 km2 Washington Street site, located on the Banning strand of the San Andreas fault near Thousand Palms. A high-resolution DEM with ~700 point/m2 was produced from 230 photos collected on a balloon platform flying at 50 m above the ground. The second site is the Galway Lake Road site, which spans a ~1 km strip of the 1992 Mw 7.3 Landers earthquake on the Emerson Fault. The 100 point/m2 DEM was produced from 267 photos taken with a balloon platform at a height of 60 m above the ground

  20. Hydrogeological properties of fault zones in a karstified carbonate aquifer (Northern Calcareous Alps, Austria)

    Science.gov (United States)

    Bauer, H.; Schröckenfuchs, T. C.; Decker, K.

    2016-08-01

    This study presents a comparative, field-based hydrogeological characterization of exhumed, inactive fault zones in low-porosity Triassic dolostones and limestones of the Hochschwab massif, a carbonate unit of high economic importance supplying 60 % of the drinking water of Austria's capital, Vienna. Cataclastic rocks and sheared, strongly cemented breccias form low-permeability (3 % and permeabilities >1,000 mD form high-permeability domains. With respect to fault-zone architecture and rock content, which is demonstrated to be different for dolostone and limestone, four types of faults are presented. Faults with single-stranded minor fault cores, faults with single-stranded permeable fault cores, and faults with multiple-stranded fault cores are seen as conduits. Faults with single-stranded impermeable fault cores are seen as conduit-barrier systems. Karstic carbonate dissolution occurs along fault cores in limestones and, to a lesser degree, dolostones and creates superposed high-permeability conduits. On a regional scale, faults of a particular deformation event have to be viewed as forming a network of flow conduits directing recharge more or less rapidly towards the water table and the springs. Sections of impermeable fault cores only very locally have the potential to create barriers.

  1. The role of dyking and fault control in the rapid onset of eruption at Chaitén Volcano, Chile

    Science.gov (United States)

    Wicks, C.; De La, Llera; Lara, L.E.; Lowenstern, J.

    2011-01-01

    Rhyolite is the most viscous of liquid magmas, so it was surprising that on 2 May 2008 at Chaitén Volcano, located in Chile’s southern Andean volcanic zone, rhyolitic magma migrated from more than 5 km depth in less than 4 hours and erupted explosively with only two days of detected precursory seismic activity. The last major rhyolite eruption before that at Chaitén was the largest volcanic eruption in the twentieth century, at Novarupta volcano, Alaska, in 1912. Because of the historically rare and explosive nature of rhyolite eruptions and because of the surprisingly short warning before the eruption of the Chaitén volcano, any information about the workings of the magmatic system at Chaitén, and rhyolitic systems in general, is important from both the scientific and hazard perspectives. Here we present surface deformation data related to the Chaitén eruption based on radar interferometry observations from the Japan Aerospace Exploration Agency (JAXA) DAICHI (ALOS) satellite. The data on this explosive rhyolite eruption indicate that the rapid ascent of rhyolite occurred through dyking and that melt segregation and magma storage were controlled by existing faults.

  2. The role of dyking and fault control in the rapid onset of eruption at Chaitén volcano, Chile.

    Science.gov (United States)

    Wicks, Charles; de la Llera, Juan Carlos; Lara, Luis E; Lowenstern, Jacob

    2011-10-19

    Rhyolite is the most viscous of liquid magmas, so it was surprising that on 2 May 2008 at Chaitén Volcano, located in Chile's southern Andean volcanic zone, rhyolitic magma migrated from more than 5 km depth in less than 4 hours (ref. 1) and erupted explosively with only two days of detected precursory seismic activity. The last major rhyolite eruption before that at Chaitén was the largest volcanic eruption in the twentieth century, at Novarupta volcano, Alaska, in 1912. Because of the historically rare and explosive nature of rhyolite eruptions and because of the surprisingly short warning before the eruption of the Chaitén volcano, any information about the workings of the magmatic system at Chaitén, and rhyolitic systems in general, is important from both the scientific and hazard perspectives. Here we present surface deformation data related to the Chaitén eruption based on radar interferometry observations from the Japan Aerospace Exploration Agency (JAXA) DAICHI (ALOS) satellite. The data on this explosive rhyolite eruption indicate that the rapid ascent of rhyolite occurred through dyking and that melt segregation and magma storage were controlled by existing faults.

  3. Homogenization and texture development in rapidly solidified AZ91E consolidated by Shear Assisted Processing and Extrusion (ShAPE)

    Energy Technology Data Exchange (ETDEWEB)

    Overman, N. R.; Whalen, S. A.; Bowden, M. E.; Olszta, M. J.; Kruska, K.; Clark, T.; Stevens, E. L.; Darsell, J. T.; Joshi, V. V.; Jiang, X.; Mattlin, K. F.; Mathaudhu, S. N.

    2017-07-01

    Shear Assisted Processing and Extrusion (ShAPE) -a novel processing route that combines high shear and extrusion conditions- was evaluated as a processing method to densify melt spun magnesium alloy (AZ91E) flake materials. This study illustrates the microstructural regimes and transitions in crystallographic texture that occur as a result of applying simultaneous linear and rotational shear during extrusion. Characterization of the flake precursor and extruded tube was performed using scanning and transmission electron microscopy, x-ray diffraction and microindentation techniques. Results show a unique transition in the orientation of basal texture development. Despite the high temperatures involved during processing, uniform grain refinement and material homogenization are observed. These results forecast the ability to implement the ShAPE processing approach for a broader range of materials with novel microstructures and high performance.

  4. Applications of the VLF-EM method for rapid Sumatran fault identification in Leuser national park, Aceh

    Science.gov (United States)

    Irwandi, Marwan, Muksin, Fashbir

    2017-07-01

    Aceh is an area which is located at volcanically active region and at the meeting point of the Eurasian and the Indo-Australian plates. Many mountain formations and folds are formed as a result of the meeting of these plates. One of the mountains in Aceh is The Gunung Leuser, the highest mountain in the province with altitude of 3,404 m. The active geodynamic conditions could lead to the formation of potentially active faults which produce earthquakes. Due to safety reason, there are few researches done to identify active faults in the LE (Leuser Ecosystem). Therefore, we propose a preliminary study to identify morphological patterns of the fault system from the topography data of SRTM (Shuttle Radar Topography Mission). Having obtained the approximate location of fault, then a Very Low Frequency method is applied to determine the detail characteristic of the fault. This method can determine the subsurface structure to a depth of 50 m without digging or drilling. In this study, we measure three profiles with length of each profile of 12-16 km. Along profile 1, the VLF data fluctuated due to relatively high iron deposition along the line. For profile 2, the results are very consistent with the adjacent to the fault Blangkejeren which is the main part of the Sumatran Fault. Profile 3 Lokop - Kutacane fault also shows the correction of the topography. In general, VLF method is relatively influenced by noise as the consequences of the passive electromagnetic measurement. Thus, it is important to develop an analysis method of VLF data that includes the topographical correction so that better lateral anomaly map can be created.

  5. Fault weakening and earthquake instability by powder lubrication

    Science.gov (United States)

    Reches, Z.; Lockner, D.A.

    2010-01-01

    Earthquake instability has long been attributed to fault weakening during accelerated slip1, and a central question of earthquake physics is identifying the mechanisms that control this weakening2. Even with much experimental effort2-12, the weakening mechanisms have remained enigmatic. Here we present evidence for dynamic weakening of experimental faults that are sheared at velocities approaching earthquake slip rates. The experimental faults, which were made of room-dry, solid granite blocks, quickly wore to form a fine-grain rock powder known as gouge. At modest slip velocities of 10-60mms-1, this newly formed gouge organized itself into a thin deforming layer that reduced the fault's strength by a factor of 2-3. After slip, the gouge rapidly 'aged' and the fault regained its strength in a matter of hours to days. Therefore, only newly formed gouge can weaken the experimental faults. Dynamic gouge formation is expected to be a common and effective mechanism of earthquake instability in the brittle crust as (1) gouge always forms during fault slip5,10,12-20; (2) fault-gouge behaves similarly to industrial powder lubricants21; (3) dynamic gouge formation explains various significant earthquake properties; and (4) gouge lubricant can form for a wide range of fault configurations, compositions and temperatures15. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  6. Seismological Studies for Tensile Faults

    Directory of Open Access Journals (Sweden)

    Gwo-Bin Ou

    2008-01-01

    Full Text Available A shear slip fault, an equivalence of a double couple source, has often been assumed to be a kinematic source model in ground motion simulation. Estimation of seismic moment based on the shear slip model indicates the size of an earthquake. However, if the dislocation of the hanging wall relative to the footwall includes not only a shear slip tangent to the fault plane but also expansion and compression normal to the fault plane, the radiating seismic waves will feature differences from those out of the shear slip fault. Taking account of the effects resulting from expansion and compression to a fault plane, we can resolve the tension and pressure axes as well as the fault plane solution more exactly from ground motions than previously, and can evaluate how far a fault zone opens or contracts during a developing rupture. In addition to a tensile angle and Poisson¡¦s ratio for the medium, a tensile fault with five degrees of freedom has been extended from the shear slip fault with only three degrees of freedom, strike, dip, and slip.

  7. Efficacy of performing Warner-Bratzler and slice shear force on the same beef steak following rapid cooking.

    Science.gov (United States)

    Lorenzen, C L; Calkins, C R; Green, M D; Miller, R K; Morgan, J B; Wasser, B E

    2010-08-01

    The ability to perform Warner-Bratzler and slice shear force on the same beef top loin steak was investigated. Three, 2.54-cm steaks from top loins (n=99) were allotted to either Warner-Bratzler only (WBS), slice shear force only (SSF), or Warner-Bratzler and slice shear force (WBS/SSF). Steaks were thawed at 2 degrees C for 48h prior to cooking. Steaks were cooked to 71 degrees C using a conveyor convection oven and allowed to cool at room temperature for a minimum of 4h. Steaks allotted to WBS used six 1.27-cm cores and steaks allotted for WBS/SSF used four cores. Steaks allotted to SSF and WBS/SSF used one, 1 cm x 5 cm slice. Correlations among WBS and SSF for all steaks ranged from 0.49 to 0.69 (Pcorrelations were generated for steak location within the top loin, the relationships among WBS and SSF performed in the same steak ranged from 0.53 to 0.70 (P<0.05). These results indicate that it may be feasible to conduct WBS and SSF on the same top loin steak, and that the steak taken 2.54 cm from the 13th rib is the optimal location for this combination of procedures.

  8. Numerical model of formation of a 3-D strike-slip fault system

    Science.gov (United States)

    Chemenda, Alexandre I.; Cavalié, Olivier; Vergnolle, Mathilde; Bouissou, Stéphane; Delouis, Bertrand

    2016-01-01

    The initiation and the initial evolution of a strike-slip fault are modeled within an elastoplasticity constitutive framework taking into account the evolution of the hardening modulus with inelastic straining. The initial and boundary conditions are similar to those of the Riedel shear experiment. The models first deform purely elastically. Then damage (inelastic deformation) starts at the model surface. The damage zone propagates both normal to the forming fault zone and downwards. Finally, it affects the whole layer thickness, forming flower-like structure in cross-section. At a certain stage, a dense set of parallel Riedel shears forms at shallow depth. A few of these propagate both laterally and vertically, while others die. The faults first propagate in-plane, but then rapidly change direction to make a larger angle with the shear axis. New fault segments form as well, resulting in complex 3-D fault zone architecture. Different fault segments accommodate strike-slip and normal displacements, which results in the formation of valleys and rotations along the fault system.

  9. Cenozoic metamorphism along the Shan Scarp (Myanmar): Evidences for ductile shear along the Sagaing Fault or the northward migration of the Eastern Himalayan Syntaxis?

    Science.gov (United States)

    Bertrand, Guillaume; Rangin, Claude; Maluski, Henri; Han, Tin Aung; Thein, Myint; Myint, Ohn; Maw, Win; Lwin, San

    The Mogok metamorphic belt, exposed along the N-S trending Shan scarp and Sagaing fault, in the eastern part of Myanmar, has been regarded as Paleozoic to Precambrian for a long time. New observations in the Shan scarp area, close to the Sagaing fault, from Thaton in the south to Mandalay in the north, allowed us to collect samples of high grade metamorphic and intrusive rocks that have been analyzed by 40Ar/39Ar step heating method. The 13 samples we analyzed provide Oligocene to Lower Miocene ages for this metamorphism. Oriented thin sections and field observations suggest that this metamorphism was caused by a NNW-SSE to N-S ductile extension. Therefore, we suggest that this metamorphism is not directly related to the Sagaing fault, but could be instead related to the northward migration of the eastern Himalayan syntaxis, characterized by crustal thinning, resulting from the India-Asia oblique collision.

  10. Deformation Localization and Shear Fracture of a Rapidly Solidified Al-Fe-V-Si Alloy at Elevated Temperature

    Institute of Scientific and Technical Information of China (English)

    Yongbo XU

    2007-01-01

    The tensile and fatigue behavior of a dispersoid strengthened, powder metallurgy Al-Fe-V-Si alloy at ambient and elevated temperatures was investigated. The results show that the strength and ductility of the alloy decrease significantly with increasing temperature and decreasing strain rate. Micro-structural examinations reveal that this change in mechanical behavior with increasing temperature is related to the mode of deformation of the alloy. Further observations show that localized shear deformation is responsible for the losses in both strength and ductility of the alloy at elevated temperature.

  11. Slip heterogeneity and directivity of the ML 6.0, 2016, Amatrice earthquake estimated with rapid finite-fault inversion

    Science.gov (United States)

    Tinti, E.; Scognamiglio, L.; Michelini, A.; Cocco, M.

    2016-10-01

    On 24 August 2016 a magnitude ML 6.0 occurred in the Central Apennines (Italy) between Amatrice and Norcia causing nearly 300 fatalities. The main shock ruptured a NNW-SSE striking, WSW dipping normal fault. We invert waveforms from 26 three-component strong motion accelerometers, filtered between 0.02 and 0.5 Hz, within 45 km from the fault. The inferred slip distribution is heterogeneous and characterized by two shallow slip patches updip and NW from the hypocenter, respectively. The rupture history shows bilateral propagation and a relatively high rupture velocity (3.1 km/s). The imaged rupture history produced evident directivity effects both N-NW and SE of the hypocenter, explaining near-source peak ground motions. Fault dimensions and peak slip values are large for a moderate-magnitude earthquake. The retrieved rupture model fits the recorded ground velocities up to 1 Hz, corroborating the effects of rupture directivity and slip heterogeneity on ground shaking and damage pattern.

  12. Design, operation and validation of a new fluid-sealed direct shear apparatus capable of monitoring fault-related fluid flow to large displacements

    NARCIS (Netherlands)

    Giger, S.B.; Clennell, M.B.; Harbers, C.; Clark, P.; Ricchetti, M.; Heege, J.H. ter; Wassing, B.B.T.; Orlic, B.

    2011-01-01

    A new type of direct shear apparatus has been developed to allow for deformation of large and intact rock samples under fluid-sealed conditions. The sealed cell was specifically designed to monitor changes to fluid flow across the evolving rupture surface to large displacements (=120. mm), and effec

  13. Microstructural features of fault gouges from Tianjingshan-Xiangshan fault zone and their geological implications

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Detailed observation of the microstructural features of 11 fault gouge and 3 fault breccia samples collected from Tianjingshan-Xiangshan fault zone has revealed that fault gouge can be classified into 3 types: flow banded granular gouge, foliated gouge and massive gouge. The determination of the shape preferred orientation (SPO) of survivor grains in fault gouges indicates that the foliated gouge displays a profound SPO inclined to the shear zone boundary, similar to the P-foliation; flow banded granular gouge displays a SPO parallel to the shear zone boundary, while massive fault gouge and fault breccia display a random SPO. All these fault gouges fall in different fields of shear rate ternary diagram.

  14. Broad belts of shear zones: The common form of surface rupture produced by the 28 June 1992 Landers, California, earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.M.; Cruikshank, K.M. [Geological Survey, Denver, CO (United States)]|[Purdue Univ., West Lafayette, IN (United States). Richard H. Jahns Engineering Geology Lab.; Fleming, R.W. [Geological Survey, Denver, CO (United States)

    1993-12-31

    Surface rupturing during the 28 June 1992, Landers, California earthquake, east of Los Angeles, accommodated right-lateral offsets up to about 6 m along segments of distinct, en echelon fault zones with a total length of about 80 km. The offsets were accommodated generally not by faults -- distinct slip surfaces -- but rather by shear zones, tabular bands of localized shearing. In long, straight stretches of fault zones at Landers the rupture is characterized by telescoping of shear zones and intensification of shearing: broad shear zones of mild shearing, containing narrow shear zones of more intense shearing, containing even-narrower shear zones of very intense shearing, which may contain a fault. Thus the ground ruptured across broad belts of shearing with subparallel walls, oriented NW. Each broad belt consists of a broad zone of mild shearing, extending across its entire width (50 to 200 m), and much narrower (a few m wide) shear zones that accommodate most of the offset of the belt and are portrayed by en echelon tension cracks. In response to right-lateral shearing, the slices of ground bounded by the tension cracks rotated in a clockwise sense, producing left lateral shearing, and the slices were forced against the walls of the shear zone, producing thrusting. Even narrower shear zones formed within the narrow shear zones, and some of these were faults. Although the narrower shear zones probably are indicators to right-lateral fault segments at depth, the surface rupturing during the earthquake is characterized not by faulting, but by zones of shearing at various scales. Furthermore, understanding of the formation of the shear zones may be critical to understanding of earthquake faulting because, where faulting is associated with the formation of a shear zone, the faulting occurs late in the development of the shear zone. The faulting occurs after a shear zone or a belt of shear zones forms.

  15. Early Alleghanian oblique dextral extension and magmatism along the Modoc fault zone, eastern Appalachian Piedmont, SC-GA

    Energy Technology Data Exchange (ETDEWEB)

    Sacks, P.E. (Western Michigan Univ., Kalamazoo, MI (United States). Geology); Secor, D.T. Jr. (Univ. of South Carolina, Columbia, SC (United States). Geological Sciences); Maher, H.D. Jr. (Univ. of Nebraska, Omaha, NE (United States). Geography and Geology); Wright, J. (Rice Univ., Houston, TX (United States). Geology and Geophysics); Dallmeyer, R.D. (Univ. of Georgia, Athens, GA (United States). Geology)

    1993-03-01

    The Modoc fault zone is a prominent zone of simple shear that has been mapped for 250 km from near Columbia, SC to the Ocmulgee River, in central GA. The steeply northwest-dipping fault zone is up to 5 km wide and contains variably mylonitic paragneiss and synkinematic sheets of mylonitic granite. Rotated tension gashes, reverse-slip-slip-crenulations, and asymmetric porphyroclasts in the fault zone are interpreted to indicate oblique dextral and normal movement. U/Pb zircon ages of 315--300 Ma yielded by some of these granite sheets are interpreted to date the time of movement on the Modoc fault zone, relatively early during the Alleghanian orogeny (ca 330--265Ma). Concurrent with movement along the Modoc fault zone, granite bodies (dated at 320--300 Ma) were intruded into both the hangingwall and the footwall sides of the fault. Cooling ages of ca 308 Ma (U/Pb monazite) and ca 305--288 Ma (40Ar/39Ar hornblende) from footwall rocks near the Savannah River indicate rapid cooling from temperatures above 700 starting with movement along the Modoc fault zone. Published geobarometry results suggest that footwall rocks were uplifted from depths of ca 29km and juxtaposed next to hangingwall rocks at depths of ca 11km by movement along the Modoc fault zone. Taken together, the crustal omission, uplift and rapid cooling of the footwall blocks, and the oblique normal sense of shear indicate at least a component of crustal extension along the Modoc fault zone. Intrusion of granite into and adjacent to the fault indicates magmatism accompanied movement on the fault at ca 315--300 Ma. Regardless of tectonic mechanism, extension associated with either crustal delamination or dextral transcurrent motion of accreted terranes, it is clear that crustal extension and magmatism was important during early phases of the Alleghanian orogeny in this part of the orogen, and it may have also been important elsewhere.

  16. Study on fault induced rock bursts

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-hua; DOU Lin-ming; LU Cai-ping; MU Zong-long; CAO An-ye

    2008-01-01

    In order to study the rules of rock bursts caused by faults by means of mechanical analysis of a roof rock-mass balanced structure and numerical simulation about fault slip destabilization, the effect of coal mining operation on fault plane stresses and slip displacement were studied. The results indicate that the slip displacement sharply increases due to the decrease of normal stress and the increase of shear stress at the fault plane when the working face advances from the footwall to the fault itself, which may induce a fault rock burst. However, this slip displacement will be very small due to the increase of normal stress and the decrease of shear stress when the working face advances from the hanging wall to the fault itself, which results in a very small risk of a fault rock burst.

  17. Shear zones developed between extensional and compressional tectonic regimes: recent deformation of the Burdur Fethiye Shear Zone as a case study

    Science.gov (United States)

    Elitez, İrem; Yaltırak, Cenk; Aktuǧ, Bahadır

    2016-04-01

    -10 mm/yr in the south. This data indicate that while the African Plate is subducting beneath the Western Anatolia at a rapid rate along the Hellenic Trench, the subduction is slow or locked beneath the Western Taurides. Consequently, the Burdur-Fethiye Shear Zone is an intracontinental transform zone between the extensional and compressional regimes and also propagation of the STEP fault zone into the upper plate. This study also shows how the deep structures like the continuation of the STEP fault between Hellenic and Cyprus arcs into the continental area can come into play as a shear zone on the brittle crust.

  18. A Large Scale Automatic Earthquake Location Catalog in the San Jacinto Fault Zone Area Using An Improved Shear-Wave Detection Algorithm

    Science.gov (United States)

    White, M. C. A.; Ross, Z.; Vernon, F.; Ben-Zion, Y.

    2015-12-01

    UC San Diego's ANZA network began archiving event-triggered data in 1982. As a result of improved recording technology, continuous waveform data archives are available starting in 1998. This continuous dataset, from 1998-present, represents a wealth of potential insight into spatio-temporal seismicity patterns, earthquake physics and mechanics of the San Jacinto Fault Zone. However, the volume of data renders manual analysis costly. In order to investigate the characteristics of the data in space and time, an automatic earthquake location catalog is needed. To this end, we apply standard earthquake signal processing techniques to the continuous data to detect first-arriving P-waves in combination with a recently developed S-wave detection algorithm. The resulting dataset of arrival time observations are processed using a grid association algorithm to produce initial absolute locations which are refined using a location inversion method that accounts for 3-D velocity heterogeneities. Precise relative locations are then derived from the refined absolute locations using the HypoDD double-difference algorithm. Moment magnitudes for the events are estimated from multi-taper spectral analysis. A >650% increase in the S:P pick ratio is achieved using the updated S-wave detection algorithm, when compared to the currently available catalog for the ANZA network. The increased number of S-wave observations leads to improved earthquake location accuracy and reliability (ie. less false event detections). Various aspects of spatio-temporal seismicity patterns and size distributions are investigated. Updated results will be presented at the meeting.

  19. Fault-gouge dating in the Southern Alps, New Zealand

    Science.gov (United States)

    Ring, Uwe; Uysal, I. Tonguc; Glodny, Johannes; Cox, Simon C.; Little, Tim; Thomson, Stuart N.; Stübner, Konstanze; Bozkaya, Ömer

    2017-10-01

    We report two 40Ar/39Ar illite ages from fault gouge directly above the current trace of the Alpine Fault in New Zealand at Gaunt Creek (1.36 ± 0.27 Ma) and Harold Creek (1.18 ± 0.47 Ma), and one 40Ar/39Ar illite age from fault gouge from the Two Thumbs Fault on the east side of the Southern Alps. Metamorphic muscovite clasts inherited into the Alpine Fault gouge yielded 40Ar/39Ar ages of 2.04 ± 0.3 Ma at Gaunt Creek and 11.46 ± 0.47 Ma at Harold Creek. We also report Rb-Sr muscovite-based multimineral ages of Alpine Schist mylonite adjacent to the dated fault gouge at Harold Creek (13.1 ± 4.3 Ma) and Gaunt Creek (8.9 ± 3.2 Ma). 40Ar/39Ar muscovite ages from the Gaunt Creek mylonite yielded plateau ages of 1.47 ± 0.08 Ma and 1.57 ± 0.15 Ma. Finally, we report zircon fission track (0.79 ± 0.11 and 0.81 ± 0.17 Ma) and zircon (U-Th)/He ages (0.35 ± 0.03 and 0.4 ± 0.06 Ma) from Harold Creek. We interpret the fault gouge ages to date growth of newly formed illite during gouge formation at temperatures of 300-350 °C towards the base of the seismogenic zone. Simple backcalculation using current uplift/exhumation and convergence rates, and dip angles of 45-60° at the Alpine Fault support that interpretation. We infer that the fault gouge ages record faulting and gouge formation as the rocks passed very rapidly through the brittle-ductile transition zone on their way to the surface. Rb-Sr and 40Ar/39Ar ages on muscovite from Alpine Schist mylonite date muscovite growth at 11 Ma together with a younger phase of cooling/shearing at 1.5-2 Ma. Our ages from the Alpine Schist indicate extremely rapid cooling exceeding 200 °C/Ma. The fault gouge age from the Two Thumbs Fault is significantly too old to have formed as part of the late Neogene/Quaternary Southern Alps evolution.

  20. Active fault diagnosis by temporary destabilization

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2006-01-01

    An active fault diagnosis method for parametric or multiplicative faults is proposed. The method periodically adds a term to the controller that for a short period of time renders the system unstable if a fault has occurred, which facilitates rapid fault detection. An illustrative example is given....

  1. DEM simulation of growth normal fault slip

    Science.gov (United States)

    Chu, Sheng-Shin; Lin, Ming-Lang; Nien, Wie-Tung; Chan, Pei-Chen

    2014-05-01

    Slip of the fault can cause deformation of shallower soil layers and lead to the destruction of infrastructures. Shanchiao fault on the west side of the Taipei basin is categorized. The activities of Shanchiao fault will cause the quaternary sediments underneath the Taipei basin to become deformed. This will cause damage to structures, traffic construction, and utility lines within the area. It is determined from data of geological drilling and dating, Shanchiao fault has growth fault. In experiment, a sand box model was built with non-cohesive sand soil to simulate the existence of growth fault in Shanchiao Fault and forecast the effect on scope of shear band development and ground differential deformation. The results of the experiment showed that when a normal fault containing growth fault, at the offset of base rock the shear band will develop upward along with the weak side of shear band of the original topped soil layer, and this shear band will develop to surface much faster than that of single top layer. The offset ratio (basement slip / lower top soil thickness) required is only about 1/3 of that of single cover soil layer. In this research, it is tried to conduct numerical simulation of sand box experiment with a Discrete Element Method program, PFC2D, to simulate the upper covering sand layer shear band development pace and scope of normal growth fault slip. Results of simulation indicated, it is very close to the outcome of sand box experiment. It can be extended to application in water pipeline project design around fault zone in the future. Keywords: Taipei Basin, Shanchiao fault, growth fault, PFC2D

  2. 近断层轴向速度地震效应对RC柱抗剪性能的影响分析%Shear Resistant Performance of RC Columns Subjected to Axial Near-Fault Velocity Pulse-Like Earthquake Action

    Institute of Scientific and Technical Information of China (English)

    周靖; 田淞午; 赵卫锋

    2012-01-01

    研究近断层轴向速度脉冲地震效应对钢筋混凝土(RC)柱抗剪性能的影响.以竖向和水平向恒定振动周期的单个RC柱为分析对象,采用台湾集集地震中3组断层距18条速度脉冲型地震动记录,通过非线性动力时程分析方法,研究断层距、竖向与水平加速度谱值比、柱初始轴压比和剪跨比对RC柱抗剪性能的影响规律.结果表明:轴向速度脉冲地震效应对RC柱的抗剪性能有很大影响;抗剪性能系数随反应谱比值增大而减小,中等初始轴压比与断层距,以及剪跨比与近断层距(0~10 km)对柱抗剪性能有交互影响.%The shear-resistant behavior of reinforced concrete (RC) columns subjected to axial velocity pulse-like earthquake action is studied. Single RC columns with the constant vertical and horizontal fundamental period are used to investigate the influence of fault distance, vertical and horizontal acceleration spectral ratio, initial axial load ratio and shear span ratio on shear resistant behavior of RC columns. Eighteen velocity pulse-like earthquake records divided into three fault distance from CHI-CHI earthquake are taken as excitations to execute nonlinear dynamic time history analysis. The results demonstrate that axial velocity pulse-like earthquake action has evident effects on the shear resistant performance of RC columns. Shear-resistant behavior factor decreases with increasing in spectral ratio, and medium initial axial load ratio and fault distance, shear span ratio and near fault distance (0~10 km) have coupling influence on the shear-resistant behavior of RC columns.

  3. Elevated time-dependent strengthening rates observed in San Andreas Fault drilling samples

    Science.gov (United States)

    Ikari, Matt J.; Carpenter, Brett M.; Vogt, Christoph; Kopf, Achim J.

    2016-09-01

    The central San Andreas Fault in California is known as a creeping fault, however recent studies have shown that it may be accumulating a slip deficit and thus its seismogenic potential should be seriously considered. We conducted laboratory friction experiments measuring time-dependent frictional strengthening (healing) on fault zone and wall rock samples recovered during drilling at the San Andreas Fault Observatory at Depth (SAFOD), located near the southern edge of the creeping section and in the direct vicinity of three repeating microearthquake clusters. We find that for hold times of up to 3000 s, frictional healing follows a log-linear dependence on hold time and that the healing rate is very low for a sample of the actively shearing fault core, consistent with previous results. However, considering longer hold times up to ∼350,000 s, the healing rate accelerates such that the data for all samples are better described by a power law relation. In general, samples having a higher content of phyllosilicate minerals exhibit low log-linear healing rates, and the notably clay-rich fault zone sample also exhibits strong power-law healing when longer hold times are included. Our data suggest that weak faults, such as the creeping section of the San Andreas Fault, can accumulate interseismic shear stress more rapidly than expected from previous friction data. Using the power-law dependence of frictional healing on hold time, calculations of recurrence interval and stress drop based on our data accurately match observations of discrete creep events and repeating Mw = 2 earthquakes on the San Andreas Fault.

  4. Extreme hydrothermal conditions at an active plate-bounding fault.

    Science.gov (United States)

    Sutherland, Rupert; Townend, John; Toy, Virginia; Upton, Phaedra; Coussens, Jamie; Allen, Michael; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin; Boles, Austin; Boulton, Carolyn; Broderick, Neil G R; Janku-Capova, Lucie; Carpenter, Brett M; Célérier, Bernard; Chamberlain, Calum; Cooper, Alan; Coutts, Ashley; Cox, Simon; Craw, Lisa; Doan, Mai-Linh; Eccles, Jennifer; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Howarth, Jamie; Jacobs, Katrina; Jeppson, Tamara; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Timothy; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Massiot, Cécile; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luiz; Morgan, Chance; Mori, Hiroshi; Niemeijer, Andre; Nishikawa, Osamu; Prior, David; Sauer, Katrina; Savage, Martha; Schleicher, Anja; Schmitt, Douglas R; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Williams, Jack; Woodman, Nick; Zimmer, Martin

    2017-06-01

    Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300-450 degrees Celsius, usually found at depths greater than 10-15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional-mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.

  5. Extreme hydrothermal conditions at an active plate-bounding fault

    Science.gov (United States)

    Sutherland, Rupert; Townend, John; Toy, Virginia; Upton, Phaedra; Coussens, Jamie; Allen, Michael; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin; Boles, Austin; Boulton, Carolyn; Broderick, Neil G. R.; Janku-Capova, Lucie; Carpenter, Brett M.; Célérier, Bernard; Chamberlain, Calum; Cooper, Alan; Coutts, Ashley; Cox, Simon; Craw, Lisa; Doan, Mai-Linh; Eccles, Jennifer; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Howarth, Jamie; Jacobs, Katrina; Jeppson, Tamara; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Timothy; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Massiot, Cécile; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luiz; Morgan, Chance; Mori, Hiroshi; Niemeijer, Andre; Nishikawa, Osamu; Prior, David; Sauer, Katrina; Savage, Martha; Schleicher, Anja; Schmitt, Douglas R.; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Williams, Jack; Woodman, Nick; Zimmer, Martin

    2017-06-01

    Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300-450 degrees Celsius, usually found at depths greater than 10-15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional-mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.

  6. Fault Estimation

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.

    2002-01-01

    This paper presents a range of optimization based approaches to fault diagnosis. A variety of fault diagnosis prob-lems are reformulated in the so-called standard problem setup introduced in the literature on robust control. Once the standard problem formulations are given, the fault diagnosis pr...... problems can be solved by standard optimization tech-niques. The proposed methods include: (1) fault diagnosis (fault estimation, (FE)) for systems with model uncertainties; (2) FE for systems with parametric faults, and (3) FE for a class of nonlinear systems.......This paper presents a range of optimization based approaches to fault diagnosis. A variety of fault diagnosis prob-lems are reformulated in the so-called standard problem setup introduced in the literature on robust control. Once the standard problem formulations are given, the fault diagnosis...

  7. Fan-structure waves in shear ruptures

    Science.gov (United States)

    Tarasov, Boris

    2016-04-01

    This presentation introduces a recently identified shear rupture mechanism providing a paradoxical feature of hard rocks - the possibility of shear rupture propagation through the highly confined intact rock mass at shear stress levels significantly less than frictional strength. According to the fan-mechanism the shear rupture propagation is associated with consecutive creation of small slabs in the fracture tip which, due to rotation caused by shear displacement of the fracture interfaces, form a fan-structure representing the fracture head. The fan-head combines such unique features as: extremely low shear resistance (below the frictional strength), self-sustaining stress intensification in the rupture tip (providing easy formation of new slabs), and self-unbalancing conditions in the fan-head (making the failure process inevitably spontaneous and violent). An important feature of the fan-mechanism is the fact that for the initial formation of the fan-structure an enhanced local shear stress is required, however, after completion of the fan-structure it can propagate as a dynamic wave through intact rock mass at shear stresses below the frictional strength. Paradoxically low shear strength of pristine rocks provided by the fan-mechanism determines the correspondingly low transient strength of the lithosphere, which favours generation of new earthquake faults in the intact rock mass adjoining pre-existing faults in preference to frictional stick-slip instability along these faults. The new approach reveals an alternative role of pre-existing faults in earthquake activity: they represent local stress concentrates in pristine rock adjoining the fault where special conditions for the fan-mechanism nucleation are created, while further dynamic propagation of the new fault (earthquake) occurs at low field stresses even below the frictional strength.

  8. EFFECT OF DIFFERENT TYPES OF NEAR-FAULT PULSE GROUND MOTION ON FRAME-SHEAR WALL STRUCTURE%不同类型近断层脉冲型地震动对框架-剪力墙结构的影响

    Institute of Scientific and Technical Information of China (English)

    李明; 刘勇; 孙哲哲; 袁赫

    2015-01-01

    近断层脉冲型地震动对结构有很大的潜在破坏作用.为分析不同类型该类地震动对框架剪力墙结构地震反应的影响,搜集了近断层双脉冲和多脉冲型地震动,计算了这些地震动的加速度反应谱,及其引起的一个22层钢筋混凝土框架-剪力墙结构的时程反应.对比了双脉冲和多脉冲型地震动的平均弹性加速度反应谱,及其引起框架-剪力墙结构的平均基底剪力、平均最大层间位移角、平均顶层位移和平均结构整体破坏指数.结果表明:近断层双脉冲型地震动的平均弹性加速度反应谱谱值均接近或大于近断层多脉冲型地震动;近断层双脉冲型地震动引起的框架-剪力墙结构平均基底剪力、平均最大层间位移角、平均顶层位移和平均结构整体破坏指数均不小于近断层多脉冲型地震动.由此说明,在统计意义上,当分析近断层脉冲型地震动对框架-剪力墙结构破坏作用的影响时,输入地震动可近似仅考虑双脉冲型地震动.%Near-fault pulse ground motion has large potential damage effect on structure.In order to analyze the effect of this kind of ground motion on frame-shear wall structures,near-fault double-pulse-type and multi-pulse-type ground motion are collected.Their elastic acceleration response spectra and the time history response of a 22-floor concrete reinforced frame-shear wall structure induced by them are calculated.The average elastic acceleration response spectra of the near-fault double-pulse-type ground motion is compared with that of the multi-pulse-type ground motion.The average base shear,the average maximum storey-drift-angle,the average top floor displacement,and the average whole structure damage index induced by the near-fault double-pulse-type ground motion are also compared with those induced by the multi-pulse-type ground motion.The results show:the average elastic acceleration response spectra of the near-fault double

  9. Fault system polarity: A matter of chance?

    Science.gov (United States)

    Schöpfer, Martin; Childs, Conrad; Manzocchi, Tom; Walsh, John; Nicol, Andy; Grasemann, Bernhard

    2015-04-01

    Many normal fault systems and, on a smaller scale, fracture boudinage exhibit asymmetry so that one fault dip direction dominates. The fraction of throw (or heave) accommodated by faults with the same dip direction in relation to the total fault system throw (or heave) is a quantitative measure of fault system asymmetry and termed 'polarity'. It is a common belief that the formation of domino and shear band boudinage with a monoclinic symmetry requires a component of layer parallel shearing, whereas torn boudins reflect coaxial flow. Moreover, domains of parallel faults are frequently used to infer the presence of a common décollement. Here we show, using Distinct Element Method (DEM) models in which rock is represented by an assemblage of bonded circular particles, that asymmetric fault systems can emerge under symmetric boundary conditions. The pre-requisite for the development of domains of parallel faults is however that the medium surrounding the brittle layer has a very low strength. We demonstrate that, if the 'competence' contrast between the brittle layer and the surrounding material ('jacket', or 'matrix') is high, the fault dip directions and hence fault system polarity can be explained using a random process. The results imply that domains of parallel faults are, for the conditions and properties used in our models, in fact a matter of chance. Our models suggest that domino and shear band boudinage can be an unreliable shear-sense indicator. Moreover, the presence of a décollement should not be inferred on the basis of a domain of parallel faults only.

  10. Instantaneous stress release in fault surface asperities during mining-induced fault-slip

    Institute of Scientific and Technical Information of China (English)

    Atsushi Sainoki; Hani S. Mitri

    2016-01-01

    Fault-slip taking place in underground mines occasionally causes severe damage to mine openings as a result of strong ground motion induced by seismic waves arising from fault-slip. It is indicated from previous studies that intense seismic waves could be generated with the shock unloading of fault surface asperities during fault-slip. This study investigates the shock unloading with numerical simulation. A three-dimensional (3D) numerical model with idealized asperities is constructed with the help of discrete element code 3DEC. The idealization is conducted to particularly focus on simulating the shock unloading that previous numerical models, which replicate asperity degradation and crack development during the shear behavior of a joint surface in previous studies, fail to capture and simulate. With the numerical model, static and dynamic analyses are carried out to simulate unloading of asperities in the course of fault-slip. The results obtained from the dynamic analysis show that gradual stress release takes place around the center of the asperity tip at a rate of 45 MPa/ms for the base case, while an instantaneous stress release greater than 80 MPa occurs near the periphery of the asperity tip when the contact between the upper and lower asperities is lost. The instantaneous stress release becomes more intense in the vicinity of the asperity tip, causing tensile stress more than 20 MPa. It is deduced that the tensile stress could further increase if the numerical model is discretized more densely and analysis is carried out under stress conditions at a great depth. A model parametric study shows that in-situ stress state has a significant influence on the magnitude of the generated tensile stress. The results imply that the rapid stress release generating extremely high tensile stress on the asperity tip can cause intense seismic waves when it occurs at a great depth.

  11. Strain localization and evolving kinematic efficiency of initiating strike-slip faults within wet kaolin experiments

    Science.gov (United States)

    Hatem, Alexandra E.; Cooke, Michele L.; Toeneboehn, Kevin

    2017-08-01

    Using wet kaolin experiments, we document the evolution of strain localization during strike-slip fault maturation under variable boundary conditions (pre-existing fault, depth of and distribution of basal shear). While the nature of the basal shear influences strain localization observed at the clay surface, similarities between experiments reveal a general conceptual model of strain accommodation. First, shear strain is accommodated as distributed shear (Stage 0), then by development of echelon faults (Stage I), then by interaction, lengthening and propagation of those echelon faults (Stage II) and, finally, by slip along through-going fault (Stage III). Stage II serves as a transitory period when the system reorganizes after sufficient strain localization. Here, active fault system complexity is maximized as faults link producing apparent rotation of active fault surfaces without material rotation. As the shear zone narrows, off-fault deformation decreases while fault slip and kinematic efficiency increases. We quantify kinematic efficiency as the ratio of fault slip to applied displacement. All fault systems reach a steady-state efficiency in excess of 80%. Despite reducing off-fault deformation, the through-going fault maintains <1.5 cm structural irregularities (i.e., stepovers), which suggests that small (<3 km) stepovers may persist along mature, efficient faults in the crust.

  12. Active fault traces along Bhuj Fault and Katrol Hill Fault, and trenching survey at Wandhay, Kachchh, Gujarat, India

    Indian Academy of Sciences (India)

    Michio Morino; Javed N Malik; Prashant Mishra; Chandrashekhar Bhuiyan; Fumio Kaneko

    2008-06-01

    Several new active fault traces were identified along Katrol Hill Fault (KHF).A new fault (named as Bhuj Fault,BF)that extends into the Bhuj Plain was also identified.These fault traces were identified based on satellite photo interpretation and field survey.Trenches were excavated to identify the paleoseismic events,pattern of faulting and the nature of deformation.New active fault traces were recognized about 1 km north of the topographic boundary between the Katrol Hill and the plain area.The fault exposure along the left bank of Khari River with 10 m wide shear zone in the Mesozoic rocks and showing displacement of the overlying Quaternary deposits is indicative of continued tectonic activity along the ancient fault.The E-W trending active fault traces along the KHF in the western part changes to NE-SW or ENE-WSW near Wandhay village. Trenching survey across a low scarp near Wandhay village reveals three major fault strands F1, F2,and F3.These fault strands displaced the older terrace deposits comprising Sand,Silt and Gravel units along with overlying younger deposits from units 1 to 5 made of gravel,sand and silt. Stratigraphic relationship indicates at least three large magnitude earthquakes along KHF during Late Holocene or recent historic past.

  13. The Observation of Fault Finiteness and Rapid Velocity Variation in Pnl Waveforms for the Mw 6.5, San Simeon, California Earthquake

    Science.gov (United States)

    Konca, A. O.; Ji, C.; Helmberger, D. V.

    2004-12-01

    We observed the effect of the fault finiteness in the Pnl waveforms from regional distances (4° to 12° ) for the Mw6.5 San Simeon Earthquake on 22 December 2003. We aimed to include more of the high frequencies (2 seconds and longer periods) than the studies that use regional data for focal solutions (5 to 8 seconds and longer periods). We calculated 1-D synthetic seismograms for the Pn_l portion for both a point source, and a finite fault solution. The comparison of the point source and finite fault waveforms with data show that the first several seconds of the point source synthetics have considerably higher amplitude than the data, while finite fault does not have a similar problem. This can be explained by reversely polarized depth phases overlapping with the P waves from the later portion of the fault, and causing smaller amplitudes for the beginning portion of the seismogram. This is clearly a finite fault phenomenon; therefore, can not be explained by point source calculations. Moreover, the point source synthetics, which are calculated with a focal solution from a long period regional inversion, are overestimating the amplitude by three to four times relative to the data amplitude, while finite fault waveforms have the similar amplitudes to the data. Hence, a moment estimation based only on the point source solution of the regional data could have been wrong by half of magnitude. We have also calculated the shifts of synthetics relative to data to fit the seismograms. Our results reveal that the paths from Central California to the south are faster than to the paths to the east and north. The P wave arrival to the TUC station in Arizona is 4 seconds earlier than the predicted Southern California model, while most stations to the east are delayed around 1 second. The observed higher uppermost mantle velocities to the south are consistent with some recent tomographic models. Synthetics generated with these models significantly improves the fits and the

  14. Mechanical Role of Fluids in Earthquakes and Faulting

    Science.gov (United States)

    Rice, J. R.

    2005-12-01

    Following the contributions of Hubbert and Rubey, the level of ambient pore pressure is of accepted importance for understanding the static frictional strength of faults. There are also important dynamical interactions between pore fluids and faulting. Some of those are addressed here, with examples to be chosen from the following: (1) Pore fluid presence at full saturation promotes strong localization in rapidly shearing granular materials, even in cases for which the friction coefficient increases rapidly with shearing rate [see Rice, Rudnicki and Tsai, this meeting]. (2) Thermal pressurization of earthquake faults during seismic slip may provide the primary weakening process during earthquakes in mature crustal fault zones; it provides a plausible basic explanation, based on geological and laboratory data, of the magnitudes of the fracture energies of earthquakes as inferred independently from seismological data [see web link below]. The process also seems to be active in some large landslides. (3) Pore pressure alterations are induced by rapid mode II slip on fault planes when they have bordering gouge or damage zones which are of dissimilar permeability and/or poroelastic properties. This provides a fuller, new perspective on effects of material dissimilarity across a slip surface on altering the effective normal stress and thus interacting with dynamic rupture [see Rudnicki and Rice, this meeting]. (4) Gouge dilatancy associated with slip-rate increases induces suction in the pore fluid, so as to partially stabilize faults against earthquake nucleation, and also to slow rupture propagation into shallow fault regions. An open question is that of when and if shear heating acts to aid nucleation; the effect seems negligible for nucleation under slow tectonic loading but may be important for nucleation driven by sudden steps in stress. (5) Permeability determines pore pressure gradients for given flow rates, but increases in pore pressure cause increases in

  15. Active fault survey on the Tanlu fault zone in Laizhou Bay

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-cai; YANG Xi-ha; LI Chang-chuan; DENG Qi-dong; DU Xian-song; CHAO Hong-tai; WU Zi-quan; XIAO Lan-xi; SUN Zhao-ming; MIN Wei; LING Hong

    2006-01-01

    Shallow-depth acoustic reflection profiling survey has been conducted on the Tanlu fault zone in Laizhou Bay. It is found that the Tanlu fault zone is obviously active during the late Quaternary and it is still the dominating structure in this region. The Tanlu fault zone consists of two branches. The KL3 fault of the western branch is composed of several high angle normal faults which had been active during the period from the latest Pleistocene to early Holocene, dissected by a series of northeast or approximate east-west trending fault which leaped sediment of the late Pleistocene. The Longkou fault of the eastern branch consists of two right-laterally stepped segments. Late Quaternary offsets and growth strata developed along the Tanlu fault zone verify that the fault zone retained active in the latest Pleistocene to the early Holocene. The Anqiu-Juxian fault that passes through the middle of Shandong and corresponds to the Longkou fault is composed of a series of right-laterally stepped segments. The active faults along the eastern branch of the Tanlu fault zone from the Laizhou bay to the north of Anqiu make up a dextral simple shear deformation zone which is characterized by right-lateral strike-slip movement with dip-slip component during the late Quaternary.

  16. Self-Preservation of the Drop Size Distribution Function and Variation in the Stability Ratio for Rapid Coalescence of a Polydisperse Emulsion in a Simple Shear Field

    Science.gov (United States)

    Mishra; Kresta; Masliyah

    1998-01-01

    Coalescence of oil-in-water emulsion droplets in a simple shear flow produced by a Couette device is considered. A phase Doppler anemometer was used to measure the droplet size distribution as a function of time for shear rates ranging from 55 to 213 s-1 and for sodium chloride salt concentrations from 0.095 to 0.6 M. The initial droplet size distribution was log-normal. During the coalescence process, the size distribution was self-preserving in accordance with D. L. Swift and S. K. Friedlander's analysis [J. Colloid Sci. 19, 621 (1964)]. In the limiting case of negligible repulsive force due to the electric double layer, the calculated stability ratios, corrected for droplet polydispersity, agree well with the theoretical analyses of G. R. Zeichner and W. R. Schowalter [AIChE J. 23, 243 (1977)] and D. L. Feke and W. R. Schowalter [J. Fluid Mech. 133, 17 (1983)] for the case of solid particle aggregation. The good agreement between the stability ratios for the case of coalescence of droplets in the present study and those for aggregation of solid particles indicates that resistance to film deformation and thinning present in the case of coalescence is not important compared with the collision process. Copyright 1998 Academic Press. Copyright 1998Academic Press

  17. Extreme multi-millennial slip rate variations on the Garlock fault, California: Strain super-cycles, potentially time-variable fault strength, and implications for system-level earthquake occurrence

    Science.gov (United States)

    Dolan, James F.; McAuliffe, Lee J.; Rhodes, Edward J.; McGill, Sally F.; Zinke, Robert

    2016-07-01

    Pronounced variations in fault slip rate revealed by new measurements along the Garlock fault have basic implications for understanding how faults store and release strain energy in large earthquakes. Specifically, dating of a series of 26.0+3.5/-2.5 m fault offsets with a newly developed infrared-stimulated luminescence method shows that the fault was slipping at >14.0+2.2/-1.8 mm /yr, approximately twice as fast as the long-term average rate, during a previously documented cluster of four earthquakes 0.5-2.0 ka. This elevated late Holocene rate must be balanced by periods of slow or no slip such as that during the ca. 3300-yr-long seismic lull preceding the cluster. Moreover, whereas a comparison of paleoseismic data and stress modeling results suggests that individual Garlock earthquakes may be triggered by periods of rapid San Andreas fault slip or very large-slip events, the ;on-off; behavior of the Garlock suggests a longer-term mechanism that may involve changes in the rate of elastic strain accumulation on the fault over millennial time scales. This inference is consistent with most models of the geodetic velocity field, which yield slip-deficit rates that are much slower than the average latest Pleistocene-early Holocene (post-8-13 ka) Garlock slip rate of 6.5 ± 1.5 mm /yr. These observations indicate the occurrence of millennia-long strain ;super-cycles; on the Garlock fault that may be associated with temporal changes in elastic strain accumulation rate, which may in turn be controlled by variations in relative strength of the various faults in the Garlock-San Andreas-Eastern California Shear Zone fault system and/or changes in relative plate motion rates.

  18. Fault diagnosis

    Science.gov (United States)

    Abbott, Kathy

    1990-01-01

    The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to

  19. Experimental and microstructural investigations of frictional heating and fluidization in clay-rich fault gouge

    Science.gov (United States)

    Ujiie, K.; Nakakoji, T.; Tsutsumi, A.

    2011-12-01

    thermal pressurization nor water vaporization associated with frictional heating on fault gouges. The intimate correlation among frictional properties, gouge dilation and temperatures suggests that the dynamic weakening of the fault gouge is controlled by the production rate of water vaporization and the water vapor diffusivity. The wet tests show the rapid slip weakening, regardless of V; the peak friction is in the range of 0.3-0.5 and the stead-state friction of 0.1-0.2 is established almost immediately. However, the grain size segregation due to the Brazil-nut effect caused by the large difference in the dispersive pressure (P) is only observed in the fault gouge sheared at V=1.3 m/s. This is consistent with that P associated with granular collision in a granular-fluid shear flow is proportional to the square of the shear rate (i.e., Bagnold's law); the grain size segregation occurs in the gouge layer in which the shear rate is order of 10^3. Thus our experimental and microstructural studies demonstrate that the grain size segregation in the fault gouge can be new textural evidence for the fluidized flow at high shear rates.

  20. Fifty years of shear zones

    Science.gov (United States)

    Graham, Rodney

    2017-04-01

    We are here, of course, because 1967 saw the publication of John Ramsay's famous book. Two years later a memorable field trip from Imperial College to the Outer Hebrides saw John on a bleak headland on the coast of North Uist where a relatively undeformed metadolerite within Lewisian (Precambrian) gneisses contained ductile shear zones with metamorphic fabrics in amphibolite facies. One particular outcrop was very special - a shear zone cutting otherwise completely isotropic, undeformed metadolerite, with an incremental foliation starting to develop at 45° to the deformation zone, and increasing in intensity as it approached the shear direction. Here was proof of the process of simple shear under ductile metamorphic conditions - the principles of simple shear outlined in John Ramsay's 1967 book clearly visible in nature, and verified by Ramsay's mathematical proofs in the eventual paper (Ramsay and Graham, 1970). Later work on the Lewisian on the mainland of Scotland, in South Harris, in Africa, and elsewhere applied Ramsay's simple shear principles more liberally, more imprecisely and on larger scale than at Caisteal Odair, but in retrospect it documented what seems now to be the generality of mid and lower crustal deformation. Deep seismic reflection data show us that on passive margins hyper-stretched continental crust (whether or not cloaked by Seaward Dipping Reflectors) seems to have collapsed onto the mantle. Crustal faults mostly sole out at or above the mantle - so the Moho is a detachment- an 'outer marginal detachment', if you like, and, of course, it must be a ductile shear. On non-volcanic margins this shear zone forms the first formed ocean floor before true sea floor spreading gets going to create real oceanic crust. Gianreto Manatschal, Marcel Lemoine and others realised that the serpentinites described in parts of the Alps are exposed remnants of this ductile shear zone. Associated ophicalcite breccias tell of sea floor exposure, while high

  1. Coseismic conjugate faulting structures produced by the 2016 Mw 7.1 Kumamoto earthquake, Japan

    Science.gov (United States)

    Lin, Aiming; Chiba, Tatsuro

    2017-06-01

    Field investigations and analyses of airborne LiDAR data reveal that the 2016 Mw7.1 Kumamoto earthquake produced a ∼40-km-long surface rupture zone with a typical conjugate Riedel shearing fault structure along the pre-existing right-lateral strike-slip Hinagu-Futagawa Fault Zone (HFFZ). The conjugate Riedel shearing structure comprises two sets of coseismic shear fault zones that are oriented to NE-SW to ENE-WSW and WNW-ESE to E-W. The NE-SW to ENE-WSW-trending shear fault zone is characterized by R Riedel shear structures with right-lateral strike-slip displacement of up to 2.5 m, including left-stepping en echelon cracks (T-shear) and mole tracks (P-shear). In contrast, the WNW-ESE to E-W-trending shear fault zone is dominated by R‧ Riedel shear structures with left-lateral displacement of up to 1.3 m, including right-stepping en echelon tension cracks (T) and mole tracks (P), which are concentrated in a zone of <10 m within individual rupture zones. Our findings demonstrate that the coseismic conjugate Riedel shear faulting is mainly controlled by the pre-existing active strike-slip faults of HFFZ under the present E-W compressive stress in the study area, associated with the ongoing penetration of the Philippine Sea Plate into the Eurasian Plate.

  2. New age constraints on the evolution of the Karakorum Fault, West Tibet

    Science.gov (United States)

    Valli, F.; Arnaud, N.; Lacassin, R.; Paquette, J.; Leloup, P. H.; Li, H.; Tapponnier, P.; Guillot, S.; Deloule, E.; Maheo, G.; Xu, Z.

    2003-12-01

    Results of detailed mapping and dating of sheared rocks along southern fault-half helps assess the total offset, lifespan, slip-rate and geodynamic importance of the Karakorum Fault (KFZ). South of 33° N, along SW edge of Tashikang-Gar basin, active right-lateral normal faults, belonging to KFZ, exhume metamorphic and magmatic footwall rocks forming the SE termination of Ladakh-Karakorum range. Close to active fault, gneisses and mylonites are affected by strong ductile dextral shear and inter-layered with leucocratic melt veins sheared to various degrees. Several generations of veins are often observed on a same outcrop, with late, weakly deformed veins cutting highly sheared ones. This implies that anatexy and intrusion were coeval with dextral shearing. Direct dating of leucogranites reveals Oligo-Miocene formation ages. U/Pb thermo-ionization dating on zircons yields concordant ages at 22.7+-0.1Ma. Discordant zircons ages are consistent with a poorly defined lower intercept at 32+-3 Ma, and a Proterozoic (1300+-100 Ma) upper intercept. In situ ion microprobe dating of 17 zircons (24 spots) confirms these results. Four mylonite zircons yield comparable, concordant ages ranging between 20 and 25 Ma in their cores and rims, in good agreement with conventional U/Pb dating. Inherited zircon ages range from Paleozoic to Precambrian (ca.1200 Ma). Some of them recrystallized partially during Tertiary deformation, yielding discordant ages, the youngest being 34+-0.8Ma. Cooling was delayed until 12 to 8Ma, at which time very rapid cooling is recorded by 40Ar/39Ar and fission track data. Purely strike-slip ductile shear was thus already in progress along the fault at 23Ma and possibly earlier (ca.34Ma). A marked kinematic change from purely dextral to dextral-normal motion occurred around or just after 12 Ma. Best offset estimate along this main (northern) branch of KFZ is given by correlation of the ophiolite-bearing melange of Shiquanhe with the Shyok suture zone in

  3. Lateral shear interferometry with holo shear lens

    Science.gov (United States)

    Joenathan, C.; Mohanty, R. K.; Sirohi, R. S.

    1984-12-01

    A simple method for obtaining lateral shear using holo shear lenses (HSL) has been discussed. This simple device which produces lateral shears in the orthogonal directions has been used for lens testing. The holo shear lens is placed at or near the focus of the lens to be tested. It has also been shown that HSL can be used in speckle shear interferometry as it performs both the functions of shearing and imaging.

  4. Structural evolution of fault zones in sandstone by multiple deformation mechanisms: Moab fault, southeast Utah

    Science.gov (United States)

    Davatzes, N.C.; Eichhubl, P.; Aydin, A.

    2005-01-01

    Faults in sandstone are frequently composed of two classes of structures: (1) deformation bands and (2) joints and sheared joints. Whereas the former structures are associated with cataclastic deformation, the latter ones represent brittle fracturing, fragmentation, and brecciation. We investigated the distribution of these structures, their formation, and the underlying mechanical controls for their occurrence along the Moab normal fault in southeastern Utah through the use of structural mapping and numerical elastic boundary element modeling. We found that deformation bands occur everywhere along the fault, but with increased density in contractional relays. Joints and sheared joints only occur at intersections and extensional relays. In all locations , joints consistently overprint deformation bands. Localization of joints and sheared joints in extensional relays suggests that their distribution is controlled by local variations in stress state that are due to mechanical interaction between the fault segments. This interpretation is consistent with elastic boundary element models that predict a local reduction in mean stress and least compressive principal stress at intersections and extensional relays. The transition from deformation band to joint formation along these sections of the fault system likely resulted from the combined effects of changes in remote tectonic loading, burial depth, fluid pressure, and rock properties. In the case of the Moab fault, we conclude that the structural heterogeneity in the fault zone is systematically related to the geometric evolution of the fault, the local state of stress associated with fault slip , and the remote loading history. Because the type and distribution of structures affect fault permeability and strength, our results predict systematic variations in these parameters with fault evolution. ?? 2004 Geological Society of America.

  5. Facies composition and scaling relationships of extensional faults in carbonates

    Science.gov (United States)

    Bastesen, Eivind; Braathen, Alvar

    2010-05-01

    Fault seal evaluations in carbonates are challenged by limited input data. Our analysis of 100 extensional faults in shallow-buried layered carbonate rocks aims to improve forecasting of fault core characteristics in these rocks. We have analyzed the spatial distribution of fault core elements described using a Fault Facies classification scheme; a method specifically developed for 3D fault description and quantification, with application in reservoir modelling. In modelling, the fault envelope is populated with fault facies originating from the host rock, the properties of which (e.g. dimensions, geometry, internal structure, petrophysical properties, and spatial distribution of structural elements) are defined by outcrop data. Empirical data sets were collected from outcrops of extensional faults in fine grained, micro-porosity carbonates from western Sinai (Egypt), Central Spitsbergen (Arctic Norway), and Central Oman (Adam Foothills) which all have experienced maximum burial of 2-3 kilometres and exhibit displacements ranging from 4 centimetres to 400 meters. Key observations include fault core thickness, intrinsic composition and geometry. The studied fault cores display several distinct fault facies and facies associations. Based on geometry, fault cores can be categorised as distributed or localized. Each can be further sub-divided according to the presence of shale smear, carbonate fault rocks and cement/secondary calcite layers. Fault core thickness in carbonate rocks may be controlled by several mechanisms: (1) Mechanical breakdown: Irregularities such as breached relays and asperities are broken down by progressive faulting and fracturing to eventually form a thicker fault rock layer. (2) Layer shearing: Accumulations of shale smear along the fault core. (3) Diagenesis; pressure solution, karstification and precipitation of secondary calcite in the core. Observed fault core thicknesses scatter over three orders of magnitude, with a D/T range of 1:1 to 1

  6. Shear zone junctions: Of zippers and freeways

    Science.gov (United States)

    Passchier, Cees W.; Platt, John P.

    2017-02-01

    Ductile shear zones are commonly treated as straight high-strain domains with uniform shear sense and characteristic curved foliation trails, bounded by non-deforming wall rock. Many shear zones, however, are branched, and if movement on such branches is contemporaneous, the resulting shape can be complicated and lead to unusual shear sense arrangement and foliation geometries in the wall rock. For Y-shaped shear zone triple junctions with three joining branches and transport direction at a high angle to the branchline, only eight basic types of junction are thought to be stable and to produce significant displacement. The simplest type, called freeway junctions, have similar shear sense in all three branches. The other types show joining or separating behaviour of shear zone branches similar to the action of a zipper. Such junctions may have shear zone branches that join to form a single branch (closing zipper junction), or a single shear zone that splits to form two branches, (opening zipper junction). All categories of shear zone junctions show characteristic foliation patterns and deflection of markers in the wall rock. Closing zipper junctions are unusual, since they form a non-active zone with opposite deflection of foliations in the wall rock known as an extraction fault or wake. Shear zipper junctions can form domains of overprinting shear sense along their flanks. A small and large field example are given from NE Spain and Eastern Anatolia. The geometry of more complex, 3D shear zone junctions with slip parallel and oblique to the branchline is briefly discussed.

  7. Simulation of growth normal fault sandbox tests using the 2D discrete element method

    Science.gov (United States)

    Chu, Sheng-Shin; Lin, Ming-Lang; Huang, Wen-Chao; Nien, Wei-Tung; Liu, Huan-Chi; Chan, Pei-Chen

    2015-01-01

    A fault slip can cause the deformation of shallow soil layers and destroy infrastructures. The Shanchiao Fault on the west side of the Taipei Basin is one such fault. The activities of the Shanchiao Fault have caused the quaternary sediment beneath the Taipei Basin to become deformed, damaging structures, traffic construction, and utility lines in the area. Data on geological drilling and dating have been used to determine that a growth fault exists in the Shanchiao Fault. In an experiment, a sandbox model was built using noncohesive sandy soil to simulate the existence of a growth fault in the Shanchiao Fault and forecast the effect of the growth fault on shear-band development and ground differential deformation. The experimental results indicated that when a normal fault contains a growth fault at the offset of the base rock, the shear band develops upward beside the weak side of the shear band of the original-topped soil layer, and surfaces considerably faster than that of the single-topped layer. The offset ratio required is approximately one-third that of the single-cover soil layer. In this study, a numerical simulation of the sandbox experiment was conducted using a discrete element method program, PFC2D, to simulate the upper-covering sand layer shear-band development pace and the scope of a growth normal fault slip. The simulation results indicated an outcome similar to that of the sandbox experiment, which can be applied to the design of construction projects near fault zones.

  8. Physiochemical Evidence of Faulting Processes and Modeling of Fluid in Evolving Fault Systems in Southern California

    Energy Technology Data Exchange (ETDEWEB)

    Boles, James [Professor

    2013-05-24

    Our study targets recent (Plio-Pleistocene) faults and young (Tertiary) petroleum fields in southern California. Faults include the Refugio Fault in the Transverse Ranges, the Ellwood Fault in the Santa Barbara Channel, and most recently the Newport- Inglewood in the Los Angeles Basin. Subsurface core and tubing scale samples, outcrop samples, well logs, reservoir properties, pore pressures, fluid compositions, and published structural-seismic sections have been used to characterize the tectonic/diagenetic history of the faults. As part of the effort to understand the diagenetic processes within these fault zones, we have studied analogous processes of rapid carbonate precipitation (scaling) in petroleum reservoir tubing and manmade tunnels. From this, we have identified geochemical signatures in carbonate that characterize rapid CO2 degassing. These data provide constraints for finite element models that predict fluid pressures, multiphase flow patterns, rates and patterns of deformation, subsurface temperatures and heat flow, and geochemistry associated with large fault systems.

  9. Fault zone processes in mechanically layered mudrock and chalk

    Science.gov (United States)

    Ferrill, David A.; Evans, Mark A.; McGinnis, Ronald N.; Morris, Alan P.; Smart, Kevin J.; Wigginton, Sarah S.; Gulliver, Kirk D. H.; Lehrmann, Daniel; de Zoeten, Erich; Sickmann, Zach

    2017-04-01

    A 1.5 km long natural cliff outcrop of nearly horizontal Eagle Ford Formation in south Texas exposes northwest and southeast dipping normal faults with displacements of 0.01-7 m cutting mudrock, chalk, limestone, and volcanic ash. These faults provide analogs for both natural and hydraulically-induced deformation in the productive Eagle Ford Formation - a major unconventional oil and gas reservoir in south Texas, U.S.A. - and other mechanically layered hydrocarbon reservoirs. Fault dips are steep to vertical through chalk and limestone beds, and moderate through mudrock and clay-rich ash, resulting in refracted fault profiles. Steeply dipping fault segments contain rhombohedral calcite veins that cross the fault zone obliquely, parallel to shear segments in mudrock. The vertical dimensions of the calcite veins correspond to the thickness of offset competent beds with which they are contiguous, and the slip parallel dimension is proportional to fault displacement. Failure surface characteristics, including mixed tensile and shear segments, indicate hybrid failure in chalk and limestone, whereas shear failure predominates in mudrock and ash beds - these changes in failure mode contribute to variation in fault dip. Slip on the shear segments caused dilation of the steeper hybrid segments. Tabular sheets of calcite grew by repeated fault slip, dilation, and cementation. Fluid inclusion and stable isotope geochemistry analyses of fault zone cements indicate episodic reactivation at 1.4-4.2 km depths. The results of these analyses document a dramatic bed-scale lithologic control on fault zone architecture that is directly relevant to the development of porosity and permeability anisotropy along faults.

  10. Deep Fault Drilling Project—Alpine Fault, New Zealand

    Directory of Open Access Journals (Sweden)

    Rupert Sutherland

    2009-09-01

    Full Text Available The Alpine Fault, South Island, New Zealand, constitutes a globally significant natural laboratory for research into how active plate-bounding continental faults work and, in particular, how rocks exposed at the surface today relate to deep-seated processes of tectonic deformation, seismogenesis, and mineralization. The along-strike homogeneity of the hanging wall, rapid rate of dextral-reverse slip on an inclined fault plane, and relatively shallow depths to mechanical and chemical transitions make the Alpine Fault and the broader South Island plate boundary an important international site for multi-disciplinary research and a realistic target for an ambitious long-term program of scientific drilling investigations.

  11. Nucleation and growth of strike slip faults in granite.

    Science.gov (United States)

    Segall, P.; Pollard, D.P.

    1983-01-01

    Fractures within granodiorite of the central Sierra Nevada, California, were studied to elucidate the mechanics of faulting in crystalline rocks, with emphasis on the nucleation of new fault surfaces and their subsequent propagation and growth. Within the study area the fractures form a single, subparallel array which strikes N50o-70oE and dips steeply to the S. Some of these fractures are identified as joints because displacements across the fracture surfaces exhibit dilation but no slip. The joints are filled with undeformed minerals, including epidote and chlorite. Other fractures are identified as small faults because they display left-lateral strike slip separations of up to 2m. Slickensides, developed on fault surfaces, plunge 0o-20o to the E. The faults occur parallel to, and in the same outcrop with, the joints. The faults are filled with epidote, chlorite, and quartz, which exhibit textural evidence of shear deformation. These observations indicate that the strike slip faults nucleated on earlier formed, mineral filled joints. Secondary, dilational fractures propagated from near the ends of some small faults contemporaneously with the left-lateral slip on the faults. These fractures trend 25o+ or -10o from the fault planes, parallel to the direction of inferred local maximum compressive stress. The faults did not propagate into intact rock in their own planes as shear fractures. -from Authors

  12. A Thermal Technique of Fault Nucleation, Growth, and Slip

    Science.gov (United States)

    Garagash, D.; Germanovich, L. N.; Murdoch, L. C.; Martel, S. J.; Reches, Z.; Elsworth, D.; Onstott, T. C.

    2009-12-01

    Fractures and fluids influence virtually all mechanical processes in the crust, but many aspects of these processes remain poorly understood largely because of a lack of controlled field experiments at appropriate scale. We have developed an in-situ experimental approach to create carefully controlled faults at scale of ~10 meters using thermal techniques to modify in situ stresses to the point where the rock fails in shear. This approach extends experiments on fault nucleation and growth to length scales 2-3 orders of magnitude greater than are currently possible in the laboratory. The experiments could be done at depths where the modified in situ stresses are sufficient to drive faulting, obviating the need for unrealistically large loading frames. Such experiments require an access to large rock volumes in the deep subsurface in a controlled setting. The Deep Underground Science and Engineering Laboratory (DUSEL), which is a research facility planned to occupy the workings of the former Homestake gold mine in the northern Black Hills, South Dakota, presents an opportunity for accessing locations with vertical stresses as large as 60 MPa (down to 2400 m depth), which is sufficient to create faults. One of the most promising methods for manipulating stresses to create faults that we have evaluated involves drilling two parallel planar arrays of boreholes and circulating cold fluid (e.g., liquid nitrogen) to chill the region in the vicinity of the boreholes. Cooling a relatively small region around each borehole causes the rock to contract, reducing the normal compressive stress throughout much larger region between the arrays of boreholes. This scheme was evaluated using both scaling analysis and a finite element code. Our results show that if the boreholes are spaced by ~1 m, in several days to weeks, the normal compressive stress can be reduced by 10 MPa or more, and it is even possible to create net tension between the borehole arrays. According to the Mohr

  13. Analysis of the growth of strike-slip faults using effective medium theory

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, A.; Berryman, J.G.

    2009-10-15

    Increases in the dimensions of strike-slip faults including fault length, thickness of fault rock and the surrounding damage zone collectively provide quantitative definition of fault growth and are commonly measured in terms of the maximum fault slip. The field observations indicate that a common mechanism for fault growth in the brittle upper crust is fault lengthening by linkage and coalescence of neighboring fault segments or strands, and fault rock-zone widening into highly fractured inner damage zone via cataclastic deformation. The most important underlying mechanical reason in both cases is prior weakening of the rocks surrounding a fault's core and between neighboring fault segments by faulting-related fractures. In this paper, using field observations together with effective medium models, we analyze the reduction in the effective elastic properties of rock in terms of density of the fault-related brittle fractures and fracture intersection angles controlled primarily by the splay angles. Fracture densities or equivalent fracture spacing values corresponding to the vanishing Young's, shear, and quasi-pure shear moduli were obtained by extrapolation from the calculated range of these parameters. The fracture densities or the equivalent spacing values obtained using this method compare well with the field data measured along scan lines across the faults in the study area. These findings should be helpful for a better understanding of the fracture density/spacing distribution around faults and the transition from discrete fracturing to cataclastic deformation associated with fault growth and the related instabilities.

  14. Low-velocity fault-zone guided waves: Numerical investigations of trapping efficiency

    Science.gov (United States)

    Li, Y.-G.; Vidale, J.E.

    1996-01-01

    Recent observations have shown that shear waves trapped within low-velocity fault zones may be the most sensitive measure of fault-zone structure (Li et al., 1994a, 1994b). Finite-difference simulations demonstrate the effects of several types of complexity on observations of fault-zone trapped waves. Overlying sediments with a thickness more than one or two fault-zone widths and fault-zone step-overs more than one or two fault widths disrupt the wave guide. Fault kinks and changes in fault-zone width with depth leave readily observable trapped waves. We also demonstrate the effects of decreased trapped wave excitation with increasing hypocentral offset from the fault and the effects of varying the contrast between the velocity in the fault zone and surrounding hard rock. Careful field studies may provide dramatic improvements in our knowledge of fault-zone structure.

  15. The Comprehensive Study of Electrical Faults in PV Arrays

    Directory of Open Access Journals (Sweden)

    M. Sabbaghpur Arani

    2016-01-01

    Full Text Available The rapid growth of the solar industry over the past several years has expanded the significance of photovoltaic (PV systems. Fault analysis in solar photovoltaic (PV arrays is a fundamental task to increase reliability, efficiency, and safety in PV systems and, if not detected, may not only reduce power generation and accelerated system aging but also threaten the availability of the whole system. Due to the current-limiting nature and nonlinear output characteristics of PV arrays, faults in PV arrays may not be detected. In this paper, all possible faults that happen in the PV system have been classified and six common faults (shading condition, open-circuit fault, degradation fault, line-to-line fault, bypass diode fault, and bridging fault have been implemented in 7.5 KW PV farm. Based on the simulation results, both normal operational curves and fault curves have been compared.

  16. Timing of initiation and fault rates of the Yushu-Xianshuihe-Xiaojiang fault system around the eastern Himalayan syntaxis.

    Science.gov (United States)

    Hervé Leloup, Philippe; Replumaz, Anne; Chevalier, Marie-Luce; Zhang, Yuan-Ze; Paquette, Jean-Louis; Wang, Guo-Can; Bernet, Matthias; van der Beek, Peter; Pan, Jiawei; Metois, Marianne; Li, Haibing

    2017-04-01

    In eastern Tibet, the left-lateral strike-slip Yushu-Xianshuihe-Xiaojiang fault system (YXX-FS) is 1400 km long, veering from N100° to N175° broadly following a small circle whose pole is located in the eastern Himalayan syntaxis. Several competing models are proposed to explain the geological evolution of eastern Tibet, and in particular of the YXX-FS: fault following slip-lines in a plastic media, book-shelf fault in a large right-lateral shear zone, or fault bounding a lower channel flow veering around the syntaxis. In this contribution we document the timing of onset of the YXX-FS, its propagation through time, its rate at various time-scales; and discuss how these relate to the deformation models. The YXX-FS comprises four segments from east (Tibetan Plateau) to west (Yunnan): Yushu-Ganzi, Xianshuihe, Anninghe, and Zemuhe-Xiaojiang. It is one of the most tectonically active intra-continental fault system in China along which more than 20 M>6.5 earthquakes occurred since 1700. Slip-rates of 3.5 to 30 mm/yr along the YXX-FS have been suggested by matching geological offsets of 60-100 km with initiation ages of 2 to 17 Ma. Late Quaternary rates deduced from morphological offsets, InSAR, paleoseismology and GPS also show a large range: between 3 and 20 mm/yr. The timing of initiation of the Yushu-Ganzi segment has been constrained at 12.6±1 Ma and its total offset to 76 - 90 km (Wang et al., 2009) yielding a rate of 6.6+0.8-0.7 mm/yr. By measuring the offsets of moraine crests and fan edges across the fault using LiDAR and kinematic GPS, and dating their surfaces using 10Be, we determined slip-rates of 7+1.1-1.0 mm/yr, 3 - 11.2 mm/yr and 8.5+0.8-0.7 mm/yr at three different sites. This suggests a constant rate of 6-8 mm/yr along the fault segment since 13Ma. The timing of initiation of the Xianshuihe segment was thought to be prior to 12.8±1.4 Ma (Roger et al., 1995), but new field studies and geochronological ages suggest that the fault initiated later. Using

  17. Heating and Weakening of Major Faults During Seismic Rupture

    Science.gov (United States)

    Rice, J. R.

    2007-12-01

    The absence of significant heat flow from major fault zones, and scarcity of evidence for their seismic melting, means that during earthquake slip such zones could not retain shear strength comparable to the typically high static friction strength of rocks. One line of explanation is that they are actually statically weak, which could be because materials of exceptionally low friction (smectites, talc) accumulate along fault zones, or perhaps because pore pressure within the fault core is far closer to lithostatic than hydrostatic. Without dismissing either, the focus here is on how thermal processes during the rapid slips of seismic rupture can weaken a fault which is indeed statically strong. (The discussion also leaves aside another kind of non- thermal dynamic weakening, possible when there is dissimilarity in seismic properties across the fault, and/or in poroelastic properties and permeability within fringes of damaged material immediately adjoining the slip surface. Spatially nonuniform mode II slip like near a propagating rupture front may then induce a substantial reduction in the effective normal stress \\barσ.) The heating and weakening processes to be discussed divide roughly into two camps: (1) Those which are expected to be active from the start of seismic slip, and hence will be present in all earthquakes; and (2) Those that kick-in after threshold conditions of rise of temperature T or accumulation of slip are reached, and hence become a feature of larger, or at least deeper slipping, earthquakes. It has been argued that the two major players of (1) are as follows: (1.1) Flash heating and weakening of frictional contact asperities in rapid slip [Rice, 1999, 2006; Tullis and Goldsby, 2003; Goldsby and Hirth, 2006; Beeler et al., 2007; Yuan and Prakash, 2007]. That gives a strong velocity-weakening character to the friction coefficient, which is consistent with inducing self-healing rupture modes [Noda et al., 2006; Lu et al., 2007]. It is a process

  18. Distribution and nature of fault architecture in a layered sandstone and shale sequence: An example from the Moab fault, Utah

    Science.gov (United States)

    Davatzes, N.C.; Aydin, A.

    2005-01-01

    We examined the distribution of fault rock and damage zone structures in sandstone and shale along the Moab fault, a basin-scale normal fault with nearly 1 km (0.62 mi) of throw, in southeast Utah. We find that fault rock and damage zone structures vary along strike and dip. Variations are related to changes in fault geometry, faulted slip, lithology, and the mechanism of faulting. In sandstone, we differentiated two structural assemblages: (1) deformation bands, zones of deformation bands, and polished slip surfaces and (2) joints, sheared joints, and breccia. These structural assemblages result from the deformation band-based mechanism and the joint-based mechanism, respectively. Along the Moab fault, where both types of structures are present, joint-based deformation is always younger. Where shale is juxtaposed against the fault, a third faulting mechanism, smearing of shale by ductile deformation and associated shale fault rocks, occurs. Based on the knowledge of these three mechanisms, we projected the distribution of their structural products in three dimensions along idealized fault surfaces and evaluated the potential effect on fluid and hydrocarbon flow. We contend that these mechanisms could be used to facilitate predictions of fault and damage zone structures and their permeability from limited data sets. Copyright ?? 2005 by The American Association of Petroleum Geologists.

  19. Structural Evidence for Fluid-Assisted Shear Failure within a Ductile Shear Zone

    Science.gov (United States)

    Compton, K.; Kirkpatrick, J. D.

    2014-12-01

    Recent observations of seismic slip occurring below the seismogenic zone of large fault zones have emphasized the significance of coeval ductile and brittle processes at high temperatures. We present observations of a shear zone contained within the Saddlebag Lake pendant of the eastern Sierra Nevada, CA, where Triassic and Jurassic metavolcanics and metasediments are highly strained in a high-temperature shear zone. Transposed bedding and cleavage that define a flattening fabric, dextrally rotated porphyroclasts, and a steep, pervasive lineation together suggest an overall transpressive kinematic regime for the ductile deformation. The high-strain rocks exhibit multiple episodes of vein formation, indicating a prolonged migration of hydrothermal fluids throughout the system. Crosscutting relationships and mineral assemblages define discrete sets of differently oriented veins. The veins form by fracture, but many veins are folded and boudinaged, showing synkinematic brittle and ductile deformation. We document foliation-parallel quartz veins that show shear displacement from the geometry of pull-apart structures and offsets of earlier veins. Synkinematic equilibrium mineral assemblages within the host rock and dynamic recrystallization of the quartz veins show they formed at temperatures around 400 to 500°C. The shear fractures have horizontal trace lengths of up to a few meters and displacements range from 2-3 mm to ~3 cm, with 1-5 mm of opening. Assuming the observed offset in the fractures occurred in a single event, these measurements are consistent with stress drops of 1 to 10 MPa. We interpret these observations to show that the veins formed as a result of high pore fluid pressure that caused shear failure at low effective stresses. Because foliated rocks are mechanically anisotropic, the foliation provided planes of weakness for failure with a preferred orientation. Evidence for shear failure occurring within crystal-plastic shear zones at high temperatures

  20. The Tectonics and the Strength of the San Andreas Fault

    Science.gov (United States)

    Lavier, L. L.; Bennett, R.

    2006-12-01

    Contrary to what is inferred from laboratory experiments, the average shear stress supported by the San Andreas fault is likely much less than 100 MPa. Heat flow measurements, stress orientation and shear stress magnitude measurements mostly argue for a very weak fault with an average shear stress lower than 20 MPa or an apparent coefficient of friction less than 0.1. It has been proposed that most of this difference can be explained by heat dissipation by fluid circulation around the fault. However, some workers have shown that with reasonable parameters for fluid flow in and around the fault the strength of the fault remains very weak. We evaluate 2.5 D numerical models of the formation and evolution of the San Andreas Fault zone. We explore a wide range of possible bottom and side boundary conditions to understand their potential effects on the apparent strength of a strike slip-fault. In particular, we consider the effects of a small amount of localized basal traction on one side of the fault. We use the numerical models to simulate partitioning of deformation between thrust and strike-slip faulting constrained by geodetic measurement of fault perpendicular convergence. The strength of the model San Andreas fault is chosen to be consistent with a Mohr-Coulomb failure mechanism for a strong fault consistent with Byerlee's rule. Wrench dominated deformation is driven from the Pacific plate side of the San Andreas fault, and convergence is driven by localized basal traction on the North America side. The rheology assumed in the experiments allows for the spontaneous formation of faults with a Mohr-coulomb plastic formulation in the upper crust, as well as viscous flow in the lower crust. The numerical calculations are performed with an extended version of the numerical code PARAVOZ. We find that a combination of loading from the side and the bottom as well as decoupling between the upper crustal and lower crustal deformation can decrease the shear stresses on the

  1. Dynamic Dilational Strengthening During Earthquakes in Saturated Gouge-Filled Fault Zones

    Science.gov (United States)

    Sparks, D. W.; Higby, K.

    2016-12-01

    The effect of fluid pressure in saturated fault zones has been cited as an important factor in the strength and slip-stability of faults. Fluid pressure controls the effective normal stress across the fault and therefore controls the faults strength. In a fault core consisting of granular fault gouge, local transient dilations and compactions occur during slip that dynamically change the fluid pressure. We use a grain-scale numerical model to investigate the effect of these fluid effects in fault gouge during an earthquake. We use a coupled finite difference-discrete element model (Goren et al, 2011), in which the pore space is filled with a fluid. Local changes in grain packing generate local deviations in fluid pressure, which can be relieved by fluid flow through the permeable gouge. Fluid pressure gradients exert drag forces on the grains that couple the grain motion and fluid flow. We simulated 39 granular gouge zones that were slowly loaded in shear stress to near the failure point, and then conducted two different simulations starting from each grain packing: one with a high enough mean permeability (> 10-11 m2) that pressure remains everywhere equilibrated ("fully drained"), and one with a lower permeability ( 10-14 m2) in which flow is not fast enough to prevent significant pressure variations from developing ("undrained"). The static strength of the fault, the size of the event and the evolution of slip velocity are not imposed, but arise naturally from the granular packing. In our particular granular model, all fully drained slip events are well-modeled by a rapid drop in the frictional resistance of the granular packing from a static value to a dynamic value that remains roughly constant during slip. Undrained events show more complex behavior. In some cases, slip occurs via a slow creep with resistance near the static value. When rapid slip events do occur, the dynamic resistance is typically larger than in drained events, and highly variable

  2. Laboratory observations of fault strength in response to changes in normal stress

    Science.gov (United States)

    Kilgore, Brian D.; Lozos, Julian; Beeler, Nicholas M.; Oglesby, David

    2012-01-01

    Changes in fault normal stress can either inhibit or promote rupture propagation, depending on the fault geometry and on how fault shear strength varies in response to the normal stress change. A better understanding of this dependence will lead to improved earthquake simulation techniques, and ultimately, improved earthquake hazard mitigation efforts. We present the results of new laboratory experiments investigating the effects of step changes in fault normal stress on the fault shear strength during sliding, using bare Westerly granite samples, with roughened sliding surfaces, in a double direct shear apparatus. Previous experimental studies examining the shear strength following a step change in the normal stress produce contradictory results: a set of double direct shear experiments indicates that the shear strength of a fault responds immediately, and then is followed by a prolonged slip-dependent response, while a set of shock loading experiments indicates that there is no immediate component, and the response is purely gradual and slip-dependent. In our new, high-resolution experiments, we observe that the acoustic transmissivity and dilatancy of simulated faults in our tests respond immediately to changes in the normal stress, consistent with the interpretations of previous investigations, and verify an immediate increase in the area of contact between the roughened sliding surfaces as normal stress increases. However, the shear strength of the fault does not immediately increase, indicating that the new area of contact between the rough fault surfaces does not appear preloaded with any shear resistance or strength. Additional slip is required for the fault to achieve a new shear strength appropriate for its new loading conditions, consistent with previous observations made during shock loading.

  3. Basement Fault Reactivation by Fluid Injection into Sedimentary Reservoirs

    Science.gov (United States)

    Peter, Eichhubl; Fan, Zhiqiang; Zhu, Cheng

    2017-04-01

    Many suspected injection-induced earthquakes occur in crystalline basement rather than in the overlying sedimentary injection reservoir. To address why earthquakes nucleate in the basement rather than the injection layer we investigate the relationship between pore pressure diffusion, rock matrix deformation, and induced fault reactivation through 3D fully coupled poroelastic finite element models. These models simulate the temporal and spatial perturbation of pore pressure and solid stresses within a basement fault that extends into overlying sedimentary layers and that is conductive for flow along the fault but a barrier for flow across. We compare the effects of direct pore pressure communication and indirect poroelastic stress transfer from the injection reservoir to the fault on increasing the Coulomb failure stress that could reactivate the basement fault for normal, reverse, and strike-slip faulting stress regimes. Our numerical results demonstrate that volumetric expansion of the reservoir causes a bending of the fault near the injector and induces shear tractions along the downdip direction of the fault in the basement. These induced shear tractions act to increase the Coulomb failure stress for a normal faulting stress regime, and decrease the Coulomb failure stress for a reverse faulting regime. For a strike-slip faulting stress regime, the induced shear tractions increase the Coulomb failure stress both in the reservoir and basement. The induced normal traction on the fault reduces the Coulomb failure stress in all three tectonic regimes, but is larger in the reservoir than in the basement due to the more pronounced poroelastic effect in the reservoir. As a result, strike-slip stress regimes favor fault reactivation in the basement. Whereas the magnitude of the direct pore pressure increase exceeds the magnitude of induced poroelastic stress change, the poroelastic stress change increases the Coulomb failure stress in the basement fault for the normal

  4. Precambrian crustal evolution and Cretaceous–Palaeogene faulting in West Greenland: The Nordre Strømfjord shear zone and the Arfersiorfik quartz diorite in Arfersiorfik, the Nagssugtoqidian orogen, West Greenland

    Directory of Open Access Journals (Sweden)

    Stensgaard, Bo Møller

    2006-12-01

    Full Text Available The Nordre Strømfjord shear zone in the fjord Arfersiorfik, central West Greenland, consists of alternating panels of supracrustal rocks and orthogneisses which together form a vertical zone up to 7 km wide with sinistral transcurrent, ductile deformation, which occurred under middle amphibolite facies conditions. The pelitic and metavolcanic schists and paragneisses are all highly deformed, while the orthogneisses appear more variably deformed, with increasing deformation evident towards the supracrustal units. The c. 1.92 Ga Arfersiorfik quartz diorite is traceable for a distance of at least 35 km from the Inland Ice towards the west-south-west. Towards its northern contact with an intensely deformed schist unit it shows a similar pattern of increasing strain, which is accompanied by chemical and mineralogical changes. The metasomatic changes associated with the shear zone deformation are superimposed on a wide range of original chemical compositions, which reflect magmatic olivine and/or pyroxene as well as hornblende fractionation trends. The chemistry of the Arfersiorfik quartz diorite suite as a whole is comparable to that of Phanerozoic plutonic and volcanic rocks of calc-alkaline affinity.

  5. Vaporization of fault water during seismic slip

    Science.gov (United States)

    Chen, Jianye; Niemeijer, André R.; Fokker, Peter A.

    2017-06-01

    Laboratory and numerical studies, as well as field observations, indicate that phase transitions of pore water might be an important process in large earthquakes. We present a model of the thermo-hydro-chemo-mechanical processes, including a two-phase mixture model to incorporate the phase transitions of pore water, occurring during fast slip (i.e., a natural earthquake) in order to investigate the effects of vaporization on the coseismic slip. Using parameters from typical natural faults, our modeling shows that vaporization can indeed occur at the shallow depths of an earthquake, irrespective of the wide variability of the parameters involved (sliding velocity, friction coefficient, gouge permeability and porosity, and shear-induced dilatancy). Due to the fast kinetics, water vaporization can cause a rapid slip weakening even when the hydrological conditions of the fault zone are not favorable for thermal pressurization, e.g., when permeability is high. At the same time, the latent heat associated with the phase transition causes the temperature rise in the slip zone to be buffered. Our parametric analyses reveal that the amount of frictional work is the principal factor controlling the onset and activity of vaporization and that it can easily be achieved in earthquakes. Our study shows that coseismic pore fluid vaporization might have played important roles at shallow depths of large earthquakes by enhancing slip weakening and buffering the temperature rise. The combined effects may provide an alternative explanation for the fact that low-temperature anomalies were measured in the slip zones at shallow depths of large earthquakes.

  6. Geophysics: a moving fluid pulse in a fault zone.

    Science.gov (United States)

    Haney, Matthew M; Snieder, Roel; Sheiman, Jon; Losh, Steven

    2005-09-01

    In the Gulf of Mexico, fault zones are linked with a complex and dynamic system of plumbing in the Earth's subsurface. Here we use time-lapse seismic-reflection imaging to reveal a pulse of fluid ascending rapidly inside one of these fault zones. Such intermittent fault 'burping' is likely to be an important factor in the migration of subsurface hydrocarbons.

  7. Machine Fault Signature Analysis

    Directory of Open Access Journals (Sweden)

    Pratesh Jayaswal

    2008-01-01

    Full Text Available The objective of this paper is to present recent developments in the field of machine fault signature analysis with particular regard to vibration analysis. The different types of faults that can be identified from the vibration signature analysis are, for example, gear fault, rolling contact bearing fault, journal bearing fault, flexible coupling faults, and electrical machine fault. It is not the intention of the authors to attempt to provide a detailed coverage of all the faults while detailed consideration is given to the subject of the rolling element bearing fault signature analysis.

  8. Mazatan metamorphic core complex (Sonora, Mexico): structures along the detachment fault and its exhumation evolution

    Science.gov (United States)

    Granillo, Ricardo Vega; Calmus, Thierry

    2003-08-01

    The Mazatán Sierra is the southernmost metamorphic core complex (MCC) of the Tertiary extensional belt of the western Cordillera. Its structural and lithological features are similar to those found in other MCC in Sonora and Arizona. The lower plate is composed of Proterozoic igneous and metamorphic rocks intruded by Tertiary plutons, both of which are overprinted by mylonitic foliation and N70°E-trending stretching lineation. Ductile and brittle-ductile deformations were produced by Tertiary extension along a normal shear zone or detachment fault. Shear sense is consistent across the Sierra and indicates a top to the WSW motion. The lithology and fabric reflect variations in temperature and pressure conditions during extensional deformation. The upper plate consists mainly of Cambrian-Mississippian limestone and minor quartzite, covered by upper Cretaceous volcanic rocks, and then by Tertiary syntectonic sedimentary deposits with interbedded volcanic flows. Doming caused uplift and denudation of the detachment, as well as successive low-angle and high-angle normal faulting across the western slope of Mazatán Sierra. An 18±3 Ma apatite fission-track age was obtained for a sample of Proterozoic monzogranite from the lower plate. The mean fission-track length indicates rapid cooling and consequent rapid uplift of this sample during the last stage of crustal extension.

  9. ACCELERATED SYNERGISM ALONG A FAULT: A POSSIBLE INDICATOR FOR AN IMPENDING MAJOR EARTHQUAKE

    OpenAIRE

    Ma Jin; Guo Yanshuang; S. I. Sherman

    2014-01-01

    It is generally accepted that crustal earthquakes are caused by sudden displacement along faults, which rely on two primary conditions. One is that the fault has a high degree of synergism, so that once the stress threshold is reached, fault segments can be connected rapidly to facilitate fast slip of longer fault sections. The other is sufficient strain accumulated at some portions of the fault which can overcome resistance to slip of the high-strength portions of the fault. Investigations t...

  10. Thrombus Formation at High Shear Rates.

    Science.gov (United States)

    Casa, Lauren D C; Ku, David N

    2017-06-21

    The final common pathway in myocardial infarction and ischemic stroke is occlusion of blood flow from a thrombus forming under high shear rates in arteries. A high-shear thrombus forms rapidly and is distinct from the slow formation of coagulation that occurs in stagnant blood. Thrombosis at high shear rates depends primarily on the long protein von Willebrand factor (vWF) and platelets, with hemodynamics playing an important role in each stage of thrombus formation, including vWF binding, platelet adhesion, platelet activation, and rapid thrombus growth. The prediction of high-shear thrombosis is a major area of biofluid mechanics in which point-of-care testing and computational modeling are promising future directions for clinically relevant research. Further research in this area will enable identification of patients at high risk for arterial thrombosis, improve prevention and treatment based on shear-dependent biological mechanisms, and improve blood-contacting device design to reduce thrombosis risk.

  11. Fault geometry and earthquake mechanics

    Directory of Open Access Journals (Sweden)

    D. J. Andrews

    1994-06-01

    Full Text Available Earthquake mechanics may be determined by the geometry of a fault system. Slip on a fractal branching fault surface can explain: 1 regeneration of stress irregularities in an earthquake; 2 the concentration of stress drop in an earthquake into asperities; 3 starting and stopping of earthquake slip at fault junctions, and 4 self-similar scaling of earthquakes. Slip at fault junctions provides a natural realization of barrier and asperity models without appealing to variations of fault strength. Fault systems are observed to have a branching fractal structure, and slip may occur at many fault junctions in an earthquake. Consider the mechanics of slip at one fault junction. In order to avoid a stress singularity of order 1/r, an intersection of faults must be a triple junction and the Burgers vectors on the three fault segments at the junction must sum to zero. In other words, to lowest order the deformation consists of rigid block displacement, which ensures that the local stress due to the dislocations is zero. The elastic dislocation solution, however, ignores the fact that the configuration of the blocks changes at the scale of the displacement. A volume change occurs at the junction; either a void opens or intense local deformation is required to avoid material overlap. The volume change is proportional to the product of the slip increment and the total slip since the formation of the junction. Energy absorbed at the junction, equal to confining pressure times the volume change, is not large enongh to prevent slip at a new junction. The ratio of energy absorbed at a new junction to elastic energy released in an earthquake is no larger than P/µ where P is confining pressure and µ is the shear modulus. At a depth of 10 km this dimensionless ratio has th value P/µ= 0.01. As slip accumulates at a fault junction in a number of earthquakes, the fault segments are displaced such that they no longer meet at a single point. For this reason the

  12. Suppression of strike-slip fault systems

    Science.gov (United States)

    Curren, I. S.

    2012-12-01

    In orogens elongated parallel to a great circle about the Euler pole for the two bounding plates, theory requires simple-shear deformation in the form of distributed deformation or velocity discontinuities across strike-slip faults. This type of deformation, however, does not develop at all plate boundaries requiring toroidal motion. Using the global plate boundary model, PB2002 [Bird, 2003], as the basis for identifying areas where expected simple-shear deformation is absent or underdeveloped, it was also possible to identify two potential causes for this behavior: (1) the presence of extensive fracturing at right angles to the shear plane and (2) regional cover of flood basalts or andesites with columnar joints. To test this hypothesis, a new plane-stress finite-strain model was developed to study the effects of such pre-existing structures on the development of simple shear in a clay cake. A homogenous kaolinite-water mixture was poured into a deforming parallelogram box and partially dried to allow for brittle and plastic deformation at and below the surface of the clay, respectively. This was floated on a dense fluid foundation, effectively removing basal friction, and driven by a motor in a sinistral direction from the sides of the box. Control experiments produced classic Riedel model fault assemblages and discrete, through-going primary deformation zones (PDZs); experiments with pre-existing structures developed the same, though subdued and distributed, fault assemblages but did not develop through-going PDZs. Although formation of strike-slip faults was underdeveloped at the surface in clay with pre-existing structures, offset within the clay cake (measured, with respect to a fixed point, by markers on the clay surface) as a fraction of total offset of the box was consistently larger than that of the control experiments. This suggests that while the extent of surface faulting was lessened in clay with pre-existing structures, slip was still occurring at

  13. Strain and shear types of the Louzidian ductile shear zone in southern Chifeng, Inner Mongolia, China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Louzidian ductile shear zone at the south of Chifeng strikes NE-SW and dips SE at low-medium- angles. This ductile shear zone is mainly composed of granitic mylonite, which grades structurally upward into a chloritized zone, a microbreccia zone, a brittle fault and a gouge zone. All these zones share similar planar attitudes, but contain different linear attitudes and kinematic indicators. Finite strain measurements were performed on feldspar porphyroclasts using the Fry method. These meas- urements yield Fulin indexes of 1.25―3.30, Lode’s parameters of -0.535―-0.112 and strain parameters of 0.41―0.75 for the protomylonite, respectively. These data are plotted within the apparent constric- tional field in Fulin and Hossack diagrams. In contrast, for the mylonite, corresponding parameters are 0.99―1.43, -0.176―-0.004 and 0.63―0.82, respectively, and located in the apparent constrictional field close to the plane strain. The mean kinematic vorticity numbers of the protomylonite and mylonite by using three methods of polar Mohr circle, porphyroclast hyperbolic and oblique foliation, are in the range of 0.67―0.95, suggesting that the ductile shearing is accommodated by general shearing that is dominated by simple shear. Combination of the finite strain and kinematic vorticity indicates that shear type was lengthening shear and resulted in L-tectonite at the initial stage of deformation and the shear type gradually changed into lengthening-thinning shear and produced L-S-tectonite with the uplifting of the shear zone and accumulating of strain. These kinds of shear types only produce a/ab strain facies, so the lineation in the ductile shear zone could not deflect 90° in the progressively deformation.

  14. Fault kinematics of the Magallanes-Fagnano fault system, southern Chile; an example of diffuse strain and sinistral transtension along a continental transform margin

    Science.gov (United States)

    Betka, Paul; Klepeis, Keith; Mosher, Sharon

    2016-04-01

    A system of left-lateral faults that separates the South American and Scotia plates, known as the Magallanes-Fagnano fault system, defines the modern tectonic setting of the southernmost Andes and is superimposed on the Late Cretaceous - Paleogene Patagonian fold-thrust belt. Fault kinematic data and crosscutting relationships from populations of thrust, strike-slip and normal faults from Peninsula Brunswick adjacent to the Magallanes-Fagnano fault system, presented herein, show kinematic and temporal relationships between thrust faults and sets of younger strike-slip and normal faults. Thrust fault kinematics are homogeneous in the study area and record subhorizontal northeast-directed shortening. Strike-slip faults record east-northeast-directed horizontal shortening, west-northwest-directed horizontal extension and form Riedel and P-shear geometries compatible with left-lateral slip on the main splay of the Magallanes-Fagnano fault system. Normal faults record north-south trending extension that is compatible with the strike-slip faults. The study area occurs in a releasing step-over between overlapping segments of the Magallanes-Fagnano fault system, which localized on antecedent sutures between basement terranes with differing geological origin. Results are consistent with regional tectonic models that suggest sinistral shearing and transtension in the southernmost Andes was contemporaneous with the onset of seafloor spreading in the Western Scotia Sea during the Early Miocene.

  15. Frictional behavior of experimental faults during a simulated seismic cycle

    Science.gov (United States)

    Spagnuolo, Elena; Nielsen, Stefan; Violay, Marie; Di Felice, Fabio; Di Toro, Giulio

    2016-04-01

    Laboratory friction studies of earthquake mechanics aim at understanding complex phenomena either driving or characterizing the seismic cycle. Previous experiments were mainly conducted on bi-axial machines imposing velocity steps conditions, where slip and slip-rate are usually less than 10 mm and 1 mm/s, respectively. However, earthquake nucleation on natural faults results from the combination of the frictional response of fault materials and wall rock stiffness with complex loading conditions. We propose an alternative experimental approach which consists in imposing a step-wise increase in the shear stress on an experimental fault under constant normal stress. This experimental configuration allows us to investigate the relevance of spontaneous fault surface reworking in (1) driving frictional instabilities, (2) promoting the diversity of slip events including the eventual runaway, and (3) ruling weakening and re-strengthening processes during the seismic cycle. Using a rotary shear apparatus (SHIVA, INGV, Rome) with an on-purpose designed control system, the shear stress acting on a simulated fault can be increased step-wise while both slip and slip-rate are allowed to evolve spontaneously (the slip is namely infinite) to accommodate the new state of stress. This unconventional procedure, which we term "shear stress-step loading", simulates how faults react to either a remote tectonic loading or a sudden seismic or strain event taking place in the vicinity of a fault patch. Our experiments show that the spontaneous slip evolution results in velocity pulses whose shape and occurrence rate are controlled by the lithology and the state of stress. With increasing shear stress and cumulative slip, the experimental fault exhibits three frictional behaviors: (1) stable behavior or individual slip pulses up to few cm/s for few mm of slip in concomitance to the step-wise increase in shear stress; (2) unstable oscillatory slip or continuous slip but with abrupt changes

  16. A note on 2-D lithospheric deformation due to a blind strike-slip fault

    Indian Academy of Sciences (India)

    Sunita Rani; Sarva Jit Singh

    2005-02-01

    Analytical solution for the problem of a surface-breaking long strike-slip fault in an elastic layer overlying an elastic half-space is well known. The purpose of this note is to obtain the corresponding solution for a blind fault. Since the solution is valid for arbitrary values of the fault-depth and the dip angle, the effects of these two important fault parameters can be studied numerically. The variation of the parallel displacement and shear stress with the distance from the fault is studied numerically for different values of the fault-depth and dip angle.

  17. The North Anatolian Fault: a New Look

    Science.gov (United States)

    Šengör, A. M. C.; Tüysüz, Okan; Imren, Caner; Sakinç, Mehmet; Eyidoǧan, Haluk; Görür, Naci; Le Pichon, Xavier; Rangin, Claude

    2005-01-01

    The North Anatolian Fault (NAF) is a 1200-km-long dextral strike-slip fault zone that formed by progressive strain localization in a generally westerly widening right-lateral keirogen in northern Turkey mostly along an interface juxtaposing subduction-accretion material to its south and older and stiffer continental basements to its north. The NAF formed approximately 13 to 11 Ma ago in the east and propagated westward. It reached the Sea of Marmara no earlier than 200 ka ago, although shear-related deformation in a broad zone there had already commenced in the late Miocene. The fault zone has a very distinct morphological expression and is seismically active. Since the seventeenth century, it has shown cyclical seismic behavior, with century-long cycles beginning in the east and progressing westward. For earlier times, the record is less clear but does indicate a lively seismicity. The twentieth century record has been successfully interpreted in terms of a Coulomb failure model, whereby every earthquake concentrates the shear stress at the western tips of the broken segments leading to westward migration of large earthquakes. The August 17 and November 12, 1999, events have loaded the Marmara segment of the fault, mapped since the 1999 earthquakes, and a major, M 7.6 event is expected in the next half century with an approximately 50% probability on this segment. Currently, the strain in the Sea of Marmara region is highly asymmetric, with greater strain to the south of the Northern Strand. This is conditioned by the geology, and it is believed that this is generally the case for the entire North Anatolian Fault Zone. What is now needed is a more detailed geological mapping base with detailed paleontology and magnetic stratigraphy in the shear-related basins and more paleomagnetic observations to establish shear-related rotations.

  18. Core Description and Characteristics of Fault Zones from Hole-A of the Taiwan Chelungpu-Fault Drilling Project

    Directory of Open Access Journals (Sweden)

    En-Chao Yeh

    2007-01-01

    Full Text Available Taiwan Chelungpu-fault Drilling Project was conducted in drill site Dakeng, Taichung City of central western Taiwan during 2004 - 2005 principally to investigate the rupture mechanism in the northern segment of the Chi-Chi earthquake of 21 September 1999, and also to examine regional stratigraphy and tectonics. Core examination (500 - 1800 m of Hole-A gave profound results aiding in illustrating the lithologic column, deformation structure, and architectural pattern of fault zones along the borehole. Lithology column of Hole-A was identified downward as the Cholan Formation (500 - 1027 m, Chinshui Shale (1027 - 1268 m, Kueichulin Formation (1268 - 1712 m, and back to the Cholan Formation (1712 - 2003 m again. A dramatic change is observed regarding sedimentation age and deformation structure around 1712 m. Along the core, most bedding dips _ _ Around 1785 m, bedding dip jumps up to _ the bottom of borehole. Five structure groups of different orientations (dip direction/dip are observed throughout the core. Based on the orientation and sense of shear, they are categorized as thrust (105/30, left-lateral fault (015/30 - 80, right-lateral fault (195/30 - 80, normal fault (105/5 - 10, and backthrust (285/40 - 50. Ten fault zones have been recognized between 500 and 2003 m. We interpret the fault zone located at around 1111 m as being the most likely candidate for rupture deformation during Chi-Chi earthquake. The fault zone seated around 1712 m is recognized as the Sanyi fault zone which is 600 m beneath the Chelungpu fault zone. Ten fault zones including thrust faults, strike-slip faults and backthrust are classified as the Chelungpu Fault System (1500 m. According to the deformation textures within fault zones, the fault zones can be categorized as three types of deformation: distinct fracture deformation, clayey-gouge deformation, and soft-rock deformation. Fracture deformation is dominant within the Chelungpu Fault System and abother two

  19. The Cenzonic tail derived structures of transtensional faults in Bohai Sea, East China

    Science.gov (United States)

    Wang, Guangzeng; Wu, Zhiping

    2017-04-01

    Two pre-exsiting giant strike-slip fault zones, Tanlu Fault Zone and Zhangpeng Fault Zone, comprise a conjugate strike-slip fualt system in Bohai Sea. They reactivated and developped into many branches under the extensional and shear stresses indued by the combined action of plate collision and deep mantle upwelling in Cenzonic. In response to the stress concentration at the tails of those branches, various kinds of tail derived structures develop. To systematically describe and distinguish above tail derived structures, we reviewed numerous high-resolution seismic sections and plandimetric maps of Bohai Sea, such as deteiled fault system diagroms, coherence slices and 3D visualization structural diagrams, and distinguished three types of tail derived structures at the tails of the transtensional branches of Tanlu Fault Zone and Zhangpeng Fault Zone, based on their geometric characteristics, namely, extensional horsetail/imbricate fan, wedge-shaped tail, and mixed tail of extensional horsetail fan and wedge-shaped tail (the tail derived structures develops in stepovers of transtensioanl branches are not discussed in this paper). Extensional horsetail fan mainly develops at fault tails with releasing single bend and the horsetail splay faults are T faults (about 45° to main strike-slip fault), while the wedge-shaped tail mainly develops at fault tails unfavorable for strike slip, they could be straight or with gentle restaining single bend and the derived faults are mainly antithetic faults (R' shears, normally above 70° to main strike-slip fault). If the fault tail developing a wedge-shaped tail has a small releasing single bend at its tip, a extensional horsetail fan would occur at the tip of the wedge-shaped tail, viz., mixed tail derived structure. All above tail derived faults show normal throws in profile and develop in extensional quadrant of the hanging wall of those branches. And with the shear of above main strike-slip faults, the angles bewteen the main

  20. Application of Fault Tree Analysis and Fuzzy Neural Networks to Fault Diagnosis in the Internet of Things (IoT for Aquaculture

    Directory of Open Access Journals (Sweden)

    Yingyi Chen

    2017-01-01

    Full Text Available In the Internet of Things (IoT equipment used for aquaculture is often deployed in outdoor ponds located in remote areas. Faults occur frequently in these tough environments and the staff generally lack professional knowledge and pay a low degree of attention in these areas. Once faults happen, expert personnel must carry out maintenance outdoors. Therefore, this study presents an intelligent method for fault diagnosis based on fault tree analysis and a fuzzy neural network. In the proposed method, first, the fault tree presents a logic structure of fault symptoms and faults. Second, rules extracted from the fault trees avoid duplicate and redundancy. Third, the fuzzy neural network is applied to train the relationship mapping between fault symptoms and faults. In the aquaculture IoT, one fault can cause various fault symptoms, and one symptom can be caused by a variety of faults. Four fault relationships are obtained. Results show that one symptom-to-one fault, two symptoms-to-two faults, and two symptoms-to-one fault relationships can be rapidly diagnosed with high precision, while one symptom-to-two faults patterns perform not so well, but are still worth researching. This model implements diagnosis for most kinds of faults in the aquaculture IoT.

  1. Application of Fault Tree Analysis and Fuzzy Neural Networks to Fault Diagnosis in the Internet of Things (IoT) for Aquaculture.

    Science.gov (United States)

    Chen, Yingyi; Zhen, Zhumi; Yu, Huihui; Xu, Jing

    2017-01-14

    In the Internet of Things (IoT) equipment used for aquaculture is often deployed in outdoor ponds located in remote areas. Faults occur frequently in these tough environments and the staff generally lack professional knowledge and pay a low degree of attention in these areas. Once faults happen, expert personnel must carry out maintenance outdoors. Therefore, this study presents an intelligent method for fault diagnosis based on fault tree analysis and a fuzzy neural network. In the proposed method, first, the fault tree presents a logic structure of fault symptoms and faults. Second, rules extracted from the fault trees avoid duplicate and redundancy. Third, the fuzzy neural network is applied to train the relationship mapping between fault symptoms and faults. In the aquaculture IoT, one fault can cause various fault symptoms, and one symptom can be caused by a variety of faults. Four fault relationships are obtained. Results show that one symptom-to-one fault, two symptoms-to-two faults, and two symptoms-to-one fault relationships can be rapidly diagnosed with high precision, while one symptom-to-two faults patterns perform not so well, but are still worth researching. This model implements diagnosis for most kinds of faults in the aquaculture IoT.

  2. Experimental elaboration of faulting induced by fluid-releasing mineral reactions in subduction zones

    Science.gov (United States)

    Green, H.; Zhang, J.; Jung, H.; Dobrzinetskaya, L.

    2003-04-01

    Dehydration embrittlement has been cited repeatedly as a potential mechanism for triggering earthquakes at depths where unassisted brittle failure is impossible due to the normal-stress-dependence of friction. We are investigating two different aspects of this problem in the laboratory: (i) dehydration of antigorite under stress where the ΔV of reaction varies from strongly positive to distinctly negative; (ii) deformation of eclogite in which the nominally anhydrous minerals contain small amounts of dissolved H_2O that can lead to faulting induced by very small amounts of melting stimulated by exsolution of H_2O. (i) Antigorite has the largest stability field of the serpentines and is often cited as potentially being the source of most or all mantle earthquakes to a depth of over 200 km. However, like other low-pressure hydrous phases, the net volume change accompanying antigorite dehydration varies from strongly positive at low P to negative at P > ˜2-2.5 GPa. Fracture mechanics theory predicts that dehydration should not induce shear failure if ΔV<0. To test the effect of ΔV on faulting, we have deformed an extensively-serpentinized peridotite at P = 1-6 GPa. We conducted constant strain rate experiments in a Griggs-type apparatus at P = 1.0 - 3.4 GPa and rapid-pumping experiments in a Walker-type multianvil apparatus, culminating in pressures as high as 6 GPa. Independent of the sign of ΔV, specimens subjected to stress during dehydration yielded extremely thin zones of reaction products with shear offset across them. Some were clearly faults whereas others could be precursors to faulting. Fluid released at grain boundaries between antigorite and relict olivine locally produced Mode I cracks &fluid inclusions. (ii) Deformation of "wet" eclogite at 3 GPa and temperatures between the wet and dry solidi induced exsolution of H_2O and formation of very small amounts (<1%) of melt, leading to faulting. At lower temperature the rock was extremely strong but

  3. Frictional and hydraulic behaviour of carbonate fault gouge during fault reactivation - An experimental study

    Science.gov (United States)

    Delle Piane, Claudio; Giwelli, Ausama; Clennell, M. Ben; Esteban, Lionel; Nogueira Kiewiet, Melissa Cristina D.; Kiewiet, Leigh; Kager, Shane; Raimon, John

    2016-10-01

    We present a novel experimental approach devised to test the hydro-mechanical behaviour of different structural elements of carbonate fault rocks during experimental re-activation. Experimentally faulted core plugs were subject to triaxial tests under water saturated conditions simulating depletion processes in reservoirs. Different fault zone structural elements were created by shearing initially intact travertine blocks (nominal size: 240 × 110 × 150 mm) to a maximum displacement of 20 and 120 mm under different normal stresses. Meso-and microstructural features of these sample and the thickness to displacement ratio characteristics of their deformation zones allowed to classify them as experimentally created damage zones (displacement of 20 mm) and fault cores (displacement of 120 mm). Following direct shear testing, cylindrical plugs with diameter of 38 mm were drilled across the slip surface to be re-activated in a conventional triaxial configuration monitoring the permeability and frictional behaviour of the samples as a function of applied stress. All re-activation experiments on faulted plugs showed consistent frictional response consisting of an initial fast hardening followed by apparent yield up to a friction coefficient of approximately 0.6 attained at around 2 mm of displacement. Permeability in the re-activation experiments shows exponential decay with increasing mean effective stress. The rate of permeability decline with mean effective stress is higher in the fault core plugs than in the simulated damage zone ones. It can be concluded that the presence of gouge in un-cemented carbonate faults results in their sealing character and that leakage cannot be achieved by renewed movement on the fault plane alone, at least not within the range of slip measureable with our apparatus (i.e. approximately 7 mm of cumulative displacement). Additionally, it is shown that under sub seismic slip rates re-activated carbonate faults remain strong and no frictional

  4. Monitoring in situ deformation induced by a fluid injection in a fault zone in shale using seismic velocity changes

    Science.gov (United States)

    Rivet, D.; De Barros, L.; Guglielmi, Y.; Castilla, R.

    2015-12-01

    We monitor seismic velocity changes during an experiment at decametric scale aimed at artificially reactivate a fault zone by a high-pressure hydraulic injection in a shale formation of the underground site of Tournemire, South of France. A dense and a multidisciplinary instrumentation, with measures of pressure, fluid flow, strain, seismicity, seismic properties and resistivity allow for the monitoring of this experiment. We couple hydromechanical and seismic observations of the fault and its adjacent areas to better understand the deformation process preceding ruptures, and the role played by fluids. 9 accelerometers recorded repeated hammers shots on the tunnel walls. For each hammer shot we measured small travel time delays on direct P and S waves. We then located the seismic velocity perturbations using a tomography method. At low injection pressure, i.e. Pchange in S waves velocity. When the pressure overcomes 15 Bars, velocity perturbations dramatically increase with both P and S waves affected. A decrease of velocity is observed close to the injection point and is surrounded by regions of increasing velocity. Our observations are consistent with hydromechanical measures. Below 15 Bars, we interpret the P-wave velocity increase to be related to the compression of the fault zone around the injection chamber. Above 15 Bars, we measure a shear and dilatant fault movement, and a rapid increase in the injected fluid flow. At this step, our measures are coherent with a poroelastic opening of the fault with velocities decrease at the injection source and velocities increase related to stress transfer in the far field. Velocity changes prove to be efficient to monitor stress/strain variation in an activated fault, even if these observations might produce complex signals due to the highly contrasted hydromechanical responses in a heterogeneous media such as a fault zone.

  5. Subduction Faults as We See Them in the 21st Century

    Science.gov (United States)

    Wang, K.

    2015-12-01

    Major advances in geophysical monitoring and field and laboratory studies have reshaped our views of subduction faults over the past 15 years. The beginning of the 21st century saw the discovery of Episodic Tremor and Slip, followed by the discovery of opposing motion of coastal and inland GPS sites decades after the giant megathrust earthquakes of Chile (1960) and Alaska (1964). The burst of great earthquakes since 2004 caused tragic losses, but the resultant massive observational data greatly improved our knowledge. Today, we know that all subduction faults are extremely weak, usually represented by apparent friction coefficients lower than 0.05. Smooth faults that have produced giant earthquakes are the weakest. Geometrical irregularities such as subducting seamounts give rise to stronger faults, but these faults creep. Rupture-zone average stress drops in great earthquakes are as small as 2 - 5 MPa but are still a significant fraction of the fault strength. Therefore, it takes time to rebuild fault stress to the level of failure, consistent with great earthquakes having long recurrence intervals. The process of stress rebuilding is strongly affected by the viscoelastic mantle rheology. Because of viscoelastic stress relaxation, most of the forearc area continues to move seaward following a great earthquake but gradually reverses direction to move landward. Advanced monitoring in the new century has revealed a wide range of slip behaviors of the shallowest part the megathrust, such as huge trench-breaching coseismic slip, slip that generates large tsunamis but not strong shaking, postseismic creep, and episodic slow slip. Rapidly expanding efforts of seafloor geodesy and seismology and ocean drilling allow us to study these phenomena in close range. The deeper part of subduction faults where the slab is in contact with the serpentinized upper-plate mantle is understood to be lined with weak hydrous minerals such as talc that cause slab-mantle decoupling but

  6. Mechanical basis for slip along low-angle normal faults

    Science.gov (United States)

    Lecomte, Emmanuel; Le Pourhiet, Laetitia; Lacombe, Olivier

    2012-02-01

    The existence of active low-angle normal faults is much debated because (1) the classical theory of fault mechanics implies that normal faults are locked when the dip is less than 30° and (2) shallow-dipping extensional fault planes do not produce large earthquakes (M > 5.5). However, a number of field observations suggest that brittle deformation occurs on low-angle normal faults at very shallow dip. To reconcile observations and theory, we use an alternative model of fault reactivation including a thick elasto-plastic frictional fault gouge, and test it at large strain by the mean of 2D mechanical modeling. We show that plastic compaction allows reducing the effective friction of faults sufficiently for low-angle normal faults to be active at dip of 20°. As the model predicts that these faults must be active in a slip-hardening regime, it prevents the occurrence of large earthquakes. However, we also evidence the neoformation of Riedel-type shear bands within thick fault zone, which, we believe, may be responsible for repeated small earthquakes and we apply the model to the Gulf of Corinth (Greece).

  7. Influence of fault asymmetric dislocation on the gravity changes

    Directory of Open Access Journals (Sweden)

    Duan Hurong

    2014-08-01

    Full Text Available A fault is a planar fracture or discontinuity in a volume of rock, across which there has been significant displacement along the fractures as a result of earth movement. Large faults within the Earth’s crust result from the action of plate tectonic forces, with the largest forming the boundaries between the plates, energy release associated with rapid movement on active faults is the cause of most earthquakes. The relationship between unevenness dislocation and gravity changes was studied on the theoretical thought of differential fault. Simulated observation values were adopted to deduce the gravity changes with the model of asymmetric fault and the model of Okada, respectively. The characteristic of unevennes fault momentum distribution is from two end points to middle by 0 according to a certain continuous functional increase. However, the fault momentum distribution in the fault length range is a constant when the Okada model is adopted. Numerical simulation experiments for the activities of the strike-slip fault, dip-slip fault and extension fault were carried out, respectively, to find that both the gravity contours and the gravity variation values are consistent when either of the two models is adopted. The apparent difference lies in that the values at the end points are 17. 97% for the strike-slip fault, 25. 58% for the dip-slip fault, and 24. 73% for the extension fault.

  8. Do faults stay cool under stress?

    Science.gov (United States)

    Savage, H. M.; Polissar, P. J.; Sheppard, R. E.; Brodsky, E. E.; Rowe, C. D.

    2011-12-01

    Determining the absolute stress on faults during slip is one of the major goals of earthquake physics as this information is necessary for full mechanical modeling of the rupture process. One indicator of absolute stress is the total energy dissipated as heat through frictional resistance. The heat results in a temperature rise on the fault that is potentially measurable and interpretable as an indicator of the absolute stress. We present a new paleothermometer for fault zones that utilizes the thermal maturity of extractable organic material to determine the maximum frictional heating experienced by the fault. Because there are no retrograde reactions in these organic systems, maximum heating is preserved. We investigate four different faults: 1) the Punchbowl Fault, a strike-slip fault that is part of the ancient San Andreas system in southern California, 2) the Muddy Mountain Thrust, a continental thrust sheet in Nevada, 3) large shear zones of Sitkanik Island, AK, part of the proto-megathrust of the Kodiak Accretionary Complex and 4) the Pasagshak Point Megathrust, Kodiak Accretionary Complex, AK. According to a variety of organic thermal maturity indices, the thermal maturity of the rocks falls within the range of heating expected from the bounds on burial depth and time, indicating that the method is robust and in some cases improving our knowledge of burial depth. Only the Pasagshak Point Thrust, which is also pseudotachylyte-bearing, shows differential heating between the fault and off-fault samples. This implies that most of the faults did not get hotter than the surrounding rock during slip. Simple temperature models coupled to the kinetic reactions for organic maturity let us constrain certain aspects of the fault during slip such as fault friction, maximum slip in a single earthquake, the thickness of the active slipping zone and the effective normal stress. Because of the significant length of these faults, we find it unlikely that they never sustained

  9. Earthquake stress drops and inferred fault strength on the Hayward Fault, east San Francisco Bay, California

    Science.gov (United States)

    Hardebeck, J.L.; Aron, A.

    2009-01-01

    We study variations in earthquake stress drop with respect to depth, faulting regime, creeping versus locked fault behavior, and wall-rock geology. We use the P-wave displacement spectra from borehole seismic recordings of M 1.0-4.2 earthquakes in the east San Francisco Bay to estimate stress drop using a stack-and-invert empirical Green's function method. The median stress drop is 8.7 MPa, and most stress drops are in the range between 0.4 and 130 MPa. An apparent correlation between stress drop and magnitude is entirely an artifact of the limited frequency band of 4-55 Hz. There is a trend of increasing stress drop with depth, with a median stress drop of ~5 MPa for 1-7 km depth, ~10 MPa for 7-13 km depth, and ~50 MPa deeper than 13 km. We use S=P amplitude ratios measured from the borehole records to better constrain the first-motion focal mechanisms. High stress drops are observed for a deep cluster of thrust-faulting earthquakes. The correlation of stress drops with depth and faulting regime implies that stress drop is related to the applied shear stress. We compare the spatial distribution of stress drops on the Hayward fault to a model of creeping versus locked behavior of the fault and find that high stress drops are concentrated around the major locked patch near Oakland. This also suggests a connection between stress drop and applied shear stress, as the locked patch may experience higher applied shear stress as a result of the difference in cumulative slip or the presence of higher-strength material. The stress drops do not directly correlate with the strength of the proposed wall-rock geology at depth, suggesting that the relationship between fault strength and the strength of the wall rock is complex.

  10. A fault runs through it: Modeling the influence of rock strength and grain-size distribution in a fault-damaged landscape

    Science.gov (United States)

    Roy, S. G.; Tucker, G. E.; Koons, P. O.; Smith, S. M.; Upton, P.

    2016-10-01

    We explore two ways in which the mechanical properties of rock potentially influence fluvial incision and sediment transport within a watershed: rock erodibility is inversely proportional to rock cohesion, and fracture spacing influences the initial grain sizes produced upon erosion. Fault-weakened zones show these effects well because of the sharp strength gradients associated with localized shear abrasion. A natural example of fault erosion is used to motivate our calibration of a generalized landscape evolution model. Numerical experiments are used to study the sensitivity of river erosion and transport processes to variable degrees of rock weakening. In the experiments, rapid erosion and transport of fault gouge steers surface runoff, causing high-order channels to become confined within the structure of weak zones when the relative degree of rock weakening exceeds 1 order of magnitude. Erosion of adjacent, intact bedrock produces relatively coarser grained gravels that accumulate in the low relief of the eroded weak zone. The thickness and residence time of sediments stored there depends on the relief of the valley, which in these models depends on the degree of rock weakening. The frequency with which the weak zone is armored by bed load increases with greater weakening, causing the bed load to control local channel slope. Conversely, small tributaries feeding into the weak zone are predominantly detachment limited. Our results indicate that mechanical heterogeneity can exert strong controls on rates and patterns of erosion and should be considered in future landscape evolution studies to better understand the role of heterogeneity in structuring landscapes.

  11. Data-driven design of fault diagnosis and fault-tolerant control systems

    CERN Document Server

    Ding, Steven X

    2014-01-01

    Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems presents basic statistical process monitoring, fault diagnosis, and control methods, and introduces advanced data-driven schemes for the design of fault diagnosis and fault-tolerant control systems catering to the needs of dynamic industrial processes. With ever increasing demands for reliability, availability and safety in technical processes and assets, process monitoring and fault-tolerance have become important issues surrounding the design of automatic control systems. This text shows the reader how, thanks to the rapid development of information technology, key techniques of data-driven and statistical process monitoring and control can now become widely used in industrial practice to address these issues. To allow for self-contained study and facilitate implementation in real applications, important mathematical and control theoretical knowledge and tools are included in this book. Major schemes are presented in algorithm form and...

  12. Sonification for geoscience: Listening to faults from the inside

    Science.gov (United States)

    Barrett, Natasha; Mair, Karen

    2014-05-01

    Here we investigate the use of sonification for geoscience by sonifying the data generated in computer models of earthquake processes. Using mainly parameter mapping sonification, we explore data from our recent 3D DEM (discrete element method) models where granular debris is sheared between rough walls to simulate an evolving fault (e.g. Mair and Abe, 2011). To best appreciate the inherently 3D nature of the crushing and sliding events (continuously tracked in our models) that occur as faults slip, we use Ambisonics (a sound field recreation technology). This allows the position of individual events to be preserved generating a virtual 3D soundscape so we can explore faults from the inside. The addition of 3D audio to the sonification tool palate further allows us to more accurately connect to spatial data in a novel and engaging manner. During sonification, events such as grain scale fracturing, grain motions and interactions are mapped to specific sounds whose pitch, timbre, and volume reflect properties such as the depth, character, and size of the individual events. Our interactive and real-time approaches allow the listener to actively explore the data in time and space, listening to evolving processes by navigating through the spatial data via a 3D mouse controller. The soundscape can be heard either through an array of speakers or using a pair of headphones. Emergent phenomena in the models generate clear sound patterns that are easily spotted. Also, because our ears are excellent signal-to-noise filters, events are recognizable above the background noise. Although these features may be detectable visually, using a different sense (and part of the brain) gives a fresh perspective and facilitates a rapid appreciation of 'signals' through audio awareness, rather than specific scientific training. For this reason we anticipate significant potential for the future use of sonification in the presentation, interpretation and communication of geoscience datasets

  13. Shear System Debugging and Shear Test

    Institute of Scientific and Technical Information of China (English)

    YANG; Dong-xue; JIAO; Hai-yang

    2015-01-01

    Shear system is the essential equipment of head-end processing in the spent fuel reprocessing process,with the aim of cutting spent fuels into appropriate lengths for dissolve,separatingspent fuel core from jacket.Shear system of CRARL is mainly set in 01Bhot cell,element rods will be cut into short lengths of 10-30mm

  14. Seismic anisotropy of the crust in Yunnan,China: Polarizations of fast shear-waves

    Institute of Scientific and Technical Information of China (English)

    SHI Yu-tao; GAO Yuan; WU Jing; LUO Yan; SU You-jin

    2006-01-01

    Using seismic data recorded by Yunnan Telemetry Seismic Network from January 1, 2000 to December 31, 2003,the dominant polarization directions of fast shear-waves are obtained at l0 digital seismic stations by SAM technique, a systematic analysis method on shear-wave splitting, in this study. The results show that dominant directions of polarizations of fast shear-waves at most stations are mainly at nearly N-S or NNW direction in Yunnan.The dominant polarization directions of fast shear-waves at stations located on the active faults are consistent with the strike of active faults, directions of regional principal compressive strains measured from GPS data, and basically consistent with regional principal compressive stress. Only a few of stations show complicated polarization pattern of fast shear-waves, or are not consistent with the strike of active faults and the directions of principal GPS compressive strains, which are always located at junction of several faults. The result reflects complicated fault distribution and stress field. The dominant polarization direction of fast shear-wave indicates the direction of the in-situ maximum principal compressive stress is controlled by multiple tectonic aspects such as the regional stress field and faults.

  15. Tectonic geomorphology and neotectonics of the Kyaukkyan Fault, Myanmar

    Science.gov (United States)

    Crosetto, Silvia; Watkinson, Ian; Gori, Stefano; Falcucci, Emanuela; Min, Soe

    2016-04-01

    The Kyaukkyan Fault is a dextral strike-slip fault, part of a complex zone of active dextral transpression that absorbs most of the northward motion of India relative to Sundaland. While much of the strike-slip displacement is localised in western Myanmar and along the prominent Sagaing Fault, significant dextral shear also occurs across the Kyaukkyan Fault, on the Shan Plateau in the east. The largest recorded earthquake in Myanmar occurred on the Kyaukkyan Fault in 1912, near Maymyo (Mw 7.7), but the fault has generated little significant seismicity since then. Despite its demonstrated seismic potential and remarkable topographic expression, the fault's neotectonic history remains poorly known. Interpretation of ≤30 m Landsat TM/ETM+ images, together with field investigations, reveals deformation features developed along the Kyaukkyan Fault system, mostly indicative of Quaternary dextral strike-slip faulting. Well-marked fault scarps and valleys locate the fault especially in its northernmost and southernmost part; geomorphic features related with Kyaukkyan Fault activity are sag ponds, shutter ridges, offset and beheaded streams, triangular facets and low-sinuosity mountain fronts. Geomorphic markers of young fault activity such as offset and deformed alluvial fans, wind-gaps were also identified during field observation. The fault's central section is characterised by a complex pull-apart system, whose normal border faults show signals of relatively slow neotectonic activity. In the central part of the basin, deformation of Quaternary sediments by a locally-buried cross-basin fault system includes dip-slip faulting, where subsidence adjacent to linear ridges is suggested by notably active mountain fronts, dextral strike-slip faulting and local transpression. Although no direct evidence of a 1912 surface rupture has been detected, the fresh geomorphic expression of the cross-basin fault system indicates that it is likely to have been the focus of that event

  16. Fragmentation and shear band formation by slow compression of brittle porous media

    Science.gov (United States)

    Pál, Gergő; Jánosi, Zoltán; Kun, Ferenc; Main, Ian G.

    2016-11-01

    Localized fragmentation is an important phenomenon associated with the formation of shear bands and faults in granular media. It can be studied by empirical observation, by laboratory experiment, or by numerical simulation. Here we investigate the spatial structure and statistics of fragmentation using discrete element simulations of the strain-controlled uniaxial compression of cylindrical samples of different finite size. As the system approaches failure, damage localizes in a narrow shear band or synthetic fault "gouge" containing a large number of poorly sorted noncohesive fragments on a broad bandwidth of scales, with properties similar to those of natural and experimental faults. We determine the position and orientation of the central fault plane, the width of the shear band, and the spatial and mass distribution of fragments. The relative width of the shear band decreases as a power law of the system size, and the probability distribution of the angle of the central fault plane converges to around 30 degrees, representing an internal coefficient of friction of 0.7 or so. The mass of fragments is power law distributed, with an exponent that does not depend on scale, and is near that inferred for experimental and natural fault gouges. The fragments are in general angular, with a clear self-affine geometry. The consistency of this model with experimental and field results confirms the critical roles of preexisting heterogeneity, elastic interactions, and finite system size to grain size ratio on the development of shear bands and faults in porous media.

  17. Insights into rupture processes of a laboratory-earthquake in dry and lubricated faults

    Science.gov (United States)

    Bayart, Elsa; Svetlizky, Ilya; Fineberg, Jay

    2016-04-01

    Our understanding of the dynamics of earthquakes requires us to understand the mechanisms of transition from static to sliding friction. The weakening of a fault is mediated by the propagation of rapid interfacial ruptures (earthquakes) that detach the solid contacts forming the frictional interface. By measuring the real contact area and strain fields near rough frictional interfaces, we have shown that these ruptures correspond to true shear cracks [1]. In particular, dynamic ruptures may spontaneously arrest at various locations along the interface. We show that a fracture-mechanics-based criterion can predict the location of the rupture arrest [2]. These results shed light on the selection of an earthquake's magnitude and arrest. Another interesting question is how interstitial fluids act to weaken a fault. By performing stick-slip experiments where the contacting surfaces are covered by a thin lubricating layer, we show that the established framework of fracture mechanics can also describe the measured strain fields when rupture of the interface takes place. A surprising result is that, although reducing the frictional strength of the interface (friction coefficient), lubricants actually significantly increase the fracture energy (amount of dissipated energy) during rupture. Thus surface lubrication, while strongly reducing the residual stresses in the wake of rupture propagation, actually toughens the contacting surfaces. [1] Svetlizky, I. & Fineberg, J. Classical shear cracks drive the onset of dry frictional motion. Nature 509, 205-208 (2014). [2] Bayart, E., Svetlizky, I. & Fineberg, J. Fracture mechanics determine the lengths of interface ruptures that mediate frictional motion. Nature Physics (2015).

  18. Frictional, Hydraulic, and Acoustic Properties of Alpine Fault DFDP-1 Core

    Science.gov (United States)

    Carpenter, B. M.; Ikari, M.; Kitajima, H.; Kopf, A.; Marone, C.; Saffer, D. M.

    2012-12-01

    The Alpine Fault, a transpressional plate-boundary fault transecting the South Island of New Zealand, is the current focus of the Deep Fault Drilling Project (DFDP), a major fault zone drilling initiative. Phase 1 of this project included 2 boreholes that penetrated the active fault at depths of ˜100 m and ˜150 m, and provided a suite of core samples crossing the fault. Here, we report on laboratory measurements of frictional strength and constitutive behavior, permeability, and ultrasonic velocities for a suite of the recovered core samples We conducted friction experiments on powdered samples in a double-direct shear configuration at room temperature and humidity. Our results show that over a range of effective normal stresses from 10-100 MPa, friction coefficients are ~0.60-0.70, and are similar for all of the materials we tested. Rate-stepping tests document velocity-weakening behavior in the majority of wall rock samples, whereas the principal slip surface (PSS) and an adjacent clay-rich cataclasite exhibit velocity-strengthening behavior. We observe significant rates of frictional healing in all of our samples, indicating that that the fault easily regains its strength during interseismic periods. Our results indicate that seismic slip is not likely to nucleate in the clay-rich PSS at shallow depths, but might nucleate and propagate on the gouge/wall rock interface. We measured permeability using a constant head technique, on vertically oriented cylindrical mini-cores (i.e. ˜45 degrees to the plane of the Alpine Fault). We conducted these tests in a triaxial configuration, under isotropic stress conditions and effective confining pressures from ~2.5 - 63.5 MPa. We conducted ultrasonic wavespeed measurements concurrently with the permeability measurements to determine P- and S-wave velocities from time-of-flight. The permeability of all samples decreases systematically with increasing effective stress. The clay-rich cataclasite (1.37 x 10-19 m2) and PSS (1

  19. Clay Mineralogy, Authigenic Smectite Concentration, and Fault Weakening of the San Gregorio Fault; Moss Beach, California

    Science.gov (United States)

    Mazzoni, S.; Moore, J.; Bish, D. L.

    2002-12-01

    The apparently weak nature of the San Andreas fault system poses a fundamental geophysical question. The San Gregorio fault at Moss Beach, CA is an active splay of the right-lateral San Andreas fault zone and has a total offset of about 150 km. At Moss Beach, the San Gregorio fault offsets Pliocene sedimentary rocks and consists of a clay-rich gouge zone, eastern sandstone block, and western mudstone block. In the presence of fluids, smectite clays can swell and become very weak to shearing. We studied a profile of samples across the fault zone and wall rocks to determine if there is a concentration of smectite in the gouge zone and propose a possible formation mechanism. Samples were analyzed using standard quantitative X-ray diffraction methods and software recently developed at Los Alamos National Lab. XRD results show a high smectite/illite (weak clay/strong clay) ratio in the gouge (S/I ratio=2-4), lower in the mudstone (S/I ratio=2), and very low in the sandstone (S/I ratio=1). The variability of smectite/illite ratio in the gouge zone may be evidence of preferential alteration where developed shear planes undergo progressive smectite enrichment. The amount of illite layers in illite/smectites is 5-30%, indicating little illitization; therefore, these fault rocks have not undergone significant diagenesis above 100 degrees C and illite present must be largely detrital. Bulk mineralogy shows significant anti-correlation of smectite with feldspar, especially in the gouge, suggesting authigenic smectite generation from feldspar. Under scanning-electron microscope inspection, smectites have fibrous, grain coating growth fabrics, also suggesting smectite authigenesis. If in situ production of smectite via chemical alteration is possible in active faults, it could have significant implications for self-generated weakening of faults above the smectite-to-illite transition (<150 degrees C, or 5-7km).

  20. Pseudotachylytes of the Deep Crust: Examples from a Granulite-Facies Shear Zone

    Science.gov (United States)

    Orlandini, O.; Mahan, K. H.; Regan, S.; Williams, M. L.; Leite, A.

    2013-12-01

    The Athabasca Granulite Terrane is an exhumed section of deep continental crust exposed in the western Canadian shield. The terrane hosts the 1.88 Ga Cora Lake shear zone, a 3-5 km wide sinistral and extensional oblique-slip system that was active at high-pressure granulite-grade conditions ( ~1.0 GPa, >800°C to ~0.8 GPa and 700 °C). Pseudotachylyte, a glassy vein-filling substance that results from frictional melting during seismic slip, is common in ultramylonitic strands of the shear zone, where veins run for tens of meters subparallel to foliation. Some but not all PST veins have been overprinted with the Cora Lake shear zone foliation, and undeformed PST locally bears microlitic garnet. The frictional melts that quench into PST may reach >1400 °C, but are extremely localized and cool to country rock temperatures within minutes, resulting in glass and/or microlitic mineral growths. The melt itself is thought by many to be in disequilibrium with the host rock due to its rapid nature, but during cooling equilibrium is probably reached at small scales. This allows for microprobe analysis of adjacent microlites for thermobarometric calculations. Preliminary results from undeformed (e.g., youngest of multiple generations) PST suggest that quenching occurred in upper amphibolite facies ambient conditions and is compatible with later stages of Cora Lake shear zone activity. Host-rock mylonites contain abundant garnet and pyroxene sigma clasts indicating sinistral shear, and where PST-bearing slip surfaces are found at low angles to the foliation, they display sinistral offset. The host rock contains abundant macroscopic and microscopic sinistral shear fracture systems (e.g., Riedel [R], Y, and P displacement surfaces) within the immediate proximity of PST veins, indicating a complex interplay of brittle and ductile behavior that is interpreted to be genetically related to the formation of the PST. The shear fracture systems are characterized by sharply bounded

  1. Brittle fault analysis from the immediate southern side of the Insubric fault

    Science.gov (United States)

    Pleuger, Jan; Mancktelow, Neil

    2013-04-01

    The Insubric segment of the Periadriatic fault is characterised in its central part between Lago Maggiore and Valle d'Ossola by two greenschist-facies mylonitic belts which together are about 1 km thick. The northern, external belt has a north-side-up kinematics generally with a minor dextral component and the southern internal belt is dextral, locally with a considerable south-side-up component. Overprinting relations locally show that the internal belt is younger than the external one (e.g. Schmid et al., 1987). The absolute age of dextral shearing is probably given by K-Ar white mica ages ranging mostly between from c. 27 to 23 Ma (Zingg and Hunziker, 1990). We analysed fault-slip data from various locations in the Southern Alps immediately south of the Insubric Fault. From the results, two different patterns of orientations of contraction (P-axes) and extension (T-axes) axes can be distinguished. One group (group 1) of analyses is compatible with dextral transpression (i.e. both P- and T-axes are subhorizontal) and the other (group 2) with roughly orogen-perpendicular extension (i.e. subvertical P-axes and subhorizontal T-axes). The orientations of subhorizontal axes (P- and T-axes in group 1, T-axes in group 2) show a tendency to follow the curved shape of the Insubric fault, i.e. P-axes of group 1 and T-axes of group 2 change from NNW-SSE in the east where the Insubric fault trends east-west to WNW-ESE in the west where the Insubric fault trends northeast-southwest. We speculate that group 1 formed at the same time as dextral shearing on in the internal mylonite belt while none of our fault analyses reflects the north-side-up reverse faulting that is observed in the external mylonite belt. The northwest-southeast extension documented in the analyses of group 2 is not associated with a continuous mylonitic belt or brittle fault plane along the Insubric fault. Instead, an uplift of the Southern Alps with respect to the northern block was accommodated by

  2. Reduced shear power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, Scott; /Fermilab /Chicago U., Astron. Astrophys. Ctr. /Northwestern U.; Shapiro, Charles; /Chicago U. /KICP, Chicago; White, Martin J.; /UC, Berkeley, Astron.

    2005-08-01

    Measurements of ellipticities of background galaxies are sensitive to the reduced shear, the cosmic shear divided by (1-{kappa}) where {kappa} is the projected density field. They compute the difference between shear and reduced shear both analytically and with simulations. The difference becomes more important an smaller scales, and will impact cosmological parameter estimation from upcoming experiments. A simple recipe is presented to carry out the required correction.

  3. Reduced shear power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, Scott; /Fermilab /Chicago U., Astron. Astrophys. Ctr. /Northwestern U.; Shapiro, Charles; /Chicago U. /KICP, Chicago; White, Martin J.; /UC, Berkeley, Astron.

    2005-08-01

    Measurements of ellipticities of background galaxies are sensitive to the reduced shear, the cosmic shear divided by (1-{kappa}) where {kappa} is the projected density field. They compute the difference between shear and reduced shear both analytically and with simulations. The difference becomes more important an smaller scales, and will impact cosmological parameter estimation from upcoming experiments. A simple recipe is presented to carry out the required correction.

  4. Loading of the San Andreas fault by flood-induced rupture of faults beneath the Salton Sea

    Science.gov (United States)

    Brothers, Daniel; Kilb, Debi; Luttrell, Karen; Driscoll, Neal W.; Kent, Graham

    2011-01-01

    The southern San Andreas fault has not experienced a large earthquake for approximately 300 years, yet the previous five earthquakes occurred at ~180-year intervals. Large strike-slip faults are often segmented by lateral stepover zones. Movement on smaller faults within a stepover zone could perturb the main fault segments and potentially trigger a large earthquake. The southern San Andreas fault terminates in an extensional stepover zone beneath the Salton Sea—a lake that has experienced periodic flooding and desiccation since the late Holocene. Here we reconstruct the magnitude and timing of fault activity beneath the Salton Sea over several earthquake cycles. We observe coincident timing between flooding events, stepover fault displacement and ruptures on the San Andreas fault. Using Coulomb stress models, we show that the combined effect of lake loading, stepover fault movement and increased pore pressure could increase stress on the southern San Andreas fault to levels sufficient to induce failure. We conclude that rupture of the stepover faults, caused by periodic flooding of the palaeo-Salton Sea and by tectonic forcing, had the potential to trigger earthquake rupture on the southern San Andreas fault. Extensional stepover zones are highly susceptible to rapid stress loading and thus the Salton Sea may be a nucleation point for large ruptures on the southern San Andreas fault.

  5. Late Quaternary Faulting along the San Juan de los Planes Fault Zone, Baja California Sur, Mexico

    Science.gov (United States)

    Busch, M. M.; Coyan, J. A.; Arrowsmith, J.; Maloney, S. J.; Gutierrez, G.; Umhoefer, P. J.

    2007-12-01

    As a result of continued distributed deformation in the Gulf Extensional Province along an oblique-divergent plate margin, active normal faulting is well manifest in southeastern Baja California. By characterizing normal-fault related deformation along the San Juan de los Planes fault zone (SJPFZ) southwest of La Paz, Baja California Sur we contribute to understanding the patterns and rates of faulting along the southwest gulf-margin fault system. The geometry, history, and rate of faulting provide constraints on the relative significance of gulf-margin deformation as compared to axial system deformation. The SJPFZ is a major north-trending structure in the southern Baja margin along which we focused our field efforts. These investigations included: a detailed strip map of the active fault zone, including delineation of active scarp traces and geomorphic surfaces on the hanging wall and footwall; fault scarp profiles; analysis of bedrock structures to better understand how the pattern and rate of strain varied during the development of this fault zone; and a gravity survey across the San Juan de los Planes basin to determine basin geometry and fault behavior. The map covers a N-S swath from the Gulf of California in the north to San Antonio in the south, an area ~45km long and ~1-4km wide. Bedrock along the SJPFZ varies from Cretaceous Las Cruces Granite in the north to Cretaceous Buena Mujer Tonalite in the south and is scarred by shear zones and brittle faults. The active scarp-forming fault juxtaposes bedrock in the footwall against Late Quaternary sandstone-conglomerate. This ~20m wide zone is highly fractured bedrock infused with carbonate. The northern ~12km of the SJPFZ, trending 200°, preserves discontinuous scarps 1-2km long and 1-3m high in Quaternary units. The scarps are separated by stretches of bedrock embayed by hundreds of meters-wide tongues of Quaternary sandstone-conglomerate, implying low Quaternary slip rate. Further south, ~2 km north of the

  6. Reflection seismic survey across a fault zone in the Leinetal Graben, Germany, using P- and SH-waves

    Science.gov (United States)

    Musmann, P.; Polom, U.; Buness, H.; Thomas, R.

    2012-04-01

    Fault systems are considered as a valuable hydro-geothermal reservoir for heat and energy extraction, as permeability may be enhanced compared to the surrounding host rock. Seismic measurements are a well established tool to reveal their structure at depth. Apart from structural parameters like dip, extent and throw, they allow us to derive lithologic parameters, e.g. seismic velocities and impedance. Usually, only compressional waves have been used so far. In the context of the "gebo" Collaborative Research Program, seismic methods are revised to image and characterize geological fault zones in order to minimize the geological and technical risk for geothermal projects. In doing so, we evaluate and develop seismic acquisition, processing and interpretation techniques both for compressional and shear wave surveys to estimate the geothermal potential of fault zones. Here, we present results from high-resolution P- and SH-wave reflection seismic surveys along one and the same profile. They were carried out across the eastern border of the Leinetal Graben, Lower Saxony, Germany. At this survey site, primarily Triassic units crop out that are disrupted by major fault system probably extending down into Permian Zechstein. The seismic P-wave measurements (2.5 m CDP spacing, 20 - 180 Hz sweep sent out by a small vibrator) imaged the structure of the subsurface and its fault inventory with high resolution. Imaging ranges from approximately 50 m (base Keuper) to approximately 1.8 km (within Zechstein) depth. The profiles reveal that the area has undergone multiphase tectonics. This becomes manifest in a complex seismic reflection pattern. In addition the P-wave velocity model shows several features that can be related to folding and faulting. Preliminary results of the SH-wave measurements (0.5 m CDP spacing, 10 - 100 Hz sweep) show that the complex structural geological settings in the subsurface, as imaged by the P-wave survey, can also be imaged by a reflection shear

  7. San-in shear zone in southwest Japan, revealed by GNSS observations

    Science.gov (United States)

    Nishimura, Takuya; Takada, Youichiro

    2017-06-01

    A right-lateral shear zone in the San-in region, southwest Japan, has been proposed by previous geological and seismological studies. It locates 350 km north of the Nankai Trough, that is, the main plate boundary between the subducting Philippine Sea and overriding Amurian plates and presumably accommodates a part of the relative plate motion. We present a geodetic evidence of the proposed shear zone using GNSS velocity data. Distinct shear deformation is identified only between 132.5°E and 135°E along a coastline which is a part of the proposed shear zone, and we propose to call the geodetically identified shear zone as the San-in shear zone (SSZ). The SSZ is a concentrated deformation zone with a width of 50 km and can be modeled by a deep creep on a vertical strike slip fault with a creep rate of 5 mm/year. There are some active faults parallel and oblique to the overall trend of the SSZ, but no single active fault coincides with the SSZ. Lineaments of microseismicity and source faults of large earthquakes are almost oriented in NNW-SSE in the SSZ and oblique to the overall trend of the SSZ. They are interpreted as conjugate Riedel shears. Based on these geodetic, seismological, and geomorphological observations, we suggest that the SSZ is a developing and young shear zone in a geological time scale.[Figure not available: see fulltext.

  8. Fault Tolerant Feedback Control

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.

    2001-01-01

    An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out...... that there is a separation be-tween the feedback controller and the fault tolerant part. The closed loop feedback properties are handled by the nominal feedback controller and the fault tolerant part is handled by the design of the Youla parameter. The design of the fault tolerant part will not affect the design...... of the nominal feedback con-troller....

  9. Reconnaissance study of late quaternary faulting along cerro GoDen fault zone, western Puerto Rico

    Science.gov (United States)

    Mann, P.; Prentice, C.S.; Hippolyte, J.-C.; Grindlay, N.R.; Abrams, L.J.; Lao-Davila, D.

    2005-01-01

    -marine middle Eocene rocks from transgressive, shallow-marine rocks of middle-upper Oligocene age. Rocks of middle Oligocene-early Pliocene age above unconformity are gently folDed about the roughly east-west-trending Puerto Rico-Virgin Islands arch, which is well expressed in the geomorphology of western Puerto Rico. Arching appears ongoing because onshore and offshore late Quaternary oblique-slip faults closely parallel the complexly Deformed crest of the arch and appear to be related to exTensional strains focused in the crest of the arch. We estimate ???4 km of vertical throw on the Cerro GoDen fault based on the position of the carbonate cap north of the fault in the La CaDena De San Francisco and its position south of the fault inferred from seismic reflection data in Mayaguez Bay. Based on these observations, our interpretation of the kinematics and history of the Cerro GoDen fault zone incluDes two major phases of motion: (1) Eocene northeast-southwest shorTening possibly accompanied by left-lateral shearing as Determined by previous workers on the Great Southern Puerto Rico fault zone; and (2) post-early Pliocene regional arching of Puerto Rico accompanied by normal offset and right-lateral shear along faults flanking the crest of the arch. The second phase of Deformation accompanied east-west opening of the Mona rift and is inferred to continue to the present day. ?? 2005 Geological Society of America.

  10. Active faulting within a megacity: the geometry and slip rate of the Pardisan thrust in central Tehran, Iran

    Science.gov (United States)

    Talebian, M.; Copley, A. C.; Fattahi, M.; Ghorashi, M.; Jackson, J. A.; Nazari, H.; Sloan, R. A.; Walker, R. T.

    2016-12-01

    Tehran, the capital city of Iran with a population of over 12 million, is one of the largest urban centres within the seismically active Alpine-Himalayan orogenic belt. Although several historic earthquakes have affected Tehran, their relation to individual faults is ambiguous for most. This ambiguity is partly due to a lack of knowledge about the locations, geometries and seismic potential of structures that have been obscured by dramatic urban growth over the past three decades, and which have covered most of the young geomorphic markers and natural exposures. Here we use aerial photographs from 1956, combined with an ˜1 m DEM derived from stereo Pleiades satellite imagery to investigate the geomorphology of a growing anticline above a thrust fault-the Pardisan thrust-within central Tehran. The topography across the ridge is consistent with a steep ramp extending from close to the surface to a depth of ˜2 km, where it presumably connects with a shallow-dipping detachment. No primary fault is visible at the surface, and it is possible that the faulting dissipates in the near surface as distributed shearing. We use optically stimulated luminescence to date remnants of uplifted and warped alluvial deposits that are offset vertically across the Pardisan fault, providing minimum uplift and slip-rates of at least 1 mm yr-1. Our study shows that the faults within the Tehran urban region have relatively rapid rates of slip, are important in the regional tectonics, and have a great impact on earthquake hazard assessment of the city and surrounding region.

  11. Numerical modelling of fault reactivation in carbonate rocks under fluid depletion conditions - 2D generic models with a small isolated fault

    Science.gov (United States)

    Zhang, Yanhua; Clennell, Michael B.; Delle Piane, Claudio; Ahmed, Shakil; Sarout, Joel

    2016-12-01

    This generic 2D elastic-plastic modelling investigated the reactivation of a small isolated and critically-stressed fault in carbonate rocks at a reservoir depth level for fluid depletion and normal-faulting stress conditions. The model properties and boundary conditions are based on field and laboratory experimental data from a carbonate reservoir. The results show that a pore pressure perturbation of -25 MPa by depletion can lead to the reactivation of the fault and parts of the surrounding damage zones, producing normal-faulting downthrows and strain localization. The mechanism triggering fault reactivation in a carbonate field is the increase of shear stresses with pore-pressure reduction, due to the decrease of the absolute horizontal stress, which leads to an expanded Mohr's circle and mechanical failure, consistent with the predictions of previous poroelastic models. Two scenarios for fault and damage-zone permeability development are explored: (1) large permeability enhancement of a sealing fault upon reactivation, and (2) fault and damage zone permeability development governed by effective mean stress. In the first scenario, the fault becomes highly permeable to across- and along-fault fluid transport, removing local pore pressure highs/lows arising from the presence of the initially sealing fault. In the second scenario, reactivation induces small permeability enhancement in the fault and parts of damage zones, followed by small post-reactivation permeability reduction. Such permeability changes do not appear to change the original flow capacity of the fault or modify the fluid flow velocity fields dramatically.

  12. Coordination Control Strategy for Compound Fault of MMC-HVDC

    Directory of Open Access Journals (Sweden)

    Zhang Ming Guang

    2016-01-01

    Full Text Available Single-line to ground fault of DC side and sub-module fault are typical faults of MMC-HVDC. When each of the above faults occurs, the system will give a signal for circuit-breaker releasing, this will result in interruption of power delivery, the stability of the system is greatly reduced. When these two faults occur simultaneously, research on control strategy for compound fault will help to improve the reliability of the system. While single-line to ground fault of DC side happens, only the electric potential auxiliary point of DC side is changed, system’s power transport normally. When sub-module is fault, redundancy fault-tolerated control strategy is presented, which replace the failed sub-modules with equal number of redundant sub-modules, it can restrain the fluctuation of direct current. A double terminals and 21 voltage-level MMC-HVDC system simulation model is set up in PSCAD/EMTDC. From the computation and simulation results, it is concluded that the proposed control strategy is correct for above compound fault, it can achieve rapid recovery after faults, effectively improve fault tolerance of the system, develop the stability and reliability of the system.

  13. Fault detection and isolation in systems with parametric faults

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    1999-01-01

    The problem of fault detection and isolation of parametric faults is considered in this paper. A fault detection problem based on parametric faults are associated with internal parameter variations in the dynamical system. A fault detection and isolation method for parametric faults is formulated...

  14. Fault current limiters using superconductors

    Science.gov (United States)

    Norris, W. T.; Power, A.

    Fault current limiters on power systems are to reduce damage by heating and electromechanical forces, to alleviate duty on switchgear used to clear the fault, and to mitigate disturbance to unfaulted parts of the system. A basic scheme involves a super-resistor which is a superconductor being driven to high resistance when fault current flows either when current is high during a cycle of a.c. or, if the temperature of the superconductive material rises, for the full cycle. Current may be commuted from superconductor to an impedance in parallel, thus reducing the energy dispersed at low temperature and saving refrigeration. In a super-shorted transformer the ambient temperature primary carries the power system current; the superconductive secondary goes to a resistive condition when excessive currents flow in the primary. A super-transformer has the advantage of not needing current leads from high temperature to low temperature; it behaves as a parallel super-resistor and inductor. The supertransductor with a superconductive d.c. bias winding is large and has small effect on the rate of fall of current at current zero; it does little to alleviate duty on switchgear but does reduce heating and electromechanical forces. It is fully active after a fault has been cleared. Other schemes depend on rapid recooling of the superconductor to achieve this.

  15. Iowa Bedrock Faults

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This fault coverage locates and identifies all currently known/interpreted fault zones in Iowa, that demonstrate offset of geologic units in exposure or subsurface...

  16. null Faults, null Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Through the study of faults and their effects, much can be learned about the size and recurrence intervals of earthquakes. Faults also teach us about crustal...

  17. Space Geodetic Constraints on the Structure and Properties of Compliant Damage Zones Around Major Crustal Faults

    Science.gov (United States)

    Fialko, Y.

    2004-12-01

    Geologic and seismologic studies of large crustal faults indicate that the fault interface that accommodates most of seismic slip is often surrounded by heavily damaged material characterized by high crack density and reduced seismic velocities. Recently such damage zones were imaged by space geodetic observations. I present results of Interferometric Synthetic Aperture Radar (InSAR) observations of deformation across kilometer-wide compliant fault zones in response to nearby earthquakes. In particular, a number of faults in the Eastern California Shear Zone, including the Calico, Rodman, Pinto Mountain, and Lenwood faults, were strained by both the 1992 Landers and the 1999 Hector Mine earthquakes. Analysis of deformation on these faults indicates that the fault zone displacements depend on the magnitude, but are independent of the sign of the co-seismic stress changes, implying a linearly elastic deformation. Other examples include faults adjacent to the North Anatolian fault (Turkey) that were strained by the 1999 Izmit earthquake. Analytic and numerical (finite element) modeling of the observed deformation suggests that the compliant fault zones have width of 1-2 km, depth extent of several km (or greater), and reductions in the effective shear modulus of about a factor of two. Stacked interferometric data from the Eastern California Shear Zone spannig a time period of more than 10 years reveal time-dependent (post- or inter-seismic) deformation on some of the inferred compliant fault zones. In particular, the fault zone associated with the Pinto Mountain fault was subsiding over several years following the Landers eartquake, with the total amplitude of subsidence comparable to the amplitude of the co-seismically-induced uplift. This behavior may be indicative of the poro-elastic deformation of the fluid-saturated fault zone.

  18. Rapidity correlations test stochastic hydrodynamics

    CERN Document Server

    Zin, Christopher; Moschelli, George

    2016-01-01

    We show that measurements of the rapidity dependence of transverse momentum correlations can be used to determine the characteristic time $\\tau_{\\pi}$ that dictates the rate of isotropization of the stress energy tensor, as well as the shear viscosity $\

  19. Performance based fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2002-01-01

    Different aspects of fault detection and fault isolation in closed-loop systems are considered. It is shown that using the standard setup known from feedback control, it is possible to formulate fault diagnosis problems based on a performance index in this general standard setup. It is also shown...

  20. Fault tolerant computing systems

    CERN Document Server

    Randell, B

    1981-01-01

    Fault tolerance involves the provision of strategies for error detection, damage assessment, fault treatment and error recovery. A survey is given of the different sorts of strategies used in highly reliable computing systems, together with an outline of recent research on the problems of providing fault tolerance in parallel and distributed computing systems. (15 refs).

  1. Fault Tolerant Control Systems

    DEFF Research Database (Denmark)

    Bøgh, S. A.

    was to avoid a total close-down in case of the most likely faults. The second was a fault tolerant attitude control system for a micro satellite where the operation of the system is mission critical. The purpose was to avoid hazardous effects from faults and maintain operation if possible. A method...

  2. Sinistral shear and extension of the northern section of Lijiang Basin in northwest Yunnan in Quaternary

    Institute of Scientific and Technical Information of China (English)

    HAN Zhujun; XIANG Hongfa; GUO Shunmin

    2005-01-01

    The northern section of Lijiang Basin (NSLB) has the features of a zigzag fault, a kind of "tracing extension" in the shape. Fault slip is characterized by both extension and sinistral shear. Average sinistral-shear and extensional displacements are respectively 1950 and 1730 m. This kind of movement began in middle Pleistocene, which is about 800 ka ago. Average sinistral and extensional slip-rates can be acquired, which are 2.44 and 2.16 mm/a. Geological evidence at different segments of the NSLB demonstrates results of geomorphic analysis, and is consistent with our knowledge about the zigzag fault. Realization of sinistral shear and extension of the NSLB provides direct evidence for the model of clockwise rotation of northwest Sichuan active block and the understanding of dynamic features of the Red River fault zone.

  3. GPS DATA INVERSION OF KINEMATIC MODEL OF MAIN FAULTS IN YUNNAN

    Institute of Scientific and Technical Information of China (English)

    ShenChongyang; WuYun; WangQi; YouXinzhao; QiaoXuejun

    2003-01-01

    On the basis of GPS observations in Yunnan from 1999 to 2001, we adopt the robust Bayesian least square estimation and multi-fault dislocation model to analyze the quantitative kinematics models of the main faults in Yunnan. The geodetic inversion suggests that, (1) The horizontal movement of crust in Yunnan is affected distinctly by fault activity whose characters are consistent with geological results; (2) The activity of the north segment of the Red River fault zone is maximum, in the middle segment is moderate, and in the south segment is minimum; (3)Among others, the Xiaojiang fault zone has the strongest activity, the secondary are the Lancang fault zone and the north segment of Nujiang fault zone, the Qujiang fault zone shows the characteristic of hinge fault; (4)Each fault could produce an earthquake of Ms=6 more or less per year; (5) The larger value of maximum shear strain are mostly located along the main active fault zones and their intersections; earthquakes did not occur at the place of maximum shear strain, and mostly take place at the higher gradient zones, especially at its corner.

  4. GPS DATA INVERSION OF KINEMATIC MODEL OF MAIN FAULTS IN YUNNAN

    Institute of Scientific and Technical Information of China (English)

    Shen Chongyang; Wu Yun; Wang Qi; You Xinzhao; Qiao Xuejun

    2003-01-01

    On the basis of GPS observations in Yunnan from 1999 to 2001, we adopt the robust Bayesian least square estimation and multi-fault dislocation model to analyze the quantitative kinematics models of the main faults in Yunnan. The geodetic inversion suggests that: (1) The horizontal movement of crust in Yunnan is affected distinctly by fault activity whose characters are consistent with geological results; (2) The activity of the north segment of the Red River fault zone is maximum, in the middle segment is moderate, and in the south segment is minimum; (3)Among others, the Xiaojiang fault zone has the strongest activity, the secondary are the Lancang fault zone and the north segment of Nujiang fault zone, the Qujiang fault zone shows the characteristic of hinge fault; (4)Each fault could produce an earthquake of Ms=6 more or less per year; (5) The larger value of maximum shear strain are mostly located along the main active fault zones and their intersections; earthquakes did not occur at the place of maximum shear strain, and mostly take place at the higher gradient zones, especially at its corner.

  5. Contrasts in Faulting and Veining Across the Aseismic to Seismic Transition, Kodiak Accretionary Complex, Alaska

    Science.gov (United States)

    Rowe, C. D.; Thompson, E.; Moore, J. C.

    2002-12-01

    Structure and Character of Veined Zones in Kodiak Accretionary Prism Subduction thrust systems produce the world's largest earthquakes. The transition from aseismic to seismogenic faulting occurs at approximately 4 km depth. The chemical and physical controls on this transition are not well understood, but previous research indicates that phase transformations, fluid pressure changes, and formation of authigenic minerals and cements may produce changes in cohesion and coefficient of friction which control fault behavior. We have described and sampled areas of paleo faulting and fluid flow in an ancient subduction thrust system, Kodiak Archipelago, Alaska. We are comparing two formations: the upper Paleocene Ghost Rocks Fm., which previous work has shown to have been exposed to ~ 250° C and 12 km depth (well within the seismogenic zone) and the Eocene Sitkalidak Fm., which has been exposed to 100-125° C at 2.4-3.9 km depth, (accreted before it crossed the aseismic-seismogenic boundary.) Field observations confirmed earlier work and supported project hypotheses. The Ghost Rocks Fm. is characterized by discrete heavily veined zones meters to tens of meters thick. Individual veins in these zones commonly reach thickness of up to several centimeters and are primarily composed of clean calcite and quartz. In contrast, the Sitkalidak Fm. is characterized by a small volume of web-like networks of very fine veins rarely exceeding a few mm in thickness. These veins are composed of laumontite and "dirty" calcite. In the Sitkalidak Fm., stratal disruption is characterized by conjugate shear fracturing, leaving lustrous black residues on shear surfaces, followed by extensional fractures with veining, indicating rising fluid pressures. In the Ghost Rocks Fm., there is little evidence for conjugate shear fracturing. Stratal disruption is accomplished by extensive extensional fracturing and veining as well as ductile deformation and rotation of sediments under non-coaxial strain

  6. Structure of a normal seismogenic fault zone in carbonates: The Vado di Corno Fault, Campo Imperatore, Central Apennines (Italy)

    Science.gov (United States)

    Demurtas, Matteo; Fondriest, Michele; Balsamo, Fabrizio; Clemenzi, Luca; Storti, Fabrizio; Bistacchi, Andrea; Di Toro, Giulio

    2016-09-01

    The Vado di Corno Fault Zone (VCFZ) is an active extensional fault cutting through carbonates in the Italian Central Apennines. The fault zone was exhumed from ∼2 km depth and accommodated a normal throw of ∼2 km since Early-Pleistocene. In the studied area, the master fault of the VCFZ dips N210/54° and juxtaposes Quaternary colluvial deposits in the hangingwall with cataclastic dolostones in the footwall. Detailed mapping of the fault zone rocks within the ∼300 m thick footwall-block evidenced the presence of five main structural units (Low Strain Damage Zone, High Strain Damage Zone, Breccia Unit, Cataclastic Unit 1 and Cataclastic Unit 2). The Breccia Unit results from the Pleistocene extensional reactivation of a pre-existing Pliocene thrust. The Cataclastic Unit 1 forms a ∼40 m thick band lining the master fault and recording in-situ shattering due to the propagation of multiple seismic ruptures. Seismic faulting is suggested also by the occurrence of mirror-like slip surfaces, highly localized sheared calcite-bearing veins and fluidized cataclasites. The VCFZ architecture compares well with seismological studies of the L'Aquila 2009 seismic sequence (mainshock MW 6.1), which imaged the reactivation of shallow-seated low-angle normal faults (Breccia Unit) cut by major high-angle normal faults (Cataclastic Units).

  7. Volcano instability induced by strike-slip faulting

    Science.gov (United States)

    Lagmay, A. M. F.; van Wyk de Vries, B.; Kerle, N.; Pyle, D. M.

    2000-09-01

    Analogue sand cone experiments were conducted to study instability generated on volcanic cones by basal strike-slip movement. The results of the analogue models demonstrate that edifice instability may be generated when strike-slip faults underlying a volcano move as a result of tectonic adjustment. This instability occurs on flanks of the volcano above the strike-slip shear. On the surface of the volcano this appears as a pair of sigmoids composed of one reverse and one normal fault. In the interior of the cone the faults form a flower structure. Two destabilised regions are created on the cone flanks between the traces of the sigmoidal faults. Bulging, intense fracturing and landsliding characterise these unstable flanks. Additional analogue experiments conducted to model magmatic intrusion show that fractures and faults developed within the volcanic cone due to basal strike-slip motions strongly control the path of the intruding magma. Intrusion is diverted towards the areas where previous development of reverse and normal faults have occurred, thus causing further instability. We compare our model results to two examples of volcanoes on strike-slip faults: Iriga volcano (Philippines), which underwent non-magmatic collapse, and Mount St. Helens (USA), where a cryptodome was emplaced prior to failure. In the analogue and natural examples, the direction of collapse takes place roughly parallel to the orientation of the underlying shear. The model presented proposes one mechanism for strike-parallel breaching of volcanoes, recently recognised as a common failure direction of volcanoes found in regions with transcurrent and transtensional deformation. The recognition of the effect of basal shearing on volcano stability enables prediction of the likely direction of eventual flank failure in volcanoes overlying strike-slip faults.

  8. The work of fault growth in laboratory sandbox experiments

    Science.gov (United States)

    Herbert, Justin W.; Cooke, Michele L.; Souloumiac, Pauline; Madden, Elizabeth H.; Mary, Baptiste C. L.; Maillot, Bertrand

    2015-12-01

    Contractional sandbox experiments that simulate crustal accretion and direct shear tests both provide direct data on the amount of work required to create faults (Wprop) in granular materials. Measurements of force changes associated with faulting reveal the work consumed by fault growth, which can be used to predict fault growth path and timing. Within the contractional experiments, the sequence and style of early faulting is consistent for the range of sand pack thicknesses tested, from 12 to 30 mm. Contrary to expectations that Wprop is only a material property, the experimental data show that for the same material, Wprop increases with sand pack thickness. This normal stress dependence stems from the frictional nature of granular materials. With the same static and sliding friction values, incipient faults initiated deeper in the sand pack have larger shear stress drops, due to increased normal compression, σn. For CV32 sand, the relationship between Wprop and σn, calculated from the force drop data as Wprop (J/m2) = 2.0 ×10-4 (m)σn (Pa), is consistent with the relationship calculated from direct shear test data as Wprop (J/m2) = 2.4 ×10-4 (m)σn (Pa). Testing of different materials within the contractional sandbox (fine sand and glass beads) shows the sensitivity of Wprop to material properties. Both material properties and normal stress should be considered in calculations of the work consumed by fault growth in both analog experiments and crustal fault systems.

  9. Fault-induced deformation in a poorly consolidated, siliciclastic growth basin: A study from the Devonian in Norway

    Science.gov (United States)

    Braathen, A.; Osmundsen, P. T.; Hauso, H.; Semshaug, S.; Fredman, N.; Buckley, S. J.

    2013-02-01

    The extensional Berge fault (Devonian Kvamshesten Basin, West Norway) displays 430 m of syntectonic stratigraphy with fluvial sandstones and red fines exposed in a hanging wall growth section. The fault consists of three linked strands, where the offset diminishes and tips out stratigraphically upwards. Folds in the growth basin include a rollover and drag fold that record cumulative deformation during the main phases of fault slip, and a monocline that records the death and burial of the fault. Deformation styles in both the subbasin fill and the fault core indicate that the sediments were unconsolidated to poorly lithified during deformation. The upward-narrowing fault core consists of indurated breccias derived from footwall conglomerates, and mainly laminated fault gouge of subbasin affinity. Towards the hanging wall there is a mixed layer of sandstone lenses enclosed in fault gouge; this unit is variably sheared. In the damage zone deeper in the subbasin, truncating-style small-scale tabular shear bands show a general increase in frequency towards the fault, with abundant peaks in frequency next to the fault core. Smearing-style shear bands are merely encountered near the master fault. In the upper monocline realm, an overall broad zone of deformation reveals a moderate frequency of shear bands, characterized by clear distinctions between variably deformed layers. Some tabular dilation structures are found locally as layer-confined strain throughout the basin. We reason that the mixed layer is a product of fluid mobilization in/along the fault core. Fluid induced weakening combined with differential compaction would augment aseismic creep, as advocated for the creation of the smearing shear bands. We discuss a conceptual model in which damage zones grow by repeated rejuvenation and expand during propagation events, advocating that a distinctive damage zone becomes better expressed with increasing faulting events and depth (consolidation) in a growth basin.

  10. Spacing and strength of active continental strike-slip faults

    Science.gov (United States)

    Zuza, Andrew V.; Yin, An; Lin, Jessica; Sun, Ming

    2017-01-01

    Parallel and evenly-spaced active strike-slip faults occur widely in nature across diverse tectonic settings. Despite their common existence, the fundamental question of what controls fault spacing remains unanswered. Here we present a mechanical model for the generation of parallel strike-slip faults that relates fault spacing to the following parameters: (1) brittle-crust thickness, (2) fault strength, (3) crustal strength, and (4) crustal stress state. Scaled analogue experiments using dry sand, dry crushed walnut shells, and viscous putty were employed to test the key assumptions of our quantitative model. The physical models demonstrate that fault spacing (S) is linearly proportional to brittle-layer thickness (h), both in experiments with only brittle materials and in two-layer trials involving dry sand overlying viscous putty. The S / h slope in the two-layer sand-putty experiments may be controlled by the (1) rheological/geometric properties of the viscous layer, (2) effects of distributed basal loading caused by the viscous shear of the putty layer, and/or (3) frictional interaction at the sand-putty interface (i.e., coupling between the viscous and brittle layers). We tentatively suggest that this third effect exerts the strongest control on fault spacing in the analogue experiments. By applying our quantitative model to crustal-scale strike-slip faults using fault spacing and the seismogenic-zone thickness obtained from high-resolution earthquake-location data, we estimate absolute fault friction of active strike-slip faults in Asia and along the San Andreas fault system in California. We show that the average friction coefficient of strike-slip faults in the India-Asia collisional orogen is lower than that of faults in the San Andreas fault system. Weaker faults explain why deformation penetrates >3500 km into Asia from the Himalaya and why the interior of Asia is prone to large (M > 7.0) devastating earthquakes along major intra-continental strike

  11. Shearing stability of lubricants

    Science.gov (United States)

    Shiba, Y.; Gijyutsu, G.

    1984-01-01

    Shearing stabilities of lubricating oils containing a high mol. wt. polymer as a viscosity index improver were studied by use of ultrasound. The oils were degraded by cavitation and the degradation generally followed first order kinetics with the rate of degradation increasing with the intensity of the ultrasonic irradiation and the cumulative energy applied. The shear stability was mainly affected by the mol. wt. of the polymer additive and could be determined in a short time by mechanical shearing with ultrasound.

  12. Shearing stability of lubricants

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, Y.; Gijyutsu, G.

    1984-03-01

    Shearing stabilities of lubricating oils containing a high mol. wt. polymer as a viscosity index improver were studied by use of ultrasound. The oils were degraded by cavitation and the degradation generally followed first order kinetics with the rate of degradation increasing with the intensity of the ultrasonic irradiation and the cumulative energy applied. The shear stability was mainly affected by the mol. wt. of the polymer additive and could be determined in a short time by mechanical shearing with ultrasound.

  13. Information Based Fault Diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2008-01-01

    Fault detection and isolation, (FDI) of parametric faults in dynamic systems will be considered in this paper. An active fault diagnosis (AFD) approach is applied. The fault diagnosis will be investigated with respect to different information levels from the external inputs to the systems....... These inputs are disturbance inputs, reference inputs and auxilary inputs. The diagnosis of the system is derived by an evaluation of the signature from the inputs in the residual outputs. The changes of the signatures form the external inputs are used for detection and isolation of the parametric faults....

  14. Fault-Tree Compiler

    Science.gov (United States)

    Butler, Ricky W.; Boerschlein, David P.

    1993-01-01

    Fault-Tree Compiler (FTC) program, is software tool used to calculate probability of top event in fault tree. Gates of five different types allowed in fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. High-level input language easy to understand and use. In addition, program supports hierarchical fault-tree definition feature, which simplifies tree-description process and reduces execution time. Set of programs created forming basis for reliability-analysis workstation: SURE, ASSIST, PAWS/STEM, and FTC fault-tree tool (LAR-14586). Written in PASCAL, ANSI-compliant C language, and FORTRAN 77. Other versions available upon request.

  15. Fault oneoff versus coseismic fluids reaction

    Institute of Scientific and Technical Information of China (English)

    C. Doglioni; S. Barba; E. Carminati; F. Riguzzi

    2014-01-01

    The fault activation (fault on) interrupts the enduring fault locking (fault off) and marks the end of a seismic cycle in which the brittle-ductile transition (BDT) acts as a sort of switch. We suggest that the fluid flow rates differ during the different periods of the seismic cycle (interseismic, pre-seismic, coseismic and post-seismic) and in particular as a function of the tectonic style. Regional examples indicate that tectonic-related fluids anomalies depend on the stage of the tectonic cycle and the tectonic style. Although it is difficult to model an increasing permeability with depth and several BDT transitions plus independent acquicludes may occur in the crust, we devised the simplest numerical model of a fault constantly shearing in the ductile deeper crust while being locked in the brittle shallow layer, with variable homogeneous permeabilities. The results indicate different behaviors in the three main tectonic settings. In tensional tectonics, a stretched band antithetic to the normal fault forms above the BDT during the interseismic period. Fractures close and fluids are expelled during the coseismic stage. The mechanism reverses in compressional tectonics. During the interseismic stage, an over-compressed band forms above the BDT. The band dilates while rebounding in the coseismic stage and attracts fluids locally. At the tip lines along strike-slip faults, two couples of subvertical bands show different behavior, one in dilation/compression and one in compression/dilation. This deformation pattern inverts during the coseismic stage. Sometimes a pre-seismic stage in which fluids start moving may be observed and could potentially become a precursor.

  16. Earthquake fault superhighways

    Science.gov (United States)

    Robinson, D. P.; Das, S.; Searle, M. P.

    2010-10-01

    Motivated by the observation that the rare earthquakes which propagated for significant distances at supershear speeds occurred on very long straight segments of faults, we examine every known major active strike-slip fault system on land worldwide and identify those with long (> 100 km) straight portions capable not only of sustained supershear rupture speeds but having the potential to reach compressional wave speeds over significant distances, and call them "fault superhighways". The criteria used for identifying these are discussed. These superhighways include portions of the 1000 km long Red River fault in China and Vietnam passing through Hanoi, the 1050 km long San Andreas fault in California passing close to Los Angeles, Santa Barbara and San Francisco, the 1100 km long Chaman fault system in Pakistan north of Karachi, the 700 km long Sagaing fault connecting the first and second cities of Burma, Rangoon and Mandalay, the 1600 km Great Sumatra fault, and the 1000 km Dead Sea fault. Of the 11 faults so classified, nine are in Asia and two in North America, with seven located near areas of very dense populations. Based on the current population distribution within 50 km of each fault superhighway, we find that more than 60 million people today have increased seismic hazards due to them.

  17. Maine Pseudotachylyte Localities and the Role of Host Rock Anisotropy in Fault Zone Development and Frictional Melting

    Science.gov (United States)

    Swanson, M. T.

    2004-12-01

    Three brittle strike-slip fault localities in coastal Maine have developed pseudotachylyte fault veins, injection veins and other reservoir structures in a variety of host rocks where the pre-existing layering can serve as a controlling fabric for brittle strike-slip reactivation. Host rocks with a poorly-oriented planar anisotropy at high angles to the shear direction will favor the development of R-shears in initial en echelon arrays as seen in the Two Lights and Richmond Island Fault Zones of Cape Elizabeth that cut gently-dipping phyllitic quartzites. These en echelon R-shears grow to through-going faults with the development of P-shear linkages across the dominantly contractional stepovers in the initial arrays. Pseudotachylyte on these faults is very localized, typically up to 1-2 mm in thickness and is restricted to through-going fault segments, P-shear linkages and some sidewall ripouts. Overall melt production is limited by the complex geometry of the multi-fault array. Host rocks with a favorably-oriented planar anisotropy for reactivation in brittle shear, however, preferentially develop a multitude of longer, non-coplanar layer-parallel fault segments. Pseudotachylyte in the newly-discovered Harbor Island Fault Zone in Muscongus Bay is developed within vertical bedding on regional upright folds with over 50 individual layer-parallel single-slip fault veins, some of which can be traced for over 40 meters along strike. Many faults show clear crosscuts of pre-existing quartz veins that indicate a range of coseismic displacements of 0.23-0.53 meters yielding fault vein widths of a few mm and dilatant reservoirs up to 2 cm thick. Both vertical and rare horizontal lateral injection veins can be found in the adjoining wall rock up to 0.7 cm thick and 80 cm in length. The structure of these faults is simple with minor development of splay faults, sidewall ripouts and strike-slip duplexes. The prominent vertical flow layering within the mylonite gneisses of

  18. In situ observations on the coupling between hydraulic diffusivity and displacements during fault reactivation in shales

    Science.gov (United States)

    Guglielmi, Yves; Elsworth, Derek; Cappa, Frédéric; Henry, Pierre; Gout, Claude; Dick, Pierre; Durand, Jérémie

    2015-11-01

    Key questions in fault reactivation in shales relate to the potential for enhanced fluid transport through previously low-permeability aseismic formations. Here we explore the behavior of a 20 m long N0-to-170°, 75-to-80°W fault in shales that is critically stressed under a strike-slip regime (σ1 = 4 ± 2 MPa, horizontal and N162° ± 15°E, σ2 = 3.8 ± 0.4 MPa and σ3 = 2.1 ± 1 MPa, respectively 7-8° inclined from vertical and horizontal and N72°). The fault was reactivated by fluid pressurization in a borehole using a straddle packer system isolating a 2.4 m long injection chamber oriented-subnormal to the fault surface at a depth of 250 m. A three-dimensional displacement sensor attached across the fault allowed monitoring fault movements, injection pressure and flow rate. Pressurization induced a hydraulic diffusivity increase from ~2 × 10-9 to ~103 m2 s-1 associated with a complex three-dimensional fault movement. The shear (x-, z-) and fault-normal (y-) components (Ux, Uy, and Uz) = (44.0 × 10-6 m, 10.5 × 10-6 m, and 20.0 × 10-6 m) are characterized by much larger shear displacements than the normal opening. Numerical analyses of the experiment show that the fault permeability evolution is controlled by the fault reactivation in shear related to Coulomb failure. The large additional fault hydraulic aperture for fluid flow is not reflected in the total normal displacement that showed a small partly contractile component. This suggests that complex dilatant effects estimated to occur in a plurimeter radius around the injection source affect the flow and slipping patch geometries during fault rupture, controlling the initial slow slip and the strong back slip of the fault following depressurization.

  19. 配电网故障快速定位及图形显示软件系统的设计%Design of Rapid Automatic Fault Location and Graphics Display Software System of Lines in Distribution Network

    Institute of Scientific and Technical Information of China (English)

    郝玉东; 包宇喆; 杨淑霞; 姜燕

    2012-01-01

    In view of the long fault localization time and fault clearance in mid-voltage power grid, a simple automatic and graphic positioning scheme of software system is proposed based on a combination of tree-like to-pological structure and the vector operations of monitoring nodes information for the mid-voltage power grid. The naming rules and vector information settings of the monitoring nodes in software is analyzed. The judge method in which the fault lines and line segment are most likely to occur is presented. And the result displayed by color in mapobject component is easily understood. On-site running proved that the above scheme is correct and feasible, speed of fault localization is fast, and the graphic display is accurate, and thus the system makes fault treatment easier and more convenient.%针对中压电力线路发生故障后查找时间长、排除难的问题,提出了树形拓扑结构与监控节点矢量信息运算相结合的中压电网故障线路自动定位及图形显示软件系统设计方案.详细分析了监控节点在软件中的命名规则及其矢量信息的设置方法,提出了判断故障线路和线段的方法.判断结果通过控件Mapobject用色彩显示,直观方便.现场运行证明了上述方案的正确性和可行性,故障定位快速,图形显示准确,为故障处理提供了方便.

  20. Strain and shear types of the Louzidian ductile shear zone in southern Chifeng,Inner Mongolia,China

    Institute of Scientific and Technical Information of China (English)

    WANG XinShe; ZHENG YaDong; WANG Tao

    2007-01-01

    The Louzidian ductile shear zone at the south of Chifeng strikes NE-SW and dips SE at low-mediumangles. This ductile shear zone is mainly composed of granitic mylonite, which grades structurally upward into a chloritized zone, a microbreccia zone, a brittle fault and a gouge zone. All these zones share similar planar attitudes. But contain different linear attitudes and kinematic indicators. Finite strain measurements were performed on feldspar porphyroclasts using the Fry method. These measurements yield Fulin indexes of 1.25-3.30,Lode's parameters of-0.535-0.112 and strain parameters of 0.41-0.75 for the protomylonite, respectively. These data are plotted within the apparent constrictional field in Fulin and Hossack diagrams. In contrast, for the mylonite, corresponding parameters are 0.99-1.43,-0.176--0.004 and 0.63-0.82,respectively,and located in the apparent constrictional field close to the plane strain. The mean kinematic vorticity numbers of the protomylonite and mylonite by using three methods of polar Mohr circle, porphyroclast hyperbolic and oblique foliation, are in the range of 0.67-0.95,suggesting that the ductile shearing is accommodated by general shearing that is dominated by simple shear. Combination of the finite strain and kinematic vorticity indicates that shear type was lengthening shear and resulted in L-tectonite at the initial stage of deformation and the shear type gradually changed into lengthening-thinning shear and produced L-S-tectonite with the uplifting of the shear zone and accumulating of strain. These kinds of shear types only produce a/ab strain facies, so the lineation in the ductile shear zone could not deflect 90.in the progressively deformation.

  1. Fault zone roughness controls slip stability

    Science.gov (United States)

    Harbord, Christopher; Nielsen, Stefan; De Paola, Nicola

    2016-04-01

    Fault roughness is an important control factor in the mechanical behaviour of fault zones, in particular the frictional slip stability and subsequent earthquake nucleation. Despite this, there is little experimental quantification as to the effects of varying roughness upon rate- and state-dependant friction (RSF). Utilising a triaxial deformation apparatus and a novel adaptation of the direct shear methodology to simulate initially bare faults in Westerly Granite, we performed a series of velocity step frictional sliding experiments. Initial root mean square roughnesses (Sq) was varied in the range 6x10-7 - 2.4x10-5 m. We also investigated the effects upon slip stability of normal stress variation in the range σn = 30 - 200 MPa, and slip velocity between 0.1 - 10 μm s-1. A transition from stable sliding to unstable slip (manifested by stick-slip and slow slip events) was observed, depending on the parameter combination, thus covering the full spectrum of fault slip behaviours. At low normal stress (σn = 30MPa) smooth faults (Sqstress drops on slow slip events upon velocity increase), with strongly velocity weakening friction. When normal stress is increased to intermediate values (σn = 100 - 150 MPa), smooth faults (Sqstress (σn = 200 MPa) a transition from unstable to stable sliding is observed for smooth faults, which is not expected using RSF stability criteria. At all conditions sliding is stable for rough faults (Sq> 1x10-6 m). We find that instability can develop when the ratio of fault to critical stiffness kf kc > 10, or, alternatively, even when a - b > 0 at σn = 150MPa, suggesting that bare surfaces may not strictly obey the R+S stability condition. Additionally we present white light interferometry and SEM analysis of experimentally deformed samples which provide information about the distribution and physical nature of frictional contact. Significantly we suggest that bare fault surfaces may require a different stability criterion (based on

  2. Non-Andersonian conjugate strike-slip faults: Observations, theory, and tectonic implications

    Energy Technology Data Exchange (ETDEWEB)

    Yin, A [Department of Earth and Space Sciences and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, CA 90025-1567 (United States); Taylor, M H [Department of Geology, University of Kansas, 1475 Jayhawk Blvd., Lawrence, KS 66044 (United States)], E-mail: yin@ess.ucla.edu

    2008-07-01

    Formation of conjugate strike-slip faults is commonly explained by the Anderson fault theory, which predicts a X-shaped conjugate fault pattern with an intersection angle of {approx}30 degrees between the maximum compressive stress and the faults. However, major conjugate faults in Cenozoic collisional orogens, such as the eastern Alps, western Mongolia, eastern Turkey, northern Iran, northeastern Afghanistan, and central Tibet, contradict the theory in that the conjugate faults exhibit a V-shaped geometry with intersection angles of 60-75 degrees, which is 30-45 degrees greater than that predicted by the Anderson fault theory. In Tibet and Mongolia, geologic observations can rule out bookshelf faulting, distributed deformation, and temporal changes in stress state as explanations for the abnormal fault patterns. Instead, the GPS-determined velocity field across the conjugate fault zones indicate that the fault formation may have been related to Hagen-Poiseuille flow in map view involving the upper crust and possibly the whole lithosphere based on upper mantle seismicity in southern Tibet and basaltic volcanism in Mongolia. Such flow is associated with two coeval and parallel shear zones having opposite shear sense; each shear zone produce a set of Riedel shears, respectively, and together the Riedel shears exhibit the observed non-Andersonian conjugate strike-slip fault pattern. We speculate that the Hagen-Poiseuille flow across the lithosphere that hosts the conjugate strike-slip zones was produced by basal shear traction related to asthenospheric flow, which moves parallel and away from the indented segment of the collisional fronts. The inferred asthenospheric flow pattern below the conjugate strike-slip fault zones is consistent with the magnitude and orientations of seismic anisotropy observed across the Tibetan and Mongolian conjugate fault zones, suggesting a strong coupling between lithospheric deformation and asthenospheric flow. The laterally moving

  3. Radial anisotropy beneath northeast Tibet, implications for lithosphere deformation at a restraining bend in the Kunlun fault and its vicinity

    Science.gov (United States)

    Li, Lun; Li, Aibing; Murphy, Michael A.; Fu, Yuanyuan V.

    2016-09-01

    Three-dimensional shear wave velocity and radial anisotropy models of the crust and upper mantle beneath the NE Tibetan plateau are constructed from new measurements of Love wave dispersions (20-77s) and previously obtained Rayleigh wave dispersions (20-87s) using a two-plane-wave method. The mid-lower crust is characterized with positive anisotropy (VSH > VSV) with large strength beneath the Qinling and Qilian Mountains and small values beneath the Anyemaqen Mountain. The large positive anisotropy can be explained by horizontal alignment of anisotropic minerals in the mid-lower crust due to crustal flow. The mantle lithosphere above 90 km is largely isotropic while weak positive anisotropy appears beneath 90 km, which probably marks the lithosphere-asthenosphere boundary (LAB). A low shear wave velocity anomaly and relatively negative radial anisotropy are imaged in the entire lithosphere beneath the restraining bend in the eastern Kunlun fault, consistent with a weak lithosphere experiencing vertical thickening under horizontal compression. The asthenosphere at the restraining bend is characterized by significant low velocity and positive radial anisotropy, reflecting that the asthenosphere here is probably hotter, has more melts, and deforms more easily than the surrounding region. We propose that the lithosphere at the restraining bend was vertically thickened and subsequently delaminated locally, and induced asthenosphere upwelling. This model explains the observations of velocity and anisotropy anomalies in the lithosphere and asthenosphere as well as geological observations of rapid rock uplift at the restraining bend of the Kunlun fault.

  4. 40Ar-39Ar ages of the Louzidian-Dachengzi ductile shear zone near Chifeng,Inner Mongolia and their tectonic significance

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The Louzidian normal fault occurs as the eastern detachment fault of the Kalaqin metamorphic core complex. Field observations and microstructural analyses reveal that the Louzidian-Dachengzi ductile shear zone developed in its lower-plate was genetically related to sinistral strike-slips and extensional faulting. Two samples from this ductile shear zone yield 40Ar-39Ar plateau ages of 133 Ma (Bi) and 126 Ma (Kp), which are concordant with their isochron ages. The plateau age of 133 Ma (Bi) records the formation age of the ductile shear zone. The inconsistent relationship between the earlier strike-slip ductile shear zone and the later normal fault makes the Kalaqin Quasi-metamorphic core complex distinctive from Cordilleran metamorphic core complex. These ages provide important geochronological data for putting constraints on the formation age and genesis of such ductile shear zones.

  5. Seismic imaging constraints on megathrust fault zone properties

    Science.gov (United States)

    Abers, G. A.; Janiszewski, H. A.; Keranen, K. M.; Saffer, D. M.; Shillington, D. J.

    2014-12-01

    Several lines of evidence suggest that subduction zone thrusts lie within overpressured channels. Seismic reflection data often shows a relatively thin, high-reflectivity surface with occasional bright spots, indicative of rapidly varying impedance contrasts over length scales of tens of meters. Scattered coda of teleseismic P waves, such as in receiver functions, often show a thin low-velocity layer corresponding to the top of the subducting plate. The latter have been best documented in Cascadia, where a 2-4 km thick very low velocity channel is seen above a moderately slow subducting crust, and in Alaska where similar structure has been seen. High-reflectivity bright spots occur in the same region, although perhaps over more limited areas. The low velocity zones are characterized by elevated Vp/Vs ratios (>2.0), and extend both throughout the locked, seismogenic fault zone and downdip into the region where episodic tremor and slip occur. Commonly, this combination of low velocities and high Vp/Vs is taken to indicate high pore pressures, and hence a fault zone that can withstand only very low shear stresses. However, models of the low wavespeeds suggest static porosities of 2-5% throughout a 2-4 km thick layer, extending to depths of 40 km, a situation that seems difficult to sustain. At both the Alaska and Cascadia margins, low Vp, high Poisson's ratios, and high anisotropies should result in part from the subduction of sediments well into and beyond the seismogenic zone. The presence of a significant thickness of subducted and underplated sediment is consistent with observations of preserved subduction "channels" in exhumed examples from tens of km depth. Although some elevation of pore pressure may be still needed to explain observations, if the subduction of 2-4 km of sediment is a significant factor in generating the seismic signatures, then the geophysical observations could reflect a much stronger thrust zone than one sustained by high pore pressure alone.

  6. Deformation of two welded elastic half-spaces due to a long inclined tensile fault

    Indian Academy of Sciences (India)

    Anil Kumar; Sarva Jit Singh; Jagdish Singh

    2005-02-01

    The calculation of the deformation caused by shear and tensile faults is necessary for the investigation of seismic and volcanic sources. The solution of the two-dimensional problem of a long inclined shear fault in two welded half-spaces is well known. The purpose of this note is to present the corresponding solution for a tensile fault. Closed-form analytical expressions for the Airy stress function for a tensile line source in two welded half-spaces are first obtained. These expressions are then integrated analytically to derive the Airy stress function for a long tensile fault of arbitrary dip and finite width. Closed-form analytical expressions for the displacements and stresses follow immediately from the Airy stress function. These expressions are suitable for computing the displacement and stress fields around a long inclined tensile fault near an internal boundary.

  7. Investigation of the stress state on the fault planes and the magnitude of the seismic events occurred from geothermal reservoirs

    Science.gov (United States)

    Mukuhira, Y.; Asanuma, H.; Häring, M. O.; Saeki, K.

    2013-12-01

    Occurrence of felt earthquakes is a critical environmental burden in geothermal development, and studies on control factors of the magnitude of the seismic events have been activated worldwide. We have identified fault planes of the large events occurred from engineered geothermal systems (EGS) sites, at Cooper Basin, Australia, and Basel, Switzerland, and Yanaizu-Nishiyama, a Japanese hydrothermal field. Shear/normal stress working on these fault planes was evaluated on the Mohr stress circles, comparing with the event magnitudes. It has been found that the large events at Basel and Yanaizu-Nishiyama occurred from fault planes where relatively large shear stress is working, although smaller events also occurred from fault planes with large shear stress. Identification of the fault planes of the larger events at Basel showed that large events mainly occurred from two types of sub-vertical fault planes with azimuth of WNW-ESE or N-S (see figure). FPSs of four felt earthquakes in Yanaizu-Nishiyama showed nearly common strike/dip. From these observations, it can be interpreted that the large events from Basel and Yanaizu-Nishiyama were likely to occur from particular fault planes with large shear stress within complex facture system. Similar relationship between shear stress and the magnitude has been also found by several seismologists (e.g. Terakawa et al., 2012). The selectivity in occurrence of the large events among fault planes under common shear stress suggests that there would be some additional factors to control scale of the failure. At Cooper Basin, where limited number of sub-horizontal fractures and vertical fractures connecting them compose the reservoir, the large events occurred from the sub-horizontal fault planes on which many smaller events also occurred. In this case, the moderate shear stress was working on the sub-horizontal fault planes, suggesting that the event magnitudes were mainly controlled by some unknown factors rather than the shear

  8. Stress-induced formation mechanism of stacking fault tetrahedra in nano-cutting of single crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Quanlong [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Bai, Qingshun [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Chen, Jiaxuan, E-mail: wangquanlong0@hit.edu.cn [Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Guo, Yongbo [Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xie, Wenkun [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-11-15

    Graphical abstract: In this paper, molecular dynamics simulation is performed to study the distribution of dislocation defects and local atomic crystal structure of single crystal copper. The stress distribution is investigated which is calculated by virial stress and analyzed by static pressure. The results are shown in (a)–(d). It is indicated that the compressive stress mainly spreads over the shear-slip zone, and the tensile stress is consisted in flank friction zone, shown in (a). The high tensile stress in subsurface is the source of stress, shown in (b). By the driven action of the stress source, the initial stair-rod dislocation nucleates. Then the dislocation climbs along four {1 1 1} planes under the stress driven action, shown in (d). Finally, the SFT is formed by the interaction of the compressive stress and the tensile stress which come from the shear-slip zone and friction zone, respectively. Besides, stair-rod dislocation, stacking faults and dislocation loop are also nucleated in the subsurface, shown in (c). Dislocation distribution, local atomic crystal structure state and stress-induced formation process of SFT by atomic. - Highlights: • A novel defect structure “stress-induced stacking fault tetrahedra” is revealed. • Atomic structural evolution and stress state distribution of the SFT are studied. • The stress-induced formation mechanism of the SFT is proposed. - Abstract: Stacking fault tetrahedra commonly existed in subsurface of deformed face center cubic metals, has great influence on machining precision and surface roughness in nano-cutting. Here we report, a stacking fault tetrahedra is formed in subsurface of workpiece during nano-cutting. The variation of cutting force and subsurface defects distribution are studied by using molecular dynamics simulation. The stress distribution is investigated which is calculated by virial stress and analyzed by static compression. The result shows that the cutting force has a rapidly

  9. Shear-controlled evolution of the Red Sea: pull apart model

    Science.gov (United States)

    Makris, J.; Rihm, R.

    1991-11-01

    Results of seismic and other geophysical investigations suggest that strike-slip processes controlled the break-up of the Arabian plate from Africa and initiated the Red Sea Rift. Early oceanisation was facilitated by nucleation of pull apart basins and massive intrusives. The evolution of the Red Sea has gone through different stages. It was a zone of structural weakness already during the Pan-African orogeny approximately 600 Ma. A major reactivation, however, that gradually led to the present-day configuration was initiated during the late Oligocene with intense magmatic activity and the development of a continental rift. Wrench faulting played a key role in the early evolution of the Red Sea, as it shaped most of its western flank as a sharp plate boundary and resulted in the generation and rapid oceanisation of linearly arranged pull apart basins. Spatial distribution of these basins reflects the geometry of the strike-slip zone, which was controlled by pre-existing fault systems like the Najd Shear System, the Central African Fault Zone or the Onib-Hamisana and Baraka suture zones. Strike-slip motion along the latter zones of weakness influenced mainly the Egyptian and Sudanese coastal areas. Arabia was therefore separated from Africa by oceanisation in those regions, where pull apart basins developed. They were still connected in the in-between segments by stretched continental crust. With Arabia as the "moving" and Africa as the "stable" plate the eastern Red Sea flank was formed by pure shear through stretching, thinning and diffuse extension. As a consequence, the eastern and western flanks of the Red Sea are asymmetrical. The acceleration of the movement of Arabia in early/middle Miocene could no longer be accommodated by the opening in the Gulf of Suez and consequently the Dead Sea strike-slip fault developed approximately 14 Ma ago. Since plate motion was still oblique to the major structural trends, the pull apart evolution on the western flank

  10. Surface roughness evolution on experimentally simulated faults

    Science.gov (United States)

    Renard, François; Mair, Karen; Gundersen, Olav

    2012-12-01

    To investigate the physical processes operating in active fault zones, we conduct analogue laboratory experiments where we track the morphological and mechanical evolution of an interface during slip. Our laboratory friction experiments consist of a halite (NaCl) slider held under constant normal load that is dragged across a coarse sandpaper substrate. This set-up is a surrogate for a fault surface, where brittle and plastic deformation mechanisms operate simultaneously during sliding. Surface morphology evolution, frictional resistance and infra-red emission are recorded with cumulative slip. After experiments, we characterize the roughness developed on slid surfaces, to nanometer resolution, using white light interferometry. We directly observe the formation of deformation features, such as slip parallel linear striations, as well as deformation products or gouge. The striations are often associated with marginal ridges of positive relief suggesting sideways transport of gouge products in the plane of the slip surface in a snow-plough-like fashion. Deeper striations are commonly bounded by triangular brittle fractures that fragment the salt surface and efficiently generate a breccia or gouge. Experiments with an abundance of gouge at the sliding interface have reduced shear resistance compared to bare surfaces and we show that friction is reduced with cumulative slip as gouge accumulates from initially bare surfaces. The relative importance of these deformation mechanisms may influence gouge production rate, fault surface roughness evolution, as well as mechanical behavior. Finally, our experimental results are linked to Nature by comparing the experimental surfaces to an actual fault surface, whose striated morphology has been characterized to centimeter resolution using a laser scanner. It is observed that both the stress field and the energy dissipation are heterogeneous at all scales during the maturation of the interface with cumulative slip. Importantly

  11. Modeling the evolution of the lower crust with laboratory derived rheological laws under an intraplate strike slip fault

    Science.gov (United States)

    Zhang, X.; Sagiya, T.

    2015-12-01

    The earth's crust can be divided into the brittle upper crust and the ductile lower crust based on the deformation mechanism. Observations shows heterogeneities in the lower crust are associated with fault zones. One of the candidate mechanisms of strain concentration is shear heating in the lower crust, which is considered by theoretical studies for interplate faults [e.g. Thatcher & England 1998, Takeuchi & Fialko 2012]. On the other hand, almost no studies has been done for intraplate faults, which are generally much immature than interplate faults and characterized by their finite lengths and slow displacement rates. To understand the structural characteristics in the lower crust and its temporal evolution in a geological time scale, we conduct a 2-D numerical experiment on the intraplate strike slip fault. The lower crust is modeled as a 20km thick viscous layer overlain by rigid upper crust that has a steady relative motion across a vertical strike slip fault. Strain rate in the lower crust is assumed to be a sum of dislocation creep and diffusion creep components, each of which flows the experimental flow laws. The geothermal gradient is assumed to be 25K/km. We have tested different total velocity on the model. For intraplate fault, the total velocity is less than 1mm/yr, and for comparison, we use 30mm/yr for interplate faults. Results show that at a low slip rate condition, dislocation creep dominates in the shear zone near the intraplate fault's deeper extension while diffusion creep dominates outside the shear zone. This result is different from the case of interplate faults, where dislocation creep dominates the whole region. Because of the power law effect of dislocation creep, the effective viscosity in the shear zone under intraplate faults is much higher than that under the interplate fault, therefore, shear zone under intraplate faults will have a much higher viscosity and lower shear stress than the intraplate fault. Viscosity contract between

  12. Mechanical and Acoustic Signature of Slow Earthquakes on Laboratory Faults

    Science.gov (United States)

    Scuderi, Marco Maria; Marone, Chris; Tinti, Elisa; Scognamiglio, Laura; Di Stefano, Giuseppe; Collettini, Cristiano

    2015-04-01

    Recent seismic and geodetic observations show that fault slip occurs via a spectrum of behaviors that range from seismic (fast dynamic) to aseismic (creep). Indeed faults can slip via a variety of quasi-dynamic processes such as Slow-Slip, Low Frequency Earthquakes (LFE), and Tremor. These transient modes of slip represent slow, but self-propagating acceleration of slip along fault zones. These phenomena have been observed worldwide in a variety of active tectonic environments, however the physics of quasi-dynamic rupture and the underlying fault zone processes are still poorly understood. Rate- and State- frictional constitutive equations predict that fast dynamic slip will occur when the stiffness of the loading system (k) is less than a critical stiffness (kc) characterizing the fault gouge. In order to investigate quasi-dynamic transients, we performed laboratory experiments on simulated fault gouge (silica powders) in the double direct shear configuration with a compliant central block allowing boundary conditions where k≈kc. In addition, PZTs were used to measure acoustical properties of the gouge layers during shear. We document an evolution of the fault mechanical properties as the σn is increased. For σn state frictional type of shear. When σn ≥ 15 MPa we observe emergent slow-slip events from steady state shear with accumulated shear displacement of about 10 mm. The typical values of stress drop (Δτ) vary between 0.2 and 0.8 MPa, and have typical duration from 0.5 up to 3 seconds giving the characteristics of slow stick-slip. As σn is varied we observe different characteristics of slow slip. For σn = 15MPa a repetitive double period oscillation is observed with slow slip growing until a maximum stress drop and then self attenuating. When σn is increased to 20 and 25 MPa slow slip are characterized by larger Δτ with constant τmax and τmin, however still showing a co-seismic duration of ~2 seconds. Our results suggest that strain

  13. Research on Transformer Fault Based on Probabilistic Neural Network

    Directory of Open Access Journals (Sweden)

    Li Yingshun

    2015-01-01

    Full Text Available With the development of computer science and technology, and increasingly intelligent industrial production, the application of big data in industry also advances rapidly, and the development of artificial intelligence in the aspect of fault diagnosis is particularly prominent. On the basis of MATLAB platform, this paper constructs a fault diagnosis expert system of artificial intelligence machine based on the probabilistic neural network, and it also carries out a simulation of production process by the use of bionic algorithm. This paper makes a diagnosis of transformer fault by the use of an expert system developed by this paper, and verifies that the probabilistic neural network has a good convergence, fault-tolerant ability and big data handling capability in the fault diagnosis. It is suitable for industrial production, which can provide a reliable mathematical model for the construction of fault diagnosis expert system in the industrial production.

  14. Cross Shear Roll Bonding

    DEFF Research Database (Denmark)

    Bay, Niels; Bjerregaard, Henrik; Petersen, Søren. B;

    1994-01-01

    The present paper describes an investigation of roll bonding an AlZn alloy to mild steel. Application of cross shear roll bonding, where the two equal sized rolls run with different peripheral speed, is shown to give better bond strength than conventional roll bonding. Improvements of up to 20......-23% in bond strength are found and full bond strength is obtained at a reduction of 50% whereas 65% is required in case of conventional roll bonding. Pseudo cross shear roll bonding, where the cross shear effect is obtained by running two equal sized rolls with different speed, gives the same results....

  15. Angular shear plate

    Science.gov (United States)

    Ruda, Mitchell C [Tucson, AZ; Greynolds, Alan W [Tucson, AZ; Stuhlinger, Tilman W [Tucson, AZ

    2009-07-14

    One or more disc-shaped angular shear plates each include a region thereon having a thickness that varies with a nonlinear function. For the case of two such shear plates, they are positioned in a facing relationship and rotated relative to each other. Light passing through the variable thickness regions in the angular plates is refracted. By properly timing the relative rotation of the plates and by the use of an appropriate polynomial function for the thickness of the shear plate, light passing therethrough can be focused at variable positions.

  16. Modelling fault surface roughness and fault rocks thickness evolution with slip: calibration based on field and laboratory data

    Science.gov (United States)

    Bistacchi, A.; Tisato, N.; Spagnuolo, E.; Nielsen, S. B.; Di Toro, G.

    2012-12-01

    The architecture and physical properties of fault zones evolve with slip and time. Such evolution, which progressively modifies the type and thickness of fault rocks, the fault surface roughness, etc., controls the rheology of fault zones (seismic vs. aseismic) and earthquakes (main shock magnitude, coseismic slip distribution, stress drop, foreshock and aftershock sequence evolution, etc.). Seismogenic faults exhumed from 2-10 km depth and hosted in different rocks (carbonates, granitoids, etc.) show a (1) self-affine (Hurst exponent H definition of "wear" (including every process that destroys geometrical asperities and produces fault rocks). The output roughness and fault rock thickness depend on two parameters: (1) wear rate and (2) wear products (fault rocks) accumulation rate. To test the model we used surface roughness, fault rock thickness, and slip data collected in the field (Gole Larghe Fault Zone, Italian Southern Alps) and in the lab (rotary shear experiments on different rocks). The model was successful in predicting the first-order evolution of roughness and of fault rock thickness with slip in both natural and experimental datasets. Differences in best-fit model parameters (wear rate and wear products accumulation rate) were satisfactorily explained in terms of different deformation processes (e.g. frictional melting vs. cataclasis) and experimental conditions (unconfined vs. confined). Since the model is based on geometrical and volume-conservation considerations (and not on a particular deformation mechanism), we conclude that the surface roughness and fault-rock thickness after some slip is mostly determined by the initial roughness (measured over several orders of magnitude in wavelength), rather than the particular deformation process (cataclasis, melting, etc.) activated during faulting. Conveniently, since the model can be applied (under certain conditions) to surfaces which depart from self-affine roughness, the model parameters can be

  17. Dilational and Compactional Shear Failure: Application to Siliciclastic Petroleum Reservoir rocks.

    Science.gov (United States)

    Casey, M.; Fisher, Q. J.; Knipe, R. J.

    2001-12-01

    Investigations related to the exploitation of oil reserves provide examples of brittle shear failure in rocks with well known burial, stress, temperature, compactional and diagenetic history. In addition, particular emphasis is placed on the dilational or compactional nature of the failure mode because of the influence this has on the permeability of the fault rocks. Microstructural investigations show that at shallow depths of less than 2.5 km failure during continued subsidence is by particulate flow and is usually compactional. At greater depths mechanical compaction may occur by particulate flow/ grain crushing or the rock may fail by dilational brittle failure. The main control on failure mode is the degree of cementation. At low cementation the rock fails by particulate flow (with or without fracture). Dilational shear failure occurs when the cementation has considerably reduced the porosity. We developed a model of cementation rate based on temperature controlled precipitation rate and used this to plot product of porosity and grain radius (a measure of susceptibility of the rock to crushing) against effective stress for some North Sea Reservoir rocks during their burial history. We found that the initially the low cementation rate held the crushing strength constant, causing the rocks to approach the empirical failure curve, but that at greater depths the increased cementation rate rapidly increased the strength, taking the rock mechanical state away from the failure line. Some deeply buried rocks were observed to have lower than expected amounts of cement and we ascribe this to the inhibition of precipitation by clay films. Deep, well cemented rocks, that failed by shear localised dilatant brittle shear were found to have higher permeabilities than expected on the basis of laboratory results. The natural specimens came from dilational jogs in a network of fault segments and we infer that the increased permeability is the result of deformation under

  18. A new conceptual model for damage zone evolution with fault growth

    Science.gov (United States)

    de Joussineau, G.; Aydin, A.

    2006-12-01

    Faults may either impede or enhance fluid flow in the subsurface, which is relevant to a number of economic issues (hydrocarbon migration and entrapment, formation and distribution of mineral deposits) and environmental problems (movement of contaminants). Fault zones typically comprise a low-permeability core made up of intensely deformed fault rock and a high-permeability damage zone defined by fault-related fractures. The geometry, petrophysical properties and continuity of both the fault core and the damage zone have an important influence on the mechanical properties of the fault systems and on subsurface fluid flow. Information about fault components from remote seismic methods is limited and is available only for large faults (slip larger than 20-100m). It is therefore essential to characterize faults and associated damage zones in field analogues, and to develop conceptual models of how faults and related structures form and evolve. Here we present such an attempt to better understand the evolution of fault damage zones in the Jurassic Aztec Sandstone of the Valley of Fire State Park (SE Nevada). We document the formation and evolution of the damage zone associated with strike-slip faults through detailed field studies of faults of increasing slip magnitudes. The faults initiate as sheared joints with discontinuous pockets of damage zone located at fault tips and fault surface irregularities. With increasing slip (slip >5m), the damage zone becomes longer and wider by progressive fracture infilling, and is organized into two distinct components with different geometrical and statistical characteristics. The first component of the damage zone is the inner damage zone, directly flanking the fault core, with a relatively high fracture frequency and a thickness that scales with the amount of fault slip. Parts of this inner zone are integrated into the fault core by the development of the fault rock, contributing to the core's progressive widening. The second

  19. Dikes, joints, and faults in the upper mantle

    Science.gov (United States)

    Wilshire, H.G.; Kirby, S.H.

    1989-01-01

    Three different types of macroscopic fractures are recognized in upper-mantle and lower-crustal xenoliths in volcanic rocks from around the world: 1. (1) joints that are tensile fractures not occupied by crystallized magma products 2. (2) dikes that are tensile fractures occupied by mafic magmas crystallized to pyroxenites, gabbros or hydrous-mineral-rich rocks, 3. (3) faults that are unfilled shear fractures with surface markings indicative of shear displacement. In addition to intra-xenolith fractures, xenoliths commonly have polygonal or faceted shapes that represent fractures exploited during incorporation of the xenoliths into the host magma that brought them to the surface. The various types of fractures are considered to have formed in response to the pressures associated with magmatic fluids and to the ambient tectonic stress field. The presence of fracture sets and crosscutting relations indicate that both magma-filled and unfilled fractures can be contemporaneous and that the local stress field can change with time, leading to repeated episodes of fracture. These observations give insight into the nature of deep fracture processes and the importance of fluid-peridotite interactions in the mantle. We suggest that unfilled fractures were opened by volatile fluids exsolved from ascending magmas to the tops of growing dikes. These volatile fluids are important because they are of low viscosity and can rapidly transmit fluid pressure to dike and fault tips and because they lower the energy and tectonic stresses required to extend macroscopic cracks and to allow sliding on pre-existing fractures. Mantle seismicity at depths of 20-65 km beneath active volcanic centers in Hawaii corresponds to the depth interval where CO2-rich fluids are expected to be liberated from ascending basaltic magmas, suggesting that such fluids play an important role in facilitating earthquake instabilities in the presence of tectonic stresses. Other phenomena related to the fractures

  20. Magnetohydrodynamic Shearing Waves

    CERN Document Server

    Johnson, B M

    2006-01-01

    I consider the nonaxisymmetric linear theory of an isothermal magnetohydrodynamic (MHD) shear flow. The analysis is performed in the shearing box, a local model appropriate for a thin disk geometry. Linear perturbations in this model can be decomposed in terms of shearing waves (shwaves), which appear spatially as plane waves in a frame comoving with the shear. The time dependence of these waves cannot in general be expressed in terms of a frequency eigenvalue as in a normal mode decomposition, and numerical integration of a set of first-order amplitude equations is required for a complete characterization of their behavior. Their generic time dependence, however, is oscillatory with slowly-varying frequency and amplitude, and one can construct accurate analytic solutions by applying the Wentzel-Kramers-Brillouin method to the full set of amplitude equations. For the bulk of wavenumber space, therefore, the shwaves are well-approximated as modes with time-dependent frequencies and amplitudes. The incompressiv...

  1. San Francisco Bay Area Fault Observations Displayed in Google Earth

    Science.gov (United States)

    Lackey, H.; Hernandez, M.; Nayak, P.; Zapata, I.; Schumaker, D.

    2006-12-01

    According to the United States Geological Survey (USGS), the San Francisco Bay Area has a 62% probability of experiencing a major earthquake in the next 30 years. The Hayward fault and the San Andreas fault are the two main faults in the Bay Area that are capable of producing earthquakes of magnitude 6.7 or larger - a size that could profoundly affect many of the 7 million people who live in the Bay Area. The Hayward fault has a 27% probability of producing a major earthquake in next 30 years, and the San Andreas fault has a 21% probability. Our research group, which is part of the SF-ROCKS high school outreach program, studied the Hayward and San Andreas faults. The goal of our project was to observe these faults at various locations, measure the effects of creep, and to present the data in Google Earth, a freeware tool for the public to easily view and interact with these and other seismic-hazard data. We examined the Hayward and San Andreas faults (as mapped by USGS scientists) in Google Earth to identify various sites where we could possibly find evidence of fault creep. We next visited these sites in the field where we mapped the location using a hand- held Global Positioning System, identified and photographed fault evidence, and measured offset features with a ruler or tape measure. Fault evidence included en echelon shears in pavement, warped buildings, and offset features such as sidewalks. Fault creep offset measurements range from 1.5 19 cm. We also identified possible evidence of fault creep along the San Andreas fault in South San Francisco where it had not been previously described. In Google Earth, we plotted our field sites, linked photographs showing evidence of faulting, and included detailed captions to explain the photographs. We will design a webpage containing the data in a Keyhole Markup Language (KML) file format for display in Google Earth. Any interested person needs only to download the free version of Google Earth software and visit our

  2. The effect of mechanical discontinuities on the growth of faults

    Science.gov (United States)

    Bonini, Lorenzo; Basili, Roberto; Bonanno, Emanuele; Toscani, Giovanni; Burrato, Pierfrancesco; Seno, Silvio; Valensise, Gianluca

    2016-04-01

    The growth of natural faults is controlled by several factors, including the nature of host rocks, the strain rate, the temperature, and the presence of fluids. In this work we focus on the mechanical characteristics of host rocks, and in particular on the role played by thin mechanical discontinuities on the upward propagation of faults and on associated secondary effects such as folding and fracturing. Our approach uses scaled, analogue models where natural rocks are simulated by wet clay (kaolin). A clay cake is placed above two rigid blocks in a hanging wall/footwall configuration on either side of a planar fault. Fault activity is simulated by motor-controlled movements of the hanging wall. We reproduce three types of faults: a 45°-dipping normal fault, a 45°-dipping reverse fault and a 30°-dipping reverse fault. These angles are selected as representative of most natural dip-slip faults. The analogues of the mechanical discontinuities are obtained by precutting the wet clay cake before starting the hanging wall movement. We monitor the experiments with high-resolution cameras and then obtain most of the data through the Digital Image Correlation method (D.I.C.). This technique accurately tracks the trajectories of the particles of the analogue material during the deformation process: this allows us to extract displacement field vectors plus the strain and shear rate distributions on the lateral side of the clay block, where the growth of new faults is best seen. Initially we run a series of isotropic experiments, i.e. experiments without discontinuities, to generate a reference model: then we introduce the discontinuities. For the extensional models they are cut at different dip angles, from horizontal to 45°-dipping, both synthetic and antithetic with respect to the master fault, whereas only horizontal discontinuities are introduced in the contractional models. Our experiments show that such discontinuities control: 1) the propagation rate of faults

  3. Shear-resistant behavior of light composite shear wall

    Institute of Scientific and Technical Information of China (English)

    李升才; 董毓利

    2015-01-01

    Shear test results for a composite wall panel in a light composite structure system are compared with test results for shear walls in Japan. The analysis results show that this kind of composite wall panel works very well, and can be regarded as a solid panel. The composite wall panel with a hidden frame is essential for bringing its effect on shear resistance into full play. Comprehensive analysis of the shear-resistant behavior of the composite wall panel suggests that the shear of the composite shear wall panel can be controlled by the cracking strength of the web shearing diagonal crack.

  4. Shear-Resistant Behavior Analysis of Light Composite Shear Walls

    Institute of Scientific and Technical Information of China (English)

    李升才; 江见鲸; 于庆荣

    2002-01-01

    Shear test results for a composite wall panel in a light composite structure system are compared with test results for shear walls in Japan in this paper. The analysis results show that this kind of composite wall panel works very well, and can be regarded as a solid panel. The composite wall panel with a hidden frame is essential for bringing its effect on shear resistance into full play. Comprehensive analysis of the shear-resistant behavior of the composite wall panel suggests that the shear of the composite shear wall panel can be controlled by the cracking strength of the web shearing diagonal crack.

  5. Direct Shear Tests with Evaluation of Variable Shearing Area

    Directory of Open Access Journals (Sweden)

    Šarūnas Skuodis

    2014-12-01

    Full Text Available Investigations of soil shear strength properties for Baltic Sea shore sand along Klaipėda city are presented. Investigated sand angle of internal friction (φ and cohesion (c is determined via two different direct shear tests procedures. First procedure is standard and ordinary in geotechnical practice, when direct shear test is provided using constant shearing area A0. Second test procedure is different because shearing area according to horizontal displacement each test second is recalculated. This recalculated shearing area author’s call corrected shearing area A. Obtained normal and tangential stresses’ difference via two different testing procedures was 10%.

  6. A fault-based model for crustal deformation, fault slip-rates and off-fault strain rate in California

    Science.gov (United States)

    Zeng, Yuehua; Shen, Zheng-Kang

    2016-01-01

    We invert Global Positioning System (GPS) velocity data to estimate fault slip rates in California using a fault‐based crustal deformation model with geologic constraints. The model assumes buried elastic dislocations across the region using Uniform California Earthquake Rupture Forecast Version 3 (UCERF3) fault geometries. New GPS velocity and geologic slip‐rate data were compiled by the UCERF3 deformation working group. The result of least‐squares inversion shows that the San Andreas fault slips at 19–22  mm/yr along Santa Cruz to the North Coast, 25–28  mm/yr along the central California creeping segment to the Carrizo Plain, 20–22  mm/yr along the Mojave, and 20–24  mm/yr along the Coachella to the Imperial Valley. Modeled slip rates are 7–16  mm/yr lower than the preferred geologic rates from the central California creeping section to the San Bernardino North section. For the Bartlett Springs section, fault slip rates of 7–9  mm/yr fall within the geologic bounds but are twice the preferred geologic rates. For the central and eastern Garlock, inverted slip rates of 7.5 and 4.9  mm/yr, respectively, match closely with the geologic rates. For the western Garlock, however, our result suggests a low slip rate of 1.7  mm/yr. Along the eastern California shear zone and southern Walker Lane, our model shows a cumulative slip rate of 6.2–6.9  mm/yr across its east–west transects, which is ∼1  mm/yr increase of the geologic estimates. For the off‐coast faults of central California, from Hosgri to San Gregorio, fault slips are modeled at 1–5  mm/yr, similar to the lower geologic bounds. For the off‐fault deformation, the total moment rate amounts to 0.88×1019  N·m/yr, with fast straining regions found around the Mendocino triple junction, Transverse Ranges and Garlock fault zones, Landers and Brawley seismic zones, and farther south. The overall California moment rate is 2.76×1019

  7. Analysis of transpression within contractional fault steps using finite-element method

    Science.gov (United States)

    Nabavi, Seyed Tohid; Alavi, Seyed Ahmad; Mohammadi, Soheil; Ghassemi, Mohammad Reza; Frehner, Marcel

    2017-03-01

    Two-dimensional finite-element modelling of elastic Newtonian rheology is used to compute stress distribution and strain localization patterns in a transpression zone between two pre-existing right-stepping, left-lateral strike-slip fault segments. Three representative fault segment interactions are modelled: underlapping, neutral, and overlapping. The numerical results indicate that at the onset of deformation, displacement vectors are oblique to the regional compression direction (20-90°). The orientations of the local σ1 (the maximum compressive stress) and σ3 (the minimum compressive stress) directions strongly depend on the structural position within the transpression zone. For neutral and overlapping fault steps, there is a contractional linking damage zone between the fault segments. For overlapping faults, the σ1 trajectories within the transpression zone deflects significantly forming a sigmoidal pattern, which is created by two rotational flow patterns close to the fault tips. These flow patterns are related to friction effects and different shear deformation, from pure shear outside of the fault steps toward simple shear along the fault segments. Interaction between the two fault segments perturbs the stress field and reflects the heterogeneous nature of deformation. A lozenge- (for underlapping steps), rhomboidal- (for neutral steps), and sigmoidal-shaped (for overlapping steps) transpression zone developed between the two segments. The modelled mean stress pattern shows a similar pattern to that of the contractional steps, and decrease and increase in underlapping and overlapping fault steps, respectively. Comparison of the Kuh-e-Hori transpression zone, between the Esmail-abad and West Neh left-stepping right-lateral strike-slip fault segments in SE Iran, with the modelling results shows strong similarities with the neutral step configuration.

  8. Recrystallization fabrics of sheared quartz veins with a strong pre-existing crystallographic preferred orientation from a seismogenic shear zone

    Science.gov (United States)

    Price, Nancy A.; Song, Won Joon; Johnson, Scott E.; Gerbi, Christopher C.; Beane, Rachel J.; West, David P.

    2016-07-01

    Microstructural investigations were carried out on quartz veins in schist, protomylonite, and mylonite samples from an ancient seismogenic strike-slip shear zone (Sandhill Corner shear zone, Norumbega fault system, Maine, USA). We interpret complexities in the microstructural record to show that: (1) pre-existing crystallographic preferred orientations (CPO) in the host rock may persist in the new CPO patterns of the shear zone and (2) the inner and outer parts of the shear zone followed diverging paths of fabric development. The host rocks bounding the shear zone contain asymmetrically-folded quartz veins with a strong CPO. These veins are increasingly deformed and recrystallized with proximity to the shear zone core. Matrix-accommodated rotation and recrystallization may position an inherited c-axis maximum in an orientation coincident with rhomb or basal slip. This inherited CPO likely persists in the shear zone fabric as a higher concentration of poles in one hemisphere of the c-axis pole figure, leading to asymmetric crossed girdle or paired maxima c-axis patterns about the foliation plane. Three observed quartz grain types indicate a general trend of localization with decreasing temperature: (1) large (> 100 μm), low aspect ratio (<~5) and (2) high aspect ratio (~ 5-20) grains overprinted by (3) smaller (<~80 μm), low aspect ratio (<~4) grains through subgrain rotation-dominated recrystallization. In the outer shear zone, subgrain rotation recrystallization led to a well-developed c-axis crossed girdle pattern. In the inner shear zone, the larger grains are completely overprinted by smaller grains, but the CPO patterns are relatively poorly developed and are associated with distinctively different misorientation angle histogram profiles ("flat" neighbor-pair profile with similar number fraction for angles from 10 to 90°). This may reflect the preferential activation of grain size sensitive deformation processes in the inner-most part of the shear zone

  9. Development of Characterization Technology for Fault Zone Hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Karasaki, Kenzi; Onishi, Tiemi; Gasperikova, Erika; Goto, Junichi; Tsuchi, Hiroyuki; Miwa, Tadashi; Ueta, Keiichi; Kiho, Kenzo; MIyakawa, Kimio

    2010-08-06

    Several deep trenches were cut, and a number of geophysical surveys were conducted across the Wildcat Fault in the hills east of Berkeley, California. The Wildcat Fault is believed to be a strike-slip fault and a member of the Hayward Fault System, with over 10 km of displacement. So far, three boreholes of ~;; 150m deep have been core-drilled and borehole geophysical logs were conducted. The rocks are extensively sheared and fractured; gouges were observed at several depths and a thick cataclasitic zone was also observed. While confirming some earlier, published conclusions from shallow observations about Wildcat, some unexpected findings were encountered. Preliminary analysis indicates that Wildcat near the field site consists of multiple faults. The hydraulic test data suggest the dual properties of the hydrologic structure of the fault zone. A fourth borehole is planned to penetrate the main fault believed to lie in-between the holes. The main philosophy behind our approach for the hydrologic characterization of such a complex fractured system is to let the system take its own average and monitor a long term behavior instead of collecting a multitude of data at small length and time scales, or at a discrete fracture scale and to ?up-scale,? which is extremely tenuous.

  10. Development of Characterization Technology for Fault Zone Hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Karasaki, Kenzi; Onishi, Tiemi; Gasperikova, Erika; Goto, Junichi; Tsuchi, Hiroyuki; Miwa, Tadashi; Ueta, Keiichi; Kiho, Kenzo; MIyakawa, Kimio

    2010-08-06

    Several deep trenches were cut, and a number of geophysical surveys were conducted across the Wildcat Fault in the hills east of Berkeley, California. The Wildcat Fault is believed to be a strike-slip fault and a member of the Hayward Fault System, with over 10 km of displacement. So far, three boreholes of ~;; 150m deep have been core-drilled and borehole geophysical logs were conducted. The rocks are extensively sheared and fractured; gouges were observed at several depths and a thick cataclasitic zone was also observed. While confirming some earlier, published conclusions from shallow observations about Wildcat, some unexpected findings were encountered. Preliminary analysis indicates that Wildcat near the field site consists of multiple faults. The hydraulic test data suggest the dual properties of the hydrologic structure of the fault zone. A fourth borehole is planned to penetrate the main fault believed to lie in-between the holes. The main philosophy behind our approach for the hydrologic characterization of such a complex fractured system is to let the system take its own average and monitor a long term behavior instead of collecting a multitude of data at small length and time scales, or at a discrete fracture scale and to ?up-scale,? which is extremely tenuous.

  11. What do we know about the initiation and early stages of brittle faulting in crystalline rocks?

    Science.gov (United States)

    Crider, J. G.

    2011-12-01

    The styles of initiation and subsequent growth of faults control fault length-slip scaling, the internal structure of fault zones, and fault-rock properties, influencing seismogenic behavior and fluid flow along the faults. Observations by many researchers over the last several decades have illustrated that faults in the upper crust initiate on pre-existing (inherited) or precursory (early-formed) structures and grow by the mechanical interaction and linkage of these structures. These pre-existing and precursory structures are typically mode I fractures (joints, veins, dikes) but may also be semi-brittle shear zones (such as deformation bands in porous sandstone). Research in the granitic outcrops of the central Sierra Nevada (California) has provided significant insight into the geometry and fundamental mechanics of the early stages of fault development. This work has shown that faults in plutonic rocks initiate on pre-existing or precursory joints or dikes and that the discontinuous nature of early mode I fractures has a strong influence on the subsequent development of the fault zone. In basalt, we have similarly observed the important influence of preexisting joints, and, at a broader scale, precursory, semi-brittle shear zones in the form of fault-tip monoclines. In metamorphic rocks, foliation appears to control the initial development of faults, influencing fault orientation, or enabling precursory structures such as kink bands. Kink bands, like deformation bands in porous sandstone, accommodate only small strains before locking, but then become strong inclusions in the material, serving to localize brittle fractures. The quasi-static mechanics of isotropic, isothermal linear-elastic materials in two and three dimensions provides first order understanding of controls on interaction and linkage of early structures, including the concentration of stresses and local stress reorientation. Fruitful research directions important to faulting in crystalline rock

  12. Crystallographic control on early stages of cataclasis in carbonate fault gouges

    Science.gov (United States)

    Demurtas, Matteo; Smith, Steven A. F.; Fondriest, Michele; Spagnuolo, Elena; Di Toro, Giulio

    2017-04-01

    commonly exhibit only one twin set. We interpret the development of a CPO in calcite grains in the layer underlying the slip zone as a strain accommodation mechanism of the imposed slip rate (or shear stress) during the early stages of deformation in a granular material (i.e., fault gouge). More intense CPOs at high slip rates (i.e., 1 m/s) may be a consequence of rapid strain localisation on a narrow slip zone, with the fabric in the underlying gouge not experiencing significant changes. Conversely, at low slip rates the gouge volume undergoing protracted deformation is larger and cataclasis progressively weakens the intensity of the texture until the CPO disappears. In conclusion, mineral crystallography plays an important role in the material behaviour during the early deformation stages in carbonate fault gouges. An incorporation of twinning and CPO development as strain accommodation mechanisms with other physico-chemical processes active during the seismic cycle will provide a more complete model of gouge friction and microstructural evolution in carbonate rocks.

  13. Distinct element analysis of overburden subjected to reverse oblique-slip fault

    Science.gov (United States)

    Taniyama, Hisashi

    2017-03-01

    The deformation of overburden subjected to a reverse oblique-slip fault was examined in this study using the distinct element method, and the results were compared with the shears measured at the Nojima fault during the 1995 Hyogoken Nanbu earthquake. Shear deformation was found to occur mainly on the footwall side of the overburden in a narrow zone and to be caused by the reverse fault component. The stress due to both the reverse fault and strike-slip movement led to the development of failure surfaces with a convex-upward shape in cross section and an en echelon pattern in plan view. The width of the zones of high incremental strain obtained in the present analysis was found to be in agreement with the observed width of the shears; however, the observed and simulated intervals and orientations of the shears did not agree. The simulation results suggest that short shears that form in the deep part in the early stages of the deformation join to form longer shears as they propagate toward the surface.

  14. Constitutive models of faults in the viscoelastic lithosphere

    Science.gov (United States)

    Moresi, Louis; Muhlhaus, Hans; Mansour, John; Miller, Meghan

    2013-04-01

    Moresi and Muhlhaus (2006) presented an algorithm for describing shear band formation and evolution as a coallescence of small, planar, fricition-failure surfaces. This algorithm assumed that sliding initially occurs at the angle to the maximum compressive stress dictated by Anderson faulting theory and demonstrated that shear bands form with the same angle as the microscopic angle of initial failure. Here we utilize the same microscopic model to generate frictional slip on prescribed surfaces which represent faults of arbitrary geometry in the viscoelastic lithosphere. The faults are actually represented by anisotropic weak zones of finite width, but they are instantiated from a 2D manifold represented by a cloud of points with associated normals and mechanical/history properties. Within the hybrid particle / finite-element code, Underworld, this approach gives a very flexible mechanism for describing complex 3D geometrical patterns of faults with no need to mirror this complexity in the thermal/mechanical solver. We explore a number of examples to demonstrate the strengths and weaknesses of this particular approach including a 3D model of the deformation of Southern California which accounts for the major fault systems. L. Moresi and H.-B. Mühlhaus, Anisotropic viscous models of large-deformation Mohr-Coulomb failure. Philosophical Magazine, 86:3287-3305, 2006.

  15. Visualising stress-chain morphology during granular shear

    Science.gov (United States)

    Mair, K.; Hazzard, J. F.; Heath, A.

    2004-05-01

    Active faults often contain distinct accumulations of granular wear material. During shear, this granular material accommodates stress and strain in heterogeneous manner that may influence fault stability. We present new work to visualise evolving stress distributions during granular shear. Our 3D numerical models consist of granular layers subjected to normal loading and shear, where gouge particles are simulated by individual spheres interacting at points of contact according to simple laws. During shear we observe the transient microscopic processes and resulting macroscopic mechanical behaviour that emerge from interactions of thousands of particles. We track particle translations and contact forces to determine the nature of internal stress accommodation with accumulated slip for different initial configurations. We view model outputs using novel 3D visualisation techniques. Our results highlight the prevalence of transient force or stress chain networks that preferentially transmit enhanced stresses across our layers. We demonstrate that particle size distribution (psd) strongly controls the nature and persistence of the stress chain networks. Models having a narrow (or relatively uniform) psd exhibit localised stress chains with a dominant orientation, whereas wider psd models show diffuse stress chain webs that take a range of orientations. First order macroscopic friction, is insensitive to these distinct stress chain morphologies, however, wider psd models with diffuse stress chains are linked to enhanced friction fluctuations i.e. second order macroscopic effects. Our results are consistent with predictions, based on recent laboratory observations, that stress chain morphologies are sensitive to grain characteristics such as psd. Our numerical approach offers the potential to investigate correlations between stress chain geometry, evolution and resulting macroscopic friction, thus allowing us to explore ideas that heterogeneous stress distributions in

  16. Modeling of Stress Triggered Faulting at Agenor Linea, Europa

    Science.gov (United States)

    Nahm, A. L.; Cameron, M. E.; Smith-Konter, B. R.; Pappalardo, R. T.

    2012-04-01

    To better understand the role of tidal stress sources and implications for faulting on Europa, we investigate the relationship between shear and normal stresses at Agenor Linea (AL), a ~1500 km long, E-W trending, 20-30 km wide zone of geologically young deformation located in the southern hemisphere of Europa which forks into two branches at its eastern end. The orientation of AL is consistent with tensile stresses resulting from long-term decoupled ice shell rotation (non-synchronous rotation [NSR]) as well as dextral shear stresses due to diurnal flexure of the ice shell. Its brightness and lack of cross-cutting features make AL a candidate for recent or current activity. Several observations indicate that right-lateral strike-slip faulting has occurred, such as left-stepping en echelon fractures in the northern portion of AL and the presence of an imbricate fan or horsetail complex at AL's western end. To calculate tidal stresses on Europa, we utilize SatStress, a numerical code that calculates tidal stresses at any point on the surface of a satellite for both diurnal and NSR stresses. We adopt SatStress model parameters appropriate to a spherically symmetric ice shell of thickness 20 km, underlain by a global subsurface ocean: shear modulus G = 3.5 GPa, Poisson ratio ν = 0.33, gravity g= 1.32 m/s2, ice density ρ = 920 kg/m3, satellite radius R= 1.56 x 103 km, satellite mass M= 4.8 x 1022 kg, semimajor axis a= 6.71 x 105 km, and eccentricity e= 0.0094. In this study we assume a coefficient of friction μ = 0.6 and consider a range of vertical fault depths zto 6 km. To assess shear failure at AL, we adopt a model based on the Coulomb failure criterion. This model balances stresses that promote and resist the motion of a fault, simultaneously accounting for both normal and shear tidal and NSR stresses, the coefficient of friction of ice, and additional stress at depth due to the overburden pressure. In this model, tidal shear stresses drive strike-slip motions

  17. Alignment and segregation of bidisperse colloids in a shear-thinning viscoelastic fluid under shear flow

    NARCIS (Netherlands)

    Santos de Oliveira, I.S.; Otter, den W.K.; Briels, W.J.

    2013-01-01

    Computer simulations are presented of colloids, bidisperse in size, suspended in a shear-thinning viscoelastic fluid with the flow characteristics of a surfactant solution. The worm-like micelles are modeled in Responsive Particle Dynamics (RaPiD) as single soft particles obeying a generalized Brown

  18. Effects of cyclic shear loads on strength, stiffness and dilation of rock fractures

    Directory of Open Access Journals (Sweden)

    Thanakorn Kamonphet

    2015-12-01

    Full Text Available Direct shear tests have been performed to determine the peak and residual shear strengths of fractures in sandstone, granite and limestone under cyclic shear loading. The fractures are artificially made in the laboratory by tension inducing and saw-cut methods. Results indicate that the cyclic shear load can significantly reduce the fracture shear strengths and stiffness. The peak shear strengths rapidly decrease after the first cycle and tend to remain unchanged close to the residual strengths through the tenth cycle. Degradation of the first order asperities largely occurs after the first cycle. The fracture dilation rates gradually decrease from the first through the tenth cycles suggesting that the second order asperities continuously degrade after the first load cycle. The residual shear strengths are lower than the peak shear strengths and higher than those of the smooth fractures. The strength of smooth fracture tends to be independent of cyclic shear loading.

  19. Fault-tolerant design

    CERN Document Server

    Dubrova, Elena

    2013-01-01

    This textbook serves as an introduction to fault-tolerance, intended for upper-division undergraduate students, graduate-level students and practicing engineers in need of an overview of the field.  Readers will develop skills in modeling and evaluating fault-tolerant architectures in terms of reliability, availability and safety.  They will gain a thorough understanding of fault tolerant computers, including both the theory of how to design and evaluate them and the practical knowledge of achieving fault-tolerance in electronic, communication and software systems.  Coverage includes fault-tolerance techniques through hardware, software, information and time redundancy.  The content is designed to be highly accessible, including numerous examples and exercises.  Solutions and powerpoint slides are available for instructors.   ·         Provides textbook coverage of the fundamental concepts of fault-tolerance; ·         Describes a variety of basic techniques for achieving fault-toleran...

  20. Fault Monitoring and Fault Recovery Control for Position Moored Tanker

    DEFF Research Database (Denmark)

    Fang, Shaoji; Blanke, Mogens

    2011-01-01

    This paper addresses fault tolerant control for position mooring of a shuttle tanker operating in the North Sea. A complete framework for fault diagnosis is presented but the loss of a sub-sea mooring line buoyancy element is given particular attention, since this fault could lead to mooring line....... Properties of detection and fault-tolerant control are demonstrated by high fidelity simulations....

  1. Fault tolerant control for uncertain systems with parametric faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2006-01-01

    A fault tolerant control (FTC) architecture based on active fault diagnosis (AFD) and the YJBK (Youla, Jarb, Bongiorno and Kucera)parameterization is applied in this paper. Based on the FTC architecture, fault tolerant control of uncertain systems with slowly varying parametric faults...

  2. Fault isolability conditions for linear systems with additive faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2006-01-01

    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...

  3. Equilibrium states of homogeneous sheared compressible turbulence

    Science.gov (United States)

    Riahi, M.; Lili, T.

    2011-06-01

    Equilibrium states of homogeneous compressible turbulence subjected to rapid shear is studied using rapid distortion theory (RDT). The purpose of this study is to determine the numerical solutions of unsteady linearized equations governing double correlations spectra evolution. In this work, RDT code developed by authors solves these equations for compressible homogeneous shear flows. Numerical integration of these equations is carried out using a second-order simple and accurate scheme. The two Mach numbers relevant to homogeneous shear flow are the turbulent Mach number Mt, given by the root mean square turbulent velocity fluctuations divided by the speed of sound, and the gradient Mach number Mg which is the mean shear rate times the transverse integral scale of the turbulence divided by the speed of sound. Validation of this code is performed by comparing RDT results with direct numerical simulation (DNS) of [A. Simone, G.N. Coleman, and C. Cambon, Fluid Mech. 330, 307 (1997)] and [S. Sarkar, J. Fluid Mech. 282, 163 (1995)] for various values of initial gradient Mach number Mg0. It was found that RDT is valid for small values of the non-dimensional times St (St 10) in particular for large values of Mg0. This essential feature justifies the resort to RDT in order to determine equilibrium states in the compressible regime.

  4. Equilibrium states of homogeneous sheared compressible turbulence

    Directory of Open Access Journals (Sweden)

    M. Riahi

    2011-06-01

    Full Text Available Equilibrium states of homogeneous compressible turbulence subjected to rapid shear is studied using rapid distortion theory (RDT. The purpose of this study is to determine the numerical solutions of unsteady linearized equations governing double correlations spectra evolution. In this work, RDT code developed by authors solves these equations for compressible homogeneous shear flows. Numerical integration of these equations is carried out using a second-order simple and accurate scheme. The two Mach numbers relevant to homogeneous shear flow are the turbulent Mach number Mt, given by the root mean square turbulent velocity fluctuations divided by the speed of sound, and the gradient Mach number Mg which is the mean shear rate times the transverse integral scale of the turbulence divided by the speed of sound. Validation of this code is performed by comparing RDT results with direct numerical simulation (DNS of [A. Simone, G.N. Coleman, and C. Cambon, Fluid Mech. 330, 307 (1997] and [S. Sarkar, J. Fluid Mech. 282, 163 (1995] for various values of initial gradient Mach number Mg0. It was found that RDT is valid for small values of the non-dimensional times St (St 10 in particular for large values of Mg0. This essential feature justifies the resort to RDT in order to determine equilibrium states in the compressible regime.

  5. Analysis of fault using microcomputer protection by symmetrical component method

    Directory of Open Access Journals (Sweden)

    Ashish Choubey

    2012-09-01

    Full Text Available To enhance power supply reliability for the user terminals in the case of the distribution system to avoid interference by the fault again, rapidly complete the automatic identification, positioning, automatic fault isolation, network reconfiguration until the resumption of supply of non-fault section, a microprocessor-based relay protection device has developed. As the fault component theory is widely used in microcomputer protection, and fault component exists in the network of fault component, it is necessary to build up the fault component network when short circuit fault emerging and to draw the current and voltage component phasor diagram at fault point. In order to understand microcomputer protection based on the symmetrical component principle, we obtained the sequence current and sequence voltage according to the concept of symmetrical component. Distribution line directly to user-oriented power supply, the reliability of its operation determines the quality and level of electricity supply. In recent decades, because of the general power of the tireless efforts of scientists and technicians, relay protection technology and equipment application level has been greatly improved, but the current domestic production of computer hardware, protection devices are still outdated systems. Software development has maintenance difficulties and short survival time. With the factory automation system interface functions weak points, the network communication cannot meet the actual requirements. Protection principle configuration and device manufacturing process to be improved and so on.

  6. Mechanism of water-inrush from fault induced by mining near the working face

    Institute of Scientific and Technical Information of China (English)

    WANG Lian-guo; WU Yu; MIAO Xie-xing; DONG Xu

    2007-01-01

    Adopted the fractal tree-like failure model, and established the renormalization group transform function of fractured fault, and investigated the mechanism of water-inrush from fault, and found out the critical probability of water-inrush from fault caused by fault fracture. The results indicate: when the failure rate P is less than the critical failure rate Pc=0.206 3, the failure of the system is just partial. When P is more than the critical failure rate Pc=0.206 3, the random distributed crannies concentrate to certain domain of attraction (such as the maximum shear stress face in the fault) gradually. The process will continue until the crannies run-through, forming conductivity channel, and cause water-inrush from fault.

  7. Along-Strike Variation in Dip-Slip Rate on the Alpine Fault is a Consequence of Lithologic Variation?

    Science.gov (United States)

    Toy, V. G.; Reid Lindroos, Z.; Norris, R. J.; Cooper, A. F.

    2010-12-01

    New Zealand's dextral reverse Alpine Fault is the primary structure forming the Pacific-Australian plate boundary for a strike distance of >300 km. The oblique relative plate motion vector varies little along strike of the fault, and strike-slip rates are also generally uniform. However, dip slip rates determined from offset geomorphic and Quaternary features are significantly larger over 200 km in the centre of the fault (6 -12 mm/yr; as opposed to 2-3 mm/yr elsewhere). Little et al. (2005) also found hangingwall rock has been most rapidly uplifted from temperatures exceeding the closure temperature of Ar in hornblende (~500°C) during modern convergence over 20 km of strike length between the Karangarua and Wanganui Rivers in this central section. The hangingwall lithology is not uniform, comprising psammitic, pelitic, and metabasic layers, from a variety of different lithostratigraphic terranes (e.g. Torlesse Terrane, Aspiring Lithologic Subdivision, Caples Terrane). These lithologies have been exhumed by dextral reverse fault slip in sections along the fault. In the central Alpine Fault zone, psammite-derived lithologies are most common in such outcrops north of the Waikukupa River, while to the south aluminous metapelitic protoliths dominate. Further south, in a section extending 40 km along fault strike from Havelock Creek, metabasite (amphibolite) comprises ~40% of the mylonite sequence. Simple crustal strength models, comparing a pure quartz rheology, a polyphase quartz-feldspar-mica rheology, and a mixed amphibolite rheology indicate only minor variation in behaviour between psammite and pelite, but at least a doubling of peak strength and deepening of the brittle-ductile transition in sections of the fault zone containing amphibolite. Consequently, the rheological behaviour of the mylonitic fault rocks varies along strike, coincident with the lithological variations. Furthermore, both amphibolites and quartz veins or layers that they host display

  8. Fault Analysis in Cryptography

    CERN Document Server

    Joye, Marc

    2012-01-01

    In the 1970s researchers noticed that radioactive particles produced by elements naturally present in packaging material could cause bits to flip in sensitive areas of electronic chips. Research into the effect of cosmic rays on semiconductors, an area of particular interest in the aerospace industry, led to methods of hardening electronic devices designed for harsh environments. Ultimately various mechanisms for fault creation and propagation were discovered, and in particular it was noted that many cryptographic algorithms succumb to so-called fault attacks. Preventing fault attacks without

  9. Vertical tectonic deformation associated with the San Andreas fault zone offshore of San Francisco, California

    Science.gov (United States)

    Ryan, H. F.; Parsons, T.; Sliter, R. W.

    2008-10-01

    A new fault map of the shelf offshore of San Francisco, California shows that faulting occurs as a distributed shear zone that involves many fault strands with the principal displacement taken up by the San Andreas fault and the eastern strand of the San Gregorio fault zone. Structures associated with the offshore faulting show compressive deformation near where the San Andreas fault goes offshore, but deformation becomes extensional several km to the north off of the Golden Gate. Our new fault map serves as the basis for a 3-D finite element model that shows that the block between the San Andreas and San Gregorio fault zone is subsiding at a long-term rate of about 0.2-0.3 mm/yr, with the maximum subsidence occurring northwest of the Golden Gate in the area of a mapped transtensional basin. Although the long-term rates of vertical displacement primarily show subsidence, the model of coseismic deformation associated with the 1906 San Francisco earthquake indicates that uplift on the order of 10-15 cm occurred in the block northeast of the San Andreas fault. Since 1906, 5-6 cm of regional subsidence has occurred in that block. One implication of our model is that the transfer of slip from the San Andreas fault to a fault 5 km to the east, the Golden Gate fault, is not required for the area offshore of San Francisco to be in extension. This has implications for both the deposition of thick Pliocene-Pleistocene sediments (the Merced Formation) observed east of the San Andreas fault, and the age of the Peninsula segment of the San Andreas fault.

  10. 3D Dynamic Rupture Simulations Across Interacting Faults: the Mw7.0, 2010, Haiti Earthquake

    Science.gov (United States)

    Douilly, R.; Aochi, H.; Calais, E.; Freed, A. M.; Aagaard, B.

    2014-12-01

    The mechanisms controlling rupture propagation between fault segments during an earthquake are key to the hazard posed by fault systems. Rupture initiation on a fault segment sometimes transfers to a larger fault, resulting in a significant event (e.g.i, 2002 M7.9Denali and 2010 M7.1 Darfield earthquakes). In other cases rupture is constrained to the initial segment and does not transfer to nearby faults, resulting in events of moderate magnitude. This is the case of the 1989 M6.9 Loma Prieta and 2010 M7.0 Haiti earthquakes which initiated on reverse faults abutting against a major strike-slip plate boundary fault but did not propagate onto it. Here we investigatethe rupture dynamics of the Haiti earthquake, seeking to understand why rupture propagated across two segments of the Léogâne fault but did not propagate to the adjacenent Enriquillo Plantain Garden Fault, the major 200 km long plate boundary fault cutting through southern Haiti. We use a Finite Element Model to simulate the nucleation and propagation of rupture on the Léogâne fault, varying friction and background stress to determine the parameter set that best explains the observed earthquake sequence. The best-fit simulation is in remarkable agreement with several finite fault inversions and predicts ground displacement in very good agreement with geodetic and geological observations. The two slip patches inferred from finite-fault inversions are explained by the successive rupture of two fault segments oriented favorably with respect to the rupture propagation, while the geometry of the Enriquillo fault did not allow shear stress to reach failure. Although our simulation results replicate well the ground deformation consistent with the geodetic surface observation but convolving the ground motion with the soil amplification from the microzonation study will correctly account for the heterogeneity of the PGA throughout the rupture area.

  11. Mineralogy of Faults in the San Andreas System That are Characterized by Creep

    Science.gov (United States)

    Moore, D. E.; Rymer, M. J.; McLaughlin, R. J.; Lienkaemper, J. J.

    2011-12-01

    The San Andreas Fault Observatory at Depth (SAFOD) is a deep-drilling program sited in the central creeping section of the San Andreas Fault (SAF) near Parkfield, California. Core was recovered from two locations at ~2.7 km vertical depth that correspond to the places where the well casing is being deformed in response to fault creep. The two creeping strands are narrow zones of fault gouge, 1.6 and 2.6 m in width, respectively, that are the products of shear-enhanced metasomatic reactions between serpentinite tectonically entrained in the fault and adjoining sedimentary wall rocks. Both gouge zones consist of porphyroclasts of serpentinite and sedimentary rock dispersed in a foliated matrix of Mg-rich, saponitic ± corrensitic clays, and porphyroclasts of all types are variably altered to the same Mg-rich clays as the gouge matrix. Some serpentinite porphyroclasts also contain the assemblage talc + actinolite + chlorite + andradite garnet, which is characteristic of reaction zones developed between ultramafic and crustal rocks at greenschist- to subgreenschist-facies conditions. The presence of this higher-temperature assemblage raises the possibility that the serpentinite and its alteration products may extend to significantly greater depths in the fault. Similar fault gouge has also been identified in a serpentinite outcrop near the drill site that forms part of a sheared serpentinite body mapped for several kilometers within the creeping section of the SAF. The SAFOD core thus supports the long-held view that serpentinite is implicated in the origin of creep, as does at least one other creeping fault of the San Andreas System. The Bartlett Springs Fault (BSF) is a right-lateral strike-slip fault located north of San Francisco, California. Its slip rate currently is estimated to be 6 +/- 2 mm/yr, and along a segment that crosses Lake Pillsbury half the surface slip rate is taken up by creep. An exposure of this fault segment near Lake Pillsbury consists of

  12. Back analysis of fault-slip in burst prone environment

    Science.gov (United States)

    Sainoki, Atsushi; Mitri, Hani S.

    2016-11-01

    In deep underground mines, stress re-distribution induced by mining activities could cause fault-slip. Seismic waves arising from fault-slip occasionally induce rock ejection when hitting the boundary of mine openings, and as a result, severe damage could be inflicted. In general, it is difficult to estimate fault-slip-induced ground motion in the vicinity of mine openings because of the complexity of the dynamic response of faults and the presence of geological structures. In this paper, a case study is conducted for a Canadian underground mine, herein called "Mine-A", which is known for its seismic activities. Using a microseismic database collected from the mine, a back analysis of fault-slip is carried out with mine-wide 3-dimensional numerical modeling. A back analysis is conducted to estimate the physical and mechanical properties of the causative fracture or shear zones. One large seismic event has been selected for the back analysis to detect a fault-slip related seismic event. In the back analysis, the shear zone properties are estimated with respect to moment magnitude of the seismic event and peak particle velocity (PPV) recorded by a strong ground motion sensor. The estimated properties are then validated through comparison with peak ground acceleration recorded by accelerometers. Lastly, ground motion in active mining areas is estimated by conducting dynamic analysis with the estimated values. The present study implies that it would be possible to estimate the magnitude of seismic events that might occur in the near future by applying the estimated properties to the numerical model. Although the case study is conducted for a specific mine, the developed methodology can be equally applied to other mines suffering from fault-slip related seismic events.

  13. Stresses, deformation, and seismic events on scaled experimental faults with heterogeneous fault segments and comparison to numerical modeling

    Science.gov (United States)

    Buijze, Loes; Guo, Yanhuang; Niemeijer, André R.; Ma, Shengli; Spiers, Christopher J.

    2017-04-01

    Faults in the upper crust cross-cut many different lithologies, which cause the composition of the fault rocks to vary. Each different fault rock segment may have specific mechanical properties, e.g. there may be stronger and weaker segments, and segments prone to unstable slip or creeping. This leads to heterogeneous deformation and stresses along such faults, and a heterogeneous distribution of seismic events. We address the influence of fault variability on stress, deformation, and seismicity using a combination of scaled laboratory fault and numerical modeling. A vertical fault was created along the diagonal of a 30 x 20 x 5 cm block of PMMA, along which a 2 mm thick gouge layer was deposited. Gouge materials of different characteristics were used to create various segments along the fault; quartz (average strength, stable sliding), kaolinite (weak, stable sliding), and gypsum (average strength, unstable sliding). The sample assembly was placed in a horizontal biaxial deformation apparatus, and shear displacement was enforced along the vertical fault. Multiple observations were made: 1) Acoustic emissions were continuously recorded at 3 MHz to observe the occurrence of stick-slips (micro-seismicity), 2) Photo-elastic effects (indicative of the differential stress) were recorded in the transparent set of PMMA wall-rocks using a high-speed camera, and 3) particle tracking was conducted on a speckle painted set of PMMA wall-rocks to study the deformation in the wall-rocks flanking the fault. All three observation methods show how the heterogeneous fault gouge exerts a strong control on the fault behavior. For example, a strong, unstable segment of gypsum flanked by two weaker kaolinite segments show strong stress concentrations develop near the edges of the strong segment, with at the same time most of acoustic emissions being located at the edge of this strong segment. The measurements of differential stress, strain and acoustic emissions provide a strong means

  14. Mineralogical Controls of Fault Healing in Natural and Simulated Gouges with Implications for Fault Zone Processes and the Seismic Cycle

    Science.gov (United States)

    Carpenter, B. M.; Ikari, M.; Marone, C.

    2011-12-01

    The frictional strength and stability of tectonic faults is determined by asperity contact processes, granular deformation, and fault zone fabric development. The evolution of grain-scale contact area during the seismic cycle likely exhibits significant control on overall fault stability by influencing frictional restrengthening, or healing, during the interseismic period, and the rate-dependence of sliding friction, which controls earthquake nucleation and the mode of fault slip. We report on laboratory experiments designed to explore the affect of mineralogy on fault healing. We conducted frictional shear experiments in a double-direct shear configuration at room temperature, 100% relative humidity, and a normal stress of 20 MPa. We used samples from a wide range of natural faults, including outcrop samples and core recovered during scientific drilling. Faults include: Alpine (New Zealand), Zuccale (Italy), Rocchetta (Italy), San Gregorio (California), Calaveras (California), Kodiak (Alaska), Nankai (Japan), Middle America Trench (Costa Rica), and San Andreas (California). To isolate the role of mineralogy, we also tested simulated fault gouges composed of talc, montmorillonite, biotite, illite, kaolinite, quartz, andesine, and granite. Frictional healing was measured at an accumulated shear strain of ~15 within the gouge layers. We conducted slide-hold-slide tests ranging from 3 to 3000 seconds. The main suite of experiments used a background shearing rate of 10 μm/s; these were augmented with sub-suites at 1 and 100 μm/s. We find that phyllosilicate-rich gouges (e.g. talc, montmorillonite, San Andreas Fault) show little to no healing over all hold times. We find the highest healing rates (β ≈ 0.01, Δμ per decade in time, s) in gouges from the Alpine and Rocchetta faults, with the rest of our samples falling into an intermediate range of healing rates. Nearly all gouges exhibit log-linear healing rates with the exceptions of San Andreas Fault gouge and

  15. Extensional and compressional regime driven left-lateral shear in southwestern Anatolia (eastern Mediterranean): The Burdur-Fethiye Shear Zone

    Science.gov (United States)

    Elitez, İrem; Yaltırak, Cenk; Aktuğ, Bahadır

    2016-10-01

    The tectonic framework of the eastern Mediterranean presented in this paper is based on an active subduction and small underwater hills/mountains on the oceanic crust moving toward the north. The Hellenic Arc, the Anaximander Mountains, the Rhodes and Finike basins, the compressional southern regions of the Western Taurides, and the extensional western Anatolian graben are the main interrelated tectonic structures that are shaped by the complex tectonic regimes. There are still heated debates regarding the structural properties and tectonic evolution of the southwestern Anatolia. GPS velocities and focal mechanisms of earthquakes demonstrate the absence of a single transform fault across the Burdur-Fethiye region; however, hundreds of small faults showing normal and left-lateral oblique slip indicate the presence of a regionally extensive shear zone in southwestern Turkey, which plays an important role in the eastern Mediterranean tectonics. The 300-km-long, 75-90-km-wide NE-SW-trending Burdur-Fethiye Shear Zone developed during the formation of Aegean back-arc extensional system and the thrusting of Western Taurides. Today, the left-lateral differential motion across the Burdur-Fethiye Shear Zone varies from 3 to 4 mm/yr in the north to 8-10 mm/yr in the south. This finding could be attributed to the fact that while the subduction of the African Plate is relatively fast beneath the western Anatolia at the Hellenic Trench, it is slow or locked beneath the Western Taurides. Therefore, the GPS vectors and their distributions on land indicate remarkable velocity differences and enable us to determine the left-lateral shear zone located between the extensional and compressional blocks. Furthermore, this active tectonic regime creates differences in topography. This study also demonstrates how deep structures, such as the continuation of the subduction transform edge propagator (STEP) fault between the Hellenic and Cyprus arcs in the continental area, can come into play

  16. Free volume under shear

    Science.gov (United States)

    Maiti, Moumita; Vinutha, H. A.; Sastry, Srikanth; Heussinger, Claus

    2015-10-01

    Using an athermal quasistatic simulation protocol, we study the distribution of free volumes in sheared hard-particle packings close to, but below, the random-close packing threshold. We show that under shear, and independent of volume fraction, the free volumes develop features similar to close-packed systems — particles self-organize in a manner as to mimick the isotropically jammed state. We compare athermally sheared packings with thermalized packings and show that thermalization leads to an erasure of these structural features. The temporal evolution in particular the opening-up and the closing of free-volume patches is associated with the single-particle dynamics, showing a crossover from ballistic to diffusive behavior.

  17. Variations of shear wave splitting in the 2008 Wen chuan earthquake region

    Institute of Scientific and Technical Information of China (English)

    DING ZhiFeng; WU Yan; WANG Hui; ZHOU XiaoFeng; LI GuiYin

    2008-01-01

    Through the analysis of S-wave particle motion of local events in the shear wave window, the polarization directions of the faster shear wave and the delay times between the faster and the slower shear waves were derived from seismic recordings at the stations near the fault zones. The shear wave splitting results of seven stations in the area of Longmenshan fault zone reveal spatial variation of the polarization directions of the fast shear wave. The directions at stations in the southeastern side of the Longmenshan fault zone (in the Sichuan Basin area) are in the NE direction, whereas the direction at station PWU (in the Plateau), which is in the northwestern side of the faults, is in the EW direction.Systematic changes of the time delays between two split shear waves were also observed. At station L5501 in the southern end of the aftershock zone, the delay times of the slower shear wave decrease systematically after the main shock. After the main shock, the delay times at station PWU were longer than those before the earthquake. Seismic shear wave splitting is caused mostly by stress-aligned microcracks in the rock below the stations. The results demonstrate changes of local stress field during the main-shock and the aftershocks. The stress in the southern part of Wenchuan seismogenic zone was released by the main-shock and the aftershocks. The crustal stresses were transferred to the northeastern part of the zone, resulting in stress increase at station PWU after the main-shock.

  18. Variations of shear wave splitting in the 2008 Wenchuan earthquake region

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Through the analysis of S-wave particle motion of local events in the shear wave window, the polariza-tion directions of the faster shear wave and the delay times between the faster and the slower shear waves were derived from seismic recordings at the stations near the fault zones. The shear wave split-ting results of seven stations in the area of Longmenshan fault zone reveal spatial variation of the po-larization directions of the fast shear wave. The directions at stations in the southeastern side of the Longmenshan fault zone (in the Sichuan Basin area) are in the NE direction, whereas the direction at station PWU (in the Plateau), which is in the northwestern side of the faults, is in the EW direction. Systematic changes of the time delays between two split shear waves were also observed. At station L5501 in the southern end of the aftershock zone, the delay times of the slower shear wave decrease systematically after the main shock. After the main shock, the delay times at station PWU were longer than those before the earthquake. Seismic shear wave splitting is caused mostly by stress-aligned microcracks in the rock below the stations. The results demonstrate changes of local stress field dur-ing the main-shock and the aftershocks. The stress in the southern part of Wenchuan seismogenic zone was released by the main-shock and the aftershocks. The crustal stresses were transferred to the northeastern part of the zone, resulting in stress increase at station PWU after the main-shock.

  19. Spatio-temporal mapping of plate boundary faults in California using geodetic imaging

    Science.gov (United States)

    Donnellan, Andrea; Arrowsmith, Ramon; DeLong, Stephen B.

    2017-01-01

    The Pacific–North American plate boundary in California is composed of a 400-km-wide network of faults and zones of distributed deformation. Earthquakes, even large ones, can occur along individual or combinations of faults within the larger plate boundary system. While research often focuses on the primary and secondary faults, holistic study of the plate boundary is required to answer several fundamental questions. How do plate boundary motions partition across California faults? How do faults within the plate boundary interact during earthquakes? What fraction of strain accumulation is relieved aseismically and does this provide limits on fault rupture propagation? Geodetic imaging, broadly defined as measurement of crustal deformation and topography of the Earth’s surface, enables assessment of topographic characteristics and the spatio-temporal behavior of the Earth’s crust. We focus here on crustal deformation observed with continuous Global Positioning System (GPS) data and Interferometric Synthetic Aperture Radar (InSAR) from NASA’s airborne UAVSAR platform, and on high-resolution topography acquired from lidar and Structure from Motion (SfM) methods. Combined, these measurements are used to identify active structures, past ruptures, transient motions, and distribution of deformation. The observations inform estimates of the mechanical and geometric properties of faults. We discuss five areas in California as examples of different fault behavior, fault maturity and times within the earthquake cycle: the M6.0 2014 South Napa earthquake rupture, the San Jacinto fault, the creeping and locked Carrizo sections of the San Andreas fault, the Landers rupture in the Eastern California Shear Zone, and the convergence of the Eastern California Shear Zone and San Andreas fault in southern California. These examples indicate that distribution of crustal deformation can be measured using interferometric synthetic aperture radar (InSAR), Global Navigation

  20. Study on estimate method of wave velocity and quality factor to fault seals

    Institute of Scientific and Technical Information of China (English)

    LI Zhensheng; LIU Deliang; LIU Bo; YANG Qiang; LI Jingming

    2005-01-01

    Based on ultrasonic test of fault rocks, the responses for wave velocity and quality factor (Q value) to lithology, porosity and permeability of fault rocks and mechanical property of faults are studied. In this paper, a new quantitative estimate method of fault seals is originally offered. The conclusions are as follows: (1) Wave velocity and Q value increase and porosity decreases with the increase in stress perpendicular to joint; (2) In compressive and compresso-shear fault rocks that are obviously anisotropic compared with their original rocks, the wave velocity and Q value are greater in the direction parallel with foliation, and usually less perpendicular to it. In tensile and tenso-shear fault rocks that are not obviously anisotropic, the wave velocity and Q value are under that of original rocks; (3) In foliated fault rocks, the direction with minimal wave velocity and Q value is the best direction for sealing; on the contrary it is the best for flowing; (4) Structural factures develop mainly along foliation, the minimal wave velocity and Q value reflect the flowing capacity in parallel direction to foliation, and the maximal wave velocity as well as Q value reflect the sealing capacity in normal direction to foliation. The new estimate method is based upon contrast of wave velocity and Q value between fault rocks and their original rocks, and is divided into three parts that are respectively to identify rock's lithology, to judge mechanic property of faults and to Judge sealing capacity of faults. Although there is vast scale effect between ultrasonic wave and seismic wave, they have similar regularity of response to fabric and porosity of faults. This research offers new application for seismic data and petrophysical basis for seismological estimation of fault seals. The estimate precision will be improved with the enhancement of three-dimensional seismic prospecting work.

  1. Mixing through shear instabilities

    CERN Document Server

    Brüggen, M

    2000-01-01

    In this paper we present the results of numerical simulations of the Kelvin-Helmholtz instability in a stratified shear layer. This shear instability is believed to be responsible for extra mixing in differentially rotating stellar interiors and is the prime candidate to explain the abundance anomalies observed in many rotating stars. All mixing prescriptions currently in use are based on phenomenological and heuristic estimates whose validity is often unclear. Using three-dimensional numerical simulations, we study the mixing efficiency as a function of the Richardson number and compare our results with some semi-analytical formalisms of mixing.

  2. Quaternary Fault Lines

    Data.gov (United States)

    Department of Homeland Security — This data set contains locations and information on faults and associated folds in the United States that are believed to be sources of M>6 earthquakes during the...

  3. Earthquake rupture process recreated from a natural fault surface

    Science.gov (United States)

    Parsons, Thomas E.; Minasian, Diane L.

    2015-01-01

    What exactly happens on the rupture surface as an earthquake nucleates, spreads, and stops? We cannot observe this directly, and models depend on assumptions about physical conditions and geometry at depth. We thus measure a natural fault surface and use its 3D coordinates to construct a replica at 0.1 m resolution to obviate geometry uncertainty. We can recreate stick-slip behavior on the resulting finite element model that depends solely on observed fault geometry. We clamp the fault together and apply steady state tectonic stress until seismic slip initiates and terminates. Our recreated M~1 earthquake initiates at contact points where there are steep surface gradients because infinitesimal lateral displacements reduce clamping stress most efficiently there. Unclamping enables accelerating slip to spread across the surface, but the fault soon jams up because its uneven, anisotropic shape begins to juxtapose new high-relief sticking points. These contacts would ultimately need to be sheared off or strongly deformed before another similar earthquake could occur. Our model shows that an important role is played by fault-wall geometry, though we do not include effects of varying fluid pressure or exotic rheologies on the fault surfaces. We extrapolate our results to large fault systems using observed self-similarity properties, and suggest that larger ruptures might begin and end in a similar way, though the scale of geometrical variation in fault shape that can arrest a rupture necessarily scales with magnitude. In other words, fault segmentation may be a magnitude dependent phenomenon and could vary with each subsequent rupture.

  4. Earthquake rupture process recreated from a natural fault surface

    Science.gov (United States)

    Parsons, Tom; Minasian, Diane L.

    2015-11-01

    What exactly happens on the rupture surface as an earthquake nucleates, spreads, and stops? We cannot observe this directly, and models depend on assumptions about physical conditions and geometry at depth. We thus measure a natural fault surface and use its 3-D coordinates to construct a replica at 0.1 m resolution to obviate geometry uncertainty. We can recreate stick-slip behavior on the resulting finite element model that depends solely on observed fault geometry. We clamp the fault together and apply steady state tectonic stress until seismic slip initiates and terminates. Our recreated M ~ 1 earthquake initiates at contact points where there are steep surface gradients because infinitesimal lateral displacements reduce clamping stress most efficiently there. Unclamping enables accelerating slip to spread across the surface, but the fault soon jams up because its uneven, anisotropic shape begins to juxtapose new high-relief sticking points. These contacts would ultimately need to be sheared off or strongly deformed before another similar earthquake could occur. Our model shows that an important role is played by fault-wall geometry, although we do not include effects of varying fluid pressure or exotic rheologies on the fault surfaces. We extrapolate our results to large fault systems using observed self-similarity properties and suggest that larger ruptures might begin and end in a similar way, although the scale of geometrical variation in fault shape that can arrest a rupture necessarily scales with magnitude. In other words, fault segmentation may be a magnitude-dependent phenomenon and could vary with each subsequent rupture.

  5. Gold mineralization in the West Hoggar shear zone, Algeria

    Science.gov (United States)

    Ferkous, K.; Leblanc, M.

    1995-06-01

    The Amesmessa gold prospect is located along a vertical N-S-trending crustal-scale ductile shear zone; stretching lineations are subhorizontal. This major shear zone is a Late Pan African dextral strike-slip fault of the Pharusian Belt of the Tuareg Shield (Algeria). The Amesmessa shear zone is asymmetric: strong thermal and deformational gradients are present along its western border where biotitic ultramylonites are in contact with a rigid Archean complex (In Ouzzal block), whereas there is a progressive gradation, through mylonite then protomylonite, to the Proterozoic gneiss of the Eastern block which displays co-axial Pan African structures. The Amesmessa shear zone is characterized by the presence of a felsic dike complex emplaced during shearing, and forming the most important parent material for ultramylonites. Basic magmas and carbonatites also intruded within the shear zone. The gold-rich quartz veins are located within the ultramylonitic western part of the shear zone. These N-S-trending laminated quartz veins formed during the late increments of shearing (plastic/brittle transition), by repeated syntectonic hydraulic fracturing along zones of rheological contrast parallel to foliation. The ore mineral association (pyrite, galena, native gold, sphalerite) crystallized in the deformed quartz matrix along late shear planes. Undeformed E-W trending banded quartz veins are present in the mylonitic eastern part of the shear zone; their gold content is low and no native gold has been observed. A strong hydrothermal alteration resulted in the development (along the walls of the N-S gold-bearing quartz veins) of a 5-m-wide carbonate-sericite-albite-pyrite secondary mineral association which implies an important CO2 supply and moderate temperature conditions. There is no alteration halo around the E-W quartz veins. Ultramylonites, hydrothermally altered rocks and quartz veins display similar REE patterns characterized by strong LREE enrichments. Shear

  6. Switching deformation mode during natural faulting in Carrara marbles.

    Science.gov (United States)

    Molli, Giancarlo

    2010-05-01

    A study on meso- and microstructural features of a high angle normal fault observed in the Alpi Apuane NW Tuscany (Italy) is presented to document switching in the deformation mode during different evolutionary stages of a fault zone growth in naturally deformed Carrara marble. The studied fault was formed at c.3 Km of depth and belongs to structures related to the most recent deformation history of the Alpi Apuane metamorphic core (from c.4 Ma until now, Fellin et al. 2007; Molli, 2008). On the basis of deformation mechanisms and their chronology interpreted from cross-cutting relationships, different stages of the fault zone evolution have been recognized. An early stage of deformation (stage 1) was associated with extensional and shear veins now observable in both hangingwall and footwall blocks as part of the deformation zone developed at decameter-scale. Geochemical data indicate vein-development in a locally closed system where a "stationary" fluid phase migrates over meter scale distances (Molli et al., in press). During stage 2, a localization of the deformation, possibly in precursory coarse grained calcite/quartz shear veins of stage 1, took place. During this second stage crystal-plastic deformation affected areas at the head and along the hanging wall rim of fractures accommodating fault tip distorsions in a way recalling the mode-II geometry of stable crack propagation (Atkinson, 1987; Vermilye and Scholtz, 1993; Kim et al., 2004). Following pervasive cataclasis (stage 3) characterizes a plurimeter-wide dilational jog between two non-parallel main slip surfaces with brecciation and far-derived fluids channelling leading to significant geochemical alteration of the fault rocks with respect to the protolith (Molli et al., in press). Cataclastic deformation produced a grain size refinement and a decimetric thick fault core asymmetrically bounded by the upper main slip surface. Deformation was then localized within ultracataclasite of the fault core where

  7. Geometry and kinematic evolution of Riedel shear structures, Capitol Reef National Park, Utah

    Science.gov (United States)

    Katz, Yoram; Weinberger, Ram; Aydin, Atilla

    2004-03-01

    Riedel shear structures are common fault patterns identified within shear zones and related to the embryonic stages of fault formation. This study focuses on the geometry of outcrop-scale natural shear zones consisting of different generations of Riedel structures, exposed in the Jurassic Navajo sandstone, Capitol Reef National Park, Utah. Geometric analysis of different structures shows that the spacing of synthetic R-deformation bands increases with the spacing of antithetic R'-deformation bands. Systematic correlation is found between the R-band spacing and the angles formed between R- and R'-bands. Examination of young Riedel structures shows their tendency to localize along narrow, elongated domains sub-parallel to the shear direction and create denser Riedel networks. We suggest that the evolution of Riedel structures is dominated by two mechanisms: (1) discrete faulting in the form of conjugate deformation bands, generally complying with the Mohr-Coulomb criteria, and (2) granular flow, which rotates mainly the R'-deformation bands. Both mechanisms are intensified with progressive strain, decreasing the deformation-band spacing and increasing the R- to R'-angles. The tendency of young Riedel structures to organize in dense elongated networks is related to strain localization during the shear-zone evolution. We suggest a kinematic explanation for the evolution of Riedel-structure networks, which relates the network geometry to the progressive accumulation and localization of shear strain.

  8. The Trans-Rocky Mountain Fault System - A Fundamental Precambrian Strike-Slip System

    Science.gov (United States)

    Sims, P.K.

    2009-01-01

    Recognition of a major Precambrian continental-scale, two-stage conjugate strike-slip fault system - here designated as the Trans-Rocky Mountain fault system - provides new insights into the architecture of the North American continent. The fault system consists chiefly of steep linear to curvilinear, en echelon, braided and branching ductile-brittle shears and faults, and local coeval en echelon folds of northwest strike, that cut indiscriminately across both Proterozoic and Archean cratonic elements. The fault system formed during late stages of two distinct tectonic episodes: Neoarchean and Paleoproterozoic orogenies at about 2.70 and 1.70 billion years (Ga). In the Archean Superior province, the fault system formed (about 2.70-2.65 Ga) during a late stage of the main deformation that involved oblique shortening (dextral transpression) across the region and progressed from crystal-plastic to ductile-brittle deformation. In Paleoproterozoic terranes, the fault system formed about 1.70 Ga, shortly following amalgamation of Paleoproterozoic and Archean terranes and the main Paleoproterozoic plastic-fabric-producing events in the protocontinent, chiefly during sinistral transpression. The postulated driving force for the fault system is subcontinental mantle deformation, the bottom-driven deformation of previous investigators. This model, based on seismic anisotropy, invokes mechanical coupling and subsequent shear between the lithosphere and the asthenosphere such that a major driving force for plate motion is deep-mantle flow.

  9. Numerical simulation on fault water-inrush based on fluid-solid coupling theory

    Institute of Scientific and Technical Information of China (English)

    HUANG Han-fu; MAO Xian-biao; YAO Bang-hua; PU Hai

    2012-01-01

    About 75% water-inrush accidents in China are caused by geological structure such as faults,therefore,it is necessary to investigate the water-inrush mechanism of faults to provide references for the mining activity above confined water.In this paper,based on the fluid-solid coupling theory,we built the stress-seepage coupling model for rock,then we combined with an example of water-inrush caused by fault,studied the water-inrush mechanism by using the numerical software COMSOL Mutiphysics,analyzed the change rule of shear stress,vertical stress,plastic area and water pressure for stope with a fault,and estimated the water-inrush risk at the different distances between working faces and the fault.The numerical simulation results indicate that:(1) the water-inrush risk will grow as the decrease of the distance between working face and the fault;(2) the failure mode of the rock in floor with fault is shear failure; (3) the rock between water-containing fault and working face failure is the reason for water-inrush.

  10. The stress shadow effect: a mechanical analysis of the evenly-spaced parallel strike-slip faults in the San Andreas fault system

    Science.gov (United States)

    Zuza, A. V.; Yin, A.; Lin, J. C.

    2015-12-01

    Parallel evenly-spaced strike-slip faults are prominent in the southern San Andreas fault system, as well as other settings along plate boundaries (e.g., the Alpine fault) and within continental interiors (e.g., the North Anatolian, central Asian, and northern Tibetan faults). In southern California, the parallel San Jacinto, Elsinore, Rose Canyon, and San Clemente faults to the west of the San Andreas are regularly spaced at ~40 km. In the Eastern California Shear Zone, east of the San Andreas, faults are spaced at ~15 km. These characteristic spacings provide unique mechanical constraints on how the faults interact. Despite the common occurrence of parallel strike-slip faults, the fundamental questions of how and why these fault systems form remain unanswered. We address this issue by using the stress shadow concept of Lachenbruch (1961)—developed to explain extensional joints by using the stress-free condition on the crack surface—to present a mechanical analysis of the formation of parallel strike-slip faults that relates fault spacing and brittle-crust thickness to fault strength, crustal strength, and the crustal stress state. We discuss three independent models: (1) a fracture mechanics model, (2) an empirical stress-rise function model embedded in a plastic medium, and (3) an elastic-plate model. The assumptions and predictions of these models are quantitatively tested using scaled analogue sandbox experiments that show that strike-slip fault spacing is linearly related to the brittle-crust thickness. We derive constraints on the mechanical properties of the southern San Andreas strike-slip faults and fault-bounded crust (e.g., local fault strength and crustal/regional stress) given the observed fault spacing and brittle-crust thickness, which is obtained by defining the base of the seismogenic zone with high-resolution earthquake data. Our models allow direct comparison of the parallel faults in the southern San Andreas system with other similar strike

  11. Paleostress Determination Based on Multiple-Inverse Method using Calcite Twins and Fault-Slip Data in the East Walanae Fault Zone South Sulawesi, Indonesia

    Science.gov (United States)

    Jaya, Asri; Nishikawa, Osamu

    2013-04-01

    Paleostress reconstructions from calcite twin and fault-slip data were performed to constrain the activity of the East Walanae Fault (EWF) South Sulawesi, Indonesia. The multiple-inverse method, which has been widely used with fault-slip data, was applied to calcite twin data in this study. Both independent data sets yield consistent stress states and provides a reliable stress tensors (maximum and minimum principal stresses: ?1and ?3, and stress ratio: ?), a predominance of NE-SW trending ?1and vertical to moderately-south-plunging ?3 with generally low ?. These stress states could have activated the EWF as a reverse fault with a dextral shear component and account for contractional deformation structures and landform around the trace of the fault. Most of the calcite twins and mesoscale faults were activated during the latest stage of folding or later. Based on the morphology and width of twin lamellae in the carbonate rocks, twinning of calcite in the deformation zone along the EWF may have occurred under the temperature of 200° C or lower. Inferred paleostress states around the EWF were most likely generated under the tectonic conditions influenced by the collision of Sulawesi with the Australian fragments since the Late Miocene. Radiocarbon dating from sheared soil collected from the outcrop along a major fault yielded ages between 3050 cal BP and 3990 cal BP suggesting a present activity of the EWF.

  12. Fault Wear and Friction Evolution: Experimental Analysis

    Science.gov (United States)

    Boneh, Y.; Chang, J. C.; Lockner, D. A.; Reches, Z.

    2011-12-01

    Wear is an inevitable product of frictional sliding of brittle rocks as evidenced by the ubiquitous occurrence of fault gouge and slickenside striations. We present here experimental observations designed to demonstrate the relationship between wear and friction and their governing mechanisms. The experiments were conducted with a rotary shear apparatus on solid, ring-shaped rock samples that slipped for displacements up to tens of meters. Stresses, wear and temperature were continuously monitored. We analyzed 86 experiments of Kasota dolomite, Sierra White granite, Pennsylvania quartzite, Karoo gabbro, and Tennessee sandstone at slip velocities ranging from 0.002 to 0.97 m/s, and normal stress from 0.25 to 6.9 MPa. We conducted two types of runs: short slip experiments (slip distance mechanisms; and long slip experiments (slip distance > 3 m) designed to achieve mature wear conditions and to observe the evolution of wear and friction as the fault surfaces evolved. The experiments reveal three wear stages: initial, running-in, and steady-state. The initial stage is characterized by (1) discrete damage striations, the length of which is comparable to total slip , and local pits or plow features; (2) timing and magnitude of fault-normal dilation corresponds to transient changes of normal and shear stresses; and (3) surface roughness increasing with the applied normal stress. We interpret these observations as wear mechanisms of (a) plowing into the fresh rock surfaces; (b) asperity breakage; and (c) asperity climb. The running-in stage is characterized by (1) intense wear-rate over a critical wear distance of Rd = 0.3-2 m; (2) drop of friction coefficient over a weakening distance of Dc = 0.2-4 m; (3) Rd and Dc display positive, quasi-linear relation with each other. We interpret these observations as indicating the organizing of newly-created wear particles into a 'three-body' structure that acts to lubricate the fault (Reches & Lockner, 2010). The steady

  13. Viscous shear heating instabilities in a 1-D viscoelastic shear zone

    Science.gov (United States)

    Homburg, J. M.; Coon, E. T.; Spiegelman, M.; Kelemen, P. B.; Hirth, G.

    2010-12-01

    Viscous shear instabilities may provide a possible mechanism for some intermediate depth earthquakes where high confining pressure makes it difficult to achieve frictional failure. While many studies have explored the feedback between temperature-dependent strain rate and strain-rate dependent shear heating (e.g. Braeck and Podladchikov, 2007), most have used thermal anomalies to initiate a shear instability or have imposed a low viscosity region in their model domain (John et al., 2009). By contrast, Kelemen and Hirth (2007) relied on an initial grain size contrast between a predetermined fine-grained shear zone and coarse grained host rock to initiate an instability. This choice is supported by observations of numerous fine grained ductile shear zones in shallow mantle massifs as well as the possibility that annealed fine grained fault gouge, formed at oceanic transforms, subduction related thrusts and ‘outer rise’ faults, could be carried below the brittle/ductile transition by subduction. Improving upon the work of Kelemen and Hirth (2007), we have developed a 1-D numerical model that describes the behavior of a Maxwell viscoelastic body with the rheology of dry olivine being driven at a constant velocity at its boundary. We include diffusion and dislocation creep, dislocation accommodated grain boundary sliding, and low-temperature plasticity (Peierls mechanism). Initial results suggest that including low-temperature plasticity inhibits the ability of the system to undergo an instability, similar to the results of Kameyama et al. (1999). This is due to increased deformation in the background allowing more shear heating to take place, and thus softening the system prior to reaching the peak stress. However if the applied strain rate is high enough (e.g. greater than 0.5 x 10-11 s-1 for a domain size of 2 km, an 8 m wide shear zone, a background grain size of 1 mm, a shear zone grain size of 150 μm, and an initial temperature of 650°C) dramatic

  14. Keyed shear joints

    DEFF Research Database (Denmark)

    Hansen, Klaus

    This report gives a summary of the present information on the behaviour of vertical keyed shear joints in large panel structures. An attemp is made to outline the implications which this information might have on the analysis and design of a complete wall. The publications also gives a short...

  15. Sheared solid materials

    Indian Academy of Sciences (India)

    Akira Onuki; Akira Furukawa; Akihiko Minami

    2005-05-01

    We present a time-dependent Ginzburg–Landau model of nonlinear elasticity in solid materials. We assume that the elastic energy density is a periodic function of the shear and tetragonal strains owing to the underlying lattice structure. With this new ingredient, solving the equations yields formation of dislocation dipoles or slips. In plastic flow high-density dislocations emerge at large strains to accumulate and grow into shear bands where the strains are localized. In addition to the elastic displacement, we also introduce the local free volume . For very small the defect structures are metastable and long-lived where the dislocations are pinned by the Peierls potential barrier. However, if the shear modulus decreases with increasing , accumulation of around dislocation cores eventually breaks the Peierls potential leading to slow relaxations in the stress and the free energy (aging). As another application of our scheme, we also study dislocation formation in two-phase alloys (coherency loss) under shear strains, where dislocations glide preferentially in the softer regions and are trapped at the interfaces.

  16. Discovery of the Longriba Fault Zone in Eastern Bayan Har Block, China and its tectonic implication

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Re-measured GPS data have recently revealed that a broad NE trending dextral shear zone exists in the eastern Bayan Har block about 200 km northwest of the Longmenshan thrust on the eastern margin of the Qinghai-Tibet Plateau. The strain rate along this shear zone may reach up to 4-6 mm/a. Our interpretation of satellite images and field observations indicate that this dextral shear zone corresponds to a newly generated NE trending Longriba fault zone that has been ignored before. The northeast segment of the Longriba fault zone consists of two subparallel N54°±5°E trending branch faults about 30 km apart, and late Quaternary offset landforms are well developed along the strands of these two branch faults. The northern branch fault, the Longriqu fault, has relatively large reverse component, while the southern branch fault, the Maoergai fault, is a pure right-lateral strike slip fault. According to vector synthesizing principle, the average right-lateral strike slip rate along the Longriba fault zone in the late Quaternary is calculated to be 5.4±2.0 mm/a, the vertical slip rate to be 0.7 mm/a, and the rate of crustal shortening to be 0.55 mm/a. The discovery of the Longriba fault zone may provide a new insight into the tectonics and dynamics of the eastern margin of the Qinghai-Tibet Plateau. Taken the Longriba fault zone as a boundary, the Bayan Har block is divided into two sub-blocks: the Ahba sub-block in the west and the Longmenshan sub-block in the east. The shortening and uplifting of the Longmenshan sub-block as a whole reflects that both the Longmenshan thrust and Longriba fault zone are subordinated to a back propagated nappe tectonic system that was formed during the southeastward motion of the Bayan Har block owing to intense resistance of the South China block. This nappe tectonic system has become a boundary tectonic type of an active block supporting crustal deformation along the eastern margin of the Qinghai-Tibet Plateau from late Cenozoic

  17. Discovery of the Longriba Fault Zone in Eastern Bayan Har Block, China and its tectonic implication

    Institute of Scientific and Technical Information of China (English)

    XU XiWei; WEN XueZe; CHEN GuiHua; YU GuiHua

    2008-01-01

    Re-measured GPS data have recently revealed that a broad NE trending dextral shear zone exists in the eastern Bayan Har block about 200 km northwest of the Longmenshan thrust on the eastern margin of the Qinghai-Tibet Plateau.The strain rate along this shear zone may reach up to 4-6 mm/a.Our interpretation of satellite images and field observations indicate that this dextral shear zone corresponds to a newly generated NE trending Longriba fault zone that has been ignored before.The northeast segment of the Longriba fault zone consists of two subparallel N54°±5°E trending branch faults about 30 km apart, and late Quaternary offset landforms are well developed along the strands of these two branch faults.The northern branch fault, the Longriqu fault, has relatively large reverse component, while the southern branch fault, the Maoergai fault, is a pure right-lateral strike slip fault.According to vector synthesizing principle, the average right-lateral strike slip rate along the Longriba fault zone in the late Quaternary is calculated to be 5.4±2.0 mm/a, the vertical slip rate to be 0.7 mm/a, and the rate of crustal shortening to be 0.55 mm/a.The discovery of the Longriba fault zone may provide a new insight into the tectonics and dynamics of the eastern margin of the Qinghai-Tibet Plateau.Taken the Longriba fault zone as a boundary, the Bayan Har block is divided into two sub-blocks: the Ahba sub-block in the west and the Longmenshan sub-block in the east.The shortening and uplifting of the Longmenshan sub-block as a whole reflects that both the Longmenshan thrust and Longriba fault zone are subordinated to a back propagated nappe tectonic system that was formed during the southeastward motion of the Bayan Har block owing to intense resistance of the South China block.This nappe tectonic system has become a boundary tectonic type of an active block supporting crustal deformation along the eastern margin of the Qinghai-Tibet Plateau from late Cenozoic till now

  18. A three-dimensional study of fault zone architecture: Results from the SEMP fault system, Austria.

    Science.gov (United States)

    Frost, E. K.; Dolan, J. F.; Sammis, C. G.; Hacker, B.; Cole, J.; Ratschbacher, L.

    2008-12-01

    One of the most exciting frontiers in earthquake science is the linkage between the internal structure and mechanical behavior of fault zones. Little is known about how fault-zone structure varies as a function of depth, yet such understanding is vital if we are to understand the mechanical instabilities that control the nucleation and propagation of seismic ruptures. This has led us to the Salzach-Ennstal-Mariazell-Puchberg [SEMP] fault system in Austria, a major left-lateral strike-slip fault that has accommodated ~ 60 km of displacement during Oligo-Miocene time. Differential exhumation of the SEMP has resulted in a fault zone that reveals a continuum of structural levels along strike. This provides us with a unique opportunity to directly observe how fault-zone properties change with depth, from near-surface levels, down through the seismogenic crust, across the brittle-ductile transition, and into the uppermost part of the lower crust in western Austria. Here we present results from four key outcrops and discuss the mechanical implications of these new data. Our brittle outcrop at Gstatterboden has been exhumed from at least 4 km depth. Here the SEMP juxtaposes limestone of the Wettersteinkalk on the south against Rauwacken dolomite to the north. Faulting has produced extremely asymmetric damage, extensively shattering and shearing the dolomite while leaving the limestone largely intact. Measurements of outcrop-scale faults and fractures in the dolomite, combined with analysis of grain-size-distributions, suggest that strain has progressively localized to a zone ~ 10 m wide. These findings are compared to those from two outcrops (Kitzlochklamm and Liechtensteinklamm) that bracket the brittle-ductile transition, exhumed from depths of = 10 km. Here, the SEMP juxtaposes Greywacke Zone rocks on the north against carbonate mylonites of the Klammkalk to the south. We calculate the strain gradient in the ductile Klammkalk rocks by analyzing the lattice preferred

  19. Shear Thinning of Noncolloidal Suspensions

    Science.gov (United States)

    Vázquez-Quesada, Adolfo; Tanner, Roger I.; Ellero, Marco

    2016-09-01

    Shear thinning—a reduction in suspension viscosity with increasing shear rates—is understood to arise in colloidal systems from a decrease in the relative contribution of entropic forces. The shear-thinning phenomenon has also been often reported in experiments with noncolloidal systems at high volume fractions. However its origin is an open theoretical question and the behavior is difficult to reproduce in numerical simulations where shear thickening is typically observed instead. In this letter we propose a non-Newtonian model of interparticle lubrication forces to explain shear thinning in noncolloidal suspensions. We show that hidden shear-thinning effects of the suspending medium, which occur at shear rates orders of magnitude larger than the range investigated experimentally, lead to significant shear thinning of the overall suspension at much smaller shear rates. At high particle volume fractions the local shear rates experienced by the fluid situated in the narrow gaps between particles are much larger than the averaged shear rate of the whole suspension. This allows the suspending medium to probe its high-shear non-Newtonian regime and it means that the matrix fluid rheology must be considered over a wide range of shear rates.

  20. Active Fault Isolation in MIMO Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2014-01-01

    Active fault isolation of parametric faults in closed-loop MIMO system s are considered in this paper. The fault isolation consists of two steps. T he first step is group- wise fault isolation. Here, a group of faults is isolated from other pos sible faults in the system. The group-wise fault iso...

  1. Deformation Characters of the Maowen Fault Belt in Longmenshan,Western Sichuan

    Institute of Scientific and Technical Information of China (English)

    TANG Zemin; ZHANG Yueqiao; YANG Nong

    2001-01-01

    The Maowen fault belt is one of important fault belts of the intercontinental orogenic belt of Longmenshan, mainly experienced three stage deformation; they are ductile shearing of thrust napping, brittle thrust napping and sinstral strike-slipping. Although Sc strike of mylonite formed by ductile shearing in early stage was reformed by later two stage brittle deformation, and changed greatly along the strike and inclination, the shear zone, as a whole, strikes NE and inclines NW. The stretching lineation is parallel or nearly parallel to the inclination of the ductile shear zone. According to the development of conjugated joints, the main compressive stress of the two stage brittle deformation is oriented to 306°and 2°, respectively.

  2. Continuous deformation versus faulting through the continental lithosphere of new zealand

    Science.gov (United States)

    Molnar; Anderson; Audoine; Eberhart-Phillips; Gledhill; Klosko; McEvilly; Okaya; Savage; Stern; Wu

    1999-10-15

    Seismic anisotropy and P-wave delays in New Zealand imply widespread deformation in the underlying mantle, not slip on a narrow fault zone, which is characteristic of plate boundaries in oceanic regions. Large magnitudes of shear-wave splitting and orientations of fast polarization parallel to the Alpine fault show that pervasive simple shear of the mantle lithosphere has accommodated the cumulative strike-slip plate motion. Variations in P-wave residuals across the Southern Alps rule out underthrusting of one slab of mantle lithosphere beneath another but permit continuous deformation of lithosphere shortened by about 100 kilometers since 6 to 7 million years ago.

  3. Rough Faults, Distributed Weakening, and Off-Fault Deformation

    Science.gov (United States)

    Griffith, W. A.; Nielsen, S. B.; di Toro, G.; Smith, S. A.; Niemeijer, A. R.

    2009-12-01

    We report systematic spatial variations of fault rocks along non-planar strike-slip faults cross-cutting the Lake Edison Granodiorite, Sierra Nevada, California (Sierran Wavy Fault) and the Lobbia outcrops of the Adamello Batholith in the Italian Alps (Lobbia Wavy Fault). In the case of the Sierran fault, pseudotachylyte formed at contractional fault bends, where it is found as thin (1-2 mm) fault-parallel veins. Epidote and chlorite developed in the same seismic context as the pseudotachylyte and are especially abundant in extensional fault bends. We argue that the presence of fluids, as illustrated by this example, does not necessarily preclude the development of frictional melt. In the case of the Lobbia fault, pseudotachylyte is present in variable thickness along the length of the fault, but the pseudotachylyte veins thicken and pool in extensional bends. The Lobbia fault surface is self-affine, and we conduct a quantitative analysis of microcrack distribution, stress, and friction along the fault. Numerical modeling results show that opening in extensional bends and localized thermal weakening in contractional bends counteract resistance encountered by fault waviness, resulting in an overall weaker fault than suggested by the corresponding static friction coefficient. Models also predict stress redistribution around bends in the faults which mirror microcrack distributions, indicating significant elastic and anelastic strain energy is dissipated into the wall rocks due to non-planar fault geometry. Together these observations suggest that, along non-planar faults, damage and energy dissipation occurs along the entire fault during slip, rather than being confined to the region close to the crack tip as predicted by classical fracture mechanics.

  4. The Suruli shear zone and regional scale folding pattern in Madurai block of Southern Granulite Terrain, south India

    Indian Academy of Sciences (India)

    V Srinivasan; P Rajeshdurai

    2010-04-01

    Through the application of remote sensing techniques followed by field checks, the exact extension and nature of Suruli shear zone in Madurai block of southern granulite terrain (SGT) in south India is brought out for the first time in this work. The dominant rock type exposed in this area is charnockite intruded by granites. The Suruli ductile shear zone extends from just west of Kadaiyanallur in the south to Ganguvarpatti in the north over a length of 150 km. Between Kadaiyanallur and Kambam, the shear zone extends roughly in N–S direction. From Kambam, it swerves towards NE and then towards ENE near Ganguvarpatti. The strongly developed transposed foliation and mylonite foliation within the shear zone dip towards east only and so the eastern block (Varushanad hills) is the hanging wall and the western block (Cardamom hills) is the footwall of the shear zone. In the eastern block, three distinct phases of regional scale folding (F1, F2 and F3) are recognized. In complete contrast, the western block recorded only the last phase (F3) regional scale folding. As the more deformed eastern block (older terrain) moved over the relatively less deformed western block (younger terrain) along the Suruli shear zone, it is proposed that this shear zone is a thrust or reverse fault, probably of Proterozoic age. As there are evidences for decreasing displacement from north to south (i.e., from Ganguvarpatti to Kadaiyanallur), the Suruli shear zone could be a rotational thrust or reverse fault with the pivot located close to Kadaiyanallur. As the pivot is located near Achankovil shear zone which trends WNW-ESE (dip towards SSW), the Suruli shear zone could be splaying (branching) out from Achankovil shear zone. In a nutshell, the Suruli shear zone could be a splay, rotational thrust or reverse fault.

  5. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    The paper deals with the plastic shear strength of non shear reinforced T-beams.The influence of an un-reinforced flange on the shear capacity is investigated by considering a failure mechanism involving crack sliding in the web and a kind of membrane action over an effective width of the flange...

  6. Low-angle normal faults-low differential stress at mid crustal levels

    Science.gov (United States)

    Power, W. L.

    1985-01-01

    A simple model for frictional slip on pre-existing faults that considers the local stress state near the fault and the effect of non-hydrostatic fluid pressures predicts that low-angle normal faulting is restricted to areas of the crust characterized by low differential stress and nearly lithostatic fluid pressures. The model considers frictional slip on a cohesionless low-angle normal fault governed by the failure criterion tau = mu sub f (sigma (*) sub n) =mu sub f (sigma sub n - P sub f) where tau and sigma sub n are the shear and normal stresses across the fault plane, mu sub f is the static coefficient of friction, and P sub f is the pore fluid pressure. As a first approximation, the model considers a vertical greatest principal compressive stress, sigma sub 1. It is apparent that if slip on low-angle normal faults is governed by the avove frictional failure criterion, slip on the low-angle normal fault occurs only if the least effective principal stress, sigma (*) sub 3 = sigma sub 3 - P sub f, is tensile, whenever tan superscrip -1(mu sub f d, where d is the dip of the fault. If detachment faulting occurs at any significant depth in the crust, P sub f sigma sub 3 is required. In light of this conclusion I allow P sub f to vary as necessary to allow slip on the low-angle normal fault.

  7. The Architecture and Frictional Properties of Faults in Shale

    Science.gov (United States)

    De Paola, N.; Imber, J.; Murray, R.; Holdsworth, R.

    2015-12-01

    The geometry of brittle fault zones in shale rocks, as well as their frictional properties at reservoir conditions, are still poorly understood. Nevertheless, these factors may control the very low recovery factors (25% for gas and 5% for oil) obtained during fracking operations. Extensional brittle fault zones (maximum displacement oil mature black shales in the Cleveland Basin (UK). Fault cores up to 50 cm wide accommodated most of the displacement, and are defined by a stair-step geometry. Their internal architecture is characterised by four distinct fault rock domains: foliated gouges; breccias; hydraulic breccias; and a slip zone up to 20 mm thick, composed of a fine-grained black gouge. Hydraulic breccias are located within dilational jogs with aperture of up to 20 cm. Brittle fracturing and cataclastic flow are the dominant deformation mechanisms in the fault core of shale faults. Velocity-step and slide-hold-slide experiments at sub-seismic slip rates (microns/s) were performed in a rotary shear apparatus under dry, water and brine-saturated conditions, for displacements of up to 46 cm. Both the protolith shale and the slip zone black gouge display shear localization, velocity strengthening behaviour and negative healing rates, suggesting that slow, stable sliding faulting should occur within the protolith rocks and slip zone gouges. Experiments at seismic speed (1.3 m/s), performed on the same materials under dry conditions, show that after initial friction values of 0.5-0.55, friction decreases to steady-state values of 0.1-0.15 within the first 10 mm of slip. Contrastingly, water/brine saturated gouge mixtures, exhibit almost instantaneous attainment of very low steady-state sliding friction (0.1), suggesting that seismic ruptures may efficiently propagate in the slip zone of fluid-saturated shale faults. Stable sliding in faults in shale can cause slow fault/fracture propagation, affecting the rate at which new fracture areas are created and, hence

  8. A preliminary study on surface ground deformation near shallow foundation induced by strike-slip faulting

    Science.gov (United States)

    Wong, Pei-Syuan; Lin, Ming-Lang

    2016-04-01

    According to investigation of recent earthquakes, ground deformation and surface rupture are used to map the influenced range of the active fault. The zones of horizontal and vertical surface displacements and different features of surface rupture are investigated in the field, for example, the Greendale Fault 2010, MW 7.1 Canterbury earthquake. The buildings near the fault rotated and displaced vertically and horizontally due to the ground deformation. Besides, the propagation of fault trace detoured them because of the higher rigidity. Consequently, it's necessary to explore the ground deformation and mechanism of the foundation induced by strike-slip faulting for the safety issue. Based on previous study from scaled analogue model of strike-slip faulting, the ground deformation is controlled by material properties, depth of soil, and boundary condition. On the condition controlled, the model shows the features of ground deformation in the field. This study presents results from shear box experiment on small-scale soft clay models subjected to strike-slip faulting and placed shallow foundations on it in a 1-g environment. The quantifiable data including sequence of surface rupture, topography and the position of foundation are recorded with increasing faulting. From the result of the experiment, first en echelon R shears appeared. The R shears rotated to a more parallel angle to the trace and cracks pulled apart along them with increasing displacements. Then the P shears crossed the basement fault in the opposite direction appears and linked R shears. Lastly the central shear was Y shears. On the other hand, the development of wider zones of rupture, higher rising surface and larger the crack area on surface developed, with deeper depth of soil. With the depth of 1 cm and half-box displacement 1.2 cm, en echelon R shears appeared and the surface above the fault trace elevated to 1.15 mm (Dv), causing a 1.16 cm-wide zone of ground-surface rupture and deformation

  9. Friction and scale-dependent deformation processes of large experimental carbonate faults

    Science.gov (United States)

    Tesei, Telemaco; Carpenter, Brett M.; Giorgetti, Carolina; Scuderi, Marco M.; Sagy, Amir; Scarlato, Piergiorgio; Collettini, Cristiano

    2017-07-01

    We studied the frictional behaviour and deformation products of large (20 cm × 20 cm bare surfaces) experimental limestone faults. We sheared samples in a direct shear configuration, with an imposed normal force of 40-200 kN and shear velocity of 10 μm/s. The steady-state shearing of these surfaces yielded a coefficient of friction 0.7hold-slide tests, is null (Δμ≤0 upon re-shear). Moreover, sliding of these surfaces is accompanied by dilatation and production of grooves, gouge striations and fault mirrors. These products are entirely analogous to slip surface phenomena found on natural limestone-bearing faults at both the macroscale and at the microscale. We infer that high friction, accompanied by dilatant deformation, and null frictional healing are the macroscopic effect of brittle damage on the sliding surface, constrained by the strength of the rock and by fast healing processes in the gouge. Simultaneously to brittle failure, plastic deformation occurs on the sliding surface and inside the intact rock via nanoparticle formation (mirrors) and twinning at the micron scale. Because of the similarity between experimental and natural structures, we suggest that sliding of carbonate-bearing faults in the uppermost crust could be characterized by high friction, fast healing and strongly dilatant deformation, which would help to explain shallow seismicity frequently documented in carbonatic terrains such as the Northern Apennines of Italy.

  10. Fluid-injection and the mechanics of frictional stability of shale-bearing faults

    Science.gov (United States)

    Scuderi, Marco Maria; Collettini, Cristiano; Marone, Chris

    2017-04-01

    Fluid overpressure is one of the primary mechanisms for triggering tectonic fault slip and human-induced seismicity. This mechanism is appealing because fluids lubricate the fault and reduce the effective normal stress that holds the fault in place. However, current models of earthquake nucleation, based on rate- and state- friction, imply that stable sliding is favored by the increase of pore fluid pressure. Despite this apparent dilemma, there are a few studies on the role of fluid pressure in frictional stability under controlled, laboratory conditions. Here, we describe laboratory experiments on shale fault gouge, conducted in the double direct shear configuration in a true-triaxial machine. To characterize frictional stability and hydrological properties we performed three types of experiments: 1) stable sliding shear experiment to determine the material failure envelope resulting in fault strength of µ=0.28 and fault zone permeability (k 10-19m2); 2) velocity step experiments to determine the rate- and state- frictional properties, characterized by a velocity strengthening behavior with a negative rate parameter b, indicative of stable aseismic creep; 3) creep experiment to study fault slip evolution with increasing pore-fluid pressure. In these creep experiments fault slip history can be divided in three main stages: a) for low fluid pressure the fault is locked and undergoes compaction; b) with increasing fluid pressurization, we observe aseismic creep (i.e. v=0.0001 µm/s) associated with fault dilation, with maintained low permeability; c) As fluid pressure is further increased and we approach the failure criteria fault begins to accelerate, the dilation rate increases causing an increase in permeability. Following the first acceleration we document complex fault slip behavior characterized by periodic accelerations and decelerations with slip velocity that remains slow (i.e. v 200 µm/s), never approaching dynamic slip rates. Surprisingly, this complex

  11. Shear viscosities of photons in strongly coupled plasmas

    Directory of Open Access Journals (Sweden)

    Di-Lun Yang

    2016-09-01

    Full Text Available We investigate the shear viscosity of thermalized photons in the quark gluon plasma (QGP at weak coupling and N=4 super Yang–Mills plasma (SYMP at both strong and weak couplings. We find that the shear viscosity due to the photon–parton scattering up to the leading order of electromagnetic coupling is suppressed when the coupling of the QGP/SYMP is increased, which stems from the blue-shift of the thermal-photon spectrum at strong coupling. In addition, the shear viscosity rapidly increases near the deconfinement transition in a phenomenological model analogous to the QGP.

  12. Shear viscosities of photons in strongly coupled plasmas

    Science.gov (United States)

    Yang, Di-Lun; Müller, Berndt

    2016-09-01

    We investigate the shear viscosity of thermalized photons in the quark gluon plasma (QGP) at weak coupling and N = 4 super Yang-Mills plasma (SYMP) at both strong and weak couplings. We find that the shear viscosity due to the photon-parton scattering up to the leading order of electromagnetic coupling is suppressed when the coupling of the QGP/SYMP is increased, which stems from the blue-shift of the thermal-photon spectrum at strong coupling. In addition, the shear viscosity rapidly increases near the deconfinement transition in a phenomenological model analogous to the QGP.

  13. Effects of fault propagation on superficial soils/gravel aquifer properties: The Chihshang Fault in Eastern Taiwan

    Science.gov (United States)

    Mu, C.; Lee, J.; guglielmi, Y.

    2013-12-01

    A mature bedrock fault zone generally consists of a fault core, a damage zone, and a surrounding host rock with different permeabilities, which mainly depend on the fracture density. However, near the surface, when an active thrust fault propagates from bedrocks into an unconsolidated surface cover, it results in a diffused fault zone, which may influence the hydraulic and mechanical properties around the fault zone. It is thus of great concern to understand to which extent surface soil/gravel hydraulic properties modifications by continuously active faulting can impact geotechnical projects in countries under active tectonic context, such as Taiwan, where active faults often are blinded beneath thick soil/gravel covers. By contrast, it is also interesting to decipher those fault-induced permeability modifications to estimate potential activity precursors to large earthquakes. Here, we combined a variety of measurements and analyses on the Chihshang fault, located at the plate suture between the Philippine Sea and Eurasian plates, which converge at a rapid rate of 8 cm/yr in Taiwan. At the Chinyuan site, the Chihshang fault is propagating from depth to emerge through thick alluvial deposits. We characterized the fault geometry and slip behavior at the shallow level by measuring and analyzing horizontal, vertical displacements, and groundwater table across the surface fault zone. The yielded fault dip of 45o in the shallow alluvium is consistent with the observations from surface ruptures and subsurface core logging. The 7-year-long groundwater table record shows that the piezometric level in the hanging wall is about 8 meter higher than that in the footwall in the summer; and about 10 meter higher in the winter. Repeated slug tests have been monthly conducted since 2007 to provide the average permeability within the fault zone and the presumably low-deformed zone outside of the diffused fault zone. Based on in-situ measurements at four wells across the fault zone

  14. Investigating the possible effects of salt in the fault zones on rates of seismicity - insights from analogue and numerical modeling

    Science.gov (United States)

    Urai, Janos; Kettermann, Michael; Abe, Steffen

    2017-04-01

    The presence of salt in dilatant normal faults may have a strong influence on fault mechanics and related seismicity. However, we lack a detailed understanding of these processes. This study is based on the geological setting of the Groningen area. During tectonic faulting in the Groningen area, rock salt may have flown downwards into dilatant faults, which thus may contain lenses of rock salt at present. Because of its viscous properties, the presence of salt lenses in a fault may introduce a strain-rate dependency to the faulting and affect the distribution of magnitudes of seismic events. We present a "proof of concept" showing that the above processes can be investigated using a combination of analogue and numerical modeling. Full scaling and discussion of the importance of these processes to induced seismicity in Groningen require further, more detailed study. The analogue experiments are based on a simplified stratigraphy of the Groningen area, where it is generally thought that most of the Rotliegend faulting has taken place in the Jurassic, after deposition of the Zechstein. This is interpreted to mean that at the time of faulting the sulphates were brittle anhydrite. If these layers were sufficiently brittle to fault in a dilatant fashion, rock salt could flow downwards into the dilatant fractures. To test this hypothesis, we use sandbox experiments where we combine cohesive powder as analog for brittle anhydrites and carbonates with viscous salt analogs to explore the developing fault geometry and the resulting distribution of salt in the faults. In the numerical models we investigate the stick-slip behavior of fault zones containing ductile material using the Discrete Element Method (DEM). Results show that the DEM approach is in principle suitable for the modeling of the seismicity of faults containing salt: the stick-slip motion of the fault becomes dependent on shear loading rate with a modification of the frequency magnitude distribution of the

  15. Bearing Fault Diagnosis Based on Statistical Locally Linear Embedding

    Directory of Open Access Journals (Sweden)

    Xiang Wang

    2015-07-01

    Full Text Available Fault diagnosis is essentially a kind of pattern recognition. The measured signal samples usually distribute on nonlinear low-dimensional manifolds embedded in the high-dimensional signal space, so how to implement feature extraction, dimensionality reduction and improve recognition performance is a crucial task. In this paper a novel machinery fault diagnosis approach based on a statistical locally linear embedding (S-LLE algorithm which is an extension of LLE by exploiting the fault class label information is proposed. The fault diagnosis approach first extracts the intrinsic manifold features from the high-dimensional feature vectors which are obtained from vibration signals that feature extraction by time-domain, frequency-domain and empirical mode decomposition (EMD, and then translates the complex mode space into a salient low-dimensional feature space by the manifold learning algorithm S-LLE, which outperforms other feature reduction methods such as PCA, LDA and LLE. Finally in the feature reduction space pattern classification and fault diagnosis by classifier are carried out easily and rapidly. Rolling bearing fault signals are used to validate the proposed fault diagnosis approach. The results indicate that the proposed approach obviously improves the classification performance of fault pattern recognition and outperforms the other traditional approaches.

  16. Rheology and friction along the Vema transform fault (Central Atlantic) inferred by thermal modeling

    Science.gov (United States)

    Cuffaro, Marco; Ligi, Marco

    2016-04-01

    We investigate with 3-D finite element simulations the temperature distribution beneath the Vema transform that offsets the Mid-Atlantic Ridge by ~300 km in the Central Atlantic. The developed thermal model includes the effects of mantle flow beneath a ridge-transform-ridge geometry and the lateral heat conduction across the transform fault, and of the shear heating generated along the fault. Numerical solutions are presented for a 3-D domain, discretized with a non-uniform tetrahedral mesh, where relative plate kinematics is used as boundary condition, providing passive mantle upwelling. Mantle is modelled as a temperature-dependent viscous fluid, and its dynamics can be described by Stokes and advection-conduction heat equations. The results show that shear heating raises significantly the temperature along the transform fault. In order to test model results, we calculated the thermal structure simulating the mantle dynamics beneath an accretionary plate boundary geometry that duplicates the Vema transform fault, assuming the present-day spreading rate and direction of the Mid Atlantic Ridge at 11 °N. Thus, the modelled heat flow at the surface has been compared with 23 heat flow measurements carried out along the Vema Transform valley. Laboratory studies on the frictional stability of olivine aggregates show that the depth extent of oceanic faulting is thermally controlled and limited by the 600 °C isotherm. The depth of isotherms of the thermal model were compared to the depths of earthquakes along transform faults. Slip on oceanic transform faults is primarily aseismic, only 15% of the tectonic offset is accommodated by earthquakes. Despite extensive fault areas, few large earthquakes occur on the fault and few aftershocks follow large events. Rheology constrained by the thermal model combined with geology and seismicity of the Vema Transform fault allows to better understand friction and the spatial distribution of strength along the fault and provides

  17. Fault rock texture and porosity type in Triassic dolostones

    Science.gov (United States)

    Agosta, Fabrizio; Grieco, Donato; Bardi, Alessandro; Prosser, Giacomo

    2015-04-01

    Preliminary results of an ongoing project aimed at deciphering the micromechanics and porosity evolution associated to brittle deformation of Triassic dolostones are presented. Samples collected from high-angle, oblique-slip, 10's to 100's m-throw normal faults crosscutting Mesozoic carbonates of the Neo Tethys (Campanian-Lucanian Platform) are investigated by mean of field geological mapping, optical microscopy, SEM and image analyses. The goal is to characterize in detail composition, texture and porosity of cataclastic rocks in order to assess the structural architecture of dolomitic fault cores. Moreover, the present study addresses the time-space control exerted by several micro-mechanisms such as intragranular extensional fracturing, chipping and shear fracturing, which took place during grain rolling and crushing within the evolving faults, on type, amount, dimensions and distribution of micropores present within the cataclastic fault cores. Study samples are representative of well-exposed dolomitic fault cores of oblique-slip normal faults trending either NW-SE or NE-SW. The high-angle normal faults crosscut the Mesozoic carbonates of the Campanian-Lucanian Platform, which overrode the Lagonegro succession by mean of low-angle thrust faults. Fault throws are measured by considering the displaced thrust faults as key markers after large scale field mapping (1:10,000 scale) of the study areas. In the field, hand samples were selected according to their distance from main slip surfaces and, in some case, along secondary slip surfaces. Microscopy analysis of about 100 oriented fault rock samples shows that, mostly, the study cataclastic rocks are made up of dolomite and sparse, minute survivor silicate grains deriving from the Lagonegro succession. In order to quantitatively assess the main textural classes, a great attention is paid to the grain-matrix ratio, grain sphericity, grain roundness, and grain sorting. By employing an automatic box-counting technique

  18. Fault-rock Magnetism from Wenchuan earthquake Fault Scientific Drilling project (WFSD) Implies the Different Slip Dynamics

    Science.gov (United States)

    Liu, D.; Li, H.; Lee, T. Q.; Sun, Z.

    2015-12-01

    The 2008 Mw 7.9 Wenchuan Earthquake had caused great human and financial loss, and it had induced two major earthquake surface rupture zones, including the Yingxiu-Beichuan earthquake fault (Y-B F.) and Guanxian-Anxian earthquake fault (G-A F.) earthquake surface rupture zones. After main shock, the Wenchuan earthquake Fault Scientific Drilling project (WFSD) was co-organized by the Ministry of Science and Technology, Ministry of Land and Resources and China Bureau of Seismology, and this project focused on earthquake fault mechanics, earthquake slip process, fault physical and chemical characteristics, mechanical behavior, fluid behavior, fracture energy, and so on. Fault-rocks magnetism is an effective method for the earthquake fault research, such as earthquake slip dynamics. In this study, the fault-rocks from the drilling-hole cores and close to the Wenchuan Earthquake surface rupture zone were used to do the rock-magnetism and discuss the earthquake slip dynamics. The measurement results of magnetic susceptibility (MS) show that the relative high or low MS values are corresponded to the fault-rocks from the Y-B F. and G-A F., respectively. Other rock-magnetism gives more evidence to the magnetic mineral assemblage of fault-rocks from the two earthquake fault zones. The relative high MS in the drilling-holes and trench along the Y-B F. was caused by the new-formed ferrimagnetic minerals during the high temperature and rapid speed earthquake slip process, such as magnetite and hematite, so the Y-B F. had experienced high temperature and rapid speed thermal pressurization earthquake slip mechanism. The relative low MS in the trench along the G-A F. was possible caused by high content of Fe-sulfides, and the G-A F. had possibly experienced the low temperature and slow speed mechanical lubrication earthquake slip mechanism. The different earthquake slip mechanism was possibly controlled by the deep structure of the two earthquake faults, such as the fault

  19. Direct observation of dynamic shear jamming in dense suspensions

    Science.gov (United States)

    Peters, Ivo R.; Majumdar, Sayantan; Jaeger, Heinrich M.

    2016-04-01

    Liquid-like at rest, dense suspensions of hard particles can undergo striking transformations in behaviour when agitated or sheared. These phenomena include solidification during rapid impact, as well as strong shear thickening characterized by discontinuous, orders-of-magnitude increases in suspension viscosity. Much of this highly non-Newtonian behaviour has recently been interpreted within the framework of a jamming transition. However, although jamming indeed induces solid-like rigidity, even a strongly shear-thickened state still flows and thus cannot be fully jammed. Furthermore, although suspensions are incompressible, the onset of rigidity in the standard jamming scenario requires an increase in particle density. Finally, whereas shear thickening occurs in the steady state, impact-induced solidification is transient. As a result, it has remained unclear how these dense suspension phenomena are related and how they are connected to jamming. Here we resolve this by systematically exploring both the steady-state and transient regimes with the same experimental system. We demonstrate that a fully jammed, solid-like state can be reached without compression and instead purely with shear, as recently proposed for dry granular systems. This state is created by transient shear-jamming fronts, which we track directly. We also show that shear stress, rather than shear rate, is the key control parameter. From these findings we map out a state diagram with particle density and shear stress as variables. We identify discontinuous shear thickening with a marginally jammed regime just below the onset of full, solid-like jamming. This state diagram provides a unifying framework, compatible with prior experimental and simulation results on dense suspensions, that connects steady-state and transient behaviour in terms of a dynamic shear-jamming process.

  20. Shear Behavior of Concrete Beams Reinforced with GFRP Shear Reinforcement

    OpenAIRE

    Heecheul Kim; Min Sook Kim; Myung Joon Ko; Young Hak Lee

    2015-01-01

    This paper presents the shear capacities of concrete beams reinforced with glass fiber reinforced polymer (GFRP) plates as shear reinforcement. To examine the shear performance, we manufactured and tested a total of eight specimens. Test variables included the GFRP strip-width-to-spacing ratio and type of opening array. The specimen with a GFRP plate with a 3×2 opening array showed the highest shear strength. From the test results, the shear strength increased as the strip-width-to-strip-spac...

  1. Structure and kinematics of the Livingstone Mountains border fault zone, Nyasa (Malawi) Rift, southwestern Tanzania

    Science.gov (United States)

    Wheeler, Walter H.; Karson, Jeffrey A.

    Reconnaissance mapping of the Livingstone Mountains border fault zone (LMBFZ) at the northern end of the Nyasa (Malawi) Rift in SW Tanzania constrains the geometry and movement history of this typical rift border fault. The fault is a narrow zone of complex brittle deformation, striking 320°, that overprints and reactivates an older ductile shear zone. Long, straight, NW-trending border fault segments are offset by minor NE-trending faults. These two orthogonal fault sets integrate along strike to produce an overall curved fault trace that is concave towards a major depositional basin in the rift. A typical section through the fault zone shows an E to W progression from gneissic country rock through ductilely deformed country rock, into a zone overprinted by closely spaced fractures and grading into an intensely fractured, massive, flinty, aphanitic mylonite band at the lakeshore. Pseudotachylite veins, probably generated during seismic movement on the border fault, are common within and near the aphanitic mylonite. Slickensides indicate dextral oblique-slip, whereas shear belts and rolled porphyroclasts with complex tails in the older ductile shear zone indicate sub-horizontal sinistral motion. The adjacent rift basin is typical of other East African Rift Basins, and contains at least 4 km of Recent to perhaps Mesozoic sediment. Whereas the minimum net slip on the LMBFZ, in the dominant slickenside direction, is on the order of 10 km, regional geologic considerations suggest that dominantly strike-slip motion preceded the oblique-slip phase that produced the LMBFZ and the adjacent rift basin.

  2. Interfacial shear behavior of composite flanged concrete beams

    Directory of Open Access Journals (Sweden)

    Moataz Awry Mahmoud

    2014-08-01

    Full Text Available Composite concrete decks are commonly used in the construction of highway bridges due to their rapid constructability. The interfacial shear transfer between the top slab and the supporting beams is of great significance to the overall deck load carrying capacity and performance. Interfacial shear capacity is directly influenced by the distribution and the percentage of shear connectors. Research and design guidelines suggest the use of two different approaches to quantify the required interfacial shear strength, namely based on the maximum compressive forces in the flange at mid span or the maximum shear flow at the supports. This paper investigates the performance of flanged reinforced concrete composite beams with different shear connector’s distribution and reinforcing ratios. The study incorporated both experimental and analytical programs for beams. Key experimental findings suggest that concentrating the connectors at the vicinity of the supports enhances the ductility of the beam. The paper proposes a simple and straight forward approach to estimate the interfacial shear capacity that was proven to give good correlation with the experimental results and selected code provisions. The paper presents a method to predict the horizontal shear force between precast beams and cast in-situ slabs.

  3. Shear-induced fragmentation of laponite suspensions

    Science.gov (United States)

    Gibaud, Thomas; Barentin, Catherine; Taberlet, Nicolas; Manneville, Sébastien

    Simultaneous rheological and velocity profile measurements are performed in a smooth Couette geometry on Laponite suspensions seeded with glass microspheres and undergoing the shear-induced solid-to-fluid (or yielding) transition. Under these slippery boundary conditions, a rich temporal behaviour is uncovered, in which shear localization is observed at short times, that rapidly gives way to a highly heterogeneous flow characterized by intermittent switching from plug-like flow to linear velocity profiles. Such a temporal behaviour is linked to the fragmentation of the initially solid sample into blocks separated by fluidized regions. These solid pieces get progressively eroded over time scales ranging from a few minutes to several hours depending on the applied shear rate $\\dot{\\gamma}$. The steady-state is characterized by a homogeneous flow with almost negligible wall slip. The characteristic time scale for erosion is shown to diverge below some critical shear rate $\\dot{\\gamma}^\\star$ and to scale as $(\\dot{\\gamma}-\\dot{\\gamma}^\\star)^{-n}$ with $n\\simeq 2$ above $\\dot{\\gamma}^\\star$. A tentative model for erosion is discussed together with open questions raised by the present results.

  4. Fault growth and acoustic emissions in confined granite

    Science.gov (United States)

    Lockner, David A.; Byerlee, James D.

    1992-01-01

    The failure process in a brittle granite was studied by using acoustic emission techniques to obtain three dimensional locations of the microfracturing events. During a creep experiment the nucleation of faulting coincided with the onset of tertiary creep, but the development of the fault could not be followed because the failure occurred catastrophically. A technique has been developed that enables the failure process to be stabilized by controlling the axial stress to maintain a constant acoustic emission rate. As a result the post-failure stress-strain curve has been followed quasi-statically, extending to hours the fault growth process that normally would occur violently in a fraction of a second. The results from the rate-controlled experiments show that the fault plane nucleated at a point on the sample surface after the stress-strain curve reached its peak. Before nucleation, the microcrack growth was distributed throughout the sample. The fault plane then grew outward from the nucleation site and was accompanied by a gradual drop in stress. Acoustic emission locations showed that the fault propagated as a fracture front (process zone) with dimensions of 1 to 3 cm. As the fracture front passed by a given fixed point on the fault plane, the subsequent acoustic emission would drop. When growth was allowed to progress until the fault bisected the sample, the stress dropped to the frictional strength. These observations are in accord with the behavior predicted by Rudnicki and Rice's bifurcation analysis but conflict with experiments used to infer that shear localization would occur in brittle rock while the material is still hardening.

  5. Slip-behavior transitions of a heterogeneous linear fault

    Science.gov (United States)

    Yabe, S.; Ide, S.

    2016-12-01

    Shear-slip behavior on the fault has diversity, such as ordinary earthquakes, afterslips, and shallow and deep slow earthquakes. Although the cause of this diversity is a hot topic in seismology, one possibility is the friction varying with tectonic environments (e.g., Blanpied et al., 1991). It is often explained that negative, neutral, and positive a-b of rate and state friction law corresponds to seismogenic zone, slow earthquake, and creeps in subduction zones, respectively. However, the frictional heterogeneity is expected to exist on the fault because of the fractal irregular fault surface in a wide scale range (Candela et al., 2012), which fluctuate rupture propagations. To understand the slip behavior of such heterogeneous fault, we have conducted the simplest numerical simulations with an infinite linear fault embedded in the 2D elastic medium, on which frictional parameters have cyclic bimodal distributions. As a result, we have observed several types of slip behavior changing with the density of velocity weakening zone (VWZ) on the fault. At low densities with VWZ smaller than the nucleation size (Rubin and Ampuero, 2005), the fault slips stably. At medium densities, where the spatial average of a-b is positive, seismic slip occurs in VWZ followed by an afterslip in velocity-strengthening zone (VSZ). At high densities where the spatial average of a-b is negative, the entire fault including VSZ slips seismically. When the spatial average of a-b is close to zero, the transitional behavior is observed, in which seismic slip in VWZ and fast aseismic slip in VSZ are strongly interacted, and relatively slower deformation dominates. We also provide some examples with more complex distributions of frictional parameter to explore the possibility that the frictional heterogeneity may explain not only the diverse seismic phenomena, but also the scaling of slip weakening distance of ordinary earthquakes.

  6. Lateral Offset Quality Rating along Low Slip Rate Faults: Application to the Alhama de Murcia Fault (SE Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    Marta Ferrater

    2015-11-01

    Full Text Available Seismic hazard assessment of strike-slip faults is based partly on the identification and mapping of landforms laterally offset due to fault activity. The characterization of these features affected by slow-moving faults is challenging relative to studies emphasizing rapidly slipping faults. We propose a methodology for scoring fault offsets based on subjective and objective qualities. We apply this methodology to the Alhama de Murcia fault (SE Iberian Peninsula where we identify 138 offset features that we mapped on a high-resolution (0.5 × 0.5 m pixel size Digital Elevation Model (DEM. The amount of offset, the uncertainty of the measurement, the subjective and objective qualities, and the parameters that affect objective quality are independent variables, suggesting that our methodological scoring approach is good. Based on the offset measurements and qualifications we calculate the Cumulative Offset Probability Density (COPD for the entire fault and for each fault segment. The COPD for the segments differ from each other. Tentative interpretation of the COPDs implies that the slip rate varies from one segment to the other (we assume that channels with the same amount of offset were incised synchronously. We compare the COPD with climate proxy curves (aligning using the very limited age control to test if entrenchment events are coincident with climatic changes. Channel incision along one of the traces in Lorca-Totana segment may be related to transitions from glacial to interglacial periods.

  7. Shear Yielding and Shear Jamming of Dense Hard Sphere Glasses

    Science.gov (United States)

    Urbani, Pierfrancesco; Zamponi, Francesco

    2017-01-01

    We investigate the response of dense hard sphere glasses to a shear strain in a wide range of pressures ranging from the glass transition to the infinite-pressure jamming point. The phase diagram in the density-shear strain plane is calculated analytically using the mean-field infinite-dimensional solution. We find that just above the glass transition, the glass generically yields at a finite shear strain. The yielding transition in the mean-field picture is a spinodal point in presence of disorder. At higher densities, instead, we find that the glass generically jams at a finite shear strain: the jamming transition prevents yielding. The shear yielding and shear jamming lines merge in a critical point, close to which the system yields at extremely large shear stress. Around this point, highly nontrivial yielding dynamics, characterized by system-spanning disordered fractures, is expected.

  8. Shear Behavior of Concrete Beams Reinforced with GFRP Shear Reinforcement

    Directory of Open Access Journals (Sweden)

    Heecheul Kim

    2015-01-01

    Full Text Available This paper presents the shear capacities of concrete beams reinforced with glass fiber reinforced polymer (GFRP plates as shear reinforcement. To examine the shear performance, we manufactured and tested a total of eight specimens. Test variables included the GFRP strip-width-to-spacing ratio and type of opening array. The specimen with a GFRP plate with a 3×2 opening array showed the highest shear strength. From the test results, the shear strength increased as the strip-width-to-strip-spacing ratio increased. Also, we used the experimental results to evaluate whether the shear strength equations of ACI 318-14 and ACI 440.1R can be applied to the design of GFRP shear reinforcement. In the results, the ACI 440 equation underestimated the experimental results more than that of ACI 318.

  9. Gelation under shear

    Energy Technology Data Exchange (ETDEWEB)

    Butler, B.D.; Hanley, H.J.M.; Straty, G.C. [National Institute of Standards and Technology, Boulder, CO (United States); Muzny, C.D. [Univ. of Colorado, Boulder, CO (United States)

    1995-12-31

    An experimental small angle neutron scattering (SANS) study of dense silica gels, prepared from suspensions of 24 nm colloidal silica particles at several volume fractions {theta} is discussed. Provided that {theta}{approx_lt}0.18, the scattered intensity at small wave vectors q increases as the gelation proceeds, and the structure factor S(q, t {yields} {infinity}) of the gel exhibits apparent power law behavior. Power law behavior is also observed, even for samples with {theta}>0.18, when the gel is formed under an applied shear. Shear also enhances the diffraction maximum corresponding to the inter-particle contact distance of the gel. Difficulties encountered when trying to interpret SANS data from these dense systems are outlined. Results of computer simulations intended to mimic gel formation, including computations of S(q, t), are discussed. Comments on a method to extract a fractal dimension characterizing the gel are included.

  10. Insurance Applications of Active Fault Maps Showing Epistemic Uncertainty

    Science.gov (United States)

    Woo, G.

    2005-12-01

    Insurance loss modeling for earthquakes utilizes available maps of active faulting produced by geoscientists. All such maps are subject to uncertainty, arising from lack of knowledge of fault geometry and rupture history. Field work to undertake geological fault investigations drains human and monetary resources, and this inevitably limits the resolution of fault parameters. Some areas are more accessible than others; some may be of greater social or economic importance than others; some areas may be investigated more rapidly or diligently than others; or funding restrictions may have curtailed the extent of the fault mapping program. In contrast with the aleatory uncertainty associated with the inherent variability in the dynamics of earthquake fault rupture, uncertainty associated with lack of knowledge of fault geometry and rupture history is epistemic. The extent of this epistemic uncertainty may vary substantially from one regional or national fault map to another. However aware the local cartographer may be, this uncertainty is generally not conveyed in detail to the international map user. For example, an area may be left blank for a variety of reasons, ranging from lack of sufficient investigation of a fault to lack of convincing evidence of activity. Epistemic uncertainty in fault parameters is of concern in any probabilistic assessment of seismic hazard, not least in insurance earthquake risk applications. A logic-tree framework is appropriate for incorporating epistemic uncertainty. Some insurance contracts cover specific high-value properties or transport infrastructure, and therefore are extremely sensitive to the geometry of active faulting. Alternative Risk Transfer (ART) to the capital markets may also be considered. In order for such insurance or ART contracts to be properly priced, uncertainty should be taken into account. Accordingly, an estimate is needed for the likelihood of surface rupture capable of causing severe damage. Especially where a

  11. A Practical approach for fault component network for Current and Voltage Phasor Diagram in Power Electronic Environment

    Directory of Open Access Journals (Sweden)

    Mr. Ashish Choubey

    2011-09-01

    Full Text Available In many large-scale power plants, the structure of its auxiliary power system is complex, and the coordination of its relay protections is difficult. To enhance power supply reliability for the user terminals in the case of the distribution system to avoid interference by the fault again, rapidly complete the automatic identification, positioning, automatic fault isolation, network reconfiguration until the resumption of supply of non-fault section, a microprocessor-based relay protection device has developed. As the fault component theory is widely used in microcomputer protection, and fault component exists in the network of fault component, it is necessary to build up the fault component network when short circuit fault emerging and to draw the current and voltage component phasor diagram at fault point. We proposed a special phase sequence component based on the boundary condition. We analysis the velocity according to the relationship between analysis formula and phasor diagram and current in fault component boundary conditions and sequence voltage and current in boundary conditions. The negative and zero sequence component current and voltage at fault point are the same as fault component. The positive sequence component current and voltage at fault point are different from the fault component. So we consider the positive sequences according to that sequences we analyze the fault point

  12. A Practical approach for fault component network for Current and Voltage Phasor Diagram in Power Electronic Environment

    Directory of Open Access Journals (Sweden)

    Ashish Choubey

    2011-12-01

    Full Text Available In many large-scale power plants, the structure of its auxiliary power system is complex, and the coordination of its relay protections is difficult. To enhance power supply reliability for the user terminals in the case of the distribution system to avoid interference by the fault again, rapidly complete the automatic identification, positioning, automatic fault isolation, network reconfiguration until the resumption of supply of non-fault section, a microprocessor-based relay protection device has developed. As the fault component theory is widely used in microcomputer protection, and fault component exists in the network of fault component, it is necessary to build up the fault component network when short circuit fault emerging and to draw the current and voltage component phasor diagram at fault point. We proposed a special phase sequence component based on the boundary condition. We analysis the velocity according to the relationship between analysis formula and phasor diagram and current in fault component boundary conditions and sequence voltage and current in boundary conditions. The negative and zero sequence component current and voltage at fault point are the same as fault component. The positive sequence component current and voltage at fault point are different from the fault component. So we consider the positive sequences according to that sequences we analyze the fault point.

  13. Shear Roll Mill Reactivation

    Science.gov (United States)

    2012-09-13

    accommodate a trial run of inert single base pellet feed for use in a twin screw extruder. 15. SUBJECT TERMS INIT248, Advanced Propellant Technology...Bldg. 4909-5 – Shear Roll Mill Pilot Plant at the Radford Army Ammunition Plant (RFAAP) in order to produce pellet feed for a twin screw extruder used...propellant to simulate feed for a twin screw extruder. Preventive maintenance procedures were in progress in final preparation for running with

  14. Application of the fault diagnosis strategy based on hierarchical information fusion in motors fault diagnosis

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper has analyzed merits and demerits of both neural network technique and of the information fusion methods based on the D-S (dempster-shafer evidence) Theory as well as their complementarity, proposed the hierarchical information fusion fault diagnosis strategy by combining the neural network technique and the fused decision diagnosis based on D-S Theory, and established a corresponding functional model. Thus, we can not only solve a series of problems caused by rapid growth in size and complexity of neural network structure with diagnosis parameters increasing, but also can provide effective method for basic probability assignment in D-S Theory. The application of the strategy to diagnosing faults of motor bearings has proved that this method is of fairly high accuracy and reliability in fault diagnosis.

  15. Rheological responses of fumed silica suspensions under steady and oscillatory shear

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Rheological experiments under steady and oscillatory shear were conducted for fumed silica suspen- sions in polyethylene glycol. Under steady shear the shear-thinning and thickening response were exhibited and the flow exponent N was determined. With the increase of concentration the flow exponent N showed a rapid increase, and it increased dramatically when the discontinuous shear-thickening took place. Oscillatory shear experiments were conducted at constant frequency and constant amplitude strain, respectively. The shear-thinning and the discontinuous shear-thickening behavior were observed under different constant frequencies from 10 to 80 rad/s. The correlation between complex modulus (G*) and sweep frequency (ω) was illuminated at γ =750%. It was found that the correlation between G* and ω could be fitted by equation: G*∝ωn. The indexes in shear-thinning region and shear-thickening were determined. The indexes were similar to some extent at shear-thinning region and increased dramati- cally to a much higher value when the shear-thickening occurred,especially at higher weight fractions. The behaviors can be qualitatively explained as follows: the shear-thinning owes to decrease of viscos- ity, which results from disruption of the aggregates; the cluster theory attributes the shear-thickening to the formation of metastable, flow induced clusters, which block the system.

  16. Rheological responses of fumed silica suspensions under steady and oscillatory shear

    Institute of Scientific and Technical Information of China (English)

    YANG HaiLin; RUAN JianMing; ZOU JianPeng; WU QiuMei; ZHOU ZhongCheng; ZHOU ZhiHua

    2009-01-01

    Rheological experiments under steady and oscillatory shear were conducted for fumed silica suspensions in polyethylene glycol. Under steady shear the shear-thinning and thickening response were exhibited and the flow exponent Nwas determined. With the increase of concentration the flow exponent N showed a rapid increase, and it increased dramatically when the discontinuous shear-thickening took place. Oscillatory shear experiments were conducted at constant frequency and constant amplitude strain, respectively. The shear-thinning and the discontinuous shear-thickening behavior were observed under different constant frequencies from 10 to 80 rad/s. The correlation between complex modulus (G*)and sweep frequency (ω) was illuminated atγ=750%. It was found that the correlation between G* and ω could be fitted by equation: G*∝ωn. The indexes in shear-thinning region and shear-thickening were determined. The indexes were similar to some extent at shear-thinning region end increased dramatically to a much higher value when the shear-thickening occurred, especially at higher weight fractions. The behaviors can be qualitatively explained as follows: the shear-thinning owes to decrease of viscosity, which results from disruption of the aggregates; the cluster theory attributes the shear-thickening to the formation of metastable, flow induced clusters, which block the system.

  17. Late Miocene extension in coastal Sonora, México: Implications for the evolution of dextral shear in the proto-Gulf of California oblique rift

    Science.gov (United States)

    Darin, M. H.; Bennett, S. E. K.; Dorsey, R. J.; Oskin, M. E.; Iriondo, A.

    2016-12-01

    The timing, kinematics, and processes responsible for the rapid transition from subduction to oblique rifting and the localization of the Pacific-North America plate boundary in the Gulf of California are not well understood. Well exposed volcanic rocks deposited between 15 and 10 Ma in the Sierra Bacha (coastal Sonora, México) preserve a record of late Miocene deformation on the eastern rifted margin of the Gulf of California and offer new insights into the timing and kinematic evolution of oblique rifting. Detailed geologic mapping, fault kinematic analysis, U-Pb and 40Ar/39Ar geochronology, and paleomagnetic data reveal that the > 2 km-thick composite volcanic section is cut by a series of southwest-dipping, domino-style normal faults and uniformly tilted down-to-the-northeast. Palinspastic cross-section restoration suggests that the region experienced ca. 55-60% northeast-southwest-directed extension between 11.7 and 10-9 Ma. Fault kinematic data reflect relatively minor dextral transtension either following or during the later stages of extension. Paleomagnetic results indicating modest clockwise vertical-axis block rotation suggest that dextral shear was concentrated in the southwest of the study area near the modern coastline. These results support an emerging model in which dextral strain was not ubiquitous across Sonora and did not initiate immediately following the 12.5 Ma transition from subduction to oblique rifting. Instead, strain east of the Baja California microplate at this latitude evolved from extension-dominated transtension prior to 8 Ma to dextral shear-dominated transtension by 7-6 Ma. The onset of dextral shear in coastal Sonora likely resulted from an increase in rift obliquity due to a change in relative plate motion direction at 8 Ma. The increase in rift obliquity and resultant onset of significant strike-slip faulting played a crucial role in facilitating subsequent plate boundary localization and marine incursion in the northern Gulf

  18. Micromechanics of shear banding

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, J.J.

    1992-08-01

    Shear-banding is one of many instabilities observed during the plastic flow of solids. It is a consequence of the dislocation mechanism which makes plastic flow fundamentally inhomogeneous, and is exacerbated by local adiabatic heating. Dislocation lines tend to be clustered on sets of neighboring glide planes because they are heterogeneously generated; especially through the Koehler multiple-cross-glide mechanism. Factors that influence their mobilities also play a role. Strain-hardening decreases the mobilities within shear bands thereby tending to spread (delocalize) them. Strain-softening has the inverse effect. This paper reviews the micro-mechanisms of these phenomena. It will be shown that heat production is also a consequence of the heterogeneous nature of the microscopic flow, and that dislocation dipoles play an important role. They are often not directly observable, but their presence may be inferred from changes in thermal conductivity. It is argued that after deformation at low temperatures dipoles are distributed a la Pareto so there are many more small than large ones. Instability at upper yield point, the shapes of shear-band fronts, and mechanism of heat generation are also considered. It is shown that strain-rate acceleration plays a more important role than strain-rate itself in adiabatic instability.

  19. Fault Monitooring and Fault Recovery Control for Position Moored Tanker

    DEFF Research Database (Denmark)

    Fang, Shaoji; Blanke, Mogens

    2009-01-01

    This paper addresses fault tolerant control for position mooring of a shuttle tanker operating in the North Sea. A complete framework for fault diagnosis is presented but the loss of a sub-sea mooring line buoyancy element is given particular attention, since this fault could lead to line breakage...... algorithm is proposed to accommodate buoyancy element failure and keep the mooring system in a safe state. Detection properties and fault-tolerant control are demonstrated by high delity simulations...

  20. Discriminating Fault Rate and Persistency to Improve Fault Treatment

    OpenAIRE

    Bondavalli, Andrea; Chiaradonna, Silvano; Di Giandomenico,Felicita; Grandoni, Fabrizio

    1997-01-01

    In this paper the consolidate identification of faults, distinguished as transient or permanent/intermittent, is approached, through the definition of a fault identification mechanism, called a-count. The goal is to allow continued use of parts being hit by transient faults, which may lead to better overall system performance if proper handling is provided. Transient faults discrimination is especially important in all those dependability-qualified applications where replacing and repairing f...

  1. Study on Fault Current of DFIG during Slight Fault Condition

    OpenAIRE

    Xiangping Kong; Zhe Zhang; Xianggen Yin; Zhenxing Li

    2013-01-01

    In order to ensure the safety of DFIG when severe fault happens, crowbar protection is adopted. But during slight fault condition, the crowbar protection will not trip, and the DFIG is still excited by AC-DC-AC converter. In this condition, operation characteristics of the converter have large influence on the fault current characteristics of DFIG. By theoretical analysis and digital simulation, the fault current characteristics of DFIG during slight voltage dips are studied. And the influenc...

  2. Rapid acceleration leads to rapid weakening in earthquake-like laboratory experiments

    Science.gov (United States)

    Chang, Jefferson C.; Lockner, David A.; Reches, Z.

    2012-01-01

    After nucleation, a large earthquake propagates as an expanding rupture front along a fault. This front activates countless fault patches that slip by consuming energy stored in Earth’s crust. We simulated the slip of a fault patch by rapidly loading an experimental fault with energy stored in a spinning flywheel. The spontaneous evolution of strength, acceleration, and velocity indicates that our experiments are proxies of fault-patch behavior during earthquakes of moment magnitude (Mw) = 4 to 8. We show that seismically determined earthquake parameters (e.g., displacement, velocity, magnitude, or fracture energy) can be used to estimate the intensity of the energy release during an earthquake. Our experiments further indicate that high acceleration imposed by the earthquake’s rupture front quickens dynamic weakening by intense wear of the fault zone.

  3. Lidar-Based Mapping of Late Quaternary Faulting Along the Grizzly Valley Fault, Walker Lane Seismic Belt, California

    Science.gov (United States)

    Hitchcock, C. S.; Hoirup, D. F.; Barry, G.; Pearce, J.; Glick, F.

    2012-12-01

    The Grizzly Valley fault (GVF) is located within the northern Walker Lane, a zone of right-lateral shear between the Sierra Nevada and the Basin and Range in Plumas County. The GVF extends southeasterly from near Mt. Ingalls along the eastern side of Lake Davis. It may partially connect with the Hot Creek fault within Sierra Valley and extend south to Loyalton with an overall approximate length of 50 km. Comparison of high-resolution topography developed from LiDAR data with published bedrock geologic mapping documents the presence of geomorphic features that provide information on fault activity of the GVF. Field mapping verified tectonically deformed and offset late Quaternary surfaces identified on bare-earth LiDAR imagery across the GVF within glacial deposits on the eastern margin of Lake Davis, and alluvial deposits in Sierra Valley. Along the GVF, conspicuous geomorphic and hydrologic features include scarps in alluvial surfaces, elongated depressions aligned with adjacent linear escarpments, truncated bedrock spurs, closed depressions, linear swales, right-lateral deflections of creeks and river courses, and shutter ridges, as well as springs and linear seeps consistent with right-lateral strike-slip faulting. The discontinuous nature of observed fault traces combined with the apparent down-to-the-west offset of alluvial surfaces at the southern and northern ends of the eastern margin of Lake Davis are consistent with a broad bend or step over in the fault. Scarp profiles of apparently faulted surfaces extracted from LiDAR data document vertical offsets of up to 14 m. Our study suggest that the GVF is an oblique, right-lateral fault that has been active in the late Quaternary. This study complements on-going investigations by DWR to assess the impact of seismic hazards on State Water Project infrastructure.

  4. Computer hardware fault administration

    Science.gov (United States)

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-09-14

    Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

  5. Fault Tolerant Computer Architecture

    CERN Document Server

    Sorin, Daniel

    2009-01-01

    For many years, most computer architects have pursued one primary goal: performance. Architects have translated the ever-increasing abundance of ever-faster transistors provided by Moore's law into remarkable increases in performance. Recently, however, the bounty provided by Moore's law has been accompanied by several challenges that have arisen as devices have become smaller, including a decrease in dependability due to physical faults. In this book, we focus on the dependability challenge and the fault tolerance solutions that architects are developing to overcome it. The two main purposes

  6. Fault tolerant linear actuator

    Science.gov (United States)

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  7. Fault tolerant control based on active fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2005-01-01

    An active fault diagnosis (AFD) method will be considered in this paper in connection with a Fault Tolerant Control (FTC) architecture based on the YJBK parameterization of all stabilizing controllers. The architecture consists of a fault diagnosis (FD) part and a controller reconfiguration (CR...

  8. Wind turbine fault detection and fault tolerant control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Johnson, Kathryn

    2013-01-01

    In this updated edition of a previous wind turbine fault detection and fault tolerant control challenge, we present a more sophisticated wind turbine model and updated fault scenarios to enhance the realism of the challenge and therefore the value of the solutions. This paper describes the challe...

  9. Initiation of a thrust fault revealed by analog experiments

    Science.gov (United States)

    Dotare, Tatsuya; Yamada, Yasuhiro; Adam, Juergen; Hori, Takane; Sakaguchi, Hide

    2016-08-01

    To reveal in detail the process of initiation of a thrust fault, we conducted analog experiments with dry quartz sand using a high-resolution digital image correlation technique to identify minor shear-strain patterns for every 27 μm of shortening (with an absolute displacement accuracy of 0.5 μm). The experimental results identified a number of "weak shear bands" and minor uplift prior to the initiation of a thrust in cross-section view. The observations suggest that the process is closely linked to the activity of an adjacent existing thrust, and can be divided into three stages. Stage 1 is characterized by a series of abrupt and short-lived weak shear bands at the location where the thrust will subsequently be generated. The area that will eventually be the hanging wall starts to uplift before the fault forms. The shear strain along the existing thrust decreases linearly during this stage. Stage 2 is defined by the generation of the new thrust and active displacements along it, identified by the shear strain along the thrust. The location of the new thrust may be constrained by its back-thrust, generally produced at the foot of the surface slope. The activity of the existing thrust falls to zero once the new thrust is generated, although these two events are not synchronous. Stage 3 of the thrust is characterized by a constant displacement that corresponds to the shortening applied to the model. Similar minor shear bands have been reported in the toe area of the Nankai accretionary prism, SW Japan. By comparing several transects across this subduction margin, we can classify the lateral variations in the structural geometry into the same stages of deformation identified in our experiments. Our findings may also be applied to the evaluation of fracture distributions in thrust belts during unconventional hydrocarbon exploration and production.

  10. Fault zone rheology and length scales of frictional failure

    Science.gov (United States)

    Fagereng, A.

    2011-12-01

    Faults have a finite thickness and commonly contain fault rocks of heterogeneous composition, leading to rheological contrasts between intermingled lithologies (at the macroscale) and minerals (at the microscale) within the fault zone. The distribution and volumetric ratio of materials with different viscosity, frictional behavior, and preferred deformation mechanism, may therefore be a critical factor controlling the bulk rheology of heterogeneous fault zones. For example, at subgreenschist facies metamorphic conditions, fine-grained phyllosilicate-dominated mudstones tend to experience viscous shearing flow by dissolution-precipitation creep, whereas coarse grained quartz-dominated sandstones tend to act like competent, brittle volumes. In the rock record, deformation of mixed lithologies is well represented in tectonic mélanges. The subgreenschist facies (P defined by slickenfibre-coated shear surfaces linked by quartz-calcite extension veins. The frequency-size distribution of competent lenses (phacoids) in the Chrystalls Beach Complex follows a power-law distribution and is scale-invariant. The exponent of the power-law distribution varies with dominant deformation style, and is high in zones of dominantly continuous deformation - relating to a high matrix fraction, predominance of small phacoids, and small phacoid aspect ratios, whereas a low power-law exponent relates to a small matrix fraction and localized deformation accommodated on shear discontinuities. This variation in power-law exponent indicates that whether deformation occurs predominantly by continuous or discontinuous deformation may be predicted from the shape of the frequency-size distribution of competent lenses, and supports the hypothesis that bulk rheology is determined by the volume fraction of competent material. The distribution of competent material likely affects the seismic style of actively deforming fault zones. The length scales of shear discontinuities are likely to be a factor

  11. Seismic Responses of Asymmetric Base-Isolated Structures under Near-Fault Ground Motion

    Institute of Scientific and Technical Information of China (English)

    YE Kun; LI Li; FANG Qin-han

    2008-01-01

    An inter-story shear model of asymmetric base-isolated structures incorporating deformation of each isolation bearing was built, and a method to simultaneously simulate bi-directional near-fault and far-field ground motions was proposed. A comparative study on the dynamic responses of asymmetric base-isolated structures under near-fault and far-field ground motions were conducted to investigate the effects of eccentricity in the isolation system and in the superstructures, the ratio of the uncoupled torsional to lateral frequency of the superstructure and the pulse period of near-fault ground motions on the nonlinear seismic response of asymmetric base-isolated structures. Numerical results show that eccentricity in the isolation system makes asymmetric base-isolated structure more sensitive to near-fault ground motions, and the pulse period of near-fault ground motions plays an import role in governing the seismic responses of asymmetric base-isolated structures.

  12. On the formation of stacking fault tetrahedra in irradiated austenitic stainless steels – A literature review

    Energy Technology Data Exchange (ETDEWEB)

    Schibli, Raluca, E-mail: raluca.stoenescu@gmail.com; Schäublin, Robin

    2013-11-15

    Irradiated austenitic stainless steels, because of their low stacking fault energy and high shear modulus, should exhibit a high ratio of stacking fault tetrahedra relative to the overall population of radiation induced nanometric defects. Experimental observations of stacking fault tetrahedra by transmission electron microscopy in commercial-purity stainless steels are however scarce, while they abundantly occur in high-purity or model austenitic alloys irradiated at both low and high temperatures, but not at around 673 K. In commercial alloys, the little evidence of stacking fault tetrahedra does not follow such a trend. These contradictions are reviewed and discussed. Reviewing the three possible formation mechanisms identified in the literature, namely the Silcox and Hirsch Frank loop dissociation, the void collapse and the stacking fault tetrahedra growth, it seems that the later dominates under irradiation.

  13. Improving Multiple Fault Diagnosability using Possible Conflicts

    Data.gov (United States)

    National Aeronautics and Space Administration — Multiple fault diagnosis is a difficult problem for dynamic systems. Due to fault masking, compensation, and relative time of fault occurrence, multiple faults can...

  14. Fault Management Assistant (FMA) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — S&K Aerospace (SKA) proposes to develop the Fault Management Assistant (FMA) to aid project managers and fault management engineers in developing better and more...

  15. ESR dating of fault rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Kwon [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2002-03-15

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then trow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs grain size shows a plateau for grains below critical size : these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected from the Yangsan fault system. ESR dates from the this fault system range from 870 to 240 ka. Results of this research suggest that long-term cyclic fault activity continued into the pleistocene.

  16. Seismic fault zone trapped noise

    National Research Council Canada - National Science Library

    Hillers, G; Campillo, M; Ben‐Zion, Y; Roux, P

    2014-01-01

    Systematic velocity contrasts across and within fault zones can lead to head and trapped waves that provide direct information on structural units that are important for many aspects of earthquake and fault mechanics...

  17. Structural and hydrogeological features of Pleistocene shear zones in the area of Rome (Central Italy

    Directory of Open Access Journals (Sweden)

    C. Faccenna

    1994-06-01

    Full Text Available The last tectonic episode observed in the Latium Tyrrhenian margin (Central Italy, few km cast of Rome, is represented by a set of middIe-upper Pleistocene N-S shear zones, characterised by complex geometric and kinematic setting. The easternmost of these shear zones displays a strike-slip component of motion and is located at the boundary between the Apennine carbonate chain and the volcanic areas. The distribution of travertine deposits and hydrothermal springs suggests that this fault zone acts as an impermeable barrier for lateral flow derived from superficial karstic circuit, and as a preferential upwelling surface for deep hydrothermal fluids. We propose that high fluid pressure could develop inside these fault zones favouring the reactivation of buried pre-existing crustal discontinuities and the local re-orientation of the stress field, as testified by the geometry and the kinematics of the surface fault pattern.

  18. The property of fault zone and fault activity of Shionohira Fault, Fukushima, Japan

    Science.gov (United States)

    Seshimo, K.; Aoki, K.; Tanaka, Y.; Niwa, M.; Kametaka, M.; Sakai, T.; Tanaka, Y.

    2015-12-01

    The April 11, 2011 Fukushima-ken Hamadori Earthquake (hereafter the 4.11 earthquake) formed co-seismic surface ruptures trending in the NNW-SSE direction in Iwaki City, Fukushima Prefecture, which were newly named as the Shionohira Fault by Ishiyama et al. (2011). This earthquake was characterized by a westward dipping normal slip faulting, with a maximum displacement of about 2 m (e.g., Kurosawa et al., 2012). To the south of the area, the same trending lineaments were recognized to exist even though no surface ruptures occurred by the earthquake. In an attempt to elucidate the differences of active and non-active segments of the fault, this report discusses the results of observation of fault outcrops along the Shionohira Fault as well as the Coulomb stress calculations. Only a few outcrops have basement rocks of both the hanging-wall and foot-wall of the fault plane. Three of these outcrops (Kyodo-gawa, Shionohira and Betto) were selected for investigation. In addition, a fault outcrop (Nameishi-minami) located about 300 m south of the southern tip of the surface ruptures was investigated. The authors carried out observations of outcrops, polished slabs and thin sections, and performed X-ray diffraction (XRD) to fault materials. As a result, the fault zones originating from schists were investigated at Kyodo-gawa and Betto. A thick fault gouge was cut by a fault plane of the 4.11 earthquake in each outcrop. The fault materials originating from schists were fault bounded with (possibly Neogene) weakly deformed sandstone at Shionohira. A thin fault gouge was found along the fault plane of 4.11 earthquake. A small-scale fault zone with thin fault gouge was observed in Nameishi-minami. According to XRD analysis, smectite was detected in the gouges from Kyodo-gawa, Shionohira and Betto, while not in the gouge from Nameishi-minami.

  19. The numerical simulation study of the dynamic evolutionary processes in an earthquake cycle on the Longmen Shan Fault

    Science.gov (United States)

    Tao, Wei; Shen, Zheng-Kang; Zhang, Yong

    2016-04-01

    The Longmen Shan, located in the conjunction of the eastern margin the Tibet plateau and Sichuan basin, is a typical area for studying the deformation pattern of the Tibet plateau. Following the 2008 Mw 7.9 Wenchuan earthquake (WE) rupturing the Longmen Shan Fault (LSF), a great deal of observations and studies on geology, geophysics, and geodesy have been carried out for this region, with results published successively in recent years. Using the 2D viscoelastic finite element model, introducing the rate-state friction law to the fault, this thesis makes modeling of the earthquake recurrence process and the dynamic evolutionary processes in an earthquake cycle of 10 thousand years. By analyzing the displacement, velocity, stresses, strain energy and strain energy increment fields, this work obtains the following conclusions: (1) The maximum coseismic displacement on the fault is on the surface, and the damage on the hanging wall is much more serious than that on the foot wall of the fault. If the detachment layer is absent, the coseismic displacement would be smaller and the relative displacement between the hanging wall and foot wall would also be smaller. (2) In every stage of the earthquake cycle, the velocities (especially the vertical velocities) on the hanging wall of the fault are larger than that on the food wall, and the values and the distribution patterns of the velocity fields are similar. While in the locking stage prior to the earthquake, the velocities in crust and the relative velocities between hanging wall and foot wall decrease. For the model without the detachment layer, the velocities in crust in the post-seismic stage is much larger than those in other stages. (3) The maximum principle stress and the maximum shear stress concentrate around the joint of the fault and detachment layer, therefore the earthquake would nucleate and start here. (4) The strain density distribution patterns in stages of the earthquake cycle are similar. There are two

  20. Pseudotachylite Bearing Cretaceous Fault in the Saddlebag Lake Pendant, Central Sierra Nevada, CA

    Science.gov (United States)

    Whitesides, A. S.; Cao, W.; Paterson, S. R.

    2010-12-01

    Over the past several years the undergraduate researchers and mentors in the University of Southern California’s Undergraduate Team Research program has mapped the northern continuation of the Gem Lake shear zone from Gem Lake to Virginia Canyon near the north end of the Saddlebag pendant. In the center of this dominantly dextral, ductile shear zone we now recognize a pseudotachylite bearing brittle fault that often juxtaposes Triassic metavolcanics to the east of the fault with a Jurassic metasedimentary package to the west of the fault. Kinematic indicators such as slickenlines, steps, and offset dikes found within the brittle fault zone also suggest dextral oblique motion, similar to the motion of the ductile shear zone. The brittle fault dips steeply and strikes N-NW with the fault zone width varying from narrow (sub m scale) to a 100-200 m wide fracture zone as seen in the Sawmill area. Jurrasic metasediments (> 177Ma) and Cretaceous metavolcanics (110-95Ma) lie to the West of the fault and Triassic metavolcanics (219Ma) lie to the East of the fault in the Virginia Canyon, Saddlebag Lake, and Sawmill areas. The absence of ~45 million years of Jurassic metavolcanics along the contact of the fault in each area, suggests tectonic removal of the sequence. Pseudotachylite, quartz vein rich breccias, gouge, fault scarps, and truncated Cathedral Peak dikes (~88 Ma) originating from the Tuolumne Batholith (TB), are common features associated with the brittle fault. The truncated, 88 Ma Cathedral Peak dikes plus nearby biotite cooling ages of 82 Ma indicate that displacement on the brittle fault continued well after TB emplacement and cooling and likely continued after ~80 Ma. The pseudotachylite suggests earthquakes occurred on the brittle fault during the Cretaceous. Movement also occurred along the fault at fairly shallow depths as indicated by the presence of vugs, or cavities with free euhedral crystal growth, within the quartz vein breccias. In the Sawmill

  1. Investigating fault coupling: Creep and microseismicity on the Hayward fault

    Science.gov (United States)

    Evans, E. L.; Loveless, J. P.; Meade, B. J.; Burgmann, R.

    2009-12-01

    We seek to quantify the relationship between interseismic slip activity and microseismicity along the Hayward fault in the eastern San Francisco Bay Area. During the interseismic regime the Hayward fault is known to exhibit variable degrees of locking both along strike and down-dip. Background microseismicity on and near the fault has been suggested to provide independent information about the rates of interseismic creep and the boundaries of creeping regions. In particular, repeating earthquakes within the fault zone have been suggested as a proxy for fault creep rates. To investigate this relationship, we invert GPS data for microplate rotations, fault slip rates, and fault coupling using a block model that spans western United States and includes the San Andreas, Hayward, Calaveras, Rogers Creek, and Green Valley faults in the greater Bay area. The tectonic context provided by the regional scale model ensures that the slip budget across Bay Area faults is consistent with large scale tectonic motions and kinematically connected to the central San Andreas fault. We image the spatial distribution of interseismic slip on a triangulated mesh of the Hayward fault and compare the distribution of interseismic fault coupling with the number of earthquakes and the moment rate of all on-fault seismicity. We quantitatively test the hypothesis that microseismicity might define the transitions between locked and creeping regions. The calculated correlations are tested against a null hypothesis that microseismicity is randomly distributed. We further extend this investigation to the step over region between the Hayward and Calaveras faults to illuminate the interactions between linking faults.

  2. Geophysical evidence of crustal-heterogeneity control of fault growth in the Neocomian Iguatu basin, NE Brazil

    Science.gov (United States)

    de Castro, David L.; Bezerra, Francisco H. R.; Castelo Branco, Raimundo M. G.

    2008-11-01

    Models of fault growth propose that rift initiation starts with short fault segments. Knowledge of the growth of these segments and their interactions is important to understanding rift geometry and evolution. In the northern part of the Borborema Province, northeastern Brazil, a continental-scale, Cretaceous extensional system of faults has been observed to have reactivated ductile Precambrian shear zones. The faults form small grabens that represent the rift stage of the sedimentary basins. We integrated airborne radiometric and magnetic data with terrestrial gravity survey to investigate the influence of crustal heterogeneity on fault growth and the development of the extensional faults in one of these grabens, the Iguatu basin. Previous studies presented geophysical data, which provide evidence that the Iguatu basin contains a half-graben geometry. In our study, gravity and airborne geophysical data indicate that the basement of the Iguatu basin is part of a heterogeneous structural framework composed of two structural domains, is affected by several ductile shear zones and intruded by a few granite bodies. The gravity modeling reveals that this basin is composed of three right-bend en echelon fault segments. They form a sigmoid system of normal faults that accommodate the strong ˜90° bend of the Precambrian shear zones from E-W to roughly N-S. The growth of these segments led to the generation of two isolated depocenters. The overlapping fault segments link through relay ramps. Release faults that are nearly perpendicular or oblique to the three main fault segments form marginal strike ramps and horst structures in both depocenters. 3D-gravity modeling incorporates the presence of interfering sources of a heterogeneous structural framework. The modeling reveals a maximum sedimentary cover 1620 m thick, which occurs at the bend of the reactivated shear zones. The gravity signature of a possible granite body, after removal of the gravity effect of the basin

  3. Quaternary strike-slip crustal deformation around an active fault based on paleomagnetic analysis: a case study of the Enako fault in central Japan

    Science.gov (United States)

    Kimura, Haruo; Itoh, Yasuto; Tsutsumi, Hiroyuki

    2004-10-01

    To evaluate cumulative strike-slip deformation around an active fault, we carried out tectonic geomorphic investigations of the active right-lateral strike-slip Enako fault in central Japan and paleomagnetic investigations of the Kamitakara pyroclastic flow deposit (KPFD; 0.6 Ma welded tuff) distributed around the fault. Tectonic geomorphic study revealed that the strike-slip displacement on the fault is ca. 150 m during the past 600 ka. We carried out measurements of paleomagnetic directions and anisotropy of magnetic susceptibility (AMS) within the pyroclastic flow deposit. Stable primary magnetic directions at each sampling site are well clustered and the AMS fabric is very oblate. We then applied tilt correction of paleomagnetic directions at 15 sites using tilting data obtained by the AMS property and orientations of eutaxitic structures. Within a distance of about 500 m from the fault trace, differential clockwise rotations were detected; the rotation angle is larger for zones closer to the fault. Because of this relation and absence of block boundary faults, a continuous deformation model explains the crustal deformation in the study area. The calculated minimum value of strike-slip displacement associated with this deformation detected within the shear zone is 210 m. The sum of this and offset on the Enako fault is 360 m and the slip rate is estimated at 0.6 mm/year.

  4. Faulting at Thebes Gap, Mo. -Ill. : Implications for New Madrid tectonism

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, R.W.; Schultz, A.P. (Geological Survey, Reston, VA (United States))

    1992-01-01

    Recent geologic mapping in the Thebes Gap area has identified numerous NNE- and NE-striking faults having a long-lived and complex structural history. The faults are located in an area of moderate recent seismicity at the northern margin of the Mississippi embayment, approximately 45 km north of the New Madrid seismic zone. Earliest deformation occurred along dextral strike-slip faults constrained as post-Devonian and pre-Cretaceous. Uplift and erosion of all Carboniferous strata suggest that this faulting is related to development of the Pascola arch (Ouachita orogeny). This early deformation is characterized by strongly faulted and folded Ordovician through Devonian rocks overlain in places with angular unconformity by undeformed Cretaceous strata. Elsewhere, younger deformation involves Paleozoic, Cretaceous, Paleocene, and Eocene formations. These units have experienced both minor high-angle normal faulting and major, dextral strike-slip faulting. Quaternary-Tertiary Mounds Gravel is also involved in the latest episode of strike-slip deformation. Enechelon north-south folds, antithetic R[prime] shears, and drag folds indicate right-lateral motion. Characteristic positive and negative flower structures are commonly revealed in cross section. Right-stepping fault strands have produced pull-apart basins where Ordovician, Silurian, Devonian, Cretaceous, and Tertiary units are downdropped several hundreds of meters and occur in chaotic orientations. Similar fault orientations and kinematics, as well as recent seismicity and close proximity, clearly suggest a structural relationship between deformation at Thebes Gap and tectonism associated with the New Madrid area.

  5. Nearly frictionless faulting by unclamping in long-term interaction models

    Science.gov (United States)

    Parsons, T.

    2002-01-01

    In defiance of direct rock-friction observations, some transform faults appear to slide with little resistance. In this paper finite element models are used to show how strain energy is minimized by interacting faults that can cause long-term reduction in fault-normal stresses (unclamping). A model fault contained within a sheared elastic medium concentrates stress at its end points with increasing slip. If accommodating structures free up the ends, then the fault responds by rotating, lengthening, and unclamping. This concept is illustrated by a comparison between simple strike-slip faulting and a mid-ocean-ridge model with the same total transform length; calculations show that the more complex system unclapms the transforms and operates at lower energy. In another example, the overlapping San Andreas fault system in the San Francisco Bay region is modeled; this system is complicated by junctions and stepovers. A finite element model indicates that the normal stress along parts of the faults could be reduced to hydrostatic levels after ???60-100 k.y. of system-wide slip. If this process occurs in the earth, then parts of major transform fault zones could appear nearly frictionless.

  6. The role of bedding in the evolution of meso- and microstructural fabrics in fault zones

    Science.gov (United States)

    Ishii, Eiichi

    2016-08-01

    To investigate the role of bedding in the evolution of meso- and microstructural fabrics in fault zones, detailed microscopic, mineralogical, and geochemical analyses were conducted on bedding-oblique and bedding-parallel faults that cut a folded Neogene siliceous mudstone that contains opal-CT, smectite, and illite. An analysis of asymmetric structures in the fault gouges indicates that the secondary fractures associated with each fault exhibit contrasting characteristics: those of the bedding-oblique fault are R1 shears, whereas those of the bedding-parallel fault are reactivated S foliation. The bedding-oblique fault shows the pervasive development of S foliation, lacks opal-CT, and has low SiO2/TiO2 ratios only in gouge, whereas the bedding-parallel fault exhibits these characteristics in both gouge and wall rocks. The development of S foliation and the lack of silica can result from local ductile deformation involving the sliding of phyllosilicates, coupled with pressure solution of opal-CT. Although such deformation can occur in gouge, the above results indicate that it may occur preferentially along bedding planes, preceding the formation of a gouge/slip surface. Thus, in sedimentary rocks that contain phyllosilicates and soluble minerals, bedding can influence the rheological evolution of meso- and microstructural fabrics in fault zones.

  7. Fault-Mechanism Simulator

    Science.gov (United States)

    Guyton, J. W.

    1972-01-01

    An inexpensive, simple mechanical model of a fault can be produced to simulate the effects leading to an earthquake. This model has been used successfully with students from elementary to college levels and can be demonstrated to classes as large as thirty students. (DF)

  8. Heat reveals faults

    Energy Technology Data Exchange (ETDEWEB)

    Weinreich, Bernhard [Solarschmiede GmbH, Muenchen (Germany). Engineering Dept.

    2010-07-01

    Gremlins cannot hide from the all-revealing view of a thermographic camera, whereby it makes no difference whether it is a roof-mounted system or a megawatt-sized farm. Just as diverse are the range of faults that, with the growing level of expertise, can now be detected and differentiated with even greater detail. (orig.)

  9. Row fault detection system

    Science.gov (United States)

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2008-10-14

    An apparatus, program product and method checks for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  10. Adaptive Fault Tolerance

    Science.gov (United States)

    1994-05-01

    center ( MOCl ) and one workstation processor (WS1) in the Adaptive Fault Tolerance 22 command center (CCE). The remaining data processing routines (GDI...78243-7063 NRAIR232 ATTN: DANIEL W. ATKINSON 9800 SAVAGE RD FT MEADE MD 20755-6000 TRUSTED INFORMATION SYSTEMS, INC. ATTN: WILLIAM C. BARKER 3060

  11. Fault-Mechanism Simulator

    Science.gov (United States)

    Guyton, J. W.

    1972-01-01

    An inexpensive, simple mechanical model of a fault can be produced to simulate the effects leading to an earthquake. This model has been used successfully with students from elementary to college levels and can be demonstrated to classes as large as thirty students. (DF)

  12. Fault-Related Sanctuaries

    Science.gov (United States)

    Piccardi, L.

    2001-12-01

    Beyond the study of historical surface faulting events, this work investigates the possibility, in specific cases, of identifying pre-historical events whose memory survives in myths and legends. The myths of many famous sacred places of the ancient world contain relevant telluric references: "sacred" earthquakes, openings to the Underworld and/or chthonic dragons. Given the strong correspondence with local geological evidence, these myths may be considered as describing natural phenomena. It has been possible in this way to shed light on the geologic origin of famous myths (Piccardi, 1999, 2000 and 2001). Interdisciplinary researches reveal that the origin of several ancient sanctuaries may be linked in particular to peculiar geological phenomena observed on local active faults (like ground shaking and coseismic surface ruptures, gas and flames emissions, strong underground rumours). In many of these sanctuaries the sacred area is laid directly above the active fault. In a few cases, faulting has affected also the archaeological relics, right through the main temple (e.g. Delphi, Cnidus, Hierapolis of Phrygia). As such, the arrangement of the cult site and content of relative myths suggest that specific points along the trace of active faults have been noticed in the past and worshiped as special `sacred' places, most likely interpreted as Hades' Doors. The mythological stratification of most of these sanctuaries dates back to prehistory, and points to a common derivation from the cult of the Mother Goddess (the Lady of the Doors), which was largely widespread since at least 25000 BC. The cult itself was later reconverted into various different divinities, while the `sacred doors' of the Great Goddess and/or the dragons (offspring of Mother Earth and generally regarded as Keepers of the Doors) persisted in more recent mythologies. Piccardi L., 1999: The "Footprints" of the Archangel: Evidence of Early-Medieval Surface Faulting at Monte Sant'Angelo (Gargano, Italy

  13. Geometry of the Nojima fault at Nojima-Hirabayashi, Japan - I. A simple damage structure inferred from borehole core permeability

    Science.gov (United States)

    Lockner, D.A.; Tanaka, H.; Ito, H.; Ikeda, R.; Omura, K.; Naka, H.

    2009-01-01

    The 1995 Kobe (Hyogo-ken Nanbu) earthquake, M = 7.2, ruptured the Nojima fault in southwest Japan. We have studied core samples taken from two scientific drillholes that crossed the fault zone SW of the epicentral region on Awaji Island. The shallower hole, drilled by the Geological Survey of Japan (GSJ), was started 75 m to the SE of the surface trace of the Nojima fault and crossed the fault at a depth of 624 m. A deeper hole, drilled by the National Research Institute for Earth Science and Disaster Prevention (NIED) was started 302 m to the SE of the fault and crossed fault strands below a depth of 1140 m. We have measured strength and matrix permeability of core samples taken from these two drillholes. We find a strong correlation between permeability and proximity to the fault zone shear axes. The half-width of the high permeability zone (approximately 15 to 25 m) is in good agreement with the fault zone width inferred from trapped seismic wave analysis and other evidence. The fault zone core or shear axis contains clays with permeabilities of approximately 0.1 to 1 microdarcy at 50 MPa effective confining pressure (10 to 30 microdarcy at in situ pressures). Within a few meters of the fault zone core, the rock is highly fractured but has sustained little net shear. Matrix permeability of this zone is approximately 30 to 60 microdarcy at 50 MPa effective confining pressure (300 to 1000 microdarcy at in situ pressures). Outside this damage zone, matrix permeability drops below 0.01 microdarcy. The clay-rich core material has the lowest strength with a coefficient of friction of approximately 0.55. Shear strength increases with distance from the shear axis. These permeability and strength observations reveal a simple fault zone structure with a relatively weak fine-grained core surrounded by a damage zone of fractured rock. In this case, the damage zone will act as a high-permeability conduit for vertical and horizontal flow in the plane of the fault. The fine

  14. Continental Rupture Controlled by Low-Angle Normal Faults in the Northern Gulf of California: Analysis of Seismic Reflection Profiles

    Science.gov (United States)

    Martin-Barajas, A.; González-Escobar, M.; Fletcher, J. M.; Pacheco, M.; Mar-Hernández, E.

    2010-12-01

    The transition from focused continental extension to the rupture of continental lithosphere is imaged in the northern Gulf of California rift system across the obliquely conjugated Tiburon-Delfin basins. Structural mapping on a 5-20 km grid of seismic reflection lines (48 channels, 6s TWTT) of Petroleos Mexicanos indicates that a large amount of extension and subsidence in the Tiburon basin was accommodated on a NNE-striking pattern of normal faults merging at depth into a detachment fault (here named Angel de la Guarda Detachment or AGD). The main AGD break-away fault is a ~70 km-long, listric fault concave to the southeast, which flattens below 3 seconds (TWTT). This detachment fault juxtaposes the late-Neogene marine sequence over thinned, mostly Mesozoic continental crust. The AGD is bounded at both ends by two major NW-striking, dextral-oblique faults, the Tiburon and De Mar faults that shear the continental crust parallel to the tectonic transport on both margins of the Tiburon basin. Additional, yet undetermined, amount of dextral shear was accommodated in a ~30 to 50 km wide belt adjacent to mainland Sonora along the now inactive eastern margin of the rift. The AGD break-away fault is cut by an array of NE-striking, northwest dipping active normal faults that accommodate oblique extension to the northwest into the Lower and Upper Delfin basins. Both Delfin basins form a broad, tectonically active rombochasm that also contains a ˜7 km-thick late Neogene sedimentary fill largely derived from the Colorado river delta. Intermediate to felsic magmatic intrusions with MORB-type geochemical and isotopic signatures along the western margin of the rift strongly indicate the rupture of the continental lithosphere and formation of an hybrid crust formed by thick sedimentary sequences and magmatic intrusions. We speculate that thermal anomaly caused by the rupture of continental lithosphere in Delfin basins caused footwall uplift of the detachment fault and the intra

  15. Plasticity Approach to Shear Design

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1998-01-01

    The paper presents some plastic models for shear design of reinforced concrete beams. Distinction is made between two shear failure modes, namely web crushing and crack sliding. The first mentioned mode is met in beams with large shear reinforcement degrees. The mode of crack sliding is met in no...... in uncracked concrete. Good agree between theory and tests has been found.Keywords: dsign, plasticity, reinforced concrete, reinforcement, shear, web crushing.......The paper presents some plastic models for shear design of reinforced concrete beams. Distinction is made between two shear failure modes, namely web crushing and crack sliding. The first mentioned mode is met in beams with large shear reinforcement degrees. The mode of crack sliding is met in non......-shear reinforced beams as well as in lightly shear reinforced beams. For such beams the shear strength is determined by the recently developed crack sliding model. This model is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed...

  16. Testing fault growth models with low-temperature thermochronology in the northwest Basin and Range, USA

    Science.gov (United States)

    Curry, Magdalena A. E.; Barnes, Jason B.; Colgan, Joseph P.

    2016-10-01

    Common fault growth models diverge in predicting how faults accumulate displacement and lengthen through time. A paucity of field-based data documenting the lateral component of fault growth hinders our ability to test these models and fully understand how natural fault systems evolve. Here we outline a framework for using apatite (U-Th)/He thermochronology (AHe) to quantify the along-strike growth of faults. To test our framework, we first use a transect in the normal fault-bounded Jackson Mountains in the Nevada Basin and Range Province, then apply the new framework to the adjacent Pine Forest Range. We combine new and existing cross sections with 18 new and 16 existing AHe cooling ages to determine the spatiotemporal variability in footwall exhumation and evaluate models for fault growth. Three age-elevation transects in the Pine Forest Range show that rapid exhumation began along the range-front fault between approximately 15 and 11 Ma at rates of 0.2-0.4 km/Myr, ultimately exhuming approximately 1.5-5 km. The ages of rapid exhumation identified at each transect lie within data uncertainty, indicating concomitant onset of faulting along strike. We show that even in the case of growth by fault-segment linkage, the fault would achieve its modern length within 3-4 Myr of onset. Comparison with the Jackson Mountains highlights the inadequacies of spatially limited sampling. A constant fault-length growth model is the best explanation for our thermochronology results. We advocate that low-temperature thermochronology can be further utilized to better understand and quantify fault growth with broader implications for seismic hazard assessments and the coevolution of faulting and topography.

  17. Deciphering the Influence of Crustal Flexure and Shear Along the Margins of the Eastern Snake River Plain

    Science.gov (United States)

    Parker, S. D.

    2016-12-01

    The kinematic evolution of the eastern Snake River Plain (ESRP) remains highly contested. A lack of strike-slip faults bounding the ESRP serves as a primary assumption in many leading kinematic models. Recent GPS geodesy has highlighted possible shear zones along the ESRP yet regional strike-slip faults remain unidentified. Oblique movement within dense arrays of high-angle conjugate normal faults, paralleling the ESRP, occur within a discrete zone of 50 km on both margins of the ESRP. These features have long been attributed to progressive crustal flexure and subsidence within the ESRP, but are capable of accommodating the observed strain without necessitating large scale strike-slip faults. Deformation features within an extensive Neogene conglomerate provide field evidence for dextral shear in a transtensional system along the northern margin of the ESRP. Pressure-solution pits and cobble striations provide evidence for a horizontal ENE/WSW maximum principal stress orientation, consistent with the hypothesis of a dextral Centennial shear zone. Fold hinges, erosional surfaces and stratigraphic datums plunging perpendicular into the ESRP have been attributed to crustal flexure and subsidence of the ESRP. Similar Quaternary folds plunge obliquely into the ESRP along its margins where diminishing offset along active normal faults trends into linear volcanic features. In all cases, orientations and distributions of plunging fold structures display a correlation to the terminus of active Basin and Range faults and linear volcanic features of the ESRP. An alternative kinematic model, rooted in kinematic disparities between Basin and Range faults and parallelling volcanic features may explain the observed downwarping as well as provide a mechanism for the observed shear along the margins of the ESRP. By integrating field observations with seismic, geodetic and geomorphic observations this study attempts to decipher the signatures of crustal flexure and shear along the

  18. Strengthening of Shear Walls

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg

    -plane loaded walls and disks is however not included in any guidelines, and only a small fraction of scientists have initiated research within this topic. Furthermore, studies of the principal behavior and response of a strengthened disk has not yet been investigated satisfactorily, and this is the principal...... be altered to fit the surrounding boundary conditions. The effective cohesive law will then become a function of the investigated structural geometry. A simplified approach for the latter topic was used to predict the load capacity of concrete beams in shear. Results obtained were acceptable, but the model...

  19. Geology of the Elephanta Island fault zone, western Indian rifted margin, and its significance for understanding the Panvel flexure

    Science.gov (United States)

    Samant, Hrishikesh; Pundalik, Ashwin; D'souza, Joseph; Sheth, Hetu; Lobo, Keegan Carmo; D'souza, Kyle; Patel, Vanit

    2017-02-01

    The Panvel flexure is a 150-km long tectonic structure, comprising prominently seaward-dipping Deccan flood basalts, on the western Indian rifted margin. Given the active tectonic faulting beneath the Panvel flexure zone inferred from microseismicity, better structural understanding of the region is needed. The geology of Elephanta Island in the Mumbai harbour, famous for the ca. mid-6th century A.D. Hindu rock-cut caves in Deccan basalt (a UNESCO World Heritage site) is poorly known. We describe a previously unreported but well-exposed fault zone on Elephanta Island, consisting of two large faults dipping steeply east-southeast and producing easterly downthrows. Well-developed slickensides and structural measurements indicate oblique slip on both faults. The Elephanta Island fault zone may be the northern extension of the Alibag-Uran fault zone previously described. This and two other known regional faults (Nhava-Sheva and Belpada faults) indicate a progressively eastward step-faulted structure of the Panvel flexure, with the important result that the individual movements were not simply downdip but also oblique-slip and locally even rotational (as at Uran). An interesting problem is the normal faulting, block tectonics and rifting of this region of the crust for which seismological data indicate a normal thickness (up to 41.3 km). A model of asymmetric rifting by simple shear may explain this observation and the consistently landward dips of the rifted margin faults.

  20. Geology of the Elephanta Island fault zone, western Indian rifted margin, and its significance for understanding the Panvel flexure

    Indian Academy of Sciences (India)

    Hrishikesh Samant; Ashwin Pundalik; Joseph D’souza; Hetu Sheth; Keegan Carmo Lobo; Kyle D’souza; Vanit Patel

    2017-02-01

    The Panvel flexure is a 150-km long tectonic structure, comprising prominently seaward-dipping Deccan flood basalts, on the western Indian rifted margin. Given the active tectonic faulting beneath the Panvel flexure zone inferred from microseismicity, better structural understanding of the region is needed. The geology of Elephanta Island in the Mumbai harbour, famous for the ca. mid-6th century A.D. Hindu rock-cut caves in Deccan basalt (a UNESCO World Heritage site) is poorly known. We describe a previously unreported but well-exposed fault zone on Elephanta Island, consisting of two large faults dippingsteeply east–southeast and producing easterly downthrows. Well-developed slickensides and structural measurements indicate oblique slip on both faults. The Elephanta Island fault zone may be the northern extension of the Alibag–Uran fault zone previously described. This and two other known regional faults (Nhava–Sheva and Belpada faults) indicate a progressively eastward step-faulted structure of the Panvel flexure, with the important result that the individual movements were not simply downdip but also oblique-slip and locally even rotational (as at Uran). An interesting problem is the normal faulting, block tectonics and rifting of this region of the crust for which seismological data indicate a normal thickness (up to 41.3 km). A model of asymmetric rifting by simple shear may explain this observation and the consistently landward dips of the rifted margin faults.

  1. Network Fault Diagnosis Using DSM

    Institute of Scientific and Technical Information of China (English)

    Jiang Hao; Yan Pu-liu; Chen Xiao; Wu Jing

    2004-01-01

    Difference similitude matrix (DSM) is effective in reducing information system with its higher reduction rate and higher validity. We use DSM method to analyze the fault data of computer networks and obtain the fault diagnosis rules. Through discretizing the relative value of fault data, we get the information system of the fault data. DSM method reduces the information system and gets the diagnosis rules. The simulation with the actual scenario shows that the fault diagnosis based on DSM can obtain few and effective rules.

  2. Dynamic analysis of fault rockburst based on gradient-dependent plasticity and energy criterion

    Institute of Scientific and Technical Information of China (English)

    Xuebin Wang; Xiaobin Yang; Zhihui Zhang; Yishan Pan

    2004-01-01

    Fault rockburst is treated as a strain localization problem under dynamic loading condition considering strain gradient and strain rate. As a kind of dynamic fracture phenomena, rockburst has characteristics of strain localization, which is considered as a one-dimensional shear problem subjected to normal compressive stress and tangential shear stress. The constitutive relation of rock material is bilinear (elastic and strain softening) and sensitive to shear strain rate. The solutions proposed based on gradientdependent plasticity show that intense plastic strain is concentrated in fault band and the thickness of the band depends on the characteristic length of rock material. The post-peak stiffness of the fault band was determined according to the constitutive parameters of rock material and shear strain rate. Fault band undergoing strain softening and elastic rock mass outside the band constitute a system and the instability criterion of the system was proposed based on energy theory. The criterion depends on the constitutive relation of rock material, the structural size and the strain rate. The static result regardless of the strain rate is the special case of the present analytical solution. High strain rate can lead to instability of the system.

  3. Active faulting on the Wallula fault within the Olympic-Wallowa Lineament (OWL), eastern Washington State

    Science.gov (United States)

    Sherrod, B. L.; Lasher, J. P.; Barnett, E. A.

    2013-12-01

    the angular unconformity and resulted in deposition of the lower clast-rich colluvium. A thin layer of pre-Mazama (>7600 years B.P.) loess caps the colluvium and post-dates the earthquake. The second earthquake is marked by shearing of the lower colluvium by small faults emanating from the carbonate-cemented breccia layer, and probable folding of the lower colluvium. A thin layer of clast-rich colluvium marks this youngest earthquake, the distal parts of which bury loess containing Mazama tephra. The preserved basalt scarp in the outcrop suggests between 1.8 and 2.8 m of post-flood vertical displacement. Faint straie on the master fault surface are subhorizontal and suggest a reverse oblique mechanism for these earthquakes, consistent with dextral offset on the Wallula fault zone inferred from offset aeromagnetic anomalies associated with ~8.5 Ma basalt dikes (Blakely and others, this meeting).

  4. Active transcurrent fault system along the north African passive margin

    Science.gov (United States)

    Ben-Avraham, Zvi; Nur, Amos; Giuseppe, Cello

    1987-09-01

    Along the southern boundary of the eastern Mediterranean extends a WNW-trending narrow zone, about 1000 km long, of possible transcurrent faulting. It terminates on both sides at areas of crustal extension, the Tyrrhenian Sea on the west-northwest and the Gulf of Suez on the east-southeast. From the southern Tyrrhenian Sea the fault zone runs through the Strait of Sicily rift zone, the Ionian Sea, the base of the continental margin of eastern Lybia and western Egypt, into the land area through the apex of the Nile Delta and eventually into the Gulf of Suez. Studies of the fault pattern in the Strait of Sicily indicate that the rifting processes there are associated with a major dextral shear zone. Right-lateral movement is also consistent with the deformation along the southeastern extension of the fault zone: i.e., the sense of offset of a series of bathymetric depressions located along the base of the continental margin of eastern Lybia and western Egypt which we interpret as pull-apart basins formed by transcurrent faulting. Crustal structure may play an important role in controlling the location of the fault zone. On both ends, adjacent to the zones of crustal extension in the Tyrrhenian Sea and the Gulf of Suez, the fault is located within a continental crust, in the Strait of Sicily and in northern Egypt. In between, in the Ionian Sea and at the base of the continental margin of eastern Lybia and western Egypt, it is located in between provinces of continental crust on the south and oceanic crust on the north.

  5. Signal processing for solar array monitoring, fault detection, and optimization

    CERN Document Server

    Braun, Henry; Spanias, Andreas

    2012-01-01

    Although the solar energy industry has experienced rapid growth recently, high-level management of photovoltaic (PV) arrays has remained an open problem. As sensing and monitoring technology continues to improve, there is an opportunity to deploy sensors in PV arrays in order to improve their management. In this book, we examine the potential role of sensing and monitoring technology in a PV context, focusing on the areas of fault detection, topology optimization, and performance evaluation/data visualization. First, several types of commonly occurring PV array faults are considered and detection algorithms are described. Next, the potential for dynamic optimization of an array's topology is discussed, with a focus on mitigation of fault conditions and optimization of power output under non-fault conditions. Finally, monitoring system design considerations such as type and accuracy of measurements, sampling rate, and communication protocols are considered. It is our hope that the benefits of monitoring presen...

  6. Wind shear test

    Science.gov (United States)

    Techniques for forecasting and detecting a type of wind shear called microbursts are being tested this month in an operational program at Denver's Stapleton International Airport as part of an effort to reduce hazards to airplanes and passengers.Wind shear, which can be spawned by convective storms, can occur as a microburst. These downbursts of cool air are usually recognizable as a visible rain shaft beneath a thundercloud. Sometimes, however, the rain shaft evaporates before reaching the ground, leaving the downdraft invisible. Although thunderstorms are traditionally avoided by airplane pilots, these invisible downdrafts also harbor hazards in what usually appear to be safe skies. When the downdraft reaches the earth's surface, the downdraft spreads out horizontally, much like a stream of water gushing from a garden hose on a concrete surface, explained John McCarthy, director of the operational program. Airplanes can encounter trouble when the downdraft from the microburst causes sudden shifts in wind direction, which may reduce lift on the wing, an especially dangerous situation during takeoff.

  7. 3D Dynamic Rupture Simulation Across a Complex Fault System: the Mw7.0, 2010, Haiti Earthquake

    Science.gov (United States)

    Douilly, R.; Aochi, H.; Calais, E.; Freed, A. M.

    2013-12-01

    Earthquakes ruptures sometimes take place on a secondary fault and surprisingly do not activate an adjacent major one. The 1989 Loma Prieta earthquake is a classic case where rupture occurred on a blind thrust while the adjacent San Andreas Fault was not triggered during the process. Similar to Loma Prieta, the Mw7.0, January 12 2010, Haiti earthquake also ruptured a secondary blind thrust, the Léogâne fault, adjacent to the main plate boundary, the Enriquillo Plantain Garden Fault, which did not rupture during this event. Aftershock relocalizations delineate the Léogâne rupture with two north dipping segments with slightly different dip, where the easternmost segment had mostly dip-slip motion and the westernmost one had mostly strike-slip motion. In addition, an offshore south dipping structure inferred from the aftershocks to the west of the rupture zone coincides with the offshore Trois Baies reverse fault, a region of increase in Coulomb stress increase. In this study, we investigate the rupture dynamics of the Haiti earthquake in a complex fault system of multiple segments identified by the aftershock relocations. We suppose a background stress regime that is consistent with the type of motion of each fault and with the regional tectonic regime. We initiate a nucleation on the east segment of the Léogâne fault by defining a circular region with a 2 km radius where shear stress is slightly greater than the yield stress. By varying friction on faults and background stress, we find a range of plausible scenarios. In the absence of near-field seismic records of the event, we score the different models against the static deformation field derived from GPS and InSAR at the surface. All the plausible simulations show that the rupture propagates from the eastern to the western segment along the Léogâne fault, but not on the Enriquillo fault nor on the Trois Baies fault. The best-fit simulation shows a significant increase of shear stresses on the Trois Baies

  8. Powder lubrication of faults by powder rolls in gouge zones

    Science.gov (United States)

    Chen, X.; Madden, A. S.; Reches, Z.

    2013-12-01

    Powder-lubrication by fault gouge can be an effective mechanism of dynamic weakening of faults (Reches & Lockner, 2010); however, the physical mechanisms of this lubrication are poorly understood. While the flow of coarse-grained (> 100 μm) materials, e.g. glass beads or quartz sand, was extensively studied, the flow of fine-grained (nano-powders, have remained enigmatic. We report here experimental results of a new efficient mechanism for powder lubrication. We conducted friction tests on high-velocity rotary shear apparatus (Reches & Lockner, 2010). Two types of experimental faults were tested: (1) faults made of solid, igneous rocks (granite, tonalite and diorite); and (2) fault-zones made of 2-3 mm thick layer of granular materials (oolites, calcite or gypsum) sheared in a confined cell. We performed 21 runs with total slip of 0.14-13 m, normal stress of 1.2-14.5 MPa, slip velocity of 0.012-0.97 m/s. The ultra-microscopic (SEM and AFM) analysis of the experimental slip surfaces revealed two outstanding features in 17 out of the 21 experiments: (1) localized fault-slip along Principal Slip Zones (PSZs) that are composed of a dense, shiny, cohesive crust, 0.5-1 micron thick, that overlaid a porous substrate, and (2) elongated rolls composed of gouge-powder into three-dimensional structures of closely-packed powder grains, (20-50 nm in size). The rolls are cylindrical, 0.75-1.4 micron wide, and 1.7-30 micron long, with smooth outer surface, and laminated, concentric layers of compacted grains. The rolls were exclusively found on the PSZs. Many rolls were destroyed fracturing and smearing on the PSZ, suggesting that the rolls underwent a life cycle of formation and destruction. Significant macroscopic friction reduction was measured in experiments with observed rolls, and no (or minor) friction reduction in the four experiments without rolls. The final, reduced friction coefficients have a general reciprocal relation to the rolls surface coverage, suggesting that

  9. Three-dimensional dynamic rupture simulations across interacting faults: The Mw7.0, 2010, Haiti earthquake

    Science.gov (United States)

    Douilly, R.; Aochi, H.; Calais, E.; Freed, A. M.

    2015-02-01

    The mechanisms controlling rupture propagation between fault segments during a large earthquake are key to the hazard posed by fault systems. Rupture initiation on a smaller fault sometimes transfers to a larger fault, resulting in a significant event (e.g., 2002 M7.9 Denali USA and 2010 M7.1 Darfield New Zealand earthquakes). In other cases rupture is constrained to the initial fault and does not transfer to nearby faults, resulting in events of more moderate magnitude. This was the case of the 1989 M6.9 Loma Prieta and 2010 M7.0 Haiti earthquakes which initiated on reverse faults abutting against a major strike-slip plate boundary fault but did not propagate onto it. Here we investigate the rupture dynamics of the Haiti earthquake, seeking to understand why rupture propagated across two segments of the Léogâne fault but did not propagate to the adjacent Enriquillo Plantain Garden Fault, the major 200 km long plate boundary fault cutting through southern Haiti. We use a finite element model to simulate propagation of rupture on the Léogâne fault, varying friction and background stress to determine the parameter set that best explains the observed earthquake sequence, in particular, the ground displacement. The two slip patches inferred from finite fault inversions are explained by the successive rupture of two fault segments oriented favorably with respect to the rupture propagation, while the geometry of the Enriquillo fault did not allow shear stress to reach failure.

  10. Inductive shearing of drilling pipe

    Energy Technology Data Exchange (ETDEWEB)

    Ludtka, Gerard M.; Wilgen, John; Kisner, Roger; Mcintyre, Timothy

    2016-04-19

    Induction shearing may be used to cut a drillpipe at an undersea well. Electromagnetic rings may be built into a blow-out preventer (BOP) at the seafloor. The electromagnetic rings create a magnetic field through the drillpipe and may transfer sufficient energy to change the state of the metal drillpipe to shear the drillpipe. After shearing the drillpipe, the drillpipe may be sealed to prevent further leakage of well contents.

  11. Inductive shearing of drilling pipe

    Science.gov (United States)

    Ludtka, Gerard M.; Wilgen, John; Kisner, Roger; Mcintyre, Timothy

    2016-04-19

    Induction shearing may be used to cut a drillpipe at an undersea well. Electromagnetic rings may be built into a blow-out preventer (BOP) at the seafloor. The electromagnetic rings create a magnetic field through the drillpipe and may transfer sufficient energy to change the state of the metal drillpipe to shear the drillpipe. After shearing the drillpipe, the drillpipe may be sealed to prevent further leakage of well contents.

  12. The Evolution of P-wave Velocity in Fault Gouge: Initial Results for Samples from the SAFOD Volume.

    Science.gov (United States)

    Knuth, M. W.; Tobin, H. J.; Marone, C.

    2008-12-01

    We present initial results from a new technique for observing the evolution of elastic properties in sheared fault zone materials via acoustic wave velocity. The relationship between the mechanical strength of fault gouge and acoustic velocity during active deformation has important implications not only for a physical understanding of elasticity in deforming granular media, but also for the interpretation of the seismic velocity at the field scale. Experiments are conducted at atmospheric temperature and saturation state in a double-direct-shear testing apparatus, with normal stress stepped from 1 to 19 MPa to interrogate behavior during compaction, and sheared at a rate of 10 microns/second to observe changes in velocity with increasing strain. Tests are divided between those involving continuous shear to a displacement of 22.5 mm, and those with intervals of 3.75 mm shear separated by unloading and reloading sequences in normal stress. Velocity is measured by time-of-flight between two piezoelectric P-wave transducers set into the sample configuration on either side of the shearing layers. Samples tested include common laboratory standards for simulated fault gouge and field samples taken from representative localities in the 3D rock volume containing the San Andreas Fault Observatory at Depth experiment in Parkfield, California. The velocities of sand and clay end-member gouges are observed to behave differently under shear, and mixtures of quartz sand and montmorillonite behave differently from both end-member materials. Initial results suggest that particle sorting exerts a strong influence on both the absolute velocity and the evolution of velocity in response to increasing shear strain where the elastic properties of the grains are similar. We also observe a first-order relationship between the coefficient of friction and P-wave velocity that appears to be related to grain reorganization at the onset of shear following initial compaction.

  13. Geology and geochemistry of radon in shear zones: End of year progress report

    Energy Technology Data Exchange (ETDEWEB)

    Gundersen, L.C.S.; Schultz, A.P.; Wanty, R.B.; Gates, A.E.; Crespi, J.M.

    1989-01-01

    The objective of this project is to understand the geology of radon gas behavior in areas where shared fault zones cause localized, anomalously high concentrations of radon. Sheared fault zones in bedrock have been identified as the cause of some of the highest indoor radon and water borne radon problems recorded in the United States. This study will provide detailed geological and geochemical models of the processes that create high concentration of radon in shear zones. The main research goals are to: (1) characterize and quantify uranium enrichment in shear zones by examining the chemical and deformational processes involved; (2) develop predictive models that will identify severe radon occurrences by rock type, amount of deformation (shear strain), deformational style, and amount of radionuclide enrichment; (3) characterize and quantify the effect of deformation on the development of soils, permeability, radon migration and emanation, alteration, and radium distribution; (4) characterize and quantify the rock-water equilibria within shear zones that produce the extreme concentrations of radon in water derived from sheared rock aquifers, and examine the contribution of radon in water to indoor radon concentrations. 4 refs.

  14. Effects of Heterogeneities in Strength and Initial Shear Stress on Large Ruptures in a Fast Multi-cycle Earthquake Simulator (RSQSim) and DYNA3D

    Science.gov (United States)

    Stevens, J.; Richards-Dinger, K.; Dieterich, J.; Oglesby, D.

    2008-12-01

    are quite similar with both methods. However, ruptures in DYNA3D propagate more rapidly through the barriers and generate less high-frequency variations of slip than ruptures in RSQSim. The qualitative agreement of these two very different methods is good and may improve with further tuning of quasi-dynamic computational parameters. Using the same heterogeneous strength distribution as in the single-event examples, we use RSQSim to simulate several thousand years of additional seismicity. The effects of the asperities along the fault become much more subtle over multiple earthquake cycles as the shear stress adjusts to the higher normal stress in the asperities. Subsequent large spontaneous events rupture at much more variable and significantly slower velocities through the evolved stress states than through the uniform initial shear stress state of the first, artificially nucleated event. Indeed, the ruptures occasionally nearly come to a halt before continuing. These complex ruptures will produce very different ground motions than the more coherent ruptures seen in ruptures through smoother initial stress states.

  15. The Neoproterozoic Trans-Saharan/Trans-Brasiliano shear zones: Suggested Tibetan Analogs

    Science.gov (United States)

    Attoh, K.; Brown, L. D.

    2008-05-01

    The Trans-Saharan Borborema (TSB) belt is a product of the assembly of Gondwana, a supercontinent that formed from cratonic fragments derived from Rodinia and other vagrant lithospheric blocks. Recent reconstructions show the West African craton (WAC) and Congo- San-Francisco craton juxtaposed by the closure of the Brasiliano (Pharuside, Adamastor) ocean during early stages of the Pan-African orogenic cycle in northwest Gondwana. The Dahomeyide and Pharuside segments of the resulting orogenic belt preserve well- organized lithotectonic units on the eastern margin of the WAC. The foreland units consist of craton-verging nappe stacks formed from the deformed margin of the WAC and its cover rocks. The near-hinter land is underlain by granitoid gneisses postulated to represent ca 600 Ma juvenile crust, exposed in the Accra-Benin plain. Further east from the suture zone is the Nigerian province, which includes rocks that were extensively reworked apparently during the Pan-African. The Borborema province of northeastern Brasil is the correlative/ extension of Nigerian. It is underlain by rocks intensively reworked during the Brasiliano (Pan-African) orogeny and juxtaposed along a series of shear zones. A distinct feature of the TBS are these extensive shear zones, many of which are typified by dextral wrench shear. In West Africa the prominent examples extend from the Sahara to the coastline and include the Hoggar, which splays into the Kandi fault, which itself has numerous splays in Benin, Togo and southeastern Ghana. In Brazil, nearly all reconstructions show that the continuation of the Kandi Fault is the Sobral fault which is inferred to be the northern segment of the Trans-Brasiliano lineament (TBL). If correct, the TBL and its TBS extensions constitute a 4000 km long dextral shear zone, perhaps the longest coherent shear zone on earth. We suggest that the geometry of these shear zones and associated Pan African sutures have instructive analogs in the Tibet

  16. Geometry and kinematics of the eastern Lake Mead fault system in the Virgin Mountains, Nevada and Arizona

    Science.gov (United States)

    Beard, Sue; Campagna, David J.; Anderson, R. Ernest

    2010-01-01

    blocks and south-directed for strike-slip faults. Strike-slip faults are oblique to the extension direction due to structural inheritance from NE-striking fabrics in Proterozoic crystalline basement rocks.We hypothesize that (1) during early phases of deformation oblique extension was partitioned to form east-west–extended domains bounded by left-lateral faults of the Lake Mead fault system, from ca. 16 to 14 Ma. (2) Beginning ca. 13 Ma, increased south-directed shortening impinged on the Virgin Mountains and forced uplift, faulting, and overturning along the north and west side of the Virgin Mountains. (3) By ca. 10 Ma, initiation of the younger Hen Spring to Hamblin Bay fault segment of the Lake Mead fault system accommodated westward tectonic escape, and the focus of south-directed shortening transferred to the western Lake Mead region. The shift from early partitioned oblique extension to south-directed shortening may have resulted from initiation of right-lateral shear of the eastern Walker Lane to the west coupled with left-lateral shear along the eastern margin of the Great Basin.

  17. Failure During Sheared Edge Stretching

    Science.gov (United States)

    Levy, B. S.; van Tyne, C. J.

    2008-12-01

    Failure during sheared edge stretching of sheet steels is a serious concern, especially in advanced high-strength steel (AHSS) grades. The shearing process produces a shear face and a zone of deformation behind the shear face, which is the shear-affected zone (SAZ). A failure during sheared edge stretching depends on prior deformation in the sheet, the shearing process, and the subsequent strain path in the SAZ during stretching. Data from laboratory hole expansion tests and hole extrusion tests for multiple lots of fourteen grades of steel were analyzed. The forming limit curve (FLC), regression equations, measurement uncertainty calculations, and difference calculations were used in the analyses. From these analyses, an assessment of the primary factors that contribute to the fracture during sheared edge stretching was made. It was found that the forming limit strain with consideration of strain path in the SAZ is a major factor that contributes to the failure of a sheared edge during stretching. Although metallurgical factors are important, they appear to play a somewhat lesser role.

  18. Mechanical anisotropy and the common occurrence of misoriented faults

    Science.gov (United States)

    Bistacchi, A.; Massironi, M.; Menegon, L.; Bolognesi, F.; Donghi, V.

    2011-12-01

    Brittle fault zones can be considered weak either in an absolute or relative sense. In the second case, weakness is detected since the fault is active under unfavourable tensional conditions, which means that it is unfavourably oriented with respect to the regional stress field. Three classes of mechanisms have been proposed to explain the "anomalous" (but not so uncommon) weakness of faults, which may be related to the presence of weak minerals, high pore fluid pressure, and stress rotation. However, no one of these mechanisms explains why some faults tend to nucleate (particularly in certain tectonic environments) with an unfavourable orientation. In this contribution we discuss how the mechanical anisotropy (or anisotropic weakness) of foliated phyllosilicate-rich rocks provides both a weakening mechanism, and a mechanism that is likely to guide the nucleation of large scale brittle faults in a misoriented attitude. Experiments and microphysical models indicate that mechanical anisotropy exerts a substantial influence on shear failure and subsequent frictional sliding. Intermediate-grade metamorphic rocks composed of > 30% phyllosilicates show an anisotropic internal friction coefficient which varies from ca. 0.6, at high angle to foliation, to ca. 0.3 for shear initiation along an inherited foliation. This may result in the nucleation of misoriented faults/fractures (fractures or faults oriented unfavourably with respect to classic Mohr-Coulomb fracture criterion) and inhibit the development of classical "well-oriented" Andersonian conjugate sets. To test the relevance of this mechanism at the regional scale, we have developed a Slip Tendency analysis, which has been modified to account for anisotropy in friction coefficients, thus named Anisotropic Slip Tendency analysis. The analysis has been applied to different large-scale, mature fault zones in the Alps, showing different kinematics and relationships with respect to the regional-scale stress field, but all

  19. Design of new frictional testing machine for shallow fault materials

    Science.gov (United States)

    Tadai, O.; Tanikawa, W.; Hirose, T.; Sakaguchi, M.; Lin, W.

    2009-12-01

    Subduction thrust faults at shallow depth mainly consist of granular and clay-rich materials which strengths are influenced by the presence of pore water. Dilatation and pore pressure generation of fault zones by the dynamic friction will increase the volumetric water content in fault zone, which can assist the fault weakening by acoustic fluidization or hydrodynamic lubrication mechanism. Therefore the evaluation of rheology for clay minerals rich in pore water is critical for understanding of seismic behaviors at shallow depth. Here, we introduce a new testing apparatus for the purpose of accurate evaluation of friction behavior for incohesive fault rock materials. Our machine can shear granular materials up to 80 mm of outer diameter and maximum thickness of 40 mm. The capacities of axial load, torque, and motor are 100kN, 500Nm and 30kW, respectively, and pore pressure is increased up to 50 MPa. Maximum rotation speed is 660 rpm, which is equivalent to 1 m/s of the average slip velocity when sample diameter is 60 mm. We can monitor the dynamic changes of pore pressure and temperature at sliding surface during the friction tests. We can also control the pore pressure, axial load, pore pressure and temperature independently. All parameters can be held at targeted values and be generated at constant incremental velocity. We can control the rotation more sensitively to program the complicated rotation history that slip velocity and acceleration change during the rotation. We used powdered smectite and illite in our friction tests. We measured normal stress dependence on shear stress at normal stress up to 25 MPa with a constant rotation speed from 0.01 to 1 rpm. Normal stress is proportional to shear stress for dry clay minerals, and the friction coefficients are from 0.3 to 0.5. On the other hand, very low friction is observed in clay minerals saturated by water, and shear strength is nearly constant at various normal stresses. Our results suggest that clay

  20. Seismic Fault Preserving Diffusion

    CERN Document Server

    Lavialle, Olivier; Germain, Christian; Donias, Marc; Guillon, Sebastien; Keskes, Naamen; Berthoumieu, Yannick

    2007-01-01

    This paper focuses on the denoising and enhancing of 3-D reflection seismic data. We propose a pre-processing step based on a non linear diffusion filtering leading to a better detection of seismic faults. The non linear diffusion approaches are based on the definition of a partial differential equation that allows us to simplify the images without blurring relevant details or discontinuities. Computing the structure tensor which provides information on the local orientation of the geological layers, we propose to drive the diffusion along these layers using a new approach called SFPD (Seismic Fault Preserving Diffusion). In SFPD, the eigenvalues of the tensor are fixed according to a confidence measure that takes into account the regularity of the local seismic structure. Results on both synthesized and real 3-D blocks show the efficiency of the proposed approach.

  1. Seismic fault preserving diffusion

    Science.gov (United States)

    Lavialle, Olivier; Pop, Sorin; Germain, Christian; Donias, Marc; Guillon, Sebastien; Keskes, Naamen; Berthoumieu, Yannick

    2007-02-01

    This paper focuses on the denoising and enhancing of 3-D reflection seismic data. We propose a pre-processing step based on a non-linear diffusion filtering leading to a better detection of seismic faults. The non-linear diffusion approaches are based on the definition of a partial differential equation that allows us to simplify the images without blurring relevant details or discontinuities. Computing the structure tensor which provides information on the local orientation of the geological layers, we propose to drive the diffusion along these layers using a new approach called SFPD (Seismic Fault Preserving Diffusion). In SFPD, the eigenvalues of the tensor are fixed according to a confidence measure that takes into account the regularity of the local seismic structure. Results on both synthesized and real 3-D blocks show the efficiency of the proposed approach.

  2. Managing Fault Management Development

    Science.gov (United States)

    McDougal, John M.

    2010-01-01

    As the complexity of space missions grows, development of Fault Management (FM) capabilities is an increasingly common driver for significant cost overruns late in the development cycle. FM issues and the resulting cost overruns are rarely caused by a lack of technology, but rather by a lack of planning and emphasis by project management. A recent NASA FM Workshop brought together FM practitioners from a broad spectrum of institutions, mission types, and functional roles to identify the drivers underlying FM overruns and recommend solutions. They identified a number of areas in which increased program and project management focus can be used to control FM development cost growth. These include up-front planning for FM as a distinct engineering discipline; managing different, conflicting, and changing institutional goals and risk postures; ensuring the necessary resources for a disciplined, coordinated approach to end-to-end fault management engineering; and monitoring FM coordination across all mission systems.

  3. Quantitative calculation for the dissipated energy of fault rock burst based on gradient-dependent plasticity

    Institute of Scientific and Technical Information of China (English)

    Xuebin Wang; Shuhong Dai; Long Hai

    2004-01-01

    The capacity of energy absorption by fault bands after rock burst was calculated quantitatively according to shear stressshear deformation curves considering the interactions and interplaying among microstructures due to the heterogeneity of strain softening rock materials. The post-peak stiffness of rock specimens subjected to direct shear was derived strictly based on gradientdependent plasticity, which can not be obtained from the classical elastoplastic theory. Analytical solutions for the dissipated energy of rock burst were proposed whether the slope of the post-peak shear stress-shear deformation curve is positive or not. The analytical solutions show that shear stress level, confining pressure, shear strength, brittleness, strain rate and heterogeneity of rock materials have important influence on the dissipated energy. The larger value of the dissipated energy means that the capacity of energy dissipation in the form of shear bands is superior and a lower magnitude of rock burst is expected under the condition of the same work done by external shear force. The possibility of rock burst is reduced for a lower softening modulus or a larger thickness of shear bands.

  4. Fault Tree Handbook

    Science.gov (United States)

    1981-01-01

    to be Evaluated Manufacturer Location Seismic Susceptibility Flood Susceptibility Temperature Humidity Radiation Wear-out Susceptibility Test...For the category " Seismic Susceptibility," we might define several sensitivity levels ranging from no sensitivity to extreme sensitivity, and for more... Hanford Company, Richland, Wash- ington, ARH-ST-l 12, July 1975. 40. W.E. Vesely, "Analysis of Fault Trees by Kinetic Tree Theory," Idaho Nuclear

  5. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    The paper deals with the shear strength of prestressed hollow-core slabs determined by the theory of plasticity. Two failure mechanisms are considered in order to derive the solutions.In the case of sliding failure in a diagonal crack, the shear strength is determined by means of the crack sliding...

  6. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    The report deals with the shear strength of statically indeterminate reinforced concrete beams without shear reinforcement. Solutions for a number of beams with different load and support conditions have been derived by means of the crack sliding model developed by Jin- Ping Zhang.This model...

  7. Faults in Linux

    DEFF Research Database (Denmark)

    Palix, Nicolas Jean-Michel; Thomas, Gaël; Saha, Suman

    2011-01-01

    In 2001, Chou et al. published a study of faults found by applying a static analyzer to Linux versions 1.0 through 2.4.1. A major result of their work was that the drivers directory contained up to 7 times more of certain kinds of faults than other directories. This result inspired a number...... of development and research efforts on improving the reliability of driver code. Today Linux is used in a much wider range of environments, provides a much wider range of services, and has adopted a new development and release model. What has been the impact of these changes on code quality? Are drivers still...... a major problem? To answer these questions, we have transported the experiments of Chou et al. to Linux versions 2.6.0 to 2.6.33, released between late 2003 and early 2010. We find that Linux has more than doubled in size during this period, but that the number of faults per line of code has been...

  8. Wall shear stress in intracranial aneurysms and adjacent arteries

    Institute of Scientific and Technical Information of China (English)

    Fuyu Wang; Bainan Xu; Zhenghui Sun; Chen Wu; Xiaojun Zhang

    2013-01-01

    Hemodynamic parameters play an important role in aneurysm formation and growth. However, it is difficult to directly observe a rapidly growing de novo aneurysm in a patient. To investigate possible associations between hemodynamic parameters and the formation and growth of intracranial aneurysms, the present study constructed a computational model of a case with an internal carotid artery aneurysm and an anterior communicating artery aneurysm, based on the CT angiography findings of a patient. To simulate the formation of the anterior communicating artery aneurysm and the growth of the internal carotid artery aneurysm, we then constructed a model that virtually removed the anterior communicating artery aneurysm, and a further two models that also progressively decreased the size of the internal carotid artery aneurysm. Computational simulations of the fluid dynamics of the four models were performed under pulsatile flow conditions, and wall shear stress was compared among the different models. In the three aneurysm growth models, increasing size of the aneurysm was associated with an increased area of low wall shear stress, a significant decrease in wall shear stress at the dome of the aneurysm, and a significant change in the wall shear stress of the parent artery. The wall shear stress of the anterior communicating artery remained low, and was significantly lower than the wall shear stress at the bifurcation of the internal carotid artery or the bifurcation of the middle cerebral artery. After formation of the anterior communicating artery aneurysm, the wall shear stress at the dome of the internal carotid artery aneurysm increased significantly, and the wall shear stress in the upstream arteries also changed significantly. These findings indicate that low wall shear stress may be associated with the initiation and growth of aneurysms, and that aneurysm formation and growth may influence hemodynamic parameters in the local and adjacent arteries.

  9. CHARACTERIZATION OF DEFORMATION AND X-RAY PETROFABRICS IN THE MIDDLE PART OF THE WAHONGSHAN FAULT ZONE, QINGHAI PROVINCE,NORTHWESTERN CHINA

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shuanhong; ZHOU Xianqiang

    2004-01-01

    The Wahongshan fault zone in Qinghai province is one of the most important faults in western China. In this paper, deformation and X-ray petrofabrics have been studied in the middle segment of the fault. The results show that the formation of the fault zones can be divided into two major stages: ductile shear deformation stage and brittle deformation stage. The early stage ductile shearing leads to the formation of the NW-NNW trending mylonite zones along the fault, which is intensely cut by the late-formed brittle faults. X-ray petrofabrics of rocks near the faults indicate that the minerals in the tectonites show a great degree of orientation in the alignment. The quartz, which is a very important mineral in the tectonites, is deformed by basal face gliding or near basal face gliding, and sometimes by prismatic face sliding, which indicates that the rocks are deformed in epithermal to mesothermal or mesothermal environment, and the dynamic recrystallization also plays an important role in the formation of the quartz alignment. The results also demonstrate that plutons formed in the Hercynian and Indosinian stages show no great ductile deformation as can be seen from the X-ray petrofabrics, so it is concluded that these rocks are formed after the formation of the ductile shear zones. Results of Structural deformation analysis and isotope geochronologic analysis of syntectonic muscovite indicate that Wahongshan ductile shear zones are formed in the late Silurian Period during the late Caledonian stage.

  10. Study on the seismic flexural-shear damage mechanisms and rapid repair techniques for earthquake damaged bridge piers%钢筋混凝土桥墩地震弯剪破坏机理与震后快速修复技术研究

    Institute of Scientific and Technical Information of China (English)

    司炳君; 孙治国; 杜修力; 王东升; 黄照南

    2011-01-01

    Quasi-static tests were conducted to study the seismic flexural-shear damage mechanisms and rapid repair techniques for earthquake damaged bridge piers.Six original pier specimens of circular cross sections were severely damaged under cyclic lateral force and constant axial load,and the damaged specimens were subsequently repaired using high-fluidity concrete with high early-strength and Carbon Fiber-Reinforced Polymer(CFRP),and then put into test again within a week.The failure pattern,strength,ductility and dissipated energy parameters and stiffness degradation of the repaired specimens were compared with the original ones.It is founded that the ultimate performance of bridge piers designed according to current seismic design codes of JTG/T B02-01—2008 and Caltrans with minimum confining reinforcement ratios may be dominated by shear failure in the plastic hinge zones.The repaired specimens show lower initial stiffness and larger yield displacement as a result of the pre-existing damage.But the failure for all of the repaired specimens was due to flexure,with higher strength,larger or the same ductility and dissipated energy parameters and recovered stiffness,which demonstrated the effectiveness of the proposed repair techniques.%为研究钢筋混凝土桥墩的地震弯剪破坏机理与震后快速修复技术,首先进行了6个圆形截面桥墩试件的拟静力试验,试件均发生严重弯剪破坏,然后利用高流动性早强混凝土和CFRP布对其进行快速修复并在1周内重新进行加载试验,将原桥墩与修复后试件的破坏形态、承载力、延性与耗能能力、刚度退化等进行了对比分析。研究表明:塑性铰区配箍满足我国《公路桥梁抗震设计细则》(JTG/T B02-01—2008)及美国Caltrans规范要求的钢筋混凝土桥墩试件,最终仍有可能因塑性铰区抗剪强度不足发生弯剪破坏。由于初始损伤的存在,震后修复

  11. NS shear kinematics across the Lut block from a dense GPS velocity field in eastern Iran

    Science.gov (United States)

    Walpersdorf, A.; Tavakoli, F.; Hatzfeld, D.; Jadidi, A. M.; Vergnolle, M. M.; Aghamohammadi, A.; Djamour, Y.; Nankali, H. R.; Sedighi, M.

    2009-12-01

    Since 2004, extensive GPS campaigns and the upcoming Iranian permanent GPS network are monitoring the present-day deformation in eastern Iran. We present a new GPS velocity field extending from Central Iran to the Hellmand block on the Eurasian plate. It permits to monitor the right lateral NS shear across the aseismic Lut block between Central Iran and the Hellmand block. While existing tectonic models propose an increase of slip rate from west to east, we find balanced slip rates on both Lut block boundaries. The total shear between Central Iran and the Lut block (the western limit) is evaluated to 7.0 ± 0.5 mm/yr that are accommodated by the Gowk-Nayband fault system and the Anar fault. It even slightly exceeds the 5.5 ± 0.5 mm/yr of shear between the Lut block and stable Eurasia (the eastern limit), localized on different faults of the Sistan Suture zone. Tectonic models propose that at the northern Lut block limit the regional NS shear leads to left lateral activity of large EW trending strike-slip faults (Doruneh and Dasht-e-Bayaz faults). On none of them a significant left lateral displacement is observed, in spite of the recent seismic activity of the Dasht-e-Bayaz and Abiz faults. The instantaneous active deformation is localized rather on oblique NW-SE oriented thrust faults (Janggal and Ferdows thrusts). Individual instantaneous fault slip rates are compared to short term and long term geological estimates. We find that GPS slip rates are in most cases coherent with short term geologic determinations (from dating of geomorphologic offsets over some 10-100 ka). Some differences with respect to long term estimates (from total geologic fault offsets and onset ages of several Ma) indicate non-constant slip rates over different time scales or that the onset of the present-day deformation presumed to 3-7 Ma in eastern Iran has to be revised.

  12. Strain Accommodation and its Relationship to Pre-existing Structures along the Karonga Fault, Malawi

    Science.gov (United States)

    Dawson, S.; Laó-Dávila, D. A.; Atekwana, E. A.; Clappe, B.; Johnson, T.; Hull, C. D.; Nyalugwe, V.; Abdelsalam, M. G.; Chindandali, P. R. N.; Salima, J.

    2015-12-01

    The Livingstone border fault, with its 7 km of total displacement, accommodates most of the strain in the northern portion of the Malawi Rift. Its hanging wall is also breaking up, as suggested by the 2009 earthquake sequence in Karonga. This hanging wall block is underlain in part by the NW- and N-striking Mughese Shear Zone. The superposition of new faults on the pre-existing structures makes this area an ideal location to study the effect of the orientation of pre-existing structures on the accommodation of strain in the hanging wall in the western flank of the northern Malawi Rift. We used gravity and aeromagnetic data and remote sensing to map the Precambrian macro-scale structural fabric of the greater Karonga region. Moreover, we mapped mesostructures within the Precambrian and younger rocks. In the northern portion of the Karonga fault, a single east-dipping fault zone with a mean strike of 32° and a 59° dip cuts the Precambrian foliation that has a mean strike of 301° and 79° dip, accommodating the majority of strain in this region. South of the city of Karonga, the Precambrian foliation assumes a NNW average strike that is steeply dipping. Here the Karonga fault disperses from a single fault with a 2 km damage zone to several distinct east- and west-dipping faults over 6 km that strike in the same overall direction as the foliation planes from the Mughese Shear Zone. Karoo rift structures (horsts and grabens) and their associated rock formations could also be reactivated in this area. These relationships suggest that within the Malawi Rift, strain can be accommodated differently based on the nature and orientation of pre-existing structures. The structural fabric surrounding the southern portion of the Karonga fault seems to favor reactivation and strain distribution, whereas strain is localized in the northern portion of the fault zone.

  13. Evolution of the Xiaotian-Mozitan fault and its implications for exhumation of Dabie HP-UHP rocks

    Institute of Scientific and Technical Information of China (English)

    Biwei Xiang; Yongsheng Wang; Changcheng Li; Guang Zhu; Yonghong Shi

    2008-01-01

    The Xiaotian-Mozitan fault (XMF) located north of the Dabie orogenic belt separates the North Dabie complex to the south from the Beihuaiyang low-grade metamorphic rocks to the north. It comprises several NW-striking ductile shear zones and brittle faults. The brittie faults obviously overprinted on the ductile shear zones and promoted the development of the volcanic basins in early Cretaceous to the north, which suggests that the brittle faults were normal faults formed in early Cretaceous during doming of the Dabie orogenic belt. The ductile shear zone superposed on the north Dabie gray gneiss. and it is an important channel where the Dabie HP-UHP rocks exhumed. For obtaining new structural constraint on exhumation of the HP-UHP rocks, we present here experimental results on the microstructure, quartz C-axis fabrics and the microprobe analyses of phengite. The ductile shear zone was determined to be formed at a temperature of 600-650℃ and pressure of 1.1GPa by the mineral deformation, microprobe analyses and geobarometry of Siin-phengite of the mylonite, the results suggest that the mylonite now exposed on the surface experienced an upper amphibolite-facies metamorphism in the lower crust. The mineral stretching lineation varies from horizontal in the east segment to sub-dip in the west. Shear sense indicators from outcrop and thin sections of orientated specimen and quartz C-axis fabrics suggest that the XMF is a sinistral normal fault. The kinematics analysis of the ductile shear zone indicates that the exhumation of Dabie HP-UHP rocks is the results of a SE-directed extrusion and an anticlockwise rotation around its eastern pivot simultaneously.

  14. Natural and experimental evidence of past seismic faulting from Clay-Clast Aggregates occurrence

    Science.gov (United States)

    Boutareaud, S.

    2009-04-01

    S. Boutareaud (1), A.M. Boullier (2,3), M. Andreani (4), D.G. Calugaru (5), P. Beck (6), S.R. Song (7,3), T. Shimamoto (8) Spherical aggregates named Clay-Clast Aggregates (CCAs) have been reported from recent investigations on both retrieved clay-bearing fault gouges from shallow depth seismogenic faults and rotary-shear experiments conducted on clay-bearing gouge at seismic slip-rates. We have conducted additional high velocity rotary-shear experiments and low velocity double-shear experiments. From these two types of friction experiments, we demonstrate that a critical temperature depending on dynamic P-T conditions is needed for the formation of CCAs. This temperature corresponds to the transition of water from liquid to vapor or to critical, that induces gouge pore fluid expansion and therefore a thermal pressurization of the fault. We compared natural CCAs obtained by the Taiwan Chelungpu fault Drilling Program (TCDP) from a gouge layer recognized as the last slip surface of the Mw 7.6 1999 Chi-Chi earthquake, and CCAs obtained from our high velocity experiments. EDX-SEM element mapping, SEM and TEM observations show strong similar characteristics of the two types of CCAs with a concentric well-organized fabric of the cortex, and reveals that their development may result from the combination of electrostatic and capillary forces in a critical reactive medium during the dynamic slip-weakening. The formation of CCAs appears to be related to the shearing of a clay-rich granular material that expands and become fluidized. Accordingly, the occurrence of CCAs in natural clay-rich fault gouges constitutes new unequivocal textural evidence for shallow depth thermal pressurization and consequently for past seismic faulting.

  15. Diagnosis Method for Analog Circuit Hard fault and Soft Fault

    Directory of Open Access Journals (Sweden)

    Baoru Han

    2013-09-01

    Full Text Available Because the traditional BP neural network slow convergence speed, easily falling in local minimum and the learning process will appear oscillation phenomena. This paper introduces a tolerance analog circuit hard fault and soft fault diagnosis method based on adaptive learning rate and the additional momentum algorithm BP neural network. Firstly, tolerance analog circuit is simulated by OrCAD / Pspice circuit simulation software, accurately extracts fault waveform data by matlab program automatically. Secondly, using the adaptive learning rate and momentum BP algorithm to train neural network, and then applies it to analog circuit hard fault and soft fault diagnosis. With shorter training time, high precision and global convergence effectively reduces the misjudgment, missing, it can improve the accuracy of fault diagnosis and fast.  

  16. ESR dating of fault rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Kwon [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2003-02-15

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then grow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs. grain size shows a plateau for grains below critical size; these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected near the Gori nuclear reactor. Most of the ESR signals of fault rocks collected from the basement are saturated. This indicates that the last movement of the faults had occurred before the Quaternary period. However, ESR dates from the Oyong fault zone range from 370 to 310 ka. Results of this research suggest that long-term cyclic fault activity of the Oyong fault zone continued into the Pleistocene.

  17. Large earthquakes and creeping faults

    Science.gov (United States)

    Harris, Ruth A.

    2017-01-01

    Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.

  18. Fine structure of the landers fault zone: segmentation and the rupture process.

    Science.gov (United States)

    Li, Y G; Aki, K; Vidale, J E; Lee, W H; Marone, C J

    1994-07-15

    Observations and modeling of 3- to 6-hertz seismic shear waves trapped within the fault zone of the 1992 Landers earthquake series allow the fine structure and continuity of the zone to be evaluated. The fault, to a depth of at least 12 kilometers, is marked by a zone 100 to 200 meters wide where shear velocity is reduced by 30 to 50 percent. This zone forms a seismic waveguide that extends along the southern 30 kilometers of the Landers rupture surface and ends at the fault bend about 18 kilometers north of the main shock epicenter. Another fault plane waveguide, disconnected from the first, exists along the northern rupture surface. These observations, in conjunction with surface slip, detailed seismicity patterns, and the progression of rupture along the fault, suggest that several simple rupture planes were involved in the Landers earthquake and that the inferred rupture front hesitated or slowed at the location where the rupture jumped from one to the next plane. Reduction in rupture velocity can tentatively be attributed to fault plane complexity, and variations in moment release can be attributed to variations in available energy.

  19. Seismicity on Basement Faults Induced by Simultaneous Fluid Injection-Extraction

    Science.gov (United States)

    Chang, Kyung Won; Segall, Paul

    2016-08-01

    Large-scale carbon dioxide (CO2) injection into geological formations increases pore pressure, potentially inducing seismicity on critically stressed faults by reducing the effective normal stress. In addition, poroelastic expansion of the reservoir alters stresses, both within and around the formation, which may trigger earthquakes without direct pore-pressure diffusion. One possible solution to mitigate injection-induced earthquakes is to simultaneously extract pre-existing pore fluids from the target reservoir. To examine the feasibility of the injection-extraction strategy, we compute the spatiotemporal change in Coulomb stress on basement normal faults, including: (1) the change in poroelastic stresses Δ τ _s+fΔ σ _n, where Δ τ _s and Δ σ _n are changes in shear and normal stress. respectively, and (2) the change in pore-pressure fΔ p. Using the model of (J. Geophys. Res. Solid Earth 99(B2):2601-2618, 1994), we estimate the seismicity rate on basement fault zones. Fluid extraction reduces direct pore-pressure diffusion into conductive faults, generally reducing the risk of induced seismicity. Limited diffusion into/from sealing faults results in negligible pore pressure changes within them. However, fluid extraction can cause enhanced seismicity rates on deep normal faults near the injector as well as shallow normal faults near the producer by poroelastic stressing. Changes in seismicity rate driven by poroelastic response to fluid injection-extraction depends on fault geometry, well operations, and the background stressing rate.

  20. Seismological evidence of fault weakening due to erosion by fluids from observations of intraplate earthquake swarms

    Science.gov (United States)

    Vavryčuk, Václav; Hrubcová, Pavla

    2017-05-01

    The occurrence and specific properties of earthquake swarms in geothermal areas are usually attributed to a highly fractured rock and/or heterogeneous stress within the rock mass being triggered by magmatic or hydrothermal fluid intrusion. The increase of fluid pressure destabilizes fractures and causes their opening and subsequent shear-tensile rupture. The spreading and evolution of the seismic activity are controlled by fluid flow due to diffusion in a permeable rock (fluid-diffusion model) and/or by redistribution of Coulomb stress (intrusion model). These models, however, are not valid universally. We provide evidence that none of these models is consistent with observations of swarm earthquakes in West Bohemia, Czech Republic. Full seismic moment tensors of microearthquakes in the 2008 swarm in West Bohemia indicate that fracturing at the starting phase of the swarm was not associated with fault openings caused by pressurized fluids but rather with fault compactions. This can physically be explained by a fault-weakening model, when the essential role in the swarm triggering is attributed to degradation of fault strength due to long-lasting chemical and hydrothermal fluid-rock interactions in the focal zone. Since the rock is exposed to circulating hydrothermal, CO2-saturated fluids, the walls of fractures are weakened by dissolving and altering various minerals. The porosity of the fault gauge increases, and the fault weakens. If fault strength lowers to a critical value, the seismicity is triggered. The fractures are compacted during failure, the fault strength recovers, and a new cycle begins.

  1. Duration of exposure to high fluid shear stress is critical in shear-induced platelet activation-aggregation.

    Science.gov (United States)

    Zhang, Jian-ning; Bergeron, Angela L; Yu, Qinghua; Sun, Carol; McBride, Latresha; Bray, Paul F; Dong, Jing-fei

    2003-10-01

    Platelet functions are increasingly measured under flow conditions to account for blood hydrodynamic effects. Typically, these studies involve exposing platelets to high shear stress for periods significantly longer than would occur in vivo. In the current study, we demonstrate that the platelet response to high shear depends on the duration of shear exposure. In response to a 100 dyn/cm2 shear stress for periods less than 10-20 sec, platelets in PRP or washed platelets were aggregated, but minimally activated as demonstrated by P-selectin expression and binding of the activation-dependent alphaIIbbeta3 antibody PAC-1 to sheared platelets. Furthermore, platelet aggregation under such short pulses of high shear was subjected to rapid disaggregation. The disaggregated platelets could be re-aggregated by ADP in a pattern similar to unsheared platelets. In comparison, platelets that are exposed to high shear for longer than 20 sec are activated and aggregated irreversibly. In contrast, platelet activation and aggregation were significantly greater in whole blood with significantly less disaggregation. The enhancement is likely via increased collision frequency of platelet-platelet interaction and duration of platelet-platelet association due to high cell density. It may also be attributed to the ADP release from other cells such as red blood cells because increased platelet aggregation in whole blood was partially inhibited by ADP blockage. These studies demonstrate that platelets have a higher threshold for shear stress than previously believed. In a pathologically relevant timeframe, high shear alone is likely to be insufficient in inducing platelet activation and aggregation, but acts synergistically with other stimuli.

  2. Imaging of subsurface faults using refraction migration with fault flooding

    Science.gov (United States)

    Metwally, Ahmed; Hanafy, Sherif; Guo, Bowen; Kosmicki, Maximillian

    2017-08-01

    We propose a novel method for imaging shallow faults by migration of transmitted refraction arrivals. The assumption is that there is a significant velocity contrast across the fault boundary that is underlain by a refracting interface. This procedure, denoted as refraction migration with fault flooding, largely overcomes the difficulty in imaging shallow faults with seismic surveys. Numerical results successfully validate this method on three synthetic examples and two field-data sets. The first field-data set is next to the Gulf of Aqaba and the second example is from a seismic profile recorded in Arizona. The faults detected by refraction migration in the Gulf of Aqaba data were in agreement with those indicated in a P-velocity tomogram. However, a new fault is detected at the end of the migration image that is not clearly seen in the traveltime tomogram. This result is similar to that for the Arizona data where the refraction image showed faults consistent with those seen in the P-velocity tomogram, except that it also detected an antithetic fault at the end of the line. This fault cannot be clearly seen in the traveltime tomogram due to the limited ray coverage.

  3. Imaging of Subsurface Faults using Refraction Migration with Fault Flooding

    KAUST Repository

    Metwally, Ahmed

    2017-05-31

    We propose a novel method for imaging shallow faults by migration of transmitted refraction arrivals. The assumption is that there is a significant velocity contrast across the fault boundary that is underlain by a refracting interface. This procedure, denoted as refraction migration with fault flooding, largely overcomes the difficulty in imaging shallow faults with seismic surveys. Numerical results successfully validate this method on three synthetic examples and two field-data sets. The first field-data set is next to the Gulf of Aqaba and the second example is from a seismic profile recorded in Arizona. The faults detected by refraction migration in the Gulf of Aqaba data were in agreement with those indicated in a P-velocity tomogram. However, a new fault is detected at the end of the migration image that is not clearly seen in the traveltime tomogram. This result is similar to that for the Arizona data where the refraction image showed faults consistent with those seen in the P-velocity tomogram, except it also detected an antithetic fault at the end of the line. This fault cannot be clearly seen in the traveltime tomogram due to the limited ray coverage.

  4. Electroosmotic shear flow in microchannels

    NARCIS (Netherlands)

    Mampallil, Dileep; Ende, van den Dirk

    2013-01-01

    We generate and study electroosmotic shear flow in microchannels. By chemically or electrically modifying the surface potential of the channel walls a shear flow component with controllable velocity gradient can be added to the electroosmotic flow caused by double layer effects at the channel walls.

  5. Translation vs. Rotation: The Battle for Accommodation of Dextral Shear at the Northern Terminus of the Central Walker Lane, Western Nevada

    Science.gov (United States)

    Carlson, C. W.; Faulds, J. E.

    2014-12-01

    Positioned between the Sierra Nevada microplate and Basin and Range in western North America, the Walker Lane (WL) accommodates ~20% of the dextral motion between the North American and Pacific plates on predominately NW-striking dextral and ENE to E-W-striking sinistral fault systems. The Terrill Mountains (TM) lie at the northern terminus of a domain of dextral faults accommodating translation of crustal-blocks in the central WL and at the southeast edge of sinistral faults accommodating oroclinal flexure and CW rotation of blocks in the northern WL. As the mechanisms of strain transfer between these disparate fault systems are poorly understood, the thick Oligocene to Pliocene volcanic strata of the TM area make it an ideal site for studying the transfer of strain between regions undergoing differing styles of deformation and yet both accommodating dextral shear. Detailed geologic mapping and paleomagnetic study of ash-flow tuffs in the TM region has been conducted to elucidate Neogene strain accommodation for this transitional region of the WL. Strain at the northernmost TM appears to be transferred from a system of NW-striking dextral faults to a system of ~E-W striking sinistral faults with associated CW flexure. A distinct ~23 Ma paleosol is locally preserved below the tuff of Toiyabe and provides an important marker bed. This paleosol is offset with ~6 km of dextral separation across the fault bounding the NE flank of the TM. This fault is inferred as the northernmost strand of the NW-striking, dextral Benton Spring fault system, with offset consistent with minimums constrained to the south (6.4-9.6 km, Gabbs Valley Range). Paleomagnetic results suggest counter-intuitive CCW vertical-axis rotation of crustal blocks south of the domain boundary in the system of NW-striking dextral faults, similar to some other domains of NW-striking dextral faults in the northern WL. This may result from coeval dextral shear and WNW-directed extension within the left

  6. Preliminary paleoseismic observations along the western Denali fault, Alaska

    Science.gov (United States)

    Koehler, R. D.; Schwartz, D. P.; Rood, D. H.; Reger, R.; Wolken, G. J.

    2013-12-01

    the fan across the main fault scarp and adjacent graben, exposed sheared debris fan parent material at its north and south ends, separated by a central zone of stacked scarp-derived colluvium and weakly developed peaty soils. Stratigraphic relations and upward fault terminations clearly record the occurrence of the past three surface-faulting earthquakes and suggest four or more such events. Results of pending 14C analyses are expected to provide new information on earthquake timing and recurrence. A Holocene slip rate for this section of the fault will be developed using back-slip models and an estimate of the age of the fan constrained by our detailed surveys of channel offsets and pending cosmogenic 10Be exposure ages for surface boulders, respectively.

  7. Modeling of coulpled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2

    Energy Technology Data Exchange (ETDEWEB)

    Cappa, F.; Rutqvist, J.

    2010-06-01

    The interaction between mechanical deformation and fluid flow in fault zones gives rise to a host of coupled hydromechanical processes fundamental to fault instability, induced seismicity, and associated fluid migration. In this paper, we discuss these coupled processes in general and describe three modeling approaches that have been considered to analyze fluid flow and stress coupling in fault-instability processes. First, fault hydromechanical models were tested to investigate fault behavior using different mechanical modeling approaches, including slip interface and finite-thickness elements with isotropic or anisotropic elasto-plastic constitutive models. The results of this investigation showed that fault hydromechanical behavior can be appropriately represented with the least complex alternative, using a finite-thickness element and isotropic plasticity. We utilized this pragmatic approach coupled with a strain-permeability model to study hydromechanical effects on fault instability during deep underground injection of CO{sub 2}. We demonstrated how such a modeling approach can be applied to determine the likelihood of fault reactivation and to estimate the associated loss of CO{sub 2} from the injection zone. It is shown that shear-enhanced permeability initiated where the fault intersects the injection zone plays an important role in propagating fault instability and permeability enhancement through the overlying caprock.

  8. A Piezoelectric Shear Stress Sensor

    Science.gov (United States)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-01-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry

  9. Field- to nano-scale evidence for weakening mechanisms along the fault of the 2016 Amatrice and Norcia earthquakes, Italy

    Science.gov (United States)

    Smeraglia, Luca; Billi, Andrea; Carminati, Eugenio; Cavallo, Andrea; Doglioni, Carlo

    2017-08-01

    In August and October 2016, two normal fault earthquakes (Mw 6.0 and Mw 6.5, respectively) struck the Amatrice-Norcia area in the central Apennines, Italy. The mainshocks nucleated at depths of 7-9 km with the co-seismic slip propagating upward along the Mt. Gorzano Fault (MGF) and Mt. Vettore Fault System (MVFS). To recognize possible weakening mechanisms along the carbonate-hosted seismogenic faults that generated the Amatrice-Norcia earthquakes, the fresh co-seismic fault exposure (i.e., ;nastrino;) exposed along the Mt. Vettoretto Fault was sampled and analyzed. This exposed fault belongs to the MVFS and was exhumed from 2-3 km depth. Over the fresh fault surface, phyllosilicates concentrated and localized along mm- to μm-thick layers, and truncated clasts and fluid-like structures were found. At the nano-scale, instead of their common platy-lamellar crystallographic texture, the analyzed phyllosilicates consist of welded nm-thick nanospherules and nanotubes similar to phyllosilicates deformed in rotary shear apparatus at seismic velocities or altered under high hydrothermal temperatures (> 250 °C). Moreover, the attitude of the Mt. Vettoretto Fault and its kinematics inferred from exposed slickenlines are consistent with the co-seismic fault and slip vectors obtained from the focal mechanisms computed for the 2016 mainshocks. All these pieces of evidence suggest that the Mt. Vettoretto Fault slipped seismically during past earthquakes and that co-seismic slip was assisted and facilitated at depths of < 3 km by phyllosilicate-rich layers and overpressured fluids. The same weakening processes may also have been decisive in facilitating the co-seismic slip propagation during the 2016 Mw 6.0 Amatrice and Mw 6.5 Norcia earthquakes. The microstructures found along the Mt. Vettoretto Fault, which is certainly a seismogenic fault, provide a realistic synoptic picture of co-seismic processes and weakening mechanisms that may occur in carbonate-hosted seismogenic

  10. Mechanical stratigraphy and normal faulting

    Science.gov (United States)

    Ferrill, David A.; Morris, Alan P.; McGinnis, Ronald N.; Smart, Kevin J.; Wigginton, Sarah S.; Hill, Nicola J.

    2017-01-01

    Mechanical stratigraphy encompasses the mechanical properties, thicknesses, and interface properties of rock units. Although mechanical stratigraphy often relates directly to lithostratigraphy, lithologic description alone does not adequately describe mechanical behavior. Analyses of normal faults with displacements of millimeters to 10's of kilometers in mechanically layered rocks reveal that mechanical stratigraphy influences nucleation, failure mode, fault geometry, displacement gradient, displacement distribution, fault core and damage zone characteristics, and fault zone deformation processes. The relationship between normal faulting and mechanical stratigraphy can be used either to predict structural style using knowledge of mechanical stratigraphy, or conversely to interpret mechanical stratigraphy based on characterization of the structural style. This review paper explores a range of mechanical stratigraphic controls on normal faulting illustrated by natural and modeled examples.

  11. Fault Tolerant Wind Farm Control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2013-01-01

    with best at a wind turbine control level. However, some faults are better dealt with at the wind farm control level, if the wind turbine is located in a wind farm. In this paper a benchmark model for fault detection and isolation, and fault tolerant control of wind turbines implemented at the wind farm...... control level is presented. The benchmark model includes a small wind farm of nine wind turbines, based on simple models of the wind turbines as well as the wind and interactions between wind turbines in the wind farm. The model includes wind and power references scenarios as well as three relevant fault...... scenarios. This benchmark model is used in an international competition dealing with Wind Farm fault detection and isolation and fault tolerant control....

  12. Handling Software Faults with Redundancy

    Science.gov (United States)

    Carzaniga, Antonio; Gorla, Alessandra; Pezzè, Mauro

    Software engineering methods can increase the dependability of software systems, and yet some faults escape even the most rigorous and methodical development process. Therefore, to guarantee high levels of reliability in the presence of faults, software systems must be designed to reduce the impact of the failures caused by such faults, for example by deploying techniques to detect and compensate for erroneous runtime conditions. In this chapter, we focus on software techniques to handle software faults, and we survey several such techniques developed in the area of fault tolerance and more recently in the area of autonomic computing. Since practically all techniques exploit some form of redundancy, we consider the impact of redundancy on the software architecture, and we propose a taxonomy centered on the nature and use of redundancy in software systems. The primary utility of this taxonomy is to classify and compare techniques to handle software faults.

  13. USING MUTATION IN FAULT LOCALIZATION

    Directory of Open Access Journals (Sweden)

    Chenglong Sun

    2016-05-01

    Full Text Available Fault localization is time-consuming and difficult, which makes it the bottleneck of the debugging progress. To help facilitate this task, there exist many fault localization techniques that help narrow down the region of the suspicious code in a program. Better accuracy in fault localization is achieved from heavy computation cost. Fault localization techniques that can effectively locate faults also manifest slow response rate. In this paper, we promote the use of pre-computing to distribute the time-intensive computations to the idle period of coding phase, in order to speed up such techniques and achieve both low-cost and high accuracy. We raise the research problems of finding suitable techniques that can be pre-computed and adapt it to the pre-computing paradigm in a continuous integration environment. Further, we use an existing fault localization technique to demonstrate our research exploration, and shows visions and challenges of the related methodologies.

  14. Geometry and subsidence history of the Dead Sea basin: A case for fluid-induced mid-crustal shear zone?

    Science.gov (United States)

    ten Brink, U.S.; Flores, C.H.

    2012-01-01

    Pull-apart basins are narrow zones of crustal extension bounded by strike-slip faults that can serve as analogs to the early stages of crustal rifting. We use seismic tomography, 2-D ray tracing, gravity modeling, and subsidence analysis to study crustal extension of the Dead Sea basin (DSB), a large and long-lived pull-apart basin along the Dead Sea transform (DST). The basin gradually shallows southward for 50 km from the only significant transverse normal fault. Stratigraphic relationships there indicate basin elongation with time. The basin is deepest (8-8.5 km) and widest (???15 km) under the Lisan about 40 km north of the transverse fault. Farther north, basin depth is ambiguous, but is 3 km deep immediately north of the lake. The underlying pre-basin sedimentary layer thickens gradually from 2 to 3 km under the southern edge of the DSB to 3-4 km under the northern end of the lake and 5-6 km farther north. Crystalline basement is ???11 km deep under the deepest part of the basin. The upper crust under the basin has lower P wave velocity than in the surrounding regions, which is interpreted to reflect elevated pore fluids there. Within data resolution, the lower crust below ???18 km and the Moho are not affected by basin development. The subsidence rate was several hundreds of m/m.y. since the development of the DST ???17 Ma, similar to other basins along the DST, but subsidence rate has accelerated by an order of magnitude during the Pleistocene, which allowed the accumulation of 4 km of sediment. We propose that the rapid subsidence and perhaps elongation of the DSB are due to the development of inter-connected mid-crustal ductile shear zones caused by alteration of feldspar to muscovite in the presence of pore fluids. This alteration resulted in a significant strength decrease and viscous creep. We propose a similar cause to the enigmatic rapid subsidence of the North Sea at the onset the North Atlantic mantle plume. Thus, we propose that aqueous fluid flux

  15. Experimental Modeling of Dynamic Shallow Dip-Slip Faulting

    Science.gov (United States)

    Uenishi, K.

    2010-12-01

    In our earlier study (AGU 2005, SSJ 2005, JPGU 2006), using a finite difference technique, we have conducted some numerical simulations related to the source dynamics of shallow dip-slip earthquakes, and suggested the possibility of the existence of corner waves, i.e., shear waves that carry concentrated kinematic energy and generate extremely strong particle motions on the hanging wall of a nonvertical fault. In the numerical models, a dip-slip fault is located in a two-dimensional, monolithic linear elastic half space, and the fault plane dips either vertically or 45 degrees. We have investigated the seismic wave field radiated by crack-like rupture of this straight fault. If the fault rupture, initiated at depth, arrests just below or reaches the free surface, four Rayleigh-type pulses are generated: two propagating along the free surface into the opposite directions to the far field, the other two moving back along the ruptured fault surface (interface) downwards into depth. These downward interface pulses may largely control the stopping phase of the dynamic rupture, and in the case the fault plane is inclined, on the hanging wall the interface pulse and the outward-moving Rayleigh surface pulse interact with each other and the corner wave is induced. On the footwall, the ground motion is dominated simply by the weaker Rayleigh pulse propagating along the free surface because of much smaller interaction between this Rayleigh and the interface pulse. The generation of the downward interface pulses and corner wave may play a crucial role in understanding the effects of the geometrical asymmetry on the strong motion induced by shallow dip-slip faulting, but it has not been well recognized so far, partly because those waves are not expected for a fault that is located and ruptures only at depth. However, the seismological recordings of the 1999 Chi-Chi, Taiwan, the 2004 Niigata-ken Chuetsu, Japan, earthquakes as well as a more recent one in Iwate-Miyagi Inland

  16. Fault creep and strain partitioning in Trinidad-Tobago: Geodetic measurements, models, and origin of creep

    Science.gov (United States)

    Geirsson, Halldór; Weber, John; La Femina, Peter; Latchman, Joan L.; Robertson, Richard; Higgins, Machel; Miller, Keith; Churches, Chris; Shaw, Kenton

    2017-04-01

    We studied active faults in Trinidad and Tobago in the Caribbean-South American (CA-SA) transform plate boundary zone using episodic GPS (eGPS) data from 19 sites and continuous GPS (cGPS) data from 8 sites, then modeling these data using a series of simple screw dislocation models. Our best-fit model for interseismic fault slip requires: 12-15 mm/yr of right-lateral movement and very shallow locking (0.2 ± 0.2 km; essentially creep) across the Central Range Fault (CRF); 3.4 +0.3/-0.2 mm/yr across the Soldado Fault in south Trinidad, and 3.5 +0.3/-0.2 mm/yr of dextral shear on fault(s) between Trinidad and Tobago. The upper-crustal faults in Trinidad show very little seismicity (1954-current from local network) and do not appear to have generated significant historic earthquakes. However, paleoseismic studies indicate that the CRF ruptured between 2710 and 500 yr. B.P. and thus it was recently capable of storing elastic strain. Together, these data suggest spatial and/or temporal fault segmentation on the CRF. The CRF marks a physical boundary between rocks associated with thermogenically generated petroleum and overpressured fluids in south and central Trinidad, from rocks containing only biogenic gas to the north, and a long string of active mud volcanoes align with the trace of the Soldado Fault along Trinidad's south coast. Fluid (oil and gas) overpressure may thus cause the CRF fault creep that we observe and the lack of seismicity, as an alternative or addition to weak mineral phases on the fault.

  17. Shear jamming in highly strained granular system without shear banding

    Science.gov (United States)

    Zhao, Yiqiu; Barés, Jonathan; Zheng, Hu; Behringer, Robert

    2016-11-01

    Bi et al. have shown that, if sheared, a granular material can jam even if its packing fraction (ϕ) is lower than the critical isotropic jamming point ϕJ. They have introduced a new critical packing fraction value ϕS such that for ϕSjams if sheared. Nevertheless, the value of ϕS as a function of the shear profile or the strain necessary to observe jamming remain poorly understood because of the experimental complexity to access high strain without shear band. We present a novel 2D periodic shear apparatus made of 21 independent, aligned and mirrored glass rings. Each ring can be moved independently which permits us to impose any desired shear profile. The circular geometry allows access to any strain value. The forces between grains are measured using reflective photoelasticity. By performing different shear profiles for different packing fractions we explored the details of jamming diagram including the location of the yield surface. This work is supported by NSF No.DMR1206351, NASA No.NNX15AD38G and W. M. Keck Foundation.

  18. Shock Waves Trigger Fault Weakening in Calcite-bearing Rocks During Earthquakes

    Science.gov (United States)

    Spagnuolo, E.; Plumper, O.; Violay, M.; Cavallo, A.; Di Toro, G.

    2014-12-01

    The weakening mechanism of calcite-bearing rocks is still poorly understood though many major earthquakes stroke within carbonate sequences. Insights derive from the laboratory: in experiments performed on calcite-bearing gouges, up to 90% drop in friction is associated to grain size reduction to the nanoscale and the formation of crystal-plastic microstructures suggesting the activation of debated weakening mechanisms (e.g., grain boundary sliding and diffusion creep; nanopowder lubrication). Whatever the case, it is unclear how nanoparticles form and what their role is at the initiation of sliding. To investigate initial fault instability we sheared with a rotary shear apparatus SHIVA pre-cut ring-shaped solid cylinders (50/30 mm ext/int diameter) of Carrara marble (99.9% CaCO3). Rock cylinders were slid for few millimetres(0, 1.5 mm and 5mm) at accelerations (6.5 ms-2) and normal stresses (10 MPa) approaching seismic deformation conditions. Initial slip (nano-fracturing have occurred preserving the grain shape (pulverization) and (3) reaction products attributabl