WorldWideScience

Sample records for rapid cell expansion

  1. Clinical scale rapid expansion of lymphocytes for adoptive cell transfer therapy in the WAVE® bioreactor

    Science.gov (United States)

    2012-01-01

    Background To simplify clinical scale lymphocyte expansions, we investigated the use of the WAVE®, a closed system bioreactor that utilizes active perfusion to generate high cell numbers in minimal volumes. Methods We have developed an optimized rapid expansion protocol for the WAVE bioreactor that produces clinically relevant numbers of cells for our adoptive cell transfer clinical protocols. Results TIL and genetically modified PBL were rapidly expanded to clinically relevant scales in both static bags and the WAVE bioreactor. Both bioreactors produced comparable numbers of cells; however the cultures generated in the WAVE bioreactor had a higher percentage of CD4+ cells and had a less activated phenotype. Conclusions The WAVE bioreactor simplifies the process of rapidly expanding tumor reactive lymphocytes under GMP conditions, and provides an alternate approach to cell generation for ACT protocols. PMID:22475724

  2. Rabbit antithymocyte globulin induces rapid expansion of effector memory CD8 T cells without accelerating acute graft versus host disease.

    Science.gov (United States)

    Wittenbecher, Friedrich; Rieger, Kathrin; Dziubianau, Mikalai; Herholz, Anne; Mensen, Angela; Blau, Igor Wolfgang; Uharek, Lutz; Dörken, Bernd; Thiel, Andreas; Na, Il-Kang

    2013-01-01

    Rabbit antithymocyte globulin (Thymoglobulin(®)) is commonly used as graft-versus-host disease (GvHD) prophylaxis. Since we found similar total CD8 T cell numbers in patients with and without Thymoglobulin(®) therapy within the first six months after allogeneic hematopoietic stem cell transplantation, we have analyzed the reconstitution of the CD8 T cell compartment in detail. After T cell-depletion, higher and more sustained proliferative capacity of memory CD8 T cells resulted in their rapid expansion, whereas the fraction of naive CD8 T cells decreased. Importantly, this shift towards effector memory CD8 T cells did not accelerate the incidence of GvHD.

  3. Global patent landscape of programmed cell death 1: implications of the rapid expansion.

    Science.gov (United States)

    Kong, Xiangjun; Zhang, Qianru; Lai, Yunfeng; Hu, Hao; Chen, Xin; Hu, Yuanjia

    2018-01-01

    Inhibitors of programmed cell death 1 (PD-1) and its ligands are producing a paradigm shift in cancer treatment. The promising clinical outcomes and a multi-billion dollar market have prompted active research and development and resulted in relentless patent protection. However, the global patent landscape in this field remains unclear. Areas covered: The patent landscape encompassing global patenting activities and developing trends in the field is discussed based on a data set of 1287 patent families. Patenting activities have expanded rapidly in the past three years. Specific trends in relevant aspects are presented, including patent filing countries, patent ownership, co-patents, technical areas, and technological connections in terms of patent citation relationships. Expert opinion: Together with patenting momentum in recent years, fragmented ownership and dense technological connections of PD-1-related inventions raise the possibility of a patent thicket. The explosion of patent applications and complex citation relationships could also lead to considerable patent conflicts and disputes on overlapping intellectual property rights, in addition to existing legal uncertainties. Patent applicants in this field are encouraged to be aware of these concerns when developing valid patent strategies.

  4. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow

    Science.gov (United States)

    Colter, David C.; Class, Reiner; DiGirolamo, Carla M.; Prockop, Darwin J.

    2000-01-01

    Cultures of plastic-adherent cells from bone marrow have attracted interest because of their ability to support growth of hematopoietic stem cells, their multipotentiality for differentiation, and their possible use for cell and gene therapy. Here we found that the cells grew most rapidly when they were initially plated at low densities (1.5 or 3.0 cells/cm2) to generate single-cell derived colonies. The cultures displayed a lag phase of about 5 days, a log phase of rapid growth of about 5 days, and then a stationary phase. FACS analysis demonstrated that stationary cultures contained a major population of large and moderately granular cells and a minor population of small and agranular cells here referred to as recycling stem cells or RS-1 cells. During the lag phase, the RS-1 cells gave rise to a new population of small and densely granular cells (RS-2 cells). During the late log phase, the RS-2 cells decreased in number and regenerated the pool of RS-1 cells found in stationary cultures. In repeated passages in which the cells were plated at low density, they were amplified about 109-fold in 6 wk. The cells retained their ability to generate single-cell derived colonies and therefore apparently retained their multipotentiality for differentiation. PMID:10725391

  5. Disease-associated CAG·CTG triplet repeats expand rapidly in non-dividing mouse cells, but cell cycle arrest is insufficient to drive expansion.

    Science.gov (United States)

    Gomes-Pereira, Mário; Hilley, James D; Morales, Fernando; Adam, Berit; James, Helen E; Monckton, Darren G

    2014-06-01

    Genetically unstable expanded CAG·CTG trinucleotide repeats are causal in a number of human disorders, including Huntington disease and myotonic dystrophy type 1. It is still widely assumed that DNA polymerase slippage during replication plays an important role in the accumulation of expansions. Nevertheless, somatic mosaicism correlates poorly with the proliferative capacity of the tissue and rates of cell turnover, suggesting that expansions can occur in the absence of replication. We monitored CAG·CTG repeat instability in transgenic mouse cells arrested by chemical or genetic manipulation of the cell cycle and generated unequivocal evidence for the continuous accumulation of repeat expansions in non-dividing cells. Importantly, the rates of expansion in non-dividing cells were at least as high as those of proliferating cells. These data are consistent with a major role for cell division-independent expansion in generating somatic mosaicism in vivo. Although expansions can accrue in non-dividing cells, we also show that cell cycle arrest is not sufficient to drive instability, implicating other factors as the key regulators of tissue-specific instability. Our data reveal that de novo expansion events are not limited to S-phase and further support a cell division-independent mutational pathway. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Rapid palatal expansion: the role of microcirculation.

    Science.gov (United States)

    Bilello, G; Currò, G; Messina, P; Scardina, G

    2015-08-01

    Transverse palate modifications fall under expansive orthopedic therapy of the upper maxilla. The only practical approach to the problem on the transverse plane is that of performing the expansion of the maxillary arch through an opening of the median palatal suture. It is important to understand the changes of the vascular network in midpalatal suture following the starting of rapid maxillary expansion. It is critical to maintain the blood supply and circulation for the osteogenesis and bone remodeling after the expansion. The aim of this research was to evaluate the effects of rapid orthopedic expansion (REP) at the microcirculatory level through capillaroscopic examination. Fifteen patients in their developing years between 9 and 15 years of age (average age 12.16 years) were examined. The application of the REP was the first step in the planning of orthopedic-orthodontic treatment which foresaw further stages in the odonto-osseous movement. The method of Biomicroscopic Video-Imaging of the microcirculation of oral mucosa is performed through the technique of computerized capillaroscopy and the related software. From the results it is evident that immediately after achieving the expansion of the upper maxilla (t1), a slight decrease in the number of vessels per mm² can be observed. In addition, a slight ectasia can be observed in these vessels in comparison to t0. Comparing the videocapillaroscopic images of t1 and t2, an increase in the capillaries per mm² can be observed. Ectasia of the capillaries, though subject to strictly individual variables, can be considered perfectly normal and it is compatible with the normal biology and physiology of vessel microcirculation.

  7. Antioxidants cause rapid expansion of human adipose-derived mesenchymal stem cells via CDK and CDK inhibitor regulation

    Science.gov (United States)

    2013-01-01

    Background Antioxidants have been shown to enhance the proliferation of adipose-derived mesenchymal stem cells (ADMSCs) in vitro, although the detailed mechanism(s) and potential side effects are not fully understood. In this study, human ADMSCs cultured in ImF-A medium supplemented with antioxidants (N-acetyl-l-cysteine and ascorbic acid-2-phosphate) and fibroblast growth factor 2 (FGF-2) were compared with ADMSCs cultured with FGF-2 alone (ImF) or with FGF-2 under 5% pO2 conditions (ImF-H). Results During log-phase growth, exposure to ImF-A resulted in a higher percentage of ADMSCs in the S phase of the cell cycle and a smaller percentage in G0/G1 phase. This resulted in a significantly reduced cell-doubling time and increased number of cells in the antioxidant-supplemented cultures compared with those supplemented with FGF-2 alone, an approximately 225% higher cell density after 7 days. Western blotting showed that the levels of the CDK inhibitors p21 and p27 decreased after ImF-A treatment, whereas CDK2, CDK4, and CDC2 levels clearly increased. In addition, ImF-A resulted in significant reduction in the expression of CD29, CD90, and CD105, whereas relative telomere length, osteogenesis, adipogenesis, and chondrogenesis were enhanced. The results were similar for ADMSCs treated with antioxidants and those under hypoxic conditions. Conclusion Antioxidant treatment promotes entry of ADMSCs into the S phase by suppressing cyclin-dependent kinase inhibitors and results in rapid cell proliferation similar to that observed under hypoxic conditions. PMID:23915242

  8. Rabbit antithymocyte globulin induces rapid expansion of effector memory CD8 T cells without accelerating acute graft versus host disease ?

    OpenAIRE

    Wittenbecher, Friedrich; Rieger, Kathrin; Dziubianau, Mikalai; Herholz, Anne; Mensen, Angela; Blau, Igor Wolfgang; Uharek, Lutz; Dörken, Bernd; Thiel, Andreas; Na, Il-Kang

    2013-01-01

    Rabbit antithymocyte globulin (Thymoglobulin(®)) is commonly used as graft-versus-host disease (GvHD) prophylaxis. Since we found similar total CD8 T cell numbers in patients with and without Thymoglobulin(®) therapy within the first six months after allogeneic hematopoietic stem cell transplantation, we have analyzed the reconstitution of the CD8 T cell compartment in detail. After T cell-depletion, higher and more sustained proliferative capacity of memory CD8 T cells resulted in their rapi...

  9. Effect of rapid maxillary expansion on sleep characteristics in children

    OpenAIRE

    Navya Ashok; N. K. Sapna Varma; Ajith, V. V.; Siby Gopinath

    2014-01-01

    Introduction: Rapid maxillary expansion (RME) is an orthopedic treatment procedure routinely used to treat constricted maxillary arches and also a potential additional treatment in children presenting with sleep-disordered breathing (SDB). Aims and Objectives: The main objective of this study was to evaluate the effects of RME on sleep characteristics in children. Materials and Methods: Polysomnography was done on children of 8-13 years of age before expansion (T0), after expansion (T1) and a...

  10. Effect of rapid maxillary expansion on sleep characteristics in children

    National Research Council Canada - National Science Library

    Ashok, Navya; Varma, N K Sapna; Ajith, V V; Gopinath, Siby

    2014-01-01

    Rapid maxillary expansion (RME) is an orthopedic treatment procedure routinely used to treat constricted maxillary arches and also a potential additional treatment in children presenting with sleep-disordered breathing (SDB...

  11. Effect of rapid maxillary expansion on sleep characteristics in children

    National Research Council Canada - National Science Library

    Navya Ashok; N. K. Sapna Varma; V V Ajith; Siby Gopinath

    2014-01-01

    Introduction: Rapid maxillary expansion (RME) is an orthopedic treatment procedure routinely used to treat constricted maxillary arches and also a potential additional treatment in children presenting with sleep-disordered breathing (SDB...

  12. Accelerated production of antigen-specific T cells for preclinical and clinical applications using gas-permeable rapid expansion cultureware (G-Rex).

    Science.gov (United States)

    Vera, Juan F; Brenner, Lara J; Gerdemann, Ulrike; Ngo, Minhtran C; Sili, Uluhan; Liu, Hao; Wilson, John; Dotti, Gianpietro; Heslop, Helen E; Leen, Ann M; Rooney, Cliona M

    2010-04-01

    The clinical manufacture of antigen-specific cytotoxic T lymphocytes (CTLs) for adoptive immunotherapy is limited by the complexity and time required to produce large numbers with the desired function and specificity. The culture conditions required are rigorous, and in some cases only achieved in 2-cm wells in which cell growth is limited by gas exchange, nutrients, and waste accumulation. Bioreactors developed to overcome these issues tend to be complex, expensive, and not always conducive to CTL growth. We observed that antigen-specific CTLs undergo 7 to 10 divisions poststimulation. However, the expected CTL numbers were achieved only in the first week of culture. By recreating the culture conditions present during this first week-low frequency of antigen-specific T cells and high frequency of feeder cells-we were able to increase CTL expansion to expected levels that could be sustained for several weeks without affecting phenotype or function. However, the number of 24-well plates needed was excessive and cultures required frequent media changes, increasing complexity and manufacturing costs. Therefore, we evaluated novel gas-permeable culture devices (G-Rex) with a silicone membrane at the base allowing gas exchange to occur uninhibited by the depth of the medium above. This system effectively supports the expansion of CTL and actually increases output by up to 20-fold while decreasing the required technician time. Importantly, this amplified cell expansion is not because of more cell divisions but because of reduced cell death. This bioprocess optimization increased T-cell output while decreasing the complexity and cost of CTL manufacture, making cell therapy more accessible.

  13. Effect of rapid maxillary expansion on sleep characteristics in children

    Directory of Open Access Journals (Sweden)

    Navya Ashok

    2014-01-01

    Full Text Available Introduction: Rapid maxillary expansion (RME is an orthopedic treatment procedure routinely used to treat constricted maxillary arches and also a potential additional treatment in children presenting with sleep-disordered breathing (SDB. Aims and Objectives: The main objective of this study was to evaluate the effects of RME on sleep characteristics in children. Materials and Methods: Polysomnography was done on children of 8-13 years of age before expansion (T0, after expansion (T1 and after a period of 3 months after retention (T2. Bonded rapid maxillary expander was cemented in all children. Inter-molar distance was also measured at T0 and T2. Statistical Analysis: Nonparametric Friedman test was used for comparing the averages of sleep parameters at different time period (T0, T1, T2. Wilcoxon signed ranks test was used for comparing the averages of inter-molar width (T0-T2. P < 0.05 were considered as significant. Results: All children showed an improvement in sleep parameters with an increase in sleep efficiency, decreased in arousal and desaturation index after expansion. Total sleep time showed a statistically significant increase after expansion. A statistically significant increase in inter-molar distance was obtained after expansion. Conclusions: Rapid maxillary expansion is a useful treatment option for improving quality of sleep even in normal children without SDB. It also induces widening of the maxilla, corrects posterior crossbites and improves maxillary and mandibular dental arch coordination.

  14. Effect of rapid maxillary expansion on sleep characteristics in children.

    Science.gov (United States)

    Ashok, Navya; Varma, N K Sapna; Ajith, V V; Gopinath, Siby

    2014-10-01

    Rapid maxillary expansion (RME) is an orthopedic treatment procedure routinely used to treat constricted maxillary arches and also a potential additional treatment in children presenting with sleep-disordered breathing (SDB). The main objective of this study was to evaluate the effects of RME on sleep characteristics in children. Polysomnography was done on children of 8-13 years of age before expansion (T0), after expansion (T1) and after a period of 3 months after retention (T2). Bonded rapid maxillary expander was cemented in all children. Inter-molar distance was also measured at T0 and T2. Nonparametric Friedman test was used for comparing the averages of sleep parameters at different time period (T0, T1, T2). Wilcoxon signed ranks test was used for comparing the averages of inter-molar width (T0-T2). P children showed an improvement in sleep parameters with an increase in sleep efficiency, decreased in arousal and desaturation index after expansion. Total sleep time showed a statistically significant increase after expansion. A statistically significant increase in inter-molar distance was obtained after expansion. Rapid maxillary expansion is a useful treatment option for improving quality of sleep even in normal children without SDB. It also induces widening of the maxilla, corrects posterior crossbites and improves maxillary and mandibular dental arch coordination.

  15. N-acetyl cysteine protects anti-melanoma cytotoxic T cells from exhaustion induced by rapid expansion via the downmodulation of Foxo1 in an Akt-dependent manner.

    Science.gov (United States)

    Scheffel, Matthew J; Scurti, Gina; Wyatt, Megan M; Garrett-Mayer, Elizabeth; Paulos, Chrystal M; Nishimura, Michael I; Voelkel-Johnson, Christina

    2018-02-02

    Therapeutic outcomes for adoptive cell transfer (ACT) therapy are constrained by the quality of the infused T cells. The rapid expansion necessary to obtain large numbers of cells results in a more terminally differentiated phenotype with decreased durability and functionality. N-acetyl cysteine (NAC) protects against activation-induced cell death (AICD) and improves anti-tumor efficacy of Pmel-1 T cells in vivo. Here, we show that these benefits of NAC can be extended to engineered T cells and significantly increases T-cell survival within the tumor microenvironment. The addition of NAC to the expansion protocol of human TIL13838I TCR-transduced T cells that are under evaluation in a Phase I clinical trial, demonstrated that findings in murine cells extend to human cells. Expansion of TIL13838I TCR-transduced T cells in NAC also increased their ability to kill target cells in vitro. Interestingly, NAC did not affect memory subsets, but diminished up-regulation of senescence (CD57) and exhaustion (PD-1) markers and significantly decreased expression of the transcription factors EOMES and Foxo1. Pharmacological inhibition of the PI3K/Akt pathway ablates the decrease in Foxo1 induced by NAC treatment of activated T cells. This suggests a model in which NAC through PI3K/Akt activation suppresses Foxo1 expression, thereby impacting its transcriptional targets EOMES, PD-1, and granzyme B. Taken together, our results indicate that NAC exerts pleiotropic effects that impact the quality of TCR-transduced T cells and suggest that the addition of NAC to current clinical protocols should be considered.

  16. [Unilateral surgically assisted rapid maxillary expansion using a transpalatal distractor].

    NARCIS (Netherlands)

    Roelofs, J.; Breuning, K.H.; Spijker, A. van 't; Borstlap, W.A.; Berge, S.J.; Kuijpers-Jagtman, A.M.

    2010-01-01

    A 46-year-old woman was referred for orthodontic surgery consultation because ofa retrognathic maxilla, unilateral cross bite and functional, aesthetic and speech problems. The maxilla was widened unilaterally by unilateral surgically assisted rapid maxillary expansion with a bone-borne transpalatal

  17. Surgically Assisted Rapid Maxillary Expansion: surgical and orthodontic aspects

    NARCIS (Netherlands)

    M.J. Koudstaal (Maarten)

    2008-01-01

    textabstractThe scope of this thesis is to shed more light, from a number of perspectives, on surgically assisted rapid maxillary expansion (SARME). The primary questions this thesis set out to answer were; ‘is there a difference in stability between bone-borne and tooth-borne distraction?’ and ‘can

  18. Longitudinal stability of rapid and slow maxillary expansion

    Directory of Open Access Journals (Sweden)

    Fábio Henrique de Sá Leitão Pinheiro

    2014-12-01

    Full Text Available OBJECTIVE: The aim of this retrospective study was to compare the longitudinal stability of two types of posterior crossbite correction: rapid maxillary expansion (RME and slow maxillary expansion (SME.METHODS: Study casts of 90 adolescent patients were assessed for interdental width changes at three different periods: pretreatment (T1, post-treatment (T2 and at least, five years post-retention (T3. Three groups of 30 patients were established according to the treatment received to correct posterior crossbite: Group A (RME, group B (SME and group C (control- Edgewise therapy only. After crossbite correction, all patients received fixed edgewise orthodontic appliances. Paired t-tests and one-way ANOVA were used to identify significant intra and intergroup changes, respectively (P < 0.05.RESULTS: Except for intercanine distance, all widths increased in groups A and B from T1 to T2. In the long-term, the amount of relapse was not different for groups A and B, except for 3-3 widths which showed greater decrease in group A. However, the percentage of clinically relapsed cases of posterior crossbite was similar for rapid and slow maxillary expansion.CONCLUSION: Rapid and slow maxillary expansion showed similar stability in the long-term.

  19. Surgically assisted rapid palatal expansion: a literature review.

    Science.gov (United States)

    Suri, Lokesh; Taneja, Parul

    2008-02-01

    Transverse maxillomandibular discrepancies are a major component of several malocclusions. Orthopedic and orthodontic forces are used routinely to correct a maxillary transverse deficiency (MTD) in a young patient. Correction of MTD in a skeletally mature patient is more challenging because of changes in the osseous articulations of the maxilla with the adjoining bones. Surgically assisted rapid palatal expansion (SARPE) has gradually gained popularity as a treatment option to correct MTD. It allows clinicians to achieve effective maxillary expansion in a skeletally mature patient. The use of SARPE to treat MTD decreases unwanted effects of orthopedic or orthodontic expansion. Our aim in this article is to present a comprehensive review of the literature, including indications, diagnosis, guidelines for case selection, a brief overview of the surgical techniques, orthodontic considerations, complications, risks, and limitations of SARPE to better aid the clinician in the management of MTD in skeletally mature patients.

  20. Effects of rapid maxillary expansion on nasal mucociliary clearance.

    Science.gov (United States)

    Babacan, Hasan; Doruk, Cenk; Uysal, Ismail Onder; Yuce, Salim

    2016-03-01

    To evaluate the changes in nasal mucociliary clearance in orthodontic patients after rapid maxillary expansion (RME) therapy. Forty-two children (25 boys and 17 girls) participated in this study. The RME group consisted of 21 patients (mean age, 13.8 years), who had undergone RME at the initiation of orthodontic treatment. The control group consisted of 21 subjects (mean age, 13.6 years), who were attending the department of orthodontics for active orthodontic treatment. The nasal mucociliary clearance was assessed by the saccharin test. Saccharin transit times (STTs) were measured for each treated subject before expansion (T1), after RME (T2), and after a 3-month retention period (T3). Records were obtained at the same time intervals for each group. The STT decreased significantly in the RME group after expansion and retention (P expansion and retention (P maxillary narrowness and without any history of nasal or systemic disease were within normal limits. However, RME increased the mucociliary clearance in patients who had maxillary narrowness, having positive effects on nasal physiology and increasing nasal cavity volume.

  1. The thermospheric effects of a rapid polar cap expansion

    Directory of Open Access Journals (Sweden)

    D. W. Idenden

    Full Text Available In a previous publication we used results from a coupled thermosphere-ionosphere-plasmasphere model to illustrate a new mechanism for the formation of a large-scale patch of ionisation arising from a rapid polar cap expansion. Here we describe the thermospheric response to that polar cap expansion, and to the ionospheric structure produced. The response is dominated by the energy and momentum input at the dayside throat during the expansion phase itself. These inputs give rise to a large-scale travelling atmospheric disturbance (TAD that propagates both antisunward across the polar cap and equatorward at speeds much greater than both the ion drifts and the neutral winds. We concentrate only on the initially poleward travelling disturbance. The disturbance is manifested in the neutral temperature and wind fields, the height of the pressure level surfaces and in the neutral density at fixed heights. The thermospheric effects caused by the ionospheric structure produced during the expansion are hard to discern due to the dominating effects of the TAD.

    Key words. Ionosphere (ionosphere · atmosphere interaction; modeling and forecasting; plasma convection.

  2. The thermospheric effects of a rapid polar cap expansion

    Directory of Open Access Journals (Sweden)

    D. W. Idenden

    1998-10-01

    Full Text Available In a previous publication we used results from a coupled thermosphere-ionosphere-plasmasphere model to illustrate a new mechanism for the formation of a large-scale patch of ionisation arising from a rapid polar cap expansion. Here we describe the thermospheric response to that polar cap expansion, and to the ionospheric structure produced. The response is dominated by the energy and momentum input at the dayside throat during the expansion phase itself. These inputs give rise to a large-scale travelling atmospheric disturbance (TAD that propagates both antisunward across the polar cap and equatorward at speeds much greater than both the ion drifts and the neutral winds. We concentrate only on the initially poleward travelling disturbance. The disturbance is manifested in the neutral temperature and wind fields, the height of the pressure level surfaces and in the neutral density at fixed heights. The thermospheric effects caused by the ionospheric structure produced during the expansion are hard to discern due to the dominating effects of the TAD.Key words. Ionosphere (ionosphere · atmosphere interaction; modeling and forecasting; plasma convection.

  3. eRME - Rapid Maxillary Expansion in the economic way

    Directory of Open Access Journals (Sweden)

    Sonali Mahadevia

    2011-01-01

    Full Text Available Aim and Objectives: Rapid Maxillary Expansion constitutes a routine clinical procedure in orthodontics, involving separation of mid-palatine suture which is usually done with help of the Hyrax screw. However, because of its high cost, the use has been limited, especially in institutions. So, the purpose of this study was to construct an economical device which can expand the maxillary arch in growing patients. Materials and Methods: Six patients having constricted maxilla and posterior skeletal crossbite were randomly selected from the Department of Orthodontics. A unique, easy and simple alternative device for expanding the maxillary arch called economic Rapid Maxillary Expander (eRME has been fabricated at about one-tenth the cost of the conventional Hyrax. Pre- and post-treatment effects were statistically tested by using paired t-test at 0.05 level of significance. Results and Conclusion: The study results showed an average expansion in canine, premolar and molar regions of 4.4 mm, 6.8 mm and 9.4 mm, respectively, having significant difference pre-and post-treatment. Thus, it shows that maxillary expansion is efficiently possible with the application of this newly constructed device named eRME. This appliance also acts as a fixed retainer to avoid relapse, hence negating the need for a separate retainer.

  4. Rapid palatal expansion: a comparison of two appliances

    Directory of Open Access Journals (Sweden)

    Amanda do Prado Rodrigues

    2012-06-01

    Full Text Available This study analyzed occlusal radiographs to compare the transverse changes produced in patients treated with rapid maxillary expansion using two types of appliances. The sample consisted of 31 children aged 7 to 10.6 years, of both genders, with posterior cross-bite. Fifteen children were treated with a tooth-borne expander and 16 were treated with a tooth-tissue-borne expander. Occlusal radiographs obtained at treatment onset and at the end of the retention period were digitized. The following variables were measured: intermolar distance (IMD, interapical distance (IApD, interbase distance (IBaD and interarm distance (IArD. The results revealed increases in all measurements in both groups after rapid maxillary expansion. Comparison between groups revealed that the increases were greater in patients treated with the tooth-borne expander, except for the IArD measurement, which presented the same increase in both groups. Even though the IMD measurements differed between expanders, they were proportional to the activation of the appliances (IBaD. The increase in the IApD measurement was proportionally greater in the group treated with the tooth-borne expander (0.7:1.0 than in that treated with the tooth-tissue-borne expander (0.4:1.0. It was concluded that both appliances had similar effects, although the tooth-tissue-borne expander produced a lesser opening at the apical region of the incisors.

  5. Alveolar bone changes after asymmetric rapid maxillary expansion.

    Science.gov (United States)

    Akin, Mehmet; Baka, Zeliha Muge; Ileri, Zehra; Basciftci, Faruk Ayhan

    2015-09-01

    To quantitatively evaluate the effects of asymmetric rapid maxillary expansion (ARME) on cortical bone thickness and buccal alveolar bone height (BABH), and to determine the formation of dehiscence and fenestration in the alveolar bone surrounding the posterior teeth, using cone-beam computed tomography (CBCT). The CBCT records of 23 patients with true unilateral posterior skeletal crossbite (10 boys, 14.06 ± 1.08 years old, and 13 girls, 13.64 ± 1.32 years old) who had undergone ARME were selected from our clinic archives. The bonded acrylic ARME appliance, including an occlusal stopper, was used on all patients. CBCT records had been taken before ARME (T1) and after the 3-month retention period (T2). Axial slices of the CBCT images at 3 vertical levels were used to evaluate the buccal and palatal aspects of the canines, first and second premolars, and first molars. Paired samples and independent sample t-tests were used for statistical comparison. The results suggest that buccal cortical bone thickness of the affected side was significantly more affected by the expansion than was the unaffected side (P ARME significantly reduced the BABH of the canines (P ARME also increased the incidence of dehiscence and fenestration on the affected side. ARME may quantitatively decrease buccal cortical bone thickness and height on the affected side.

  6. Photographic assessment of nasal morphology following rapid maxillary expansion in children

    OpenAIRE

    Omar Gabriel da Silva Filho; Tulio Silva Lara; Priscila Vaz Ayub; Amanda Sayuri Cardoso Ohashi; Francisco Antônio Bertoz

    2011-01-01

    Objective: The aim of the present study was to use facial analysis to determine the effects of rapid maxillary expansion (RME) on nasal morphology in children in the stages of primary and mixed dentition, with posterior cross-bite. Material and Methods: Facial photographs (front view and profile) of 60 patients in the pre-expansion period, immediate post-expansion period and one year following rapid maxillary expansion with a Haas appliance were evaluated on 2 occasions by 3 experienced ortho...

  7. Rapid replacement of bridge deck expansion joints study - phase I.

    Science.gov (United States)

    2014-12-01

    Bridge deck expansion joints are used to allow for movement of the bridge deck due to thermal expansion, dynamics loading, and : other factors. More recently, expansion joints have also been utilized to prevent the passage of winter de-icing chemical...

  8. Evaluation of immediate soft tissue changes after rapid maxillary expansion

    Directory of Open Access Journals (Sweden)

    Ki Beom Kim

    2012-10-01

    Full Text Available OBJECTIVE: To evaluate immediate soft tissue changes following rapid maxillary expansion (RME in growing patients, using cone beam computed tomography (CBCT. METHODS: Twenty-three consecutive patients (10 male, 13 female treated by RME were selected. Patients were scanned using CBCT prior to placement of the rapid maxillary expander (T0, then immediately following full activation of the appliance (T1. Defined landmarks were then located on the pre- and post-treatment orientated images. Change in landmark position from pre- to post-treatment was then measured. In addition to landmarks, 10 direct measures were made to determine distance change without regard to direction to measure soft tissue change of the lips. RESULTS: Significant transverse expansion was measured on most soft tissue landmark locations. All the measures made showed significant change in the lip position with a lengthening of the vertical dimension of the upper lip, and a generalized decrease of anterior-posterior thickness of both the upper and lower lips. CONCLUSIONS: Significant changes in the soft tissue do occur with RME treatment. There is a transverse widening of the midface, and a thinning of the lips.OBJETIVO: avaliar as mudanças imediatas no tecido mole após a expansão rápida da maxila (ERM em pacientes em fase de crescimento, usando tomografia computadorizada de feixe cônico (TCFC. MÉTODOS: vinte e três pacientes (10 do sexo masculino e 13 do feminino tratados com ERM foram selecionados. Os pacientes foram escaneados por TCFC antes da implantação do expansor maxilar (T0 e imediatamente após a completa ativação do aparelho (T1. Pontos cefalométricos definidos foram localizados nas imagens pré- e pós-tratamento. As mudanças de posição desses pontos do pré- para o pós-tratamento foram, então, analisadas. Adicionalmente aos pontos, 10 medições diretas foram realizadas para determinar a mudança nas distâncias - independentemente da direção - nos

  9. Transverse Expansion and Stability after Segmental Le Fort I Osteotomy versus Surgically Assisted Rapid Maxillary Expansion: a Systematic Review

    Directory of Open Access Journals (Sweden)

    Thomas Starch-Jensen

    2017-01-01

    Full Text Available Objectives: The objective of the present systematic review was to test the hypothesis of no difference in transverse skeletal and dental arch expansion and relapse after segmental Le Fort I osteotomy versus surgically assisted rapid maxillary expansion. Material and Methods: A MEDLINE (PubMed, Embase and Cochrane library search in combination with a hand-search of relevant journals was conducted by including human studies published in English from January 1, 2000 to June 1, 2016. Results: The search provided 130 titles and four studies fulfilled the inclusion criteria. All the included studies were characterized by high risk of bias and meta-analysis was not possible due to considerable variation. Both treatment modalities significantly increase the transverse maxillary skeletal and dental arch width. The transverse dental arch expansion and relapse seems to be substantial higher with tooth-borne surgically assisted rapid maxillary expansion compared to segmental Le Fort I osteotomy. The ratio of dental to skeletal relapse was significantly higher in the posterior maxilla with tooth-borne surgically assisted rapid maxillary expansion. Moreover, a parallel opening without segment tilting was observed after segmental Le Fort I osteotomy. Conclusions: Maxillary transverse deficiency in adults can be treated successfully with both treatment modalities, although surgically assisted rapid maxillary expansion seems more effective when large transverse maxillary skeletal and dental arch expansion is required. However, considering the methodological limitations of the included studies, long-term randomized studies assessing transverse skeletal and dental expansion and relapse with the two treatment modalities are needed before definite conclusions can be provided.

  10. Rapid maxillary expansion treatment could produce long-term dental arch changes

    NARCIS (Netherlands)

    Ren, Yijin

    2005-01-01

    : Data Sources: Medline, Medline In-Process, LILACS (Latin American and Caribbean Health Sciences Literature), PUBMED, Embase, Web of Science and the Cochrane Library were searched. Search terms were rapid palatal expansion or rapid maxillary expansion (RME) and tooth or dental changes. Reference

  11. Following Surgically Assisted Rapid Palatal Expansion, Do Tooth-Borne or Bone-Borne Appliances Provide More Skeletal Expansion and Dental Expansion?

    Science.gov (United States)

    Hamedi-Sangsari, Adrien; Chinipardaz, Zahra; Carrasco, Lee

    2017-10-01

    The aim of this study was to compare outcome measurements of skeletal and dental expansion with bone-borne (BB) versus tooth-borne (TB) appliances after surgically assisted rapid palatal expansion (SARPE). This study was performed to provide quantitative measurements that will help the oral surgeon and orthodontist in selecting the appliance with, on average, the greatest amount of skeletal expansion and the least amount of dental expansion. A computerized database search was performed using PubMed, EBSCO, Cochrane, Scopus, Web of Science, and Google Scholar on publications in reputable oral surgery and orthodontic journals. A systematic review and meta-analysis was completed with the predictor variable of expansion appliance (TB vs BB) and outcome measurement of expansion (in millimeters). Of 487 articles retrieved from the 6 databases, 5 articles were included, 4 with cone-beam computed tomographic (CBCT) data and 1 with non-CBCT 3-dimensional cast data. There was a significant difference in skeletal expansion (standardized mean difference [SMD], 0.92; 95% confidence interval [CI], 0.54-1.30; P < .001) in favor of BB rather than TB appliances. However, there was no significant difference in dental expansion (SMD, 0.05; 95% CI, -0.24 to 0.34; P = .03). According to the literature, to achieve more effective skeletal expansion and minimize dental expansion after SARPE, a BB appliance should be favored. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  12. Assessment of changes in smile after rapid maxillary expansion

    Directory of Open Access Journals (Sweden)

    Ana Paula Morales Cobra de Carvalho

    2012-10-01

    Full Text Available INTRODUCTION: This study evaluated changes in the smile characteristics of patients with maxillary constriction submitted to rapid maxillary expansion (RME. METHODS: The sample consisted of 81 extraoral photographs of maximum smile of 27 patients with mean age of 10 years, before expansion and 3 and 6 months after fixation of the expanding screw. The photographs were analyzed on the software Cef X 2001, with achievement of the following measurements: Transverse smile area, buccal corridors, exposure of maxillary incisors, gingival exposure of maxillary incisors, smile height, upper and lower lip thickness, smile symmetry and smile arch. Statistical analysis was performed by analysis of variance (ANOVA, at a significance level of 5%. RESULTS: RME promoted statistically significant increase in the transverse smile dimension and exposure of maxillary central and lateral incisors; maintenance of right and left side smile symmetry and of the lack of parallelism between the curvature of the maxillary incisal edges and lower lip border. CONCLUSIONS: RME was beneficial for the smile esthetics with the increase of the transverse smile dimension and exposure of maxillary central and lateral incisors.INTRODUÇÃO: esse estudo avaliou as alterações das características do sorriso de pacientes com atresia maxilar submetidos à expansão rápida da maxila (ERM. MÉTODOS: a amostra consistiu de 81 fotografias extrabucais do sorriso máximo de 27 pacientes, com idade média de 10 anos, antes da expansão e aos três e seis meses após a fixação do parafuso expansor. As análises das fotografias foram realizadas por meio do programa Cef X 2001, e as seguintes medidas foram analisadas: dimensão transversal do sorriso, corredores bucais, quantidade de exposição dos incisivos superiores, exposição gengival dos incisivos superiores, altura do sorriso, espessuras dos lábios superior e inferior, simetria e arco do sorriso. As alterações no sorriso durante

  13. Fetal hepatic progenitors support long-term expansion of hematopoietic stem cells.

    Science.gov (United States)

    Chou, Song; Flygare, Johan; Lodish, Harvey F

    2013-05-01

    We have developed a coculture system that establishes DLK(+) fetal hepatic progenitors as the authentic supportive cells for expansion of hematopoietic stem (HSCs) and progenitor cells. In 1-week cultures supplemented with serum and supportive cytokines, both cocultured DLK(+) fetal hepatic progenitors and their conditioned medium supported rapid expansion of hematopoietic progenitors and a small increase in HSC numbers. In 2- and 3-week cultures DLK(+) cells, but not their conditioned medium, continuously and significantly (>20-fold) expanded both hematopoietic stem and progenitor cells. Physical contact between HSCs and DLK(+) cells was crucial to maintaining this long-term expansion. Similar HSC expansion (approximately sevenfold) was achieved in cocultures using a serum-free, low cytokine- containing medium. In contrast, DLK(-) cells are incapable of expanding hematopoietic cells, demonstrating that hepatic progenitors are the principle supportive cells for HSC expansion in the fetal liver. Copyright © 2013 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  14. Rapid, global demographic expansions after the origins of agriculture.

    Science.gov (United States)

    Gignoux, Christopher R; Henn, Brenna M; Mountain, Joanna L

    2011-04-12

    The invention of agriculture is widely assumed to have driven recent human population growth. However, direct genetic evidence for population growth after independent agricultural origins has been elusive. We estimated population sizes through time from a set of globally distributed whole mitochondrial genomes, after separating lineages associated with agricultural populations from those associated with hunter-gatherers. The coalescent-based analysis revealed strong evidence for distinct demographic expansions in Europe, southeastern Asia, and sub-Saharan Africa within the past 10,000 y. Estimates of the timing of population growth based on genetic data correspond neatly to dates for the initial origins of agriculture derived from archaeological evidence. Comparisons of rates of population growth through time reveal that the invention of agriculture facilitated a fivefold increase in population growth relative to more ancient expansions of hunter-gatherers.

  15. Progesterone induces adult mammary stem cell expansion.

    Science.gov (United States)

    Joshi, Purna A; Jackson, Hartland W; Beristain, Alexander G; Di Grappa, Marco A; Mote, Patricia A; Clarke, Christine L; Stingl, John; Waterhouse, Paul D; Khokha, Rama

    2010-06-10

    Reproductive history is the strongest risk factor for breast cancer after age, genetics and breast density. Increased breast cancer risk is entwined with a greater number of ovarian hormone-dependent reproductive cycles, yet the basis for this predisposition is unknown. Mammary stem cells (MaSCs) are located within a specialized niche in the basal epithelial compartment that is under local and systemic regulation. The emerging role of MaSCs in cancer initiation warrants the study of ovarian hormones in MaSC homeostasis. Here we show that the MaSC pool increases 14-fold during maximal progesterone levels at the luteal dioestrus phase of the mouse. Stem-cell-enriched CD49fhi cells amplify at dioestrus, or with exogenous progesterone, demonstrating a key role for progesterone in propelling this expansion. In aged mice, CD49fhi cells display stasis upon cessation of the reproductive cycle. Progesterone drives a series of events where luminal cells probably provide Wnt4 and RANKL signals to basal cells which in turn respond by upregulating their cognate receptors, transcriptional targets and cell cycle markers. Our findings uncover a dynamic role for progesterone in activating adult MaSCs within the mammary stem cell niche during the reproductive cycle, where MaSCs are putative targets for cell transformation events leading to breast cancer.

  16. Photographic assessment of nasal morphology following rapid maxillary expansion in children

    Directory of Open Access Journals (Sweden)

    Omar Gabriel da Silva Filho

    2011-10-01

    Full Text Available OBJECTIVE: The aim of the present study was to use facial analysis to determine the effects of rapid maxillary expansion (RME on nasal morphology in children in the stages of primary and mixed dentition, with posterior cross-bite. MATERIAL AND METHODS: Facial photographs (front view and profile of 60 patients in the pre-expansion period, immediate post-expansion period and one year following rapid maxillary expansion with a Haas appliance were evaluated on 2 occasions by 3 experienced orthodontists independently, with a 2-week interval between evaluations. The examiners were instructed to assess nasal morphology and had no knowledge regarding the content of the study. Intraexaminer and interexaminer agreement (assessed using the Kappa statistic was acceptable. RESULTS: From the analysis of the mode of the examiners' findings, no alterations in nasal morphology occurred regarding the following aspects: dorsum of nose, alar base, nasal width of middle third and nasal base. Alterations were only detected in the nasolabial angle in 1.64% of the patients between the pre-expansion and immediate post-expansion photographs. In 4.92% of the patients between the immediate post-expansion period and 1 year following expansion; and in 6.56% of the patients between the pre-expansion period and one year following expansion. CONCLUSIONS: RME performed on children in stages of primary and mixed dentition did not have any impact on nasal morphology, as assessed using facial analysis.

  17. Photographic assessment of nasal morphology following rapid maxillary expansion in children

    Science.gov (United States)

    da SILVA FILHO, Omar Gabriel; LARA, Tulio Silva; AYUB, Priscila Vaz; OHASHI, Amanda Sayuri Cardoso; BERTOZ, Francisco Antônio

    2011-01-01

    Objective The aim of the present study was to use facial analysis to determine the effects of rapid maxillary expansion (RME) on nasal morphology in children in the stages of primary and mixed dentition, with posterior cross-bite. Material and Methods Facial photographs (front view and profile) of 60 patients in the pre-expansion period, immediate post-expansion period and one year following rapid maxillary expansion with a Haas appliance were evaluated on 2 occasions by 3 experienced orthodontists independently, with a 2-week interval between evaluations. The examiners were instructed to assess nasal morphology and had no knowledge regarding the content of the study. Intraexaminer and interexaminer agreement (assessed using the Kappa statistic) was acceptable. Results From the analysis of the mode of the examiners' findings, no alterations in nasal morphology occurred regarding the following aspects: dorsum of nose, alar base, nasal width of middle third and nasal base. Alterations were only detected in the nasolabial angle in 1.64% of the patients between the pre-expansion and immediate post-expansion photographs. In 4.92% of the patients between the immediate post-expansion period and 1 year following expansion; and in 6.56% of the patients between the pre-expansion period and one year following expansion. Conclusion RME performed on children in stages of primary and mixed dentition did not have any impact on nasal morphology, as assessed using facial analysis. PMID:21986660

  18. Rapid divergence and expansion of the X chromosome in papaya

    Science.gov (United States)

    Gschwend, Andrea R.; Yu, Qingyi; Tong, Eric J.; Zeng, Fanchang; Han, Jennifer; VanBuren, Robert; Aryal, Rishi; Charlesworth, Deborah; Moore, Paul H.; Paterson, Andrew H.; Ming, Ray

    2012-01-01

    X chromosomes have long been thought to conserve the structure and gene content of the ancestral autosome from which the sex chromosomes evolved. We compared the recently evolved papaya sex chromosomes with a homologous autosome of a close relative, the monoecious Vasconcellea monoica, to infer changes since recombination stopped between the papaya sex chromosomes. We sequenced 12 V. monoica bacterial artificial chromosomes, 11 corresponding to the papaya X-specific region, and 1 to a papaya autosomal region. The combined V. monoica X-orthologous sequences are much shorter (1.10 Mb) than the corresponding papaya region (2.56 Mb). Given that the V. monoica genome is 41% larger than that of papaya, this finding suggests considerable expansion of the papaya X; expansion is supported by a higher repetitive sequence content of the X compared with the papaya autosomal sequence. The alignable regions include 27 transcript-encoding sequences, only 6 of which are functional X/V. monoica gene pairs. Sequence divergence from the V. monoica orthologs is almost identical for papaya X and Y alleles; the Carica-Vasconcellea split therefore occurred before the papaya sex chromosomes stopped recombining, making V. monoica a suitable outgroup for inferring changes in papaya sex chromosomes. The papaya X and the hermaphrodite-specific region of the Yh chromosome and V. monoica have all gained and lost genes, including a surprising amount of changes in the X. PMID:22869742

  19. Empirical and mathematical model of rapid expansion of supercritical solution (RESS) process of acetaminophen

    Science.gov (United States)

    Kien, Le Anh

    2017-09-01

    Rapid Expansion of Supercritical Solutions (RESS) is a solvent-free technology to produce small solid particles with very narrow size distribution. RESS process is simple and easy to control in comparison with other methods based on supercritical techniques. In this study, the engineering of nano (or submicron) acetaminophen particles using rapid expansion CO2 supercritical solution (RESS) was investigated. Empirical model with response surface methodology was used to evaluate the effects of processing parameters, i.e. extraction temperature T (313-333 K), extraction pressure P (90-150 bar) and pre-expansion temperature Texp (353-373 K), on the size of precipitated acetaminophen particles. The results show that the smallest particle size, i.e. 52.08 nm can be achieved at 90 bar, 313 K and 353 K (P, T, Texp, respectively). To better understand and develop a mechanistic predictive tool for RESS process, a one dimensional steady flow model was used in this work to describe the subsonic expansion process inside the capillary nozzle and the supersonic expansion process outside expansion nozzle. It was shown that particle characteristics are governed by both operation parameters such as pre-expansion temperature, pre-expansion pressure, and expansion temperature. These parameters affects particle size in the same trend as that was found from experiment data and empirical model.

  20. Ex vivo expansion of hematopoietic progenitor cells and mature cells.

    Science.gov (United States)

    McNiece, I; Briddell, R

    2001-01-01

    Hematopoietic cells have the potential for providing benefit in a variety of clinical settings. These include cells for support of patients undergoing high-dose chemotherapy, as a target for replacement gene therapy, and as a source of cells for immunotherapy. The limitation to many of these applications has been the total absolute number of defined target cells. Therefore many investigators have explored methods to culture hematopoietic cells in vitro to increase the numbers of these cells. Studies attempting to expand hematopoietic stem cells, progenitor cells, and mature cells in vitro have become possible over the past decade due to the availability of recombinant growth factors and cell selection technologies. To date, no studies have demonstrated convincing data on the expansion of true stem cells, and so the focus of this review is the expansion of committed progenitor cells and mature cells. A number of clinical studies have been preformed using a variety of culture conditions, and several studies are currently in progress that explore the use of ex vivo expanded cells. These studies will be discussed in this review. There are evolving data that suggest that there are real clinical benefits associated with the use of the expanded cells; however, we are still at the early stages of understanding how to optimally culture different cell populations. The next decade should determine what culture conditions and what cell populations are needed for a range of clinical applications.

  1. Laser and LED phototherapy on midpalatal suture after rapid maxilla expansion: Raman and histological analysis.

    Science.gov (United States)

    Rosa, Cristiane Becher; Habib, Fernando Antonio Lima; de Araújo, Telma Martins; Dos Santos, Jean Nunes; Cangussu, Maria Cristina T; Barbosa, Artur Felipe Santos; de Castro, Isabele Cardoso Vieira; Pinheiro, Antônio Luiz Barbosa

    2017-02-01

    The aim of this study was to analyze the effect of laser or LED phototherapy on the acceleration of bone formation at the midpalatal suture after rapid maxilla expansion. Forty-five rats were divided into groups at 7 days (control, expansion, expansion and laser irradiation, and expansion and LED irradiation) and into 14 days (expansion, expansion and laser in the 1st week, expansion and LED in the 1st week, expansion and laser in the 1st and 2nd weeks, expansion and LED in the 1st and 2nd weeks). Laser/LED irradiation occurred every 48 h. Expansion was accomplished with a spatula and maintained with a triple helicoid of 0.020-in stainless steel orthodontic wire. A diode laser (λ780 nm, 70 mW, spot of 0.04 cm2, t = 257 s, SAEF of 18 J/cm2) or a LED (λ850 ± 10 nm, 150 ± 10 mW, spot of 0.5 cm2, t = 120 s, SAEF of 18 J/cm2) was applied in one point in the midpalatal suture immediately behind the upper incisors. Raman spectroscopy and histological analyses of the suture region were carried and data was submitted to statistical analyses (p ≤ 0.05). Raman spectrum analysis demonstrated that irradiation increases hydroxyapatite in the midpalatal suture after expansion. In the histological analysis of various inflammation, there was a higher production of collagen and osteoblastic activity and less osteoclastic activity. The results showed that LED irradiation associated to rapid maxillary expansion improves bone repair and could be an alternative to the use of laser in accelerating bone formation in the midpalatal suture.

  2. Rapid adaptive evolution in novel environments acts as an architect of population range expansion.

    Science.gov (United States)

    Szűcs, M; Vahsen, M L; Melbourne, B A; Hoover, C; Weiss-Lehman, C; Hufbauer, R A

    2017-12-19

    Colonization and expansion into novel landscapes determine the distribution and abundance of species in our rapidly changing ecosystems worldwide. Colonization events are crucibles for rapid evolution, but it is not known whether evolutionary changes arise mainly after successful colonization has occurred, or if evolution plays an immediate role, governing the growth and expansion speed of colonizing populations. There is evidence that spatial evolutionary processes can speed range expansion within a few generations because dispersal tendencies may evolve upwards at range edges. Additionally, rapid adaptation to a novel environment can increase population growth rates, which also promotes spread. However, the role of adaptive evolution and the relative contributions of spatial evolution and adaptation to expansion are unclear. Using a model system, red flour beetles (Tribolium castaneum), we either allowed or constrained evolution of populations colonizing a novel environment and measured population growth and spread. At the end of the experiment we assessed the fitness and dispersal tendency of individuals originating either from the core or edge of evolving populations or from nonevolving populations in a common garden. Within six generations, evolving populations grew three times larger and spread 46% faster than populations in which evolution was constrained. Increased size and expansion speed were strongly driven by adaptation, whereas spatial evolutionary processes acting on edge subpopulations contributed less. This experimental evidence demonstrates that rapid evolution drives both population growth and expansion speed and is thus crucial to consider for managing biological invasions and successfully introducing or reintroducing species for management and conservation.

  3. Changes in nasal volume of patients undergoing rapid maxillary expansion

    OpenAIRE

    Muniz, Renata Da Fonseca Lacerda E; Mario Cappellette Jr.; Daniela Carlini

    2008-01-01

    Os efeitos da disjunção maxilar na resistência nasal e fluxo aéreo têm sido amplamente discutidos na literatura, com controvérsias. Suas indicações esqueléticas e dentárias parecem estar bem claras. Porém, aquelas puramente rinológicas não são justificadas, porque nem sempre resultados positivos são encontrados. Este estudo teve por finalidade avaliar a repercussão da disjunção maxilar ortopédica no aspecto respiratório e rinológico dos pacientes submetidos a esse procedimento.Rapid maxillary...

  4. Effect of a rapid maxillary expansion on snoring and sleep in children: a pilot study.

    Science.gov (United States)

    Giannasi, Lilian Chrystiane; Santos, Israel Reis; Alfaya, Thays Almeida; Bussadori, Sandra Kalil; Leitão-Filho, Fernando Studart; de Oliveira, Luis Vicente Franco

    2015-07-01

    The aim of this study was to assess the efficacy of the McNamara rapid palatal expansion device for the treatment of sleep disorders in children. The sample enrolled 12 children aged 4-11 years. Children with snoring and bruxism whose parents did not agree to tonsil surgery were included in the study. During the initial evaluation, a questionnaire addressing sleep was administered, and plaster models were made for the construction of the McNamara rapid maxillary expansion device. The expansion period was 7-15 days, and the McNamara device was removed after 6-8 months. The same questionnaire was administered again after 30 days of use of the orthopedic appliance. The data were analyzed using the McNemar test, with the level of significance set to 5% (Pmaxillary expansion, can be an effective treatment for snoring and other undesirable sleep behaviors in children.

  5. Position and stability of the mandibular incisors after rapid maxillary expansion

    Directory of Open Access Journals (Sweden)

    Darcy Flávio Nouer

    Full Text Available Objective: To make a cephalometric evaluation of the position and stability of the mandibular incisors immediately after rapid maxillaryexpansion and after a containment period of five months. Methods: The sample consisted of 21 schoolchildren, aged between 6 years and 11 months and 11 years, with mixed dentition, posterior reverse articulation (posterior cross bite, and erupted permanent first molars. The children were randomly divided into two groups: Group1 (composed of eleven children, in whom the encapsulated rapid maxilla expander was used, and Group 2 (composed of ten children, inwhom the conventional Hyrax expander was used. Three lateral teleradiographs of each individual were taken: before treatment, after rapid maxillary expansion, and after a containment period of five months. The cephalometric measurements used for analyzing the incisors were: /1.NB, /1-NB, /1-Line I, IMPA and /1-Jr. The data were submitted to the Dalhberg test, to calculate the error of repeatability, and to ANOVA (p<0.05. Results: The result showed significant difference between the adopted mechanics, but showed no difference between the initial measures, those after rapid expansion of the maxilla and final measures for all the distances, except for /1-Jr. Conclusion: Rapid maxillary expansion, using the encapsulated appliance or Hyrax, caused no significant alteration in the distances: /1.NB, /1-NB, /1-Line I, IMPA; before, after rapid maxillary expansion and after containment.

  6. Management of recurrent otitis media with rapid maxillary expansion: our experience.

    Science.gov (United States)

    De Stefano, A; Baffa, C; Cerrone, D; Mathur, N; Cascini, V; Petrucci, A G; Neri, G

    2009-01-01

    Management of recurrent otitis media with rapid maxillary expansion: our experience. Recurrent otitis media is a frequent problem in the paediatric population. It is commonly associated with adenoid hypertrophy and occasionally with skeletal development syndrome characterised by maxillary anatomical alterations. When this syndrome is present in conjunction with adenoid hypertrophy, surgical management with adenoidectomy and/or myringotomy with ventilation tube positioning does not necessarily ensure a resolution of conductive hearing disorders. We used maxillary rapid expansion in 27 children with a mean age of 7 years affected by recurrent otitis media associated with skeletal development syndrome and adenoid hypertrophy. Rapid maxillary expansion acting directly on the median palatine suture expands the palate and the nasal floor, improving nasal breathing. In addition, maxillary expansion stretches elevator and tensor palatine muscles, helping to restore normal Eustachian tube function, even in the presence of adenoid hypertrophy. In our opinion, rapid maxillary expansion results in an improvement in skeletal-facial abnormalities associated with skeletal development syndrome and it can be considered a valid treatment for preventing recurrent otitis media in children affected by maxillary anatomical alterations.

  7. Modified-casted Appliance for Surgically-assisted Rapid Palatal Expansion: A Clinical Report

    Directory of Open Access Journals (Sweden)

    Puneet Batra

    2014-01-01

    Full Text Available Transverse maxilla-mandibular discrepancies are a major component of several malocclusions. Surgically assisted rapid palatal expansion (SARPE is a common treatment modality for older patients in the correction of a maxillary transverse deficiency. In such cases, retention of the appliance plays an important role and this becomes a problem in patients having enamel hypoplasia. Therefore, the design was modified of a tooth-borne rapid maxillary expansion appliance with provision for miniscrew skeletal anchorage in a Class II malocclusion case having anterior open bite with bilateral posterior crossbite and enamel hypoplasia.

  8. [Feedback control mechanisms of plant cell expansion

    Energy Technology Data Exchange (ETDEWEB)

    Cosgrove, D.J.

    1992-01-01

    We have generated considerable evidence for the significance of wall stress relaxation in the control of plant growth and found that several agents (gibberellin, light, genetic loci for dwarf stature) influence growth rate via alteration of wall relaxation. We have refined our methods for measuring wall relaxation and, moreover, have found that wall relaxation properties bear only a distance relationship to wall mechanical properties. We have garnered novel insights into the nature of cell expansion mechanisms by analyzing spontaneous fluctuations of plant growth rate in seedlings. These experiments involved the application of mathematical techniques for analyzing growth rate fluctuations and the development of new instrumentation for measuring and forcing plant growth in a controlled fashion. These studies conclude that growth rate fluctuations generated by the plant as consequence of a feedback control system. This conclusion has important implications for the nature of wall loosening processes and demands a different framework for thinking about growth control. It also implies the existence of a growth rate sensor.

  9. Expansion and cryopreservation of porcine and human corneal endothelial cells.

    Science.gov (United States)

    Marquez-Curtis, Leah A; McGann, Locksley E; Elliott, Janet A W

    2017-08-01

    Impairment of the corneal endothelium causes blindness that afflicts millions worldwide and constitutes the most often cited indication for corneal transplants. The scarcity of donor corneas has prompted the alternative use of tissue-engineered grafts which requires the ex vivo expansion and cryopreservation of corneal endothelial cells. The aims of this study are to culture and identify the conditions that will yield viable and functional corneal endothelial cells after cryopreservation. Previously, using human umbilical vein endothelial cells (HUVECs), we employed a systematic approach to optimize the post-thaw recovery of cells with high membrane integrity and functionality. Here, we investigated whether improved protocols for HUVECs translate to the cryopreservation of corneal endothelial cells, despite the differences in function and embryonic origin of these cell types. First, we isolated endothelial cells from pig corneas and then applied an interrupted slow cooling protocol in the presence of dimethyl sulfoxide (Me 2 SO), with or without hydroxyethyl starch (HES). Next, we isolated and expanded endothelial cells from human corneas and applied the best protocol verified using porcine cells. We found that slow cooling at 1 °C/min in the presence of 5% Me 2 SO and 6% HES, followed by rapid thawing after liquid nitrogen storage, yields membrane-intact cells that could form monolayers expressing the tight junction marker ZO-1 and cytoskeleton F-actin, and could form tubes in reconstituted basement membrane matrix. Thus, we show that a cryopreservation protocol optimized for HUVECs can be applied successfully to corneal endothelial cells, and this could provide a means to address the need for off-the-shelf cryopreserved cells for corneal tissue engineering and regenerative medicine. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Progressive GAA.TTC repeat expansion in human cell lines.

    Science.gov (United States)

    Ditch, Scott; Sammarco, Mimi C; Banerjee, Ayan; Grabczyk, Ed

    2009-10-01

    Trinucleotide repeat expansion is the genetic basis for a sizeable group of inherited neurological and neuromuscular disorders. Friedreich ataxia (FRDA) is a relentlessly progressive neurodegenerative disorder caused by GAA.TTC repeat expansion in the first intron of the FXN gene. The expanded repeat reduces FXN mRNA expression and the length of the repeat tract is proportional to disease severity. Somatic expansion of the GAA.TTC repeat sequence in disease-relevant tissues is thought to contribute to the progression of disease severity during patient aging. Previous models of GAA.TTC instability have not been able to produce substantial levels of expansion within an experimentally useful time frame, which has limited our understanding of the molecular basis for this expansion. Here, we present a novel model for studying GAA.TTC expansion in human cells. In our model system, uninterrupted GAA.TTC repeat sequences display high levels of genomic instability, with an overall tendency towards progressive expansion. Using this model, we characterize the relationship between repeat length and expansion. We identify the interval between 88 and 176 repeats as being an important length threshold where expansion rates dramatically increase. We show that expansion levels are affected by both the purity and orientation of the repeat tract within the genomic context. We further demonstrate that GAA.TTC expansion in our model is independent of cell division. Using unique reporter constructs, we identify transcription through the repeat tract as a major contributor to GAA.TTC expansion. Our findings provide novel insight into the mechanisms responsible for GAA.TTC expansion in human cells.

  11. Bleb Expansion in Migrating Cells Depends on Supply of Membrane from Cell Surface Invaginations.

    Science.gov (United States)

    Goudarzi, Mohammad; Tarbashevich, Katsiaryna; Mildner, Karina; Begemann, Isabell; Garcia, Jamie; Paksa, Azadeh; Reichman-Fried, Michal; Mahabaleshwar, Harsha; Blaser, Heiko; Hartwig, Johannes; Zeuschner, Dagmar; Galic, Milos; Bagnat, Michel; Betz, Timo; Raz, Erez

    2017-12-04

    Cell migration is essential for morphogenesis, organ formation, and homeostasis, with relevance for clinical conditions. The migration of primordial germ cells (PGCs) is a useful model for studying this process in the context of the developing embryo. Zebrafish PGC migration depends on the formation of cellular protrusions in form of blebs, a type of protrusion found in various cell types. Here we report on the mechanisms allowing the inflation of the membrane during bleb formation. We show that the rapid expansion of the protrusion depends on membrane invaginations that are localized preferentially at the cell front. The formation of these invaginations requires the function of Cdc42, and their unfolding allows bleb inflation and dynamic cell-shape changes performed by migrating cells. Inhibiting the formation and release of the invaginations strongly interfered with bleb formation, cell motility, and the ability of the cells to reach their target. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures

    Science.gov (United States)

    Yamano, Hiroya; Sugihara, Kaoru; Nomura, Keiichi

    2011-02-01

    Rising temperatures caused by climatic warming may cause poleward range shifts and/or expansions in species distribution. Tropical reef corals (hereafter corals) are some of the world's most important species, being not only primary producers, but also habitat-forming species, and thus fundamental ecosystem modification is expected according to changes in their distribution. Although most studies of climate change effects on corals have focused on temperature-induced coral bleaching in tropical areas, poleward range shifts and/or expansions may also occur in temperate areas. We show the first large-scale evidence of the poleward range expansion of modern corals, based on 80 years of national records from the temperate areas of Japan, where century-long measurements of in situ sea-surface temperatures have shown statistically significant rises. Four major coral species categories, including two key species for reef formation in tropical areas, showed poleward range expansions since the 1930s, whereas no species demonstrated southward range shrinkage or local extinction. The speed of these expansions reached up to 14 km/year, which is far greater than that for other species. Our results, in combination with recent findings suggesting range expansions of tropical coral-reef associated organisms, strongly suggest that rapid, fundamental modifications of temperate coastal ecosystems could be in progress.

  13. Skeletal alterations associated with the use of bonded rapid maxillary expansion appliance.

    Science.gov (United States)

    Rossi, Moara de; Rossi, Andiara de; Abrão, Jorge

    2011-01-01

    Bonded maxillary expansion appliances have been suggested to control increases in the vertical dimension of the face after rapid maxillary expansion (RME). However, there is still no consensus in the literature about its real skeletal effects. The purpose of this prospective study was to evaluate, longitudinally, the vertical and sagittal cephalometric alterations after RME performed with bonded maxillary expansion appliance. The sample consisted of 26 children, with a mean age of 8.7 years (range: 6.9-10.9 years), with posterior skeletal crossbite and indication for RME. After maxillary expansion, the bonded appliance was used as a fixed retention for 3.4 months, being replaced by a removable retention subsequently. The cephalometric study was performed onto lateral radiographs, taken before treatment was started, and again 6.3 months after removing the bonded appliance. Intra-group comparison was made using paired t test. The results showed that there were no significant sagittal skeletal changes at the end of treatment. There was a small vertical skeletal increase in five of the eleven evaluated cephalometric measures. The maxilla displaced downward, but it did not modify the facial growth patterns or the direction of the mandible growth. Under the specific conditions of this research, it may be concluded that RME with acrylic bonded maxillary expansion appliance did promote signifciant vertical or sagittal cephalometric alterations. The vertical changes found with the use of the bonded appliance were small and probably transitory, similar to those occurred with the use of banded expansion appliances.

  14. Modified hyrax splint for rapid maxillary expansion in esthetically concerned patients

    Directory of Open Access Journals (Sweden)

    Sarabjeet Singh Sandhu

    2015-01-01

    Full Text Available The orthodontic treatment of Class III malocclusion with a maxillary deficiency is often treated with maxillary protraction either with or without maxillary expansion. The routine procedure for rapid maxillary expansion includes banding on first premolars/first deciduous molars and the permanent first molars. However in some patients who are esthetically very conscious, banding of the first premolar would not be a good esthetic option. So for such circumstances we have designed a modified hyrax splint, which does not need the first premolars to be banded.

  15. Koreksi gigitan terbalik posterior dan anterior dengan alat cekat rapid maxillary expansion dan elastik intermaksila

    Directory of Open Access Journals (Sweden)

    Retno Dewati

    2014-06-01

    Full Text Available Background: Children with anterior and posterior crossbite usually have a complaint in aesthetic and masticatory function. It could caused by bad habits and hereditary factors which made worse condition. Purpose: The purpose of this case report was to report the use of orthodontic appliance rapid maxillary expansion (RPE and intermaxillary elastic to correct posterior and anterior crossbite in teenage patient. Case: A fourteen years-old teenage female patient came to Dental Hospital Dentistry Universitas Airlangga with case of anterior posterior cross bite and unerupted permanent teeth. Case management: The case was treated using orthodontic fixed appliance rapid maxillary expansion (RPE and followed by intermaxillary elastics. The posterior cross bite treatment took 4 weeks used of orthodontic fixed appliance RPE, while, treatment of anterior cross bite which used intermaxillary elactic was done within three month to achieved normal occlusion. Conclusion: This case report showed that the orthodontic appliance rapid maxillary expansion (RPE and intermaxillary elastic could be used to correct posterior and anterior crossbite.Latar belakang: Anak dengan gigitan terbalik anterior dan posterior pada umumnya mempunyai keluhan dalam hal estetik dan fungsi pengunyahan. Kondisi gigitan terbalik biasanya disebabkan oleh adanya kebiasaan buruk dan faktor keturunan yang semakin memperparah keadaan tersebut. Tujuan: Laporan kasus ini melaporkan pemakaian alat cekat rapid maxillary expansion (RPE dan elastik intermaksila untuk mengkoreksi gigitan terbalik posterior dan anterior pada anak remaja. Kasus: Pasien remaja perempuan berusia 14 tahun datang ke Rumah Sakit Gigi dan Mulut Fakultas Kedokteran Gigi Universitas Airlangga Surabaya dengan kasus gigitan terbalik anterior posterior dan terdapat gigi permanen yang tidak tumbuh. Tatalaksana kasus: Perawatan yang dilakukan adalah koreksi gigitan terbalik dengan menggunakan alat ortodonsia cekat rapid maxillary

  16. Three-Dimensional Force Measurements During Rapid Palatal Expansion in Sus scrofa

    Directory of Open Access Journals (Sweden)

    Kelly Goeckner

    2016-04-01

    Full Text Available Rapid palatal expansion is an orthodontic procedure widely used to correct the maxillary arch. However, its outcome is significantly influenced by factors that show a high degree of variability amongst patients. The traditional treatment methodology is based on an intuitive and heuristic treatment approach because the forces applied in the three dimensions are indeterminate. To enable optimal and individualized treatment, it is essential to measure the three-dimensional (3D forces and displacements created by the expander. This paper proposes a method for performing these 3D measurements using a single embedded strain sensor, combining experimental measurements of strain in the palatal expander with 3D finite element analysis (FEA. The method is demonstrated using the maxillary jaw from a freshly euthanized pig (Sus scrofa and a hyrax-design rapid palatal expander (RPE appliance with integrated strain gage. The strain gage measurements are recorded using a computer interface, following which the expansion forces and extent of expansion are estimated by FEA. A total activation of 2.0 mm results in peak total force of about 100 N—almost entirely along the direction of expansion. The results also indicate that more than 85% of the input activation is immediately transferred to the palate and/or teeth. These studies demonstrate a method for assessing and individualizing expansion magnitudes and forces during orthopedic expansion of the maxilla. This provides the basis for further development of smart orthodontic appliances that provide real-time readouts of forces and movements, which will allow personalized, optimal treatment.

  17. Effect of a low-level laser on bone regeneration after rapid maxillary expansion.

    Science.gov (United States)

    Cepera, Fernanda; Torres, Fernando C; Scanavini, Marco A; Paranhos, Luiz R; Capelozza Filho, Leopoldino; Cardoso, Mauricio A; Siqueira, Danieli C R; Siqueira, Danilo F

    2012-04-01

    In this study, we evaluated the effects of a low-level laser on bone regeneration in rapid maxillary expansion procedures. Twenty-seven children, aged 8 to 12 years, took part in the experiment, with a mean age of 10.2 years, divided into 2 groups: the laser group (n = 14), in which rapid maxillary expansion was performed in conjunction with laser use, and the no-laser group (n = 13), with rapid maxillary expansion only. The activation protocol of the expansion screw was 1 full turn on the first day and a half turn daily until achieving overcorrection. The laser type used was a laser diode (TWIN Laser; MMOptics, São Carlos, Brazil), according to the following protocol: 780 nm wavelength, 40 mW power, and 10 J/cm(2) density at 10 points located around the midpalatal suture. The application stages were 1 (days 1-5 of activation), 2 (at screw locking, on 3 consecutive days), 3, 4, and 5 (7, 14, and 21 days after stage 2). Occlusal radiographs of the maxilla were taken with the aid of an aluminum scale ruler as a densitometry reference at different times: T1 (initial), T2 (day of locking), T3 (3-5 days after T2), T4 (30 days after T3), and T5 (60 days after T4). The radiographs were digitized and submitted to imaging software (Image Tool; UTHSCSA, San Antonio, Tex) to measure the optic density of the previously selected areas. To perform the statistical test, analysis of covariance was used, with the time for the evaluated stage as the covariable. In all tests, a significance level of 5% (P maxillary expansion, provided efficient opening of the midpalatal suture and influenced the bone regeneration process of the suture, accelerating healing. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  18. Influence of Orthodontic Rapid Maxillary Expansion on Nocturnal Enuresis in Children

    OpenAIRE

    Lidia Hyla-Klekot; Marek Truszel; Andrzej Paradysz; Lidia Postek-Stefańska; Marcin Życzkowski

    2015-01-01

    Background. The etiology of nocturnal enuresis (NE) is multifactorial and has not been fully explained yet. New ways of treatment are constantly being investigated, including the rapid maxillary expansion (RME). Methods. A total of 41 patients diagnosed with NE were divided into two experimental groups: A and B. Group A included 16 children who have been treated with RME. Group B comprised 25 children who have not undertaken orthodontic treatment. Children from both groups have been monitored...

  19. Changes of pulp-chamber dimensions 1 year after rapid maxillary expansion.

    Science.gov (United States)

    Baratieri, Carolina; Alves, Matheus; Mattos, Cláudia Trindade; Souza, Margareth Maria Gomes de; Ruellas, Antônio Carlos de Oliveira

    2013-04-01

    The purpose of this study was to examine the effect of orthopedic forces on maxillary first molars' and maxillary central incisors' pulp chambers in children having rapid maxillary expansion as the only intervention compared with children having no orthodontic intervention by using cone-beam computed tomography images. In this prospective controlled clinical study, we evaluated 60 maxillary first molars and 60 maxillary central incisors from 30 children (18 boys, 12 girls) in the mixed dentition and during the pubertal growth period. The treated group had rapid maxillary expansion with the Haas expander, followed by 6 months of retention and 6 months of follow-up out of retention; the control group had no intervention during the study. Cone-beam computed tomography scans were taken initially and 1 year after the rapid maxillary expansion active phase. Initially, a 3-dimensional scrolling in all pulp chambers of the evaluated teeth was performed with Dolphin Imaging software (version 11.0; Dolphin Imaging & Management Solutions, Chatsworth, Calif) to describe the incidence of pulp-chamber calcifications. The dimensions of the pulp chambers of the molars and incisors were also investigated. Cross-sectional and longitudinal slices were used for each molar (coronal and axial slices) and incisor (sagittal and axial slices). The area (mm(2)) was obtained from 3 slices of each kind (6 measurements for each tooth). The results suggest that rapid maxillary expansion did not induce new pulp-chamber calcification. Also, it did not interfere in normal pulp-chamber dimension changes of the anchorage molars. The pulp chamber of the central incisors can be expected to be minimally wider 1 year after the therapy. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  20. Changes in nasal air flow and school grades after rapid maxillary expansion in oral breathing children

    OpenAIRE

    Torre, Hilda; Alarcón, Jose Antonio

    2012-01-01

    Objective: To analyse the changes in nasal air flow and school grades after rapid maxillary expansion (RME) in oral breathing children with maxillary constriction. Material and Methods: Forty-four oral breathing children (mean age 10.57 y) underwent orthodontic RME with a Hyrax screw. Forty-four age-matched children (mean age 10.64 y) with nasal physiological breathing and adequate transverse maxillary dimensions served as the control group. The maxillary widths, nasal air flow assessed via p...

  1. Dental and skeletal effects of combined headgear used alone or in association with rapid maxillary expansion.

    Science.gov (United States)

    Farret, Milton Meri Benitez; Lima, Eduardo Martinelli de; Farret, Marcel M; Araújo, Laura Lutz de

    2015-10-01

    The aim of this study was to assess the effects of combined headgear used alone or in association with rapid maxillary expansion, as the first step for Class II malocclusion treatment. The sample comprised 61 patients divided into three groups: Group 1, combined headgear (CH); Group 2, CH + rapid maxillary expansion (CH + RME); and Group 3, control (CG). In Group 1, patients were treated with combined headgear until Class I molar relationship was achieved. In Group 2, the protocol for headgear was the same; however, patients were previously subject to rapid maxillary expansion. Results showed distal displacement of maxillary molars for both experimental groups (p < 0.001), with distal tipping only in Group 1 (CH) (p < 0.001). There was restriction of forward maxillary growth in Group 2 (CH + RME) (p < 0.05) and clockwise rotation of the maxilla in Group 1 (CH) (p < 0.05). Based on the results, it is possible to suggest that treatment with both protocols was efficient; however, results were more significant for Group 2 (CH + RME) with less side effects.

  2. Dental and skeletal effects of combined headgear used alone or in association with rapid maxillary expansion

    Directory of Open Access Journals (Sweden)

    Milton Meri Benitez Farret

    2015-10-01

    Full Text Available Objective: The aim of this study was to assess the effects of combined headgear used alone or in association with rapid maxillary expansion, as the first step for Class II malocclusion treatment.Methods:The sample comprised 61 patients divided into three groups: Group 1, combined headgear (CH; Group 2, CH + rapid maxillary expansion (CH + RME; and Group 3, control (CG. In Group 1, patients were treated with combined headgear until Class I molar relationship was achieved. In Group 2, the protocol for headgear was the same; however, patients were previously subject to rapid maxillary expansion.Results:Results showed distal displacement of maxillary molars for both experimental groups (p < 0.001, with distal tipping only in Group 1 (CH (p < 0.001. There was restriction of forward maxillary growth in Group 2 (CH + RME (p < 0.05 and clockwise rotation of the maxilla in Group 1 (CH (p < 0.05.Conclusion: Based on the results, it is possible to suggest that treatment with both protocols was efficient; however, results were more significant for Group 2 (CH + RME with less side effects.

  3. Molar changes with cervical headgear alone or in combination with rapid maxillary expansion.

    Science.gov (United States)

    Marchiori Farret, Marcel; de Lima, Eduardo Martinelli S; Pereira Araújo, Vanessa; Deon Rizzatto, Susana Maria; Macedo de Menezes, Luciane; Lima Grossi, Marcio

    2008-09-01

    To test the hypothesis that there is no difference in the distal movement of the maxillary first permanent molars when cervical headgear is used alone or in combination with rapid maxillary expansion. The sample was composed of 36 subjects (aged 9 to 13 years), treated in the Faculty of Dentistry, Pontifícia Universidade Cat;aaolica, Rio Grande do Sul, Brazil. The individuals were in good health and in their pubertal growth period. All had Class II division 1 malocclusion. The patients were divided into two groups: group 1 (22 subjects), Class II, with a normal transverse maxilla treated with cervical traction headgear (HG) 400 g 12 h/d, and group 2 (14 subjects), Class II maxillary transverse deficiency treated with rapid maxillary expansion plus cervical traction headgear (RME + HG). An additional group 3 (17 subjects) served as a control group and included individuals with the same characteristics. All subjects had two lateral cephalograms: initial (T1) and progress (T2), taken 6 months later. Differences between T1 and T2 were compared with the Student's t-test, and three groups were compared by the analysis of variance and Tukey multiple comparison test. Results showed greater distal tipping and greater distal movement of the first permanent molars in group 1 (HG) than in group 2 (RME + HG), P .05). The hypothesis was rejected. Cervical traction headgear alone produced greater distal movement effects in maxillary first permanent molars when compared with rapid maxillary expansion associated with cervical headgear.

  4. Prediction of Class II improvement after rapid maxillary expansion in early mixed dentition

    Directory of Open Access Journals (Sweden)

    Alberto Caprioglio

    2017-04-01

    Full Text Available Abstract Background The aim of this study is to identify cephalometric pretreatment parameters for prediction of Class II improvement induced by rapid maxillary expansion. Methods Lateral cephalograms of 30 patients (mean age 8.3 ± 1.6 years old showing Class II molar relationship and undergone to rapid maxillary expansion on the upper deciduous molars were traced before treatment, and molar relation changes were evaluated on dental casts before and after treatment. Overall treatment time lasted 10.2 ± 2 months. Good responders (18 subjects, 10 females and 8 males showed improvement of at least 2.50 mm, and bad responders (12 subjects, 7 females and 5 males showed no improvement, improvement less than 2.50 mm, or worsening of molar relationship after treatment. Student’s t test was used to assess significance of differences between groups, and discriminant analysis allowed identification of predictive pretreatment variables. Results Articular angle, superior gonial angle, and mandibular dimensions (Co-Gn, S-Ar, Ar-Go, Go-Me showed significant differences in the comparison between groups. Mandibular length Co-Gn and superior gonial angle were selected as significant predictive variable for discrimination. Conclusions Patients with smaller mandibular length and more acute superior gonial angle are expected to have more chances to improve molar Class II after rapid maxillary expansion.

  5. Coupling of solute transport and cell expansion in pea stems

    Science.gov (United States)

    Schmalstig, J. G.; Cosgrove, D. J.

    1990-01-01

    As cells expand and are displaced through the elongation zone of the epicotyl of etiolated pea (Pisum sativum L. var Alaska) seedlings, there is little net dilution of the cell sap, implying a coordination between cell expansion and solute uptake from the phloem. Using [14C] sucrose as a phloem tracer (applied to the hypogeous cotyledons), the pattern of label accumulation along the stem closely matched the growth rate pattern: high accumulation in the growing zone, little accumulation in nongrowing regions. Several results suggest that a major portion of phloem contents enters elongating cells through the symplast. We propose that the coordination between phloem transport and cell expansion is accomplished via regulatory pathways affecting both plasmodesmata conductivity and cell expansion.

  6. Ex vivo Expansion of Hematopoietic Stem Cells

    NARCIS (Netherlands)

    E. Farahbakhshian (Elnaz)

    2013-01-01

    textabstractHematopoiesis is a complex cellular differentiation process resulting in the formation of all blood cell types. In this process, hematopoietic stem cells (HSCs) reside at the top of the hematopoiesis hierarchy and have the capacity to differentiate into all blood cell lineages

  7. A Rapid Compression Expansion Machine (RCEM) for studying chemical kinetics: Experimental principle and first applications

    CERN Document Server

    Werler, Marc; Maas, Ulrich

    2016-01-01

    A novel extension of a rapid compression machine (RCM), namely a Rapid Compression Expansion Machine (RCEM), is described and its use for studying chemical kinetics is demonstrated. Like conventional RCMs, the RCEM quickly compresses a fuel/air mixture by pushing a piston into a cylinder; the resulting high temperatures and pressures initiate chemical reactions. In addition, the machine can rapidly expand the compressed gas in a controlled way by pulling the piston outwards again. This freezes chemical activity after a pre-defined reaction duration, and therefore allows a convenient probe sampling and ex-situ gas analysis of stable species. The RCEM therefore is a promising instrument for studying chemical kinetics, including also partially reacted fuel/air mixtures. The setup of the RCEM, its experimental characteristics and its use for studying chemical reactions are outlined in detail. To allow comparisons of RCEM results with predictions of chemical reaction mechanisms, a simple numerical model of the RCE...

  8. Elements of the niche for adult stem cell expansion.

    Science.gov (United States)

    Redondo, Patricia A; Pavlou, Marina; Loizidou, Marilena; Cheema, Umber

    2017-01-01

    Adult stem cells are crucial for tissue homeostasis. These cells reside within exclusive locations in tissues, termed niches, which protect adult stem cell fidelity and regulate their many functions through biophysical-, biochemical- and cellular-mediated mechanisms. There is a growing understanding of how these mechanisms and their components contribute towards maintaining stem cell quiescence, self-renewal, expansion and differentiation patterns. In vitro expansion of adult stem cells is a powerful tool for understanding stem cell biology, and for tissue engineering and regenerative medicine applications. However, it is technically challenging, since adult stem cell removal from their native microenvironment has negative repercussions on their sustainability. In this review, we overview specific elements of the biomimetic niche and how recreating such elements can help in vitro propagation of adult stem cells.

  9. Novel micronisation β-carotene using rapid expansion supercritical solution with co-solvent

    Science.gov (United States)

    Kien, Le Anh

    2017-09-01

    Rapid expansion of supercritical solution (RESS) is the most common approach of pharmaceutical pacticle forming methods using supercritical fluids. The RESS method is a technology producing a small solid product with a very narrow particle size distribution, organic solvent-free particles. This process is also simple and easy to control the operating parameters in comparision with other ways based on supercritical techniques. In this study, β-carotene, a strongly colored red-orange pigment abundant in plants and fruits, has been forming by RESS. In addition, the size and morphology effect of four different RESS parameters including co-solvent, extraction temperature, and extraction pressure and expansion nozzle temperature has surveyed. The particle size distribution has been determined by using laser diffraction experiment. SEM has conducted to analyze the surface structure, DSC and FTIR for thermal and chemical structure analysis.

  10. Micronization of phenylbutazone by rapid expansion of supercritical CO2 solution.

    Science.gov (United States)

    Moribe, Kunikazu; Tsutsumi, Shun-ichiro; Morishita, Shoko; Shinozaki, Hiroshi; Tozuka, Yuichi; Oguchi, Toshio; Yamamoto, Keiji

    2005-08-01

    Rapid expansion of supercritical solutions (RESS) technique was applied for the preparation of phenylbutazone fine particles. The operating temperature and pressure affected the yield of the drug fine particles, which was evaluated by dissolving the sprayed product of drug into ethanol. Effect of pre- and post-expansion conditions on the particle size distribution of phenylbutazone was investigated and the smallest sample (mean particle size: 1.59 microm) was obtained when the RESS method was operated at a pressure of 26 MPa combined with a temperature of 32 degrees C. Physicochemical properties of the fine particles were investigated by powder X-ray diffraction and differential scanning calorimetry. It was found that the phenylbutazone fine particles obtained were meta-stable beta form under the experimental conditions tested, suggesting polymorphic transformation during the RESS process.

  11. The effect of rapid palatal expansion on sleep bruxism in children.

    Science.gov (United States)

    Bellerive, Audrey; Montpetit, Andrée; El-Khatib, Hicham; Carra, Maria Clotilde; Remise, Claude; Desplats, Eve; Huynh, Nelly

    2015-12-01

    Sleep bruxism (SB) is a movement described as an involuntary mastication movement during sleep, also defined as rhythmic masticatory muscle activity (RMMA). It is observed in 2-40 % of the pediatric population. A link was suggested between respiratory events and RMMA. Rapid palatal expansion (RPE) is an effective orthopedic treatment for correcting maxillary transverse deficiency and sleep-disordered breathing (SDB) in children. The aim was to evaluate the possible reduction of SB after rapid palatal expansion (RPE) therapy. A total of 32 patients (8-14 years old; 22 girls and 10 boys) received an orthodontic treatment for transverse maxillary deficiency (5 mm or more) at the orthodontics department of the Université de Montréal. They underwent an ambulatory polysomnography (PSG) before, after expansion with the expander, and at the end of the study without the expander. They were classified into three subgroups based on sleep electromyography (EMG) data. Total sleep time and stage NREM 3 presented significant differences between the types of appliances. Moreover, there was a time effect observed for total sleep time, sleep cycles, stage NREM 2, and stage REM, while only a trend suggested for stage NREM 3. Significant differences were observed between subgroups for both RMMA episodes and burst indexes, similarly, for the oxygen desaturation index (ODI). A total of 50 % of the patients were classified as responders when RMMA episodes index decreased by more than 25 % when comparing treatment efficacy at baseline night. Most bruxers (65 %) reduced their RMMA episode index after expansion, but sleep and respiratory variables remained unchanged.

  12. An assessment of the maxilla after rapid maxillary expansion using cone beam computed tomography in growing children.

    Science.gov (United States)

    Woller, Jessica L; Kim, Ki Beom; Behrents, Rolf G; Buschang, Peter H

    2014-01-01

    With the advent of cone beam computed tomography (CBCT), it is now possible to quantitatively evaluate the effects of rapid maxillary expansion (RME) on the entire maxillary complex in growing patients. The purpose of this study is to use three-dimensional images to evaluate the displacement that occurs at the circummaxillary sutures (frontonasal, zygomaticomaxillary, intermaxillary, midpalatal, and transpalatal sutures) following rapid maxillary expansion in growing children. The CBCT scans of 25 consecutively treated RME patients (10 male, 15 female) with mean age of 12.3±2.6 years, were examined before expansion and immediately following the last activation of the expansion appliance. Statistically significant (Pmaxillary first molars due to RME was also statistically significant. There was no statistically significant displacement of the transpalatal suture. Rapid maxillary expansion results in significant displacement of the bones of circummaxillary sutures in growing children.

  13. Asymmetric rapid maxillary expansion in true unilateral crossbite malocclusion: a prospective controlled clinical study.

    Science.gov (United States)

    Ileri, Zehra; Basciftci, Faruk Ayhan

    2015-03-01

    To investigate the short-term effects of the asymmetric rapid maxillary (ARME) appliance on the vertical, sagittal, and transverse planes in patients with true unilateral posterior crossbite. Subjects were divided into two groups. The treatment group was comprised of 21 patients with unilateral posterior crossbite (mean age  =  13.3 ± 2.1 years). Members of this group were treated with the ARME appliance. The control group was comprised of 17 patients with Angle Class I who were kept under observation (mean age  =  12.3 ± 0.8 years). Lateral and frontal cephalograms were taken before the expansion (T1), immediately after expansion (T2), and at postexpansion retention (T3) in the treatment group and at preobservation (T1) and postobservation (T2) in the control group. A total of 34 measurements were assessed on cephalograms. For statistical analysis, the Wilcoxon test and analysis of covariance were used. The ARME appliance produced significant increases in nasal, maxillary base, upper arch, and lower arch dimensions (P ARME appliance created asymmetric increments in the transversal dimensions of the nose, maxilla, and upper arch in the short term. Asymmetric expansion therapy for subjects with unilateral maxillary deficiency may provide satisfactory outcomes in adolescents, with the exception of mandibular arch expansion. The triangular pattern of expansion caused clockwise rotation of the mandible and the occlusal plane and produced significant alterations in the vertical facial dimensions, whereas it created no displacement in maxilla in the sagittal plane.

  14. Molar changes with cervical headgear alone or in combination with rapid maxillary expansion

    OpenAIRE

    Farret, Marcel Marchiori; Lima, Eduardo Martinelli Santayana de; Araújo, Vanessa Pereira de; Rizzatto, Susana Maria Deon; Menezes, Luciane Macedo de; Grossi, Márcio Lima

    2008-01-01

    Objective: To test the hypothesis that there is no difference in the distal movement of the maxillary first permanent molars when cervical headgear is used alone or in combination with rapid maxillary expansion. Materials and Methods: The sample was composed of 36 subjects (aged 9 to 13 years), treated in the Faculty of Dentistry, Pontifícia Universidade Católica, Rio Grande do Sul, Brazil. The individuals were in good health and in their pubertal growth period. All had Class II division 1 ma...

  15. In Vitro Efficient Expansion of Tumor Cells Deriving from Different Types of Human Tumor Samples

    Directory of Open Access Journals (Sweden)

    Ilaria Turin

    2014-03-01

    Full Text Available Obtaining human tumor cell lines from fresh tumors is essential to advance our understanding of antitumor immune surveillance mechanisms and to develop new ex vivo strategies to generate an efficient anti-tumor response. The present study delineates a simple and rapid method for efficiently establishing primary cultures starting from tumor samples of different types, while maintaining the immuno-histochemical characteristics of the original tumor. We compared two different strategies to disaggregate tumor specimens. After short or long term in vitro expansion, cells analyzed for the presence of malignant cells demonstrated their neoplastic origin. Considering that tumor cells may be isolated in a closed system with high efficiency, we propose this methodology for the ex vivo expansion of tumor cells to be used to evaluate suitable new drugs or to generate tumor-specific cytotoxic T lymphocytes or vaccines.

  16. An assessment of the maxilla after rapid maxillary expansion using cone beam computed tomography in growing children

    OpenAIRE

    Woller,Jessica L.; Ki Beom Kim; Behrents, Rolf G.; Buschang, Peter H.

    2014-01-01

    INTRODUCTION: With the advent of cone beam computed tomography (CBCT), it is now possible to quantitatively evaluate the effects of rapid maxillary expansion (RME) on the entire maxillary complex in growing patients. OBJECTIVE: The purpose of this study is to use three-dimensional images to evaluate the displacement that occurs at the circummaxillary sutures (frontonasal, zygomaticomaxillary, intermaxillary, midpalatal, and transpalatal sutures) following rapid maxillary expansion in gro...

  17. Comparison between rapid and mixed maxillary expansion through an assessment of arch changes on dental casts.

    Science.gov (United States)

    Grassia, Vincenzo; d'Apuzzo, Fabrizia; Jamilian, Abdolreza; Femiano, Felice; Favero, Lorenzo; Perillo, Letizia

    2015-01-01

    Aim of this retrospective observational study was to compare upper and lower dental changes in patients treated with Rapid Maxillary Expansion (RME) and Mixed Maxillary Expansion (MME), assessed by dental cast analysis. Treatment groups consisted of 42 patients: the RME group (n = 21) consisted of 13 female and 8 male subjects with the mean age of 8.8 years ± 1.37 at T0 and 9.6 years ± 1.45 at T1; the MME group (n = 21) consisted of 12 female and 9 male patients with a mean age of 8.9 years ± 2.34 at T0 and 10.5 years ± 2.08 at T1. The upper and lower arch analysis was performed on four dental bilateral landmarks, on upper and lower casts; also upper and lower arch depths were measured. The groups were compared using independent sample t-test to estimate dental changes in upper and lower arches. Before expansion treatment (T0), the groups were similar for all examined variables (p>0.05). In both RME and MME group, significant increments in all the variables for maxillary and mandibular arch widths were observed after treatment. No significant differences in maxillary and mandibular arch depths were observed at the end of treatment in both groups. An evaluation of the changes after RME and MME (T1) showed statistically significant differences in mandibular arch depth (plip bumper effects" observed in the MME protocol.

  18. Dental and skeletal changes following surgically assisted rapid maxillary anterior-posterior expansion.

    Science.gov (United States)

    Ho, Cheng-Ting; Lo, Lun-Jou; Liou, Eric J W; Huang, Chiung Shing

    2008-01-01

    Lengthening the maxillary dental arch as a treatment approach for patients with maxillary deficiency and dental crowding is seldom reported. The purpose of this study was to assess dental and skeletal changes in the maxilla in the correction of maxillary deficiency associated with a retruded maxillary arch using a surgically assisted rapid maxillary anterior-posterior expansion appliance. Predistraction and postraction lateral cephalometric and periapical radiographs and maxillary dental casts of six young adolescents (four boys, two girls, mean age 11 years, 2 months) were examined. These patients received a maxillary anterior segmental osteotomy and distraction osteogenesis with an anteroposteriorly oriented Hyrax expansion appliance based on the biological principles of bone distraction. The retruded dental arch and dental crowding were successfully corrected. Significant forward movement of the point anterior nasal spine, point A, central incisors and first premolars was noted. The maxillary dental arch depth increased an average of 4.2 mm while the arch width remained unchanged. In total, 11.5 mm of dental space was created in the maxillary arch which was sufficient to resolve dental crowding. New bone formation along the distraction site was observed three months after distraction. The use of maxillary anterior segmental osteotomy combined with a Hyrax expansion distraction appliance was effective in arch lengthening and creation of dental space. An overcorrection in this interdental distraction osteogenesis could be a good treatment option for children with maxillary deficiency combined with crowded maxillary dentition.

  19. Efficient 3D frequency response modeling with spectral accuracy by the rapid expansion method

    KAUST Repository

    Chu, Chunlei

    2012-07-01

    Frequency responses of seismic wave propagation can be obtained either by directly solving the frequency domain wave equations or by transforming the time domain wavefields using the Fourier transform. The former approach requires solving systems of linear equations, which becomes progressively difficult to tackle for larger scale models and for higher frequency components. On the contrary, the latter approach can be efficiently implemented using explicit time integration methods in conjunction with running summations as the computation progresses. Commonly used explicit time integration methods correspond to the truncated Taylor series approximations that can cause significant errors for large time steps. The rapid expansion method (REM) uses the Chebyshev expansion and offers an optimal solution to the second-order-in-time wave equations. When applying the Fourier transform to the time domain wavefield solution computed by the REM, we can derive a frequency response modeling formula that has the same form as the original time domain REM equation but with different summation coefficients. In particular, the summation coefficients for the frequency response modeling formula corresponds to the Fourier transform of those for the time domain modeling equation. As a result, we can directly compute frequency responses from the Chebyshev expansion polynomials rather than the time domain wavefield snapshots as do other time domain frequency response modeling methods. When combined with the pseudospectral method in space, this new frequency response modeling method can produce spectrally accurate results with high efficiency. © 2012 Society of Exploration Geophysicists.

  20. Rapid maxillary expansion outcomes in treatment of obstructive sleep apnea in children.

    Science.gov (United States)

    Villa, Maria Pia; Rizzoli, Alessandra; Rabasco, Jole; Vitelli, Ottavio; Pietropaoli, Nicoletta; Cecili, Manuela; Marino, Alessandra; Malagola, Caterina

    2015-06-01

    The objectives of this study were to confirm the efficacy of rapid maxillary expansion in children with moderate adenotonsillar hypertrophy in a larger sample and to evaluate retrospectively its long-term benefits in a group of children who underwent orthodontic treatment 10 years ago. After general clinical examination and overnight polysomnography, all eligible children underwent cephalometric evaluation and started 12 months of therapy with rapid maxillary expansion. A new polysomnography was performed at the end of treatment (T1). Fourteen children underwent clinical evaluation and Brouilette questionnaire, 10 years after the end of treatment (T2). Forty patients were eligible for recruitment. At T1, 34/40 (85%) patients showed a decrease of apnea-hypopnea index (AHI) greater than 20% (ΔAHI 67.45% ± 25.73%) and were defined responders. Only 6/40 (15%) showed a decrease  1 ev/h) after treatment. Disease duration was significantly lower (2.5 ± 1.4 years vs 4.8 ± 1.9 years, p children (mean age 17.0 ± 1.9 years) who ended orthodontic treatment 10 years previously showed improvement of Brouilette score. Starting an orthodontic treatment as early as symptoms appear is important in order to increase the efficacy of treatment. An integrated therapy is needed. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Rapid expansion method (REM) for time‐stepping in reverse time migration (RTM)

    KAUST Repository

    Pestana, Reynam C.

    2009-01-01

    We show that the wave equation solution using a conventional finite‐difference scheme, derived commonly by the Taylor series approach, can be derived directly from the rapid expansion method (REM). After some mathematical manipulation we consider an analytical approximation for the Bessel function where we assume that the time step is sufficiently small. From this derivation we find that if we consider only the first two Chebyshev polynomials terms in the rapid expansion method we can obtain the second order time finite‐difference scheme that is frequently used in more conventional finite‐difference implementations. We then show that if we use more terms from the REM we can obtain a more accurate time integration of the wave field. Consequently, we have demonstrated that the REM is more accurate than the usual finite‐difference schemes and it provides a wave equation solution which allows us to march in large time steps without numerical dispersion and is numerically stable. We illustrate the method with post and pre stack migration results.

  2. Cone-beam computed tomography evaluation of dentoskeletal changes after asymmetric rapid maxillary expansion.

    Science.gov (United States)

    Baka, Zeliha Muge; Akin, Mehmet; Ucar, Faruk Izzet; Ileri, Zehra

    2015-01-01

    The aims of this study were to quantitatively evaluate the changes in arch widths and buccolingual inclinations of the posterior teeth after asymmetric rapid maxillary expansion (ARME) and to compare the measurements between the crossbite and the noncrossbite sides with cone-beam computed tomography (CBCT). From our clinic archives, we selected the CBCT records of 30 patients with unilateral skeletal crossbite (13 boys, 14.2 ± 1.3 years old; 17 girls, 13.8 ± 1.3 years old) who underwent ARME treatment. A modified acrylic bonded rapid maxillary expansion appliance including an occlusal locking mechanism was used in all patients. CBCT records had been taken before ARME treatment and after a 3-month retention period. Fourteen angular and 80 linear measurements were taken for the maxilla and the mandible. Frontally clipped CBCT images were used for the evaluation. Paired sample and independent sample t tests were used for statistical comparisons. Comparisons of the before-treatment and after-retention measurements showed that the arch widths and buccolingual inclinations of the posterior teeth increased significantly on the crossbite side of the maxilla and on the noncrossbite side of the mandible (P ARME treatment, the crossbite side of the maxilla and the noncrossbite side of the mandible were more affected than were the opposite sides. Copyright © 2015. Published by Elsevier Inc.

  3. Slow versus rapid maxillary expansion in bilateral cleft lip and palate: a CBCT randomized clinical trial.

    Science.gov (United States)

    de Almeida, Araci Malagodi; Ozawa, Terumi Okada; Alves, Arthur César de Medeiros; Janson, Guilherme; Lauris, José Roberto Pereira; Ioshida, Marilia Sayako Yatabe; Garib, Daniela Gamba

    2017-06-01

    The purpose of this "two-arm parallel" trial was to compare the orthopedic, dental, and alveolar bone plate changes of slow (SME) and rapid (RME) maxillary expansions in patients with complete bilateral cleft lip and palate (BCLP). Forty-six patients with BCLP and maxillary arch constriction in the late mixed dentition were randomly and equally allocated into two groups. Computer-generated randomization was used. Allocation was concealed with sequentially, numbered, sealed, opaque envelopes. The SME and RME groups comprised patients treated with quad-helix and Haas/Hyrax-type expanders, respectively. Cone-beam computed tomography (CBCT) exams were performed before expansion and 4 to 6 months post-expansion. Nasal cavity width, maxillary width, alveolar crest width, arch width, palatal cleft width, inclination of posterior teeth, alveolar crest level, and buccal and lingual bone plate thickness were assessed. Blinding was applicable for outcome assessment only. Interphase and intergroup comparisons were performed using paired t tests and t tests, respectively (p Palatal cleft width had a significant increase in both groups. Significant buccal inclination of posterior teeth was only observed for RME. Additionally, both expansion procedures promoted a slight reduction of the alveolar crest level and the buccal bone plate thickness. No difference was found between the orthopedic, dental, and alveolar bone plate changes of SME and RME in children with BCLP. Both appliances produced significant skeletal transverse gains with negligible periodontal bone changes. Treatment time for SME, however, was longer than the observed for RME. SME and RME can be similarly indicated to correct maxillary arch constriction in patients with BCLP in the mixed dentition.

  4. Maxillary Expansion

    OpenAIRE

    Agarwal, Anirudh; Mathur, Rinku

    2010-01-01

    ABSTRACT Maxillary transverse discrepancy usually requires expansion of the palate by a combination of orthopedic and orthodontic tooth movements. Three expansion treatment modalities are used today: rapid maxillary expansion, slow maxillary expansion and surgically assisted maxillary expansion.This article aims to review the maxillary expansion by all the three modalities and a brief on commonly used appliances.

  5. Expansion of human cord blood hematopoietic stem cells for transplantation.

    Science.gov (United States)

    Chou, Song; Chu, Pat; Hwang, William; Lodish, Harvey

    2010-10-08

    A recent Science paper reported a purine derivative that expands human cord blood hematopoietic stem cells in culture (Boitano et al., 2010) by antagonizing the aryl hydrocarbon receptor. Major problems need to be overcome before ex vivo HSC expansion can be used clinically. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Three-dimensional assessment of buccal alveolar bone after rapid and slow maxillary expansion: a clinical trial study.

    Science.gov (United States)

    Brunetto, Mauricio; Andriani, Juliana da Silva Pereira; Ribeiro, Gerson Luiz Ulema; Locks, Arno; Correa, Marcio; Correa, Letícia Ruhland

    2013-05-01

    The purposes of this study were to analyze and compare the immediate effects of rapid and slow maxillary expansion protocols, accomplished by Haas-type palatal expanders activated in different frequencies of activation on the positioning of the maxillary first permanent molars and on the buccal alveolar bones of these teeth with cone-beam computerized tomography. The sample consisted of 33 children (18 girls, 15 boys; mean age, 9 years) randomly distributed into 2 groups: rapid maxillary expansion (n = 17) and slow maxillary expansion (n = 16). Patients in the rapid maxillary expansion group received 2 turns of activation (0.4 mm) per day, and those in the slow maxillary expansion group received 2 turns of activation (0.4 mm) per week until 8 mm of expansion was achieved in both groups. Cone-beam computerized tomography images were taken before treatment and after stabilization of the jackscrews. Data were gathered through a standardized analysis of cone-beam computerized tomography images. Intragroup statistical analysis was accomplished with the Wilcoxon matched-pairs test, and intergroup statistical analysis was accomplished with analysis of variance. Linear relationships, among all variables, were determined by Spearman correlation. Both protocols caused buccal displacement of the maxillary first permanent molars, which had more bodily displacement in the slow maxillary expansion group, whereas more inclination was observed in the rapid maxillary expansion group. Vertical and horizontal bone losses were found in both groups; however, the slow maxillary expansion group had major bone loss. Periodontal modifications in both groups should be carefully considered because of the reduction of spatial resolution in the cone-beam computerized tomography examinations after stabilization of the jackscrews. Modifications in the frequency of activation of the palatal expander might influence the dental and periodontal effects of palatal expansion. Copyright © 2013

  7. Changes in head posture after rapid maxillary expansion in patients with nasopharyngeal obstruction

    Directory of Open Access Journals (Sweden)

    Kjurchieva-Chuchkova G

    2016-09-01

    Full Text Available Introduction: Nasopharyngeal obstruction is an important etiologic factor in the development of an extreme vertical growth facial pattern, and insufficient transversal growth of the maxilla. The treatment outcomes associated with rapid maxillary expansion in the literature are mainly discussed in terms of changes in dentofacial morphology, without special reference to changes in the pharyngeal airway, the position of the mandible, hyoid bone and the tongue. Aim: The aim of this study was to evaluate the effects of rapid maxillary expansion (RME, on changes in head posture and airway dimension. Materials and methods: The cephalometric evaluation was conducted on thirty lateral cephalograms of patients with nasopharyngeal obstruction (mean age 9.11 years; standard deviation (SD ± 2.0; range 8-14 years treated with appliance for rapid maxillary expansion. Patients were randomly divided into two groups: 1 study group comprised of 15 patients treated with RME immediately after the first visit; 2 a control group comprised of 15 subjects monitored for approximately 12 months prior to commencing therapy, who became untreated controls. Lateral cephalograms, taken in the natural head position, were obtained at the first visit and 6 months later for all subjects. Six angular measurements were measured to describe craniocervical angulation, and five linear measurements were measured to describe airway dimension. Results: The investigated group treated with RME shows a statistically significant decrease in craniocervical angulation, especially at the angle of interaction between palatal plane and the tangent odontoid processus (4.07 degrees, for PP/OPT angle and angle interaction between palatal plane and the tangent of cervical vertebra (4.95 degrees for PP/CVT angle. Airway dimension in the treated group increased, especially at the levels PNS-ad1 (2.52 mm, ve-pve (2.97 mm, and uv-puv (2.88 mm. No significant changes were observed in the control group

  8. Integrating human stem cell expansion and neuronal differentiation in bioreactors

    Science.gov (United States)

    Serra, Margarida; Brito, Catarina; Costa, Eunice M; Sousa, Marcos FQ; Alves, Paula M

    2009-01-01

    Background Human stem cells are cellular resources with outstanding potential for cell therapy. However, for the fulfillment of this application, major challenges remain to be met. Of paramount importance is the development of robust systems for in vitro stem cell expansion and differentiation. In this work, we successfully developed an efficient scalable bioprocess for the fast production of human neurons. Results The expansion of undifferentiated human embryonal carcinoma stem cells (NTera2/cl.D1 cell line) as 3D-aggregates was firstly optimized in spinner vessel. The media exchange operation mode with an inoculum concentration of 4 × 105 cell/mL was the most efficient strategy tested, with a 4.6-fold increase in cell concentration achieved in 5 days. These results were validated in a bioreactor where similar profile and metabolic performance were obtained. Furthermore, characterization of the expanded population by immunofluorescence microscopy and flow cytometry showed that NT2 cells maintained their stem cell characteristics along the bioreactor culture time. Finally, the neuronal differentiation step was integrated in the bioreactor process, by addition of retinoic acid when cells were in the middle of the exponential phase. Neurosphere composition was monitored and neuronal differentiation efficiency evaluated along the culture time. The results show that, for bioreactor cultures, we were able to increase significantly the neuronal differentiation efficiency by 10-fold while reducing drastically, by 30%, the time required for the differentiation process. Conclusion The culture systems developed herein are robust and represent one-step-forward towards the development of integrated bioprocesses, bridging stem cell expansion and differentiation in fully controlled bioreactors. PMID:19772662

  9. Investigation of Oral Candida Albicans Colonization in Patients Treated with Rapid Maxillary Expansion

    Directory of Open Access Journals (Sweden)

    Fundagül Bilgiç

    2017-11-01

    Full Text Available Objective: The purpose of this study was to investigate Candida albicans colonies in the oral microflora of patients treated with rapid maxillary expansion (RME. Materials and Methods: Totally 54 male and female subjects, including 27 using bonded rapid maxillary expander and 27 patients without orthodontic treatment, were entered in the present study. The study group consisted of 27 patients (14 females and 13 males suffering from both maxillary constriction and posterior cross-bite. Patients treated with a rigid acrylic, bonded rapid maxillary expander were evaluated two times using oral rinses: one at baseline (T0 and 2 after palatal spreading out (T1. The data were analyzed using a chi-square test and a Fisher’s exact test. Results: After the use of RME, no significant changes were found between the data showing C. albicans colonies at T0 and at T1 (p=1.964. Conclusion: Our data suggest that the RME therapy and appliance did not cause a significant change in oral C. albicans colonization.

  10. Measurement of Rapid Protein Diffusion in the Cytoplasm by Photo-Converted Intensity Profile Expansion

    Directory of Open Access Journals (Sweden)

    Rotem Gura Sadovsky

    2017-03-01

    Full Text Available The fluorescence microscopy methods presently used to characterize protein motion in cells infer protein motion from indirect observables, rather than measuring protein motion directly. Operationalizing these methods requires expertise that can constitute a barrier to their broad utilization. Here, we have developed PIPE (photo-converted intensity profile expansion to directly measure the motion of tagged proteins and quantify it using an effective diffusion coefficient. PIPE works by pulsing photo-convertible fluorescent proteins, generating a peaked fluorescence signal at the pulsed region, and analyzing the spatial expansion of the signal. We demonstrate PIPE’s success in measuring accurate diffusion coefficients in silico and in vitro and compare effective diffusion coefficients of native cellular proteins and free fluorophores in vivo. We apply PIPE to measure diffusion anomality in the cell and use it to distinguish free fluorophores from native cellular proteins. PIPE’s direct measurement and ease of use make it appealing for cell biologists.

  11. Volumetric upper airway changes after rapid maxillary expansion: a systematic review and meta-analysis.

    Science.gov (United States)

    Buck, Lloyd M; Dalci, Oyku; Darendeliler, M Ali; Papageorgiou, Spyridon N; Papadopoulou, Alexandra K

    2017-10-01

    Although Rapid Maxillary Expansion (RME) has been used for over a century, its effect on upper airways has not yet adequately been assessed in an evidence-based manner. To investigate the volumetric changes in the upper airway spaces following RME in growing subjects by means of acoustic rhinometry, three-dimensional radiography and digital photogrammetry. Literature search of electronic databases and additional manual searches up to February 2016. Randomized clinical trials, prospective or retrospective controlled clinical trials and cohort clinical studies of at least eight patients, where the RME appliance was left in place for retention, and a maximum follow-up of 8 months post-expansion. After duplicate data extraction and assessment of the risk of bias, the mean differences and 95 per cent confidence intervals (CIs) of upper airway volume changes were calculated with random-effects meta-analyses, followed by subgroup analyses, meta-regressions, and sensitivity analyses. Twenty studies were eligible for qualitative synthesis, of which 17 (3 controlled clinical studies and 14 cohort studies) were used in quantitative analysis. As far as total airway volume is concerned patients treated with RME showed a significant increase post-expansion (5 studies; increase from baseline: 1218.3mm3; 95 per cent CI: 702.0 to 1734.6mm3), which did not seem to considerably diminish after the retention period (11 studies; increase from baseline: 1143.9mm3; 95 per cent CI: 696.9 to 1590.9mm3). However, the overall quality of evidence was judged as very low, due to methodological limitations of the included studies, absence of untreated control groups, and inconsistency among studies. RME seems to be associated with an increase in the nasal cavity volume in the short and in the long term. However, additional well-conducted prospective controlled clinical studies are needed to confirm the present findings. None. Australian Society of Orthodontics Foundation for Research and

  12. Rapid maxillary expansion in the primary and mixed dentitions: a cephalometric evaluation.

    Science.gov (United States)

    da Silva Filho, O G; Boas, M C; Capelozza Filho, L

    1991-08-01

    The present study evaluated the skeletal alterations induced by rapid maxillary expansion procedures in 30 patients in the primary and mixed dentitions. The results were obtained with the use of lateral cephalometrics before and immediately after the active phase of expansion. The time span between these two cephalometric films ranged from 14 to 21 days; therefore the "growth factor" was not considered. Based on the differences in the cephalometric measurements studied on the first and second tracings, it seems that anterior displacement of the maxilla with significant changes in the SNA angle should not be expected, although point B was repositioned more posteriorly (SNB) because of the mandibular downward and backward rotation, with subsequent increase of the inclination of the mandibular plane. The alterations in the A-P position of the mandible was reflected in the increase of ANB and NAP angles. The maxilla always dislocates downward, displaying a downward and backward rotation in the palatine plane, significantly altering the following measurements: N-ANS, PNS-PNS', A-A', SN.PP. The anchoring molars also follow the downward maxillary displacement (M-M') and, as a direct consequence of the vertical displacement of the maxilla and upper molars (N-ANS, A-A', ANS-Me, N-Me, PNS-PNS'), the facial heights increase.

  13. Miniscrew-assisted rapid palatal expansion for managing arch perimeter in an adult patient

    Directory of Open Access Journals (Sweden)

    Amanda Carneiro da Cunha

    Full Text Available ABSTRACT Introduction: Etiology of dental crowding may be related to arch constriction in diverse dimensions, and an appropriate manipulation of arch perimeter by intervening in basal bone discrepancies cases, may be a key for crowding relief, especially when incisors movement is limited due to underlying pathology, periodontal issues or restrictions related to soft tissue profile. Objectives: This case report illustrates a 24-year old woman, with maxillary transverse deficiency, upper and lower arches crowding, Class II, division 1, subdivision right relationship, previous upper incisors traumatic episode and straight profile. A non-surgical and non-extraction treatment approach was feasible due to the miniscrew-assisted rapid palatal expansion technique (MARPE. Methods: The MARPE appliance consisted of a conventional Hyrax expander supported by four orthodontic miniscrews. A slow expansion protocol was adopted, with an overall of 40 days of activation and a 3-month retention period. Intrusive traction miniscrew-anchored mechanics were used for correcting the Class II subdivision relationship, managing lower arch perimeter and midline deviation before including the upper central incisors. Results: Post-treatment records show an intermolar width increase of 5 mm, bilateral Class I molar and canine relationships, upper and lower crowding resolution, coincident dental midlines and proper intercuspation. Conclusions: The MARPE is an effective treatment approach for managing arch-perimeter deficiencies related to maxillary transverse discrepancies in adult patients.

  14. Bone density of the midpalatal suture 7 months after surgically assisted rapid palatal expansion in adults.

    Science.gov (United States)

    Petrick, Silvia; Hothan, Thorsten; Hietschold, Volker; Schneider, Matthias; Harzer, Winfried; Tausche, Eve

    2011-04-01

    The aims of this study were to analyze changes in bone density of the midpalatal suture after surgically assisted rapid palatal expansion (SARPE) with the bone-borne Dresden Distractor (DD; ITU, Dresden, Germany) via computed tomography (CT) and to compare of preoperative surgical findings with a control group. Sixteen adult patients (mean age 24.5 years) underwent axial CT scans before and 7 months after SARPE. CT image fusion was performed for the midpalatal suture bone. Sixty-six controls (mean age 25.7 years) served for comparing age-related bone density. Bone structure and density were assessed in the coronal plane at the anterior, median, and posterior levels. Highest density was found in the posterior part (1046 Hounsfield units [HU]) before expansion. Seven months after SARPE, bone density was 48% (anterior), 53% (median), and 75% (posterior) compared with preoperative values. The control group showed fairly equal Hounsfield units (889 HU to 900 HU) in all parts. Seven months after SARPE, the midpalatal suture's density achieves just one half to three quarters of the pretreatment values. To maintain the resistance against forces from the unsplit posterior part, the retention time should be lengthened. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  15. Rapid maxillary expansion in therapy-resistant enuretic children: An orthodontic perspective.

    Science.gov (United States)

    Bazargani, Farhan; Jönson-Ring, Ingrid; Nevéus, Tryggve

    2016-05-01

    To evaluate whether rapid maxillary expansion (RME) could reduce the frequency of nocturnal enuresis (NE) in children and whether a placebo effect could be ruled out. Thirty-four subjects, 29 boys and five girls with mean age of 10.7 ± 1.8 years suffering from primary NE, were recruited. All subjects were nonresponders to the first-line antienuretic treatment and therefore were classified as "therapy resistant." To rule out a placebo effect of the RME appliance, all children were first treated with a passive appliance for 4 weeks. Rhinomanometry (RM), acoustic rhinometry (AR), polysomnographic registration, and study casts were made at different time points. One child experienced severe discomfort from the RME appliance and immediately withdrew from the study. Following RME, the long-term cure rate after 1 year was 60%. The RM and AR measurements at baseline and directly after RME showed a significant increase in nasal volume and nasal airflow, and there was a statistically significant correlation between reduction in enuresis and increase in nasal volume. Six months postretention, a 100% relapse of the dental overexpansion could be noted. RME has a curative effect in some children with NE, which could be connected to the positive influence of RME on the sleep architecture. Normal transverse occlusion does not seem to be a contraindication for moderate maxillary expansion in attempts to cure NE in children.

  16. Rapid Maxillary Expansion Increases Internal Nasal Dimensions of Children With Bilateral Cleft Lip and Palate.

    Science.gov (United States)

    Trindade-Suedam, Ivy Kiemle; Castilho, Ricardo Leão; Sampaio-Teixeira, Ana Claudia Martins; Araújo, Bruna Mara Adorno Marmotel; Fukushiro, Ana Paula; Campos, Letícia Dominguez; Trindade, Inge Elly Kiemle

    2016-05-01

    The transverse maxillary deficiency frequently observed in patients with cleft lip and palate (CLP) is usually treated by rapid maxillary expansion (RME). Considering that RME causes a significant increase of the internal nasal dimensions in children with unilateral CLP (UCLP), this study aimed to characterize the internal nasal geometry of children with bilateral CLP (BCLP) and transverse maxillary deficiency using acoustic rhinometry. The study also aimed to analyze changes caused by RME. Cross-sectional prospective study. Laboratory of Physiology, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, SP, Brazil. Fifteen children with repaired BCLP of both genders, aged 8 to 15 years, referred for RME, were prospectively analyzed. Subjects underwent acoustic rhinometry before the expander installation and after the active phase of expansion. Cross-sectional areas (CSA) and volumes (V) of the nasal valve regions (CSA1 and V1) and turbinates (CSA2, CSA3, and V2), were measured after nasal decongestion. In the majority of the subjects, an increase of internal nasal dimensions was observed. Percent changes of CSA1, CSA2, CSA3, V1, and V2 were: +25%, +11%, +9%, 20%, and +12%, respectively. Differences were significant for all variables studied, except CSA3 (P < .05). RME promotes an increase in the internal nasal dimensions of children with BCLP, suggesting that RME is capable of substantially improving nasal patency in this population.

  17. Periodontal and dental effects of surgically assisted rapid maxillary expansion, assessed by using digital study models

    Directory of Open Access Journals (Sweden)

    Danilo Furquim Siqueira

    2015-06-01

    Full Text Available OBJECTIVE: The present study assessed the maxillary dental arch changes produced by surgically assisted rapid maxillary expansion (SARME. METHODS: Dental casts from 18 patients (mean age of 23.3 years were obtained at treatment onset (T1, three months after SARME (T2 and 6 months after expansion (T3. The casts were scanned in a 3D scanner (D-250, 3Shape, Copenhagen, Denmark. Maxillary dental arch width, dental crown tipping and height were measured and assessed by ANOVA and Tukey's test. RESULTS: Increased transversal widths from T1 and T2 and the maintenance of these values from T2 and T3 were observed. Buccal teeth tipping also showed statistically significant differences, with an increase in all teeth from T1 to T2 and a decrease from T2 to T3. No statistically significant difference was found for dental crown height, except for left first and second molars, although clinically irrelevant. CONCLUSION: SARME proved to be an effective and stable procedure, with minimum periodontal hazards.

  18. Rapid evolution and range expansion of an invasive plant are driven by provenance-environment interactions.

    Science.gov (United States)

    Zenni, Rafael D; Bailey, Joseph K; Simberloff, Daniel

    2014-06-01

    To improve our ability to prevent and manage biological invasions, we must understand their ecological and evolutionary drivers. We are often able to explain invasions after they happen, but our predictive ability is limited. Here, we show that range expansions of introduced Pinus taeda result from an interaction between genetic provenance and climate and that temperature and precipitation clines predict the invasive performance of particular provenances. Furthermore, we show that genotypes can occupy climate niche spaces different from those observed in their native ranges and, at least in our case, that admixture is not a main driver of invasion. Genotypes respond to climate in distinct ways, and these interactions affect the ability of populations to expand their ranges. While rapid evolution in introduced ranges is a mechanism at later stages of the invasion process, the introduction of adapted genotypes is a key driver of naturalisation of populations of introduced species. © 2014 John Wiley & Sons Ltd/CNRS.

  19. A Case of Re-Expansion Pulmonary Edema after Rapid Pleural Evacuation

    Directory of Open Access Journals (Sweden)

    SH Shahbazi

    2007-07-01

    Full Text Available Introduction & Objective: Pulmonary edema after chest tube insertion is a rare complication and is associated with high mortality. The cause of this phenomenon is not clear, although causes such as decrease in surfactant and inflammatory process have been defined. Early diagnosis and treatment decrease the mortality. This study introduces a case of re-expansion pulmonary edema after rapid pleural evacuation. Case: The case is a 4.5 y/o boy, a case of Tetralogy of Fallot, who developed respiratory distress after surgery (Total Correction in ICU of Namazi Hospital in 1385. Chest X ray showed pneumothorax of left lung. For the patient, chest tube was inserted and the symptoms improved. After few hours the patient developed tachypnea, tachycardia, and CXR showed pulmonary edema of left lung. Appropriate treatment was done for the patient and his condition improved. Conclusion: Pulmonary edema after sudden evacuation of pleura is a rare phenomenon and early diagnosis decreases the mortality.

  20. A GAA repeat expansion reporter model of Friedreich's ataxia recapitulates the genomic context and allows rapid screening of therapeutic compounds.

    Science.gov (United States)

    Lufino, Michele M P; Silva, Ana M; Németh, Andrea H; Alegre-Abarrategui, Javier; Russell, Angela J; Wade-Martins, Richard

    2013-12-20

    Friedreich's ataxia (FRDA) is caused by large GAA expansions in intron 1 of the frataxin gene (FXN), which lead to reduced FXN expression through a mechanism not fully understood. Understanding such mechanism is essential for the identification of novel therapies for FRDA and this can be accelerated by the development of cell models which recapitulate the genomic context of the FXN locus and allow direct comparison of normal and expanded FXN loci with rapid detection of frataxin levels. Here we describe the development of the first GAA-expanded FXN genomic DNA reporter model of FRDA. We modified BAC vectors carrying the whole FXN genomic DNA locus by inserting the luciferase gene in exon 5a of the FXN gene (pBAC-FXN-Luc) and replacing the six GAA repeats present in the vector with an ∼310 GAA repeat expansion (pBAC-FXN-GAA-Luc). We generated human clonal cell lines carrying the two vectors using site-specific integration to allow direct comparison of normal and expanded FXN loci. We demonstrate that the presence of expanded GAA repeats recapitulates the epigenetic modifications and repression of gene expression seen in FRDA. We applied the GAA-expanded reporter model to the screening of a library of novel small molecules and identified one molecule which up-regulates FXN expression in FRDA patient primary cells and restores normal histone acetylation around the GAA repeats. These results suggest the potential use of genomic reporter cell models for the study of FRDA and the identification of novel therapies, combining physiologically relevant expression with the advantages of quantitative reporter gene expression.

  1. Rapid maxillary expansion and obstructive sleep apnea: A review and meta-analysis.

    Science.gov (United States)

    Machado-Júnior, A-J; Zancanella, E; Crespo, A-N

    2016-07-01

    OSAS during childhood leads to significant physical and neuropsychomotor impairment. Thus, it needs to be recognized and treated early in order to avoid or attenuate the chronic problems associated with OSAS, which are deleterious to a child's development. Adenotonsillectomy and, in select cases, continuous positive airwaypressure (CPAP) have been the preferred treatments for OSAS in children, and yet they are ineffective at fully ameliorating the disease. Minimally invasive treatments have recently been proposed, comprising intra-oral and extra-oral devices as well as speech therapy. Objetive: to conduct a meta-analysis on studies from around the world that used rapid maxillary expansion (RME) to treat OSAS in children. We performed a meta-analysis of studies using RME for OSA treatment in children. A literature survey was conductedusing PubMed and Medline for English articles published up to December 2014 with the following descriptors: SleepApnea, Obstructive, Children, Treatment, Orthodontic, Othopaedic, Maxillaryexpansion. Studies were included in the meta-analysisif they were case-controlled studies, randomized, and involved non-syndromic children aged 0 to 12years old diagnosed with OSA by the polysomnography apnea-hypopnea index (AHI) before and after the intervention, submitted RME only. In all, 10 articles conformed to the inclusion criteria and were included in this meta-analysis. The total sample size across all these articles was 215 children, having a mean age of 6.7 years,of whom58.6%were male. The mean AHI during the follow-up was -6.86 (p <0.0001). We concluded that rapid maxillary expansion (RME) in children with OSAS appears to be an effective treatment for this syndrome. Further randomized clinical studies are needed to determine the effectiveness of RME in adults.

  2. Determination of forces on a split palatal screw after rapid maxillary expansion.

    Science.gov (United States)

    García, Valentin Javier; López-Cancelos, Rubén; Riveiro, Antonio; Comesaña, Rafael; Ustrell I Torrent, Josep Maria; Kasem, Khaled; Badaoui, Aida; Manzanares-Céspedes, Mª Cristina; Carvalho-Lobato, Patricia

    2017-09-01

    Aim of this study was to develop a finite element model of the forces that patients with rapid maxillary expansion bear and to validate it by a mechanical test. Computer-aided design models of the metallic screw and polymeric splint were modelled and discretized. Two forces were generated and considered independently: F1 at the temporary molar (2.5 N) and F2 at the permanent molar (2.5 N). The results of the finite element analysis were used to define the strain values which the anterior and posterior arms of the rapid maxillary expansion appliance bore as a linear function of F1-F2 by calculating the strain-force coefficient δ ij . Two strain gauge rosettes were attached to an appliance which was placed in an XY motorized stage to reproduce the same forces used in the finite element analysis. Once the system was validated, the matrix was inverted to determine forces F1 and F2 that a group of 40 patients underwent (median age 8.33 years, standard deviation 1.86 years) for 75 days, using their strain values. The parents of the patients activated a quarter turn (0.20 mm) twice a day until 50% transversal overcorrection was achieved. Finite element analysis showed that the effects of the forces on stress at the location of the arms were notably different. There was a satisfactory correlation between finite element analysis predictions and in vitro values. Dissipation of F1 and F2 in patients was predicted to be 62.5 and 80%, respectively, after 75 days of retention. These results back the finite element analysis model for force prediction.

  3. Mandibular response after rapid maxillary expansion in class II growing patients: a pilot randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Roberta Lione

    2017-11-01

    Full Text Available Abstract Background The aim of this pilot randomized controlled trial (RCT was to evaluate the sagittal mandibular response induced by rapid maxillary expansion (RME therapy in mixed dentition patients with class II malocclusion, comparing the effects of bonded RME and banded RME with a matched untreated class II control group. Methods This RCT was designed in parallel with an allocation ratio of 1:1:1. The sample consisted of 30 children with a mean age of 8.1 ± 0.6 years who were randomly assigned to three groups: group 1 treated with bonded RME, group 2 treated with banded RME, and group 3 the untreated control group. All patients met the following inclusion criteria: early mixed dentition, class II molar relationship, transverse discrepancy ≥ 4 mm, overjet ≥ 5 mm, and prepubertal skeletal maturity stage (CS1–CS2. The expansion screw was activated one quarter of a turn per day (0.25 mm until overcorrection was reached. For each subject, lateral cephalograms and plaster casts were obtained before treatment (T1 and after 1 year (T2. A randomization list was created for the group assignment, with an allocation ratio of 1:1:1. The observer who performed all the measurements was blinded to group assignment. The study was single-blinded in regard to statistical analysis. Results RME was effective in the correction of maxillary deficiency. Class II patients treated with both types of RME showed no significant improvement of the anteroposterior relationship of the maxilla and the mandible at both skeletal and occlusal levels. The acrylic splint RME had significant effects on reducing the skeletal vertical dimension and the gonial angle. Conclusions The orthopedic expansion did not affect the sagittal relationship of class II patients treated in the early mixed dentition when compared with the untreated control group. Additional studies with a larger sample are warranted to elucidate individual variations in dento-skeletal mandibular

  4. Mandibular response after rapid maxillary expansion in class II growing patients: a pilot randomized controlled trial.

    Science.gov (United States)

    Lione, Roberta; Brunelli, Valerio; Franchi, Lorenzo; Pavoni, Chiara; Quiroga Souki, Bernardo; Cozza, Paola

    2017-11-06

    The aim of this pilot randomized controlled trial (RCT) was to evaluate the sagittal mandibular response induced by rapid maxillary expansion (RME) therapy in mixed dentition patients with class II malocclusion, comparing the effects of bonded RME and banded RME with a matched untreated class II control group. This RCT was designed in parallel with an allocation ratio of 1:1:1. The sample consisted of 30 children with a mean age of 8.1 ± 0.6 years who were randomly assigned to three groups: group 1 treated with bonded RME, group 2 treated with banded RME, and group 3 the untreated control group. All patients met the following inclusion criteria: early mixed dentition, class II molar relationship, transverse discrepancy ≥ 4 mm, overjet ≥ 5 mm, and prepubertal skeletal maturity stage (CS1-CS2). The expansion screw was activated one quarter of a turn per day (0.25 mm) until overcorrection was reached. For each subject, lateral cephalograms and plaster casts were obtained before treatment (T1) and after 1 year (T2). A randomization list was created for the group assignment, with an allocation ratio of 1:1:1. The observer who performed all the measurements was blinded to group assignment. The study was single-blinded in regard to statistical analysis. RME was effective in the correction of maxillary deficiency. Class II patients treated with both types of RME showed no significant improvement of the anteroposterior relationship of the maxilla and the mandible at both skeletal and occlusal levels. The acrylic splint RME had significant effects on reducing the skeletal vertical dimension and the gonial angle. The orthopedic expansion did not affect the sagittal relationship of class II patients treated in the early mixed dentition when compared with the untreated control group. Additional studies with a larger sample are warranted to elucidate individual variations in dento-skeletal mandibular response to the maxillary expansion protocol in class

  5. Three dimensional evaluation of alveolar bone changes in response to different rapid palatal expansion activation rates

    Directory of Open Access Journals (Sweden)

    Brian LaBlonde

    Full Text Available ABSTRACT Introduction: The aim of this multi-center retrospective study was to quantify the changes in alveolar bone height and thickness after using two different rapid palatal expansion (RPE activation protocols, and to determine whether a more rapid rate of expansion is likely to cause more adverse effects, such as alveolar tipping, dental tipping, fenestration and dehiscence of anchorage teeth. Methods: The sample consisted of pre- and post-expansion records from 40 subjects (age 8-15 years who underwent RPE using a 4-banded Hyrax appliance as part of their orthodontic treatment to correct posterior buccal crossbites. Subjects were divided into two groups according to their RPE activation rates (0.5 mm/day and 0.8 mm/day; n = 20 each group. Three-dimensional images for all included subjects were evaluated using Dolphin Imaging Software 11.7 Premium. Maxillary base width, buccal and palatal cortical bone thickness, alveolar bone height, and root angulation and length were measured. Significance of the changes in the measurements was evaluated using Wilcoxon signed-rank test and comparisons between groups were done using ANOVA. Significance was defined at p ≤ 0.05. Results: RPE activation rates of 0.5 mm per day (Group 1 and 0.8 mm per day (Group 2 caused significant increase in arch width following treatment; however, Group 2 showed greater increases compared to Group 1 (p < 0.01. Buccal alveolar height and width decreased significantly in both groups. Both treatment protocols resulted in significant increases in buccal-lingual angulation of teeth; however, Group 2 showed greater increases compared to Group 1 (p < 0.01. Conclusion: Both activation rates are associated with significant increase in intra-arch widths. However, 0.8 mm/day resulted in greater increases. The 0.8 mm/day activation rate also resulted in more increased dental tipping and decreased buccal alveolar bone thickness over 0.5 mm/day.

  6. Rapid adaptive evolution of photoperiodic response during invasion and range expansion across a climatic gradient.

    Science.gov (United States)

    Urbanski, Jennifer; Mogi, Motoyoshi; O'Donnell, Deborah; DeCotiis, Mark; Toma, Takako; Armbruster, Peter

    2012-04-01

    Abstract Understanding the mechanisms of adaptation to spatiotemporal environmental variation is a fundamental goal of evolutionary biology. This issue also has important implications for anticipating biological responses to contemporary climate warming and determining the processes by which invasive species are able to spread rapidly across broad geographic ranges. Here, we compare data from a historical study of latitudinal variation in photoperiodic response among Japanese and U.S. populations of the invasive Asian tiger mosquito Aedes albopictus with contemporary data obtained using comparable methods. Our results demonstrated rapid adaptive evolution of the photoperiodic response during invasion and range expansion across ∼15° of latitude in the United States. In contrast to the photoperiodic response, size-based morphological traits implicated in climatic adaptation in a wide range of other insects did not show evidence of adaptive variation in Ae. albopictus across either the U.S. (invasive) or Japanese (native) range. These results show that photoperiodism has been an important adaptation to climatic variation across the U.S. range of Ae. albopictus and, in conjunction with previous studies, strongly implicate the photoperiodic control of seasonal development as a critical evolutionary response to ongoing contemporary climate change. These results also emphasize that photoperiodism warrants increased attention in studies of the evolution of invasive species.

  7. The rapid expansion of (mainstream) health psychology in France: Historical foundations.

    Science.gov (United States)

    Santiago-Delefosse, Marie; Del Rio Carral, Maria

    2017-06-01

    This article traces the historical evolution of ongoing theoretical debates in psychology in France from the 1940s until today. Its aim is to show how the conjunction of certain conditions was determinant for a rapid expansion of American-derived mainstream health psychology during the 1980s. The authors describe the French context in the post-World War II period that made possible the introduction of psychology courses at the university, which included the tensions between two epistemological orientations: experimental psychology and clinical psychology, the latter partly inspired by Politzer's concrete psychology. We also outline the process that led to the implementation of 'clinical psychology in health settings' in the 1950s, under the influence of Daniel Lagache. Furthermore, the strong critiques that were made to the new psychology profession in the 1950s, 1960s and 1970s are examined against oppositions among psychologists, psychiatrists, philosophers and psychoanalysts. Moreover, we discuss how under turbulent conditions, a pragmatic-oriented psychology arriving from the United States was smoothly and rapidly introduced in France during the 1980s, promoting a socio-cognitive framework and offering new career perspectives. But the French dissension to this new sub-discipline will also be considered. Finally, our conclusion reflects upon future implications of ongoing rivalries between different approaches to psychology. It underlines a growing interest in critical perspectives developed in Anglo-Saxon cultures which are being applied, by French academics and practitioners who work in psychology in health settings.

  8. Immediate impact of rapid maxillary expansion on upper airway dimensions and on the quality of life of mouth breathers

    Directory of Open Access Journals (Sweden)

    Edna Namiko Izuka

    2015-06-01

    Full Text Available OBJECTIVE: To assess short-term tomographic changes in the upper airway dimensions and quality of life of mouth breathers after rapid maxillary expansion (RME. METHODS: A total of 25 mouth breathers with maxillary atresia and a mean age of 10.5 years old were assessed by means of cone-beam computed tomography (CBCT and a standardized quality of life questionnaire answered by patients' parents/legal guardians before and immediately after rapid maxillary expansion. RESULTS: Rapid maxillary expansion resulted in similar and significant expansion in the width of anterior (2.8 mm, p < 0.001 and posterior nasal floor (2.8 mm, p < 0.001. Although nasopharynx and nasal cavities airway volumes significantly increased (+1646.1 mm3, p < 0.001, oropharynx volume increase was not statistically significant (+1450.6 mm3, p = 0.066. The results of the quality of life questionnaire indicated that soon after rapid maxillary expansion, patients' respiratory symptoms significantly decreased in relation to their initial respiratory conditions. CONCLUSIONS: It is suggested that RME produces significant dimensional increase in the nasal cavity and nasopharynx. Additionally, it also positively impacts the quality of life of mouth-breathing patients with maxillary atresia.

  9. Rapid maxillary expansion (RME) for pediatric obstructive sleep apnea: a 12-year follow-up.

    Science.gov (United States)

    Pirelli, Paola; Saponara, Maurizio; Guilleminault, Christian

    2015-08-01

    The objective of this study was to prospectively evaluate the long-term efficacy of rapid maxillary expansion (RME) in a group of children with obstructive sleep apnea (OSA). Thirty-one children diagnosed with OSA were involved in the study. These children had isolated maxillary narrowing and absence of enlarged adenotonsils at baseline. Twenty-three individuals (73% of the initial group) were followed up annually over a mean of 12 years after the completion of orthodontic treatment at a mean age of 8.68 years. Eight children dropped out over time due to either moving out of the area (n = 6) or refusal to submit to regular follow-up (n = 2). Subjects underwent clinical reevaluation over time and repeat polysomnography (PSG) in the late teenage years or in their early 20s. During the follow-up period, eight children dropped out and 23 individuals (including 10 girls) underwent a final clinical investigation with PSG (mean age of 20.9 years). The final evaluation also included computerized tomographic (CT) imaging that was compared with pre- and post-initial treatment findings. Yearly clinical evaluations, including orthodontic and otolaryngological examinations and questionnaire scores, were consistently normal over time, and PSG findings remained normal at the 12-year follow-up period. The stability and maintenance of the expansion over time was demonstrated by the maxillary base width and the distance of the pterygoid processes measured using CT imaging. A subgroup of OSA children with isolated maxillary narrowing initially and followed up into adulthood present stable, long-term results post RME treatment for pediatric OSA. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Analysis of the maxillary dental arch after rapid maxillary expansion in patients with unilateral complete cleft lip and palate.

    Science.gov (United States)

    Ayub, Priscila Vaz; Janson, Guilherme; Gribel, Bruno Frazão; Lara, Tulio Silva; Garib, Daniela Gamba

    2016-05-01

    Although rapid maxillary expansion has been extensively studied in noncleft patients, scarce evidence of maxillary effects is found for patients with oral clefts. Our objective was to evaluate the dentoalveolar effects of rapid maxillary expansion in children with unilateral complete cleft lip and palate compared with noncleft patients. The experimental group included 25 patients with unilateral complete cleft lip and palate and posterior crossbite (9 girls, 16 boys; mean age, 10.6 years). The control group comprised 27 noncleft patients with posterior crossbite (14 boys, 13 girls; mean age, 9.1 years). The experimental group had lip and palate repairs at 3 and 12 months of age, respectively, and maxillary expansion was indicated before a secondary alveolar bone graft. Digital dental models were obtained immediately before expansion and 6 months after expansion with a laser scanner. Canine and posterior tooth inclinations, transversal widths, arch perimeters, arch lengths, palatal depths, and palatal volumes were digitally measured. The paired t test was used for interphase comparisons, and the independent t test was used for intergroup comparisons (P expansion produced buccal tipping of the canines and posterior teeth and significant increases of all maxillary transverse measurements, arch perimeter, palatal volumes, and palatal depths; only arch lengths decreased. No differences were observed between the groups for any measurement, except for intermolar distance. Rapid maxillary expansion produced similar changes in the patients with unilateral complete cleft lip and palate compared with the noncleft patients except for arch length and palatal depth that decreased after expansion in the children with oral clefts. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  11. Deagglomeration and mixing via the rapid expansion of high pressure and supercritical suspensions

    Science.gov (United States)

    To, Daniel

    Nano-materials are the focus of many research activities due to the desirable properties imparted from their small grain size and high interfacial surface area. However, these materials are highly cohesive powders in the dry state and typically form large agglomerates, leading to a diminished surface area or even grain growth, which minimizes the effectiveness of these nanomaterials. This dissertation addresses the issue of mixing nanopowders constituents by deagglomerating them and achieving simultaneous mixing so that even after inevitable reagglomeration, the effectiveness of large interfacial surface area may be preserved. Nano-particle mixtures were prepared using the environmentally benign dry mixing methods of Stirring in Supercritical Fluids and the Rapid Expansion of High Pressure and Supercritical Suspensions (REHPS). Stirring in Supercritical Fluids was capable of producing course scale nano-particle mixtures that were comparable to mixtures produced with more traditional liquid solvents, without the necessity of filtration and caking issues that are typically associated with them. The REHPS process was capable of producing high-quality mixtures on the sub-micron scale, and was made far superior when the nano-powders were first pre-mixed by stirring to decrease inhomogeneity of the feed. It was also shown that in general, conditions that enhanced turbulent shear stress, and thereby deagglomeration, also enhanced mixing, however this effect could be obscured by inhomogeneities introduced by the feed mixtures. Previous authors have suggested that the primary deagglomeration mechanism is the explosive expansion of the carbon dioxide from within the agglomerate as it transitions from a high pressure to an ambient environment. In this study two other deagglomeration mechanisms were proposed, namely intense turbulent shear stress imparted by the fluid in the nozzle and impaction with the Mach disc near the exit of the nozzle. Explosive expansion was observed

  12. Cell Expansion During Directed Differentiation of Stem Cells Toward the Hepatic Lineage.

    Science.gov (United States)

    Raju, Ravali; Chau, David; Cho, Dong Seong; Park, Yonsil; Verfaillie, Catherine M; Hu, Wei-Shou

    2017-02-15

    The differentiation of human pluripotent stem cells toward the hepatocyte lineage can potentially provide an unlimited source of functional hepatocytes for transplantation and extracorporeal bioartificial liver applications. It is anticipated that the quantities of cells needed for these applications will be in the order of 109-1010 cells, because of the size of the liver. An ideal differentiation protocol would be to enable directed differentiation to the hepatocyte lineage with simultaneous cell expansion. We introduced a cell expansion stage after the commitment of human embryonic stem cells to the endodermal lineage, to allow for at least an eightfold increase in cell number, with continuation of cell maturation toward the hepatocyte lineage. The progressive changes in the transcriptome were measured by expression array, and the expression dynamics of certain lineage markers was measured by mass cytometry during the differentiation and expansion process. The findings revealed that while cells were expanding they were also capable of progressing in their differentiation toward the hepatocyte lineage. In addition, our transcriptome, protein and functional studies, including albumin secretion, drug-induced CYP450 expression and urea production, all indicated that the hepatocyte-like cells obtained with or without cell expansion are very similar. This method of simultaneous cell expansion and hepatocyte differentiation should facilitate obtaining large quantities of cells for liver cell applications.

  13. An assessment of the maxilla after rapid maxillary expansion using cone beam computed tomography in growing children

    Directory of Open Access Journals (Sweden)

    Jessica L. Woller

    2014-01-01

    Full Text Available INTRODUCTION: With the advent of cone beam computed tomography (CBCT, it is now possible to quantitatively evaluate the effects of rapid maxillary expansion (RME on the entire maxillary complex in growing patients. OBJECTIVE: The purpose of this study is to use three-dimensional images to evaluate the displacement that occurs at the circummaxillary sutures (frontonasal, zygomaticomaxillary, intermaxillary, midpalatal, and transpalatal sutures following rapid maxillary expansion in growing children. METHODS: The CBCT scans of 25 consecutively treated RME patients (10 male, 15 female with mean age of 12.3 ± 2.6 years, were examined before expansion and immediately following the last activation of the expansion appliance. RESULTS: Statistically significant (P < 0.05 amounts of separation were found for the displacement of the bones of the frontonasal suture, the intermaxillary suture, the zygomaticomaxillary sutures, and the midpalatal suture. The change in angulation of the maxillary first molars due to RME was also statistically significant. There was no statistically significant displacement of the transpalatal suture. CONCLUSIONS: Rapid maxillary expansion results in significant displacement of the bones of circummaxillary sutures in growing children.

  14. Model of oronasal rehabilitation in children with obstructive sleep apnea syndrome undergoing rapid maxillary expansion: Research review

    OpenAIRE

    Levrini, Luca; Lorusso, Paola; Caprioglio, Alberto; Magnani, Augusta; Diaféria, Giovana; Bittencourt, Lia; Bommarito, Silvana

    2014-01-01

    Rapid maxillary expansion (RME) is a widely used practice in orthodontics. Scientific evidence shows that RME can be helpful in modifying the breathing pattern in mouth-breathing patients. In order to promote the restoration of physiological breathing we have developed a rehabilitation program associated with RME in children. The aim of the study was a literature review and a model of orofacial rehabilitation in children with obstructive sleep apnea undergoing treatment with rapid maxillary e...

  15. Dental arch changes associated with rapid maxillary expansion: A retrospective model analysis study

    Directory of Open Access Journals (Sweden)

    Ivor M D′Souza

    2015-01-01

    Full Text Available Introduction: Transverse deficiency of the maxilla is a common clinical problem in orthodontics and dentofacial orthopedics. Transverse maxillary deficiency, isolated or associated with other dentofacial deformities, results in esthetic and functional impairment giving rise to several clinical manifestations such as asymmetrical facial growth, positional and functional mandibular deviations, altered dentofacial esthetics, adverse periodontal responses, unstable dental tipping, and other functional problems. Orthopedic maxillary expansion is the preferred treatment approach to increase the maxillary transverse dimension in young patients by splitting of the mid palatal suture. This orthopedic procedure has lately been subject of renewed interest in orthodontic treatment mechanics because of its potential for increasing arch perimeter to alleviate crowding in the maxillary arch without adversely affecting facial profile. Hence, the present investigation was conducted to establish a correlation between transverse expansion and changes in the arch perimeter, arch width and arch length. Methods: For this purpose, 10 subjects (five males, five females were selected who had been treated by rapid maxillary expansion (RME using hyrax rapid palatal expander followed by fixed mechanotherapy (PEA. Pretreatment (T1, postexpansion (T2, and posttreatment (T3 dental models were compared for dental changes brought about by RME treatment and its stability at the end of fixed mechanotherapy. After model measurements were made, the changes between T1-T2, T2-T3 and T1-T3 were determined for each patient. The mean difference between T1-T2, T2-T3 and T1-T3 were compared to assess the effects of RME on dental arch measurements. Results are expressed as mean ± standard deviation and are compared by repeated measures analysis of variance followed by a post-hoc test. Arch perimeter changes are correlated with changes in arch widths at the canine, premolar and molar

  16. Rapid maxillary expansion for the treatment of nasal obstruction in children younger than 12 years.

    Science.gov (United States)

    Monini, Simonetta; Malagola, Caterina; Villa, Maria Pia; Tripodi, Caterina; Tarentini, Silvia; Malagnino, Irene; Marrone, Vania; Lazzarino, Antonio Ivan; Barbara, Maurizio

    2009-01-01

    To assess short- and long-term effects of rapid maxillary expansion (RME) on nasal flow in young children. Since RME has been reported to positively influence nasal obstruction in subjects with respiratory problems by reducing nasal resistance, a similar efficacy of RME could be expected in children with deciduous and/or mixed dentition who are affected by maxillary constriction and nasal obstruction from a different cause. Prospective study of children younger than 12 years, with different grades of malocclusion and oral breathing. Data included active anterior rhinomanometry in both the supine and orthostatic positions, as well as radiographic cephalometric measurements. Tertiary care university hospital. Data were prospectively collected from 2005 to 2007. Nasal flow and resistance were measured in 65 children younger than 12 years, with mixed or deciduous dentition and different grades of malocclusion and oral breathing. Efficacy of RME for resolution of maxillary constriction. After RME, an improvement of nasal flow and resistance has been recorded in patients, in the supine position, who presented both anterior and posterior obstruction. Less notable changes were shown in isolated forms of obstruction and in the orthostatic position. In cases of maxillary constriction and nasal airway obstruction, RME has proved to be efficient for the improvement of nasal respiration in children via a widening effect on the nasopharyngeal cavity.

  17. Influence of Orthodontic Rapid Maxillary Expansion on Nocturnal Enuresis in Children.

    Science.gov (United States)

    Hyla-Klekot, Lidia; Truszel, Marek; Paradysz, Andrzej; Postek-Stefańska, Lidia; Życzkowski, Marcin

    2015-01-01

    The etiology of nocturnal enuresis (NE) is multifactorial and has not been fully explained yet. New ways of treatment are constantly being investigated, including the rapid maxillary expansion (RME). A total of 41 patients diagnosed with NE were divided into two experimental groups: A and B. Group A included 16 children who have been treated with RME. Group B comprised 25 children who have not undertaken orthodontic treatment. Children from both groups have been monitored in monthly intervals, during a 12-month period, towards the intensification of NE. The comparative analysis of both groups has been conducted after 3 years of observation. Statistical analysis has shown a 4.5 times increase of the probability of reduction of NE in the case of the treated group in comparison with the group of children who have not undergone orthodontic treatment. Unfortunately, the chance of obtaining total dryness diminished proportionally to the higher degree of intensification of enuresis at the beginning of the test. RME can constitute an alternative method of NE treatment in children, irrespective of the occurrence of upper jaw narrowing.

  18. Morphologic changes of the palate after rapid maxillary expansion: a 3-dimensional computed tomography evaluation.

    Science.gov (United States)

    Phatouros, Andriana; Goonewardene, Mithran S

    2008-07-01

    The purpose of this retrospective study was to estimate the area change of the palate after rapid maxillary expansion (RME) in the early mixed dentition stage by using a 3-dimensional (3D) helical computed tomography (CT) scanning technique. In addition, linear changes in the maxillary arch were evaluated. The treated sample consisted of 43 children (mean age, 9 years 1 month) treated with a bonded RME appliance. The untreated control group consisted of 7 children (mean age, 9 years 3 months). Pretreatment and posttreatment dental casts were evaluated by using 3D helical CT scanning procedures. The Student t test was used to compare the linear, area, and angular differences between the treatment times. RME produced clinically significant increases in interdental widths across the canines, the deciduous first molars, and the permanent first molars in the maxillary arch. Significant increases in cross-sectional area were observed across the permanent first molars (15.3 mm(2)). There was marked variability in the buccal tipping of the permanent first molars. Three-dimensional helical CT scanning is an accurate and cost-effective method of assessing dental cast morphologic changes. It can also provide fast and accurate data acquisition and subsequent analysis.

  19. Influence of Orthodontic Rapid Maxillary Expansion on Nocturnal Enuresis in Children

    Directory of Open Access Journals (Sweden)

    Lidia Hyla-Klekot

    2015-01-01

    Full Text Available Background. The etiology of nocturnal enuresis (NE is multifactorial and has not been fully explained yet. New ways of treatment are constantly being investigated, including the rapid maxillary expansion (RME. Methods. A total of 41 patients diagnosed with NE were divided into two experimental groups: A and B. Group A included 16 children who have been treated with RME. Group B comprised 25 children who have not undertaken orthodontic treatment. Children from both groups have been monitored in monthly intervals, during a 12-month period, towards the intensification of NE. The comparative analysis of both groups has been conducted after 3 years of observation. Results. Statistical analysis has shown a 4.5 times increase of the probability of reduction of NE in the case of the treated group in comparison with the group of children who have not undergone orthodontic treatment. Unfortunately, the chance of obtaining total dryness diminished proportionally to the higher degree of intensification of enuresis at the beginning of the test. Conclusion. RME can constitute an alternative method of NE treatment in children, irrespective of the occurrence of upper jaw narrowing.

  20. Effects of rapid maxillary expansion on head posture, postural stability, and fall risk

    Directory of Open Access Journals (Sweden)

    Fatih Celebi

    2017-01-01

    Full Text Available Objective: The aim of this study was to investigate the effects of rapid maxillary expansion (RME on head posture, postural stability, and fall risk. Materials and Methods: A sample of 51 adolescent patients was randomly divided into two groups. In the first group, which consisted of 28 patients (15 females and 13 males, RME was performed as a part of routine orthodontic treatment. The remaining 23 individuals (12 females and 11 males served as the control group. Lateral cephalometric radiographs taken in natural head position, postural stability, and fall risk scores were obtained during the first visit. They were repeated on average 3.8 months and 3.5 months later for the study and control groups, respectively. The changes were analyzed using the Wilcoxon signed-rank test, paired samples t-test, Mann–Whitney U-test, and independent samples t-test. Results: As a result of RME, a statistically significant decrease was detected in the fall risk score (P < 0.05 in the study group, while the head position and postural stability remained unchanged. For the control group, no significant changes were observed in all measurements. Conclusions: The result of the present study suggests that RME has a capacity of improving fall risk.

  1. Rapid global expansion of the fungal disease chytridiomycosis into declining and healthy amphibian populations.

    Directory of Open Access Journals (Sweden)

    Timothy Y James

    2009-05-01

    Full Text Available The fungal disease chytridiomycosis, caused by Batrachochytrium dendrobatidis, is enigmatic because it occurs globally in both declining and apparently healthy (non-declining amphibian populations. This distribution has fueled debate concerning whether, in sites where it has recently been found, the pathogen was introduced or is endemic. In this study, we addressed the molecular population genetics of a global collection of fungal strains from both declining and healthy amphibian populations using DNA sequence variation from 17 nuclear loci and a large fragment from the mitochondrial genome. We found a low rate of DNA polymorphism, with only two sequence alleles detected at each locus, but a high diversity of diploid genotypes. Half of the loci displayed an excess of heterozygous genotypes, consistent with a primarily clonal mode of reproduction. Despite the absence of obvious sex, genotypic diversity was high (44 unique genotypes out of 59 strains. We provide evidence that the observed genotypic variation can be generated by loss of heterozygosity through mitotic recombination. One strain isolated from a bullfrog possessed as much allelic diversity as the entire global sample, suggesting the current epidemic can be traced back to the outbreak of a single clonal lineage. These data are consistent with the current chytridiomycosis epidemic resulting from a novel pathogen undergoing a rapid and recent range expansion. The widespread occurrence of the same lineage in both healthy and declining populations suggests that the outcome of the disease is contingent on environmental factors and host resistance.

  2. A bilinear elastic constitutive model applied for midpalatal suture behavior during rapid maxillary expansion

    Directory of Open Access Journals (Sweden)

    Larissa Carvalho Trojan Serpe

    Full Text Available Introduction : This study aims to evaluate the influence of the biomechanical behavior of the midpalatal suture (MPS during the rapid maxillary expansion (RME when modeled by the Finite Element Method. Methods Four simulation alternatives are discussed and, for each analysis, the suture is considered as a functional unit with a different mechanical behavior: (i without MPS elements, (ii MPS with Young's modulus (E equal to 1 MPa, (ii MPS with E equal to 0.01 MPa and (iv MPS with bilinear elastic behavior. Results The stress analysis showed that, when MPS is not considered in the model, stress peaks are reduced in magnitude and their distribution is restricted to a smaller area when compared to the model with the inclusion of MPS (E=1 MPa. The increased suture stiffness also has a direct influence on MPS displacements after 30 expander activations. Conclusion The consideration of the MPS in RME computer models influences greatly the calculated displacements between the suture bone ends, even as the stress levels in maxillary structures. Furthermore, as proposed for the described model, the elastic bilinear behavior assigned to MPS allows coherent prediction of stresses and displacements results, being a good representation for this suture overall behavior.

  3. Rapid expansion and pseudo spectral implementation for reverse time migration in VTI media

    KAUST Repository

    Pestana, Reynam C

    2012-04-24

    In isotropic media, we use the scalar acoustic wave equation to perform reverse time migration (RTM) of the recorded pressure wavefield data. In anisotropic media, P- and SV-waves are coupled, and the elastic wave equation should be used for RTM. For computational efficiency, a pseudo-acoustic wave equation is often used. This may be solved using a coupled system of second-order partial differential equations. We solve these using a pseudo spectral method and the rapid expansion method (REM) for the explicit time marching. This method generates a degenerate SV-wave in addition to the P-wave arrivals of interest. To avoid this problem, the elastic wave equation for vertical transversely isotropic (VTI) media can be split into separate wave equations for P- and SV-waves. These separate wave equations are stable, and they can be effectively used to model and migrate seismic data in VTI media where |ε- δ| is small. The artifact for the SV-wave has also been removed. The independent pseudo-differential wave equations can be solved one for each mode using the pseudo spectral method for the spatial derivatives and the REM for the explicit time advance of the wavefield. We show numerically stable and high-resolution modeling and RTM results for the pure P-wave mode in VTI media. © 2012 Sinopec Geophysical Research Institute.

  4. Rapid Maxillary Expansion After Alveolar Bone Grafting With rhBMP-2 in UCLP Evaluated by Means of CBCT

    NARCIS (Netherlands)

    Garib, D.; Miranda, F.; Sathler, R.; Kuijpers-Jagtman, A.M.; Aiello, C.A.

    2017-01-01

    OBJECTIVE: To demonstrate the feasibility of rapid maxillary expansion (RME) after alveolar bone grafting (ABG) in complete unilateral cleft lip, alveolus and palate (UCLP) without damage to the grafted area. SETTING: Hospital for Rehabilitation of Craniofacial Anomalies (HRAC), University of Sao

  5. LED phototherapy on midpalatal suture after rapid maxilla expansion: a Raman spectroscopic study

    Science.gov (United States)

    Rosa, Cristiane B.; Habib, Fernando Antonio L.; de Araújo, Telma M.; dos Santos, Jean N.; Cangussu, Maria Cristina T.; Barbosa, Artur Felipe S.; de Castro, Isabele Cardoso V.; Soares, Luiz Guilherme P.; Pinheiro, Antonio L. B.

    2015-03-01

    A quick bone formation after maxillary expansion would reduce treatment timeand the biomodulating effects of LED light could contribute for it. The aim of this study was to analyze the effect of LED phototherapy on the acceleration of bone formation at the midpalatal suture after maxilla expansion. Thirty rats divided into 6 groups were used on the study at 2 time points - 7 days: Control; Expansion; and Expansion + LED; and 14 days: Expansion; Expansion + LED in the first week; Expansion and LED in the first and second weeks. LED irradiation occurred at every 48 h during 2 weeks. Expansion was accomplished using a spatula and maintained with a triple helicoid of 0.020" stainless steel orthodontic wire. A LED light (λ850 ± 10nm, 150mW ± 10mW, spot of 0.5cm2, t=120 sec, SAEF of 18J/cm2) was applied in one point in the midpalatal suture immediately behind the upper incisors. Near infrared Raman spectroscopic analysis of the suture region was carried and data submitted to statistical analyzes (p≤0.05). Raman spectrum analysis demonstrated that irradiation increased hydroxyapatite in the midpalatal suture after expansion. The results of this indicate that LED irradiation; have a positive biomodulation contributing to the acceleration of bone formation in the midpalatal suture after expansion procedure.

  6. Towards expansion of human hair follicle stem cells in vitro.

    Science.gov (United States)

    Oh, J H; Mohebi, P; Farkas, D L; Tajbakhsh, J

    2011-06-01

    Multipotential human hair follicle stem cells can differentiate into various cell lineages and thus are investigated here as potential autologous sources for regenerative medicine. Towards this end, we have attempted to expand these cells, directly isolated from minimal amounts of hair follicle explants, to numbers more suitable for stem-cell therapy. Two types of human follicle stem cells, commercially available and directly isolated, were cultured using an in-house developed medium. The latter was obtained from bulge areas of hair follicles by mechanical and enzymatic dissociation, and was magnetically enriched for its CD200(+) fraction. Isolated cells were cultured for up to 4 weeks, on different supports: blank polystyrene, laminin- and Matrigel(TM) -coated surfaces. Two-fold expansion was found, highlighting the slow-cycling nature of these cells. Flow cytometry characterization revealed: magnetic enrichment increased the proportion of CD200(+) cells from initially 43.3% (CD200+, CD34: 25.8%; CD200+, CD34+: 17.5%) to 78.2% (CD200+, CD34: 41.5%; CD200+, CD34+: 36.7%). Enriched cells seemed to have retained and passed on their morphological and molecular phenotypes to their progeny, as isolated CD200(+) presenting cells expanded in our medium to a population with 80% of cells being CD200(+): 51.5% (CD200(+), CD34(-)) and 29.6% (CD200(+), CD34(+)). This study demonstrates the possibility of culturing human hair follicle stem cells without causing any significant changes to phenotypes of the cells. © 2011 Blackwell Publishing Ltd.

  7. Treatment resistant adolescent depression with upper airway resistance syndrome treated with rapid palatal expansion: a case report

    Directory of Open Access Journals (Sweden)

    Miller Paul

    2012-12-01

    Full Text Available Abstract Introduction To the best of our knowledge, this is the first report of a case of treatment-resistant depression in which the patient was evaluated for sleep disordered breathing as the cause and in which rapid palatal expansion to permanently treat the sleep disordered breathing produced a prolonged symptom-free period off medication. Case presentation An 18-year-old Caucasian man presented to our sleep disorders center with chronic severe depression that was no longer responsive to medication but that had recently responded to electroconvulsive therapy. Ancillary, persistent symptoms included mild insomnia, moderate to severe fatigue, mild sleepiness and severe anxiety treated with medication. Our patient had no history of snoring or witnessed apnea, but polysomnography was consistent with upper airway resistance syndrome. Although our patient did not have an orthodontic indication for rapid palatal expansion, rapid palatal expansion was performed as a treatment of his upper airway resistance syndrome. Following rapid palatal expansion, our patient experienced a marked improvement of his sleep quality, anxiety, fatigue and sleepiness. His improvement has been maintained off all psychotropic medication and his depression has remained in remission for approximately two years following his electroconvulsive therapy. Conclusions This case report introduces the possibility that unrecognized sleep disordered breathing may play a role in adolescent treatment-resistant depression. The symptoms of upper airway resistance syndrome are non-specific enough that every adolescent with depression, even those responding to medication, may have underlying sleep disordered breathing. In such patients, rapid palatal expansion, by widening the upper airway and improving airflow during sleep, may produce a prolonged improvement of symptoms and a tapering of medication. Psychiatrists treating adolescents may benefit from having another treatment option for

  8. Involvement of the Nonneuronal Cholinergic System in Bone Remodeling in Rat Midpalatal Suture after Rapid Maxillary Expansion

    Directory of Open Access Journals (Sweden)

    Xiaoxia Che

    2016-01-01

    Full Text Available Few studies sought to analyze the expression and function of the nonneuronal acetylcholine system in bone remodeling in vivo due to the lack of suitable models. We established a rat maxilla expansion model in which the midline palatine suture of the rat was rapidly expanded under mechanical force application, inducing tissue remodeling and new bone formation, which could be a suitable model to investigate the role of the nonneuronal acetylcholine system in bone remodeling in vivo. During the expansion, the expression pattern changes of the nonneuronal cholinergic system components and the mRNA levels of OPG/RANKL were detected by immunohistochemistry or real-time PCR. The value of the RANKL/OPG ratio significantly increased after 1 day of expansion, indicating dominant bone resorption induced by the mechanical stimulation; however after 3 days of expansion, the value of the RANKL/OPG ratio significantly decreased, suggesting a dominant role of the subsequent bone formation process. Increasing expression of Ach was detected after 3 days of expansion which indicated that ACh might play a role in bone formation. The mRNA expression levels of other components also showed observable changes during the expansion which confirmed the involvement of the nonneuronal cholinergic system in the process of bone remodeling in vivo. Further researches are still needed to figure out the detailed functions of the nonneuronal cholinergic system and its components.

  9. Involvement of the Nonneuronal Cholinergic System in Bone Remodeling in Rat Midpalatal Suture after Rapid Maxillary Expansion

    Science.gov (United States)

    Guo, Jie; Wang, Lue; Miao, Cong; Ge, Lihua; Tian, Zhenchuan; Wang, Jianhong

    2016-01-01

    Few studies sought to analyze the expression and function of the nonneuronal acetylcholine system in bone remodeling in vivo due to the lack of suitable models. We established a rat maxilla expansion model in which the midline palatine suture of the rat was rapidly expanded under mechanical force application, inducing tissue remodeling and new bone formation, which could be a suitable model to investigate the role of the nonneuronal acetylcholine system in bone remodeling in vivo. During the expansion, the expression pattern changes of the nonneuronal cholinergic system components and the mRNA levels of OPG/RANKL were detected by immunohistochemistry or real-time PCR. The value of the RANKL/OPG ratio significantly increased after 1 day of expansion, indicating dominant bone resorption induced by the mechanical stimulation; however after 3 days of expansion, the value of the RANKL/OPG ratio significantly decreased, suggesting a dominant role of the subsequent bone formation process. Increasing expression of Ach was detected after 3 days of expansion which indicated that ACh might play a role in bone formation. The mRNA expression levels of other components also showed observable changes during the expansion which confirmed the involvement of the nonneuronal cholinergic system in the process of bone remodeling in vivo. Further researches are still needed to figure out the detailed functions of the nonneuronal cholinergic system and its components. PMID:27478838

  10. Preparation and Characterization of Micronized Artemisinin via a Rapid Expansion of Supercritical Solutions (RESS Method

    Directory of Open Access Journals (Sweden)

    Xiaonan Zhang

    2012-04-01

    Full Text Available The particle sizes of pharmaceutical substances are important for their bioavailability. Bioavailability can be improved by reducing the particle size of the drug. In this study, artemisinin was micronized by the rapid expansion of supercritical solutions (RESS. The particle size of the unprocessed white needle-like artemisinin particles was 30 to 1200 µm. The optimum micronization conditions are determined as follows: extraction temperature of 62 °C, extraction pressure of 25 MPa, precipitation temperature 45 °C and nozzle diameter of 1000 μm. Under the optimum conditions, micronized artemisinin with a (mean particle size MPS of 550 nm is obtained. By analysis of variance (ANOVA, extraction temperature and pressure have significant effects on the MPS of the micronized artemisinin. The particle size of micronized artemisinin decreased with increasing extraction temperature and pressure. Moreover, the SEM, LC-MS, FTIR, DSC and XRD allowed the comparison between the crystalline initial state and the micronization particles obtained after the RESS process. The results showed that RESS process has not induced degradation of artemisinin and that processed artemisinin particles have lower crystallinity and melting point. The bulk density of artemisinin was determined before and after RESS process and the obtained results showed that it passes from an initial density of 0.554 to 0.128 g·cm−3 after the processing. The decrease in bulk density of the micronized powder can increase the liquidity of drug particles when they are applied for medicinal preparations. These results suggest micronized powder of artemisinin can be of great potential in drug delivery systems.

  11. Effect of low-level laser therapy after rapid maxillary expansion: a clinical investigation.

    Science.gov (United States)

    Garcia, Valentin Javier; Arnabat, J; Comesaña, Rafael; Kasem, Khaled; Ustrell, Josep Maria; Pasetto, Stefano; Segura, Oscar Pozuelo; ManzanaresCéspedes, Maria Cristina; Carvalho-Lobato, Patricia

    2016-08-01

    To evaluate the effectiveness low-level laser therapy (LLLT) on the repair of the mid palatal suture, after rapid maxillary expansion (RME). A single-operator, randomized single-blind placebo-controlled study was performed at the Orthodontic Department at the Dental Hospital of Bellvitge. Barcelona University, Hospitalet de Llobregat, Spain. Thirty-nine children (range 6-12 years old), completed RME and were randomized to receive active LLLT (n = 20) or placebo (n = 19). The laser parameters and dose were 660 nm, 100 mW, CW, InGaAlP laser, illuminated area 0.26 cm(2), 332 mW/cm(2), 60 s to four points along midpalatal suture, and 30 s to a point each side of the suture. A total of seven applications were made on days 1, 7, 14, 28, 42, 56, and 70 of the retention phase RME. A cone beam computed tomography (CBCT) scan was carried out on the day of the first laser treatment, and at day 75, a second CBCT scan was performed. Two radiologists synchronized the slices of two scans to be assessed. P = 0.05 was considered to be statistically significant. At day 75 of the suture, the irradiated patients presented a greater percentage of approximate zones in the anterior (p = 0.008) and posterior (p = 0.001) superior suture-and less approximation in the posterior superior suture (p = 0.040)-than the placebo group. LLLT appears to stimulate the repair process during retention phase after RME.

  12. Changes in pharyngeal aerobic microflora in oral breathers after palatal rapid expansion

    Directory of Open Access Journals (Sweden)

    Ripa Antonio

    2006-01-01

    Full Text Available Abstract Background The purpose of this study was to investigate in oral breathing children the qualitative and quantitative effects on aerobic and facultatively anaerobic oropharyngeal microflora of respiratory function improved by rapid palatal expansion (RPE. Methods In an open clinical trial, we studied 50 oral breathers, aged 8 to 14 years and suffering from both maxillary constriction and posterior cross-bite. At baseline, patients were examined by a single otorhinolaryngologist (ENT, confirming nasal obstruction in all subjects by posterior rhino-manometric test. Patients were evaluated three times by oropharyngeal swabs:1 at baseline (T = 0; 2 after palatal spreading out (T = 1; and 3 at the end of RPE treatment (T = 2. With regard to the microbiological aspect, the most common and potentially pathogenic oral microrganisms (i.e. Streptococcus pyogenes, Diplococcus pneumoniae, Staphylococcus aureus, Haemophilus spp, Branhamella catarrhalis, Klebsiella pneumoniae, Candida albicans were specifically detected in proper culture plates, isolated colonies were identified by means of biochemical tests and counted by calibrated loop. The data were analyzed by means of the following tests: Chi-square test, Fisher's exact test and Wilcoxon's test. Results After the use of RME there was a statistically significant decrease of Staphylococcus aureus stock at CFU/mLat T1(P = 0.0005; Z = -3,455 by Wilcoxon Rank test and T2 (P Conclusion Our data suggest that RPE therapy in oral breathers may strongly reduce the pathogenic aerobic and facultatively anaerobic microflora in the oral pharynx after a normalization of the upper airways function, and may reduce the risk of respiratory infections.

  13. Rapid maxillary expansion in children with Obstructive Sleep Apnoea Syndrome (OSAS).

    Science.gov (United States)

    Marino, A; Ranieri, R; Chiarotti, F; Villa, M P; Malagola, C

    2012-03-01

    to evaluate the effects of rapid maxillary expansion (RME) in a group of OSAS preschool children. Lateral cephalograms of 15 OSAS children (8 boys and 7 girls, age mean ± SD: 5.94 ± 1.64 years) were analysed at the start of treatment with RME (T0). All subjects were revaluated after a mean period of 1.57 ± 0.58 years (T1). At this time the sample was divided into 2 groups according to the change in the respiratory disturbance index (RDI): an improved group (I: 8 subjects) and a stationary/worsened group (SW: 7 subjects). Differences between I and SW children with respect to values of cephalometric variables at T0 and to variations between T0 and T1 were evaluated using Mann-Whitney U test. Differences between T0 and T1 values in the overall group of children and separately in I and SW groups were assessed using Wilcoxon test. At the start of treatment, the I group was characterised by more retrognathic jaws with lower values of SNA (p=0.055) and SNB (p=0.020) and higher age values (p=0.093) when compared to SW group. After treatment, the I group showed an increase in SNA and SNB angle significantly higher than SW group (p=0.004 and p=0.003, respectively). On the contrary, I and SW groups did not differ as for variation in the skeletal divergency and in the total facial height. OSAS preschool children with retrognathic jaws could benefit from RME treatment.

  14. Speleothem isotopic evidence for rapid human-induced expansion of grasslands in Madagascar at 890 CE

    Science.gov (United States)

    Burns, S. J.; Godfrey, L.; Faina, P.; McGee, D.; Hardt, B. F.; Ranivoharimanana, L.; Randrianasy, J.

    2015-12-01

    The degree to which human activity impacted the landscape, vegetation and fauna of Madagascar remains under debate. Since the early 1920's, the prevailing hypothesis has been that the savannah grasslands that now cover 70% of Madagascar were the result of deforestation, which has also been tied to the disappearance of much of the island's endemic megafauna. Other studies suggest that Madagascar's grasslands are largely natural and that megafaunal extinctions may be climatically induced, leading some authors to question the entire narrative of extensive alteration of the landscape by early human activity. We collected two stalagmites, M14-AB2 and M14-AB3, from Anjohibe Cave in northwestern Madagascar (15.55°S, 46.89°E, 100 masl). Age models were constructed using 8 U/Th age determinations from AB2 and 10 from AB3. The samples began to grow at ~500 CE and were active at the time of collection. Carbon and oxygen stable isotope ratios were measured on 266 samples from AB2 and 173 samples from AB3, yielding sub-decadal temporal resolution. A rapid, more than 10 per mil increase in stalagmite carbon stable isotope ratios documents an almost complete transformation of the landscape from one with a flora dominated by C3 plants to a C4 grassland system. This transformation, well replicated in both stalagmites, occurred at approximately 890 +/- 20 CE and was complete in 100 years. Further, relatively constant oxygen isotope ratios across the carbon isotope transition demonstrate that landscape alteration was not related to changes in climate. We hypothesize that the transformation was caused primarily by expansion of the use of fire by early inhabitants of Madagascar to promote agriculture and the growth of grass as fodder for cattle. The resulting loss of forest habitat very likely increased environmental pressures on Madagascar's megafauna and accelerated their disappearance.

  15. A systematic review of the effects of bone-borne surgical assisted rapid maxillary expansion.

    NARCIS (Netherlands)

    Verstraaten, J.; Kuijpers-Jagtman, A.M.; Mommaerts, M.Y.; Berge, S.J.; Nada, R.; Schols, J.G.J.H.

    2010-01-01

    INTRODUCTION: A systematic literature review was conducted to find out if bone-borne maxillary expansion with corticotomies is an effective and secure orthodontic/orthopaedic treatment modality, eliminating orthodontic and periodontal side effects of tooth-borne maxillary expansion with

  16. Rapid replacement of bridge deck expansion joints study - phase I : [tech transfer summary].

    Science.gov (United States)

    2014-12-01

    This initial research phase focused on documenting the current : means and methods of bridge expansion joint deterioration, : maintenance, and replacement and on identifying improvements : through all of the input gathered.

  17. Rapid maxillary expansion screws on the test bench--a pilot study.

    Science.gov (United States)

    Muchitsch, Alfred Peter; Wendl, B; Winsauer, H; Pichelmayer, M; Payer, M

    2011-06-01

    In order to apply high, short-term forces during rapid maxillary expansion (RME) to the sutures of the maxilla with minimum loss of force and without causing unwanted side-effects (dentoalveolar tipping, etc.), the appliance should be as rigid as possible. The retention arms of the RME screws, representing a particularly vulnerable and stressed weak point of RME appliances, were the focus of this laboratory technical study. Retention arms of 16 types of RME screws comprising four arms and one with eight arms were examined using a three-point bending test. According to their ability to absorb the applied bending loads, the screws were classified in product groups from 1 (highest) to 6 (lowest). Fifteen of the tested retention arms (stainless steel), despite having the same diameter (1.48-1.49 mm), differed up to 69.81 per cent between the highest (288.0 N) and lowest (169.6 N) maximum force parameters and up to 66.40 per cent between the highest (3325.9 N/mm(2)) and lowest (1998.7 N/mm(2)) maximum bending stress parameters. Due to optimum formability, though reduced rigidity, a titanium screw for nickel-sensitive patients (group 6) displayed the lowest force and bending tension values. The stainless steel double arms of the eight-arm screw device welded on both ends displayed the highest force data. The mean ductilities of the groups with the most and least rigid single steel arms differed by 22.77 per cent. Statistical analysis using the Pearson correlation coefficient revealed a significant indirect correlation between ductility and both maximum force (r = -0.780, P < 0.001) and maximum bending stress (r = -0.778, P < 0.001). The SUPERscrews, the Tiger Dental four-arm screw (group 1), and the eight-arm screw displayed the highest capacity to absorb an applied bending load. The screws in groups 3-6 appear acceptable for RME during the pre-pubertal period, whereas in the pubertal and post-pubertal period, groups 1 and 2 are sufficient. In early adulthood only the

  18. Immediate periodontal bone plate changes induced by rapid maxillary expansion in the early mixed dentition: CT findings

    Directory of Open Access Journals (Sweden)

    Daniela Gamba Garib

    2014-06-01

    Full Text Available OBJECTIVE: This study aimed at evaluating buccal and lingual bone plate changes caused by rapid maxillary expansion (RME in the mixed dentition by means of computed tomography (CT. METHODS: The sample comprised spiral CT exams taken from 22 mixed dentition patients from 6 to 9 years of age (mean age of 8.1 years presenting constricted maxillary arch treated with Haas-type expanders. Patients were submitted to spiral CT scan before expansion and after the screw activation period with a 30-day interval between T1 and T2. Multiplanar reconstruction was used to measure buccal and lingual bone plate thickness and buccal bone crest level of maxillary posterior deciduous and permanent teeth. Changes induced by expansion were evaluated using paired t test (p < 0.05. RESULTS: Thickness of buccal and lingual bone plates of posterior teeth remained unchanged during the expansion period, except for deciduous second molars which showed a slight reduction in bone thickness at the distal region of its buccal aspect. Buccal bone dehiscences were not observed in the supporting teeth after expansion. CONCLUSION: RME performed in mixed dentition did not produce immediate undesirable effects on periodontal bone tissues.

  19. Evaluation of the rapid and slow maxillary expansion using cone-beam computed tomography: a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Juliana da S. Pereira

    Full Text Available ABSTRACT OBJECTIVE: The aim of this randomized clinical trial was to evaluate the dental, dentoalveolar, and skeletal changes occurring right after the rapid maxillary expansion (RME and slow maxillary expansion (SME treatment using Haas-type expander. METHODS: All subjects performed cone-beam computed tomography (CBCT before installation of expanders (T1 and right after screw stabilization (T2. Patients who did not follow the research parameters were excluded. The final sample resulted in 21 patients in RME group (mean age of 8.43 years and 16 patients in SME group (mean age of 8.70 years. Based on the skewness and kurtosis statistics, the variables were judged to be normally distributed and paired t-test and student t-test were performed at significance level of 5%. RESULTS: Intermolar angle changed significantly due to treatment and RME showed greater buccal tipping than SME. RME showed significant changes in other four measurements due to treatment: maxilla moved forward and mandible showed backward rotation and, at transversal level both skeletal and dentoalveolar showed significant changes due to maxillary expansion. SME showed significant dentoalveolar changes due to maxillary expansion. CONCLUSIONS: Only intermolar angle showed significant difference between the two modalities of maxillary expansion with greater buccal tipping for RME. Also, RME produced skeletal maxillary expansion and SME did not. Both maxillary expansion modalities were efficient to promote transversal gain at dentoalveolar level. Sagittal and vertical measurements did not show differences between groups, but RME promoted a forward movement of the maxilla and backward rotation of the mandible.

  20. Non-surgical treatment of transverse deficiency in adults using Microimplant-assisted Rapid Palatal Expansion (MARPE).

    Science.gov (United States)

    Brunetto, Daniel Paludo; Sant'Anna, Eduardo Franzzotti; Machado, Andre Wilson; Moon, Won

    2017-02-01

    Maxillary transverse deficiency is a highly prevalent malocclusion present in all age groups, from primary to permanent dentition. If not treated on time, it can aggravate and evolve to a more complex malocclusion, hindering facial growth and development. Aside from the occlusal consequences, the deficiency can bring about serious respiratory problems as well, due to the consequent nasal constriction usually associated. In growing patients, this condition can be easily handled with a conventional rapid palatal expansion. However, mature patients are frequently subjected to a more invasive procedure, the surgically-assisted rapid palatal expansion (SARPE). More recently, researches have demonstrated that it is possible to expand the maxilla in grown patients without performing osteotomies, but using microimplants anchorage instead. This novel technique is called microimplant-assisted rapid palatal expansion (MARPE). The aim of the present article was to demonstrate and discuss a MARPE technique developed by Dr. Won Moon and colleagues at University of California - Los Angeles (UCLA). All laboratory and clinical steps needed for its correct execution are thoroughly described. For better comprehension, a mature patient case is reported, detailing all the treatment progress and results obtained. It was concluded that the demonstrated technique could be an interesting alternative to SARPE in the majority of non-growing patients with maxillary transverse deficiency. The present patient showed important occlusal and respiratory benefits following the procedure, without requiring any surgical intervention.

  1. Non-surgical treatment of transverse deficiency in adults using Microimplant-assisted Rapid Palatal Expansion (MARPE

    Directory of Open Access Journals (Sweden)

    Daniel Paludo Brunetto

    Full Text Available ABSTRACT Introduction: Maxillary transverse deficiency is a highly prevalent malocclusion present in all age groups, from primary to permanent dentition. If not treated on time, it can aggravate and evolve to a more complex malocclusion, hindering facial growth and development. Aside from the occlusal consequences, the deficiency can bring about serious respiratory problems as well, due to the consequent nasal constriction usually associated. In growing patients, this condition can be easily handled with a conventional rapid palatal expansion. However, mature patients are frequently subjected to a more invasive procedure, the surgically-assisted rapid palatal expansion (SARPE. More recently, researches have demonstrated that it is possible to expand the maxilla in grown patients without performing osteotomies, but using microimplants anchorage instead. This novel technique is called microimplant-assisted rapid palatal expansion (MARPE. Objective: The aim of the present article was to demonstrate and discuss a MARPE technique developed by Dr. Won Moon and colleagues at University of California - Los Angeles (UCLA. Methods: All laboratory and clinical steps needed for its correct execution are thoroughly described. For better comprehension, a mature patient case is reported, detailing all the treatment progress and results obtained. Conclusion: It was concluded that the demonstrated technique could be an interesting alternative to SARPE in the majority of non-growing patients with maxillary transverse deficiency. The present patient showed important occlusal and respiratory benefits following the procedure, without requiring any surgical intervention.

  2. A novel monoclonal antibody of human stem cell factor inhibits umbilical cord blood stem cell ex vivo expansion

    Directory of Open Access Journals (Sweden)

    Fan Jie

    2012-12-01

    Full Text Available Abstract Stem cell factor (SCF activates hematopoietic stem cell (HSC self-renewal and is being used to stimulate the ex vivo expansion of HSCs. The mechanism by which SCF supports expansion of HSCs remains poorly understood. In cord blood ex vivo expansion assays, a newly produced anti-SCF monoclonal antibody (clone 23C8 was found to significantly inhibit the expansion of CD34+ cells. This antibody appears to bind directly to a part of SCF that is critical for biological activity toward expansion of CD34+ cells, which is located in the first 104 amino acids from the NH2-terminus.

  3. In vitro megakaryocyte expansion in patients with delayed platelet engraftment after autologous stem cell transplantation

    NARCIS (Netherlands)

    Drayer, AL; Sibinga, CTS; Esselink, MT; de Wolf, JTM; Vellenga, E

    Increasing the number of megakaryocytic cells in stem cell transplants by ex vivo expansion culture may provide an approach to accelerate platelet engraftment after high-dose chemotherapy. However, it is unknown if a relationship exists between the expansion potential of progenitor cells and the

  4. Expansion of Endothelial Progenitor Cells in High Density Dot Culture of Rat Bone Marrow Cells

    Science.gov (United States)

    Wang, Ling; Kretlow, James D.; Zhou, Guangdong; Cao, Yilin; Liu, Wei; Zhang, Wen Jie

    2014-01-01

    In vitro expansion of endothelial progenitor cells (EPCs) remains a challenge in stem cell research and its application. We hypothesize that high density culture is able to expand EPCs from bone marrow by mimicking cell-cell interactions of the bone marrow niche. To test the hypothesis, rat bone marrow cells were either cultured in high density (2×105 cells/cm2) by seeding total 9×105 cells into six high density dots or cultured in regular density (1.6×104 cells/cm2) with the same total number of cells. Flow cytometric analyses of the cells cultured for 15 days showed that high density cells exhibited smaller cell size and higher levels of marker expression related to EPCs when compared to regular density cultured cells. Functionally, these cells exhibited strong angiogenic potentials with better tubal formation in vitro and potent rescue of mouse ischemic limbs in vivo with their integration into neo-capillary structure. Global gene chip and ELISA analyses revealed up-regulated gene expression of adhesion molecules and enhanced protein release of pro-angiogenic growth factors in high density cultured cells. In summary, high density cell culture promotes expansion of bone marrow contained EPCs that are able to enhance tissue angiogenesis via paracrine growth factors and direct differentiation into endothelial cells. PMID:25254487

  5. Investigation of char strength and expansion properties of an intumescent coating exposed to rapid heating rates

    DEFF Research Database (Denmark)

    Nørgaard, Kristian Petersen; Dam-Johansen, Kim; Català, Pere

    2013-01-01

    , char properties, measured at room temperature, were dependent on the preceding storage conditions (in air or in a desiccator). The char was found to have the highest mechanical strength against compression in the outer crust facing the heat source. For thin (147μm) free coating films, a tendency...... with respect to the mechanical resistance against compression, degree of expansion, and residual mass fraction. Experimental results show that when using this type of shock heating, the mechanical resistance of the char against compression cannot meaningfully be correlated to the expansion factor. In addition...

  6. Relapse and stability of surgically assisted rapid maxillary expansion, an anatomical biomechanical study

    NARCIS (Netherlands)

    Koudstaal, M.J.; Smeets, J.B.J.; Kleinrensink, G.J.; Schulten, A.J.M.; van der Wal, K.G.H.

    2009-01-01

    Purpose: This anatomic biomechanical study was undertaken to gain insight into the underlining mechanism of tipping of the maxillary segments during transverse expansion using tooth-borne and bone-borne distraction devices. Materials and Methods: An anatomic biomechanical study was performed on 10

  7. Can rapid maxillary expansion cause auditory improvement in children and adolescents with hearing loss? A systematic review.

    Science.gov (United States)

    Fagundes, Nathalia Carolina Fernandes; Rabello, Nicole Melres; Maia, Lucianne Cople; Normando, David; Mello, Karina Corrêa Flexa Ribeiro

    2017-11-01

    To evaluate whether the use of palatal expansion techniques can influence hearing loss in children and adolescents with previous hearing impairment. Electronic searches in PubMed, Scopus, Web of Science, The Cochrane Library, Lilacs, OpenGrey, and Google Scholar were performed with a controlled vocabulary and free-text terms relating to palatal expansion and hearing loss. No language or time restrictions were imposed. Clinical trials that focused on human patients treated with rapid or semirapid maxillary expansion in children and teenagers with hearing loss were included. Data extraction was undertaken by two authors, with conflict resolution by a third author. Risk of bias assessment and data extraction were performed on the selected studies. Seventy-four citations were retrieved by the search. Initially, 12 studies were selected according to the eligibility criteria, but three studies were excluded because of the presence of adults, absence of hearing level evaluation, and oversampling, resulting in nine studies. The mean improvement in hearing levels varied from 2 to 19 dB among the studies. The risk of bias varied from low to moderate risk. The evidence indicated that there was a hearing improvement after maxillary expansion in patients with hearing loss in the evaluated studies, although more controlled and randomized studies are necessary to investigate this issue further.

  8. Defining novel parameters for the optimal priming and expansion of minor histocompatibility antigen-specific T cells in culture.

    Science.gov (United States)

    Janelle, Valérie; Carli, Cédric; Taillefer, Julie; Orio, Julie; Delisle, Jean-Sébastien

    2015-04-19

    Adoptive transfer of minor histocompatibility antigen (MiHA)-specific T cells is a promising therapy for patients with hematological cancers. However, the efficacy of the transferred cells is hampered by the acquisition of terminal effector differentiation and exhaustion features during expansion in vitro thus preventing their function and persistence in vivo. Yet, the factors that induce T-cell differentiation and functional impairment in culture remain poorly defined and are likely to vary depending on the method used for expansion. Using the clinically relevant HLA-A0201-restricted MiHA HA-1 as well as reagents and procedures that are readily transferable to a clinical environment, we designed a novel culture protocol and defined how exhaustion features appeared in function of time. The optimal time points for the expansion of "fit" MiHA-specific T cells were delineated using phenotypic and functional assessments including KLRG-1 and PD-1 surface markers as well as Ki67 staining and cytokine secretion assays. Following a priming phase, an enrichment step and a rapid expansion stage, our method generates MiHA-specific T-cell lines. Evidence of phenotypic and functional dysfunction appear in function of culture duration, but display different characteristics following the extension of the priming or rapid expansion phases. While repeated antigen exposure during the priming phase induced the decline of the antigen-specific population and the expression of PD-1 and KLRG-1 on antigen-specific CD8+ T cells, the prolongation of an antigen-free expansion phase induced proliferation arrest and the relative loss of antigen-specific cells without impairing polyfunctional cytokine secretion or inducing PD-1 and KLRG-1 expression. A similar pattern was also observed after stimulating a virus-specific memory repertoire, except for the more rapid acquisition of exhaustion features upon repeated antigen exposure. Our results offer novel insights on the impact of culture

  9. Effects of low-level laser therapy on osteoblastic bone formation and relapse in an experimental rapid maxillary expansion model.

    Science.gov (United States)

    Aras, M H; Erkilic, S; Demir, T; Demirkol, M; Kaplan, D S; Yolcu, U

    2015-01-01

    The aim of this study was to investigate the effects of low-level laser therapy (LLLT) on osteoblastic bone formation and relapse during expansion of rat palatal sutures. Thirty-two Wistar rats were randomly allocated into two groups of 16 rats each. In the first group, LLLT was applied 4 days after expansion commenced. Seven days after expansion, retainers were applied for 10 days. The second group was similarly treated, with the exception of laser therapy. All rats were sacrificed on day 7 (n = 1) (the end of the expansion period; laser group (LG) 1 [LLLT 1] and control group (CG) 1 [control 1]) and day 17 (n = 8) (the end of the retention period; LG 2 [LLLT 2] and CG 2 [control 2]) for histological assessment. The LLLT 1 group had significantly higher numbers of osteoclasts than did the control 1 group (P = 0.036). No significant between-group difference in osteoblast cell or capillary numbers was evident when day 7 and 17 data were compared. Histologically, LLLT stimulated bone formation, as revealed by analysis after the retention period. LLLT during expansion may accelerate bone healing.

  10. Effect of maxillary protraction with alternating rapid palatal expansion and constriction vs expansion alone in maxillary retrusive patients: a single-center, randomized controlled trial.

    Science.gov (United States)

    Liu, Weitao; Zhou, Yanheng; Wang, Xuedong; Liu, Dawei; Zhou, Shaonan

    2015-10-01

    The objective of this randomized controlled trial was to investigate the effects of facemask protraction combined with alternating rapid palatal expansion and constriction (RPE/C) vs rapid palatal expansion (RPE) alone in the early treatment of maxillary retrusive patients. Patients with a midface deficiency were recruited and randomly allocated into either the control group (RPE) or the intervention group (RPE/C). Eligibility criteria included the following: age 7 to 13 years old, Class III malocclusion, anterior crossbite, ANB less than 0°, Wits appraisal less than -2 mm, A-Np less than 0 mm, and no cleft of lip or palate. The primary outcome was the degree of maxillary forward movement after treatment. The secondary outcomes were the changes of the other cephalometric variables after treatment and the treatment time. Simple randomization was carried out using a random number table at the beginning of the study. Envelopes containing the grouping information were used to ensure allocation concealment from the researchers. Blinding was applicable for cephalometric analysis only. Hyrax palatal expanders and facemask maxillary protraction were used in all patients. Patients in the RPE group were treated with rapid palatal expansion for 1 week. Patients in the RPE/C group were treated with RPE/C for 7 weeks. The expansion or constriction rate was 1 mm per day. Cephalometric analysis with traditional cephalometric measurements and an x-y coordinate system were used to compare the pretreatment and posttreatment cephalometric radiographs. Independent t tests were used to compare the data between the 2 groups. A total of 44 patients were randomized to either the RPE group or the RPE/C group in a 1:1 ratio. One subject in the RPE group was lost to follow-up during the treatment. Per-protocol analysis was used. All the other 43 patients reached the treatment completion criteria and were analyzed (RPE group: n = 21; RPE/C group: n = 22). The average protraction time was 10

  11. Regulatory activity of azabisphosphonate-capped dendrimers on human CD4+ T cell proliferation enhances ex-vivo expansion of NK cells from PBMCs for immunotherapy

    Directory of Open Access Journals (Sweden)

    Caminade Anne-Marie

    2009-09-01

    Full Text Available Abstract Background Adoptive cell therapy with allogenic NK cells constitutes a promising approach for the treatment of certain malignancies. Such strategies are currently limited by the requirement of an efficient protocol for NK cell expansion. We have developed a method using synthetic nanosized phosphonate-capped dendrimers allowing such expansion. We are showing here that this is due to a specific inhibitory activity towards CD4+ T cell which could lead to further medical applications of this dendrimer. Methods Mononuclear cells from human peripheral blood were used to investigate the immunomodulatory effects of nanosized phosphonate-capped dendrimers on interleukin-2 driven CD4+T cell expansion. Proliferation status was investigated using flow cytometry analysis of CFSE dilution and PI incorporation experiments. Magnetic bead cell sorting was used to address activity towards individual or mixed cell sub-populations. We performed equilibrium binding assay to assess the interaction of fluorescent dendrimers with pure CD4+ T cells. Results Phosphonate-capped dendrimers are inhibiting the activation, and therefore the proliferation; of CD4+ T cells in IL-2 stimulated PBMCs, without affecting their viability. This allows a rapid enrichment of NK cells and further expansion. We found that dendrimer acts directly on T cells, as their regulatory property is maintained when stimulating purified CD4+ T cells with anti-CD3/CD28 microbeads. Performing equilibrium binding assays using a fluorescent analogue, we show that the phosphonate capped-dendrimers are specifically interacting with purified CD4+ T cells. Ultimately, we found that our protocol prevents the IL-2 related expansion of regulatory T cells that would be deleterious for the activity of infused NK cells. Conclusion High yield expansion of NK cells from human PBMCs by phosphonate-capped dendrimers and IL-2 occurs through the specific inhibition of the CD4+ lymphocyte compartment. Given the

  12. Biased competition between Lgr5 intestinal stem cells driven by oncogenic mutation induces clonal expansion

    NARCIS (Netherlands)

    Snippert, Hugo J; Schepers, Arnout G; van Es, Johan H; Simons, Benjamin D; Clevers, Hans

    The concept of 'field cancerization' describes the clonal expansion of genetically altered, but morphologically normal cells that predisposes a tissue to cancer development. Here, we demonstrate that biased stem cell competition in the mouse small intestine can initiate the expansion of such clones.

  13. Rapid Urban Expansion and Its Implications on Geomorphology: A Remote Sensing and GIS Based Study

    Directory of Open Access Journals (Sweden)

    S. N. Mohapatra

    2014-01-01

    Full Text Available Topography, vegetation, climate, water table, and even the anthropogenic activities all are affected by urban growth through diverse mechanisms. The present study focuses on the implications of urban expansion on geomorphology in the historical city of Gwalior in central India. The expansion of urban area has been quantified by deriving data for four decades (1972–2013 from the Landsat images. The results show that the urban built-up area has increased by 08.48 sq. km during the first eighteen years (1972–1990 which has increased to 16.28 sq. km during the next sixteen years (1990–2006. The built-up area has gone up to 23.19 sq. km in the next seven years (2006–2013. Overall during the last 40 years the growth of the urban built-up is nearly three times of the built-up areas in 1972. The average decadal growth rate of population is 27.28 percent while that of built-up land is 36.29 percent. The construction activities have affected important geomorphic features such pediplain, buried pediplain, residual hills, and denudational hills. It was concluded that, instead of shortsighted urban development, proper measures should be taken in accordance with scientific planning for the urban expansion of the city in the future.

  14. Effects of palate depth, modified arm shape, and anchor screw on rapid maxillary expansion: a finite element analysis.

    Science.gov (United States)

    Matsuyama, Yosuke; Motoyoshi, Mitsuru; Tsurumachi, Niina; Shimizu, Noriyoshi

    2015-04-01

    This study examined the effects of palate depth, modifications of the arm shape, and anchor screw placement in the mid-palatal area on rapid maxillary expansion (RME) using finite element (FE) analysis. Three-dimensional FE models were constructed that included the maxilla (cortical and cancellous bone), maxillary sinus, maxillary first molar and first premolar, periodontal membrane, and an RME appliance with arms, bands, and anchor screws. The expansion screws were activated 0.2mm transversely. The deepest palate model had the smallest lateral displacement of the tooth and expansion of the mid-palatal suture and the greatest strain of the arm among the models with different palate heights. The model with a larger diameter arm had the smallest arm strain among the models with various arm shapes. The model with an anchor screw had the greatest lateral displacement of the tooth and expansion of the mid-palatal suture among all models. For a deeper palate, the arm strain increased and the effect of RME decreased. Modified arm shapes such as a larger diameter arm, arms connected by a diagonal wire, a straight arm, and a shorter arm efficiently expanded the maxillary dental arch. Anchor screws increased the effect of RME, generated more and closer bodily movement of the tooth, and parallel expansion of the mid-palatal suture. The model with an anchor screw without arms decreased the displacement of the teeth compared to the models with arms, so the arms are necessary for effective RME. © The Author 2014. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Effects of strontium ranelate on bone formation in the mid-palatal suture after rapid maxillary expansion

    Directory of Open Access Journals (Sweden)

    Zhao SY

    2015-05-01

    Full Text Available Shuya Zhao,1,* Xuxia Wang,2,* Na Li,3 Yun Chen,1 Yuran Su,1 Jun Zhang1 1Department of Orthodontics, 2Department of Oral and Maxillofacial Surgery, Faculty of Stomatology, Shandong University; 3Department of Orthodontics, Shandong Provincial Qianfoshan Hospital, Jinan, People’s Republic of China *These authors contributed equally to this work Background: The aim of this experimental study was to investigate the effects of strontium ranelate on bone regeneration in the mid-palatal suture in response to rapid maxillary expansion (RME.Methods: Thirty-six male 6-week-old Wistar rats were randomly divided into three groups, ie, an expansion only (EO group, an expansion plus strontium ranelate (SE group, and a control group. An orthodontic appliance was set between the right and left upper molars of rats with an initial expansive force of 0.98 N. Rats in the SE group were administered strontium ranelate (600 mg/kg body weight and then euthanized in batches on days 4, 7, and 10. Morphological changes in the mid-palatal suture were investigated using micro-computed tomography and hematoxylin and eosin staining after RME. Bone morphogenetic protein-2 expression in the suture was also examined to evaluate bone formation in the mid-palatal suture. Image-Pro Plus software was then used to determine the mean optical density of the immunohistochemical images. Analysis of variance was used for statistical evaluation at the P<0.05 level.Results: With expansive force, the mid-palatal suture was expanded, but there was no statistically significant difference (P>0.05 between the SE and EO groups. The bone volume of the suture decreased after RME, but was higher in the SE group than in the EO group on days 7 and 10. Further, expression of bone morphogenetic protein-2 in the SE group was higher than in the other two groups (P<0.05.Conclusion: Strontium ranelate may hasten new bone formation in the expanded mid-palatal suture, which may be therapeutically

  16. The endoplasmic reticulum exerts control over organelle streaming during cell expansion.

    Science.gov (United States)

    Stefano, Giovanni; Renna, Luciana; Brandizzi, Federica

    2014-03-01

    Cytoplasmic streaming is crucial for cell homeostasis and expansion but the precise driving forces are largely unknown. In plants, partial loss of cytoplasmic streaming due to chemical and genetic ablation of myosins supports the existence of yet-unknown motors for organelle movement. Here we tested a role of the endoplasmic reticulum (ER) as propelling force for cytoplasmic streaming during cell expansion. Through quantitative live-cell analyses in wild-type Arabidopsis thaliana cells and mutants with compromised ER structure and streaming, we demonstrate that cytoplasmic streaming undergoes profound changes during cell expansion and that it depends on motor forces co-exerted by the ER and the cytoskeleton.

  17. Fibroblastic reticular cells from lymph nodes attenuate T cell expansion by producing nitric oxide.

    Directory of Open Access Journals (Sweden)

    Stefanie Siegert

    Full Text Available Adaptive immune responses are initiated when T cells encounter antigen on dendritic cells (DC in T zones of secondary lymphoid organs. T zones contain a 3-dimensional scaffold of fibroblastic reticular cells (FRC but currently it is unclear how FRC influence T cell activation. Here we report that FRC lines and ex vivo FRC inhibit T cell proliferation but not differentiation. FRC share this feature with fibroblasts from non-lymphoid tissues as well as mesenchymal stromal cells. We identified FRC as strong source of nitric oxide (NO thereby directly dampening T cell expansion as well as reducing the T cell priming capacity of DC. The expression of inducible nitric oxide synthase (iNOS was up-regulated in a subset of FRC by both DC-signals as well as interferon-γ produced by primed CD8+ T cells. Importantly, iNOS expression was induced during viral infection in vivo in both LN FRC and DC. As a consequence, the primary T cell response was found to be exaggerated in Inos(-/- mice. Our findings highlight that in addition to their established positive roles in T cell responses FRC and DC cooperate in a negative feedback loop to attenuate T cell expansion during acute inflammation.

  18. Expansion of brain T cells in homeostatic conditions in lymphopenic Rag2(-/-) mice.

    Science.gov (United States)

    Song, Chang; Nicholson, James D; Clark, Sarah M; Li, Xin; Keegan, Achsah D; Tonelli, Leonardo H

    2016-10-01

    The concept of the brain as an immune privileged organ is rapidly evolving in light of new findings outlining the sophisticated relationship between the central nervous and the immune systems. The role of T cells in brain development and function, as well as modulation of behavior has been demonstrated by an increasing number of studies. Moreover, recent studies have redefined the existence of a brain lymphatic system and the presence of T cells in specific brain structures, such as the meninges and choroid plexus. Nevertheless, much information is needed to further the understanding of brain T cells and their relationship with the central nervous system under non-inflammatory conditions. In the present study we employed the Rag2(-/-) mouse model of lymphocyte deficiency and reconstitution by adoptive transfer to study the temporal and anatomical expansion of T cells in the brain under homeostatic conditions. Lymphopenic Rag2(-/-) mice were reconstituted with 10 million lymphoid cells and studied at one, two and four weeks after transfer. Moreover, lymphoid cells and purified CD4(+) and CD8(+) T cells from transgenic GFP expressing mice were used to define the neuroanatomical localization of transferred cells. T cell numbers were very low in the brain of reconstituted mice up to one week after transfer and significantly increased by 2weeks, reaching wild type values at 4weeks after transfer. CD4(+) T cells were the most abundant lymphocyte subtype found in the brain followed by CD8(+) T cells and lastly B cells. Furthermore, proliferation studies showed that CD4(+) T cells expand more rapidly than CD8(+) T cells. Lymphoid cells localize abundantly in meningeal structures, choroid plexus, and circumventricular organs. Lymphocytes were also found in vascular and perivascular spaces and in the brain parenchyma across several regions of the brain, in particular in structures rich in white matter content. These results provide proof of concept that the brain meningeal

  19. Long-term outcome of skeletal Class II Division 1 malocclusion treated with rapid palatal expansion and Kloehn cervical headgear.

    Science.gov (United States)

    Filho, Roberto M A Lima; Lima, Anna Letícia

    2003-08-01

    The treatment of a patient with a skeletal Class II Division 1 malocclusion, with excessive overjet, complete overbite, airway obstruction, and severe arch length deficiency in the mandibular dental arch, is presented. The maxilla was narrow compared with the mandible, and the posterior teeth were compensated, with the maxillary teeth inclined buccally and the mandibular teeth inclined lingually. The palatal vault was extremely high. Treatment included rapid palatal expansion to correct the transverse maxillary deficiency and Kloehn cervical headgear to correct the anteroposterior skeletal discrepancy. Long-term stability (12-year follow-up) is reported.

  20. Remodelling of the palatal dome following rapid maxillary expansion (RME): laser scan-quantifications during a low growth period.

    Science.gov (United States)

    Muchitsch, A P; Winsauer, H; Wendl, B; Pichelmayer, M; Kuljuh, E; Szalay, A; Muchitsch, M

    2012-02-01

    To evaluate changes in the palatal vault after rapid maxillary expansion (RME) with bonded splint appliances. The sample comprised 24 children (12 boys and 12 girls) with mixed dentition (mean age 8.3 years; range 6.4-10.4 years). Following expansion, the splint appliance was used as a retainer for 6 months and then removed. Study casts were taken before RME (T0) and when the appliance was removed (T1). Then, 3D laser scans were taken to build complete 3D jaw models. Frontal cross sections were constructed at 53-63, 55-65 and 16-26, exported as coordinates, and finite element calculated to quantify their area, width and height. Maxillary length was also determined. Paired t-tests indicated statistically significant increases in the average palatal width (T1-T0=6.53-6.79 mm) and cross-sectional area (T1-T0=20.39-21.39 mm2) after RME (p0.99 (pmaxillary expansion distinctly increased mean palatal widths and cross-sectional areas. However, palatal height (55-65) and maxillary length decreased to a small extent. © 2012 John Wiley & Sons A/S.

  1. Cone-beam computed tomography evaluation of dental, skeletal, and alveolar bone changes associated with bonded rapid maxillary expansion

    Directory of Open Access Journals (Sweden)

    Namrata Dogra

    2016-01-01

    Full Text Available Aims and Objectives: To evaluate skeletal changes in maxilla and its surrounding structures, changes in the maxillary dentition and maxillary alveolar bone changes produced by bonded rapid maxillary expansion (RME using cone-beam computed tomography (CBCT. Materials and Methods: The sample consisted of 10 patients (6 males and 4 females with age range 12 to 15 years treated with bonded RME. CBCT scans were performed at T1 (pretreatment and at T2 (immediately after expansion to evaluate the dental, skeletal, and alveolar bone changes. Results: RME treatment increased the overall skeletal parameters such as interorbital, zygomatic, nasal, and maxillary widths. Significant increases in buccal maxillary width was observed at first premolar, second premolar, and first molar level. There was a significant increase in arch width both on the palatal side and on the buccal side. Significant tipping of right and left maxillary first molars was seen. There were significant reductions in buccal bone plate thickness and increase in palatal bone plate thickness. Conclusions: Total expansion achieved with RME was a combination of dental, skeletal and alveolar bone changes. At the first molar level, 28.45% orthopedic, 16.03% alveolar bone bending, and 55.5% orthodontic changes were observed.

  2. IL2 Variant Circumvents ICOS+ Regulatory T-cell Expansion and Promotes NK Cell Activation.

    Science.gov (United States)

    Sim, Geok Choo; Liu, Chengwen; Wang, Ena; Liu, Hui; Creasy, Caitlin; Dai, Zhimin; Overwijk, Willem W; Roszik, Jason; Marincola, Francesco; Hwu, Patrick; Grimm, Elizabeth; Radvanyi, Laszlo

    2016-11-01

    Clinical responses to high-dose IL2 therapy are limited due to selective expansion of CD4+CD25+Foxp3+ T-regulatory cells (Treg), especially ICOS+ Tregs, rather than natural killer (NK) cells and effector T cells. These ICOS+ Tregs are highly suppressive and constitutively express high levels of IL2Rα (CD25) and CD39. Here, we characterized the effect of a mutant form of IL2 (F42K), which preferentially binds to the lower affinity IL2Rβγ with reduced binding to CD25, on Tregs, effector NK cells, and T-cell subsets. Unlike wild-type (WT) IL2, F42K did not efficiently induce the expansion of highly suppressive ICOS+ Tregs in peripheral blood mononuclear cells (PBMC) from healthy controls and melanoma patients. Instead, it promoted the expansion of CD16+CD56+ NK cells and CD56hiCD16- NK cell subsets in both short- and long-term cultures, with enhanced Bcl-2 expression. Stimulation of PBMCs with F42K induced expression of more NK cell activation molecules, such as NKp30, NKp44, DNAM-1, NKG2D, 4-1BB/CD137, and Tim-3, than WT IL2. F42K induced greater upregulation of TRAIL, and NK-mediated cytolytic activity was increased against both autologous and HLA-mismatched melanoma cells compared with WT IL2. Gene expression analysis revealed distinct gene expression profiles stimulated by F42K, WT IL2, and IL15. F42K therapy in vivo also induced a dramatic reduction in the expansion of ICOS+ Tregs, promoted NK cell expansion, and inhibited melanoma tumor growth more efficiently than WT IL2 and more effectively than anti-CTLA-4. Our findings suggest that F42K could be a potential substitute for WT IL2 as a cytokine therapy for cancer. Cancer Immunol Res; 4(11); 983-94. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. The effect of surgically assisted rapid maxillary expansion on sleep architecture: an exploratory risk study in healthy young adults.

    Science.gov (United States)

    Bach, N; Tuomilehto, H; Gauthier, C; Papadakis, A; Remise, C; Lavigne, F; Lavigne, G J; Huynh, N

    2013-11-01

    Maxillary transverse deficiencies (MTD) cause malocclusions. Rapid maxillary expansion treatment is commonly used treatment for correcting such deficiencies and has been found to be effective in improving respiration and sleep architecture in children with obstructive sleep apnoea (OSA). However, thus far, the effect of surgically assisted rapid maxillary expansion (SARME) treatment on sleep architecture and breathing of normal subjects has not been assessed. We hypothesised that sleep quality will improve after maxillary expansion treatment. The objective of this study is to access the effect of maxillary expansion treatment on sleep structure and respiratory functions in healthy young adults with severe MTD. This is a prospective and exploratory clinical study. Twenty-eight consecutive young adult patients (15 males and 13 females, mean age 20·6 ± 5·8 years) presenting with severe MTD at the orthodontic examination were recruited into the study. All the participants underwent a standardised SARME procedure (mean expansion 6·5 ± 1·8 and 8·2 ± 1·8 mm, intercanine and intermolar distance, respectively) to correct malocclusion caused by MTD. An overnight in-laboratory polysomnography, before and after the treatment, was performed. The mean follow-up time was 9 months. The main outcome parameters were the changes in sleep architecture, including sleep stages, arousals, slow-wave activity (SWA) and respiratory variables. Before surgery, young adult patients with MTD presented no evidence of sleep breathing problems. At baseline sleep recording, 7 of 28 (25%) had apnoea-hypopnoea index (AHI) ≥ 5 events per hour. No negative effect of the SARME was observed in questionnaires or sleep laboratory parameters. In the patients with a higher baseline AHI (AHI ≥ 5 h of sleep), we observed a reduction in AHI after surgical treatment (P = 0·028). SARME did not have a negative effect on any sleep or respiration parameters in healthy young individuals

  4. Dentoskeletal effects of maxillary protraction in cleft patients with repetitive weekly protocol of alternate rapid maxillary expansions and constrictions.

    Science.gov (United States)

    da Luz Vieira, Gustavo; de Menezes, Luciane Macedo; de Lima, Eduardo Martinelli S; Rizzatto, Susana

    2009-07-01

    To evaluate the amount of maxillary protraction with face mask in complete unilateral cleft lip and palate patients submitted to two distinct rapid maxillary expansion (RME) protocols. The sample consisted of 20 individuals (nine boys and 11 girls; mean age of 10.4 +/- 2.62 years) with unilateral complete cleft lip and palate who had a constricted maxilla in the vertical and transverse dimensions. Ten patients underwent 1 week of RME with screw activation of one complete turn per day, followed by 23 weeks of maxillary protraction (group 1). The other 10 patients underwent 7 weeks of alternate rapid maxillary expansion and constriction, with one complete turn per day, followed by 17 weeks of maxillary protraction (group 2); both groups underwent a total of 6 months of treatment. Cephalometric measurements were taken at different times: pretreatment (T1), soon after RME (T2), and after 6 months of treatment (T3). Each measurement was analyzed with mixed models for repeated measures, and the covariance structure chosen was compound symmetry. The maxilla displaced slightly forward and downward with a counterclockwise rotation; the mandible rotated downward and backward, resulting in an increase in anterior facial height; the sagittal maxillomandibular relationship was improved; the maxillary molars and incisors were protruded and extruded; and the mandibular incisors were retroclined. There was no significant difference between the groups in evaluation time.

  5. Model of oronasal rehabilitation in children with obstructive sleep apnea syndrome undergoing rapid maxillary expansion: Research review

    Directory of Open Access Journals (Sweden)

    Luca Levrini

    2014-12-01

    Full Text Available Rapid maxillary expansion (RME is a widely used practice in orthodontics. Scientific evidence shows that RME can be helpful in modifying the breathing pattern in mouth-breathing patients. In order to promote the restoration of physiological breathing we have developed a rehabilitation program associated with RME in children. The aim of the study was a literature review and a model of orofacial rehabilitation in children with obstructive sleep apnea undergoing treatment with rapid maxillary expansion. Muscular training (local exercises and general ones is the key factor of the program. It also includes hygienic and behavior instructions as well as other therapeutic procedures such as rhinosinusal washes, a postural re-education (Alexander technique and, if necessary, a pharmacological treatment aimed to improve nasal obstruction. The program should be customized for each patient. If RME is supported by an adequate functional rehabilitation, the possibility to change the breathing pattern is considerably amplified. Awareness, motivation and collaboration of the child and their parents, as well as the cooperation among specialists, such as orthodontist, speech therapist, pediatrician and otolaryngologist, are necessary conditions to achieve the goal.

  6. The impact of urban land expansion on soil quality in rapidly urbanizing regions in China: Kunshan as a case study.

    Science.gov (United States)

    Zhang, Jian; Pu, Lijie; Peng, Buzhuo; Gao, Zhonggui

    2011-04-01

    At a stage of rapid economic development and urbanization in China, most cities are faced with serious problems caused by environment deterioration such as pollution, space press, afforestation degradation, and disordering. Kunshan City, one of the most economically vigorous regions in China, has suffered a more prominent conflict between urbanization and environmental safety. In this paper, urban land expansion in Kunshan City in the Yangtze River Delta was measured with reference to the Landsat data recorded in 1982, 1991, 1995, and 2003 and change in land-use pattern in 1981, 1991, 1995, and 2004 as well as that in nutrients in soils of different purposes between the periods were analyzed to study the effect of urban land-use expansion on soil characteristics. To get a better understanding of soil nutrients, heavy metal content, and pollution, on-the-spot investigation, sampling and laboratory analysis were all conducted, and the geo-accumulation factors and revised Nemerow comprehensive index method were adopted for evaluation of the findings. The results show that the content of organic matter, total nitrogen, rapidly available nitrogen, and available phosphorus in the soil (except available potassium) all increased, and the average content of As, Cd, Cr, Cu, Pb, Ni, Hg, Se, and Zn prove to be 8.61, 0.12, 83.53, 32.49, 29.93, 30.45, 0.27, 0.24, and 93.3 mg kg(-1), respectively, showing degradation in soil quality.

  7. Evaluation of surgically assisted rapid maxillary expansion with piezosurgery versus oscillating saw and chisel osteotomy - a randomized prospective trial

    Science.gov (United States)

    2013-01-01

    Background Ultrasonic bone-cutting surgery has been introduced as a feasible alternative to the conventional sharp instruments used in craniomaxillofacial surgery because of its precision and safety. The piezosurgery medical device allows the efficient cutting of mineralized tissues with minimal trauma to soft tissues. Piezoelectric osteotome has found its role in surgically assisted rapid maxillary expansion (SARME), a procedure well established to correct transverse maxillary discrepancies. The advantages include minimal risk to critical anatomic structures. The purpose of this clinical comparative study (CIS 2007-237-M) was to present the advantages of the piezoelectric cut as a minimally invasive device in surgically assisted, rapid maxillary expansion by protecting the maxillary sinus mucosal lining. Methods Thirty patients (18 females and 12 males) at the age of 18 to 54 underwent a surgically assisted palatal expansion of the maxilla with a combined orthodontic and surgical approach. The patients were randomly divided into two separate treatment groups. While Group 1 received conventional surgery using an oscillating saw, Group 2 was treated with piezosurgery. The following parameters were examined: blood pressure, blood values, required medication, bleeding level in the maxillary sinus, duration of inpatient stay, duration of surgery and height of body temperature. Results The results displayed no statistically significant differences between the two groups regarding laboratory blood values and inpatient stay. The duration of surgery revealed a significant discrepancy. Deploying piezosurgery took the surgeon an average of 10 minutes longer than working with a conventional-saw technique. However, the observation of the bleeding level in the paranasal sinus presented a major and statistically significant advantage of piezosurgery: on average the bleeding level was one category above the one of the remaining patients. Conclusion This method of piezoelectric

  8. Langerhans Cells Prevent Autoimmunity via Expansion of Keratinocyte Antigen-Specific Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Daniela Y. Kitashima

    2018-01-01

    Full Text Available Langerhans cells (LCs are antigen-presenting cells in the epidermis whose roles in antigen-specific immune regulation remain incompletely understood. Desmoglein 3 (Dsg3 is a keratinocyte cell-cell adhesion molecule critical for epidermal integrity and an autoantigen in the autoimmune blistering disease pemphigus. Although antibody-mediated disease mechanisms in pemphigus are extensively characterized, the T cell aspect of this autoimmune disease still remains poorly understood. Herein, we utilized a mouse model of CD4+ T cell-mediated autoimmunity against Dsg3 to show that acquisition of Dsg3 and subsequent presentation to T cells by LCs depended on the C-type lectin langerin. The lack of LCs led to enhanced autoimmunity with impaired Dsg3-specific regulatory T cell expansion. LCs expressed the IL-2 receptor complex and the disruption of IL-2 signaling in LCs attenuated LC-mediated regulatory T cell expansion in vitro, demonstrating that direct IL-2 signaling shapes LC function. These data establish that LCs mediate peripheral tolerance against an epidermal autoantigen and point to langerin and IL-2 signaling pathways as attractive targets for achieving tolerogenic responses particularly in autoimmune blistering diseases such as pemphigus.

  9. Cholera toxin regulates a signaling pathway critical for the expansion of neural stem cell cultures from the fetal and adult rodent brains.

    Directory of Open Access Journals (Sweden)

    Andreas Androutsellis-Theotokis

    Full Text Available BACKGROUND: New mechanisms that regulate neural stem cell (NSC expansion will contribute to improved assay systems and the emerging regenerative approach that targets endogenous stem cells. Expanding knowledge on the control of stem cell self renewal will also lead to new approaches for targeting the stem cell population of cancers. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that Cholera toxin regulates two recently characterized NSC markers, the Tie2 receptor and the transcription factor Hes3, and promotes the expansion of NSCs in culture. Cholera toxin increases immunoreactivity for the Tie2 receptor and rapidly induces the nuclear localization of Hes3. This is followed by powerful cultured NSC expansion and induction of proliferation both in the presence and absence of mitogen. CONCLUSIONS/SIGNIFICANCE: Our data suggest a new cell biological mechanism that regulates the self renewal and differentiation properties of stem cells, providing a new logic to manipulate NSCs in the context of regenerative disease and cancer.

  10. Effects of rapid palatal expansion on the sagittal and vertical dimensions of the maxilla: a study on cephalograms derived from cone-beam computed tomography.

    Science.gov (United States)

    Habeeb, Miriam; Boucher, Normand; Chung, Chun-Hsi

    2013-09-01

    The purpose of this study was to use cone-beam computed tomography imaging to examine the skeletal and dental changes in the sagittal and vertical dimensions after rapid palatal expansion. Twenty-eight healthy children (mean age, 9.9 years; range, 7.8-12.8 years; 17 boys, 11 girls) who required rapid palatal expansion treatment were included. For each patient, a bonded Haas-type expander with full occlusal and palatal acrylic coverage was cemented in place. Cone-beam computed tomography images were obtained as part of the pretreatment orthodontic records and at the completion of rapid palatal expansion for all patients. The mean interval between pretreatment and completion of rapid palatal expansion was 52 days (range, 19-96 days). The average skeletal age of the patients, determined from hand-wrist films also obtained before treatment, was 10.1 years. The mean expansion of the expander was 8.0 mm (range, 5.9-9.6 mm). Each cone-beam computed tomography image was compressed from the outer portion of the right side of the patient's head to the center of the left central incisor into a 2-dimensional synthesized cephalogram, which was then traced and measured. The results showed that from pretreatment to completion of rapid palatal expansion, SNA, FH-NA, and A-Nperp increased by means of 1.04°, 0.92°, and 0.87 mm, respectively (P expansion treatment. Bonded rapid palatal expansion treatment resulted in downward displacement of the maxilla with a greater displacement of ANS than PNS and posterior movement of the maxillary central incisors. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  11. Large-Scale Mesenchymal Stem/Stromal Cell Expansion: A Visualization Tool for Bioprocess Comparison.

    Science.gov (United States)

    Lambrechts, Toon; Sonnaert, Maarten; Schrooten, Jan; Luyten, Frank P; Aerts, Jean-Marie; Papantoniou, Ioannis

    2016-12-01

    Large-scale and cost-effective cell expansion processes are a prerequisite for the clinical and commercial translation of cell-based therapies. A large variety of cell expansion processes are described in literature, utilizing different cell types, culture vessels, and medium formulations. Consequently there are no straightforward means for the comparison or benchmarking of these processes in terms of efficiency, scale, or costs. The purpose of this study was to systematically review the available mesenchymal stromal cell (MSC) expansion literature and develop an interactive visualization tool for comparing the expansion processes. By using this computational tool, process data could be concentrated, standardized, and analyzed to facilitate a more general understanding of the parameters that define a cell culture process, and in the future allow rational selection or design of these bioprocesses. Additionally, a set of bioprocess metrics were defined that assured the comparability between different processes. Currently, the literature-based data repository holds 73 individual cell expansion processes on seven different types of human MSCs in five different types of culture vessels. The visualization tool allowed benchmarking of these processes against each other, serving as a reference point for cell expansion process efficiency.

  12. Resistin enhances the expansion of regulatory T cells through modulation of dendritic cells

    Directory of Open Access Journals (Sweden)

    Han Seung

    2010-06-01

    Full Text Available Abstract Background Resistin, a member of adipokine family, is known to be involved in the modulation of immune responses including inflammatory activity. Interestingly, resistin is secreted by adipocytes in mice and rats whereas it is secreted by leukocytes in humans. However, the mechanism behind the effect of resistin on the expansion of regulatory T cells (Tregs remains poorly understood. Therefore, we examined regulatory effect of resistin on the induction and cellular modification of Tregs. Results Both protein and mRNA expression of FoxP3, a representative marker of Tregs, increased in a dose-dependent manner when peripheral blood mononuclear cells were treated with resistin. At the same time, resistin had no direct effect on the induction of FoxP3 in CD4+ T cells, suggesting an indirect role through other cells type(s. Since DCs are an important player in the differentiation of T cells, we focused on the role of DCs in the modulation of Tregs by resistin. Resistin suppressed the expression of interferon regulatory factor (IRF-1 and its target cytokines, IL-6, IL-23p19 and IL-12p40, in DCs. Furthermore, FoxP3 expression is increased in CD4+ T cells when co-cultured with DCs and concomitantly treated with resistin. Conclusion Our results suggest that resistin induces expansion of functional Tregs only when co-cultured with DCs.

  13. Rise and fall of a wolf population: genetic diversity and structure during recovery, rapid expansion and drastic decline.

    Science.gov (United States)

    Jansson, E; Ruokonen, M; Kojola, I; Aspi, J

    2012-11-01

    The grey wolves (Canis lupus) of Finland have had a varied history, with a period of rapid population expansion after the mid-1990s followed by a decline with a current census size of about 140 wolves. Here, we investigate the impact of unstable population size and connectivity on genetic diversity and structure in a long-term genetic study of 298 Finnish wolves born in 1995-2009 and genotyped for 17 microsatellite loci. During the initial recovery and prior to population expansion, genetic diversity was high (1995-1997: LD-N(e)  = 67.2; H(o)  = 0.749; H(e)  = 0.709) despite a small census size and low number of breeders (N(c)  < 100; N(b)  < 10) likely reflecting the status of the Russian source population. Surprisingly, observed heterozygosity decreased significantly during the study period (t = -2.643, P = 0.021) despite population expansion, likely a result of an increase in inbreeding (F(IS)  = 0.108 in 2007-2009) owing to a low degree of connectivity with adjacent Russian wolf population (m = 0.016-0.090; F(ST)  = 0.086, P < 0.001) and population crash after 2006. However, population growth had a temporary positive impact on N(e) and number of family lines. This study shows that even strong population growth alone might not be adequate to retain genetic diversity, especially when accompanied with low amount of subsequent gene flow and population decline. © 2012 Blackwell Publishing Ltd.

  14. Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana.

    Science.gov (United States)

    Barbez, Elke; Dünser, Kai; Gaidora, Angelika; Lendl, Thomas; Busch, Wolfgang

    2017-06-13

    Plant cells are embedded within cell walls, which provide structural integrity, but also spatially constrain cells, and must therefore be modified to allow cellular expansion. The long-standing acid growth theory postulates that auxin triggers apoplast acidification, thereby activating cell wall-loosening enzymes that enable cell expansion in shoots. Interestingly, this model remains heavily debated in roots, because of both the complex role of auxin in plant development as well as technical limitations in investigating apoplastic pH at cellular resolution. Here, we introduce 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) as a suitable fluorescent pH indicator for assessing apoplastic pH, and thus acid growth, at a cellular resolution in Arabidopsis thaliana roots. Using HPTS, we demonstrate that cell wall acidification triggers cellular expansion, which is correlated with a preceding increase of auxin signaling. Reduction in auxin levels, perception, or signaling abolishes both the extracellular acidification and cellular expansion. These findings jointly suggest that endogenous auxin controls apoplastic acidification and the onset of cellular elongation in roots. In contrast, an endogenous or exogenous increase in auxin levels induces a transient alkalinization of the extracellular matrix, reducing cellular elongation. The receptor-like kinase FERONIA is required for this physiological process, which affects cellular root expansion during the gravitropic response. These findings pinpoint a complex, presumably concentration-dependent role for auxin in apoplastic pH regulation, steering the rate of root cell expansion and gravitropic response.

  15. Allogeneic Cell Therapy Bioprocess Economics and Optimization: Single-Use Cell Expansion Technologies

    Science.gov (United States)

    Simaria, Ana S; Hassan, Sally; Varadaraju, Hemanthram; Rowley, Jon; Warren, Kim; Vanek, Philip; Farid, Suzanne S

    2014-01-01

    For allogeneic cell therapies to reach their therapeutic potential, challenges related to achieving scalable and robust manufacturing processes will need to be addressed. A particular challenge is producing lot-sizes capable of meeting commercial demands of up to 109 cells/dose for large patient numbers due to the current limitations of expansion technologies. This article describes the application of a decisional tool to identify the most cost-effective expansion technologies for different scales of production as well as current gaps in the technology capabilities for allogeneic cell therapy manufacture. The tool integrates bioprocess economics with optimization to assess the economic competitiveness of planar and microcarrier-based cell expansion technologies. Visualization methods were used to identify the production scales where planar technologies will cease to be cost-effective and where microcarrier-based bioreactors become the only option. The tool outputs also predict that for the industry to be sustainable for high demand scenarios, significant increases will likely be needed in the performance capabilities of microcarrier-based systems. These data are presented using a technology S-curve as well as windows of operation to identify the combination of cell productivities and scale of single-use bioreactors required to meet future lot sizes. The modeling insights can be used to identify where future R&D investment should be focused to improve the performance of the most promising technologies so that they become a robust and scalable option that enables the cell therapy industry reach commercially relevant lot sizes. The tool outputs can facilitate decision-making very early on in development and be used to predict, and better manage, the risk of process changes needed as products proceed through the development pathway. Biotechnol. Bioeng. 2014;111: 69–83. © 2013 Wiley Periodicals, Inc. PMID:23893544

  16. Allogeneic cell therapy bioprocess economics and optimization: single-use cell expansion technologies.

    Science.gov (United States)

    Simaria, Ana S; Hassan, Sally; Varadaraju, Hemanthram; Rowley, Jon; Warren, Kim; Vanek, Philip; Farid, Suzanne S

    2014-01-01

    For allogeneic cell therapies to reach their therapeutic potential, challenges related to achieving scalable and robust manufacturing processes will need to be addressed. A particular challenge is producing lot-sizes capable of meeting commercial demands of up to 10(9) cells/dose for large patient numbers due to the current limitations of expansion technologies. This article describes the application of a decisional tool to identify the most cost-effective expansion technologies for different scales of production as well as current gaps in the technology capabilities for allogeneic cell therapy manufacture. The tool integrates bioprocess economics with optimization to assess the economic competitiveness of planar and microcarrier-based cell expansion technologies. Visualization methods were used to identify the production scales where planar technologies will cease to be cost-effective and where microcarrier-based bioreactors become the only option. The tool outputs also predict that for the industry to be sustainable for high demand scenarios, significant increases will likely be needed in the performance capabilities of microcarrier-based systems. These data are presented using a technology S-curve as well as windows of operation to identify the combination of cell productivities and scale of single-use bioreactors required to meet future lot sizes. The modeling insights can be used to identify where future R&D investment should be focused to improve the performance of the most promising technologies so that they become a robust and scalable option that enables the cell therapy industry reach commercially relevant lot sizes. The tool outputs can facilitate decision-making very early on in development and be used to predict, and better manage, the risk of process changes needed as products proceed through the development pathway. © 2013 Wiley Periodicals, Inc.

  17. Long-term stability of combined rapid palatal expansion-lip bumper therapy followed by full fixed appliances.

    Science.gov (United States)

    Ferris, Tyler; Alexander, R G; Boley, Jimmy; Buschang, Peter H

    2005-09-01

    The purpose of this study was to evaluate the long-term postretention stability of rapid palatal expansion-lip bumper therapy followed by full fixed appliances. The sample included 20 treated patients (11 women and 9 men) who were recalled to obtain postretention records. The subjects were out of retention for a minimum of 4 years and an average of 7.9 years. They had begun treatment in the late mixed dentition at a mean age of 11.1 with considerable incisor crowding but, on average, no tooth size-arch length discrepancies. Pretreatment, posttreatment (mean age, 13.6 years), and postretention (mean age, 24.3 years) models were digitized, and the computed measurements were compared with untreated reference data. The majority of treatment increases in maxillary and mandibular arch dimensions were statistically significant (P lip bumper expansion therapy in the late mixed dentition followed by full fixed appliances is an effective form of treatment for patients with up to moderate tooth size-arch length discrepancies.

  18. Changes in skeletal and dental relationship in Class II Division I malocclusion after rapid maxillary expansion: a prospective study.

    Science.gov (United States)

    Baratieri, Carolina; Alves, Matheus; Bolognese, Ana Maria; Nojima, Matilde C G; Nojima, Lincoln I

    2014-01-01

    To assess skeletal and dental changes immediately after rapid maxillary expansion (RME) in Class II Division 1 malocclusion patients and after a retention period, using cone beam computed tomography (CBCT) imaging. Seventeen children with Class II, Division 1 malocclusion and maxillary skeletal transverse deficiency underwent RME following the Haas protocol. CBCT were taken before treatment (T1), at the end of the active expansion phase (T2) and after a retention period of 6 months (T3). The scanned images were measured anteroposteriorly (SNA, SNB, ANB, overjet and MR) and vertically (N-ANS, ANS-Me, N-Me and overbite). Significant differences were identified immediately after RME as the maxilla moved forward, the mandible moved downward, overjet increased and overbite decreased. During the retention period, the maxilla relapsed backwards and the mandible was displaced forward, leaving patients with an overall increase in anterior facial height. RME treatment allowed more anterior than inferior positioning of the mandible during the retention period, thus significantly improving Class II dental relationship in 75% of the patients evaluated.

  19. Changes in skeletal and dental relationship in Class II Division I malocclusion after rapid maxillary expansion: a prospective study

    Directory of Open Access Journals (Sweden)

    Carolina Baratieri

    2014-06-01

    Full Text Available OBJECTIVE: To assess skeletal and dental changes immediately after rapid maxillary expansion (RME in Class II Division 1 malocclusion patients and after a retention period, using cone beam computed tomography (CBCT imaging. METHODS: Seventeen children with Class II, Division 1 malocclusion and maxillary skeletal transverse deficiency underwent RME following the Haas protocol. CBCT were taken before treatment (T1, at the end of the active expansion phase (T2 and after a retention period of 6 months (T3. The scanned images were measured anteroposteriorly (SNA, SNB, ANB, overjet and MR and vertically (N-ANS, ANS-Me, N-Me and overbite. RESULTS: Significant differences were identified immediately after RME as the maxilla moved forward, the mandible moved downward, overjet increased and overbite decreased. During the retention period, the maxilla relapsed backwards and the mandible was displaced forward, leaving patients with an overall increase in anterior facial height. CONCLUSION: RME treatment allowed more anterior than inferior positioning of the mandible during the retention period, thus significantly improving Class II dental relationship in 75% of the patients evaluated.

  20. Rapid wetland expansion during European settlement and its implication for marsh survival under modern sediment delivery rates

    Science.gov (United States)

    Kirwan, Matthew L.; Murray, A. Brad; Donnelly, Jeffrey P.; Corbett, D. Reide

    2011-01-01

    Fluctuations in sea-level rise rates are thought to dominate the formation and evolution of coastal wetlands. Here we demonstrate a contrasting scenario in which land-use-related changes in sediment delivery rates drive the formation of expansive marshland, and vegetation feedbacks maintain their morphology despite recent sediment supply reduction. Stratigraphic analysis and radiocarbon dating in the Plum Island Estuary (Massachusetts, United States) suggest that salt marshes expanded rapidly during the eighteenth and nineteenth centuries due to increased rates of sediment delivery following deforestation associated with European settlement. Numerical modeling coupled with the stratigraphic observations suggests that existing marshland could survive, but not form under the low suspended sediment concentrations observed in the estuary today. These results suggest that many of the expansive marshes that characterize the modern North American coast are metastable relicts of high nineteenth century sediment delivery rates, and that recent observations of degradation may represent a slow return to pre-settlement marsh extent. In contrast to ecosystem management practices in which restoring pre-anthropogenic conditions is seen as a way to increase ecosystem services, our results suggest that widespread efforts to restore valuable coastal wetlands actually prevent some systems from returning to a natural state.

  1. Rapid palatal expansion effects on mandibular transverse dimensions in unilateral posterior crossbite patients: a three-dimensional digital imaging study

    Directory of Open Access Journals (Sweden)

    Alessandro Ugolini

    2016-01-01

    Full Text Available Abstract Background The purpose of this controlled study was to investigate indirect effects on mandibular arch dimensions, 1 year after rapid palatal expansion (RPE therapy. Methods Thirty-three patients in mixed dentition (mean age 8.8 years showing unilateral posterior crossbite and maxillary deficiency were treated with a RPE (Haas type cemented on the first permanent molars. Treatment protocol consisted of two turns per day until slight overcorrection of the molar transverse relationship occurred. The Haas expander was kept on the teeth as a passive retainer for an average of 6 months. Study models were taken prior (T1 and 15 months on average (T2 after expansion. A control group of 15 untreated subjects with maxillary deficiency (mean age 8.3 years was also recorded with a 12-month interval. Stone casts were digitized with a 3D scanner (3Shape, DK. Results In the treated group, both mandibular intermolar distance (+1.9 mm and mandibular molar angulation (+9° increased. Mandibular incisor angulation showed an increase of 1.9°. There was little effect on intercanine distance and canine angulation. Controls showed a reduction in transverse arch dimension and a decrease in molar and canine angulation values. Conclusions RPE protocol has indirect widening effects on the mandibular incisors and first molars.

  2. The Rapid Analysis of Scattering from Periodic Dielectric Structures Using Accelerated Cartesian Expansions (ACE)

    CERN Document Server

    Baczewski, Andrew D; Shanker, Balasubramaniam

    2011-01-01

    The analysis of fields in periodic dielectric structures arise in numerous applications of recent interest, ranging from photonic bandgap (PBG) structures and plasmonically active nanostructures to metamaterials. To achieve an accurate representation of the fields in these structures using numerical methods, dense spatial discretization is required. This, in turn, affects the cost of analysis, particularly for integral equation based methods, for which traditional iterative methods require O(N^2) operations, N being the number of spatial degrees of freedom. In this paper, we introduce a method for the rapid solution of volumetric electric field integral equations used in the analysis of doubly periodic dielectric structures. The crux of our method is the ACE algorithm, which is used to evaluate the requisite potentials in O(N) cost. Results are provided that corroborate our claims of acceleration without compromising accuracy, as well as the application of our method to a number of compelling photonics applic...

  3. Rapid expansion of the protein disulfide isomerase gene family facilitates the folding of venom peptides

    DEFF Research Database (Denmark)

    Safavi-Hemami, Helena; Li, Qing; Jackson, Ronneshia L.

    2016-01-01

    Formation of correct disulfide bonds in the endoplasmic reticulum is a crucial step for folding proteins destined for secretion. Protein disulfide isomerases (PDIs) play a central role in this process. We report a previously unidentified, hypervariable family of PDIs that represents the most...... diverse gene family of oxidoreductases described in a single genus to date. These enzymes are highly expressed specifically in the venom glands of predatory cone snails, animals that synthesize a remarkably diverse set of cysteine-rich peptide toxins (conotoxins). Enzymes in this PDI family, termed...... conotoxin-specific PDIs, significantly and differentially accelerate the kinetics of disulfide-bond formation of several conotoxins. Our results are consistent with a unique biological scenario associated with protein folding: The diversification of a family of foldases can be correlated with the rapid...

  4. CTLA-4 blockade during dendritic cell based booster vaccination influences dendritic cell survival and CTL expansion

    DEFF Research Database (Denmark)

    Pedersen, Anders E; Ronchese, Franca

    2007-01-01

    and the lysis of relevant in vivo targets. However, the CTLA-4 blockage dependent expansion of CTLs also affect DC survival during booster DC injections and our data suggest that during a booster DC vaccine, the largest increase in CTL levels is already obtained during the first vaccination.......Dendritic cells (DCs) are potent antigen-presenting cells and critical for the priming of CD8+ T cells. Therefore the use of these cells as adjuvant cells has been tested in a large number of experimental and clinical vaccination studies, in particular cancer vaccine studies. A number of protocols...... are emerging that combine vaccination with CTL expanding strategies, such as e.g. blockade of CTLA-4 signalling. On the other hand, the lifespan and in vivo survival of therapeutic DCs have only been addressed in a few studies, although this is of importance for the kinetics of CTL induction during vaccination...

  5. Rapid conversions and avoided deforestation: examining four decades of industrial plantation expansion in Borneo

    Science.gov (United States)

    Gaveau, David L. A.; Sheil, Douglas; Husnayaen; Salim, Mohammad A.; Arjasakusuma, Sanjiwana; Ancrenaz, Marc; Pacheco, Pablo; Meijaard, Erik

    2016-09-01

    New plantations can either cause deforestation by replacing natural forests or avoid this by using previously cleared areas. The extent of these two situations is contested in tropical biodiversity hotspots where objective data are limited. Here, we explore delays between deforestation and the establishment of industrial tree plantations on Borneo using satellite imagery. Between 1973 and 2015 an estimated 18.7 Mha of Borneo’s old-growth forest were cleared (14.4 Mha and 4.2 Mha in Indonesian and Malaysian Borneo). Industrial plantations expanded by 9.1 Mha (7.8 Mha oil-palm; 1.3 Mha pulpwood). Approximately 7.0 Mha of the total plantation area in 2015 (9.2 Mha) were old-growth forest in 1973, of which 4.5-4.8 Mha (24-26% of Borneo-wide deforestation) were planted within five years of forest clearance (3.7-3.9 Mha oil-palm; 0.8-0.9 Mha pulpwood). This rapid within-five-year conversion has been greater in Malaysia than in Indonesia (57-60% versus 15-16%). In Indonesia, a higher proportion of oil-palm plantations was developed on already cleared degraded lands (a legacy of recurrent forest fires). However, rapid conversion of Indonesian forests to industrial plantations has increased steeply since 2005. We conclude that plantation industries have been the principle driver of deforestation in Malaysian Borneo over the last four decades. In contrast, their role in deforestation in Indonesian Borneo was less marked, but has been growing recently. We note caveats in interpreting these results and highlight the need for greater accountability in plantation development.

  6. Is There Any Evidence for Rapid, Genetically-Based, Climatic Niche Expansion in the Invasive Common Ragweed?

    Directory of Open Access Journals (Sweden)

    Laure Gallien

    Full Text Available Climatic niche shifts have been documented in a number of invasive species by comparing the native and adventive climatic ranges in which they occur. However, these shifts likely represent changes in the realized climatic niches of invasive species, and may not necessarily be driven by genetic changes in climatic affinities. Until now the role of rapid niche evolution in the spread of invasive species remains a challenging issue with conflicting results. Here, we document a likely genetically-based climatic niche expansion of an annual plant invader, the common ragweed (Ambrosia artemisiifolia L., a highly allergenic invasive species causing substantial public health issues. To do so, we looked for recent evolutionary change at the upward migration front of its adventive range in the French Alps. Based on species climatic niche models estimated at both global and regional scales we stratified our sampling design to adequately capture the species niche, and localized populations suspected of niche expansion. Using a combination of species niche modeling, landscape genetics models and common garden measurements, we then related the species genetic structure and its phenotypic architecture across the climatic niche. Our results strongly suggest that the common ragweed is rapidly adapting to local climatic conditions at its invasion front and that it currently expands its niche toward colder and formerly unsuitable climates in the French Alps (i.e. in sites where niche models would not predict its occurrence. Such results, showing that species climatic niches can evolve on very short time scales, have important implications for predictive models of biological invasions that do not account for evolutionary processes.

  7. Is There Any Evidence for Rapid, Genetically-Based, Climatic Niche Expansion in the Invasive Common Ragweed?

    Science.gov (United States)

    Gallien, Laure; Thuiller, Wilfried; Fort, Noémie; Boleda, Marti; Alberto, Florian J; Rioux, Delphine; Lainé, Juliette; Lavergne, Sébastien

    2016-01-01

    Climatic niche shifts have been documented in a number of invasive species by comparing the native and adventive climatic ranges in which they occur. However, these shifts likely represent changes in the realized climatic niches of invasive species, and may not necessarily be driven by genetic changes in climatic affinities. Until now the role of rapid niche evolution in the spread of invasive species remains a challenging issue with conflicting results. Here, we document a likely genetically-based climatic niche expansion of an annual plant invader, the common ragweed (Ambrosia artemisiifolia L.), a highly allergenic invasive species causing substantial public health issues. To do so, we looked for recent evolutionary change at the upward migration front of its adventive range in the French Alps. Based on species climatic niche models estimated at both global and regional scales we stratified our sampling design to adequately capture the species niche, and localized populations suspected of niche expansion. Using a combination of species niche modeling, landscape genetics models and common garden measurements, we then related the species genetic structure and its phenotypic architecture across the climatic niche. Our results strongly suggest that the common ragweed is rapidly adapting to local climatic conditions at its invasion front and that it currently expands its niche toward colder and formerly unsuitable climates in the French Alps (i.e. in sites where niche models would not predict its occurrence). Such results, showing that species climatic niches can evolve on very short time scales, have important implications for predictive models of biological invasions that do not account for evolutionary processes.

  8. Stress and displacement patterns in the craniofacial skeleton with rapid maxillary expansion-a finite element method study.

    Science.gov (United States)

    Priyadarshini, J; Mahesh, C M; Chandrashekar, B S; Sundara, Abhishek; Arun, A V; Reddy, Vinay P

    2017-12-01

    Rapid maxillary expansion (RME), indicated in the treatment of maxillary deficiency directs high forces to maxillary basal bone and to other adjacent skeletal bones. The aim of this study is to (i) evaluate stress distribution along craniofacial sutures and (ii) study the displacement of various craniofacial structures with rapid maxillary expansion therapy by using a Finite Element model. An analytical model was developed from a dried human skull of a 12 year old male. CT scan images of the skull were taken in axial direction parallel to the F-H plane at 1 mm interval, processed using Mimics software, required portion of the skull was exported into stereo-lithography model. ANSYS software was used to solve the mathematical equation. Contour plots of the displacement and stresses were obtained from the results of the analysis performed. At Node 47005, maximum X-displacement was 5.073 mm corresponding to the incisal edge of the upper central incisor. At Node 3971, maximum negative Y-displacement was -0.86 mm which corresponds to the anterior zygomatic arch, indicating posterior movement of craniofacial complex. At Node 32324, maximum negative Z-displacement was -0.92 mm representing the anterior and deepest convex portion of the nasal septum; indicating downward displacement of structures medial to the area of force application. Pyramidal displacement of maxilla was evident. Apex of pyramid faced the nasal bone and base was located on the oral side. Posterosuperior part of nasal cavity moved minimally in lateral direction and width of nasal cavity at the floor of the nose increased, there was downward and forward movement of maxilla with a tendency toward posterior rotation. Maximum von Mises stresses were found along midpalatal, pterygomaxillary, nasomaxillary and frontomaxillary sutures.

  9. Liquefaction of coals using ultra-fine particle, unsupported catalysts: In situ particle generation by rapid expansion of supercritical fluid solutions. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The research conducted by Textron Defense Systems (TDS) represents a potential new and innovative concept for dispersed coal liquefaction. The technical approach is generation of ultra-fine catalyst particles from supercritical solutions by rapid expansion of either catalyst only, or mixtures of catalyst and coal material in supersaturated solvents. The process of rapid expansion of supercritical fluid solutions was developed at Battelle`s Pacific Northwest Laboratories for the intended purpose of providing a new analytical technique for characterizing supercritical fluids. The concept forming the basis of this research is that ultra-fine particles can be generated from supercritical solutions by rapid expansion of either catalyst or catalyst/coal-material mixtures in supersaturated solvents, such as carbon dioxide or water. The focal point of this technique is the rapid transfer of low vapor pressure solute (i.e., catalyst), dissolved in the supercritical fluid solvent, to the gas phase as the solution is expanded through an orifice. The expansion process is characterized by highly nonequilibrium conditions which cause the solute to undergo extremely rapid supersaturation with respect to the solvent, leading to nucleation and particle growth resulting in nanometer size catalyst particles. A supercritical expansion system was designed and built by TDS at their Haverhill facility.

  10. Human skeletal muscle-derived stem cells retain stem cell properties after expansion in myosphere culture

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yan [Department of Otolaryngology, Head and Neck Surgery Charite-Universitaetsmedizin Berlin, Berlin (Germany); Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guang Zhou (China); Li, Yuan [Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guang Zhou (China); Chen, Chao; Stoelzel, Katharina [Department of Otolaryngology, Head and Neck Surgery Charite-Universitaetsmedizin Berlin, Berlin (Germany); Kaufmann, Andreas M. [Clinic for Gynecology CCM/CBF, Charite-Universitaetsmedizin Berlin, Berlin (Germany); Albers, Andreas E., E-mail: andreas.albers@charite.de [Department of Otolaryngology, Head and Neck Surgery Charite-Universitaetsmedizin Berlin, Berlin (Germany)

    2011-04-15

    Human skeletal muscle contains an accessible adult stem-cell compartment in which differentiated myofibers are maintained and replaced by a self-renewing stem cell pool. Previously, studies using mouse models have established a critical role for resident stem cells in skeletal muscle, but little is known about this paradigm in human muscle. Here, we report the reproducible isolation of a population of cells from human skeletal muscle that is able to proliferate for extended periods of time as floating clusters of rounded cells, termed 'myospheres' or myosphere-derived progenitor cells (MDPCs). The phenotypic characteristics and functional properties of these cells were determined using reverse transcription-polymerase chain reaction (RT-PCR), flow cytometry and immunocytochemistry. Our results showed that these cells are clonogenic, express skeletal progenitor cell markers Pax7, ALDH1, Myod, and Desmin and the stem cell markers Nanog, Sox2, and Oct3/4 significantly elevated over controls. They could be maintained proliferatively active in vitro for more than 20 weeks and passaged at least 18 times, despite an average donor-age of 63 years. Individual clones (4.2%) derived from single cells were successfully expanded showing clonogenic potential and sustained proliferation of a subpopulation in the myospheres. Myosphere-derived cells were capable of spontaneous differentiation into myotubes in differentiation media and into other mesodermal cell lineages in induction media. We demonstrate here that direct culture and expansion of stem cells from human skeletal muscle is straightforward and reproducible with the appropriate technique. These cells may provide a viable resource of adult stem cells for future therapies of disease affecting skeletal muscle or mesenchymal lineage derived cell types.

  11. AUXIN BINDING PROTEIN1 Links Cell Wall Remodeling, Auxin Signaling, and Cell Expansion in Arabidopsis[W

    Science.gov (United States)

    Paque, Sébastien; Mouille, Grégory; Grandont, Laurie; Alabadí, David; Gaertner, Cyril; Goyallon, Arnaud; Muller, Philippe; Primard-Brisset, Catherine; Sormani, Rodnay; Blázquez, Miguel A.; Perrot-Rechenmann, Catherine

    2014-01-01

    Cell expansion is an increase in cell size and thus plays an essential role in plant growth and development. Phytohormones and the primary plant cell wall play major roles in the complex process of cell expansion. In shoot tissues, cell expansion requires the auxin receptor AUXIN BINDING PROTEIN1 (ABP1), but the mechanism by which ABP1 affects expansion remains unknown. We analyzed the effect of functional inactivation of ABP1 on transcriptomic changes in dark-grown hypocotyls and investigated the consequences of gene expression on cell wall composition and cell expansion. Molecular and genetic evidence indicates that ABP1 affects the expression of a broad range of cell wall–related genes, especially cell wall remodeling genes, mainly via an SCFTIR/AFB-dependent pathway. ABP1 also functions in the modulation of hemicellulose xyloglucan structure. Furthermore, fucosidase-mediated defucosylation of xyloglucan, but not biosynthesis of nonfucosylated xyloglucan, rescued dark-grown hypocotyl lengthening of ABP1 knockdown seedlings. In muro remodeling of xyloglucan side chains via an ABP1-dependent pathway appears to be of critical importance for temporal and spatial control of cell expansion. PMID:24424095

  12. Short-term evaluation of tegumentary changes of the nose in oral breathers undergoing rapid maxillary expansion.

    Science.gov (United States)

    Badreddine, Fauze Ramez; Fujita, Reginaldo Raimundo; Cappellette, Mario

    2017-06-26

    Rapid maxillary expansion is an orthodontic and orthopedic procedure that can change the form and function of the nose. The soft tissue of the nose and its changes can influence the esthetics and the stability of the results obtained by this procedure. The objective of this study was to assess the changes in nose dimensions after rapid maxillary expansion (RME) in oral breathers with maxillary atresia, using a reliable and reproducible methodology through computed tomography. A total of 30 mouth-breathing patients with maxillary atresia were analyzed and divided into a treatment group who underwent RME (20 patients, 10 of which were male and 10 female, with a MA of 8.9 years and a SD of 2.16, ranging from 6.5 to 12.5 years) and a Control Group (10 patients, 5 of which were male and 5 female, with a MA of 9.2 years, SD of 2.17, ranging from 6.11 to 13.7 years). In the treatment group, multislice computed tomography scans were obtained at the start of the treatment (T1) and 3 months after expansion (T2). The patients of the control group were submitted to the same exams at the same intervals of time. Four variables related to soft tissue structures of the nose were analyzed (alar base width, alar width, height of soft tissue of the nose and length of soft tissue of the nose), and the outcomes between T1 and T2 were compared using Osirix MD software. In the TG, the soft tissues of the nose exhibited significant increases in all variables studied (p0.05). In the treatment group, mean alar base width increased by 4.87% (p=0.004), mean alar width increased by 4.04% (p=0.004), mean height of the soft tissues of the nose increased by 4.84% (p=0.003) and mean length of the soft tissues of the nose increased by 4.29% (p=0.012). In short-term, RME provided a statistically significant increase in the dimensions of the soft tissues of the nose. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All

  13. Expansion of regulatory T cells in patients with Langerhans cell histiocytosis.

    Directory of Open Access Journals (Sweden)

    Brigitte Senechal

    2007-08-01

    Full Text Available Langerhans cell histiocytosis (LCH is a rare clonal granulomatous disease that affects mainly children. LCH can involve various tissues such as bone, skin, lung, bone marrow, lymph nodes, and the central nervous system, and is frequently responsible for functional sequelae. The pathophysiology of LCH is unclear, but the uncontrolled proliferation of Langerhans cells (LCs is believed to be the primary event in the formation of granulomas. The present study was designed to further investigate the nature of proliferating cells and the immune mechanisms involved in the LCH granulomas.Biopsies (n = 24 and/or blood samples (n = 25 from 40 patients aged 0.25 to 13 y (mean 7.8 y, were studied to identify cells that proliferate in blood and granulomas. We found that the proliferating index of LCs was low ( approximately 1.9%, and we did not observe expansion of a monocyte or dendritic cell compartment in patients. We found that LCH lesions were a site of active inflammation, tissue remodeling, and neo-angiogenesis, and the majority of proliferating cells were endothelial cells, fibroblasts, and polyclonal T lymphocytes. Within granulomas, interleukin 10 was abundant, LCs expressed the TNF receptor family member RANK, and CD4(+ CD25(high FoxP3(high regulatory T cells (T-regs represented 20% of T cells, and were found in close contact with LCs. FoxP3(+ T-regs were also expanded compared to controls, in the blood of LCH patients with active disease, among whom seven out of seven tested exhibited an impaired skin delayed-type hypersensitivity response. In contrast, the number of blood T-regs were normal after remission of LCH.These findings indicate that LC accumulation in LCH results from survival rather than uncontrolled proliferation, and is associated with the expansion of T-regs. These data suggest that LCs may be involved in the expansion of T-regs in vivo, resulting in the failure of the host immune system to eliminate LCH cells. Thus T-regs could be

  14. Polyclonal Expansion of NKG2C+ NK Cells in TAP-Deficient Patients

    Science.gov (United States)

    Béziat, Vivien; Sleiman, Marwan; Goodridge, Jodie P.; Kaarbø, Mari; Liu, Lisa L.; Rollag, Halvor; Ljunggren, Hans-Gustaf; Zimmer, Jacques; Malmberg, Karl-Johan

    2015-01-01

    Adaptive natural killer (NK) cell responses to human cytomegalovirus infection are characterized by the expansion of NKG2C+ NK cells expressing self-specific inhibitory killer-cell immunoglobulin-like receptors (KIRs). Here, we set out to study the HLA class I dependency of such NKG2C+ NK cell expansions. We demonstrate the expansion of NKG2C+ NK cells in patients with transporter associated with antigen presentation (TAP) deficiency, who express less than 10% of normal HLA class I levels. In contrast to normal individuals, expanded NKG2C+ NK cell populations in TAP-deficient patients display a polyclonal KIR profile and remain hyporesponsive to HLA class I-negative target cells. Nonetheless, agonistic stimulation of NKG2C on NK cells from TAP-deficient patients yielded significant responses in terms of degranulation and cytokine production. Thus, while interactions with self-HLA class I molecules likely shape the KIR repertoire of expanding NKG2C+ NK cells during adaptive NK cell responses in normal individuals, they are not a prerequisite for NKG2C+ NK cell expansions to occur. The emergence of NKG2C-responsive adaptive NK cells in TAP-deficient patients may contribute to antiviral immunity and potentially explain these patients’ low incidence of severe viral infections. PMID:26500647

  15. Polyclonal Expansion of NKG2C+ NK Cells in TAP-deficient Patients

    Directory of Open Access Journals (Sweden)

    vivien eBeziat

    2015-10-01

    Full Text Available Adaptive natural killer (NK cell responses to human cytomegalovirus (CMV infection are characterized by the expansion of NKG2C+ NK cells expressing self-specific inhibitory killer-cell immunoglobulin-like receptors (KIRs. Here, we set out to study the HLA class I-dependency of such NKG2C+ NK cell expansions. We demonstrate expansion of NKG2C+ NK cells in patients with transporter associated with antigen presentation (TAP-deficiency, whom express less than 10% of normal HLA class I levels. In contrast to normal individuals, expanded NKG2C+ NK cell populations in TAP-deficient patients display a polyclonal KIR-profile and remain hyporesponsive to HLA class I-negative target cells. Nonetheless, agonistic stimulation of NKG2C on NK cells from TAP-deficient patients yielded significant responses in terms of degranulation and cytokine production. Thus, while interactions with self-HLA class I molecules likely shape the KIR-repertoire of expanding NKG2C+ NK cells during adaptive NK cell responses in normal individuals, they are not a prerequisite for NKG2C+ NK cell expansions to occur. Thus, the emergence of NKG2C-responsive adaptive NK cells in TAP-deficient patients may contribute to anti-viral immunity and potentially explain these patients’ low incidence of severe viral infections.

  16. Mesenchymal Stromal Cell Phenotype is not Influenced by Confluence during Culture Expansion

    DEFF Research Database (Denmark)

    Haack-Sørensen, Mandana; Hansen, Susanne Kofoed; Hansen, Louise

    2013-01-01

    BACKGROUND: Accumulating preclinical and clinical evidence indicates that human mesenchymal stromal cells (MSCs) are good candidates for cell therapy. For clinical applications of MSCs extensive in vitro expansion is required to obtain an adequate number of cells. It is evident that the pursuit...

  17. Rapid expansion of intravitreal drug injection procedures, 2000 to 2008: a population-based analysis.

    Science.gov (United States)

    Campbell, Robert J; Bronskill, Susan E; Bell, Chaim M; Paterson, J Michael; Whitehead, Marlo; Gill, Sudeep S

    2010-03-01

    To evaluate patterns of care for age-related macular degeneration following the introduction of vascular endothelial growth factor inhibitors. Using a population-based retrospective design, we studied monthly fee claims for intravitreal injections submitted to the Ontario Health Insurance Plan between January 1, 2000, and March 30, 2008, and linked procedures to the physicians who performed them. This database records physician services provided as part of universal health care insurance coverage in Ontario, Canada. This program covers all residents of Ontario, which had an average population of 12.1 million during the study period. Following regulatory approval of bevacizumab for colorectal cancer in 2005, off-label use of this drug for the treatment of retinal disease, particularly age-related macular degeneration, became increasingly common. The rate of intravitreal injections in Ontario rapidly grew 8-fold, and this growth preceded the availability of ranibizumab by more than a year. Moreover, in 2007, more than 50% of intravitreal injections in Ontario were performed by 3% of ophthalmologists. The development of vascular endothelial growth factor inhibitors has revolutionized the treatment of age-related macular degeneration. To our knowledge, this study is the first to quantify the dramatic uptake of these treatments at a population level. Our findings also suggest that off-label injection of bevacizumab was highly prevalent in Ontario. Serial intravitreal injections requiring direct physician administration and the concentration of injection procedures in the hands of a small number of ophthalmologists have the potential to affect services for other vision-threatening conditions.

  18. Controlling Redox Status for Stem Cell Survival, Expansion, and Differentiation

    Directory of Open Access Journals (Sweden)

    Sébastien Sart

    2015-01-01

    Full Text Available Reactive oxygen species (ROS have long been considered as pathological agents inducing apoptosis under adverse culture conditions. However, recent findings have challenged this dogma and physiological levels of ROS are now considered as secondary messengers, mediating numerous cellular functions in stem cells. Stem cells represent important tools for tissue engineering, drug screening, and disease modeling. However, the safe use of stem cells for clinical applications still requires culture improvements to obtain functional cells. With the examples of mesenchymal stem cells (MSCs and pluripotent stem cells (PSCs, this review investigates the roles of ROS in the maintenance of self-renewal, proliferation, and differentiation of stem cells. In addition, this work highlights that the tight control of stem cell microenvironment, including cell organization, and metabolic and mechanical environments, may be an effective approach to regulate endogenous ROS generation. Taken together, this paper indicates the need for better quantification of ROS towards the accurate control of stem cell fate.

  19. Controlled auto-ignition characteristics of methane-air mixture in a rapid intake compression and expansion machine

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Gyubaek; Jeong, Dongsoo [Engine Research Team, Eco-Machinery Research Division, Korea Institute of Machinery and Materials, 104 Sinseongno, Yuseong-gu, Daejeon 305-701 (Korea); Moon, Gunfeel [Department of Clean Environmental system, University of Science and Technology, 52 Eoeun-dong, Yuseong-gu, Daejeon (Korea); Bae, Choongsik [Engine Laboratory, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1 GuSeong-Dong, Yuseong-Gu, Daejeon 305-701 (Korea)

    2010-10-15

    The characteristics of controlled auto-ignition (CAI) were investigated with a methane-air mixture and simulated residual gas, that represents internal exhaust gas recirculation (IEGR). Supply systems were additionally installed on the conventional rapid compression machine (RCM), and this modified machine - a rapid intake compression and expansion machine (RICEM) - was able to simulate an intake stroke for the evaluation of controlled auto-ignition with fuel-air mixture. The fuel-air mixture and the simulated residual gas were introduced separately into the combustion chamber through the spool valves. Various IEGR rates and temperatures of the IEGR gas were tested. The initial reaction and the development in controlled auto-ignition combustion were compared with spark-ignited combustion by visualization with a high-speed digital camera. Under the controlled auto-ignition operation, multi-point ignition and faster combustion were observed. With increasing the temperature of IEGR gas, the auto-ignition timing was advanced and burning duration was shortened. The higher rate of IEGR had the same effects on the combustion of the controlled auto-ignition. However, this trend was reversed with more than 47 per cent of IEGR. (author)

  20. Urban Land Expansion and Sustainable Land Use Policy in Shenzhen: A Case Study of China’s Rapid Urbanization

    Directory of Open Access Journals (Sweden)

    Jing Qian

    2015-12-01

    Full Text Available Shenzhen is a city that is highly representative of China’s rapid urbanization process. As the city rapidly expands, there are enormous challenges to the sustainable use of land resources. This paper introduces the evolution of urban land expansion and the sustainable land use policy of the Shenzhen Government since 2005. The policy covers the reduction in rural-to-urban land conversion, the delineation of urban growth boundaries, arable land reclamation and the establishment of farmland protection areas, urban redevelopment, and the investigation and prosecution of illegal construction. This paper considers the aspects of urbanization and land management systems that are unique to China. The current top-down indicative and mandatory mode of control, which relies on the central government, has very limited effects. Good results were achieved in Shenzhen for the following elements: governmental self-restraint, governmental identity change, and policy innovation. Shenzhen’s sustainable land use practices can provide a reference for other cities in China.

  1. Culture expansion of adipose derived stromal cells. A closed automated Quantum Cell Expansion System compared with manual flask-based culture

    DEFF Research Database (Denmark)

    Haack-Sørensen, Mandana; Follin, Bjarke; Juhl, Morten

    2016-01-01

    ) over two passages in the automated and functionally closed Quantum Cell Expansion System (Quantum system) is compared with traditional manual cultivation. Methods: Stromal vascular fraction was isolated from abdominal fat, suspended in α-MEM supplemented with 10% Fetal Bovine Serum and seeded......-less than the number of SVF cells seeded. ASCs P1 expanded in the Quantum system demonstrated a population doubling (PD) around 2.2 regardless of whether P0 was previously cultured in flasks or Quantum, while ASCs P1 in flasks only reached a PD of 1.0. Conclusion: Manufacturing of ASCs in a Quantum system...... enhances ASC expansion rate and yield significantly relative to manual processing in T-flasks, while maintaining the purity and quality essential to safe and robust cell production. Notably, the use of the Quantum system entails significantly reduced working hours and thereby costs....

  2. Clonal expansion of renal cell carcinoma-infiltrating T lymphocytes

    NARCIS (Netherlands)

    Sittig, S.P.; Kollgaard, T.; Gronbaek, K.; Idorn, M.; Hennenlotter, J.; Stenzl, A.; Gouttefangeas, C.; Straten, P. Thor

    2013-01-01

    T lymphocytes can mediate the destruction of cancer cells by virtue of their ability to recognize tumor-derived antigenic peptides that are presented on the cell surface in complex with HLA molecules and expand. Thus, the presence of clonally expanded T cells within neoplastic lesions is an

  3. Isolation and in vitro expansion of human colonic stem cells

    NARCIS (Netherlands)

    Jung, P.; Sato, T.; Merlos-Suarez, A.; Barriga, F.M.; Iglesias, M.; Rossell, D.; Auer, H.; Gallardo, M.; Blasco, M.A.; Sancho, E.; Clevers, H.; Batlle, E.

    2011-01-01

    Here we describe the isolation of stem cells of the human colonic epithelium. Differential cell surface abundance of ephrin type-B receptor 2 (EPHB2) allows the purification of different cell types from human colon mucosa biopsies. The highest EPHB2 surface levels correspond to epithelial colonic

  4. Optimising cell aggregate expansion in a perfused hollow fibre bioreactor via mathematical modelling.

    Directory of Open Access Journals (Sweden)

    Lloyd A C Chapman

    Full Text Available The need for efficient and controlled expansion of cell populations is paramount in tissue engineering. Hollow fibre bioreactors (HFBs have the potential to meet this need, but only with improved understanding of how operating conditions and cell seeding strategy affect cell proliferation in the bioreactor. This study is designed to assess the effects of two key operating parameters (the flow rate of culture medium into the fibre lumen and the fluid pressure imposed at the lumen outlet, together with the cell seeding distribution, on cell population growth in a single-fibre HFB. This is achieved using mathematical modelling and numerical methods to simulate the growth of cell aggregates along the outer surface of the fibre in response to the local oxygen concentration and fluid shear stress. The oxygen delivery to the cell aggregates and the fluid shear stress increase as the flow rate and pressure imposed at the lumen outlet are increased. Although the increased oxygen delivery promotes growth, the higher fluid shear stress can lead to cell death. For a given cell type and initial aggregate distribution, the operating parameters that give the most rapid overall growth can be identified from simulations. For example, when aggregates of rat cardiomyocytes that can tolerate shear stresses of up to 0:05 Pa are evenly distributed along the fibre, the inlet flow rate and outlet pressure that maximise the overall growth rate are predicted to be in the ranges 2.75 x 10(-5 m(2 s(-1 to 3 x 10(-5 m(2 s(-1 (equivalent to 2.07 ml min(-1 to 2.26 ml min(-1 and 1.077 x 10(5 Pa to 1.083 x 10(5 Pa (or 15.6 psi to 15.7 psi respectively. The combined effects of the seeding distribution and flow on the growth are also investigated and the optimal conditions for growth found to depend on the shear tolerance and oxygen demands of the cells.

  5. Optimising cell aggregate expansion in a perfused hollow fibre bioreactor via mathematical modelling.

    KAUST Repository

    Chapman, Lloyd A C

    2014-08-26

    The need for efficient and controlled expansion of cell populations is paramount in tissue engineering. Hollow fibre bioreactors (HFBs) have the potential to meet this need, but only with improved understanding of how operating conditions and cell seeding strategy affect cell proliferation in the bioreactor. This study is designed to assess the effects of two key operating parameters (the flow rate of culture medium into the fibre lumen and the fluid pressure imposed at the lumen outlet), together with the cell seeding distribution, on cell population growth in a single-fibre HFB. This is achieved using mathematical modelling and numerical methods to simulate the growth of cell aggregates along the outer surface of the fibre in response to the local oxygen concentration and fluid shear stress. The oxygen delivery to the cell aggregates and the fluid shear stress increase as the flow rate and pressure imposed at the lumen outlet are increased. Although the increased oxygen delivery promotes growth, the higher fluid shear stress can lead to cell death. For a given cell type and initial aggregate distribution, the operating parameters that give the most rapid overall growth can be identified from simulations. For example, when aggregates of rat cardiomyocytes that can tolerate shear stresses of up to 0:05 Pa are evenly distributed along the fibre, the inlet flow rate and outlet pressure that maximise the overall growth rate are predicted to be in the ranges 2.75 x 10(-5) m(2) s(-1) to 3 x 10(-5) m(2) s(-1) (equivalent to 2.07 ml min(-1) to 2.26 ml min(-1)) and 1.077 x 10(5) Pa to 1.083 x 10(5) Pa (or 15.6 psi to 15.7 psi) respectively. The combined effects of the seeding distribution and flow on the growth are also investigated and the optimal conditions for growth found to depend on the shear tolerance and oxygen demands of the cells.

  6. Heterogeneous glacial lake changes and links of lake expansions to the rapid thinning of adjacent glacier termini in the Himalayas

    Science.gov (United States)

    Song, Chunqiao; Sheng, Yongwei; Wang, Jida; Ke, Linghong; Madson, Austin; Nie, Yong

    2017-03-01

    Glacier mass loss in the Himalayas has far-reaching implications for the alteration of regional hydrologic regimes, an increased risk of glacial lake outburst, downstream water resource abundance, and contributions to sea level rise. However, the mass losses of Himalayan glaciers are not well understood towing to the scarcity of observations and the heterogeneous responses of Himalayan glaciers to climate change and local factors (e.g., glacier surge, interacting with proglacial lakes). In particular, there is a lack of understanding on the unique interactions between moraine-dammed glacial lakes and their effects on debris cover on valley glacier termini. In this study, we examined the temporal evolution of 151 large glacial lakes across the Himalayas and then classified these glacial lakes into three categories: proglacial lakes in contact with full or partial debris-covered glaciers (debris-contact lakes), ice cliff-contact lakes, and non-glacier-contact lakes. The results show that debris-contact lakes experienced a dramatic areal increase of 36.5% over the years 2000 to 2014, while the latter two categories of lakes remained generally stable. The majority of lake expansions occurred at the glacier front without marked lake level rises. This suggests that the rapid expansion of these debris-contact lakes can be largely attributed to the thinning of debris-covered ice as caused by the melting of glacial fronts and the subsequent glacial retreat. We reconstructed the height variations of glacier fronts in contact with 57 different proglacial lakes during the years 2000 to 2014. These reconstructed surface elevation changes of debris-covered, lake-contact glacier fronts reveal significant thinning trends with considerable lowering rates that range from 1.0 to 9.7 m/y. Our study reveals that a substantial average ice thinning of 3.9 m/y occurred at the glacier fronts that are in contact with glacial lakes.

  7. Expansion of adipose mesenchymal stromal cells is affected by human platelet lysate and plating density.

    Science.gov (United States)

    Cholewa, Dominik; Stiehl, Thomas; Schellenberg, Anne; Bokermann, Gudrun; Joussen, Sylvia; Koch, Carmen; Walenda, Thomas; Pallua, Norbert; Marciniak-Czochra, Anna; Suschek, Christoph V; Wagner, Wolfgang

    2011-01-01

    The composition of mesenchymal stromal cells (MSCs) changes in the course of in vitro culture expansion. Little is known how these cell preparations are influenced by culture media, plating density, or passaging. In this study, we have isolated MSCs from human adipose tissue in culture medium supplemented with either fetal calf serum (FCS) or human platelet lysate (HPL). In addition, culture expansion was simultaneously performed at plating densities of 10 or 10,000 cells/cm(2). The use of FCS resulted in larger cells, whereas HPL significantly enhanced proliferation. Notably, HPL also facilitated expansion for more population doublings than FCS (43 ± 3 vs. 22 ± 4 population doubling; p < 0.001), while plating density did not have a significant effect on long-term growth curves. To gain further insight into population dynamics, we conceived a cellular automaton model to simulate expansion of MSCS. It is based on the assumptions that the number of cell divisions is limited and that due to contact inhibition proliferation occurs only at the rim of colonies. The model predicts that low plating densities result in more heterogeneity with regard to cell division history, and favor subpopulations of higher migratory activity. In summary, HPL is a suitable serum supplement for isolation of MSC from adipose tissue and facilitates more population doublings than FCS. Cellular automaton computer simulations provided additional insights into how complex population dynamics during long-term expansion are affected by plating density and migration.

  8. Integrated processes for expansion and differentiation of human pluripotent stem cells in suspended microcarriers cultures

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Alan Tin-Lun, E-mail: alan_lam@bti.a-star.edu.sg; Chen, Allen Kuan-Liang; Ting, Sherwin Qi-Peng; Reuveny, Shaul; Oh, Steve Kah-Weng, E-mail: steve_oh@bti.a-star.edu.sg

    2016-05-06

    Current methods for human pluripotent stem cells (hPSC) expansion and differentiation can be limited in scalability and costly (due to their labor intensive nature). This can limit their use in cell therapy, drug screening and toxicity assays. One of the approaches that can overcome these limitations is microcarrier (MC) based cultures in which cells are expanded as cell/MC aggregates and then directly differentiated as embryoid bodies (EBs) in the same agitated reactor. This integrated process can be scaled up and eliminate the need for some culture manipulation used in common monolayer and EBs cultures. This review describes the principles of such microcarriers based integrated hPSC expansion and differentiation process, and parameters that can affect its efficiency (such as MC type and extracellular matrix proteins coatings, cell/MC aggregates size, and agitation). Finally examples of integrated process for generation cardiomyocytes (CM) and neural progenitor cells (NPC) as well as challenges to be solved are described. - Highlights: • Expansion of hPSC on microcarriers. • Differentiation of hPSC on microcarriers. • Parameters that can affect the expansion and differentiation of hPSC on microcarriers. • Integration of expansion and differentiation of hPSC on microcarriers in one unit operation.

  9. Clonal expansion under the microscope: studying lymphocyte activation and differentiation using live-cell imaging.

    Science.gov (United States)

    Polonsky, Michal; Chain, Benjamin; Friedman, Nir

    2016-03-01

    Clonal expansion of lymphocytes is a hallmark of vertebrate adaptive immunity. A small number of precursor cells that recognize a specific antigen proliferate into expanded clones, differentiate and acquire various effector and memory phenotypes, which promote effective immune responses. Recent studies establish a large degree of heterogeneity in the level of expansion and in cell state between and within expanding clones. Studying these processes in vivo, while providing insightful information on the level of heterogeneity, is challenging due to the complex microenvironment and the inability to continuously track individual cells over extended periods of time. Live cell imaging of ex vivo cultures within micro fabricated arrays provides an attractive methodology for studying clonal expansion. These experiments facilitate continuous acquisition of a large number of parameters on cell number, proliferation, death and differentiation state, with single-cell resolution on thousands of expanding clones that grow within controlled environments. Such data can reveal stochastic and instructive mechanisms that contribute to observed heterogeneity and elucidate the sequential order of differentiation events. Intercellular interactions can also be studied within these arrays by following responses of a controlled number of interacting cells, all trapped within the same microwell. Here we describe implementations of live-cell imaging within microwell arrays for studies of lymphocyte clonal expansion, portray insights already gained from these experiments and outline directions for future research. These tools, together with in vivo experiments tracking single-cell responses, will expand our understanding of adaptive immunity and the ways by which it can be manipulated.

  10. Cell fiber-based three-dimensional culture system for highly efficient expansion of human induced pluripotent stem cells.

    Science.gov (United States)

    Ikeda, Kazuhiro; Nagata, Shogo; Okitsu, Teru; Takeuchi, Shoji

    2017-06-06

    Human pluripotent stem cells are a potentially powerful cellular resource for application in regenerative medicine. Because such applications require large numbers of human pluripotent stem cell-derived cells, a scalable culture system of human pluripotent stem cell needs to be developed. Several suspension culture systems for human pluripotent stem cell expansion exist; however, it is difficult to control the thickness of cell aggregations in these systems, leading to increased cell death likely caused by limited diffusion of gases and nutrients into the aggregations. Here, we describe a scalable culture system using the cell fiber technology for the expansion of human induced pluripotent stem (iPS) cells. The cells were encapsulated and cultured within the core region of core-shell hydrogel microfibers, resulting in the formation of rod-shaped or fiber-shaped cell aggregations with sustained thickness and high viability. By encapsulating the cells with type I collagen, we demonstrated a long-term culture of the cells by serial passaging at a high expansion rate (14-fold in four days) while retaining its pluripotency. Therefore, our culture system could be used for large-scale expansion of human pluripotent stem cells for use in regenerative medicine.

  11. Detalhes singulares nos procedimentos operacionais da disjunção palatina Singular aspects to operate rapid palatal expansion procedures

    Directory of Open Access Journals (Sweden)

    Orlando Tanaka

    2004-08-01

    Full Text Available A disjunção palatina traz benefícios significativos nas más oclusões caracterizadas pela atresia esquelética do arco dentário superior. Desde os tempos de Angell muitos manuais foram criados com o intuito de orientar a instalação de aparelhos construídos em diferentes formatos e com materiais dos mais diversos fabricantes, utilizando, ainda, diferentes protocolos de ativação que objetivam a referida correção. A tecnologia utilizada para melhorar os materiais componentes dos aparelhos ortodônticos é muito importante mas os pequenos detalhes, que na verdade, não são pequenos, aliados aos conhecimentos científicos e ao bom senso devem ser observados, pois não se deve esperar que o aparelho "faça e resolva" tudo, corrigindo "num passe de mágica" as mordidas cruzadas posteriores. Este trabalho tem por objetivo detalhar as minúcias globais importantes, seja na confecção, na ativação e nos cuidados durante a permanência do disjuntor palatino na cavidade bucal.The rapid maxillary expansion procedure provide significant benefits in malocclusions with esqueletal posterior crossbites.Since Angell, lots of manuals were made in effort to guide the assembly of appliances from different types and employment of several techniques to obtain the desired correction. The technology used to improve the appliance materials is very important, but little details that actually are not so small together with scientific acknowledge and good sense must be regarded because one can not wait for the appliance “to do and solve” everything, correcting the posterior cross bites by a sleight-of-hand trick. The purpose of this report is to detail some little global aspects about construction, activation and concerns during the permanence period of the rapid maxillary expansion appliance in the mouth.

  12. Umbilical cord bloods hematopoietic stem cells ex vivo expansion (the literature review

    Directory of Open Access Journals (Sweden)

    T. V. Shamanskaya

    2012-01-01

    Full Text Available Umbilical cord blood (CB is now an attractive source of hematopoietic stem cells (HSCs for transplantation in pediatric and adult patients with various malignant and non-malignant diseases. However, its clinical application is limited by low cells numbers in graft, which correlates with delayed engraftment, an extension of time to platelets and neutrophils recovery and increasing risk of infectious complications. Several strategies have been suggested to overcome this limitation, one of which is obtaining a sufficient number of hematopoietic progenitor cells by ex vivo expansion. Literature review about CB HSCs expansion in given article is presented.

  13. Isolation and expansion of human natural T regulatory cells for cellular therapy.

    Science.gov (United States)

    Pahwa, Rajendra; Jaggaiahgari, Shashidhar; Pahwa, Savita; Inverardi, Luca; Tzakis, Andreas; Ricordi, Camillo

    2010-12-15

    Natural T regulatory cells (nTregs) play a key role in inducing and maintaining immunological tolerance. Cell-based therapy using purified nTregs is under consideration for several conditions, but procedures employed to date have resulted in cell populations that are contaminated with cytokine secreting effector cells. We have established a method for isolation and ex vivo expansion of human nTregs from healthy blood donors for cellular therapy aimed at preventing allograft rejection in organ transplants. The Robosep instrument was used for initial nTreg isolation and rapamycin was included in the expansion phase of cell cultures. The resulting cell population exhibited a stable CD4(+)CD25(++bright)Foxp3(+) phenotype, had potent functional ability to suppress CD4(+)CD25(negative) T cells without evidence of conversion to effector T cells including TH17 cells, and manifested little to no production of pro-inflammatory cytokines upon in vitro stimulation. Boolean gating analysis of cytokine-expressing cells by flow cytometry for 32 possible profile end points revealed that 96% of expanded nTregs did not express any cytokine. From a single buffy coat, approximately 80 million pure nTregs were harvested after expansion under cGMP conditions; these cell numbers are adequate for infusion of approximately one million cells kg⁻¹ for cell therapy in clinical trials. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. IL-21 promotes the expansion of CD27+CD28+ tumor infiltrating lymphocytes with high cytotoxic potential and low collateral expansion of regulatory T cells

    NARCIS (Netherlands)

    Santegoets, S.J.; Turksma, A.W.; Suhoski, M.M.; Stam, A.G.; Albelda, S.M.; Hooijberg, E.; Scheper, R.J.; Eertwegh, A.J. van den; Gerritsen, W.R.; Powell Jr., D.J.; June, C.H.; Gruijl, T.D. de

    2013-01-01

    BACKGROUND: Adoptive cell transfer of tumor infiltrating lymphocytes has shown clinical efficacy in the treatment of melanoma and is now also being explored in other tumor types. Generation of sufficient numbers of effector T cells requires extensive ex vivo expansion, often at the cost of T cell

  15. Purification of CD34+ cells is essential for optimal ex vivo expansion of umbilical cord blood cells.

    Science.gov (United States)

    Briddell, R A; Kern, B P; Zilm, K L; Stoney, G B; McNiece, I K

    1997-04-01

    Allogeneic umbilical cord blood (UCB) cells have recently been used for transplantation following high-dose chemotherapy. However, the numbers of total cells, including progenitor cells, harvested are low compared with bone marrow or peripheral blood progenitor cell harvests. Therefore, we evaluated the potential of UCB cells for their ability to expand granulocyte-macrophage colony-forming cells (GM-CFC) and burst-forming unit-erythroid (BFU-E) cells over 10 days. We used an ammonium chloride lysing buffer to eliminate the majority of contaminating red blood cells. An average recovery of 61% of the starting number of white blood cells was obtained, while retaining 100% of the CD34+ cells. Ex vivo expansion cultures were established in Teflon cell culture bags (American Fluoroseal Corp, Columbia, MD) in 25 ml defined medium (Amgen Inc, Thousand Oaks, CA) containing 100 ng/ml each of stem cell factor (SCF), granulocyte colony-stimulating factor (G-CSF), and megakaryocyte growth and development factor. Either unselected UCB cells or CD34+ UCB cells, selected with Magnetic Activation Cell Sorting technology (Miltenyi Biotech GmbH, Bergisch Gladbach, Germany), were incubated for 10 days at 37 degrees C without refeeding. Unselected UCB cells seeded at 1 X 10(6)/ml produced an average expansion of 1.4-fold in total cells, 0.8-fold in GM-CFC, and 0.3-fold in BFU-E cells. By contrast, CD34+ selected UCB cells seeded at 1.0 X 10(4)/ml produced an average expansion of 113-fold in total cells, 72.6-fold in GM-CFC, and 49-fold in BFU-E cells. These data demonstrate that CD34+ cell selection is necessary for optimal expansion of both GM-CFC and BFU-E cells. The cell numbers thus obtained postexpansion may be sufficient for transplantation in adults.

  16. Microencapsulation Technology: A Powerful Tool for Integrating Expansion and Cryopreservation of Human Embryonic Stem Cells

    OpenAIRE

    Margarida Serra; Cláudia Correia; Rita Malpique; Catarina Brito; Janne Jensen; Petter Bjorquist; Carrondo, Manuel J. T.; Alves, Paula M

    2011-01-01

    The successful implementation of human embryonic stem cells (hESCs)-based technologies requires the production of relevant numbers of well-characterized cells and their efficient long-term storage. In this study, cells were microencapsulated in alginate to develop an integrated bioprocess for expansion and cryopreservation of pluripotent hESCs. Different three-dimensional (3D) culture strategies were evaluated and compared, specifically, microencapsulation of hESCs as: i) single cells, ii) ag...

  17. Production Process for Stem Cell Based Therapeutic Implants: Expansion of the Production Cell Line and Cultivation of Encapsulated Cells

    Science.gov (United States)

    Weber, C.; Pohl, S.; Poertner, R.; Pino-Grace, Pablo; Freimark, D.; Wallrapp, C.; Geigle, P.; Czermak, P.

    Cell based therapy promises the treatment of many diseases like diabetes mellitus, Parkinson disease or stroke. Microencapsulation of the cells protects them against host-vs-graft reactions and thus enables the usage of allogenic cell lines for the manufacturing of cell therapeutic implants. The production process of such implants consists mainly of the three steps expansion of the cells, encapsulation of the cells, and cultivation of the encapsulated cells in order to increase their vitality and thus quality. This chapter deals with the development of fixed-bed bioreactor-based cultivation procedures used in the first and third step of production. The bioreactor system for the expansion of the stem cell line (hMSC-TERT) is based on non-porous glass spheres, which support cell growth and harvesting with high yield and vitality. The cultivation process for the spherical cell based implants leads to an increase of vitality and additionally enables the application of a medium-based differentiation protocol.

  18. Epitope-Specific Vaccination Limits Clonal Expansion of Heterologous Naive T Cells during Viral Challenge

    Directory of Open Access Journals (Sweden)

    Lexus R. Johnson

    2016-10-01

    Full Text Available Despite robust secondary T cell expansion primed by vaccination, the impact on primary immune responses to heterotypic antigens remains undefined. Here we show that secondary expansion of epitope-specific memory CD8+ T cells primed by prior infection with recombinant pathogens limits the primary expansion of naive CD8+ T cells with specificity to new heterologous antigens, dampening protective immunity against subsequent pathogen challenge. The degree of naive T cell repression directly paralleled the magnitude of the recall response. Suppressed primary T cell priming reflects competition for antigen accessibility, since clonal expansion was not inhibited if the primary and secondary epitopes were expressed on different dendritic cells. Interestingly, robust recall responses did not impact antigen-specific NK cells, suggesting that adaptive and innate lymphocyte responses possess different activation requirements or occur in distinct anatomical locations. These findings have important implications in pathogen vaccination strategies that depend on the targeting of multiple T cell epitopes.

  19. Cephalometric evaluation of the hyoid triangle before and after maxillary rapid expansion in patients with skeletal class II, mixed dentition, and infantile swallowing.

    Science.gov (United States)

    Parisella, Valeria; Vozza, Iole; Capasso, Francesca; Luzzi, Valeria; Ierardo, Gaetano; Nofroni, Italo; Polimeni, Antonella

    2012-07-01

    Rocabado's hyoid triangle is the only cephalometric parameter that can assess the effects of orthodontic treatment on tongue posture. To evaluate the restoration of tongue posture and function by conducting a cephalometric assessment of the hyoid triangle before and after rapid maxillary expansion. Sixty-four healthy patients aged 6-11 years with skeletal class II malocclusion, mixed dentition, and infantile swallowing took part in this study. They submitted to lateral cephalometric radiography before and after orthodontic maxillary rapid expansion, in order to assess the resulting changes in the proportions of the hyoid triangle (following Rocabado's parameters). The cephalometric findings were compared according to sex, age, and divergence using the chi-square McNemar test at the 5% significance level (ptriangle was modified by the orthodontic maxillary expansion, reconditioning of tongue posture and function particularly among male, aged 6-7 years old with skeletal class II malocclusion, mixed dentition, and infantile swallowing.

  20. [Effect of maxillary protraction with or without rapid palatal expansion in treating early skeletal Class III malocclusion].

    Science.gov (United States)

    Ma, Wen-Sheng; Lu, Hai-Yan; Dong, Fu-Sheng; Hu, Xiao-Ying; Li, Xing-Chao

    2009-04-01

    To evaluate the effectiveness of treatment with maxillary protraction with or without rapid palatal expansion (RPE) for skeletal Class III malocclusion in mixed dentition. A total of 31 children with Class III malocclusion in mixed dentition were selected, and 15 (group A) received maxillary protraction treatment with RPE, the other 16 (group B) received maxillary protraction without RPE. Cephalometric films were taken before and after treatment, and traditional and Pancherz analysis were used. The average duration of treatment was 10.14 months in group A and 9.77 months in group B respectively (P>0.05). According to Pancherz analysis, maxillary basal bone moved forwards by 2.99 mm in group A and 3.33 mm in group B respectively (P>0.05), mandibular basal bone moved backwards by 0.07 mm in group A, while forwards by 0.80 mm in group B (P>0.05), the overjet increased by 4.51 mm in group A and 6.37 mm in group B respectively (P0.05). The effects were clinically satisfactory in the both groups. Lower molar moved forwards by 1.18 mm in basal bone in group A, while backwards by 1.20 mm in group B (PClass III malocclusion.

  1. Validity of palatal superimposition of 3-dimensional digital models in cases treated with rapid maxillary expansion and maxillary protraction headgear.

    Science.gov (United States)

    Choi, Jin-Il; Cha, Bong-Kuen; Jost-Brinkmann, Paul-Georg; Choi, Dong-Soon; Jang, In-San

    2012-10-01

    The purpose of this study was to evaluate the validity of the 3-dimensional (3D) superimposition method of digital models in patients who received treatment with rapid maxillary expansion (RME) and maxillary protraction headgear. The material consisted of pre- and post-treatment maxillary dental casts and lateral cephalograms of 30 patients, who underwent RME and maxillary protraction headgear treatment. Digital models were superimposed using the palate as a reference area. The movement of the maxillary central incisor and the first molar was measured on superimposed cephalograms and 3D digital models. To determine whether any difference existed between the 2 measuring techniques, intra-class correlation (ICC) and Bland-Altman plots were analyzed. The measurements on the 3D digital models and cephalograms showed a very high correlation in the antero-posterior direction (ICC, 0.956 for central incisor and 0.941 for first molar) and a moderate correlation in the vertical direction (ICC, 0.748 for central incisor and 0.717 for first molar). The 3D model superimposition method using the palate as a reference area is as clinically reliable for assessing antero-posterior tooth movement as cephalometric superimposition, even in cases treated with orthopedic appliances, such as RME and maxillary protraction headgear.

  2. Rapid maxillary expansion versus middle ear tube placement: Comparison of hearing improvements in children with resistance otitis media with effusion.

    Science.gov (United States)

    Kılıç, Nihat; Yörük, Özgür; Kılıç, Songül Cömert; Çatal, Gülhan; Kurt, Sezgin

    2016-09-01

    To test the null hypothesis that there are significant differences in hearing improvements of children with resistance otitis media with effusion (OME) who undergo a rapid maxillary expansion (RME) procedure or ventilation tube placement. Forty-two children between 4.5 and 15 years old were divided into three groups: RME, ventilation tube, and control groups. The RME group consisted of 15 children with maxillary constriction and resistance OME that indicated ventilation tube placement. The ventilation tube group consisted of 16 children for whom ventilation tube placement was indicated but no maxillary constriction. The control group consisted of 11 children with no orthodontic and/or rhinologic problems. Hearing thresholds were evaluated with three audiometric records: (1) before RME/ventilation tube placement (T0); (2) after RME/ventilation tube placement (T1), and (3) after an observation period of 10 months (T2). The control group was matched to these periods, except T1. Hearing thresholds decreased significantly in both the RME and ventilation tube groups (P .05). Slight changes were observed in the control groups. The null hypothesis was rejected. RME showed similar effects as ventilation tube placement for release of otitis media and improvement of hearing thresholds levels. RME should be preferred as a first treatment option for children with maxillary constriction and resistance OME.

  3. Cephalometric variables used to predict the success of interceptive treatment with rapid maxillary expansion and face mask. A longitudinal study

    Directory of Open Access Journals (Sweden)

    Daniele Nóbrega Nardoni

    2015-02-01

    Full Text Available INTRODUCTION: Prognosis is the main limitation of interceptive treatment of Class III malocclusions. The interceptive procedures of rapid maxillary expansion (RME and face mask therapy performed in early mixed dentition are capable of achieving immediate overcorrection and maintenance of facial and occlusal morphology for a few years. Individuals presenting minimal acceptable faces at growth completion are potential candidates for compensatory orthodontic treatment, while those with facial involvement should be submitted to orthodontic decompensation for orthognathic surgery. OBJECTIVES: To investigate cephalometric variables that might predict the outcomes of orthopedic treatment with RME and face mask therapy (FM. METHODS: Cephalometric analysis of 26 Class III patients (mean age of 8 years and 4 months was performed at treatment onset and after a mean period of 6 years and 10 months at pubertal growth completion, including a subjective facial analysis. Patients was divided into two groups: success group (21 individuals and failure group (5 individuals. Discriminant analysis was applied to the cephalometric values at treatment onset. Two predictor variables were found by stepwise procedure. RESULTS: Orthopedic treatment of Class III malocclusion may have unfavorable prognosis at growth completion whenever initial cephalometric analysis reveals increased lower anterior facial height (LAFH combined with reduced angle between the condylar axis and the mandibular plane (CondAx.MP. CONCLUSION: The results of treatment with RME and face mask therapy at growth completion in Class III patients could be predicted with a probability of 88.5%.

  4. Denture-frame modifications in class III patients treated with rapid palatal expansion and facemask: a prospective controlled study.

    Science.gov (United States)

    Migliorati, M; Signori, A; Isaia, L; Menini, A; Rubiano, R; Aonzo, E; Silvestrini Biavati, A

    2015-06-01

    The aim of this prospective controlled investigation was to analyze the short-term cephalometric treatment outcomes, according to the denture frame analysis proposed by Sato, of rapid palatal expansion (RPE) and facial mask (FM) therapy. A group of 21 patients with Class III malocclusion treated with the RPE and FM (TG) was compared with untreated Class III controls (CG). The mean age of treatment group was 8.8 years; treatment consisted of 4 weeks of RPE activation (0.20 mm/die) followed by 14 hours wear of the FM for a mean of 333.1 days. As CG were used the data published by Tanaka and Sato. Pre- and post-treatment cephalometric values were compared and statistical analyzed with one-sample t-test. A P-value plane (POC) values some differences compared to control group were found but they were not statistically significant (P=0.067) while for aterior occlusal plane (POA) no differences where noticed. This study revealed an increase in inter-jaw angle during treatment with FM and RPE, an increase in the inclination of the posterior occlusal plane with respect to the Frankfurt plane and a posterior and lower adaptation of the mandible.

  5. Transverse effects on the nasomaxillary complex one year after rapid maxillary expansion as the only intervention: A controlled study

    Directory of Open Access Journals (Sweden)

    Carolina da Luz Baratieri

    2014-10-01

    Full Text Available The aim of this study was to assess by means of cone-beam computed tomography (CBCT scans the transverse effects on the nasomaxillary complex in patients submitted to rapid maxillary expansion (RME using Haas expander in comparison to untreated individuals. This prospective controlled clinical study assessed 30 subjects (18 boys and 12 girls with mixed dentition and during pubertal growth. The treated group was submitted to RME with Haas expander, retention for six months and a six-month follow-up after removal. The control group matched the treated group in terms of age and sex distribution. CBCT scans were taken at treatment onset and one year after the expander was activated. Maxillary first molars (U6 width, right and left U6 angulation, maxillary alveolar width, maxillary basal width, palatal alveolar width, palatal base width, right and left alveolar angulation, palatal area, nasal base width, nasal cavity width and inferior nasal cavity area on the posterior, middle and anterior coronal slices were measured with Dolphin Imaging Software(r 11.5, except for the first two variables which were performed only on the posterior slice. All transverse dimensions increased significantly (P 0.05. Results suggest that increase of molar, maxillary, palatal and nasal transverse dimensions was stable in comparison to the control group one year after treatment with RME.

  6. Characterization of Diesel and Gasoline Compression Ignition Combustion in a Rapid Compression-Expansion Machine using OH* Chemiluminescence Imaging

    Science.gov (United States)

    Krishnan, Sundar Rajan; Srinivasan, Kalyan Kumar; Stegmeir, Matthew

    2015-11-01

    Direct-injection compression ignition combustion of diesel and gasoline were studied in a rapid compression-expansion machine (RCEM) using high-speed OH* chemiluminescence imaging. The RCEM (bore = 84 mm, stroke = 110-250 mm) was used to simulate engine-like operating conditions at the start of fuel injection. The fuels were supplied by a high-pressure fuel cart with an air-over-fuel pressure amplification system capable of providing fuel injection pressures up to 2000 bar. A production diesel fuel injector was modified to provide a single fuel spray for both diesel and gasoline operation. Time-resolved combustion pressure in the RCEM was measured using a Kistler piezoelectric pressure transducer mounted on the cylinder head and the instantaneous piston displacement was measured using an inductive linear displacement sensor (0.05 mm resolution). Time-resolved, line-of-sight OH* chemiluminescence images were obtained using a Phantom V611 CMOS camera (20.9 kHz @ 512 x 512 pixel resolution, ~ 48 μs time resolution) coupled with a short wave pass filter (cut-off ~ 348 nm). The instantaneous OH* distributions, which indicate high temperature flame regions within the combustion chamber, were used to discern the characteristic differences between diesel and gasoline compression ignition combustion. The authors gratefully acknowledge facilities support for the present work from the Energy Institute at Mississippi State University.

  7. Allogenic human serum, a clinical grade serum supplement for promoting human periodontal ligament stem cell expansion.

    Science.gov (United States)

    Arpornmaeklong, Premjit; Sutthitrairong, Chotika; Jantaramanant, Piyathida; Pripatnanont, Prisana

    2016-12-13

    Exposing human periodontal ligament stem cells (hPDLSCs) to animal proteins during cell expansion would compromise quality and safety of the hPDLSCs for clinical applications. The current study aimed to evaluate the replacement of animal-based serum by human serum for the expansion of hPDLSCs. hPDLSCs were cultured in culture media supplemented with four types of serums: Group A: fetal bovine serum (FBS); Group B: allogeneic human male AB serum (HS); Group C: in-house autologous (Auto-HS); and Group D: in-house allogeneic human serums (Allo-HS). Exhibitions of mesenchymal stem cell characteristics of hPDLSCs were examined. Then, growth and osteogenic (OS) differentiation potential of hPDLSCs in FBS and HS at passages 5 and 15 were compared to investigate the effects of serum supplements on growth and expansion stability of the expanded hPDLSCs. After that, growth and OS differentiation of hPDLSCs in Auto- and Allo-HS were investigated. Flow cytometrical analyses, functional differentiations, cell growth kinetic, cytogenetic analysis, alkaline phosphatase and calcium content assays, and oil red O and von Kossa staining were performed. Results showed that at passage 5, HS promoted growth and OS differentiation of hPDLSCs and extensive cell expansion, decreased growth and differentiation potential of the expanded hPDLSCs, particularly in HS. Growth and OS differentiation of hPDLSCs in Auto-HS and Allo-HS were not different. In summary, allogeneic human serum could be a replacement to FBS for hPDLSC expansion. In vitro cell expansion of hPDLSCs should be minimal to ensure optimal cell quality. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. [The effect of two different methods of rapid maxillary expansion on treatment results of skeletal Class III malocclusion patients with maxillary protraction in early permanent dentition].

    Science.gov (United States)

    Chen, Xi-hua; Xie, Xing-qian

    2012-10-01

    To evaluate and compare the effect of single rapid maxillary expansion and repetitive rapid expansion and constriction with maxillary protraction in treating early permanent skeletal Class III patients. Twenty children with skeletal Class III malocclusion were randomly divided into two groups.Ten patients received 1 week of rapid expansion,followed by maxillary protraction(group A) and the other ten patients received 5 weeks of repetitive rapid expansion and constriction followed by maxillary protraction (group B).Cephalometric analysis was performed before and after treatment. The data was analyzed with SPSS 13.0 software package for paired t test. Significant changes in cranio-maxillofacial structures were observed in both groups after 6 months of treatment.Point A moved forward. SNA, ANB, UL-EP, U1-PP, SN-MP, ANS-Me/N-Me, Wit's value increased. L1-MP, LL-EP decreased. Significant differences were found in SNA,ANB,UL-EP between the two groups(PClass III malocclusion patients.

  9. IBO Case Report: Management of Skeletal Class III Malocclusion with Combined Rapid Maxillary Expansion: Facemask Therapy and 5-Year Follow-up

    Directory of Open Access Journals (Sweden)

    Ashok Surana

    2012-01-01

    Full Text Available This case report describes the management of skeletal Class III malocclusion with maxillary deficiency in an adolescent girl, using combined rapid maxillary expansion-facemask approach, followed by comprehensive fixed appliance mechanotherapy. Excellent long-term stability is demonstrated up to 5 years post-treatment.

  10. Rational bioprocess design for human pluripotent stem cell expansion and endoderm differentiation based on cellular dynamics.

    Science.gov (United States)

    Ungrin, Mark D; Clarke, Geoff; Yin, Ting; Niebrugge, Sylvia; Nostro, M Cristina; Sarangi, Farida; Wood, Geoffrey; Keller, Gordon; Zandstra, Peter W

    2012-04-01

    We present a predictive bioprocess design strategy employing cell- and molecular-level analysis of rate-limiting steps in human pluripotent stem cell (hPSC) expansion and differentiation, and apply it to produce definitive endoderm (DE) progenitors using a scalable directed-differentiation technology. We define a bioprocess optimization parameter (L; targeted cell Loss) and, with quantitative cell division tracking and fate monitoring, identify and overcome key suspension bioprocess bottlenecks. Adapting process operating conditions to pivotal parameters (single cell survival and growth rate) in a cell-line-specific manner enabled adherent-equivalent expansion of hPSCs in feeder- and matrix-free defined-medium suspension culture. Predominantly instructive differentiation mechanisms were found to underlie a subsequent 18-fold expansion, during directed differentiation, to high-purity DE competent for further commitment along pancreatic and hepatic lineages. This study demonstrates that iPSC expansion and differentiation conditions can be prospectively specified to guide the enhanced production of target cells in a scale-free directed differentiation system. Copyright © 2011 Wiley Periodicals, Inc.

  11. Xeno-Free Strategies for Safe Human Mesenchymal Stem/Stromal Cell Expansion: Supplements and Coatings

    Directory of Open Access Journals (Sweden)

    M. Cimino

    2017-01-01

    Full Text Available Human mesenchymal stem/stromal cells (hMSCs have generated great interest in regenerative medicine mainly due to their multidifferentiation potential and immunomodulatory role. Although hMSC can be obtained from different tissues, the number of available cells is always low for clinical applications, thus requiring in vitro expansion. Most of the current protocols for hMSC expansion make use of fetal bovine serum (FBS as a nutrient-rich supplement. However, regulatory guidelines encourage novel xeno-free alternatives to define safer and standardized protocols for hMSC expansion that preserve their intrinsic therapeutic potential. Since hMSCs are adherent cells, the attachment surface and cell-adhesive components also play a crucial role on their successful expansion. This review focuses on the advantages/disadvantages of FBS-free media and surfaces/coatings that avoid the use of animal serum, overcoming ethical issues and improving the expansion of hMSC for clinical applications in a safe and reproducible way.

  12. Mechanical feedback coordinates cell wall expansion and assembly in yeast mating morphogenesis

    Science.gov (United States)

    2018-01-01

    The shaping of individual cells requires a tight coordination of cell mechanics and growth. However, it is unclear how information about the mechanical state of the wall is relayed to the molecular processes building it, thereby enabling the coordination of cell wall expansion and assembly during morphogenesis. Combining theoretical and experimental approaches, we show that a mechanical feedback coordinating cell wall assembly and expansion is essential to sustain mating projection growth in budding yeast (Saccharomyces cerevisiae). Our theoretical results indicate that the mechanical feedback provided by the Cell Wall Integrity pathway, with cell wall stress sensors Wsc1 and Mid2 increasingly activating membrane-localized cell wall synthases Fks1/2 upon faster cell wall expansion, stabilizes mating projection growth without affecting cell shape. Experimental perturbation of the osmotic pressure and cell wall mechanics, as well as compromising the mechanical feedback through genetic deletion of the stress sensors, leads to cellular phenotypes that support the theoretical predictions. Our results indicate that while the existence of mechanical feedback is essential to stabilize mating projection growth, the shape and size of the cell are insensitive to the feedback. PMID:29346368

  13. The transcription factor lymphoid enhancer factor 1 controls invariant natural killer T cell expansion and Th2-type effector differentiation.

    Science.gov (United States)

    Carr, Tiffany; Krishnamoorthy, Veena; Yu, Shuyang; Xue, Hai-Hui; Kee, Barbara L; Verykokakis, Mihalis

    2015-05-04

    Invariant natural killer T cells (iNKT cells) are innate-like T cells that rapidly produce cytokines that impact antimicrobial immune responses, asthma, and autoimmunity. These cells acquire multiple effector fates during their thymic development that parallel those of CD4(+) T helper cells. The number of Th2-type effector iNKT cells is variable in different strains of mice, and their number impacts CD8 T, dendritic, and B cell function. Here we demonstrate a unique function for the transcription factor lymphoid enhancer factor 1 (LEF1) in the postselection expansion of iNKT cells through a direct induction of the CD127 component of the receptor for interleukin-7 (IL-7) and the transcription factor c-myc. LEF1 also directly augments expression of the effector fate-specifying transcription factor GATA3, thus promoting the development of Th2-like effector iNKT cells that produce IL-4, including those that also produce interferon-γ. Our data reveal LEF1 as a central regulator of iNKT cell number and Th2-type effector differentiation. © 2015 Carr et al.

  14. Expansion strategies for human mesenchymal stromal cells culture under xeno-free conditions.

    Science.gov (United States)

    Tozetti, Patrícia Aparecida; Caruso, Samia Rigotto; Mizukami, Amanda; Fernandes, Taisa Risque; da Silva, Fernanda Borges; Traina, Fabiola; Covas, Dimas Tadeu; Orellana, Maristela Delgado; Swiech, Kamilla

    2017-09-01

    Choosing the culture system and culture medium used to produce cells are key steps toward a safe, scalable, and cost-effective expansion bioprocess for cell therapy purposes. The use of AB human serum (AB HS) as an alternative xeno-free supplement for mesenchymal stromal cells (MSC) cultivation has increasingly gained relevance due to safety and efficiency aspects. Here we have evaluated different scalable culture systems to produce a meaningful number of umbilical cord matrix-derived MSC (UCM MSC) using AB HS for culture medium supplementation during expansion and cryopreservation to enable a xeno-free bioprocess. UCM MSC were cultured in a scalable planar (compact 10-layer flasks and roller bottles) and 3-D microcarrier-based culture systems (spinner flasks and stirred tank bioreactor). Ten layer flasks and roller bottles enabled the production of 2.6 ± 0.6 × 104 and 1.4 ± 0.3 × 104  cells/cm2 . UCM MSC-based microcarrier expansion in the stirred conditions has enabled the production of higher cell densities (5.5-23.0 × 104  cells/cm2 ) when compared to planar systems. Nevertheless, due to the moderate harvesting efficiency attained, (80% for spinner flasks and 46.6% for bioreactor) the total cell number recovered was lower than expected. Cells maintained the functional properties after expansion in all the culture systems evaluated. The cryopreservation of cells (using AB HS) was also successfully carried out. Establishing scalable xeno-free expansion processes represents an important step toward a GMP compliant large-scale production platform for MSC-based clinical applications. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1358-1367, 2017. © 2017 American Institute of Chemical Engineers.

  15. Comparison and evaluation of stresses generated by rapid maxillary expansion and the implant-supported rapid maxillary expansion on the craniofacial structures using finite element method of stress analysis.

    Science.gov (United States)

    Jain, Varun; Shyagali, Tarulatha R; Kambalyal, Prabhuraj; Rajpara, Yagnesh; Doshi, Jigar

    2017-12-01

    The study aimed to evaluate and compare the stress distribution and 3-dimensional displacements along the craniofacial sutures in between the Rapid maxillary Expansion (RME) and Implant supported RME (I-RME). METHODS: Finite element model of the skull and the implants were created using ANSYS software. The finite element model thus built composed of 537692 elements and 115694 nodes in RME model & 543078 elements and 117948 nodes with implants model. The forces were applied on the palatal surface of the posterior teeth to cause 5mm of transverse displacement on either side of the palatal halves, making it a total of 10mm. The stresses and the displacement values were obtained and interpreted. Varying pattern of stress and the displacements with both positive and negative values were seen. The maximum displacement was seen in the case of plain RME model and that too at Pterygomaxillary suture and Mid-palatal suture in descending order. In the case of I-RME maximum displacement was seen at Zygomaticomaxillary suture followed by Pterygomaxillary suture. The displacements produced in all the three planes of space for the plain RME model were greater in comparison to the Implant Supported RME model. And the stresses remained high for all the sutures in case of an I-RME. There is a definite difference in the stress and the displacement pattern produced by RME and I-RME model and each can be used according to the need of the patient. The stresses generated in case of conventional RME were considerably less than that of the I-RME for all the sutures.

  16. Microencapsulation technology: a powerful tool for integrating expansion and cryopreservation of human embryonic stem cells.

    Science.gov (United States)

    Serra, Margarida; Correia, Cláudia; Malpique, Rita; Brito, Catarina; Jensen, Janne; Bjorquist, Petter; Carrondo, Manuel J T; Alves, Paula M

    2011-01-01

    The successful implementation of human embryonic stem cells (hESCs)-based technologies requires the production of relevant numbers of well-characterized cells and their efficient long-term storage. In this study, cells were microencapsulated in alginate to develop an integrated bioprocess for expansion and cryopreservation of pluripotent hESCs. Different three-dimensional (3D) culture strategies were evaluated and compared, specifically, microencapsulation of hESCs as: i) single cells, ii) aggregates and iii) immobilized on microcarriers. In order to establish a scalable bioprocess, hESC-microcapsules were cultured in stirred tank bioreactors.The combination of microencapsulation and microcarrier technology resulted in a highly efficient protocol for the production and storage of pluripotent hESCs. This strategy ensured high expansion ratios (an approximately twenty-fold increase in cell concentration) and high cell recovery yields (>70%) after cryopreservation. When compared with non-encapsulated cells, cell survival post-thawing demonstrated a three-fold improvement without compromising hESC characteristics.Microencapsulation also improved the culture of hESC aggregates by protecting cells from hydrodynamic shear stress, controlling aggregate size and maintaining cell pluripotency for two weeks.This work establishes that microencapsulation technology may prove a powerful tool for integrating the expansion and cryopreservation of pluripotent hESCs. The 3D culture strategy developed herein represents a significant breakthrough towards the implementation of hESCs in clinical and industrial applications.

  17. Microencapsulation technology: a powerful tool for integrating expansion and cryopreservation of human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Margarida Serra

    Full Text Available The successful implementation of human embryonic stem cells (hESCs-based technologies requires the production of relevant numbers of well-characterized cells and their efficient long-term storage. In this study, cells were microencapsulated in alginate to develop an integrated bioprocess for expansion and cryopreservation of pluripotent hESCs. Different three-dimensional (3D culture strategies were evaluated and compared, specifically, microencapsulation of hESCs as: i single cells, ii aggregates and iii immobilized on microcarriers. In order to establish a scalable bioprocess, hESC-microcapsules were cultured in stirred tank bioreactors.The combination of microencapsulation and microcarrier technology resulted in a highly efficient protocol for the production and storage of pluripotent hESCs. This strategy ensured high expansion ratios (an approximately twenty-fold increase in cell concentration and high cell recovery yields (>70% after cryopreservation. When compared with non-encapsulated cells, cell survival post-thawing demonstrated a three-fold improvement without compromising hESC characteristics.Microencapsulation also improved the culture of hESC aggregates by protecting cells from hydrodynamic shear stress, controlling aggregate size and maintaining cell pluripotency for two weeks.This work establishes that microencapsulation technology may prove a powerful tool for integrating the expansion and cryopreservation of pluripotent hESCs. The 3D culture strategy developed herein represents a significant breakthrough towards the implementation of hESCs in clinical and industrial applications.

  18. Microencapsulation Technology: A Powerful Tool for Integrating Expansion and Cryopreservation of Human Embryonic Stem Cells

    Science.gov (United States)

    Malpique, Rita; Brito, Catarina; Jensen, Janne; Bjorquist, Petter; Carrondo, Manuel J. T.; Alves, Paula M.

    2011-01-01

    The successful implementation of human embryonic stem cells (hESCs)-based technologies requires the production of relevant numbers of well-characterized cells and their efficient long-term storage. In this study, cells were microencapsulated in alginate to develop an integrated bioprocess for expansion and cryopreservation of pluripotent hESCs. Different three-dimensional (3D) culture strategies were evaluated and compared, specifically, microencapsulation of hESCs as: i) single cells, ii) aggregates and iii) immobilized on microcarriers. In order to establish a scalable bioprocess, hESC-microcapsules were cultured in stirred tank bioreactors. The combination of microencapsulation and microcarrier technology resulted in a highly efficient protocol for the production and storage of pluripotent hESCs. This strategy ensured high expansion ratios (an approximately twenty-fold increase in cell concentration) and high cell recovery yields (>70%) after cryopreservation. When compared with non-encapsulated cells, cell survival post-thawing demonstrated a three-fold improvement without compromising hESC characteristics. Microencapsulation also improved the culture of hESC aggregates by protecting cells from hydrodynamic shear stress, controlling aggregate size and maintaining cell pluripotency for two weeks. This work establishes that microencapsulation technology may prove a powerful tool for integrating the expansion and cryopreservation of pluripotent hESCs. The 3D culture strategy developed herein represents a significant breakthrough towards the implementation of hESCs in clinical and industrial applications. PMID:21850261

  19. Sorting and expansion of murine embryonic stem cell colonies using micropallet arrays.

    Science.gov (United States)

    Shadpour, Hamed; Sims, Christopher E; Thresher, Randy J; Allbritton, Nancy L

    2009-02-01

    Isolation of cell colonies is an essential task in most stem cell studies. Conventional techniques for colony selection and isolation require significant time, labor, and consumption of expensive reagents. New microengineered technologies hold the promise for improving colony manipulation by reducing the required manpower and reagent consumption. Murine embryonic stem cells were cultured on arrays composed of releasable elements termed micropallets created from a biocompatible photoresist. Micropallets containing undifferentiated colonies were released using a laser-based technique followed by cell collection and expansion in culture. The micropallet arrays provided a biocompatible substrate for maintaining undifferentiated murine stem cells in culture. A surface coating of 0.025% gelatin was shown to be optimal for cell culture and collection. Arrays composed of surface-roughened micropallets provided further improvements in culture and isolation. Colonies of viable stem cells were efficiently isolated and collected. Colonies sorted in this manner were shown to remain undifferentiated even after collection and further expansion in culture. Qualitative and quantitative analyses of sorting, collection efficiency, and cell viability after release and expansion of stem cell colonies demonstrated that the micropallet array technology is a promising alternative to conventional sorting methods for stem cell applications. Copyright 2008 International Society for Advancement of Cytometry

  20. Safety and efficient ex vivo expansion of stem cells using platelet-rich plasma technology.

    Science.gov (United States)

    Anitua, Eduardo; Prado, Roberto; Orive, Gorka

    2013-09-01

    The goal of this Review is to provide an overview of the cell culture media supplements used in the ex vivo expansion of stem cells intended for cell therapy. Currently, the gold standard is the culture supplemented with fetal bovine serum, however, their use in cell therapy raises many concerns. The alternatives to its use are presented, ranging from the use of human serum to platelet-rich plasma (PRP), to serum-free media or extracellular matrix components. Finally, various growth factors present in PRP are described, which make it a safe and effective stem cell expansion supplement. These growth factors could be responsible for their efficiency, as they increase both stem cell proliferation and survival. The different PRP formulations are also discussed, as well as the need for protocol standardization.

  1. Robust Expansion of Human Pluripotent Stem Cells: Integration of Bioprocess Design With Transcriptomic and Metabolomic Characterization.

    Science.gov (United States)

    Silva, Marta M; Rodrigues, Ana F; Correia, Cláudia; Sousa, Marcos F Q; Brito, Catarina; Coroadinha, Ana S; Serra, Margarida; Alves, Paula M

    2015-07-01

    : Human embryonic stem cells (hESCs) have an enormous potential as a source for cell replacement therapies, tissue engineering, and in vitro toxicology applications. The lack of standardized and robust bioprocesses for hESC expansion has hindered the application of hESCs and their derivatives in clinical settings. We developed a robust and well-characterized bioprocess for hESC expansion under fully defined conditions and explored the potential of transcriptomic and metabolomic tools for a more comprehensive assessment of culture system impact on cell proliferation, metabolism, and phenotype. Two different hESC lines (feeder-dependent and feeder-free lines) were efficiently expanded on xeno-free microcarriers in stirred culture systems. Both hESC lines maintained the expression of stemness markers such as Oct-4, Nanog, SSEA-4, and TRA1-60 and the ability to spontaneously differentiate into the three germ layers. Whole-genome transcriptome profiling revealed a phenotypic convergence between both hESC lines along the expansion process in stirred-tank bioreactor cultures, providing strong evidence of the robustness of the cultivation process to homogenize cellular phenotype. Under low-oxygen tension, results showed metabolic rearrangement with upregulation of the glycolytic machinery favoring an anaerobic glycolysis Warburg-effect-like phenotype, with no evidence of hypoxic stress response, in contrast to two-dimensional culture. Overall, we report a standardized expansion bioprocess that can guarantee maximal product quality. Furthermore, the "omics" tools used provided relevant findings on the physiological and metabolic changes during hESC expansion in environmentally controlled stirred-tank bioreactors, which can contribute to improved scale-up production systems. The clinical application of human pluripotent stem cells (hPSCs) has been hindered by the lack of robust protocols able to sustain production of high cell numbers, as required for regenerative medicine

  2. Co-precipitation of ettringite of rapid and slow formation. Consequence: Expansive Synergic Effect. Its demonstration by mortars and concretes

    Directory of Open Access Journals (Sweden)

    Talero, R.

    2011-09-01

    Full Text Available Several prior papers have shown that enough pozzolans can bring about rapid formation ettringite (from its Al2O3r-. It has likewise been found that the formation rate of this ettringite is higher than the of slower forming ettringite originating from OPC (from its C3A. In this context: What type of effect will they ultimately produce? Addition? Synergism? Antagonism? or perhaps Inversion of final expansive action?. To reply to these questions, 4 PC and 12 blended cements containing 20%, 30% or 40% metakaolin, were tested using the ASTM C 452-68, EN 196-1 and RT-86:ΔL tests and also concrete specimens. The experimental results have shows that the joint precipitation in a common sulfate medium, of ettringite from pozzolan and from OPC, was always more synergic than additive, and the technical consequences of the Expansive Synergic Effect may be classified as beneficial, adverse or indifferent according to its sulfates content in excess is more or less adequate.En investigaciones anteriores se ha demostrado que bastantes puzolanas pueden originar ettringita de rápida formación (de su Al2O3r- cuya velocidad es mayor que la de la ettringita de lenta formación, o de origen CPO (de su C3A. En este contexto: ¿qué tipo de efecto será el que produzcan finalmente ambas ettringitas?, ¿adición?, ¿sinergismo?, ¿antagonismo? o ¿inversión de la acción expansiva?. Para responder a estas cuestiones, 4 CPO y 12 cementos con 20%, 30% y 40% de metakaolín fueron ensayados mediante los métodos ASTM C 452-68, EN 196-1 y RT-86:ΔL, y también mediante hormigones. Los resultados obtenidos han demostrado que la precipitación conjunta en un medio selenitoso común, de ettringita de origen puzolana y de origen CPO, es siempre cuantitativamente hablando, más que aditiva, sinérgica, pudiendo ser por ello las consecuencias técnicas del Efecto Sinérgico Expansivo, beneficiosas, adversas o indiferentes, según que el exceso de sulfatos presentes sea más o

  3. Clonal expansion of renal cell carcinoma-infiltrating T lymphocytes

    DEFF Research Database (Denmark)

    Sittig, Simone; Køllgaard, Tania; Grønbæk, Kirsten

    2013-01-01

    in the range of 1-17 (median = 5), and in several patients, the number of clonotypes expanded within tumor lesions resembled that observed among autologous peripheral blood mononuclear cells. Moreover, several of these clonotypes were identical in TILs and PBMCs. Flow cytometry data demonstrated...

  4. Planar cell polarity-mediated induction of neural stem cell expansion during axolotl spinal cord regeneration

    Science.gov (United States)

    Rost, Fabian; Nowoshilow, Sergej; Chara, Osvaldo; Tanaka, Elly M

    2015-01-01

    Axolotls are uniquely able to mobilize neural stem cells to regenerate all missing regions of the spinal cord. How a neural stem cell under homeostasis converts after injury to a highly regenerative cell remains unknown. Here, we show that during regeneration, axolotl neural stem cells repress neurogenic genes and reactivate a transcriptional program similar to embryonic neuroepithelial cells. This dedifferentiation includes the acquisition of rapid cell cycles, the switch from neurogenic to proliferative divisions, and the re-expression of planar cell polarity (PCP) pathway components. We show that PCP induction is essential to reorient mitotic spindles along the anterior-posterior axis of elongation, and orthogonal to the cell apical-basal axis. Disruption of this property results in premature neurogenesis and halts regeneration. Our findings reveal a key role for PCP in coordinating the morphogenesis of spinal cord outgrowth with the switch from a homeostatic to a regenerative stem cell that restores missing tissue. DOI: http://dx.doi.org/10.7554/eLife.10230.001 PMID:26568310

  5. A TNFR2-Agonist Facilitates High Purity Expansion of Human Low Purity Treg Cells.

    Directory of Open Access Journals (Sweden)

    Xuehui He

    Full Text Available Regulatory T cells (Treg are important for immune homeostasis and are considered of great interest for immunotherapy. The paucity of Treg numbers requires the need for ex vivo expansion. Although therapeutic Treg flow-sorting is feasible, most centers aiming at Treg-based therapy focus on magnetic bead isolation of CD4+CD25+ Treg using a good manufacturing practice compliant closed system that achieves lower levels of cell purity. Polyclonal Treg expansion protocols commonly use anti-CD3 plus anti-CD28 monoclonal antibody (mAb stimulation in the presence of rhIL-2, with or without rapamycin. However, the resultant Treg population is often heterogeneous and pro-inflammatory cytokines like IFNγ and IL-17A can be produced. Hence, it is crucial to search for expansion protocols that not only maximize ex vivo Treg proliferative rates, but also maintain Treg stability and preserve their suppressive function. Here, we show that ex vivo expansion of low purity magnetic bead isolated Treg in the presence of a TNFR2 agonist mAb (TNFR2-agonist together with rapamycin, results in a homogenous stable suppressive Treg population that expresses FOXP3 and Helios, shows low expression of CD127 and hypo-methylation of the FOXP3 gene. These cells reveal a low IL-17A and IFNγ producing potential and hardly express the chemokine receptors CCR6, CCR7 and CXCR3. Restimulation of cells in a pro-inflammatory environment did not break the stability of this Treg population. In a preclinical humanized mouse model, the TNFR2-agonist plus rapamycin expanded Treg suppressed inflammation in vivo. Importantly, this Treg expansion protocol enables the use of less pure, but more easily obtainable cell fractions, as similar outcomes were observed using either FACS-sorted or MACS-isolated Treg. Therefore, this protocol is of great interest for the ex vivo expansion of Treg for clinical immunotherapy.

  6. Rapid magnetic cell delivery for large tubular bioengineered constructs.

    Science.gov (United States)

    Gonzalez-Molina, J; Riegler, J; Southern, P; Ortega, D; Frangos, C C; Angelopoulos, Y; Husain, S; Lythgoe, M F; Pankhurst, Q A; Day, R M

    2012-11-07

    Delivery of cells into tubular tissue constructs with large diameters poses significant spatial and temporal challenges. This study describes preliminary findings for a novel process for rapid and uniform seeding of cells onto the luminal surface of large tubular constructs. Fibroblasts, tagged with superparamagnetic iron oxide nanoparticles (SPION), were directed onto the luminal surface of tubular constructs by a magnetic field generated by a k4-type Halbach cylinder device. The spatial distribution of attached cells, as measured by the mean number of cells, was compared with a conventional, dynamic, rotational cell-delivery technique. Cell loading onto the constructs was measured by microscopy and magnetic resonance imaging. The different seeding techniques employed had a significant effect on the spatial distribution of the cells (p same construct was significantly different for the dynamic rotation technique (p delivery techniques and is amenable to a variety of tubular organs where rapid loading and uniform distribution of cells for therapeutic applications are required.

  7. Primary cutaneous T cell lymphomas: photochemotherapy immunomodulation with analysis of the inflammatory-expansive cellular dynamic.

    Science.gov (United States)

    Werber-Bandeira, Luiz; Herdy, Ana Maria; Pagani, Evilmara Adelia; Filgueira, Absalom Lima

    2014-01-01

    Primary cutaneous T cell lymphomas (CTCLs) are characterized by hyperproliferation of malignant CD4+ T cells with primary localization on the skin. The common characteristics are the migration of the malignant mature T-lymphocytes into the epidermis, with hyperproliferation of malignant CD4+ T cells and epidermotropism. Sézary syndrome (SS) is the leukemic variant. It was established that CTCLs arise from a clonal expansion of CD4+ T cells with an identical rearrangement of the T cell receptor. The purpose of this study was to evaluate the immunomodulation effect of photochemotherapy-A (psoralen plus ultraviolet A (PUVA)). Pre- and post-PUVA punch skin biopsies of nine patients were stained immunohistochemically for CD34+, CD8+, CD7+, CD16+, CD56+, CD1a+, Bcl2+, p53+, CD45RA+, and CD45RO+ cells. The results showed a pre-PUVA cells/mm(2) without significant difference among expansive or reactive cells. Post-PUVA analysis showed a significant decrease in the mean of expansive-reactive cells. PUVA immunomodulated decreasing cellular infiltrate. These findings could contribute to the comprehension of how PUVA acts. We achieved ectoscopic clearance of the lesions, although post-PUVA, there still was a mononuclear pathological infiltrate. This result demonstrates that the PUVA treatment should only be withheld when the histological analysis is normal. © 2013 Wiley Periodicals, Inc.

  8. Purification and Ex Vivo Expansion of Fully Functional Salivary Gland Stem Cells

    Directory of Open Access Journals (Sweden)

    Lalitha S.Y. Nanduri

    2014-12-01

    Full Text Available Hyposalivation often leads to irreversible and untreatable xerostomia. Salivary gland (SG stem cell therapy is an attractive putative option to salvage these patients but is impeded by the limited availability of adult human tissue. Here, using murine SG cells, we demonstrate single-cell self-renewal, differentiation, enrichment of SG stem cells, and robust in vitro expansion. Dependent on stem cell marker expression, SG sphere-derived single cells could be differentiated in vitro into distinct lobular or ductal/lobular organoids, suggestive of progenitor or stem cell potency. Expanded cells were able to form miniglands/organoids containing multiple SG cell lineages. Expansion of these multipotent cells through serial passaging resulted in selection of a cell population, homogenous for stem cell marker expression (CD24hi/CD29hi. Cells highly expressing CD24 and CD29 could be prospectively isolated and were able to efficiently restore radiation-damaged SG function. Our approach will facilitate the use of adult SG stem cells for a variety of scientific and therapeutic purposes.

  9. Is alternate rapid maxillary expansion and constriction an effective protocol in the treatment of Class III malocclusion? A systematic review.

    Science.gov (United States)

    Pithon, Matheus Melo; Santos, Nathalia de Lima; Santos, Camila Rangel Barreto Dos; Baião, Felipe Carvalho Souza; Pinheiro, Murilo Costa Rangel; Matos, Manoel; Souza, Ianderlei Andrade; Paula, Rafael Pereira de

    2016-01-01

    the treatment of Class III malocclusion in early age is one of the greatest challenges for orthodontists, and the establishment of more effective treatment method is a constant concern for these professionals. Thus, the objective of this systematic review is to verify the effectiveness of the therapy protocol for alternate rapid maxillary expansion and constriction (Alt-RAMEC) in the early treatment of Class III malocclusion. searches were performed in the following electronic databases: Cochrane Library, Medline (EBSCO and PubMed), SciELO, LILACS and Scopus. The following inclusion criteria were used: in vivo studies conducted with early intervention (patient in craniofacial development phase) with the use of the Alt-RAMEC protocol. Reviews, case reports, editorials, and studies with syndromic patients or under use of systemic drug were excluded. Duplicates were also excluded. The studies were assessed for methodological quality using the Cochrane tool for assessment of risk of bias, and classified as high or low risk of bias. 53 articles were found. Duplicates exclusion was thus performed and 35 articles remained. After inclusion analysis, only 5 matched the criteria. Two articles were classified as low risk of bias and three as high risk of bias. It was observed that the Alt-RAMEC enable protraction in less time and with better results, promoting greater effectiveness in the protraction treatment of Class III malocclusion. Although there is positive evidence of the effectiveness of early treatment with the Alt-RAMEC protocol in patients with Class III malocclusion, further studies are needed to confirm its effectiveness using long-term methodology.

  10. Radiation Driven Instability of Rapidly Rotating Relativistic Stars: Criterion and Evolution Equations Via Multipolar Expansion of Gravitational Waves

    Science.gov (United States)

    Chugunov, A. I.

    2017-10-01

    I suggest a novel approach for deriving evolution equations for rapidly rotating relativistic stars affected by radiation-driven Chandrasekhar-Friedman-Schutz instability. This approach is based on the multipolar expansion of gravitational wave emission and appeals to the global physical properties of the star (energy, angular momentum, and thermal state), but not to canonical energy and angular momentum, which is traditional. It leads to simple derivation of the Chandrasekhar-Friedman-Schutz instability criterion for normal modes and the evolution equations for a star, affected by this instability. The approach also gives a precise form to simple explanation of the Chandrasekhar-Friedman-Schutz instability; it occurs when two conditions are met: (a) gravitational wave emission removes angular momentum from the rotating star (thus releasing the rotation energy) and (b) gravitational waves carry less energy, than the released amount of the rotation energy. To illustrate the results, I take the r-mode instability in slowly rotating Newtonian stellar models as an example. It leads to evolution equations, where the emission of gravitational waves directly affects the spin frequency, being in apparent contradiction with widely accepted equations. According to the latter, effective spin frequency decrease is coupled with dissipation of unstable mode, but not with the instability as it is. This problem is shown to be superficial, and arises as a result of specific definition of the effective spin frequency applied previously. Namely, it is shown, that if this definition is taken into account properly, the evolution equations coincide with obtained here in the leading order in mode amplitude. I also argue that the next-to-leading order terms in evolution equations were not yet derived accurately and thus it would be more self-consistent to omit them.

  11. Three-dimensional analysis of maxillary changes associated with facemask and rapid maxillary expansion compared with bone anchored maxillary protraction.

    Science.gov (United States)

    Hino, Claudia Toyama; Cevidanes, Lucia H S; Nguyen, Tung T; De Clerck, Hugo J; Franchi, Lorenzo; McNamara, James A

    2013-11-01

    Our objectives in this study were to evaluate in 3 dimensions the growth and treatment effects on the midface and the maxillary dentition produced by facemask therapy in association with rapid maxillary expansion (RME/FM) compared with bone-anchored maxillary protraction (BAMP). Forty-six patients with Class III malocclusion were treated with either RME/FM (n = 21) or BAMP (n = 25). Three-dimensional models generated from cone-beam computed tomographic scans, taken before and after approximately 1 year of treatment, were registered on the anterior cranial base and measured using color-coded maps and semitransparent overlays. The skeletal changes in the maxilla and the right and left zygomas were on average 2.6 mm in the RME/FM group and 3.7 mm in the BAMP group; these were different statistically. Seven RME/FM patients and 4 BAMP patients had a predominantly vertical displacement of the maxilla. The dental changes at the maxillary incisors were on average 3.2 mm in the RME/FM group and 4.3 mm in the BAMP group. Ten RME/FM patients had greater dental compensations than skeletal changes. This 3-dimensional study shows that orthopedic changes can be obtained with both RME/FM and BAMP treatments, with protraction of the maxilla and the zygomas. Approximately half of the RME/FM patients had greater dental than skeletal changes, and a third of the RME/FM compared with 17% of the BAMP patients had a predominantly vertical maxillary displacement. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  12. Improving Class II malocclusion as a side-effect of rapid maxillary expansion: a prospective clinical study.

    Science.gov (United States)

    Guest, Susan S; McNamara, James A; Baccetti, Tiziano; Franchi, Lorenzo

    2010-11-01

    The objective of this prospective clinical study was to evaluate the dentoalveolar and skeletal effects induced by rapid maxillary expansion (RME) therapy in mixed dentition patients with Class II Division 1 malocclusion compared with a matched untreated Class II Division 1 control group. The treatment sample consisted of cephalometric records of 50 patients with Class II malocclusion (19 boys, 31 girls) treated with an RME protocol including an acrylic splint expander. Some patients also had a removable mandibular Schwarz appliance or maxillary incisor bracketing as part of their treatment protocol. Postexpansion, the patients were stabilized with a removable maintenance plate or a transpalatal arch. The mean age at the start of treatment of the RME group was 8.8 years (T1), with a prephase 2 treatment cephalogram (T2) taken 4.0 years later. The control sample, derived from the records of 3 longitudinal growth studies, consisted of the cephalometric records of 50 Class II subjects (28 boys, 22 girls). The mean age of initial observation for the control group was 8.9 years, and the mean interval of observation was 4.1 years. All subjects in both groups were prepubertal at T1 and showed comparable prevalence rates for prepubertal or postpubertal stages at T2. Independent-sample Student t tests were used to examine between-group differences. Class II patients treated with the described bonded RME protocol showed statistically significant increases in mandibular length and advancement of pogonion relative to nasion perpendicular. The acrylic splint RME had significant effects on the anteroposterior relationship of the maxilla and the mandible, as shown by the improvements toward Class I in the maxillomandibular differential value, the Wits appraisal value, and the ANB angle. Patients treated with the bonded RME showed the greatest effects of therapy at the occlusal level, specifically highly significant improvement of Class II molar relationship and decrease in

  13. Cyclin D3 is selectively required for proliferative expansion of germinal center B cells.

    Science.gov (United States)

    Cato, Matthew H; Chintalapati, Suresh K; Yau, Irene W; Omori, Sidne A; Rickert, Robert C

    2011-01-01

    The generation of robust T-cell-dependent humoral immune responses requires the formation and expansion of germinal center structures within the follicular regions of the secondary lymphoid tissues. B-cell proliferation in the germinal center drives ongoing antigen-dependent selection and the generation of high-affinity class-switched plasma and memory B cells. However, the mechanisms regulating B-cell proliferation within this microenvironment are largely unknown. Here, we report that cyclin D3 is uniquely required for germinal center progression. Ccnd3(-/-) mice exhibit a B-cell-intrinsic defect in germinal center maturation and fail to generate an affinity-matured IgG response. We determined that the defect resulted from failed proliferative expansion of GL7(+) IgD(-) PNA(+) B cells. Mechanistically, sustained expression of cyclin D3 was found to be regulated at the level of protein stability and controlled by glycogen synthase kinase 3 in a cyclic AMP-protein kinase A-dependent manner. The specific defect in proliferative expansion of GL7(+) IgD(-) PNA(+) B cells in Ccnd3(-/-) mice defines an underappreciated step in germinal center progression and solidifies a role for cyclin D3 in the immune response, and as a potential therapeutic target for germinal center-derived B-cell malignancies.

  14. Incorporation of a hinge domain improves the expansion of chimeric antigen receptor T cells

    Directory of Open Access Journals (Sweden)

    Le Qin

    2017-03-01

    Full Text Available Abstract Background Multiple iterations of chimeric antigen receptors (CARs have been developed, mainly focusing on intracellular signaling modules. However, the effect of non-signaling extracellular modules on the expansion and therapeutic efficacy of CARs remains largely undefined. Methods We generated two versions of CAR vectors, with or without a hinge domain, targeting CD19, mesothelin, PSCA, MUC1, and HER2, respectively. Then, we systematically compared the effect of the hinge domains on the growth kinetics, cytokine production, and cytotoxicity of CAR T cells in vitro and in vivo. Results During in vitro culture period, the percentages and absolute numbers of T cells expressing the CARs containing a hinge domain continuously increased, mainly through the promotion of CD4+ CAR T cell expansion, regardless of the single-chain variable fragment (scFv. In vitro migration assay showed that the hinges enhanced CAR T cells migratory capacity. The T cells expressing anti-CD19 CARs with or without a hinge had similar antitumor capacities in vivo, whereas the T cells expressing anti-mesothelin CARs containing a hinge domain showed enhanced antitumor activities. Conclusions Hence, our results demonstrate that a hinge contributes to CAR T cell expansion and is capable of increasing the antitumor efficacy of some specific CAR T cells. Our results suggest potential novel strategies in CAR vector design.

  15. Mesangial Cell Mammalian Target of Rapamycin Complex 1 Activation Results in Mesangial Expansion.

    Science.gov (United States)

    Nagai, Kojiro; Tominaga, Tatsuya; Ueda, Sayo; Shibata, Eriko; Tamaki, Masanori; Matsuura, Motokazu; Kishi, Seiji; Murakami, Taichi; Moriya, Tatsumi; Abe, Hideharu; Doi, Toshio

    2017-10-01

    Human glomerular diseases can be caused by several different diseases, many of which include mesangial expansion and/or proliferation followed by glomerulosclerosis. However, molecular mechanisms underlying the pathologic mesangial changes remain poorly understood. Here, we investigated the role of the mammalian target of rapamycin complex 1 (mTORC1)-S6 kinase pathway in mesangial expansion and/or proliferation by ablating an upstream negative regulator, tuberous sclerosis complex 1 (TSC1), using tamoxifen-induced Foxd1-Cre mice [Foxd1ER(+) TSC1 mice]. Foxd1ER(+) TSC1 mice showed mesangial expansion with increased production of collagen IV, collagen I, and α-smooth muscle actin in glomeruli, but did not exhibit significant mesangial proliferation or albuminuria. Furthermore, rapamycin treatment of Foxd1ER(+) TSC1 mice suppressed mesangial expansion. Among biopsy specimens from patients with glomerular diseases, analysis of phosphorylated ribosomal protein S6 revealed mesangial cell mTORC1 activation in IgA nephropathy and in lupus mesangial proliferative nephritis but not in the early phase of diabetic nephropathy. In summary, mesangial cell mTORC1 activation can cause mesangial expansion and has clinical relevance for human glomerular diseases. This report also confirms that the tamoxifen-induced mesangium-specific Cre-loxP system is useful for studies designed to clarify the role of the mesangium in glomerular diseases in adults. Copyright © 2017 by the American Society of Nephrology.

  16. Effect of the laser and light-emitting diode (LED) phototherapy on midpalatal suture bone formation after rapid maxilla expansion: a Raman spectroscopy analysis.

    Science.gov (United States)

    Rosa, Cristiane Becher; Habib, Fernando Antonio Lima; de Araújo, Telma Martins; Aragão, Juliana Silveira; Gomes, Rafael Soares; Barbosa, Artur Felipe Santos; Silveira, Landulfo; Pinheiro, Antonio L B

    2014-05-01

    The aim of this study was to analyze the effect of laser or light-emitting diode (LED) phototherapy on the bone formation at the midpalatal suture after rapid maxilla expansion. Twenty young adult male rats were divided into four groups with 8 days of experimental time: group 1, no treatment; group 2, expansion; group 3, expansion and laser irradiation; and group 4, expansion and LED irradiation. In groups 3 and 4, light irradiation was in the first, third, and fifth experimental days. In all groups, the expansion was accomplished with a helicoid 0.020" stainless steel orthodontic spring. A diode laser (λ780 nm, 70 mW, spot of 0.04 cm(2), t = 257 s, spatial average energy fluence (SAEF) of 18 J/cm(2)) or a LED (λ850 nm, 150 mW ± 10 mW, spot of 0.5 cm(2), t = 120 s, SAEF of 18 J/cm(2)) were used. The samples were analyzed by Raman spectroscopy carried out at midpalatal suture and at the cortical area close to the suture. Two Raman shifts were analyzed: ∼ 960 (phosphate hydroxyapatite) and ∼ 1,450 cm(-1) (lipids and protein). Data was submitted to statistical analysis. Significant statistical difference (p ≤ 0.05) was found in the hydroxyapatite (CHA) peaks among the expansion group and the expansion and laser or LED groups. The LED group presented higher mean peak values of CHA. No statistical differences were found between the treated groups as for collagen deposition, although LED also presented higher mean peak values. The results of this study using Raman spectral analysis indicate that laser and LED light irradiation improves deposition of CHA in the midpalatal suture after orthopedic expansion.

  17. Culture expansion of adipose derived stromal cells. A closed automated Quantum Cell Expansion System compared with manual flask-based culture.

    Science.gov (United States)

    Haack-Sørensen, Mandana; Follin, Bjarke; Juhl, Morten; Brorsen, Sonja K; Søndergaard, Rebekka H; Kastrup, Jens; Ekblond, Annette

    2016-11-16

    Adipose derived stromal cells (ASCs) are a rich and convenient source of cells for clinical regenerative therapeutic approaches. However, applications of ASCs often require cell expansion to reach the needed dose. In this study, cultivation of ASCs from stromal vascular fraction (SVF) over two passages in the automated and functionally closed Quantum Cell Expansion System (Quantum system) is compared with traditional manual cultivation. Stromal vascular fraction was isolated from abdominal fat, suspended in α-MEM supplemented with 10% Fetal Bovine Serum and seeded into either T75 flasks or a Quantum system that had been coated with cryoprecipitate. The cultivation of ASCs from SVF was performed in 3 ways: flask to flask; flask to Quantum system; and Quantum system to Quantum system. In all cases, quality controls were conducted for sterility, mycoplasmas, and endotoxins, in addition to the assessment of cell counts, viability, immunophenotype, and differentiation potential. The viability of ASCs passage 0 (P0) and P1 was above 96%, regardless of cultivation in flasks or Quantum system. Expression of surface markers and differentiation potential was consistent with ISCT/IFATS standards for the ASC phenotype. Sterility, mycoplasma, and endotoxin tests were consistently negative. An average of 8.0 × 107 SVF cells loaded into a Quantum system yielded 8.96 × 107 ASCs P0, while 4.5 × 106 SVF cells seeded per T75 flask yielded an average of 2.37 × 106 ASCs-less than the number of SVF cells seeded. ASCs P1 expanded in the Quantum system demonstrated a population doubling (PD) around 2.2 regardless of whether P0 was previously cultured in flasks or Quantum, while ASCs P1 in flasks only reached a PD of 1.0. Manufacturing of ASCs in a Quantum system enhances ASC expansion rate and yield significantly relative to manual processing in T-flasks, while maintaining the purity and quality essential to safe and robust cell production. Notably, the use of the Quantum

  18. Culture expansion of adipose derived stromal cells. A closed automated Quantum Cell Expansion System compared with manual flask-based culture

    Directory of Open Access Journals (Sweden)

    Mandana Haack-Sørensen

    2016-11-01

    Full Text Available Abstract Background Adipose derived stromal cells (ASCs are a rich and convenient source of cells for clinical regenerative therapeutic approaches. However, applications of ASCs often require cell expansion to reach the needed dose. In this study, cultivation of ASCs from stromal vascular fraction (SVF over two passages in the automated and functionally closed Quantum Cell Expansion System (Quantum system is compared with traditional manual cultivation. Methods Stromal vascular fraction was isolated from abdominal fat, suspended in α-MEM supplemented with 10% Fetal Bovine Serum and seeded into either T75 flasks or a Quantum system that had been coated with cryoprecipitate. The cultivation of ASCs from SVF was performed in 3 ways: flask to flask; flask to Quantum system; and Quantum system to Quantum system. In all cases, quality controls were conducted for sterility, mycoplasmas, and endotoxins, in addition to the assessment of cell counts, viability, immunophenotype, and differentiation potential. Results The viability of ASCs passage 0 (P0 and P1 was above 96%, regardless of cultivation in flasks or Quantum system. Expression of surface markers and differentiation potential was consistent with ISCT/IFATS standards for the ASC phenotype. Sterility, mycoplasma, and endotoxin tests were consistently negative. An average of 8.0 × 107 SVF cells loaded into a Quantum system yielded 8.96 × 107 ASCs P0, while 4.5 × 106 SVF cells seeded per T75 flask yielded an average of 2.37 × 106 ASCs—less than the number of SVF cells seeded. ASCs P1 expanded in the Quantum system demonstrated a population doubling (PD around 2.2 regardless of whether P0 was previously cultured in flasks or Quantum, while ASCs P1 in flasks only reached a PD of 1.0. Conclusion: Manufacturing of ASCs in a Quantum system enhances ASC expansion rate and yield significantly relative to manual processing in T-flasks, while maintaining the purity and quality essential to

  19. Plume expansion of a laser-induced plasma studied with the particle-in-cell method

    DEFF Research Database (Denmark)

    Ellegaard, Ole; Nedela, T; Urbassek, H

    2002-01-01

     The initial stage of laser-induced plasma plume expansion from a solid in vacuum and the effect of the Coulomb field have been studied. We have performed a one-dimensional numerical calculation by mapping the charge on a computational grid according to the particle-in-cell (PIC) method of Birdsall...

  20. Plume expansion of a laser-induced plasma studied with the particle-in-cell method

    DEFF Research Database (Denmark)

    Ellegaard, O.; Nedelea, T.; Schou, Jørgen

    2002-01-01

    The initial stage of laser-induced plasma plume expansion from a solid in vacuum and the effect of the Coulomb field have been studied. We have performed a one-dimensional numerical calculation by mapping the charge on a computational grid according to the particle-in-cell (PIC) method of Birdsall...

  1. An in vitro model of intra-epithelial expansion of transformed urothelial cells

    NARCIS (Netherlands)

    Rebel, J.M.J.; Boer, de W.I.; Thijssen, C.D.; Vermey, M.; Zwarthoff, E.C.; Kwast, van der T.H.

    1993-01-01

    Replacement of normal urothelium by pre-cancerous epithelium may explain the high recurrence rate of human bladder cancer. An in vitro model was designed in order to study the mechanisms of expansion of transformed urothelial cells at the expense of normal urothelium. For this purpose, mouse bladder

  2. Early exposure to interleukin-21 limits rapidly generated anti-Epstein-Barr virus T-cell line differentiation.

    Science.gov (United States)

    Orio, Julie; Carli, Cédric; Janelle, Valérie; Giroux, Martin; Taillefer, Julie; Goupil, Mathieu; Richaud, Manon; Roy, Denis-Claude; Delisle, Jean-Sébastien

    2015-04-01

    The adoptive transfer of ex vivo-expanded Epstein-Barr virus (EBV)-specific T-cell lines is an attractive strategy to treat EBV-related neoplasms. Current evidence suggests that for adoptive immunotherapy in general, clinical responses are superior if the transferred cells have not reached a late or terminal effector differentiation phenotype before infusion. The cytokine interleukin (IL)-21 has shown great promise at limiting late T-cell differentiation in vitro, but this remains to be demonstrated in anti-viral T-cell lines. We adapted a clinically validated protocol to rapidly generate EBV-specific T-cell lines in 12 to 14 days and tested whether the addition of IL-21 at the initiation of the culture would affect T-cell expansion and differentiation. We generated clinical-scale EBV-restricted T-cell line expansion with balanced T-cell subset ratios. The addition of IL-21 at the beginning of the culture decreased both T-cell expansion and effector memory T-cell accumulation, with a relative increase in less-differentiated T cells. Within CD4 T-cell subsets, exogenous IL-21 was notably associated with the cell surface expression of CD27 and high KLF2 transcript levels, further arguing for a role of IL-21 in the control of late T-cell differentiation. Our results show that IL-21 has profound effects on T-cell differentiation in a rapid T-cell line generation protocol and as such should be further explored as a novel approach to program anti-viral T cells with features associated with early differentiation and optimal therapeutic efficacy. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  3. Arx polyalanine expansion in mice leads to reduced pancreatic α-cell specification and increased α-cell death.

    Directory of Open Access Journals (Sweden)

    Crystal L Wilcox

    Full Text Available ARX/Arx is a homeodomain-containing transcription factor necessary for the specification and early maintenance of pancreatic endocrine α-cells. Many transcription factors important to pancreas development, including ARX/Arx, are also crucial for proper brain development. Although null mutations of ARX in human patients result in the severe neurologic syndrome XLAG (X-linked lissencephaly associated with abnormal genitalia, the most common mutation is the expansion of the first polyalanine tract of ARX, which results primarily in the clinical syndrome ISSX (infantile spasms. Mouse models of XLAG, ISSX and other human ARX mutations demonstrate a direct genotype-phenotype correlation in ARX-related neurologic disorders. Furthermore, mouse models utilizing a polyalanine tract expansion mutation have illustrated critical developmental differences between null mutations and expansion mutations in the brain, revealing context-specific defects. Although Arx is known to be required for the specification and early maintenance of pancreatic glucagon-producing α-cells, the consequences of the Arx polyalanine expansion on pancreas development remain unknown. Here we report that mice with an expansion mutation in the first polyalanine tract of Arx exhibit impaired α-cell specification and maintenance, with gradual α-cell loss due to apoptosis. This is in contrast to the re-specification of α-cells into β- and δ-cells that occurs in mice null for Arx. Overall, our analysis of an Arx polyalanine expansion mutation on pancreatic development suggests that impaired α-cell function might also occur in ISSX patients.

  4. Treatment of skeletal class III malocclusion using face mask therapy with alternate rapid maxillary expansion and constriction (Alt-RAMEC) protocol.

    Science.gov (United States)

    Rathi, Anand Ramchandra; Kumari, N Retna; Vadakkepuriyal, Kannan; Santhkumar, Madhu

    2015-01-01

    Class III malocclusion is very common malocclusion and can be due to maxillary retrusion, mandibular prognathism, or combination. Ellis and McNamara found a combination of maxillary retrusion and mandibular protrusion to be the most common skeletal relationship (30%). The treatment should be carried out as early as possible for permitting normal growth of the skeletal bases. Reverse pull head gear combined with maxillary expansion can effectively correct skeletal Class III malocclusion due to maxillary deficiency in growing patient. An eight-year-old female patient with chief complaint of prognathic mandible and anterior crossbite was successfully treated in duration of 5 months with facemask and expansion therapy based on Alternate Rapid Maxillary Expansion and Constriction (Alt-RAMEC) protocol.

  5. Treatment of skeletal class III malocclusion using face mask therapy with alternate rapid maxillary expansion and constriction (Alt-RAMEC protocol

    Directory of Open Access Journals (Sweden)

    Anand Ramchandra Rathi

    2015-01-01

    Full Text Available Class III malocclusion is very common malocclusion and can be due to maxillary retrusion, mandibular prognathism, or combination. Ellis and McNamara found a combination of maxillary retrusion and mandibular protrusion to be the most common skeletal relationship (30%. The treatment should be carried out as early as possible for permitting normal growth of the skeletal bases. Reverse pull head gear combined with maxillary expansion can effectively correct skeletal Class III malocclusion due to maxillary deficiency in growing patient. An eight-year-old female patient with chief complaint of prognathic mandible and anterior crossbite was successfully treated in duration of 5 months with facemask and expansion therapy based on Alternate Rapid Maxillary Expansion and Constriction (Alt-RAMEC protocol.

  6. A new isotropic cell for studying the thermo-mechanical behavior of unsaturated expansive clays

    OpenAIRE

    Tang, Anh Minh; Cui, Yu-Jun; Barnel, Nathalie

    2007-01-01

    International audience; This paper presents a new suction-temperature controlled isotropic cell that can be used to study the thermo-mechanical behavior of unsaturated expansive clays. The vapor equilibrium technique is used to control the soil suction; the temperature of the cell is controlled using a thermostat bath. The isotropic pressure is applied using a volume/pressure controller that is also used to monitor the volume change of soil specimen. Preliminary experimental results showed go...

  7. A xenogeneic-free bioreactor system for the clinical-scale expansion of human mesenchymal stem/stromal cells.

    Science.gov (United States)

    Dos Santos, Francisco; Campbell, Andrew; Fernandes-Platzgummer, Ana; Andrade, Pedro Z; Gimble, Jeffrey M; Wen, Yuan; Boucher, Shayne; Vemuri, Mohan C; da Silva, Cláudia L; Cabral, Joaquim M S

    2014-06-01

    The large cell doses (>1 × 10(6)  cells/kg) used in clinical trials with mesenchymal stem/stromal cells (MSC) will require an efficient production process. Moreover, monitoring and control of MSC ex-vivo expansion is critical to provide a safe and reliable cell product. Bioprocess engineering approaches, such as bioreactor technology, offer the adequate tools to develop and optimize a cost-effective culture system for the rapid expansion of human MSC for cellular therapy. Herein, a xenogeneic (xeno)-free microcarrier-based culture system was successfully established for bone marrow (BM) MSC and adipose tissue-derived stem/stromal cell (ASC) cultivation using a 1L-scale controlled stirred-tank bioreactor, allowing the production of (1.1 ± 0.1) × 10(8) and (4.5 ± 0.2) × 10(7) cells for BM MSC and ASC, respectively, after 7 days. Additionally, the effect of different percent air saturation values (%Airsat ) and feeding regime on the proliferation and metabolism of BM MSC was evaluated. No significant differences in cell growth and metabolic patterns were observed under 20% and 9%Airsat . Also, the three different feeding regimes studied-(i) 25% daily medium renewal, (ii) 25% medium renewal every 2 days, and (iii) fed-batch addition of concentrated nutrients and growth factors every 2 days-yielded similar cell numbers, and only slight metabolic differences were observed. Moreover, the immunophenotype (positive for CD73, CD90 and CD105 and negative for CD31, CD80 and HLA-DR) and multilineage differentiative potential of expanded cells were not affected upon bioreactor culture. These results demonstrated the feasibility of expanding human MSC from different sources in a clinically relevant expansion configuration in a controlled microcarrier-based stirred culture system under xeno-free conditions. The further optimization of this bioreactor culture system will represent a crucial step towards an efficient GMP-compliant clinical-scale MSC

  8. Microcarrier-based expansion of adult murine side population stem cells.

    Directory of Open Access Journals (Sweden)

    Christina A Pacak

    Full Text Available The lack of reliable methods to efficiently isolate and propagate stem cell populations is a significant obstacle to the advancement of cell-based therapies for human diseases. One isolation technique is based on efflux of the fluorophore Hoechst 33342. Using fluorescence-activated cell sorting (FACS, a sub-population containing adult stem cells has been identified in a multitude of tissues in every mammalian species examined. These rare cells are referred to as the 'side population' or SP due to a distinctive FACS profile that results from weak staining by Hoechst dye. Although the SP contains multi-potent cells capable of differentiating toward hematopoietic and mesenchymal lineages; there is currently no method to efficiently expand them. Here, we describe a spinner-flask culture system containing C2C12 myoblasts attached to spherical microcarriers that act to support the growth of non-adherent, post-natal murine skeletal muscle and bone marrow SP cells. Using FACS and hemocytometry, we show expansion of unfractionated EGFP⁺ SP cells over 6 wks. A significant number of these cells retain characteristics of freshly-isolated, unfractionated SP cells with respect to protein expression and dye efflux capacity. Expansion of the SP will permit further study of these heterogeneous cells and determine their therapeutic potential for regenerative and reparative therapies.

  9. Stalled DNA Replication Forks at the Endogenous GAA Repeats Drive Repeat Expansion in Friedreich's Ataxia Cells.

    Science.gov (United States)

    Gerhardt, Jeannine; Bhalla, Angela D; Butler, Jill Sergesketter; Puckett, James W; Dervan, Peter B; Rosenwaks, Zev; Napierala, Marek

    2016-08-02

    Friedreich's ataxia (FRDA) is caused by the expansion of GAA repeats located in the Frataxin (FXN) gene. The GAA repeats continue to expand in FRDA patients, aggravating symptoms and contributing to disease progression. The mechanism leading to repeat expansion and decreased FXN transcription remains unclear. Using single-molecule analysis of replicated DNA, we detected that expanded GAA repeats present a substantial obstacle for the replication machinery at the FXN locus in FRDA cells. Furthermore, aberrant origin activation and lack of a proper stress response to rescue the stalled forks in FRDA cells cause an increase in 3'-5' progressing forks, which could enhance repeat expansion and hinder FXN transcription by head-on collision with RNA polymerases. Treatment of FRDA cells with GAA-specific polyamides rescues DNA replication fork stalling and alleviates expansion of the GAA repeats, implicating DNA triplexes as a replication impediment and suggesting that fork stalling might be a therapeutic target for FRDA. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. The spectrum of chronic CD8+ T-cell expansions: clinical features in 14 patients.

    Directory of Open Access Journals (Sweden)

    Etienne Ghrenassia

    Full Text Available Chronic CD8(+ T-cell expansions can result in parotid gland swelling and other organ infiltration in HIV-infected patients, or in persistent cytopenias. We report 14 patients with a CD8+ T-cell expansion to better characterize the clinical spectrum of this ill-defined entity. Patients (9 women/5 men were 65 year-old (range, 25-74. Six patients had ≥ 1 symptomatic organ infiltration, and 9 had ≥ 1 cytopenia with a CD8(+ (>50% of total lymphocyte count and/or a CD8(+/CD57(+ (>30% of total lymphocyte count T-cell expansion for at least 3 months. One patient had both manifestations. A STAT3 mutation, consistent with the diagnosis of large granular lymphocyte leukemia, was found in 2 patients with cytopenia. Organ infiltration involved lymph nodes, the liver, the colon, the kidneys, the skin and the central nervous system. Three patients had a HIV infection for 8 years (range, 0.5-20 years. Two non-HIV patients with hypogammaglobulinemia had been treated with a B-cell depleting monoclonal antibody (rituximab for a lymphoma. One patient had a myelodysplastic syndrome with colon infiltration and agranulocytosis. The outcome was favorable with efficient antiretroviral therapy and steroids in HIV-infected patients and intravenous immunoglobulins in 2/3 non-HIV patients. Six patients had an agranulocytosis of favorable outcome with granulocyte-colony stimulating factor only (3 cases, cyclophosphamide, methotrexate and cyclosporine A, or no treatment (1 case each. Three patients had a pure red cell aplasia, of favorable outcome in 2 cases with methotrexate and cyclosporine A; one patient was unresponsive. Chronic CD8(+ T-cell expansions with organ infiltration in immunocompromised patients may involve other organs than parotid glands; they are non clonal and of favorable outcome after correction of the immune deficiency and/or steroids. In patients with bone marrow infiltration and unexplained cytopenia, CD8(+ T-cell expansions can be clonal or not

  11. Amplified B lymphocyte CD40 signaling drives regulatory B10 cell expansion in mice.

    Directory of Open Access Journals (Sweden)

    Jonathan C Poe

    Full Text Available Aberrant CD40 ligand (CD154 expression occurs on both T cells and B cells in human lupus patients, which is suggested to enhance B cell CD40 signaling and play a role in disease pathogenesis. Transgenic mice expressing CD154 by their B cells (CD154(TG have an expanded spleen B cell pool and produce autoantibodies (autoAbs. CD22 deficient (CD22(-/- mice also produce autoAbs, and importantly, their B cells are hyper-proliferative following CD40 stimulation ex vivo. Combining these 2 genetic alterations in CD154(TGCD22(-/- mice was thereby predicted to intensify CD40 signaling and autoimmune disease due to autoreactive B cell expansion and/or activation.CD154(TGCD22(-/- mice were assessed for their humoral immune responses and for changes in their endogenous lymphocyte subsets. Remarkably, CD154(TGCD22(-/- mice were not autoimmune, but instead generated minimal IgG responses against both self and foreign antigens. This paucity in IgG isotype switching occurred despite an expanded spleen B cell pool, higher serum IgM levels, and augmented ex vivo B cell proliferation. Impaired IgG responses in CD154(TGCD22(-/- mice were explained by a 16-fold expansion of functional, mature IL-10-competent regulatory spleen B cells (B10 cells: 26.7×10(6±6 in CD154(TGCD22(-/- mice; 1.7×10(6±0.4 in wild type mice, p<0.01, and an 11-fold expansion of B10 cells combined with their ex vivo-matured progenitors (B10+B10pro cells: 66×10(6±3 in CD154(TGCD22(-/- mice; 6.1×10(6±2 in wild type mice, p<0.01 that represented 39% of all spleen B cells.These results demonstrate for the first time that the IL-10-producing B10 B cell subset has the capacity to suppress IgG humoral immune responses against both foreign and self antigens. Thereby, therapeutic agents that drive regulatory B10 cell expansion in vivo may inhibit pathogenic IgG autoAb production in humans.

  12. Simulation of plume-plasma expansion with one-dimensional Particle-in-Cell

    Science.gov (United States)

    Gonzalez, C. A.; Arteaga, J. A.; Gomez, Y. H.; Osorio, J.; Jaramillo, J. A.; Riascos, H.

    2012-06-01

    In this work we present the analysis of the dynamic of the expansion of Al Plasma produced by Nd:YAG laser (1064 nm, 500mJ, 9 ms, 10 Hz) in vacuum. To study the Coulomb interaction between the particles of the initial states of the plasma expansion, we use the one dimensional Particle-in-Cell method (PIC) and finite difference method. We considered an ideal model, that is, we assume that the plasma is in a local thermal equilibrium, the ablated particles have a fixed temperature and a constant evaporation flux (J) from the aluminium surface. To obtain more accurate results we use high computing exploiting the parallelization of this kind of algorithms. The mean velocity and particles densities are determined for different times of the expansion.

  13. Complete Maxillary Crossbite Correction with a Rapid Palatal Expansion in Mixed Dentition Followed by a Corrective Orthodontic Treatment

    National Research Council Canada - National Science Library

    Tanaka, Orlando Motohiro; Fornazari, Isabelle Adad; Parra, Ariane Ximenes Graciano; Castilhos, Bruno Borges de; Franco, Ademir

    2016-01-01

    .... In phase I, the patient was treated with a modified Haas-type palatal expander, which provided a clinically significant palatal expansion and increased the maxillary arch perimeter with favorable...

  14. Cytomegalovirus-Driven Adaptive-Like Natural Killer Cell Expansions Are Unaffected by Concurrent Chronic Hepatitis Virus Infections

    Directory of Open Access Journals (Sweden)

    David F. G. Malone

    2017-05-01

    Full Text Available Adaptive-like expansions of natural killer (NK cell subsets are known to occur in response to human cytomegalovirus (CMV infection. These expansions are typically made up of NKG2C+ NK cells with particular killer-cell immunoglobulin-like receptor (KIR expression patterns. Such NK cell expansion patterns are also seen in patients with viral hepatitis infection. Yet, it is not known if the viral hepatitis infection promotes the appearance of such expansions or if effects are solely attributed to underlying CMV infection. In sizeable cohorts of CMV seropositive hepatitis B virus (HBV, hepatitis C virus (HCV, and hepatitis delta virus (HDV infected patients, we analyzed NK cells for expression of NKG2A, NKG2C, CD57, and inhibitory KIRs to assess the appearance of NK cell expansions characteristic of what has been seen in CMV seropositive healthy individuals. Adaptive-like NK cell expansions observed in viral hepatitis patients were strongly associated with CMV seropositivity. The number of subjects with these expansions did not differ between CMV seropositive viral hepatitis patients and corresponding healthy controls. Hence, we conclude that adaptive-like NK cell expansions observed in HBV, HCV, and/or HDV infected individuals are not caused by the chronic hepatitis infections per se, but rather are a consequence of underlying CMV infection.

  15. Area Expansivity Moduli of Regenerating Plant Protoplast Cell Walls Exposed to Shear Flows

    Science.gov (United States)

    Fujimura, Yuu; Iino, Masaaki; Watanabe, Ugai

    2005-05-01

    To control the elasticity of the plant cell wall, protoplasts isolated from cultured Catharanthus roseus cells were regenerated in shear flows of 115 s-1 (high shear) and 19.2 s-1 (low shear, as a control). The surface area expansivity modulus and the surface breaking strength of these regenerating protoplasts were measured by a micropipette aspiration technique. Cell wall synthesis was also measured using a cell wall-specific fluorescent dye. High shear exposure for 3 h doubled both the surface area modulus and breaking strength observed under low shear, significantly decreased cell wall synthesis, and roughly quadrupled the moduli of the cell wall. Based on the cell wall synthesis data, we estimated the three-dimensional modulus of the cell wall to be 4.1± 1.2 GPa for the high shear, and 0.35± 0.2 GPa for the low shear condition, using the surface area expansivity modulus divided by the cell wall thickness, which is identical with the Young’s modulus divided by 2(1-σ), where σ is Poisson's ratio. We concluded that high shear exposure considerably strengthens the newly synthesized cell wall.

  16. Short-term skeletal and dental changes following bone-borne versus tooth-borne surgically assisted rapid maxillary expansion: a randomized clinical trial study.

    Science.gov (United States)

    Zandi, Mohammad; Miresmaeili, Amirfarhang; Heidari, Ali

    2014-10-01

    To evaluate and compare the short-term (post-retention) skeletal and dental changes following bone-borne and tooth-borne surgically assisted rapid maxillary expansion (SARME) using cone beam computed tomography (CBCT). In this randomized clinical study, 30 patients with transverse maxillary deficiency underwent either tooth-borne (n = 15) or bone-borne (n = 15) SARME. Before treatment and immediately after the consolidation period, CBCT was obtained and the nasal floor width, interdental root distance, palatal bone width and interdental cusp distance were measured at first premolar and first molar regions of maxilla. Twenty eight patients completed the study protocol. In both tooth-borne (n = 13) and bone-borne (n = 15) groups the highest degree of expansion occurred in the dental arch, followed by palatal bone, and nasal floor (V-shaped widening in coronal dimension). The amount and pattern of expansion was comparable between anterior and posterior maxillary regions in each group (parallel posteroanterior expansion) and between the two groups. Dental and skeletal effects of tooth-borne and bone-borne devices were comparable. The overall complication rate was negligible. Selection of an expansion device should be based on each individual patient's requirements. Future long-term clinical trial studies to evaluate the stability and relapse of these two techniques are recommended. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  17. With respect to coefficient of linear thermal expansion, bacterial vegetative cells and spores resemble plastics and metals, respectively

    Science.gov (United States)

    2013-01-01

    Background If a fixed stress is applied to the three-dimensional z-axis of a solid material, followed by heating, the amount of thermal expansion increases according to a fixed coefficient of thermal expansion. When expansion is plotted against temperature, the transition temperature at which the physical properties of the material change is at the apex of the curve. The composition of a microbial cell depends on the species and condition of the cell; consequently, the rate of thermal expansion and the transition temperature also depend on the species and condition of the cell. We have developed a method for measuring the coefficient of thermal expansion and the transition temperature of cells using a nano thermal analysis system in order to study the physical nature of the cells. Results The tendency was seen that among vegetative cells, the Gram-negative Escherichia coli and Pseudomonas aeruginosa have higher coefficients of linear expansion and lower transition temperatures than the Gram-positive Staphylococcus aureus and Bacillus subtilis. On the other hand, spores, which have low water content, overall showed lower coefficients of linear expansion and higher transition temperatures than vegetative cells. Comparing these trends to non-microbial materials, vegetative cells showed phenomenon similar to plastics and spores showed behaviour similar to metals with regards to the coefficient of liner thermal expansion. Conclusions We show that vegetative cells occur phenomenon of similar to plastics and spores to metals with regard to the coefficient of liner thermal expansion. Cells may be characterized by the coefficient of linear expansion as a physical index; the coefficient of linear expansion may also characterize cells structurally since it relates to volumetric changes, surface area changes, the degree of expansion of water contained within the cell, and the intensity of the internal stress on the cellular membrane. The coefficient of linear expansion holds

  18. Expansion and homing of umbilical cord blood hematopoietic stem and progenitor cells for clinical transplantation.

    Science.gov (United States)

    Bari, Sudipto; Seah, Kevin Kwee Hong; Poon, Zhiyong; Cheung, Alice Man Sze; Fan, Xiubo; Ong, Shin-Yeu; Li, Shang; Koh, Liang Piu; Hwang, William Ying Khee

    2015-06-01

    The successful expansion of hematopoietic stem and progenitor cells (HSPCs) from umbilical cord blood (UCB) for transplantation could revolutionize clinical practice by improving transplantation-related outcomes and making available UCB units that have suboptimal cell doses for transplantation. New cytokine combinations appear able to promote HSPC growth with minimal differentiation into mature precursors and new agents, such as insulin-like growth factor-binding protein 2, are being used in clinical trials. Molecules that simulate the HSPC niche, such as Notch ligand, have also shown promise. Further improvements have been made with the use of mesenchymal stromal cells, which have made possible UCB expansion without a potentially deleterious prior CD34/CD133 cell selection step. Chemical molecules, such as copper chelators, nicotinamide, and aryl hydrocarbon antagonists, have shown excellent outcomes in clinical studies. The use of bioreactors could further add to HSPC studies in future. Drugs that could improve HSPC homing also appear to have potential in improving engraftment times in UCB transplantation. Technologies to expand HSPC from UCB and to enhance the homing of these cells appear to have attained the goal of accelerating hematopoietic recovery. Further discoveries and clinical studies are likely to make the goal of true HSPC expansion a reality for many applications in future. Copyright © 2015 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  19. [Treatment of Class II malocclusion using Herbst appliance with headgear and rapid palatal expansion and straight wire appliance with implant anchorage].

    Science.gov (United States)

    Zhang, Xiao-jie; Zheng, Cang-shang; Zhang, Min

    2015-06-01

    To investigate the effects of early treatment of Class II malocclusion with Herbst appliance with headgear and rapid palatal expansion and straight wire appliance with implant anchorage. Twenty-five Chinese children (14 males, 11 females, aged from 10-12 years with an average age of 10.5 years) were treated with Herbst appliance with headgear and rapid palatal expansion for 6 months. Then they were further treated with straight wire appliance with implant anchorage. Cephalometric data pre- and post-treatment were measured and analysed. Multiple correlation analysis was performed with SPSS13.0 software package. Compared with pretreatment, as angle SNB (4.2800±1.4000)° and as angle NP-FH (3.5600±1.0440)° increased posttreatment. as angle SNA (0.5600±0.8206)°, as angle ANB (4.7600±1.2000)°, as angle U1-NA (11.9200±1.4411)° and as angle U1-SN (13.1600±1.7720)° decreased posttreatment (Pheadgear and rapid palatal expansion. The maxillary dentition is significantly retracted by fixed appliance with implant anchorage and the skeletal pattern of patients is significantly improved.

  20. Addition of Interleukin-21 for Expansion of T-Cells for Adoptive Immunotherapy of Murine Melanoma

    Directory of Open Access Journals (Sweden)

    Christine Kathryn Zoon

    2015-04-01

    Full Text Available We previously demonstrated that interleukin (IL-7/15 was superior to IL-2 for expansion of T cells in vitro for adoptive immunotherapy. We sought to ascertain whether IL-21 would further improve yield and therapeutic efficacy of T cells in culture. Naïve T cell receptor (TcR transgenic splenocytes or antigen-sensitized lymph node cells were harvested from PMEL-1 mice and exposed to bryostatin-1 and ionomycin (B/I for 18 h. Cells were then cultured in IL-2, IL-21, IL-7/15 or IL-7/15/21 for six days. Harvested cells were analyzed by flow cytometry and used to treat C57Bl/6 mice injected intravenously with B16 melanoma. Lungs were harvested and metastases counted 14 days after treatment. Culturing lymphocytes in IL-7/15/21 increased expansion compared to IL-2 or IL-7/15. IL-21 and IL-7/15/21 increased CD8+ cells compared to IL-2 or IL-7/15. IL-21 preferentially expanded a CD8+CD44−CD62L+ T “naïve” population, whereas IL-7/15/21 increased CD8+CD44+CD62Lhigh central-memory T cells. T cells grown in IL-7/15/21 were more effective at reducing metastases than IL-2. The addition of IL-21 to IL-7/15 induced greater expansion of lymphocytes in culture and increased the yield of CD8+ T central-memory cells vs. IL-7/15 alone. This may have significant impact on future clinical trials of adoptive immunotherapy, particularly for generating adequate numbers of lymphocytes for treatment.

  1. Displacements prediction from 3D finite element model of maxillary protraction with and without rapid maxillary expansion in a patient with unilateral cleft palate and alveolus.

    Science.gov (United States)

    Zhang, Dan; Zheng, Li; Wang, Qiang; Lu, Li; Ma, Jia

    2015-08-19

    Both maxillary protraction and rapid expansion are recommended for patients with cleft palate and alveolus. The aim of the study is to establish a three-dimensional finite element model of the craniomaxillary complex with unilateral cleft palate and alveolus to simulate maxillary protraction with and without rapid maxillary expansion. The study also investigates the deformation of the craniomaxillary complex after applied orthopaedic forces in different directions. A three dimensional finite element model of 1,277,568 hexahedral elements (C3D8) and 1,801,945 nodes was established based upon CT scan of a patient with unilateral cleft palate and alveolus on the right side in this study. A force of 4.9 N per side was directed on the anatomic height of contour on the buccal side of the first molar. The angles between the force vector and occlusal plane were -30°, -20°, -10°, 0°, 10°, 20°, and 30°. A force of 2.45 N on each loading point was directed on the anatomic height of contour on the lingual side of the first premolar and the first molar to simulate the expansion of the palate. The craniomaxillary complex displaced forward under any of the loading conditions. The sagittal and vertical displacement of the craniomaxillary complex reached their peak at the protraction degree of -10° forward and downward to the occlusal plane. There were larger sagittal displacements when the maxilla was protracted forward with maxillary expansion. The palatal plane rotated counterclockwise under any of the loading conditions. Being protracted without expansion, the dental arch was constricted. When supplemented with maxillary expansion, the width of the dental arch increased. Transverse deformation of the dental arch on affected side was different from that on unaffected side. Protraction force alone led the craniomaxillary complex moved forward and counterclockwise, accompanied with lateral constrain on the dental arch. Additional rapid maxillary expansion resulted in a

  2. Artificial Polymeric Scaffolds as Extracellular Matrix Substitutes for Autologous Conjunctival Goblet Cell Expansion.

    Science.gov (United States)

    He, Min; Storr-Paulsen, Thomas; Wang, Annie L; Ghezzi, Chiara E; Wang, Siran; Fullana, Matthew; Karamichos, Dimitrios; Utheim, Tor P; Islam, Rakibul; Griffith, May; Islam, M Mirazul; Hodges, Robin R; Wnek, Gary E; Kaplan, David L; Dartt, Darlene A

    2016-11-01

    We fabricated and investigated polymeric scaffolds that can substitute for the conjunctival extracellular matrix to provide a substrate for autologous expansion of human conjunctival goblet cells in culture. We fabricated two hydrogels and two silk films: (1) recombinant human collagen (RHC) hydrogel, (2) recombinant human collagen 2-methacryloylxyethyl phosphorylcholine (RHC-MPC) hydrogel, (3) arginine-glycine-aspartic acid (RGD) modified silk, and (4) poly-D-lysine (PDL) coated silk, and four electrospun scaffolds: (1) collagen, (2) poly(acrylic acid) (PAA), (3) poly(caprolactone) (PCL), and (4) poly(vinyl alcohol) (PVA). Coverslips and polyethylene terephthalate (PET) were used for comparison. Human conjunctival explants were cultured on scaffolds for 9 to 15 days. Cell viability, outgrowth area, and the percentage of cells expressing markers for stratified squamous epithelial cells (cytokeratin 4) and goblet cells (cytokeratin 7) were determined. Most of cells grown on all scaffolds were viable except for PCL in which only 3.6 ± 2.2% of the cells were viable. No cells attached to PVA scaffold. The outgrowth was greatest on PDL-silk and PET. Outgrowth was smallest on PCL. All cells were CK7-positive on RHC-MPC while 84.7 ± 6.9% of cells expressed CK7 on PDL-silk. For PCL, 87.10 ± 3.17% of cells were CK7-positive compared to PET where 67.10 ± 12.08% of cells were CK7-positive cells. Biopolymer substrates in the form of hydrogels and silk films provided for better adherence, proliferation, and differentiation than the electrospun scaffolds and could be used for conjunctival goblet cell expansion for eventual transplantation once undifferentiated and stratified squamous cells are included. Useful polymer scaffold design characteristics have emerged from this study.

  3. Expansion of gd T cells in patients infected with cutaneous leishmaniasis with and without glucantime therapy

    Directory of Open Access Journals (Sweden)

    Haideh Darabi

    Full Text Available The expansion of gd T cells in patients with active cutaneous leishmaniasis, with or without glucantime therapy, was investigated. Twenty patients with local cutaneous leishmaniasis including glucantime-treated (n=10 and untreated (n=10 patients were selected. The controls were healthy individuals (n=10 living in endemic areas. Whole blood was obtained and the T cell subpopulations were analyzed by flow cytometry. Significantly more gd CD3+ T cells were observed in untreated patients (15.9% ± 5.9, when compared with glucantime-treated patients (4.6% ± 1.4 and controls (5.3% ± 2.3. On the other hand, when the percentages of ab CD3+ T-cells were analyzed different results were obtained. A significant increase in ab T cells was seen in glucantime-treated patients (62.4% ± 7.6, when compared to the untreated patients (55.7% ± 5.5 and controls (55.1% ± 9.6. The percentage of total CD3+ T cells was statistically greater in both glucantime-treated (68.8% ± 7.4 and untreated patients (73.4% ± 5.9 when compared to the controls (61% ± 10.3. These results are consistent with previous results on the expansion of gdT cells during the course of cutaneous leishmaniasis. They also indicate that glucantime therapy can reverse the expansion of gdT cells and as a result increase the percentages of ab CD3+ T cells.

  4. Large-scale progenitor cell expansion for multiple donors in a monitored hollow fibre bioreactor.

    Science.gov (United States)

    Lambrechts, Toon; Papantoniou, Ioannis; Rice, Brent; Schrooten, Jan; Luyten, Frank P; Aerts, Jean-Marie

    2016-09-01

    With the increasing scale in stem cell production, a robust and controlled cell expansion process becomes essential for the clinical application of cell-based therapies. The objective of this work was the assessment of a hollow fiber bioreactor (Quantum Cell Expansion System from Terumo BCT) as a cell production unit for the clinical-scale production of human periosteum derived stem cells (hPDCs). We aimed to demonstrate comparability of bioreactor production to standard culture flask production based on a product characterization in line with the International Society of Cell Therapy in vitro benchmarks and supplemented with a compelling quantitative in vivo bone-forming potency assay. Multiple process read-outs were implemented to track process performance and deal with donor-to-donor-related variation in nutrient needs and harvest timing. The data show that the hollow fiber bioreactor is capable of robustly expanding autologous hPDCs on a clinical scale (yield between 316 million and 444 million cells starting from 20 million after ± 8 days of culture) while maintaining their in vitro quality attributes compared with the standard flask-based culture. The in vivo bone-forming assay on average resulted in 10.3 ± 3.7% and 11.0 ± 3.8% newly formed bone for the bioreactor and standard culture flask respectively. The analysis showed that the Quantum system provides a reproducible cell expansion process in terms of yields and culture conditions for multiple donors. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  5. Intrathecal T-cell clonal expansions in patients with multiple sclerosis.

    Science.gov (United States)

    de Paula Alves Sousa, Alessandra; Johnson, Kory R; Nicholas, Richard; Darko, Sam; Price, David A; Douek, Daniel C; Jacobson, Steven; Muraro, Paolo A

    2016-06-01

    Analysis of the T-cell receptor (TCR) repertoire in the cerebrospinal fluid (CSF) of patients with multiple sclerosis (MS) can reveal antigen-specific immune responses potentially implicated in the disease process. We applied a new unbiased deep-sequencing method for TCR repertoire analysis to accurately measure and compare receptor diversity and clonal expansions within the peripheral and CSF-trafficking T-cell populations of patients with MS and control individuals with idiopathic intracranial hypertension (IIH). Paired blood and CSF TCR β-chain libraries from five MS patients and five IIH controls were sequenced, yielding a total of 80 million reads. Although TCR repertoire diversity was greater in the blood and CSF compartments of MS patients when compared with IIH controls, it is notable that the frequency of clonal expansions was also significantly higher in both compartments of MS patients. Highly expanded T-cell clones were enriched in the CSF compartment of MS patients compared to peripheral blood, very few of them were detected in both compartments. Collectively, our data provide a proof of principle that private compartmentalized T-cell expansion exists in the intrathecal space of MS patients.

  6. Effect of Mucosal Cytokine Administration on Selective Expansion of Vaginal Dendritic Cells to Support Nanoparticle Transport.

    Science.gov (United States)

    Ramanathan, Renuka; Park, Jaehyung; Hughes, Sean M; Lykins, William R; Bennett, Hunter R; Hladik, Florian; Woodrow, Kim A

    2015-10-01

    The capacity of antigen-carrying vaccine nanoparticles (NPs) administered vaginally to stimulate local immune responses may be limited by the relatively low numbers of antigen-presenting cells (APCs) in the genital mucosa. Because inflammation is associated with increased susceptibility to sexually transmitted infections, we sought to increase APC numbers without causing inflammation. In this study, we evaluated intravaginal delivery of chemokines, growth factors, or synthetic adjuvants to expand APCs in reproductive tissues. We found that granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulated expansion of CD11b+ dendritic cells (DCs) within 24 hr of intravaginal administration, with no effect on Langerhans cells or macrophages. Expansion of the CD11b+ DC population was not associated with increased inflammatory cytokine production, and these cells retained phagocytic function. Our data suggest that non-inflammatory expansion of mucosal APCs by intravaginal GM-CSF could be used as an adjuvanting strategy to potentiate the genital immune response to nanoparticulate mucosal vaccines. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Homogeneous expansion of human T-regulatory cells via tumor necrosis factor receptor 2.

    Science.gov (United States)

    Okubo, Yoshiaki; Mera, Toshiyuki; Wang, Limei; Faustman, Denise L

    2013-11-06

    T-regulatory cells (T(regs)) are a rare lymphocyte subtype that shows promise for treating infectious disease, allergy, graft-versus-host disease, autoimmunity, and asthma. Clinical applications of T(regs) have not been fully realized because standard methods of expansion ex vivo produce heterogeneous progeny consisting of mixed populations of CD4 + T cells. Heterogeneous progeny are risky for human clinical trials and face significant regulatory hurdles. With the goal of producing homogeneous T(regs), we developed a novel expansion protocol targeting tumor necrosis factor receptors (TNFR) on T(regs). In in vitro studies, a TNFR2 agonist was found superior to standard methods in proliferating human T(regs) into a phenotypically homogeneous population consisting of 14 cell surface markers. The TNFR2 agonist-expanded T(regs) also were functionally superior in suppressing a key T(reg) target cell, cytotoxic T-lymphocytes. Targeting the TNFR2 receptor during ex vivo expansion is a new means for producing homogeneous and potent human T(regs) for clinical opportunities.

  8. Analysis of the dentoalveolar effects of slow and rapid maxillary expansion in complete bilateral cleft lip and palate patients: a randomized clinical trial.

    Science.gov (United States)

    de Medeiros Alves, Arthur César; Garib, Daniela Gamba; Janson, Guilherme; de Almeida, Araci Malagodi; Calil, Louise Resti

    2016-09-01

    The purpose of this study was to compare the dentoalveolar effects of slow (SME) and rapid (RME) maxillary expansions in patients with complete bilateral cleft lip and palate (BCLP). A sample of 50 patients with BCLP and maxillary arch constriction was randomly and equally allocated into two groups. Group SME comprised patients (mean age of 8.8 years) treated with quad-helix appliance. Group RME comprised individuals (mean age of 8.9 years) treated with Hyrax expander. Digital dental models obtained immediately pre-expansion (T1) and 6 months after the active expansion period (T2) were used for measuring maxillary dental arch widths, arch perimeter, arch length, palatal depth, buccolingual inclination of posterior teeth and differential amount of expansion accomplished at the canine and molar regions. Inter-phase and intergroup comparisons were performed using paired t tests and t tests, respectively (p < 0.05). SME and RME caused significant increase of arch widths and arch perimeter. Arch length and palatal depth decreased nonsignificantly with SME but significantly with RME. Buccal tooth inclination was significant only for maxillary deciduous canines in both groups. The quad-helix appliance showed a significant differential expansion between anterior and posterior regions. No differences were observed between SME and RME for all variables. Differences were not found between the dentoalveolar effects of SME and RME in patients with BCLP. SME demanded a greater therapy time compared to RME. Both expansion procedures can be similarly indicated to correct maxillary arch constriction in patients with BCLP in the mixed dentition.

  9. Comparison of the treatment effects of different rapid maxillary expansion devices on the maxilla and the mandible. Part 1: Evaluation of dentoalveolar changes.

    Science.gov (United States)

    Canan, Selin; Şenışık, Neslihan Ebru

    2017-06-01

    The aim of this study was to compare the dentoalveolar treatment effects of 3 rapid maxillary expansion (RME) appliances, supported by different tissues, on the maxilla and the mandible. Patients were assessed for eligibility, and those who met the requirements and agreed to participate were enrolled in the study. Participants were randomly allocated into 3 groups, depending on the type of expansion. The tooth-borne group (n = 16; ages, 12.63 ± 1.36 years) had RME with a tooth-borne appliance; the bone-borne group (n = 16; ages, 12.92 ± 1.07 years) had RME with a bone-borne appliance; and the hybrid group (n = 15; ages, 13.41 ± 0.88 years) had RME with hybrid appliances. Dentoalveolar effects were evaluated by digitally superimposed 3-dimensional scans of maxillary dental casts on a coordinate system and linear interdental width measurements of mandibular dental casts in the pretreatment, posttreatment, and postretention periods. For intragroup and intergroup comparisons, 1-way analysis of variance for repeated measures and multivariate analysis of variance were performed, respectively. Similar dentoalveolar treatment effects were achieved in all groups with the exception of a small amount of expansion on the right side in the bone-borne group. All 3 expanders led to the expansion of maxillary dentoalveolar structures with mild relapse. However, the amount of expansion of the bone-borne expander on the right side was statistically lower. Spontaneous interdental expansion was observed in the mandibular dentitions in all groups. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  10. Rapid Mobilization Reveals a Highly Engraftable Hematopoietic Stem Cell.

    Science.gov (United States)

    Hoggatt, Jonathan; Singh, Pratibha; Tate, Tiffany A; Chou, Bin-Kuan; Datari, Shruti R; Fukuda, Seiji; Liu, Liqiong; Kharchenko, Peter V; Schajnovitz, Amir; Baryawno, Ninib; Mercier, Francois E; Boyer, Joseph; Gardner, Jason; Morrow, Dwight M; Scadden, David T; Pelus, Louis M

    2018-01-11

    Hematopoietic stem cell transplantation is a potential curative therapy for malignant and nonmalignant diseases. Improving the efficiency of stem cell collection and the quality of the cells acquired can broaden the donor pool and improve patient outcomes. We developed a rapid stem cell mobilization regimen utilizing a unique CXCR2 agonist, GROβ, and the CXCR4 antagonist AMD3100. A single injection of both agents resulted in stem cell mobilization peaking within 15 min that was equivalent in magnitude to a standard multi-day regimen of granulocyte colony-stimulating factor (G-CSF). Mechanistic studies determined that rapid mobilization results from synergistic signaling on neutrophils, resulting in enhanced MMP-9 release, and unexpectedly revealed genetic polymorphisms in MMP-9 that alter activity. This mobilization regimen results in preferential trafficking of stem cells that demonstrate a higher engraftment efficiency than those mobilized by G-CSF. Our studies suggest a potential new strategy for the rapid collection of an improved hematopoietic graft. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. A rapid mitochondrial toxicity assay utilizing rapidly changing cell energy metabolism.

    Science.gov (United States)

    Sanuki, Yosuke; Araki, Tetsuro; Nakazono, Osamu; Tsurui, Kazuyuki

    2017-01-01

    Drug-induced liver injury is a major cause of safety-related drug-marketing withdrawals. Several drugs have been reported to disrupt mitochondrial function, resulting in hepatotoxicity. The development of a simple and effective in vitro assay to identify the potential for mitochondrial toxicity is thus desired to minimize the risk of causing hepatotoxicity and subsequent drug withdrawal. An in vitro test method called the "glucose-galactose" assay is often used in drug development but requires prior-culture of cells over several passages for mitochondrial adaptation, thereby restricting use of the assay. Here, we report a rapid version of this method with the same predictability as the original method. We found that replacing the glucose in the medium with galactose resulted in HepG2 cells immediately shifting their energy metabolism from glycolysis to oxidative phosphorylation due to drastic energy starvation; in addition, the intracellular concentration of ATP was reduced by mitotoxicants when glucose in the medium was replaced with galactose. Using our proposed rapid method, mitochondrial dysfunction in HepG2 cells can be evaluated by drug exposure for one hour without a pre-culture step. This rapid assay for mitochondrial toxicity may be more suitable for high-throughput screening than the original method at an early stage of drug development.

  12. Clinical grade purification and expansion of NK cell products for an optimized manufacturing protocol

    Directory of Open Access Journals (Sweden)

    Ulrike eKoehl

    2013-05-01

    Full Text Available Allogeneic Natural Killer (NK cells are used for adoptive immunotherapy after stem cell transplantation. In order to overcome technical limitations in NK cell purification and activation, the following study investigates the impact of different variables on NK cell recovery, cytotoxicity and T cell depletion during GMP-grade NK cell selection. 40 NK cell products were derived from 54 unstimulated donor leukaphereses using immunomagnetic CD3 T-cell depletion, followed by a CD56 cell enrichment step. For T cell depletion, either the depletion 2.1 program in single or double procedure (D2.1 1depl, n=18; D2.1 2depl, n=13 or the faster depletion 3.1 (D3.1, n=9 was used on the CliniMACS instrument. 17 purified NK cell products were activated in vitro by IL-2 for 12 days. The whole process resulted in a median number of 7.59x10e8 CD56+CD3- cells with both purity and viability of 94%, respectively. The T-cell depletion was significantly better using D2.1 1depl/2depl compared to D3.1 (log 4.6/log 4.9 vs. log 3.7; p<0.01 and double procedure in two stages led always to residual T cells below 0.1%. In contrast D3.1 was superior to D2.1 1depl/2depl with regard to recovery of CD56+CD3- NK cells (68% vs 41%/38%. Concomitant monocytes and especially IL-2 activation led to increased NK cell activity against malignant target cells compared to unstimulated NK cells, which correlated with both up-regulation of natural cytotoxicity receptors and intracellular signaling. Overall, wide variations in the NK cell expansion rate and the distribution of NK cell subpopulations were found. In conclusion, our results indicate that GMP-grade purification of NK cells might be improved by a sequential processing of T cell depletion program D2.1 and D3.1. In addition NK cell expansion protocols need to be further optimized.

  13. Selective Expansion of Skeletal Muscle Stem Cells from Bulk Muscle Cells in Soft Three‐Dimensional Fibrin Gel

    Science.gov (United States)

    Zhu, Pei; Zhou, Yalu; Wu, Furen; Hong, Yuanfan; Wang, Xin; Shekhawat, Gajendra; Mosenson, Jeffrey

    2017-01-01

    Abstract Muscle stem cells (MuSCs) exhibit robust myogenic potential in vivo, thus providing a promising curative treatment for muscle disorders. Ex vivo expansion of adult MuSCs is highly desired to achieve a therapeutic cell dose because of their scarcity in limited muscle biopsies. Sorting of pure MuSCs is generally required for all the current culture systems. Here we developed a soft three‐dimensional (3D) salmon fibrin gel culture system that can selectively expand mouse MuSCs from bulk skeletal muscle preparations without cell sorting and faithfully maintain their regenerative capacity in culture. Our study established a novel platform for convenient ex vivo expansion of MuSCs, thus greatly advancing stem cell‐based therapies for various muscle disorders. Stem Cells Translational Medicine 2017;6:1412–1423 PMID:28244269

  14. Pathogen-free, plasma-poor platelet lysate and expansion of human mesenchymal stem cells.

    Science.gov (United States)

    Iudicone, Paola; Fioravanti, Daniela; Bonanno, Giuseppina; Miceli, Michelina; Lavorino, Claudio; Totta, Pierangela; Frati, Luigi; Nuti, Marianna; Pierelli, Luca

    2014-01-27

    Supplements to support clinical-grade cultures of mesenchymal stem cells (MSC) are required to promote growth and expansion of these cells. Platelet lysate (PL) is a human blood component which may replace animal serum in MSC cultures being rich in various growth factors. Here, we describe a plasma poor pathogen-free platelet lysate obtained by pooling 12 platelet (PLT) units, to produce a standardized and safe supplement for clinical-grade expansion of MSC. PL lots were obtained by combining 2 6-unit PLT pools in additive solution (AS) following a transfusional-based procedure including pathogen inactivation (PI) by Intercept technology and 3 cycles of freezing/thawing, followed by membrane removal. Three PI-PL and 3 control PL lots were produced to compare their ability to sustain bone marrow derived MSC selection and expansion. Moreover, two further PL, subjected to PI or not, were also produced starting from the same initial PLT pools to evaluate the impact of PI on growth factor concentration and capacity to sustain cell growth. Additional PI-PL lots were used for comparison with fetal bovine serum (FBS) on MSC expansion. Immunoregulatory properties of PI-PL-generated MSC were documented in vitro by mixed lymphocyte culture (MLC) and peripheral blood mononuclear cells (PBMC) mitogen induced proliferation. PI-PL and PL control lots had similar concentrations of 4 well-described growth factors endowed with MSC stimulating ability. Initial growth and MSC expansion by PI-PL and PL controls were comparable either using different MSC populations or in head to head experiments. Moreover, PI-PL and PL control sustained similar MSC growth of frozen/thawed MSC. Multilineage differentiation of PI-derived and PI-PL-derived MSC were maintained in any MSC cultures as well as their immunoregulatory properties. Finally, no direct impact of PI on growth factor concentration and MSC growth support was observed, whereas the capacity of FBS to sustain MSC expansion in basic

  15. Identification of Two New Mechanisms That Regulate Fruit Growth by Cell Expansion in Tomato

    Directory of Open Access Journals (Sweden)

    Constance Musseau

    2017-06-01

    Full Text Available Key mechanisms controlling fruit weight and shape at the levels of meristem, ovary or very young fruit have already been identified using natural tomato diversity. We reasoned that new developmental modules prominent at later stages of fruit growth could be discovered by using new genetic and phenotypic diversity generated by saturated mutagenesis. Twelve fruit weight and tissue morphology mutants likely affected in late fruit growth were selected among thousands of fruit size and shape EMS mutants available in our tomato EMS mutant collection. Their thorough characterization at organ, tissue and cellular levels revealed two major clusters controlling fruit growth and tissue morphogenesis either through (i the growth of all fruit tissues through isotropic cell expansion or (ii only the growth of the pericarp through anisotropic cell expansion. These likely correspond to new cell expansion modules controlling fruit growth and tissue morphogenesis in tomato. Our study therefore opens the way for the identification of new gene regulatory networks controlling tomato fruit growth and morphology.

  16. LMP1-mediated glycolysis induces myeloid-derived suppressor cell expansion in nasopharyngeal carcinoma

    Science.gov (United States)

    Cai, Ting-Ting; Ye, Shu-Biao; Liu, Yi-Na; He, Jia; Chen, Qiu-Yan; Mai, Hai-Qiang; Zhang, Chuan-Xia; Cui, Jun; Zhang, Xiao-Shi; Zeng, Yi-Xin

    2017-01-01

    Myeloid-derived suppressor cells (MDSCs) are expanded in tumor microenvironments, including that of Epstein–Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC). The link between MDSC expansion and EBV infection in NPC is unclear. Here, we show that EBV latent membrane protein 1 (LMP1) promotes MDSC expansion in the tumor microenvironment by promoting extra-mitochondrial glycolysis in malignant cells, which is a scenario for immune escape initially suggested by the frequent, concomitant detection of abundant LMP1, glucose transporter 1 (GLUT1) and CD33+ MDSCs in tumor sections. The full process has been reconstituted in vitro. LMP1 promotes the expression of multiple glycolytic genes, including GLUT1. This metabolic reprogramming results in increased expression of the Nod-like receptor family protein 3 (NLRP3) inflammasome, COX-2 and P-p65 and, consequently, increased production of IL-1β, IL-6 and GM-CSF. Finally, these changes in the environment of malignant cells result in enhanced NPC-derived MDSC induction. One key step is the physical interaction of LMP1 with GLUT1 to stabilize the GLUT1 protein by blocking its K48-ubiquitination and p62-dependent autolysosomal degradation. This work indicates that LMP1-mediated glycolysis regulates IL-1β, IL-6 and GM-CSF production through the NLRP3 inflammasome, COX-2 and P-p65 signaling pathways to enhance tumor-associated MDSC expansion, which leads to tumor immunosuppression in NPC. PMID:28732079

  17. Rapid induction of senescence in human cervical carcinoma cells

    Science.gov (United States)

    Goodwin, Edward C.; Yang, Eva; Lee, Chan-Jae; Lee, Han-Woong; Dimaio, Daniel; Hwang, Eun-Seong

    2000-09-01

    Expression of the bovine papillomavirus E2 regulatory protein in human cervical carcinoma cell lines repressed expression of the resident human papillomavirus E6 and E7 oncogenes and within a few days caused essentially all of the cells to synchronously display numerous phenotypic markers characteristic of cells undergoing replicative senescence. This process was accompanied by marked but in some cases transient alterations in the expression of cell cycle regulatory proteins and by decreased telomerase activity. We propose that the human papillomavirus E6 and E7 proteins actively prevent senescence from occurring in cervical carcinoma cells, and that once viral oncogene expression is extinguished, the senescence program is rapidly executed. Activation of endogenous senescence pathways in cancer cells may represent an alternative approach to treat human cancers.

  18. Rapid neurogenesis through transcriptional activation in human stem cells.

    Science.gov (United States)

    Busskamp, Volker; Lewis, Nathan E; Guye, Patrick; Ng, Alex H M; Shipman, Seth L; Byrne, Susan M; Sanjana, Neville E; Murn, Jernej; Li, Yinqing; Li, Shangzhong; Stadler, Michael; Weiss, Ron; Church, George M

    2014-11-17

    Advances in cellular reprogramming and stem cell differentiation now enable ex vivo studies of human neuronal differentiation. However, it remains challenging to elucidate the underlying regulatory programs because differentiation protocols are laborious and often result in low neuron yields. Here, we overexpressed two Neurogenin transcription factors in human-induced pluripotent stem cells and obtained neurons with bipolar morphology in 4 days, at greater than 90% purity. The high purity enabled mRNA and microRNA expression profiling during neurogenesis, thus revealing the genetic programs involved in the rapid transition from stem cell to neuron. The resulting cells exhibited transcriptional, morphological and functional signatures of differentiated neurons, with greatest transcriptional similarity to prenatal human brain samples. Our analysis revealed a network of key transcription factors and microRNAs that promoted loss of pluripotency and rapid neurogenesis via progenitor states. Perturbations of key transcription factors affected homogeneity and phenotypic properties of the resulting neurons, suggesting that a systems-level view of the molecular biology of differentiation may guide subsequent manipulation of human stem cells to rapidly obtain diverse neuronal types. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  19. Isolation, expansion and differentiation of mesenchymal stromal cells from rabbits' bone marrow

    Directory of Open Access Journals (Sweden)

    Renato B. Eleotério

    2016-05-01

    Full Text Available Abstract: Tissue engineering has been a fundamental technique in the regenerative medicine field, once it permits to build tri-dimensional tissue constructs associating undifferentiated mesenchymal cells (or mesenchymal stromal cells - MSCs and scaffolds in vitro. Therefore, many studies have been carried out using these cells from different animal species, and rabbits are often used as animal model for in vivo tissue repair studies. However, most of the information available about MSCs harvesting and characterization is about human and murine cells, which brings some doubts to researchers who desire to work with a rabbit model in tissue repair studies based on MSCs. In this context, this study aimed to add and improve the information available in the scientific literature providing a complete technique for isolation, expansion and differentiation of MSCs from rabbits. Bone marrow mononuclear cells (BMMCs from humerus and femur of rabbits were obtained and to evaluate their proliferation rate, three different culture media were tested, here referred as DMEM-P, DMEM´S and α-MEM. The BMMCs were also cultured in osteogenic, chondrogenic and adipogenic induction media to prove their multipotentiality. It was concluded that the techniques suggested in this study can provide a guideline to harvest and isolate MSCs from bone marrow of rabbits in enough amount to allow their expansion and, based on the laboratory experience where the study was developed, it is also suggested a culture media formulation to provide a better cell proliferation rate with multipotentiality preservation.

  20. Protein SUMOylation Is Required for Regulatory T Cell Expansion and Function

    Directory of Open Access Journals (Sweden)

    Xiao Ding

    2016-07-01

    Full Text Available Foxp3-expressing regulatory T (Treg cells are essential for immune tolerance; however, the molecular mechanisms underlying Treg cell expansion and function are still not well understood. SUMOylation is a protein post-translational modification characterized by covalent attachment of SUMO moieties to lysines. UBC9 is the only E2 conjugating enzyme involved in this process, and loss of UBC9 completely abolishes the SUMOylation pathway. Here, we report that selective deletion of Ubc9 within the Treg lineage results in fatal early-onset autoimmunity similar to Foxp3 mutant mice. Ubc9-deficient Treg cells exhibit severe defects in TCR-driven homeostatic proliferation, accompanied by impaired activation and compromised suppressor function. Importantly, TCR ligation enhanced SUMOylation of IRF4, a critical regulator of Treg cell function downstream of TCR signals, which regulates its stability in Treg cells. Our data thus have demonstrated an essential role of SUMOylation in the expansion and function of Treg cells.

  1. Effect of culture media on expansion properties of human umbilical cord matrix-derived mesenchymal cells.

    Science.gov (United States)

    Salehinejad, Parvin; Alitheen, Noorjahan Banu; Nematollahi-Mahani, Seyed Noureddin; Ali, Abdul Manaf; Omar, Abdul Rahman; Janzamin, Ehsan; Hajghani, Masoomeh

    2012-09-01

    Mesenchymal stromal cells (MSC) have been isolated from a number of different tissues, including umbilical cord. Because of the lack of a uniform approach to human umbilical cord matrix-derived mesenchymal (hUCM) cell expansion, we attempted to identify the optimum conditions for the production of a high quantity of hUCM cells by comparing two media. We compared the ability of Dulbecco's Modified Eagle's Medium/F12 (DMEM/F12) and Alpha Minimum Essential Medium (α-MEM) with Glutamax (GL) (α-MEM/GL) to expand hUCM cells. For this purpose, hUCM cells were cultured in plates containing different culture media supplemented with 10% fetal bovine serum (FBS). Culture dishes were left undisturbed for 10-14 days to allow propagation of the newly formed hUCM cells. The expansion properties, CD marker expression, differentiation potential, population doubling time (PDT) and cell activity were compared between the two groups. The hUCM cells harvested from each group were positive for MSC markers, including CD44, CD90 and CD105, while they were negative for the hematopoietic cell surface marker CD34. Differentiation into adipogenic and osteogenic lineages was confirmed for both treatments. Cell activity was higher in the α-MEM/GL group than the DMEM/F12 group. PDT was calculated to be 60 h for the DMEM/F12 group, while for the α-MEM/GL group it was 47 h. Our data reveal that α-MEM/GL with 10% FBS supports hUCM cell growth more strongly than DMEM/F12 with 10% FBS.

  2. Temporal expression of bacterial proteins instructs host CD4 T cell expansion and Th17 development.

    Directory of Open Access Journals (Sweden)

    Seung-Joo Lee

    2012-01-01

    Full Text Available Pathogens can substantially alter gene expression within an infected host depending on metabolic or virulence requirements in different tissues, however, the effect of these alterations on host immunity are unclear. Here we visualized multiple CD4 T cell responses to temporally expressed proteins in Salmonella-infected mice. Flagellin-specific CD4 T cells expanded and contracted early, differentiated into Th1 and Th17 lineages, and were enriched in mucosal tissues after oral infection. In contrast, CD4 T cells responding to Salmonella Type-III Secretion System (TTSS effectors steadily accumulated until bacterial clearance was achieved, primarily differentiated into Th1 cells, and were predominantly detected in systemic tissues. Thus, pathogen regulation of antigen expression plays a major role in orchestrating the expansion, differentiation, and location of antigen-specific CD4 T cells in vivo.

  3. Expansion and functions of myeloid-derived suppressor cells in the tumor microenvironment.

    Science.gov (United States)

    Qu, Peng; Wang, Li-Zhen; Lin, P Charles

    2016-09-28

    Myeloid derived suppressor cells (MDSCs) are a group of immature myeloid cells accumulated in most cancer patients and mouse tumor models. MDSCs suppress host immune response and concurrently promote tumor angiogenesis, thereby promote tumor growth and progression. In this review, we discuss recent progresses in expansion and activity of tumor MDSCs, and describe new findings about immunosuppressive function of different subtypes of MDSCs in cancer. We also discussed tumor angiogenic activities and pro-tumor invasion/metastatic roles of MDSCs in tumor progression. Published by Elsevier Ireland Ltd.

  4. Intrinsic Plasma Cell Differentiation Defects in B Cell Expansion with NF-κB and T Cell Anergy Patient B Cells

    Directory of Open Access Journals (Sweden)

    Swadhinya Arjunaraja

    2017-08-01

    Full Text Available B cell Expansion with NF-κB and T cell Anergy (BENTA disease is a novel B cell lymphoproliferative disorder caused by germline, gain-of-function mutations in the lymphocyte scaffolding protein CARD11, which drives constitutive NF-κB signaling. Despite dramatic polyclonal expansion of naive and immature B cells, BENTA patients also present with signs of primary immunodeficiency, including markedly reduced percentages of class-switched/memory B cells and poor humoral responses to certain vaccines. Using purified naive B cells from our BENTA patient cohort, here we show that BENTA B cells exhibit intrinsic defects in B cell differentiation. Despite a profound in vitro survival advantage relative to normal donor B cells, BENTA patient B cells were severely impaired in their ability to differentiate into short-lived IgDloCD38hi plasmablasts or CD138+ long-lived plasma cells in response to various stimuli. These defects corresponded with diminished IgG antibody production and correlated with poor induction of specific genes required for plasma cell commitment. These findings provide important mechanistic clues that help explain both B cell lymphocytosis and humoral immunodeficiency in BENTA disease.

  5. ROCK Inhibition Facilitates In Vitro Expansion of Glioblastoma Stem-Like Cells.

    Directory of Open Access Journals (Sweden)

    Samantha G Tilson

    Full Text Available Due to their stem-like characteristics and their resistance to existing chemo- and radiation therapies, there is a growing appreciation that cancer stem cells (CSCs are the root cause behind cancer metastasis and recurrence. However, these cells represent a small subpopulation of cancer cells and are difficult to propagate in vitro. Glioblastoma is an extremely deadly form of brain cancer that is hypothesized to have a subpopulation of CSCs called glioblastoma stem cells (GSCs; also called brain tumor initiating cells, BTICs. We propose the use of selective Rho-kinase (ROCK inhibitors, Y-27632 and fasudil, to promote GSC/BTIC-like cell survival and propagation in vitro. ROCK inhibitors have been implicated in suppressing apoptosis, and it was hypothesized that they would increase the number of GSC/BTIC-like cells grown in vitro and improve cloning efficiencies. Indeed, our data demonstrate that transient and continuous supplementation of non-toxic concentrations of Y-27632 and fasudil inhibited apoptosis, enhanced the cells' ability to form spheres, and increased stem cell marker expressing GSC/BTIC-like cell subpopulation. Our data indicated that pharmacological and genetic (siRNA inhibitions of the ROCK pathway facilitates in vitro expansion of GSC/BTIC-like cells. Thus, ROCK pathway inhibition shows promise for future optimization of CSC culture media.

  6. Complete Maxillary Crossbite Correction with a Rapid Palatal Expansion in Mixed Dentition Followed by a Corrective Orthodontic Treatment

    Directory of Open Access Journals (Sweden)

    Orlando Motohiro Tanaka

    2016-01-01

    Full Text Available This case report presents the interceptive orthodontic treatment of a boy, aged 8 years 4 months with a Class I malocclusion with severe transverse maxillary deficiency and complete maxillary crossbite and correction using Haas expansion and fixed appliance. The treatment goals were to correct the posterior crossbite and anterior crossbite and restore the normality of the dentition and occlusion. In phase I, the patient was treated with a modified Haas-type palatal expander, which provided a clinically significant palatal expansion and increased the maxillary arch perimeter with favorable conditions for orthodontic treatment with fixed appliances in phase II. The optimization of E-space and the use of intermaxillary Class III elastics helped to maintain the mandibular incisors upright. A removable wraparound type appliance and a bonded lingual canine-to-canine retainer were used as retention. Although the literature has reported a high rate of relapse after palatal expansion, after 2 years 9 months of posttreatment follow-up, the occlusal result was stable and no skeletal reversals could be detected.

  7. In vitro expansion of Lin+ and Lin- mononuclear cells from human peripheral blood

    Science.gov (United States)

    Norhaiza, H. Siti; Rohaya, M. A. W.; Zarina, Z. A. Intan; Hisham, Z. A. Shahrul

    2013-11-01

    Haematopoietic stem cells (HSCs) are used in the therapy of blood disorders due to the ability of these cells to reconstitute haematopoietic lineage cells when transplanted into myeloablative recipients. However, substantial number of cells is required in order for the reconstitution to take place. Since HSCs present in low frequency, larger number of donor is required to accommodate the demand of transplantable HSCs. Therefore, in vitro expansion of HSCs will have profound impact on clinical purposes. The aim of this study was to expand lineage negative (Lin-) stem cells from human peripheral blood. Total peripheral blood mononuclear cells (PBMNCs) were fractionated from human blood by density gradient centrifugation. Subsequently, PBMNCs were subjected to magnetic assisted cell sorter (MACS) which depletes lineage positive (Lin+) mononuclear cells expressing lineage positive markers such as CD2, CD3, CD11b, CD14, CD15, CD16, CD19, CD56, CD123, and CD235a to obtained Lin- cell population. The ability of Lin+ and Lin- to survive in vitro was explored by culturing both cell populations in complete medium consisting of Alpha-Minimal Essential Medium (AMEM) +10% (v/v) Newborn Calf Serum (NBCS)+ 2% (v/v) pen/strep. In another experiment, Lin+ and Lin- were cultured with complete medium supplemented with 10ng/mL of the following growth factors: stem cell factor (SCF), interleukin (IL)-3, granulocyte-macrophage colony stimulating factor (GM-CSF), 2IU/mL of Erythropoietin (Epo) and 20ng/mL of IL-6. Three samples were monitored in static culture for 22 days. The expansion potential was assessed by the number of total viable cells, counted by trypan blue exclusion assay. It was found that Lin+ mononuclear cells were not able to survive either in normal proliferation medium or proliferation medium supplemented with cytokines. Similarly, Lin- stem cells were not able to survive in proliferation medium however, addition of cytokines into the proliferation medium support Lin

  8. Effects of rapid maxillary expansion and mandibular advancement on upper airways in Marfan's syndrome children: a home sleep study and cephalometric evaluation.

    Science.gov (United States)

    Taddei, M; Alkhamis, N; Tagariello, T; D'Alessandro, G; Mariucci, E M; Piana, G

    2015-12-01

    Evaluation of the effects of rapid maxillary expansion and mandibular advancement using Propulsor Universal Light appliance on the upper airways in Marfan's syndrome children through home sleep studies, Epworth Sleepiness Scale questionnaire, and cephalometric analysis of the upper airways on lateral radiographs. The study sample consisted of 30 children with Marfan's syndrome, and the control group consisted of 30 untreated and matched children. For Marfan subjects, data were taken at different time points compared to treatment: at T0 (before treatment), T1 (after rapid maxillary expansion), and T2 (after mandibular advancement). For control subjects, data were taken at similar intervals, at three follow-up visits: at T0 (as a starting screening tool), T1 (after approximately 2 years), and T2 (in proximity of the peak skeletal growth). Apnea-hypopnea and oxygen desaturations were significantly higher in the study group at T0 and T1 compared with control children. At T2, the values were not significant (p value 0.442 for both apnea-hypopnea index (AHI) and oxygen desaturation index (ODI)). Horizontal airway dimensions were significantly reduced, and vertical airway values were significantly increased in Marfan's syndrome at T0 and T1 but not at T2 (p values at T2: 0.071 for Phw1-Psp, 0.106 for Phw1-Psp', 0.101 for Phw2-Tb, 0.559 for UAL in male and 0.560 for UAL in female). Early rapid maxillary expansion and mandibular advancement using Propulsor Universal Light appliance significantly improved airway patency of Marfan's syndrome children and are strongly encouraged as a routine treatment for both correction of class II malocclusions and prevention of obstructive sleep apnea.

  9. pMHC affinity controls duration of CD8+ T cell-DC interactions and imprints timing of effector differentiation versus expansion.

    Science.gov (United States)

    Ozga, Aleksandra J; Moalli, Federica; Abe, Jun; Swoger, Jim; Sharpe, James; Zehn, Dietmar; Kreutzfeldt, Mario; Merkler, Doron; Ripoll, Jorge; Stein, Jens V

    2016-11-14

    During adaptive immune responses, CD8+ T cells with low TCR affinities are released early into the circulation before high-affinity clones become dominant at later time points. How functional avidity maturation is orchestrated in lymphoid tissue and how low-affinity cells contribute to host protection remains unclear. In this study, we used intravital imaging of reactive lymph nodes (LNs) to show that T cells rapidly attached to dendritic cells irrespective of TCR affinity, whereas one day later, the duration of these stable interactions ceased progressively with lowering peptide major histocompatibility complex (pMHC) affinity. This correlated inversely BATF (basic leucine zipper transcription factor, ATF-like) and IRF4 (interferon-regulated factor 4) induction and timing of effector differentiation, as low affinity-primed T cells acquired cytotoxic activity earlier than high affinity-primed ones. After activation, low-affinity effector CD8+ T cells accumulated at efferent lymphatic vessels for egress, whereas high affinity-stimulated CD8+ T cells moved to interfollicular regions in a CXCR3-dependent manner for sustained pMHC stimulation and prolonged expansion. The early release of low-affinity effector T cells led to rapid target cell elimination outside reactive LNs. Our data provide a model for affinity-dependent spatiotemporal orchestration of CD8+ T cell activation inside LNs leading to functional avidity maturation and uncover a role for low-affinity effector T cells during early microbial containment. © 2016 Ozga et al.

  10. Long-term generation and expansion of human primitive hematopoietic progenitor cells in vitro.

    Science.gov (United States)

    Srour, E F; Brandt, J E; Briddell, R A; Grigsby, S; Leemhuis, T; Hoffman, R

    1993-02-01

    Although sustained production of committed human hematopoietic progenitor cells in long-term bone marrow cultures (LTBMC) is well documented, evidence for the generation and expansion of human primitive hematopoietic progenitor cells (PHPC) in such cultures is lacking. For that purpose, we attempted to determine if the human high proliferative potential colony-forming cell (HPP-CFC), a primitive hematopoietic marrow progenitor cell, is capable of generation and expansion in vitro. To that effect, stromal cell-free LTBMC were initiated with CD34+ HLA-DR-CD15- rhodamine 123dull bone marrow cells and were maintained with repeated addition of c-kit ligand and a synthetic interleukin-3/granulocyte-macrophage colony-stimulating factor fusion protein. By day 21 of LTBMC, a greater than twofold increase in the number of assayable HPP-CFC was detected. Furthermore, the production of HPP-CFC in LTBMC continued for up to 4 weeks, resulting in a 5.5-fold increase in HPP-CFC numbers. Weekly phenotypic analyses of cells harvested from LTBMC showed that the number of CD34+ HLA-DR- cells increased from 10(4) on day 0 to 56 CD34+ HLA-DR- cells increased from 10(4) on day 0 to 56 x 10(4) by day 21. To examine further the nature of the in vitro HPP-CFC expansion, individual HPP-CFC colonies were serially cloned. Secondary cloning of individual, day 28 primary HPP-CFC indicated that 46% of these colonies formed an average of nine secondary colony-forming unit--granulocyte-macrophage (CFU-GM)--derived colonies, whereas 43% of primary HPP-CFC gave rise to between one and six secondary HPP-CFC colonies and 6 to 26 CFU-GM. These data show that CD34+ HLA-DR- CD15- rhodamine 123dull cells represent a fraction of human bone marrow highly enriched for HPP-CFC and that based on their regeneration and proliferative capacities, a hierarchy of HPP-CFC exists. Furthermore, these studies indicate that in the presence of appropriate cytokine stimulation, it is possible to expand the number of PHPC

  11. Role of c-kit ligand in the expansion of human hematopoietic progenitor cells.

    Science.gov (United States)

    Brandt, J; Briddell, R A; Srour, E F; Leemhuis, T B; Hoffman, R

    1992-02-01

    To test the hypothesis that the c-kit ligand plays an important role in the regulation of early events occurring during human hematopoiesis, we determined the effect of a recombinant form of c-kit ligand, termed mast cell growth factor (MGF), on the high-proliferative potential colony-forming cell (HPP-CFC) and the cell responsible for initiating long-term hematopoiesis in vitro (LTBMIC). MGF alone did not promote HPP-CFC colony formation by CD34+ DR- CD15- marrow cells, but synergistically augmented the ability of a combination of granulocyte-monocyte colony-stimulating factor (GM-CSF) interleukin (IL)-3 and a recombinant GM-CSF/IL-3 fusion protein (FP) to promote the formation of HPP-CFC-derived colonies. MGF had a similarly profound effect on in vitro long-term hematopoiesis. Repeated additions of IL-3, GM-CSF, or FP alone to CD34+ DR- CD15- marrow cells in a stromal cell-free culture system increased cell numbers 10(3)-fold by day 56 of long-term bone marrow culture (LTBMC), while combinations of MGF with IL-3 or FP yielded 10(4)- and 10(5)-fold expansion of cell numbers. Expansion of the number of assayable colony-forming unit-granulocyte-monocyte (CFU-GM) generated during LTBMC was also markedly enhanced when MGF was added in combination with IL-3 or FP. In addition, MGF, IL-3, and FP individually led to a twofold to threefold increase in HPP-CFC numbers after 14 to 21 days of LTBMC. Furthermore, the effects of these cytokines on HPP-CFC expansion during LTBMC were additive. Throughout the LTBMC, cells receiving MGF possessed a higher cloning efficiency than those receiving IL-3, GM-CSF, or FP alone. These data indicate that the c-kit ligand synergistically interacts with a number of cytokines to directly augment the proliferative capacity of primitive human hematopoietic progenitor cells.

  12. Immune complex formation and in situ B-cell clonal expansion in human cerebral cavernous malformations.

    Science.gov (United States)

    Shi, Changbin; Shenkar, Robert; Kinloch, Andrew; Henderson, Scott G; Shaaya, Mark; Chong, Anita S; Clark, Marcus R; Awad, Issam A

    2014-07-15

    Cerebral cavernous malformations (CCMs) represent clusters of dilated vascular channels, predisposing to hemorrhagic stroke and seizures. They are associated with defective blood brain barrier, hemorrhages of different ages and a robust inflammatory cell infiltrate. We report for the first time evidence of co-localized IgG and complement membrane attack complexes in CCM lesions. CD4(+) and CD8(+) T-cells are aggregated with CD20(+) B-cells. And IgG repertoire analyses demonstrate in situ B-cell clonal expansion and antigen-driven affinity maturation in CCMs. These results suggest an organ-intrinsic adaptive immune response in CCMs that should be further characterized as a potential therapeutic target. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Effects of Pterygomaxillary Separation on Skeletal and Dental Changes After Surgically Assisted Rapid Maxillary Expansion: A Single-Center, Double-Blind, Randomized Clinical Trial.

    Science.gov (United States)

    Ferraro-Bezerra, Marcelo; Tavares, Rodrygo Nunes; de Medeiros, José Rômulo; Nogueira, Alexandre Simões; Avelar, Rafael Linard; Studart Soares, Eduardo Costa

    2017-08-31

    Surgically assisted rapid maxillary expansion (SARME) is a procedure routinely performed to correct transverse maxillary deformities and can be performed with or without pterygomaxillary disjunction (PD). The aim of the present study was to measure the effect of the amount of expansion and stability of SARME with or without PD. We designed and implemented a double-blind, randomized clinical trial. The patients were randomly assigned to 2 groups: group 1, SARME without PD; and group 2, SARME with PD. Cone-beam computed tomography scans were performed at 3 points: baseline (T0), after maxillary expansion (T1), and at the end of the retention period (T2). Dental and bone expansion and dental inclination at the maxillary canine and first molar regions were assessed. Two-way repeated measures analysis of variance was used to evaluate the differences between the 2 groups at the 3 evaluation periods (T0, T1, and T2), using a level of significance of P patients underwent maxillary surgical expansion (group 1, n = 12; and group 2, n = 12). Both techniques promoted a significant transverse dental expansion in the first molar at T2 (with PD, 5.4 mm; vs without PD, 6.4 mm; change, -6.18 mm to 1.48 mm). However, no statistically significant differences were observed between the 2 groups. The tipping molars at T2 remained at a higher level in the SARME, no PD group than in the SARME, PD group (with PD, 2.3°; vs no PD, 4.6° for 3 teeth; change, -12.72° to 5.57°; and with PD, 1.6° vs without PD, 3.6° for 14 teeth; change, -9.96° to 9.83°). SARME with and without PD is a reliable method for obtaining maxillary expansion, with slight differences in the patterns of skeletal and dental alterations. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  14. Influence of patient related factors on number of mesenchymal stromal cells reached after in vitro culture expansion for clinical treatment

    DEFF Research Database (Denmark)

    Qayyum, Abbas Ali; Kaur, Kamal Preet; Mathiasen, Anders Bruun

    2017-01-01

    of autologous stromal cells reached after in vitro culture expansion for clinical therapy. METHODS: Culture expansion data from 111 patients with IHD treated with autologous stromal cells in three clinical trials were used. We correlated the final cell count after two passages of cultivation with different...... correlation between left ventricular ejection fraction and number of MSCs was found (r = -0.287, p = .017). CONCLUSIONS: Patient related factors such as BMI, hypertension and gender may influence the number of MSCs reached after in vitro culture expansion....... patient factors. RESULTS: There was a significant relation between body mass index (BMI) and the number of adipose derived stromal cells (ASCs) reached after culture expansion and for all patients included into the three studies (r = 0.375, p = .019 and r = 0.200, p = .036, respectively). Moreover...

  15. Improving embryonic stem cell expansion through the combination of perfusion and Bioprocess model design.

    Science.gov (United States)

    Yeo, David; Kiparissides, Alexandros; Cha, Jae Min; Aguilar-Gallardo, Cristobal; Polak, Julia M; Tsiridis, Elefterios; Pistikopoulos, Efstratios N; Mantalaris, Athanasios

    2013-01-01

    High proliferative and differentiation capacity renders embryonic stem cells (ESCs) a promising cell source for tissue engineering and cell-based therapies. Harnessing their potential, however, requires well-designed, efficient and reproducible expansion and differentiation protocols as well as avoiding hazardous by-products, such as teratoma formation. Traditional, standard culture methodologies are fragmented and limited in their fed-batch feeding strategies that afford a sub-optimal environment for cellular metabolism. Herein, we investigate the impact of metabolic stress as a result of inefficient feeding utilizing a novel perfusion bioreactor and a mathematical model to achieve bioprocess improvement. To characterize nutritional requirements, the expansion of undifferentiated murine ESCs (mESCs) encapsulated in hydrogels was performed in batch and perfusion cultures using bioreactors. Despite sufficient nutrient and growth factor provision, the accumulation of inhibitory metabolites resulted in the unscheduled differentiation of mESCs and a decline in their cell numbers in the batch cultures. In contrast, perfusion cultures maintained metabolite concentration below toxic levels, resulting in the robust expansion (>16-fold) of high quality 'naïve' mESCs within 4 days. A multi-scale mathematical model describing population segregated growth kinetics, metabolism and the expression of selected pluripotency ('stemness') genes was implemented to maximize information from available experimental data. A global sensitivity analysis (GSA) was employed that identified significant (6/29) model parameters and enabled model validation. Predicting the preferential propagation of undifferentiated ESCs in perfusion culture conditions demonstrates synchrony between theory and experiment. The limitations of batch culture highlight the importance of cellular metabolism in maintaining pluripotency, which necessitates the design of suitable ESC bioprocesses. We propose a novel

  16. Low interleukin-2 concentration favors generation of early memory T cells over effector phenotypes during chimeric antigen receptor T-cell expansion.

    Science.gov (United States)

    Kaartinen, Tanja; Luostarinen, Annu; Maliniemi, Pilvi; Keto, Joni; Arvas, Mikko; Belt, Heini; Koponen, Jonna; Loskog, Angelica; Mustjoki, Satu; Porkka, Kimmo; Ylä-Herttuala, Seppo; Korhonen, Matti

    2017-06-01

    Adoptive T-cell therapy offers new options for cancer treatment. Clinical results suggest that T-cell persistence, depending on T-cell memory, improves efficacy. The use of interleukin (IL)-2 for in vitro T-cell expansion is not straightforward because it drives effector T-cell differentiation but does not promote the formation of T-cell memory. We have developed a cost-effective expansion protocol for chimeric antigen receptor (CAR) T cells with an early memory phenotype. Lymphocytes were transduced with third-generation lentiviral vectors and expanded using CD3/CD28 microbeads. The effects of altering the IL-2 supplementation (0-300 IU/mL) and length of expansion (10-20 days) on the phenotype of the T-cell products were analyzed. High IL-2 levels led to a decrease in overall generation of early memory T cells by both decreasing central memory T cells and augmenting effectors. T memory stem cells (TSCM, CD95+CD45RO-CD45RA+CD27+) were present variably during T-cell expansion. However, their presence was not IL-2 dependent but was linked to expansion kinetics. CD19-CAR T cells generated in these conditions displayed in vitro antileukemic activity. In summary, production of CAR T cells without any cytokine supplementation yielded the highest proportion of early memory T cells, provided a 10-fold cell expansion and the cells were functionally potent. The number of early memory T cells in a T-cell preparation can be increased by simply reducing the amount of IL-2 and limiting the length of T-cell expansion, providing cells with potentially higher in vivo performance. These findings are significant for robust and cost-effective T-cell manufacturing. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  17. Local oxidative stress expansion through endothelial cells--a key role for gap junction intercellular communication.

    Directory of Open Access Journals (Sweden)

    Ilan Feine

    Full Text Available BACKGROUND: Major circulation pathologies are initiated by oxidative insult expansion from a few injured endothelial cells to distal sites; this possibly involves mechanisms that are important to understanding circulation physiology and designing therapeutic management of myocardial pathologies. We tested the hypothesis that a localized oxidative insult of endothelial cells (ECs propagates through gap junction inter-cellular communication (GJIC. METHODOLOGY/PRINCIPAL FINDINGS: Cultures comprising the bEnd.3 cell line, that have been established and recognized as suitable for examining communication among ECs, were used to study the propagation of a localized oxidative insult to remote cells. Spatially confined near infrared illumination of parental or genetically modified bEnd.3 cultures, pretreated with the photosensitizer WST11, generated O(2•(- and •OH radicals in the illuminated cells. Time-lapse fluorescence microscopy, utilizing various markers, and other methods, were used to monitor the response of non-illuminated bystander and remote cells. Functional GJIC among ECs was shown to be mandatory for oxidative insult propagation, comprising de-novo generation of reactive oxygen and nitrogen species (ROS and RNS, respectively, activation and nuclear translocation of c-Jun N-terminal kinase, followed by massive apoptosis in all bystander cells adjacent to the primarily injured ECs. The oxidative insult propagated through GJIC for many hours, over hundreds of microns from the primary photogeneration site. This wave is shown to be limited by intracellular ROS scavenging, chemical GJIC inhibition or genetic manipulation of connexin 43 (a key component of GJIC. CONCLUSION/SIGNIFICANCE: Localized oxidative insults propagate through GJIC between ECs, while stimulating de-novo generation of ROS and RNS in bystander cells, thereby driving the insult's expansion.

  18. Bioreactor systems for tissue engineering II. Strategies for the expansion and directed differentiation of stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kasper, Cornelia [Hannover Univ. (Germany). Inst. fuer Technische Chemie; Griensven, Martijn van [Ludwig Boltzmann Institut fuer Klinische und Experimentelle Traumatologie, Wien (Austria); Poertner, Ralf (eds.) [Technische Univ. Hamburg-Harburg (Germany). Inst. Biotechnologie und Verfahrenstechnik

    2010-07-01

    Alternative Sources of Adult Stem Cells: Human Amniotic Membrane, by S. Wolbank, M. van Griensven, R. Grillari-Voglauer, and A. Peterbauer-Scherb; - Mesenchymal Stromal Cells Derived from Human Umbilical Cord Tissues: Primitive Cells with Potential for Clinical and Tissue Engineering Applications, by P. Moretti, T. Hatlapatka, D. Marten, A. Lavrentieva, I. Majore, R. Hass and C. Kasper; - Isolation, Characterization, Differentiation, and Application of Adipose-Derived Stem Cells, by J. W. Kuhbier, B. Weyand, C. Radtke, P. M. Vogt, C. Kasper and K. Reimers; - Induced Pluripotent Stem Cells: Characteristics and Perspectives, by T. Cantz and U. Martin; - Induced Pluripotent Stem Cell Technology in Regenerative Medicine and Biology, by D. Pei, J. Xu, Q. Zhuang, H.-F. Tse and M. A. Esteban; - Production Process for Stem Cell Based Therapeutic Implants: Expansion of the Production Cell Line and Cultivation of Encapsulated Cells, by C. Weber, S. Pohl, R. Poertner, P. Pino-Grace, D. Freimark, C. Wallrapp, P. Geigle and P. Czermak; - Cartilage Engineering from Mesenchymal Stem Cells, by C. Goepfert, A. Slobodianski, A.F. Schilling, P. Adamietz and R. Poertner; - Outgrowth Endothelial Cells: Sources, Characteristics and Potential Applications in Tissue Engineering and Regenerative Medicine, by S. Fuchs, E. Dohle, M. Kolbe, C. J. Kirkpatrick; - Basic Science and Clinical Application of Stem Cells in Veterinary Medicine, by I. Ribitsch, J. Burk, U. Delling, C. Geissler, C. Gittel, H. Juelke, W. Brehm; - Bone Marrow Stem Cells in Clinical Application: Harnessing Paracrine Roles and Niche Mechanisms, by R. M. El Backly, R. Cancedda; - Clinical Application of Stem Cells in the Cardiovascular System, C. Stamm, K. Klose, Y.-H. Choi. (orig.)

  19. Assessment of the dental and skeletal effects of fan-type rapid maxillary expansion screw and Hyrax screw on craniofacial structures

    Directory of Open Access Journals (Sweden)

    Umarevathi Gopalakrishnan

    2017-01-01

    Full Text Available Aims and Objectives: The purpose of the study was to assess the skeletal and dental effects of fan-type rapid maxillary expansion (RME appliance and Hyrax RME appliance on the craniofacial structures. Materials and Methods: The sample of the study included 12 patients with constricted maxillary arches. Acrylic bonded type of attachment was used for both groups. Changes in sagittal, vertical, and transverse relationship were assessed with lateral and frontal cephalograms, respectively. Intercanine and intermolar widths were measured with stone models. Pre- and immediate post-treatment records were statistically analyzed with Wilcoxon signed-rank test. The differences between the groups were evaluated using Mann–Whitney U-test. Since the data pertaining to intercanine width and intermolar width were normally distributed, parametric test of signifi cance (unpaired t-test was used to compare them. Results: Results showed that Hyrax presented with signifi cantly greater increments for both nasal cavity width and maxillary width when compared to fan-type RME. Both groups had retroclination of incisors. The increase in the intercanine width was almost similar in both groups. Conclusion: Fan-type RME caused only minimal expansion of the intermolar width when compared to the Hyrax. The ratio between the intercanine and intermolar width expansion was nearly 4:1 in the fan-type RME and 0.75:1 in Hyrax.

  20. Three-Dimensional Finite Element Analysis of Stress Distribution and Displacement of the Maxilla Following Surgically Assisted Rapid Maxillary Expansion with Tooth- and Bone-Borne Devices.

    Science.gov (United States)

    Dalband, Mohsen; Kashani, Jamal; Hashemzehi, Hadi

    2015-04-01

    The aim of this study was to investigate the displacement and stress distribution during surgically assisted rapid maxillary expansion under different surgical conditions with tooth- and bone-borne devices. Three-dimensional (3D) finite element model of a maxilla was constructed and an expansion force of 100 N was applied to the left and right molars and premolars with tooth-borne devices and the left and right of mid-palatal sutures at the first molar level with bone-borne devices. Five computer-aided design (CAD) models were simulated as follows and surgical procedures were used: G1: control group (without surgery); G2: Le Fort I osteotomy; G3: Le Fort I osteotomy and para-median osteotomy; G4: Le Fort I osteotomy and pterygomaxillary separation; and G5: Le Fort I osteotomy, para-median osteotomy, and pterygomaxillary separation. Maxillary displacement showed a gradual increase from G1 to G5 in all three planes of space, indicating that Le Fort I osteotomy combined with para-median osteotomy and pterygomaxillary separation produced the greatest displacement of the maxilla with both bone- and tooth-borne devices. Surgical relief and bone-borne devices resulted in significantly reduced stress on anchored teeth. Combination of Le Fort I and para-median osteotomy with pterygomaxillary separation seems to be an effective procedure for increasing maxillary expansion, and excessive stress side effects are lowered around the anchored teeth with the use of bone-borne devices.

  1. Atypical PKC-iota Controls Stem Cell Expansion via Regulation of the Notch Pathway

    Directory of Open Access Journals (Sweden)

    In Kyoung Mah

    2015-11-01

    Full Text Available The number of stem/progenitor cells available can profoundly impact tissue homeostasis and the response to injury or disease. Here, we propose that an atypical PKC, Prkci, is a key player in regulating the switch from an expansion to a differentiation/maintenance phase via regulation of Notch, thus linking the polarity pathway with the control of stem cell self-renewal. Prkci is known to influence symmetric cell division in invertebrates; however a definitive role in mammals has not yet emerged. Using a genetic approach, we find that loss of Prkci results in a marked increase in the number of various stem/progenitor cells. The mechanism used likely involves inactivation and symmetric localization of NUMB, leading to the activation of NOTCH1 and its downstream effectors. Inhibition of atypical PKCs may be useful for boosting the production of pluripotent stem cells, multipotent stem cells, or possibly even primordial germ cells by promoting the stem cell/progenitor fate.

  2. Telomere Attrition Occurs during Ex Vivo Expansion of Human Dental Pulp Stem Cells

    Directory of Open Access Journals (Sweden)

    Jaroslav Mokry

    2010-01-01

    Full Text Available We provide a detailed characteristic of stem cells isolated and expanded from the human dental pulp. Dental pulp stem cells express mesenchymal cell markers STRO-1, vimentin, CD29, CD44, CD73, CD90, CD166, and stem cell markers Sox2, nestin, and nucleostemin. They are multipotent as shown by their osteogenic and chondrogenic potential. We measured relative telomere length in 11 dental pulp stem cell lines at different passages by quantitative real-time PCR. Despite their large proliferative capacity, stable viability, phenotype, and genotype over prolonged cultivation, human dental pulp stem cells suffer from progressive telomere shortening over time they replicate in vitro. Relative telomere length (T/S was inversely correlated with cumulative doubling time. Our findings indicate that excessive ex vivo expansion of adult stem cells should be reduced at minimum to avoid detrimental effects on telomere maintenance and measurement of telomere length should become a standard when certificating the status and replicative age of stem cells prior therapeutic applications.

  3. Evaluation of the expansion of umbilical cord blood derived from CD133+ cells on biocompatible microwells

    Directory of Open Access Journals (Sweden)

    Mina Soufizomorrod

    2016-05-01

    Full Text Available Background: Hematopoietic stem cell transplantation (HSCT is a therapeutic approach for treatment of hematological malignancies and incompatibility of Bone marrow. Umbilical cord blood (UCB has known as an alternative for hematopoietic stem/progenitor cells (HPSC in allogeneic transplantation. The low volume of collected samples is the main hindrance in application of HPSC derived from umbilical cord blood. So, ex vivo expansion of HPSCs is the useful approach to overcome this restriction. The goal of using this system is to produce appropriate amount of hematopoietic stem cells, which have the ability of transplantation and long term haematopoiesis. Material & Methods: In current study CD133+ cells were isolated from cord blood (CB. Isolated cells were seeded on microwells. Then expanded cells proliferation rate and ability in colony formation were assessed and finally were compared with 2 Dimensional (2D culture systems. Results: Our findings demonstrated that CD133+ cells derived from UCB which were cultivated on microwells had significantly higher rate of proliferation in compared with routine cell culture systems. Conclusion: In Current study, it was shown that CD133+ cells’ proliferations which were seeded on PDMS microwells coated with collagen significantly increased. We hope that 3 dimensional (3D microenvironment which mimics the 3D structure of bone marrow can solve the problem of using UCB as an alternative source of bone marrow.

  4. Directional cell expansion requires NIMA-related kinase 6 (NEK6)-mediated cortical microtubule destabilization.

    Science.gov (United States)

    Takatani, Shogo; Ozawa, Shinichiro; Yagi, Noriyoshi; Hotta, Takashi; Hashimoto, Takashi; Takahashi, Yuichiro; Takahashi, Taku; Motose, Hiroyasu

    2017-08-10

    Plant cortical microtubules align perpendicular to the growth axis to determine the direction of cell growth. However, it remains unclear how plant cells form well-organized cortical microtubule arrays in the absence of a centrosome. In this study, we investigated the functions of Arabidopsis NIMA-related kinase 6 (NEK6), which regulates microtubule organization during anisotropic cell expansion. Quantitative analysis of hypocotyl cell growth in the nek6-1 mutant demonstrated that NEK6 suppresses ectopic outgrowth and promotes cell elongation in different regions of the hypocotyl. Loss of NEK6 function led to excessive microtubule waving and distortion, implying that NEK6 suppresses the aberrant cortical microtubules. Live cell imaging showed that NEK6 localizes to the microtubule lattice and to the shrinking plus and minus ends of microtubules. In agreement with this observation, the induced overexpression of NEK6 reduced and disorganized cortical microtubules and suppressed cell elongation. Furthermore, we identified five phosphorylation sites in β-tubulin that serve as substrates for NEK6 in vitro. Alanine substitution of the phosphorylation site Thr166 promoted incorporation of mutant β-tubulin into microtubules. Taken together, these results suggest that NEK6 promotes directional cell growth through phosphorylation of β-tubulin and the resulting destabilization of cortical microtubules.

  5. Optimizing Human Induced Pluripotent Stem Cell Expansion in Stirred Suspension Culture.

    Science.gov (United States)

    Meng, Guoliang; Liu, Shiying; Poon, Anna; Rancourt, Derrick Emile

    2017-10-10

    Human induced pluripotent stem cells (hiPSCs) hold great hopes for application in regenerative medicine due to their inherent capacity to self-renew and differentiate into cells from the three embryonic germ layers. For clinical applications, a large quantity of hiPSCs produced in standardized and scalable culture processes is required. Several groups including ours have developed methodologies for scaled-up hiPSC production in stirred bioreactors in chemically defined medium. Here, we optimized the critical steps and factors that affect hiPSC expansion and yield in stirred suspension cultures including inoculation conditions, seeding density, aggregate size, agitation rate, and cell passaging method. After multiple passages in stirred suspension bioreactors, hiPSCs remained pluripotent, karyotypically normal, and capable of differentiating into all three germ layers.

  6. IL-33-Mediated Expansion of Type 2 Innate Lymphoid Cells Protects from Progressive Glomerulosclerosis.

    Science.gov (United States)

    Riedel, Jan-Hendrik; Becker, Martina; Kopp, Kerstin; Düster, Mathis; Brix, Silke R; Meyer-Schwesinger, Catherine; Kluth, Luis A; Gnirck, Ann-Christin; Attar, Madena; Krohn, Sonja; Fehse, Boris; Stahl, Rolf A K; Panzer, Ulf; Turner, Jan-Eric

    2017-07-01

    Innate lymphoid cells (ILCs) have an important role in the immune system's response to different forms of infectious and noninfectious pathologies. In particular, IL-5- and IL-13-producing type 2 ILCs (ILC2s) have been implicated in repair mechanisms that restore tissue integrity after injury. However, the presence of renal ILCs in humans has not been reported. In this study, we show that ILC populations are present in the healthy human kidney. A detailed characterization of kidney-residing ILC populations revealed that IL-33 receptor-positive ILC2s are a major ILC subtype in the kidney of humans and mice. Short-term IL-33 treatment in mice led to sustained expansion of IL-33 receptor-positive kidney ILC2s and ameliorated adriamycin-induced glomerulosclerosis. Furthermore, the expansion of ILC2s modulated the inflammatory response in the diseased kidney in favor of an anti-inflammatory milieu with a reduction of pathogenic myeloid cell infiltration and a marked accumulation of eosinophils that was required for tissue protection. In summary, kidney-residing ILC2s can be effectively expanded in the mouse kidney by IL-33 treatment and are central regulators of renal repair mechanisms. The presence of ILC2s in the human kidney tissue identifies these cells as attractive therapeutic targets for CKD in humans. Copyright © 2017 by the American Society of Nephrology.

  7. Klebsiella pneumoniae alleviates influenza-induced acute lung injury via limiting NK cell expansion.

    Science.gov (United States)

    Wang, Jian; Li, Fengqi; Sun, Rui; Gao, Xiang; Wei, Haiming; Tian, Zhigang

    2014-08-01

    A protective effect induced by bacterial preinfection upon a subsequent lethal influenza virus infection has been observed, but the underlying immune mechanisms have not yet been fully elucidated. In this study, we used a mouse model of Klebsiella pneumoniae preinfection to gain insight into how bacterial preinfection influences the subsequent lethal influenza virus infection. We found that K. pneumoniae preinfection significantly attenuated lung immune injury and decreased mortality during influenza virus infection, but K. pneumoniae-specific immunity was not involved in this cross-protection against influenza virus. K. pneumoniae preinfection limited NK cell expansion, which was involved in influenza-induced immune injury and death. Furthermore, K. pneumoniae preinfection could not control NK cell expansion and death during influenza virus infection in Rag1(-/-) mice, but adoptive transfer of T cells from wild-type mice was able to restore this protective effect. Our data suggest that the adaptive immune response activated by bacterial infection limits the excessive innate immune response induced by a subsequent influenza infection, ultimately protecting mice from death. Copyright © 2014 by The American Association of Immunologists, Inc.

  8. CAG Expansions Are Genetically Stable and Form Nontoxic Aggregates in Cells Lacking Endogenous Polyglutamine Proteins

    Directory of Open Access Journals (Sweden)

    Ashley A. Zurawel

    2016-09-01

    Full Text Available Proteins containing polyglutamine (polyQ regions are found in almost all eukaryotes, albeit with various frequencies. In humans, proteins such as huntingtin (Htt with abnormally expanded polyQ regions cause neurodegenerative diseases such as Huntington’s disease (HD. To study how the presence of endogenous polyQ aggregation modulates polyQ aggregation and toxicity, we expressed polyQ expanded Htt fragments (polyQ Htt in Schizosaccharomyces pombe. In stark contrast to other unicellular fungi, such as Saccharomyces cerevisiae, S. pombe is uniquely devoid of proteins with more than 10 Q repeats. We found that polyQ Htt forms aggregates within S. pombe cells only with exceedingly long polyQ expansions. Surprisingly, despite the presence of polyQ Htt aggregates in both the cytoplasm and nucleus, no significant growth defect was observed in S. pombe cells. Further, PCR analysis showed that the repetitive polyQ-encoding DNA region remained constant following transformation and after multiple divisions in S. pombe, in contrast to the genetic instability of polyQ DNA sequences in other organisms. These results demonstrate that cells with a low content of polyQ or other aggregation-prone proteins can show a striking resilience with respect to polyQ toxicity and that genetic instability of repetitive DNA sequences may have played an important role in the evolutionary emergence and exclusion of polyQ expansion proteins in different organisms.

  9. Alterações no volume nasal de pacientes submetidos a disjunção da maxila Changes in nasal volume of patients undergoing rapid maxillary expansion

    Directory of Open Access Journals (Sweden)

    Renata da Fonseca Lacerda e Muniz

    2008-02-01

    Full Text Available Os efeitos da disjunção maxilar na resistência nasal e fluxo aéreo têm sido amplamente discutidos na literatura, com controvérsias. Suas indicações esqueléticas e dentárias parecem estar bem claras. Porém, aquelas puramente rinológicas não são justificadas, porque nem sempre resultados positivos são encontrados. Este estudo teve por finalidade avaliar a repercussão da disjunção maxilar ortopédica no aspecto respiratório e rinológico dos pacientes submetidos a esse procedimento.Rapid maxillary expansion effects on airflow and nasal resistance has been amply discussed in literature, with controversies. Its skeletal and dental indications seem to be clear, however, those sole rhinologic are not justified, because positive results are not always found. This study had as purpose to evaluate the orthopedic rapid maxillary expansion repercussion on respiratory and rhinologic aspects of patients undergoing this procedure.

  10. Homogenous Population Genetic Structure of the Non-Native Raccoon Dog (Nyctereutes procyonoides) in Europe as a Result of Rapid Population Expansion.

    Science.gov (United States)

    Drygala, Frank; Korablev, Nikolay; Ansorge, Hermann; Fickel, Joerns; Isomursu, Marja; Elmeros, Morten; Kowalczyk, Rafał; Baltrunaite, Laima; Balciauskas, Linas; Saarma, Urmas; Schulze, Christoph; Borkenhagen, Peter; Frantz, Alain C

    2016-01-01

    The extent of gene flow during the range expansion of non-native species influences the amount of genetic diversity retained in expanding populations. Here, we analyse the population genetic structure of the raccoon dog (Nyctereutes procyonoides) in north-eastern and central Europe. This invasive species is of management concern because it is highly susceptible to fox rabies and an important secondary host of the virus. We hypothesized that the large number of introduced animals and the species' dispersal capabilities led to high population connectivity and maintenance of genetic diversity throughout the invaded range. We genotyped 332 tissue samples from seven European countries using 16 microsatellite loci. Different algorithms identified three genetic clusters corresponding to Finland, Denmark and a large 'central' population that reached from introduction areas in western Russia to northern Germany. Cluster assignments provided evidence of long-distance dispersal. The results of an Approximate Bayesian Computation analysis supported a scenario of equal effective population sizes among different pre-defined populations in the large central cluster. Our results are in line with strong gene flow and secondary admixture between neighbouring demes leading to reduced genetic structuring, probably a result of its fairly rapid population expansion after introduction. The results presented here are remarkable in the sense that we identified a homogenous genetic cluster inhabiting an area stretching over more than 1500km. They are also relevant for disease management, as in the event of a significant rabies outbreak, there is a great risk of a rapid virus spread among raccoon dog populations.

  11. Gelatin–PMVE/MA composite scaffold promotes expansion of embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chhabra, Hemlata [Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai (India); Gupta, Priyanka [Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai (India); IITB-Monash Research Academy, Mumbai (India); Department of Chemical Engineering, Monash University, Melbourne (Australia); Verma, Paul J. [Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, South Australia (Australia); Jadhav, Sameer; Bellare, Jayesh R. [Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai (India)

    2014-04-01

    We introduce a new composite scaffold of gelatin and polymethyl vinyl ether-alt-maleic anhydride (PMVE/MA) for expansion of embryonic stem cells (ESCs) in an in vitro environment. To optimize the scaffold, we prepared a gelatin scaffold (G) and three composite scaffolds namely GP-1, GP-2, and GP-3 with varying PMVE/MA concentrations (0.2–1%) and characterized them by scanning electron microscopy (SEM), swelling study, compression testing and FTIR. SEM micrographs revealed interconnected porous structure in all the scaffolds. The permissible hemolysis ratio and activation of platelets by scaffolds confirmed the hemocompatibility of scaffolds. Initial biocompatibility assessment of scaffolds was conducted using hepatocarcinoma (Hep G2) cells and adhesion, proliferation and infiltration of Hep G2 cells in depth of scaffolds were observed, proving the scaffold's biocompatibility. Further Oct4B2 mouse embryonic stem cells (mESCs), which harbor a green fluorescence protein transgene under regulatory control of the Oct4 promotor, were examined for expansion on scaffolds with MTT assay. The GP-2 scaffold demonstrated the best cell proliferation and was further explored for ESC adherence and infiltration in depth (SEM and confocal), and pluripotent state of mESCs was assessed with the expression of Oct4-GFP and stage-specific embryonic antigen-1 (SSEA-1). This study reports the first demonstration of biocompatibility of gelatin–PMVE/MA composite scaffold and presents this scaffold as a promising candidate for embryonic stem cell based tissue engineering. - Highlights: • Composite scaffolds of gelatin and PMVE/MA were prepared by freeze-drying method. • SEM micrographs showed porous structure in all scaffolds of varying pore dimension. • GP-2 composite exhibited better cellular response in comparison to other scaffolds. • mESCs proliferated and expressed Oct-4 and SSEA-1, when cultured on GP-2 scaffold.

  12. Suppression of the Stem Cell Antigen-1 Response and Granulocyte Lineage Expansion by Alcohol during Septicemia

    Science.gov (United States)

    Melvan, John N.; Siggins, Robert W.; Bagby, Gregory J.; Stanford, William L.; Welsh, David; Nelson, Steve; Zhang, Ping

    2011-01-01

    Objective Granulocytopenia frequently occurs in alcohol abusers suffering from severe bacterial infection, which strongly correlates with poor clinical outcome. Knowledge of the molecular mechanisms underlying the granulopoietic response to bacterial infection remains limited. This study investigated the involvement of Stem Cell Antigen-1 (Sca-1) expression by granulocyte lineage-committed progenitors in the granulopoietic response to septicemia and how alcohol affected this response. Design Laboratory investigation. Setting University laboratory. Subjects Male Balb/c mice. Interventions Thirty minutes after intraperitoneal injection of alcohol (20% ethanol in saline at 5g of ethanol/Kg) or saline, mice received intravenous Escherichia coli (E.coli) challenge. Measurements and Main Results E. coli septicemia activated Sca-1 expression by marrow immature granulocyte differentiation antigen-1 (Gr1)lo precursors which correlated with an increase in proliferation, CFU-GM production, and expansion of this granulopoietic precursor cell pool. Acute alcohol treatment suppressed Sca-1 activation and inhibited the infection-induced increases in proliferation, CFU-GM production, and expansion the of Gr1lo cell population. Consequently, recovery of the marrow mature Gr1hi cell population following E.coli challenge was impaired. Sca-1 was induced in sorted Gr1+Sca1- cells by LPS-stimulated JNK activation that was also inhibited by alcohol. Furthermore, Sca-1 knockout (KO) mice failed to expand the marrow Gr1lo cell pool and demonstrated fewer newly produced granulocytes in the circulation following E.coli challenge. Conclusions Alcohol suppresses the Sca-1 response in granulocyte lineage-committed precursors and restricts granulocyte production during septicemia, which may serve as a novel mechanism underlying impaired host defense in alcohol abusers. PMID:21602669

  13. CBCT of skeletal changes following rapid maxillary expansion to increase arch-length with a development-dependent bonded or banded appliance.

    Science.gov (United States)

    Kanomi, Ryuzo; Deguchi, Toru; Kakuno, Eriko; Takano-Yamamoto, Teruko; Roberts, W Eugene

    2013-09-01

    To assess the three-dimensional (3D) skeletal response to a standardized 5 mm of rapid maxillary expansion (RME) in growing children (6-15 years) with maxillary width deficiency and crowding. A bonded appliance was used prior to the eruption of the maxillary first premolars (Mx4s), and a banded appliance was used thereafter. A consecutive sample of 89 patients (29 boys and 60 girls) from a large pediatric dentistry and orthodontics practice was divided into four groups: 1) 6-8 years old (n = 26), 2) 9-11 years old with unerupted Mx4s (n = 21), 3) 9-11 years with erupted Mx4s (n = 23), and 4) 12-15 years (n = 19). For all patients, the 3D evaluation of dental and skeletal effects was performed with cone-beam computed tomography (CBCT). For both appliances in all patients, CBCT confirmed a triangular pattern of expansion in both the frontal and sagittal planes. Overall, both appliances produced significant maxillary expansion (>80% of the 5-mm activation), but older children showed a progressively more dental (less skeletal) response. Comparison of the two types of expanders in the crossover sample, children aged 9-11 years, showed that the bonded RME produced the most efficient skeletal expansion in the preadolescent sample. Increased maxillary width at the level of the zygomaticomaxillary suture was the best indicator for development of maxillary arch circumference. Development-dependent appliances (bonded RPE before Mx4s erupt, and a banded device thereafter) provided optimal RME treatment for all children from age 6-15 years.

  14. Rapid range expansion in the Great Plains narrow-mouthed toad (Gastrophryne olivacea) and a revised taxonomy for North American microhylids.

    Science.gov (United States)

    Streicher, Jeffrey W; Cox, Christian L; Campbell, Jonathan A; Smith, Eric N; de Sá, Rafael O

    2012-09-01

    We investigated genetic variation within the Great Plains narrow-mouthed toad, Gastrophryne olivacea, across its geographic range in the United States and Mexico. An analysis of mitochondrial DNA (mtDNA) from 105 frogs revealed remarkably low levels of genetic diversity in individuals inhabiting the central United States and northern Mexico. We found that this widespread matrilineal lineage is divergent (ca. 2% in mtDNA) from haplotypes that originate from the western United States and western coast of Mexico. Using a dataset that included all five species of Gastrophryne and both species of the closely related genus Hypopachus, we investigated the phylogenetic placement of G. olivacea. This analysis recovered strong support that G. olivacea, the tropically distributed G. elegans, and the temperately distributed G. carolinensis constitute a monophyletic assemblage. However, the placement of G. pictiventris and G. usta render Gastrophryne paraphyletic with respect to Hypopachus. To complement our mitochondrial analysis, we examined a small fragment of nuclear DNA and recovered consistent patterns. In light of our findings we recommend (1) the resurrection of the nomen G. mazatlanensisTaylor (1943) for the disjunct western clade of G. olivacea and (2) the tentative placement of G. pictiventris and G. usta in Hypopachus. To explore possible scenarios leading to low levels of genetic diversity in G. olivacea, we used mismatch distributions and Bayesian Skyline plots to examine historic population expansion and demography. Collectively these analyses suggest that G. olivacea rapidly expanded in effective population size and geographic range during the late Pleistocene or early Holocene. This hypothesis is consistent with fossil data from northern localities and contemporary observations that suggest ongoing northern expansion. Given our findings, we suspect that the rapid range expansion of G. olivacea may have been facilitated by ecological associations with open

  15. NFAT5 regulates T lymphocyte homeostasis and CD24-dependent T cell expansion under pathologic hypernatremia.

    Science.gov (United States)

    Berga-Bolaños, Rosa; Drews-Elger, Katherine; Aramburu, Jose; López-Rodríguez, Cristina

    2010-12-01

    Immune cells rely on the transcription factor NFAT5 to adapt to hypertonic stress. The hypertonicity-dependent role of NFAT5 in T cells in vivo remains unclear because mouse models of NFAT5 deficiency have produced substantially different T cell phenotypes. In this study, we analyzed the T cell compartment in NFAT5-null and T cell-specific NFAT5 knockout mice. We found that NFAT5-null mice had constitutive, pronounced hypernatremia and suffered a severe immunodeficiency, with T cell lymphopenia, altered CD8 naive/memory homeostasis, and inability to reject allogeneic tumors. By contrast, T cell-specific NFAT5 knockout mice had normal plasma tonicity, rejected allogeneic tumors, and exhibited only a mild, low-penetrance memory bias in CD8 cells. Notably, when T cells from these mice were cultured ex vivo in hypernatremic media, they exhibited features found in NFAT5-null mice, with pronounced naive/memory imbalance and impaired homeostatic survival in response to IL-7, as well as a severe inhibition of their mitogen-induced proliferation. By analyzing surface receptors whose expression might be affected in NFAT5-deficient cells, we identified CD24 as a novel NFAT5 target induced by hypertonicity both in vitro and in vivo, and required to sustain T cell expansion under osmostress. NFAT5 bound to the Cd24 promoter in response to hypertonicity facilitated the local derepression of chromatin and enhanced the expression of CD24 mRNA and protein. Altogether, our results indicate that the systemic hypernatremia of NFAT5-null mice is a major contributor to their immunodeficiency, and highlight the role of NFAT5 and CD24 in the homeostasis of T cells under osmostress in vivo.

  16. Rapid regulation of leaf photosynthesis, carbohydrate status and leaf area expansion to maintain growth in irregular light environments

    DEFF Research Database (Denmark)

    Kjær, Katrine Heinsvig

    2012-01-01

    to maintain carbohydrate status and growth in unpredictable light environments. Our recent results show rapid regulation of photosynthesis and leaf carbohydrate status to maintain growth and light interception in dynamic light environments when campanula, rose and chrysanthemum were grown in a cost...

  17. Inhibition of cell proliferation, cell expansion and differentiation by the Arabidopsis SUPERMAN gene in transgenic tobacco plants.

    Science.gov (United States)

    Bereterbide, A; Hernould, M; Castera, S; Mouras, A

    2001-11-01

    Plant development depends upon the control of growth, organization and differentiation of cells derived from shoot and root meristems. Among the genes involved in flower organ determination, the cadastral gene SUPERMAN controls the boundary between whorls 3 and 4 and the growth of the adaxial outer ovule integument by down-regulating cell divisions. To determine the precise function of this gene we overexpressed ectopically the Arabidopsis thaliana (L.) Heynh. SUPERMAN gene in tobacco (Nicotiana tabacum L.). The transgenic plants exhibited a dwarf phenotype. Histologically and cytologically detailed analyses showed that dwarfism is correlated with a reduction in cell number, which is in agreement with the SUPERMAN function in Arabidopsis. Furthermore, a reduction in cell expansion and an impairment of cell differentiation were observed in tobacco organs. These traits were observed in differentiated vegetative and floral organs but not in meristem structures. A potential effect of the SUPERMAN transcription factor in the control of gibberellin biosynthesis is discussed.

  18. Research Resource: A Dual Proteomic Approach Identifies Regulated Islet Proteins During β-Cell Mass Expansion In Vivo

    DEFF Research Database (Denmark)

    Horn, Signe; Kirkegaard, Jeannette S.; Hoelper, Soraya

    2016-01-01

    Diabetes is characterized by insulin insufficiency due to a relative paucity of functional β-cell mass. Thus, strategies for increasing β-cell mass in situ are sought-after for therapeutic purposes. Pregnancy is a physiological state capable of inducing robust β-cell mass expansion, however, the ...... as upstream regulators of the observed expressional changes. As the first characterization of the islet-proteome during pregnancy, this study provides novel insight into the mechanisms involved in promoting pregnancy-induced β-cell mass expansion and function.[on SciFinder (R)]...

  19. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Somik [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yin, Hongshan [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Cardiovascular Medicine, Third Affiliated Hospital, Hebei Medical University, Shijiazhuang 050051, Hebei (China); Nam, Deokhwa [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Li, Yong [Department of Pediatric Surgery, Center for Stem Cell Research and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030 (United States); Ma, Ke, E-mail: kma@houstonmethodist.org [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States)

    2015-02-01

    Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response is observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1{sup −/−} mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases. - Highlights: • Bmal1 is highly inducible by muscle injury and myogenic stimuli. • Genetic ablation of Bmal1 significantly impairs muscle regeneration. • Bmal1 promotes satellite cell expansion during muscle regeneration. • Bmal1-deficient primary myoblasts display attenuated growth and proliferation.

  20. Expansion on stromal cells preserves the undifferentiated state of human hematopoietic stem cells despite compromised reconstitution ability.

    Directory of Open Access Journals (Sweden)

    Mattias Magnusson

    Full Text Available Lack of HLA-matched hematopoietic stem cells (HSC limits the number of patients with life-threatening blood disorders that can be treated by HSC transplantation. So far, insufficient understanding of the regulatory mechanisms governing human HSC has precluded the development of effective protocols for culturing HSC for therapeutic use and molecular studies. We defined a culture system using OP9M2 mesenchymal stem cell (MSC stroma that protects human hematopoietic stem/progenitor cells (HSPC from differentiation and apoptosis. In addition, it facilitates a dramatic expansion of multipotent progenitors that retain the immunophenotype (CD34+CD38-CD90+ characteristic of human HSPC and proliferative potential over several weeks in culture. In contrast, transplantable HSC could be maintained, but not significantly expanded, during 2-week culture. Temporal analysis of the transcriptome of the ex vivo expanded CD34+CD38-CD90+ cells documented remarkable stability of most transcriptional regulators known to govern the undifferentiated HSC state. Nevertheless, it revealed dynamic fluctuations in transcriptional programs that associate with HSC behavior and may compromise HSC function, such as dysregulation of PBX1 regulated genetic networks. This culture system serves now as a platform for modeling human multilineage hematopoietic stem/progenitor cell hierarchy and studying the complex regulation of HSC identity and function required for successful ex vivo expansion of transplantable HSC.

  1. Cell expansion of human articular chondrocytes on macroporous gelatine scaffolds-impact of microcarrier selection on cell proliferation.

    Science.gov (United States)

    Pettersson, Sofia; Wetterö, Jonas; Tengvall, Pentti; Kratz, Gunnar

    2011-12-01

    This study investigates human chondrocyte expansion on four macroporous gelatine microcarriers (CultiSpher) differing with respect to two manufacturing processes-the amount of emulsifier used during initial preparation and the gelatine cross-linking medium. Monolayer-expanded articular chondrocytes from three donors were seeded onto the microcarriers and cultured in spinner flask systems for a total of 15 days. Samples were extracted every other day to monitor cell viability and establish cell counts, which were analysed using analysis of variance and piecewise linear regression. Chondrocyte densities increased according to a linear pattern for all microcarriers, indicating an ongoing, though limited, cell proliferation. A strong chondrocyte donor effect was seen during the initial expansion phase. The final cell yield differed significantly between the microcarriers and our results indicate that manufacturing differences affected chondrocyte densities at this point. Remaining cells stained positive for chondrogenic markers SOX-9 and S-100 but extracellular matrix formation was modest to undetectable. In conclusion, the four gelatine microcarriers supported chondrocyte adhesion and proliferation over a two week period. The best yield was observed for microcarriers produced with low emulsifier content and cross-linked in water and acetone. These results add to the identification of optimal biomaterial parameters for specific cellular processes and populations.

  2. Cell expansion of human articular chondrocytes on macroporous gelatine scaffolds-impact of microcarrier selection on cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Sofia; Kratz, Gunnar [Laboratory for Reconstructive Plastic Surgery, Department of Clinical and Experimental Medicine, Linkoeping University, SE-581 85 Linkoeping (Sweden); Wetteroe, Jonas [Rheumatology/AIR, Department of Clinical and Experimental Medicine, Linkoeping University, SE-581 85 Linkoeping (Sweden); Tengvall, Pentti, E-mail: sofia.pettersson@liu.se [Institute of Clinical Sciences, Department of Biomaterials, The Sahlgrenska Academy at University of Gothenburg, SE-405 30 Gothenburg (Sweden)

    2011-12-15

    This study investigates human chondrocyte expansion on four macroporous gelatine microcarriers (CultiSpher) differing with respect to two manufacturing processes-the amount of emulsifier used during initial preparation and the gelatine cross-linking medium. Monolayer-expanded articular chondrocytes from three donors were seeded onto the microcarriers and cultured in spinner flask systems for a total of 15 days. Samples were extracted every other day to monitor cell viability and establish cell counts, which were analysed using analysis of variance and piecewise linear regression. Chondrocyte densities increased according to a linear pattern for all microcarriers, indicating an ongoing, though limited, cell proliferation. A strong chondrocyte donor effect was seen during the initial expansion phase. The final cell yield differed significantly between the microcarriers and our results indicate that manufacturing differences affected chondrocyte densities at this point. Remaining cells stained positive for chondrogenic markers SOX-9 and S-100 but extracellular matrix formation was modest to undetectable. In conclusion, the four gelatine microcarriers supported chondrocyte adhesion and proliferation over a two week period. The best yield was observed for microcarriers produced with low emulsifier content and cross-linked in water and acetone. These results add to the identification of optimal biomaterial parameters for specific cellular processes and populations.

  3. Controlling Expansion and Cardiomyogenic Differentiation of Human Pluripotent Stem Cells in Scalable Suspension Culture

    Directory of Open Access Journals (Sweden)

    Henning Kempf

    2014-12-01

    Full Text Available To harness the potential of human pluripotent stem cells (hPSCs, an abundant supply of their progenies is required. Here, hPSC expansion as matrix-independent aggregates in suspension culture was combined with cardiomyogenic differentiation using chemical Wnt pathway modulators. A multiwell screen was scaled up to stirred Erlenmeyer flasks and subsequently to tank bioreactors, applying controlled feeding strategies (batch and cyclic perfusion. Cardiomyogenesis was sensitive to the GSK3 inhibitor CHIR99021 concentration, whereas the aggregate size was no prevailing factor across culture platforms. However, in bioreactors, the pattern of aggregate formation in the expansion phase dominated subsequent differentiation. Global profiling revealed a culture-dependent expression of BMP agonists/antagonists, suggesting their decisive role in cell-fate determination. Furthermore, metallothionein was discovered as a potentially stress-related marker in hPSCs. In 100 ml bioreactors, the production of 40 million predominantly ventricular-like cardiomyocytes (up to 85% purity was enabled that were directly applicable to bioartificial cardiac tissue formation.

  4. Making the switch: alternatives to foetal bovine serum for adipose-derived stromal cell expansion

    Directory of Open Access Journals (Sweden)

    Carla Dessels

    2016-10-01

    Full Text Available Adipose-derived stromal cells (ASCs are being used extensively in clinical trials. These trials require that ASCs are prepared using good manufacturing procedures (GMPs and are safe for use in humans. The majority of clinical trials in which ASCs are expanded make use of fetal bovine serum (FBS. While FBS is used traditionally in the research setting for in vitro expansion, it does carry the risk of xenoimmunization and zoonotic transmission when used for expanding cells destined for therapeutic purposes. In order to ensure a GMP quality product for cellular therapy, in vitro expansion of ASCs has been undertaken using xeno-free (XF, chemically-defined, and human blood-derived alternatives. These investigations usually include the criteria proposed by the International Society of Cellular Therapy (ISCT and International Fat Applied Technology Society (IFATS. The majority of studies use these criteria to compare plastic-adherence, morphology, the immunophenotype and the trilineage differentiation of ASCs under the different medium supplemented conditions. Based on these studies, all of the alternatives to FBS seem to be suitable replacements; however, each has its own advantages and drawbacks. Very few studies have investigated the effects of the supplements on the immunomodulation of ASCs; the transcriptome, proteome and secretome; and the ultimate effects in appropriate animal models. The selection of medium supplementation will depend on the downstream application of the ASCs and their efficacy and safety in preclinical studies.

  5. Is There Any Evidence for Rapid, Genetically-Based, Climatic Niche Expansion in the Invasive Common Ragweed?

    OpenAIRE

    Gallien, Laure; Thuiller, Wilfried; Fort, No?mie; Boleda, Marti; Alberto, Florian J.; Rioux, Delphine; Lain?, Juliette; Lavergne, S?bastien

    2016-01-01

    Climatic niche shifts have been documented in a number of invasive species by comparing the native and adventive climatic ranges in which they occur. However, these shifts likely represent changes in the realized climatic niches of invasive species, and may not necessarily be driven by genetic changes in climatic affinities. Until now the role of rapid niche evolution in the spread of invasive species remains a challenging issue with conflicting results. Here, we document a likely genetically...

  6. Activation of intracellular angiotensin AT2 receptors induces rapid cell death in human uterine leiomyosarcoma cells

    DEFF Research Database (Denmark)

    Zhao, Yi; Lützen, Ulf; Fritsch, Jürgen

    2015-01-01

    of apoptosis and cell death in cultured human uterine leiomyosarcoma (SK-UT-1) cells and control human uterine smooth muscle cells (HutSMC). The intracellular levels of the AT2 receptor are low in proliferating SK-UT-1 cells but the receptor is substantially up-regulated in quiescent SK-UT-1 cells with high...... densities in mitochondria. Activation of the cell membrane AT2 receptors by a concomitant treatment with angiotensin II and the AT1 receptor antagonist, losartan, induces apoptosis but does not affect the rate of cell death. We demonstrate for the first time that the high-affinity, non-peptide AT2 receptor...... agonist, Compound 21 (C21) penetrates the cell membrane of quiescent SK-UT-1 cells, activates intracellular AT2 receptors and induces rapid cell death; approximately 70% of cells died within 24 h. The cells, which escaped from the cell death, displayed activation of the mitochondrial apoptotic pathway, i...

  7. Granulocyte colony-stimulating factor treatment ameliorates lupus nephritis through the expansion of regulatory T cells.

    Science.gov (United States)

    Yan, Ji-Jing; Jambaldorj, Enkthuya; Lee, Jae-Ghi; Jang, Joon Young; Shim, Jung Min; Han, Miyeun; Koo, Tai Yeon; Ahn, Curie; Yang, Jaeseok

    2016-11-15

    Granulocyte colony-stimulating factor (G-CSF) can induce regulatory T cells (Tregs) as well as myeloid-derived suppressor cells (MDSCs). Despite the immune modulatory effects of G-CSF, results of G-CSF treatment in systemic lupus erythematosus are still controversial. We therefore investigated whether G-CSF can ameliorate lupus nephritis and studied the underlying mechanisms. NZB/W F1 female mice were treated with G-CSF or phosphate-buffered saline for 5 consecutive days every week from 24 weeks of age, and were analyzed at 36 weeks of age. G-CSF treatment decreased proteinuria and serum anti-dsDNA, increased serum complement component 3 (C3), and attenuated renal tissue injury including deposition of IgG and C3. G-CSF treatment also decreased serum levels of BUN and creatinine, and ultimately decreased mortality of NZB/W F1 mice. G-CSF treatment induced expansion of CD4 + CD25 + Foxp3 + Tregs, with decreased renal infiltration of T cells, B cells, inflammatory granulocytes and monocytes in both kidneys and spleen. G-CSF treatment also decreased expression levels of MCP-1, IL-6, IL-2, and IL-10 in renal tissues as well as serum levels of MCP-1, IL-6, TNF-α, IL-10, and IL-17. When Tregs were depleted by PC61 treatment, G-CSF-mediated protective effects on lupus nephritis were abrogated. G-CSF treatment ameliorated lupus nephritis through the preferential expansion of CD4 + CD25 + Foxp3 + Tregs. Therefore, G-CSF has a therapeutic potential for lupus nephritis.

  8. Rapid flow-induced responses in endothelial cells

    Science.gov (United States)

    Stamatas, G. N.; McIntire, L. V.

    2001-01-01

    Endothelial cells alter their morphology, growth rate, and metabolism in response to fluid shear stress. To study rapid flow-induced responses in the 3D endothelial cell morphology and calcium distribution, coupled fluorescence microscopy with optical sectioning, digital imaging, and numerical deconvolution techniques have been utilized. Results demonstrate that within the first minutes of flow application nuclear calcium is increasing. In the same time frame whole cell height and nuclear height are reduced by about 1 microm. Whole cell height changes may facilitate reduction of shear stress gradients on the luminal surface, whereas nuclear structural changes may be important for modulating endothelial growth rate and metabolism. To study the role of the cytoskeleton in these responses, endothelial cells have been treated with specific disrupters (acrylamide, cytochalasin D, and colchicine) of each of the cytoskeleton elements (intermediate filaments, microfilaments, and microtubules, respectively). None of these compounds had any effect on the shear-induced calcium response. Cytochalasin D and acrylamide did not affect the shear-induced nuclear morphology changes. Colchicine, however, completely abrogated the response, indicating that microtubules may be implicated in force transmission from the plasma membrane to the nucleus. A pedagogical model based on tensegrity theory principles is presented that is consistent with the results on the 3D endothelial morphology.

  9. Rapid thermal sintering of the metallizations of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Laugier, A.; El Omari, H.; Boyeaux, J.P. [Institut National des Sciences Appliquees de Lyon, Villeurbanne (France). Lab. de Physique de la Matiere; Hartiti, B.; Muller, J.C. [CNRS, Strasbourg (France). Lab. de Physique et Applications des Semiconducteurs; Nam, L.Q.; Sarti, D. [Photowatt International S.A., Bourgoin Jallieu (France)

    1994-12-31

    Rapid Thermal Processing (RTP) using radiation from tungsten halogen lamps as a heat source is a very promising candidate to replace conventional furnace annealing as it offers many advantages such as a reduced overall thermal budget and a lower gas consumption. In this paper the authors show that with moderate temperature, RTP can be used to obtain screen printed contacts with low contacts resistivity and without degrading the transport properties of the solar cell base region. They investigate on Polix multicrystalline solar cells the possibility to replace the conventional sintering by a RTP annealing of the Ag front grid and of the back Al/Ag contact in a single step performed after the antireflection coating deposition.

  10. An Integrated Miniature Bioprocessing for Personalized Human Induced Pluripotent Stem Cell Expansion and Differentiation into Neural Stem Cells

    Science.gov (United States)

    Lin, Haishuang; Li, Qiang; Lei, Yuguo

    2017-01-01

    Human induced pluripotent stem cells (iPSCs) are ideal cell sources for personalized cell therapies since they can be expanded to generate large numbers of cells and differentiated into presumably all the cell types of the human body in vitro. In addition, patient specific iPSC-derived cells induce minimal or no immune response in vivo. However, with current cell culture technologies and bioprocessing, the cost for biomanufacturing clinical-grade patient specific iPSCs and their derivatives are very high and not affordable for majority of patients. In this paper, we explored the use of closed and miniature cell culture device for biomanufacturing patient specific neural stem cells (NSCs) from iPSCs. We demonstrated that, with the assist of a thermoreversible hydrogel scaffold, the bioprocessing including iPSC expansion, iPSC differentiation into NSCs, the subsequent depletion of undifferentiated iPSCs from the NSCs, and concentrating and transporting the purified NSCs to the surgery room, could be integrated and completed within two closed 15 ml conical tubes. PMID:28057917

  11. HEXIM1 controls satellite cell expansion after injury to regulate skeletal muscle regeneration

    Science.gov (United States)

    Hong, Peng; Chen, Kang; Huang, Bihui; Liu, Min; Cui, Miao; Rozenberg, Inna; Chaqour, Brahim; Pan, Xiaoyue; Barton, Elisabeth R.; Jiang, Xian-Cheng; Siddiqui, M.A.Q.

    2012-01-01

    The native capacity of adult skeletal muscles to regenerate is vital to the recovery from physical injuries and dystrophic diseases. Currently, the development of therapeutic interventions has been hindered by the complex regulatory network underlying the process of muscle regeneration. Using a mouse model of skeletal muscle regeneration after injury, we identified hexamethylene bisacetamide inducible 1 (HEXIM1, also referred to as CLP-1), the inhibitory component of the positive transcription elongation factor b (P-TEFb) complex, as a pivotal regulator of skeletal muscle regeneration. Hexim1-haplodeficient muscles exhibited greater mass and preserved function compared with those of WT muscles after injury, as a result of enhanced expansion of satellite cells. Transplanted Hexim1-haplodeficient satellite cells expanded and improved muscle regeneration more effectively than WT satellite cells. Conversely, HEXIM1 overexpression restrained satellite cell proliferation and impeded muscle regeneration. Mechanistically, dissociation of HEXIM1 from P-TEFb and subsequent activation of P-TEFb are required for satellite cell proliferation and the prevention of early myogenic differentiation. These findings suggest a crucial role for the HEXIM1/P-TEFb pathway in the regulation of satellite cell–mediated muscle regeneration and identify HEXIM1 as a potential therapeutic target for degenerative muscular diseases. PMID:23023707

  12. Artificial antigen presenting cell (aAPC) mediated activation and expansion of natural killer T cells.

    Science.gov (United States)

    East, James E; Sun, Wenji; Webb, Tonya J

    2012-12-29

    Natural killer T (NKT) cells are a unique subset of T cells that display markers characteristic of both natural killer (NK) cells and T cells(1). Unlike classical T cells, NKT cells recognize lipid antigen in the context of CD1 molecules(2). NKT cells express an invariant TCRα chain rearrangement: Vα14Jα18 in mice and Vα24Jα18 in humans, which is associated with Vβ chains of limited diversity(3-6), and are referred to as canonical or invariant NKT (iNKT) cells. Similar to conventional T cells, NKT cells develop from CD4-CD8- thymic precursor T cells following the appropriate signaling by CD1d (7). The potential to utilize NKT cells for therapeutic purposes has significantly increased with the ability to stimulate and expand human NKT cells with α-Galactosylceramide (α-GalCer) and a variety of cytokines(8). Importantly, these cells retained their original phenotype, secreted cytokines, and displayed cytotoxic function against tumor cell lines. Thus, ex vivo expanded NKT cells remain functional and can be used for adoptive immunotherapy. However, NKT cell based-immunotherapy has been limited by the use of autologous antigen presenting cells and the quantity and quality of these stimulator cells can vary substantially. Monocyte-derived DC from cancer patients have been reported to express reduced levels of costimulatory molecules and produce less inflammatory cytokines(9,10). In fact, murine DC rather than autologous APC have been used to test the function of NKT cells from CML patients(11). However, this system can only be used for in vitro testing since NKT cells cannot be expanded by murine DC and then used for adoptive immunotherapy. Thus, a standardized system that relies on artificial Antigen Presenting Cells (aAPC) could produce the stimulating effects of DC without the pitfalls of allo- or xenogeneic cells(12, 13). Herein, we describe a method for generating CD1d-based aAPC. Since the engagement of the T cell receptor (TCR) by CD1d-antigen complexes is

  13. Kinematic evidence that atmospheric nitrogen dioxide increases the rates of cell proliferation and enlargement to stimulate leaf expansion in Arabidopsis.

    Science.gov (United States)

    Takahashi, Misa; Morikawa, Hiromichi

    2015-01-01

    To elucidate the stimulation of leaf growth by atmospheric nitrogen dioxide (NO2), we performed a kinematic analysis of the eighth leaves of Arabidopsis thaliana (accession C24) plants grown for 17-35 days after sowing in the presence or absence of 50 ppb NO2 (designated +NO2 plants and -NO2 plants, respectively). We found that the peak and mean values of the relative rates of leaf expansion, cell division and cell expansion were always greater in +NO2 plants than in -NO2 plants. No evidence for prolonged duration was obtained. Thus, NO2 treatment increased the rates of both cell proliferation and enlargement to increase leaf size. Furthermore, a fold-change analysis showed that cell proliferation and enlargement differentially regulated NO2-induced leaf expansion.

  14. Strategic camouflage treatment of skeletal Class III malocclusion (mandibular prognathism) using bone-borne rapid maxillary expansion and mandibular anterior subapical osteotomy.

    Science.gov (United States)

    Seo, Yu-Jin; Lin, Lu; Kim, Seong-Hun; Chung, Kyu-Rhim; Nelson, Gerald

    2016-01-01

    This case report presents the camouflage treatment that successfully improved the facial profile of a patient with a skeletal Class III malocclusion using bone-borne rapid maxillary expansion and mandibular anterior subapical osteotomy. The patient was an 18-year-old woman with chief complaints of crooked teeth and a protruded jaw. Camouflage treatment was chosen because she rejected orthognathic surgery under general anesthesia. A hybrid type of bone-borne rapid maxillary expander with palatal mini-implants was used to correct the transverse discrepancy, and a mandibular anterior subapical osteotomy was conducted to achieve proper overjet with normal incisal inclination and to improve her lip and chin profile. As a result, a Class I occlusion with a favorable inclination of the anterior teeth and a good esthetic profile was achieved with no adverse effects. Therefore, the hybrid type of bone-borne rapid maxillary expander and a mandibular anterior subapical osteotomy can be considered effective camouflage treatment of a skeletal Class III malocclusion, providing improved inclination of the dentition and lip profile. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  15. Establishment and characterization of a cell based artificial antigen-presenting cell for expansion and activation of CD8+ T cells ex vivo.

    Science.gov (United States)

    Gong, Weijuan; Ji, Mingchun; Cao, Zhengfeng; Wang, Liheng; Qian, Yayun; Hu, Maozhi; Qian, Li; Pan, Xingyuan

    2008-02-01

    Artificial antigen-presenting cells are expected to stimulate the expansion and acquisition of optimal therapeutic features of T cells before infusion. Here CD32 that binds to a crystallizable fragment of IgG monoclonal antibody was genetically expressed on human K562 leukemia cells to provide a ligand for T-cell receptor. CD86 and 4-1BBL, which are ligands of co-stimulating receptors of CD28 and 4-1BB, respectively, were also expressed on K562 cells. Then we accomplished the artificial antigen-presenting cells by coupling K32/CD86/4-1BBL cell with OKT3 monoclonal antibody against CD3, named K32/CD86/4-1BBL/OKT3 cells. These artificial modified cells had the abilities of inducing CD8+ T cell activation, promoting CD8+ T cell proliferation, division, and long-term growth, inhibiting CD8+ T cell apoptosis, and enhancing CD8+ T cell secretion of IFN-gamma and perforin. Furthermore, antigen-specific cytotoxic T lymphocytes could be retained in the culture stimulated with K32/CD86/4-1BBL/OKT3 cells at least within 28 days. This approach was robust, simple, reproducible and economical for expansion and activation of CD8+ T cells and may have important therapeutic implications for adoptive immunotherapy.

  16. Human marrow mesenchymal stem cell culture: serum-free medium allows better expansion than classical alpha-MEM medium.

    Science.gov (United States)

    Meuleman, Nathalie; Tondreau, Tatiana; Delforge, Alain; Dejeneffe, Marielle; Massy, Martine; Libertalis, Mark; Bron, Dominique; Lagneaux, Laurence

    2006-04-01

    The expansion of mesenchymal stem cells (MSCs) strongly depends on the culture conditions and requires medium supplemented with 10-20% fetal calf serum (FCS) to generate relevant numbers of cells. However, the presence of FCS is a major obstacle for their clinical use. Therefore, we have evaluated the capacity of expansion of MSC in a commercial serum-free medium (UC) supplemented with a serum substitute (ULTROSER) in comparison with a classical medium alpha-MEM containing 15% FBS. Bone marrow-mononuclear cells collected from 12 volunteer healthy donors were expanded in two different culture media. MSCs isolated in the both media were morphologically similar and expressed identical phenotypic markers. After the primoculture (P0) and one passage, we obtained significantly more MSC and CFU-F progenitors in UC medium than in alphaMEM. Their multipotentiality was preserved during culture, as well as their capacity to support haematopoiesis. In conclusion, our observations strongly suggest that UC is an optimal medium for ex vivo expansion of MSC: it allows a better cell expansion, preserves cell multipotentiality, reduces the culture period and contains low concentration of serum substitute. This medium seems suitable for clinical scale expansion of MSC.

  17. An Integrated Bioprocess for the Expansion and Chondrogenic Priming of Human Periosteum-Derived Progenitor Cells in Suspension Bioreactors.

    Science.gov (United States)

    Gupta, Priyanka; Geris, Liesbet; Luyten, Frank P; Papantoniou, Ioannis

    2018-02-01

    The increasing use of microcarrier-based suspension bioreactors for scalable expansion of adult progenitor cells in recent years reveals the necessity of such approaches to address bio manufacturing challenges of advanced therapeutic medicinal products. However, the differentiation of progenitor cells within suspension bioreactors for the production of tissue modules is of equal importance but not well investigated. This study reports on the development of a bioreactor-based integrated process for expansion and chondrogenic priming of human periosteum-derived stem cells (hPDCs) using Cultispher S microcarriers. Spinner flask-based expansion and priming of hPDCs were carried out over 12 days for expansion and 14 days for priming. Characterization of the cells were carried out every 3rd day. Our study showed that hPDCs were able to expand till confluency with fold increase of 3.2±0.64 and to be subsequently primed toward a chondrogenic state within spinner flasks. During expansion, the cells maintained their phenotypic markers, trilineage differentiation capabilities and viability. Upon switching to TGF-β containing media the cells were able to differentiate toward chondrogenic lineage by clustering into mm-sized macrotissues containing hundreds of microcarriers. Chondrogenic priming was further evidenced by the expression of relevant markers at the mRNA level while maintaining their viability. Ectopic implantation of macrotissues highlighted that they were able to sustain their chondrogenic properties for 8 weeks in vivo. The method indicated here, suggests that expansion and relevant priming of progenitor cells can be carried out in an integrated bioprocess using spinner flasks and as such could be potentially extrapolated to other stem and progenitor cell populations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Three Dimensional Finite Element Analysis of Stress Distribution and Displacement of the Maxilla Following Surgically Assisted Rapid Maxillary Expansion with Tooth- and Bone-Borne Devices

    Directory of Open Access Journals (Sweden)

    Mohsen Dalband

    2015-10-01

    Full Text Available Objectives: The aim of this study was to investigate the displacement and stress distri- bution during surgically assisted rapid maxillary expansion under different surgical conditions with tooth- and bone-borne devices.Materials and Methods: Three-dimensional (3D finite element model of a maxilla was constructed and an expansion force of 100 N was applied to the left and right molars and premolars with tooth-borne devices and the left and right of mid-palatal sutures at the first molar level with bone-borne devices. Five CAD models were simulated as fol- lows and surgical procedures were used:  G1: control group (without surgery; G2: Le Fort I osteotomy; G3: Le Fort I osteotomy and para-median osteotomy; G4: Le Fort I osteotomy and pterygomaxillary separation; and G5: Le Fort I osteotomy, para-median osteotomy, and pterygomaxillary separation.Results: Maxillary displacement showed a gradual increase from group 1 to group 5 in all three planes of space, indicating that Le Fort I osteotomy combined with para-me- dian osteotomy and pterygomaxillary separation produced the greatest displacement of the maxilla with both bone- and tooth-borne devices. Surgical relief and bone-borne devices resulted in significantly reduced stress on anchored teeth.Conclusion: Combination of Le Fort I and para-median osteotomy with pterygomaxil-lary separation seems to be an effective procedure for increasing maxillary expansion, and excessive stress side effects are lowered around the anchored teeth with the use of bone-borne devices.

  19. Designing Multicomponent Nanosystems for Rapid Detection of Circulating Tumor Cells.

    Science.gov (United States)

    Banerjee, Shashwat S; Khobragade, Vrushali; Khandare, Jayant

    2017-01-01

    Detection of circulating tumor cells (CTCs) in the blood circulation holds immense promise as it predicts the overall probability of patient survival. Therefore, CTC-based technologies are gaining prominence as a "liquid biopsy" for cancer diagnostics and prognostics. Here, we describe the design and synthesis of two distinct multicomponent magnetic nanosystems for rapid capture and detection of CTCs. The multifunctional Magneto-Dendrimeric Nano System (MDNS) composed of an anchoring dendrimer that is conjugated to multiple agents such as near infrared (NIR) fluorescent cyanine 5 NHS (Cy5), glutathione (GSH), transferrin (Tf), and iron oxide (Fe3O4) magnetic nanoparticle (MNP) for simultaneous tumor cell-specific affinity, multimodal high resolution confocal imaging, and cell isolation. The second nanosystem is a self-propelled microrocket that is composed of carbon nanotube (CNT), chemically conjugated with targeting ligand such as transferrin on the outer surface and Fe3O4 nanoparticles in the inner surface. The multicomponent nanosystems described here are highly efficient in targeting and isolating cancer cells thus benefiting early diagnosis and therapy of cancer.

  20. Algebraic Reynolds stress modeling of turbulence subject to rapid homogeneous and non-homogeneous compression or expansion

    Science.gov (United States)

    Grigoriev, I. A.; Wallin, S.; Brethouwer, G.; Grundestam, O.; Johansson, A. V.

    2016-02-01

    A recently developed explicit algebraic Reynolds stress model (EARSM) by Grigoriev et al. ["A realizable explicit algebraic Reynolds stress model for compressible turbulent flow with significant mean dilatation," Phys. Fluids 25(10), 105112 (2013)] and the related differential Reynolds stress model (DRSM) are used to investigate the influence of homogeneous shear and compression on the evolution of turbulence in the limit of rapid distortion theory (RDT). The DRSM predictions of the turbulence kinetic energy evolution are in reasonable agreement with RDT while the evolution of diagonal components of anisotropy correctly captures the essential features, which is not the case for standard compressible extensions of DRSMs. The EARSM is shown to give a realizable anisotropy tensor and a correct trend of the growth of turbulence kinetic energy K, which saturates at a power law growth versus compression ratio, as well as retaining a normalized strain in the RDT regime. In contrast, an eddy-viscosity model results in a rapid exponential growth of K and excludes both realizability and high magnitude of the strain rate. We illustrate the importance of using a proper algebraic treatment of EARSM in systems with high values of dilatation and vorticity but low shear. A homogeneously compressed and rotating gas cloud with cylindrical symmetry, related to astrophysical flows and swirling supercritical flows, was investigated too. We also outline the extension of DRSM and EARSM to include the effect of non-homogeneous density coupled with "local mean acceleration" which can be important for, e.g., stratified flows or flows with heat release. A fixed-point analysis of direct numerical simulation data of combustion in a wall-jet flow demonstrates that our model gives quantitatively correct predictions of both streamwise and cross-stream components of turbulent density flux as well as their influence on the anisotropies. In summary, we believe that our approach, based on a proper

  1. Packed Bed Bioreactor for the Isolation and Expansion of Placental-Derived Mesenchymal Stromal Cells.

    Directory of Open Access Journals (Sweden)

    Michael J Osiecki

    Full Text Available Large numbers of Mesenchymal stem/stromal cells (MSCs are required for clinical relevant doses to treat a number of diseases. To economically manufacture these MSCs, an automated bioreactor system will be required. Herein we describe the development of a scalable closed-system, packed bed bioreactor suitable for large-scale MSCs expansion. The packed bed was formed from fused polystyrene pellets that were air plasma treated to endow them with a surface chemistry similar to traditional tissue culture plastic. The packed bed was encased within a gas permeable shell to decouple the medium nutrient supply and gas exchange. This enabled a significant reduction in medium flow rates, thus reducing shear and even facilitating single pass medium exchange. The system was optimised in a small-scale bioreactor format (160 cm2 with murine-derived green fluorescent protein-expressing MSCs, and then scaled-up to a 2800 cm2 format. We demonstrated that placental derived MSCs could be isolated directly within the bioreactor and subsequently expanded. Our results demonstrate that the closed system large-scale packed bed bioreactor is an effective and scalable tool for large-scale isolation and expansion of MSCs.

  2. Packed Bed Bioreactor for the Isolation and Expansion of Placental-Derived Mesenchymal Stromal Cells.

    Science.gov (United States)

    Osiecki, Michael J; Michl, Thomas D; Kul Babur, Betul; Kabiri, Mahboubeh; Atkinson, Kerry; Lott, William B; Griesser, Hans J; Doran, Michael R

    2015-01-01

    Large numbers of Mesenchymal stem/stromal cells (MSCs) are required for clinical relevant doses to treat a number of diseases. To economically manufacture these MSCs, an automated bioreactor system will be required. Herein we describe the development of a scalable closed-system, packed bed bioreactor suitable for large-scale MSCs expansion. The packed bed was formed from fused polystyrene pellets that were air plasma treated to endow them with a surface chemistry similar to traditional tissue culture plastic. The packed bed was encased within a gas permeable shell to decouple the medium nutrient supply and gas exchange. This enabled a significant reduction in medium flow rates, thus reducing shear and even facilitating single pass medium exchange. The system was optimised in a small-scale bioreactor format (160 cm2) with murine-derived green fluorescent protein-expressing MSCs, and then scaled-up to a 2800 cm2 format. We demonstrated that placental derived MSCs could be isolated directly within the bioreactor and subsequently expanded. Our results demonstrate that the closed system large-scale packed bed bioreactor is an effective and scalable tool for large-scale isolation and expansion of MSCs.

  3. Proliferating cell nuclear antigen prevents trinucleotide repeat expansions by promoting repeat deletion and hairpin removal

    Science.gov (United States)

    Beaver, Jill M.; Lai, Yanhao; Rolle, Shantell J.; Liu, Yuan

    2017-01-01

    DNA base lesions and base excision repair (BER) within trinucleotide repeat (TNR) tracts modulate repeat instability through the coordination among the key BER enzymes DNA polymerase β, flap endonuclease 1 (FEN1) and DNA ligase I (LIG I). However, it remains unknown whether BER cofactors can also alter TNR stability. In this study, we discovered that proliferating cell nuclear antigen (PCNA), a cofactor of BER, promoted CAG repeat deletion and removal of a CAG repeat hairpin during BER in a duplex CAG repeat tract and CAG hairpin loop, respectively. We showed that PCNA stimulated LIG I activity on a nick across a small template loop during BER in a duplex (CAG)20 repeat tract promoting small repeat deletions. Surprisingly, we found that during BER in a hairpin loop, PCNA promoted reannealing of the upstream flap of a double-flap intermediate, thereby facilitating the formation of a downstream flap and stimulating FEN1 cleavage activity and hairpin removal. Our results indicate that PCNA plays a critical role in preventing CAG repeat expansions by modulating the structures of dynamic DNA via cooperation with BER enzymes. We provide the first evidence that PCNA prevents CAG repeat expansions during BER by promoting CAG repeat deletion and removal of a TNR hairpin. PMID:27793507

  4. Packed Bed Bioreactor for the Isolation and Expansion of Placental-Derived Mesenchymal Stromal Cells

    Science.gov (United States)

    Osiecki, Michael J.; Michl, Thomas D.; Kul Babur, Betul; Kabiri, Mahboubeh; Atkinson, Kerry; Lott, William B.; Griesser, Hans J.; Doran, Michael R.

    2015-01-01

    Large numbers of Mesenchymal stem/stromal cells (MSCs) are required for clinical relevant doses to treat a number of diseases. To economically manufacture these MSCs, an automated bioreactor system will be required. Herein we describe the development of a scalable closed-system, packed bed bioreactor suitable for large-scale MSCs expansion. The packed bed was formed from fused polystyrene pellets that were air plasma treated to endow them with a surface chemistry similar to traditional tissue culture plastic. The packed bed was encased within a gas permeable shell to decouple the medium nutrient supply and gas exchange. This enabled a significant reduction in medium flow rates, thus reducing shear and even facilitating single pass medium exchange. The system was optimised in a small-scale bioreactor format (160 cm2) with murine-derived green fluorescent protein-expressing MSCs, and then scaled-up to a 2800 cm2 format. We demonstrated that placental derived MSCs could be isolated directly within the bioreactor and subsequently expanded. Our results demonstrate that the closed system large-scale packed bed bioreactor is an effective and scalable tool for large-scale isolation and expansion of MSCs. PMID:26660475

  5. Dental arch response to Haas-type rapid maxillary expansion anchored to deciduous vs permanent molars: A multicentric randomized controlled trial.

    Science.gov (United States)

    Ugolini, Alessandro; Cerruto, Carmen; Di Vece, Luca; Ghislanzoni, Luis Huanca; Sforza, Chiarella; Doldo, Tiziana; Silvestrini-Biavati, Armando; Caprioglio, Alberto

    2015-07-01

    To assess maxilla and mandibular arch widths' response to Haas-type rapid maxillary expansion (RME) anchored to deciduous vs permanent molars on children with unilateral posterior crossbite. Seventy patients with unilateral posterior crossbite recruited at the Universities of Genova, Siena, and Insubria (Varese) were randomly located into GrE (RME on second deciduous molars) or Gr6 (RME on first permanent molars) and compared. Upper intermolar distance and permanent molar angulation increased significantly in Gr6 vs GrE at T1. Upper intercanine distance increased significantly in GrE vs Gr6 at T1 and T2. GrE showed significant increases for upper intermolar and upper intercanine widths. Gr6 showed statistically significant increases for upper intermolar widths, for upper and lower intercanine widths, and for increases of angulation of upper and lower permanent molars. GrE showed reduced molar angulation increases at T1 and reduced molar angulation decreases at T2 when compared with Gr6. At T2, the net increase of the upper intercanine distance in GrE was still significant compared with Gr6, indicating a more stable expansion in the anterior area.

  6. Craniofacial and upper airway morphology in pediatric sleep-disordered breathing and changes in quality of life with rapid maxillary expansion.

    Science.gov (United States)

    Katyal, Vandana; Pamula, Yvonne; Daynes, Cathal N; Martin, James; Dreyer, Craig W; Kennedy, Declan; Sampson, Wayne J

    2013-12-01

    The association between pediatric sleep-disordered breathing caused by upper airway obstruction and craniofacial morphology is poorly understood and contradictory. The aims of this study were to evaluate the prevalence of children at risk for sleep-disordered breathing, as identified in an orthodontic setting by validated screening questionnaires, and to examine associations with their craniofacial and upper airway morphologies. A further aim was to assess the change in quality of life related to sleep-disordered breathing for affected children undergoing rapid maxillary expansion to correct a palatal crossbite or widen a narrow maxilla. A prospective case-control study with children between 8 and 17 years of age (n = 81) at an orthodontic clinic was undertaken. The subjects were grouped as high risk or low risk for sleep-disordered breathing based on the scores from a validated 22-item Pediatric Sleep Questionnaire and the Obstructive Sleep Apnea-18 Quality of Life Questionnaire. Variables pertaining to a screening clinical examination, cephalometric assessment, and dental cast analysis were tested for differences between the 2 groups at baseline. Ten children who underwent rapid maxillary expansion were followed longitudinally until removal of the appliance approximately 9 months later with a repeated Obstructive Sleep Apnea-18 Quality of Life Questionnaire. All data were collected blinded to the questionnaire results. The frequency of palatal crossbite involving at least 3 teeth was significantly higher in the high-risk group at 68.2%, compared with the low-risk group at 23.2% (P children in the low-risk group at baseline (P maxillary intercanine, maxillary interfirst premolar, maxillary interfirst molar, mandibular intercanine, and mandibular interfirst premolar widths were reduced in the high-risk group compared with the low-risk group by 4.22 mm (P Children treated with rapid maxillary expansion showed an average improvement of 14% in quality of life

  7. Expansion of 3D human induced pluripotent stem cell aggregates in bioreactors: Bioprocess intensification and scaling-up approaches.

    Science.gov (United States)

    Abecasis, Bernardo; Aguiar, Tiago; Arnault, Émilie; Costa, Rita; Gomes-Alves, Patricia; Aspegren, Anders; Serra, Margarida; Alves, Paula M

    2017-03-20

    Human induced pluripotent stem cells (hiPSC) are attractive tools for drug screening and disease modeling and promising candidates for cell therapy applications. However, to achieve the high numbers of cells required for these purposes, scalable and clinical-grade technologies must be established. In this study, we use environmentally controlled stirred-tank bioreactors operating in perfusion as a powerful tool for bioprocess intensification of hiPSC production. We demonstrate the importance of controlling the dissolved oxygen concentration at low levels (4%) and perfusion at 1.3day-1 dilution rate to improve hiPSC growth as aggregates in a xeno-free medium. This strategy allowed for increased cell specific growth rate, maximum volumetric concentrations (4.7×106cell/mL) and expansion factors (approximately 19 in total cells), resulting in a 2.6-fold overall improvement in cell yields. Extensive cell characterization, including whole proteomic analysis, was performed to confirm that cells' pluripotent phenotype was maintained during culture. A scalable protocol for continuous expansion of hiPSC aggregates in bioreactors was implemented using mechanical dissociation for aggregate disruption and cell passaging. A total expansion factor of 1100 in viable cells was obtained in 11days of culture, while cells maintained their proliferation capacity, pluripotent phenotype and potential as well as genomic stability after 3 sequential passages in bioreactors. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Maternal plasma or human serum albumin in wash buffer enhances enrichment and ex vivo expansion of human umbilical cord blood CD34+ cells.

    Science.gov (United States)

    Kwok, Yvonne K; Tang, Mary H Y; Law, Helen K W; Ngai, Cora S; Lau, Yu Lung; Lau, Elizabeth T

    2007-06-01

    Umbilical cord blood is a valuable source of haemopoietic stem/progenitor cells (HSC) for transplantation. This study explored the effect of maternal plasma/human serum albumin (HSA) in the purification and culture conditions of CD34+ cells derived from human umbilical cord blood. During CD34+ cell enrichment, including maternal plasma or HSA instead of fetal bovine serum (FBS) in the wash buffer, significantly increased the purity and the fold expansion of CD34+ cells. The increase in fold expansion of CD34+ cells was independent of CD34+ cell purity before expansion. With FBS, the mean fold expansion of CD34+ cells and total nucleated cells on day 7 was 9.7 +/- 5.5 and 39.7 +/- 13.7 respectively. The use of maternal plasma increased the mean fold expansion of CD34+ cells and total nucleated cells on day 7 to 28.2 +/- 6.7 and 71.5 +/- 15.4 respectively. When HSA was added to wash buffer, the mean fold expansion of CD34+ cells and total nucleated cells were 30.4 +/- 10.5 and 83.5 +/- 24.8 respectively. No statistical significance was found between using HSA and maternal plasma on total cell and CD34+ cell expansion. We propose that HSA in maternal plasma was responsible for the positive effect on CD34+ cell enrichment and expansion.

  9. Homogenous Population Genetic Structure of the Non-Native Raccoon Dog (Nyctereutes procyonoides in Europe as a Result of Rapid Population Expansion.

    Directory of Open Access Journals (Sweden)

    Frank Drygala

    Full Text Available The extent of gene flow during the range expansion of non-native species influences the amount of genetic diversity retained in expanding populations. Here, we analyse the population genetic structure of the raccoon dog (Nyctereutes procyonoides in north-eastern and central Europe. This invasive species is of management concern because it is highly susceptible to fox rabies and an important secondary host of the virus. We hypothesized that the large number of introduced animals and the species' dispersal capabilities led to high population connectivity and maintenance of genetic diversity throughout the invaded range. We genotyped 332 tissue samples from seven European countries using 16 microsatellite loci. Different algorithms identified three genetic clusters corresponding to Finland, Denmark and a large 'central' population that reached from introduction areas in western Russia to northern Germany. Cluster assignments provided evidence of long-distance dispersal. The results of an Approximate Bayesian Computation analysis supported a scenario of equal effective population sizes among different pre-defined populations in the large central cluster. Our results are in line with strong gene flow and secondary admixture between neighbouring demes leading to reduced genetic structuring, probably a result of its fairly rapid population expansion after introduction. The results presented here are remarkable in the sense that we identified a homogenous genetic cluster inhabiting an area stretching over more than 1500km. They are also relevant for disease management, as in the event of a significant rabies outbreak, there is a great risk of a rapid virus spread among raccoon dog populations.

  10. The effect of artificial antigen-presenting cells with preclustered anti-CD28/-CD3/-LFA-1 monoclonal antibodies on the induction of ex vivo expansion of functional human antitumor T cells.

    Science.gov (United States)

    Zappasodi, Roberta; Di Nicola, Massimo; Carlo-Stella, Carmelo; Mortarini, Roberta; Molla, Alessandra; Vegetti, Claudia; Albani, Salvatore; Anichini, Andrea; Gianni, Alessandro M

    2008-10-01

    Adoptive cell therapy with ex vivo expanded autologous antitumor cytotoxic T lymphocytes represents an important therapeutic option as an anticancer strategy. In order to identify a reliable method for producing adequate amounts of functional antitumor cytotoxic T lymphocytes with a potentially long in vivo lifespan, we tested the T-cell expansion efficiency of a new artificial antigen-presenting cell-based system. Our artificial antigen-presenting cells were generated with activating (anti-CD3), co-stimulating (anti-CD28) and adhesion (anti-LFA-1) biotinylated monoclonal antibodies preclustered in microdomains held on a liposome scaffold by neutravidin rafts. The co-localization of T-cell ligands in microdomains and the targeting of an adhesion protein, increasing the efficiency of immunological synapse formation, represent the novelties of our system. The activity of our artificial antigen-presenting cells was compared with that of anti-CD3/-CD28 coated immunomagnetic microbeads and immobilized anti-CD3 monoclonal antibody (OKT3 clone), the only two commercially available artificial systems. Our artificial antigen-presenting cells expanded both polyclonal T cells and MART-1-specific CD8(+) T cells in a more efficient manner than the other systems. Stimulation with artificial antigen-presenting cells allows for the generation of viable T cells displaying an immunophenotype consistent with in vivo potential for persistence, without increasing the frequency of regulatory T cells. The starting specificity of anti MART-1 CD8(+) T cells was preserved after stimulation with artificial antigen-presenting cells and it was statistically greater when compared to the activity of the same cells expanded with the other systems. Finally, our artificial antigen-presenting cells proved to be suitable for large-scale application, minimizing the volume and the costs of T-cell expansion. Our artificial antigen-presenting cells might represent an efficient tool to rapidly obtain a

  11. Substrates for Expansion of Corneal Endothelial Cells towards Bioengineering of Human Corneal Endothelium

    Directory of Open Access Journals (Sweden)

    Jesintha Navaratnam

    2015-09-01

    Full Text Available Corneal endothelium is a single layer of specialized cells that lines the posterior surface of cornea and maintains corneal hydration and corneal transparency essential for vision. Currently, transplantation is the only therapeutic option for diseases affecting the corneal endothelium. Transplantation of corneal endothelium, called endothelial keratoplasty, is widely used for corneal endothelial diseases. However, corneal transplantation is limited by global donor shortage. Therefore, there is a need to overcome the deficiency of sufficient donor corneal tissue. New approaches are being explored to engineer corneal tissues such that sufficient amount of corneal endothelium becomes available to offset the present shortage of functional cornea. Although human corneal endothelial cells have limited proliferative capacity in vivo, several laboratories have been successful in in vitro expansion of human corneal endothelial cells. Here we provide a comprehensive analysis of different substrates employed for in vitro cultivation of human corneal endothelial cells. Advances and emerging challenges with ex vivo cultured corneal endothelial layer for the ultimate goal of therapeutic replacement of dysfunctional corneal endothelium in humans with functional corneal endothelium are also presented.

  12. Human Mesenchymal Stem/Stromal Cells from Umbilical Cord Blood and Placenta Exhibit Similar Capacities to Promote Expansion of Hematopoietic Progenitor Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Guadalupe R. Fajardo-Orduña

    2017-01-01

    Full Text Available Mesenchymal stem/stromal cells (MSCs from bone marrow (BM have been used in coculture systems as a feeder layer for promoting the expansion of hematopoietic progenitor cells (HPCs for hematopoietic cell transplantation. Because BM has some drawbacks, umbilical cord blood (UCB and placenta (PL have been proposed as possible alternative sources of MSCs. However, MSCs from UCB and PL sources have not been compared to determine which of these cell populations has the best capacity of promoting hematopoietic expansion. In this study, MSCs from UCB and PL were cultured under the same conditions to compare their capacities to support the expansion of HPCs in vitro. MSCs were cocultured with CD34+CD38−Lin− HPCs in the presence or absence of early acting cytokines. HPC expansion was analyzed through quantification of colony-forming cells (CFCs, long-term culture-initiating cells (LTC-ICs, and CD34+CD38−Lin− cells. MSCs from UCB and PL have similar capacities to increase HPC expansion, and this capacity is similar to that presented by BM-MSCs. Here, we are the first to determine that MSCs from UCB and PL have similar capacities to promote HPC expansion; however, PL is a better alternative source because MSCs can be obtained from a higher proportion of samples.

  13. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation

    Science.gov (United States)

    Lei, Yuguo; Schaffer, David V.

    2013-12-01

    Human pluripotent stem cells (hPSCs), including human embryonic stem cells and induced pluripotent stem cells, are promising for numerous biomedical applications, such as cell replacement therapies, tissue and whole-organ engineering, and high-throughput pharmacology and toxicology screening. Each of these applications requires large numbers of cells of high quality; however, the scalable expansion and differentiation of hPSCs, especially for clinical utilization, remains a challenge. We report a simple, defined, efficient, scalable, and good manufacturing practice-compatible 3D culture system for hPSC expansion and differentiation. It employs a thermoresponsive hydrogel that combines easy manipulation and completely defined conditions, free of any human- or animal-derived factors, and entailing only recombinant protein factors. Under an optimized protocol, the 3D system enables long-term, serial expansion of multiple hPSCs lines with a high expansion rate (∼20-fold per 5-d passage, for a 1072-fold expansion over 280 d), yield (∼2.0 × 107 cells per mL of hydrogel), and purity (∼95% Oct4+), even with single-cell inoculation, all of which offer considerable advantages relative to current approaches. Moreover, the system enabled 3D directed differentiation of hPSCs into multiple lineages, including dopaminergic neuron progenitors with a yield of ∼8 × 107 dopaminergic progenitors per mL of hydrogel and ∼80-fold expansion by the end of a 15-d derivation. This versatile system may be useful at numerous scales, from basic biological investigation to clinical development.

  14. Protein tyrosine phosphatase 1B deficiency ameliorates murine experimental colitis via the expansion of myeloid-derived suppressor cells.

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B is a key molecule in modulating low-degree inflammatory conditions such as diabetes. The role of PTP1B in other chronic inflammations, however, remains unknown. Here, we report that PTP1B deficiency ameliorates Dextran Sulfate Sodium (DSS-induced murine experimental colitis via expanding CD11b(+Gr-1(+ myeloid-derived suppressor cells (MDSCs. Employing DSS-induced murine experimental colitis as inflammatory animal model, we found that, compared with wild-type littermates, PTP1B-null mice demonstrated greater resistance to DSS-induced colitis, as reflected by slower weight-loss, greater survival rates and decreased PMN and macrophage infiltration into the colon. The evidence collectively also demonstrated that the resistance of PTP1B-null mice to DSS-induced colitis is based on the expansion of MDSCs. First, PTP1B-null mice exhibited a greater frequency of MDSCs in the bone marrow (BM, peripheral blood and spleen when compared with wild-type littermates. Second, PTP1B levels in BM leukocytes were significantly decreased after cells were induced into MDSCs by IL-6 and GM-CSF, and the MDSC induction occurred more rapidly in PTP1B-null mice than in wild-type littermates, suggesting PTP1B as a negative regulator of MDSCs. Third, the adoptive transfer of MDSCs into mice with DSS-colitis significantly attenuated colitis, which accompanies with a decreased serum IL-17 level. Finally, PTP1B deficiency increased the frequency of MDSCs from BM cells likely through enhancing the activities of signal transducer and activator of transcription 3 (STAT3 and Janus kinase 2 (JAK2. In conclusion, our study provides the first evidences that PTP1B deficiency ameliorates murine experimental colitis via expanding MDSCs.

  15. Glass-Transition Temperature Profile Measured in a Wood Cell Wall Using Scanning Thermal Expansion Microscope (SThEM)

    Science.gov (United States)

    Antoniow, J. S.; Maigret, J.-E.; Jensen, C.; Trannoy, N.; Chirtoc, M.; Beaugrand, J.

    2012-11-01

    This study aims to assess the in situ spatial distribution of glass-transition temperatures ( T g) of the main lignocellulosic biopolymers of plant cell walls. Studies are conducted using scanning thermal expansion microscopy to analyze the cross-section of the cell wall of poplar. The surface topography is mapped over a range of probe-tip temperatures to capture the change of thermal expansion on the sample surface versus temperature. For different temperature values chosen between 20 °C and 250 °C, several quantitative mappings were made to show the spatial variation of the thermal expansion. As the glass transition affects the thermal expansion coefficient and elastic modulus considerably, the same data line of each topography image was extracted to identify specific thermal events in their topographic evolution as a function of temperature. In particular, it is shown that the thermal expansion of the contact surface is not uniform across the cell wall and a profile of the glass-transition temperature could thus be evidenced and quantified corresponding to the mobility of lignocellulosic polymers having a role in the organization of the cell wall structures.

  16. A Robust Single Primate Neuroepithelial Cell Clonal Expansion System for Neural Tube Development and Disease Studies

    Directory of Open Access Journals (Sweden)

    Xiaoqing Zhu

    2016-02-01

    Full Text Available Developing a model of primate neural tube (NT development is important to promote many NT disorder studies in model organisms. Here, we report a robust and stable system to allow for clonal expansion of single monkey neuroepithelial stem cells (NESCs to develop into miniature NT-like structures. Single NESCs can produce functional neurons in vitro, survive, and extensively regenerate neuron axons in monkey brain. NT formation and NESC maintenance depend on high metabolism activity and Wnt signaling. NESCs are regionally restricted to a telencephalic fate. Moreover, single NESCs can turn into radial glial progenitors (RGPCs. The transition is accurately regulated by Wnt signaling through regulation of Notch signaling and adhesion molecules. Finally, using the “NESC-TO-NTs” system, we model the functions of folic acid (FA on NT closure and demonstrate that FA can regulate multiple mechanisms to prevent NT defects. Our system is ideal for studying NT development and diseases.

  17. Voluntary Medical Male Circumcision: Translating Research into the Rapid Expansion of Services in Kenya, 2008–2011

    Science.gov (United States)

    Mwandi, Zebedee; Murphy, Anne; Reed, Jason; Chesang, Kipruto; Njeuhmeli, Emmanuel; Agot, Kawango; Llewellyn, Emma; Kirui, Charles; Serrem, Kennedy; Abuya, Isaac; Loolpapit, Mores; Mbayaki, Regina; Kiriro, Ndungu; Cherutich, Peter; Muraguri, Nicholas; Motoku, John; Kioko, Jack; Knight, Nancy; Bock, Naomi

    2011-01-01

    Since the World Health Organization and the Joint United Nations Programme on HIV/AIDS recommended implementation of medical male circumcision (MC) as part of HIV prevention in areas with low MC and high HIV prevalence rates in 2007, the government of Kenya has developed a strategy to circumcise 80% of uncircumcised men within five years. To facilitate the quick translation of research to practice, a national MC task force was formed in 2007, a medical MC policy was implemented in early 2008, and Nyanza Province, the region with the highest HIV burden and low rates of circumcision, was prioritized for services under the direction of a provincial voluntary medical male circumcision (VMMC) task force. The government's early and continuous engagement with community leaders/elders, politicians, youth, and women's groups has led to the rapid endorsement and acceptance of VMMC. In addition, several innovative approaches have helped to optimize VMMC scale-up. Since October 2008, the Kenyan VMMC program has circumcised approximately 290,000 men, mainly in Nyanza Province, an accomplishment made possible through a combination of governmental leadership, a documented implementation strategy, and the adoption of appropriate and innovative approaches. Kenya's success provides a model for others planning VMMC scale-up programs. PMID:22140365

  18. Voluntary medical male circumcision: translating research into the rapid expansion of services in Kenya, 2008-2011.

    Directory of Open Access Journals (Sweden)

    Zebedee Mwandi

    2011-11-01

    Full Text Available Since the World Health Organization and the Joint United Nations Programme on HIV/AIDS recommended implementation of medical male circumcision (MC as part of HIV prevention in areas with low MC and high HIV prevalence rates in 2007, the government of Kenya has developed a strategy to circumcise 80% of uncircumcised men within five years. To facilitate the quick translation of research to practice, a national MC task force was formed in 2007, a medical MC policy was implemented in early 2008, and Nyanza Province, the region with the highest HIV burden and low rates of circumcision, was prioritized for services under the direction of a provincial voluntary medical male circumcision (VMMC task force. The government's early and continuous engagement with community leaders/elders, politicians, youth, and women's groups has led to the rapid endorsement and acceptance of VMMC. In addition, several innovative approaches have helped to optimize VMMC scale-up. Since October 2008, the Kenyan VMMC program has circumcised approximately 290,000 men, mainly in Nyanza Province, an accomplishment made possible through a combination of governmental leadership, a documented implementation strategy, and the adoption of appropriate and innovative approaches. Kenya's success provides a model for others planning VMMC scale-up programs.

  19. Plasmonic cell nanocoating: a new concept for rapid microbial screening.

    Science.gov (United States)

    Xu, Ke; Bui, Minh-Phuong N; Fang, Aiqin; Abbas, Abdennour

    2017-11-01

    Nanocoating of single microbial cells with gold nanostructures can confer optical, electrical, thermal, and mechanical properties to microorganisms, thus enabling new avenues for their control, study, application, and detection. Cell nanocoating is often performed using layer-by-layer (LbL) deposition. LbL is time-consuming and relies on nonspecific electrostatic interactions, which limit potential applications for microbial diagnostics. Here, we show that, by taking advantage of surface molecules densely present in the microbial outer layers, cell nanocoating with gold nanoparticles can be achieved within seconds using surface molecules, including disulfide- bond-containing (Dsbc) proteins and chitin. A simple activation of these markers and their subsequent interaction with gold nanoparticles allow specific microbial screening and quantification of bacteria and fungi within 5 and 30 min, respectively. The use of plasmonics and fluorescence as transduction methods offers a limit of detection below 35 cfu mL-1 for E. coli bacteria and 1500 cfu mL-1 for M. circinelloides fungi using a hand-held fluorescent reader. Graphical abstract A new concept for rapid microbial screening by targeting disulfide - bond-containing (Dsbc) proteins and chitin with reducing agents and gold nanoparticles.

  20. Optimized Tetrazine Derivatives for Rapid Bioorthogonal Decaging in Living Cells.

    Science.gov (United States)

    Fan, Xinyuan; Ge, Yun; Lin, Feng; Yang, Yi; Zhang, Gong; Ngai, William Shu Ching; Lin, Zhi; Zheng, Siqi; Wang, Jie; Zhao, Jingyi; Li, Jie; Chen, Peng R

    2016-11-02

    The inverse-electron-demand Diels-Alder (iDA) reaction has recently been repurposed as a bioorthogonal decaging reaction by accelerating the elimination process after an initial cycloaddition between trans-cyclooctene (TCO) and tetrazine (TZ). Herein, we systematically surveyed 3,6-substituted TZ derivatives by using a fluorogenic TCO-coumarin reporter followed by LC-MS analysis, which revealed that the initial iDA cycloaddition step was greatly accelerated by electron-withdrawing groups (EWGs) while the subsequent elimination step was strongly suppressed by EWGs. In addition, smaller substituents facilitated the decaging process. These findings promoted us to design and test unsymmetric TZs bearing an EWG group and a small non-EWG group at the 3- and 6-position, respectively. These TZs showed remarkably enhanced decaging rates, enabling rapid iDA-mediated protein activation in living cells. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Single-Cell Analysis of the Plasmablast Response to Vibrio cholerae Demonstrates Expansion of Cross-Reactive Memory B Cells

    Directory of Open Access Journals (Sweden)

    Robert C. Kauffman

    2016-12-01

    Full Text Available We characterized the acute B cell response in adults with cholera by analyzing the repertoire, specificity, and functional characteristics of 138 monoclonal antibodies (MAbs generated from single-cell-sorted plasmablasts. We found that the cholera-induced responses were characterized by high levels of somatic hypermutation and large clonal expansions. A majority of the expansions targeted cholera toxin (CT or lipopolysaccharide (LPS. Using a novel proteomics approach, we were able to identify sialidase as another major antigen targeted by the antibody response to Vibrio cholerae infection. Antitoxin MAbs targeted both the A and B subunits, and most were also potent neutralizers of enterotoxigenic Escherichia coli heat-labile toxin. LPS-specific MAbs uniformly targeted the O-specific polysaccharide, with no detectable responses to either the core or the lipid moiety of LPS. Interestingly, the LPS-specific antibodies varied widely in serotype specificity and functional characteristics. One participant infected with the Ogawa serotype produced highly mutated LPS-specific antibodies that preferentially bound the previously circulating Inaba serotype. This demonstrates durable memory against a polysaccharide antigen presented at the mucosal surface and provides a mechanism for the long-term, partial heterotypic immunity seen following cholera.

  2. Water sorption and expansion of an ionomer membrane constrained by fuel cell electrodes

    Science.gov (United States)

    Goulet, Marc-Antoni; Arbour, Spencer; Lauritzen, Michael; Kjeang, Erik

    2015-01-01

    This article reveals that catalyst coated membranes (CCM) and membrane electrode assemblies (MEA) expand and contract differently than pure ionomer membranes during hydration and dehydration. Pure membranes are shown to generate twice as much longitudinal peak and residual stress during dehydration than CCMs, reflecting the higher modulus of the pure ionomer material. Moreover, the stronger confinement imposed by the lamination of relatively stiff gas diffusion layers to the CCM prevents the ionomer membrane from expanding in the in-plane direction. This is shown to lead to a significant increase in the through-plane stress and strain during hydration of MEAs versus CCMs and pure ionomer membranes. Supplementary measurements indicate that the water sorption properties of the ionomer (at equilibrium) are not altered by the lamination of catalyst layers and gas diffusion layers; hence, the changes in expansion behavior in the MEA are attributed to the mechanical confinement provided by the other layers. These features should be captured by finite element modeling of fuel cell stacks for accurate cell design and may have important implications for fuel cell durability.

  3. Expansion of inflammatory innate lymphoid cells in patients with common variable immune deficiency.

    Science.gov (United States)

    Cols, Montserrat; Rahman, Adeeb; Maglione, Paul J; Garcia-Carmona, Yolanda; Simchoni, Noa; Ko, Huai-Bin M; Radigan, Lin; Cerutti, Andrea; Blankenship, Derek; Pascual, Virginia; Cunningham-Rundles, Charlotte

    2016-04-01

    Common variable immunodeficiency (CVID) is an antibody deficiency treated with immunoglobulin; however, patients can have noninfectious inflammatory conditions that lead to heightened morbidity and mortality. Modular analyses of RNA transcripts in whole blood previously identified an upregulation of many interferon-responsive genes. In this study we sought the cell populations leading to this signature. Lymphoid cells were measured in peripheral blood of 55 patients with CVID (31 with and 24 without inflammatory/autoimmune complications) by using mass cytometry and flow cytometry. Surface markers, cytokines, and transcriptional characteristics of sorted innate lymphoid cells (ILCs) were defined by using quantitative PCR. Gastrointestinal and lung biopsy specimens of subjects with inflammatory disease were stained to seek ILCs in tissues. The linage-negative, CD127(+), CD161(+) lymphoid population containing T-box transcription factor, retinoic acid-related orphan receptor (ROR) γt, IFN-γ, IL-17A, and IL-22, all hallmarks of type 3 innate lymphoid cells, were expanded in the blood of patients with CVID with inflammatory conditions (mean, 3.7% of PBMCs). ILCs contained detectable amounts of the transcription factors inhibitor of DNA binding 2, T-box transcription factor, and RORγt and increased mRNA transcripts for IL-23 receptor (IL-23R) and IL-26, demonstrating inflammatory potential. In gastrointestinal and lung biopsy tissues of patients with CVID, numerous IFN-γ(+)RORγt(+)CD3(-) cells were identified, suggesting a role in these mucosal inflammatory states. An expansion of this highly inflammatory ILC population is a characteristic of patients with CVID with inflammatory disease; ILCs and the interferon signature are markers for the uncontrolled inflammatory state in these patients. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  4. Preparation, quality criteria, and properties of human blood platelet lysate supplements for ex vivo stem cell expansion.

    Science.gov (United States)

    Shih, Daniel Tzu-Bi; Burnouf, Thierry

    2015-01-25

    Most clinical applications of human multipotent mesenchymal stromal cells (MSCs) for cell therapy, tissue engineering, regenerative medicine, and treatment of immune and inflammatory diseases require a phase of isolation and ex vivo expansion allowing a clinically meaningful cell number to be reached. Conditions used for cell isolation and expansion should meet strict quality and safety requirements. This is particularly true for the growth medium used for MSC isolation and expansion. Basal growth media used for MSC expansion are supplemented with multiple nutrients and growth factors. Fetal bovine serum (FBS) has long been the gold standard medium supplement for laboratory-scale MSC culture. However, FBS has a poorly characterized composition and poses risk factors, as it may be a source of xenogenic antigens and zoonotic infections. FBS has therefore become undesirable as a growth medium supplement for isolating and expanding MSCs for human therapy protocols. In recent years, human blood materials, and most particularly lysates and releasates of platelet concentrates have emerged as efficient medium supplements for isolating and expanding MSCs from various origins. This review analyzes the advantages and limits of using human platelet materials as medium supplements for MSC isolation and expansion. We present the modes of production of allogeneic and autologous platelet concentrates, measures taken to ensure optimal pathogen safety profiles, and methods of preparing PLs for MSC expansion. We also discuss the supply of such blood preparations. Produced under optimal conditions of standardization and safety, human platelet materials can become the future 'gold standard' supplement for ex vivo production of MSCs for translational medicine and cell therapy applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Overcoming the bottleneck of platelet lysate supply in large-scale clinical expansion of adipose-derived stem cells

    DEFF Research Database (Denmark)

    Glovinski, Peter Viktor; Herly, Mikkel; Mathiasen, Anders B

    2017-01-01

    BACKGROUND: Platelet lysates (PL) represent a promising replacement for xenogenic growth supplement for adipose-derived stem cell (ASC) expansions. However, fresh platelets from human blood donors are not clinically feasible for large-scale cell expansion based on their limited supply. Therefore......, we tested PLs prepared via three methods from outdated buffy coat-derived platelet concentrates (PCs) to establish an efficient and feasible expansion of ASCs for clinical use. METHODS: PLs were prepared by the freeze-thaw method from freshly drawn platelets or from outdated buffy coat-derived PCs...... stored in the platelet additive solution, InterSol. Three types of PLs were prepared from outdated PCs with platelets suspended in either (1) InterSol (not manipulated), (2) InterSol + supplemented with plasma or (3) plasma alone (InterSol removed). Using these PLs, we compared ASC population doubling...

  6. Calnexin induces expansion of antigen-specific CD4+ T cells that confer immunity to fungal ascomycetes via conserved epitopes

    Science.gov (United States)

    Wüthrich, Marcel; Brandhorst, Tristan T.; Sullivan, Thomas D.; Filutowicz, Hanna; Sterkel, Alana; Stewart, Douglas; Li, Mengyi; Lerksuthirat, Tassanee; LeBert, Vanessa; Shen, Zu Ting; Ostroff, Gary; Deepe, George S.; Hung, Chiung Yu; Cole, Garry; Walter, Jennifer A.; Jenkins, Marc K.; Klein, Bruce

    2015-01-01

    Fungal infections remain a threat due to the lack of broad spectrum fungal vaccines and protective antigens. Recent studies showed that attenuated Blastomyces dermatitidis confers protection via T cell recognition of an unknown, but conserved antigen. Using transgenic CD4+ T cells recognizing this antigen, we identify an amino acid determinant within the chaperone calnexin that is conserved across diverse fungal ascomycetes. Calnexin, typically an ER protein, also localizes to the surface of yeast, hyphae and spores. T cell epitope mapping unveiled a 13-residue sequence conserved across Ascomycota. Infection with divergent ascomycetes including dimorphic fungi, opportunistic molds, and the agent causing white nose syndrome in bats induces expansion of calnexin-specific CD4+ T cells. Vaccine delivery of calnexin in glucan particles induces fungal antigen-specific CD4+ T cell expansion and resistance to lethal challenge with multiple fungal pathogens. Thus, the immunogeneticity and conservation of calnexin make this fungal protein a promising vaccine target. PMID:25800545

  7. Successful isolation, in vitro expansion and characterization of stem cells from Human Dental Pulp

    Directory of Open Access Journals (Sweden)

    Preethy SP

    2010-01-01

    acids (5 .Cell counting was done by Trypan Blue dye exclusion method and the cells were seeded in 6 well culture plates. The plates with cells were incubated at 37˚C with 5% CO2 for varying periods from 14 days-28 days. The cells were observed daily and media change was done every three days. RESULTS: Viable Dental Pulp tissue-cells were obtained after transportation of up to 48 hrs and the in vitro growth of cells was initially slow but colonies were identified from the 10th day onwards. The cells were harvested at different intervals of 14-28 days for each sample based on their growth and subjected to H & E staining .The H & E staining of the cultured cells of all the samples showed positive resultsCONCLUSION: We are able to transport extracted teeth and derive viable dental pulp tissue cells after enzymatic digestion and multiply them in culture after a maximum of 48 hrs after transportation. The cells could be grown in culture with a morphology resembling dental pulp stem cells while in culture expansion and in H&E studies. Further characterization of the cells is necessary to confirm their Stemness. References1.Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs in vitro and in vivo. Proc Natl Acad Sci U S A. 20002.Nosrat IV, Widenfalk J, Olson L, Nosrat CA. Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury. Dev Biol. 2001 Oct 3.Iohara K, Zheng L, Ito M, Tomokiyo A, Matsushita K, Nakashima M. Side population cells isolated from porcine dental pulp tissue with self-renewal and multipotency for dentinogenesis, chondrogenesis, adipogenesis, and neurogenesis. Stem Cells. 2006 Nov4.Gandia C, Armiñan A, García-Verdugo JM, Lledó E, Ruiz A, Miñana MD, Sanchez-Torrijos J, Payá R, Mirabet V, Carbonell-Uberos F, Llop M, Montero JA, Sepúlveda P. Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce

  8. EGF-induced expansion of migratory cells in the rostral migratory stream.

    Directory of Open Access Journals (Sweden)

    Olle R Lindberg

    Full Text Available The presence of neural stem cells in the adult brain is currently widely accepted and efforts are made to harness the regenerative potential of these cells. The dentate gyrus of the hippocampal formation, and the subventricular zone (SVZ of the anterior lateral ventricles, are considered the main loci of adult neurogenesis. The rostral migratory stream (RMS is the structure funneling SVZ progenitor cells through the forebrain to their final destination in the olfactory bulb. Moreover, extensive proliferation occurs in the RMS. Some evidence suggest the presence of stem cells in the RMS, but these cells are few and possibly of limited differentiation potential. We have recently demonstrated the specific expression of the cytoskeleton linker protein radixin in neuroblasts in the RMS and in oligodendrocyte progenitors throughout the brain. These cell populations are greatly altered after intracerebroventricular infusion of epidermal growth factor (EGF. In the current study we investigate the effect of EGF infusion on the rat RMS. We describe a specific increase of radixin(+/Olig2(+ cells in the RMS. Negative for NG2 and CNPase, these radixin(+/Olig2(+ cells are distinct from typical oligodendrocyte progenitors. The expanded Olig2(+ population responds rapidly to EGF and proliferates after only 24 hours along the entire RMS, suggesting local activation by EGF throughout the RMS rather than migration from the SVZ. In addition, the radixin(+/Olig2(+ progenitors assemble in chains in vivo and migrate in chains in explant cultures, suggesting that they possess migratory properties within the RMS. In summary, these results provide insight into the adaptive capacity of the RMS and point to an additional stem cell source for future brain repair strategies.

  9. A rapid method of fruit cell isolation for cell size and shape measurements

    Directory of Open Access Journals (Sweden)

    Johnston Jason W

    2009-04-01

    Full Text Available Abstract Background Cell size is a structural component of fleshy fruit, contributing to important traits such as fruit size and texture. There are currently a number of methods for measuring cell size; most rely either on tissue sectioning or digestion of the tissue with cell wall degrading enzymes or chemicals to release single cells. Neither of these approaches is ideal for assaying large fruit numbers as both require a considerable time to prepare the tissue, with current methods of cell wall digestions taking 24 to 48 hours. Additionally, sectioning can lead to a measurement of a plane that does not represent the widest point of the cell. Results To develop a more rapid way of measuring fruit cell size we have developed a protocol that solubilises pectin in the middle lamella of the plant cell wall releasing single cells into a buffered solution. Gently boiling small fruit samples in a 0.05 M Na2CO3 solution, osmotically balanced with 0.3 M mannitol, produced good cell separation with little cellular damage in less than 30 minutes. The advantage of combining a chemical treatment with boiling is that the cells are rapidly killed. This stopped cell shape changes that could potentially occur during separation. With this method both the rounded and angular cells of the apple cultivars SciRos 'Pacific Rose' and SciFresh 'Jazz'™ were observed in the separated cells. Using this technique, an in-depth analysis was performed measuring cell size from 5 different apple cultivars. Cell size was measured using the public domain ImageJ software. For each cultivar a minimum of 1000 cells were measured and it was found that each cultivar displayed a different distribution of cell size. Cell size within cultivars was similar and there was no correlation between flesh firmness and cell size. This protocol was tested on tissue from other fleshy fruit including tomato, rock melon and kiwifruit. It was found that good cell separation was achieved with flesh

  10. Expansion in microcarrier-spinner cultures improves the chondrogenic potential of human early mesenchymal stromal cells.

    Science.gov (United States)

    Lin, Youshan Melissa; Lim, Jessica Fang Yan; Lee, Jialing; Choolani, Mahesh; Chan, Jerry Kok Yen; Reuveny, Shaul; Oh, Steve Kah Weng

    2016-06-01

    Cartilage tissue engineering with human mesenchymal stromal cells (hMSC) is promising for allogeneic cell therapy. To achieve large-scale hMSC propagation, scalable microcarrier-based cultures are preferred over conventional static cultures on tissue culture plastic. Yet it remains unclear how microcarrier cultures affect hMSC chondrogenic potential, and how this potential is distinguished from that of tissue culture plastic. Hence, our study aims to compare the chondrogenic potential of human early MSC (heMSC) between microcarrier-spinner and tissue culture plastic cultures. heMSC expanded on either collagen-coated Cytodex 3 microcarriers in spinner cultures or tissue culture plastic were harvested for chondrogenic pellet differentiation with empirically determined chondrogenic inducer bone morphogenetic protein 2 (BMP2). Pellet diameter, DNA content, glycosaminoglycan (GAG) and collagen II production, histological staining and gene expression of chondrogenic markers including SOX9, S100β, MMP13 and ALPL, were investigated and compared in both conditions. BMP2 was the most effective chondrogenic inducer for heMSC. Chondrogenic pellets generated from microcarrier cultures developed larger pellet diameters, and produced more DNA, GAG and collagen II per pellet with greater GAG/DNA and collagen II/DNA ratios compared with that of tissue culture plastic. Moreover, they induced higher expression of chondrogenic genes (e.g., S100β) but not of hypertrophic genes (e.g., MMP13 and ALPL). A similar trend showing enhanced chondrogenic potential was achieved with another microcarrier type, suggesting that the mechanism is due to the agitated nature of microcarrier cultures. This is the first study demonstrating that scalable microcarrier-spinner cultures enhance the chondrogenic potential of heMSC, supporting their use for large-scale cell expansion in cartilage cell therapy. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights

  11. Expansion of Human Tregs from Cryopreserved Umbilical Cord Blood for GMP-Compliant Autologous Adoptive Cell Transfer Therapy

    Directory of Open Access Journals (Sweden)

    Howard R. Seay

    2017-03-01

    Full Text Available Umbilical cord blood is a traditional and convenient source of cells for hematopoietic stem cell transplantation. Thymic regulatory T cells (Tregs are also present in cord blood, and there is growing interest in the use of autologous Tregs to provide a low-risk, fully human leukocyte antigen (HLA-matched cell product for treating autoimmune diseases, such as type 1 diabetes. Here, we describe a good manufacturing practice (GMP-compatible Treg expansion protocol using fluorescence-activated cell sorting, resulting in a mean 2,092-fold expansion of Tregs over a 16-day culture for a median yield of 1.26 × 109 Tregs from single-donor cryopreserved units. The resulting Tregs passed prior clinical trial release criteria for Treg purity and sterility, including additional rigorous assessments of FOXP3 and Helios expression and epigenetic analysis of the FOXP3 Treg-specific demethylated region (TSDR. Compared with expanded adult peripheral blood Tregs, expanded cord blood Tregs remained more naive, as assessed by continued expression of CD45RA, produced reduced IFN-γ following activation, and effectively inhibited responder T cell proliferation. Immunosequencing of the T cell receptor revealed a remarkably diverse receptor repertoire within cord blood Tregs that was maintained following in vitro expansion. These data support the feasibility of generating GMP-compliant Tregs from cord blood for adoptive cell transfer therapies and highlight potential advantages in terms of safety, phenotypic stability, autoantigen specificity, and tissue distribution.

  12. A nonlinear electromechanical coupling model for electropore expansion in cell electroporation

    KAUST Repository

    Deng, Peigang

    2014-10-15

    Under an electric field, the electric tractions acting on a cell membrane containing a pore-nucleus are investigated by using a nonlinear electromechanical coupling model, in which the cell membrane is treated as a hyperelastic material. Iterations between the electric field and the structure field are performed to reveal the electrical forces exerting on the pore region and the subsequent pore expansion process. An explicit exponential decay of the membrane\\'s edge energy as a function of pore radius is defined for a hydrophilic pore and the transition energy as a hydrophobic pore converts to a hydrophilic pore during the initial stage of pore formation is investigated. It is found that the edge energy for the creation of an electropore edge plays an important role at the atomistic scale and it determines the hydrophobic-hydrophilic transition energy barrier. Various free energy evolution paths are exhibited, depending on the applied electric field, which provides further insight towards the electroporation (EP) phenomenon. In comparison with previous EP models, the proposed model has the ability to predict the metastable point on the free energy curve that is relevant to the lipid ion channel. In addition, the proposed model can also predict the critical transmembrane potential for the activation of an effective electroporation that is in a good agreement with previously published experimental data.

  13. NELL-1 induces Sca-1+ mesenchymal progenitor cell expansion in models of bone maintenance and repair.

    Science.gov (United States)

    James, Aaron W; Shen, Jia; Tsuei, Rebecca; Nguyen, Alan; Khadarian, Kevork; Meyers, Carolyn A; Pan, Hsin Chuan; Li, Weiming; Kwak, Jin H; Asatrian, Greg; Culiat, Cymbeline T; Lee, Min; Ting, Kang; Zhang, Xinli; Soo, Chia

    2017-06-15

    NELL-1 is a secreted, osteogenic protein first discovered to control ossification of the cranial skeleton. Recently, NELL-1 has been implicated in bone maintenance. However, the cellular determinants of NELL-1's bone-forming effects are still unknown. Here, recombinant human NELL-1 (rhNELL-1) implantation was examined in a clinically relevant nonhuman primate lumbar spinal fusion model. Prolonged rhNELL-1 protein release was achieved using an apatite-coated β-tricalcium phosphate carrier, resulting in a local influx of stem cell antigen-1-positive (Sca-1+) mesenchymal progenitor cells (MPCs), and complete osseous fusion across all samples (100% spinal fusion rate). Murine studies revealed that Nell-1 haploinsufficiency results in marked reductions in the numbers of Sca-1+CD45-CD31- bone marrow MPCs associated with low bone mass. Conversely, rhNELL-1 systemic administration in mice showed a marked anabolic effect accompanied by increased numbers of Sca-1+CD45-CD31- bone marrow MPCs. Mechanistically, rhNELL-1 induces Sca-1 transcription among MPCs, in a process requiring intact Wnt/β-catenin signaling. In summary, NELL-1 effectively induces bone formation across small and large animal models either via local implantation or intravenous delivery. NELL-1 induces an expansion of a bone marrow subset of MPCs with Sca-1 expression. These findings provide compelling justification for the clinical translation of a NELL-1-based therapy for local or systemic bone formation.

  14. Short-term in-vitro expansion improves monitoring and allows affordable generation of virus-specific T-cells against several viruses for a broad clinical application.

    Directory of Open Access Journals (Sweden)

    René Geyeregger

    Full Text Available Adenoviral infections are a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT in pediatric patients. Adoptive transfer of donor-derived human adenovirus (HAdV-specific T-cells represents a promising treatment option. However, the difficulty in identifying and selecting rare HAdV-specific T-cells, and the short time span between patients at high risk for invasive infection and viremia are major limitations. We therefore developed an IL-15-driven 6 to 12 day short-term protocol for in vitro detection of HAdV-specific T cells, as revealed by known MHC class I multimers and a newly identified adenoviral CD8 T-cell epitope derived from the E1A protein for the frequent HLA-type A*02∶01 and IFN-γ. Using this novel and improved diagnostic approach we observed a correlation between adenoviral load and reconstitution of CD8(+ and CD4(+ HAdV-specific T-cells including central memory cells in HSCT-patients. Adaption of the 12-day protocol to good manufacturing practice conditions resulted in a 2.6-log (mean expansion of HAdV-specific T-cells displaying high cytolytic activity (4-fold compared to controls and low or absent alloreactivity. Similar protocols successfully identified and rapidly expanded CMV-, EBV-, and BKV-specific T-cells. Our approach provides a powerful clinical-grade convertible tool for rapid and cost-effective detection and enrichment of multiple virus-specific T-cells that may facilitate broad clinical application.

  15. Co-Expansion of Cytokine-Induced Killer Cells and Vγ9Vδ2 T Cells for CAR T-Cell Therapy.

    Directory of Open Access Journals (Sweden)

    Shou-Hui Du

    Full Text Available Gamma delta (γδ T cells and cytokine-induced killer (CIK cells, which are a heterogeneous population of T lymphocytes and natural killer T (NKT cells, have been separately expanded ex vivo and shown to be capable of targeting and mediating cytotoxicity against various tumor cells in a major histocompatibility complex-unrestricted manner. However, the co-expansion and co-administration of these immune cells have not been explored. In this study we describe an efficient method to expand simultaneously both CIK and Vγ9Vδ2 T cells, termed as CIKZ cells, from human peripheral blood mononuclear cells (PBMCs using Zometa, interferon-gamma (IFN-γ, interleukin 2 (IL-2, anti-CD3 antibody and engineered K562 feeder cells expressing CD64, CD137L and CD86. A 21-day culture of PBMCs with this method yielded nearly 20,000-fold expansion of CIKZ cells with γδ T cells making up over 20% of the expanded population. The expanded CIKZ cells exhibited antitumor cytotoxicity and could be modified to express anti-CD19 chimeric antigen receptor (CAR, anti-CEA CAR, and anti-HER2 CAR to enhance their specificity and cytotoxicity against CD19-, CEA-, or HER2-positive tumor cells. The tumor inhibitory activity of anti-CD19 CAR-modified CIKZ cells was further demonstrated in vivo in a Raji tumor mouse model. The findings herein substantiate the feasibility of co-expanding CIK and γδ cells for adoptive cellular immunotherapy applications such as CAR T-cell therapy against cancer.

  16. Alterações na dimensão transversal pela expansão rápida da maxila Transverse dimension alterations using rapid maxillary expansion

    Directory of Open Access Journals (Sweden)

    Roberto M. A. Lima Filho

    2009-10-01

    Full Text Available As deformidades transversais, que se manifestam tipicamente pela mordida cruzada unilateral ou bilateral, são os problemas esqueléticos que mais sequelas podem causar na região craniofacial. Entretanto, são as deformidades que melhor se adaptam às alterações ortopédicas. A expansão rápida da maxila tornou-se rotina na prática ortodôntica. Embora inicialmente tenha sido utilizada na correção da mordida cruzada posterior, atualmente sua indicação ampliou-se para a expansão indireta do arco inferior, obtenção de espaço para correção de apinhamento dentário, correção axial dos dentes posteriores, melhora na estética do sorriso e auxílio no tratamento de pacientes Classe II. A expansão ortopédica da maxila vem atraindo cada vez mais a atenção da comunidade científica devido, principalmente, à sua aplicação e capacidade de alterar o crescimento craniofacial em diversas situações clínicas. Esse tipo de intervenção ortopédica possui grande utilidade terapêutica, pois sua aplicação em diversas anormalidades apresenta maior versatilidade quando comparada aos aparelhos de modificação de crescimento disponíveis atualmente para o tratamento ortodôntico.Transverse deformities, typically manifested by unilateral or bilateral crossbite, are the skeletal problems that can cause more sequels in the craniofacial region. However, such deformities are the most adaptable to orthopedic changes. Rapid maxillary expansion has become a routine in the orthodontic practice. Even though initially such procedure has been used for correction of posterior crossbite, today it has been applied for indirect expansion of the lower arch, obtaining space for correction of dental crowding, correction of axial inclination of posterior teeth, improvement in the smile aesthetics characteristics and on treatment of Class II patients. Orthopedic maxillary expansion has gained increasing attention of the scientific community due to its

  17. DNA mismatch repair complex MutSβ promotes GAA·TTC repeat expansion in human cells.

    Science.gov (United States)

    Halabi, Anasheh; Ditch, Scott; Wang, Jeffrey; Grabczyk, Ed

    2012-08-24

    While DNA repair has been implicated in CAG·CTG repeat expansion, its role in the GAA·TTC expansion of Friedreich ataxia (FRDA) is less clear. We have developed a human cellular model that recapitulates the DNA repeat expansion found in FRDA patient tissues. In this model, GAA·TTC repeats expand incrementally and continuously. We have previously shown that the expansion rate is linked to transcription within the repeats. Our working hypothesis is that structures formed within the GAA·TTC repeat during transcription attract DNA repair enzymes that then facilitate the expansion process. MutSβ, a heterodimer of MSH2 and MSH3, is known to have a role in CAG·CTG repeat expansion. We now show that shRNA knockdown of either MSH2 or MSH3 slowed GAA·TTC expansion in our system. We further characterized the role of MutSβ in GAA·TTC expansion using a functional assay in primary FRDA patient-derived fibroblasts. These fibroblasts have no known propensity for instability in their native state. Ectopic expression of MSH2 and MSH3 induced GAA·TTC repeat expansion in the native FXN gene. MSH2 is central to mismatch repair and its absence or reduction causes a predisposition to cancer. Thus, despite its essential role in GAA·TTC expansion, MSH2 is not an attractive therapeutic target. The absence or reduction of MSH3 is not strongly associated with cancer predisposition. Accordingly, MSH3 has been suggested as a therapeutic target for CAG·CTG repeat expansion disorders. Our results suggest that MSH3 may also serve as a therapeutic target to slow the expansion of GAA·TTC repeats in the future.

  18. DNA Mismatch Repair Complex MutSβ Promotes GAA·TTC Repeat Expansion in Human Cells*

    Science.gov (United States)

    Halabi, Anasheh; Ditch, Scott; Wang, Jeffrey; Grabczyk, Ed

    2012-01-01

    While DNA repair has been implicated in CAG·CTG repeat expansion, its role in the GAA·TTC expansion of Friedreich ataxia (FRDA) is less clear. We have developed a human cellular model that recapitulates the DNA repeat expansion found in FRDA patient tissues. In this model, GAA·TTC repeats expand incrementally and continuously. We have previously shown that the expansion rate is linked to transcription within the repeats. Our working hypothesis is that structures formed within the GAA·TTC repeat during transcription attract DNA repair enzymes that then facilitate the expansion process. MutSβ, a heterodimer of MSH2 and MSH3, is known to have a role in CAG·CTG repeat expansion. We now show that shRNA knockdown of either MSH2 or MSH3 slowed GAA·TTC expansion in our system. We further characterized the role of MutSβ in GAA·TTC expansion using a functional assay in primary FRDA patient-derived fibroblasts. These fibroblasts have no known propensity for instability in their native state. Ectopic expression of MSH2 and MSH3 induced GAA·TTC repeat expansion in the native FXN gene. MSH2 is central to mismatch repair and its absence or reduction causes a predisposition to cancer. Thus, despite its essential role in GAA·TTC expansion, MSH2 is not an attractive therapeutic target. The absence or reduction of MSH3 is not strongly associated with cancer predisposition. Accordingly, MSH3 has been suggested as a therapeutic target for CAG·CTG repeat expansion disorders. Our results suggest that MSH3 may also serve as a therapeutic target to slow the expansion of GAA·TTC repeats in the future. PMID:22787155

  19. A cGMP-applicable expansion method for aggregates of human neural stem and progenitor cells derived from pluripotent stem cells or fetal brain tissue.

    Science.gov (United States)

    Shelley, Brandon C; Gowing, Geneviève; Svendsen, Clive N

    2014-06-15

    A cell expansion technique to amass large numbers of cells from a single specimen for research experiments and clinical trials would greatly benefit the stem cell community. Many current expansion methods are laborious and costly, and those involving complete dissociation may cause several stem and progenitor cell types to undergo differentiation or early senescence. To overcome these problems, we have developed an automated mechanical passaging method referred to as "chopping" that is simple and inexpensive. This technique avoids chemical or enzymatic dissociation into single cells and instead allows for the large-scale expansion of suspended, spheroid cultures that maintain constant cell/cell contact. The chopping method has primarily been used for fetal brain-derived neural progenitor cells or neurospheres, and has recently been published for use with neural stem cells derived from embryonic and induced pluripotent stem cells. The procedure involves seeding neurospheres onto a tissue culture Petri dish and subsequently passing a sharp, sterile blade through the cells effectively automating the tedious process of manually mechanically dissociating each sphere. Suspending cells in culture provides a favorable surface area-to-volume ratio; as over 500,000 cells can be grown within a single neurosphere of less than 0.5 mm in diameter. In one T175 flask, over 50 million cells can grow in suspension cultures compared to only 15 million in adherent cultures. Importantly, the chopping procedure has been used under current good manufacturing practice (cGMP), permitting mass quantity production of clinical-grade cell products.

  20. Generation of autologous tumor-specific T cells for adoptive transfer based on vaccination, in vitro restimulation and CD3/CD28 dynabead-induced T cell expansion

    DEFF Research Database (Denmark)

    Brimnes, Marie Klinge; Gang, Anne Ortved; Donia, Marco

    2012-01-01

    ® ClinExVivo™CD3/CD28. We show here that the addition of an in vitro restimulation step with relevant peptides prior to bead expansion dramatically increased the proportion of tumor-specific T cells in PBMC-cultures. Importantly, peptide-pulsed dendritic cells (DCs) as well as allogeneic tumor lysate......-pulsed DCs from the DC vaccine preparation could be used with comparable efficiency to peptides for in vitro restimulation, to increase the tumor-specific T-cell response. Furthermore, we tested the use of different ratios and different types of Dynabeads® CD3/CD28 and CD3/CD28/CD137 T-cell expander......, for optimized expansion of tumor-specific T cells. A ratio of 1:3 of Dynabeads® CD3/CD28 T-cell expander to T cells resulted in the maximum number of tumor-specific T cells. The addition of CD137 did not improve functionality or fold expansion. Both T-cell expansion systems could generate tumor-specific T cells...

  1. Bimodal ex vivo expansion of T cells from patients with head and neck squamous cell carcinoma

    DEFF Research Database (Denmark)

    Junker, Niels; Andersen, Mads Hald; Wenandy, Lynn

    2011-01-01

    Adoptive transfer of tumor-infiltrating lymphocytes (TIL) has proven effective in metastatic melanoma and should therefore be explored in other types of cancer. The aim of this study was to examine the feasibility of potentially expanding clinically relevant quantities of tumor-specific T-cell cu...

  2. ACL injury reduces satellite cell abundance and promotes fibrogenic cell expansion within skeletal muscle.

    Science.gov (United States)

    Fry, Christopher S; Johnson, Darren L; Ireland, Mary Lloyd; Noehren, Brian

    2017-09-01

    Anterior cruciate ligament (ACL) injuries are associated with significant loss of strength in knee extensor muscles that persists despite physical therapy. The underlying mechanisms responsible for this protracted muscle weakness are poorly understood; however, we recently showed significant myofiber atrophy and altered muscle phenotype following ACL injury. We sought to further explore perturbations in skeletal muscle morphology and progenitor cell activity following an ACL injury. Muscle biopsies were obtained from the injured and non-injured vastus lateralis of young adults (n = 10) following ACL injury, and histochemical/immunohistochemical analyses were undertaken to determine collagen content, abundance of connective tissue fibroblasts, fibrogenic/adipogenic progenitor (FAP) cells, satellite cells, in addition to indices of muscle fiber denervation and myonuclear apoptosis. The injured limb showed elevated collagen content (p injury. The injured limb also displayed reduced satellite cell abundance, increased fiber denervation and DNA damage associated with apoptosis (p muscle itself after the ligament injury. Injury of the ACL induces a myriad of negative outcomes within knee extensor muscles, which likely compromise the restorative capacity and plasticity of skeletal muscle, impeding rehabilitative efforts. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1876-1885, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. Three-dimensional carbon nanotube scaffolds for long-term maintenance and expansion of human mesenchymal stem cells.

    Science.gov (United States)

    Lalwani, Gaurav; D'agati, Michael; Gopalan, Anu; Patel, Sunny C; Talukdar, Yahfi; Sitharaman, Balaji

    2017-07-01

    Expansion of mesenchymal stem cells (MSCs) and maintenance of their self-renewal capacity in vitro requires specialized robust cell culture systems. Conventional approaches using animal-derived or artificial matrices and a cocktail of growth factors have limitations such as consistency, scalability, pathogenicity, and loss of MSC phenotype. Herein, we report the use of all-carbon 3-D single- and multiwalled carbon nanotube scaffolds (SWCNTs and MWCNTs) as artificial matrices for long-term maintenance and expansion of human MSCs. Three-dimensional SWCNT and MWCNT scaffolds were fabricated using a novel radical initiated thermal cross-linking method that covalently cross-links CNTs to form 3-D macroporous all-carbon architectures. Adipose-derived human MSCs showed good cell viability, attachment, proliferation, and infiltration in MWCNT and SWCNT scaffolds comparable to poly(lactic-co-glycolic) acid (PLGA) scaffolds (baseline control). ADSCs retained stem cell phenotype after 30 days and satisfied the International Society for Cellular Therapy's (ISCT) minimal criteria for MSCs. Post expansion, (1) ADSCs showed in vitro adherence to tissue culture polystyrene (TCPS); (2) MSC surface antigen expression [CD14(-), CD19(-), CD34(-), CD45(-), CD73(+), CD90(+), CD105(+)]; and (3) trilineage differentiation into osteoblasts, adipocytes, and chondrocytes. Results show that cross-linked 3-D MWCNTs and SWCNTs scaffolds are suitable for ex vivo expansion and maintenance of MSCs for therapeutic applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1927-1939, 2017. © 2017 Wiley Periodicals, Inc.

  4. CTLA-4 regulates expansion and differentiation of Th1 cells following induction of peripheral T cell tolerance.

    Science.gov (United States)

    Eagar, Todd N; Turley, Danielle M; Padilla, Josette; Karandikar, Nitin J; Tan, Litjen; Bluestone, Jeffrey A; Miller, Stephen D

    2004-06-15

    Intravenous treatment with Ag (peptide)-coupled, ethylene carbodiimide-fixed syngeneic splenocytes (Ag-SP) is a powerful method to induce anergy in vitro and peripheral T cell tolerance in vivo. In this study, we examined the effects of Ag-SP administration on T cell activity ex vivo and in vivo using OVA-specific DO11.10 TCR transgenic T cells. Although treatment with OVA323-339-SP resulted in a strong inhibition of peptide-specific T cell recall responses in vitro, examination of the immediate effects of Ag-SP treatment on T cells in vivo demonstrated that tolerogen injection resulted in rapid T cell activation and proliferation. Although there was an increase in the number of OVA-specific DO11.10 T cells detected in the lymphoid organs, these previously tolerized T cells were strongly inhibited in mounting proliferative or inflammatory responses upon rechallenge in vivo with peptide in CFA. This unresponsiveness was reversible by treatment with anti-CTLA-4 mAb. These results are consistent with the hypothesis that Ag-SP injection induces a state of T cell anergy that is maintained by CTLA-4 engagement.

  5. Early peroxisome proliferator-activated receptor gamma regulated genes involved in expansion of pancreatic beta cell mass

    Directory of Open Access Journals (Sweden)

    Vivas Yurena

    2011-12-01

    Full Text Available Abstract Background The progression towards type 2 diabetes depends on the allostatic response of pancreatic beta cells to synthesise and secrete enough insulin to compensate for insulin resistance. The endocrine pancreas is a plastic tissue able to expand or regress in response to the requirements imposed by physiological and pathophysiological states associated to insulin resistance such as pregnancy, obesity or ageing, but the mechanisms mediating beta cell mass expansion in these scenarios are not well defined. We have recently shown that ob/ob mice with genetic ablation of PPARγ2, a mouse model known as the POKO mouse failed to expand its beta cell mass. This phenotype contrasted with the appropriate expansion of the beta cell mass observed in their obese littermate ob/ob mice. Thus, comparison of these models islets particularly at early ages could provide some new insights on early PPARγ dependent transcriptional responses involved in the process of beta cell mass expansion Results Here we have investigated PPARγ dependent transcriptional responses occurring during the early stages of beta cell adaptation to insulin resistance in wild type, ob/ob, PPARγ2 KO and POKO mice. We have identified genes known to regulate both the rate of proliferation and the survival signals of beta cells. Moreover we have also identified new pathways induced in ob/ob islets that remained unchanged in POKO islets, suggesting an important role for PPARγ in maintenance/activation of mechanisms essential for the continued function of the beta cell. Conclusions Our data suggest that the expansion of beta cell mass observed in ob/ob islets is associated with the activation of an immune response that fails to occur in POKO islets. We have also indentified other PPARγ dependent differentially regulated pathways including cholesterol biosynthesis, apoptosis through TGF-β signaling and decreased oxidative phosphorylation.

  6. Expansion of CD16-Negative Natural Killer Cells in the Peripheral Blood of Patients with Metastatic Melanoma

    Directory of Open Access Journals (Sweden)

    Shernan G. Holtan

    2011-01-01

    Full Text Available Altered natural killer (NK cell function is a component of the global immune dysregulation that occurs in advanced malignancies. Another condition associated with altered NK homeostasis is normal pregnancy, where robust infiltration with CD16− CD9+ NK cells can be identified in decidual tissues, along with a concomitant expansion of CD16− NK cells in the maternal peripheral blood. In metastatic melanoma, we identified a similar expansion of peripheral blood CD16− NK cells (median 7.4% in 41 patients with melanoma compared with 3.0% in 29 controls, P<.001. A subset of NK cells in melanoma patients also expresses CD9, which is characteristically expressed only on NK cells within the female reproductive tract. Expansion of CD16− NK cells was associated with elevated plasma transforming growth factor-beta (TGF-β levels (median 20 ng/ml, Spearman's ρ=0.81,P=.015. These findings suggest the possibility of exploring anti-TGF-β therapy to restore NK function in melanoma.

  7. Sulforaphane inhibits mitotic clonal expansion during adipogenesis through cell cycle arrest.

    Science.gov (United States)

    Choi, Kyeong-Mi; Lee, Youn-Sun; Sin, Dong-Mi; Lee, Seunghyun; Lee, Mi Kyeong; Lee, Yong-Moon; Hong, Jin-Tae; Yun, Yeo-Pyo; Yoo, Hwan-Soo

    2012-07-01

    Obesity is a risk factor for numerous metabolic disorders such as type 2 diabetes, hypertension, and coronary heart disease. Adipocyte differentiation is triggered by adipocyte hyperplasia, which leads to obesity. In this study, the inhibitory effect of sulforaphane, an isothiocyanate, on adipogenesis in 3T3-L1 cells was investigated. Sulforaphane decreased the accumulation of lipid droplets stained with Oil Red O and inhibited the elevation of triglycerides in the adipocytes (half-maximal inhibitory concentration = 7.3 µmol/l). The expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), major transcription factors for adipocyte differentiation, was significantly reduced by sulforaphane. The major effects of sulforaphane on the inhibition of adipocyte differentiation occurred during the early stage of adipogenesis. Thus, the expression of C/EBPβ, an early-stage biomarker of adipogenesis, decreased in a concentration-dependent manner when the adipocytes were exposed to sulforaphane (0, 5, 10, and 20 µmol/l). The proliferation of adipocytes treated with 20 µmol/l sulforaphane for 24 and 48 h was also suppressed. These results indicate that sulforaphane may specifically affect mitotic clonal expansion to inhibit adipocyte differentiation. Sulforaphane arrested the cell cycle at the G(0)/G(1) phase, increased p27 expression, and decreased retinoblastoma (Rb) phosphorylation. Additionally, sulforaphane modestly decreased the phosphorylation of ERK1/2 and Akt. Our results indicate that the inhibition of early-stage adipocyte differentiation by sulforaphane may be associated with cell cycle arrest at the G(0)/G(1) phase through upregulation of p27 expression.

  8. IGF1 stimulates crypt expansion via differential activation of 2 intestinal stem cell populations

    Science.gov (United States)

    Van Landeghem, Laurianne; Santoro, M. Agostina; Mah, Amanda T.; Krebs, Adrienne E.; Dehmer, Jeffrey J.; McNaughton, Kirk K.; Helmrath, Michael A.; Magness, Scott T.; Lund, P. Kay

    2015-01-01

    Insulin-like growth factor 1 (IGF1) has potent trophic effects on normal or injured intestinal epithelium, but specific effects on intestinal stem cells (ISCs) are undefined. We used Sox9-enhanced green fluorescent protein (EGFP) reporter mice that permit analyses of both actively cycling ISCs (Sox9-EGFPLow) and reserve/facultative ISCs (Sox9-EGFPHigh) to study IGF1 action on ISCs in normal intestine or during crypt regeneration after high-dose radiation-induced injury. We hypothesized that IGF1 differentially regulates proliferation and gene expression in actively cycling and reserve/facultative ISCs. IGF1 was delivered for 5 days using subcutaneously implanted mini-pumps in uninjured mice or after 14 Gy abdominal radiation. ISC numbers, proliferation, and transcriptome were assessed. IGF1 increased epithelial growth in nonirradiated mice and enhanced crypt regeneration after radiation. In uninjured and regenerating intestines, IGF1 increased total numbers of Sox9-EGFPLow ISCs and percentage of these cells in M-phase. IGF1 increased percentages of Sox9-EGFPHigh ISCs in S-phase but did not expand this population. Microarray revealed that IGF1 activated distinct gene expression signatures in the 2 Sox9-EGFP ISC populations. In vitro IGF1 enhanced enteroid formation by Sox9-EGFPHigh facultative ISCs but not Sox9-EGFPLow actively cycling ISCs. Our data provide new evidence that IGF1 activates 2 ISC populations via distinct regulatory pathways to promote growth of normal intestinal epithelium and crypt regeneration after irradiation.—Van Landeghem, L., Santoro, M. A., Mah, A. T., Krebs, A. E., Dehmer, J. J., McNaughton, K. K., Helmrath, M. A., Magness, S. T., Lund, P. K. IGF1 stimulates crypt expansion via differential activation of 2 intestinal stem cell populations. PMID:25837582

  9. Myosin-Powered Membrane Compartment Drives Cytoplasmic Streaming, Cell Expansion and Plant Development.

    Science.gov (United States)

    Peremyslov, Valera V; Cole, Rex A; Fowler, John E; Dolja, Valerian V

    2015-01-01

    Using genetic approaches, particle image velocimetry and an inert tracer of cytoplasmic streaming, we have made a mechanistic connection between the motor proteins (myosins XI), cargo transported by these motors (distinct endomembrane compartment defined by membrane-anchored MyoB receptors) and the process of cytoplasmic streaming in plant cells. It is shown that the MyoB compartment in Nicotiana benthamiana is highly dynamic moving with the mean velocity of ~3 μm/sec. In contrast, Golgi, mitochondria, peroxisomes, carrier vesicles and a cytosol flow tracer share distinct velocity profile with mean velocities of 0.6-1.5 μm/sec. Dominant negative inhibition of the myosins XI or MyoB receptors using overexpression of the N. benthamiana myosin cargo-binding domain or MyoB myosin-binding domain, respectively, resulted in velocity reduction for not only the MyoB compartment, but also each of the tested organelles, vesicles and cytoplasmic streaming. Furthermore, the extents of this reduction were similar for each of these compartments suggesting that MyoB compartment plays primary role in cytosol dynamics. Using gene knockout analysis in Arabidopsis thaliana, it is demonstrated that inactivation of MyoB1-4 results in reduced velocity of mitochondria implying slower cytoplasmic streaming. It is also shown that myosins XI and MyoB receptors genetically interact to contribute to cell expansion, plant growth, morphogenesis and proper onset of flowering. These results support a model according to which myosin-dependent, MyoB receptor-mediated transport of a specialized membrane compartment that is conserved in all land plants drives cytoplasmic streaming that carries organelles and vesicles and facilitates cell growth and plant development.

  10. End plate for e.g. solid oxide fuel cell stack, sets thermal expansion coefficient of material to predetermined value

    DEFF Research Database (Denmark)

    2011-01-01

    .05-0.3 mm. USE - End plate for solid oxide fuel cell stack (claimed). Can also be used in polymer electrolyte fuel cell stack and direct methanol fuel cell stack. ADVANTAGE - The robustness of the end plate is improved. The structure of the end plate is simplified. The risk of delamination of the stack......NOVELTY - The end plate is made of material whose thermal expansion coefficient is corresponding to that of material of a cell (103). The thermal expansion coefficient of material is 9asterisk10-6 K-1 to 14asterisk10-6 K11. The thickness of the end plate is within the range of 0.001-1 mm and 0...

  11. Tissue Source and Cell Expansion Condition Influence Phenotypic Changes of Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Lauren H. Mangum

    2017-01-01

    Full Text Available Stem cells derived from the subcutaneous adipose tissue of debrided burned skin represent an appealing source of adipose-derived stem cells (ASCs for regenerative medicine. Traditional tissue culture uses fetal bovine serum (FBS, which complicates utilization of ASCs in human medicine. Human platelet lysate (hPL is one potential xeno-free, alternative supplement for use in ASC culture. In this study, adipogenic and osteogenic differentiation in media supplemented with 10% FBS or 10% hPL was compared in human ASCs derived from abdominoplasty (HAP or from adipose associated with debrided burned skin (BH. Most (95–99% cells cultured in FBS were stained positive for CD73, CD90, CD105, and CD142. FBS supplementation was associated with increased triglyceride content and expression of adipogenic genes. Culture in hPL significantly decreased surface staining of CD105 by 31% and 48% and CD142 by 27% and 35% in HAP and BH, respectively (p<0.05. Culture of BH-ASCs in hPL also increased expression of markers of osteogenesis and increased ALP activity. These data indicate that application of ASCs for wound healing may be influenced by ASC source as well as culture conditions used to expand them. As such, these factors must be taken into consideration before ASCs are used for regenerative purposes.

  12. Expansion of CD56- NK cells in chronic HCV/HIV-1 co-infection: reversion by antiviral treatment with pegylated IFNalpha and ribavirin.

    Science.gov (United States)

    Gonzalez, Veronica D; Falconer, Karolin; Michaëlsson, Jakob; Moll, Markus; Reichard, Olle; Alaeus, Annette; Sandberg, Johan K

    2008-07-01

    Co-infection with HCV and HIV-1 is a problem of increasing importance and the role of innate cellular immunity in this co-infection is incompletely understood. Here, we have observed sharply elevated numbers of CD56(-)CD16(+) perforin(low) NK cells in HCV/HIV-1 co-infected subjects on antiretroviral therapy. Interestingly, this expansion of unconventional CD56(-) NK cells rapidly reverted when HCV was suppressed by IFNalpha and ribavirin treatment, and was not seen in mono-infected control groups. In vitro experiments suggested that this effect of treatment was due to suppression of HCV viremia rather than a direct effect of IFNalpha on these cells. In contrast, the conventional CD56(+) NK cells were largely unchanged in subjects with high HCV loads, although they exhibited slightly decreased perforin expression. With delayed kinetics, the CD56(bright) immuno-regulatory NK cell subset temporarily increased to supranormal levels in response to HCV treatment. In contrast to the NK compartment, the CD1d-restricted NKT cells were severely reduced by the co-infection and not restored by treatment. Together, our data suggest that the high HCV loads in HCV/HIV-1 co-infection alter the NK cell compartment in a way not observed in HCV mono-infection.

  13. Expansion and Harvesting of hMSC-TERT

    DEFF Research Database (Denmark)

    Weber, Christian; Pohl, Sebastian; Pörtner, Ralf

    2007-01-01

    cultivation and harvesting. Nonporous microcarriers are preferable when the cells need to be kept in viable condition for further applications like tissue engineering or cell therapy. In this study, the qualification of Biosilon, Cytodex 1, Cytodex 3, RapidCell and P102-L for expansion of h...

  14. [Feedback control mechanisms of plant cell expansion]. Progress report, [June 1989--June 1992

    Energy Technology Data Exchange (ETDEWEB)

    Cosgrove, D.J.

    1992-12-31

    We have generated considerable evidence for the significance of wall stress relaxation in the control of plant growth and found that several agents (gibberellin, light, genetic loci for dwarf stature) influence growth rate via alteration of wall relaxation. We have refined our methods for measuring wall relaxation and, moreover, have found that wall relaxation properties bear only a distance relationship to wall mechanical properties. We have garnered novel insights into the nature of cell expansion mechanisms by analyzing spontaneous fluctuations of plant growth rate in seedlings. These experiments involved the application of mathematical techniques for analyzing growth rate fluctuations and the development of new instrumentation for measuring and forcing plant growth in a controlled fashion. These studies conclude that growth rate fluctuations generated by the plant as consequence of a feedback control system. This conclusion has important implications for the nature of wall loosening processes and demands a different framework for thinking about growth control. It also implies the existence of a growth rate sensor.

  15. Action of Obestatin in Skeletal Muscle Repair: Stem Cell Expansion, Muscle Growth, and Microenvironment Remodeling

    Science.gov (United States)

    Gurriarán-Rodríguez, Uxía; Santos-Zas, Icía; González-Sánchez, Jessica; Beiroa, Daniel; Moresi, Viviana; Mosteiro, Carlos S; Lin, Wei; Viñuela, Juan E; Señarís, José; García-Caballero, Tomás; Casanueva, Felipe F; Nogueiras, Rubén; Gallego, Rosalía; Renaud, Jean-Marc; Adamo, Sergio; Pazos, Yolanda; Camiña, Jesús P

    2015-01-01

    The development of therapeutic strategies for skeletal muscle diseases, such as physical injuries and myopathies, depends on the knowledge of regulatory signals that control the myogenic process. The obestatin/GPR39 system operates as an autocrine signal in the regulation of skeletal myogenesis. Using a mouse model of skeletal muscle regeneration after injury and several cellular strategies, we explored the potential use of obestatin as a therapeutic agent for the treatment of trauma-induced muscle injuries. Our results evidenced that the overexpression of the preproghrelin, and thus obestatin, and GPR39 in skeletal muscle increased regeneration after muscle injury. More importantly, the intramuscular injection of obestatin significantly enhanced muscle regeneration by simulating satellite stem cell expansion as well as myofiber hypertrophy through a kinase hierarchy. Added to the myogenic action, the obestatin administration resulted in an increased expression of vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) and the consequent microvascularization, with no effect on collagen deposition in skeletal muscle. Furthermore, the potential inhibition of myostatin during obestatin treatment might contribute to its myogenic action improving muscle growth and regeneration. Overall, our data demonstrate successful improvement of muscle regeneration, indicating obestatin is a potential therapeutic agent for skeletal muscle injury and would benefit other myopathies related to muscle regeneration. PMID:25762009

  16. Orthopedic treatment of Class III malocclusion with rapid maxillary expansion combined with a face mask: a cephalometric assessment of craniofacial growth patterns

    Directory of Open Access Journals (Sweden)

    Daniella Torres Tagawa

    2012-06-01

    Full Text Available OBJECTIVE: The aim of this prospective study was to assess potential changes in the cephalometric craniofacial growth pattern of 17 children presenting Angle Class III malocclusion treated with a Haas-type expander combined with a face mask. METHODS: Lateral cephalometric radiographs were taken at beginning (T1 and immediately after removal of the appliances (T2, average of 11 months of treatment. Linear and angular measurements were used to evaluate the cranial base, dentoskeletal changes and facial growth pattern. RESULTS: The length of the anterior cranial base experienced a reduction while the posterior cranial base assumed a more vertical position at T1. Some maxillary movement occurred, there was no rotation of the palatal plane, there was a slight clockwise rotation of the mandible, although not significant. The ANB angle increased, thereby improving the relationship between the jaws; dentoalveolar compensation was more evident in the lower incisors. Five out of 12 cases (29.41% showed the following changes: In one case the pattern became more horizontal and in four cases more vertical. CONCLUSIONS: It was concluded after a short-term assessment that treatment with rapid maxillary expansion (RME associated with a face mask was effective in the correction of Class III malocclusion despite the changes in facial growth pattern observed in a few cases.

  17. Tongue posture improvement and pharyngeal airway enlargement as secondary effects of rapid maxillary expansion: a cone-beam computed tomography study.

    Science.gov (United States)

    Iwasaki, Tomonori; Saitoh, Issei; Takemoto, Yoshihiko; Inada, Emi; Kakuno, Eriko; Kanomi, Ryuzo; Hayasaki, Haruaki; Yamasaki, Youichi

    2013-02-01

    Rapid maxillary expansion (RME) is known to improve nasal airway ventilation. Recent evidence suggests that RME is an effective treatment for obstructive sleep apnea in children with maxillary constriction. However, the effect of RME on tongue posture and pharyngeal airway volume in children with nasal airway obstruction is not clear. In this study, we evaluated these effects using cone-beam computed tomography. Twenty-eight treatment subjects (mean age 9.96 ± 1.21 years) who required RME treatment had cone-beam computed tomography images taken before and after RME. Twenty control subjects (mean age 9.68 ± 1.02 years) received regular orthodontic treatment. Nasal airway ventilation was analyzed by using computational fluid dynamics, and intraoral airway (the low tongue space between tongue and palate) and pharyngeal airway volumes were measured. Intraoral airway volume decreased significantly in the RME group from 1212.9 ± 1370.9 mm(3) before RME to 279.7 ± 472.0 mm(3) after RME. Nasal airway ventilation was significantly correlated with intraoral airway volume. The increase of pharyngeal airway volume in the control group (1226.3 ± 1782.5 mm(3)) was only 41% that of the RME group (3015.4 ± 1297.6 mm(3)). In children with nasal obstruction, RME not only reduces nasal obstruction but also raises tongue posture and enlarges the pharyngeal airway. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  18. New Statistical Method to Analyze Three-Dimensional Landmark Configurations Obtained with Cone-Beam CT: Basic Features and Clinical Application for Rapid Maxillary Expansion

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, Jennifer; Lagravere, Manuel O.; Major, Paul W.; Heo, Giseon [University of Alberta, Edmonton (Canada)

    2012-03-15

    To describe a statistical method of three-dimensional landmark configuration data and apply it to an orthodontic data set comparing two types of rapid maxillary expansion (RME) treatments. Landmark configurations obtained from cone beam CT scans were used to represent patients in two types (please describe what were two types) of RME groups and a control group over four time points. A method using tools from persistent homology and dimensionality reduction is presented and used to identify variability between the subjects. The analysis was in agreement with previous results using conventional methods, which found significant differences between treatment groups and the control, but no distinction between the types of treatment. Additionally, it was found that second molar eruption varied considerably between the subjects, and this has not been evaluated in previous analyses. This method of analysis allows entire configurations to be considered as a whole, and does not require specific inter-landmark distances or angles to be selected. Sources of variability present themselves, without having to be individually sought after. This method is suggested as an additional tool for the analysis of landmark configuration data.

  19. The Effects of Maxillary Protraction with or without Rapid Maxillary Expansion and Age Factors in Treating Class III Malocclusion: A Meta-Analysis

    Science.gov (United States)

    Zhang, Wei; Qu, Hong-Chen; Yu, Mo; Zhang, Yang

    2015-01-01

    We conducted a comprehensive meta-analysis of 12 studies to examine whether maxillary protraction face mask associated with rapid maxillary expansion (FM/RME) could be an effective treatment for Class III malocclusion and to evaluate the effect of timing on treatment response. Patients with a maxillary deficiency who were treated with FM with or without RME were compared with those who had an untreated Class III malocclusion. In both treatment groups, forward displacement of the maxilla and skeletal changes were found to be statistically significant. In addition, posterior rotation of the mandible and increased facial height were more evident in the FM group compared with the control group. However, no significant differences were observed between the early treatment groups and late treatment groups. The results indicated that both FM/RME and FM therapy produced favorable skeletal changes for correcting anterior crossbite, and the curative time was not affected by the presence of deciduous teeth, early mixed dentition or late mixed dentition in the patient. PMID:26068221

  20. The Effects of Maxillary Protraction with or without Rapid Maxillary Expansion and Age Factors in Treating Class III Malocclusion: A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available We conducted a comprehensive meta-analysis of 12 studies to examine whether maxillary protraction face mask associated with rapid maxillary expansion (FM/RME could be an effective treatment for Class III malocclusion and to evaluate the effect of timing on treatment response. Patients with a maxillary deficiency who were treated with FM with or without RME were compared with those who had an untreated Class III malocclusion. In both treatment groups, forward displacement of the maxilla and skeletal changes were found to be statistically significant. In addition, posterior rotation of the mandible and increased facial height were more evident in the FM group compared with the control group. However, no significant differences were observed between the early treatment groups and late treatment groups. The results indicated that both FM/RME and FM therapy produced favorable skeletal changes for correcting anterior crossbite, and the curative time was not affected by the presence of deciduous teeth, early mixed dentition or late mixed dentition in the patient.

  1. Evaluation of opening pattern and bone neoformation at median palatal suture area in patients submitted to surgically assisted rapid maxillary expansion (SARME through cone beam computed tomography

    Directory of Open Access Journals (Sweden)

    Daniel Gomes SALGUEIRO

    2015-08-01

    Full Text Available AbstractSurgically assisted rapid maxillary expansion (SARME is the treatment of choice to adult patients even with severe transversal maxillary discrepancies. However, the adequate retention period to achieve the bone remodeling, thus assuring treatment stability, is controversial.Objective To evaluate the opening pattern and bone neoformation process at the midpalatal suture in patients submitted to surgically assisted (SARME through cone beam computed tomography (CBCT.Material and Methods Fourteen patients were submitted to SARME through subtotal Le Fort I osteotomy. Both the opening pattern and the mean bone density at midpalatal suture area to evaluate bone formation were assessed pre- and post-operatively (15, 60 and 180 days through CBCT.Results Type I opening pattern (from anterior to posterior nasal spine occurred in 12 subjects while type II opening pattern (from anterior nasal spine to transverse palatine suture occurred in 2 individuals. The 180-day postoperative mean (PO 180 of bone density value was 49.9% of the preoperative mean (Pre value.Conclusions The opening pattern of midpalatal suture is more related to patients’ age (23.9 years in type I and 33.5 years in type II and surgical technique. It was not possible to observe complete bone formation at midpalatal suture area at the ending of the retention period studied (180 days.

  2. Properties of chicken manure pyrolysis bio-oil blended with diesel and its combustion characteristics in RCEM, Rapid Compression and Expansion Machine

    Directory of Open Access Journals (Sweden)

    Sunbong Lee

    2014-06-01

    Full Text Available Bio-oil (bio-oil was produced from chicken manure in a pilot-scale pyrolysis facility. The raw bio-oil had a very high viscosity and sediments which made direct application to diesel engines difficult. The bio-oil was blended with diesel fuel with 25% and 75% volumetric ratio at the normal temperature, named as blend 25. A rapid compression and expansion machine was used for a combustion test under the experimental condition corresponding to the medium operation point of a light duty diesel engine using diesel fuel, and blend 25 for comparison. The injection related pressure signal and cylinder pressure signal were instantaneously picked up to analyze the combustion characteristics in addition to the measurement of NOx and smoke emissions. Blend 25 resulted in reduction of the smoke emission by 80% and improvements of the apparent combustion efficiency while the NOx emission increased by 40%. A discussion was done based on the analysis results of combustion.

  3. Multidisciplinary insight into clonal expansion of HTLV-1-infected cells in adult T-cell leukemia via modeling by deterministic finite automata coupled with high-throughput sequencing.

    Science.gov (United States)

    Farmanbar, Amir; Firouzi, Sanaz; Park, Sung-Joon; Nakai, Kenta; Uchimaru, Kaoru; Watanabe, Toshiki

    2017-01-31

    Clonal expansion of leukemic cells leads to onset of adult T-cell leukemia (ATL), an aggressive lymphoid malignancy with a very poor prognosis. Infection with human T-cell leukemia virus type-1 (HTLV-1) is the direct cause of ATL onset, and integration of HTLV-1 into the human genome is essential for clonal expansion of leukemic cells. Therefore, monitoring clonal expansion of HTLV-1-infected cells via isolation of integration sites assists in analyzing infected individuals from early infection to the final stage of ATL development. However, because of the complex nature of clonal expansion, the underlying mechanisms have yet to be clarified. Combining computational/mathematical modeling with experimental and clinical data of integration site-based clonality analysis derived from next generation sequencing technologies provides an appropriate strategy to achieve a better understanding of ATL development. As a comprehensively interdisciplinary project, this study combined three main aspects: wet laboratory experiments, in silico analysis and empirical modeling. We analyzed clinical samples from HTLV-1-infected individuals with a broad range of proviral loads using a high-throughput methodology that enables isolation of HTLV-1 integration sites and accurate measurement of the size of infected clones. We categorized clones into four size groups, "very small", "small", "big", and "very big", based on the patterns of clonal growth and observed clone sizes. We propose an empirical formal model based on deterministic finite state automata (DFA) analysis of real clinical samples to illustrate patterns of clonal expansion. Through the developed model, we have translated biological data of clonal expansion into the formal language of mathematics and represented the observed clonality data with DFA. Our data suggest that combining experimental data (absolute size of clones) with DFA can describe the clonality status of patients. This kind of modeling provides a basic

  4. Synthetic surface for expansion of human mesenchymal stem cells in xeno-free, chemically defined culture conditions.

    Directory of Open Access Journals (Sweden)

    Paula J Dolley-Sonneville

    Full Text Available Human mesenchymal stem cells (HMSCS possess three properties of great interest for the development of cell therapies and tissue engineering: multilineage differentiation, immunomodulation, and production of trophic factors. Efficient ex vivo expansion of hMSCs is a challenging requirement for large scale production of clinical grade cells. Low-cost, robust, scalable culture methods using chemically defined materials need to be developed to address this need. This study describes the use of a xeno-free synthetic peptide acrylate surface, the Corning® Synthemax® Surface, for culture of hMSCs in serum-free, defined medium. Cell performance on the Corning Synthemax Surface was compared to cells cultured on biological extracellular matrix (ECM coatings in xeno-free defined medium and in traditional conditions on tissue culture treated (TCT plastic in fetal bovine serum (FBS supplemented medium. Our results show successful maintenance of hMSCs on Corning Synthemax Surface for eight passages, with cell expansion rate comparable to cells cultured on ECM and significantly higher than for cells in TCT/FBS condition. Importantly, on the Corning Synthemax Surface, cells maintained elongated, spindle-like morphology, typical hMSC marker profile and in vitro multilineage differentiation potential. We believe the Corning Synthemax Surface, in combination with defined media, provides a complete synthetic, xeno-free, cell culture system for scalable production of hMSCs.

  5. Direct visualization of endogenous Salmonella-specific B cells reveals a marked delay in clonal expansion and germinal center development.

    Science.gov (United States)

    Nanton, Minelva R; Lee, Seung-Joo; Atif, Shaikh M; Nuccio, Sean-Paul; Taylor, Justin J; Bäumler, Andreas J; Way, Sing Sing; McSorley, Stephen J

    2015-02-01

    CD4(+) T cells and B cells are both essential for acquired immunity to Salmonella infection. It is well established that Salmonella inhibit host CD4(+) T-cell responses, but a corresponding inhibitory effect on B cells is less well defined. Here, we utilize an Ag tetramer and pull-down enrichment strategy to directly visualize OVA-specific B cells in mice, as they respond to infection with Salmonella-OVA. Surprisingly, OVA-specific B-cell expansion and germinal center formation was not detected until bacteria were cleared from the host. Furthermore, Salmonella infection also actively inhibited both B- and T-cell responses to the same coinjected Ag but this did not require the presence of iNOS. The Salmonella Pathogenicity Island 2 (SPI2) locus has been shown to be responsible for inhibition of Salmonella-specific CD4(+) T-cell responses, and an examination of SPI2-deficient bacteria demonstrated a recovery in B-cell expansion in infected mice. Together, these data suggest that Salmonella can simultaneously inhibit host B- and T-cell responses using SPI2-dependent mechanisms. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Umbilical Cord Blood Platelet Lysate as Serum Substitute in Expansion of Human Mesenchymal Stem Cells.

    Science.gov (United States)

    Shirzad, Negin; Bordbar, Sima; Goodarzi, Alireza; Mohammad, Monire; Khosravani, Pardis; Sayahpour, Froughazam; Baghaban Eslaminejad, Mohamadreza; Ebrahimi, Marzieh

    2017-10-01

    The diverse clinical applications for human mesenchymal stem cells (hMSCs) in cellular therapy and regenerative medicine warrant increased focus on developing adequate culture supplements devoid of animal-derived products. In the present study, we have investigated the feasibility of umbilical cord blood-platelet lysate (UCB-PL) as a standard substitute for fetal bovine serum (FBS) and human peripheral blood-PL (PB-PL). In this experimental study, platelet concentrates (PC) from UCB and human PB donors were frozen, melted, and sterilized to obtain PL. Quality control included platelet cell counts, sterility testing (viral and microbial), total protein concentrations, growth factor levels, and PL stability. The effects of UCB-PL and PB-PL on hMSCs proliferation and differentiation into osteocytes, chondrocytes, and adipocytes were studied and the results compared with FBS. UCB-PL contained high levels of protein content, platelet-derived growth factor- AB (PDGF-AB), and transforming growth factor (TGF) compared to PB-PL. All growth factors were stable for at least nine months post-storage at -70˚C. hMSCs proliferation enhanced following treatment with UCB-PL. With all three supplements, hMSCs could differentiate into all three lineages. PB-PL and UCB-PL both were potent in hMSCs proliferation. However, PB promoted osteoblastic differentiation and UCB-PL induced chondrogenic differentiation. Because of availability, ease of use and feasible standardization of UCB-PL, we have suggested that UCB-PL be used as an alternative to FBS and PB-PL for the cultivation and expansion of hMSCs in cellular therapy.

  7. Length-dependent CTG·CAG triplet-repeat expansion in myotonic dystrophy patient-derived induced pluripotent stem cells.

    Science.gov (United States)

    Du, Jintang; Campau, Erica; Soragni, Elisabetta; Jespersen, Christine; Gottesfeld, Joel M

    2013-12-20

    Myotonic dystrophy type 1 (DM1) is an inherited dominant muscular dystrophy caused by expanded CTG·CAG triplet repeats in the 3' untranslated region of the DMPK1 gene, which produces a toxic gain-of-function CUG RNA. It has been shown that the severity of disease symptoms, age of onset and progression are related to the length of the triplet repeats. However, the mechanism(s) of CTG·CAG triplet-repeat instability is not fully understood. Herein, induced pluripotent stem cells (iPSCs) were generated from DM1 and Huntington's disease patient fibroblasts. We isolated 41 iPSC clones from DM1 fibroblasts, all showing different CTG·CAG repeat lengths, thus demonstrating somatic instability within the initial fibroblast population. During propagation of the iPSCs, the repeats expanded in a manner analogous to the expansion seen in somatic cells from DM1 patients. The correlation between repeat length and expansion rate identified the interval between 57 and 126 repeats as being an important length threshold where expansion rates dramatically increased. Moreover, longer repeats showed faster triplet-repeat expansion. However, the overall tendency of triplet repeats to expand ceased on differentiation into differentiated embryoid body or neurospheres. The mismatch repair components MSH2, MSH3 and MSH6 were highly expressed in iPSCs compared with fibroblasts, and only occupied the DMPK1 gene harboring longer CTG·CAG triplet repeats. In addition, shRNA silencing of MSH2 impeded CTG·CAG triplet-repeat expansion. The information gained from these studies provides new insight into a general mechanism of triplet-repeat expansion in iPSCs.

  8. Model-Based Analysis of Arabidopsis Leaf Epidermal Cells Reveals Distinct Division and Expansion Patterns for Pavement and Guard Cells1[W][OA

    Science.gov (United States)

    Asl, Leila Kheibarshekan; Dhondt, Stijn; Boudolf, Véronique; Beemster, Gerrit T.S.; Beeckman, Tom; Inzé, Dirk; Govaerts, Willy; De Veylder, Lieven

    2011-01-01

    To efficiently capture sunlight for photosynthesis, leaves typically develop into a flat and thin structure. This development is driven by cell division and expansion, but the individual contribution of these processes is currently unknown, mainly because of the experimental difficulties to disentangle them in a developing organ, due to their tight interconnection. To circumvent this problem, we built a mathematic model that describes the possible division patterns and expansion rates for individual epidermal cells. This model was used to fit experimental data on cell numbers and sizes obtained over time intervals of 1 d throughout the development of the first leaf pair of Arabidopsis (Arabidopsis thaliana). The parameters were obtained by a derivative-free optimization method that minimizes the differences between the predicted and experimentally observed cell size distributions. The model allowed us to calculate probabilities for a cell to divide into guard or pavement cells, the maximum size at which it can divide, and its average cell division and expansion rates at each point during the leaf developmental process. Surprisingly, average cell cycle duration remained constant throughout leaf development, whereas no evidence for a maximum cell size threshold for cell division of pavement cells was found. Furthermore, the model predicted that neighboring cells of different sizes within the epidermis expand at distinctly different relative rates, which could be verified by direct observations. We conclude that cell division seems to occur independently from the status of cell expansion, whereas the cell cycle might act as a timer rather than as a size-regulated machinery. PMID:21693673

  9. Adult human bone marrow-derived mesenchymal progenitor cells are capable of adhesion-independent survival and expansion.

    Science.gov (United States)

    Baksh, Dolores; Davies, John E; Zandstra, Peter W

    2003-08-01

    We show the existence of adult human mesenchymal progenitor cells (hMPCs) that can proliferate, in a cytokine-dependent manner, as individual cells in stirred suspension cultures (SSC) while maintaining their ability to form functional differentiated mesenchymal cell types. Ficolled human bone marrow (BM)-derived cells were grown in SSC (and adherent controls) in the presence and absence of exogenously added cytokines. Phenotypic, gene expression, and functional assays for hematopoietic and nonhematopoietic cell populations were used to kinetically track cell production. Limiting-dilution analysis was used to relate culture-produced cells to input cell populations. Cytokine cocktail influenced total and progenitor cell expansion, as well as the types of cells generated upon plating. Flow cytometric analysis of CD117, CD123, and CD45 expression showed that cytokine supplementation influenced SSC output. The concomitant growth of CD45(+) and CD45(-) cells in the cultures that exhibited the greatest hMPC expansions suggests that the growth of these cells may benefit from interactions with hematopoietic cells. Functional assays demonstrated that the SSC-derived cells (input CFU-O number: 1990+/-377) grown in the presence of SCF+IL-3 resulted, after 21 days, in the generation of a significantly greater number (p<0.05) of bone progenitors (33,700+/-8763 CFU-O) than similarly initiated adherent cultures (214+/-75 CFU-O). RT-PCR analysis confirmed that the SSC-derived cells grown in osteogenic conditions express bone-specific genes (Cbfa1/Runx2, bone sialoprotein, and osteocalcin). Our approach not only provides an alternative strategy to expand adult BM-derived nonhematopoietic progenitor cell numbers in a scalable and controllable bioprocess, but also questions established biological paradigms concerning the properties of connective-tissue stem and progenitor cells.

  10. Ferns are less dependent on passive dilution by cell expansion to coordinate leaf vein and stomatal spacing than angiosperms.

    Directory of Open Access Journals (Sweden)

    Madeline R Carins Murphy

    Full Text Available Producing leaves with closely spaced veins is a key innovation linked to high rates of photosynthesis in angiosperms. A close geometric link between veins and stomata in angiosperms ensures that investment in enhanced venous water transport provides the strongest net carbon return to the plant. This link is underpinned by "passive dilution" via expansion of surrounding cells. However, it is not known whether this 'passive dilution' mechanism is present in plant lineages other than angiosperms and is another key feature of the angiosperms' evolutionary success. Consequently, we sought to determine whether the 'passive dilution' mechanism is; (i exclusive to the angiosperms, (ii a conserved mechanism that evolved in the common ancestor of ferns and angiosperms, or (iii has evolved continuously over time. To do this we first we assessed the plasticity of vein and stomatal density and epidermal cell size in ferns in response to light environment. We then compared the relationships between these traits found among ferns with modelled relationships that assume vein and stomatal density respond passively to epidermal cell expansion, and with those previously observed in angiosperms. Vein density, stomatal density and epidermal cell size were linked in ferns with remarkably similar relationships to those observed in angiosperms, except that fern leaves had fewer veins per stomata. However, plasticity was limited in ferns and stomatal spacing was dependent on active stomatal differentiation as well as passive cell expansion. Thus, ferns (like angiosperms appear to coordinate vein and stomatal density with epidermal cell expansion to some extent to maintain a constant ratio between veins and stomata in the leaf. The different general relationships between vein density and stomatal density in ferns and angiosperms suggests the groups have different optimum balances between the production of vein tissue dedicated to water supply and stomatal tissue for gas

  11. Antigen-specific in vitro expansion of functional redirected NY-ESO-1-specific human CD8+ T-cells in a cell-free system.

    Science.gov (United States)

    Jakka, Gopinadh; Schuberth, Petra C; Thiel, Markus; Held, Gerhard; Stenner, Frank; Van Den Broek, Maries; Renner, Christoph; Mischo, Axel; Petrausch, Ulf

    2013-10-01

    Tumors can be targeted by the adoptive transfer of chimeric antigen receptor (CAR) redirected T-cells. Antigen-specific expansion protocols are needed to generate large quantities of redirected T-cells. We aimed to establish a protocol to expand functional active NY-ESO-1-specific redirected human CD8(+) T-cells. The anti-idiotypic Fab antibody A4 with specificity for HLA-A 0201/NY-ESO-1157-165 was tested by competition assays using a HLA-A 0201/NY-ESO-1157-165 tetramer. HLA-A 0201/NY-ESO-1157-165 redirected T-cells were generated, expanded and tested for CAR expression, cytokine release, in vitro cytolysis and protection against xenografted HLA-A 0201/NY-ESO-1157-165-positive multiple myeloma cells. A4 demonstrated antigen-specific binding to HLA-A 0201/NY-ESO-1157-165 redirected T-cells. Expansion with A4 resulted in 98% of HLA-A 0201/NY-ESO-1157-165 redirected T-cells. A4 induced strong proliferation, resulting in a 300-fold increase of redirected T-cells. After expansion protocols, redirected T-cells secreted Interleukin-2, (IL-2), interferon gamma (IFNγ) and tumor necrosis factor alpha (TNFα) and lysed target cells in vitro and were protective in vivo. A4 expanded HLA-A 0201/NY-ESO-1157-165 redirected T-cells with preservation of antigen-specific function.

  12. Long-Term In Vitro Expansion of Salivary Gland Stem Cells Driven by Wnt Signals

    Directory of Open Access Journals (Sweden)

    Martti Maimets

    2016-01-01

    Full Text Available Adult stem cells are the ultimate source for replenishment of salivary gland (SG tissue. Self-renewal ability of stem cells is dependent on extrinsic niche signals that have not been unraveled for the SG. The ductal compartment in SG has been identified as the location harboring stem cells. Here, we report that rare SG ductal EpCAM+ cells express nuclear β-catenin, indicating active Wnt signaling. In cell culture experiments, EpCAMhigh cells respond potently to Wnt signals stimulating self-renewal and long-term expansion of SG organoids, containing all differentiated SG cell types. Conversely, Wnt inhibition ablated long-term organoid cultures. Finally, transplantation of cells pre-treated with Wnt agonists into submandibular glands of irradiated mice successfully and robustly restored saliva secretion and increased the number of functional acini in vivo. Collectively, these results identify Wnt signaling as a key driver of adult SG stem cells, allowing extensive in vitro expansion and enabling restoration of SG function upon transplantation.

  13. Phenotypic characterization and anticancer capacity of CD8+ cytokine-induced killer cells after antigen-induced expansion.

    Directory of Open Access Journals (Sweden)

    Jianhua Liu

    Full Text Available Cytokine-induced killer cells (CIK have been used in clinic for adoptive immunotherapy in a variety of malignant tumors and have improved the prognosis of cancer patients. However, there are individual differences in the CIK cell preparations including the obvious differences in the ratio of effector CIK cells among different cancer patients. Infusion of such heterogeneous immune cell preparation is an important factor that would affect the therapeutic efficacy. We report here the enrichment and expansion of CD8+ cells from CIK cells cultured for one week using magnetic activated cell sorting (MACS. These enriched CD8+ CIK cells expressed T cell marker CD3 and antigen recognition receptor NKG2D. Phenotypic analysis showed that CD8+ CIK cells contained 32.4% of CD3+ CD56+ natural killer (NK-like T cells, 23.6% of CD45RO+ CD28+, and 50.5% of CD45RA+ CD27+ memory T cells. In vitro cytotoxic activity assay demonstrated that the enriched CD8+ CIK cells had significant cytotoxic activity against K562 cells and five ovarian cancer cell lines. Intriguingly, CD8+ CIK cells had strong cytotoxic activity against OVCAR3 cells that has weak binding capability to NKG2D. Flow cytometry and quantitative RT-PCR analysis revealed that OVCAR3 cells expressed HLA-I and OCT4 and Sox2, suggesting that CD8+ CIK cells recognize surface antigen via specific T cell receptor and effectively kill the target cells. The results suggest that transplantation of such in vitro enriched and expanded OCT4-specific CD8+ CIK cells may improve the specific immune defense mechanism against cancer stem cells, providing a novel avenue of cancer stem cell targeted immunotherapy for clinical treatment of ovarian cancer.

  14. Light-stimulated cell expansion in bean (Phaseolus vulgaris L.) leaves. II. Quantity and quality of light required

    Science.gov (United States)

    Van Volkenburgh, E.; Cleland, R. E.; Watanabe, M.

    1990-01-01

    The quantity and quality of light required for light-stimulated cell expansion in leaves of Phaseolus vulgaris L. have been determined. Seedlings were grown in dim red light (RL; 4 micromoles photons m-2 s-1) until cell division in the primary leaves was completed, then excised discs were incubated in 10 mM sucrose plus 10 mM KCl in a variety of light treatments. The growth response of discs exposed to continuous white light (WL) for 16 h was saturated at 100 micromoles m-2 s-1, and did not show reciprocity. Extensive, but not continuous, illumination was needed for maximal growth. The wavelength dependence of disc expansion was determined from fluence-response curves obtained from 380 to 730 nm provided by the Okazaki Large Spectrograph. Blue (BL; 460 nm) and red light (RL; 660 nm) were most effective in promoting leaf cell growth, both in photosynthetically active and inhibited leaf discs. Far-red light (FR; 730 nm) reduced the effectiveness of RL, but not BL, indicating that phytochrome and a separate blue-light receptor mediate expansion of leaf cells.

  15. Neonatal colonisation expands a specific intestinal antigen-presenting cell subset prior to CD4 T-cell expansion, without altering T-cell repertoire.

    Directory of Open Access Journals (Sweden)

    Charlotte F Inman

    Full Text Available Interactions between the early-life colonising intestinal microbiota and the developing immune system are critical in determining the nature of immune responses in later life. Studies in neonatal animals in which this interaction can be examined are central to understanding the mechanisms by which the microbiota impacts on immune development and to developing therapies based on manipulation of the microbiome. The inbred piglet model represents a system that is comparable to human neonates and allows for control of the impact of maternal factors. Here we show that colonisation with a defined microbiota produces expansion of mucosal plasma cells and of T-lymphocytes without altering the repertoire of alpha beta T-cells in the intestine. Importantly, this is preceded by microbially-induced expansion of a signal regulatory protein α-positive (SIRPα(+ antigen-presenting cell subset, whilst SIRPα(-CD11R1(+ antigen-presenting cells (APCs are unaffected by colonisation. The central role of intestinal APCs in the induction and maintenance of mucosal immunity implicates SIRPα(+ antigen-presenting cells as orchestrators of early-life mucosal immune development.

  16. Programmed cell death-1 deficiency exacerbates T cell activation and atherogenesis despite expansion of regulatory T cells in atherosclerosis-prone mice.

    Directory of Open Access Journals (Sweden)

    Clément Cochain

    Full Text Available T cell activation represents a double-edged sword in atherogenesis, as it promotes both pro-inflammatory T cell activation and atheroprotective Foxp3(+ regulatory T cell (Treg responses. Here, we investigated the role of the co-inhibitory receptor programmed cell death-1 (PD-1 in T cell activation and CD4(+ T cell polarization towards pro-atherogenic or atheroprotective responses in mice. Mice deficient for both low density lipoprotein receptor and PD-1 (Ldlr(-/-Pd1(-/- displayed striking increases in systemic CD4(+ and CD8(+ T cell activation after 9 weeks of high fat diet feeding, associated with an expansion of both pro-atherogenic IFNγ-secreting T helper 1 cells and atheroprotective Foxp3+ Tregs. Importantly, PD-1 deficiency did not affect Treg suppressive function in vitro. Notably, PD-1 deficiency exacerbated atherosclerotic lesion growth and entailed a massive infiltration of T cells in atherosclerotic lesions. In addition, aggravated hypercholesterolemia was observed in Ldlr(-/-Pd1(-/- mice. In conclusion, we here demonstrate that although disruption of PD-1 signaling enhances both pro- and anti-atherogenic T cell responses in Ldlr(-/- mice, pro-inflammatory T cell activation prevails and enhances dyslipidemia, vascular inflammation and atherosclerosis.

  17. Meis1 Is Required for Adult Mouse Erythropoiesis, Megakaryopoiesis and Hematopoietic Stem Cell Expansion.

    Directory of Open Access Journals (Sweden)

    Michelle Erin Miller

    Full Text Available Meis1 is recognized as an important transcriptional regulator in hematopoietic development and is strongly implicated in the pathogenesis of leukemia, both as a Hox transcription factor co-factor and independently. Despite the emerging recognition of Meis1's importance in the context of both normal and leukemic hematopoiesis, there is not yet a full understanding of Meis1's functions and the relevant pathways and genes mediating its functions. Recently, several conditional mouse models for Meis1 have been established. These models highlight a critical role for Meis1 in adult mouse hematopoietic stem cells (HSCs and implicate reactive oxygen species (ROS as a mediator of Meis1 function in this compartment. There are, however, several reported differences between these studies in terms of downstream progenitor populations impacted and effectors of function. In this study, we describe further characterization of a conditional knockout model based on mice carrying a loxP-flanked exon 8 of Meis1 which we crossed onto the inducible Cre localization/expression strains, B6;129-Gt(ROSA26Sor(tm1(Cre/ERTNat/J or B6.Cg-Tg(Mx1-Cre1Cgn/J. Findings obtained from these two inducible Meis1 knockout models confirm and extend previous reports of the essential role of Meis1 in adult HSC maintenance and expansion and provide new evidence that highlights key roles of Meis1 in both megakaryopoiesis and erythropoiesis. Gene expression analyses point to a number of candidate genes involved in Meis1's role in hematopoiesis. Our data additionally support recent evidence of a role of Meis1 in ROS regulation.

  18. Isolation and expansion of T cell-clones from psoriatic plaques and determination of T-cell receptor specificities using combinatorial peptide libraries

    OpenAIRE

    Kohlmann, Marina Wayan

    2010-01-01

    The role of T cells in the pathogenesis of psoriasis is widely acknowledged. However, key aspects of their precise function in the disease as well as the relative pathogenetic contribution of T cell subsets are still unknown. T-cell clones have been isolated from psoriatic plaques but a study of conditions affecting the isolation and expansion of T-cell clones has not been reported to date. The determination of T-cell receptor specificities of plaque-derived T-cell clones using suitable techn...

  19. Role of mismatch repair enzymes in GAA·TTC triplet-repeat expansion in Friedreich ataxia induced pluripotent stem cells.