WorldWideScience

Sample records for rapid drug discovery

  1. An In Vivo Platform for Rapid High-Throughput Antitubercular Drug Discovery

    Directory of Open Access Journals (Sweden)

    Kevin Takaki

    2012-07-01

    Full Text Available Treatment of tuberculosis, like other infectious diseases, is increasingly hindered by the emergence of drug resistance. Drug discovery efforts would be facilitated by facile screening tools that incorporate the complexities of human disease. Mycobacterium marinum-infected zebrafish larvae recapitulate key aspects of tuberculosis pathogenesis and drug treatment. Here, we develop a model for rapid in vivo drug screening using fluorescence-based methods for serial quantitative assessment of drug efficacy and toxicity. We provide proof-of-concept that both traditional bacterial-targeting antitubercular drugs and newly identified host-targeting drugs would be discovered through the use of this model. We demonstrate the model’s utility for the identification of synergistic combinations of antibacterial drugs and demonstrate synergy between bacterial- and host-targeting compounds. Thus, the platform can be used to identify new antibacterial agents and entirely new classes of drugs that thwart infection by targeting host pathways. The methods developed here should be widely applicable to small-molecule screens for other infectious and noninfectious diseases.

  2. Application of lean manufacturing concepts to drug discovery: rapid analogue library synthesis.

    Science.gov (United States)

    Weller, Harold N; Nirschl, David S; Petrillo, Edward W; Poss, Michael A; Andres, Charles J; Cavallaro, Cullen L; Echols, Martin M; Grant-Young, Katherine A; Houston, John G; Miller, Arthur V; Swann, R Thomas

    2006-01-01

    The application of parallel synthesis to lead optimization programs in drug discovery has been an ongoing challenge since the first reports of library synthesis. A number of approaches to the application of parallel array synthesis to lead optimization have been attempted over the years, ranging from widespread deployment by (and support of) individual medicinal chemists to centralization as a service by an expert core team. This manuscript describes our experience with the latter approach, which was undertaken as part of a larger initiative to optimize drug discovery. In particular, we highlight how concepts taken from the manufacturing sector can be applied to drug discovery and parallel synthesis to improve the timeliness and thus the impact of arrays on drug discovery.

  3. A high throughput solubility assay for drug discovery using microscale shake-flask and rapid UHPLC-UV-CLND quantification.

    Science.gov (United States)

    Lin, Baiwei; Pease, Joseph H

    2016-04-15

    The rapid determination of key physical properties of lead compounds is essential to the drug discovery process. Solubility is one of the most important properties since good solubility is needed not only for obtaining reliable in vitro and in vivo assay results in early discovery but also to ensure sufficient concentration of the drug being in circulation to get the desired therapeutic exposure at the target of interest. In order for medicinal chemists to tune solubility of lead compounds, a rapid assay is needed to provide solubility data that is accurate and predictive so that it can be reliably used for designing the next generation of compounds with improved properties. To ensure speed and data quality, we developed a high throughput solubility assay that utilizes a single calibration UHPLC-UV-CLND method and a 24h shake-flask format for rapid quantification. A set of 46 model compounds was used to demonstrate that the method is accurate, reproducible and predictive. Here we present development of the assay, including evaluation of quantification method, filtration membranes, equilibrium times, DMSO concentrations, and buffer conditions. A comparison of thermodynamic solubility results to our high throughput 24h shake-flask solubility assay results is also discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Directory of Open Access Journals (Sweden)

    Yuri Pevzner

    2015-08-01

    Full Text Available Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.

  5. Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Directory of Open Access Journals (Sweden)

    Yuri Pevzner

    2014-05-01

    Full Text Available Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.

  6. Academic Drug Discovery Centres

    DEFF Research Database (Denmark)

    Kirkegaard, Henriette Schultz; Valentin, Finn

    2014-01-01

    Academic drug discovery centres (ADDCs) are seen as one of the solutions to fill the innovation gap in early drug discovery, which has proven challenging for previous organisational models. Prior studies of ADDCs have identified the need to analyse them from the angle of their economic and organi......Academic drug discovery centres (ADDCs) are seen as one of the solutions to fill the innovation gap in early drug discovery, which has proven challenging for previous organisational models. Prior studies of ADDCs have identified the need to analyse them from the angle of their economic...

  7. Antibody informatics for drug discovery

    DEFF Research Database (Denmark)

    Shirai, Hiroki; Prades, Catherine; Vita, Randi

    2014-01-01

    to the antibody science in every project in antibody drug discovery. Recent experimental technologies allow for the rapid generation of large-scale data on antibody sequences, affinity, potency, structures, and biological functions; this should accelerate drug discovery research. Therefore, a robust bioinformatic...... infrastructure for these large data sets has become necessary. In this article, we first identify and discuss the typical obstacles faced during the antibody drug discovery process. We then summarize the current status of three sub-fields of antibody informatics as follows: (i) recent progress in technologies...... for antibody rational design using computational approaches to affinity and stability improvement, as well as ab-initio and homology-based antibody modeling; (ii) resources for antibody sequences, structures, and immune epitopes and open drug discovery resources for development of antibody drugs; and (iii...

  8. Marine natural product libraries for high-throughput screening and rapid drug discovery.

    Science.gov (United States)

    Bugni, Tim S; Richards, Burt; Bhoite, Leen; Cimbora, Daniel; Harper, Mary Kay; Ireland, Chris M

    2008-06-01

    There is a need for diverse molecular libraries for phenotype-selective and high-throughput screening. To make marine natural products (MNPs) more amenable to newer screening paradigms and shorten discovery time lines, we have created an MNP library characterized online using MS. To test the potential of the library, we screened a subset of the library in a phenotype-selective screen to identify compounds that inhibited the growth of BRCA2-deficient cells.

  9. Fast mouse PK (Fast PK): a rapid screening method to increase pharmacokinetic throughput in pre-clinical drug discovery.

    Science.gov (United States)

    Reddy, Jitendar; Madishetti, Sreedhar; Vachaspati, Prakash R

    2012-09-29

    We describe a rapid screening methodology for performing pharmacokinetic (PK) studies in mice called Fast PK. In this Fast PK method, two mice were used per compound and four blood samples were collected from each mouse. The sampling times were staggered (sparse sampling) between the two mice, thus yielding complete PK profile in singlicate across eight time points. The plasma PK parameters from Fast PK were comparable to that obtained from conventional PK methods. This method has been used to rapidly screen compounds in the early stages of drug discovery and about 600 compounds have been profiled in the last 3 years, which has resulted in reduction in the usage of mice by 800 per year in compliance with the 3R principles of animal ethics. In addition, this Fast PK method can also help in evaluating the PK parameters from the same set of animals used in safety/toxicology/efficacy studies without the need for satellite groups. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. An historical overview of drug discovery.

    Science.gov (United States)

    Pina, Ana Sofia; Hussain, Abid; Roque, Ana Cecília A

    2009-01-01

    Drug Discovery in modern times straddles three main periods. The first notable period can be traced to the nineteenth century where the basis of drug discovery relied on the serendipity of the medicinal chemists. The second period commenced around the early twentieth century when new drug structures were found, which contributed for a new era of antibiotics discovery. Based on these known structures, and with the development of powerful new techniques such as molecular modelling, combinatorial chemistry, and automated high-throughput screening, rapid advances occurred in drug discovery towards the end of the century. The period also was revolutionized by the emergence of recombinant DNA technology, where it became possible to develop potential drugs target candidates. With all the expansion of new technologies and the onset of the "Omics" revolution in the twenty-first century, the third period has kick-started with an increase in biopharmaceutical drugs approved by FDA/EMEA for therapeutic use.

  11. Optogenetics enlightens neuroscience drug discovery.

    Science.gov (United States)

    Song, Chenchen; Knöpfel, Thomas

    2016-02-01

    Optogenetics - the use of light and genetics to manipulate and monitor the activities of defined cell populations - has already had a transformative impact on basic neuroscience research. Now, the conceptual and methodological advances associated with optogenetic approaches are providing fresh momentum to neuroscience drug discovery, particularly in areas that are stalled on the concept of 'fixing the brain chemistry'. Optogenetics is beginning to translate and transit into drug discovery in several key domains, including target discovery, high-throughput screening and novel therapeutic approaches to disease states. Here, we discuss the exciting potential of optogenetic technologies to transform neuroscience drug discovery.

  12. Computational methods in drug discovery

    Directory of Open Access Journals (Sweden)

    Sumudu P. Leelananda

    2016-12-01

    Full Text Available The process for drug discovery and development is challenging, time consuming and expensive. Computer-aided drug discovery (CADD tools can act as a virtual shortcut, assisting in the expedition of this long process and potentially reducing the cost of research and development. Today CADD has become an effective and indispensable tool in therapeutic development. The human genome project has made available a substantial amount of sequence data that can be used in various drug discovery projects. Additionally, increasing knowledge of biological structures, as well as increasing computer power have made it possible to use computational methods effectively in various phases of the drug discovery and development pipeline. The importance of in silico tools is greater than ever before and has advanced pharmaceutical research. Here we present an overview of computational methods used in different facets of drug discovery and highlight some of the recent successes. In this review, both structure-based and ligand-based drug discovery methods are discussed. Advances in virtual high-throughput screening, protein structure prediction methods, protein–ligand docking, pharmacophore modeling and QSAR techniques are reviewed.

  13. Natural products in drug discovery.

    Science.gov (United States)

    Harvey, Alan L

    2008-10-01

    Natural products have been the single most productive source of leads for the development of drugs. Over a 100 new products are in clinical development, particularly as anti-cancer agents and anti-infectives. Application of molecular biological techniques is increasing the availability of novel compounds that can be conveniently produced in bacteria or yeasts, and combinatorial chemistry approaches are being based on natural product scaffolds to create screening libraries that closely resemble drug-like compounds. Various screening approaches are being developed to improve the ease with which natural products can be used in drug discovery campaigns, and data mining and virtual screening techniques are also being applied to databases of natural products. It is hoped that the more efficient and effective application of natural products will improve the drug discovery process.

  14. Translational medicine and drug discovery

    National Research Council Canada - National Science Library

    Littman, Bruce H; Krishna, Rajesh

    2011-01-01

    ..., and examples of their application to real-life drug discovery and development. The latest thinking is presented by researchers from many of the world's leading pharmaceutical companies, including Pfizer, Merck, Eli Lilly, Abbott, and Novartis, as well as from academic institutions and public- private partnerships that support translational research...

  15. Computational approaches for drug discovery.

    Science.gov (United States)

    Hung, Che-Lun; Chen, Chi-Chun

    2014-09-01

    Cellular proteins are the mediators of multiple organism functions being involved in physiological mechanisms and disease. By discovering lead compounds that affect the function of target proteins, the target diseases or physiological mechanisms can be modulated. Based on knowledge of the ligand-receptor interaction, the chemical structures of leads can be modified to improve efficacy, selectivity and reduce side effects. One rational drug design technology, which enables drug discovery based on knowledge of target structures, functional properties and mechanisms, is computer-aided drug design (CADD). The application of CADD can be cost-effective using experiments to compare predicted and actual drug activity, the results from which can used iteratively to improve compound properties. The two major CADD-based approaches are structure-based drug design, where protein structures are required, and ligand-based drug design, where ligand and ligand activities can be used to design compounds interacting with the protein structure. Approaches in structure-based drug design include docking, de novo design, fragment-based drug discovery and structure-based pharmacophore modeling. Approaches in ligand-based drug design include quantitative structure-affinity relationship and pharmacophore modeling based on ligand properties. Based on whether the structure of the receptor and its interaction with the ligand are known, different design strategies can be seed. After lead compounds are generated, the rule of five can be used to assess whether these have drug-like properties. Several quality validation methods, such as cost function analysis, Fisher's cross-validation analysis and goodness of hit test, can be used to estimate the metrics of different drug design strategies. To further improve CADD performance, multi-computers and graphics processing units may be applied to reduce costs. © 2014 Wiley Periodicals, Inc.

  16. Academic drug discovery: Current status and prospects

    OpenAIRE

    Jeremy R. Everett

    2015-01-01

    Introduction.\\ud The contraction in pharmaceutical drug discovery operations in the past decade has been counter-balanced by a significant rise in the number of academic drug discovery groups. In addition, pharmaceutical companies that used to operate in completely independent, vertically-integrated operations for drug discovery are now collaborating more with each other, and with academic groups. We are in a new era of drug discovery.\\ud \\ud Areas Covered. \\ud This review provides an overvie...

  17. Exploring the epigenetic drug discovery landscape.

    Science.gov (United States)

    Prachayasittikul, Veda; Prathipati, Philip; Pratiwi, Reny; Phanus-Umporn, Chuleeporn; Malik, Aijaz Ahmad; Schaduangrat, Nalini; Seenprachawong, Kanokwan; Wongchitrat, Prapimpun; Supokawej, Aungkura; Prachayasittikul, Virapong; Wikberg, Jarl E S; Nantasenamat, Chanin

    2017-04-01

    Epigenetic modification has been implicated in a wide range of diseases and the ability to modulate such systems is a lucrative therapeutic strategy in drug discovery. Areas covered: This article focuses on the concepts and drug discovery aspects of epigenomics. This is achieved by providing a survey of the following concepts: (i) factors influencing epigenetics, (ii) diseases arising from epigenetics, (iii) epigenetic enzymes as druggable targets along with coverage of existing FDA-approved drugs and pharmacological agents, and (iv) drug repurposing/repositioning as a means for rapid discovery of pharmacological agents targeting epigenetics. Expert opinion: Despite significant interests in targeting epigenetic modifiers as a therapeutic route, certain classes of target proteins are heavily studied while some are less characterized. Thus, such orphan target proteins are not yet druggable with limited report of active modulators. Current research points towards a great future with novel drugs directed to the many complex multifactorial diseases of humans, which are still often poorly understood and difficult to treat.

  18. Current Tools for Norovirus Drug Discovery

    Science.gov (United States)

    Weerasekara, Sahani; Prior, Allan M.; Hua, Duy H.

    2016-01-01

    Introduction Rapid transmission of norovirus often occurs due to its low infectious dosage, high genetic diversity and its short incubation time. The viruses cause acute gastroenteritis and may lead to death. Presently, no effective vaccine or selective drugs accepted by the United States Food and Drug Administration (FDA) are available for the treatment of norovirus. Advances in the development of norovirus replicon cell lines, GII.4-Sydney HuNoV strain human B cells, and murine and gnotobiotic pig norovirus models have facilitated the discovery of effective small molecule inhibitors in vitro and in vivo. Areas covered This review gives a brief discussion of the biology and replication of norovirus before highlighting the discovery of anti-norovirus molecules. The article coverage includes: an overview of the current state of norovirus drug discovery, the targeting of the norovirus life cycle, the inhibition of structural and nonstructural proteins of norovirus such as proteases and polymerase, and the blockage of virus entry into host cells. Finally, anti-norovirus drugs in the clinical development stage are described. Expert opinion The current approach for the counteraction of norovirus focuses on the inhibition of viral RNA polymerase, norovirus 3C-like protease and the structural proteins VP1 as well as the blockade of norovirus entry. Broad-spectrum anti-norovirus molecules, based on the inhibition of 3C-like protease, have been developed. Other host factors and ways to overcome the development of resistance through mutation are also being examined. A dual approach in targeting viral and host factors may lead to an effective counteraction of norovirus infection. Current successes in developing norovirus replicon harboring cells and norovirus infected human cells, as well as murine norovirus models and other animal models such as piglets have facilitated the discovery of effective drugs and helped our understanding of its mechanism of action. PMID:27108716

  19. Drug discovery from marine microbes.

    Science.gov (United States)

    Gerwick, William H; Fenner, Amanda M

    2013-05-01

    The marine environment has been a source of more than 20,000 inspirational natural products discovered over the past 50 years. From these efforts, 9 approved drugs and 12 current clinical trial agents have been discovered, either as natural products or as molecules inspired from the natural product structure. To a significant degree, these have come from collections of marine invertebrates largely obtained from shallow-water tropical ecosystems. However, there is a growing recognition that marine invertebrates are oftentimes populated with enormous quantities of "associated" or symbiotic microorganisms and that microorganisms are the true metabolic sources of these most valuable of marine natural products. Also, because of the inherently multidisciplinary nature of this field, a high degree of innovation is characteristic of marine natural product drug discovery efforts.

  20. Reverse ethnopharmacology and drug discovery.

    Science.gov (United States)

    Leonti, Marco; Stafford, Gary I; Cero, Maja Dal; Cabras, Stefano; Castellanos, Maria Eugenia; Casu, Laura; Weckerle, Caroline S

    2017-02-23

    Ethnopharmacological investigations of traditional medicines have made significant contributions to plant-derived drugs, as well as the advancement of pharmacology. Drug discovery from medicinal flora is more complex than generally acknowledged because plants are applied for different therapeutic indications within and across cultures. Therefore we propose the concept of "reverse ethnopharmacology" and compare biomedical uses of plant taxa with their ethnomedicinal and popular uses and test the effect of these on the probability of finding biomedical and specifically anticancer drugs. For this analysis we use data on taxonomy and medical indications of plant derived biomedical drugs, clinical trial, and preclinical trial drug candidates published by Zhu et al. (2011) and compare their therapeutic indications with their ethnomedicinal and popular uses as reported in the NAPRALERT® database. Specifically, we test for increase or decrease of the probability of finding anticancer drugs based on ethnomedicinal and popular reports with Bayesian logistic regression analyses. Anticancer therapy resulted as the most frequent biomedicinal indication of the therapeutics derived from the 225 drug producing higher plant taxa and showed an association with ethnomedicinal and popular uses in women's medicine, which was also the most important popular use-category. Popular remedies for dysmenorrhoea, and uses as emmenagogues, abortifacients and contraceptives showed a positive effect on the probability of finding anticancer drugs. Another positive effect on the probability of discovering anticancer therapeutics was estimated for popular herbal drugs associated with the therapy of viral and bacterial infections, while the highest effect was found for popular remedies used to treat cancer symptoms. However, this latter effect seems to be influenced by the feedback loop and divulgence of biomedical knowledge on the popular level. We introduce the concept of reverse ethnopharmacology

  1. West Nile Virus Drug Discovery

    Directory of Open Access Journals (Sweden)

    Siew Pheng Lim

    2013-12-01

    Full Text Available The outbreak of West Nile virus (WNV in 1999 in the USA, and its continued spread throughout the Americas, parts of Europe, the Middle East and Africa, underscored the need for WNV antiviral development. Here, we review the current status of WNV drug discovery. A number of approaches have been used to search for inhibitors of WNV, including viral infection-based screening, enzyme-based screening, structure-based virtual screening, structure-based rationale design, and antibody-based therapy. These efforts have yielded inhibitors of viral or cellular factors that are critical for viral replication. For small molecule inhibitors, no promising preclinical candidate has been developed; most of the inhibitors could not even be advanced to the stage of hit-to-lead optimization due to their poor drug-like properties. However, several inhibitors developed for related members of the family Flaviviridae, such as dengue virus and hepatitis C virus, exhibited cross-inhibition of WNV, suggesting the possibility to re-purpose these antivirals for WNV treatment. Most promisingly, therapeutic antibodies have shown excellent efficacy in mouse model; one of such antibodies has been advanced into clinical trial. The knowledge accumulated during the past fifteen years has provided better rationale for the ongoing WNV and other flavivirus antiviral development.

  2. Lysophospholipid receptors in drug discovery.

    Science.gov (United States)

    Kihara, Yasuyuki; Mizuno, Hirotaka; Chun, Jerold

    2015-05-01

    Lysophospholipids (LPs), including lysophosphatidic acid (LPA), sphingosine 1-phospate (S1P), lysophosphatidylinositol (LPI), and lysophosphatidylserine (LysoPS), are bioactive lipids that transduce signals through their specific cell-surface G protein-coupled receptors, LPA1-6, S1P1-5, LPI1, and LysoPS1-3, respectively. These LPs and their receptors have been implicated in both physiological and pathophysiological processes such as autoimmune diseases, neurodegenerative diseases, fibrosis, pain, cancer, inflammation, metabolic syndrome, bone formation, fertility, organismal development, and other effects on most organ systems. Advances in the LP receptor field have enabled the development of novel small molecules targeting LP receptors for several diseases. Most notably, fingolimod (FTY720, Gilenya, Novartis), an S1P receptor modulator, became the first FDA-approved medicine as an orally bioavailable drug for treating relapsing forms of multiple sclerosis. This success is currently being followed by multiple, mechanistically related compounds targeting S1P receptor subtypes, which are in various stages of clinical development. In addition, an LPA1 antagonist, BMS-986020 (Bristol-Myers Squibb), is in Phase 2 clinical development for treating idiopathic pulmonary fibrosis, as a distinct compound, SAR100842 (Sanofi) for the treatment of systemic sclerosis and related fibrotic diseases. This review summarizes the current state of drug discovery in the LP receptor field. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Academic drug discovery: current status and prospects.

    Science.gov (United States)

    Everett, Jeremy R

    2015-01-01

    The contraction in pharmaceutical drug discovery operations in the past decade has been counter-balanced by a significant rise in the number of academic drug discovery groups. In addition, pharmaceutical companies that used to operate in completely independent, vertically integrated operations for drug discovery, are now collaborating more with each other, and with academic groups. We are in a new era of drug discovery. This review provides an overview of the current status of academic drug discovery groups, their achievements and the challenges they face, together with perspectives on ways to achieve improved outcomes. Academic groups have made important contributions to drug discovery, from its earliest days and continue to do so today. However, modern drug discovery and development is exceedingly complex, and has high failure rates, principally because human biology is complex and poorly understood. Academic drug discovery groups need to play to their strengths and not just copy what has gone before. However, there are lessons to be learnt from the experiences of the industrial drug discoverers and four areas are highlighted for attention: i) increased validation of targets; ii) elimination of false hits from high throughput screening (HTS); iii) increasing the quality of molecular probes; and iv) investing in a high-quality informatics infrastructure.

  4. Applying genetics in inflammatory disease drug discovery

    DEFF Research Database (Denmark)

    Folkersen, Lasse; Biswas, Shameek; Frederiksen, Klaus Stensgaard

    2015-01-01

    , with several notable exceptions, the journey from a small-effect genetic variant to a functional drug has proven arduous, and few examples of actual contributions to drug discovery exist. Here, we discuss novel approaches of overcoming this hurdle by using instead public genetics resources as a pragmatic guide...... alongside existing drug discovery methods. Our aim is to evaluate human genetic confidence as a rationale for drug target selection....

  5. The role of serendipity in drug discovery.

    Science.gov (United States)

    Ban, Thomas A

    2006-01-01

    Serendipity is one of the many factors that may contribute to drug discovery. It has played a role in the discovery of prototype psychotropic drugs that led to modern pharmacological treatment in psychiatry. It has also played a role in the discovery of several drugs that have had an impact on the development of psychiatry. "Serendipity" in drug discovery implies the finding of one thing while looking for something else. This was the case in six of the twelve serendipitous discoveries reviewed in this paper, i.e., aniline purple, penicillin, lysergic acid diethylamide, meprobamate, chlorpromazine, and imipramine. In the case of three drugs, i.e., potassium bromide, chloral hydrate, and lithium, the discovery was serendipitous because an utterly false rationale led to correct empirical results; and in case of two others, i.e., iproniazid and sildenafil, because valuable indications were found for these drugs which were not initially those sought The discovery of one of the twelve drugs, chlordiazepoxide, was sheer luck.

  6. Drug discovery and developments in developing countries ...

    African Journals Online (AJOL)

    Poor economies and technological capabilities, lack of human resources and good management in these countries are the major constraints to progress in research and development work for new drugs. This paper discusses these major bottlenecks in drug discovery and development and suggests the way forward.

  7. Virtual drug discovery: beyond computational chemistry?

    Science.gov (United States)

    Gilardoni, Francois; Arvanites, Anthony C

    2010-02-01

    This editorial looks at how a fully integrated structure that performs all aspects in the drug discovery process, under one company, is slowly disappearing. The steps in the drug discovery paradigm have been slowly increasing toward virtuality or outsourcing at various phases of product development in a company's candidate pipeline. Each step in the process, such as target identification and validation and medicinal chemistry, can be managed by scientific teams within a 'virtual' company. Pharmaceutical companies to biotechnology start-ups have been quick in adopting this new research and development business strategy in order to gain flexibility, access the best technologies and technical expertise, and decrease product developmental costs. In today's financial climate, the term virtual drug discovery has an organizational meaning. It represents the next evolutionary step in outsourcing drug development.

  8. Systems Pharmacology in Small Molecular Drug Discovery

    Directory of Open Access Journals (Sweden)

    Wei Zhou

    2016-02-01

    Full Text Available Drug discovery is a risky, costly and time-consuming process depending on multidisciplinary methods to create safe and effective medicines. Although considerable progress has been made by high-throughput screening methods in drug design, the cost of developing contemporary approved drugs did not match that in the past decade. The major reason is the late-stage clinical failures in Phases II and III because of the complicated interactions between drug-specific, human body and environmental aspects affecting the safety and efficacy of a drug. There is a growing hope that systems-level consideration may provide a new perspective to overcome such current difficulties of drug discovery and development. The systems pharmacology method emerged as a holistic approach and has attracted more and more attention recently. The applications of systems pharmacology not only provide the pharmacodynamic evaluation and target identification of drug molecules, but also give a systems-level of understanding the interaction mechanism between drugs and complex disease. Therefore, the present review is an attempt to introduce how holistic systems pharmacology that integrated in silico ADME/T (i.e., absorption, distribution, metabolism, excretion and toxicity, target fishing and network pharmacology facilitates the discovery of small molecular drugs at the system level.

  9. Systems Pharmacology in Small Molecular Drug Discovery

    Science.gov (United States)

    Zhou, Wei; Wang, Yonghua; Lu, Aiping; Zhang, Ge

    2016-01-01

    Drug discovery is a risky, costly and time-consuming process depending on multidisciplinary methods to create safe and effective medicines. Although considerable progress has been made by high-throughput screening methods in drug design, the cost of developing contemporary approved drugs did not match that in the past decade. The major reason is the late-stage clinical failures in Phases II and III because of the complicated interactions between drug-specific, human body and environmental aspects affecting the safety and efficacy of a drug. There is a growing hope that systems-level consideration may provide a new perspective to overcome such current difficulties of drug discovery and development. The systems pharmacology method emerged as a holistic approach and has attracted more and more attention recently. The applications of systems pharmacology not only provide the pharmacodynamic evaluation and target identification of drug molecules, but also give a systems-level of understanding the interaction mechanism between drugs and complex disease. Therefore, the present review is an attempt to introduce how holistic systems pharmacology that integrated in silico ADME/T (i.e., absorption, distribution, metabolism, excretion and toxicity), target fishing and network pharmacology facilitates the discovery of small molecular drugs at the system level. PMID:26901192

  10. Open PHACTS: semantic interoperability for drug discovery.

    Science.gov (United States)

    Williams, Antony J; Harland, Lee; Groth, Paul; Pettifer, Stephen; Chichester, Christine; Willighagen, Egon L; Evelo, Chris T; Blomberg, Niklas; Ecker, Gerhard; Goble, Carole; Mons, Barend

    2012-11-01

    Open PHACTS is a public-private partnership between academia, publishers, small and medium sized enterprises and pharmaceutical companies. The goal of the project is to deliver and sustain an 'open pharmacological space' using and enhancing state-of-the-art semantic web standards and technologies. It is focused on practical and robust applications to solve specific questions in drug discovery research. OPS is intended to facilitate improvements in drug discovery in academia and industry and to support open innovation and in-house non-public drug discovery research. This paper lays out the challenges and how the Open PHACTS project is hoping to address these challenges technically and socially. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Drug discovery in prostate cancer mouse models.

    Science.gov (United States)

    Valkenburg, Kenneth C; Pienta, Kenneth J

    2015-01-01

    The mouse is an important, though imperfect, organism with which to model human disease and to discover and test novel drugs in a preclinical setting. Many experimental strategies have been used to discover new biological and molecular targets in the mouse, with the hopes of translating these discoveries into novel drugs to treat prostate cancer in humans. Modeling prostate cancer in the mouse, however, has been challenging, and often drugs that work in mice have failed in human trials. The authors discuss the similarities and differences between mice and men; the types of mouse models that exist to model prostate cancer; practical questions one must ask when using a mouse as a model; and potential reasons that drugs do not often translate to humans. They also discuss the current value in using mouse models for drug discovery to treat prostate cancer and what needs are still unmet in field. With proper planning and following practical guidelines by the researcher, the mouse is a powerful experimental tool. The field lacks genetically engineered metastatic models, and xenograft models do not allow for the study of the immune system during the metastatic process. There remain several important limitations to discovering and testing novel drugs in mice for eventual human use, but these can often be overcome. Overall, mouse modeling is an essential part of prostate cancer research and drug discovery. Emerging technologies and better and ever-increasing forms of communication are moving the field in a hopeful direction.

  12. Drug Discovery from Marine Microbes

    OpenAIRE

    Gerwick, William H.; Fenner, Amanda M.

    2012-01-01

    The marine environment has been a source of more than 20,000 inspirational natural products discovered over the past 50 years. From these efforts, 9 approved drugs and 12 current clinical trial agents have been discovered, either as natural products or molecules inspired from the natural product structure. To a significant degree, these have come from collections of marine invertebrates largely obtained from shallow water tropical ecosystems. However, there is a growing recognition that marin...

  13. Boesenbergia rotunda: From Ethnomedicine to Drug Discovery

    Directory of Open Access Journals (Sweden)

    Tan Eng-Chong

    2012-01-01

    Full Text Available Boesenbergia rotunda is a herb from the Boesenbergia genera under the Zingiberaceae family. B. rotunda is widely found in Asian countries where it is commonly used as a food ingredient and in ethnomedicinal preparations. The popularity of its ethnomedicinal usage has drawn the attention of scientists worldwide to further investigate its medicinal properties. Advancement in drug design and discovery research has led to the development of synthetic drugs from B. rotunda metabolites via bioinformatics and medicinal chemistry studies. Furthermore, with the advent of genomics, transcriptomics, proteomics, and metabolomics, new insights on the biosynthetic pathways of B. rotunda metabolites can be elucidated, enabling researchers to predict the potential bioactive compounds responsible for the medicinal properties of the plant. The vast biological activities exhibited by the compounds obtained from B. rotunda warrant further investigation through studies such as drug discovery, polypharmacology, and drug delivery using nanotechnology.

  14. From crystal to compound: structure-based antimalarial drug discovery.

    Science.gov (United States)

    Drinkwater, Nyssa; McGowan, Sheena

    2014-08-01

    Despite a century of control and eradication campaigns, malaria remains one of the world's most devastating diseases. Our once-powerful therapeutic weapons are losing the war against the Plasmodium parasite, whose ability to rapidly develop and spread drug resistance hamper past and present malaria-control efforts. Finding new and effective treatments for malaria is now a top global health priority, fuelling an increase in funding and promoting open-source collaborations between researchers and pharmaceutical consortia around the world. The result of this is rapid advances in drug discovery approaches and technologies, with three major methods for antimalarial drug development emerging: (i) chemistry-based, (ii) target-based, and (iii) cell-based. Common to all three of these approaches is the unique ability of structural biology to inform and accelerate drug development. Where possible, SBDD (structure-based drug discovery) is a foundation for antimalarial drug development programmes, and has been invaluable to the development of a number of current pre-clinical and clinical candidates. However, as we expand our understanding of the malarial life cycle and mechanisms of resistance development, SBDD as a field must continue to evolve in order to develop compounds that adhere to the ideal characteristics for novel antimalarial therapeutics and to avoid high attrition rates pre- and post-clinic. In the present review, we aim to examine the contribution that SBDD has made to current antimalarial drug development efforts, covering hit discovery to lead optimization and prevention of parasite resistance. Finally, the potential for structural biology, particularly high-throughput structural genomics programmes, to identify future targets for drug discovery are discussed.

  15. Comment on "drug discovery: turning the titanic".

    Science.gov (United States)

    Lesterhuis, W Joost; Bosco, Anthony; Lake, Richard A

    2014-03-26

    The pathobiology-based approach to research and development has been the dominant paradigm for successful drug discovery over the last decades. We propose that the molecular and cellular events that govern a resolving, rather than an evolving, disease may reveal new druggable pathways.

  16. Cancer drug discovery: recent innovative approaches to tumor modeling.

    Science.gov (United States)

    Lovitt, Carrie J; Shelper, Todd B; Avery, Vicky M

    2016-09-01

    Cell culture models have been at the heart of anti-cancer drug discovery programs for over half a century. Advancements in cell culture techniques have seen the rapid evolution of more complex in vitro cell culture models investigated for use in drug discovery. Three-dimensional (3D) cell culture research has become a strong focal point, as this technique permits the recapitulation of the tumor microenvironment. Biologically relevant 3D cellular models have demonstrated significant promise in advancing cancer drug discovery, and will continue to play an increasing role in the future. In this review, recent advances in 3D cell culture techniques and their application in tumor modeling and anti-cancer drug discovery programs are discussed. The topics include selection of cancer cells, 3D cell culture assays (associated endpoint measurements and analysis), 3D microfluidic systems and 3D bio-printing. Although advanced cancer cell culture models and techniques are becoming commonplace in many research groups, the use of these approaches has yet to be fully embraced in anti-cancer drug applications. Furthermore, limitations associated with analyzing information-rich biological data remain unaddressed.

  17. Pathways to new drug discovery in neuropsychiatry

    Directory of Open Access Journals (Sweden)

    Berk Michael

    2012-11-01

    Full Text Available Abstract There is currently a crisis in drug discovery for neuropsychiatric disorders, with a profound, yet unexpected drought in new drug development across the spectrum. In this commentary, the sources of this dilemma and potential avenues to redress the issue are explored. These include a critical review of diagnostic issues and of selection of participants for clinical trials, and the mechanisms for identifying new drugs and new drug targets. Historically, the vast majority of agents have been discovered serendipitously or have been modifications of existing agents. Serendipitous discoveries, based on astute clinical observation or data mining, remain a valid option, as is illustrated by the suggestion in the paper by Wahlqvist and colleagues that treatment with sulfonylurea and metformin reduces the risk of affective disorder. However, the identification of agents targeting disorder-related biomarkers is currently proving particularly fruitful. There is considerable hope for genetics as a purist, pathophysiologically valid pathway to drug discovery; however, it is unclear whether the science is ready to meet this promise. Fruitful paradigms will require a break from the orthodoxy, and creativity and risk may well be the fingerprints of success. See related article http://www.biomedcentral.com/1741-7015/10/150

  18. Current mathematical models for cancer drug discovery.

    Science.gov (United States)

    Carrara, Letizia; Lavezzi, Silvia Maria; Borella, Elisa; De Nicolao, Giuseppe; Magni, Paolo; Poggesi, Italo

    2017-08-01

    Pharmacometric models represent the most comprehensive approaches for extracting, summarizing and integrating information obtained in the often sparse, limited, and less-than-optimally designed experiments performed in the early phases of oncology drug discovery. Whilst empirical methodologies may be enough for screening and ranking candidate drugs, modeling approaches are needed for optimizing and making economically viable the learn-confirm cycles within an oncology research program and anticipating the dose regimens to be investigated in the subsequent clinical development. Areas covered: Papers appearing in the literature of approximately the last decade reporting modeling approaches applicable to anticancer drug discovery have been listed and commented. Papers were selected based on the interest in the proposed methodology or in its application. Expert opinion: The number of modeling approaches used in the discovery of anticancer drugs is consistently increasing and new models are developed based on the current directions of research of new candidate drugs. These approaches have contributed to a better understanding of new oncological targets and have allowed for the exploitation of the relatively sparse information generated by preclinical experiments. In addition, they are used in translational approaches for guiding and supporting the choice of dosing regimens in early clinical development.

  19. Biomimicry as a basis for drug discovery.

    Science.gov (United States)

    Kolb, V M

    1998-01-01

    Selected works are discussed which clearly demonstrate that mimicking various aspects of the process by which natural products evolved is becoming a powerful tool in contemporary drug discovery. Natural products are an established and rich source of drugs. The term "natural product" is often used synonymously with "secondary metabolite." Knowledge of genetics and molecular evolution helps us understand how biosynthesis of many classes of secondary metabolites evolved. One proposed hypothesis is termed "inventive evolution." It invokes duplication of genes, and mutation of the gene copies, among other genetic events. The modified duplicate genes, per se or in conjunction with other genetic events, may give rise to new enzymes, which, in turn, may generate new products, some of which may be selected for. Steps of the inventive evolution can be mimicked in several ways for purpose of drug discovery. For example, libraries of chemical compounds of any imaginable structure may be produced by combinatorial synthesis. Out of these libraries new active compounds can be selected. In another example, genetic system can be manipulated to produce modified natural products ("unnatural natural products"), from which new drugs can be selected. In some instances, similar natural products turn up in species that are not direct descendants of each other. This is presumably due to a horizontal gene transfer. The mechanism of this inter-species gene transfer can be mimicked in therapeutic gene delivery. Mimicking specifics or principles of chemical evolution including experimental and test-tube evolution also provides leads for new drug discovery.

  20. Flow Cytometry: Impact On Early Drug Discovery

    Science.gov (United States)

    Edwards, Bruce S.; Sklar, Larry A.

    2015-01-01

    Summary Modern flow cytometers can make optical measurements of 10 or more parameters per cell at tens-of-thousands of cells per second and over five orders of magnitude dynamic range. Although flow cytometry is used in most drug discovery stages, “sip-and-spit” sampling technology has restricted it to low sample throughput applications. The advent of HyperCyt sampling technology has recently made possible primary screening applications in which tens-of-thousands of compounds are analyzed per day. Target-multiplexing methodologies in combination with extended multi-parameter analyses enable profiling of lead candidates early in the discovery process, when the greatest numbers of candidates are available for evaluation. The ability to sample small volumes with negligible waste reduces reagent costs, compound usage and consumption of cells. Improved compound library formatting strategies can further extend primary screening opportunities when samples are scarce. Dozens of targets have been screened in 384- and 1536-well assay formats, predominantly in academic screening lab settings. In concert with commercial platform evolution and trending drug discovery strategies, HyperCyt-based systems are now finding their way into mainstream screening labs. Recent advances in flow-based imaging, mass spectrometry and parallel sample processing promise dramatically expanded single cell profiling capabilities to bolster systems level approaches to drug discovery. PMID:25805180

  1. Antibacterial drug discovery in the resistance era.

    Science.gov (United States)

    Brown, Eric D; Wright, Gerard D

    2016-01-21

    The looming antibiotic-resistance crisis has penetrated the consciousness of clinicians, researchers, policymakers, politicians and the public at large. The evolution and widespread distribution of antibiotic-resistance elements in bacterial pathogens has made diseases that were once easily treatable deadly again. Unfortunately, accompanying the rise in global resistance is a failure in antibacterial drug discovery. Lessons from the history of antibiotic discovery and fresh understanding of antibiotic action and the cell biology of microorganisms have the potential to deliver twenty-first century medicines that are able to control infection in the resistance era.

  2. Open Drug Discovery Toolkit (ODDT): a new open-source player in the drug discovery field.

    Science.gov (United States)

    Wójcikowski, Maciej; Zielenkiewicz, Piotr; Siedlecki, Pawel

    2015-01-01

    There has been huge progress in the open cheminformatics field in both methods and software development. Unfortunately, there has been little effort to unite those methods and software into one package. We here describe the Open Drug Discovery Toolkit (ODDT), which aims to fulfill the need for comprehensive and open source drug discovery software. The Open Drug Discovery Toolkit was developed as a free and open source tool for both computer aided drug discovery (CADD) developers and researchers. ODDT reimplements many state-of-the-art methods, such as machine learning scoring functions (RF-Score and NNScore) and wraps other external software to ease the process of developing CADD pipelines. ODDT is an out-of-the-box solution designed to be easily customizable and extensible. Therefore, users are strongly encouraged to extend it and develop new methods. We here present three use cases for ODDT in common tasks in computer-aided drug discovery. Open Drug Discovery Toolkit is released on a permissive 3-clause BSD license for both academic and industrial use. ODDT's source code, additional examples and documentation are available on GitHub (https://github.com/oddt/oddt).

  3. Anticancer drug discovery from the marine environment.

    Science.gov (United States)

    Nastrucci, Candida; Cesario, Alfredo; Russo, Patrizia

    2012-05-01

    Discovery, isolation, biochemical/pharmacological characterization, pre-clinical and clinical trials of drugs derived from the marine environment are continuously developing and increasing. One of the most promising area is cancer therapy. Currently, there are two drugs approved by the Food and Drug Administration (FDA) and European Agency for the Evaluation of Medicinal Products (EMA) in cancer treatment, namely Cytarabine (Cytosar-U1®) and Eribulin (E7389 or Halaven®). Trabectedin (ET-743 or Yondelis1®), approved by EMA, is completing key Phase III studies in the U.S. for final approval. It was estimated that 118 marine natural products (MNPs) are currently in preclinical trials, 22 MNPs in clinical trials and 3 MNPs on the market. The characteristics and selectivity profiles of new drugs for cancer therapy, as well as drugs disclosed in related patent applications, will be the focus of this review, providing a brief and ready to use reference.

  4. Open source drug discovery - a limited tutorial.

    Science.gov (United States)

    Robertson, Murray N; Ylioja, Paul M; Williamson, Alice E; Woelfle, Michael; Robins, Michael; Badiola, Katrina A; Willis, Paul; Olliaro, Piero; Wells, Timothy N C; Todd, Matthew H

    2014-01-01

    Open science is a new concept for the practice of experimental laboratory-based research, such as drug discovery. The authors have recently gained experience in how to run such projects and here describe some straightforward steps others may wish to take towards more openness in their own research programmes. Existing and inexpensive online tools can solve many challenges, while some psychological barriers to the free sharing of all data and ideas are more substantial.

  5. Advanced tools in marine natural drug discovery.

    Science.gov (United States)

    Zhang, Guojian; Li, Jing; Zhu, Tianjiao; Gu, Qianqun; Li, Dehai

    2016-12-01

    Marine natural products (MNPs) remain promising drug sources with several marine-derived drugs having been successfully approved. Nevertheless, it is never a smooth sailing to seek bioactive compounds from marine environments, during which many challenges are need to be faced to, for example, discovering unique marine resources, reviving unculturable organisms outside the marine environment, distinguishing novel compounds from the known ones, and disclosing the function of MNPs and optimizing their pharmacological use. Herein we review some advanced techniques and methodologies that can be employed to deal with above challenges with the intent of inspiring the forthcoming efforts in MNPs discovery pipelines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Novel drug discovery for Chagas disease.

    Science.gov (United States)

    Moraes, Carolina B; Franco, Caio H

    2016-01-01

    Chagas disease is a chronic infection associated with long-term morbidity. Increased funding and advocacy for drug discovery for neglected diseases have prompted the introduction of several important technological advances, and Chagas disease is among the neglected conditions that has mostly benefited from technological developments. A number of screening campaigns, and the development of new and improved in vitro and in vivo assays, has led to advances in the field of drug discovery. This review highlights the major advances in Chagas disease drug screening, and how these are being used not only to discover novel chemical entities and drug candidates, but also increase our knowledge about the disease and the parasite. Different methodologies used for compound screening and prioritization are discussed, as well as novel techniques for the investigation of these targets. The molecular mechanism of action is also discussed. Technological advances have been executed with scientific rigour for the development of new in vitro cell-based assays and in vivo animal models, to bring about novel and better drugs for Chagas disease, as well as to increase our understanding of what are the necessary properties for a compound to be successful in the clinic. The gained knowledge, combined with new exciting approaches toward target deconvolution, will help identifying new targets for Chagas disease chemotherapy in the future.

  7. Computer-Aided Drug Discovery in Plant Pathology

    Directory of Open Access Journals (Sweden)

    Gnanendra Shanmugam

    2017-12-01

    Full Text Available Control of plant diseases is largely dependent on use of agrochemicals. However, there are widening gaps between our knowledge on plant diseases gained from genetic/mechanistic studies and rapid translation of the knowledge into target-oriented development of effective agrochemicals. Here we propose that the time is ripe for computer-aided drug discovery/design (CADD in molecular plant pathology. CADD has played a pivotal role in development of medically important molecules over the last three decades. Now, explosive increase in information on genome sequences and three dimensional structures of biological molecules, in combination with advances in computational and informational technologies, opens up exciting possibilities for application of CADD in discovery and development of agrochemicals. In this review, we outline two categories of the drug discovery strategies: structure- and ligand-based CADD, and relevant computational approaches that are being employed in modern drug discovery. In order to help readers to dive into CADD, we explain concepts of homology modelling, molecular docking, virtual screening, and de novo ligand design in structure-based CADD, and pharmacophore modelling, ligand-based virtual screening, quantitative structure activity relationship modelling and de novo ligand design for ligand-based CADD. We also provide the important resources available to carry out CADD. Finally, we present a case study showing how CADD approach can be implemented in reality for identification of potent chemical compounds against the important plant pathogens, Pseudomonas syringae and Colletotrichum gloeosporioides.

  8. ACFIS: a web server for fragment-based drug discovery

    Science.gov (United States)

    Hao, Ge-Fei; Jiang, Wen; Ye, Yuan-Nong; Wu, Feng-Xu; Zhu, Xiao-Lei; Guo, Feng-Biao; Yang, Guang-Fu

    2016-01-01

    In order to foster innovation and improve the effectiveness of drug discovery, there is a considerable interest in exploring unknown ‘chemical space’ to identify new bioactive compounds with novel and diverse scaffolds. Hence, fragment-based drug discovery (FBDD) was developed rapidly due to its advanced expansive search for ‘chemical space’, which can lead to a higher hit rate and ligand efficiency (LE). However, computational screening of fragments is always hampered by the promiscuous binding model. In this study, we developed a new web server Auto Core Fragment in silico Screening (ACFIS). It includes three computational modules, PARA_GEN, CORE_GEN and CAND_GEN. ACFIS can generate core fragment structure from the active molecule using fragment deconstruction analysis and perform in silico screening by growing fragments to the junction of core fragment structure. An integrated energy calculation rapidly identifies which fragments fit the binding site of a protein. We constructed a simple interface to enable users to view top-ranking molecules in 2D and the binding mode in 3D for further experimental exploration. This makes the ACFIS a highly valuable tool for drug discovery. The ACFIS web server is free and open to all users at http://chemyang.ccnu.edu.cn/ccb/server/ACFIS/. PMID:27150808

  9. A Historical Overview of Natural Products in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Daniel A. Dias

    2012-04-01

    Full Text Available Historically, natural products have been used since ancient times and in folklore for the treatment of many diseases and illnesses. Classical natural product chemistry methodologies enabled a vast array of bioactive secondary metabolites from terrestrial and marine sources to be discovered. Many of these natural products have gone on to become current drug candidates. This brief review aims to highlight historically significant bioactive marine and terrestrial natural products, their use in folklore and dereplication techniques to rapidly facilitate their discovery. Furthermore a discussion of how natural product chemistry has resulted in the identification of many drug candidates; the application of advanced hyphenated spectroscopic techniques to aid in their discovery, the future of natural product chemistry and finally adopting metabolomic profiling and dereplication approaches for the comprehensive study of natural product extracts will be discussed.

  10. A historical overview of natural products in drug discovery.

    Science.gov (United States)

    Dias, Daniel A; Urban, Sylvia; Roessner, Ute

    2012-04-16

    Historically, natural products have been used since ancient times and in folklore for the treatment of many diseases and illnesses. Classical natural product chemistry methodologies enabled a vast array of bioactive secondary metabolites from terrestrial and marine sources to be discovered. Many of these natural products have gone on to become current drug candidates. This brief review aims to highlight historically significant bioactive marine and terrestrial natural products, their use in folklore and dereplication techniques to rapidly facilitate their discovery. Furthermore a discussion of how natural product chemistry has resulted in the identification of many drug candidates; the application of advanced hyphenated spectroscopic techniques to aid in their discovery, the future of natural product chemistry and finally adopting metabolomic profiling and dereplication approaches for the comprehensive study of natural product extracts will be discussed.

  11. Synthetic biology for pharmaceutical drug discovery

    Directory of Open Access Journals (Sweden)

    Trosset JY

    2015-12-01

    Full Text Available Jean-Yves Trosset,1 Pablo Carbonell2,3 1Bioinformation Research Laboratory, Sup’Biotech, Villejuif, France; 2Faculty of Life Sciences, SYNBIOCHEM Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK; 3Department of Experimental and Health Sciences (DCEXS, Research Programme on Biomedical Informatics (GRIB, Hospital del Mar Medical Research Institute (IMIM, Universitat Pompeu Fabra (UPF, Barcelona, Spain Abstract: Synthetic biology (SB is an emerging discipline, which is slowly reorienting the field of drug discovery. For thousands of years, living organisms such as plants were the major source of human medicines. The difficulty in resynthesizing natural products, however, often turned pharmaceutical industries away from this rich source for human medicine. More recently, progress on transformation through genetic manipulation of biosynthetic units in microorganisms has opened the possibility of in-depth exploration of the large chemical space of natural products derivatives. Success of SB in drug synthesis culminated with the bioproduction of artemisinin by microorganisms, a tour de force in protein and metabolic engineering. Today, synthetic cells are not only used as biofactories but also used as cell-based screening platforms for both target-based and phenotypic-based approaches. Engineered genetic circuits in synthetic cells are also used to decipher disease mechanisms or drug mechanism of actions and to study cell–cell communication within bacteria consortia. This review presents latest developments of SB in the field of drug discovery, including some challenging issues such as drug resistance and drug toxicity. Keywords: metabolic engineering, plant synthetic biology, natural products, synthetic quorum sensing, drug resistance

  12. New paradigms in GPCR drug discovery.

    Science.gov (United States)

    Jacobson, Kenneth A

    2015-12-15

    G protein-coupled receptors (GPCRs) remain a major domain of pharmaceutical discovery. The identification of GPCR lead compounds and their optimization are now structure-based, thanks to advances in X-ray crystallography, molecular modeling, protein engineering and biophysical techniques. In silico screening provides useful hit molecules. New pharmacological approaches to tuning the pleotropic action of GPCRs include: allosteric modulators, biased ligands, GPCR heterodimer-targeted compounds, manipulation of polypharmacology, receptor antibodies and tailoring of drug molecules to fit GPCR pharmacogenomics. Measurements of kinetics and drug efficacy are factors influencing clinical success. With the exception of inhibitors of GPCR kinases, targeting of intracellular GPCR signaling or receptor cycling for therapeutic purposes remains a futuristic concept. New assay approaches are more efficient and multidimensional: cell-based, label-free, fluorescence-based assays, and biosensors. Tailoring GPCR drugs to a patient's genetic background is now being considered. Chemoinformatic tools can predict ADME-tox properties. New imaging technology visualizes drug action in vivo. Thus, there is reason to be optimistic that new technology for GPCR ligand discovery will help reverse the current narrowing of the pharmaceutical pipeline. Published by Elsevier Inc.

  13. Meeting report on the Alzheimer?s Drug Discovery Foundation 14th International Conference on Alzheimer?s Drug Discovery

    OpenAIRE

    Friedman, Lauren G; Price, Katherine; Lane, Rachel F; Carman, Aaron J; Dacks, Penny A; Shineman, Diana W; Fillit, Howard M

    2014-01-01

    The Alzheimer?s Drug Discovery Foundation?s 14th International Conference on Alzheimer?s Drug Discovery was held on 9 and 10 September in Jersey City, NJ, USA. This annual meeting highlights novel therapeutic approaches supported by the Alzheimer?s Drug Discovery Foundation in development for Alzheimer?s disease and related dementias.

  14. CNS Anticancer Drug Discovery and Development Conference White Paper

    OpenAIRE

    Victor A Levin; Tonge, Peter J.; Gallo, James M.; Birtwistle, Marc R.; Dar, Arvin C.; Iavarone, Antonio; Paddison, Patrick J.; Heffron, Timothy P.; Elmquist, William F.; Lachowicz, Jean E.; Johnson, Ted W.; White, Forest M.; Sul, Joohee; Smith, Quentin R.; Shen, Wang

    2015-01-01

    Following the first CNS Anticancer Drug Discovery and Development Conference, the speakers from the first 4 sessions and organizers of the conference created this White Paper hoping to stimulate more and better CNS anticancer drug discovery and development. The first part of the White Paper reviews, comments, and, in some cases, expands on the 4 session areas critical to new drug development: pharmacological challenges, recent drug approaches, drug targets and discovery, and clinical paths. F...

  15. Natural Products as Leads in Schistosome Drug Discovery

    Directory of Open Access Journals (Sweden)

    Bruno J. Neves

    2015-01-01

    Full Text Available Schistosomiasis is a neglected parasitic tropical disease that claims around 200,000 human lives every year. Praziquantel (PZQ, the only drug recommended by the World Health Organization for the treatment and control of human schistosomiasis, is now facing the threat of drug resistance, indicating the urgent need for new effective compounds to treat this disease. Therefore, globally, there is renewed interest in natural products (NPs as a starting point for drug discovery and development for schistosomiasis. Recent advances in genomics, proteomics, bioinformatics, and cheminformatics have brought about unprecedented opportunities for the rapid and more cost-effective discovery of new bioactive compounds against neglected tropical diseases. This review highlights the main contributions that NP drug discovery and development have made in the treatment of schistosomiasis and it discusses how integration with virtual screening (VS strategies may contribute to accelerating the development of new schistosomidal leads, especially through the identification of unexplored, biologically active chemical scaffolds and structural optimization of NPs with previously established activity.

  16. Integrative oncoproteomics strategies for anticancer drug discovery.

    Science.gov (United States)

    Liu, Rui; Wang, Kui; Yuan, Kefei; Wei, Yuquan; Huang, Canhua

    2010-06-01

    The most significant advantage of proteomic technology is its ability to profile a whole proteome or subproteome in a single experiment, so that the protein alterations corresponding to a pathological or biochemical condition at a given time can be annotated in an integrated way. In oncology and pharmacology these technologies led to the identification of biological markers, which may provide the starting point for the identification of diagnostic markers and therapeutic targets; thus greatly broadening our knowledge and accelerating our path in medical research. In combination with other new technologies in immunology and chemistry, proteomics shows significant potential to make considerable contribution to the drug development process. This article provides a brief overview of the integrative oncoproteomics strategies for anticancer drug discovery, including comparative proteomics, signaling proteomics, membrane proteomics, immunoproteomics and chemistry-based functional proteomics.

  17. Financing drug discovery via dynamic leverage.

    Science.gov (United States)

    Montazerhodjat, Vahid; Frishkopf, John J; Lo, Andrew W

    2016-03-01

    We extend the megafund concept for funding drug discovery to enable dynamic leverage in which the portfolio of candidate therapeutic assets is predominantly financed initially by equity, and debt is introduced gradually as assets mature and begin generating cash flows. Leverage is adjusted so as to maintain an approximately constant level of default risk throughout the life of the fund. Numerical simulations show that applying dynamic leverage to a small portfolio of orphan drug candidates can boost the return on equity almost twofold compared with securitization with a static capital structure. Dynamic leverage can also add significant value to comparable all-equity-financed portfolios, enhancing the return on equity without jeopardizing debt performance or increasing risk to equity investors. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Fluorous Drug-Affinity Proteomics for Cancer Drug Discovery

    OpenAIRE

    Herzberg, Benjamin

    2015-01-01

    Identifying the intracellular targets of small molecules – target ID – is a major problem in chemical biology with broad application to the discovery and development of novel therapies. Traditional target ID studies have relied on drug-affinity chromatography to separate biological mixtures combined with mass spectrometry shotgun sequencing for peptide identification. This workflow is limited, however, by low specificity for unique peptides, high demand for cellular material, unknown depth of...

  19. [Modification of natural products for drug discovery].

    Science.gov (United States)

    Guo, Zong-Ru

    2012-02-01

    Pharmacological activity and druggability are two essential factors for drug innovation. The pharmacological activity is definitely indispensable, and the druggability is destined by physico-chemical, biochemical, pharmacokinetic and safety properties of drugs. As secondary metabolites of animals, plants, microbes and marine organisms, natural products play key roles in their physiological homeostasis, self-defense, and propagation. Natural products are a rich source of therapeutic drugs. As compared to synthetic molecules, natural products are unusually featured by structural diversity and complexity more stereogenic centers and fewer nitrogen or halogen atoms. Naturally active substances usually are good lead compounds, but unlikely meet the demands for druggability. Therefore, it is necessary to modify and optimize these structural phenotypes. Structural modification of natural products is intent to (1) realize total synthesis ready for industrialization, (2) protect environment and resources, (3) perform chemical manipulation according to the molecular size and complexity of natural products, (4) acquire novel structures through structure-activity relationship analysis, pharmacophore definition, and scaffold hopping, and (5) eliminate unnecessary chiral centers while retain the bioactive configuration and conformation. The strategy for structural modification is to increase potency and selectivity, improve physico-chemical, biochemical and pharmacokinetic properties, eliminate or reduce side effects, and attain intellectual properties. This review elucidates the essence of natural products-based drug discovery with some successful examples.

  20. Structural Genomics and Drug Discovery for Infectious Diseases

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, W.F.

    2010-09-03

    The application of structural genomics methods and approaches to proteins from organisms causing infectious diseases is making available the three dimensional structures of many proteins that are potential drug targets and laying the groundwork for structure aided drug discovery efforts. There are a number of structural genomics projects with a focus on pathogens that have been initiated worldwide. The Center for Structural Genomics of Infectious Diseases (CSGID) was recently established to apply state-of-the-art high throughput structural biology technologies to the characterization of proteins from the National Institute for Allergy and Infectious Diseases (NIAID) category A-C pathogens and organisms causing emerging, or re-emerging infectious diseases. The target selection process emphasizes potential biomedical benefits. Selected proteins include known drug targets and their homologs, essential enzymes, virulence factors and vaccine candidates. The Center also provides a structure determination service for the infectious disease scientific community. The ultimate goal is to generate a library of structures that are available to the scientific community and can serve as a starting point for further research and structure aided drug discovery for infectious diseases. To achieve this goal, the CSGID will determine protein crystal structures of 400 proteins and protein-ligand complexes using proven, rapid, highly integrated, and cost-effective methods for such determination, primarily by X-ray crystallography. High throughput crystallographic structure determination is greatly aided by frequent, convenient access to high-performance beamlines at third-generation synchrotron X-ray sources.

  1. Structural genomics and drug discovery for infectious diseases.

    Science.gov (United States)

    Anderson, W F

    2009-11-01

    The application of structural genomics methods and approaches to proteins from organisms causing infectious diseases is making available the three dimensional structures of many proteins that are potential drug targets and laying the groundwork for structure aided drug discovery efforts. There are a number of structural genomics projects with a focus on pathogens that have been initiated worldwide. The Center for Structural Genomics of Infectious Diseases (CSGID) was recently established to apply state-of-the-art high throughput structural biology technologies to the characterization of proteins from the National Institute for Allergy and Infectious Diseases (NIAID) category A-C pathogens and organisms causing emerging, or re-emerging infectious diseases. The target selection process emphasizes potential biomedical benefits. Selected proteins include known drug targets and their homologs, essential enzymes, virulence factors and vaccine candidates. The Center also provides a structure determination service for the infectious disease scientific community. The ultimate goal is to generate a library of structures that are available to the scientific community and can serve as a starting point for further research and structure aided drug discovery for infectious diseases. To achieve this goal, the CSGID will determine protein crystal structures of 400 proteins and protein-ligand complexes using proven, rapid, highly integrated, and cost-effective methods for such determination, primarily by X-ray crystallography. High throughput crystallographic structure determination is greatly aided by frequent, convenient access to high-performance beamlines at third-generation synchrotron X-ray sources.

  2. Modern advances in heterocyclic chemistry in drug discovery.

    Science.gov (United States)

    Taylor, Alexandria P; Robinson, Ralph P; Fobian, Yvette M; Blakemore, David C; Jones, Lyn H; Fadeyi, Olugbeminiyi

    2016-07-12

    New advances in synthetic methodologies that allow rapid access to a wide variety of functionalized heterocyclic compounds are of critical importance to the medicinal chemist as it provides the ability to expand the available drug-like chemical space and drive more efficient delivery of drug discovery programs. Furthermore, the development of robust synthetic routes that can readily generate bulk quantities of a desired compound help to accelerate the drug development process. While established synthetic methodologies are commonly utilized during the course of a drug discovery program, the development of innovative heterocyclic syntheses that allow for different bond forming strategies are having a significant impact in the pharmaceutical industry. This review will focus on recent applications of new methodologies in C-H activation, photoredox chemistry, borrowing hydrogen catalysis, multicomponent reactions, regio- and stereoselective syntheses, as well as other new, innovative general syntheses for the formation and functionalization of heterocycles that have helped drive project delivery. Additionally, the importance and value of collaborations between industry and academia in shaping the development of innovative synthetic approaches to functionalized heterocycles that are of greatest interest to the pharmaceutical industry will be highlighted.

  3. Drug discovery in the era of Facebook--new tools for scientific networking.

    Science.gov (United States)

    Bailey, David S; Zanders, Edward D

    2008-10-01

    Social networking is beginning to make an impact on the drug discovery process. While bioinformatics and chemoinformatics underpin research at a scientific level, rapid communication between individual researchers across continents now allows the global exchange of ideas, tools and technologies. Networking at this level of speed and reach is quite a recent phenomenon. It facilitates the development of common interests, accelerates technology transfer and increases cooperative and competitive behaviour. In this review, we critically evaluate different web based networking approaches as effective resources for the drug discovery scientist. We also ask whether social networking sites will evolve into serious and credible resources for the drug discovery community.

  4. Translational paradigms in pharmacology and drug discovery.

    Science.gov (United States)

    Mullane, Kevin; Winquist, Raymond J; Williams, Michael

    2014-01-01

    The translational sciences represent the core element in enabling and utilizing the output from the biomedical sciences and to improving drug discovery metrics by reducing the attrition rate as compounds move from preclinical research to clinical proof of concept. Key to understanding the basis of disease causality and to developing therapeutics is an ability to accurately diagnose the disease and to identify and develop safe and effective therapeutics for its treatment. The former requires validated biomarkers and the latter, qualified targets. Progress has been hampered by semantic issues, specifically those that define the end product, and by scientific issues that include data reliability, an overt reductionistic cultural focus and a lack of hierarchically integrated data gathering and systematic analysis. A necessary framework for these activities is represented by the discipline of pharmacology, efforts and training in which require recognition and revitalization. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Rethinking leadership in drug discovery projects.

    Science.gov (United States)

    Schneider, Andreas; Erden, Zeynep; Widmer, Hans; Koch, Guido; Billy, Christine; von Krogh, Georg

    2012-12-01

    Great efforts have been dedicated to rebuilding the engine of pharmaceutical R&D. However, one potential area of improvement has received limited attention in the literature and in practice: namely, leadership. In this article, we enrich the traditional views of leadership, which consider leadership a responsibility of a few centrally placed authorities, with the concept of distributed leadership. Distributed leadership reflects a group-based capability driven by everyday activities and the key scientific questions at hand. We identify three leadership challenges faced by R&D teams that could be addressed by implementing distributed leadership. Furthermore, we provide some suggestions as to how to foster distributed leadership in drug discovery projects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Collaboration for rare disease drug discovery research.

    Science.gov (United States)

    Litterman, Nadia K; Rhee, Michele; Swinney, David C; Ekins, Sean

    2014-01-01

    Rare disease research has reached a tipping point, with the confluence of scientific and technologic developments that if appropriately harnessed, could lead to key breakthroughs and treatments for this set of devastating disorders. Industry-wide trends have revealed that the traditional drug discovery research and development (R&D) model is no longer viable, and drug companies are evolving their approach. Rather than only pursue blockbuster therapeutics for heterogeneous, common diseases, drug companies have increasingly begun to shift their focus to rare diseases. In academia, advances in genetics analyses and disease mechanisms have allowed scientific understanding to mature, but the lack of funding and translational capability severely limits the rare disease research that leads to clinical trials. Simultaneously, there is a movement towards increased research collaboration, more data sharing, and heightened engagement and active involvement by patients, advocates, and foundations. The growth in networks and social networking tools presents an opportunity to help reach other patients but also find researchers and build collaborations. The growth of collaborative software that can enable researchers to share their data could also enable rare disease patients and foundations to manage their portfolio of funded projects for developing new therapeutics and suggest drug repurposing opportunities. Still there are many thousands of diseases without treatments and with only fragmented research efforts. We will describe some recent progress in several rare diseases used as examples and propose how collaborations could be facilitated. We propose that the development of a center of excellence that integrates and shares informatics resources for rare diseases sponsored by all of the stakeholders would help foster these initiatives.

  7. Drug Discovery of Host CLK1 Inhibitors for Influenza Treatment

    Directory of Open Access Journals (Sweden)

    Mian Zu

    2015-11-01

    Full Text Available The rapid evolution of influenza virus makes antiviral drugs less effective, which is considered to be a major bottleneck in antiviral therapy. The key proteins in the host cells, which are related with the replication cycle of influenza virus, are regarded as potential drug targets due to their distinct advantage of lack of evolution and drug resistance. Cdc2-like kinase 1 (CLK1 in the host cells is responsible for alternative splicing of the M2 gene of influenza virus during influenza infection and replication. In this study, we carried out baculovirus-mediated expression and purification of CLK1 and established a reliable screening assay for CLK1 inhibitors. After a virtual screening of CLK1 inhibitors was performed, the activities of the selected compounds were evaluated. Finally, several compounds with strong inhibitory activity against CLK1 were discovered and their in vitro anti-influenza virus activities were validated using a cytopathic effect (CPE reduction assay. The assay results showed that clypearin, corilagin, and pinosylvine were the most potential anti-influenza virus compounds as CLK1 inhibitors among the compounds tested. These findings will provide important information for new drug design and development in influenza treatment, and CLK1 may be a potent drug target for anti-influenza drug screening and discovery.

  8. Models and modeling systems in Alzheimer disease drug discovery.

    Science.gov (United States)

    Khachaturian, Zaven S

    2002-01-01

    The rapid pace of neurobiology research has increased the prospects of developing drugs to prevent neurodegenerative disorders. Although the goal of delaying the onset of brain disorders may be within the grasp of modern medicine, there are several critical barriers to progress. Among these is the lack of appropriate models and modeling systems for specific neurodegenerative diseases. Traditionally, in drug discovery, testing, and development, a combination of models is used. These include in vitro, in vivo, transgenic, and other animal models. However, each of these models has limitations. In this article, the author advocates the use of "in silico" modeling systems, which could complement currently available models and enable investigators to simulate alternative strategies to modulate neural function in a dynamic interactive mode. Advances in computer technology, including increasing speed and memory, and ready access to parallel processing systems have made it easier for investigators to develop databases for computer abstractions of neural function and dysfunction and to begin to develop prototypes for use in complex systems modeling environments. Multimodeling systems have been widely used in other areas of science to study emergent behavior of complex systems, such as the impact of atmospheric changes on weather, flight patterns of birds in a flock, and the behavior of traders in a commodities market. Adoption of such approaches should increase understanding of the complexities of signal transduction pathways in neural networks and accelerate the drug discovery process.

  9. Pharmacognosy: Science of natural products in drug discovery.

    Science.gov (United States)

    Orhan, Ilkay Erdogan

    2014-01-01

    Pharmacognosy deals with the natural drugs obtained from organisms such as most plants, microbes, and animals. Up to date, many important drugs including morphine, atropine, galanthamine, etc. have originated from natural sources which continue to be good model molecules in drug discovery. Traditional medicine is also a part of pharmacognosy and most of the third world countries still depend on the use of herbal medicines. Consequently, pharmacognosy always keeps its popularity in pharmaceutical sciences and plays a critical role in drug discovery.

  10. Biodiversity, chemical diversity and drug discovery.

    Science.gov (United States)

    Singh, Sheo B; Pelaez, Fernando

    2008-01-01

    Drugs developed from microbial natural products are in the fundaments of modern pharmaceutical companies. Despite decades of research, all evidences suggest that there must remain many interesting natural molecules with potential therapeutic application yet to be discovered. Any efforts to successfully exploit the chemical diversity of microbial secondary metabolites need to rely heavily on a good understanding of microbial diversity, being the working hypothesis that maximizing biological diversity is the key strategy to maximizing chemical diversity. This chapter presents an overview of diverse topics related with this basic principle, always in relation with the discovery of novel secondary metabolites. The types of microorganisms more frequently used for natural products discovery are briefly reviewed, as well as the differences between terrestrial and marine habitats as sources of bioactive secondary metabolite producers. The concepts about microbial diversity as applied to prokaryotes have evolved in the last years, but recent data suggest the existence of true biogeographic patterns of bacterial diversity, which are also discussed. Special attention is dedicated to the existing strategies to exploit the microbial diversity that is not easy to tackle by conventional approaches. This refers explicitly to the current attempts to isolate and cultivate the previously uncultured bacteria, including the application of high throughput techniques. Likewise, the advances of microbial molecular biology has allowed the development of metagenomic approaches, i.e., the expression of biosynthetic pathways directly obtained from environmental DNA and cloned in a suitable host, as another way of accessing microbial genetic resources. Also, approaches relying on the genomics of metabolite producers are reviewed.

  11. The ubiquitin system, disease, and drug discovery

    Directory of Open Access Journals (Sweden)

    Petroski Matthew D

    2008-10-01

    Full Text Available Abstract The ubiquitin system of protein modification has emerged as a crucial mechanism involved in the regulation of a wide array of cellular processes. As our knowledge of the pathways in this system has grown, so have the ties between the protein ubiquitin and human disease. The power of the ubiquitin system for therapeutic benefit blossomed with the approval of the proteasome inhibitor Velcade in 2003 by the FDA. Current drug discovery activities in the ubiquitin system seek to (i expand the development of new proteasome inhibitors with distinct mechanisms of action and improved bioavailability, and (ii validate new targets. This review summarizes our current understanding of the role of the ubiquitin system in various human diseases ranging from cancer, viral infection and neurodegenerative disorders to muscle wasting, diabetes and inflammation. I provide an introduction to the ubiquitin system, highlight some emerging relationships between the ubiquitin system and disease, and discuss current and future efforts to harness aspects of this potentially powerful system for improving human health. Publication history Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com.

  12. Rapidly separating microneedles for transdermal drug delivery.

    Science.gov (United States)

    Zhu, Dan Dan; Wang, Qi Lei; Liu, Xu Bo; Guo, Xin Dong

    2016-09-01

    The applications of polymer microneedles (MNs) into human skin emerged as an alternative of the conventional hypodermic needles. However, dissolving MNs require many minutes to be dissolved in the skin and typically have difficulty being fully inserted into the skin, which may lead to the low drug delivery efficiency. To address these issues, we introduce rapidly separating MNs that can rapidly deliver drugs into the skin in a minimally invasive way. For the rapidly separating MNs, drug loaded dissolving MNs are mounted on the top of solid MNs, which are made of biodegradable polylactic acid which eliminate the biohazardous waste. These MNs have sufficient mechanical strength to be inserted into the skin with the drug loaded tips fully embedded for subsequent dissolution. Compared with the traditional MNs, rapidly separating MNs achieve over 90% of drug delivery efficiency in 30s while the traditional MNs needs 2min to achieve the same efficiency. With the in vivo test in mice, the micro-holes caused by rapidly separating MNs can heal in 1h, indicating that the rapidly separating MNs are safe for future applications. These results indicate that the design of rapidly separating dissolvable MNs can offer a quick, high efficient, convenient, safe and potentially self-administered method of drug delivery. Polymer microneedles offer an attractive, painless and minimally invasive approach for transdermal drug delivery. However, dissolving microneedles require many minutes to be dissolved in the skin and typically have difficulty being fully inserted into the skin due to the skin deformation, which may lead to the low drug delivery efficiency. In this work we proposed rapidly separating microneedles which can deliver over 90% of drug into the skin in 30s. The in vitro and in vivo results indicate that the new design of these microneedles can offer a quick, high efficient, convenient and safe method for transdermal drug delivery. Copyright © 2016 Acta Materialia Inc

  13. Biased agonism: An emerging paradigm in GPCR drug discovery.

    Science.gov (United States)

    Rankovic, Zoran; Brust, Tarsis F; Bohn, Laura M

    2016-01-15

    G protein coupled receptors have historically been one of the most druggable classes of cellular proteins. The members of this large receptor gene family couple to primary effectors, G proteins, that have built in mechanisms for regeneration and amplification of signaling with each engagement of receptor and ligand, a kinetic event in itself. In recent years GPCRs, have been found to interact with arrestin proteins to initiate signal propagation in the absence of G protein interactions. This pinnacle observation has changed a previously held notion of the linear spectrum of GPCR efficacy and uncovered a new paradigm in GPCR research and drug discovery that relies on multidimensionality of GPCR signaling. Ligands were found that selectively confer activity in one pathway over another, and this phenomenon has been referred to as 'biased agonism' or 'functional selectivity'. While great strides in the understanding of this phenomenon have been made in recent years, two critical questions still dominate the field: How can we rationally design biased GPCR ligands, and ultimately, which physiological responses are due to G protein versus arrestin interactions? This review will discuss the current understanding of some of the key aspects of biased signaling that are related to these questions, including mechanistic insights in the nature of biased signaling and methods for measuring ligand bias, as well as relevant examples of drug discovery applications and medicinal chemistry strategies that highlight the challenges and opportunities in this rapidly evolving field. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The evolving role of chemical synthesis in antibacterial drug discovery.

    Science.gov (United States)

    Wright, Peter M; Seiple, Ian B; Myers, Andrew G

    2014-08-18

    The discovery and implementation of antibiotics in the early twentieth century transformed human health and wellbeing. Chemical synthesis enabled the development of the first antibacterial substances, organoarsenicals and sulfa drugs, but these were soon outshone by a host of more powerful and vastly more complex antibiotics from nature: penicillin, streptomycin, tetracycline, and erythromycin, among others. These primary defences are now significantly less effective as an unavoidable consequence of rapid evolution of resistance within pathogenic bacteria, made worse by widespread misuse of antibiotics. For decades medicinal chemists replenished the arsenal of antibiotics by semisynthetic and to a lesser degree fully synthetic routes, but economic factors have led to a subsidence of this effort, which places society on the precipice of a disaster. We believe that the strategic application of modern chemical synthesis to antibacterial drug discovery must play a critical role if a crisis of global proportions is to be averted. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Serendipity in Cancer Drug Discovery: Rational or Coincidence?

    Science.gov (United States)

    Prasad, Sahdeo; Gupta, Subash C; Aggarwal, Bharat B

    2016-06-01

    Novel drug development leading to final approval by the US FDA can cost as much as two billion dollars. Why the cost of novel drug discovery is so expensive is unclear, but high failure rates at the preclinical and clinical stages are major reasons. Although therapies targeting a given cell signaling pathway or a protein have become prominent in drug discovery, such treatments have done little in preventing or treating any disease alone because most chronic diseases have been found to be multigenic. A review of the discovery of numerous drugs currently being used for various diseases including cancer, diabetes, cardiovascular, pulmonary, and autoimmune diseases indicates that serendipity has played a major role in the discovery. In this review we provide evidence that rational drug discovery and targeted therapies have minimal roles in drug discovery, and that serendipity and coincidence have played and continue to play major roles. The primary focus in this review is on cancer-related drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. CNS Anticancer Drug Discovery and Development: 2016 conference insights.

    Science.gov (United States)

    Levin, Victor A; Abrey, Lauren E; Heffron, Timothy P; Tonge, Peter J; Dar, Arvin C; Weiss, William A; Gallo, James M

    2017-07-18

    CNS Anticancer Drug Discovery and Development November 2016, AZ, USA The 2016 second CNS Anticancer Drug Discovery and Development Conference addressed diverse viewpoints about why new drug discovery/development focused on CNS cancers has been sorely lacking. Despite more than 70,000 individuals in the USA being diagnosed with a primary brain malignancy and 151,669-286,486 suffering from metastatic CNS cancer, in 1999, temozolomide was the last drug approved by the US FDA as an anticancer agent for high-grade gliomas. Among the topics discussed were economic factors and pharmaceutical risk assessments, regulatory constraints and perceptions and the need for improved imaging surrogates of drug activity. Included were modeling tumor growth and drug effects in a medical environment in which direct tumor sampling for biological effects can be problematic, potential new drugs under investigation and targets for drug discovery and development. The long trajectory and diverse impediments to novel drug discovery, and expectation that more than one drug will be needed to adequately inhibit critical intracellular tumor pathways were viewed as major disincentives for most pharmaceutical/biotechnology companies. While there were a few unanimities, one consensus is the need for continued and focused discussion among academic and industry scientists and clinicians to address tumor targets, new drug chemistry, and more time- and cost-efficient clinical trials based on surrogate end points.

  17. HDX-MS guided drug discovery: small molecules and biopharmaceuticals.

    Science.gov (United States)

    Marciano, David P; Dharmarajan, Venkatasubramanian; Griffin, Patrick R

    2014-10-01

    Hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS or DXMS) has emerged as an important tool for the development of small molecule therapeutics and biopharmaceuticals. Central to these advances have been improvements to automated HDX-MS platforms and software that allow for the rapid acquisition and processing of experimental data. Correlating the HDX-MS profile of large numbers of ligands with their functional outputs has enabled the development of structure activity relationships (SAR) and delineation of ligand classes based on functional selectivity. HDX-MS has also been applied to address many of the unique challenges posed by the continued emergence of biopharmaceuticals. Here we review the latest applications of HDX-MS to drug discovery, recent advances in technology and software, and provide perspective on future outlook. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Marinopyrroles: Unique Drug Discoveries Based on Marine Natural Products.

    Science.gov (United States)

    Li, Rongshi

    2016-01-01

    Natural products provide a successful supply of new chemical entities (NCEs) for drug discovery to treat human diseases. Approximately half of the NCEs are based on natural products and their derivatives. Notably, marine natural products, a largely untapped resource, have contributed to drug discovery and development with eight drugs or cosmeceuticals approved by the U.S. Food and Drug Administration and European Medicines Agency, and ten candidates undergoing clinical trials. Collaborative efforts from drug developers, biologists, organic, medicinal, and natural product chemists have elevated drug discoveries to new levels. These efforts are expected to continue to improve the efficiency of natural product-based drugs. Marinopyrroles are examined here as a case study for potential anticancer and antibiotic agents. © 2015 Wiley Periodicals, Inc.

  19. Open source drug discovery--a new paradigm of collaborative research in tuberculosis drug development.

    Science.gov (United States)

    Bhardwaj, Anshu; Scaria, Vinod; Raghava, Gajendra Pal Singh; Lynn, Andrew Michael; Chandra, Nagasuma; Banerjee, Sulagna; Raghunandanan, Muthukurussi V; Pandey, Vikas; Taneja, Bhupesh; Yadav, Jyoti; Dash, Debasis; Bhattacharya, Jaijit; Misra, Amit; Kumar, Anil; Ramachandran, Srinivasan; Thomas, Zakir; Brahmachari, Samir K

    2011-09-01

    It is being realized that the traditional closed-door and market driven approaches for drug discovery may not be the best suited model for the diseases of the developing world such as tuberculosis and malaria, because most patients suffering from these diseases have poor paying capacity. To ensure that new drugs are created for patients suffering from these diseases, it is necessary to formulate an alternate paradigm of drug discovery process. The current model constrained by limitations for collaboration and for sharing of resources with confidentiality hampers the opportunities for bringing expertise from diverse fields. These limitations hinder the possibilities of lowering the cost of drug discovery. The Open Source Drug Discovery project initiated by Council of Scientific and Industrial Research, India has adopted an open source model to power wide participation across geographical borders. Open Source Drug Discovery emphasizes integrative science through collaboration, open-sharing, taking up multi-faceted approaches and accruing benefits from advances on different fronts of new drug discovery. Because the open source model is based on community participation, it has the potential to self-sustain continuous development by generating a storehouse of alternatives towards continued pursuit for new drug discovery. Since the inventions are community generated, the new chemical entities developed by Open Source Drug Discovery will be taken up for clinical trial in a non-exclusive manner by participation of multiple companies with majority funding from Open Source Drug Discovery. This will ensure availability of drugs through a lower cost community driven drug discovery process for diseases afflicting people with poor paying capacity. Hopefully what LINUX the World Wide Web have done for the information technology, Open Source Drug Discovery will do for drug discovery. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Novel opportunities for computational biology and sociology in drug discovery

    Science.gov (United States)

    Yao, Lixia

    2009-01-01

    Drug discovery today is impossible without sophisticated modeling and computation. In this review we touch on previous advances in computational biology and by tracing the steps involved in pharmaceutical development, we explore a range of novel, high value opportunities for computational innovation in modeling the biological process of disease and the social process of drug discovery. These opportunities include text mining for new drug leads, modeling molecular pathways and predicting the efficacy of drug cocktails, analyzing genetic overlap between diseases and predicting alternative drug use. Computation can also be used to model research teams and innovative regions and to estimate the value of academy-industry ties for scientific and human benefit. Attention to these opportunities could promise punctuated advance, and will complement the well-established computational work on which drug discovery currently relies. PMID:19674801

  1. Mycobacterial DNA Replication as a Target for Antituberculosis Drug Discovery.

    Science.gov (United States)

    Płocinska, Renata; Korycka-Machala, Malgorzata; Plocinski, Przemyslaw; Dziadek, Jaroslaw

    2017-06-16

    Mycobacterium tuberculosis (M. tuberculosis), the causative agent of tuberculosis, is a leading infectious disease organism, causing millions of deaths each year. This serious pathogen has been greatly spread worldwide and recent years have observed an increase in the number of multi-drug resistant and totally drug resistant M. tuberculosis strains (WHO report, 2014). The danger of tuberculosis becoming an incurable disease has emphasized the need for the discovery of a new generation of antimicrobial agents. The development of novel alternative medical strategies, new drugs and the search for optimal drug targets are top priority areas of tuberculosis research. Key characteristics of mycobacteria include: slow growth, the ability to transform into a metabolically silent - latent state, intrinsic drug resistance and the relatively rapid development of acquired drug resistance. These factors make finding an ideal antituberculosis drug enormously challenging, even if it is designed to treat drug sensitive tuberculosis strains. A vast majority of canonical antibiotics including antituberculosis agents target bacterial cell wall biosynthesis or DNA/RNA processing. Novel therapeutic approaches are being tested to target mycobacterial cell division, twocomponent regulatory factors, lipid synthesis and the transition between the latent and actively growing states. This review discusses the choice of cellular targets for an antituberculosis therapy, describes putative drug targets evaluated in the recent literature and summarizes potential candidates under clinical and pre-clinical development. We focus on the key cellular process of DNA replication, as a prominent target for future antituberculosis therapy. We describe two main pathways: the biosynthesis of nucleic acids precursors - the nucleotides, and the synthesis of DNA molecules. We summarize data regarding replication associated proteins that are critical for nucleotide synthesis, initiation, unwinding and

  2. New directions for drug discovery in psychiatric disease

    OpenAIRE

    Speeding, Michael; Sebban, Claude; Perret, Laurent

    2002-01-01

    Although many new potential drug targets have been discovered subsequent to the cloning of the human genome and the discovery of most of the relevant receptors, the role of these receptors in psychiatric disease is still not clear. We argue that research into the disease process leading to new animal models that can be transposed to man is critical to drug discovery, and present an example of an animal model for schizophrenia using electroencephalography.

  3. The Critical Role of Organic Chemistry in Drug Discovery.

    Science.gov (United States)

    Rotella, David P

    2016-10-19

    Small molecules remain the backbone for modern drug discovery. They are conceived and synthesized by medicinal chemists, many of whom were originally trained as organic chemists. Support from government and industry to provide training and personnel for continued development of this critical skill set has been declining for many years. This Viewpoint highlights the value of organic chemistry and organic medicinal chemists in the complex journey of drug discovery as a reminder that basic science support must be restored.

  4. A renaissance of neural networks in drug discovery.

    Science.gov (United States)

    Baskin, Igor I; Winkler, David; Tetko, Igor V

    2016-08-01

    Neural networks are becoming a very popular method for solving machine learning and artificial intelligence problems. The variety of neural network types and their application to drug discovery requires expert knowledge to choose the most appropriate approach. In this review, the authors discuss traditional and newly emerging neural network approaches to drug discovery. Their focus is on backpropagation neural networks and their variants, self-organizing maps and associated methods, and a relatively new technique, deep learning. The most important technical issues are discussed including overfitting and its prevention through regularization, ensemble and multitask modeling, model interpretation, and estimation of applicability domain. Different aspects of using neural networks in drug discovery are considered: building structure-activity models with respect to various targets; predicting drug selectivity, toxicity profiles, ADMET and physicochemical properties; characteristics of drug-delivery systems and virtual screening. Neural networks continue to grow in importance for drug discovery. Recent developments in deep learning suggests further improvements may be gained in the analysis of large chemical data sets. It's anticipated that neural networks will be more widely used in drug discovery in the future, and applied in non-traditional areas such as drug delivery systems, biologically compatible materials, and regenerative medicine.

  5. Mathematical modeling for novel cancer drug discovery and development.

    Science.gov (United States)

    Zhang, Ping; Brusic, Vladimir

    2014-10-01

    Mathematical modeling enables: the in silico classification of cancers, the prediction of disease outcomes, optimization of therapy, identification of promising drug targets and prediction of resistance to anticancer drugs. In silico pre-screened drug targets can be validated by a small number of carefully selected experiments. This review discusses the basics of mathematical modeling in cancer drug discovery and development. The topics include in silico discovery of novel molecular drug targets, optimization of immunotherapies, personalized medicine and guiding preclinical and clinical trials. Breast cancer has been used to demonstrate the applications of mathematical modeling in cancer diagnostics, the identification of high-risk population, cancer screening strategies, prediction of tumor growth and guiding cancer treatment. Mathematical models are the key components of the toolkit used in the fight against cancer. The combinatorial complexity of new drugs discovery is enormous, making systematic drug discovery, by experimentation, alone difficult if not impossible. The biggest challenges include seamless integration of growing data, information and knowledge, and making them available for a multiplicity of analyses. Mathematical models are essential for bringing cancer drug discovery into the era of Omics, Big Data and personalized medicine.

  6. Drug discovery and design: medical aspects

    National Research Council Canada - National Science Library

    Matsoukas, J; Mavromoustakos, T

    2002-01-01

    ... the role of membranes in drug activity and formulation. The book continues with the third part that covers the conformational analysis of bioactive drugs. The final part mainly touches aspects of the molecular targets and drug design. This part is actually broader in scope and covers biological aspects of medicinal chemistry. The logic of classificatio...

  7. Structural genomics and drug discovery: all in the family.

    Science.gov (United States)

    Weigelt, Johan; McBroom-Cerajewski, Linda D B; Schapira, Matthieu; Zhao, Yong; Arrowsmith, Cheryl H; Arrowmsmith, Cheryl H

    2008-02-01

    Structural genomics is starting to have an impact on the early stages of drug discovery and target validation through the contribution of new structures of known and potential drug targets, their complexes with ligands and protocols and reagents for additional structural work within a drug discovery program. Recent progress includes structures of targets from bacterial, viral and protozoan human pathogens, and human targets from known or potential druggable protein families such as, kinases, phosphatases, dehydrogenases/oxidoreductases, sulfo-, acetyl- and methyl-transferases, and a number of other key metabolic enzymes. Importantly, many of these structures contained ligands in the active sites, including for example, the first structures of target-bound therapeutics. Structural genomics of protein families combined with ligand discovery holds particular promise for advancing early stage discovery programs.

  8. Epigenetic drug discovery for Alzheimer's disease.

    Science.gov (United States)

    Cacabelos, Ramón; Torrellas, Clara

    2014-09-01

    It is assumed that epigenetic modifications are reversible and could potentially be targeted by pharmacological and dietary interventions. Epigenetic drugs are gaining particular interest as potential candidates for the treatment of Alzheimer's disease (AD). This article covers relevant information from over 50 different epigenetic drugs including: DNA methyltransferase inhibitors; histone deacetylase inhibitors; histone acetyltransferase modulators; histone methyltransferase inhibitors; histone demethylase inhibitors; non-coding RNAs (microRNAs) and dietary regimes. The authors also review the pharmacoepigenomics and the pharmacogenomics of epigenetic drugs. The readers will gain insight into i) the classification of epigenetic drugs; ii) the mechanisms by which these drugs might be useful in AD; iii) the pharmacological properties of selected epigenetic drugs; iv) pharmacoepigenomics and the influence of epigenetic drugs on genes encoding CYP enzymes, transporters and nuclear receptors; and v) the genes associated with the pharmacogenomics of anti-dementia drugs. Epigenetic drugs reverse epigenetic changes in gene expression and might open future avenues in AD therapeutics. Unfortunately, clinical trials with this category of drugs are lacking in AD. The authors highlight the need for pharmacogenetic and pharmacoepigenetic studies to properly evaluate any efficacy and safety issues.

  9. China: current trends in pharmaceutical drug discovery.

    Science.gov (United States)

    Luo, Ying

    2008-04-01

    Pharmaceutical discovery and development is expensive and highly risky, even for multinational corporations. As a developing country with limited financial resources, China has been seeking the most cost-effective means to reach the same level of innovation and productivity as Western countries in the pharmaceutical industry sector. After more than 50 years of building up talent and experience, the time for China to become a powerhouse in pharmaceutical innovation is finally approaching. Returnee scientists to China are one of the reasons for the wave of new discovery and commercialization occurring within the country. The consolidation of local Chinese pharmaceutical companies and foreign investment is also providing an agreeable environment for the evolution of a new generation of biotechnology. The opportunity for pharmaceutical innovation is also being expedited by the entry of multinational companies into the Chinese pharmaceutical market, and by the outsourcing of research from these companies to China.

  10. Revisiting lab-on-a-chip technology for drug discovery.

    Science.gov (United States)

    Neuži, Pavel; Giselbrecht, Stefan; Länge, Kerstin; Huang, Tony Jun; Manz, Andreas

    2012-08-01

    The field of microfluidics or lab-on-a-chip technology aims to improve and extend the possibilities of bioassays, cell biology and biomedical research based on the idea of miniaturization. Microfluidic systems allow more accurate modelling of physiological situations for both fundamental research and drug development, and enable systematic high-volume testing for various aspects of drug discovery. Microfluidic systems are in development that not only model biological environments but also physically mimic biological tissues and organs; such 'organs on a chip' could have an important role in expediting early stages of drug discovery and help reduce reliance on animal testing. This Review highlights the latest lab-on-a-chip technologies for drug discovery and discusses the potential for future developments in this field.

  11. Discovery of novel antigiardiasis drug candidates.

    Science.gov (United States)

    Kulakova, Liudmila; Galkin, Andrey; Chen, Catherine Z; Southall, Noel; Marugan, Juan J; Zheng, Wei; Herzberg, Osnat

    2014-12-01

    Giardiasis is a severe intestinal parasitic disease caused by Giardia lamblia, which inflicts many people in poor regions and is the most common parasitic infection in the United States. Current standard care drugs are associated with undesirable side effects, treatment failures, and an increasing incidence of drug resistance. As follow-up to a high-throughput screening of an approved drug library, which identified compounds lethal to G. lamblia trophozoites, we have determined the minimum lethal concentrations of 28 drugs and advanced 10 of them to in vivo studies in mice. The results were compared to treatment with the standard care drug, metronidazole, in order to identify drugs with equal or better anti-Giardia activities. Three drugs, fumagillin, carbadox, and tioxidazole, were identified. These compounds were also potent against metronidazole-resistant human G. lamblia isolates (assemblages A and B), as determined in in vitro assays. Of these three compounds, fumagillin is currently an orphan drug used within the European Union to treat microsporidiosis in immunocompromised individuals, whereas carbadox and tioxidazole are used in veterinary medicine. A dose-dependent study of fumagillin in a giardiasis mouse model revealed that the effective dose of fumagillin was ∼ 100-fold lower than the metronidazole dose. Therefore, fumagillin may be advanced to further studies as an alternative treatment for giardiasis when metronidazole fails. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  12. Cell and small animal models for phenotypic drug discovery

    Directory of Open Access Journals (Sweden)

    Szabo M

    2017-06-01

    Full Text Available Mihaly Szabo,1 Sara Svensson Akusjärvi,1 Ankur Saxena,1 Jianping Liu,2 Gayathri Chandrasekar,1 Satish S Kitambi1 1Department of Microbiology Tumor, and Cell Biology, 2Department of Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden Abstract: The phenotype-based drug discovery (PDD approach is re-emerging as an alternative platform for drug discovery. This review provides an overview of the various model systems and technical advances in imaging and image analyses that strengthen the PDD platform. In PDD screens, compounds of therapeutic value are identified based on the phenotypic perturbations produced irrespective of target(s or mechanism of action. In this article, examples of phenotypic changes that can be detected and quantified with relative ease in a cell-based setup are discussed. In addition, a higher order of PDD screening setup using small animal models is also explored. As PDD screens integrate physiology and multiple signaling mechanisms during the screening process, the identified hits have higher biomedical applicability. Taken together, this review highlights the advantages gained by adopting a PDD approach in drug discovery. Such a PDD platform can complement target-based systems that are currently in practice to accelerate drug discovery. Keywords: phenotype, screening, PDD, discovery, zebrafish, drug

  13. Fractionated Marine Invertebrate Extract Libraries for Drug Discovery

    Directory of Open Access Journals (Sweden)

    Chris M. Ireland

    2008-06-01

    Full Text Available The high-throughput screening and drug discovery paradigm has necessitated a change in preparation of natural product samples for screening programs. In an attempt to improve the quality of marine natural products samples for screening, several fractionation strategies were investigated. The final method used HP20SS as a solid support to effectively desalt extracts and fractionate the organic components. Additionally, methods to integrate an automated LCMS fractionation approach to shorten discovery time lines have been implemented.

  14. Fractionated Marine Invertebrate Extract Libraries for Drug Discovery

    Science.gov (United States)

    Bugni, Tim S.; Harper, Mary Kay; McCulloch, Malcolm W.B.; Reppart, Jason; Ireland, Chris M.

    2008-01-01

    The high-throughput screening and drug discovery paradigm has necessitated a change in preparation of natural product samples for screening programs. In an attempt to improve the quality of marine natural products samples for screening, several fractionation strategies were investigated. The final method used HP20SS as a solid support to effectively desalt extracts and fractionate the organic components. Additionally, methods to integrate an automated LCMS fractionation approach to shorten discovery time lines have been implemented. PMID:18596663

  15. Benefits of structural genomics for drug discovery research.

    Science.gov (United States)

    Grabowski, Marek; Chruszcz, Maksymilian; Zimmerman, Matthew D; Kirillova, Olga; Minor, Wladek

    2009-11-01

    While three dimensional structures have long been used to search for new drug targets, only a fraction of new drugs coming to the market has been developed with the use of a structure-based drug discovery approach. However, the recent years have brought not only an avalanche of new macromolecular structures, but also significant advances in the protein structure determination methodology only now making their way into structure-based drug discovery. In this paper, we review recent developments resulting from the Structural Genomics (SG) programs, focusing on the methods and results most likely to improve our understanding of the molecular foundation of human diseases. SG programs have been around for almost a decade, and in that time, have contributed a significant part of the structural coverage of both the genomes of pathogens causing infectious diseases and structurally uncharacterized biological processes in general. Perhaps most importantly, SG programs have developed new methodology at all steps of the structure determination process, not only to determine new structures highly efficiently, but also to screen protein/ligand interactions. We describe the methodologies, experience and technologies developed by SG, which range from improvements to cloning protocols to improved procedures for crystallographic structure solution that may be applied in "traditional" structural biology laboratories particularly those performing drug discovery. We also discuss the conditions that must be met to convert the present high-throughput structure determination pipeline into a high-output structure-based drug discovery system.

  16. The JAK kinases: not just another kinase drug discovery target.

    Science.gov (United States)

    Wilks, Andrew F

    2008-08-01

    There are four members of the JAK family of protein tyrosine kinases (PTKs) in the human genome. Since their discovery in 1989, great strides have been made in the understanding of their role in normal intracellular signalling. Importantly, their roles in pathologies ranging from cancer to immune deficiencies have placed them front and centre as potential drug targets. The recent discovery of the role of activating mutations in the kinase-like domain (KLD) of JAK2 in the development of polycythemia rubra vera, and the elaboration of KLD mutation as a broader mechanism by which cells might become hyperproliferative has sparked enormous interest in the development of JAK selective drug candidates. I review herein the progress that has been made in the discovery of JAK-targeted inhibitors, and discuss the challenges that face the development of these drugs for use in the clinic.

  17. An invertebrate model for CNS drug discovery

    DEFF Research Database (Denmark)

    Al-Qadi, Sonia; Schiøtt, Morten; Hansen, Steen Honoré

    2015-01-01

    and is considered the most vital efflux pump. Functionally, this model showed transport kinetic behaviors comparable to those obtained from in vitro models. Particularly, substrate affinity of the putative P-gp was observed as in P-gp expressing cells lines, used for predicting drug penetration across biological......BACKGROUND: ABC efflux transporters at the blood brain barrier (BBB), namely the P-glycoprotein (P-gp), restrain the development of central nervous system (CNS) drugs. Consequently, early screening of CNS drug candidates is pivotal to identify those affected by efflux activity. Therefore, simple...... was performed. Subsequently, identified transcripts were matched with their counterparts in human, rat, mouse and Drosophila melanogaster, based on amino acid sequence similarity, and phylogenetic trees were constructed to reveal the most likely evolutionary history of the proteins. Further, functional...

  18. Developing doctoral scientists for drug discovery: pluridimensional education required.

    Science.gov (United States)

    Janero, David R

    2013-02-01

    Research universities continue to produce new scientists capable of generating knowledge with the potential to inform disease etiology and treatment. Mounting interest of doctoral-level experimental science students in therapeutics-related research careers is discordant with the widespread lack of direct drug-discovery and development experience, let alone commercialization success, among university faculty and administrators. Likewise, the archetypical publication- and grant-fueled, principal investigator (PI)-focused academic system ("PI-stan") risks commoditization of science students pursuing their doctorates as a labor source, rendering them ill-prepared for career options related to therapeutics innovation by marginalizing their development of "beyond-the-bench" professional skills foundational to modern drug-discovery campaigns and career fluency. To militate against professionalization deficits in doctoral drug-discovery researchers, the author--a scientist-administrator-consultant with decades of discovery research and development (R&D), business, and educator experience in commercial and university settings--posits a critical need for pluridimensionality in graduate education and mentorship that extends well beyond thesis-related scientific domains/laboratory techniques to instill transferable operational-intelligence, project/people-management, and communication competencies. Specific initiatives are advocated to help enhance the doctoral science student's market competitiveness, adaptability, and navigation of the significant research, commercial, and occupational challenges associated with contemporary preclinical drug-discovery R&D.

  19. "Drug" Discovery with the Help of Organic Chemistry.

    Science.gov (United States)

    Itoh, Yukihiro; Suzuki, Takayoshi

    2017-01-01

    The first step in "drug" discovery is to find compounds binding to a potential drug target. In modern medicinal chemistry, the screening of a chemical library, structure-based drug design, and ligand-based drug design, or a combination of these methods, are generally used for identifying the desired compounds. However, they do not necessarily lead to success and there is no infallible method for drug discovery. Therefore, it is important to explore medicinal chemistry based on not only the conventional methods but also new ideas. So far, we have found various compounds as drug candidates. In these studies, some strategies based on organic chemistry have allowed us to find drug candidates, through 1) construction of a focused library using organic reactions and 2) rational design of enzyme inhibitors based on chemical reactions catalyzed by the target enzyme. Medicinal chemistry based on organic chemical reactions could be expected to supplement the conventional methods. In this review, we present drug discovery with the help of organic chemistry showing examples of our explorative studies on histone deacetylase inhibitors and lysine-specific demethylase 1 inhibitors.

  20. Three-Dimensional Cell Cultures in Drug Discovery and Development

    Science.gov (United States)

    Fang, Ye; Eglen, Richard M.

    2017-01-01

    The past decades have witnessed significant efforts toward the development of three-dimensional (3D) cell cultures as systems that better mimic in vivo physiology. Today, 3D cell cultures are emerging, not only as a new tool in early drug discovery but also as potential therapeutics to treat disease. In this review, we assess leading 3D cell culture technologies and their impact on drug discovery, including spheroids, organoids, scaffolds, hydrogels, organs-on-chips, and 3D bioprinting. We also discuss the implementation of these technologies in compound identification, screening, and development, ranging from disease modeling to assessment of efficacy and safety profiles. PMID:28520521

  1. Advanced molecular dynamics simulation methods for kinase drug discovery.

    Science.gov (United States)

    Aci-Sèche, Samia; Ziada, Sonia; Braka, Abdennour; Arora, Rohit; Bonnet, Pascal

    2016-04-01

    Interest in the application of molecular dynamics (MD) simulations has increased in the field of protein kinase (PK) drug discovery. PKs belong to an important drug target class because they are directly involved in a number of diseases, including cancer. MD methods simulate dynamic biological and chemical events at an atomic level. This information can be combined with other in silico and experimental methods to efficiently target selected receptors. In this review, we present common and advanced methods of MD simulations and we focus on the recent applications of MD-based methodologies that provided significant insights into the elucidation of biological mechanisms involving PKs and into the discovery of novel kinase inhibitors.

  2. Drug discovery and development for neglected diseases: the DNDi model

    Directory of Open Access Journals (Sweden)

    Eric Chatelain

    2011-03-01

    Full Text Available Eric Chatelain, Jean-Robert IosetDrugs for Neglected Diseases Initiative (DNDi, Geneva, SwitzerlandAbstract: New models of drug discovery have been developed to overcome the lack of modern and effective drugs for neglected diseases such as human African trypanosomiasis (HAT; sleeping sickness, leishmaniasis, and Chagas disease, which have no financial viability for the pharmaceutical industry. With the purpose of combining the skills and research capacity in academia, pharmaceutical industry, and contract researchers, public–private partnerships or product development partnerships aim to create focused research consortia that address all aspects of drug discovery and development. These consortia not only emulate the projects within pharmaceutical and biotechnology industries, eg, identification and screening of libraries, medicinal chemistry, pharmacology and pharmacodynamics, formulation development, and manufacturing, but also use and strengthen existing capacity in disease-endemic countries, particularly for the conduct of clinical trials. The Drugs for Neglected Diseases initiative (DNDi has adopted a model closely related to that of a virtual biotechnology company for the identification and optimization of drug leads. The application of this model to the development of drug candidates for the kinetoplastid infections of HAT, Chagas disease, and leishmaniasis has already led to the identification of new candidates issued from DNDi’s own discovery pipeline. This demonstrates that the model DNDi has been implementing is working but its DNDi, neglected diseases sustainability remains to be proven.Keywords: R&D, screening, lead optimization, human African trypanosomiasis, leishmaniasis, Chagas disease, product development partnerships

  3. Challenges in Chagas Disease Drug Discovery: A Review.

    Science.gov (United States)

    Paucar, Rocio; Moreno-Viguri, Elsa; Pérez-Silanes, Silvia

    2016-01-01

    Chagas disease or American trypanosomiasis is a neglected tropical disease caused by the parasite Trypanosoma cruzi. Although the number of infected individuals has decreased, about 6-7 million people are infected worldwide. The chemotherapy drugs currently used are limited to benznidazole and nifurtimox. They are effective in acute phase, congenital transmission and children with chronic infection; however, recent clinical trials have shown limitations in adults with chronic infection, presenting drawbacks during the treatment. Thus, there is an urgent need for new effective, safe and affordable drugs to fight against this complex disease. There were high expectations for azole derivatives as they appeared to be the most promising drugs for the treatment of Chagas disease during the last decade; however, the disappointing results obtained so far in clinical trials evidenced the lack of correlation between preclinical and clinical development. Therefore, the feedback obtained from these studies should define the starting point for addressing a roadmap for the drug discovery process in the fight against this disease. To tackle this challenge, it is important to keep in mind the drug target profile, already defined by panels of experts, and the coordinated work involving multi-disciplinary networks focusing not only on the discovery of new drugs but also on the standardization of the protocols that would allow acceleration in the Chagas disease drug discovery process.

  4. CANDO and the infinite drug discovery frontier.

    Science.gov (United States)

    Minie, Mark; Chopra, Gaurav; Sethi, Geetika; Horst, Jeremy; White, George; Roy, Ambrish; Hatti, Kaushik; Samudrala, Ram

    2014-09-01

    The Computational Analysis of Novel Drug Opportunities (CANDO) platform (http://protinfo.org/cando) uses similarity of compound-proteome interaction signatures to infer homology of compound/drug behavior. We constructed interaction signatures for 3733 human ingestible compounds covering 48,278 protein structures mapping to 2030 indications based on basic science methodologies to predict and analyze protein structure, function, and interactions developed by us and others. Our signature comparison and ranking approach yielded benchmarking accuracies of 12-25% for 1439 indications with at least two approved compounds. We prospectively validated 49/82 'high value' predictions from nine studies covering seven indications, with comparable or better activity to existing drugs, which serve as novel repurposed therapeutics. Our approach may be generalized to compounds beyond those approved by the FDA, and can also consider mutations in protein structures to enable personalization. Our platform provides a holistic multiscale modeling framework of complex atomic, molecular, and physiological systems with broader applications in medicine and engineering. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Rapid All-Sky Transient Discovery and Analysis with Evryscope

    Science.gov (United States)

    Corbett, Henry T.; Law, Nicholas; Fors, Octavi; Ratzloff, Jeff; Goeke, Erin; Howard, Ward S.

    2018-01-01

    The Evryscope is an array of 24 small telescopes on a common mount, capable of observing the entire visible sky down to g' ~ 16 with a two-minute cadence. Each exposure covers 8000 square degrees over 691 MPix and requires minimal readout time, providing 97% continuous coverage of the night sky. The system's large field of view and rapid cadence enable exploration of a previously inaccessible parameter space of bright and fast transients, including nearby microlensing events, supernovae, and kilonovae GW counterparts. The first instrument, located at CTIO in Chile, was deployed in mid-2015 and is currently in production creating multi-year light curves with percent-level precision. A second identical system is on track for deployment at Mount Laguna Observatory in California in early 2018. Once operational, the two sites will provide simultaneous two-color photometry over a 4000 square degree overlapping region accessible to both instruments, operating as a combined discovery and follow-up network for transient phenomena on all nearby stars and many nearby galaxies. I will present recent science results from the Evryscope and an overview of our data reduction pipeline.

  6. Can biochemistry drive drug discovery beyond simple potency measurements?

    Science.gov (United States)

    Chène, Patrick

    2012-04-01

    Among the fields of expertise required to develop drugs successfully, biochemistry holds a key position in drug discovery at the interface between chemistry, structural biology and cell biology. However, taking the example of protein kinases, it appears that biochemical assays are mostly used in the pharmaceutical industry to measure compound potency and/or selectivity. This limited use of biochemistry is surprising, given that detailed biochemical analyses are commonly used in academia to unravel molecular recognition processes. In this article, I show that biochemistry can provide invaluable information on the dynamics and energetics of compound-target interactions that cannot be obtained on the basis of potency measurements and structural data. Therefore, an extensive use of biochemistry in drug discovery could facilitate the identification and/or development of new drugs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Drug discovery and development for neglected diseases: the DNDi model.

    Science.gov (United States)

    Chatelain, Eric; Ioset, Jean-Robert

    2011-03-16

    New models of drug discovery have been developed to overcome the lack of modern and effective drugs for neglected diseases such as human African trypanosomiasis (HAT; sleeping sickness), leishmaniasis, and Chagas disease, which have no financial viability for the pharmaceutical industry. With the purpose of combining the skills and research capacity in academia, pharmaceutical industry, and contract researchers, public-private partnerships or product development partnerships aim to create focused research consortia that address all aspects of drug discovery and development. These consortia not only emulate the projects within pharmaceutical and biotechnology industries, eg, identification and screening of libraries, medicinal chemistry, pharmacology and pharmacodynamics, formulation development, and manufacturing, but also use and strengthen existing capacity in disease-endemic countries, particularly for the conduct of clinical trials. The Drugs for Neglected Diseases initiative (DNDi) has adopted a model closely related to that of a virtual biotechnology company for the identification and optimization of drug leads. The application of this model to the development of drug candidates for the kinetoplastid infections of HAT, Chagas disease, and leishmaniasis has already led to the identification of new candidates issued from DNDi's own discovery pipeline. This demonstrates that the model DNDi has been implementing is working but its DNDi, neglected diseases sustainability remains to be proven.

  8. Open data in drug discovery and development: lessons from malaria.

    Science.gov (United States)

    Wells, Timothy N C; Willis, Paul; Burrows, Jeremy N; Hooft van Huijsduijnen, Rob

    2016-10-01

    There is a growing consensus that drug discovery thrives in an open environment. Here, we describe how the malaria community has embraced four levels of open data - open science, open innovation, open access and open source - to catalyse the development of new medicines, and consider principles that could enable open data approaches to be applied to other disease areas.

  9. Competitive intelligence and patent analysis in drug discovery.

    Science.gov (United States)

    Grandjean, Nicolas; Charpiot, Brigitte; Pena, Carlos Andres; Peitsch, Manuel C

    2005-01-01

    Patents are a major source of information in drug discovery and, when properly processed and analyzed, can yield a wealth of information on competitors activities, R&D trends, emerging fields, collaborations, among others. This review discusses the current state-of-the-art in textual data analysis and exploration methods as applied to patent analysis.: © 2005 Elsevier Ltd . All rights reserved.

  10. Drug repurposing: a better approach for infectious disease drug discovery?

    OpenAIRE

    Law, G. Lynn; Tisoncik-Go, Jennifer; Korth, Marcus J.; Katze, Michael G.

    2013-01-01

    The advent of publically available databases containing system-wide phenotypic data of the host response to both drugs and pathogens, in conjunction with bioinformatics and computational methods now allows for in silico predictions of FDA-approved drugs as treatments against infection diseases. This systems biology approach captures the complexity of both the pathogen and drug host response in the form of expression patterns or molecular interaction networks without having to understand the u...

  11. Can Untargeted Metabolomics Be Utilized in Drug Discovery/Development?

    Science.gov (United States)

    Caldwell, Gary W; Leo, Gregory C

    2017-01-01

    Untargeted metabolomics is a promising approach for reducing the significant attrition rate for discovering and developing drugs in the pharmaceutical industry. This review aims to highlight the practical decision-making value of untargeted metabolomics for the advancement of drug candidates in drug discovery/development including potentially identifying and validating novel therapeutic targets, creating alternative screening paradigms, facilitating the selection of specific and translational metabolite biomarkers, identifying metabolite signatures for the drug efficacy mechanism of action, and understanding potential drug-induced toxicity. The review provides an overview of the pharmaceutical process workflow to discover and develop new small molecule drugs followed by the metabolomics process workflow that is involved in conducting metabolomics studies. The pros and cons of the major components of the pharmaceutical and metabolomics workflows are reviewed and discussed. Finally, selected untargeted metabolomics literature examples, from primarily 2010 to 2016, are used to illustrate why, how, and where untargeted metabolomics can be integrated into the drug discovery/preclinical drug development process. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Challenges in drug discovery for thiazolidinedione substitute

    Directory of Open Access Journals (Sweden)

    Jian-ping Ye

    2011-10-01

    Full Text Available Thiazolidinedione (TZD is a powerful insulin sensitizer in the treatment of type 2 diabetes. It acts as a ligand to the nuclear receptor PPARγ (peroxisome proliferator-activated receptor-gamma and induces transcription of PPARγ-responsive genes. TZD controls lipid synthesis and storage in adipose tissue, liver and many other tissues through PPARγ. Derivatives of TZD, such as rosiglitazone (Avandia and pioglitazone (Actos, are more powerful than metformin or berberine in insulin sensitization. Although they have common side effects such as weight gain and edema, these did not influence their clinical application in general. However, recent findings of risk for congestive heart failure and bladder cancer have significantly impaired their future in many countries. European countries have prohibited those drugs, and US will terminate application of rosiglitazone in clinics and hospitals. The multiple country actions may mark the end of TZD era. As a result, there is a strong demand for identification of TZD substitute in the treatment of type 2 diabetes. In this regard, literature about PPARγ ligands and potential TZD substitute are reviewed in this article. Histone deacetylase (HDAC inhibitor is emphasized as a new class of insulin sensitizer here. Regulators of SIRT1, CREB, NO, p38, ERK and Cdk5 are discussed in the activation of PPARγ.

  13. Accessing external innovation in drug discovery and development.

    Science.gov (United States)

    Tufféry, Pierre

    2015-06-01

    A decline in the productivity of the pharmaceutical industry research and development (R&D) pipeline has highlighted the need to reconsider the classical strategies of drug discovery and development, which are based on internal resources, and to identify new means to improve the drug discovery process. Accepting that the combination of internal and external ideas can improve innovation, ways to access external innovation, that is, opening projects to external contributions, have recently been sought. In this review, the authors look at a number of external innovation opportunities. These include increased interactions with academia via academic centers of excellence/innovation centers, better communication on projects using crowdsourcing or social media and new models centered on external providers such as built-to-buy startups or virtual pharmaceutical companies. The buzz for accessing external innovation relies on the pharmaceutical industry's major challenge to improve R&D productivity, a conjuncture favorable to increase interactions with academia and new business models supporting access to external innovation. So far, access to external innovation has mostly been considered during early stages of drug development, and there is room for enhancement. First outcomes suggest that external innovation should become part of drug development in the long term. However, the balance between internal and external developments in drug discovery can vary largely depending on the company strategies.

  14. High throughput screening for anti-Trypanosoma cruzi drug discovery.

    Directory of Open Access Journals (Sweden)

    Julio Alonso-Padilla

    2014-12-01

    Full Text Available The discovery of new therapeutic options against Trypanosoma cruzi, the causative agent of Chagas disease, stands as a fundamental need. Currently, there are only two drugs available to treat this neglected disease, which represents a major public health problem in Latin America. Both available therapies, benznidazole and nifurtimox, have significant toxic side effects and their efficacy against the life-threatening symptomatic chronic stage of the disease is variable. Thus, there is an urgent need for new, improved anti-T. cruzi drugs. With the objective to reliably accelerate the drug discovery process against Chagas disease, several advances have been made in the last few years. Availability of engineered reporter gene expressing parasites triggered the development of phenotypic in vitro assays suitable for high throughput screening (HTS as well as the establishment of new in vivo protocols that allow faster experimental outcomes. Recently, automated high content microscopy approaches have also been used to identify new parasitic inhibitors. These in vitro and in vivo early drug discovery approaches, which hopefully will contribute to bring better anti-T. cruzi drug entities in the near future, are reviewed here.

  15. Water-soluble fullerene derivatives for drug discovery.

    Science.gov (United States)

    Nakamura, Shigeo; Mashino, Tadahiko

    2012-01-01

    Fullerenes (represented by buckminsterfullerene, C(60)) are a new kind of organic compound with a cage-like structure. A great deal of attention has been focused on their unique properties. From the viewpoint of drug discovery, fullerenes could be novel lead compounds for drug discovery. However, fullerenes are poorly soluble in aqueous media. Incorporation of water-soluble groups into the fullerene core enables investigation of its biological activities. Certain fullerene derivatives show inhibitory activity against human immunodeficiency virus reverse transcriptase. Hepatitis C virus RNA polymerase is also inhibited by fullerene derivatives. Therefore, fullerene derivatives are candidate antiviral agents. In addition, fullerene derivatives exhibit antiproliferative activity by inducing apoptosis related to the generation of reactive oxygen species. Fullerene derivatives also have the potential to be anticancer drugs.

  16. Structural genomics-impact on biomedicine and drug discovery.

    Science.gov (United States)

    Weigelt, Johan

    2010-05-01

    The field of structural genomics emerged as one of many 'omics disciplines more than a decade ago, and a multitude of large scale initiatives have been launched across the world. Development and implementation of methods for high-throughput structural biology represents a common denominator among different structural genomics programs. From another perspective a distinction between "biology-driven" versus "structure-driven" approaches can be made. This review outlines the general themes of structural genomics, its achievements and its impact on biomedicine and drug discovery. The growing number of high resolution structures of known and potential drug target proteins is expected to have tremendous value for future drug discovery programs. Moreover, the availability of large numbers of purified proteins enables generation of tool reagents, such as chemical probes and antibodies, to further explore protein function in the cell. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Quality not Quantity: The Role of Marine Natural Products in Drug Discovery and Reverse Chemical Proteomics

    OpenAIRE

    Piggott, Andrew M.; Peter Karuso

    2005-01-01

    Reverse chemical proteomics combines affinity chromatography with phage display and promises to be a powerful new platform technology for the isolation of natural product receptors, facilitating the drug discovery process by rapidly linking biologically active small molecules to their cellular receptors and the receptors’ genes. In this paper we review chemical proteomics and reverse chemical proteomics and show how these techniques can add value to natural products research. We also rep...

  18. High throughput electrophysiology: new perspectives for ion channel drug discovery

    DEFF Research Database (Denmark)

    Willumsen, Niels J; Bech, Morten; Olesen, Søren-Peter

    2003-01-01

    Proper function of ion channels is crucial for all living cells. Ion channel dysfunction may lead to a number of diseases, so-called channelopathies, and a number of common diseases, including epilepsy, arrhythmia, and type II diabetes, are primarily treated by drugs that modulate ion channels...... channel targets accessible for drug screening. Specifically, genuine HTS parallel processing techniques based on arrays of planar silicon chips are being developed, but also lower throughput sequential techniques may be of value in compound screening, lead optimization, and safety screening....... The introduction of new powerful HTS electrophysiological techniques is predicted to cause a revolution in ion channel drug discovery....

  19. Cloud computing approaches to accelerate drug discovery value chain.

    Science.gov (United States)

    Garg, Vibhav; Arora, Suchir; Gupta, Chitra

    2011-12-01

    Continued advancements in the area of technology have helped high throughput screening (HTS) evolve from a linear to parallel approach by performing system level screening. Advanced experimental methods used for HTS at various steps of drug discovery (i.e. target identification, target validation, lead identification and lead validation) can generate data of the order of terabytes. As a consequence, there is pressing need to store, manage, mine and analyze this data to identify informational tags. This need is again posing challenges to computer scientists to offer the matching hardware and software infrastructure, while managing the varying degree of desired computational power. Therefore, the potential of "On-Demand Hardware" and "Software as a Service (SAAS)" delivery mechanisms cannot be denied. This on-demand computing, largely referred to as Cloud Computing, is now transforming the drug discovery research. Also, integration of Cloud computing with parallel computing is certainly expanding its footprint in the life sciences community. The speed, efficiency and cost effectiveness have made cloud computing a 'good to have tool' for researchers, providing them significant flexibility, allowing them to focus on the 'what' of science and not the 'how'. Once reached to its maturity, Discovery-Cloud would fit best to manage drug discovery and clinical development data, generated using advanced HTS techniques, hence supporting the vision of personalized medicine.

  20. Drug discovery for alopecia: gone today, hair tomorrow

    Science.gov (United States)

    Santos, Zenildo; Avci, Pinar; Hamblin, Michael R

    2015-01-01

    Introduction Hair loss or alopecia affects the majority of the population at some time in their life, and increasingly, sufferers are demanding treatment. Three main types of alopecia (androgenic [AGA], areata [AA] and chemotherapy-induced [CIA]) are very different, and have their own laboratory models and separate drug-discovery efforts. Areas covered In this article, the authors review the biology of hair, hair follicle (HF) cycling, stem cells and signaling pathways. AGA, due to dihydrotesterone, is treated by 5-α reductase inhibitors, androgen receptor blockers and ATP-sensitive potassium channel-openers. AA, which involves attack by CD8+NK group 2D-positive (NKG2D+) T cells, is treated with immunosuppressives, biologics and JAK inhibitors. Meanwhile, CIA is treated by apoptosis inhibitors, cytokines and topical immunotherapy. Expert opinion The desire to treat alopecia with an easy topical preparation is expected to grow with time, particularly with an increasing aging population. The discovery of epidermal stem cells in the HF has given new life to the search for a cure for baldness. Drug discovery efforts are being increasingly centered on these stem cells, boosting the hair cycle and reversing miniaturization of HF. Better understanding of the molecular mechanisms underlying the immune attack in AA will yield new drugs. New discoveries in HF neogenesis and low-level light therapy will undoubtedly have a role to play. PMID:25662177

  1. Drug discovery for alopecia: gone today, hair tomorrow.

    Science.gov (United States)

    Santos, Zenildo; Avci, Pinar; Hamblin, Michael R

    2015-03-01

    Hair loss or alopecia affects the majority of the population at some time in their life, and increasingly, sufferers are demanding treatment. Three main types of alopecia (androgenic [AGA], areata [AA] and chemotherapy-induced [CIA]) are very different, and have their own laboratory models and separate drug-discovery efforts. In this article, the authors review the biology of hair, hair follicle (HF) cycling, stem cells and signaling pathways. AGA, due to dihydrotesterone, is treated by 5-α reductase inhibitors, androgen receptor blockers and ATP-sensitive potassium channel-openers. AA, which involves attack by CD8(+)NK group 2D-positive (NKG2D(+)) T cells, is treated with immunosuppressives, biologics and JAK inhibitors. Meanwhile, CIA is treated by apoptosis inhibitors, cytokines and topical immunotherapy. The desire to treat alopecia with an easy topical preparation is expected to grow with time, particularly with an increasing aging population. The discovery of epidermal stem cells in the HF has given new life to the search for a cure for baldness. Drug discovery efforts are being increasingly centered on these stem cells, boosting the hair cycle and reversing miniaturization of HF. Better understanding of the molecular mechanisms underlying the immune attack in AA will yield new drugs. New discoveries in HF neogenesis and low-level light therapy will undoubtedly have a role to play.

  2. Positron emission tomography in CNS drug discovery and drug monitoring.

    Science.gov (United States)

    Piel, Markus; Vernaleken, Ingo; Rösch, Frank

    2014-11-26

    Molecular imaging methods such as positron emission tomography (PET) are increasingly involved in the development of new drugs. Using radioactive tracers as imaging probes, PET allows the determination of the pharmacokinetic and pharmacodynamic properties of a drug candidate, via recording target engagement, the pattern of distribution, and metabolism. Because of the noninvasive nature and quantitative end point obtainable by molecular imaging, it seems inherently suited for the examination of a pharmaceutical's behavior in the brain. Molecular imaging, most especially PET, can therefore be a valuable tool in CNS drug research. In this Perspective, we present the basic principles of PET, the importance of appropriate tracer selection, the impact of improved radiopharmaceutical chemistry in radiotracer development, and the different roles that PET can fulfill in CNS drug research.

  3. The impact of the Orphan Drug Act on drug discovery.

    Science.gov (United States)

    Haffner, Marlene E; Maher, Paul D

    2006-11-01

    For nearly a quarter of a century the FDA Office of Orphan Products Development has administered the US Orphan Drug Act, which assists in bringing a wide variety of drug and biological (drug) products to treat rare diseases to market. Enthusiasm for rare disease product development has been sustained, seen throughout a wide spectrum of product types and disease conditions, and has resulted in clinically meaningful medical advances. Development of programmes for rare disease treatment worldwide, coupled with the development of drugs for diseases affecting developing countries, attests to the strength of this legislation. The marketing of almost 300 products in the US for rare diseases also testifies to the depth and intensity of scientific endeavour in this area.

  4. Anti-HIV Drug Discovery and Development: Current Innovations and Future Trends.

    Science.gov (United States)

    Zhan, Peng; Pannecouque, Christophe; De Clercq, Erik; Liu, Xinyong

    2016-04-14

    The early effectiveness of combinatorial antiretroviral therapy (cART) in the treatment of HIV infection has been compromised to some extent by rapid development of multidrug-resistant HIV strains, poor bioavailability, and cumulative toxicities, and so there is a need for alternative strategies of antiretroviral drug discovery and additional therapeutic agents with novel action modes or targets. From this perspective, we first review current strategies of antiretroviral drug discovery and optimization, with the aid of selected examples from the recent literature. We highlight the development of phosphate ester-based prodrugs as a means to improve the aqueous solubility of HIV inhibitors, and the introduction of the substrate envelope hypothesis as a new approach for overcoming HIV drug resistance. Finally, we discuss future directions for research, including opportunities for exploitation of novel antiretroviral targets, and the strategy of activation of latent HIV reservoirs as a means to eradicate the virus.

  5. In silico drug discovery approaches on grid computing infrastructures.

    Science.gov (United States)

    Wolf, Antje; Shahid, Mohammad; Kasam, Vinod; Ziegler, Wolfgang; Hofmann-Apitius, Martin

    2010-02-01

    The first step in finding a "drug" is screening chemical compound databases against a protein target. In silico approaches like virtual screening by molecular docking are well established in modern drug discovery. As molecular databases of compounds and target structures are becoming larger and more and more computational screening approaches are available, there is an increased need in compute power and more complex workflows. In this regard, computational Grids are predestined and offer seamless compute and storage capacity. In recent projects related to pharmaceutical research, the high computational and data storage demands of large-scale in silico drug discovery approaches have been addressed by using Grid computing infrastructures, in both; pharmaceutical industry as well as academic research. Grid infrastructures are part of the so-called eScience paradigm, where a digital infrastructure supports collaborative processes by providing relevant resources and tools for data- and compute-intensive applications. Substantial computing resources, large data collections and services for data analysis are shared on the Grid infrastructure and can be mobilized on demand. This review gives an overview on the use of Grid computing for in silico drug discovery and tries to provide a vision of future development of more complex and integrated workflows on Grids, spanning from target identification and target validation via protein-structure and ligand dependent screenings to advanced mining of large scale in silico experiments.

  6. A look at ligand binding thermodynamics in drug discovery.

    Science.gov (United States)

    Claveria-Gimeno, Rafael; Vega, Sonia; Abian, Olga; Velazquez-Campoy, Adrian

    2017-04-01

    Drug discovery is a challenging endeavor requiring the interplay of many different research areas. Gathering information on ligand binding thermodynamics may help considerably in reducing the risk within a high uncertainty scenario, allowing early rejection of flawed compounds and pushing forward optimal candidates. In particular, the free energy, the enthalpy, and the entropy of binding provide fundamental information on the intermolecular forces driving such interaction. Areas covered: The authors review the current status and recent developments in the application of ligand binding thermodynamics in drug discovery. The thermodynamic binding profile (Gibbs energy, enthalpy, and entropy of binding) can be used for lead selection and optimization (binding enthalpy, selectivity, and adaptability). Expert opinion: Binding thermodynamics provides fundamental information on the forces driving the formation of the drug-target complex. It has been widely accepted that binding thermodynamics may be used as a decision criterion along the ligand optimization process in drug discovery and development. In particular, the binding enthalpy may be used as a guide when selecting and optimizing compounds over a set of potential candidates. However, this has been recently called into question by arguing certain difficulties and in the light of certain experimental examples.

  7. Use of machine learning approaches for novel drug discovery.

    Science.gov (United States)

    Lima, Angélica Nakagawa; Philot, Eric Allison; Trossini, Gustavo Henrique Goulart; Scott, Luis Paulo Barbour; Maltarollo, Vinícius Gonçalves; Honorio, Kathia Maria

    2016-01-01

    The use of computational tools in the early stages of drug development has increased in recent decades. Machine learning (ML) approaches have been of special interest, since they can be applied in several steps of the drug discovery methodology, such as prediction of target structure, prediction of biological activity of new ligands through model construction, discovery or optimization of hits, and construction of models that predict the pharmacokinetic and toxicological (ADMET) profile of compounds. This article presents an overview on some applications of ML techniques in drug design. These techniques can be employed in ligand-based drug design (LBDD) and structure-based drug design (SBDD) studies, such as similarity searches, construction of classification and/or prediction models of biological activity, prediction of secondary structures and binding sites docking and virtual screening. Successful cases have been reported in the literature, demonstrating the efficiency of ML techniques combined with traditional approaches to study medicinal chemistry problems. Some ML techniques used in drug design are: support vector machine, random forest, decision trees and artificial neural networks. Currently, an important application of ML techniques is related to the calculation of scoring functions used in docking and virtual screening assays from a consensus, combining traditional and ML techniques in order to improve the prediction of binding sites and docking solutions.

  8. Putative impact of RNA editing on drug discovery.

    Science.gov (United States)

    Decher, Niels; Netter, Michael F; Streit, Anne K

    2013-01-01

    Virtually all organisms use RNA editing as a powerful post-transcriptional mechanism to recode genomic information and to increase functional protein diversity. The enzymatic editing of pre-mRNA by ADARs and CDARs is known to change the functional properties of neuronal receptors and ion channels regulating cellular excitability. However, RNA editing is also an important mechanism for genes expressed outside the brain. The fact that RNA editing breaks the 'one gene encodes one protein' hypothesis is daunting for scientists and a probable drawback for drug development, as scientists might search for drugs targeting the 'wrong' protein. This possible difficulty for drug discovery and development became more evident from recent publications, describing that RNA editing events have profound impact on the pharmacology of some common drug targets. These recent studies highlight that RNA editing can cause massive discrepancies between the in vitro and in vivo pharmacology. Here, we review the putative impact of RNA editing on drug discovery, as RNA editing has to be considered before using high-throughput screens, rational drug design or choosing the right model organism for target validation. © 2012 John Wiley & Sons A/S.

  9. Compound Libraries: Recent Advances and Their Applications in Drug Discovery.

    Science.gov (United States)

    Gong, Zhen; Hu, Guoping; Li, Qiang; Liu, Zhiguo; Wang, Fei; Zhang, Xuejin; Xiong, Jian; Li, Peng; Xu, Yan; Ma, Rujian; Chen, Shuhui; Li, Jian

    2017-01-01

    Hit identification is the starting point of small-molecule drug discovery and is therefore very important to the pharmaceutical industry. One of the most important approaches to identify a new hit is to screen a compound library using an in vitro assay. High-throughput screening has made great contributions to drug discovery since the 1990s but requires expensive equipment and facilities, and its success depends on the size of the compound library. Recent progress in the development of compound libraries has provided more efficient ways to identify new hits for novel drug targets, thereby helping to promote the development of the pharmaceutical industry, especially for firstin- class drugs. A multistage and systematic research of articles published between 1986 and 2017 has been performed, which was organized into 5 sections and discussed in detail. In this review, the sources and classification of compound libraries are summarized. The progress made in combinatorial libraries and DNA-encoded libraries is reviewed. Library design methods, especially for focused libraries, are introduced in detail. In the final part, the status of the compound libraries at WuXi is reported. The progress related to compound libraries, especially drug template libraries, DELs, and focused libraries, will help to identify better hits for novel drug targets and promote the development of the pharmaceutical industry. Moreover, these libraries can facilitate hit identification, which benefits most research organizations, including academics and small companies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Computational approaches in target identification and drug discovery

    Directory of Open Access Journals (Sweden)

    Theodora Katsila

    2016-01-01

    Full Text Available In the big data era, voluminous datasets are routinely acquired, stored and analyzed with the aim to inform biomedical discoveries and validate hypotheses. No doubt, data volume and diversity have dramatically increased by the advent of new technologies and open data initiatives. Big data are used across the whole drug discovery pipeline from target identification and mechanism of action to identification of novel leads and drug candidates. Such methods are depicted and discussed, with the aim to provide a general view of computational tools and databases available. We feel that big data leveraging needs to be cost-effective and focus on personalized medicine. For this, we propose the interplay of information technologies and (chemoinformatic tools on the basis of their synergy.

  11. A new model for academics based drug discovery.

    Science.gov (United States)

    Stein, Ross L

    2007-12-01

    Drug discovery is a complex and costly endeavor, requiring multidisciplinary know-how, interdisciplinary collaboration, tenacity, and a bit of luck. For these reasons, the search for new chemical agents to treat human disease has traditionally been undertaken only within the walls of industry. While the pharmaceutical industry is often successful where it focuses its attention, it generally focuses only on those areas that are allowed by corporate financial realities. Sadly, this means that diseases effecting small populations of patients may go untreated. As a society we should not be content with this situation and must make a priority of the development of new models that will allow and encourage drug discovery in disease areas that are neglected by pharma. In this presentation, I will describe one such model that has been established to find treatments for neurodegenerative diseases.

  12. G protein coupled receptors -in silico drug discovery and design.

    Science.gov (United States)

    Sela, I; Golan, G; Strajbl, M; Rivenzon-Segal, D; Bar-Haim, S; Bloch, I; Inbal, B; Shitrit, A; Ben-Zeev, E; Fichman, M; Markus, Y; Marantz, Y; Senderowitz, H; Kalid, O

    2010-01-01

    In silico drug discovery is a complex process requiring flexibility and ingenuity in method selection and a careful validation of work protocols. GPCR in silico drug discovery poses additional challenges due to the paucity of crystallographic data. This paper starts by reviewing selected GPCR in silico screening programs reported in the literature, including both structure-based and ligand-based approaches. Particular emphasis is given to library design, binding mode selection, process validation and compound selection for biological testing. Following literature review, we provide insights into in silico methodologies and process workflows used at EPIX to drive over 20 highly successful screening and lead optimization programs performed since 2001. Applications of the various methodologies discussed are demonstrated by examples from recent programs that have not yet been published.

  13. Drug Discovery of Therapies for Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Blat, Yuval; Blat, Shachar

    2015-12-01

    Duchenne muscular dystrophy (DMD) is a genetic, lethal, muscle disorder caused by the loss of the muscle protein, dystrophin, leading to progressive loss of muscle fibers and muscle weakness. Drug discovery efforts targeting DMD have used two main approaches: (1) the restoration of dystrophin expression or the expression of a compensatory protein, and (2) the mitigation of downstream pathological mechanisms, including dysregulated calcium homeostasis, oxidative stress, inflammation, fibrosis, and muscle ischemia. The aim of this review is to introduce the disease, its pathophysiology, and the available research tools to a drug discovery audience. This review will also detail the most promising therapies that are currently being tested in clinical trials or in advanced preclinical models. © 2015 Society for Laboratory Automation and Screening.

  14. Trends in GPCR drug discovery: new agents, targets and indications.

    Science.gov (United States)

    Hauser, Alexander S; Attwood, Misty M; Rask-Andersen, Mathias; Schiöth, Helgi B; Gloriam, David E

    2017-12-01

    G protein-coupled receptors (GPCRs) are the most intensively studied drug targets, mostly due to their substantial involvement in human pathophysiology and their pharmacological tractability. Here, we report an up-to-date analysis of all GPCR drugs and agents in clinical trials, which reveals current trends across molecule types, drug targets and therapeutic indications, including showing that 475 drugs (~34% of all drugs approved by the US Food and Drug Administration (FDA)) act at 108 unique GPCRs. Approximately 321 agents are currently in clinical trials, of which ~20% target 66 potentially novel GPCR targets without an approved drug, and the number of biological drugs, allosteric modulators and biased agonists has increased. The major disease indications for GPCR modulators show a shift towards diabetes, obesity and Alzheimer disease, although several central nervous system disorders are also highly represented. The 224 (56%) non-olfactory GPCRs that have not yet been explored in clinical trials have broad untapped therapeutic potential, particularly in genetic and immune system disorders. Finally, we provide an interactive online resource to analyse and infer trends in GPCR drug discovery.

  15. Catecholamine receptors: prototypes for GPCR-based drug discovery.

    Science.gov (United States)

    Emery, Andrew C

    2013-01-01

    Drugs acting at G protein-coupled receptors (GPCRs) constitute ~40% of those in current clinical use. GPCR-based drug discovery remains at the forefront of drug development, especially for new treatments for psychiatric illness and neurological disease. Here, the basic framework of GPCR signaling learned through the elucidation of catecholamine receptor signaling through G proteins and β-arrestins, and X-ray crystallographic structure determination is reviewed. In silico docking studies developed in tandem with confirmatory empirical data gathering from binding and signaling experiments have allowed this basic framework to be expanded to drug hunting through predictive in silico searching as well as high-throughput and high-content screening approaches. For efforts moving forward for the deployment of new GPCR-acting drugs, collaborative efforts between industry and government/academic research in target validation at the molecular and cellular levels have become progressively more common. Polypharmacological approaches have become increasingly available for learning more about the mechanisms of GPCR-targeted drugs, based on interaction not with a single, but with a wide range of GPCR targets. These approaches are likely to aid in drug repurposing efforts, yield valuable insight on the side effects of currently employed drugs, and allow for a clearer picture of the actual targets of "atypical" drugs used in a variety of therapeutic contexts. © 2013 Elsevier Inc. All rights reserved.

  16. The Role of Target Binding Kinetics in Drug Discovery.

    Science.gov (United States)

    Guo, Dong; Heitman, Laura H; IJzerman, Adriaan P

    2015-11-01

    Traditionally structure-activity/affinity relationships (SAR) have dominated research in medicinal chemistry. However, structure-kinetics relationships (SKR) can be very informative too. In this viewpoint we explore the molecular determinants of binding kinetics and discuss challenges for future binding kinetics studies. A scheme for future kinetics-directed drug design and discovery is also proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Drug target ontology to classify and integrate drug discovery data

    DEFF Research Database (Denmark)

    Lin, Yu; Mehta, Saurabh; Küçük-McGinty, Hande

    2017-01-01

    BACKGROUND: One of the most successful approaches to develop new small molecule therapeutics has been to start from a validated druggable protein target. However, only a small subset of potentially druggable targets has attracted significant research and development resources. The Illuminating...... the Druggable Genome (IDG) project develops resources to catalyze the development of likely targetable, yet currently understudied prospective drug targets. A central component of the IDG program is a comprehensive knowledge resource of the druggable genome. RESULTS: As part of that effort, we have developed...... domain, protein structure, binding site, small molecule drug, mechanism of action, protein tissue localization, disease association, and many other types of information. DTO will further facilitate the otherwise challenging integration and formal linking to biological assays, phenotypes, disease models...

  18. Anticancer drugs discovery and development from marine organism.

    Science.gov (United States)

    Chakraborty, Chiranjib; Hsu, Chi-Hsin; Wen, Zhi-Hong; Lin, Chan-Shing

    2009-01-01

    The chemical and biological diversity of the different marine evolutionary group is endless and therefore, this is an amazing resource for the discovery of new anticancer drugs. Comprising 34 of the 36 Phyla of life, marine ecosystems are indeed our last genetic diversity and biotechnological boundary; terrestrial systems possess only 17 Phyla. Sponges, coelenterates and microorganisms are the foremost resources of therapeutic compounds. Algae, echinoderms, tunicates, mollusks, bryozoans are also the sources of anticancer drugs from marine resources. We highlight the past and current status of marine anticancer pharmacology using different marine groups.

  19. Optical imaging for the new grammar of drug discovery.

    Science.gov (United States)

    Krucker, Thomas; Sandanaraj, Britto S

    2011-11-28

    Optical technologies used in biomedical research have undergone tremendous development in the last decade and enabled important insight into biochemical, cellular and physiological phenomena at the microscopic and macroscopic level. Historically in drug discovery, to increase throughput in screening, or increase efficiency through automation of image acquisition and analysis in pathology, efforts in imaging were focused on the reengineering of established microscopy solutions. However, with the emergence of the new grammar for drug discovery, other requirements and expectations have created unique opportunities for optical imaging. The new grammar of drug discovery provides rules for translating the wealth of genomic and proteomic information into targeted medicines with a focus on complex interactions of proteins. This paradigm shift requires highly specific and quantitative imaging at the molecular level with tools that can be used in cellular assays, animals and finally translated into patients. The development of fluorescent targeted and activatable 'smart' probes, fluorescent proteins and new reporter gene systems as functional and dynamic markers of molecular events in vitro and in vivo is therefore playing a pivotal role. An enabling optical imaging platform will combine optical hardware refinement with a strong emphasis on creating and validating highly specific chemical and biological tools.

  20. Zebrafish xenograft models of cancer and metastasis for drug discovery.

    Science.gov (United States)

    Brown, Hannah K; Schiavone, Kristina; Tazzyman, Simon; Heymann, Dominique; Chico, Timothy Ja

    2017-04-01

    Patients with metastatic cancer suffer the highest rate of cancer-related death, but existing animal models of metastasis have disadvantages that limit our ability to understand this process. The zebrafish is increasingly used for cancer modelling, particularly xenografting of human cancer cell lines, and drug discovery, and may provide novel scientific and therapeutic insights. However, this model system remains underexploited. Areas covered: The authors discuss the advantages and disadvantages of the zebrafish xenograft model for the study of cancer, metastasis and drug discovery. They summarise previous work investigating the metastatic cascade, such as tumour-induced angiogenesis, intravasation, extravasation, dissemination and homing, invasion at secondary sites, assessing metastatic potential and evaluation of cancer stem cells in zebrafish. Expert opinion: The practical advantages of zebrafish for basic biological study and drug discovery are indisputable. However, their ability to sufficiently reproduce and predict the behaviour of human cancer and metastasis remains unproven. For this to be resolved, novel mechanisms must to be discovered in zebrafish that are subsequently validated in humans, and for therapeutic interventions that modulate cancer favourably in zebrafish to successfully translate to human clinical studies. In the meantime, more work is required to establish the most informative methods in zebrafish.

  1. Simulation with quantum mechanics/molecular mechanics for drug discovery.

    Science.gov (United States)

    Barbault, Florent; Maurel, François

    2015-10-01

    Biological macromolecules, such as proteins or nucleic acids, are (still) molecules and thus they follow the same chemical rules that any simple molecule follows, even if their size generally renders accurate studies unhelpful. However, in the context of drug discovery, a detailed analysis of ligand association is required for understanding or predicting their interactions and hybrid quantum mechanics/molecular mechanics (QM/MM) computations are relevant tools to help elucidate this process. In this review, the authors explore the use of QM/MM for drug discovery. After a brief description of the molecular mechanics (MM) technique, the authors describe the subtractive and additive techniques for QM/MM computations. The authors then present several application cases in topics involved in drug discovery. QM/MM have been widely employed during the last decades to study chemical processes such as enzyme-inhibitor interactions. However, despite the enthusiasm around this area, plain MM simulations may be more meaningful than QM/MM. To obtain reliable results, the authors suggest fixing several keystone parameters according to the underlying chemistry of each studied system.

  2. INTEGRATING COMPUTATIONAL PROTEIN FUNCTION PREDICTION INTO DRUG DISCOVERY INITIATIVES.

    Science.gov (United States)

    Grant, Marianne A

    2011-02-01

    Pharmaceutical researchers must evaluate vast numbers of protein sequences and formulate innovative strategies for identifying valid targets and discovering leads against them as a way of accelerating drug discovery. The ever increasing number and diversity of novel protein sequences identified by genomic sequencing projects and the success of worldwide structural genomics initiatives have spurred great interest and impetus in the development of methods for accurate, computationally empowered protein function prediction and active site identification. Previously, in the absence of direct experimental evidence, homology-based protein function annotation remained the gold-standard for in silico analysis and prediction of protein function. However, with the continued exponential expansion of sequence databases, this approach is not always applicable, as fewer query protein sequences demonstrate significant homology to protein gene products of known function. As a result, several non-homology based methods for protein function prediction that are based on sequence features, structure, evolution, biochemical and genetic knowledge have emerged. Herein, we review current bioinformatic programs and approaches for protein function prediction/annotation and discuss their integration into drug discovery initiatives. The development of such methods to annotate protein functional sites and their application to large protein functional families is crucial to successfully utilizing the vast amounts of genomic sequence information available to drug discovery and development processes.

  3. Perspective: Alchemical free energy calculations for drug discovery

    Science.gov (United States)

    Mobley, David L.; Klimovich, Pavel V.

    2012-01-01

    Computational techniques see widespread use in pharmaceutical drug discovery, but typically prove unreliable in predicting trends in protein-ligand binding. Alchemical free energy calculations seek to change that by providing rigorous binding free energies from molecular simulations. Given adequate sampling and an accurate enough force field, these techniques yield accurate free energy estimates. Recent innovations in alchemical techniques have sparked a resurgence of interest in these calculations. Still, many obstacles stand in the way of their routine application in a drug discovery context, including the one we focus on here, sampling. Sampling of binding modes poses a particular challenge as binding modes are often separated by large energy barriers, leading to slow transitions. Binding modes are difficult to predict, and in some cases multiple binding modes may contribute to binding. In view of these hurdles, we present a framework for dealing carefully with uncertainty in binding mode or conformation in the context of free energy calculations. With careful sampling, free energy techniques show considerable promise for aiding drug discovery. PMID:23267463

  4. GLIDA: GPCR-ligand database for chemical genomic drug discovery.

    Science.gov (United States)

    Okuno, Yasushi; Yang, Jiyoon; Taneishi, Kei; Yabuuchi, Hiroaki; Tsujimoto, Gozoh

    2006-01-01

    G-protein coupled receptors (GPCRs) represent one of the most important families of drug targets in pharmaceutical development. GPCR-LIgand DAtabase (GLIDA) is a novel public GPCR-related chemical genomic database that is primarily focused on the correlation of information between GPCRs and their ligands. It provides correlation data between GPCRs and their ligands, along with chemical information on the ligands, as well as access information to the various web databases regarding GPCRs. These data are connected with each other in a relational database, allowing users in the field of GPCR-related drug discovery to easily retrieve such information from either biological or chemical starting points. GLIDA includes structure similarity search functions for the GPCRs and for their ligands. Thus, GLIDA can provide correlation maps linking the searched homologous GPCRs (or ligands) with their ligands (or GPCRs). By analyzing the correlation patterns between GPCRs and ligands, we can gain more detailed knowledge about their interactions and improve drug design efforts by focusing on inferred candidates for GPCR-specific drugs. GLIDA is publicly available at http://gdds.pharm.kyoto-u.ac.jp:8081/glida. We hope that it will prove very useful for chemical genomic research and GPCR-related drug discovery.

  5. The impact of genetics on future drug discovery in schizophrenia.

    Science.gov (United States)

    Matsumoto, Mitsuyuki; Walton, Noah M; Yamada, Hiroshi; Kondo, Yuji; Marek, Gerard J; Tajinda, Katsunori

    2017-07-01

    Failures of investigational new drugs (INDs) for schizophrenia have left huge unmet medical needs for patients. Given the recent lackluster results, it is imperative that new drug discovery approaches (and resultant drug candidates) target pathophysiological alterations that are shared in specific, stratified patient populations that are selected based on pre-identified biological signatures. One path to implementing this paradigm is achievable by leveraging recent advances in genetic information and technologies. Genome-wide exome sequencing and meta-analysis of single nucleotide polymorphism (SNP)-based association studies have already revealed rare deleterious variants and SNPs in patient populations. Areas covered: Herein, the authors review the impact that genetics have on the future of schizophrenia drug discovery. The high polygenicity of schizophrenia strongly indicates that this disease is biologically heterogeneous so the identification of unique subgroups (by patient stratification) is becoming increasingly necessary for future investigational new drugs. Expert opinion: The authors propose a pathophysiology-based stratification of genetically-defined subgroups that share deficits in particular biological pathways. Existing tools, including lower-cost genomic sequencing and advanced gene-editing technology render this strategy ever more feasible. Genetically complex psychiatric disorders such as schizophrenia may also benefit from synergistic research with simpler monogenic disorders that share perturbations in similar biological pathways.

  6. Drug discovery and development for rare genetic disorders.

    Science.gov (United States)

    Sun, Wei; Zheng, Wei; Simeonov, Anton

    2017-09-01

    Approximately 7,000 rare diseases affect millions of individuals in the United States. Although rare diseases taken together have an enormous impact, there is a significant gap between basic research and clinical interventions. Opportunities now exist to accelerate drug development for the treatment of rare diseases. Disease foundations and research centers worldwide focus on better understanding rare disorders. Here, the state-of-the-art drug discovery strategies for small molecules and biological approaches for orphan diseases are reviewed. Rare diseases are usually genetic diseases; hence, employing pharmacogenetics to develop treatments and using whole genome sequencing to identify the etiologies for such diseases are appropriate strategies to exploit. Beginning with high throughput screening of small molecules, the benefits and challenges of target-based and phenotypic screens are discussed. Explanations and examples of drug repurposing are given; drug repurposing as an approach to quickly move programs to clinical trials is evaluated. Consideration is given to the category of biologics which include gene therapy, recombinant proteins, and autologous transplants. Disease models, including animal models and induced pluripotent stem cells (iPSCs) derived from patients, are surveyed. Finally, the role of biomarkers in drug discovery and development, as well as clinical trials, is elucidated. © 2017 Wiley Periodicals, Inc.

  7. A drug discovery case history of 'delta-9-tetrahydrocannabinol, cannabidiol'.

    Science.gov (United States)

    Tanasescu, Radu; Rog, David; Constantinescu, Cris S

    2011-04-01

    Although the Cannabis sativa herb has been known for its therapeutic benefit for centuries, the interest in the clinical potential of cannabinoid-based drugs escalated after the discovery of the endocannabinoid system. The understanding of their actions at the molecular level indicates that the therapeutic applications of cannabinoids (plant-derived or synthetic) may be diverse. Several drugs containing cannabinoids are currently used in the therapy of emesis, pain and spasticity. This drug discovery case history reviews the preclinical and clinical development of Sativex ('delta-9-tetrahydrocannabinol, cannabidiol'; nabiximols). Sativex is the first licensed phytocannabinoid-based drug approved, or in the process of approval, as therapy for indications such as MS-associated spasticity or chronic pain. Sativex contains a combination of two cannabinoids in approximately equal quantities (δ-9-tetrahydrocannabinol and cannabidiol) and is administered via an oromucosal pump spray, aiming at minimising psychotropic side effects and first pass effect. Pivotal clinical safety and efficacy data that led to Sativex's approval are discussed, as well as issues that have arisen with its clinical usage. Although pleiotrophic effects of cannabinoids may raise complex issues beyond their symptomatic effects, standardised pharmaceutical cannabinoids may constitute a useful addition to the pharmacotherapeutic armamentarium in chronic conditions insufficiently alleviated by existing drugs.

  8. Synthesis of Chiral Building Blocks for Use in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Rustum S. Boyce

    2004-05-01

    Full Text Available In the past decade there has been a significant growth in the sales of pharmaceutical drugs worldwide, but more importantly there has been a dramatic growth in the sales of single enantiomer drugs. The pharmaceutical industry has a rising demand for chiral intermediates and research reagents because of the continuing imperative to improve drug efficacy. This in turn impacts on researchers involved in preclinical discovery work. Besides traditional chiral pool and resolution of racemates as sources of chiral building blocks, many new synthetic methods including a great variety of catalytic reactions have been developed which facilitate the production of complex chiral drug candidates for clinical trials. The most ambitious technique is to synthesise homochiral compounds from non-chiral starting materials using chiral metal catalysts and related chemistry. Examples of the synthesis of chiral building blocks from achiral materials utilizing asymmetric hydrogenation and asymmetric epoxidation are presented.

  9. Drug discovery based on genetic and metabolic findings in schizophrenia.

    Science.gov (United States)

    Dwyer, Donard S; Weeks, Kathrine; Aamodt, Eric J

    2008-11-01

    Recent progress in the genetics of schizophrenia provides the rationale for re-evaluating causative factors and therapeutic strategies for this disease. Here, we review the major candidate susceptibility genes and relate the aberrant function of these genes to defective regulation of energy metabolism in the schizophrenic brain. Disturbances in energy metabolism potentially lead to neurodevelopmental deficits, impaired function of the mature nervous system and failure to maintain neurites/dendrites and synaptic connections. Current antipsychotic drugs do not specifically address these underlying deficits; therefore, a new generation of more effective medications is urgently needed. Novel targets for future drug discovery are identified in this review. The coordinated application of structure-based drug design, systems biology and research on model organisms may greatly facilitate the search for next-generation antipsychotic drugs.

  10. Alzheimer's disease, enzyme targets and drug discovery struggles: from natural products to drug prototypes.

    Science.gov (United States)

    Silva, Tiago; Reis, Joana; Teixeira, José; Borges, Fernanda

    2014-05-01

    Alzheimer's disease (AD) is an incapacitating neurodegenerative disease that slowly destroys brain cells. This disease progressively compromises both memory and cognition, culminating in a state of full dependence and dementia. Currently, AD is the main cause of dementia in the elderly and its prevalence in the developed world is increasing rapidly. Classic drugs, such as acetylcholinesterase inhibitors (AChEIs), fail to decline disease progression and display several side effects that reduce patient's adhesion to pharmacotherapy. The past decade has witnessed an increasing focus on the search for novel AChEIs and new putative enzymatic targets for AD, like β- and γ-secretases, sirtuins, caspase proteins and glycogen synthase kinase-3 (GSK-3). In addition, new mechanistic rationales for drug discovery in AD that include autophagy and synaptogenesis have been discovered. Herein, we describe the state-of-the-art of the development of recent enzymatic inhibitors and enhancers with therapeutic potential on the treatment of AD. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Using quantitative systems pharmacology for novel drug discovery.

    Science.gov (United States)

    Pérez-Nueno, Violeta I

    2015-12-01

    Over the past three decades, the predominant paradigm in drug discovery was designing selective ligands for a specific target to avoid unwanted side effects. However, in the last 5 years, the aim has shifted to take into account the biological network in which they interact. Quantitative and Systems Pharmacology (QSP) is a new paradigm that aims to understand how drugs modulate cellular networks in space and time, in order to predict drug targets and their role in human pathophysiology. This review discusses existing computational and experimental QSP approaches such as polypharmacology techniques combined with systems biology information and considers the use of new tools and ideas in a wider 'systems-level' context in order to design new drugs with improved efficacy and fewer unwanted off-target effects. The use of network biology produces valuable information such as new indications for approved drugs, drug-drug interactions, proteins-drug side effects and pathways-gene associations. However, we are still far from the aim of QSP, both because of the huge effort needed to model precisely biological network models and the limited accuracy that we are able to reach with those. Hence, moving from 'one molecule for one target to give one therapeutic effect' to the 'big systems-based picture' seems obvious moving forward although whether our current tools are sufficient for such a step is still under debate.

  12. Recent lab-on-chip developments for novel drug discovery.

    Science.gov (United States)

    Khalid, Nauman; Kobayashi, Isao; Nakajima, Mitsutoshi

    2017-07-01

    Microelectromechanical systems (MEMS) and micro total analysis systems (μTAS) revolutionized the biochemical and electronic industries, and this miniaturization process became a key driver for many markets. Now, it is a driving force for innovations in life sciences, diagnostics, analytical sciences, and chemistry, which are called 'lab-on-a-chip, (LOC)' devices. The use of these devices allows the development of fast, portable, and easy-to-use systems with a high level of functional integration for applications such as point-of-care diagnostics, forensics, the analysis of biomolecules, environmental or food analysis, and drug development. In this review, we report on the latest developments in fabrication methods and production methodologies to tailor LOC devices. A brief overview of scale-up strategies is also presented together with their potential applications in drug delivery and discovery. The impact of LOC devices on drug development and discovery has been extensively reviewed in the past. The current research focuses on fast and accurate detection of genomics, cell mutations and analysis, drug delivery, and discovery. The current research also differentiates the LOC devices into new terminology of microengineering, like organ-on-a-chip, stem cells-on-a-chip, human-on-a-chip, and body-on-a-chip. Key challenges will be the transfer of fabricated LOC devices from lab-scale to industrial large-scale production. Moreover, extensive toxicological studies are needed to justify the use of microfabricated drug delivery vehicles in biological systems. It will also be challenging to transfer the in vitro findings to suitable and promising in vivo models. WIREs Syst Biol Med 2017, 9:e1381. doi: 10.1002/wsbm.1381 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  13. Fragment-based drug discovery and protein–protein interactions

    Directory of Open Access Journals (Sweden)

    Turnbull AP

    2014-09-01

    Full Text Available Andrew P Turnbull,1 Susan M Boyd,2 Björn Walse31CRT Discovery Laboratories, Department of Biological Sciences, Birkbeck, University of London, London, UK; 2IOTA Pharmaceuticals Ltd, Cambridge, UK; 3SARomics Biostructures AB, Lund, SwedenAbstract: Protein–protein interactions (PPIs are involved in many biological processes, with an estimated 400,000 PPIs within the human proteome. There is significant interest in exploiting the relatively unexplored potential of these interactions in drug discovery, driven by the need to find new therapeutic targets. Compared with classical drug discovery against targets with well-defined binding sites, developing small-molecule inhibitors against PPIs where the contact surfaces are frequently more extensive and comparatively flat, with most of the binding energy localized in “hot spots”, has proven far more challenging. However, despite the difficulties associated with targeting PPIs, important progress has been made in recent years with fragment-based drug discovery playing a pivotal role in improving their tractability. Computational and empirical approaches can be used to identify hot-spot regions and assess the druggability and ligandability of new targets, whilst fragment screening campaigns can detect low-affinity fragments that either directly or indirectly perturb the PPI. Once fragment hits have been identified and confirmed using biochemical and biophysical approaches, three-dimensional structural data derived from nuclear magnetic resonance or X-ray crystallography can be used to drive medicinal chemistry efforts towards the development of more potent inhibitors. A small-scale comparison presented in this review of “standard” fragments with those targeting PPIs has revealed that the latter tend to be larger, be more lipophilic, and contain more polar (acid/base functionality, whereas three-dimensional descriptor data indicate that there is little difference in their three

  14. GalenOWL: Ontology-based drug recommendations discovery

    Directory of Open Access Journals (Sweden)

    Doulaverakis Charalampos

    2012-12-01

    Full Text Available Abstract Background Identification of drug-drug and drug-diseases interactions can pose a difficult problem to cope with, as the increasingly large number of available drugs coupled with the ongoing research activities in the pharmaceutical domain, make the task of discovering relevant information difficult. Although international standards, such as the ICD-10 classification and the UNII registration, have been developed in order to enable efficient knowledge sharing, medical staff needs to be constantly updated in order to effectively discover drug interactions before prescription. The use of Semantic Web technologies has been proposed in earlier works, in order to tackle this problem. Results This work presents a semantic-enabled online service, named GalenOWL, capable of offering real time drug-drug and drug-diseases interaction discovery. For enabling this kind of service, medical information and terminology had to be translated to ontological terms and be appropriately coupled with medical knowledge of the field. International standards such as the aforementioned ICD-10 and UNII, provide the backbone of the common representation of medical data, while the medical knowledge of drug interactions is represented by a rule base which makes use of the aforementioned standards. Details of the system architecture are presented while also giving an outline of the difficulties that had to be overcome. A comparison of the developed ontology-based system with a similar system developed using a traditional business logic rule engine is performed, giving insights on the advantages and drawbacks of both implementations. Conclusions The use of Semantic Web technologies has been found to be a good match for developing drug recommendation systems. Ontologies can effectively encapsulate medical knowledge and rule-based reasoning can capture and encode the drug interactions knowledge.

  15. Web-based services for drug design and discovery.

    Science.gov (United States)

    Frey, Jeremy G; Bird, Colin L

    2011-09-01

    Reviews of the development of drug discovery through the 20(th) century recognised the importance of chemistry and increasingly bioinformatics, but had relatively little to say about the importance of computing and networked computing in particular. However, the design and discovery of new drugs is arguably the most significant single application of bioinformatics and cheminformatics to have benefitted from the increases in the range and power of the computational techniques since the emergence of the World Wide Web, commonly now referred to as simply 'the Web'. Web services have enabled researchers to access shared resources and to deploy standardized calculations in their search for new drugs. This article first considers the fundamental principles of Web services and workflows, and then explores the facilities and resources that have evolved to meet the specific needs of chem- and bio-informatics. This strategy leads to a more detailed examination of the basic components that characterise molecules and the essential predictive techniques, followed by a discussion of the emerging networked services that transcend the basic provisions, and the growing trend towards embracing modern techniques, in particular the Semantic Web. In the opinion of the authors, the issues that require community action are: increasing the amount of chemical data available for open access; validating the data as provided; and developing more efficient links between the worlds of cheminformatics and bioinformatics. The goal is to create ever better drug design services.

  16. The role of genetic toxicology in drug discovery and optimization.

    Science.gov (United States)

    Custer, L L; Sweder, K S

    2008-11-01

    Genetic toxicology data is used as a surrogate for long-term carcinogenicity data during early drug development. The aim of genotoxicity testing is to identify potentially hazardous drug candidates. Results from genetic toxicology tests in combination with acute and subchronic animal data are used as the basis to approve clinical trials of drug candidates. With few exceptions, mutagenic compounds are dropped from development and clastogenic compounds result in unfavorable labeling, require disclosure in clinical trial consent forms, and can impact the marketability of a new drug. Therefore, genetic toxicology testing in drug discovery and optimization serves to quickly identify mutagens and remove them from development. Additionally, clastogenicity can delay drug development by requiring additional testing to determine in vivo relevance of in vitro clastogenic responses. Clastogenicity screening is conducted so any additional testing can be planned and perhaps integrated into other toxicity studies to expedite progression of drugs into the clinic. Commercially available genotoxicity and carcinogenicity predictive software systems used for decision support by ICSAS, FDA/CDER is described along with the strengths and weakness of each system. The FDA has concentrated on using a consensus approach to maximize certainty for positive predictions at the expense of sensitivity. The consensus approach consists of requiring 2 complementary software packages, such as MC4PC and MDL QSAR models, to agree that a compound has a genotoxic or carcinogenic liability. Mutagenicity and clastogenicity screening tests are described along with advantages and disadvantages of each test. Several testing strategies are presented for consideration.

  17. DrugBank: a comprehensive resource for in silico drug discovery and exploration.

    Science.gov (United States)

    Wishart, David S; Knox, Craig; Guo, An Chi; Shrivastava, Savita; Hassanali, Murtaza; Stothard, Paul; Chang, Zhan; Woolsey, Jennifer

    2006-01-01

    DrugBank is a unique bioinformatics/cheminformatics resource that combines detailed drug (i.e. chemical) data with comprehensive drug target (i.e. protein) information. The database contains >4100 drug entries including >800 FDA approved small molecule and biotech drugs as well as >3200 experimental drugs. Additionally, >14,000 protein or drug target sequences are linked to these drug entries. Each DrugCard entry contains >80 data fields with half of the information being devoted to drug/chemical data and the other half devoted to drug target or protein data. Many data fields are hyperlinked to other databases (KEGG, PubChem, ChEBI, PDB, Swiss-Prot and GenBank) and a variety of structure viewing applets. The database is fully searchable supporting extensive text, sequence, chemical structure and relational query searches. Potential applications of DrugBank include in silico drug target discovery, drug design, drug docking or screening, drug metabolism prediction, drug interaction prediction and general pharmaceutical education. DrugBank is available at http://redpoll.pharmacy.ualberta.ca/drugbank/.

  18. Locked nucleic acid: modality, diversity, and drug discovery

    DEFF Research Database (Denmark)

    Hagedorn, Peter H.; Persson, Robert; Funder, Erik D.

    2017-01-01

    (LNA), which exhibits high binding affinity and potency, is widely used. Our understanding of RNA biology has also expanded tremendously, resulting in new approaches to engage RNA as a therapeutic target. Recent observations indicate that each oligonucleotide compound is a unique entity, and small...... structural differences between oligonucleotides can often lead to substantial differences in their pharmacological properties. Here, we outline new principles for drug discovery exploiting oligonucleotide diversity to identify rare molecules with unique pharmacological properties.......Over the past 20 years, the field of RNA-targeted therapeutics has advanced based on discoveries of modified oligonucleotide chemistries, and an ever-increasing understanding of how to apply cellular assays to identify oligonucleotides with pharmacological properties in vivo. Locked nucleic acid...

  19. Optogenetic Approaches to Drug Discovery in Neuroscience and Beyond.

    Science.gov (United States)

    Zhang, Hongkang; Cohen, Adam E

    2017-07-01

    Recent advances in optogenetics have opened new routes to drug discovery, particularly in neuroscience. Physiological cellular assays probe functional phenotypes that connect genomic data to patient health. Optogenetic tools, in particular tools for all-optical electrophysiology, now provide a means to probe cellular disease models with unprecedented throughput and information content. These techniques promise to identify functional phenotypes associated with disease states and to identify compounds that improve cellular function regardless of whether the compound acts directly on a target or through a bypass mechanism. This review discusses opportunities and unresolved challenges in applying optogenetic techniques throughout the discovery pipeline - from target identification and validation, to target-based and phenotypic screens, to clinical trials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Microfluidics‐based 3D cell culture models: Utility in novel drug discovery and delivery research

    Science.gov (United States)

    Gupta, Nilesh; Liu, Jeffrey R.; Patel, Brijeshkumar; Solomon, Deepak E.; Vaidya, Bhuvaneshwar

    2016-01-01

    Abstract The implementation of microfluidic devices within life sciences has furthered the possibilities of both academic and industrial applications such as rapid genome sequencing, predictive drug studies, and single cell manipulation. In contrast to the preferred two‐dimensional cell‐based screening, three‐dimensional (3D) systems have more in vivo relevance as well as ability to perform as a predictive tool for the success or failure of a drug screening campaign. 3D cell culture has shown an adaptive response to the recent advancements in microfluidic technologies which has allowed better control over spheroid sizes and subsequent drug screening studies. In this review, we highlight the most significant developments in the field of microfluidic 3D culture over the past half‐decade with a special focus on their benefits and challenges down the lane. With the newer technologies emerging, implementation of microfluidic 3D culture systems into the drug discovery pipeline is right around the bend.

  1. Successful applications of computer aided drug discovery: moving drugs from concept to the clinic.

    Science.gov (United States)

    Talele, Tanaji T; Khedkar, Santosh A; Rigby, Alan C

    2010-01-01

    Drug discovery and development is an interdisciplinary, expensive and time-consuming process. Scientific advancements during the past two decades have changed the way pharmaceutical research generate novel bioactive molecules. Advances in computational techniques and in parallel hardware support have enabled in silico methods, and in particular structure-based drug design method, to speed up new target selection through the identification of hits to the optimization of lead compounds in the drug discovery process. This review is focused on the clinical status of experimental drugs that were discovered and/or optimized using computer-aided drug design. We have provided a historical account detailing the development of 12 small molecules (Captopril, Dorzolamide, Saquinavir, Zanamivir, Oseltamivir, Aliskiren, Boceprevir, Nolatrexed, TMI-005, LY-517717, Rupintrivir and NVP-AUY922) that are in clinical trial or have become approved for therapeutic use.

  2. Pharmacokinetic properties and in silico ADME modeling in drug discovery.

    Science.gov (United States)

    Honório, Kathia M; Moda, Tiago L; Andricopulo, Adriano D

    2013-03-01

    The discovery and development of a new drug are time-consuming, difficult and expensive. This complex process has evolved from classical methods into an integration of modern technologies and innovative strategies addressed to the design of new chemical entities to treat a variety of diseases. The development of new drug candidates is often limited by initial compounds lacking reasonable chemical and biological properties for further lead optimization. Huge libraries of compounds are frequently selected for biological screening using a variety of techniques and standard models to assess potency, affinity and selectivity. In this context, it is very important to study the pharmacokinetic profile of the compounds under investigation. Recent advances have been made in the collection of data and the development of models to assess and predict pharmacokinetic properties (ADME--absorption, distribution, metabolism and excretion) of bioactive compounds in the early stages of drug discovery projects. This paper provides a brief perspective on the evolution of in silico ADME tools, addressing challenges, limitations, and opportunities in medicinal chemistry.

  3. CREDO: a protein-ligand interaction database for drug discovery.

    Science.gov (United States)

    Schreyer, Adrian; Blundell, Tom

    2009-02-01

    Harnessing data from the growing number of protein-ligand complexes in the Protein Data Bank is an important task in drug discovery. In order to benefit from the abundance of three-dimensional structures, structural data must be integrated with sequence as well as chemical data and the protein-small molecule interactions characterized structurally at the inter-atomic level. In this study, we present CREDO, a new publicly available database of protein-ligand interactions, which represents contacts as structural interaction fingerprints, implements novel features and is completely scriptable through its application programming interface. Features of CREDO include implementation of molecular shape descriptors with ultrafast shape recognition, fragmentation of ligands in the Protein Data Bank, sequence-to-structure mapping and the identification of approved drugs. Selected analyses of these key features are presented to highlight a range of potential applications of CREDO. The CREDO dataset has been released into the public domain together with the application programming interface under a Creative Commons license at http://www-cryst.bioc.cam.ac.uk/credo. We believe that the free availability and numerous features of CREDO database will be useful not only for commercial but also for academia-driven drug discovery programmes.

  4. Designing an intuitive web application for drug discovery scientists.

    Science.gov (United States)

    Karamanis, Nikiforos; Pignatelli, Miguel; Carvalho-Silva, Denise; Rowland, Francis; Cham, Jennifer A; Dunham, Ian

    2018-01-11

    Here, we discuss how we designed the Open Targets Platform (www.targetvalidation.org), an intuitive application for bench scientists working in early drug discovery. To meet the needs of our users, we applied lean user experience (UX) design methods: we started engaging with users very early and carried out research, design and evaluation activities within an iterative development process. We also emphasize the collaborative nature of applying lean UX design, which we believe is a foundation for success in this and many other scientific projects. Copyright © 2018. Published by Elsevier Ltd.

  5. New drug discovery: extraordinary opportunities in an uncertain time.

    Science.gov (United States)

    Kinch, Michael S; Flath, Richard

    2015-11-01

    The way in which new medicines are discovered has irreversibly changed and the future sustainability of the enterprise is characterized by an unprecedented period of uncertainty. Herein, we convey that these changes provide unprecedented opportunities for many different players within the private and public sectors to work together and develop new models that ensure the sustainability of activities that have had an extraordinary impact; in terms of promoting public health and driving economic value. Specific examples of experiments are provided to demonstrate some of the new thinking that will be needed to ensure continuation of new drug discovery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Anticancer drug discovery and pharmaceutical chemistry: a history.

    Science.gov (United States)

    Braña, Miguel F; Sánchez-Migallón, Ana

    2006-10-01

    There are several procedures for the chemical discovery and design of new drugs from the point of view of the pharmaceutical or medicinal chemistry. They range from classical methods to the very new ones, such as molecular modeling or high throughput screening. In this review, we will consider some historical approaches based on the screening of natural products, the chances for luck, the systematic screening of new chemical entities and serendipity. Another group comprises rational design, as in the case of metabolic pathways, conformation versus configuration and, finally, a brief description on available new targets to be carried out. In each approach, the structure of some examples of clinical interest will be shown.

  7. Molecular dynamics simulations: from structure function relationships to drug discovery.

    Science.gov (United States)

    Nair, Pramod C; Miners, John O

    2014-01-01

    Molecular dynamics (MD) simulation is an emerging in silico technique with potential applications in diverse areas of pharmacology. Over the past three decades MD has evolved as an area of importance for understanding the atomic basis of complex phenomena such as molecular recognition, protein folding, and the transport of ions and small molecules across membranes. The application of MD simulations in isolation and in conjunction with experimental approaches have provided an increased understanding of protein structure-function relationships and demonstrated promise in drug discovery.

  8. CREDO: a structural interactomics database for drug discovery.

    Science.gov (United States)

    Schreyer, Adrian M; Blundell, Tom L

    2013-01-01

    CREDO is a unique relational database storing all pairwise atomic interactions of inter- as well as intra-molecular contacts between small molecules and macromolecules found in experimentally determined structures from the Protein Data Bank. These interactions are integrated with further chemical and biological data. The database implements useful data structures and algorithms such as cheminformatics routines to create a comprehensive analysis platform for drug discovery. The database can be accessed through a web-based interface, downloads of data sets and web services at http://www-cryst.bioc.cam.ac.uk/credo. Database URL: http://www-cryst.bioc.cam.ac.uk/credo.

  9. Drug discovery for autism spectrum disorder: challenges and opportunities.

    Science.gov (United States)

    Ghosh, Anirvan; Michalon, Aubin; Lindemann, Lothar; Fontoura, Paulo; Santarelli, Luca

    2013-10-01

    The rising rates of autism spectrum disorder (ASD) and the lack of effective medications to treat its core symptoms have led to an increased sense of urgency to identify therapies for this group of neurodevelopmental conditions. Developing drugs for ASD, however, has been challenging because of a limited understanding of its pathophysiology, difficulties in modelling the disease in vitro and in vivo, the heterogeneity of symptoms, and the dearth of prior experience in clinical development. In the past few years these challenges have been mitigated by considerable advances in our understanding of forms of ASD caused by single-gene alterations, such as fragile X syndrome and tuberous sclerosis. In these cases we have gained insights into the pathophysiological mechanisms underlying these conditions. In addition, they have aided in the development of animal models and compounds with the potential for disease modification in clinical development. Moreover, genetic studies are illuminating the molecular pathophysiology of ASD, and new tools such as induced pluripotent stem cells offer novel possibilities for drug screening and disease diagnostics. Finally, large-scale collaborations between academia and industry are starting to address some of the key barriers to developing drugs for ASD. Here, we propose a conceptual framework for drug discovery in ASD encompassing target identification, drug profiling and considerations for clinical trials in this novel area.

  10. Teaching Tip: Using Rapid Game Prototyping for Exploring Requirements Discovery and Modeling

    Science.gov (United States)

    Dalal, Nikunj

    2012-01-01

    We describe the use of rapid game prototyping as a pedagogic technique to experientially explore and learn requirements discovery, modeling, and specification in systems analysis and design courses. Students have a natural interest in gaming that transcends age, gender, and background. Rapid digital game creation is used to build computer games…

  11. Chimeric mice with humanized liver: Application in drug metabolism and pharmacokinetics studies for drug discovery.

    Science.gov (United States)

    Naritomi, Yoichi; Sanoh, Seigo; Ohta, Shigeru

    2017-11-09

    Predicting human drug metabolism and pharmacokinetics (PK) is key to drug discovery. In particular, it is important to predict human PK, metabolite profiles and drug-drug interactions (DDIs). Various methods have been used for such predictions, including in vitro metabolic studies using human biological samples, such as hepatic microsomes and hepatocytes, and in vivo studies using experimental animals. However, prediction studies using these methods are often inconclusive due to discrepancies between in vitro and in vivo results, and interspecies differences in drug metabolism. Further, the prediction methods have changed from qualitative to quantitative to solve these issues. Chimeric mice with humanized liver have been developed, in which mouse liver cells are mostly replaced with human hepatocytes. Since human drug metabolizing enzymes are expressed in the liver of these mice, they are regarded as suitable models for mimicking the drug metabolism and PK observed in humans; therefore, these mice are useful for predicting human drug metabolism and PK. In this review, we discuss the current state, issues, and future directions of predicting human drug metabolism and PK using chimeric mice with humanized liver in drug discovery. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  12. Zika virus NS5 protein potential inhibitors: an enhanced in silico approach in drug discovery.

    Science.gov (United States)

    Ramharack, Pritika; Soliman, Mahmoud E S

    2017-04-17

    The re-emerging Zika virus (ZIKV) is an arthropod-borne virus that has been described to have explosive potential as a worldwide pandemic. The initial transmission of the virus was through a mosquito vector, however, evolving modes of transmission has allowed the spread of the disease over continents. The virus has already been linked to irreversible chronic central nervous system conditions. The concerns of the scientific and clinical community are the consequences of Zika viral mutations, thus suggesting the urgent need for viral inhibitors. There have been large strides in vaccine development against the virus but there are still no FDA approved drugs available. Rapid rational drug design and discovery research is fundamental in the production of potent inhibitors against the virus that will not just mask the virus, but destroy it completely. In silico drug design allows for this prompt screening of potential leads, thus decreasing the consumption of precious time and resources. This study demonstrates an optimized and proven screening technique in the discovery of two potential small molecule inhibitors of ZIKV Methyltransferase and RNA dependent RNA polymerase. This in silico 'per-residue energy decomposition pharmacophore' virtual screening approach will be critical in aiding scientists in the discovery of not only effective inhibitors of Zika viral targets, but also a wide range of anti-viral agents.

  13. RNA Editing and Drug Discovery for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Wei-Hsuan Huang

    2013-01-01

    Full Text Available RNA editing is vital to provide the RNA and protein complexity to regulate the gene expression. Correct RNA editing maintains the cell function and organism development. Imbalance of the RNA editing machinery may lead to diseases and cancers. Recently, RNA editing has been recognized as a target for drug discovery although few studies targeting RNA editing for disease and cancer therapy were reported in the field of natural products. Therefore, RNA editing may be a potential target for therapeutic natural products. In this review, we provide a literature overview of the biological functions of RNA editing on gene expression, diseases, cancers, and drugs. The bioinformatics resources of RNA editing were also summarized.

  14. Directing evolution: the next revolution in drug discovery?

    Science.gov (United States)

    Davis, Andrew M; Plowright, Alleyn T; Valeur, Eric

    2017-10-01

    The strong biological rationale to pursue challenging drug targets such as protein-protein interactions has stimulated the development of novel screening strategies, such as DNA-encoded libraries, to allow broader areas of chemical space to be searched. There has also been renewed interest in screening natural products, which are the result of evolutionary selection for a function, such as interference with a key signalling pathway of a competing organism. However, recent advances in several areas, such as understanding of the biosynthetic pathways for natural products, synthetic biology and the development of biosensors to detect target molecules, are now providing new opportunities to directly harness evolutionary pressure to identify and optimize compounds with desired bioactivities. Here, we describe innovations in the key components of such strategies and highlight pioneering examples that indicate the potential of the directed-evolution concept. We also discuss the scientific gaps and challenges that remain to be addressed to realize this potential more broadly in drug discovery.

  15. Applications of fiber-optics-based nanosensors to drug discovery.

    Science.gov (United States)

    Vo-Dinh, Tuan; Scaffidi, Jonathan; Gregas, Molly; Zhang, Yan; Seewaldt, Victoria

    2009-08-01

    Fiber-optic nanosensors are fabricated by heating and pulling optical fibers to yield sub-micron diameter tips and have been used for in vitro analysis of individual living mammalian cells. Immobilization of bioreceptors (e.g., antibodies, peptides, DNA) selective to targeting analyte molecules of interest provides molecular specificity. Excitation light can be launched into the fiber, and the resulting evanescent field at the tip of the nanofiber can be used to excite target molecules bound to the bioreceptor molecules. The fluorescence or surface-enhanced Raman scattering produced by the analyte molecules is detected using an ultra-sensitive photodetector. This article provides an overview of the development and application of fiber-optic nanosensors for drug discovery. The nanosensors provide minimally invasive tools to probe subcellular compartments inside single living cells for health effect studies (e.g., detection of benzopyrene adducts) and medical applications (e.g., monitoring of apoptosis in cells treated with anticancer drugs).

  16. Evaluating drug efficacy and toxicology in three dimensions: using synthetic extracellular matrices in drug discovery.

    Science.gov (United States)

    Prestwich, Glenn D

    2008-01-01

    hepatocytes retain their biochemical phenotypes and achieve greater longevity in 3-D culture in Extracel. This constitutes a new 3-D method for rapid evaluation of hepatotoxicity in vitro. Third, cancer cell lines are readily grown in 3-D culture in Extracel, offering a method for rapid evaluation of new anticancer agents in a more physiological ex vivo tumor model. This system has been used to evaluate signal transduction modifiers obtained from our research on lipid signaling. Fourth, a new "tumor engineering" xenograft model uses orthotopic injection of Extracel-containing tumor cells in nude mice. This approach allows production of patient-specific mice using primary human tumor samples and offers a superior metastatic cancer model. Future applications of the injectable cell delivery and 3-D cell culture methods include chemoattractant and angiogenesis assays, high-content automated screening of chemical libraries, pharmacogenomic and toxicogenomic studies with cultured organoids, and personalized treatment models. In summary, the sECM technology offers a versatile "translational bridge" from in vitro to in vivo to facilitate drug discovery in both academic and pharmaceutical laboratories.

  17. Advances in immobilized artificial membrane (IAM) chromatography for novel drug discovery.

    Science.gov (United States)

    Tsopelas, Fotios; Vallianatou, Theodosia; Tsantili-Kakoulidou, Anna

    2016-01-01

    The development of immobilized artificial membrane (IAM) chromatography has unfolded new perspectives for the use of chromatographic techniques in drug discovery, combining simulation of the environment of cell membranes with rapid measurements. The present review describes the characteristics of phosphatidylcholine-based stationary phases and analyses the molecular factors governing IAM retention in comparison to n-octanol-water and liposomes partitioning systems as well as to reversed phase chromatography. Other biomimetic stationary phases are also briefly discussed. The potential of IAM chromatography to model permeability through the main physiological barriers and drug membrane interactions is outlined. Further applications to calculate complex pharmacokinetic properties, related to tissue binding, and to screen drug candidates for phospholipidosis, as well as to estimate cell accumulation/retention are surveyed. The ambivalent nature of IAM chromatography, as a border case between passive diffusion and binding, defines its multiple potential applications. However, despite its successful performance in many permeability and drug-membrane interactions studies, IAM chromatography is still used as a supportive and not a stand-alone technique. Further studies looking at IAM chromatography in different biological processes are still required if this technique is to have a more focused and consistent application in drug discovery.

  18. Recent advances in combinatorial biosynthesis for drug discovery

    Directory of Open Access Journals (Sweden)

    Sun H

    2015-02-01

    Full Text Available Huihua Sun,1,* Zihe Liu,1,* Huimin Zhao,1,2 Ee Lui Ang1 1Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore; 2Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA *These authors contributed equally to this work Abstract: Because of extraordinary structural diversity and broad biological activities, natural products have played a significant role in drug discovery. These therapeutically important secondary metabolites are assembled and modified by dedicated biosynthetic pathways in their host living organisms. Traditionally, chemists have attempted to synthesize natural product analogs that are important sources of new drugs. However, the extraordinary structural complexity of natural products sometimes makes it challenging for traditional chemical synthesis, which usually involves multiple steps, harsh conditions, toxic organic solvents, and byproduct wastes. In contrast, combinatorial biosynthesis exploits substrate promiscuity and employs engineered enzymes and pathways to produce novel “unnatural” natural products, substantially expanding the structural diversity of natural products with potential pharmaceutical value. Thus, combinatorial biosynthesis provides an environmentally friendly way to produce natural product analogs. Efficient expression of the combinatorial biosynthetic pathway in genetically tractable heterologous hosts can increase the titer of the compound, eventually resulting in less expensive drugs. In this review, we will discuss three major strategies for combinatorial biosynthesis: 1 precursor-directed biosynthesis; 2 enzyme-level modification, which includes swapping of the entire domains, modules and subunits, site-specific mutagenesis, and directed evolution; 3 pathway-level recombination. Recent examples of combinatorial biosynthesis employing these

  19. Distant collaboration in drug discovery: The LINK3D project

    Science.gov (United States)

    Pastor, Manuel; Benedetti, Paolo; Carotti, Angelo; Carrieri, Antonio; Díaz, Carlos; Herráiz, Cristina; Höltje, Hans-Dieter; Loza, M. Isabel; Oprea, Tudor; Padín, Fernando; Pubill, Francesc; Sanz, Ferran; Stoll, Friederike; the LINK3D Consortium

    2002-11-01

    The work describes the development of novel software supporting synchronous distant collaboration between scientists involved in drug discovery and development projects. The program allows to visualize and share data as well as to interact in real time using standard intranets and Internet resources. Direct visualization of 2D and 3D molecular structures is supported and original tools for facilitating remote discussion have been integrated. The software is multiplatform (MS-Windows, SGI-IRIX, Linux), allowing for a seamless integration of heterogeneous working environments. The project aims to support collaboration both within and between academic and industrial institutions. Since confidentiality is very important in some scenarios, special attention has been paid to security aspects. The article presents the research carried out to gather the requirements of collaborative software in the field of drug discovery and development and describes the features of the first fully functional prototype obtained. Real-world testing activities carried out on this prototype in order to guarantee its adequacy in diverse environments are also described and discussed.

  20. Click chemistry patents and their impact on drug discovery and chemical biology.

    Science.gov (United States)

    Xu, Hua; Jones, Lyn H

    2015-01-01

    First introduced by K Barry Sharpless in 2001, the term 'click chemistry' soon became a widely used description of chemical reactions that proceed rapidly, cleanly and in a manner that is often compatible with aqueous solutions. Click chemistry is frequently employed throughout the process of drug discovery, and greatly helps advance research programs in the pharmaceutical industry. It facilitates library synthesis to support medicinal chemistry optimization, helps identify the targets and off-targets of drug candidates, and can facilitate the determination of drug efficacy in clinical trials. In the last decade, a large number of patent applications covering the various types and utilities of click chemistry have been filed. In this review, we provide the first analysis of click chemistry applications.

  1. Drugs, structures, fragments : substructure-based approaches to GPCR drug discovery and design

    NARCIS (Netherlands)

    Horst, Eelke van der

    2012-01-01

    This thesis is all about cheminformatics, and its impact on drug discovery. A number of strategies are discussed that apply computational methods for the analysis and design of G protein-coupled receptor (GPCR) ligands. Frequent substructure mining is applied to find the common structural motifs

  2. Androgen receptor: structure, role in prostate cancer and drug discovery

    Science.gov (United States)

    Tan, MH Eileen; Li, Jun; Xu, H Eric; Melcher, Karsten; Yong, Eu-leong

    2015-01-01

    Androgens and androgen receptors (AR) play a pivotal role in expression of the male phenotype. Several diseases, such as androgen insensitivity syndrome (AIS) and prostate cancer, are associated with alterations in AR functions. Indeed, androgen blockade by drugs that prevent the production of androgens and/or block the action of the AR inhibits prostate cancer growth. However, resistance to these drugs often occurs after 2–3 years as the patients develop castration-resistant prostate cancer (CRPC). In CRPC, a functional AR remains a key regulator. Early studies focused on the functional domains of the AR and its crucial role in the pathology. The elucidation of the structures of the AR DNA binding domain (DBD) and ligand binding domain (LBD) provides a new framework for understanding the functions of this receptor and leads to the development of rational drug design for the treatment of prostate cancer. An overview of androgen receptor structure and activity, its actions in prostate cancer, and how structural information and high-throughput screening have been or can be used for drug discovery are provided herein. PMID:24909511

  3. Open-access and Structured Data in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Yixin Zhang

    2015-01-01

    Full Text Available A data journal in the biomedical field is an innovative and interesting task with potential benefits to the scientific society, the pharmaceutical and biotechnology industrials, as well as the medical institutions and authorities. It can serve as a source to stimulate, using computational modeling and bioinformatics, the bridging of biomedicine and basic biology researches and connecting of pharmaceutical and biotechnology industrials with academy. In the era of various high throughput technologies and big data, it could become a powerful driving force to combine expertise to understand the complexity of life and to catalyze new innovative therapeutics and diagnosis. The developments of various high-throughput and/or high-content drug-screening techniques are aiming not only to probe a large number of chemical compounds, but also to obtain deep insights into the molecule/molecule interaction associated with the diversity of chemical space, the structure-activity relationship, as well as the pharmacological mechanism. Moreover, the cell-based drug-screening approaches can also shed new light on the dynamics and regulation of proteins and genes associated with various physiological and pathological states. To reflect on these developments, the BMDJ Editorial Board announed a Call for Papers for a special issue on datasets in the field of drug screening and discovery: http://biomed-data.eu/calls-for-papers/high-throughput-drug-screening

  4. Accelerated Caco-2 cell permeability model for drug discovery.

    Science.gov (United States)

    Sevin, E; Dehouck, L; Fabulas-da Costa, A; Cecchelli, R; Dehouck, M P; Lundquist, S; Culot, M

    2013-01-01

    By culturing Caco-2 cells according to a new and optimized protocol, it has been possible to accelerate the cell culture process in such a way that the cells can be used for experiments after only 6 days. The accelerated Caco-2 model has been compared to the traditional model (requiring 21-25 days of culture) in terms of tightness of the junctions, ability to rank chemical compounds for apparent permeability, active efflux and to discriminate P-gp substrates. In the new protocol, Caco-2 cells were cultured with the classical Caco-2 medium supplemented with puromycin. The initial cell seeding density was increased two times compared to the traditional procedure and the presence of a low concentration of puromycin in the culture medium reduced the Caco-2 permeability of mannitol. Bi-directional studies were performed with known P-gp substrates (rhodamine 123, digoxin and saquinavir) and with a total of 20 marketed drugs covering a wide range of physicochemical characteristics and therapeutic indications. Strong correlations were obtained between the apparent permeability in absorptive (Papp A→B) or secretory (Papp B→A) of the drugs in the accelerated model and in the traditional models and comparable efflux ratios were observed in the two studied models. The new protocol reduces costs for screening and leads to higher throughput compared to traditional Caco-2 cell models. This accelerated model provides short time-feedback to the drug design during the early stage of drug discovery. © 2013.

  5. Inositol Polyphosphate Kinases, Fungal Virulence and Drug Discovery

    Directory of Open Access Journals (Sweden)

    Cecilia Li

    2016-09-01

    Full Text Available Opportunistic fungi are a major cause of morbidity and mortality world-wide, particularly in immunocompromised individuals. Developing new treatments to combat invasive fungal disease is challenging given that fungal and mammalian host cells are eukaryotic, with similar organization and physiology. Even therapies targeting unique fungal cell features have limitations and drug resistance is emerging. New approaches to the development of antifungal drugs are therefore needed urgently. Cryptococcus neoformans, the commonest cause of fungal meningitis worldwide, is an accepted model for studying fungal pathogenicity and driving drug discovery. We recently characterized a phospholipase C (Plc1-dependent pathway in C. neoformans comprising of sequentially-acting inositol polyphosphate kinases (IPK, which are involved in synthesizing inositol polyphosphates (IP. We also showed that the pathway is essential for fungal cellular function and pathogenicity. The IP products of the pathway are structurally diverse, each consisting of an inositol ring, with phosphate (P and pyrophosphate (PP groups covalently attached at different positions. This review focuses on (1 the characterization of the Plc1/IPK pathway in C. neoformans; (2 the identification of PP-IP5 (IP7 as the most crucial IP species for fungal fitness and virulence in a mouse model of fungal infection; and (3 why IPK enzymes represent suitable candidates for drug development.

  6. galign: a tool for rapid genome polymorphism discovery.

    Directory of Open Access Journals (Sweden)

    Shai Shaham

    Full Text Available BACKGROUND: Highly parallel sequencing technologies have become important tools in the analysis of sequence polymorphisms on a genomic scale. However, the development of customized software to analyze data produced by these methods has lagged behind. METHODS/PRINCIPAL FINDINGS: Here I describe a tool, 'galign', designed to identify polymorphisms between sequence reads obtained using Illumina/Solexa technology and a reference genome. The 'galign' alignment tool does not use Smith-Waterman matrices for sequence comparisons. Instead, a simple algorithm comparing parsed sequence reads to parsed reference genome sequences is used. 'galign' output is geared towards immediate user application, displaying polymorphism locations, nucleotide changes, and relevant predicted amino-acid changes for ease of information processing. To do so, 'galign' requires several accessory files easily derived from an annotated reference genome. Direct sequencing as well as in silico studies demonstrate that 'galign' provides lesion predictions comparable in accuracy to available prediction programs, accompanied by greater processing speed and more user-friendly output. We demonstrate the use of 'galign' to identify mutations leading to phenotypic consequences in C. elegans. CONCLUSION/SIGNIFICANCE: Our studies suggest that 'galign' is a useful tool for polymorphism discovery, and is of immediate utility for sequence mining in C. elegans.

  7. galign: a tool for rapid genome polymorphism discovery.

    Science.gov (United States)

    Shaham, Shai

    2009-09-25

    Highly parallel sequencing technologies have become important tools in the analysis of sequence polymorphisms on a genomic scale. However, the development of customized software to analyze data produced by these methods has lagged behind. Here I describe a tool, 'galign', designed to identify polymorphisms between sequence reads obtained using Illumina/Solexa technology and a reference genome. The 'galign' alignment tool does not use Smith-Waterman matrices for sequence comparisons. Instead, a simple algorithm comparing parsed sequence reads to parsed reference genome sequences is used. 'galign' output is geared towards immediate user application, displaying polymorphism locations, nucleotide changes, and relevant predicted amino-acid changes for ease of information processing. To do so, 'galign' requires several accessory files easily derived from an annotated reference genome. Direct sequencing as well as in silico studies demonstrate that 'galign' provides lesion predictions comparable in accuracy to available prediction programs, accompanied by greater processing speed and more user-friendly output. We demonstrate the use of 'galign' to identify mutations leading to phenotypic consequences in C. elegans. Our studies suggest that 'galign' is a useful tool for polymorphism discovery, and is of immediate utility for sequence mining in C. elegans.

  8. Minireview: Targeting GPCR Activated ERK Pathways for Drug Discovery.

    Science.gov (United States)

    Eishingdrelo, Haifeng; Kongsamut, Sathapana

    2013-01-01

    It has become clear in recent years that multiple signal transduction pathways are employed upon GPCR activation. One of the major cellular effectors activated by GPCRs is extracellular signal-regulated kinase (ERK). Both G-protein and β-arrestin mediated signaling pathways can lead to ERK activation. However, depending on activation pathway, the subcellular destination of activated ERK1/2 may be different. G-protein -dependent ERK activation results in the translocation of active ERK to the nucleus, whereas ERK activated via an arrestin-dependent mechanism remains largely in the cytoplasm. The subcellular location of activated ERK1/2 determines the downstream signaling cascade. Many substrates of ERK1/2 are found in the nucleus: nuclear transcription factors that participate in gene transcription, cell proliferation and differentiation. ERK1/2 substrates are also found in cytosol and other cellular organelles: they may play roles in translation, mitosis, apoptosis and cross-talk with other signaling pathways. Therefore, determining specific subcellular locations of activated ERK1/2 mediated by GPCR ligands would be important in correlating signaling pathways with cellular physiological functions. While GPCR-stimulated selective ERK pathway activation has been studied in several receptor systems, exploitation of these different signaling cascades for therapeutics has not yet been seriously pursued. Many old drug candidates were identified from screens based on G-protein signaling assays, and their activity on β-arrestin signaling pathways being mostly unknown, especially regarding their subcellular ERK pathways. With today's knowledge of complicated GPCR signaling pathways, drug discovery can no longer rely on single-pathway approaches. Since ERK activation is an important signaling pathway and associated with many physiological functions, targeting the ERK pathway, especially specific subcellular activation pathways should provide new avenues for GPCR drug

  9. Open Source Drug Discovery in Practice: A Case Study

    Science.gov (United States)

    Årdal, Christine; Røttingen, John-Arne

    2012-01-01

    Background Open source drug discovery offers potential for developing new and inexpensive drugs to combat diseases that disproportionally affect the poor. The concept borrows two principle aspects from open source computing (i.e., collaboration and open access) and applies them to pharmaceutical innovation. By opening a project to external contributors, its research capacity may increase significantly. To date there are only a handful of open source R&D projects focusing on neglected diseases. We wanted to learn from these first movers, their successes and failures, in order to generate a better understanding of how a much-discussed theoretical concept works in practice and may be implemented. Methodology/Principal Findings A descriptive case study was performed, evaluating two specific R&D projects focused on neglected diseases. CSIR Team India Consortium's Open Source Drug Discovery project (CSIR OSDD) and The Synaptic Leap's Schistosomiasis project (TSLS). Data were gathered from four sources: interviews of participating members (n = 14), a survey of potential members (n = 61), an analysis of the websites and a literature review. Both cases have made significant achievements; however, they have done so in very different ways. CSIR OSDD encourages international collaboration, but its process facilitates contributions from mostly Indian researchers and students. Its processes are formal with each task being reviewed by a mentor (almost always offline) before a result is made public. TSLS, on the other hand, has attracted contributors internationally, albeit significantly fewer than CSIR OSDD. Both have obtained funding used to pay for access to facilities, physical resources and, at times, labor costs. TSLS releases its results into the public domain, whereas CSIR OSDD asserts ownership over its results. Conclusions/Significance Technically TSLS is an open source project, whereas CSIR OSDD is a crowdsourced project. However, both have enabled high quality

  10. Open source drug discovery in practice: a case study.

    Science.gov (United States)

    Årdal, Christine; Røttingen, John-Arne

    2012-01-01

    Open source drug discovery offers potential for developing new and inexpensive drugs to combat diseases that disproportionally affect the poor. The concept borrows two principle aspects from open source computing (i.e., collaboration and open access) and applies them to pharmaceutical innovation. By opening a project to external contributors, its research capacity may increase significantly. To date there are only a handful of open source R&D projects focusing on neglected diseases. We wanted to learn from these first movers, their successes and failures, in order to generate a better understanding of how a much-discussed theoretical concept works in practice and may be implemented. A descriptive case study was performed, evaluating two specific R&D projects focused on neglected diseases. CSIR Team India Consortium's Open Source Drug Discovery project (CSIR OSDD) and The Synaptic Leap's Schistosomiasis project (TSLS). Data were gathered from four sources: interviews of participating members (n = 14), a survey of potential members (n = 61), an analysis of the websites and a literature review. Both cases have made significant achievements; however, they have done so in very different ways. CSIR OSDD encourages international collaboration, but its process facilitates contributions from mostly Indian researchers and students. Its processes are formal with each task being reviewed by a mentor (almost always offline) before a result is made public. TSLS, on the other hand, has attracted contributors internationally, albeit significantly fewer than CSIR OSDD. Both have obtained funding used to pay for access to facilities, physical resources and, at times, labor costs. TSLS releases its results into the public domain, whereas CSIR OSDD asserts ownership over its results. Technically TSLS is an open source project, whereas CSIR OSDD is a crowdsourced project. However, both have enabled high quality research at low cost. The critical success factors appear to be clearly

  11. 3D in vitro technology for drug discovery.

    Science.gov (United States)

    Hosseinkhani, Hossein

    2012-02-01

    Three-dimensional (3D) in vitro systems that can mimic organ and tissue structure and function in vivo, will be of great benefit for a variety of biological applications from basic biology to toxicity testing and drug discovery. There have been several attempts to generate 3D tissue models but most of these models require costly equipment, and the most serious disadvantage in them is that they are too far from the mature human organs in vivo. Because of these problems, research and development in drug discovery, toxicity testing and biotech industries are highly expensive, and involve sacrifice of countless animals and it takes several years to bring a single drug/product to the market or to find the toxicity or otherwise of chemical entities. Our group has been actively working on several alternative models by merging biomaterials science, nanotechnology and biological principles to generate 3D in vitro living organs, to be called "Human Organs-on-Chip", to mimic natural organ/tissues, in order to reduce animal testing and clinical trials. We have fabricated a novel type of mechanically and biologically bio-mimicking collagen-based hydrogel that would provide for interconnected mini-wells in which 3D cell/organ culture of human samples in a manner similar to human organs with extracellular matrix (ECM) molecules would be possible. These products mimic the physical, chemical, and biological properties of natural organs and tissues at different scales. This paper will review the outcome of our several experiments so far in this direction and the future perspectives.

  12. 3D bioprinting for drug discovery and development in pharmaceutics.

    Science.gov (United States)

    Peng, Weijie; Datta, Pallab; Ayan, Bugra; Ozbolat, Veli; Sosnoski, Donna; Ozbolat, Ibrahim T

    2017-07-15

    Successful launch of a commercial drug requires significant investment of time and financial resources wherein late-stage failures become a reason for catastrophic failures in drug discovery. This calls for infusing constant innovations in technologies, which can give reliable prediction of efficacy, and more importantly, toxicology of the compound early in the drug discovery process before clinical trials. Though computational advances have resulted in more rationale in silico designing, in vitro experimental studies still require gaining industry confidence and improving in vitro-in vivo correlations. In this quest, due to their ability to mimic the spatial and chemical attributes of native tissues, three-dimensional (3D) tissue models have now proven to provide better results for drug screening compared to traditional two-dimensional (2D) models. However, in vitro fabrication of living tissues has remained a bottleneck in realizing the full potential of 3D models. Recent advances in bioprinting provide a valuable tool to fabricate biomimetic constructs, which can be applied in different stages of drug discovery research. This paper presents the first comprehensive review of bioprinting techniques applied for fabrication of 3D tissue models for pharmaceutical studies. A comparative evaluation of different bioprinting modalities is performed to assess the performance and ability of fabricating 3D tissue models for pharmaceutical use as the critical selection of bioprinting modalities indeed plays a crucial role in efficacy and toxicology testing of drugs and accelerates the drug development cycle. In addition, limitations with current tissue models are discussed thoroughly and future prospects of the role of bioprinting in pharmaceutics are provided to the reader. Present advances in tissue biofabrication have crucial role to play in aiding the pharmaceutical development process achieve its objectives. Advent of three-dimensional (3D) models, in particular, is

  13. Biomarkers: in medicine, drug discovery, and environmental health

    National Research Council Canada - National Science Library

    Vaidya, Vishal S; Bonventre, Joseph V

    2010-01-01

    ... Identification Using Mass Spectrometry Sample Preparation Protein Quantitation Examples of Biomarker Discovery and Evaluation Challenges in Proteomic Biomarker Discovery The Road Forward: Targeted ...

  14. Utility of Glioblastoma Patient-Derived Orthotopic Xenografts in Drug Discovery and Personalized Therapy.

    Science.gov (United States)

    Patrizii, Michele; Bartucci, Monica; Pine, Sharon R; Sabaawy, Hatem E

    2018-01-01

    Despite substantial effort and resources dedicated to drug discovery and development, new anticancer agents often fail in clinical trials. Among many reasons, the lack of reliable predictive preclinical cancer models is a fundamental one. For decades, immortalized cancer cell cultures have been used to lay the groundwork for cancer biology and the quest for therapeutic responses. However, cell lines do not usually recapitulate cancer heterogeneity or reveal therapeutic resistance cues. With the rapidly evolving exploration of cancer "omics," the scientific community is increasingly investigating whether the employment of short-term patient-derived tumor cell cultures (two- and three-dimensional) and/or patient-derived xenograft models might provide a more representative delineation of the cancer core and its therapeutic response. Patient-derived cancer models allow the integration of genomic with drug sensitivity data on a personalized basis and currently represent the ultimate approach for preclinical drug development and biomarker discovery. The proper use of these patient-derived cancer models might soon influence clinical outcomes and allow the implementation of tailored personalized therapy. When assessing drug efficacy for the treatment of glioblastoma multiforme (GBM), currently, the most reliable models are generated through direct injection of patient-derived cells or more frequently the isolation of glioblastoma cells endowed with stem-like features and orthotopically injecting these cells into the cerebrum of immunodeficient mice. Herein, we present the key strengths, weaknesses, and potential applications of cell- and animal-based models of GBM, highlighting our experience with the glioblastoma stem-like patient cell-derived xenograft model and its utility in drug discovery.

  15. Microfluidics for Drug Discovery and Development: From Target Selection to Product Lifecycle Management

    Science.gov (United States)

    Kang, Lifeng; Chung, Bong Geun; Langer, Robert; Khademhosseini, Ali

    2009-01-01

    Microfluidic technologies’ ability to miniaturize assays and increase experimental throughput have generated significant interest in the drug discovery and development domain. These characteristics make microfluidic systems a potentially valuable tool for many drug discovery and development applications. Here, we review the recent advances of microfluidic devices for drug discovery and development and highlight their applications in different stages of the process, including target selection, lead identification, preclinical tests, clinical trials, chemical synthesis, formulations studies, and product management. PMID:18190858

  16. Microbial efflux systems and inhibitors: approaches to drug discovery and the challenge of clinical implementation.

    Science.gov (United States)

    Kourtesi, Christina; Ball, Anthony R; Huang, Ying-Ying; Jachak, Sanjay M; Vera, D Mariano A; Khondkar, Proma; Gibbons, Simon; Hamblin, Michael R; Tegos, George P

    2013-01-01

    Conventional antimicrobials are increasingly ineffective due to the emergence of multidrug-resistance among pathogenic microorganisms. The need to overcome these deficiencies has triggered exploration for novel and unconventional approaches to controlling microbial infections. Multidrug efflux systems (MES) have been a profound obstacle in the successful deployment of antimicrobials. The discovery of small molecule efflux system blockers has been an active and rapidly expanding research discipline. A major theme in this platform involves efflux pump inhibitors (EPIs) from natural sources. The discovery methodologies and the available number of natural EPI-chemotypes are increasing. Advances in our understanding of microbial physiology have shed light on a series of pathways and phenotypes where the role of efflux systems is pivotal. Complementing existing antimicrobial discovery platforms such as photodynamic therapy (PDT) with efflux inhibition is a subject under investigation. This core information is a stepping stone in the challenge of highlighting an effective drug development path for EPIs since the puzzle of clinical implementation remains unsolved. This review summarizes advances in the path of EPI discovery, discusses potential avenues of EPI implementation and development, and underlines the need for highly informative and comprehensive translational approaches.

  17. Early drug discovery and the rise of pharmaceutical chemistry.

    Science.gov (United States)

    Jones, Alan Wayne

    2011-06-01

    Studies in the field of forensic pharmacology and toxicology would not be complete without some knowledge of the history of drug discovery, the various personalities involved, and the events leading to the development and introduction of new therapeutic agents. The first medicinal drugs came from natural sources and existed in the form of herbs, plants, roots, vines and fungi. Until the mid-nineteenth century nature's pharmaceuticals were all that were available to relieve man's pain and suffering. The first synthetic drug, chloral hydrate, was discovered in 1869 and introduced as a sedative-hypnotic; it is still available today in some countries. The first pharmaceutical companies were spin-offs from the textiles and synthetic dye industry and owe much to the rich source of organic chemicals derived from the distillation of coal (coal-tar). The first analgesics and antipyretics, exemplified by phenacetin and acetanilide, were simple chemical derivatives of aniline and p-nitrophenol, both of which were byproducts from coal-tar. An extract from the bark of the white willow tree had been used for centuries to treat various fevers and inflammation. The active principle in white willow, salicin or salicylic acid, had a bitter taste and irritated the gastric mucosa, but a simple chemical modification was much more palatable. This was acetylsalicylic acid, better known as Aspirin®, the first blockbuster drug. At the start of the twentieth century, the first of the barbiturate family of drugs entered the pharmacopoeia and the rest, as they say, is history. Copyright © 2011 John Wiley & Sons, Ltd.

  18. Mass spectrometry innovations in drug discovery and development.

    Science.gov (United States)

    Papac, D I; Shahrokh, Z

    2001-02-01

    This review highlights the many roles mass spectrometry plays in the discovery and development of new therapeutics by both the pharmaceutical and the biotechnology industries. Innovations in mass spectrometer source design, improvements to mass accuracy, and implementation of computer-controlled automation have accelerated the purification and characterization of compounds derived from combinatorial libraries, as well as the throughput of pharmacokinetics studies. The use of accelerator mass spectrometry, chemical reaction interface-mass spectrometry and continuous flow-isotope ratio mass spectrometry are promising alternatives for conducting mass balance studies in man. To meet the technical challenges of proteomics, discovery groups in biotechnology companies have led the way to development of instruments with greater sensitivity and mass accuracy (e.g., MALDI-TOF, ESI-Q-TOF, Ion Trap), the miniaturization of separation techniques and ion sources (e.g., capillary HPLC and nanospray), and the utilization of bioinformatics. Affinity-based methods coupled to mass spectrometry are allowing rapid and selective identification of both synthetic and biological molecules. With decreasing instrument cost and size and increasing reliability, mass spectrometers are penetrating both the manufacturing and the quality control arenas. The next generation of technologies to simplify the investigation of the complex fate of novel pharmaceutical entities in vitro and in vivo will be chip-based approaches coupled with mass spectrometry.

  19. Thermodynamic Proxies to Compensate for Biases in Drug Discovery Methods.

    Science.gov (United States)

    Ekins, Sean; Litterman, Nadia K; Lipinski, Christopher A; Bunin, Barry A

    2016-01-01

    We propose a framework with simple proxies to dissect the relative energy contributions responsible for standard drug discovery binding activity. We explore a rule of thumb using hydrogen-bond donors, hydrogen-bond acceptors and rotatable bonds as relative proxies for the thermodynamic terms. We apply this methodology to several datasets (e.g., multiple small molecules profiled against kinases, Mycobacterium tuberculosis (Mtb) high throughput screening (HTS) and structure based drug design (SBDD) derived compounds, and FDA approved drugs). We found that Mtb active compounds developed through SBDD methods had statistically significantly larger PEnthalpy values than HTS derived compounds, suggesting these compounds had relatively more hydrogen bond donor and hydrogen bond acceptors compared to rotatable bonds. In recent FDA approved medicines we found that compounds identified via target-based approaches had a more balanced enthalpic relationship between these descriptors compared to compounds identified via phenotypic screens As it is common to experimentally optimize directly for total binding energy, these computational methods provide alternative calculations and approaches useful for compound optimization alongside other common metrics in available software and databases.

  20. Central Nervous System Multiparameter Optimization Desirability: Application in Drug Discovery.

    Science.gov (United States)

    Wager, Travis T; Hou, Xinjun; Verhoest, Patrick R; Villalobos, Anabella

    2016-06-15

    Significant progress has been made in prospectively designing molecules using the central nervous system multiparameter optimization (CNS MPO) desirability tool, as evidenced by the analysis reported herein of a second wave of drug candidates that originated after the development and implementation of this tool. This simple-to-use design algorithm has expanded design space for CNS candidates and has further demonstrated the advantages of utilizing a flexible, multiparameter approach in drug discovery rather than individual parameters and hard cutoffs of physicochemical properties. The CNS MPO tool has helped to increase the percentage of compounds nominated for clinical development that exhibit alignment of ADME attributes, cross the blood-brain barrier, and reside in lower-risk safety space (low ClogP and high TPSA). The use of this tool has played a role in reducing the number of compounds submitted to exploratory toxicity studies and increasing the survival of our drug candidates through regulatory toxicology into First in Human studies. Overall, the CNS MPO algorithm has helped to improve the prioritization of design ideas and the quality of the compounds nominated for clinical development.

  1. The application of molecular topology for ulcerative colitis drug discovery.

    Science.gov (United States)

    Bellera, Carolina L; Di Ianni, Mauricio E; Talevi, Alan

    2018-01-01

    Although the therapeutic arsenal against ulcerative colitis has greatly expanded (including the revolutionary advent of biologics), there remain patients who are refractory to current medications while the safety of the available therapeutics could also be improved. Molecular topology provides a theoretic framework for the discovery of new therapeutic agents in a very efficient manner, and its applications in the field of ulcerative colitis have slowly begun to flourish. Areas covered: After discussing the basics of molecular topology, the authors review QSAR models focusing on validated targets for the treatment of ulcerative colitis, entirely or partially based on topological descriptors. Expert opinion: The application of molecular topology to ulcerative colitis drug discovery is still very limited, and many of the existing reports seem to be strictly theoretic, with no experimental validation or practical applications. Interestingly, mechanism-independent models based on phenotypic responses have recently been reported. Such models are in agreement with the recent interest raised by network pharmacology as a potential solution for complex disorders. These and other similar studies applying molecular topology suggest that some therapeutic categories may present a 'topological pattern' that goes beyond a specific mechanism of action.

  2. Ligand Binding Thermodynamics in Drug Discovery: Still a Hot Tip?

    Science.gov (United States)

    Geschwindner, Stefan; Ulander, Johan; Johansson, Patrik

    2015-08-27

    The use of ligand binding thermodynamics has been proposed as a potential success factor to accelerate drug discovery. However, despite the intuitive appeal of optimizing binding enthalpy, a number of factors complicate routine use of thermodynamic data. On a macroscopic level, a range of experimental parameters including temperature and buffer choice significantly influence the observed thermodynamic signatures. On a microscopic level, solute effects, structural flexibility, and cooperativity lead to nonlinear changes in enthalpy. This multifactorial character hides essential enthalpy contributions of intermolecular contacts, making them experimentally nonobservable. In this perspective, we present three case studies, reflect on some key factors affecting thermodynamic signatures, and investigate their relation to the hydrophobic effect, enthalpy-entropy compensation, lipophilic ligand efficiency, and promiscuity. The studies highlight that enthalpy and entropy cannot be used as direct end points but can together with calculations increase our understanding of ligand binding and identify interesting outliers that do not behave as expected.

  3. Animal models of pain and migraine in drug discovery

    DEFF Research Database (Denmark)

    Munro, Gordon; Jansen-Olesen, Inger; Olesen, Jes

    2017-01-01

    Preclinical research activities in relation to pain typically involve the 'holy trinity' of nociceptive, inflammatory and neuropathic pain for purposes of target validation and defining target product profiles of novel analgesic compounds. For some reason it seems that headache or migraine...... are rarely considered as additional entities to explore. Frontline medications used in the treatment of, for example, inflammatory pain, neuropathic pain and migraine (NSAIDs versus pregabalin/duloxetine versus triptans) reveal distinct differences in pathophysiology that partially explain this approach....... Nevertheless, for many patients enduring chronic pain, regardless of aetiology, high unmet needs remain. By focusing more on commonalities shared between neuropathic pain and headache disorders such as migraine, drug discovery efforts could be spread more efficiently across a larger indication area. Here, some...

  4. Native Mass Spectrometry in Fragment-Based Drug Discovery

    Directory of Open Access Journals (Sweden)

    Liliana Pedro

    2016-07-01

    Full Text Available The advent of native mass spectrometry (MS in 1990 led to the development of new mass spectrometry instrumentation and methodologies for the analysis of noncovalent protein–ligand complexes. Native MS has matured to become a fast, simple, highly sensitive and automatable technique with well-established utility for fragment-based drug discovery (FBDD. Native MS has the capability to directly detect weak ligand binding to proteins, to determine stoichiometry, relative or absolute binding affinities and specificities. Native MS can be used to delineate ligand-binding sites, to elucidate mechanisms of cooperativity and to study the thermodynamics of binding. This review highlights key attributes of native MS for FBDD campaigns.

  5. Drugs Polypharmacology by In Silico Methods: New Opportunities in Drug Discovery.

    Science.gov (United States)

    Lauria, Antonino; Bonsignore, Riccardo; Bartolotta, Roberta; Perricone, Ugo; Martorana, Annamaria; Gentile, Carla

    2016-01-01

    Polypharmacology, defined as the modulation of multiple proteins rather than a single target to achieve a desired therapeutic effect, has been gaining increasing attention since 1990s, when industries had to withdraw several drugs due to their adverse effects, leading to permanent injuries or death, with multi-billiondollar legal damages. Therefore, if up to then the "one drug one target" paradigm had seen many researchers interest focused on the identification of selective drugs, with the strong expectation to avoid adverse drug reactions (ADRs), very recently new research strategies resulted more appealing even as attempts to overcome the decline in productivity of the drug discovery industry. Polypharmacology consists of two different approaches: the former, concerning a single drug interacting with multiple targets related to only one disease pathway; the latter, foresees a single drug's action on multiple targets involved in multiple disease pathways. Both new approaches are strictly connected to the discovery of new feasible off targets for approved drugs. In this review, we describe how the in silico facilities can be a crucial support in the design of polypharmacological drug. The traditional computational protocols (ligand based and structure based) can be used in the search and optimization of drugs, by using specific filters to address them against the polypharmacology (fingerprints, similarity, etc.). Moreover, we dedicated a paragraph to biological and chemical databases, due to their crucial role in polypharmacology. Multitarget activities provide the basis for drug repurposing, a slightly different issue of high interest as well, which is mostly applied on a single target involved in more than one diseases. In this contest, computational methods have raised high interest due to the reached power of hardware and software in the manipulation of data.

  6. The importance of new companies for drug discovery: origins of a decade of new drugs.

    Science.gov (United States)

    Kneller, Robert

    2010-11-01

    Understanding the factors that promote drug innovation is important both for improvements in health care and for the future of organizations engaged in drug discovery research and development. By identifying the inventors of 252 new drugs approved by the US Food and Drug Administration from 1998 to 2007 and their places of work, and also classifying these drugs according to innovativeness, this study investigates the contribution of different types of organizations and regions to drug innovation during this period. The data indicate that drugs initially discovered in biotechnology companies or universities accounted for approximately half of the scientifically innovative drugs approved, as well as half of those that responded to unmet medical needs, although their contribution to the total number of new drugs was proportionately lower. The biotechnology companies were located mainly in the United States. This article presents a comprehensive analysis of these data and discusses potential contributing factors to the trends observed, with the aim of aiding efforts to promote drug innovation.

  7. Drugs from the Oceans: Marine Natural Products as Leads for Drug Discovery.

    Science.gov (United States)

    Altmann, Karl-Heinz

    2017-10-25

    The marine environment harbors a vast number of species that are the source of a wide array of structurally diverse bioactive secondary metabolites. At this point in time, roughly 27'000 marine natural products are known, of which eight are (were) at the origin of seven marketed drugs, mostly for the treatment of cancer. The majority of these drugs and also of drug candidates currently undergoing clinical evaluation (excluding antibody-drug conjugates) are unmodified natural products, but synthetic chemistry has played a central role in the discovery and/or development of all but one of the approved marine-derived drugs. More than 1000 new marine natural products have been isolated per year over the last decade, but the pool of new and unique structures is far from exhausted. To fully leverage the potential offered by the structural diversity of marine-produced secondary metabolites for drug discovery will require their broad assessment for different bioactivities and the productive interplay between new fermentation technologies, synthetic organic chemistry, and medicinal chemistry, in order to secure compound supply and enable lead optimization.

  8. Quality not Quantity: The Role of Marine Natural Products in Drug Discovery and Reverse Chemical Proteomics

    Directory of Open Access Journals (Sweden)

    Andrew M. Piggott

    2005-06-01

    Full Text Available Reverse chemical proteomics combines affinity chromatography with phage display and promises to be a powerful new platform technology for the isolation of natural product receptors, facilitating the drug discovery process by rapidly linking biologically active small molecules to their cellular receptors and the receptors’ genes. In this paper we review chemical proteomics and reverse chemical proteomics and show how these techniques can add value to natural products research. We also report on techniques for the derivatisation of polystyrene microtitre plates with cleavable linkers and marine natural products that can be used in chemical proteomics or reverse chemical proteomics. Specifically, we have derivatised polystyrene with palau’amine and used reverse chemical proteomics to try and isolate the human receptors for this potent anticancer marine drug.

  9. Pharmacognosy and reverse pharmacognosy: a new concept for accelerating natural drug discovery.

    Science.gov (United States)

    Do, Quoc-Tuan; Bernard, Philippe

    2004-11-01

    Combinatorial chemistry and high-throughput screening (HTS) have led to the identification of numerous agents that are active and selective in vitro. Identifying drugs that are active in vivo, however, remains a challenge. Traditional medicinal cures based on natural materials have proven useful for many populations worldwide, representing huge and disperse tracts of knowledge that are sometimes neglected in Western research due to differences in the concepts of illness. In this review we introduce a new approach, termed 'reverse pharmacognosy' (from diverse molecules to plants), which can be coupled with pharmacognosy (from biodiverse plants to molecules). Reverse pharmacognosy utilizes new techniques, such as HTS, virtual screening and a knowledge database containing the traditional uses of plants. Integrating pharmacognosy and reverse pharmacognosy in the research process may provide an efficient and rapid tool for natural drug discovery.

  10. Structural genomics approach to drug discovery for Mycobacterium tuberculosis.

    Science.gov (United States)

    Ioerger, Thomas R; Sacchettini, James C

    2009-06-01

    Structural genomics has become a powerful tool for studying microorganisms at the molecular level. Advances in technology have enabled the assembly of high-throughput pipelines that can be used to automate X-ray crystal structure determination for many proteins in the genome of a target organism. In this paper, we describe the methods used in the Tuberculosis Structural Genomics Consortium (TBSGC), ranging from protein production and crystallization to diffraction data collection and processing. The TBSGC is unique in that it uses biological importance as a primary criterion for target selection. The over-riding goal is to solve structures of proteins that may be potential drug targets, in order to support drug discovery efforts. We describe the crystal structures of several significant proteins in the M. tuberculosis genome that have been solved by the TBSGC over the past few years. We conclude by describing the high-throughput screening facilities and virtual screening facilities we have implemented for identifying small-molecule inhibitors of proteins whose structures have been solved.

  11. X-ray free electron laser: opportunities for drug discovery.

    Science.gov (United States)

    Cheng, Robert K Y; Abela, Rafael; Hennig, Michael

    2017-11-08

    Past decades have shown the impact of structural information derived from complexes of drug candidates with their protein targets to facilitate the discovery of safe and effective medicines. Despite recent developments in single particle cryo-electron microscopy, X-ray crystallography has been the main method to derive structural information. The unique properties of X-ray free electron laser (XFEL) with unmet peak brilliance and beam focus allow X-ray diffraction data recording and successful structure determination from smaller and weaker diffracting crystals shortening timelines in crystal optimization. To further capitalize on the XFEL advantage, innovations in crystal sample delivery for the X-ray experiment, data collection and processing methods are required. This development was a key contributor to serial crystallography allowing structure determination at room temperature yielding physiologically more relevant structures. Adding the time resolution provided by the femtosecond X-ray pulse will enable monitoring and capturing of dynamic processes of ligand binding and associated conformational changes with great impact to the design of candidate drug compounds. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  12. Applications of Fiberoptics-Based Nanosensors to Drug Discovery

    Science.gov (United States)

    Vo-Dinh, Tuan; Scaffidi, Jonathan; Gregas, Molly; Zhang, Yan; Seewaldt, Victoria

    2013-01-01

    Background Fiber-optic nanosensors are fabricated by heating and pulling optical fibers to yield sub-micron diameter tips, and have been used for in vitro analysis of individual living mammalian cells. Immobilization of bioreceptors (e.g., antibodies, peptides, DNA, etc) selective to target analyte molecules of interest provides molecular specificity. Excitation light can be launched into the fiber, and the resulting evanescent field at the tip of the nanofiber can be used to excite target molecules bound to the bioreceptor molecules. The fluorescence or surface-enhanced Raman scattering produced by the analyte molecules is detected using an ultra-sensitive photodetector. Objective This article provides an overview of the development and application of fiber-optic nanosensors for drug discovery. Conclusions The nanosensors provide minimally invasive tools to probe sub-cellular compartments inside single living cells for health effect studies (e.g., detection of benzopyrene adducts) and medical applications (e.g., monitoring of apoptosis in cells treated with anti-cancer drugs). PMID:23496274

  13. Molecular Networking As a Drug Discovery, Drug Metabolism, and Precision Medicine Strategy.

    Science.gov (United States)

    Quinn, Robert A; Nothias, Louis-Felix; Vining, Oliver; Meehan, Michael; Esquenazi, Eduardo; Dorrestein, Pieter C

    2017-02-01

    Molecular networking is a tandem mass spectrometry (MS/MS) data organizational approach that has been recently introduced in the drug discovery, metabolomics, and medical fields. The chemistry of molecules dictates how they will be fragmented by MS/MS in the gas phase and, therefore, two related molecules are likely to display similar fragment ion spectra. Molecular networking organizes the MS/MS data as a relational spectral network thereby mapping the chemistry that was detected in an MS/MS-based metabolomics experiment. Although the wider utility of molecular networking is just beginning to be recognized, in this review we highlight the principles behind molecular networking and its use for the discovery of therapeutic leads, monitoring drug metabolism, clinical diagnostics, and emerging applications in precision medicine. Copyright © 2016. Published by Elsevier Ltd.

  14. Computer-Aided Drug Design Applied to Marine Drug Discovery: Meridianins as Alzheimer's Disease Therapeutic Agents.

    Science.gov (United States)

    Llorach-Pares, Laura; Nonell-Canals, Alfons; Sanchez-Martinez, Melchor; Avila, Conxita

    2017-11-27

    Computer-aided drug discovery/design (CADD) techniques allow the identification of natural products that are capable of modulating protein functions in pathogenesis-related pathways, constituting one of the most promising lines followed in drug discovery. In this paper, we computationally evaluated and reported the inhibitory activity found in meridianins A-G, a group of marine indole alkaloids isolated from the marine tunicate Aplidium, against various protein kinases involved in Alzheimer's disease (AD), a neurodegenerative pathology characterized by the presence of neurofibrillary tangles (NFT). Balance splitting between tau kinase and phosphate activities caused tau hyperphosphorylation and, thereby, its aggregation and NTF formation. Inhibition of specific kinases involved in its phosphorylation pathway could be one of the key strategies to reverse tau hyperphosphorylation and would represent an approach to develop drugs to palliate AD symptoms. Meridianins bind to the adenosine triphosphate (ATP) binding site of certain protein kinases, acting as ATP competitive inhibitors. These compounds show very promising scaffolds to design new drugs against AD, which could act over tau protein kinases Glycogen synthetase kinase-3 Beta (GSK3β) and Casein kinase 1 delta (CK1δ, CK1D or KC1D), and dual specificity kinases as dual specificity tyrosine phosphorylation regulated kinase 1 (DYRK1A) and cdc2-like kinases (CLK1). This work is aimed to highlight the role of CADD techniques in marine drug discovery and to provide precise information regarding the binding mode and strength of meridianins against several protein kinases that could help in the future development of anti-AD drugs.

  15. Rapid Discovery of Potent and Selective Glycosidase-Inhibiting De Novo Peptides

    NARCIS (Netherlands)

    Jongkees, Seino A.K.|info:eu-repo/dai/nl/412783061; Caner, Sami; Tysoe, Christina; Brayer, Gary D.; Withers, Stephen G.; Suga, Hiroaki

    2017-01-01

    Human pancreatic α-amylase (HPA) is responsible for degrading starch to malto-oligosaccharides, thence to glucose, and is therefore an attractive therapeutic target for the treatment of diabetes and obesity. Here we report the discovery of a unique lariat nonapeptide, by means of the RaPID (Random

  16. Drug discovery of antimicrobial photosensitizers using animal models.

    Science.gov (United States)

    Sharma, Sulbha K; Dai, Tianhong; Kharkwal, Gitika B; Huang, Ying-Ying; Huang, Liyi; De Arce, Vida J Bil; Tegos, George P; Hamblin, Michael R

    2011-01-01

    , skin abrasions and soft-tissue abscesses. This range of animal models also represents a powerful aid in antimicrobial drug discovery.

  17. Discovery of anthelmintic drug targets and drugs using chokepoints in nematode metabolic pathways.

    Directory of Open Access Journals (Sweden)

    Christina M Taylor

    expedite the discovery of new anthelmintic drugs with broad-spectrum efficacy.

  18. Navigating the Future of Cardiovascular Drug Development-Leveraging Novel Approaches to Drive Innovation and Drug Discovery: Summary of Findings from the Novel Cardiovascular Therapeutics Conference.

    Science.gov (United States)

    Povsic, Thomas J; Scott, Rob; Mahaffey, Kenneth W; Blaustein, Robert; Edelberg, Jay M; Lefkowitz, Martin P; Solomon, Scott D; Fox, Jonathan C; Healy, Kevin E; Khakoo, Aarif Y; Losordo, Douglas W; Malik, Fady I; Monia, Brett P; Montgomery, Rusty L; Riesmeyer, Jeffrey; Schwartz, Gregory G; Zelenkofske, Steven L; Wu, Joseph C; Wasserman, Scott M; Roe, Matthew T

    2017-08-01

    The need for novel approaches to cardiovascular drug development served as the impetus to convene an open meeting of experts from the pharmaceutical industry and academia to assess the challenges and develop solutions for drug discovery in cardiovascular disease. The Novel Cardiovascular Therapeutics Summit first reviewed recent examples of ongoing or recently completed programs translating basic science observations to targeted drug development, highlighting successes (protein convertase sutilisin/kexin type 9 [PCSK9] and neprilysin inhibition) and targets still under evaluation (cholesteryl ester transfer protein [CETP] inhibition), with the hope of gleaning key lessons to successful drug development in the current era. Participants then reviewed the use of innovative approaches being explored to facilitate rapid and more cost-efficient evaluations of drug candidates in a short timeframe. We summarize observations gleaned from this summit and offer insight into future cardiovascular drug development. The rapid development in genetic and high-throughput drug evaluation technologies, coupled with new approaches to rapidly evaluate potential cardiovascular therapies with in vitro techniques, offer opportunities to identify new drug targets for cardiovascular disease, study new therapies with better efficiency and higher throughput in the preclinical setting, and more rapidly bring the most promising therapies to human testing. However, there must be a critical interface between industry and academia to guide the future of cardiovascular drug development. The shared interest among academic institutions and pharmaceutical companies in developing promising therapies to address unmet clinical needs for patients with cardiovascular disease underlies and guides innovation and discovery platforms that are significantly altering the landscape of cardiovascular drug development.

  19. Selecting targets from eukaryotic parasites for structural genomics and drug discovery.

    Science.gov (United States)

    Phan, Isabelle Q H; Stacy, Robin; Myler, Peter J

    2014-01-01

    The selection of targets is the first step for any structural genomics project. The application of structural genomics approaches to drug discovery also starts with the selection of targets. Here, three protocols are described that were developed to select targets from eukaryotic pathogens. These protocols could also be applied to other drug discovery projects.

  20. Selecting targets from eukaryotic parasites for structural genomics and drug discovery

    Science.gov (United States)

    Phan, Isabelle Q. H.; Stacy, Robin; Myler, Peter J.

    2015-01-01

    The selection of targets is the first step for any structural genomics project. The application of structural genomics approaches to drug discovery also starts with the selection of targets. Here, three protocols are described that were developed to select targets from eukaryotic pathogens. These protocols could also be applied to other drug discovery projects. PMID:24590708

  1. Translational Prospects and Challenges in Human Induced Pluripotent Stem Cell Research in Drug Discovery

    OpenAIRE

    Masaki Hosoya; Katherine Czysz

    2016-01-01

    Despite continuous efforts to improve the process of drug discovery and development, achieving success at the clinical stage remains challenging because of a persistent translational gap between the preclinical and clinical settings. Under these circumstances, the discovery of human induced pluripotent stem (iPS) cells has brought new hope to the drug discovery field because they enable scientists to humanize a variety of pharmacological and toxicological models in vitro. The availability of ...

  2. Methodologies for investigating drug metabolism at the early drug discovery stage: prediction of hepatic drug clearance and P450 contribution.

    Science.gov (United States)

    Emoto, Chie; Murayama, Norie; Rostami-Hodjegan, Amin; Yamazaki, Hiroshi

    2010-10-01

    The attrition rate in drug development is being reduced by continuous advances in science and technology introduced by various academic institutions and pharmaceutical companies. This has been certainly noticeable in reducing the frequency with which unfavorable absorption, distribution, metabolism, and elimination (ADME) characteristics of any candidate drug causes failure in clinical development. Nonetheless, it is important that the objectives in reducing attrition during later stages of development are matched by information generated in the earliest stage of discovery. In this review, we summarize the methodologies employed during the early stages of drug discovery and discuss new findings in the areas of (1) drug metabolism enzymes, (2) the contribution of cytochrome P450 enzymes (P450, CYP) to hepatic metabolism, (3) prediction of hepatic intrinsic clearance, (4) reaction phenotyping, and (5) the metabolic differences between highly homologous enzymes such as CYP3A4 and CYP3A5. The total contribution of P450 and UDP-glucuronosyltransferases to drug metabolism is reported to be more than 80%; therefore, glucuronidation is increasingly recognized as an important clearance pathway in addition to that of P450 enzymes. When estimating the contribution of P450, interpreting the results of inhibition studies using a single P450 inhibitor can lead to false conclusions. For instance, 1-aminobenzotriazole and SKF-525A have a varying range of IC(50) values for inhibition of drug exidation-reaction by different CYP450 enzymes. There are disparities between methodologies at early stage drug discovery and late stage development. For example, although the drug depletion approach for the prediction of hepatic intrinsic clearance may not be desirable at late stages of development, it is suitable at the early drug discovery stage since kinetic characterization and measurement of specific drug metabolites are not required. Data from protein binding assays in plasma and

  3. “Omics”-Informed Drug and Biomarker Discovery: Opportunities, Challenges and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Holly Matthews

    2016-09-01

    Full Text Available The pharmaceutical industry faces unsustainable program failure despite significant increases in investment. Dwindling discovery pipelines, rapidly expanding R&D budgets and increasing regulatory control, predict significant gaps in the future drug markets. The cumulative duration of discovery from concept to commercialisation is unacceptably lengthy, and adds to the deepening crisis. Existing animal models predicting clinical translations are simplistic, highly reductionist and, therefore, not fit for purpose. The catastrophic consequences of ever-increasing attrition rates are most likely to be felt in the developing world, where resistance acquisition by killer diseases like malaria, tuberculosis and HIV have paced far ahead of new drug discovery. The coming of age of Omics-based applications makes available a formidable technological resource to further expand our knowledge of the complexities of human disease. The standardisation, analysis and comprehensive collation of the “data-heavy” outputs of these sciences are indeed challenging. A renewed focus on increasing reproducibility by understanding inherent biological, methodological, technical and analytical variables is crucial if reliable and useful inferences with potential for translation are to be achieved. The individual Omics sciences—genomics, transcriptomics, proteomics and metabolomics—have the singular advantage of being complimentary for cross validation, and together could potentially enable a much-needed systems biology perspective of the perturbations underlying disease processes. If current adverse trends are to be reversed, it is imperative that a shift in the R&D focus from speed to quality is achieved. In this review, we discuss the potential implications of recent Omics-based advances for the drug development process.

  4. Network-based discovery through mechanistic systems biology. Implications for applications--SMEs and drug discovery: where the action is.

    Science.gov (United States)

    Benson, Neil

    2015-08-01

    Phase II attrition remains the most important challenge for drug discovery. Tackling the problem requires improved understanding of the complexity of disease biology. Systems biology approaches to this problem can, in principle, deliver this. This article reviews the reports of the application of mechanistic systems models to drug discovery questions and discusses the added value. Although we are on the journey to the virtual human, the length, path and rate of learning from this remain an open question. Success will be dependent on the will to invest and make the most of the insight generated along the way. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Scientometrics of drug discovery efforts: pain-related molecular targets.

    Science.gov (United States)

    Kissin, Igor

    2015-01-01

    The aim of this study was to make a scientometric assessment of drug discovery efforts centered on pain-related molecular targets. The following scientometric indices were used: the popularity index, representing the share of articles (or patents) on a specific topic among all articles (or patents) on pain over the same 5-year period; the index of change, representing the change in the number of articles (or patents) on a topic from one 5-year period to the next; the index of expectations, representing the ratio of the number of all types of articles on a topic in the top 20 journals relative to the number of articles in all (>5,000) biomedical journals covered by PubMed over a 5-year period; the total number of articles representing Phase I-III trials of investigational drugs over a 5-year period; and the trial balance index, a ratio of Phase I-II publications to Phase III publications. Articles (PubMed database) and patents (US Patent and Trademark Office database) on 17 topics related to pain mechanisms were assessed during six 5-year periods from 1984 to 2013. During the most recent 5-year period (2009-2013), seven of 17 topics have demonstrated high research activity (purinergic receptors, serotonin, transient receptor potential channels, cytokines, gamma aminobutyric acid, glutamate, and protein kinases). However, even with these seven topics, the index of expectations decreased or did not change compared with the 2004-2008 period. In addition, publications representing Phase I-III trials of investigational drugs (2009-2013) did not indicate great enthusiasm on the part of the pharmaceutical industry regarding drugs specifically designed for treatment of pain. A promising development related to the new tool of molecular targeting, ie, monoclonal antibodies, for pain treatment has not yet resulted in real success. This approach has not yet demonstrated clinical effectiveness (at least with nerve growth factor) much beyond conventional analgesics, when its

  6. Cunninghamella Biotransformation--Similarities to Human Drug Metabolism and Its Relevance for the Drug Discovery Process.

    Science.gov (United States)

    Piska, Kamil; Żelaszczyk, Dorota; Jamrozik, Marek; Kubowicz-Kwaśny, Paulina; Pękala, Elżbieta

    2016-01-01

    Studies of drug metabolism are one of the most significant issues in the process of drug development, its introduction to the market and also in treatment. Even the most promising molecule may show undesirable metabolic properties that would disqualify it as a potential drug. Therefore, such studies are conducted in the early phases of drug discovery and development process. Cunninghamella is a filamentous fungus known for its catalytic properties, which mimics mammalian drug metabolism. It has been proven that C. elegans carries at least one gene coding for a CYP enzyme closely related to the CYP51 family. The transformation profile of xenobiotics in Cunninghamella spp. spans a number of reactions catalyzed by different mammalian CYP isoforms. This paper presents detailed data on similar biotransformation drug products in humans and Cunninghamella spp. and covers the most important aspects of preparative biosynthesis of metabolites, since this model allows to obtain metabolites in sufficient quantities to conduct the further detailed investigations, as quantification, structure analysis and pharmacological activity and toxicity testing. The metabolic activity of three mostly used Cunninghamella species in obtaining hydroxylated, dealkylated and oxidated metabolites of different drugs confirmed its convergence with human biotransformation. Though it cannot replace the standard methods, it can provide support in the field of biotransformation and identifying metabolic soft spots of new chemicals and in predicting possible metabolic pathways. Another aspect is the biosynthesis of metabolites. In this respect, techniques using Cunninghamella spp. seem to be competitive to the chemical methods currently used.

  7. DrugQuest - a text mining workflow for drug association discovery.

    Science.gov (United States)

    Papanikolaou, Nikolas; Pavlopoulos, Georgios A; Theodosiou, Theodosios; Vizirianakis, Ioannis S; Iliopoulos, Ioannis

    2016-06-06

    Text mining and data integration methods are gaining ground in the field of health sciences due to the exponential growth of bio-medical literature and information stored in biological databases. While such methods mostly try to extract bioentity associations from PubMed, very few of them are dedicated in mining other types of repositories such as chemical databases. Herein, we apply a text mining approach on the DrugBank database in order to explore drug associations based on the DrugBank "Description", "Indication", "Pharmacodynamics" and "Mechanism of Action" text fields. We apply Name Entity Recognition (NER) techniques on these fields to identify chemicals, proteins, genes, pathways, diseases, and we utilize the TextQuest algorithm to find additional biologically significant words. Using a plethora of similarity and partitional clustering techniques, we group the DrugBank records based on their common terms and investigate possible scenarios why these records are clustered together. Different views such as clustered chemicals based on their textual information, tag clouds consisting of Significant Terms along with the terms that were used for clustering are delivered to the user through a user-friendly web interface. DrugQuest is a text mining tool for knowledge discovery: it is designed to cluster DrugBank records based on text attributes in order to find new associations between drugs. The service is freely available at http://bioinformatics.med.uoc.gr/drugquest .

  8. Animal models for acute radiation syndrome drug discovery.

    Science.gov (United States)

    Singh, Vijay K; Newman, Victoria L; Berg, Allison N; MacVittie, Thomas J

    2015-05-01

    Although significant scientific advances have been made over the past six decades in developing safe, nontoxic and effective radiation/medical countermeasures (MCMs) for acute radiation syndrome (ARS), no drug has been approved by the US FDA. The availability of adequate animal models is a prime requisite under the criteria established by the FDA 'animal rule' for the development of novel MCMs for ARS and the discovery of biomarkers for radiation exposure. This article reviews the developments of MCMs to combat ARS, with particular reference to the various animal models (rodents: mouse and rat; canine: beagle; minipigs and nonhuman primates [NHPs]) utilized for the in-depth evaluation. The objective, pathways and challenges of the FDA Animal Efficacy Rule are also discussed. There are a number of well-defined animal models, the mouse, canine and NHP, that are being used for the development of MCMs. Additional animal models, such as the minipig, are under development to further assist in the identification, efficacy testing and approval of MCMs under the FDA Animal Efficacy Rule.

  9. Advances in phage display technology for drug discovery.

    Science.gov (United States)

    Omidfar, Kobra; Daneshpour, Maryam

    2015-06-01

    Over the past decade, several library-based methods have been developed to discover ligands with strong binding affinities for their targets. These methods mimic the natural evolution for screening and identifying ligand-target interactions with specific functional properties. Phage display technology is a well-established method that has been applied to many technological challenges including novel drug discovery. This review describes the recent advances in the use of phage display technology for discovering novel bioactive compounds. Furthermore, it discusses the application of this technology to produce proteins and peptides as well as minimize the use of antibodies, such as antigen-binding fragment, single-chain fragment variable or single-domain antibody fragments like VHHs. Advances in screening, manufacturing and humanization technologies demonstrate that phage display derived products can play a significant role in the diagnosis and treatment of disease. The effects of this technology are inevitable in the development pipeline for bringing therapeutics into the market, and this number is expected to rise significantly in the future as new advances continue to take place in display methods. Furthermore, a widespread application of this methodology is predicted in different medical technological areas, including biosensing, monitoring, molecular imaging, gene therapy, vaccine development and nanotechnology.

  10. Developing models for cachexia and their implications in drug discovery.

    Science.gov (United States)

    Konishi, Masaaki; Ebner, Nicole; von Haehling, Stephan; Anker, Stefan D; Springer, Jochen

    2015-07-01

    Cachexia is a complex metabolic syndrome associated with underlying illness and characterized by loss of muscle with or without loss of fat mass. Systemic inflammation plays a central role in its pathophysiology. As millions of patients are in a cachectic state of chronic disease, cachexia is one of the major causes of death worldwide. Difficulties in the recruitment and follow-up of clinical trials mean that well-characterized animal models are of great importance in developing cachexia therapies. However, some of the widely used animal models have limitations in procedural reproducibility or in recapitulating in the cachectic phenotype, which has warranted the development of novel models for cachexia. This review focuses on some of the currently developing rodent models designed to mimic each co-morbidity in cachexia. Through developing cancer models, researchers have been seeking more targets for intervention. In cardiac cachexia, technical issues have been overcome by transgenic models. Furthermore, the development of new animal models has enabled the elucidation of the roles of inflammation, anabolism/catabolism in muscle/fat tissue and anorexia on cachexia. As metabolic and inflammatory pathways in cachexia may compromise cardiac muscle, the analysis of cardiac function/tissue in non-cardiac cachexia may be a useful component of cachexia assessment common to different underlying diseases and pave the way for novel drug discovery.

  11. Drug discovery and the use of computational approaches for infectious diseases.

    Science.gov (United States)

    Marhöfer, Richard J; Oellien, Frank; Selzer, Paul M

    2011-06-01

    For centuries infectious diseases were the scourge of humanity, overcome only by the discovery of vaccination and penicillin. With an armamentarium of effective antibiotics, vaccines and drugs at hand, infectious diseases for many years were considered to be negligible. With the onset of the AIDS pandemic, the return of tuberculosis and influenza (e.g., swine influenza) this notion has changed in recent years. Drug discovery for infectious diseases, therefore, is again gaining increasing interest. This article discusses the drug-discovery process in this area and introduces major computational approaches used to identify suitable drug targets and to discover and optimize chemical lead compounds towards drug candidates using examples from antiparasitic drug discovery.

  12. Drug Discovery of Antimicrobial Photosensitizers Using Animal Models

    Science.gov (United States)

    Sharma, Sulbha K.; Dai, Tianhong; Kharkwal, Gitika B.; Huang, Ying-Ying; Huang, Liyi; Bil De Arce, Vida J.; Tegos, George P.; Hamblin, Michael R.

    2012-01-01

    , skin abrasions and soft-tissue abscesses. This range of animal models also represents a powerful aid in antimicrobial drug discovery. PMID:21504410

  13. The changing landscape of cancer drug discovery: a challenge to the medicinal chemist of tomorrow.

    Science.gov (United States)

    Pors, Klaus; Goldberg, Frederick W; Leamon, Christopher P; Rigby, Alan C; Snyder, Scott A; Falconer, Robert A

    2009-11-01

    Since the development of the first cytotoxic agents, synthetic organic chemistry has advanced enormously. The synthetic and medicinal chemists of today are at the centre of drug development and are involved in most, if not all, processes of drug discovery. Recent decreases in government funding and reformed educational policies could, however, seriously impact on drug discovery initiatives worldwide. Not only could these changes result in fewer scientific breakthroughs, but they could also negatively affect the training of our next generation of medicinal chemists.

  14. Using deuterium in drug discovery: leaving the label in the drug.

    Science.gov (United States)

    Gant, Thomas G

    2014-05-08

    Deuterium, the stable isotope of hydrogen, is known to medicinal chemists for its utility in mechanistic, spectroscopic, and tracer studies. In fact, well-known applications utilizing deuterium exist within every subdiscipline in pharmaceutical discovery and development. Recent emphasis on incorporation of deuterium into the active pharmaceutical ingredient has come about as a result of inquiries into the potential for substantial benefits of the deuterium kinetic isotope effect on the safety and disposition of the drug substance. This Perspective traces the author's experience in reviving and expanding this potential utility, first suggested many decades prior by the discoverer of this, the simplest of all isotopes.

  15. Preclinical Pharmacological Approaches in Drug Discovery for Chronic Pain.

    Science.gov (United States)

    Whiteside, Garth T; Pomonis, James D; Kennedy, Jeffrey D

    2016-01-01

    In recent years, animal behavioral models, particularly those used in pain research, have been increasingly scrutinized and criticized for their role in the poor translation of novel pharmacotherapies for chronic pain. This chapter addresses the use of animal models of pain used in drug discovery research. It highlights how, when, and why animal models of pain are used as one of the many experimental tools used to gain better understanding of target mechanisms and rank-order compounds in the iterative process of establishing structure-activity relationship. Together, these models help create an "analgesic signature" for a compound and inform the indications most likely to yield success in clinical trials. In addition, the authors discuss some often underappreciated aspects of currently used (traditional) animal models of pain, including simply applying basic pharmacological principles to study design and data interpretation as well as consideration of efficacy alongside side effect measures as part of the overall conclusion of efficacy. This is provided to add perspective regarding current efforts to develop new models and endpoints both in rodents and in larger animal species as well as assess cognitive and/or affective aspects of pain. Finally, the authors suggest ways in which efficacy evaluation in animal models of pain, whether traditional or new, might better align with clinical standards of analysis, citing examples where applying effect size and number needed to treat estimations to animal model data suggest that the efficacy bar often may be set too low preclinically to allow successful translation to the clinical setting. © 2016 Elsevier Inc. All rights reserved.

  16. High-content analysis in preclinical drug discovery.

    Science.gov (United States)

    Denner, Philip; Schmalowsky, Janine; Prechtl, Stefan

    2008-03-01

    High-Content Analysis (HCA) has developed into an established tool and is used in a wide range of academic laboratories and pharmaceutical research groups. HCA is now routinely proving to be effective in providing functionally relevant results. It is essential to select the appropriate HCA application with regard to the targeted compound's cellular function. The cellular impact and compound specificity as revealed by HCA analysis facilitates reaching definitive conclusions at an early stage in the drug discovery process. This technology therefore has the potential to substantially improve the efficiency of pharmaceutical research. Recent advances in fluorescent probes have significantly boosted the success of HCA. Auto-fluorescent proteins which minimally hinder the functioning of the living cell have been playing a decisive role in cell biology research. For companies the severely restricted license conditions regarding auto-fluorescent proteins hamper their general use in pharmaceutical research. This has opened the field for other solutions such as self-labeling protein technology, which could potentially replace the well established methods that utilize auto-fluorescent proteins. In addition, direct labeling techniques have improved considerably and may supersede many of the approaches based on fusion proteins. Following sample preparation, treated cells are imaged and the resulting multiple fluorescent signals are subjected to contextual and statistical analysis. The extraordinary advantage of HCA is that it enables the large-scale and simultaneous quantification and correlation of multiple phenotypic responses and physiological reactions using sophisticated software solutions that permit assay-specific image analysis. Hence, HCA once more has demonstrated its outstanding potential to significantly support establishing effective pharmaceutical research processes in order to both advance research projects and cut costs.

  17. A Discovery Funnel for Nucleic Acid Binding Drug Candidates

    Science.gov (United States)

    Holt, Patrick A.; Buscaglia, Robert; Trent, John O.; Chaires, Jonathan B.

    2011-01-01

    Computational approaches are becoming increasingly popular for the discovery of drug candidates against a target of interest. Proteins have historically been the primary targets of many virtual screening efforts. While in silico screens targeting proteins has proven successful, other classes of targets, in particular DNA, remain largely unexplored using virtual screening methods. With the realization of the functional importance of many non-cannonical DNA structures such as G-quadruplexes, increased efforts are underway to discover new small molecules that can bind selectively to DNA structures. Here, we describe efforts to build an integrated in silico and in vitro platform for discovering compounds that may bind to a chosen DNA target. Millions of compounds are initially screened in silico for selective binding to a particular structure and ranked to identify several hundred best hits. An important element of our strategy is the inclusion of an array of possible competing structures in the in silico screen. The best hundred or so hits are validated experimentally for binding to the actual target structure by a high-throughput 96-well thermal denaturation assay to yield the top ten candidates. Finally, these most promising candidates are thoroughly characterized for binding to their DNA target by rigorous biophysical methods, including isothermal titration calorimetry, differential scanning calorimetry, spectroscopy and competition dialysis.This platform was validated using quadruplex DNA as a target and a newly discovered quadruplex binding compound with possible anti-cancer activity was discovered. Some considerations when embarking on virtual screening and in silico experiments are also discussed. PMID:21566705

  18. Drug-drug interaction discovery and demystification using Semantic Web technologies.

    Science.gov (United States)

    Noor, Adeeb; Assiri, Abdullah; Ayvaz, Serkan; Clark, Connor; Dumontier, Michel

    2017-05-01

    To develop a novel pharmacovigilance inferential framework to infer mechanistic explanations for asserted drug-drug interactions (DDIs) and deduce potential DDIs. A mechanism-based DDI knowledge base was constructed by integrating knowledge from several existing sources at the pharmacokinetic, pharmacodynamic, pharmacogenetic, and multipathway interaction levels. A query-based framework was then created to utilize this integrated knowledge base in conjunction with 9 inference rules to infer mechanistic explanations for asserted DDIs and deduce potential DDIs. The drug-drug interactions discovery and demystification (D3) system achieved an overall 85% recall rate in terms of inferring mechanistic explanations for the DDIs integrated into its knowledge base, while demonstrating a 61% precision rate in terms of the inference or lack of inference of mechanistic explanations for a balanced, randomly selected collection of interacting and noninteracting drug pairs. The successful demonstration of the D3 system's ability to confirm interactions involving well-studied drugs enhances confidence in its ability to deduce interactions involving less-studied drugs. In its demonstration, the D3 system infers putative explanations for most of its integrated DDIs. Further enhancements to this work in the future might include ranking interaction mechanisms based on likelihood of applicability, determining the likelihood of deduced DDIs, and making the framework publicly available. The D3 system provides an early-warning framework for augmenting knowledge of known DDIs and deducing unknown DDIs. It shows promise in suggesting interaction pathways of research and evaluation interest and aiding clinicians in evaluating and adjusting courses of drug therapy.

  19. Evaluating protein-protein interaction (PPI) networks for diseases pathway, target discovery, and drug-design using 'in silico pharmacology'.

    Science.gov (United States)

    Chakraborty, Chiranjib; Doss C, George Priya; Chen, Luonan; Zhu, Hailong

    2014-01-01

    In silico pharmacology is a promising field in the current state-of drug discovery. This area exploits "protein-protein Interaction (PPI) network analysis for drug discovery using the drug "target class". To document the current status, we have discussed in this article how this an integrated system of PPI networks contribute to understand the disease pathways, present state-of-the-art drug target discovery and drug discovery process. This review article enhances our knowledge on conventional drug discovery and current drug discovery using in silico techniques, best "target class", universal architecture of PPI networks, the present scenario of disease pathways and protein-protein interaction networks as well as the method to comprehend the PPI networks. Taken all together, ultimately a snapshot has been discussed to be familiar with how PPI network architecture can used to validate a drug target. At the conclusion, we have illustrated the future directions of PPI in target discovery and drug-design.

  20. Antimalarial drug discovery: in silico structural biology and rational drug design.

    Science.gov (United States)

    de Beer, T A P; Wells, G A; Burger, P B; Joubert, F; Marechal, E; Birkholtz, L; Louw, A I

    2009-06-01

    Malaria remains one of the most burdensome human infectious diseases, with a high rate of resistance outbreaks and a constant need for the discovery of novel antimalarials and drug targets. For several reasons, Plasmodial proteins are difficult to characterise structurally using traditional physical approaches. However, these problems can be partially overcome using a number of in silico approaches. This review describes the peculiarities of malaria proteins and then details various in silico strategies to select and allow descriptions of the molecular structures of drug target candidates as well as subsequent rational approaches for drug design. Chiefly, homology modelling with specific focus on unique aspects of malaria proteins including low homology, large protein size and the presence of parasite-specific inserts is addressed and alternative strategies including multiple sequence and structure-based prediction methods, sampling-based approaches that aim to reveal likely global or shared features of a Plasmodial structure and the value of molecular dynamics understanding of unique features of Plasmodial proteins are discussed. Once a detailed description of the drug target is available, in silico approaches to the specific design of an inhibitory drug thereof becomes invaluable as an economic and rational alternative to chemical library screening.

  1. Traditional Chinese Medicine-Based Network Pharmacology Could Lead to New Multicompound Drug Discovery

    Directory of Open Access Journals (Sweden)

    Jian Li

    2012-01-01

    Full Text Available Current strategies for drug discovery have reached a bottleneck where the paradigm is generally “one gene, one drug, one disease.” However, using holistic and systemic views, network pharmacology may be the next paradigm in drug discovery. Based on network pharmacology, a combinational drug with two or more compounds could offer beneficial synergistic effects for complex diseases. Interestingly, traditional chinese medicine (TCM has been practicing holistic views for over 3,000 years, and its distinguished feature is using herbal formulas to treat diseases based on the unique pattern classification. Though TCM herbal formulas are acknowledged as a great source for drug discovery, no drug discovery strategies compatible with the multidimensional complexities of TCM herbal formulas have been developed. In this paper, we highlighted some novel paradigms in TCM-based network pharmacology and new drug discovery. A multiple compound drug can be discovered by merging herbal formula-based pharmacological networks with TCM pattern-based disease molecular networks. Herbal formulas would be a source for multiple compound drug candidates, and the TCM pattern in the disease would be an indication for a new drug.

  2. Reducing QT liability and proarrhythmic risk in drug discovery and development

    Science.gov (United States)

    Valentin, Jean-Pierre

    2010-01-01

    Drug-induced torsades de pointes (TdP), a rare, life-threatening, polymorphic, ventricular tachycardia associated with prolongation of the QT interval, has been the main safety reason for the withdrawal of medicines from clinical use over the last decade. Most often, drugs that prolong the action potential and delay ventricular repolarization do so through blockade of outward (repolarizing) currents, predominantly the rapid delayed rectifying potassium current, IKr. While QT interval prolongation is not a safety concern per se, in a small percentage of people, it has been associated with TdP, which either spontaneously terminates or degenerates into ventricular fibrillation. Furthermore, recent data suggest that shortening of the QT interval may also be a new safety issue waiting to surface. This review article summarizes the presentations given at a symposium entitled ‘Reducing QT liability and proarrhythmic risk in drug discovery and development’, which was part of the Federation of the European Pharmacological Societies congress, Manchester, UK, 13–17 July 2008. The objective of this symposium was to assess the effects of implementing the latest regulatory guidance documents (International Conference on Harmonization S7A/B and E14), as well as new scientific and technical trends on the ability of the pharmaceutical industry to reduce and manage the QT liability and associated potential proarrhythmic risk, and contribute to the discovery and development of safer medicines. This review outlines the key messages from communications presented at this symposium and attempts to highlight some of the key challenges that remain to be addressed. This article is part of a themed section on QT safety. To view this issue visit http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2010 PMID:20141515

  3. Technologies and strategies to characterize and quantitate metabolites in drug discovery and development.

    Science.gov (United States)

    Ravindran, Selvan; Jadhav, Amol; Surve, Prashant; Lonsane, Ganesh; Honrao, Pradnya; Nanda, Bidyut

    2014-11-01

    Pharmacokinetics and toxicokinetics studies rely on the quantitation of drugs and its metabolites. Drug metabolism studies are based on the characterization of the structure of drugs and their metabolites. Liquid chromatography coupled with mass spectrometry is an undisputed technology for the routine analysis of drugs and metabolites in the drug discovery set-up. Advancements in liquid chromatography and mass spectrometry have accelerated and improved drug discovery and development. Identification and quantitation of drugs and metabolites have gained importance because of their relevance to clinical research. In the present review, we present a bird's eye view of qualitative and quantitative analysis of drugs and their metabolites. Various technologies available to characterize and quantitate metabolites are analyzed. Characterization of metabolites of the sulfonyl urea drug glyburide and the kinetics of glyburide metabolism are discussed in detail. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Virtualizing the p-ANAPL library: a step towards drug discovery from African medicinal plants

    National Research Council Canada - National Science Library

    Ntie-Kang, Fidele; Amoa Onguéné, Pascal; Fotso, Ghislain W; Andrae-Marobela, Kerstin; Bezabih, Merhatibeb; Ndom, Jean Claude; Ngadjui, Bonaventure T; Ogundaini, Abiodun O; Abegaz, Berhanu M; Meva'a, Luc Mbaze

    2014-01-01

    .... A current collection of physical samples of > 500 compound derived from African medicinal plants aimed at screening for drug discovery has been made by donations from several researchers from across the continent to be directly available...

  5. Endophytes : Exploiting biodiversity for the improvement of natural product-based drug discovery

    NARCIS (Netherlands)

    Staniek, Agata; Woerdenbag, Herman J.; Kayser, Oliver

    2008-01-01

    Endophytes, microorganisms that colonize internal tissues of all plant species, create a huge biodiversity with yet unknown novel natural products, presumed to push forward the frontiers of drug discovery. Next to the clinically acknowledged antineoplastic agent, paclitaxel, endophyte research has

  6. Network analysis and in silico prediction of protein-protein interactions with applications in drug discovery.

    Science.gov (United States)

    Murakami, Yoichi; Tripathi, Lokesh P; Prathipati, Philip; Mizuguchi, Kenji

    2017-06-01

    Protein-protein interactions (PPIs) are vital to maintaining cellular homeostasis. Several PPI dysregulations have been implicated in the etiology of various diseases and hence PPIs have emerged as promising targets for drug discovery. Surface residues and hotspot residues at the interface of PPIs form the core regions, which play a key role in modulating cellular processes such as signal transduction and are used as starting points for drug design. In this review, we briefly discuss how PPI networks (PPINs) inferred from experimentally characterized PPI data have been utilized for knowledge discovery and how in silico approaches to PPI characterization can contribute to PPIN-based biological research. Next, we describe the principles of in silico PPI prediction and survey the existing PPI and PPI site prediction servers that are useful for drug discovery. Finally, we discuss the potential of in silico PPI prediction in drug discovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Cannabinoid CB1 receptor-interacting proteins: novel targets for central nervous system drug discovery?

    National Research Council Canada - National Science Library

    Smith, Tricia H; Sim-Selley, Laura J; Selley, Dana E

    2010-01-01

    ...), including CB1 and CB2 receptors. The CB1 receptor is the major cannabinoid receptor in the central nervous system and has gained increasing interest as a target for drug discovery for treatment of nausea, cachexia, obesity, pain...

  8. Open access high throughput drug discovery in the public domain: a Mount Everest in the making.

    Science.gov (United States)

    Roy, Anuradha; McDonald, Peter R; Sittampalam, Sitta; Chaguturu, Rathnam

    2010-11-01

    High throughput screening (HTS) facilitates screening large numbers of compounds against a biochemical target of interest using validated biological or biophysical assays. In recent years, a significant number of drugs in clinical trails originated from HTS campaigns, validating HTS as a bona fide mechanism for hit finding. In the current drug discovery landscape, the pharmaceutical industry is embracing open innovation strategies with academia to maximize their research capabilities and to feed their drug discovery pipeline. The goals of academic research have therefore expanded from target identification and validation to probe discovery, chemical genomics, and compound library screening. This trend is reflected in the emergence of HTS centers in the public domain over the past decade, ranging in size from modestly equipped academic screening centers to well endowed Molecular Libraries Probe Centers Network (MLPCN) centers funded by the NIH Roadmap initiative. These centers facilitate a comprehensive approach to probe discovery in academia and utilize both classical and cutting-edge assay technologies for executing primary and secondary screening campaigns. The various facets of academic HTS centers as well as their implications on technology transfer and drug discovery are discussed, and a roadmap for successful drug discovery in the public domain is presented. New lead discovery against therapeutic targets, especially those involving the rare and neglected diseases, is indeed a Mount Everestonian size task, and requires diligent implementation of pharmaceutical industry's best practices for a successful outcome.

  9. Advanced Visualization and Interactive Display Rapid Innovation and Discovery Evaluation Research (VISRIDER) Program Task 6: Point Cloud Visualization Techniques for Desktop and Web Platforms

    Science.gov (United States)

    2017-04-01

    ADVANCED VISUALIZATION AND INTERACTIVE DISPLAY RAPID INNOVATION AND DISCOVERY EVALUATION RESEARCH (VISRIDER) PROGRAM TASK 6: POINT CLOUD...To) OCT 2013 – SEP 2014 4. TITLE AND SUBTITLE ADVANCED VISUALIZATION AND INTERACTIVE DISPLAY RAPID INNOVATION AND DISCOVERY EVALUATION RESEARCH

  10. Perspectives on NMR in drug discovery: a technique comes of age.

    Science.gov (United States)

    Pellecchia, Maurizio; Bertini, Ivano; Cowburn, David; Dalvit, Claudio; Giralt, Ernest; Jahnke, Wolfgang; James, Thomas L; Homans, Steve W; Kessler, Horst; Luchinat, Claudio; Meyer, Bernd; Oschkinat, Hartmut; Peng, Jeff; Schwalbe, Harald; Siegal, Gregg

    2008-09-01

    In the past decade, the potential of harnessing the ability of nuclear magnetic resonance (NMR) spectroscopy to monitor intermolecular interactions as a tool for drug discovery has been increasingly appreciated in academia and industry. In this Perspective, we highlight some of the major applications of NMR in drug discovery, focusing on hit and lead generation, and provide a critical analysis of its current and potential utility.

  11. Common characteristics of open source software development and applicability for drug discovery: a systematic review.

    Science.gov (United States)

    Ardal, Christine; Alstadsæter, Annette; Røttingen, John-Arne

    2011-09-28

    Innovation through an open source model has proven to be successful for software development. This success has led many to speculate if open source can be applied to other industries with similar success. We attempt to provide an understanding of open source software development characteristics for researchers, business leaders and government officials who may be interested in utilizing open source innovation in other contexts and with an emphasis on drug discovery. A systematic review was performed by searching relevant, multidisciplinary databases to extract empirical research regarding the common characteristics and barriers of initiating and maintaining an open source software development project. Common characteristics to open source software development pertinent to open source drug discovery were extracted. The characteristics were then grouped into the areas of participant attraction, management of volunteers, control mechanisms, legal framework and physical constraints. Lastly, their applicability to drug discovery was examined. We believe that the open source model is viable for drug discovery, although it is unlikely that it will exactly follow the form used in software development. Hybrids will likely develop that suit the unique characteristics of drug discovery. We suggest potential motivations for organizations to join an open source drug discovery project. We also examine specific differences between software and medicines, specifically how the need for laboratories and physical goods will impact the model as well as the effect of patents.

  12. Common characteristics of open source software development and applicability for drug discovery: a systematic review

    Directory of Open Access Journals (Sweden)

    Røttingen John-Arne

    2011-09-01

    Full Text Available Abstract Background Innovation through an open source model has proven to be successful for software development. This success has led many to speculate if open source can be applied to other industries with similar success. We attempt to provide an understanding of open source software development characteristics for researchers, business leaders and government officials who may be interested in utilizing open source innovation in other contexts and with an emphasis on drug discovery. Methods A systematic review was performed by searching relevant, multidisciplinary databases to extract empirical research regarding the common characteristics and barriers of initiating and maintaining an open source software development project. Results Common characteristics to open source software development pertinent to open source drug discovery were extracted. The characteristics were then grouped into the areas of participant attraction, management of volunteers, control mechanisms, legal framework and physical constraints. Lastly, their applicability to drug discovery was examined. Conclusions We believe that the open source model is viable for drug discovery, although it is unlikely that it will exactly follow the form used in software development. Hybrids will likely develop that suit the unique characteristics of drug discovery. We suggest potential motivations for organizations to join an open source drug discovery project. We also examine specific differences between software and medicines, specifically how the need for laboratories and physical goods will impact the model as well as the effect of patents.

  13. Computer-aided drug discovery research at a global contract research organization

    Science.gov (United States)

    Kitchen, Douglas B.

    2017-03-01

    Computer-aided drug discovery started at Albany Molecular Research, Inc in 1997. Over nearly 20 years the role of cheminformatics and computational chemistry has grown throughout the pharmaceutical industry and at AMRI. This paper will describe the infrastructure and roles of CADD throughout drug discovery and some of the lessons learned regarding the success of several methods. Various contributions provided by computational chemistry and cheminformatics in chemical library design, hit triage, hit-to-lead and lead optimization are discussed. Some frequently used computational chemistry techniques are described. The ways in which they may contribute to discovery projects are presented based on a few examples from recent publications.

  14. Trends in GPCR drug discovery: new agents, targets and indications

    DEFF Research Database (Denmark)

    Hauser, Alexander Sebastian; Gloriam, David E.; Attwood, Misty M.

    2017-01-01

    G protein-coupled receptors (GPCRs) are the most intensively studied drug targets, mostly due to their substantial involvement in human pathophysiology and their pharmacological tractability. Here, we report an up-to-date analysis of all GPCR drugs and agents in clinical trials, which reveals...... current trends across molecule types, drug targets and therapeutic indications, including showing that 475 drugs (~34% of all drugs approved by the US Food and Drug Administration (FDA)) act at 108 unique GPCRs. Approximately 321 agents are currently in clinical trials, of which ~20% target 66 potentially...... novel GPCR targets without an approved drug, and the number of biological drugs, allosteric modulators and biased agonists has increased. The major disease indications for GPCR modulators show a shift towards diabetes, obesity and Alzheimer disease, although several central nervous system disorders...

  15. Trends in GPCR drug discovery: new agents, targets and indications

    DEFF Research Database (Denmark)

    Hauser, Alexander Sebastian; Gloriam, David E.

    2017-01-01

    novel GPCR targets without an approved drug, and the number of biological drugs, allosteric modulators and biased agonists has increased. The major disease indications for GPCR modulators show a shift towards diabetes, obesity and Alzheimer disease, although several central nervous system disorders......G protein-coupled receptors (GPCRs) are the most intensively studied drug targets, mostly due to their substantial involvement in human pathophysiology and their pharmacological tractability. Here, we report an up-to-date analysis of all GPCR drugs and agents in clinical trials, which reveals...... current trends across molecule types, drug targets and therapeutic indications, including showing that 475 drugs (~34% of all drugs approved by the US Food and Drug Administration (FDA)) act at 108 unique GPCRs. Approximately 321 agents are currently in clinical trials, of which ~20% target 66 potentially...

  16. Discovery of Bioactive Compounds by the UIC-ICBG Drug Discovery Program in the 18 Years Since 1998

    Directory of Open Access Journals (Sweden)

    Hong-Jie Zhang

    2016-10-01

    Full Text Available The International Cooperative Biodiversity Groups (ICBG Program based at the University of Illinois at Chicago (UIC is a program aimed to address the interdependent issues of inventory and conservation of biodiversity, drug discovery and sustained economic growth in both developing and developed countries. It is an interdisciplinary program involving the extensive synergies and collaborative efforts of botanists, chemists and biologists in the countries of Vietnam, Laos and the USA. The UIC-ICBG drug discovery efforts over the past 18 years have resulted in the collection of a cumulative total of more than 5500 plant samples (representing more than 2000 species, that were evaluated for their potential biological effects against cancer, HIV, bird flu, tuberculosis and malaria. The bioassay-guided fractionation and separation of the bioactive plant leads resulted in the isolation of approximately 300 compounds of varying degrees of structural complexity and/or biological activity. The present paper summarizes the significant drug discovery achievements made by the UIC-ICBG team of multidisciplinary collaborators in the project over the period of 1998–2012 and the projects carried on in the subsequent years by involving the researchers in Hong Kong.

  17. Application of computational methods for anticancer drug discovery, design, and optimization

    Directory of Open Access Journals (Sweden)

    Diego Prada-Gracia

    2016-11-01

    Full Text Available Developing a novel drug is a complex, risky, expensive and time-consuming venture. It is estimated that the conventional drug discovery process ending with a new medicine ready for the market can take up to 15 years and more than a billion USD. Fortunately, this scenario has recently changed with the arrival of new approaches. Many novel technologies and methodologies have been developed to increase the efficiency of the drug discovery process, and computational methodologies have become a crucial component of many drug discovery programs. From hit identification to lead optimization, techniques such as ligand- or structure-based virtual screening are widely used in many discovery efforts. It is the case for designing potential anticancer drugs and drug candidates, where these computational approaches have had a major impact over the years and have provided fruitful insights into the field of cancer. In this paper, we review the concept of rational design presenting some of the most representative examples of molecules identified by means of it. Key principles are illustrated through case studies including specifically successful achievements in the field of anticancer drug design to demonstrate that research advances, with the aid of in silico drug design, have the potential to create novel anticancer drugs.

  18. Preparative Scale Resolution of Enantiomers Enables Accelerated Drug Discovery and Development

    Directory of Open Access Journals (Sweden)

    Hanna Leek

    2017-01-01

    Full Text Available The provision of pure enantiomers is of increasing importance not only for the pharmaceutical industry but also for agro-chemistry and biotechnology. In drug discovery and development, the enantiomers of a chiral drug depict unique chemical and pharmacological behaviors in a chiral environment, such as the human body, in which the stereochemistry of the chiral drugs determines their pharmacokinetic, pharmacodynamic and toxicological properties. We present a number of challenging case studies of up-to-kilogram separations of racemic or enriched isomer mixtures using preparative liquid chromatography and super critical fluid chromatography to generate individual enantiomers that have enabled the development of new candidate drugs within AstraZeneca. The combination of chromatography and racemization as well as strategies on when to apply preparative chiral chromatography of enantiomers in a multi-step synthesis of a drug compound can further facilitate accelerated drug discovery and the early clinical evaluation of the drug candidates.

  19. Fragment based drug discovery: practical implementation based on ¹⁹F NMR spectroscopy.

    Science.gov (United States)

    Jordan, John B; Poppe, Leszek; Xia, Xiaoyang; Cheng, Alan C; Sun, Yax; Michelsen, Klaus; Eastwood, Heather; Schnier, Paul D; Nixey, Thomas; Zhong, Wenge

    2012-01-26

    Fragment based drug discovery (FBDD) is a widely used tool for discovering novel therapeutics. NMR is a powerful means for implementing FBDD, and several approaches have been proposed utilizing (1)H-(15)N heteronuclear single quantum coherence (HSQC) as well as one-dimensional (1)H and (19)F NMR to screen compound mixtures against a target of interest. While proton-based NMR methods of fragment screening (FBS) have been well documented and are widely used, the use of (19)F detection in FBS has been only recently introduced (Vulpetti et al. J. Am. Chem. Soc.2009, 131 (36), 12949-12959) with the aim of targeting "fluorophilic" sites in proteins. Here, we demonstrate a more general use of (19)F NMR-based fragment screening in several areas: as a key tool for rapid and sensitive detection of fragment hits, as a method for the rapid development of structure-activity relationship (SAR) on the hit-to-lead path using in-house libraries and/or commercially available compounds, and as a quick and efficient means of assessing target druggability.

  20. The use of web ontology languages and other semantic web tools in drug discovery.

    Science.gov (United States)

    Chen, Huajun; Xie, Guotong

    2010-05-01

    To optimize drug development processes, pharmaceutical companies require principled approaches to integrate disparate data on a unified infrastructure, such as the web. The semantic web, developed on the web technology, provides a common, open framework capable of harmonizing diversified resources to enable networked and collaborative drug discovery. We survey the state of art of utilizing web ontologies and other semantic web technologies to interlink both data and people to support integrated drug discovery across domains and multiple disciplines. Particularly, the survey covers three major application categories including: i) semantic integration and open data linking; ii) semantic web service and scientific collaboration and iii) semantic data mining and integrative network analysis. The reader will gain: i) basic knowledge of the semantic web technologies; ii) an overview of the web ontology landscape for drug discovery and iii) a basic understanding of the values and benefits of utilizing the web ontologies in drug discovery. i) The semantic web enables a network effect for linking open data for integrated drug discovery; ii) The semantic web service technology can support instant ad hoc collaboration to improve pipeline productivity and iii) The semantic web encourages publishing data in a semantic way such as resource description framework attributes and thus helps move away from a reliance on pure textual content analysis toward more efficient semantic data mining.

  1. Cardiovascular Organ-on-a-Chip Platforms for Drug Discovery and Development

    NARCIS (Netherlands)

    Ribas, J.; Sadeghi, H.; Manbachi, A.; Leijten, Jeroen Christianus Hermanus; Brinegar, K.; Zhang, Y.S.; Ferreira, L.; Khademhosseini, A.

    2016-01-01

    Cardiovascular diseases are prevalent worldwide and are the most frequent causes of death in the United States. Although spending in drug discovery/development has increased, the amount of drug approvals has seen a progressive decline. Particularly, adverse side effects to the heart and general

  2. Established and Emerging Trends in Computational Drug Discovery in the Structural Genomics Era

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Baell, Jonathan B.; Fernández-Recio, Juan

    2012-01-01

    combined in order to address more and more challenging targets or complex molecular mechanisms in the context of large-scale integration of structure and bioactivity data produced by private and public drug research. This review explores some key computational methods directly linked to drug discovery...

  3. Discovery of a Rapid, Luminous Nova in NGC 300 by the KMTNet Supernova Program

    Science.gov (United States)

    Antoniadis, John; Moon, Dae-Sik; Ni, Yuan Qi; Kim, Dong-Jin; Lee, Yongseok; Neilson, Hilding

    2017-08-01

    We present the discovery of a rapidly evolving transient by the Korean Microlensing Telescope Network Supernova Program (KSP). KSP is a novel high-cadence supernova survey that offers deep (˜21.5 mag in BV I bands), nearly continuous wide-field monitoring for the discovery of early and/or fast optical transients. KSP-OT-201509a, reported here, was discovered on 2015 September 27 during the KSP commissioning run in the direction of the nearby galaxy NGC 300, and stayed above detection limit for ˜22 days. We use our BV I light curves to constrain the ascent rate, -3.7(7) mag day-1 in V, decay timescale, {t}2V=1.7(6) days, and peak absolute magnitude, -9.65≤slant {M}V≤slant -9.25 mag. We also find evidence for a short-lived pre-maximum halt in all bands. The peak luminosity and light-curve evolution make KSP-OT-201509a consistent with a bright, rapidly decaying nova outburst. We discuss constraints on the nature of the progenitor and its environment using archival Hubble Space Telescope (HST)/ACS images and conclude with a broad discussion on the nature of the system.

  4. Neptune: a bioinformatics tool for rapid discovery of genomic variation in bacterial populations.

    Science.gov (United States)

    Marinier, Eric; Zaheer, Rahat; Berry, Chrystal; Weedmark, Kelly A; Domaratzki, Michael; Mabon, Philip; Knox, Natalie C; Reimer, Aleisha R; Graham, Morag R; Chui, Linda; Patterson-Fortin, Laura; Zhang, Jian; Pagotto, Franco; Farber, Jeff; Mahony, Jim; Seyer, Karine; Bekal, Sadjia; Tremblay, Cécile; Isaac-Renton, Judy; Prystajecky, Natalie; Chen, Jessica; Slade, Peter; Van Domselaar, Gary

    2017-10-13

    The ready availability of vast amounts of genomic sequence data has created the need to rethink comparative genomics algorithms using 'big data' approaches. Neptune is an efficient system for rapidly locating differentially abundant genomic content in bacterial populations using an exact k-mer matching strategy, while accommodating k-mer mismatches. Neptune's loci discovery process identifies sequences that are sufficiently common to a group of target sequences and sufficiently absent from non-targets using probabilistic models. Neptune uses parallel computing to efficiently identify and extract these loci from draft genome assemblies without requiring multiple sequence alignments or other computationally expensive comparative sequence analyses. Tests on simulated and real datasets showed that Neptune rapidly identifies regions that are both sensitive and specific. We demonstrate that this system can identify trait-specific loci from different bacterial lineages. Neptune is broadly applicable for comparative bacterial analyses, yet will particularly benefit pathogenomic applications, owing to efficient and sensitive discovery of differentially abundant genomic loci. The software is available for download at: http://github.com/phac-nml/neptune. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Rescuing drug discovery: In vivo systems pathology and systems pharmacology

    NARCIS (Netherlands)

    Greef, J. van der; McBurney, R.N.

    2005-01-01

    The pharmaceutical industry is currently beleaguered by close scrutiny from the financial community, regulators and the general public. Productivity, in terms of new drug approvals, has generally been falling for almost a decade and the safety of a number of highly successful drugs has recently been

  6. Plant natural products research in tuberculosis drug discovery and ...

    African Journals Online (AJOL)

    The global resurgence of TB and the development of multidrug-resistant tuberculosis (MDR TB) and extensively drug-resistant tuberculosis (XDR-TB), call for the development of new anti-tuberculosis drugs to combat this disease. Plant natural products have a proven global history of treating diseases and ailments.

  7. Merging Traditional Chinese Medicine with Modern Drug Discovery Technologies to Find Novel Drugs and Functional Foods

    Science.gov (United States)

    Graziose, Rocky; Lila, Mary Ann; Raskin, Ilya

    2011-01-01

    Traditional Chinese Medicines (TCM) are rapidly gaining attention in the West as sources of new drugs, dietary supplements and functional foods. However, lack of consistent manufacturing practices and quality standards, fear of adulteration, and perceived deficiencies in scientific validation of efficacy and safety impede worldwide acceptance of TCM. In addition, Western pharmaceutical industries and regulatory agencies are partial toward single ingredient drugs based on synthetic molecules, and skeptical of natural product mixtures. This review concentrates on three examples of TCM-derived pharmaceuticals and functional foods that have, despite these usual obstacles, risen to wide acceptance in the West based on their remarkable performance in recent scientific investigations. They are: Sweet wormwood (Artemisia annua), the source of artemisinin, which is the currently preferred single compound anti-malarial drug widely used in combination therapies and recently approved by US FDA; Thunder god vine (Tripterygium wilfordii) which is being developed as a botanical drug for rheumatoid arthritis; and green tea (Camellia sinensis) which is used as a functional beverage and a component of dietary supplements. PMID:20156139

  8. Rapid characterization of the biomechanical properties of drug-treated cells in a microfluidic device

    Science.gov (United States)

    Zhang, Xiaofei; Chu, Henry K.; Zhang, Yang; Bai, Guohua; Wang, Kaiqun; Tan, Qiulin; Sun, Dong

    2015-10-01

    Cell mechanics is closely related to many cell functions. Recent studies have suggested that the deformability of cells can be an effective biomarker to indicate the onset and progression of diseases. In this paper, a microfluidic chip is designed for rapid characterization of the mechanics of drug-treated cells through stretching with dielectrophoresis (DEP) force. This chip was fabricated using PDMS and micro-electrodes were integrated and patterned on the ITO layer of the chip. Leukemia NB4 cells were considered and the effect of all-trans retinoic acid (ATRA) drug on NB4 cells were examined via the microfluidic chip. To induce a DEP force onto the cell, a relatively weak ac voltage was utilized to immobilize a cell at one side of the electrodes. The applied voltage was then increased to 3.5 V pp and the cell started to be stretched along the applied electric field lines. The elongation of the cell was observed using an optical microscope and the results showed that both types of cells were deformed by the induced DEP force. The strain of the NB4 cell without the drug treatment was recorded to be about 0.08 (time t = 180 s) and the drug-treated NB4 cell was about 0.21 (time t = 180 s), indicating a decrease in the stiffness after drug treatment. The elastic modulus of the cell was also evaluated and the modulus changed from 140 Pa to 41 Pa after drug treatment. This microfluidic chip can provide a simple and rapid platform for measuring the change in the biomechanical properties of cells and can potentially be used as the tool to determine the biomechanical effects of different drug treatments for drug discovery and development applications.

  9. The major impacts of James Black's drug discoveries on medicine and pharmacology.

    Science.gov (United States)

    Walker, Michael J A

    2011-04-01

    James Black has many claims to pharmacological fame as the creator of two new classes of drugs (beta-blockers and H2 antihistamines) and as a tireless innovator in drug discovery strategies and analytical procedures. The latter attributes in particular assisted Black in the invention of the prototypes for the two major classes of drugs for which he is best known, propranolol and cimetidine. The clinical impact of these drugs on both morbidity and mortality has been profound. In addition, the application of his analytical approach to drug discovery and pharmacology led others in the field to create many other new classes of drugs. Shortly before he died in 2010, Black wrote a retrospective review of his research career that provides insight into his innovative thinking and career success. This overview affords readers a very personal picture of the man, his ideas and his contributions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Quantitative structure-activity relationship: promising advances in drug discovery platforms.

    Science.gov (United States)

    Wang, Tao; Wu, Mian-Bin; Lin, Jian-Ping; Yang, Li-Rong

    2015-12-01

    Quantitative structure-activity relationship (QSAR) modeling is one of the most popular computer-aided tools employed in medicinal chemistry for drug discovery and lead optimization. It is especially powerful in the absence of 3D structures of specific drug targets. QSAR methods have been shown to draw public attention since they were first introduced. In this review, the authors provide a brief discussion of the basic principles of QSAR, model development and model validation. They also highlight the current applications of QSAR in different fields, particularly in virtual screening, rational drug design and multi-target QSAR. Finally, in view of recent controversies, the authors detail the challenges faced by QSAR modeling and the relevant solutions. The aim of this review is to show how QSAR modeling can be applied in novel drug discovery, design and lead optimization. QSAR should intentionally be used as a powerful tool for fragment-based drug design platforms in the field of drug discovery and design. Although there have been an increasing number of experimentally determined protein structures in recent years, a great number of protein structures cannot be easily obtained (i.e., membrane transport proteins and G-protein coupled receptors). Fragment-based drug discovery, such as QSAR, could be applied further and have a significant role in dealing with these problems. Moreover, along with the development of computer software and hardware, it is believed that QSAR will be increasingly important.

  11. Providing data science support for systems pharmacology and its implications to drug discovery.

    Science.gov (United States)

    Hart, Thomas; Xie, Lei

    2016-01-01

    The conventional one-drug-one-target-one-disease drug discovery process has been less successful in tracking multi-genic, multi-faceted complex diseases. Systems pharmacology has emerged as a new discipline to tackle the current challenges in drug discovery. The goal of systems pharmacology is to transform huge, heterogeneous, and dynamic biological and clinical data into interpretable and actionable mechanistic models for decision making in drug discovery and patient treatment. Thus, big data technology and data science will play an essential role in systems pharmacology. This paper critically reviews the impact of three fundamental concepts of data science on systems pharmacology: similarity inference, overfitting avoidance, and disentangling causality from correlation. The authors then discuss recent advances and future directions in applying the three concepts of data science to drug discovery, with a focus on proteome-wide context-specific quantitative drug target deconvolution and personalized adverse drug reaction prediction. Data science will facilitate reducing the complexity of systems pharmacology modeling, detecting hidden correlations between complex data sets, and distinguishing causation from correlation. The power of data science can only be fully realized when integrated with mechanism-based multi-scale modeling that explicitly takes into account the hierarchical organization of biological systems from nucleic acid to proteins, to molecular interaction networks, to cells, to tissues, to patients, and to populations.

  12. An overview of aldehyde oxidase: an enzyme of emerging importance in novel drug discovery.

    Science.gov (United States)

    Rashidi, Mohammad-Reza; Soltani, Somaieh

    2017-03-01

    Given the rising trend in medicinal chemistry strategy to reduce cytochrome P450-dependent metabolism, aldehyde oxidase (AOX) has recently gained increased attention in drug discovery programs and the number of drug candidates that are metabolized by AOX is steadily growing. Areas covered: Despite the emerging importance of AOX in drug discovery, there are certain major recognized problems associated with AOX-mediated metabolism of drugs. Intra- and inter-species variations in AOX activity, the lack of reliable and predictive animal models using the common experimental animals, and failure in the predictions of in vivo metabolic activity of AOX using traditional in vitro methods are among these issues that are covered in this article. A comprehensive review of computational human AOX (hAOX) related studies are also provided. Expert opinion: Following the recent progress in the stem cell field, the authors recommend the application of organoids technology as an effective tool to solve the fundamental problems associated with the evaluation of AOX in drug discovery. The recent success in resolving the hAOX crystal structure can too be another valuable data source for the study of AOX-catalyzed metabolism of new drug candidates, using computer-aided drug discovery methods.

  13. From machine learning to deep learning: progress in machine intelligence for rational drug discovery.

    Science.gov (United States)

    Zhang, Lu; Tan, Jianjun; Han, Dan; Zhu, Hao

    2017-11-01

    Machine intelligence, which is normally presented as artificial intelligence, refers to the intelligence exhibited by computers. In the history of rational drug discovery, various machine intelligence approaches have been applied to guide traditional experiments, which are expensive and time-consuming. Over the past several decades, machine-learning tools, such as quantitative structure-activity relationship (QSAR) modeling, were developed that can identify potential biological active molecules from millions of candidate compounds quickly and cheaply. However, when drug discovery moved into the era of 'big' data, machine learning approaches evolved into deep learning approaches, which are a more powerful and efficient way to deal with the massive amounts of data generated from modern drug discovery approaches. Here, we summarize the history of machine learning and provide insight into recently developed deep learning approaches and their applications in rational drug discovery. We suggest that this evolution of machine intelligence now provides a guide for early-stage drug design and discovery in the current big data era. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. New directions for protease inhibitors directed drug discovery.

    Science.gov (United States)

    Hamada, Yoshio; Kiso, Yoshiaki

    2016-11-04

    Proteases play crucial roles in various biological processes, and their activities are essential for all living organisms-from viruses to humans. Since their functions are closely associated with many pathogenic mechanisms, their inhibitors or activators are important molecular targets for developing treatments for various diseases. Here, we describe drugs/drug candidates that target proteases, such as malarial plasmepsins, β-secretase, virus proteases, and dipeptidyl peptidase-4. Previously, we reported inhibitors of aspartic proteases, such as renin, human immunodeficiency virus type 1 protease, human T-lymphotropic virus type I protease, plasmepsins, and β-secretase, as drug candidates for hypertension, adult T-cell leukaemia, human T-lymphotropic virus type I-associated myelopathy, malaria, and Alzheimer's disease. Our inhibitors are also described in this review article as examples of drugs that target proteases. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 563-579, 2016. © 2015 Wiley Periodicals, Inc.

  15. Cancer in silico drug discovery: a systems biology tool for identifying candidate drugs to target specific molecular tumor subtypes.

    Science.gov (United States)

    San Lucas, F Anthony; Fowler, Jerry; Chang, Kyle; Kopetz, Scott; Vilar, Eduardo; Scheet, Paul

    2014-12-01

    Large-scale cancer datasets such as The Cancer Genome Atlas (TCGA) allow researchers to profile tumors based on a wide range of clinical and molecular characteristics. Subsequently, TCGA-derived gene expression profiles can be analyzed with the Connectivity Map (CMap) to find candidate drugs to target tumors with specific clinical phenotypes or molecular characteristics. This represents a powerful computational approach for candidate drug identification, but due to the complexity of TCGA and technology differences between CMap and TCGA experiments, such analyses are challenging to conduct and reproduce. We present Cancer in silico Drug Discovery (CiDD; scheet.org/software), a computational drug discovery platform that addresses these challenges. CiDD integrates data from TCGA, CMap, and Cancer Cell Line Encyclopedia (CCLE) to perform computational drug discovery experiments, generating hypotheses for the following three general problems: (i) determining whether specific clinical phenotypes or molecular characteristics are associated with unique gene expression signatures; (ii) finding candidate drugs to repress these expression signatures; and (iii) identifying cell lines that resemble the tumors being studied for subsequent in vitro experiments. The primary input to CiDD is a clinical or molecular characteristic. The output is a biologically annotated list of candidate drugs and a list of cell lines for in vitro experimentation. We applied CiDD to identify candidate drugs to treat colorectal cancers harboring mutations in BRAF. CiDD identified EGFR and proteasome inhibitors, while proposing five cell lines for in vitro testing. CiDD facilitates phenotype-driven, systematic drug discovery based on clinical and molecular data from TCGA. ©2014 American Association for Cancer Research.

  16. Rapid Countermeasure Discovery against Francisella tularensis Based on a Metabolic Network Reconstruction

    Science.gov (United States)

    2013-05-21

    a given drug target. First, the selection of a subset of genes deemed to be essential for bacterial survival overlooks non-essential genes that may... Salmonella typhimurium during host-pathogen interaction. BMC Syst Biol 3: 38. 19. Shen Y, Liu J, Estiu G, Isin B, Ahn YY, et al. (2010) Blueprint for...and Medicine 48: 330–333. 69. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival : application to proliferation and

  17. A new in vivo screening paradigm to accelerate antimalarial drug discovery.

    Directory of Open Access Journals (Sweden)

    María Belén Jiménez-Díaz

    Full Text Available The emergence of resistance to available antimalarials requires the urgent development of new medicines. The recent disclosure of several thousand compounds active in vitro against the erythrocyte stage of Plasmodium falciparum has been a major breakthrough, though converting these hits into new medicines challenges current strategies. A new in vivo screening concept was evaluated as a strategy to increase the speed and efficiency of drug discovery projects in malaria. The new in vivo screening concept was developed based on human disease parameters, i.e. parasitemia in the peripheral blood of patients on hospital admission and parasite reduction ratio (PRR, which were allometrically down-scaled into P. berghei-infected mice. Mice with an initial parasitemia (P0 of 1.5% were treated orally for two consecutive days and parasitemia measured 24 h after the second dose. The assay was optimized for detection of compounds able to stop parasite replication (PRR = 1 or induce parasite clearance (PRR >1 with statistical power >99% using only two mice per experimental group. In the P. berghei in vivo screening assay, the PRR of a set of eleven antimalarials with different mechanisms of action correlated with human-equivalent data. Subsequently, 590 compounds from the Tres Cantos Antimalarial Set with activity in vitro against P. falciparum were tested at 50 mg/kg (orally in an assay format that allowed the evaluation of hundreds of compounds per month. The rate of compounds with detectable efficacy was 11.2% and about one third of active compounds showed in vivo efficacy comparable with the most potent antimalarials used clinically. High-throughput, high-content in vivo screening could rapidly select new compounds, dramatically speeding up the discovery of new antimalarial medicines. A global multilateral collaborative project aimed at screening the significant chemical diversity within the antimalarial in vitro hits described in the literature is a

  18. A fully integrated protein crystallization platform for small-molecule drug discovery.

    Science.gov (United States)

    Hosfield, David; Palan, John; Hilgers, Mark; Scheibe, Daniel; McRee, Duncan E; Stevens, Raymond C

    2003-04-01

    Structure-based drug discovery in the pharmaceutical industry benefits from cost-efficient methodologies that quickly assess the feasibility of specific, often refractory, protein targets to form well-diffracting crystals. By tightly coupling construct and purification diversity with nanovolume crystallization, the Structural Biology Group at Syrrx has developed such a platform to support its small-molecule drug-discovery program. During the past 18 months of operation at Syrrx, the Structural Biology Group has executed several million crystallization and imaging trials on over 400 unique drug-discovery targets. Here, key components of the platform, as well as an analysis of some experimental results that allowed for platform optimization, will be described.

  19. Translational Prospects and Challenges in Human Induced Pluripotent Stem Cell Research in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Masaki Hosoya

    2016-12-01

    Full Text Available Despite continuous efforts to improve the process of drug discovery and development, achieving success at the clinical stage remains challenging because of a persistent translational gap between the preclinical and clinical settings. Under these circumstances, the discovery of human induced pluripotent stem (iPS cells has brought new hope to the drug discovery field because they enable scientists to humanize a variety of pharmacological and toxicological models in vitro. The availability of human iPS cell-derived cells, particularly as an alternative for difficult-to-access tissues and organs, is increasing steadily; however, their use in the field of translational medicine remains challenging. Biomarkers are an essential part of the translational effort to shift new discoveries from bench to bedside as they provide a measurable indicator with which to evaluate pharmacological and toxicological effects in both the preclinical and clinical settings. In general, during the preclinical stage of the drug development process, in vitro models that are established to recapitulate human diseases are validated by using a set of biomarkers; however, their translatability to a clinical setting remains problematic. This review provides an overview of current strategies for human iPS cell-based drug discovery from the perspective of translational research, and discusses the importance of early consideration of clinically relevant biomarkers.

  20. Translational Prospects and Challenges in Human Induced Pluripotent Stem Cell Research in Drug Discovery.

    Science.gov (United States)

    Hosoya, Masaki; Czysz, Katherine

    2016-12-21

    Despite continuous efforts to improve the process of drug discovery and development, achieving success at the clinical stage remains challenging because of a persistent translational gap between the preclinical and clinical settings. Under these circumstances, the discovery of human induced pluripotent stem (iPS) cells has brought new hope to the drug discovery field because they enable scientists to humanize a variety of pharmacological and toxicological models in vitro. The availability of human iPS cell-derived cells, particularly as an alternative for difficult-to-access tissues and organs, is increasing steadily; however, their use in the field of translational medicine remains challenging. Biomarkers are an essential part of the translational effort to shift new discoveries from bench to bedside as they provide a measurable indicator with which to evaluate pharmacological and toxicological effects in both the preclinical and clinical settings. In general, during the preclinical stage of the drug development process, in vitro models that are established to recapitulate human diseases are validated by using a set of biomarkers; however, their translatability to a clinical setting remains problematic. This review provides an overview of current strategies for human iPS cell-based drug discovery from the perspective of translational research, and discusses the importance of early consideration of clinically relevant biomarkers.

  1. Translational Prospects and Challenges in Human Induced Pluripotent Stem Cell Research in Drug Discovery

    Science.gov (United States)

    Hosoya, Masaki; Czysz, Katherine

    2016-01-01

    Despite continuous efforts to improve the process of drug discovery and development, achieving success at the clinical stage remains challenging because of a persistent translational gap between the preclinical and clinical settings. Under these circumstances, the discovery of human induced pluripotent stem (iPS) cells has brought new hope to the drug discovery field because they enable scientists to humanize a variety of pharmacological and toxicological models in vitro. The availability of human iPS cell-derived cells, particularly as an alternative for difficult-to-access tissues and organs, is increasing steadily; however, their use in the field of translational medicine remains challenging. Biomarkers are an essential part of the translational effort to shift new discoveries from bench to bedside as they provide a measurable indicator with which to evaluate pharmacological and toxicological effects in both the preclinical and clinical settings. In general, during the preclinical stage of the drug development process, in vitro models that are established to recapitulate human diseases are validated by using a set of biomarkers; however, their translatability to a clinical setting remains problematic. This review provides an overview of current strategies for human iPS cell-based drug discovery from the perspective of translational research, and discusses the importance of early consideration of clinically relevant biomarkers. PMID:28009813

  2. Natural products and drug discovery: A survey of stakeholders in industry and academia

    Directory of Open Access Journals (Sweden)

    Vafa eAmirkia

    2015-10-01

    Full Text Available Context: In recent decades, natural products have undisputedly played a leading role in the development of novel medicines. Yet, trends in the pharmaceutical industry at the level of research investments indicate that natural product research is neither prioritized nor perceived as fruitful in drug discovery programmes as compared with incremental structural modifications and large volume HTS screening of synthetics. Aim: We seek to understand this phenomenon through insights from highly experienced natural product experts in industry and academia.Method: We conducted a survey including a series of qualitative and quantitative questions related to current insights and prospective developments in natural product drug development. The survey was completed by a cross-section of 52 respondents in industry and academia. Results: One recurrent theme is the dissonance between the perceived high potential of NP as drug leads among individuals and the survey participants’ assessment of the overall industry and/or company level strategies and their success. The study’s industry and academic respondents did not perceive current discovery efforts as more effective as compared with previous decades, yet industry contacts perceived higher hit rates in HTS efforts as compared with academic respondents. Surprisingly, many industry contacts were highly critical to prevalent company and industry-wide drug discovery strategies indicating a high level of dissatisfaction within the industry.Conclusions: These findings support the notion that there is an increasing gap in perception between the effectiveness of well established, commercially widespread drug discovery strategies between those working in industry and academic experts. This research seeks to shed light on this gap and aid in furthering natural product discovery endeavors through an analysis of current bottlenecks in industry drug discovery programmes.

  3. In-Silico Drug Design: A revolutionary approach to change the concept of current Drug Discovery Process

    OpenAIRE

    Lakhyajit Boruah, Aparoop Das, Lalit Mohan Nainwal, Neha Agarwal*, Brajesh Shankar

    2013-01-01

    Computational methods play a central role in modern drug discovery process. It includes the design andmanagement of small molecule libraries, initial hit identification through virtual screening, optimization ofthe affinity as well as selectivity of hits and improving the physicochemical properties of the leadcompounds. In this review article, computational drug designing approaches have been elucidated anddiscussed. The key considerations and guidelines for virtual chemical library design an...

  4. [System biology and synthetic biology modify drug discovery and development].

    Science.gov (United States)

    Haiech, Jacques; Ranjeva, Raoul; Kilhoffer, Marie-Claude

    2012-02-01

    Life Sciences are built on observations. Right now, a more systemic approach allowing to integrate the different organizational levels in Biology is emerging. Such an approach uses a set of technologies and strategies allowing to build models that appear to be more and more predictive (omics, bioinformatics, integrative biology, computational biology…). Those models accelerate the rational development of new therapies avoiding an engineering based only on trials and errors. This approach both holistic and predictive radically modifies the discovery and development modalities used today in health industries. Moreover, because of the apparition of new jobs at the interface of disciplines, of private and public sectors and of life sciences and engineering sciences, this implies to rethink the training programs in both their contents and their pedagogical tools. © 2012 médecine/sciences – Inserm / SRMS.

  5. Considerations of the chemical biology of microbial natural products provide an effective drug discovery strategy.

    Science.gov (United States)

    Choi, Hyukjae; Oh, Dong-Chan

    2015-09-01

    Conventional approaches to natural product drug discovery rely mainly on random searches for bioactive compounds using bioassays. These traditional approaches do not incorporate a chemical biology perspective. Searching for bioactive molecules using a chemical and biological rationale constitutes a powerful search paradigm. Here, the authors review recent examples of the discovery of bioactive natural products based on chemical and biological interactions between hosts and symbionts, and propose this method provides a more effective means of exploring natural chemical diversity and eventually of discovering new drugs.

  6. Academic drug discovery centres: the economic and organisational sustainability of an emerging model.

    Science.gov (United States)

    Schultz Kirkegaard, Henriette; Valentin, Finn

    2014-11-01

    Academic drug discovery centres (ADDCs) are seen as one of the solutions to fill the innovation gap in early drug discovery, which has proven challenging for previous organisational models. Prior studies of ADDCs have identified the need to analyse them from the angle of their economic and organisational sustainability. We take that angle in an in-depth study of four prominent ADDCs. Our findings indicate that there are clear similarities in the way sustainable centres are organised, managed and financed. We also identify factors in the frameworks of academia and research funding affecting their performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Enabling drug discovery project decisions with integrated computational chemistry and informatics

    Science.gov (United States)

    Tsui, Vickie; Ortwine, Daniel F.; Blaney, Jeffrey M.

    2017-03-01

    Computational chemistry/informatics scientists and software engineers in Genentech Small Molecule Drug Discovery collaborate with experimental scientists in a therapeutic project-centric environment. Our mission is to enable and improve pre-clinical drug discovery design and decisions. Our goal is to deliver timely data, analysis, and modeling to our therapeutic project teams using best-in-class software tools. We describe our strategy, the organization of our group, and our approaches to reach this goal. We conclude with a summary of the interdisciplinary skills required for computational scientists and recommendations for their training.

  8. Applications of 19F-NMR in Fragment-Based Drug Discovery

    Directory of Open Access Journals (Sweden)

    Raymond S. Norton

    2016-07-01

    Full Text Available 19F-NMR has proved to be a valuable tool in fragment-based drug discovery. Its applications include screening libraries of fluorinated fragments, assessing competition among elaborated fragments and identifying the binding poses of promising hits. By observing fluorine in both the ligand and the target protein, useful information can be obtained on not only the binding pose but also the dynamics of ligand-protein interactions. These applications of 19F-NMR will be illustrated in this review with studies from our fragment-based drug discovery campaigns against protein targets in parasitic and infectious diseases.

  9. Alkaloids from Marine Invertebrates as Important Leads for Anticancer Drugs Discovery and Development

    Directory of Open Access Journals (Sweden)

    Concetta Imperatore

    2014-12-01

    Full Text Available The present review describes research on novel natural antitumor alkaloids isolated from marine invertebrates. The structure, origin, and confirmed cytotoxic activity of more than 130 novel alkaloids belonging to several structural families (indoles, pyrroles, pyrazines, quinolines, and pyridoacridines, together with some of their synthetic analogs, are illustrated. Recent discoveries concerning the current state of the potential and/or development of some of them as new drugs, as well as the current knowledge regarding their modes of action, are also summarized. A special emphasis is given to the role of marine invertebrate alkaloids as an important source of leads for anticancer drug discovery.

  10. The chemistry-biology-medicine continuum and the drug discovery and development process in academia.

    Science.gov (United States)

    Nicolaou, K C

    2014-09-18

    Admirable as it is, the drug discovery and development process is continuously undergoing changes and adjustments in search of further improvements in efficiency, productivity, and profitability. Recent trends in academic-industrial partnerships promise to provide new opportunities for advancements of this process through transdisciplinary collaborations along the entire spectrum of activities involved in this complex process. This perspective discusses ways to promote the emerging academic paradigm of the chemistry-biology-medicine continuum as a means to advance the drug discovery and development process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Plant natural products research in tuberculosis drug discovery and ...

    African Journals Online (AJOL)

    SAM

    2014-06-04

    Jun 4, 2014 ... Tuberculosis (TB) remains a disease of global importance with approximately two million deaths annually worldwide. Effective treatment of TB has been hampered by the emergence of drug resistant strains of Mycobacterium tuberculosis. The global resurgence of TB and the development of multidrug-.

  12. Drug discovery via human-derived stem cell organoids

    Directory of Open Access Journals (Sweden)

    Fangkun Liu

    2016-09-01

    Full Text Available Patient-derived cell lines and animal models have proven invaluable for the understanding of human intestinal diseases and for drug development although both inherently comprise disadvantages and caveats. Many genetically determined intestinal diseases occur in specific tissue microenvironments that are not adequately modeled by monolayer cell culture. Likewise, animal models incompletely recapitulate the complex pathologies of intestinal diseases of humans and fall short in predicting the effects of candidate drugs. Patient-derived stem cell organoids are new and effective models for the development of novel targeted therapies. With the use of intestinal organoids from patients with inherited diseases, the potency and toxicity of drug candidates can be evaluated better. Moreover, owing to the novel CRISPR/Cas9 genome-editing technologies, researchers can use organoids to precisely modulate human genetic status and identify pathogenesis-related genes of intestinal diseases. Therefore, here we discuss how patient-derived organoids should be grown and how advanced genome-editing tools may be applied to research on modeling of cancer and infectious diseases. We also highlight practical applications of organoids ranging from basic studies to drug screening and precision medicine.

  13. A Drug Discovery Partnership for Personalized Breast Cancer Therapy

    Science.gov (United States)

    2015-09-01

    for each compound. 2D NMR spectra clarify the stereochemistry of compounds. Through molecular simulation and conformational analysis , dual...1A2-targeting cancer preventive agents. Wiese/Burow Subproject (Identification of novel estrogens and antiestrogens in the USDA Phytochemical and...antagonists) and then virtually screen the USDA Phytochemical , Chinese Herbal Medicine, and the FDA Marketed Drug Databases for new estrogens. Task 1

  14. From bench to bedside: ways and steps of drug discovery

    Directory of Open Access Journals (Sweden)

    Ş.Ş. Alkan

    2011-12-01

    Full Text Available For the public two things are not easy to understand about drugs: a Why drugs are so expensive? b Why there are only so few new drugs discovered despite higher investments every year. Usually it takes 10- 15 years to develop a drug. Here, I will guide you through all stages of classical drug development so that you can understand the reasons of the current situation. Although I am not an expert in hematological diseases, the lessons I have learned during my 30 years of experience in the pharmaceutical industry will hopefully prepare you to find novel ways for the treatment of thalassemia. 关于药品,公众有两个疑问: a 为什么药品如此昂贵?b尽管每年投入高额投资,为什么只研发出少量的新药? 通常,研发一种药品需要10到15年时间。 在此,我会介绍典型药品研发的所有步骤,帮助你了解造成现状的原因。 虽然我不是地中海贫血病的专家,但是凭借在我在医药行业30年的经验教训,希望能帮助你找到治疗地中海贫血的新方法。

  15. Patents of bio-active compounds based on computer-aided drug discovery techniques.

    Science.gov (United States)

    Prado-Prado, Francisco; Garcia-Mera, Xerardo; Rodriguez-Borges, Jose Enrique; Concu, Riccardo; Perez-Montoto, Lazaro Guillermo; Gonzalez-Diaz, Humberto; Duardo-Sanchez, Aliuska

    2013-01-01

    In recent times, there has been an increased use of Computer-Aided Drug Discovery (CADD) techniques in Medicinal Chemistry as auxiliary tools in drug discovery. Whilst the ultimate goal of Medicinal Chemistry research is for the discovery of new drug candidates, a secondary yet important outcome that results is in the creation of new computational tools. This process is often accompanied by a lack of understanding of the legal aspects related to software and model use, that is, the copyright protection of new medicinal chemistry software and software-mediated discovered products. In the center of picture, which lies in the frontiers of legal, chemistry, and biosciences, we found computational modeling-based drug discovery patents. This article aims to review prominent cases of patents of bio-active organic compounds that involved/protect also computational techniques. We put special emphasis on patents based on Quantitative Structure-Activity Relationships (QSAR) models but we include other techniques too. An overview of relevant international issues on drug patenting is also presented.

  16. The Proteomics Big Challenge for Biomarkers and New Drug-Targets Discovery

    Science.gov (United States)

    Savino, Rocco; Paduano, Sergio; Preianò, Mariaimmacolata; Terracciano, Rosa

    2012-01-01

    In the modern process of drug discovery, clinical, functional and chemical proteomics can converge and integrate synergies. Functional proteomics explores and elucidates the components of pathways and their interactions which, when deregulated, lead to a disease condition. This knowledge allows the design of strategies to target multiple pathways with combinations of pathway-specific drugs, which might increase chances of success and reduce the occurrence of drug resistance. Chemical proteomics, by analyzing the drug interactome, strongly contributes to accelerate the process of new druggable targets discovery. In the research area of clinical proteomics, proteome and peptidome mass spectrometry-profiling of human bodily fluid (plasma, serum, urine and so on), as well as of tissue and of cells, represents a promising tool for novel biomarker and eventually new druggable targets discovery. In the present review we provide a survey of current strategies of functional, chemical and clinical proteomics. Major issues will be presented for proteomic technologies used for the discovery of biomarkers for early disease diagnosis and identification of new drug targets. PMID:23203042

  17. ROR nuclear receptors: structures, related diseases, and drug discovery.

    Science.gov (United States)

    Zhang, Yan; Luo, Xiao-yu; Wu, Dong-hai; Xu, Yong

    2015-01-01

    Nuclear receptors (NRs) are ligand-regulated transcription factors that regulate metabolism, development and immunity. The NR superfamily is one of the major classes of drug targets for human diseases. Retinoic acid receptor-related orphan receptor (ROR) α, β and γ belong to the NR superfamily, and these receptors are still considered as 'orphan' receptors because the identification of their endogenous ligands has been controversial. Recent studies have demonstrated that these receptors are regulated by synthetic ligands, thus emerge as important drug targets for the treatment of multiple sclerosis, rheumatoid arthritis, psoriasis, etc. Studying the structural basis and ligand development of RORs will pave the way for a better understanding of the roles of these receptors in human diseases. Here, we review the structural basis, disease relevance, strategies for ligand identification, and current status of development of therapeutic ligands for RORs.

  18. Beyond Membrane Protein Structure: Drug Discovery, Dynamics and Difficulties.

    Science.gov (United States)

    Biggin, Philip C; Aldeghi, Matteo; Bodkin, Michael J; Heifetz, Alexander

    2016-01-01

    Most of the previous content of this book has focused on obtaining the structures of membrane proteins. In this chapter we explore how those structures can be further used in two key ways. The first is their use in structure based drug design (SBDD) and the second is how they can be used to extend our understanding of their functional activity via the use of molecular dynamics. Both aspects now heavily rely on computations. This area is vast, and alas, too large to consider in depth in a single book chapter. Thus where appropriate we have referred the reader to recent reviews for deeper assessment of the field. We discuss progress via the use of examples from two main drug target areas; G-protein coupled receptors (GPCRs) and ion channels. We end with a discussion of some of the main challenges in the area.

  19. Hydrophobicity – Shake Flasks, Protein Folding and Drug Discovery

    Science.gov (United States)

    Sarkar, Aurijit; Kellogg, Glen E.

    2009-01-01

    Hydrophobic interactions are some of the most important interactions in nature. They are the primary driving force in a number of phenomena. This is mostly an entropic effect and can account for a number of biophysical events such as protein-protein or protein-ligand binding that are of immense importance in drug design. The earliest studies on this phenomenon can be dated back to the end of the 19th century when Meyer and Overton independently correlated the hydrophobic nature of gases to their anesthetic potency. Since then, significant progress has been made in this realm of science. This review briefly traces the history of hydrophobicity research along with the theoretical estimation of partition coefficients. Finally, the application of hydrophobicity estimation methods in the field of drug design and protein folding is discussed. PMID:19929828

  20. A Historical Overview of Natural Products in Drug Discovery

    OpenAIRE

    Dias, Daniel A.; Sylvia Urban; Ute Roessner

    2012-01-01

    Historically, natural products have been used since ancient times and in folklore for the treatment of many diseases and illnesses. Classical natural product chemistry methodologies enabled a vast array of bioactive secondary metabolites from terrestrial and marine sources to be discovered. Many of these natural products have gone on to become current drug candidates. This brief review aims to highlight historically significant bioactive marine and terrestrial natural products, their use in f...

  1. GLIDA: GPCR-ligand database for chemical genomic drug discovery

    OpenAIRE

    Okuno, Yasushi; Yang, Jiyoon; Taneishi, Kei; Yabuuchi, Hiroaki; Tsujimoto, Gozoh

    2005-01-01

    G-protein coupled receptors (GPCRs) represent one of the most important families of drug targets in pharmaceutical development. GPCR-LIgand DAtabase (GLIDA) is a novel public GPCR-related chemical genomic database that is primarily focused on the correlation of information between GPCRs and their ligands. It provides correlation data between GPCRs and their ligands, along with chemical information on the ligands, as well as access information to the various web databases regarding GPCRs. Thes...

  2. Novel strategies for anti-aging drug discovery.

    Science.gov (United States)

    Saraswat, Komal; Rizvi, Syed Ibrahim

    2017-09-01

    Scientific achievements in the last few decades, leading to effective therapeutic interventions, have dramatically improved human life expectancy. Consequently, aging has become a significant problem and represents the major risk factor for most human pathologies including diabetes, cardiovascular diseases, neurological disorders, and cancer. Scientific discoveries over the past two decades have been instrumental in dissecting molecular mechanism(s) which play important roles in determining longevity. The same understanding has also led to the acknowledgement of the plurality of 'causes' which act either alone or in combination to create the condition which can be defined as 'aging'. Areas covered: Over the years, several concepts have been put forward for the development of a viable anti-aging regimen. In this review, the authors extensively review anti aging interventions based on caloric restriction, activation of telomerase, autophagy inducers, senolytic therapeutics, plasma membrane redox system (PMRS) activators, epigenetic modulators, and stem cell therapies. Expert opinion: Based upon our current understanding, one of the most promising approaches for a successful anti-aging strategy includes the activation of adenosine monophosphate dependent protein kinase (AMPK). Another strategy may involve activation of PMRS. Future research efforts are likely to focus on nutrient and energy sensing molecular pathways which include mTOR, IGF-1, AMPK and the sirtuins.

  3. Rapid diagnosis of tuberculosis. Detection of drug resistance mechanisms.

    Science.gov (United States)

    Viñuelas-Bayón, Jesús; Vitoria, María Asunción; Samper, Sofía

    2017-10-01

    Tuberculosis is still a serious public health problem, with 10.8 million new cases and 1.8 million deaths worldwide in 2015. The diversity among members of the Mycobacterium tuberculosis complex, the causal agent of tuberculosis, is conducive to the design of different methods for rapid diagnosis. Mutations in the genes involved in resistance mechanisms enable the bacteria to elude the treatment. We have reviewed the methods for the rapid diagnosis of M. tuberculosis complex and the detection of susceptibility to drugs, both of which are necessary to prevent the onset of new resistance and to establish early, appropriate treatment. Copyright © 2017 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  4. How might we increase success in marine-based drug discovery?

    Science.gov (United States)

    Desbois, Andrew P

    2014-09-01

    Drug discovery from marine organisms has been underway for > 60 years and there have been notable successes in discovering, developing and introducing clinical agents derived from marine sources. Such examples include: the analgesic ziconotide and the anti cancer compound trabectedin. However, in light of the pressing need for new drugs, particularly those with anti-infective and anticancer properties, there is strong justification for increased exploration of marine organisms as sources of novel compounds. This article considers approaches that might enhance our chances of delivering new medicines from marine-based drug discovery efforts. Consideration is given to the organisms and habitats deserving of more attention and how we might make best use of these marine genetic resources. In particular, the opportunities offered by synthetic biology are highlighted because these methods allow drug discoverers to explore pathways in 'non-culturable' species and turn on natural product biosynthesis genes that are difficult to activate under laboratory conditions (so-called 'silent' gene clusters).

  5. Supporting malaria elimination with 21st century antimalarial agent drug discovery.

    Science.gov (United States)

    Diagana, Thierry T

    2015-10-01

    The burden of malaria has been considerably reduced over recent years. However, to achieve disease elimination, drug discovery for the next generation needs to focus on blocking disease transmission and on targeting the liver-stage forms of the parasite. Properties of the 'ideal' new antimalarial drug and the key scientific and technological advances that have led to recent progress in antimalarial drug discovery are reviewed. Using these advances, Novartis has built a robust pipeline of next-generation antimalarials. The preclinical and clinical development of two candidate drugs: KAE609 and KAF156, provide a framework for the path to breakthrough treatments that could be taking us a step closer to the vision of malaria elimination. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  6. Binding thermodynamics discriminates fragments from druglike compounds: a thermodynamic description of fragment-based drug discovery.

    Science.gov (United States)

    Williams, Glyn; Ferenczy, György G; Ulander, Johan; Keserű, György M

    2017-04-01

    Small is beautiful - reducing the size and complexity of chemical starting points for drug design allows better sampling of chemical space, reveals the most energetically important interactions within protein-binding sites and can lead to improvements in the physicochemical properties of the final drug. The impact of fragment-based drug discovery (FBDD) on recent drug discovery projects and our improved knowledge of the structural and thermodynamic details of ligand binding has prompted us to explore the relationships between ligand-binding thermodynamics and FBDD. Information on binding thermodynamics can give insights into the contributions to protein-ligand interactions and could therefore be used to prioritise compounds with a high degree of specificity in forming key interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. An evolutionary perspective on drug discovery in the plant genus Euphorbia L. (Euphorbiaceae)

    DEFF Research Database (Denmark)

    Ernst, Madeleine

    Plants have been widely used in many traditional medical systems around the world and are still thesource of many modern drugs. However, the rate at which new plant-derived drugs are discoveredis slow and recent estimates of biodiversity loss, as well as the need for tackling global...... herbivory and physical stresses or to attract pollinators. Consequently, specializedmetabolites, as well as plants used in traditional medicine, are not randomly distributed across phylogenetictrees. Evolutionary approaches to plant-based drug discovery suggest that this informationcan be used to guide......-based drug discovery. Phylogenetic patterns in speciesused in traditional medicine were investigated, and it was found that species used medicinally are notrandomly distributed across the phylogenetic tree. Subsequently, Euphorbia chemical diversity andbioactivity were investigated using mass spectral...

  8. Rapid, serial, non-invasive assessment of drug efficacy in mice with autoluminescent Mycobacterium ulcerans infection.

    Directory of Open Access Journals (Sweden)

    Tianyu Zhang

    Full Text Available Buruli ulcer (BU caused by Mycobacterium ulcerans is the world's third most common mycobacterial infection. There is no vaccine against BU and surgery is needed for patients with large ulcers. Although recent experience indicates combination chemotherapy with streptomycin and rifampin improves cure rates, the utility of this regimen is limited by the 2-month duration of therapy, potential toxicity and required parenteral administration of streptomycin, and drug-drug interactions caused by rifampin. Discovery and development of drugs for BU is greatly hampered by the slow growth rate of M. ulcerans, requiring up to 3 months of incubation on solid media to produce colonies. Surrogate markers for evaluating antimicrobial activity in real-time which can be measured serially and non-invasively in infected footpads of live mice would accelerate pre-clinical evaluation of new drugs to treat BU. Previously, we developed bioluminescent M. ulcerans strains, demonstrating proof of concept for measuring luminescence as a surrogate marker for viable M. ulcerans in vitro and in vivo. However, the requirement of exogenous substrate limited the utility of such strains, especially for in vivo experiments.For this study, we engineered M. ulcerans strains that express the entire luxCDABE operon and therefore are autoluminescent due to endogenous substrate production. The selected reporter strain displayed a growth rate and virulence similar to the wild-type parent strain and enabled rapid, real-time monitoring of in vitro and in vivo drug activity, including serial, non-invasive assessments in live mice, producing results which correlated closely with colony-forming unit (CFU counts for a panel of drugs with various mechanisms of action.Our results indicate that autoluminescent reporter strains of M. ulcerans are exceptional tools for pre-clinical evaluation of new drugs to treat BU due to their potential to drastically reduce the time, effort, animals, compound

  9. Rapid interferometric imaging of printed drug laden multilayer structures

    DEFF Research Database (Denmark)

    Sandler, Niklas; Kassamakov, Ivan; Ehlers, Henrik

    2014-01-01

    /and active pharmaceutical ingredients (API) adhere to each other. This is crucial in order to have predetermined drug release profiles. We also demonstrate non-invasive measurement of a polymer structure in a microfluidic channel. It shown that traceable interferometric 3D microscopy is a viable technique......The developments in printing technologies allow fabrication of micron-size nano-layered delivery systems to personal specifications. In this study we fabricated layered polymer structures for drug-delivery into a microfluidic channel and aimed to interferometrically assure their topography...... and adherence to each other. We present a scanning white light interferometer (SWLI) method for quantitative assurance of the topography of the embedded structure. We determined rapidly in non-destructive manner the thickness and roughness of the structures and whether the printed layers containing polymers or...

  10. Rapidly dissolving polymeric microneedles for minimally invasive intraocular drug delivery.

    Science.gov (United States)

    Thakur, Raghu Raj Singh; Tekko, Ismaiel A; Al-Shammari, Farhan; Ali, Ahlam A; McCarthy, Helen; Donnelly, Ryan F

    2016-12-01

    In this study, dissolving microneedles (MNs) were used to enhance ocular drug delivery of macromolecules. MNs were fabricated using polyvinylpyrrolidone (PVP) polymer of various molecular weights (MWs) containing three model molecules of increasing MW, namely fluorescein sodium and fluorescein isothiocyanate-dextrans (with MW of 70 k and 150 k Da). Arrays (3 × 3) of PVP MNs with conical shape measuring about 800 μm in height with a 300 μm base diameter, containing the model drugs, were fabricated and characterized for their fracture forces, insertion forces (in the sclera and cornea), depth of penetration (using OCT and confocal imaging), dissolution time and in vitro permeation. The average drug content of the MNs (only in MN shafts) ranged from 0.96 to 9.91 μg, and the average moisture content was below 11 %. High MW PVP produced MNs that can withstand higher forces with minimal reduction in needle height. PVP MNs showed rapid dissolution that ranged from 10 to 180 s, which was dependent upon PVP's MW. In vitro studies showed significant enhancement of macromolecule permeation when MNs were used, across both the corneal and scleral tissues, in comparison to topically applied aqueous solutions. Confocal images showed that the macromolecules formed depots within the tissues, which led to sustained permeation. However, use of MNs did not significantly benefit the permeation of small molecules; nevertheless, MN application has the potential for drug retention within the selected ocular tissues unlike topical application for small molecules. The material used in the fabrication of the MNs was found to be biocompatible with retinal cells (i.e. ARPE-19). Overall, this study reported the design and fabrication of minimally invasive rapidly dissolving polymeric MN arrays which were able to deliver high MW molecules to the eye via the intrastromal or intrascleral route. Thus, dissolving MNs have potential applications in enhancing ocular delivery of both small

  11. The Oncopig Cancer Model as a Complementary Tool for Phenotypic Drug Discovery

    Directory of Open Access Journals (Sweden)

    Natalia V. Segatto

    2017-12-01

    Full Text Available The screening of potential therapeutic compounds using phenotypic drug discovery (PDD is being embraced once again by researchers and pharmaceutical companies as an approach to enhance the development of new effective therapeutics. Before the genomics and molecular biology era and the consecutive emergence of targeted-drug discovery approaches, PDD was the most common platform used for drug discovery. PDD, also known as phenotypic screening, consists of screening potential compounds in either in vitro cellular or in vivo animal models to identify compounds resulting in a desirable phenotypic change. Using this approach, the biological targets of the compounds are not taken into consideration. Suitable animal models are crucial for the continued validation and discovery of new drugs, as compounds displaying promising results in phenotypic in vitro cell-based and in vivo small animal model screenings often fail in clinical trials. Indeed, this is mainly a result of differential anatomy, physiology, metabolism, immunology, and genetics between humans and currently used pre-clinical small animal models. In contrast, pigs are more predictive of therapeutic treatment outcomes in humans than rodents. In addition, pigs provide an ideal platform to study cancer due to their similarities with humans at the anatomical, physiological, metabolic, and genetic levels. Here we provide a mini-review on the reemergence of PDD in drug development, highlighting the potential of porcine cancer models for improving pre-clinical drug discovery and testing. We also present precision medicine based genetically defined swine cancer models developed to date and their potential as biomedical models.

  12. Interaction Studies of Secreted Aspartic Proteases (Saps) from Candida albicans : Application for Drug Discovery

    OpenAIRE

    Backman, Dan

    2005-01-01

    This thesis is focused on enzymatic studies of the secreted aspartic proteases (Saps) from Candida albicans as a tool for discovery of anti-candida drugs. C. albicans causes infections in a number of different locations, which differ widely in the protein substrates available and pH. Since C. albicans needs Saps during virulent growth, these enzymes are good targets for drug development. In order to investigate the catalytic characteristics of Saps and their inhibitor affinities, substrate-ba...

  13. A diverse portfolio of novel drug discovery efforts for Alzheimer's disease: Meeting report from the 11th International Conference on Alzheimer's Drug Discovery, 27-28 September 2010, Jersey City, NJ, USA.

    Science.gov (United States)

    Lee, Linda H; Shineman, Diana W; Fillit, Howard M

    2010-12-15

    While Alzheimer's disease researchers continue to debate the underlying cause(s) of the disease, most agree that a diverse, multi-target approach to treatment will be necessary. To this end, the Alzheimer's Drug Discovery Foundation (ADDF) recently hosted the 11th International Conference on Alzheimer's Drug Discovery to highlight the array of exciting efforts from the ADDF's funded investigators.

  14. Ascidians: An Emerging Marine Model for Drug Discovery and Screening.

    Science.gov (United States)

    Dumollard, Remi; Gazo, Ievgeniia; Gomes, Isa D L; Besnardeau, Lydia; McDougall, Alex

    2017-01-01

    Ascidians (tunicates; sea squirts) are marine animals which provide a source of diverse, bioactive natural products, and a model for toxicity screenings. Compounds isolated from ascidians comprise an approved anti-tumor drug and many others are potent drug leads. Furthermore, the use of invertebrate embryos for toxicological screening tests or analysis offers the possibility to image a large number of samples for high throughput screens. Ascidians are members of a sister clade to the vertebrates and make a vertebrate-like tadpole larva composed of less than 3000 cells in 18 hours. The neural complex of the ascidian larva is made of only 350 cells (of which 100 are neurons) and functional genomic studies have now uncovered numerous GRNs underpinning neural specification and differentiation. Numerous studies showed that brain formation in ascidians is sensitive to toxic insults especially from endocrine disruptors making them a suitable model to study neurodevelopmental defects. Modern techniques available for ascidians, including transgenic embryos where 3D time lapse imaging of GFPexpressing reporter constructs can be analyzed, now permit numerous end-points to be evaluated in order to test the specific mode of action of many compounds. This review summarizes the key evidence suggesting that ascidian embryos are a favorable embryological model to study neurodevelopmental toxicity of different compounds with molecular and cellular end-points. We predict that ascidians may become a significant source of marine blue biotechnologies in the 21st century. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Microfluidic-Based Multi-Organ Platforms for Drug Discovery

    Directory of Open Access Journals (Sweden)

    Ahmad Rezaei Kolahchi

    2016-09-01

    Full Text Available Development of predictive multi-organ models before implementing costly clinical trials is central for screening the toxicity, efficacy, and side effects of new therapeutic agents. Despite significant efforts that have been recently made to develop biomimetic in vitro tissue models, the clinical application of such platforms is still far from reality. Recent advances in physiologically-based pharmacokinetic and pharmacodynamic (PBPK-PD modeling, micro- and nanotechnology, and in silico modeling have enabled single- and multi-organ platforms for investigation of new chemical agents and tissue-tissue interactions. This review provides an overview of the principles of designing microfluidic-based organ-on-chip models for drug testing and highlights current state-of-the-art in developing predictive multi-organ models for studying the cross-talk of interconnected organs. We further discuss the challenges associated with establishing a predictive body-on-chip (BOC model such as the scaling, cell types, the common medium, and principles of the study design for characterizing the interaction of drugs with multiple targets.

  16. Targeting Energy Metabolism inMycobacterium tuberculosis, a New Paradigm in Antimycobacterial Drug Discovery.

    Science.gov (United States)

    Bald, Dirk; Villellas, Cristina; Lu, Ping; Koul, Anil

    2017-04-11

    Drug-resistant mycobacterial infections are a serious global health challenge, leading to high mortality and socioeconomic burdens in developing countries worldwide. New innovative approaches, from identification of new targets to discovery of novel chemical scaffolds, are urgently needed. Recently, energy metabolism in mycobacteria, in particular the oxidative phosphorylation pathway, has emerged as an object of intense microbiological investigation and as a novel target pathway in drug discovery. New classes of antibacterials interfering with elements of the oxidative phosphorylation pathway are highly active in combating dormant or latent mycobacterial infections, with a promise of shortening tuberculosis chemotherapy. The regulatory approval of the ATP synthase inhibitor bedaquiline and the discovery of Q203, a candidate drug targeting the cytochrome bc 1 complex, have highlighted the central importance of this new target pathway. In this review, we discuss key features and potential applications of inhibiting energy metabolism in our quest for discovering potent novel and sterilizing drug combinations for combating tuberculosis. We believe that the combination of drugs targeting elements of the oxidative phosphorylation pathway can lead to a completely new regimen for drug-susceptible and multidrug-resistant tuberculosis. Copyright © 2017 Bald et al.

  17. Reverse Pharmacognosy and Reverse Pharmacology; Two Closely Related Approaches for Drug Discovery Development.

    Science.gov (United States)

    Saeidnia, Soodabeh; Gohari, Ahmad R; Manayi, Azadeh

    Pharmacognosy is a science, which study natural products as a source of new drug leads and effective drug development. Rational and economic search for novel lead structures could maximize the speed of drug discovery by using powerful high technology methods. Reverse pharmacognosy, a complementary to pharmacognosy, couples the high throughput screening (HTS), virtual screening and databases along with the knowledge of traditional medicines. These strategies lead to identification of numerous in vitro active and selective hits enhancing the speed of drug discovery from natural sources. Besides, reverse pharmacology is a target base drug discovery approach; in the first step, a hypothesis is made that the alteration of specific protein activity will produce beneficial curative effects. Both, reverse pharmacognosy and reverse pharmacology take advantages of high technology methods to accomplish their particular purposes. Moreover, reverse pharmacognosy effectively utilize traditional medicines and natural products as promising sources to provide new drug leads as well as promote the rational use of them by using valuable information like protein structure databases and chemical libraries which prepare pharmacological profile of traditional medicine, plant extract or natural compounds.

  18. In silico tools used for compound selection during target-based drug discovery and development.

    Science.gov (United States)

    Caldwell, Gary W

    2015-01-01

    The target-based drug discovery process, including target selection, screening, hit-to-lead (H2L) and lead optimization stage gates, is the most common approach used in drug development. The full integration of in vitro and/or in vivo data with in silico tools across the entire process would be beneficial to R&D productivity by developing effective selection criteria and drug-design optimization strategies. This review focuses on understanding the impact and extent in the past 5 years of in silico tools on the various stage gates of the target-based drug discovery approach. There are a large number of in silico tools available for establishing selection criteria and drug-design optimization strategies in the target-based approach. However, the inconsistent use of in vitro and/or in vivo data integrated with predictive in silico multiparameter models throughout the process is contributing to R&D productivity issues. In particular, the lack of reliable in silico tools at the H2L stage gate is contributing to the suboptimal selection of viable lead compounds. It is suggested that further development of in silico multiparameter models and organizing biologists, medicinal and computational chemists into one team with a single accountable objective to expand the utilization of in silico tools in all phases of drug discovery would improve R&D productivity.

  19. COMPUTER-AIDED DRUG DISCOVERY AND DEVELOPMENT (CADDD): in silico-chemico-biological approach

    Science.gov (United States)

    Kapetanovic, I.M.

    2008-01-01

    It is generally recognized that drug discovery and development are very time and resources consuming processes. There is an ever growing effort to apply computational power to the combined chemical and biological space in order to streamline drug discovery, design, development and optimization. In biomedical arena, computer-aided or in silico design is being utilized to expedite and facilitate hit identification, hit-to-lead selection, optimize the absorption, distribution, metabolism, excretion and toxicity profile and avoid safety issues. Commonly used computational approaches include ligand-based drug design (pharmacophore, a 3-D spatial arrangement of chemical features essential for biological activity), structure-based drug design (drug-target docking), and quantitative structure-activity and quantitative structure-property relationships. Regulatory agencies as well as pharmaceutical industry are actively involved in development of computational tools that will improve effectiveness and efficiency of drug discovery and development process, decrease use of animals, and increase predictability. It is expected that the power of CADDD will grow as the technology continues to evolve. PMID:17229415

  20. Open drug discovery for the Zika virus [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Sean Ekins

    2016-02-01

    Full Text Available The Zika virus (ZIKV outbreak in the Americas has caused global concern that we may be on the brink of a healthcare crisis. The lack of research on ZIKV in the over 60 years that we have known about it has left us with little in the way of starting points for drug discovery. Our response can build on previous efforts with virus outbreaks and lean heavily on work done on other flaviviruses such as dengue virus. We provide some suggestions of what might be possible and propose an open drug discovery effort that mobilizes global science efforts and provides leadership, which thus far has been lacking. We also provide a listing of potential resources and molecules that could be prioritized for testing as in vitro assays for ZIKV are developed. We propose also that in order to incentivize drug discovery, a neglected disease priority review voucher should be available to those who successfully develop an FDA approved treatment. Learning from the response to the ZIKV, the approaches to drug discovery used and the success and failures will be critical for future infectious disease outbreaks.

  1. [From the discovery of antibiotics to emerging highly drug-resistant bacteria].

    Science.gov (United States)

    Meunier, Olivier

    2015-01-01

    The discovery of antibiotics has enabled serious infections to be treated. However, bacteria resistant to several families of antibiotics and the emergence of new highly drug-resistant bacteria constitute a public health issue in France and across the world. Actions to prevent their transmission are being put in place. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  2. Isotope chemistry; a useful tool in the drug discovery arsenal.

    Science.gov (United States)

    Elmore, Charles S; Bragg, Ryan A

    2015-01-15

    As Medicinal Chemists are responsible for the synthesis and optimization of compounds, they often provide intermediates for use by isotope chemistry. Nevertheless, there is generally an incomplete understanding of the critical factors involved in the labeling of compounds. The remit of an Isotope Chemistry group varies from company to company, but often includes the synthesis of compounds labeled with radioisotopes, especially H-3 and C-14 and occasionally I-125, and stable isotopes, especially H-2, C-13, and N-15. Often the remit will also include the synthesis of drug metabolites. The methods used to prepare radiolabeled compounds by Isotope Chemists have been reviewed relatively recently. However, the organization and utilization of Isotope Chemistry has not been discussed recently and will be reviewed herein. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Constellation pharmacology: a new paradigm for drug discovery.

    Science.gov (United States)

    Teichert, Russell W; Schmidt, Eric W; Olivera, Baldomero M

    2015-01-01

    Constellation pharmacology is a cell-based high-content phenotypic-screening platform that utilizes subtype-selective pharmacological agents to elucidate the cell-specific combinations (constellations) of key signaling proteins that define specific cell types. Heterogeneous populations of native cells, in which the different individual cell types have been identified and characterized, are the foundation for this screening platform. Constellation pharmacology is useful for screening small molecules or for deconvoluting complex mixtures of biologically active natural products. This platform has been used to purify natural products and discover their molecular mechanisms. In the ongoing development of constellation pharmacology, there is a positive feedback loop between the pharmacological characterization of cell types and screening for new drug candidates. As constellation pharmacology is used to discover compounds with novel targeting-selectivity profiles, those new compounds then further help to elucidate the constellations of specific cell types, thereby increasing the content of this high-content platform.

  4. Functional genomics and the discovery of new drug targets.

    Science.gov (United States)

    Civelli, O; Nothacker, H P

    1999-01-01

    Functional genomics can be defined as the search for the physiological role of a gene for which only its primary sequence is known. One example of a successful functional genomics adventure is the search for the natural ligands of orphan G protein-coupled receptors (GPCRs). GPCRs are proteins containing 7 hydrophobic domains that are the recognition sites of neurotransmitters and neuropeptides. Although many of these have been shown to interact with known natural ligands, several bind ligands that have not been thus far isolated. These are the so-called "orphan" GPCRs. As an example of functional genomics, an "orphan receptor strategy" has been developed to identify the natural ligands of orphan GPCRs. We describe that the application of this strategy has already led to the identification of 4 new neuropeptides and report on what has been learned about these neuropeptides. We finally discuss the importance of the application of the orphan receptor strategy to the development of novel drugs.

  5. New Approaches to Drug Discovery for Combating MRSA.

    Science.gov (United States)

    Tomoda, Hiroshi

    2016-01-01

    Methicillin-resistant Staphylococuss aureus (MRSA) is a major nosocomial pathogen that has developed resistance to many antibiotics. New anti-infective drugs to prevent and treat MRSA infection are required. Four assay systems were conducted to screen microbial cultures for new anti-infective compounds active against MRSA. Nosokomycins, new members of the phosphoglycolipid family, were discovered from a culture of Streptomyces cyslabdanicus K04-0144 in an MRSA-silkworm infection assay. The target molecule of nosokomycins was suggested to be the transglycosylase of penicillin binding protein (PBP) involved in MRSA peptidoglycan biosynthesis. Spirohexaline, with a hexacycline structure, was isolated from a fungal culture of Penicillium brasilianum FKI-3368 in an enzyme assay of undecaprenyl pyrophosphate (UPP) synthase, which is needed for the synthesis and transport of GlcNAc-MurNAc-pentapeptides from the cytoplasmic membrane site to the external membrane site for peptidoglycan synthesis. Spirohexaline inhibited MRSA growth by the blockade of UPP synthase activity. Cyslabdan, with a cysteine-carrying labdan skeleton, was also discovered from the nosokomycin-producing actinomycete as a potentiator of imipenem activity against MRSA. The molecular target of cyslabdan was identified as FemA, which is involved in the synthesis of a pentaglycine interpeptide bridge in MRSA peptidoglycan. Citridone A with a unique 6-6/5/5-ring system containing a rare phenyl-R-furopyridone skeleton, originally isolated as a potentiator of antifungal miconazole activity, was found to inhibit MRSA yellow pigment production. These new microbial products will serve as lead compounds for developing new anti-infective drugs for combating MRSA.

  6. HGF–Met Pathway in Regeneration and Drug Discovery

    Directory of Open Access Journals (Sweden)

    Kunio Matsumoto

    2014-10-01

    Full Text Available Hepatocyte growth factor (HGF is composed of an α-chain and a β-chain, and these chains contain four kringle domains and a serine protease-like structure, respectively. Activation of the HGF–Met pathway evokes dynamic biological responses that support morphogenesis (e.g., epithelial tubulogenesis, regeneration, and the survival of cells and tissues. Characterizations of conditional Met knockout mice have indicated that the HGF–Met pathway plays important roles in regeneration, protection, and homeostasis in various cells and tissues, which includes hepatocytes, renal tubular cells, and neurons. Preclinical studies designed to address the therapeutic significance of HGF have been performed on injury/disease models, including acute tissue injury, chronic fibrosis, and cardiovascular and neurodegenerative diseases. The promotion of cell growth, survival, migration, and morphogenesis that is associated with extracellular matrix proteolysis are the biological activities that underlie the therapeutic actions of HGF. Recombinant HGF protein and the expression vectors for HGF are biological drug candidates for the treatment of patients with diseases and injuries that are associated with impaired tissue function. The intravenous/systemic administration of recombinant HGF protein has been well tolerated in phase I/II clinical trials. The phase-I and phase-I/II clinical trials of the intrathecal administration of HGF protein for the treatment of patients with amyotrophic lateral sclerosis and spinal cord injury, respectively, are ongoing.

  7. Aligning physiology with psychology: Translational neuroscience in neuropsychiatric drug discovery.

    Science.gov (United States)

    McArthur, Robert A

    2017-05-01

    This review presents an overview of some of the pre-clinical and clinical issues that have contributed to the failures of potential novel neuropsychiatric drugs, which have prompted a re-examination of the role of animal models of neuropsychiatric disorders. Advances both in basic neuroscience and technology have driven the development of animal models of aspects of neuropsychiatric disorders. Genetics and environmental factors have been the primary contributors to the development of new animal models. Neuroimaging has contributed to the search for biomarkers by which neuropsychiatric disorders may be identified and differentiated, its progression monitored and that the effects of therapy assessed. Parallel to these theoretical and practical advancements have been the changes in the diagnosis and classification of neuropsychiatric disorders from DSM-4 to DSM-5, and emergence of the NIH initiatives such as MATRICS; CNTRICS and RDoC. These latter changes are shifting our concepts of neuropsychiatric disorders away from phenomenology to their biology and thus aligning physiology with psychology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Constellation Pharmacology: A new paradigm for drug discovery

    Science.gov (United States)

    Schmidt, Eric W.; Olivera, Baldomero M.

    2015-01-01

    Constellation Pharmacology is a cell-based high-content phenotypic-screening platform that utilizes subtype-selective pharmacological agents to elucidate the cell-specific combinations (“constellations”) of key signaling proteins that define specific cell types. Heterogeneous populations of native cells, in which the different individual cell types have been identified and characterized, are the foundation for this screening platform. Constellation Pharmacology is useful for screening small molecules or for deconvoluting complex mixtures of biologically-active natural products. This platform has been used to purify natural products and discover their molecular mechanisms. In the on-going development of Constellation Pharmacology, there is a positive-feedback loop between the pharmacological characterization of cell types and screening for new drug candidates. As Constellation Pharmacology is used to discover compounds with novel targeting-selectivity profiles, those new compounds then further help to elucidate the constellations of specific cell types, thereby increasing the content of this high-content platform. PMID:25562646

  9. Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery.

    Science.gov (United States)

    Merk, Alan; Bartesaghi, Alberto; Banerjee, Soojay; Falconieri, Veronica; Rao, Prashant; Davis, Mindy I; Pragani, Rajan; Boxer, Matthew B; Earl, Lesley A; Milne, Jacqueline L S; Subramaniam, Sriram

    2016-06-16

    Recent advances in single-particle cryoelecton microscopy (cryo-EM) are enabling generation of numerous near-atomic resolution structures for well-ordered protein complexes with sizes ≥ ∼200 kDa. Whether cryo-EM methods are equally useful for high-resolution structural analysis of smaller, dynamic protein complexes such as those involved in cellular metabolism remains an important question. Here, we present 3.8 Å resolution cryo-EM structures of the cancer target isocitrate dehydrogenase (93 kDa) and identify the nature of conformational changes induced by binding of the allosteric small-molecule inhibitor ML309. We also report 2.8-Å- and 1.8-Å-resolution structures of lactate dehydrogenase (145 kDa) and glutamate dehydrogenase (334 kDa), respectively. With these results, two perceived barriers in single-particle cryo-EM are overcome: (1) crossing 2 Å resolution and (2) obtaining structures of proteins with sizes EM can be used to investigate a broad spectrum of drug-target interactions and dynamic conformational states. Published by Elsevier Inc.

  10. Neoclassic drug discovery: the case for lead generation using phenotypic and functional approaches.

    Science.gov (United States)

    Lee, Jonathan A; Berg, Ellen L

    2013-12-01

    Innovation and new molecular entity production by the pharmaceutical industry has been below expectations. Surprisingly, more first-in-class small-molecule drugs approved by the U.S. Food and Drug Administration (FDA) between 1999 and 2008 were identified by functional phenotypic lead generation strategies reminiscent of pre-genomics pharmacology than contemporary molecular targeted strategies that encompass the vast majority of lead generation efforts. This observation, in conjunction with the difficulty in validating molecular targets for drug discovery, has diminished the impact of the "genomics revolution" and has led to a growing grassroots movement and now broader trend in pharma to reconsider the use of modern physiology-based or phenotypic drug discovery (PDD) strategies. This "From the Guest Editors" column provides an introduction and overview of the two-part special issues of Journal of Biomolecular Screening on PDD. Terminology and the business case for use of PDD are defined. Key issues such as assay performance, chemical optimization, target identification, and challenges to the organization and implementation of PDD are discussed. Possible solutions for these challenges and a new neoclassic vision for PDD that combines phenotypic and functional approaches with technology innovations resulting from the genomics-driven era of target-based drug discovery (TDD) are also described. Finally, an overview of the manuscripts in this special edition is provided.

  11. Metabolomic approaches in the discovery of potential urinary biomarkers of drug-induced liver injury (DILI).

    Science.gov (United States)

    Araújo, Ana Margarida; Carvalho, Márcia; Carvalho, Félix; Bastos, Maria de Lourdes; Guedes de Pinho, Paula

    2017-09-01

    Drug-induced liver injury (DILI) is a major safety issue during drug development, as well as the most common cause for the withdrawal of drugs from the pharmaceutical market. The identification of DILI biomarkers is a labor-intensive area. Conventional biomarkers are not specific and often only appear at significant levels when liver damage is substantial. Therefore, new biomarkers for early identification of hepatotoxicity during the drug discovery process are needed, thus resulting in lower development costs and safer drugs. In this sense, metabolomics has been increasingly playing an important role in the discovery of biomarkers of liver damage, although the characterization of the mechanisms of toxicity induced by xenobiotics remains a huge challenge. These new-generation biomarkers will offer obvious benefits for the pharmaceutical industry, regulatory agencies, as well as a personalized clinical follow-up of patients, upon validation and translation into clinical practice or approval for routine use. This review describes the current status of the metabolomics applied to the early diagnosis and prognosis of DILI and in the discovery of new potential urinary biomarkers of liver injury.

  12. Protein crystallography and drug discovery: recollections of knowledge exchange between academia and industry

    Directory of Open Access Journals (Sweden)

    Tom L. Blundell

    2017-07-01

    Full Text Available The development of structure-guided drug discovery is a story of knowledge exchange where new ideas originate from all parts of the research ecosystem. Dorothy Crowfoot Hodgkin obtained insulin from Boots Pure Drug Company in the 1930s and insulin crystallization was optimized in the company Novo in the 1950s, allowing the structure to be determined at Oxford University. The structure of renin was developed in academia, on this occasion in London, in response to a need to develop antihypertensives in pharma. The idea of a dimeric aspartic protease came from an international academic team and was discovered in HIV; it eventually led to new HIV antivirals being developed in industry. Structure-guided fragment-based discovery was developed in large pharma and biotechs, but has been exploited in academia for the development of new inhibitors targeting protein–protein interactions and also antimicrobials to combat mycobacterial infections such as tuberculosis. These observations provide a strong argument against the so-called `linear model', where ideas flow only in one direction from academic institutions to industry. Structure-guided drug discovery is a story of applications of protein crystallography and knowledge exhange between academia and industry that has led to new drug approvals for cancer and other common medical conditions by the Food and Drug Administration in the USA, as well as hope for the treatment of rare genetic diseases and infectious diseases that are a particular challenge in the developing world.

  13. High performance enzyme kinetics of turnover, activation and inhibition for translational drug discovery.

    Science.gov (United States)

    Zhang, Rumin; Wong, Kenny

    2017-01-01

    Enzymes are the macromolecular catalysts of many living processes and represent a sizable proportion of all druggable biological targets. Enzymology has been practiced just over a century during which much progress has been made in both the identification of new enzymes and the development of novel methodologies for enzyme kinetics. Areas covered: This review aims to address several key practical aspects in enzyme kinetics in reference to translational drug discovery research. The authors first define what constitutes a high performance enzyme kinetic assay. The authors then review the best practices for turnover, activation and inhibition kinetics to derive critical parameters guiding drug discovery. Notably, the authors recommend global progress curve analysis of dose/time dependence employing an integrated Michaelis-Menten equation and global curve fitting of dose/dose dependence. Expert opinion: The authors believe that in vivo enzyme and substrate abundance and their dynamics, binding modality, drug binding kinetics and enzyme's position in metabolic networks should be assessed to gauge the translational impact on drug efficacy and safety. Integrating these factors in a systems biology and systems pharmacology model should facilitate translational drug discovery.

  14. Structure-Based Drug Discovery for Prion Disease Using a Novel Binding Simulation

    Directory of Open Access Journals (Sweden)

    Daisuke Ishibashi

    2016-07-01

    Full Text Available The accumulation of abnormal prion protein (PrPSc converted from the normal cellular isoform of PrP (PrPC is assumed to induce pathogenesis in prion diseases. Therefore, drug discovery studies for these diseases have focused on the protein conversion process. We used a structure-based drug discovery algorithm (termed Nagasaki University Docking Engine: NUDE that ran on an intensive supercomputer with a graphic-processing unit to identify several compounds with anti-prion effects. Among the candidates showing a high-binding score, the compounds exhibited direct interaction with recombinant PrP in vitro, and drastically reduced PrPSc and protein-aggresomes in the prion-infected cells. The fragment molecular orbital calculation showed that the van der Waals interaction played a key role in PrPC binding as the intermolecular interaction mode. Furthermore, PrPSc accumulation and microgliosis were significantly reduced in the brains of treated mice, suggesting that the drug candidates provided protection from prion disease, although further in vivo tests are needed to confirm these findings. This NUDE-based structure-based drug discovery for normal protein structures is likely useful for the development of drugs to treat other conformational disorders, such as Alzheimer's disease.

  15. Protein crystallography and drug discovery: recollections of knowledge exchange between academia and industry.

    Science.gov (United States)

    Blundell, Tom L

    2017-07-01

    The development of structure-guided drug discovery is a story of knowledge exchange where new ideas originate from all parts of the research ecosystem. Dorothy Crowfoot Hodgkin obtained insulin from Boots Pure Drug Company in the 1930s and insulin crystallization was optimized in the company Novo in the 1950s, allowing the structure to be determined at Oxford University. The structure of renin was developed in academia, on this occasion in London, in response to a need to develop antihypertensives in pharma. The idea of a dimeric aspartic protease came from an international academic team and was discovered in HIV; it eventually led to new HIV antivirals being developed in industry. Structure-guided fragment-based discovery was developed in large pharma and biotechs, but has been exploited in academia for the development of new inhibitors targeting protein-protein interactions and also antimicrobials to combat mycobacterial infections such as tuberculosis. These observations provide a strong argument against the so-called 'linear model', where ideas flow only in one direction from academic institutions to industry. Structure-guided drug discovery is a story of applications of protein crystallography and knowledge exhange between academia and industry that has led to new drug approvals for cancer and other common medical conditions by the Food and Drug Administration in the USA, as well as hope for the treatment of rare genetic diseases and infectious diseases that are a particular challenge in the developing world.

  16. Virtualizing the p-ANAPL library: a step towards drug discovery from African medicinal plants.

    Directory of Open Access Journals (Sweden)

    Fidele Ntie-Kang

    Full Text Available BACKGROUND: Natural products play a key role in drug discovery programs, both serving as drugs and as templates for the synthesis of drugs, even though the quantities and availabilities of samples for screening are often limitted. EXPERIMENTAL APPROACH: A current collection of physical samples of > 500 compound derived from African medicinal plants aimed at screening for drug discovery has been made by donations from several researchers from across the continent to be directly available for drug discovery programs. A virtual library of 3D structures of compounds has been generated and Lipinski's "Rule of Five" has been used to evaluate likely oral availability of the samples. RESULTS: A majority of the compound samples are made of flavonoids and about two thirds (2/3 are compliant to the "Rule of Five". The pharmacological profiles of thirty six (36 selected compounds in the collection have been discussed. CONCLUSIONS AND IMPLICATIONS: The p-ANAPL library is the largest physical collection of natural products derived from African medicinal plants directly available for screening purposes. The virtual library is also available and could be employed in virtual screening campaigns.

  17. SWEETLEAD: an in silico database of approved drugs, regulated chemicals, and herbal isolates for computer-aided drug discovery.

    Directory of Open Access Journals (Sweden)

    Paul A Novick

    Full Text Available In the face of drastically rising drug discovery costs, strategies promising to reduce development timelines and expenditures are being pursued. Computer-aided virtual screening and repurposing approved drugs are two such strategies that have shown recent success. Herein, we report the creation of a highly-curated in silico database of chemical structures representing approved drugs, chemical isolates from traditional medicinal herbs, and regulated chemicals, termed the SWEETLEAD database. The motivation for SWEETLEAD stems from the observance of conflicting information in publicly available chemical databases and the lack of a highly curated database of chemical structures for the globally approved drugs. A consensus building scheme surveying information from several publicly accessible databases was employed to identify the correct structure for each chemical. Resulting structures are filtered for the active pharmaceutical ingredient, standardized, and differing formulations of the same drug were combined in the final database. The publically available release of SWEETLEAD (https://simtk.org/home/sweetlead provides an important tool to enable the successful completion of computer-aided repurposing and drug discovery campaigns.

  18. Drug discovery management, small is still beautiful: Why a number of companies get it wrong.

    Science.gov (United States)

    Knutsen, Lars J S

    2011-06-01

    This review provides an account of why more companies involved in drug discovery fail than succeed at releasing the creative energy of gifted scientists, whose invention of new drugs they rely upon to remain at the forefront of the biopharma industry. Initiatives aimed at improving output of new chemical entities often have the opposite effect from that intended and scientists become demotivated. Those with drive, vision and enthusiasm may move to smaller companies to rediscover the spirit of discovery. Some executives fail to understand the psyche of researchers; an applied understanding of the intrinsic motivation of scientists would improve research performance. Entities that focus on smaller autonomous units and sound ethical values will discover the most innovative and successful new drugs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. From flamingo dance to (desirable) drug discovery: a nature-inspired approach.

    Science.gov (United States)

    Sánchez-Rodríguez, Aminael; Pérez-Castillo, Yunierkis; Schürer, Stephan C; Nicolotti, Orazio; Mangiatordi, Giuseppe Felice; Borges, Fernanda; Cordeiro, M Natalia D S; Tejera, Eduardo; Medina-Franco, José L; Cruz-Monteagudo, Maykel

    2017-10-01

    The therapeutic effects of drugs are well known to result from their interaction with multiple intracellular targets. Accordingly, the pharma industry is currently moving from a reductionist approach based on a 'one-target fixation' to a holistic multitarget approach. However, many drug discovery practices are still procedural abstractions resulting from the attempt to understand and address the action of biologically active compounds while preventing adverse effects. Here, we discuss how drug discovery can benefit from the principles of evolutionary biology and report two real-life case studies. We do so by focusing on the desirability principle, and its many features and applications, such as machine learning-based multicriteria virtual screening. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. OpenZika: An IBM World Community Grid Project to Accelerate Zika Virus Drug Discovery.

    Directory of Open Access Journals (Sweden)

    Sean Ekins

    2016-10-01

    Full Text Available The Zika virus outbreak in the Americas has caused global concern. To help accelerate this fight against Zika, we launched the OpenZika project. OpenZika is an IBM World Community Grid Project that uses distributed computing on millions of computers and Android devices to run docking experiments, in order to dock tens of millions of drug-like compounds against crystal structures and homology models of Zika proteins (and other related flavivirus targets. This will enable the identification of new candidates that can then be tested in vitro, to advance the discovery and development of new antiviral drugs against the Zika virus. The docking data is being made openly accessible so that all members of the global research community can use it to further advance drug discovery studies against Zika and other related flaviviruses.

  1. Medicinal chemistry in drug discovery in big pharma: past, present and future.

    Science.gov (United States)

    Campbell, Ian B; Macdonald, Simon J F; Procopiou, Panayiotis A

    2018-02-01

    The changes in synthetic and medicinal chemistry and related drug discovery science as practiced in big pharma over the past few decades are described. These have been predominantly driven by wider changes in society namely the computer, internet and globalisation. Thoughts about the future of medicinal chemistry are also discussed including sharing the risks and costs of drug discovery and the future of outsourcing. The continuing impact of access to substantial computing power and big data, the use of algorithms in data analysis and drug design are also presented. The next generation of medicinal chemists will communicate in ways that reflect social media and the results of constantly being connected to each other and data. Copyright © 2017. Published by Elsevier Ltd.

  2. OpenZika: An IBM World Community Grid Project to Accelerate Zika Virus Drug Discovery.

    Science.gov (United States)

    Ekins, Sean; Perryman, Alexander L; Horta Andrade, Carolina

    2016-10-01

    The Zika virus outbreak in the Americas has caused global concern. To help accelerate this fight against Zika, we launched the OpenZika project. OpenZika is an IBM World Community Grid Project that uses distributed computing on millions of computers and Android devices to run docking experiments, in order to dock tens of millions of drug-like compounds against crystal structures and homology models of Zika proteins (and other related flavivirus targets). This will enable the identification of new candidates that can then be tested in vitro, to advance the discovery and development of new antiviral drugs against the Zika virus. The docking data is being made openly accessible so that all members of the global research community can use it to further advance drug discovery studies against Zika and other related flaviviruses.

  3. ChEMBL web services: streamlining access to drug discovery data and utilities

    Science.gov (United States)

    Davies, Mark; Nowotka, Michał; Papadatos, George; Dedman, Nathan; Gaulton, Anna; Atkinson, Francis; Bellis, Louisa; Overington, John P.

    2015-01-01

    ChEMBL is now a well-established resource in the fields of drug discovery and medicinal chemistry research. The ChEMBL database curates and stores standardized bioactivity, molecule, target and drug data extracted from multiple sources, including the primary medicinal chemistry literature. Programmatic access to ChEMBL data has been improved by a recent update to the ChEMBL web services (version 2.0.x, https://www.ebi.ac.uk/chembl/api/data/docs), which exposes significantly more data from the underlying database and introduces new functionality. To complement the data-focused services, a utility service (version 1.0.x, https://www.ebi.ac.uk/chembl/api/utils/docs), which provides RESTful access to commonly used cheminformatics methods, has also been concurrently developed. The ChEMBL web services can be used together or independently to build applications and data processing workflows relevant to drug discovery and chemical biology. PMID:25883136

  4. Identification of novel transplantable GPCR recycling motif for drug discovery.

    Science.gov (United States)

    Nooh, Mohammed M; Mancarella, Salvatore; Bahouth, Suleiman W

    2016-11-15

    β1-Adrenergic receptor (β1-AR) agonists and antagonists are widely used in the treatment of major cardiovascular diseases such as heart failure and hypertension. The β1-AR like other G protein-coupled receptors (GPCRs) are endocytosed in response to intense agonist activation. Recycling of the agonist-internalized β1-AR is dependent on its carboxy-terminal type-1 PSD-95/DLG/ZO1 (PDZ) and on phospho-serine(312) in the third intracellular loop of the β1-AR. Progressive elongation of the β1-AR at its C-tail inactivated the PDZ-biding domain and inhibited the recycling of the β1-AR. However, fusing a twenty amino acid peptide derived from the multiple cloning region of the mammalian expression vector pCDNA3 to the C-tail of the β1-AR (β1-AR[+20]) produced a chimeric β1-AR that recycled rapidly and efficiently. The β1-AR[+20] recycled in a type-1 PDZ and phospho-Ser(312)-independent manner, indicating that this peptide provided a general GPCR recycling signal. Fusing the enhanced yellow fluorescent protein (EYFP) down-stream of β1-AR[+20] generated a β1-AR-EYFP chimera that was expressed on the membrane and recycled efficiently after agonist-induced internalization. This construct trafficked in a PDZ-SNX27/retromer-independent manner. We also fused EYFP to the N-terminus of the β1-AR to created EYFP-WT β1-AR. This construct recycled in PDZ and SNX27/retromer dependent manner. These β1-AR-EYFP constructs would be useful for high throughput screening (HTS) programs to identify new entities that would interfere with the recycling of agonist internalized GPCR that traffic in PDZ-dependent vs. PDZ-independent roadmaps. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Human Disease Models in Drosophila melanogaster and the Role of the Fly in Therapeutic Drug Discovery

    Science.gov (United States)

    Pandey, Udai Bhan

    2011-01-01

    The common fruit fly, Drosophila melanogaster, is a well studied and highly tractable genetic model organism for understanding molecular mechanisms of human diseases. Many basic biological, physiological, and neurological properties are conserved between mammals and D. melanogaster, and nearly 75% of human disease-causing genes are believed to have a functional homolog in the fly. In the discovery process for therapeutics, traditional approaches employ high-throughput screening for small molecules that is based primarily on in vitro cell culture, enzymatic assays, or receptor binding assays. The majority of positive hits identified through these types of in vitro screens, unfortunately, are found to be ineffective and/or toxic in subsequent validation experiments in whole-animal models. New tools and platforms are needed in the discovery arena to overcome these limitations. The incorporation of D. melanogaster into the therapeutic discovery process holds tremendous promise for an enhanced rate of discovery of higher quality leads. D. melanogaster models of human diseases provide several unique features such as powerful genetics, highly conserved disease pathways, and very low comparative costs. The fly can effectively be used for low- to high-throughput drug screens as well as in target discovery. Here, we review the basic biology of the fly and discuss models of human diseases and opportunities for therapeutic discovery for central nervous system disorders, inflammatory disorders, cardiovascular disease, cancer, and diabetes. We also provide information and resources for those interested in pursuing fly models of human disease, as well as those interested in using D. melanogaster in the drug discovery process. PMID:21415126

  6. The reproducibility issue and preclinical academic drug discovery: educational and institutional initiatives fostering translation success.

    Science.gov (United States)

    Janero, David R

    2016-09-01

    Drug discovery depends critically upon published results from the academy. The reproducibility of preclinical research findings reported by academia in the peer-reviewed literature has been called into question, seriously jeopardizing the value of academic science for inventing therapeutics. The corrosive effects of the reproducibility issue on drug discovery are considered. Purported correctives imposed upon academia from the outside deal mainly with expunging fraudulent literature and imposing punitive sanctions on the responsible authors. The salutary influence of such post facto actions on the reproducibility of discovery-relevant preclinical research data from academia appears limited. Rather, intentional doctoral-scientist education focused on data replicability and translationally-meaningful science and active participation of university entities charged with research innovation and asset commercialization toward ensuring data quality are advocated as key academic initiatives for addressing the reproducibility issue. A mindset shift on the part of both senior university faculty and the academy to take responsibility for the data reproducibility crisis and commit proactively to positive educational, incentivization, and risk- and reward-sharing practices will be fundamental for improving the value of published preclinical academic research to drug discovery.

  7. Bioprospecting microbial natural product libraries from the marine environment for drug discovery.

    Science.gov (United States)

    Liu, Xiangyang; Ashforth, Elizabeth; Ren, Biao; Song, Fuhang; Dai, Huanqin; Liu, Mei; Wang, Jian; Xie, Qiong; Zhang, Lixin

    2010-08-01

    Marine microorganisms are fascinating resources due to their production of novel natural products with antimicrobial activities. Increases in both the number of new chemical entities found and the substantiation of indigenous marine actinobacteria present a fundamental difficulty in the future discovery of novel antimicrobials, namely dereplication of those compounds already discovered. This review will share our experience on the taxonomic-based construction of a highly diversified and low redundant marine microbial natural product library for high-throughput antibiotic screening. We anticipate that libraries such as these can drive the drug discovery process now and in the future.

  8. Mouse Models for Drug Discovery. Can New Tools and Technology Improve Translational Power?

    Science.gov (United States)

    Zuberi, Aamir; Lutz, Cathleen

    2016-12-01

    The use of mouse models in biomedical research and preclinical drug evaluation is on the rise. The advent of new molecular genome-altering technologies such as CRISPR/Cas9 allows for genetic mutations to be introduced into the germ line of a mouse faster and less expensively than previous methods. In addition, the rapid progress in the development and use of somatic transgenesis using viral vectors, as well as manipulations of gene expression with siRNAs and antisense oligonucleotides, allow for even greater exploration into genomics and systems biology. These technological advances come at a time when cost reductions in genome sequencing have led to the identification of pathogenic mutations in patient populations, providing unprecedented opportunities in the use of mice to model human disease. The ease of genetic engineering in mice also offers a potential paradigm shift in resource sharing and the speed by which models are made available in the public domain. Predictively, the knowledge alone that a model can be quickly remade will provide relief to resources encumbered by licensing and Material Transfer Agreements. For decades, mouse strains have provided an exquisite experimental tool to study the pathophysiology of the disease and assess therapeutic options in a genetically defined system. However, a major limitation of the mouse has been the limited genetic diversity associated with common laboratory mice. This has been overcome with the recent development of the Collaborative Cross and Diversity Outbred mice. These strains provide new tools capable of replicating genetic diversity to that approaching the diversity found in human populations. The Collaborative Cross and Diversity Outbred strains thus provide a means to observe and characterize toxicity or efficacy of new therapeutic drugs for a given population. The combination of traditional and contemporary mouse genome editing tools, along with the addition of genetic diversity in new modeling systems

  9. New in silico and conventional in vitro approaches to advance HIV drug discovery and design.

    Science.gov (United States)

    Maga, Giovanni; Veljkovic, Nevena; Crespan, Emmanuele; Spadari, Silvio; Prljic, Jelena; Perovic, Vladimir; Glisic, Sanja; Veljkovic, Veljko

    2013-01-01

    Recently, the new concept of the long-range intermolecular interactions in biological systems has been proposed. Combined use of molecular modeling techniques and the screening techniques based on the long-range interaction concept could significantly improve and accelerate discovery of new HIV drugs. However, any hit identified in silico needs to be characterized with respect to its biological target by enzymatic studies. Combined use of the in silico screening and the enzymatic studies allows an efficient selection of new anti-HIV drugs. The focus of this article is on the in silico screening of molecular libraries for candidate new HIV drugs, which is based on the molecular descriptors determining the long-range interaction between the drugs and their therapeutic target. This article also reviews the techniques for enzyme kinetic studies which are required for optimization of in silico selected candidate anti-HIV drugs. The novel approach of combining in silico screening techniques with enzymatic studies enables the accurate measurement of the quantitative descriptors of ligand-enzyme interactions. This novel method is a powerful tool for new anti-HIV drug discovery which can also reduce the drug development costs.

  10. Computer-Aided Drug Design Applied to Marine Drug Discovery: Meridianins as Alzheimer’s Disease Therapeutic Agents

    Directory of Open Access Journals (Sweden)

    Laura Llorach-Pares

    2017-11-01

    Full Text Available Computer-aided drug discovery/design (CADD techniques allow the identification of natural products that are capable of modulating protein functions in pathogenesis-related pathways, constituting one of the most promising lines followed in drug discovery. In this paper, we computationally evaluated and reported the inhibitory activity found in meridianins A–G, a group of marine indole alkaloids isolated from the marine tunicate Aplidium, against various protein kinases involved in Alzheimer’s disease (AD, a neurodegenerative pathology characterized by the presence of neurofibrillary tangles (NFT. Balance splitting between tau kinase and phosphate activities caused tau hyperphosphorylation and, thereby, its aggregation and NTF formation. Inhibition of specific kinases involved in its phosphorylation pathway could be one of the key strategies to reverse tau hyperphosphorylation and would represent an approach to develop drugs to palliate AD symptoms. Meridianins bind to the adenosine triphosphate (ATP binding site of certain protein kinases, acting as ATP competitive inhibitors. These compounds show very promising scaffolds to design new drugs against AD, which could act over tau protein kinases Glycogen synthetase kinase-3 Beta (GSK3β and Casein kinase 1 delta (CK1δ, CK1D or KC1D, and dual specificity kinases as dual specificity tyrosine phosphorylation regulated kinase 1 (DYRK1A and cdc2-like kinases (CLK1. This work is aimed to highlight the role of CADD techniques in marine drug discovery and to provide precise information regarding the binding mode and strength of meridianins against several protein kinases that could help in the future development of anti-AD drugs.

  11. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines.

    Science.gov (United States)

    Ru, Jinlong; Li, Peng; Wang, Jinan; Zhou, Wei; Li, Bohui; Huang, Chao; Li, Pidong; Guo, Zihu; Tao, Weiyang; Yang, Yinfeng; Xu, Xue; Li, Yan; Wang, Yonghua; Yang, Ling

    2014-01-01

    Modern medicine often clashes with traditional medicine such as Chinese herbal medicine because of the little understanding of the underlying mechanisms of action of the herbs. In an effort to promote integration of both sides and to accelerate the drug discovery from herbal medicines, an efficient systems pharmacology platform that represents ideal information convergence of pharmacochemistry, ADME properties, drug-likeness, drug targets, associated diseases and interaction networks, are urgently needed. The traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) was built based on the framework of systems pharmacology for herbal medicines. It consists of all the 499 Chinese herbs registered in the Chinese pharmacopoeia with 29,384 ingredients, 3,311 targets and 837 associated diseases. Twelve important ADME-related properties like human oral bioavailability, half-life, drug-likeness, Caco-2 permeability, blood-brain barrier and Lipinski's rule of five are provided for drug screening and evaluation. TCMSP also provides drug targets and diseases of each active compound, which can automatically establish the compound-target and target-disease networks that let users view and analyze the drug action mechanisms. It is designed to fuel the development of herbal medicines and to promote integration of modern medicine and traditional medicine for drug discovery and development. The particular strengths of TCMSP are the composition of the large number of herbal entries, and the ability to identify drug-target networks and drug-disease networks, which will help revealing the mechanisms of action of Chinese herbs, uncovering the nature of TCM theory and developing new herb-oriented drugs. TCMSP is freely available at http://sm.nwsuaf.edu.cn/lsp/tcmsp.php.

  12. Computer-aided drug discovery [v1; ref status: indexed, http://f1000r.es/5ij

    Directory of Open Access Journals (Sweden)

    Jürgen Bajorath

    2015-08-01

    Full Text Available Computational approaches are an integral part of interdisciplinary drug discovery research. Understanding the science behind computational tools, their opportunities, and limitations is essential to make a true impact on drug discovery at different levels. If applied in a scientifically meaningful way, computational methods improve the ability to identify and evaluate potential drug molecules, but there remain weaknesses in the methods that preclude naïve applications. Herein, current trends in computer-aided drug discovery are reviewed, and selected computational areas are discussed. Approaches are highlighted that aid in the identification and optimization of new drug candidates. Emphasis is put on the presentation and discussion of computational concepts and methods, rather than case studies or application examples. As such, this contribution aims to provide an overview of the current methodological spectrum of computational drug discovery for a broad audience.

  13. Rapid countermeasure discovery against Francisella tularensis based on a metabolic network reconstruction.

    Directory of Open Access Journals (Sweden)

    Sidhartha Chaudhury

    Full Text Available In the future, we may be faced with the need to provide treatment for an emergent biological threat against which existing vaccines and drugs have limited efficacy or availability. To prepare for this eventuality, our objective was to use a metabolic network-based approach to rapidly identify potential drug targets and prospectively screen and validate novel small-molecule antimicrobials. Our target organism was the fully virulent Francisella tularensis subspecies tularensis Schu S4 strain, a highly infectious intracellular pathogen that is the causative agent of tularemia and is classified as a category A biological agent by the Centers for Disease Control and Prevention. We proceeded with a staggered computational and experimental workflow that used a strain-specific metabolic network model, homology modeling and X-ray crystallography of protein targets, and ligand- and structure-based drug design. Selected compounds were subsequently filtered based on physiological-based pharmacokinetic modeling, and we selected a final set of 40 compounds for experimental validation of antimicrobial activity. We began screening these compounds in whole bacterial cell-based assays in biosafety level 3 facilities in the 20th week of the study and completed the screens within 12 weeks. Six compounds showed significant growth inhibition of F. tularensis, and we determined their respective minimum inhibitory concentrations and mammalian cell cytotoxicities. The most promising compound had a low molecular weight, was non-toxic, and abolished bacterial growth at 13 µM, with putative activity against pantetheine-phosphate adenylyltransferase, an enzyme involved in the biosynthesis of coenzyme A, encoded by gene coaD. The novel antimicrobial compounds identified in this study serve as starting points for lead optimization, animal testing, and drug development against tularemia. Our integrated in silico/in vitro approach had an overall 15% success rate in terms of

  14. Neoadjuvant Trials in ER+ Breast Cancer: A Tool for Acceleration of Drug Development and Discovery.

    Science.gov (United States)

    Guerrero-Zotano, Angel L; Arteaga, Carlos L

    2017-06-01

    Neoadjuvant therapy trials offer an excellent strategy for drug development and discovery in breast cancer, particularly in triple-negative and HER2-overexpressing subtypes, where pathologic complete response is a good surrogate of long-term patient benefit. For estrogen receptor-positive (ER+) breast cancers, however, use of this strategy has been challenging because of the lack of validated surrogates of long-term efficacy and the overall good prognosis of the majority of patients with this cancer subtype. We review below the clinical benefits of neoadjuvant endocrine therapy for ER+/HER2-negative breast cancer, its use and limitations for drug development, prioritization of adjuvant and metastatic trials, and biomarker discovery.Significance: Neoadjuvant endocrine therapy is an excellent platform for the development of investigational drugs, triaging of novel combinations, biomarker validation, and discovery of mechanisms of drug resistance. This review summarizes the clinical and investigational benefits of this approach, with a focus on how to best integrate predictive biomarkers into novel clinical trial designs. Cancer Discov; 7(6); 561-74. ©2017 AACR. ©2017 American Association for Cancer Research.

  15. Identifying and Quantifying Heterogeneity in High Content Analysis: Application of Heterogeneity Indices to Drug Discovery

    Science.gov (United States)

    Gough, Albert H.; Chen, Ning; Shun, Tong Ying; Lezon, Timothy R.; Boltz, Robert C.; Reese, Celeste E.; Wagner, Jacob; Vernetti, Lawrence A.; Grandis, Jennifer R.; Lee, Adrian V.; Stern, Andrew M.; Schurdak, Mark E.; Taylor, D. Lansing

    2014-01-01

    One of the greatest challenges in biomedical research, drug discovery and diagnostics is understanding how seemingly identical cells can respond differently to perturbagens including drugs for disease treatment. Although heterogeneity has become an accepted characteristic of a population of cells, in drug discovery it is not routinely evaluated or reported. The standard practice for cell-based, high content assays has been to assume a normal distribution and to report a well-to-well average value with a standard deviation. To address this important issue we sought to define a method that could be readily implemented to identify, quantify and characterize heterogeneity in cellular and small organism assays to guide decisions during drug discovery and experimental cell/tissue profiling. Our study revealed that heterogeneity can be effectively identified and quantified with three indices that indicate diversity, non-normality and percent outliers. The indices were evaluated using the induction and inhibition of STAT3 activation in five cell lines where the systems response including sample preparation and instrument performance were well characterized and controlled. These heterogeneity indices provide a standardized method that can easily be integrated into small and large scale screening or profiling projects to guide interpretation of the biology, as well as the development of therapeutics and diagnostics. Understanding the heterogeneity in the response to perturbagens will become a critical factor in designing strategies for the development of therapeutics including targeted polypharmacology. PMID:25036749

  16. [Search for breast cancer-related biomarker proteins for drug discovery].

    Science.gov (United States)

    Nagano, Kazuya

    2010-12-01

    The identification of biomarkers is a promising approach for the diagnosis and effective therapy of cancer. In particular, disease proteomics is a potentially useful method for identifying such biomarkers. However, very few biomarker proteins for drug development have been discovered using this approach. The main difficulty is to efficiently select potential biomarkers from the many candidate proteins identified by the proteomics approach. To circumvent this problem, we have developed "antibody proteomics technology" that can screen for biomarker proteins by isolating antibodies against each candidate in a rapid and comprehensive manner. Here, we applied "antibody proteomics technology" to breast cancer-related biomarker discovery and evaluated the utility of this novel technology. Cell extracts derived from breast tumor cells (SKBR3) and normal cells (184A1) were analyzed by two-dimensional differential gel electrophoresis (2D-DIGE) to identify proteins over-expressed in the tumor cells. Candidate proteins were extracted from the gel pieces, immobilized onto a nitrocellulose membrane using a dot blot apparatus and then used as target antigens in scFv-phage enrichment and selection. Following this in vitro phage selection procedure, scFvs binding to 21 different over-expressed proteins in tumor cells were successfully isolated within several weeks. The expression profiles of the identified proteins were then determined by tissue microarray analysis using the scFv-phages. Consequently, we identified three breast tumor-specific proteins. Our data demonstrates the utility of an antibody proteomics system for discovering and validating tumor-related proteins in pharmaceutical proteomics. Currently, we are analyzing the functions of these proteins to use them as diagnostic markers or therapeutic targets.

  17. Drug-coated microneedles for rapid and painless local anesthesia.

    Science.gov (United States)

    Baek, Sung-Hyun; Shin, Ju-Hyung; Kim, Yeu-Chun

    2017-03-01

    This study showed that drug-coated PLLA (Poly (L-lactide)) microneedle arrays can induce rapid and painless local anesthesia. Microneedle arrays were fabricated using a micro-molding technique, and the needle tips were coated with 290.6 ± 45.9 μg of lidocaine, the most widely used local anesthetic worldwide. A dip-coating device was newly designed for the coating step using an optimized coating formulation. Lidocaine coated on the arrays was released rapidly into PBS within 2 min, and its stability in storage lasted 3 weeks at 4, 25, and 37°C. Furthermore, the microneedle arrays showed consistent in vitro skin penetration and delivered 200.8 ± 43.9, 224.2 ± 39.3, and 244.1 ± 19.6 μg of lidocaine into the skin 1, 2, and 5 min after application with a high delivery efficiency of 69, 77, and 84%. Compared to a commercially available topical anesthetic EMLA® cream, a 22.0, 13.6, and 14.0-fold higher amount of lidocaine was delivered into the skin. Note, in vitro skin permeation of Lidocaine was also notably enhanced by a 2-min-application of the lidocaine-coated microneedle arrays. Altogether, these results suggest that the biocompatible lidocaine-coated PLLA microneedle arrays could provide significantly rapid local anesthesia in a painless manner without any of the issues from topical applications or hypodermic injections of local anesthetics.

  18. Erythrocyte adenosine transport. A rapid screening test for cardiovascular drugs.

    Science.gov (United States)

    Yeung, P K; Mosher, S J; Li, R; Farmer, P S; Klassen, G A; Pollak, P T; McMullen, M; Ferrier, G

    1993-11-01

    An erythrocyte (RBC) model based on whole blood was used to investigate the effect of cardiovascular drugs on the uptake of adenosine in vitro. Fresh whole blood obtained from healthy volunteers was allowed to equilibrate with various concentrations (5-1000 microM) of a tested agent. (2-3H)-Adenosine was used as a substrate, and the reaction was terminated after 2 sec of incubation at room temperature by rapid addition of a "Stopping Solution" which was a mixture of erythro-9-(2-hydroxy-3-nonyl)adenine, dipyridamole, and EDTA. The mixture was centrifuged (1760 g, 4 degrees C, 10 min), and the radioactivity of an aliquot of the supernatant was determined by a scintillation counter. The results showed that dipyridamole was the most potent agent tested (IC50 = 0.2 microM). Amongst the calcium antagonists studied, isradipine was most potent, followed by verapamil, clentiazem, diltiazem, and then nifedipine. The racemates of two metabolites of diltiazem, MX and MB, were more potent than the parent drug. The antiarrhythmic agents, amiodarone and sotalol, the two new lipid peroxidation inhibitors, U-74389F and U-78517F, and the anxiolytic agent, alprazolam, were as active as verapamil. The beta-receptor antagonist propranolol and the angiotensin converting enzyme (ACE) inhibitor, enalapril, were practically inactive. In addition, the model was stereoselective such that the S(-)-enantiomer of verapamil was considerably more potent than the R(+)-antipote, whereas d(+)-sotalol was practically inactive compared to racemic sotalol.

  19. The significance of G protein-coupled receptor crystallography for drug discovery.

    Science.gov (United States)

    Salon, John A; Lodowski, David T; Palczewski, Krzysztof

    2011-12-01

    Crucial as molecular sensors for many vital physiological processes, seven-transmembrane domain G protein-coupled receptors (GPCRs) comprise the largest family of proteins targeted by drug discovery. Together with structures of the prototypical GPCR rhodopsin, solved structures of other liganded GPCRs promise to provide insights into the structural basis of the superfamily's biochemical functions and assist in the development of new therapeutic modalities and drugs. One of the greatest technical and theoretical challenges to elucidating and exploiting structure-function relationships in these systems is the emerging concept of GPCR conformational flexibility and its cause-effect relationship for receptor-receptor and receptor-effector interactions. Such conformational changes can be subtle and triggered by relatively small binding energy effects, leading to full or partial efficacy in the activation or inactivation of the receptor system at large. Pharmacological dogma generally dictates that these changes manifest themselves through kinetic modulation of the receptor's G protein partners. Atomic resolution information derived from increasingly available receptor structures provides an entrée to the understanding of these events and practically applying it to drug design. Supported by structure-activity relationship information arising from empirical screening, a unified structural model of GPCR activation/inactivation promises to both accelerate drug discovery in this field and improve our fundamental understanding of structure-based drug design in general. This review discusses fundamental problems that persist in drug design and GPCR structural determination.

  20. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery.

    Science.gov (United States)

    Patching, Simon G

    2014-01-01

    Surface plasmon resonance (SPR) spectroscopy is a rapidly developing technique for the study of ligand binding interactions with membrane proteins, which are the major molecular targets for validated drugs and for current and foreseeable drug discovery. SPR is label-free and capable of measuring real-time quantitative binding affinities and kinetics for membrane proteins interacting with ligand molecules using relatively small quantities of materials and has potential to be medium-throughput. The conventional SPR technique requires one binding component to be immobilised on a sensor chip whilst the other binding component in solution is flowed over the sensor surface; a binding interaction is detected using an optical method that measures small changes in refractive index at the sensor surface. This review first describes the basic SPR experiment and the challenges that have to be considered for performing SPR experiments that measure membrane protein-ligand binding interactions, most importantly having the membrane protein in a lipid or detergent environment that retains its native structure and activity. It then describes a wide-range of membrane protein systems for which ligand binding interactions have been characterised using SPR, including the major drug targets G protein-coupled receptors, and how challenges have been overcome for achieving this. Finally it describes some recent advances in SPR-based technology and future potential of the technique to screen ligand binding in the discovery of drugs. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Open Science Meets Stem Cells: A New Drug Discovery Approach for Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Chanshuai Han

    2018-02-01

    Full Text Available Neurodegenerative diseases are a challenge for drug discovery, as the biological mechanisms are complex and poorly understood, with a paucity of models that faithfully recapitulate these disorders. Recent advances in stem cell technology have provided a paradigm shift, providing researchers with tools to generate human induced pluripotent stem cells (iPSCs from patient cells. With the potential to generate any human cell type, we can now generate human neurons and develop “first-of-their-kind” disease-relevant assays for small molecule screening. Now that the tools are in place, it is imperative that we accelerate discoveries from the bench to the clinic. Using traditional closed-door research systems raises barriers to discovery, by restricting access to cells, data and other research findings. Thus, a new strategy is required, and the Montreal Neurological Institute (MNI and its partners are piloting an “Open Science” model. One signature initiative will be that the MNI biorepository will curate and disseminate patient samples in a more accessible manner through open transfer agreements. This feeds into the MNI open drug discovery platform, focused on developing industry-standard assays with iPSC-derived neurons. All cell lines, reagents and assay findings developed in this open fashion will be made available to academia and industry. By removing the obstacles many universities and companies face in distributing patient samples and assay results, our goal is to accelerate translational medical research and the development of new therapies for devastating neurodegenerative disorders.

  2. Upscaling and automation of electrophysiology: toward high throughput screening in ion channel drug discovery

    DEFF Research Database (Denmark)

    Asmild, Margit; Oswald, Nicholas; Krzywkowski, Karen M

    2003-01-01

    Effective screening of large compound libraries in ion channel drug discovery requires the development of new electrophysiological techniques with substantially increased throughputs compared to the conventional patch clamp technique. Sophion Bioscience is aiming to meet this challenge by develop......Effective screening of large compound libraries in ion channel drug discovery requires the development of new electrophysiological techniques with substantially increased throughputs compared to the conventional patch clamp technique. Sophion Bioscience is aiming to meet this challenge...... by developing two lines of automated patch clamp products, a traditional pipette-based system called Apatchi-1, and a silicon chip-based system QPatch. The degree of automation spans from semi-automation (Apatchi-1) where a trained technician interacts with the system in a limited way, to a complete automation...... (QPatch 96) where the system works continuously and unattended until screening of a full compound library is completed. The performance of the systems range from medium to high throughputs....

  3. Established and emerging trends in computational drug discovery in the structural genomics era.

    Science.gov (United States)

    Taboureau, Olivier; Baell, Jonathan B; Fernández-Recio, Juan; Villoutreix, Bruno O

    2012-01-27

    Bioinformatics and chemoinformatics approaches contribute to hit discovery, hit-to-lead optimization, safety profiling, and target identification and enhance our overall understanding of the health and disease states. A vast repertoire of computational methods has been reported and increasingly combined in order to address more and more challenging targets or complex molecular mechanisms in the context of large-scale integration of structure and bioactivity data produced by private and public drug research. This review explores some key computational methods directly linked to drug discovery and chemical biology with a special emphasis on compound collection preparation, virtual screening, protein docking, and systems pharmacology. A list of generally freely available software packages and online resources is provided, and examples of successful applications are briefly commented upon. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. High-throughput flow cytometry for drug discovery: principles, applications, and case studies.

    Science.gov (United States)

    Ding, Mei; Kaspersson, Karin; Murray, David; Bardelle, Catherine

    2017-09-12

    Flow cytometry is a technology providing multiparametric analysis of single cells or other suspension particles. High-throughput (HT) flow cytometry has become an attractive screening platform for drug discovery. In this review, we highlight the recent HT flow cytometry applications, and then focus on HT flow cytometry deployment at AstraZeneca (AZ). Practical considerations for successful HT flow cytometry assay development and screening are provided based on experience from four project case studies at AZ. We provide an overview of the scientific rationale, explain why HT flow cytometry was chosen and how HT flow cytometry assays deliver new ways to support the drug discovery process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Three-dimensional bioprinting and tissue fabrication: prospects for drug discovery and regenerative medicine

    OpenAIRE

    Dai, Guohao; Lee, Vivian

    2015-01-01

    Vivian K Lee,1,2 Guohao Dai1,2 1Department of Biomedical Engineering, 2Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA Abstract: Bioprinting technology has emerged as a powerful tool for building tissue and organ structures for drug discovery and regenerative medicine applications. In general, bioprinting uses a computer-controlled three-dimensional (3D) printing device to accurately deposit cells and biomaterials into precise ...

  6. Novel data-mining methodologies for adverse drug event discovery and analysis.

    Science.gov (United States)

    Harpaz, R; DuMouchel, W; Shah, N H; Madigan, D; Ryan, P; Friedman, C

    2012-06-01

    An important goal of the health system is to identify new adverse drug events (ADEs) in the postapproval period. Datamining methods that can transform data into meaningful knowledge to inform patient safety have proven essential for this purpose. New opportunities have emerged to harness data sources that have not been used within the traditional framework. This article provides an overview of recent methodological innovations and data sources used to support ADE discovery and analysis.

  7. The role of big data and advanced analytics in drug discovery, development, and commercialization.

    Science.gov (United States)

    Szlezák, N; Evers, M; Wang, J; Pérez, L

    2014-05-01

    In recent years, few ideas have captured the imagination of health-care practitioners as much as the advent of "big data" and the advanced analytical methods and technologies used to interpret it-it is a trend seen as having the potential to revolutionize biology, medicine, and health care.(1,2,3) As new types of data and tools become available, a unique opportunity is emerging for smarter and more effective discovery, development, and commercialization of innovative biopharmaceutical drugs.

  8. Test systems in drug discovery for hazard identification and risk assessment of human drug-induced liver injury.

    Science.gov (United States)

    Weaver, Richard J; Betts, Catherine; Blomme, Eric A G; Gerets, Helga H J; Gjervig Jensen, Klaus; Hewitt, Philip G; Juhila, Satu; Labbe, Gilles; Liguori, Michael J; Mesens, Natalie; Ogese, Monday O; Persson, Mikael; Snoeys, Jan; Stevens, James L; Walker, Tracy; Park, B Kevin

    2017-07-01

    The liver is an important target for drug-induced toxicities. Early detection of hepatotoxic drugs requires use of well-characterized test systems, yet current knowledge, gaps and limitations of tests employed remains an important issue for drug development. Areas Covered: The current state of the science, understanding and application of test systems in use for the detection of drug-induced cytotoxicity, mitochondrial toxicity, cholestasis and inflammation is summarized. The test systems highlighted herein cover mostly in vitro and some in vivo models and endpoint measurements used in the assessment of small molecule toxic liabilities. Opportunities for research efforts in areas necessitating the development of specific tests and improved mechanistic understanding are highlighted. Expert Opinion: Use of in vitro test systems for safety optimization will remain a core activity in drug discovery. Substantial inroads have been made with a number of assays established for human Drug-induced Liver Injury. There nevertheless remain significant gaps with a need for improved in vitro tools and novel tests to address specific mechanisms of human Drug-Induced Liver Injury. Progress in these areas will necessitate not only models fit for application, but also mechanistic understanding of how chemical insult on the liver occurs in order to identify translational and quantifiable readouts for decision-making.

  9. The Effects of Combinatorial Chemistry and Technologies on Drug Discovery and Biotechnology – a Mini Review

    Directory of Open Access Journals (Sweden)

    Seneci Pierfausto

    2014-12-01

    Full Text Available The review will focus on the aspects of combinatorial chemistry and technologies that are more relevant in the modern pharmaceutical process. An historical, critical introduction is followed by three chapters, dealing with the use of combinatorial chemistry/high throughput synthesis in medicinal chemistry; the rational design of combinatorial libraries using computer-assisted combinatorial drug design; and the use of combinatorial technologies in biotechnology. The impact of “combinatorial thinking” in drug discovery in general, and in the examples reported in details, is critically discussed. Finally, an expert opinion on current and future trends in combinatorial chemistry and combinatorial technologies is provided.

  10. Recent advances in Entamoeba biology: RNA interference, drug discovery, and gut microbiome

    Science.gov (United States)

    Singh, Upinder

    2016-01-01

    In recent years, substantial progress has been made in understanding the molecular and cell biology of the human parasite Entamoeba histolytica, an important pathogen with significant global impact. This review outlines some recent advances in the Entamoeba field in the last five years, focusing on areas that have not recently been discussed in detail: (i) molecular mechanisms regulating parasite gene expression, (ii) new efforts at drug discovery using high-throughput drug screens, and (iii) the effect of gut microbiota on amoebiasis. PMID:27853522

  11. Exploring Chemical Space for Drug Discovery Using the Chemical Universe Database

    Science.gov (United States)

    2012-01-01

    Herein we review our recent efforts in searching for bioactive ligands by enumeration and virtual screening of the unknown chemical space of small molecules. Enumeration from first principles shows that almost all small molecules (>99.9%) have never been synthesized and are still available to be prepared and tested. We discuss open access sources of molecules, the classification and representation of chemical space using molecular quantum numbers (MQN), its exhaustive enumeration in form of the chemical universe generated databases (GDB), and examples of using these databases for prospective drug discovery. MQN-searchable GDB, PubChem, and DrugBank are freely accessible at www.gdb.unibe.ch. PMID:23019491

  12. Outsourcing drug discovery to India and China: from surviving to thriving.

    Science.gov (United States)

    Subramaniam, Swaminathan; Dugar, Sundeep

    2012-10-01

    Global pharmaceutical companies face an increasingly harsh environment for their primary business of selling medicines. They have to contend with a spiraling decline in the productivity of their R&D programs that is guaranteed to severely diminish their growth prospects. Outsourcing of drug discovery activities to low-cost locations is a growing response to this crisis. However, the upsides to outsourcing are capped by the failure of global pharmaceutical companies to take advantage of the full range of possibilities that this model provides. Companies that radically rethink and transform the way they conduct R&D, such as seeking the benefits of low-cost locations in India and China will be the ones that thrive in this environment. In this article we present our views on how the outsourcing model in drug discovery should go beyond increasing the efficiency of existing drug discovery processes to a fundamental rethink and re-engineering of these processes. Copyright © 2012. Published by Elsevier Ltd.

  13. Discovery of Antimalarial Drugs from Streptomycetes Metabolites Using a Metabolomic Approach

    Directory of Open Access Journals (Sweden)

    Siti Junaidah Ahmad

    2017-01-01

    Full Text Available Natural products continue to play an important role as a source of biologically active substances for the development of new drug. Streptomyces, Gram-positive bacteria which are widely distributed in nature, are one of the most popular sources of natural antibiotics. Recently, by using a bioassay-guided fractionation, an antimalarial compound, Gancidin-W, has been discovered from these bacteria. However, this classical method in identifying potentially novel bioactive compounds from the natural products requires considerable effort and is a time-consuming process. Metabolomics is an emerging “omics” technology in systems biology study which integrated in process of discovering drug from natural products. Metabolomics approach in finding novel therapeutics agent for malaria offers dereplication step in screening phase to shorten the process. The highly sensitive instruments, such as Liquid Chromatography-Mass Spectrophotometry (LC-MS, Gas Chromatography-Mass Spectrophotometry (GC-MS, and Nuclear Magnetic Resonance (1H-NMR spectroscopy, provide a wide range of information in the identification of potentially bioactive compounds. The current paper reviews concepts of metabolomics and its application in drug discovery of malaria treatment as well as assessing the antimalarial activity from natural products. Metabolomics approach in malaria drug discovery is still new and needs to be initiated, especially for drug research in Malaysia.

  14. Concise Review: Drug Discovery in the Age of the Induced Pluripotent Stem Cell

    Science.gov (United States)

    Ko, Huaising C.

    2014-01-01

    For decades, the paradigm of drug discovery and development has relied on immortalized cell lines, animal models of human disease, and clinical trials. With the discovery of induced pluripotent stem cell (iPSC) technology in 2007, a new human in vitro drug testing platform has potentially augmented this set of tools by providing additional ways to screen compounds for safety and efficacy. The growing number of human disease models made with patient-specific iPSCs has made it possible to conduct research on a wide range of disorders, including rare diseases and those with multifactorial origin, as well as to simulate drug effects on difficult-to-obtain tissues such as brain and cardiac muscle. Toxicity and teratogenicity assays developed with iPSC-derived cells can also provide an additional layer of safety before advancing drugs to clinical trials. The incorporation of iPSC technology into drug therapy development holds promise as a more powerful and nuanced approach to personalized medicine. PMID:24493856

  15. Advances in Drug Discovery of New Antitubercular Multidrug-Resistant Compounds

    Directory of Open Access Journals (Sweden)

    Guilherme Felipe dos Santos Fernandes

    2017-06-01

    Full Text Available Tuberculosis (TB, a disease caused mainly by the Mycobacterium tuberculosis (Mtb, is according to the World Health Organization (WHO the infectious disease responsible for the highest number of deaths worldwide. The increased number of multidrug-resistant (MDR-TB and extensively drug-resistant (XDR-TB strains, and the ineffectiveness of the current treatment against latent tuberculosis are challenges to be overcome in the coming years. The scenario of drug discovery becomes alarming when it is considered that the number of new drugs does not increase proportionally to the emergence of drug resistance. In this review, we will demonstrate the current advances in antitubercular drug discovery, focusing on the research of compounds with potent antituberculosis activity against MDR-TB strains. Herein, active compounds against MDR-TB with minimum inhibitory concentrations (MICs less than 11 µM and low toxicity published in the last 4 years in the databases PubMed, Web of Science and Scopus will be presented and discussed.

  16. Open Innovation Drug Discovery (OIDD): a potential path to novel therapeutic chemical space.

    Science.gov (United States)

    Alvim-Gaston, Maria; Grese, Timothy; Mahoui, Abdelaziz; Palkowitz, Alan D; Pineiro-Nunez, Marta; Watson, Ian

    2014-01-01

    The continued development of computational and synthetic methods has enabled the enumeration or preparation of a nearly endless universe of chemical structures. Nevertheless, the ability of this chemical universe to deliver small molecules that can both modulate biological targets and have drug-like physicochemical properties continues to be a topic of interest to the pharmaceutical industry and academic researchers alike. The chemical space described by public, commercial, in-house and virtual compound collections has been interrogated by multiple approaches including biochemical, cellular and virtual screening, diversity analysis, and in-silico profiling. However, current drugs and known chemical probes derived from these efforts are contained within a remarkably small volume of the predicted chemical space. Access to more diverse classes of chemical scaffolds that maintain the properties relevant for drug discovery is certainly needed to meet the increasing demands for pharmaceutical innovation. The Lilly Open Innovation Drug Discovery platform (OIDD) was designed to tackle barriers to innovation through the identification of novel molecules active in relevant disease biology models. In this article we will discuss several computational approaches towards describing novel, biologically active, drug-like chemical space and illustrate how the OIDD program may facilitate access to previously untapped molecules that may aid in the search for innovative pharmaceuticals.

  17. The enemy within: Targeting host-parasite interaction for antileishmanial drug discovery.

    Science.gov (United States)

    Lamotte, Suzanne; Späth, Gerald F; Rachidi, Najma; Prina, Eric

    2017-06-01

    The state of antileishmanial chemotherapy is strongly compromised by the emergence of drug-resistant Leishmania. The evolution of drug-resistant phenotypes has been linked to the parasites' intrinsic genome instability, with frequent gene and chromosome amplifications causing fitness gains that are directly selected by environmental factors, including the presence of antileishmanial drugs. Thus, even though the unique eukaryotic biology of Leishmania and its dependence on parasite-specific virulence factors provide valid opportunities for chemotherapeutical intervention, all strategies that target the parasite in a direct fashion are likely prone to select for resistance. Here, we review the current state of antileishmanial chemotherapy and discuss the limitations of ongoing drug discovery efforts. We finally propose new strategies that target Leishmania viability indirectly via mechanisms of host-parasite interaction, including parasite-released ectokinases and host epigenetic regulation, which modulate host cell signaling and transcriptional regulation, respectively, to establish permissive conditions for intracellular Leishmania survival.

  18. Synapse dysfunction in autism: a molecular medicine approach to drug discovery in neurodevelopmental disorders.

    Science.gov (United States)

    Spooren, Will; Lindemann, Lothar; Ghosh, Anirvan; Santarelli, Luca

    2012-12-01

    Autism and autism spectrum disorders (ASDs) affect millions of individuals worldwide. Despite increased autism diagnoses over the past 30 years, therapeutic intervention is often 'trial and error'. This approach has identified some beneficial agents, but complex heterogeneous disorders require a more personalized treatment regimen. Many ASD risk factors are genetic, implicating impaired synaptic development and function. Monogenetic disorders (e.g., fragile X syndrome, Rett syndrome, and neurofibromatosis) that have phenotypic overlap with autism provide insights into ASD pathology through the identification novel drug targets (e.g., glutamatergic receptors). Encouragingly, some of these novel drug targets provide symptomatic improvement, even in patients who have lived with ASDs for protracted periods of time. Consequently, a targeted drug discovery approach is expected to deliver improved agents for the treatment and management of ASDs. Here, we review the opportunities and challenges in drug development for autism and provide insight into the neurobiology of ASDs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. DenguePredict: An Integrated Drug Repositioning Approach towards Drug Discovery for Dengue

    OpenAIRE

    Wang, QuanQiu; Xu, Rong

    2015-01-01

    Dengue is a viral disease of expanding global incidence without cures. Here we present a drug repositioning system (DenguePredict) leveraging upon a unique drug treatment database and vast amounts of disease- and drug-related data. We first constructed a large-scale genetic disease network with enriched dengue genetics data curated from biomedical literature. We applied a network-based ranking algorithm to find dengue-related diseases from the disease network. We then developed a novel algori...

  20. Multicomponent Hetero-[4 + 2] Cycloaddition/Allylboration Reaction: From Natural Product Synthesis to Drug Discovery.

    Science.gov (United States)

    Hall, Dennis G; Rybak, Taras; Verdelet, Tristan

    2016-11-15

    chemical diversity. Biological screening of these druglike imidopiperidine libraries unveiled promising bioactive agents such as A12B4C3, the first reported inhibitor of the human DNA repair enzyme, polynucleotide kinase-phosphatase (hPNKP). Related applications of this MCR in target-oriented synthesis also led to total syntheses of palustrine alkaloids. The inverse electron-demand oxa[4 + 2] cycloaddition/allyboration variant can take advantage of Jacobsen's chiral Cr(III)salen catalyst, affording a rare example of catalytic enantioselective MCR, one that provides a rapid access to α-hydroxyalkyl dihydropyrans in high enantio- and diastereoselectivity. This process exploits 3-boronoacrolein pinacolate as the heterodiene with ethyl vinyl ether or various 2-substituted enol ethers, along with a wide variety of aldehydes in the allylation stage. This versatile methodology was deployed in total syntheses of thiomarinol antibiotics, goniodiol and its derivatives, and the complex anticancer macrolide palmerolide A. More recent work from our laboratory centered on the regio- and stereoselective Suzuki-Miyaura cross-coupling of the dihydropyranyl boronates, thus providing a glimpse of the potential for new multicomponent variants that merge hetero[4 + 2] cycloadditions of 1-borylated heterodienes with transition metal-catalyzed transformations. This stereoselective MCR strategy holds great promise for provoking continuing applications in complex molecule synthesis and drug discovery, and is likely to inspire new and innovative MCR-based approaches to nonaromatic heterocycles.

  1. Drug Repositioning Discovery for Early- and Late-Stage Non-Small-Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Chien-Hung Huang

    2014-01-01

    Full Text Available Drug repositioning is a popular approach in the pharmaceutical industry for identifying potential new uses for existing drugs and accelerating the development time. Non-small-cell lung cancer (NSCLC is one of the leading causes of death worldwide. To reduce the biological heterogeneity effects among different individuals, both normal and cancer tissues were taken from the same patient, hence allowing pairwise testing. By comparing early- and late-stage cancer patients, we can identify stage-specific NSCLC genes. Differentially expressed genes are clustered separately to form up- and downregulated communities that are used as queries to perform enrichment analysis. The results suggest that pathways for early- and late-stage cancers are different. Sets of up- and downregulated genes were submitted to the cMap web resource to identify potential drugs. To achieve high confidence drug prediction, multiple microarray experimental results were merged by performing meta-analysis. The results of a few drug findings are supported by MTT assay or clonogenic assay data. In conclusion, we have been able to assess the potential existing drugs to identify novel anticancer drugs, which may be helpful in drug repositioning discovery for NSCLC.

  2. Ebola virus: A gap in drug design and discovery - experimental and computational perspective.

    Science.gov (United States)

    Balmith, Marissa; Faya, Mbuso; Soliman, Mahmoud E S

    2017-03-01

    The Ebola virus, formally known as the Ebola hemorrhagic fever, is an acute viral syndrome causing sporadic outbreaks that have ravaged West Africa. Due to its extreme virulence and highly transmissible nature, Ebola has been classified as a category A bioweapon organism. Only recently have vaccine or drug regimens for the Ebola virus been developed, including Zmapp and peptides. In addition, existing drugs which have been repurposed toward anti-Ebola virus activity have been re-examined and are seen to be promising candidates toward combating Ebola. Drug development involving computational tools has been widely employed toward target-based drug design. Screening large libraries have greatly stimulated research toward effective anti-Ebola virus drug regimens. Current emphasis has been placed on the investigation of host proteins and druggable viral targets. There is a huge gap in the literature regarding guidelines in the discovery of Ebola virus inhibitors, which may be due to the lack of information on the Ebola drug targets, binding sites, and mechanism of action of the virus. This review focuses on Ebola virus inhibitors, drugs which could be repurposed to combat the Ebola virus, computational methods which study drug-target interactions as well as providing further insight into the mode of action of the Ebola virus. © 2016 John Wiley & Sons A/S.

  3. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond.

    Directory of Open Access Journals (Sweden)

    Wesley C Van Voorhis

    2016-07-01

    Full Text Available A major cause of the paucity of new starting points for drug discovery is the lack of interaction between academia and industry. Much of the global resource in biology is present in universities, whereas the focus of medicinal chemistry is still largely within industry. Open source drug discovery, with sharing of information, is clearly a first step towards overcoming this gap. But the interface could especially be bridged through a scale-up of open sharing of physical compounds, which would accelerate the finding of new starting points for drug discovery. The Medicines for Malaria Venture Malaria Box is a collection of over 400 compounds representing families of structures identified in phenotypic screens of pharmaceutical and academic libraries against the Plasmodium falciparum malaria parasite. The set has now been distributed to almost 200 research groups globally in the last two years, with the only stipulation that information from the screens is deposited in the public domain. This paper reports for the first time on 236 screens that have been carried out against the Malaria Box and compares these results with 55 assays that were previously published, in a format that allows a meta-analysis of the combined dataset. The combined biochemical and cellular assays presented here suggest mechanisms of action for 135 (34% of the compounds active in killing multiple life-cycle stages of the malaria parasite, including asexual blood, liver, gametocyte, gametes and insect ookinete stages. In addition, many compounds demonstrated activity against other pathogens, showing hits in assays with 16 protozoa, 7 helminths, 9 bacterial and mycobacterial species, the dengue fever mosquito vector, and the NCI60 human cancer cell line panel of 60 human tumor cell lines. Toxicological, pharmacokinetic and metabolic properties were collected on all the compounds, assisting in the selection of the most promising candidates for murine proof-of-concept experiments

  4. Drug discovery using induced pluripotent stem cell models of neurodegenerative and ocular diseases.

    Science.gov (United States)

    Hung, Sandy S C; Khan, Shahnaz; Lo, Camden Y; Hewitt, Alex W; Wong, Raymond C B

    2017-09-01

    The revolution of induced pluripotent stem cell (iPSC) technology provides a platform for development of cell therapy, disease modeling and drug discovery. Recent technological advances now allow us to reprogram a patient's somatic cells into induced pluripotent stem cells (iPSCs). Together with methods to differentiate these iPSCs into disease-relevant cell types, we are now able to model disease in vitro using iPSCs. Importantly, this represents a robust in vitro platform using patient-specific cells, providing opportunity for personalized precision medicine. Here we provide a review of advances using iPSC for drug development, and discuss the potential and limitations of iPSCs for drug discovery in neurodegenerative and ocular diseases. Emerging technologies that can facilitate the search for new drugs by assessment using in vitro disease models will also be discussed, including organoid differentiation, organ-on-chip, direct reprogramming and humanized animal models. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Tango assay for ligand-induced GPCR-β-arrestin2 interaction: Application in drug discovery.

    Science.gov (United States)

    Dogra, Shalini; Sona, Chandan; Kumar, Ajeet; Yadav, Prem N

    2016-01-01

    G protein-coupled receptors (GPCRs) are widely known to modulate almost all physiological functions and have been demonstrated over the time as therapeutic targets for wide gamut of diseases. The design and implementation of high-throughput GPCR-based assays that permit the efficient screening of large compound libraries to discover novel drug candidates are essential for a successful drug discovery endeavor. Usually, GPCR-based functional assays depend primarily on the measurement of G protein-mediated second messenger generation. However, with advent of advanced molecular biology tools and increased understanding of GPCR signal transduction, many G protein-independent pathways such as β-arrestin translocation are being utilized to detect the activity of GPCRs. These assays provide additional information on functional selectivity (also known as biased agonism) of compounds that could be harnessed to develop pathway-selective drug candidates to reduce the adverse effects associated with given GPCR target. In this chapter, we describe the basic principle, detailed methodologies and assay setup, result analysis and data interpretations of the β-arrestin2 Tango assay, and its comparison with cell-based G protein-dependent GPCR assays, which could be employed in a simple academic setup to facilitate GPCR-based drug discovery. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Systems pharmacology: bridging systems biology and pharmacokinetics-pharmacodynamics (PKPD) in drug discovery and development.

    Science.gov (United States)

    van der Graaf, Piet H; Benson, Neil

    2011-07-01

    Mechanistic PKPD models are now advocated not only by academic and industrial researchers, but also by regulators. A recent development in this area is based on the growing realisation that innovation could be dramatically catalysed by creating synergy at the interface between Systems Biology and PKPD, two disciplines which until now have largely existed in 'parallel universes' with a limited track record of impactful collaboration. This has led to the emergence of systems pharmacology. Broadly speaking, this is the quantitative analysis of the dynamic interactions between drug(s) and a biological system to understand the behaviour of the system as a whole, as opposed to the behaviour of its individual constituents; thus, it has become the interface between PKPD and systems biology. It applies the concepts of Systems Engineering, Systems Biology, and PKPD to the study of complex biological systems through iteration between computational and/or mathematical modelling and experimentation. Application of systems pharmacology can now impact across all stages of drug research and development, ranging from very early discovery programs to large-scale Phase 3/4 patient studies, and has the potential to become an integral component of a new 'enhanced quantitative drug discovery and development' (EQD3) R&D paradigm.

  7. Cardiovascular Organ-on-a-Chip Platforms for Drug Discovery and Development.

    Science.gov (United States)

    Ribas, João; Sadeghi, Hossein; Manbachi, Amir; Leijten, Jeroen; Brinegar, Katelyn; Zhang, Yu Shrike; Ferreira, Lino; Khademhosseini, Ali

    2016-06-01

    Cardiovascular diseases are prevalent worldwide and are the most frequent causes of death in the United States. Although spending in drug discovery/development has increased, the amount of drug approvals has seen a progressive decline. Particularly, adverse side effects to the heart and general vasculature have become common causes for preclinical project closures, and preclinical models do not fully recapitulate human in vivo dynamics. Recently, organs-on-a-chip technologies have been proposed to mimic the dynamic conditions of the cardiovascular system-in particular, heart and general vasculature. These systems pay particular attention to mimicking structural organization, shear stress, transmural pressure, mechanical stretching, and electrical stimulation. Heart- and vasculature-on-a-chip platforms have been successfully generated to study a variety of physiological phenomena, model diseases, and probe the effects of drugs. Here, we review and discuss recent breakthroughs in the development of cardiovascular organs-on-a-chip platforms, and their current and future applications in the area of drug discovery and development.

  8. Peptide deformylase: a new target in antibacterial, antimalarial and anticancer drug discovery.

    Science.gov (United States)

    Sangshetti, Jaiprakash N; Khan, Firoz A Kalam; Shinde, Devanand B

    2015-01-01

    Peptide deformylase (PDF) is a class of metalloenzyme responsible for catalyzing the removal of the N-formyl group from N-terminal methionine following translation. PDF inhibitors are moving into new phase of drug development. Initially, PDF was considered as an important target in antibacterial drug discovery; however genome database searches have revealed PDF-like sequences in parasites (P. falciparum) and human, widening the utility of this target in antimalarial and anticancer drug discovery along with antibacterial. Using structural and mechanistic information together with high throughput screening, several types of chemical classes of PDF inhibitors with improved efficacy and specificity have been identified. Various drugs like, GSK-1322322 (Phase II), BB-83698 (Phase I), and LBM-415 (Phase I) have entered into clinical developments. Developments in the field have prompted us to review the current aspects of PDFs, especially their structures, different classes of PDF inhibitors, and molecular modeling studies. In nut shell, this review enlightens PDF as a versatile target along with its inhibitors and future perspectives of different PDF inhibitors.

  9. A Multimodal Data Analysis Approach for Targeted Drug Discovery Involving Topological Data Analysis (TDA).

    Science.gov (United States)

    Alagappan, Muthuraman; Jiang, Dadi; Denko, Nicholas; Koong, Albert C

    In silico drug discovery refers to a combination of computational techniques that augment our ability to discover drug compounds from compound libraries. Many such techniques exist, including virtual high-throughput screening (vHTS), high-throughput screening (HTS), and mechanisms for data storage and querying. However, presently these tools are often used independent of one another. In this chapter, we describe a new multimodal in silico technique for the hit identification and lead generation phases of traditional drug discovery. Our technique leverages the benefits of three independent methods-virtual high-throughput screening, high-throughput screening, and structural fingerprint analysis-by using a fourth technique called topological data analysis (TDA). We describe how a compound library can be independently tested with vHTS, HTS, and fingerprint analysis, and how the results can be transformed into a topological data analysis network to identify compounds from a diverse group of structural families. This process of using TDA or similar clustering methods to identify drug leads is advantageous because it provides a mechanism for choosing structurally diverse compounds while maintaining the unique advantages of already established techniques such as vHTS and HTS.

  10. Bioautography with TLC-MS/NMR for Rapid Discovery of Anti-tuberculosis Lead Compounds from Natural Sources.

    Science.gov (United States)

    Grzelak, Edyta M; Hwang, Changhwa; Cai, Geping; Nam, Joo-Won; Choules, Mary P; Gao, Wei; Lankin, David C; McAlpine, James B; Mulugeta, Surafel G; Napolitano, José G; Suh, Joo-Won; Yang, Seung Hwan; Cheng, Jinhua; Lee, Hanki; Kim, Jin-Yong; Cho, Sang-Hyun; Pauli, Guido F; Franzblau, Scott G; Jaki, Birgit U

    2016-04-08

    While natural products constitute an established source of lead compounds, the classical iterative bioassay-guided isolation process is both time- and labor-intensive and prone to failing to identify active minor constituents. (HP)TLC-bioautography-MS/NMR, which combines cutting-edge microbiological, chromatographic, and spectrometric technologies, was developed to accelerate anti-tuberculosis (TB) drug discovery from natural sources by acquiring structural information at a very early stage of the isolation process. Using the avirulent, bioluminescent Mtb strain mc 2 7000 luxABCDE, three variations of bioautography were evaluated and optimized for sensitivity in detecting anti-TB agents, including established clinical agents and new leads with novel mechanisms of action. Several exemplary applications of this approach to microbial extracts demonstrate its potential as a routine method in anti-TB drug discovery from natural sources.

  11. iDrug: a web-accessible and interactive drug discovery and design platform.

    Science.gov (United States)

    Wang, Xia; Chen, Haipeng; Yang, Feng; Gong, Jiayu; Li, Shiliang; Pei, Jianfeng; Liu, Xiaofeng; Jiang, Hualiang; Lai, Luhua; Li, Honglin

    2014-01-01

    The progress in computer-aided drug design (CADD) approaches over the past decades accelerated the early-stage pharmaceutical research. Many powerful standalone tools for CADD have been developed in academia. As programs are developed by various research groups, a consistent user-friendly online graphical working environment, combining computational techniques such as pharmacophore mapping, similarity calculation, scoring, and target identification is needed. We presented a versatile, user-friendly, and efficient online tool for computer-aided drug design based on pharmacophore and 3D molecular similarity searching. The web interface enables binding sites detection, virtual screening hits identification, and drug targets prediction in an interactive manner through a seamless interface to all adapted packages (e.g., Cavity, PocketV.2, PharmMapper, SHAFTS). Several commercially available compound databases for hit identification and a well-annotated pharmacophore database for drug targets prediction were integrated in iDrug as well. The web interface provides tools for real-time molecular building/editing, converting, displaying, and analyzing. All the customized configurations of the functional modules can be accessed through featured session files provided, which can be saved to the local disk and uploaded to resume or update the history work. iDrug is easy to use, and provides a novel, fast and reliable tool for conducting drug design experiments. By using iDrug, various molecular design processing tasks can be submitted and visualized simply in one browser without installing locally any standalone modeling softwares. iDrug is accessible free of charge at http://lilab.ecust.edu.cn/idrug.

  12. Straightforward recursive partitioning model for discarding insoluble compounds in the drug discovery process.

    Science.gov (United States)

    Lamanna, Claudia; Bellini, Marta; Padova, Alessandro; Westerberg, Goran; Maccari, Laura

    2008-05-22

    Poor aqueous solubility is one of the major issues in drug discovery and development, impacting negatively on all aspects of the research and development process. The pharmaceutical industry has realized that solubility issues need to be resolved at the discovery stage. We here present an innovative way to address this problem via a model designed to address the simple question, "Is the compound likely to be sufficiently soluble to provide interpretable data in biological screening assays?" A recursive partitioning (RP) method was applied to a set of 3563 molecules, with in house determined aqueous solubility values. Five models were generated on the basis of a small number of descriptors affording intuitive information regarding structural features influencing solubility. The final model was based on only two descriptors: the molecular weight (MW) and the aromatic proportion (AP). This model provided satisfactory values of accuracy (81%) and precision (75%) for a test set of 1200 compounds, suggesting that the model may add value in compound selection and library design during early drug discovery.

  13. Evolving towards a human-cell based and multiscale approach to drug discovery for CNS disorders

    Directory of Open Access Journals (Sweden)

    Eric eSchadt

    2014-12-01

    Full Text Available A disruptive approach to therapeutic discovery and development is required in order to significantly improve the success rate of drug discovery for central nervous system (CNS disorders. In this review, we first assess the key factors contributing to the frequent clinical failures for novel drugs. Second, we discuss cancer translational research paradigms that addressed key issues in drug discovery and development and have resulted in delivering drugs with significantly improved outcomes for patients. Finally, we discuss two emerging technologies that could improve the success rate of CNS therapies: human induced pluripotent stem cell (hiPSC-based studies and multiscale biology models. Coincident with advances in cellular technologies that enable the generation of hiPSCs directly from patient blood or skin cells, together with methods to differentiate these hiPSC lines into specific neural cell types relevant to neurological disease, it is also now possible to combine data from large-scale forward genetics and post-mortem global epigenetic and expression studies in order to generate novel predictive models. The application of systems biology approaches to account for the multiscale nature of different data types, from genetic to molecular and cellular to clinical, can lead to new insights into human diseases that are emergent properties of biological networks, not the result of changes to single genes. Such studies have demonstrated the heterogeneity in etiological pathways and the need for studies on model systems that are patient-derived and thereby recapitulate neurological disease pathways with higher fidelity. In the context of two common and presumably representative neurological diseases, the neurodegenerative disease Alzheimer’s Disease (AD, and the psychiatric disorder schizophrenia (SZ, we propose the need for, and exemplify the impact of, a multiscale biology approach that can integrate panomic, clinical, imaging, and literature

  14. Facilitating drug discovery: an automated high-content inflammation assay in zebrafish.

    Science.gov (United States)

    Wittmann, Christine; Reischl, Markus; Shah, Asmi H; Mikut, Ralf; Liebel, Urban; Grabher, Clemens

    2012-07-16

    Zebrafish larvae are particularly amenable to whole animal small molecule screens due to their small size and relative ease of manipulation and observation, as well as the fact that compounds can simply be added to the bathing water and are readily absorbed when administered in a Python scripts. In brief, we introduce an automated HC/HT screen that allows testing of chemical compounds for their effect on initiation, progression or resolution of a granulocytic inflammatory response. This protocol serves a good starting point for more in-depth analyses of drug mechanisms and pathways involved in the orchestration of an innate immune response. In the future, it may help identifying intolerable toxic or off-target effects at earlier phases of drug discovery and thereby reduce procedural risks and costs for drug development.

  15. Arylamine N-acetyltransferases: from drug metabolism and pharmacogenetics to drug discovery

    OpenAIRE

    Sim, E; Abuhammad, A; Ryan, A

    2014-01-01

    Arylamine N-acetyltransferases (NATs) are polymorphic drug-metabolizing enzymes, acetylating arylamine carcinogens and drugs including hydralazine and sulphonamides. The slow NAT phenotype increases susceptibility to hydralazine and isoniazid toxicity and to occupational bladder cancer. The two polymorphic human NAT loci show linkage disequilibrium. All mammalian Nat genes have an intronless open reading frame and non-coding exons. The human gene products NAT1 and NAT2 have distinct substrate...

  16. Discovery of Drug Synergies in Gastric Cancer Cells Predicted by Logical Modeling.

    Directory of Open Access Journals (Sweden)

    Åsmund Flobak

    2015-08-01

    Full Text Available Discovery of efficient anti-cancer drug combinations is a major challenge, since experimental testing of all possible combinations is clearly impossible. Recent efforts to computationally predict drug combination responses retain this experimental search space, as model definitions typically rely on extensive drug perturbation data. We developed a dynamical model representing a cell fate decision network in the AGS gastric cancer cell line, relying on background knowledge extracted from literature and databases. We defined a set of logical equations recapitulating AGS data observed in cells in their baseline proliferative state. Using the modeling software GINsim, model reduction and simulation compression techniques were applied to cope with the vast state space of large logical models and enable simulations of pairwise applications of specific signaling inhibitory chemical substances. Our simulations predicted synergistic growth inhibitory action of five combinations from a total of 21 possible pairs. Four of the predicted synergies were confirmed in AGS cell growth real-time assays, including known effects of combined MEK-AKT or MEK-PI3K inhibitions, along with novel synergistic effects of combined TAK1-AKT or TAK1-PI3K inhibitions. Our strategy reduces the dependence on a priori drug perturbation experimentation for well-characterized signaling networks, by demonstrating that a model predictive of combinatorial drug effects can be inferred from background knowledge on unperturbed and proliferating cancer cells. Our modeling approach can thus contribute to preclinical discovery of efficient anticancer drug combinations, and thereby to development of strategies to tailor treatment to individual cancer patients.

  17. Insights into Integrated Lead Generation and Target Identification in Malaria and Tuberculosis Drug Discovery.

    Science.gov (United States)

    Okombo, John; Chibale, Kelly

    2017-07-18

    New, safe and effective drugs are urgently needed to treat and control malaria and tuberculosis, which affect millions of people annually. However, financial return on investment in the poor settings where these diseases are mostly prevalent is very minimal to support market-driven drug discovery and development. Moreover, the imminent loss of therapeutic lifespan of existing therapies due to evolution and spread of drug resistance further compounds the urgency to identify novel effective drugs. However, the advent of new public-private partnerships focused on tropical diseases and the recent release of large data sets by pharmaceutical companies on antimalarial and antituberculosis compounds derived from phenotypic whole cell high throughput screening have spurred renewed interest and opened new frontiers in malaria and tuberculosis drug discovery. This Account recaps the existing challenges facing antimalarial and antituberculosis drug discovery, including limitations associated with experimental animal models as well as biological complexities intrinsic to the causative pathogens. We enlist various highlights from a body of work within our research group aimed at identifying and characterizing new chemical leads, and navigating these challenges to contribute toward the global drug discovery and development pipeline in malaria and tuberculosis. We describe a catalogue of in-house efforts toward deriving safe and efficacious preclinical drug development candidates via cell-based medicinal chemistry optimization of phenotypic whole-cell medium and high throughput screening hits sourced from various small molecule chemical libraries. We also provide an appraisal of target-based screening, as invoked in our laboratory for mechanistic evaluation of the hits generated, with particular focus on the enzymes within the de novo pyrimidine biosynthetic and hemoglobin degradation pathways, the latter constituting a heme detoxification process and an associated cysteine

  18. Practical permeability-based hepatic clearance classification system (HepCCS) in drug discovery.

    Science.gov (United States)

    Fan, Peter W; Song, Yang; Berezhkovskiy, Leonid M; Cheong, Jonathan; Plise, Emile G; Khojasteh, S Cyrus

    2014-01-01

    The use of liver microsomes and hepatocytes to predict total in vivo clearance is standard practice in the pharmaceutical industry; however, metabolic stability data alone cannot always predict in vivo clearance accurately. Apparent permeability generated from Mardin-Darby canine kidney cells and rat hepatocyte uptake for 33 discovery compounds were obtained. When there is underprediction of in vivo clearance, compounds with low apparent permeability (less than 3 × 10(-6) cm/s) all exhibited hepatic uptake. A systematic approach in the form of a classification system (hepatic clearance classification system) and decision tree that will help drug discovery scientists understand in vitro-in vivo clearance prediction disconnect early is proposed.

  19. Small Molecule Drug Discovery at the Glucagon-Like Peptide-1 Receptor

    Directory of Open Access Journals (Sweden)

    Francis S. Willard

    2012-01-01

    Full Text Available The therapeutic success of peptide glucagon-like peptide-1 (GLP-1 receptor agonists for the treatment of type 2 diabetes mellitus has inspired discovery efforts aimed at developing orally available small molecule GLP-1 receptor agonists. Although the GLP-1 receptor is a member of the structurally complex class B1 family of GPCRs, in recent years, a diverse array of orthosteric and allosteric nonpeptide ligands has been reported. These compounds include antagonists, agonists, and positive allosteric modulators with intrinsic efficacy. In this paper, a comprehensive review of currently disclosed small molecule GLP-1 receptor ligands is presented. In addition, examples of “ligand bias” and “probe dependency” for the GLP-1 receptor are discussed; these emerging concepts may influence further optimization of known molecules or persuade designs of expanded screening strategies to identify novel chemical starting points for GLP-1 receptor drug discovery.

  20. Phenotypic screening approaches to develop Aurora kinase inhibitors: Drug Discovery perspectives

    Directory of Open Access Journals (Sweden)

    Carlos eMarugán

    2016-01-01

    Full Text Available Targeting mitotic regulators as a strategy to fight cancer implies the development of drugs against key proteins such as Aurora A and B. Current drugs which target mitosis through a general mechanism of action (stabilization/destabilization of microtubules, have several side effects (neutropenia, alopecia, emesis. Pharmaceutical companies aim at avoiding these unwanted effects by generating improved and selective drugs that increase the quality of life of the patients. However, the development of these drugs is an ambitious task that involves testing thousands of compounds through biochemical and cell-based assays. In addition, molecules usually target complex biological processes, involving several proteins and different molecular pathways, further emphasizing the need for high-throughput screening techniques and multiplexing technologies in order to identify drugs with the desired phenotype.We will briefly describe two multiplexing technologies (high-content imaging, microarrays and flow cytometry and two key processes for drug discovery research (assay development and validation following our own published industry quality standards. We will further focus on high-content imaging as a useful tool for phenotypic screening and will provide a concrete example of high-content imaging assay to detect Aurora A or B selective inhibitors discriminating the off-target effects related to inhibition of other cell cycle or non-cell cycle key regulators. Finally, we will describe other assays that can help to characterize the in vitro pharmacology of the inhibitors.

  1. Systems pharmacology-based drug discovery for marine resources: an example using sea cucumber (Holothurians).

    Science.gov (United States)

    Guo, Yingying; Ding, Yan; Xu, Feifei; Liu, Baoyue; Kou, Zinong; Xiao, Wei; Zhu, Jingbo

    2015-05-13

    Sea cucumber, a kind of marine animal, have long been utilized as tonic and traditional remedies in the Middle East and Asia because of its effectiveness against hypertension, asthma, rheumatism, cuts and burns, impotence, and constipation. In this study, an overall study performed on sea cucumber was used as an example to show drug discovery from marine resource by using systems pharmacology model. The value of marine natural resources has been extensively considered because these resources can be potentially used to treat and prevent human diseases. However, the discovery of drugs from oceans is difficult, because of complex environments in terms of composition and active mechanisms. Thus, a comprehensive systems approach which could discover active constituents and their targets from marine resource, understand the biological basis for their pharmacological properties is necessary. In this study, a feasible pharmacological model based on systems pharmacology was established to investigate marine medicine by incorporating active compound screening, target identification, and network and pathway analysis. As a result, 106 candidate components of sea cucumber and 26 potential targets were identified. Furthermore, the functions of sea cucumber in health improvement and disease treatment were elucidated in a holistic way based on the established compound-target and target-disease networks, and incorporated pathways. This study established a novel strategy that could be used to explore specific active mechanisms and discover new drugs from marine sources. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Proteogenomic studies on cancer drug resistance: towards biomarker discovery and target identification.

    Science.gov (United States)

    Fu, Shuyue; Liu, Xiang; Luo, Maochao; Xie, Ke; Nice, Edouard C; Zhang, Haiyuan; Huang, Canhua

    2017-04-01

    Chemoresistance is a major obstacle for current cancer treatment. Proteogenomics is a powerful multi-omics research field that uses customized protein sequence databases generated by genomic and transcriptomic information to identify novel genes (e.g. noncoding, mutation and fusion genes) from mass spectrometry-based proteomic data. By identifying aberrations that are differentially expressed between tumor and normal pairs, this approach can also be applied to validate protein variants in cancer, which may reveal the response to drug treatment. Areas covered: In this review, we will present recent advances in proteogenomic investigations of cancer drug resistance with an emphasis on integrative proteogenomic pipelines and the biomarker discovery which contributes to achieving the goal of using precision/personalized medicine for cancer treatment. Expert commentary: The discovery and comprehensive understanding of potential biomarkers help identify the cohort of patients who may benefit from particular treatments, and will assist real-time clinical decision-making to maximize therapeutic efficacy and minimize adverse effects. With the development of MS-based proteomics and NGS-based sequencing, a growing number of proteogenomic tools are being developed specifically to investigate cancer drug resistance.

  3. Hydra: a self regenerating high performance computing grid for drug discovery.

    Science.gov (United States)

    Bullard, Drew; Gobbi, Alberto; Lardy, Matthew A; Perkins, Charles; Little, Zach

    2008-04-01

    Computer aided drug design is progressing and playing an increasingly important role in drug discovery. Computational methods are being used to evaluate larger and larger numbers of real and virtual compounds. New methods based on molecular simulations that take protein and ligand flexibility into account also contribute to an ever increasing need for compute time. Computational grids are therefore becoming a critically important tool for modern drug discovery, but can be expensive to deploy and maintain. Here, we describe the low cost implementation of a 165 node, computational grid at Anadys Pharmaceuticals. The grid makes use of the excess computing capacity of desktop computers deployed throughout the company and of outdated desktop computers which populate a central computing grid. The performance of the grid grows automatically with the size of the company and with advances in computer technology. To ensure the uniformity of the nodes in the grid, all computers are running the Linux operating system. The desktop computers run Linux inside MS Windows using coLinux as virtualization software. HYDRA has been used to optimize computational models, for virtual screening and for lead optimization.

  4. ChEMBL web services: streamlining access to drug discovery data and utilities.

    Science.gov (United States)

    Davies, Mark; Nowotka, Michał; Papadatos, George; Dedman, Nathan; Gaulton, Anna; Atkinson, Francis; Bellis, Louisa; Overington, John P

    2015-07-01

    ChEMBL is now a well-established resource in the fields of drug discovery and medicinal chemistry research. The ChEMBL database curates and stores standardized bioactivity, molecule, target and drug data extracted from multiple sources, including the primary medicinal chemistry literature. Programmatic access to ChEMBL data has been improved by a recent update to the ChEMBL web services (version 2.0.x, https://www.ebi.ac.uk/chembl/api/data/docs), which exposes significantly more data from the underlying database and introduces new functionality. To complement the data-focused services, a utility service (version 1.0.x, https://www.ebi.ac.uk/chembl/api/utils/docs), which provides RESTful access to commonly used cheminformatics methods, has also been concurrently developed. The ChEMBL web services can be used together or independently to build applications and data processing workflows relevant to drug discovery and chemical biology. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. The Importance of Collaboration between Industry, Academics, and Nonprofits in Tropical Disease Drug Discovery.

    Science.gov (United States)

    Ferrins, Lori; Pollastri, Michael P

    2017-11-14

    Collaborations between academic, industrial, and nonprofit companies can provide sufficient impetus to propel projects that have little economic return; such projects are prevalent in tropical disease drug discovery. In these collaborations, each partner contributes a unique set of skills and technical expertise which is advantageous to the project as a whole. Highly product-focused processes and specialized expertise sets dominate industry groups. When coupled with the strategic guidance from public-private partnerships and the academic tendency to work on high-risk projects with low financial rewards, a powerful combination results. There are numerous examples throughout the literature about these collaborative efforts to combat a variety of tropical diseases (including leishmaniasis, Chagas disease, African sleeping sickness, and malaria), from all stages of the drug discovery process to the advancement of new drugs into the clinic. However, there is still uncertainty from many academic institutions as to how to establish and engage in these research consortiums. This Viewpoint highlights opportunities, benefits, and suggestions for productive collaborations in this disease space.

  6. Exploring open innovation with a patient focus in drug discovery: an evolving paradigm of patient engagement.

    Science.gov (United States)

    Allarakhia, Minna

    2015-06-01

    It is suggested in this article that patient engagement should occur further upstream during the drug discovery stage. 'Lead patients', namely those patients who are proactive with respect to their health, possess knowledge of their disease and resulting symptoms. They are also well informed about the conventional as well as non-conventional treatments for disease management; and so can provide a nuanced perspective to drug design. Understanding how patients view the management of their diseases and how they view the use of conventional versus non-conventional interventions is of imperative importance to researchers. Indeed, this can provide insight into how conventional treatments might be designed from the outset to encourage compliance and positive health outcomes. Consequently, a continuum of lead patient engagement is employed that focuses on drug discovery processes ranging from participative, informative to collaborative engagement. This article looks at a variety of open innovation models that are currently employed across this engagement spectrum. It is no longer sufficient for industry stakeholders to consider conventional therapies as the only mechanisms being sought after by patients. Without patient engagement, the industry risks being re-prioritized in terms of its role in the patient journey towards not only recovery of health, but also sustained health and wellness before disease onset.

  7. A high-throughput lab-on-a-chip interface for zebrafish embryo tests in drug discovery and ecotoxicology

    Science.gov (United States)

    Zhu, Feng; Akagi, Jin; Hall, Chris J.; Crosier, Kathryn E.; Crosier, Philip S.; Delaage, Pierre; Wlodkowic, Donald

    2013-12-01

    Drug discovery screenings performed on zebrafish embryos mirror with a high level of accuracy. The tests usually performed on mammalian animal models, and the fish embryo toxicity assay (FET) is one of the most promising alternative approaches to acute ecotoxicity testing with adult fish. Notwithstanding this, conventional methods utilising 96-well microtiter plates and manual dispensing of fish embryos are very time-consuming. They rely on laborious and iterative manual pipetting that is a main source of analytical errors and low throughput. In this work, we present development of a miniaturised and high-throughput Lab-on-a-Chip (LOC) platform for automation of FET assays. The 3D high-density LOC array was fabricated in poly-methyl methacrylate (PMMA) transparent thermoplastic using infrared laser micromachining while the off-chip interfaces were fabricated using additive manufacturing processes (FDM and SLA). The system's design facilitates rapid loading and immobilization of a large number of embryos in predefined clusters of traps during continuous microperfusion of drugs/toxins. It has been conceptually designed to seamlessly interface with both upright and inverted fluorescent imaging systems and also to directly interface with conventional microtiter plate readers that accept 96-well plates. We also present proof-of-concept interfacing with a high-speed imaging cytometer Plate RUNNER HD® capable of multispectral image acquisition with resolution of up to 8192 x 8192 pixels and depth of field of about 40 μm. Furthermore, we developed a miniaturized and self-contained analytical device interfaced with a miniaturized USB microscope. This system modification is capable of performing rapid imaging of multiple embryos at a low resolution for drug toxicity analysis.

  8. Patient-derived stem cells: pathways to drug discovery for brain diseases

    Directory of Open Access Journals (Sweden)

    Alan eMackay-Sim

    2013-03-01

    Full Text Available The concept of drug discovery through stem cell biology is based on technological developments whose genesis is now coincident. The first is automated cell microscopy with concurrent advances in image acquisition and analysis, known as high content screening (HCS. The second is patient-derived stem cells for modelling the cell biology of brain diseases. HCS has developed from the requirements of the pharmaceutical industry for high throughput assays to screen thousands of chemical compounds in the search for new drugs. HCS combines new fluorescent probes with automated microscopy and computational power to quantify the effects of compounds on cell functions. Stem cell biology has advanced greatly since the discovery of genetic reprogramming of somatic cells into induced pluripotent stem cells (iPSCs. There is now a rush of papers describing their generation from patients with various diseases of the nervous system. Although the majority of these have been genetic diseases, iPSCs have been generated from patients with complex diseases (schizophrenia and sporadic Parkinson’s disease. Some genetic diseases are also modelled in embryonic stem cells generated from blastocysts rejected during in vitro fertilisation. Neural stem cells have been isolated from post-mortem brain of Alzheimer’s patients and neural stem cells generated from biopsies of the olfactory organ of patients is another approach. These olfactory neurosphere-derived cells demonstrate robust disease-specific phenotypes in patients with schizophrenia and Parkinson’s disease. High content screening is already in use to find small molecules for the generation and differentiation of embryonic stem cells and induced pluripotent stem cells. The challenges for using stem cells for drug discovery are to develop robust stem cell culture methods that meet the rigorous requirements for repeatable, consistent quantities of defined cell types at the industrial scale necessary for high

  9. Assessment of Dengue virus helicase and methyltransferase as targets for fragment-based drug discovery.

    Science.gov (United States)

    Coutard, Bruno; Decroly, Etienne; Li, Changqing; Sharff, Andrew; Lescar, Julien; Bricogne, Gérard; Barral, Karine

    2014-06-01

    Seasonal and pandemic flaviviruses continue to be leading global health concerns. With the view to help drug discovery against Dengue virus (DENV), a fragment-based experimental approach was applied to identify small molecule ligands targeting two main components of the flavivirus replication complex: the NS3 helicase (Hel) and the NS5 mRNA methyltransferase (MTase) domains. A library of 500 drug-like fragments was first screened by thermal-shift assay (TSA) leading to the identification of 36 and 32 fragment hits binding Hel and MTase from DENV, respectively. In a second stage, we set up a fragment-based X-ray crystallographic screening (FBS-X) in order to provide both validated fragment hits and structural binding information. No fragment hit was confirmed for DENV Hel. In contrast, a total of seven fragments were identified as DENV MTase binders and structures of MTase-fragment hit complexes were solved at resolution at least 2.0Å or better. All fragment hits identified contain either a five- or six-membered aromatic ring or both, and three novel binding sites were located on the MTase. To further characterize the fragment hits identified by TSA and FBS-X, we performed enzymatic assays to assess their inhibition effect on the N7- and 2'-O-MTase enzymatic activities: five of these fragment hits inhibit at least one of the two activities with IC50 ranging from 180μM to 9mM. This work validates the FBS-X strategy for identifying new anti-flaviviral hits targeting MTase, while Hel might not be an amenable target for fragment-based drug discovery (FBDD). This approach proved to be a fast and efficient screening method for FBDD target validation and discovery of starting hits for the development of higher affinity molecules that bind to novel allosteric sites. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Removing obstacles in neuroscience drug discovery: the future path for animal models.

    Science.gov (United States)

    Markou, Athina; Chiamulera, Christian; Geyer, Mark A; Tricklebank, Mark; Steckler, Thomas

    2009-01-01

    Despite great advances in basic neuroscience knowledge, the improved understanding of brain functioning has not yet led to the introduction of truly novel pharmacological approaches to the treatment of central nervous system (CNS) disorders. This situation has been partly attributed to the difficulty of predicting efficacy in patients based on results from preclinical studies. To address these issues, this review critically discusses the traditional role of animal models in drug discovery, the difficulties encountered, and the reasons why this approach has led to suboptimal utilization of the information animal models provide. The discussion focuses on how animal models can contribute most effectively to translational medicine and drug discovery and the changes needed to increase the probability of achieving clinical benefit. Emphasis is placed on the need to improve the flow of information from the clinical/human domain to the preclinical domain and the benefits of using truly translational measures in both preclinical and clinical testing. Few would dispute the need to move away from the concept of modeling CNS diseases in their entirety using animals. However, the current emphasis on specific dimensions of psychopathology that can be objectively assessed in both clinical populations and animal models has not yet provided concrete examples of successful preclinical-clinical translation in CNS drug discovery. The purpose of this review is to strongly encourage ever more intensive clinical and preclinical interactions to ensure that basic science knowledge gained from improved animal models with good predictive and construct validity readily becomes available to the pharmaceutical industry and clinical researchers to benefit patients as quickly as possible.

  11. Advantage of the Dissolution/Permeation System for Estimating Oral Absorption of Drug Candidates in the Drug Discovery Stage.

    Science.gov (United States)

    Miyaji, Yoshihiro; Fujii, Yoshimine; Takeyama, Shoko; Kawai, Yukinori; Kataoka, Makoto; Takahashi, Masayuki; Yamashita, Shinji

    2016-05-02

    In order to increase the success rate in the development of oral drugs, an in vitro method, which can accurately estimate human oral absorption of a large variety of compounds from solid formulations, is required in the drug discovery stage. A dissolution/permeation (D/P) system is an in vitro system that simultaneously evaluates dissolution and permeation processes of drugs administered orally. In this study, we have investigated the advantages of a D/P system for use in the provisional estimation of human oral absorption of a drug (absorbed fraction, Fa) by applying it in its solid state. The D/P system mounted with a Madin-Darby canine kidney (MDCK) II cell monolayer was used to simultaneously evaluate the dissolved and the permeated amounts (% of dose) of 48 marketed drugs. Slightly modified, fasted-state simulated intestinal fluid (FaSSIFmod, 8 mL) was used as the apical medium of the D/P system. Each test drug was applied to the apical side of the D/P system as a suspension at one-hundredth of the clinical dose. The apparent permeability coefficient across the MDCK II cell monolayer was estimated in a buffer solution (pH 6.5). The octanol/water distribution coefficient (Log D) was measured at pH 6.5 by a flask shaking method. Transport medium (TM, pH 6.5), a buffer solution removing lecithin and taurocholate from FaSSIFmod, was used to determine the solubility at 24 h after applying drugs. The solubility in TM was used as a free drug concentration in FaSSIFmod. A good correlation was obtained between observed human Fa and the permeated amount in the D/P system. When the sigmoidal curve was obtained by the curve fitting to the data, the determination coefficient was R(2) = 0.79 and the 95% interval of the predicted Fa values was about ±24% for all drugs tested in the present study. For comparison, the permeated amount was calculated by multiplying the permeability of each drug (in vitro Papp) by the solubility in FaSSIFmod. However, the calculated permeated

  12. Fragment-Based Drug Discovery in Academia: Experiences From a Tuberculosis Programme

    Science.gov (United States)

    Heikkila, Timo J.; Surade, Sachin; Silvestre, Hernani L.; Dias, Marcio V. B.; Ciulli, Alessio; Bromfield, Karen; Scott, Duncan; Howard, Nigel; Wen, Shijun; Wei, Alvin Hung; Osborne, David; Abell, Chris; Blundell, Tom L.

    The problems associated with neglected diseases are often compounded by increasing incidence of antibiotic resistance. Patient negligence and abuse of antibiotics has lead to explosive growth in cases of tuberculosis, with some M. tuberculosis strains becoming virtually untreatable. Structure-based drug development is viewed as cost-effective and time-consuming method for discovery and development of hits to lead compounds. In this review we will discuss the suitability of fragment-based methods for developing new chemotherapeutics against neglected diseases, providing examples from our tuberculosis programme.

  13. Novel Technology for Protein-Protein Interaction-based Targeted Drug Discovery

    Directory of Open Access Journals (Sweden)

    Jung Me Hwang

    2011-12-01

    Full Text Available We have developed a simple but highly efficient in-cell protein-protein interaction (PPI discovery system based on the translocation properties of protein kinase C- and its C1a domain in live cells. This system allows the visual detection of trimeric and dimeric protein interactions including cytosolic, nuclear, and/or membrane proteins with their cognate ligands. In addition, this system can be used to identify pharmacological small compounds that inhibit specific PPIs. These properties make this PPI system an attractive tool for screening drug candidates and mapping the protein interactome.

  14. Parasite Mitogen-Activated Protein Kinases as Drug Discovery Targets to Treat Human Protozoan Pathogens

    Directory of Open Access Journals (Sweden)

    Michael J. Brumlik

    2011-01-01

    Full Text Available Protozoan pathogens are a highly diverse group of unicellular organisms, several of which are significant human pathogens. One group of protozoan pathogens includes obligate intracellular parasites such as agents of malaria, leishmaniasis, babesiosis, and toxoplasmosis. The other group includes extracellular pathogens such as agents of giardiasis and amebiasis. An unfortunate unifying theme for most human protozoan pathogens is that highly effective treatments for them are generally lacking. We will review targeting protozoan mitogen-activated protein kinases (MAPKs as a novel drug discovery approach towards developing better therapies, focusing on Plasmodia, Leishmania, and Toxoplasma, about which the most is known.

  15. High throughput gene expression screening: its emerging role in drug discovery.

    Science.gov (United States)

    Freeman, T

    2000-05-01

    The genetic makeup and the environment influences the health and welfare of an individual. At both the tissue and cellular level, physiological function can be correlated with the transcription of genes, whose protein products contribute and influence the activity of biological systems. In order to understand these processes, it is therefore essential to determine the temporal and spatial patterns of gene expression, and, with particular relevance to drug discovery, define changes that occur during development of disease or treatment with therapeutic agents. Copyright 2000 John Wiley & Sons, Inc.

  16. Current developments in and importance of high-performance computing in drug discovery.

    Science.gov (United States)

    Pitera, Jed W

    2009-05-01

    A number of current trends that are being adopted to reshape the field of high-performance computing exist, including multi-core systems, accelerators, and software frameworks for large-scale intrinsically parallel applications. These trends intersect with recent developments in computational chemistry to provide new capabilities for computer-aided drug discovery. Although this review focuses primarily on the application domains of molecular modeling and biomolecular simulation, these computing changes are relevant for other computationally intensive tasks, such as instrument data processing and chemoinformatics.

  17. A Multiplatform Approach for the Discovery of Novel Drug-Induced Kidney Injury Biomarkers.

    Science.gov (United States)

    Chen, Liuxi; Smith, James; Mikl, Jaromir; Fryer, Ryan; Pack, Frank; Williams, Brad J; Phillips, Jonathan A; Papov, Vladimir V

    2017-10-16

    Drug-induced kidney injury (DIKI) is a common toxicity observed in pharmaceutical development. We demonstrated the use of label-free liquid chromatography-mass spectrometry (LC-MS) and multiplex liquid chromatography-single reaction monitoring (LC-SRM) as practical extensions of standard immunoassay based safety biomarker assessments for identification of new toxicity marker candidates and for improved mechanistic understanding. Two different anticancer drugs, doxorubicin (DOX) and cisplatin (cis-diamminedichloridoplatinum, CDDP), were chosen as the toxicants due to their different modes of nephrotoxicity. Analyses of urine samples from toxicant treated and untreated rats were compared to identify biochemical analytes that changed in response to toxicant exposure. A discovery (label-free LC-MS) and targeted proteomics (multiplex LC-SRM) approach was used in combination with well established immunoassay experiments for the identification of a panel of urinary protein markers related to drug induced nephrotoxicity in rats. The initial generation of an expanded set of markers was accomplished using the label-free LC-MS discovery screen and ELISA based analysis of six nephrotoxicity biomarker proteins. Diagnostic performance of the expanded analyte set was statistically compared to conventional nephrotoxicity biomarkers. False discovery rate (FDR) analysis revealed 18 and 28 proteins from the CDDP and DOX groups, respectively, exhibiting significant differences between the vehicle and treated groups. Multiplex SRM assays were constructed to more precisely quantify candidate markers selected from the discovery screen and immunoassay experiments. To evaluate the sensitivity and specificity for each of the candidate biomarkers, histopathology severity scores were used as a benchmark for renal injury followed by receiver-operating characteristic (ROC) curve analysis on selected biomarkers. Further examination of the best performing analytes revealed relevant biological

  18. Discovery of a low order drug-cell response surface for applications in personalized medicine

    Science.gov (United States)

    Ding, Xianting; Liu, Wenjia; Weiss, Andrea; Li, Yiyang; Wong, Ieong; Griffioen, Arjan W.; van den Bergh, Hubert; Xu, Hongquan; Nowak-Sliwinska, Patrycja; Ho, Chih-Ming

    2014-12-01

    The cell is a complex system involving numerous components, which may often interact in a non-linear dynamic manner. Diseases at the cellular level are thus likely to involve multiple cellular constituents and pathways. As some drugs, or drug combinations, may act synergistically on these multiple pathways, they might be more effective than the respective single target agents. Optimizing a drug mixture for a given disease in a particular patient is particularly challenging due to both the difficulty in the selection of the drug mixture components to start out with, and the all-important doses of these drugs to be applied. For n concentrations of m drugs, in principle, nm combinations will have to be tested. As this may lead to a costly and time-consuming investigation for each individual patient, we have developed a Feedback System Control (FSC) technique which can rapidly select the optimal drug-dose combination from the often millions of possible combinations. By testing this FSC technique in a number of experimental systems representing different disease states, we found that the response of cells to multiple drugs is well described by a low order, rather smooth, drug-mixture-input/drug-effect-output multidimensional surface. The main consequences of this are that optimal drug combinations can be found in a surprisingly small number of tests, and that translation from in vitro to in vivo is simplified. This points to the possibility of personalized optimal drug mixtures in the near future. This unexpectedly simple input-output relationship may also lead to a simple solution for handling the issue of human diversity in cancer therapeutics.

  19. Influence networks based on coexpression improve drug target discovery for the development of novel cancer therapeutics

    Science.gov (United States)

    2014-01-01

    Background The demand for novel molecularly targeted drugs will continue to rise as we move forward toward the goal of personalizing cancer treatment to the molecular signature of individual tumors. However, the identification of targets and combinations of targets that can be safely and effectively modulated is one of the greatest challenges facing the drug discovery process. A promising approach is to use biological networks to prioritize targets based on their relative positions to one another, a property that affects their ability to maintain network integrity and propagate information-flow. Here, we introduce influence networks and demonstrate how they can be used to generate influence scores as a network-based metric to rank genes as potential drug targets. Results We use this approach to prioritize genes as drug target candidates in a set of ER + breast tumor samples collected during the course of neoadjuvant treatment with the aromatase inhibitor letrozole. We show that influential genes, those with high influence scores, tend to be essential and include a higher proportion of essential genes than those prioritized based on their position (i.e. hubs or bottlenecks) within the same network. Additionally, we show that influential genes represent novel biologically relevant drug targets for the treatment of ER + breast cancers. Moreover, we demonstrate that gene influence differs between untreated tumors and residual tumors that have adapted to drug treatment. In this way, influence scores capture the context-dependent functions of genes and present the opportunity to design combination treatment strategies that take advantage of the tumor adaptation process. Conclusions Influence networks efficiently find essential genes as promising drug targets and combinations of targets to inform the development of molecularly targeted drugs and their use. PMID:24495353

  20. FAF-Drugs2: Free ADME/tox filtering tool to assist drug discovery and chemical biology projects

    Directory of Open Access Journals (Sweden)

    Miteva Maria A

    2008-09-01

    Full Text Available Abstract Background Drug discovery and chemical biology are exceedingly complex and demanding enterprises. In recent years there are been increasing awareness about the importance of predicting/optimizing the absorption, distribution, metabolism, excretion and toxicity (ADMET properties of small chemical compounds along the search process rather than at the final stages. Fast methods for evaluating ADMET properties of small molecules often involve applying a set of simple empirical rules (educated guesses and as such, compound collections' property profiling can be performed in silico. Clearly, these rules cannot assess the full complexity of the human body but can provide valuable information and assist decision-making. Results This paper presents FAF-Drugs2, a free adaptable tool for ADMET filtering of electronic compound collections. FAF-Drugs2 is a command line utility program (e.g., written in Python based on the open source chemistry toolkit OpenBabel, which performs various physicochemical calculations, identifies key functional groups, some toxic and unstable molecules/functional groups. In addition to filtered collections, FAF-Drugs2 can provide, via Gnuplot, several distribution diagrams of major physicochemical properties of the screened compound libraries. Conclusion We have developed FAF-Drugs2 to facilitate compound collection preparation, prior to (or after experimental screening or virtual screening computations. Users can select to apply various filtering thresholds and add rules as needed for a given project. As it stands, FAF-Drugs2 implements numerous filtering rules (23 physicochemical rules and 204 substructure searching rules that can be easily tuned.

  1. Systems pharmacology in drug discovery and therapeutic insight for herbal medicines.

    Science.gov (United States)

    Huang, Chao; Zheng, Chunli; Li, Yan; Wang, Yonghua; Lu, Aiping; Yang, Ling

    2014-09-01

    Systems pharmacology is an emerging field that integrates systems biology and pharmacology to advance the process of drug discovery, development and the understanding of therapeutic mechanisms. The aim of the present work is to highlight the role that the systems pharmacology plays across the traditional herbal medicines discipline, which is exemplified by a case study of botanical drugs applied in the treatment of depression. First, based on critically examined pharmacology and clinical knowledge, we propose a large-scale statistical analysis to evaluate the efficiency of herbs used in traditional medicines. Second, we focus on the exploration of the active ingredients and targets by carrying out complex structure-, omics- and network-based systematic investigations. Third, specific informatics methods are developed to infer drug-disease connections, with purpose to understand how drugs work on the specific targets and pathways. Finally, we propose a new systems pharmacology method, which is further applied to an integrated platform (Herbal medicine Systems Pharmacology) of blended herbal medicine and omics data sets, allowing for the systematization of current and traditional knowledge of herbal medicines and, importantly, for the application of this emerging body of knowledge to the development of new drugs for complex human diseases. © The Author 2013. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. Drug discovery and therapeutic delivery for the treatment of B and T cell tumors.

    Science.gov (United States)

    Stephenson, Regan; Singh, Ankur

    2017-05-15

    Hematological malignancies manifest as lymphoma, leukemia, and myeloma, and remain a burden on society. From initial therapy to endless relapse-related treatment, societal burden is felt not only in the context of healthcare cost, but also in the compromised quality of life of patients. Long-term therapeutic strategies have become the standard in keeping hematological malignancies at bay as these cancers develop resistance to each round of therapy with time. As a result, there is a continual need for the development of new drugs to combat resistant disease in order to prolong patient life, if not to produce a cure. This review aims to summarize advances in targeting lymphoma, leukemia, and myeloma through both cutting-edge and well established platforms. Current standard of treatment will be reviewed for these malignancies and emphasis will be made on new therapy development in the areas of antibody engineering, epigenetic small molecule inhibiting drugs, vaccine development, and chimeric antigen receptor cell engineering. In addition, platforms for the delivery of these and other drugs will be reviewed including antibody-drug conjugates, micro- and nanoparticles, and multimodal hydrogels. Lastly, we propose that tissue engineered constructs for hematological malignancies are the missing link in targeted drug discovery alongside mouse and patient-derived xenograft models. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Live Cell in Vitro and in Vivo Imaging Applications: Accelerating Drug Discovery

    Science.gov (United States)

    Isherwood, Beverley; Timpson, Paul; McGhee, Ewan J; Anderson, Kurt I; Canel, Marta; Serrels, Alan; Brunton, Valerie G; Carragher, Neil O

    2011-01-01

    Dynamic regulation of specific molecular processes and cellular phenotypes in live cell systems reveal unique insights into cell fate and drug pharmacology that are not gained from traditional fixed endpoint assays. Recent advances in microscopic imaging platform technology combined with the development of novel optical biosensors and sophisticated image analysis solutions have increased the scope of live cell imaging applications in drug discovery. We highlight recent literature examples where live cell imaging has uncovered novel insight into biological mechanism or drug mode-of-action. We survey distinct types of optical biosensors and associated analytical methods for monitoring molecular dynamics, in vitro and in vivo. We describe the recent expansion of live cell imaging into automated target validation and drug screening activities through the development of dedicated brightfield and fluorescence kinetic imaging platforms. We provide specific examples of how temporal profiling of phenotypic response signatures using such kinetic imaging platforms can increase the value of in vitro high-content screening. Finally, we offer a prospective view of how further application and development of live cell imaging technology and reagents can accelerate preclinical lead optimization cycles and enhance the in vitro to in vivo translation of drug candidates. PMID:24310493

  4. Amazonian Plant Natural Products: Perspectives for Discovery of New Antimalarial Drug Leads

    Directory of Open Access Journals (Sweden)

    Lucio H. Freitas-Junior

    2013-08-01

    Full Text Available Plasmodium falciparum and P. vivax malaria parasites are now resistant, or showing signs of resistance, to most drugs used in therapy. Novel chemical entities that exhibit new mechanisms of antiplasmodial action are needed. New antimalarials that block transmission of Plasmodium spp. from humans to Anopheles mosquito vectors are key to malaria eradication efforts. Although P. vivax causes a considerable number of malaria cases, its importance has for long been neglected. Vivax malaria can cause severe manifestations and death; hence there is a need for P. vivax-directed research. Plants used in traditional medicine, namely Artemisia annua and Cinchona spp. are the sources of the antimalarial natural products artemisinin and quinine, respectively. Based on these compounds, semi-synthetic artemisinin-derivatives and synthetic quinoline antimalarials have been developed and are the most important drugs in the current therapeutic arsenal for combating malaria. In the Amazon region, where P. vivax predominates, there is a local tradition of using plant-derived preparations to treat malaria. Here, we review the current P. falciparum and P. vivax drug-sensitivity assays, focusing on challenges and perspectives of drug discovery for P. vivax, including tests against hypnozoites. We also present the latest findings of our group and others on the antiplasmodial and antimalarial chemical components from Amazonian plants that may be potential drug leads against malaria.

  5. Rapid Methods for detection of Veterinary Drug residues in Meat

    Directory of Open Access Journals (Sweden)

    Chandan

    2010-10-01

    Full Text Available The use of substances having hormonal or thyreostatic action as well as b-agonists is banned in many countries. However, sometimes forbidden drugs may be added to feeds for illegal administration to farm animals for promoting increased muscle development or increased water retention and thus obtain an economical benefit. The result is a fraudulent overweight of meat but, what is worse, residues of these substances may remain in meat and may pose a real threat to the consumer either through exposure to the residues, transfer of antibiotic resistance or allergy risk. This has exerted a great concern among the meat consumers. The control of the absence of these forbidden substances in animal foods and feeds is regulated in the European Union by Directive 96/23/EC on measures to monitor certain substances and residues in live animals and animal products. Analytical methodology, including criteria for identification and confirmation, for the monitoring of compliance was also given in Decisions 93/256/EEC and 93/257/EEC. More recently, Decision 2002/657/EC provided rules for the analytical methods to be used in testing of official samples. New substances with anabolic properties are being detected year by year increasing the list of forbidden compounds to be tested. Furthermore, the extended practice consisting in the use of “cocktails” (mixtures of low amounts of several substances that exert a synergistic effect to have a similar growth promotion, reduces the margin for an effective analytical detection. Thus, the evolution of the “black market” is making really difficult to have an effective analytical control of the residues of these substances in foods of animal origin. Control laboratories must face an increasing demand of analysis like the growing number of residues to be analysed in different types of samples, the strict guidelines for analytical methodologies according to the latest Directives, the increased costs of such new

  6. Application of SMILES Notation Based Optimal Descriptors in Drug Discovery and Design.

    Science.gov (United States)

    Veselinović, Aleksandar M; Veselinović, Jovana B; Živković, Jelena V; Nikolić, Goran M

    2015-01-01

    SMILES notation based optimal descriptors as a universal tool for the QSAR analysis with further application in drug discovery and design is presented. The basis of this QSAR modeling is Monte Carlo method which has important advantages over other methods, like the possibility of analysis of a QSAR as a random event, is discussed. The advantages of SMILES notation based optimal descriptors in comparison to commonly used descriptors are defined. The published results of QSAR modeling with SMILES notation based optimal descriptors applied for various pharmacologically important endpoints are listed. The presented QSAR modeling approach obeys OECD principles and has mechanistic interpretation with possibility to identify molecular fragments that contribute in positive and negative way to studied biological activity, what is of big importance in computer aided drug design of new compounds with desired activity.

  7. Failed drug discovery in psychiatry: time for human genome-guided solutions.

    Science.gov (United States)

    Papassotiropoulos, Andreas; de Quervain, Dominique J F

    2015-04-01

    Our knowledge about the molecular and neural mechanisms of emotional and cognitive processes has increased exponentially in the past decades. Unfortunately, there has been no translation of this knowledge into the development of novel and improved pharmacological treatments for psychiatric disorders. We comment on some of the reasons for failed drug discovery in psychiatry, particularly on the use of ill-suited disease models and on the use of diagnostic constructs unrelated to the underlying biological mechanisms. Furthermore, we argue that the use of human genetic findings together with biologically informed phenotypes and advanced data-mining methodology will catalyze the identification of promising drug targets and, finally, will lead to improved therapeutic outcomes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Frontal affinity chromatography with MS detection (FAC-MS) in drug discovery.

    Science.gov (United States)

    Slon-Usakiewicz, Jacek J; Ng, William; Dai, Jin-Rui; Pasternak, Andrew; Redden, Peter R

    2005-03-15

    The emergence of a relatively new technique resulting from a combination of frontal affinity chromatography coupled with MS detection (FAC-MS) has extended the capabilities of MS in drug discovery and development. Its application in a broad range of biological systems, together with its label-free operation, relatively high throughput, ability to rank ligands and determine Kd, makes FAC-MS a universal tool enabling convenient and efficient screening in the identification of new potential drug leads. Here we will highlight FAC-MS screening studies and discuss where it can be applied in evaluating multiple protein-binding sites, protein-protein interactions and inactive proteins, and also in determining selectivity.

  9. A Fluorescence Displacement Assay for Antidepressant Drug Discovery Based on Ligand-Conjugated Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jerry [Vanderbilt University; Tomlinson, Ian [Oak Ridge National Laboratory (ORNL); Warnement, Michael [Vanderbilt University; Iwamoto, Hideki [Vanderbilt University

    2011-01-01

    The serotonin (5-hydroxytryptamine, 5-HT) transporter (SERT) protein plays a central role in terminating 5-HT neurotransmission and is the most important therapeutic target for the treatment of major depression and anxiety disorders. We report an innovative, versatile, and target-selective quantum dot (QD) labeling approach for SERT in single Xenopus oocytes that can be adopted as a drug-screening platform. Our labeling approach employs a custom-made, QD-tagged indoleamine derivative ligand, IDT318, that is structurally similar to 5-HT and accesses the primary binding site with enhanced human SERT selectivity. Incubating QD-labeled oocytes with paroxetine (Paxil), a high-affinity SERT-specific inhibitor, showed a concentration- and time-dependent decrease in QD fluorescence, demonstrating the utility of our approach for the identification of SERT modulators. Furthermore, with the development of ligands aimed at other pharmacologically relevant targets, our approach may potentially form the basis for a multitarget drug discovery platform.

  10. Multitasking models for quantitative structure-biological effect relationships: current status and future perspectives to speed up drug discovery.

    Science.gov (United States)

    Speck-Planche, Alejandro; Cordeiro, Maria Natália Dias Soeiro

    2015-03-01

    Drug discovery is the process of designing new candidate medications for the treatment of diseases. Over many years, drugs have been identified serendipitously. Nowadays, chemoinformatics has emerged as a great ally, helping to rationalize drug discovery. In this sense, quantitative structure-activity relationships (QSAR) models have become complementary tools, permitting the efficient virtual screening for a diverse number of pharmacological profiles. Despite the applications of current QSAR models in the search for new drug candidates, many aspects remain unresolved. To date, classical QSAR models are able to predict only one type of biological effect (activity, toxicity, etc.) against only one type of generic target. The present review discusses innovative and evolved QSAR models, which are focused on multitasking quantitative structure-biological effect relationships (mtk-QSBER). Such models can integrate multiple kinds of chemical and biological data, allowing the simultaneous prediction of pharmacological activities, toxicities and/or other safety profiles. The authors strongly believe, given the potential of mtk-QSBER models to simultaneously predict the dissimilar biological effects of chemicals, that they have much value as in silico tools for drug discovery. Indeed, these models can speed up the search for efficacious drugs in a number of areas, including fragment-based drug discovery and drug repurposing.

  11. Utilization of estimated physicochemical properties as an integrated part of predicting hepatic clearance in the early drug-discovery stage: Impact of plasma and microsomal binding.

    Science.gov (United States)

    Emoto, C; Murayama, N; Rostami-Hodjegan, A; Yamazaki, H

    2009-03-01

    Rapid prediction of hepatic clearance for drug candidates plays an important role for decision-making in the early drug-discovery stage. Although knowledge of protein binding in both plasma and microsomal components is needed in the prediction of metabolic clearance from metabolic stability studies, the capacity of protein binding assays are generally lower than those of metabolic stability assays. However, many in silico prediction methods for protein binding are now available and software packages such as ACDLabs, ADMET Predictor and SimCYP incorporate various aspects of in silico predictions relevant to estimating binding and clearance. This has facilitated the use of various estimated or measured physicochemical parameters, relevant to binding, to predict clearance. In this study, prediction of protein binding for 33 drugs was evaluated using various combinations of estimated physicochemical properties. Subsequently, the most accurate estimated protein binding values were used to predict hepatic clearance using the SimCYP software. For the drugs used herein, SimCYP provided the most accurate prediction for protein binding in both plasma and microsomes using physiochemical properties estimated with the ACDLabs software. In conclusion, the use of in silico methods as an integrated part of predicting hepatic clearance in early drug-discovery stage is recommended.

  12. Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery.

    Science.gov (United States)

    Imbrici, Paola; Liantonio, Antonella; Camerino, Giulia M; De Bellis, Michela; Camerino, Claudia; Mele, Antonietta; Giustino, Arcangela; Pierno, Sabata; De Luca, Annamaria; Tricarico, Domenico; Desaphy, Jean-Francois; Conte, Diana

    2016-01-01

    In the human genome more than 400 genes encode ion channels, which are transmembrane proteins mediating ion fluxes across membranes. Being expressed in all cell types, they are involved in almost all physiological processes, including sense perception, neurotransmission, muscle contraction, secretion, immune response, cell proliferation, and differentiation. Due to the widespread tissue distribution of ion channels and their physiological functions, mutations in genes encoding ion channel subunits, or their interacting proteins, are responsible for inherited ion channelopathies. These diseases can range from common to very rare disorders and their severity can be mild, disabling, or life-threatening. In spite of this, ion channels are the primary target of only about 5% of the marketed drugs suggesting their potential in drug discovery. The current review summarizes the therapeutic management of the principal ion channelopathies of central and peripheral nervous system, heart, kidney, bone, skeletal muscle and pancreas, resulting from mutations in calcium, sodium, potassium, and chloride ion channels. For most channelopathies the therapy is mainly empirical and symptomatic, often limited by lack of efficacy and tolerability for a significant number of patients. Other channelopathies can exploit ion channel targeted drugs, such as marketed sodium channel blockers. Developing new and more specific therapeutic approaches is therefore required. To this aim, a major advancement in the pharmacotherapy of channelopathies has been the discovery that ion channel mutations lead to change in biophysics that can in turn specifically modify the sensitivity to drugs: this opens the way to a pharmacogenetics strategy, allowing the development of a personalized therapy with increased efficacy and reduced side effects. In addition, the identification of disease modifiers in ion channelopathies appears an alternative strategy to discover novel druggable targets.

  13. Systems chemical biology and the Semantic Web: what they mean for the future of drug discovery research.

    Science.gov (United States)

    Wild, David J; Ding, Ying; Sheth, Amit P; Harland, Lee; Gifford, Eric M; Lajiness, Michael S

    2012-05-01

    Systems chemical biology, the integration of chemistry, biology and computation to generate understanding about the way small molecules affect biological systems as a whole, as well as related fields such as chemogenomics, are central to emerging new paradigms of drug discovery such as drug repurposing and personalized medicine. Recent Semantic Web technologies such as RDF and SPARQL are technical enablers of systems chemical biology, facilitating the deployment of advanced algorithms for searching and mining large integrated datasets. In this paper, we aim to demonstrate how these technologies together can change the way that drug discovery is accomplished. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Concise Review: Induced Pluripotent Stem Cell-Based Drug Discovery for Mitochondrial Disease.

    Science.gov (United States)

    Inak, Gizem; Lorenz, Carmen; Lisowski, Pawel; Zink, Annika; Mlody, Barbara; Prigione, Alessandro

    2017-07-01

    High attrition rates and loss of capital plague the drug discovery process. This is particularly evident for mitochondrial disease that typically involves neurological manifestations and is caused by nuclear or mitochondrial DNA defects. This group of heterogeneous disorders is difficult to target because of the variability of the symptoms among individual patients and the lack of viable modeling systems. The use of induced pluripotent stem cells (iPSCs) might significantly improve the search for effective therapies for mitochondrial disease. iPSCs can be used to generate patient-specific neural cell models in which innovative compounds can be identified or validated. Here we discuss the promises and challenges of iPSC-based drug discovery for mitochondrial disease with a specific focus on neurological conditions. We anticipate that a proper use of the potent iPSC technology will provide critical support for the development of innovative therapies against these untreatable and detrimental disorders. Stem Cells 2017;35:1655-1662. © 2017 AlphaMed Press.

  15. Drug discovery of neurodegenerative disease through network pharmacology approach in herbs.

    Science.gov (United States)

    Ke, Zhipeng; Zhang, Xinzhuang; Cao, Zeyu; Ding, Yue; Li, Na; Cao, Liang; Wang, Tuanjie; Zhang, Chenfeng; Ding, Gang; Wang, Zhenzhong; Xu, Xiaojie; Xiao, Wei

    2016-03-01

    Neurodegenerative diseases, referring to as the progressive loss of structure and function of neurons, constitute one of the major challenges of modern medicine. Traditional Chinese herbs have been used as a major preventive and therapeutic strategy against disease for thousands years. The numerous species of medicinal herbs and Traditional Chinese Medicine (TCM) compound formulas in nervous system disease therapy make it a large chemical resource library for drug discovery. In this work, we collected 7362 kinds of herbs and 58,147 Traditional Chinese medicinal compounds (Tcmcs). The predicted active compounds in herbs have good oral bioavailability and central nervous system (CNS) permeability. The molecular docking and network analysis were employed to analyze the effects of herbs on neurodegenerative diseases. In order to evaluate the predicted efficacy of herbs, automated text mining was utilized to exhaustively search in PubMed by some related keywords. After that, receiver operator characteristic (ROC) curves was used to estimate the accuracy of predictions. Our study suggested that most herbs were distributed in family of Asteraceae, Fabaceae, Lamiaceae and Apocynaceae. The predictive model yielded good sensitivity and specificity with the AUC values above 0.800. At last, 504 kinds of herbs were obtained by using the optimal cutoff values in ROC curves. These 504 herbs would be the most potential herb resources for neurodegenerative diseases treatment. This study would give us an opportunity to use these herbs as a chemical resource library for drug discovery of anti-neurodegenerative disease. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. In vivo toxicology of excipients commonly employed in drug discovery in rats.

    Science.gov (United States)

    Gopinathan, Suma; O'Neill, Emily; Rodriguez, Lawrence A; Champ, Rose; Phillips, Megan; Nouraldeen, Amr; Wendt, Mary; Wilson, Alan G E; Kramer, Jeffrey A

    2013-01-01

    Toxicology and pharmacology studies conducted in the early stages of drug discovery often require formulation strategies involving the use of excipients with limited knowledge regarding their preclinical safety liabilities. The use of excipients is vital to efforts to solubilize and deliver small molecules in drug discovery. Whilst excipients can have a significant impact on pharmacology and toxicology studies by enabling solubility to maximize systemic exposure, they also have the potential to obscure clinical pathology endpoints. In this article, we report on the in vivo safety in rats for 18 excipients commonly employed in formulations for preclinical pharmacology and toxicology studies. The test articles were administered once daily for five days, by oral gavage to male Sprague Dawley rats, and the animals monitored for visible clinical signs. At the end of the study, routine necropsy and clinical pathology endpoints were investigated. None of the excipients tested were acutely toxic. However, there were effects on parameters commonly evaluated as indicators of health and/or toxicological response in regulated preclinical safety studies. While the excipients tested were generally well tolerated, several were found to affect common clinical pathology endpoints in a manner that might confound or conceivably mask the interpretation of compound mediated adverse/pharmacological effects. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Ba/F3 cells and their use in kinase drug discovery.

    Science.gov (United States)

    Warmuth, Markus; Kim, Sungjoon; Gu, Xiang-ju; Xia, Gang; Adrián, Francisco

    2007-01-01

    Due to their ability to function as dominant oncogenes, protein kinases have become favored targets in the quest for 'molecularly-targeted' cancer chemotherapeutics. The discovery of a large number of cancer-associated mutations in the kinome, and the progress in developing specific small-molecule kinase inhibitors has increased the need for accurate, reproducible, and efficient kinase activity-dependent cellular assay systems. Ba/F3, a murine interleukin-3 dependent pro-B cell line is increasingly popular as a model system for assessing both the potency and downstream signaling of kinase oncogenes, and the ability of small-molecule kinase inhibitors to block kinase activity. Facilitated by their growth properties, Ba/F3 cells have recently been adapted to high-throughput assay formats for compound profiling. Further, several published approaches show promise in predicting resistance to small-molecule kinase inhibitors elicited by point mutations interfering with inhibitor binding. Ba/F3 cells are an increasingly popular tool in kinase drug discovery. The ability to test the transforming capacity of newly identified kinase mutations, and to profile drug candidates and compound libraries in high-throughput fashion, combined with the use of Ba/F3 cells to predict clinical resistance will greatly facilitate developments in this field.

  18. Developing a framework for understanding and enabling open source drug discovery.

    Science.gov (United States)

    Allarakhia, Minna

    2010-08-01

    Open source drug discovery is increasingly being sought as a solution for managing product development complexities. Three drivers encouraging the use of the open source strategy include: upstream knowledge-based complexities associated with complementary assets, technological complexities given the scale of research and interdependencies between disciplines and downstream commercialization complexities. While literature currently discusses the need for open source strategies and their outcomes, we have reached a critical stage for a framework to cohesively understand how the drivers affect the open source models chosen as well as the governance strategies to ensure a successful outcome both in terms of knowledge access and product development. In this paper, an initial framework is designed with a focus on the type of participant as impacting the motivation to participate in an open source initiative, the objective of any open source strategy as impacting the structural model adopted and the structure of knowledge produced as impacting its management. It is anticipated that this framework should then provide an opportunity to develop governance rules for open source drug discovery initiatives.

  19. Applications of a 7-day Caco-2 cell model in drug discovery and development.

    Science.gov (United States)

    Peng, Ying; Yadava, Preeti; Heikkinen, Aki T; Parrott, Neil; Railkar, Aruna

    2014-06-02

    Oral delivery is the preferred route of administration and therefore good absorption after oral dosing is a prerequisite for a compound to be successful in the clinic. The prediction of oral bioavailability from in vitro permeability assays is thus a valuable tool during drug discovery and development. Caco-2 cell monolayers mimic the human intestinal epithelium in many aspects. These monolayers form tight junctions between cells and have been widely used as a model of human intestinal absorption. Caco-2 cells also express a variety of transporter proteins although the transformed nature of the cells results in unpredictable differentiation markers, transport properties and enzyme expression. Thus various modifications of the Caco-2 assay are used in laboratories across the globe. The purpose of this paper is to provide an overview of a time and resource saving 7-day Caco-2 assay protocol. We also discuss the impact of various experimental conditions on permeability measurements and its applications during lead optimization in early discovery and for clinical candidate characterization, specifically for prediction of absorption in human, at a later stage in drug development. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A Performance/Cost Evaluation for a GPU-Based Drug Discovery Application on Volunteer Computing

    Directory of Open Access Journals (Sweden)

    Ginés D. Guerrero

    2014-01-01

    Full Text Available Bioinformatics is an interdisciplinary research field that develops tools for the analysis of large biological databases, and, thus, the use of high performance computing (HPC platforms is mandatory for the generation of useful biological knowledge. The latest generation of graphics processing units (GPUs has democratized the use of HPC as they push desktop computers to cluster-level performance. Many applications within this field have been developed to leverage these powerful and low-cost architectures. However, these applications still need to scale to larger GPU-based systems to enable remarkable advances in the fields of healthcare, drug discovery, genome research, etc. The inclusion of GPUs in HPC systems exacerbates power and temperature issues, increasing the total cost of ownership (TCO. This paper explores the benefits of volunteer computing to scale bioinformatics applications as an alternative to own large GPU-based local infrastructures. We use as a benchmark a GPU-based drug discovery application called BINDSURF that their computational requirements go beyond a single desktop machine. Volunteer computing is presented as a cheap and valid HPC system for those bioinformatics applications that need to process huge amounts of data and where the response time is not a critical factor.

  1. Open innovation for phenotypic drug discovery: The PD2 assay panel.

    Science.gov (United States)

    Lee, Jonathan A; Chu, Shaoyou; Willard, Francis S; Cox, Karen L; Sells Galvin, Rachelle J; Peery, Robert B; Oliver, Sarah E; Oler, Jennifer; Meredith, Tamika D; Heidler, Steven A; Gough, Wendy H; Husain, Saba; Palkowitz, Alan D; Moxham, Christopher M

    2011-07-01

    Phenotypic lead generation strategies seek to identify compounds that modulate complex, physiologically relevant systems, an approach that is complementary to traditional, target-directed strategies. Unlike gene-specific assays, phenotypic assays interrogate multiple molecular targets and signaling pathways in a target "agnostic" fashion, which may reveal novel functions for well-studied proteins and discover new pathways of therapeutic value. Significantly, existing compound libraries may not have sufficient chemical diversity to fully leverage a phenotypic strategy. To address this issue, Eli Lilly and Company launched the Phenotypic Drug Discovery Initiative (PD(2)), a model of open innovation whereby external research groups can submit compounds for testing in a panel of Lilly phenotypic assays. This communication describes the statistical validation, operations, and initial screening results from the first PD(2) assay panel. Analysis of PD(2) submissions indicates that chemical diversity from open source collaborations complements internal sources. Screening results for the first 4691 compounds submitted to PD(2) have confirmed hit rates from 1.6% to 10%, with the majority of active compounds exhibiting acceptable potency and selectivity. Phenotypic lead generation strategies, in conjunction with novel chemical diversity obtained via open-source initiatives such as PD(2), may provide a means to identify compounds that modulate biology by novel mechanisms and expand the innovation potential of drug discovery.

  2. Highlights from SelectBio 2015: Academic Drug Discovery Conference, Cambridge, UK, 19-20 May 2015.

    Science.gov (United States)

    Spencer, John; Coaker, Hannah

    2015-01-01

    The SelectBio 2015: Academic Drug Discovery Conference was held in Cambridge, UK, on 19-20 May 2015. Building on the success of academic drug discovery events in the USA, this conference aimed to showcase the exciting new research emerging from academic drug discovery and to help bridge the gap between basic research and commercial application. At the event the authors heard from a number of speakers on a broad array of topics, from partnering models for academia and industry to novel drug discovery approaches across various therapeutic areas, with a few talks, such as those by Susanne Muller-Knapp (Structure Genomics Consortium, Oxford University, Oxford, UK) and Julian Blagg (Institute of Cancer Research, UK), covering both remits, by highlighting a number of such partnerships and then delving into some case studies. The conference concluded with a heated debate on whether phenotypic discovery should be favored over targeted discovery in academia and pharma, in a panel discussion chaired by Roland Wolkowicz (San Diego State University, USA).

  3. Cost-effectiveness of rapid susceptibility testing against second-line drugs for tuberculosis

    NARCIS (Netherlands)

    Dowdy, D. W.; van't Hoog, A.; Shah, M.; Cobelens, F.

    2014-01-01

    Drug susceptibility testing (DST) against second-line tuberculosis drugs (SLDs) is essential for improving outcomes among multidrug-resistant (MDR-) and extensively drug-resistant tuberculosis (XDR-TB) cases. To evaluate the potential cost-effectiveness of rapid DST for SLDs. We constructed a

  4. Novel Pieces for the Emerging Picture of Sulfoximines in Drug Discovery: Synthesis and Evaluation of Sulfoximine Analogues of Marketed Drugs and Advanced Clinical Candidates.

    Science.gov (United States)

    Sirvent, Juan Alberto; Lücking, Ulrich

    2017-04-06

    Sulfoximines have gained considerable recognition as an important structural motif in drug discovery of late. In particular, the clinical kinase inhibitors for the treatment of cancer, roniciclib (pan-CDK inhibitor), BAY 1143572 (P-TEFb inhibitor), and AZD 6738 (ATR inhibitor), have recently drawn considerable attention. Whilst the interest in this underrepresented functional group in drug discovery is clearly on the rise, there remains an incomplete understanding of the medicinal-chemistry-relevant properties of sulfoximines. Herein we report the synthesis and in vitro characterization of a variety of sulfoximine analogues of marketed drugs and advanced clinical candidates to gain a better understanding of this neglected functional group and its potential in drug discovery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Bioinformatics and rational drug design: tools for discovery and better understanding of biological targets and mode of action of drugs.

    Science.gov (United States)

    Thibaut, U

    2002-01-01

    With the advent of modern high throughput technologies in both genomics and biological screening, and at the same time the enormous advances in computer technology, it is now feasible to use these tools in rational approaches in the search for new medicines. The role of bioinformatics in the search for new medicines is discussed. Discussion of the author's own work on bioinformatics in drug research in future perspective. The emerging discipline of Bioinformatics plays a central role in the concert of technologies of the 'biological revolution' because it allows for handling of the enormous data load that comes with sequencing efforts and subsequent analyses of whole genomes, with mRNA profiling techniques and, last but not least, at a later stage of drug discovery the up-to-date application of rational drug design techniques to 3D structures of target proteins. This article covers and explains parts of the steps used in modern pharmaceutical research by means of a small number of examples. Bioinformatics is likely to play a pivotal role in the rational approaches for the search of new medicines.

  6. The tuberculosis structural genomics consortium: a structural genomics approach to drug discovery.

    Science.gov (United States)

    Musa, Tracey L; Ioerger, Thomas R; Sacchettini, James C

    2009-01-01

    Structural genomics is changing the way we study and understand biological systems, providing insight into the biology and life cycle of an organism at the molecular level through determination of protein structures. Structural genomics can be a particularly useful tool in the study of infectious diseases, especially to facilitate the development of new chemotherapeutics by providing a structural foundation for drug discovery. The Tuberculosis Structural Genomics Consortium (TBSGC) is applying a structural genomics approach to solving the structures of biologically and medically important proteins in the pathogenic bacterium Mycobacterium tuberculosis, adding to the scientific knowledge base essential for developing novel and effective antitubercular drugs. Tuberculosis (TB) has been declared a global health emergency by the World Health Organization (WHO). With the rise in the number of multidrug resistant (MDR) and extensively drug resistant (XDR) TB strains, the need for more effective TB treatments has become urgent. In contrast to other structural genomics projects, the TBSGC specifically prioritizes proteins based on their potential as drug targets. We describe the consortium's high-throughput (HT) structure determination pipeline that enables an efficient distribution of resources while also incorporating knowledge from several scientific fields. The success of this pipeline is illustrated in the number of successful structure solutions as demonstrated in the case studies presented in this chapter. Copyright 2009 Elsevier Inc. All rights reserved.

  7. Validation of Early Human Dose Prediction: A Key Metric for Compound Progression in Drug Discovery.

    Science.gov (United States)

    Page, Ken M

    2016-02-01

    Human dose prediction is increasingly recognized as an important parameter in Drug Discovery. Validation of a method using only in vitro and predicted parameters incorporated into a PK model was undertaken by predicting human dose and free Cmax for a number of marketed drugs and AZ Development compounds. Doses were compared to those most relevant to marketed drugs or to clinically administered doses of AZ compounds normalized either to predicted Cmin or Cmax values. Average (AFE) and absolute average (AAFE) fold-error analysis showed that best predictions were obtained using a QSAR model as the source of Vss, with Fabs set to 1 for acids and 0.5 for all other ion classes; for clearance prediction no binding correction to the well stirred model (WSM) was used for bases, while it was set to Fup/Fup(0.5) for all other ion classes. Using this combination of methods, predicted doses for 45 to 68% of the Cmin- and Cmax-normalized and marketed drug data sets were within 3-fold of the observed values, while 82 to 92% of these data sets were within 10-fold. This method for early human dose prediction is able to rank, identify, and flag risks or optimization opportunities for future development compounds within 10 days of first synthesis.

  8. Screening the Medicines for Malaria Venture Pathogen Box across Multiple Pathogens Reclassifies Starting Points for Open-Source Drug Discovery.

    Science.gov (United States)

    Duffy, Sandra; Sykes, Melissa L; Jones, Amy J; Shelper, Todd B; Simpson, Moana; Lang, Rebecca; Poulsen, Sally-Ann; Sleebs, Brad E; Avery, Vicky M

    2017-09-01

    Open-access drug discovery provides a substantial resource for diseases primarily affecting the poor and disadvantaged. The open-access Pathogen Box collection is comprised of compounds with demonstrated biological activity against specific pathogenic organisms. The supply of this resource by the Medicines for Malaria Venture has the potential to provide new chemical starting points for a number of tropical and neglected diseases, through repurposing of these compounds for use in drug discovery campaigns for these additional pathogens. We tested the Pathogen Box against kinetoplastid parasites and malaria life cycle stages in vitro Consequently, chemical starting points for malaria, human African trypanosomiasis, Chagas disease, and leishmaniasis drug discovery efforts have been identified. Inclusive of this in vitro biological evaluation, outcomes from extensive literature reviews and database searches are provided. This information encompasses commercial availability, literature reference citations, other aliases and ChEMBL number with associated biological activity, where available. The release of this new data for the Pathogen Box collection into the public domain will aid the open-source model of drug discovery. Importantly, this will provide novel chemical starting points for drug discovery and target identification in tropical disease research. Copyright © 2017 Duffy et al.

  9. Recent Advances in Drug Design and Drug Discovery for Androgen- Dependent Diseases.

    Science.gov (United States)

    Cabeza, Marisa; Sánchez-Márquez, Araceli; Garrido, Mariana; Silva, Aylín; Bratoeff, Eugene

    2016-01-01

    This article summarizes the importance of different targets such as 5α-reductase, 17β-HSD, CYP17A, androgen receptor and protein kinase A for the treatment of prostate cancer and benign prostatic hyperplasia. It is a well known fact that dihydrotestosterone (DHT) is associated with the development of androgen-dependent afflictions. At the present time, several research groups are attempting to develop new steroidal and non-steroidal molecules with the purpose of inhibiting the synthesis and biological response of DHT. This review also discusses the most recent studies reported in the literature that describe the therapeutic potential of novel compounds, as well as the new drugs, principally inhibitors of 5α-reductase.

  10. Discovery of novel vaccine candidates and drug targets against visceral leishmaniasis using proteomics and transcriptomics.

    Science.gov (United States)

    Kumari, Shraddha; Kumar, Awanish; Samant, Mukesh; Singh, Neeloo; Dube, Anuradha

    2008-11-01

    Among the three clinical forms (cutaneous, mucosal and visceral) of leishmaniasis visceral (VL) one is the most devastating type caused by the invasion of the reticuloendothelial system of human by Leishmania donovani, L. infantum and L. chagasi. India and Sudan account for about half the world's burden of VL. Current control strategy is based on chemotherapy, which is difficult to administer, expensive and becoming ineffective due to the emergence of drug resistance. An understanding of resistance mechanism(s) operating in clinical isolates might provide additional leads for the development of new drugs. Further, due to the lack of fully effective treatment the search for novel immune targets is also needed. So far, no vaccine exists for VL despite indications of naturally developing immunity. Therefore, an urgent need for new and effective leishmanicidal agents and for this identification of novel drug and vaccine targets is imperative. The availability of the complete genome sequence of Leishmania has revolutionised many areas of leishmanial research and facilitated functional genomic studies as well as provided a wide range of novel targets for drug designing. Most notably, proteomics and transcriptomics have become important tools in gaining increased understanding of the biology of Leishmania to be explored on a global scale, thus accelerating the pace of discovery of vaccine/drug targets. In addition, these approaches provide the information regarding genes and proteins that are expressed and under which conditions. This review provides a comprehensive view about those proteins/genes identified using proteomics and transcriptomic tools for the development of vaccine/drug against VL.

  11. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays

    Energy Technology Data Exchange (ETDEWEB)

    Morton, M.J., E-mail: michael.morton@astrazeneca.com [Discovery Sciences, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Armstrong, D.; Abi Gerges, N. [Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Bridgland-Taylor, M. [Discovery Sciences, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Pollard, C.E.; Bowes, J.; Valentin, J.-P. [Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom)

    2014-09-01

    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity in the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility.

  12. MEDICI: Mining Essentiality Data to Identify Critical Interactions for Cancer Drug Target Discovery and Development | Office of Cancer Genomics

    Science.gov (United States)

    Protein-protein interactions (PPIs) mediate the transmission and regulation of oncogenic signals that are essential to cellular proliferation and survival, and thus represent potential targets for anti-cancer therapeutic discovery. Despite their significance, there is no method to experimentally disrupt and interrogate the essentiality of individual endogenous PPIs. The ability to computationally predict or infer PPI essentiality would help prioritize PPIs for drug discovery and help advance understanding of cancer biology.

  13. 'LC-electrolyte effects' improve the bioanalytical performance of liquid chromatography/tandem mass spectrometric assays in supporting pharmacokinetic study for drug discovery.

    Science.gov (United States)

    Wang, Li; Sun, Yan; Du, Feifei; Niu, Wei; Lu, Tong; Kan, Jingmin; Xu, Fang; Yuan, Kaihong; Qin, Tao; Liu, Changxiao; Li, Chuan

    2007-01-01

    The development of rapid and sensitive bioanalytical methods in a short time frame with acceptable levels of precision and accuracy is imperative for successful drug discovery. We previously reported that the use of a mobile phase containing an extremely low concentration of ammonium formate or formic acid increased analyte electrospray ionization (ESI) response and controlled against matrix effects. We designated these favorable effects 'LC-electrolyte effects'. In order to support rapid pharmacokinetic (PK) studies for drug discovery, we applied LC-electrolyte effects to the development of generic procedures that can be used to quickly generate reliable PK data for compound candidates. We herein demonstrate our approach using four model tested compounds (Compd-A, -B, -C, and -D). The analytical methods involve generic protein precipitation for sample clean-up, followed by application of fast liquid chromatographic (LC) gradients and the subsequent use of electrospray ionization tandem mass spectrometry (ESI-MS/MS) for individual measurement of the tested compounds in 20-microL plasma samples. Good linearity over the concentration range of 1.6 or 8-25000 ng/mL (r(2) > 0.99), precision (RSD, 0.45-13.1%), and accuracy (91-112%) were achieved through the use of a low dose of formic acid (0.4 mM or 0.015 per thousand) in the methanol/water-based LC mobile phase. The analytical method was quite sensitive, providing a lower limit of quantification of 1.6 pg on-column except for Compd-C (8 pg), and showed negligible ion suppression caused by matrix components. Finally, the assay suitability was demonstrated in simulated discovery PK studies of the tested compounds with i.v./p.o. dosing of rats. This new assay approach has been adopted with good results in our laboratory for many recent discovery PK studies. Copyright (c) 2007 John Wiley & Sons, Ltd.

  14. Computational Methods Used in Hit-to-Lead and Lead Optimization Stages of Structure-Based Drug Discovery.

    Science.gov (United States)

    Heifetz, Alexander; Southey, Michelle; Morao, Inaki; Townsend-Nicholson, Andrea; Bodkin, Mike J

    2018-01-01

    GPCR modeling approaches are widely used in the hit-to-lead (H2L) and lead optimization (LO) stages of drug discovery. The aims of these modeling approaches are to predict the 3D structures of the receptor-ligand complexes, to explore the key interactions between the receptor and the ligand and to utilize these insights in the design of new molecules with improved binding, selectivity or other pharmacological properties. In this book chapter, we present a brief survey of key computational approaches integrated with hierarchical GPCR modeling protocol (HGMP) used in hit-to-lead (H2L) and in lead optimization (LO) stages of structure-based drug discovery (SBDD). We outline the differences in modeling strategies used in H2L and LO of SBDD and illustrate how these tools have been applied in three drug discovery projects.

  15. Whole animal automated platform for drug discovery against multi-drug resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Rajmohan Rajamuthiah

    Full Text Available Staphylococcus aureus, the leading cause of hospital-acquired infections in the United States, is also pathogenic to the model nematode Caenorhabditis elegans. The C. elegans-S. aureus infection model was previously carried out on solid agar plates where the bacteriovorous C. elegans feeds on a lawn of S. aureus. However, agar-based assays are not amenable to large scale screens for antibacterial compounds. We have developed a high throughput liquid screening assay that uses robotic instrumentation to dispense a precise amount of methicillin resistant S. aureus (MRSA and worms in 384-well assay plates, followed by automated microscopy and image analysis. In validation of the liquid assay, an MRSA cell wall defective mutant, MW2ΔtarO, which is attenuated for killing in the agar-based assay, was found to be less virulent in the liquid assay. This robust assay with a Z'-factor consistently greater than 0.5 was utilized to screen the Biomol 4 compound library consisting of 640 small molecules with well characterized bioactivities. As proof of principle, 27 of the 30 clinically used antibiotics present in the library conferred increased C. elegans survival and were identified as hits in the screen. Surprisingly, the antihelminthic drug closantel was also identified as a hit in the screen. In further studies, we confirmed the anti-staphylococcal activity of closantel against vancomycin-resistant S. aureus isolates and other Gram-positive bacteria. The liquid C. elegans-S. aureus assay described here allows screening for anti-staphylococcal compounds that are not toxic to the host.

  16. Whole animal automated platform for drug discovery against multi-drug resistant Staphylococcus aureus.

    Science.gov (United States)

    Rajamuthiah, Rajmohan; Fuchs, Beth Burgwyn; Jayamani, Elamparithi; Kim, Younghoon; Larkins-Ford, Jonah; Conery, Annie; Ausubel, Frederick M; Mylonakis, Eleftherios

    2014-01-01

    Staphylococcus aureus, the leading cause of hospital-acquired infections in the United States, is also pathogenic to the model nematode Caenorhabditis elegans. The C. elegans-S. aureus infection model was previously carried out on solid agar plates where the bacteriovorous C. elegans feeds on a lawn of S. aureus. However, agar-based assays are not amenable to large scale screens for antibacterial compounds. We have developed a high throughput liquid screening assay that uses robotic instrumentation to dispense a precise amount of methicillin resistant S. aureus (MRSA) and worms in 384-well assay plates, followed by automated microscopy and image analysis. In validation of the liquid assay, an MRSA cell wall defective mutant, MW2ΔtarO, which is attenuated for killing in the agar-based assay, was found to be less virulent in the liquid assay. This robust assay with a Z'-factor consistently greater than 0.5 was utilized to screen the Biomol 4 compound library consisting of 640 small molecules with well characterized bioactivities. As proof of principle, 27 of the 30 clinically used antibiotics present in the library conferred increased C. elegans survival and were identified as hits in the screen. Surprisingly, the antihelminthic drug closantel was also identified as a hit in the screen. In further studies, we confirmed the anti-staphylococcal activity of closantel against vancomycin-resistant S. aureus isolates and other Gram-positive bacteria. The liquid C. elegans-S. aureus assay described here allows screening for anti-staphylococcal compounds that are not toxic to the host.

  17. DIFFERENTIAL PATHWAY DEPENDENCY DISCOVERY ASSOCIATED WITH DRUG RESPONSE ACROSS CANCER CELL LINES.

    Science.gov (United States)

    Speyer, Gil; Mahendra, Divya; Tran, Hai J; Kiefer, Jeff; Schreiber, Stuart L; Clemons, Paul A; Dhruv, Harshil; Berens, Michael; Kim, Seungchan

    2017-01-01

    The effort to personalize treatment plans for cancer patients involves the identification of drug treatments that can effectively target the disease while minimizing the likelihood of adverse reactions. In this study, the gene-expression profile of 810 cancer cell lines and their response data to 368 small molecules from the Cancer Therapeutics Research Portal (CTRP) are analyzed to identify pathways with significant rewiring between genes, or differential gene dependency, between sensitive and non-sensitive cell lines. Identified pathways and their corresponding differential dependency networks are further analyzed to discover essentiality and specificity mediators of cell line response to drugs/compounds. For analysis we use the previously published method EDDY (Evaluation of Differential DependencY). EDDY first constructs likelihood distributions of gene-dependency networks, aided by known genegene interaction, for two given conditions, for example, sensitive cell lines vs. non-sensitive cell lines. These sets of networks yield a divergence value between two distributions of network likelihoods that can be assessed for significance using permutation tests. Resulting differential dependency networks are then further analyzed to identify genes, termed mediators, which may play important roles in biological signaling in certain cell lines that are sensitive or non-sensitive to the drugs. Establishing statistical correspondence between compounds and mediators can improve understanding of known gene dependencies associated with drug response while also discovering new dependencies. Millions of compute hours resulted in thousands of these statistical discoveries. EDDY identified 8,811 statistically significant pathways leading to 26,822 compound-pathway-mediator triplets. By incorporating STITCH and STRING databases, we could construct evidence networks for 14,415 compound-pathway-mediator triplets for support. The results of this analysis are presented in a

  18. Symbiotic Microbes from Marine Invertebrates: Driving a New Era of Natural Product Drug Discovery

    Directory of Open Access Journals (Sweden)

    Alix Blockley

    2017-10-01

    Full Text Available Invertebrates account for more than 89% of all extant organisms in the marine environment, represented by over 174,600 species (recorded to date. Such diversity is mirrored in (or more likely increased by the microbial symbionts associated with this group and in the marine natural products (or MNPs that they produce. Since the early 1950s over 20,000 MNPs have been discovered, including compounds produced by symbiotic bacteria, and the chemical diversity of compounds produced from marine sources has led to them being referred to as "blue gold" in the search for new drugs. For example, 80% of novel antibiotics stemming from the marine environment have come from Actinomycetes, many of which can be found associated with marine sponges, and compounds with anti-tumorigenic and anti-diabetic potential have also been isolated from marine symbionts. In fact, it has been estimated that marine sources formed the basis of over 50% of FDA-approved drugs between 1981 and 2002. In this review, we explore the diversity of marine microbial symbionts by examining their use as the producers of novel pharmaceutical actives, together with a discussion of the opportunities and constraints offered by “blue gold” drug discovery.

  19. The age of anxiety: role of animal models of anxiolytic action in drug discovery

    Science.gov (United States)

    Cryan, John F; Sweeney, Fabian F

    2011-01-01

    Anxiety disorders are common, serious and a growing health problem worldwide. However, the causative factors, aetiology and underlying mechanisms of anxiety disorders, as for most psychiatric disorders, remain relatively poorly understood. Animal models are an important aid in giving insight into the aetiology, neurobiology and, ultimately, the therapy of human anxiety disorders. The approach, however, is challenged with a number of complexities. In particular, the heterogeneous nature of anxiety disorders in humans coupled with the associated multifaceted and descriptive diagnostic criteria, creates challenges in both animal modelling and in clinical research. In this paper, we describe some of the more widely used approaches for assessing the anxiolytic activity of known and potential therapeutic agents. These include ethological, conflict-based, hyponeophagia, vocalization-based, physiological and cognitive-based paradigms. Developments in the characterization of translational models are also summarized, as are the challenges facing researchers in their drug discovery efforts in developing new anxiolytic drugs, not least the ever-shifting clinical conceptualization of anxiety disorders. In conclusion, to date, although animal models of anxiety have relatively good validity, anxiolytic drugs with novel mechanisms have been slow to emerge. It is clear that a better alignment of the interactions between basic and clinical scientists is needed if this is to change. LINKED ARTICLES This article is part of a themed issue on Translational Neuropharmacology. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.164.issue-4 PMID:21545412

  20. Enhancing hit identification in Mycobacterium tuberculosis drug discovery using validated dual-event Bayesian models.

    Directory of Open Access Journals (Sweden)

    Sean Ekins

    Full Text Available High-throughput screening (HTS in whole cells is widely pursued to find compounds active against Mycobacterium tuberculosis (Mtb for further development towards new tuberculosis (TB drugs. Hit rates from these screens, usually conducted at 10 to 25 µM concentrations, typically range from less than 1% to the low single digits. New approaches to increase the efficiency of hit identification are urgently needed to learn from past screening data. The pharmaceutical industry has for many years taken advantage of computational approaches to optimize compound libraries for in vitro testing, a practice not fully embraced by academic laboratories in the search for new TB drugs. Adapting these proven approaches, we have recently built and validated Bayesian machine learning models for predicting compounds with activity against Mtb based on publicly available large-scale HTS data from the Tuberculosis Antimicrobial Acquisition Coordinating Facility. We now demonstrate the largest prospective validation to date in which we computationally screened 82,403 molecules with these Bayesian models, assayed a total of 550 molecules in vitro, and identified 124 actives against Mtb. Individual hit rates for the different datasets varied from 15-28%. We have identified several FDA approved and late stage clinical candidate kinase inhibitors with activity against Mtb which may represent starting points for further optimization. The computational models developed herein and the commercially available molecules derived from them are now available to any group pursuing Mtb drug discovery.

  1. The Current State of Drug Discovery and a Potential Role for NMR Metabolomics

    Science.gov (United States)

    2015-01-01

    The pharmaceutical industry has significantly contributed to improving human health. Drugs have been attributed to both increasing life expectancy and decreasing health care costs. Unfortunately, there has been a recent decline in the creativity and productivity of the pharmaceutical industry. This is a complex issue with many contributing factors resulting from the numerous mergers, increase in out-sourcing, and the heavy dependency on high-throughput screening (HTS). While a simple solution to such a complex problem is unrealistic and highly unlikely, the inclusion of metabolomics as a routine component of the drug discovery process may provide some solutions to these problems. Specifically, as the binding affinity of a chemical lead is evolved during the iterative structure-based drug design process, metabolomics can provide feedback on the selectivity and the in vivo mechanism of action. Similarly, metabolomics can be used to evaluate and validate HTS leads. In effect, metabolomics can be used to eliminate compounds with potential efficacy and side effect problems while prioritizing well-behaved leads with druglike characteristics. PMID:24588729

  2. An update on the use of C. elegans for preclinical drug discovery: screening and identifying anti-infective drugs.

    Science.gov (United States)

    Kim, Wooseong; Hendricks, Gabriel Lambert; Lee, Kiho; Mylonakis, Eleftherios

    2017-06-01

    The emergence of antibiotic-resistant and -tolerant bacteria is a major threat to human health. Although efforts for drug discovery are ongoing, conventional bacteria-centered screening strategies have thus far failed to yield new classes of effective antibiotics. Therefore, new paradigms for discovering novel antibiotics are of critical importance. Caenorhabditis elegans, a model organism used for in vivo, offers a promising solution for identification of anti-infective compounds. Areas covered: This review examines the advantages of C. elegans-based high-throughput screening over conventional, bacteria-centered in vitro screens. It discusses major anti-infective compounds identified from large-scale C. elegans-based screens and presents the first clinically-approved drugs, then known bioactive compounds, and finally novel small molecules. Expert opinion: There are clear advantages of using a C. elegans-infection based screening method. A C. elegans-based screen produces an enriched pool of non-toxic, efficacious, potential anti-infectives, covering: conventional antimicrobial agents, immunomodulators, and anti-virulence agents. Although C. elegans-based screens do not denote the mode of action of hit compounds, this can be elucidated in secondary studies by comparing the results to target-based screens, or conducting subsequent target-based screens, including the genetic knock-down of host or bacterial genes.

  3. Strategies for Utilizing Neuroimaging Biomarkers in CNS Drug Discovery and Development: CINP/JSNP Working Group Report.

    Science.gov (United States)

    Suhara, Tetsuya; Chaki, Shigeyuki; Kimura, Haruhide; Furusawa, Makoto; Matsumoto, Mitsuyuki; Ogura, Hiroo; Negishi, Takaaki; Saijo, Takeaki; Higuchi, Makoto; Omura, Tomohiro; Watanabe, Rira; Miyoshi, Sosuke; Nakatani, Noriaki; Yamamoto, Noboru; Liou, Shyh-Yuh; Takado, Yuhei; Maeda, Jun; Okamoto, Yasumasa; Okubo, Yoshiaki; Yamada, Makiko; Ito, Hiroshi; Walton, Noah M; Yamawaki, Shigeto

    2017-04-01

    Despite large unmet medical needs in the field for several decades, CNS drug discovery and development has been largely unsuccessful. Biomarkers, particularly those utilizing neuroimaging, have played important roles in aiding CNS drug development, including dosing determination of investigational new drugs (INDs). A recent working group was organized jointly by CINP and Japanese Society of Neuropsychopharmacology (JSNP) to discuss the utility of biomarkers as tools to overcome issues of CNS drug development.The consensus statement from the working group aimed at creating more nuanced criteria for employing biomarkers as tools to overcome issues surrounding CNS drug development. To accomplish this, a reverse engineering approach was adopted, in which criteria for the utilization of biomarkers were created in response to current challenges in the processes of drug discovery and development for CNS disorders. Based on this analysis, we propose a new paradigm containing 5 distinct tiers to further clarify the use of biomarkers and establish new strategies for decision-making in the context of CNS drug development. Specifically, we discuss more rational ways to incorporate biomarker data to determine optimal dosing for INDs with novel mechanisms and targets, and propose additional categorization criteria to further the use of biomarkers in patient stratification and clinical efficacy prediction. Finally, we propose validation and development of new neuroimaging biomarkers through public-private partnerships to further facilitate drug discovery and development for CNS disorders. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  4. Drugability of extracellular targets: discovery of small molecule drugs targeting allosteric, functional, and subunit-selective sites on GPCRs and ion channels.

    Science.gov (United States)

    Grigoriadis, Dimitri E; Hoare, Samuel R J; Lechner, Sandra M; Slee, Deborah H; Williams, John A

    2009-01-01

    Beginning with the discovery of the structure of deoxyribose nucleic acid in 1953, by James Watson and Francis Crick, the sequencing of the entire human genome some 50 years later, has begun to quantify the classes and types of proteins that may have relevance to human disease with the promise of rapidly identifying compounds that can modulate these proteins so as to have a beneficial and therapeutic outcome. This so called 'drugable space' involves a variety of membrane-bound proteins including the superfamily of G-protein-coupled receptors (GPCRs), ion channels, and transporters among others. The recent number of novel therapeutics targeting membrane-bound extracellular proteins that have reached the market in the past 20 years however pales in magnitude when compared, during the same timeframe, to the advancements made in the technologies available to aid in the discovery of these novel therapeutics. This review will consider select examples of extracellular drugable targets and focus on the GPCRs and ion channels highlighting the corticotropin releasing factor (CRF) type 1 and gamma-aminobutyric acid receptors, and the Ca(V)2.2 voltage-gated ion channel. These examples will elaborate current technological advancements in drug discovery and provide a prospective framework for future drug development.

  5. Institutional profile: the national Swedish academic drug discovery & development platform at SciLifeLab.

    Science.gov (United States)

    Arvidsson, Per I; Sandberg, Kristian; Sakariassen, Kjell S

    2017-06-01

    The Science for Life Laboratory Drug Discovery and Development Platform (SciLifeLab DDD) was established in Stockholm and Uppsala, Sweden, in 2014. It is one of ten platforms of the Swedish national SciLifeLab which support projects run by Swedish academic researchers with large-scale technologies for molecular biosciences with a focus on health and environment. SciLifeLab was created by the coordinated effort of four universities in Stockholm and Uppsala: Stockholm University, Karolinska Institutet, KTH Royal Institute of Technology and Uppsala University, and has recently expanded to other Swedish university locations. The primary goal of the SciLifeLab DDD is to support selected academic discovery and development research projects with tools and resources to discover novel lead therapeutics, either molecules or human antibodies. Intellectual property developed with the help of SciLifeLab DDD is wholly owned by the academic research group. The bulk of SciLifeLab DDD's research and service activities are funded from the Swedish state, with only consumables paid by the academic research group through individual grants.

  6. MEDICI: Mining Essentiality Data to Identify Critical Interactions for Cancer Drug Target Discovery and Development.

    Science.gov (United States)

    Harati, Sahar; Cooper, Lee A D; Moran, Josue D; Giuste, Felipe O; Du, Yuhong; Ivanov, Andrei A; Johns, Margaret A; Khuri, Fadlo R; Fu, Haian; Moreno, Carlos S

    2017-01-01

    Protein-protein interactions (PPIs) mediate the transmission and regulation of oncogenic signals that are essential to cellular proliferation and survival, and thus represent potential targets for anti-cancer therapeutic discovery. Despite their significance, there is no method to experimentally disrupt and interrogate the essentiality of individual endogenous PPIs. The ability to computationally predict or infer PPI essentiality would help prioritize PPIs for drug discovery and help advance understanding of cancer biology. Here we introduce a computational method (MEDICI) to predict PPI essentiality by combining gene knockdown studies with network models of protein interaction pathways in an analytic framework. Our method uses network topology to model how gene silencing can disrupt PPIs, relating the unknown essentialities of individual PPIs to experimentally observed protein essentialities. This model is then deconvolved to recover the unknown essentialities of individual PPIs. We demonstrate the validity of our approach via prediction of sensitivities to compounds based on PPI essentiality and differences in essentiality based on genetic mutations. We further show that lung cancer patients have improved overall survival when specific PPIs are no longer present, suggesting that these PPIs may be potentially new targets for therapeutic development. Software is freely available at https://github.com/cooperlab/MEDICI. Datasets are available at https://ctd2.nci.nih.gov/dataPortal.

  7. Discovery of anticancer drugs from antimalarial natural products: a MEDLINE literature review.

    Science.gov (United States)

    Duffy, Robert; Wade, Christine; Chang, Raymond

    2012-09-01

    Nature-derived antimalarials might have anticancer potential, yet no systematic reviews exist on the topic. We screened MEDLINE using an automated algorithm in a high-volume search for antimalarial agents recognized by the WHO and natural antimalarials from knowledge-resource texts and databases for reported evidence of anticancer activity. Results are reported by source (plants, fungi, marine organisms and bacteria) and anticancer mechanism. In total, 14 out of 15 nature-derived antimalarials (93%) referenced by WHO as well as 146 of 235 antimalarial natural species (62%) from our defined MEDLINE search were reported as having anticancer activity. Therefore, antimalarial natural products might provide a fertile and much needed lead in anticancer drug discovery. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Cloud Infrastructures for In Silico Drug Discovery: Economic and Practical Aspects

    Directory of Open Access Journals (Sweden)

    Daniele D'Agostino

    2013-01-01

    Full Text Available Cloud computing opens new perspectives for small-medium biotechnology laboratories that need to perform bioinformatics analysis in a flexible and effective way. This seems particularly true for hybrid clouds that couple the scalability offered by general-purpose public clouds with the greater control and ad hoc customizations supplied by the private ones. A hybrid cloud broker, acting as an intermediary between users and public providers, can support customers in the selection of the most suitable offers, optionally adding the provisioning of dedicated services with higher levels of quality. This paper analyses some economic and practical aspects of exploiting cloud computing in a real research scenario for the in silico drug discovery in terms of requirements, costs, and computational load based on the number of expected users. In particular, our work is aimed at supporting both the researchers and the cloud broker delivering an IaaS cloud infrastructure for biotechnology laboratories exposing different levels of nonfunctional requirements.

  9. Cancer Chemoprevention Effects of Ginger and its Active Constituents: Potential for New Drug Discovery.

    Science.gov (United States)

    Wang, Chong-Zhi; Qi, Lian-Wen; Yuan, Chun-Su

    2015-01-01

    Ginger is a commonly used spice and herbal medicine worldwide. Besides its extensive use as a condiment, ginger has been used in traditional Chinese medicine for the management of various medical conditions. In recent years, ginger has received wide attention due to its observed antiemetic and anticancer activities. This paper reviews the potential role of ginger and its active constituents in cancer chemoprevention. The phytochemistry, bioactivity, and molecular targets of ginger constituents, especially 6-shogaol, are discussed. The content of 6-shogaol is very low in fresh ginger, but significantly higher after steaming. With reported anti-cancer activities, 6-shogaol can be served as a lead compound for new drug discovery. The lead compound derivative synthesis, bioactivity evaluation, and computational docking provide a promising opportunity to identify novel anticancer compounds originating from ginger.

  10. The cave microbiome as a source for drug discovery: Reality or pipe dream?

    Science.gov (United States)

    Ghosh, Soumya; Kuisiene, Nomeda; Cheeptham, Naowarat

    2017-06-15

    This review highlights cave habitats, cave microbiomes and their potential for drug discovery. Such studies face many challenges, including access to remote and pristine caves, and sample collection and transport. Inappropriate physical and chemical growth conditions in the laboratory for the isolation and cultivation of cave microorganisms pose many complications including length of cultivation; some cave microorganisms can take weeks and even months to grow. Additionally, DNA extraction from cave environmental samples may be difficult due to the high concentration of various minerals that are natural DNA blocking agents. Once cave microorganisms are grown in the lab, other problems often arise, such as maintenance of pure culture, consistency of antimicrobial activity and fermentation conditions for antimicrobial production. In this review, we suggest that, although based on what has been done in the field, there is potential in using cave microorganisms to produce antimicrobial agents, one needs to be highly committed and prepared. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. [Psychopharmacological drugs and ethiopathogenic theories in psychiatry. From discovery context to epistemological obstacle].

    Science.gov (United States)

    Wikinski, Silvia

    2008-01-01

    This work postulates the thesis that the development of the contemporary psychopharmacology, which began with the chemical changes imposed to molecules with antihistaminergic properties, modelled the current ethiopatogenic theories of mental diseases. The development of chlorpromazine and imipramine was coincident with the beginning of the research about neurotransmission. This coincidence contributed for the construction of the dopaminergic theory of schizophrenia and in the monoaminergic theory of depression. Limitations of the effectivity of current drugs, as observed in the trials CATIE and STAR-D may justify a change of perspective in the search for new molecular targets for the treatment of both diseases. Historical data are provided to illustrate the above mentioned thesis, in the perspective of two epistemological concepts: the context of discovery proposed by Hans Reichenbach and the epistemological obstacle, proposed by Gaston Bachelard.

  12. Bioinformatic screening of autoimmune disease genes and protein structure prediction with FAMS for drug discovery.

    Science.gov (United States)

    Ishida, Shigeharu; Umeyama, Hideaki; Iwadate, Mitsuo; Taguchi, Y-H

    2014-01-01

    Autoimmune diseases are often intractable because their causes are unknown. Identifying which genes contribute to these diseases may allow us to understand the pathogenesis, but it is difficult to determine which genes contribute to disease. Recently, epigenetic information has been considered to activate/deactivate disease-related genes. Thus, it may also be useful to study epigenetic information that differs between healthy controls and patients with autoimmune disease. Among several types of epigenetic information, promoter methylation is believed to be one of the most important factors. Here, we propose that principal component analysis is useful to identify specific gene promoters that are differently methylated between the normal healthy controls and patients with autoimmune disease. Full Automatic Modeling System (FAMS) was used to predict the three-dimensional structures of selected proteins and successfully inferred relatively confident structures. Several possibilities of the application to the drug discovery based on obtained structures are discussed.

  13. Synthesis of medicinally relevant terpenes: reducing the cost and time of drug discovery

    Science.gov (United States)

    Jansen, Daniel J; Shenvi, Ryan A

    2014-01-01

    Terpenoids constitute a significant fraction of molecules produced by living organisms that have found use in medicine and other industries. Problems associated with their procurement and adaptation for human use can be solved using chemical synthesis, which is an increasingly economical option in the modern era of chemistry. This article documents, by way of individual case studies, strategies for reducing the time and cost of terpene synthesis for drug discovery. A major trend evident in recent syntheses is that complex terpenes are increasingly realistic starting points for both medicinal chemistry campaigns and large-scale syntheses, at least in the context of the academic laboratory, and this trend will likely penetrate the commercial sector in the near future. PMID:25078134

  14. Cannabinoid CB1 receptor-interacting proteins: novel targets for central nervous system drug discovery?

    Science.gov (United States)

    Smith, Tricia H; Sim-Selley, Laura J; Selley, Dana E

    2010-01-01

    The main pharmacological effects of marijuana, as well as synthetic and endogenous cannabinoids, are mediated through G-protein-coupled receptors (GPCRs), including CB1 and CB2 receptors. The CB1 receptor is the major cannabinoid receptor in the central nervous system and has gained increasing interest as a target for drug discovery for treatment of nausea, cachexia, obesity, pain, spasticity, neurodegenerative diseases and mood and substance abuse disorders. Evidence has accumulated to suggest that CB1 receptors, like other GPCRs, interact with and are regulated by several other proteins beyond the established role of heterotrimeric G-proteins. These proteins, which include the GPCR kinases, β-arrestins, GPCR-associated sorting proteins, factor associated with neutral sphingomyelinase, other GPCRs (heterodimerization) and the novel cannabinoid receptor-interacting proteins: CRIP1a/b, are thought to play important roles in the regulation of intracellular trafficking, desensitization, down-regulation, signal transduction and constitutive activity of CB1 receptors. This review examines CB1 receptor-interacting proteins, including heterotrimeric G-proteins, but with particular emphasis on non-G-protein entities, that might comprise the CB1 receptosomal complex. The evidence for direct interaction with CB1 receptors and potential functional roles of these interacting proteins is discussed, as are future directions and challenges in this field with an emphasis on the possibility of eventually targeting these proteins for drug discovery. This article is part of a themed issue on Cannabinoids. To view the editorial for this themed issue visit http://dx.doi.org/10.1111/j.1476-5381.2010.00831.x PMID:20590557

  15. High Throughput Screening in Duchenne Muscular Dystrophy: From Drug Discovery to Functional Genomics

    Directory of Open Access Journals (Sweden)

    Thomas J.J. Gintjee

    2014-11-01

    Full Text Available Centers for the screening of biologically active compounds and genomic libraries are becoming common in the academic setting and have enabled researchers devoted to developing strategies for the treatment of diseases or interested in studying a biological phenomenon to have unprecedented access to libraries that, until few years ago, were accessible only by pharmaceutical companies. As a result, new drugs and genetic targets have now been identified for the treatment of Duchenne muscular dystrophy (DMD, the most prominent of the neuromuscular disorders affecting children. Although the work is still at an early stage, the results obtained to date are encouraging and demonstrate the importance that these centers may have in advancing therapeutic strategies for DMD as well as other diseases. This review will provide a summary of the status and progress made toward the development of a cure for this disorder and implementing high-throughput screening (HTS technologies as the main source of discovery. As more academic institutions are gaining access to HTS as a valuable discovery tool, the identification of new biologically active molecules is likely to grow larger. In addition, the presence in the academic setting of experts in different aspects of the disease will offer the opportunity to develop novel assays capable of identifying new targets to be pursued as potential therapeutic options. These assays will represent an excellent source to be used by pharmaceutical companies for the screening of larger libraries providing the opportunity to establish strong collaborations between the private and academic sectors and maximizing the chances of bringing into the clinic new drugs for the treatment of DMD.

  16. Rapid enzymatic test for phenotypic HIV protease drug resistance

    OpenAIRE

    Hoffmann, D.; Assfalg-Machleidt, Irmgard; Nitschko, H; Helm, K. von der; Koszinowski, U.; Machleidt, Werner

    2003-01-01

    A phenotypic resistance test based on recombinant expression of the active HIV protease in E. coli from patient blood samples was developed. The protease is purified in a rapid onestep procedure as active enzyme and tested for inhibition by five selected synthetic inhibitors (amprenavir, indinavir, nelfinavir, ritonavir, and saquinavir) used presently for chemotherapy of HIVinfected patients. The HPLC system used in a previous approach was replaced by a continuous fluorogenic assay suitable f...

  17. Traditional Chinese medicine formulas for the treatment of osteoporosis: Implication for antiosteoporotic drug discovery.

    Science.gov (United States)

    Zhang, Nai-Dan; Han, Ting; Huang, Bao-Kang; Rahman, Khalid; Jiang, Yi-Ping; Xu, Hong-Tao; Qin, Lu-Ping; Xin, Hai-Liang; Zhang, Qiao-Yan; Li, Yi-Min

    2016-08-02

    Osteoporosis is a chronic epidemic which can leads to enhanced bone fragility and consequent an increase in fracture risk. Traditional Chinese medicine (TCM) formulas have a long history of use in the prevention and treatment of osteoporosis. Antiosteoporotic TCM formulas have conspicuous advantage over single drugs. Systematic data mining of the existing antiosteoporotic TCM formulas database can certainly help the drug discovery processes and help the identification of safe candidates with synergistic formulations. In this review, the authors summarize the clinical use and animal experiments of TCM formulas and their mechanism of action, and discuss the potential antiosteoporotic activity and the active constituents of commonly used herbs in TCM formulas for the therapy of osteoporosis. The literature was searched from Medline, Pubmed, ScienceDirect, Spring Link, Web of Science, CNKI and VIP database from 1989 to 2015, and also collected from Chinese traditional books and Chinese Pharmacopoeia with key words such as osteoporosis, osteoblast, osteoclast, traditional Chinese medicine formulas to identify studies on the antiosteoporotic effects of TCM formulas, herbs and chemical constituents, and also their possible mechanisms. Thirty-three TCM formulas were commonly used to treat osteoporosis, and showed significant antiosteoporotic effects in human and animal. The herb medicines and their chemical constituents in TCM formulas were summarized, the pharmacological effects and chemical constituents of commonly used herbs in TCM formulas were described in detail. The action mechanisms of TCM formulas and their chemical constituents were described. Finally, the implication for the discovery of antiosteoporotic leads and combinatory ingredients from TCM formulas were prospectively discussed. Clinical practice and animal experiments indicate that TCM formulas provide a definite therapeutic effect on osteoporosis. The active constituents in TCM formulas are diverse in

  18. Carbon Nanotube Micro-Needles for Rapid Transdermal Drug Delivery

    Science.gov (United States)

    Lyon, Bradley; Aria, Adrianus Indrat; Gat, Amir; Cosse, Julia; Montemayor, Lauren; Beizaie, Masoud; Gharib, Morteza

    2012-11-01

    By catalyst patterning, bundles of vertically-aligned carbon nanotubes (CNT) can be assembled to create 2D arrays of hollow micro-needles with feature size as small as a few microns. For transdermal drug delivery, the most challenging mechanical requirement is to make the CNT micro-needle small enough so that delivery is painless yet large enough so that the micro-needle can achieve skin penetration. By taking advantage of capillary action and the nanoporosity of CNT bundles, we can wick high strength polymer into the inter-spacing between nanotubes to augment the stiffness of our micro-needles. For low viscous polymers, the large ratio between the micron sized center hole of the micro-needle and the nanopores of the surrounding CNT allow us to wick polymer through the nanotubes while maintaining an open central hole for drug transport. For a transdermal patch prototype with a delivery area less than 1cm x 1cm square, we can fabricate 50 CNT micro-needles that produces a total flow rate up to 100 uL/s with actuation pressure provided by a mere finger tap. From in vitro experiments, we will demonstrate that CNT micro-needles provide a much faster convective delivery of drugs than conventional topical diffusion based patches. We acknowledge Zcube s.r.l for their support of this work.

  19. The emerging role of biosensor-based epitope binning and mapping in antibody-based drug discovery.

    Science.gov (United States)

    Ditto, Noah T; Brooks, Ben D

    2016-10-01

    Surface plasmon resonance (SPR) for affinity/kinetics measurements of drug candidates has been a mainstay application for characterizing drug candidates for many years. Recently, with the growth of monoclonal antibodies (mAbs) as a drug class and the availability of higher-throughput biosensors, the role of label-free biosensors has evolved to include epitope characterization in the early drug discovery process through epitope binning and mapping of mAbs. This manuscript outlines the importance of using epitope characterization early in the drug discovery process and describes a strategy for success in discovering drug leads. Updated practices for integrating epitope characterization with other biochemical/biophysical data, cell-based functional data, and computational prediction tools are also discussed. The authors propose using epitope characterization during early drug discovery by: (1) using epitope binning of mAbs following the pre-screening of clones to assure selection of mAb candidates with epitope diversity, (2) binning the maximum number of mAbs in order to fully define epitope engagement profiles, and (3) integrating epitope binning/mapping data with binding affinity, kinetics, cell-based functional assays, etc. to better describe functional epitope. This approach, together with structural and binding prediction data, will improve the quality of leads and improve the selection speed for clinical candidates.

  20. Methods of solving rapid binding target-mediated drug disposition model for two drugs competing for the same receptor.

    Science.gov (United States)

    Yan, Xiaoyu; Chen, Yang; Krzyzanski, Wojciech

    2012-10-01

    The target-mediated drug disposition (TMDD) model has been adopted to describe pharmacokinetics for two drugs competing for the same receptor. A rapid binding assumption introduces total receptor and total drug concentrations while free drug concentrations C (A) and C (B) are calculated from the equilibrium (Gaddum) equations. The Gaddum equations are polynomials in C (A) and C (B) of second degree that have explicit solutions involving complex numbers. The aim of this study was to develop numerical methods to solve the rapid binding TMDD model for two drugs competing for the same receptor that can be implemented in pharmacokinetic software. Algebra, calculus, and computer simulations were used to develop algorithms and investigate properties of solutions to the TMDD model with two drugs competitively binding to the same receptor. A general rapid binding approximation of the TMDD model for two drugs competing for the same receptor has been proposed. The explicit solutions to the equilibrium equations employ complex numbers, which cannot be easily solved by pharmacokinetic software. Numerical bisection algorithm and differential representation were developed to solve the system instead of obtaining an explicit solution. The numerical solutions were validated by MATLAB 7.2 solver for polynomial roots. The applicability of these algorithms was demonstrated by simulating concentration-time profiles resulting from exogenous and endogenous IgG competing for the neonatal Fc receptor (FcRn), and darbepoetin competing with endogenous erythropoietin for the erythropoietin receptor. These models were implemented in ADAPT 5 and Phoenix WinNonlin 6.0, respectively.

  1. A cluster randomised trial introducing rapid diagnostic tests into registered drug shops in Uganda

    DEFF Research Database (Denmark)

    Mbonye, Anthony K; Magnussen, Pascal; Lal, Sham

    2015-01-01

    the impact of introducing rapid diagnostic tests for malaria (mRDTs) in registered drug shops in Uganda, with the aim to increase appropriate treatment of malaria with artemisinin-based combination therapy (ACT) in patients seeking treatment for fever in drug shops. METHODS: A cluster-randomized trial...

  2. Rapid culture-based methods for drug-resistance detection in Mycobacterium tuberculosis.

    Science.gov (United States)

    Palomino, Juan Carlos; Martin, Anandi; Von Groll, Andrea; Portaels, Francoise

    2008-10-01

    Tuberculosis still represents a major public health problem, especially in low-resource countries where the burden of the disease is more important. Multidrug-resistant and extensively drug drug-resistant tuberculosis constitute serious problems for the efficient control of the disease stressing the need to investigate resistance to first- and second-line drugs. Conventional methods for detecting drug-resistance in Mycobacterium tuberculosis are slow and cumbersome. The most commonly used proportion method on Löwenstein-Jensen medium or Middlebrook agar requires a minimum of 3-4 weeks to produce results. Several new approaches have been proposed in the last years for the rapid and timely detection of drug-resistance in tuberculosis. This review will address phenotypic culture-based methods for rapid drug susceptibility testing in M. tuberculosis.

  3. Data quality in drug discovery: the role of analytical performance in ligand binding assays.

    Science.gov (United States)

    Wätzig, Hermann; Oltmann-Norden, Imke; Steinicke, Franziska; Alhazmi, Hassan A; Nachbar, Markus; El-Hady, Deia Abd; Albishri, Hassan M; Baumann, Knut; Exner, Thomas; Böckler, Frank M; El Deeb, Sami

    2015-09-01

    Despite its importance and all the considerable efforts made, the progress in drug discovery is limited. One main reason for this is the partly questionable data quality. Models relating biological activity and structures and in silico predictions rely on precisely and accurately measured binding data. However, these data vary so strongly, such that only variations by orders of magnitude are considered as unreliable. This can certainly be improved considering the high analytical performance in pharmaceutical quality control. Thus the principles, properties and performances of biochemical and cell-based assays are revisited and evaluated. In the part of biochemical assays immunoassays, fluorescence assays, surface plasmon resonance, isothermal calorimetry, nuclear magnetic resonance and affinity capillary electrophoresis are discussed in details, in addition radiation-based ligand binding assays, mass spectrometry, atomic force microscopy and microscale thermophoresis are briefly evaluated. In addition, general sources of error, such as solvent, dilution, sample pretreatment and the quality of reagents and reference materials are discussed. Biochemical assays can be optimized to provide good accuracy and precision (e.g. percental relative standard deviation superior related to the biological significance, however, typically they cannot still be considered as really quantitative, in particular when results are compared over longer periods of time or between laboratories. A very careful choice of assays is therefore recommended. Strategies to further optimize assays are outlined, considering the evaluation and the decrease of the relevant error sources. Analytical performance and data quality are still advancing and will further advance the progress in drug development.

  4. Versatility of peptide nucleic acids (PNAs): role in chemical biology, drug discovery, and origins of life.

    Science.gov (United States)

    Sharma, Chiranjeev; Awasthi, Satish Kumar

    2017-01-01

    This review briefly discussed nomenclature, synthesis, chemistry, and biophysical properties of a plethora of PNA derivatives reported since the discovery of aegPNA. Different synthetic methods and structural analogs of PNA synthesized till date were also discussed. An insight was gained into various chemical, physical, and biological properties of PNA which make it preferable over all other classes of modified nucleic acid analogs. Thereafter, various approaches with special attention to the practical constraints, characteristics, and inherent drawbacks leading to the delay in the development of PNA as gene therapeutic drug were outlined. An explicit account of the successful application of PNA in different areas of research such as antisense and antigene strategies, diagnostics, molecular probes, and so forth was described along with the current status of PNA as gene therapeutic drug. Further, the plausibility of the existence of PNA and its role in primordial chemistry, that is, origin of life was explored in an endeavor to comprehend the mystery and open up its deepest secrets ever engaging and challenging the human intellect. We finally concluded it with a discussion on the future prospects of PNA technology in the field of therapeutics, diagnostics, and origin of life. © 2016 John Wiley & Sons A/S.

  5. Early identification of hERG liability in drug discovery programs by automated patch clamp

    Directory of Open Access Journals (Sweden)

    Timm eDanker

    2014-09-01

    Full Text Available Blockade of the cardiac ion channel coded by hERG can lead to cardiac arrhythmia, which has become a major concern in drug discovery and development. Automated electrophysiological patch clamp allows assessment of hERG channel effects early in drug development to aid medicinal chemistry programs and has become routine in pharmaceutical companies. However, a number of potential sources of errors in setting up hERG channel assays by automated patch clamp can lead to misinterpretation of data or false effects being reported. This article describes protocols for automated electrophysiology screening of compound effects on the hERG channel current. Protocol details and the translation of criteria known from manual patch clamp experiments to automated patch clamp experiments to achieve good quality data are emphasized. Typical pitfalls and artifacts that may lead to misinterpretation of data are discussed. While this article focuses on hERG channel recordings using the QPatch (Sophion A/S, Copenhagen, Denmark technology, many of the assay and protocol details given in this article can be transferred for setting up different ion channel assays by automated patch clamp and are similar on other planar patch clamp platforms.

  6. Early identification of hERG liability in drug discovery programs by automated patch clamp.

    Science.gov (United States)

    Danker, Timm; Möller, Clemens

    2014-01-01

    Blockade of the cardiac ion channel coded by human ether-à-gogo-related gene (hERG) can lead to cardiac arrhythmia, which has become a major concern in drug discovery and development. Automated electrophysiological patch clamp allows assessment of hERG channel effects early in drug development to aid medicinal chemistry programs and has become routine in pharmaceutical companies. However, a number of potential sources of errors in setting up hERG channel assays by automated patch clamp can lead to misinterpretation of data or false effects being reported. This article describes protocols for automated electrophysiology screening of compound effects on the hERG channel current. Protocol details and the translation of criteria known from manual patch clamp experiments to automated patch clamp experiments to achieve good quality data are emphasized. Typical pitfalls and artifacts that may lead to misinterpretation of data are discussed. While this article focuses on hERG channel recordings using the QPatch (Sophion A/S, Copenhagen, Denmark) technology, many of the assay and protocol details given in this article can be transferred for setting up different ion channel assays by automated patch clamp and are similar on other planar patch clamp platforms.

  7. Protein phosphorylation and signal transduction modulation: chemistry perspectives for small-molecule drug discovery.

    Science.gov (United States)

    Sawyer, T K; Shakespeare, W C; Wang, Y; Sundaramoorthi, R; Huang, W-S; Metcalf, C A; Thomas, M; Lawrence, B M; Rozamus, L; Noehre, J; Zhu, X; Narula, S; Bohacek, R S; Weigele, M; Dalgarno, D C

    2005-05-01

    Protein phosphorylation has been exploited by Nature in profound ways to control various aspects of cell proliferation, differentiation, metabolism, survival, motility and gene transcription. Cellular signal transduction pathways involve protein kinases, protein phosphatases, and phosphoprotein-interacting domain (e.g., SH2, PTB, WW, FHA, 14-3-3) containing cellular proteins to provide multidimensional, dynamic and reversible regulation of many biological activities. Knowledge of cellular signal transduction pathways has led to the identification of promising therapeutic targets amongst these superfamilies of enzymes and adapter proteins which have been linked to various cancers as well as inflammatory, immune, metabolic and bone diseases. This review focuses on protein kinase, protein phosphatase and phosphoprotein-interacting cellular protein therapeutic targets with an emphasis on small-molecule drug discovery from a chemistry perspective. Noteworthy studies related to molecular genetics, signal transduction pathways, structural biology, and drug design for several of these therapeutic targets are highlighted. Some exemplary proof-of-concept lead compounds, clinical candidates and/or breakthrough medicines are further detailed to illustrate achievements as well as challenges in the generation, optimization and development of small-molecule inhibitors of protein kinases, protein phosphatases or phosphoprotein-interacting domain containing cellular proteins.

  8. Plasmonic ruler on field-effect devices for kinase drug discovery applications.

    Science.gov (United States)

    Bhalla, Nikhil; Formisano, Nello; Miodek, Anna; Jain, Aditya; Di Lorenzo, Mirella; Pula, Giordano; Estrela, Pedro

    2015-09-15

    Protein kinases are cellular switches that mediate phosphorylation of proteins. Abnormal phosphorylation of proteins is associated with lethal diseases such as cancer. In the pharmaceutical industry, protein kinases have become an important class of drug targets. This study reports a versatile approach for the detection of protein phosphorylation. The change in charge of the myelin basic protein upon phosphorylation by the protein kinase C-alpha (PKC-α) in the presence of adenosine 5'-[γ-thio] triphosphate (ATP-S) was detected on gold metal-insulator-semiconductor (Au-MIS) capacitor structures. Gold nanoparticles (AuNPs) can then be attached to the thio-phosphorylated proteins, forming a Au-film/AuNP plasmonic couple. This was detected by a localized surface plasmon resonance (LSPR) technique alongside MIS capacitance. All reactions were validated using surface plasmon resonance technique and the interaction of AuNPs with the thio-phosphorylated proteins quantified by quartz crystal microbalance. The plasmonic coupling was also visualized by simulations using finite element analysis. The use of this approach in drug discovery applications was demonstrated by evaluating the response in the presence of a known inhibitor of PKC-α kinase. LSPR and MIS on a single platform act as a cross check mechanism for validating kinase activity and make the system robust to test novel inhibitors. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. A drug discovery platform: a simplified immunoassay for analyzing HIV protease activity.

    Science.gov (United States)

    Kitidee, Kuntida; Nangola, Sawitree; Hadpech, Sudarat; Laopajon, Witida; Kasinrerk, Watchara; Tayapiwatana, Chatchai

    2012-12-01

    Although numerous methods for the determination of HIV protease (HIV-PR) activity have been described, new high-throughput assays are required for clinical and pharmaceutical applications due to the occurrence of resistant strains. In this study, a simple enzymatic immunoassay to identify HIV-PR activity was developed based on a Ni(2+)-immobilized His(6)-Matrix-Capsid substrate (H(6)MA-CA) is cleaved by HIV protease-His(6) (HIV-PRH(6)) which removes the CA domain and exposes the free C terminus of MA. Following this cleavage, two monoclonal antibodies specific for either the free C-terminal MA or CA epitope are used to quantify the proteolytic activity using a standard ELISA-based system. Specificity for detection of the HIV-PRH(6) activity was confirmed with addition of protease inhibitor (PI), lopinavir. In addition, the assay was able to detect an HIV-PR variant activity indicating that this assay is capable of assessing viral mutation affect HIV-PR activity. The efficacy of commercially available PIs and their 50% inhibitory concentration (IC(50)) were determined. This assay provides a high-throughput method for both validating the efficiency of new drugs in vitro and facilitating the discovery of new PIs. In addition, it could serve as a method for examining the influence of various mutations in HIV-PRs isolated from drug-resistant strains. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Innovating Chinese Herbal Medicine: From Traditional Health Practice to Scientific Drug Discovery

    Directory of Open Access Journals (Sweden)

    Shuo Gu

    2017-06-01

    Full Text Available As one of the major contemporary alternative medicines, traditional Chinese medicine (TCM continues its influence in Chinese communities and has begun to attract the academic attention in the world of western medicine. This paper aims to examine Chinese herbal medicine (CHM, the essential branch of TCM, from both narrative and scientific perspectives. CHM is a traditional health practice originated from Chinese philosophy and religion, holding the belief of holism and balance in the body. With the development of orthodox medicine and science during the last centuries, CHM also seized the opportunity to change from traditional health practice to scientific drug discovery illustrated in the famous story of the herb-derived drug artemisinin. However, hindered by its culture and founding principles, CHM faces the questions of the research paradigm posed by the convention of science. To address these questions, we discussed two essential questions concerning the relationship of CHM and science, and then upheld the paradigm of methodological reductionism in scientific research. Finally, the contemporary narrative of CHM in the 21st century was discussed in the hope to preserve this medical tradition in tandem with scientific research.

  11. Therapeutic Potential of Plants as Anti-Microbials for Drug Discovery

    Directory of Open Access Journals (Sweden)

    Ramar Perumal Samy

    2010-01-01

    Full Text Available The uses of traditional medicinal plants for primary health care have steadily increased worldwide in recent years. Scientists are in search of new phytochemicals that could be developed as useful anti-microbials for treatment of infectious diseases. Currently, out of 80% of pharmaceuticals derived from plants, very few are now being used as anti-microbials. Plants are rich in a wide variety of secondary metabolites that have found anti-microbial properties. This review highlights the current status of traditional medicine, its contribution to modern medicine, recent trends in the evaluation of anti-microbials with a special emphasis upon some tribal medicine, in vitro and in vivo experimental design for screening, and therapeutic efficacy in safety and human clinical trails for commercial outlet. Many of these commercially available compounds are crude preparations administered without performing human clinical trials. Recent methods are useful to standardize the extraction for scientific investigation of new phytochemicals and anti-microbials of traditionally used plants. It is concluded that once the local ethnomedical preparations of traditional sources are scientifically evaluated before dispensing they should replace existing drugs commonly used for the therapeutic treatment of infection. This method should be put into practice for future investigations in the field of ethnopharmacology, phytochemistry, ethnobotany and other biological fields for drug discovery.

  12. An Innovative Cell Microincubator for Drug Discovery Based on 3D Silicon Structures

    Directory of Open Access Journals (Sweden)

    Francesca Aredia

    2016-01-01

    Full Text Available We recently employed three-dimensional (3D silicon microstructures (SMSs consisting in arrays of 3 μm-thick silicon walls separated by 50 μm-deep, 5 μm-wide gaps, as microincubators for monitoring the biomechanical properties of tumor cells. They were here applied to investigate the in vitro behavior of HT1080 human fibrosarcoma cells driven to apoptosis by the chemotherapeutic drug Bleomycin. Our results, obtained by fluorescence microscopy, demonstrated that HT1080 cells exhibited a great ability to colonize the narrow gaps. Remarkably, HT1080 cells grown on 3D-SMS, when treated with the DNA damaging agent Bleomycin under conditions leading to apoptosis, tended to shrink, reducing their volume and mimicking the normal behavior of apoptotic cells, and were prone to leave the gaps. Finally, we performed label-free detection of cells adherent to the vertical silicon wall, inside the gap of 3D-SMS, by exploiting optical low coherence reflectometry using infrared, low power radiation. This kind of approach may become a new tool for increasing automation in the drug discovery area. Our results open new perspectives in view of future applications of the 3D-SMS as the core element of a lab-on-a-chip suitable for screening the effect of new molecules potentially able to kill tumor cells.

  13. Peptide Phage Display as a Tool for Drug Discovery: Targeting Membrane Receptors

    Directory of Open Access Journals (Sweden)

    Tomaz Bratkovic

    2011-01-01

    Full Text Available Ligands selected from phage-displayed random peptide libraries tend to be directed to biologically relevant sites on the surface of the target protein. Consequently, peptides derived from library screenings often modulate the target protein’s activity in vitro and in vivo and can be used as lead compounds in drug design and as alternatives to antibodies for target validation in both genomics and drug discovery. This review discusses the use of phage display to identify membrane receptor modulators with agonistic or antagonistic activities. Because isolating or producing recombinant membrane proteins for use as target molecules in library screening is often impossible, innovative selection strategies such as panning against whole cells or tissues, recombinant receptor ectodomains, or neutralizing antibodies to endogenous binding partners were devised. Prominent examples from a two-decade history of peptide phage display will be presented, focusing on the design of affinity selection experiments, methods for improving the initial hits, and applications of the identified peptides.

  14. New chemical probe technologies: applications to imaging and drug discovery (Conference Presentation)

    Science.gov (United States)

    Bogyo, Matthew

    2017-02-01

    Proteases are enzymes that play pathogenic roles in many common human diseases such as cancer, asthma, arthritis, atherosclerosis and infection by pathogens. Tools to dynamically monitor their activity can be used as diagnostic agents, as imaging contrast agents for intra-operative image guidance and for the identification of novel classes of protease-targeted drugs. I will describe our efforts to design and synthesize small molecule probes that produce a fluorescent signal upon binding to a protease target. We have identified probes that show tumor-specific retention, fast activation kinetics, and rapid systemic distribution making them useful for real-time fluorescence guided tumor resection and other diagnostic imaging applications.

  15. Charting, navigating, and populating natural product chemical space for drug discovery.

    Science.gov (United States)

    Lachance, Hugo; Wetzel, Stefan; Kumar, Kamal; Waldmann, Herbert

    2012-07-12

    Natural products are a heterogeneous group of compounds with diverse, yet particular molecular properties compared to synthetic compounds and drugs. All relevant analyses show that natural products indeed occupy parts of chemical space not explored by available screening collections while at the same time largely adhering to the rule-of-five. This renders them a valuable, unique, and necessary component of screening libraries used in drug discovery. With ChemGPS-NP on the Web and Scaffold Hunter two tools are available to the scientific community to guide exploration of biologically relevant NP chemical space in a focused and targeted fashion with a view to guide novel synthesis approaches. Several of the examples given illustrate the possibility of bridging the gap between computational methods and compound library synthesis and the possibility of integrating cheminformatics and chemical space analyses with synthetic chemistry and biochemistry to successfully explore chemical space for the identification of novel small molecule modulators of protein function.The examples also illustrate the synergistic potential of the chemical space concept and modern chemical synthesis for biomedical research and drug discovery. Chemical space analysis can map under explored biologically relevant parts of chemical space and identify the structure types occupying these parts. Modern synthetic methodology can then be applied to efficiently fill this “virtual space” with real compounds.From a cheminformatics perspective, there is a clear demand for open-source and easy to use tools that can be readily applied by educated nonspecialist chemists and biologists in their daily research. This will include further development of Scaffold Hunter, ChemGPS-NP, and related approaches on the Web. Such a “cheminformatics toolbox” would enable chemists and biologists to mine their own data in an intuitive and highly interactive process and without the need for specialized computer

  16. Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs

    Science.gov (United States)

    Deigan, Katherine E.; Ferré-D’Amaré, Adrian R.

    2011-01-01

    Conspectus Riboswitches, which were discovered in the first years of the XXI century, are gene-regulatory mRNA domains that respond to the intracellular concentration of a variety of metabolites and second messengers. They control essential genes in many pathogenic bacteria, and represent a new class of biomolecular target for the development of antibiotics and chemical-biological tools. Five mechanisms of gene regulation are known for riboswitches. Most bacterial riboswitches modulate transcription termination or translation initiation in response to ligand binding. All known examples of eukaryotic riboswitches and some bacterial riboswitches control gene expression by alternative splicing. The glmS riboswitch, widespread in Gram-positive bacteria, is a catalytic RNA activated by ligand binding. Its self-cleavage destabilizes the mRNA of which it is part. Finally, one example of trans-acting riboswitch is known. Three-dimensional (3D) structures have been determined of representatives of thirteen structurally distinct riboswitch classes, providing atomic-level insight into their mechanisms of ligand recognition. While cellular and viral RNAs in general have attracted interest as potential drug targets, riboswitches show special promise due to the diversity and sophistication of small molecule recognition strategies on display in their ligand binding pockets. Moreover, uniquely among known structured RNA domains, riboswitches evolved to recognize small molecule ligands. Structural and biochemical advances in the study of riboswitches provide an impetus for the development of methods for the discovery of novel riboswitch activators and inhibitors. Recent rational drug design efforts focused on select riboswitch classes have yielded a small number of candidate antibiotic compounds, including one active in a mouse model of Staphylococcus aureus infection. The development of high-throughput methods suitable for riboswitch-specific drug discovery is ongoing. A fragment