WorldWideScience

Sample records for rapeseed brassica campestris

  1. Morphological characterization of local landraces of rapeseed (Brassica campestris L. var toria of Nepal

    Directory of Open Access Journals (Sweden)

    Salik Ram Gupta

    2015-12-01

    Full Text Available Rapeseed (Brassica campestris L. var toria is the main source of edible oil for Nepalese people. 54 rapeseed lines were collected from different hilly district of Nepal ranging from 987 m to 2550 m altitude. These lines were planted in augmented design for its traits characterization in Khumaltar 2013. Different traits of local rapeseed were characterized, and evaluated. NGRC 02778 performed better followed by SR-02 than local checks Morang-2, Chitwan Local and Unnati in terms of yield, days to maturity and pest infestation. Similarly, genotype SR-18 was late and SR-16 was earlier in terms of days to maturity. In conclusion, SR-02 was found better genotype based on different characteristics measured among all local rapeseeds planted in Khumaltar 2013. Thus SR-2 can be used as parents in crossing material for further breeding purposes and it can also be tested in further trial.

  2. Genetic diversity analysis for agro-morphological and seed quality traits in rapeseed (brassica campestris l.)

    International Nuclear Information System (INIS)

    Yousuf, M.; Ajmal, S.U.; Munir, M.; Ghafoor, A.

    2011-01-01

    One hundred fourteen accessions of rapeseed (Brassica campestris L.) were evaluated at National Agricultural Research Centre, Islamabad, Pakistan using cluster and principal component analyses during 2005 and 2006. Cluster analysis based on fifteen agro-morphological and six seed quality traits, divided 114 accessions into six and five clusters during 2005 and 2006, respectively. The first seven and five PCs with eigenvalues > 1 contributed 74.09% and 66.08% of the variability amongst accessions during 2005 and 2006, respectively. Nine important characters contributed positively to first two PCs during both the years 2005 and 2006. (author)

  3. Interaction effects on uptake and toxicity of perfluoroalkyl substances and cadmium in wheat (Triticum aestivum L.) and rapeseed (Brassica campestris L.) from co-contaminated soil.

    Science.gov (United States)

    Zhao, Shuyan; Fan, Ziyan; Sun, Lihui; Zhou, Tao; Xing, Yuliang; Liu, Lifen

    2017-03-01

    A vegetation study was conducted to investigate the interactive effects of perfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), and Cadmium (Cd) on soil enzyme activities, phytotoxicity and bioaccumulation of wheat (Triticum aestivum L.) and rapeseed (Brassica campestris L.) from co-contaminated soil. Soil urease activities were inhibited significantly but catalase activities were promoted significantly by interaction of PFASs and Cd which had few effects on sucrase activities. Joint stress with PFASs and Cd decreased the biomass of plants and chlorophyll (Chl) content in both wheat and rapeseed, and malondialdehyde (MDA) content, superoxide dismutase (SOD) and peroxidase (POD) activities were increased in wheat but inhibited in rapeseed compared with single treatments. The bioconcentration abilities of PFASs in wheat and rapeseed were decreased, and the translocation factor of PFASs was decreased in wheat but increased in rapeseed with Cd addition. The bioaccumulation and translocation abilities of Cd were increased significantly in both wheat and rapeseed with PFASs addition. These findings suggested important evidence that the co-existence of PFASs and Cd reduced the bioavailability of PFASs while enhanced the bioavailability of Cd in soil, which increased the associated environmental risk for Cd but decreased for PFASs. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Occurrence of Xanthomonas campestris pv. campestris (Pammel, 1895 Dowson 1939, on Brassicas in Montenegro

    Directory of Open Access Journals (Sweden)

    Dragana Radunović

    2012-01-01

    Full Text Available Brassicas form the most important group of vegetable crops in Montenegro. The cabbage(Brassica oleracea var. capitata is most commonly grown, although other brassicas,particularly kale, Brussels sprout, cauliflower and broccoli, have been increasingly producedsince recently. One of the specialties of vegetable production in Montenegro is growing ofcollard (Brassica oleracea var. acephala, which is the simplest variety of the Brassica oleraceaspecies and in the nearest relation with their wild ancestor – the sylvestris variety.Diseases are the main restrictive factors for successful production of these vegetables.Susceptibility of the cultivars and inadequate control often result in more or less damagedcrops in some plots.Causal agents of brassica diseases, especially bacterial, have not been investigated inMontenegro until 2009. Since the symptoms observed in 2009 were „V” shaped leaf edgenecrosis and black rot of vascular tissue, it was assumed that they were caused by plantpathogenic bacterium Xanthomonas campestris pv. campestris.Samples of the infected plants were collected from different localities in Montenegro.Isolation and identification of the bacterium were performed using laboratory methodsaccording to Schaad (1980, Lelliott and Stead (1987 and Arsenijević (1997. Examinationof chosen bacterial isolates was conducted using both, classical bacteriological methods(examination of their pathogenic, morphological, cultivation and biochemical and physiologicalcharacteristics, and ELISA test.The obtained results confirmed the presence of X.campestris pv. campestris (Pammel,1895 Dowson 1939, on cabbage, kale, broccoli and collard in Montenegro. This is the firstexperimental evidence that collard is the host of X. campestris pv. campestris in Montenegro.

  5. Flower infection of Brassica oleracea with Xanthomonas campestris pv. campestris results in high levels of seed infection

    NARCIS (Netherlands)

    Wolf, van der J.M.; Zouwen, van der P.S.; Heijden, van der L.

    2013-01-01

    During seed production, Brassica seed may become infected with Xanthomonas campestris pv. campestris after systemic colonization of plants upon leaf infection, or alternatively, after flower infection. Polytunnel experiments were conducted in 2007 and 2008 to study the relative importance of these

  6. Inheritance of oilseed rape (Brassica napus) RAPD markers in a backcross progeny with Brassica campestris

    DEFF Research Database (Denmark)

    Mikkelsen, T.R.; Jensen, J.; Bagger Jørgensen, Rikke

    1996-01-01

    Different cultivars/transgenic lines of oilseed rape (Brassica napus) were crossed (as females) with different cultivars/populations of Brassica campestris. All cross combinations produced seed, with an average seed set per pollination of 9.8. Backcrossing of selected interspecific hybrids (as...... females) to B. campestris resulted in a much lower seed set, average 0.7 seed per pollination. In the single backcross progeny where a large enough population (92 plants) was obtained for analysis, 33 B. napus specific RAPD markers were investigated to determine the extent of transfer of oilseed rape...

  7. Production and cytogenetics of Brassica campestris-alboglabra chromosome addition lines

    DEFF Research Database (Denmark)

    Chen, B.Y.; Cheng, B.F.; Bagger Jørgensen, Rikke

    1997-01-01

    Four different Brassica campestris-alboglabra monosomic addition lines (AA + 1 chromosome from C, 2n = 21) were obtained after consecutive backcrosses between resynthesized B. napus (AACC, 2n = 38) and the parental B. campestris (AA, 2n = 20) accession. The alien chromosomes of B. alboglabra (CC, 2...

  8. Over-expression of miR158 causes pollen abortion in Brassica campestris ssp. chinensis.

    Science.gov (United States)

    Ma, Zhiming; Jiang, Jianxia; Hu, Ziwei; Lyu, Tianqi; Yang, Yang; Jiang, Jingjing; Cao, Jiashu

    2017-02-01

    We identified and cloned the two precursors of miR158 and its target gene in Brassica campestris ssp. chinensis, which both had high relative expression in the inflorescences. Further study revealed that over-expression of miR158 caused reduced pollen varbility, which was caused by the degradation of pollen contents from the binucleate microspore stage. These results first suggest the role of miR158 in pollen development of Brassica campestris ssp. chinensis. MicroRNAs (miRNAs) play crucial roles in many important growth and development processes both in plants and animals by regulating the expression of their target genes via mRNA cleavage or translational repression. In this study, miR158, a Brassicaceae specific miRNA, was functionally characterized with regard to its role in pollen development of non-heading Chinese cabbage (Brassica campestris ssp. chinensis). Two family members of miR158 in B. campestris, namely bra-miR158a1 and bra-miR158a2, and their target gene bra027656, which encodes a pentatricopeptide repeat (PPR) containing protein, were identified. Then, qRT-PCR analysis and GUS-reporter system revealed that both bra-miR158 and its target gene had relatively high expression levels in the inflorescences. Further study revealed that over-expression of miR158 caused reduced pollen varbility and pollen germination ratio, and the degradation of pollen contents from the binucleate microspore stage was also found in those deformed pollen grains, which led to pollen shrinking and collapse in later pollen development stage. These results first shed light on the importance of miR158 in pollen development of Brassica campestris ssp. chinensis.

  9. Reliefs the Exposure Stress of Soils Arsenic on Brassica campestris L. Growth and Its Possible Mechanisms by Inoculation of Trichoderma asperellum SM-12F1

    Directory of Open Access Journals (Sweden)

    ZHANG Hong-xiang

    2018-02-01

    Full Text Available The over-accumulation of arsenic(Asin agricultural soils affects crop growth. Subsequently, the accumulated As can pose risk to human health via food-chain. It is urgent to develop technologies to relief the As exposure stress on crop growth and lower the As uptake by crop. In this study, Trichoderma asperellum SM -12F1, capable of As resistance and speciation transformation was used as experimental material. Pot experiments were conducted to investigate the effects of inoculation on the growth of Brassica campestris L. in As-contaminated soils. The possible mechanisms of inoculation relieving As exposure stress and lowering As uptake were revealed. The results indicated that the growth of Brassica campestris L. was significantly inhibited in soils spiked with As of 120 mg· kg-1. Inoculation could significantly improve the growth of Brassica campestris L. and significantly decreased the As uptake and bioconcentration factor(BCFof Brassica campestris L. Compared with As-contaminated soils without inoculation, the As contents in the over-and under-ground part of Brassica campestris L. declined by 12.4% and 20.2%, respectively, and the BCF declined by 7.8%. Soil available As contents decreased by 15.7% after inoculation. Methylarsonic acid(MMAand dimethylarsinic acid(DMAwere detected in water extraction of soil and the shoot of Brassica campestris L. tissues, which indicated that inoculation could trigger soil As methylation and decrease soil As availability and toxicity. Furthermore, inoculation could effectively relief the As exposure stress on Brassica campestris L. growth by the response of antioxidant enzymes. The enzymes in Brassica campestris L. such as superoxide dismutase(SODand catalase(CAT, and the contents of glutathione(GSH, ascorbic acid(AsAand malondialdehyde(MDA, capable of reactive oxygen elimination, significantly enhanced during soil As exposure. However, inoculation lessened the activities or contents of SOD, CAT, GSH, and MDA

  10. Effect of seed-irradiation on morphological characters yield components of brassica campestris var. sarson

    International Nuclear Information System (INIS)

    Bokhari, F.S.; Ahmad, S.

    1996-01-01

    Seed of Brassica campestris (var. Sarson) were used to study the effect of radiation of different morphological and yield parameters. Survival percentage showed drastic decrease at higher doses (75 Kr and 100 Kr). Similarly all characters showed a trend of decrease with increasing dose. LD50 for Brassica was about 50 Kr. (author)

  11. A proteomic analysis of seed development in Brassica campestri L.

    Directory of Open Access Journals (Sweden)

    Wenlan Li

    Full Text Available To gain insights into the protein dynamics during seed development, a proteomic study on the developing Brassica campestri L. seeds with embryos in different embryogenesis stages was carried out. The seed proteins at 10, 16, 20, 25 and 35 DAP (days after pollination, respectively, were separated using two-dimensional gel electrophoresis and identities of 209 spots with altered abundance were determined by matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS. These proteins were classified into 16 groups according to their functions. The most abundant proteins were related to primary metabolism, indicating the heavy demand of materials for rapid embryo growth. Besides, the high amount of proteins involved in protein processing and destination indicated importance of protein renewal during seed development. The remaining were those participated in oxidation/detoxification, energy, defense, transcription, protein synthesis, transporter, cell structure, signal transduction, secondary metabolism, transposition, DNA repair, storage and so on. Protein abundance profiles of each functional class were generated and hierarchical cluster analysis established 8 groups of dynamic patterns. Our results revealed novel characters of protein dynamics in seed development in Brassica campestri L. and provided valuable information about the complex process of seed development in plants.

  12. High Quality Rapeseed Products as Feed for Sensitive Monogastrics

    DEFF Research Database (Denmark)

    Frandsen, Heidi Blok

    in plants of the order Brassicales (former known as Capparales), which include rapeseed, rype (Brassica campestris L.) Indian mustard (Brassica juncea L.), broccoli (Brassica oleracea L.var. italica) and many other plants. Glucosinolates have been studied widely for their biologic effects ranging from...... by xenobiotica enzymes in the liver. The last study (manuscript IV) deals with the novel processing techniques, pulsed electric field (PEF) and high pressure treatment (HPT) and the processing effects on glucosinolates in broccoli. The largest effects were observed to be a result of the different handling...... of the plant materials prior to the process treatment. It was thus found that a great amount of the glucosinolate loss has occurred in the broccoli juice and purée prior to PEF processing. Only a minor loss was observed in broccoli flowers prior to processing, and HP treatment at 700 MPa for 10 min. was found...

  13. Tissue-specific distribution of secondary metabolites in rapeseed (Brassica napus L..

    Directory of Open Access Journals (Sweden)

    Jingjing Fang

    Full Text Available Four different parts, hypocotyl and radicle (HR, inner cotyledon (IC, outer cotyledon (OC, seed coat and endosperm (SE, were sampled from mature rapeseed (Brassica napus L. by laser microdissection. Subsequently, major secondary metabolites, glucosinolates and sinapine, as well as three minor ones, a cyclic spermidine conjugate and two flavonoids, representing different compound categories, were qualified and quantified in dissected samples by high-performance liquid chromatography with diode array detection and mass spectrometry. No qualitative and quantitative difference of glucosinolates and sinapine was detected in embryo tissues (HR, IC and OC. On the other hand, the three minor compounds were observed to be distributed unevenly in different rapeseed tissues. The hypothetic biological functions of the distribution patterns of different secondary metabolites in rapeseed are discussed.

  14. Cadmium-Induced Hydrogen Accumulation Is Involved in Cadmium Tolerance in Brassica campestris by Reestablishment of Reduced Glutathione Homeostasis.

    Science.gov (United States)

    Wu, Qi; Su, Nana; Chen, Qin; Shen, Wenbiao; Shen, Zhenguo; Xia, Yan; Cui, Jin

    2015-01-01

    Hydrogen gas (H2) was recently proposed as a therapeutic antioxidant and signaling molecule in clinical trials. However, the underlying physiological roles of H2 in plants remain unclear. In the present study, hydrogen-rich water (HRW) was used to characterize the physiological roles of H2 in enhancing the tolerance of Brassica campestris against cadmium (Cd). The results showed that both 50 μM CdCl2 and 50%-saturated HRW induced an increase of endogenous H2 in Brassica campestris seedlings, and HRW alleviated Cd toxicity related to growth inhibition and oxidative damage. Seedlings supplied with HRW exhibited increased root length and reduced lipid peroxidation, similar to plants receiving GSH post-treatment. Additionally, seedlings post-treated with HRW accumulated higher levels of reduced glutathione (GSH) and ascorbic acid (AsA) and showed increased GST and GPX activities in roots. Molecular evidence illustrated that the expression of genes such as GS, GR1 and GR2, which were down-regulated following the addition of Cd, GSH or BSO, could be reversed to varying degrees by the addition of HRW. Based on these results, it could be proposed that H2 might be an important regulator for enhancing the tolerance of Brassica campestris seedlings against Cd, mainly by governing reduced glutathione homeostasis.

  15. Genome-Wide Identification, Molecular Evolution, and Expression Profiling Analysis of Pectin Methylesterase Inhibitor Genes in Brassica campestris ssp. chinensis

    Directory of Open Access Journals (Sweden)

    Tingting Liu

    2018-05-01

    Full Text Available Pectin methylesterase inhibitor genes (PMEIs are a large multigene family and play crucial roles in cell wall modifications in plant growth and development. Here, a comprehensive analysis of the PMEI gene family in Brassica campestris, an important leaf vegetable, was performed. We identified 100 Brassica campestris PMEI genes (BcPMEIs, among which 96 BcPMEIs were unevenly distributed on 10 chromosomes and nine tandem arrays containing 20 BcPMEIs were found. We also detected 80 pairs of syntenic PMEI orthologs. These findings indicated that whole-genome triplication (WGT and tandem duplication (TD were the main mechanisms accounting for the current number of BcPMEIs. In evolution, BcPMEIs were retained preferentially and biasedly, consistent with the gene balance hypothesis and two-step theory, respectively. The molecular evolution analysis of BcPMEIs manifested that they evolved through purifying selection and the divergence time is in accordance with the WGT data of B. campestris. To obtain the functional information of BcPMEIs, the expression patterns in five tissues and the cis-elements distributed in promoter regions were investigated. This work can provide a better understanding of the molecular evolution and biological function of PMEIs in B. campestris.

  16. Identification of Dietetically Absorbed Rapeseed (Brassica campestris L. Bee Pollen MicroRNAs in Serum of Mice

    Directory of Open Access Journals (Sweden)

    Xuan Chen

    2016-01-01

    Full Text Available MicroRNAs (miRNAs are a class of small noncoding RNA that, through mediating posttranscriptional gene regulation, play a critical role in nearly all biological processes. Over the last decade it has become apparent that plant miRNAs may serve as a novel functional component of food with therapeutic effects including anti-influenza and antitumor. Rapeseed bee pollen has good properties in enhancing immune function as well as preventing and treating disease. In this study, we identified the exogenous miRNAs from rapeseed bee pollen in mice blood using RNA-seq technology. We found that miR-166a was the most highly enriched exogenous plant miRNAs in the blood of mice fed with rapeseed bee pollen, followed by miR-159. Subsequently, RT-qPCR results confirmed that these two miRNAs also can be detected in rapeseed bee pollen. Our results suggested that food-derived exogenous miRNAs from rapeseed bee pollen could be absorbed in mice and the abundance of exogenous miRNAs in mouse blood is dependent on their original levels in the rapeseed bee pollen.

  17. Franjas marginales de Brassica campestris L. (nabo) en cultivo de repollo. Efecto sobre pulgones y sus parasitoides: Título abreviado: Franjas marginales de Brassica campestris L. ....

    OpenAIRE

    Curis, M. C; Saravia Steudtner, F; Favaro, J. C; Sánchez, D; Bertolaccini, I

    2014-01-01

    La diversidad vegetal en los agroecosistemas afecta la dinámica poblacional de las plagas y de sus enemigos naturales, siendo una alternativa de control el uso de franjas trampa en algunos cultivos. El objetivo del trabajo fue determinar como una franja marginal de Brassicas campestris L. (Brassicales, Brassicaceae), afecta a la población de los pulgones de B. oleracea var. capitata y de sus parasitoides. El estudio se llevó a cabo en Santa Fe, a partir de febrero de 2012. Se estableció en un...

  18. Identification of Isolates that Cause a Leaf Spot Disease of Brassicas as Xanthomonas campestris pv. raphani and Pathogenic and Genetic Comparison with Related Pathovars.

    Science.gov (United States)

    Vicente, J G; Everett, B; Roberts, S J

    2006-07-01

    ABSTRACT Twenty-five Xanthomonas isolates, including some isolates received as either X. campestris pv. armoraciae or pv. raphani, caused discrete leaf spot symptoms when spray-inoculated onto at least one Brassica oleracea cultivar. Twelve of these isolates and four other Xanthomonas isolates were spray- and pin-inoculated onto 21 different plant species/cultivars including horseradish (Armoracia rusticana), radish (Raphanus sativus), and tomato (Lycopersicon esculentum). The remaining 13 leaf spot isolates were spray-inoculated onto a subset of 10 plant species/cultivars. The leaf spot isolates were very aggressive on several Brassica spp., radish, and tomato causing leaf spots and dark sunken lesions on the middle vein, petiole, and stem. Based on the differential reactions of several Brassica spp. and radish cultivars, the leaf spot isolates were divided into three races, with races 1 and 3 predominating. A differential series was established to determine the race-type of isolates and a gene-for-gene model based on the interaction of two avirulence genes in the pathogen races and two matching resistance genes in the differential hosts is proposed. Repetitive-DNA polymerase chain reaction-based fingerprinting was used to assess the genetic diversity of the leaf spot isolates and isolates of closely related Xanthomonas pathovars. Although there was variability within each race, the leaf spot isolates were clustered separately from the X. campestris pv. campestris isolates. We propose that X. campestris isolates that cause a nonvascular leaf spot disease on Brassica spp. should be identified as pv. raphani and not pv. armoraciae. Race-type strains and a neopathotype strain for X. campestris pv. raphani are proposed.

  19. Random amplified polymorphic DNA markers of the Brassica alboglabra chromosome of a B. campestris-alboglabra addition line

    DEFF Research Database (Denmark)

    Bagger Jørgensen, Rikke; Chen, B.Y.; Cheng, B.F.

    1996-01-01

    The alien C-genome chromosome in a Brassica campestris-alboglabra monosomic addition line was characterized by random amplified polymorphic DNA (RAPD) analysis. The alien chromosome carried three loci, E(c), W-c and Lap-1C, controlling synthesis of erucic acid, white flower colour and a fast...

  20. Rhizosphere competent Mesorhizobiumloti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris Mesorhizobium loti MP6 rizosférico competente induz encurvamento do pelo daraiz, inibe Sclerotinia sclerotiorum e estimula o crescimento de mostarda indiana (Brassica campestris

    Directory of Open Access Journals (Sweden)

    Shikha Chandra

    2007-03-01

    Full Text Available The bacterial strain Mesorhizobium loti MP6, isolated from root nodules of Mimosa pudica induced growth and yield of Brassica campestris. The isolate MP6 secreted hydroxamate type siderophore in Chrom-Azurol Siderophore (CAS agar medium. Production of hydrocyanic acid (HCN, indole acetic acid (IAA and phosphate solubilizing ability was also recorded under normal growth conditions. Root hair curling was observed through simple glass-slide technique. In vitro study showed a significant increase in population of M. loti MP6 in rhizosphere due to root exudates of B. campestris. In dual culture technique the strain showed a strong antagonistic effect against Sclerotinia sclerotiorum, a white rot pathogen of Brassica campestris. The growth of S. sclerotiorum was inhibited by 75% after prolonged incubation. Efficient root colonization of mustard seedlings was confirmed by using a streptomycin-resistant marker M. loti MP6strep+. The M. loti MP6 coated seeds proved enhanced seed germination, early vegetative growth and grain yield as compared to control. Also, a drastic decline (99% in the incidence of white rot was observed due to application of M. loti MP6.A cepa bacteriana Mesorhizobium loti MP6 isolada de nódulos de raiz de Mimosa pudica induziu o crescimento e o rendimento de Brassica campestris. A cepa MP6 secretou sideróforo do tipo hidroxamato em meio sólido Chrom-Azurol Siderophore (CAS. Em condições normais de crescimento, a cepa foi também capaz de produzir de ácido cianídrico (HCN e acido indolacético (AIA e solubilizar fosfato. O encurvamento do pelo da raiz foi observado usando a simples técnica de lâmina e lamínula. Estudos in vitro mostraram um aumento significativo na população de M. loti MP6 na rizosfera devido aos exsudatos de B. campestris. Empregando-se técnica de co-cultura, a cepa mostrou um grande efeito antagônico contra o fungo Sclerotinia sclerotiorum, o patógeno da podridão branca de Brassica campestris. Ap

  1. Induced polyploidization in Brassica campestris L. (Brassicaceae).

    Science.gov (United States)

    Kumar, G; Dwivedi, K

    2014-01-01

    Present experimental design has been made up to obtain crop with higher ploidy level via synthetic polyploidization. Since ploidy manipulation is generally associated with the obtainment of some increased enviable traits of the crop and also provides them greater adaptability to unfavorable or harsh circumstances as compared to its diploids counterparts. Thus, herein present research autotetraploids of Brassica campestris L. have been lucratively achieved by the application of colchicine. Two methods of treatment were utilized i.e. seed treatment and seedling treatment. No polyploidy could be obtained through seed treatment while seedling treatment responded well towards polyploidy. However, the status of autotetraploidy has been confirmed by cytomorphological investigations of treated plants as against its diploids counterparts. For the purpose, morphological parameters such as increased stomata size, pollen diameter, flower size, reproductive organs whereas reduction in plant height, leaf length, leaf breadth, stomata frequency, number of flowers/inflorescence etc. were appraised. Further, cytological observations were made that had clearly revealed the doubling of genome in the autotetraploids as compared to diploids. Meanwhile, pollen fertility and size of pollen grains were evaluated as well.

  2. Photosynthetic carbon fixation characteristics of fruiting structures of Brassica campestris L

    International Nuclear Information System (INIS)

    Singal, H.R.; Sheoran, I.S.; Singh, R.

    1987-01-01

    Activities of key enzymes of the Calvin cycle and C 4 metabolism, rates of CO 2 fixation, and the initial products of photosynthetic 14 CO 2 fixation were determined in the podwall, seed coat (fruiting structures), and the subtending leaf (leaf below a receme) of Brassica campestris L. cv Toria. Compared to activities of ribulose-1,5-bisphosphate carboxylase and other Calvin cycle enzymes, e.g. NADP-glyceraldehyde-3-phosphate-dehydrogenase and ribulose-5-phosphate kinase, the activities of phosphoenol pyruvate carboxylase and other enzymes of C 4 metabolism, viz. NADP-malate dehydrogenase, NADP-malic enzyme, glutamate pyruvate transaminase, and glutamate oxaloacetate transaminase, were generally much higher in seed than in podwall and leaf. Podwall and leaf were comparable to each other. Pulse-chase experiments showed that in seed the major product of 14 CO 2 assimilation was malate (in short time), whereas in podwall and leaf, the label initially appeared in 3-PGA. With time, the label moved to sucrose. In contrast to legumes, Brassica pods were able to fix net CO 2 during light. However, respiratory losses were very high during the dark period

  3. New high yielding mutant varieties of mustard (Brassica campestris L. var. yellow sarson)

    International Nuclear Information System (INIS)

    Rahman, A.; Das, M.L.; Pathan, A.J.

    1992-01-01

    Mutation breeding work at the Bangladesh Institute of Nuclear Agriculture has been successful with the development of a number of promising mutants and with the release of two mutant varieties of mustard (Brassica campestris L. var. Yellow Sarson), Agrani and Safal, for commercial cultivation in Bangladesh. The mutant varieties have higher seed and oil yield with higher biomass production, tolerance to Alternaria blight and aphid under field conditions. The average seed yield of the varieties is 1726 and 1754 kg/ha as compared to 1447 kg/ha of the best check Sonali. These varieties have 42-43 per cent oil in the seed. (author). 7 refs., 3 tabs

  4. PECTATE LYASE-LIKE 9 from Brassica campestris is associated with intine formation.

    Science.gov (United States)

    Jiang, Jingjing; Yao, Lina; Yu, Youjian; Liang, Ying; Jiang, Jianxia; Ye, Nenghui; Miao, Ying; Cao, Jiashu

    2014-12-01

    Brassica campestris pectate lyase-like 9 (BcPLL9) was previously identified as a differentially expressed gene both in buds during late pollen developmental stage and in pistils during fertilization in Chinese cabbage. To characterize the gene's function, antisense-RNA lines of BcPLL9 (bcpll9) were constructed in Chinese cabbage. Self- and cross-fertilization experiments harvested half seed yields when bcpll9 lines were used as pollen donors. In vivo and in vitro pollen germination assays showed that nearly half of the pollen tubes in bcpll9 were irregular with shorter length and uneven surface. Aniline blue staining identified abnormal accumulation of a specific bright blue unknown material in the bcpll9 pollen portion. Scanning electron microscopy observation verified the abnormal outthrust material to be near the pollen germinal furrows. Transmission electron microscopy observation revealed the internal endintine layer was overdeveloped and predominantly occupied the intine. This abnormally formed intine likely induced the wavy structure and growth arrest of the pollen tube in half of the bcpll9 pollen grains, which resulted in less seed yields. Collectively, this study presented a novel PLL gene that has an important function in B. campestris intine formation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Rapeseed research and production in China

    Directory of Open Access Journals (Sweden)

    Qiong Hu

    2017-04-01

    Full Text Available Rapeseed (Brassica napus L. is the largest oilseed crop in China and accounts for about 20% of world production. For the last 10 years, the production, planting area, and yield of rapeseed have been stable, with improvement of seed quality and especially seed oil content. China is among the leading countries in rapeseed genomic research internationally, having jointly with other countries accomplished the whole genome sequencing of rapeseed and its two parental species, Brassica oleracea and Brassica rapa. Progress on functional genomics including the identification of QTL governing important agronomic traits such as yield, seed oil content, fertility regulation, disease and insect resistance, abiotic stress, nutrition use efficiency, and pod shattering resistance has been achieved. As a consequence, molecular markers have been developed and used in breeding programs. During 2005–2014, 215 rapeseed varieties were registered nationally, including 210 winter- and 5 spring-type varieties. Mechanization across the whole process of rapeseed production was investigated and operating instructions for all relevant techniques were published. Modern techniques for rapeseed field management such as high-density planting, controlled-release fertilizer, and biocontrol of disease and pests combined with precision tools such as drones have been developed and are being adopted in China. With the application of advanced breeding and production technologies, in the near future, the oil yield and quality of rapeseed varieties will be greatly increased, and more varieties with desirable traits, especially early maturation, high yield, high resistance to biotic and abiotic stress, and suitability for mechanized harvesting will be developed. Application of modern technologies on the mechanized management of rapeseed will greatly increase grower profit.

  6. Altered Fruit and Seed Development of Transgenic Rapeseed (Brassica napus Over-Expressing MicroRNA394.

    Directory of Open Access Journals (Sweden)

    Jian Bo Song

    Full Text Available Fruit and seed development in plants is a complex biological process mainly involved in input and biosynthesis of many storage compounds such as proteins and oils. Although the basic biochemical pathways for production of the storage metabolites in plants are well characterized, their regulatory mechanisms are not fully understood. In this study, we functionally identified rapeseed (Brassica napus miR394 with its target gene Brassica napus leaf curling responsiveness (BnLCR to dissect a role of miR394 during the fruit and seed development. Transgenic rapeseed plants over-expressing miR394 under the control of the cauliflower mosaic virus 35S promoter were generated. miR394 over-expression plants exhibited a delayed flowering time and enlarged size of plants, leaf blade, pods and seed body, but developed seeds with higher contents of protein and glucosinolates (GLS and lower levels of oil accumulation as compared to wild-type. Over-expression of miR394 altered the fatty acid (FA composition by increasing several FA species such as C16:0 and C18:0 and unsaturated species of C20:1 and C22:1 but lowering C18:3. This change was accompanied by induction of genes coding for transcription factors of FA synthesis including leafy cotyledon1 (BnLEC1, BnLEC2, and FUSCA3 (FUS3. Because the phytohormone auxin plays a crucial role in fruit development and seed patterning, the DR5-GUS reporter was used for monitoring the auxin response in Arabidopsis siliques and demonstrated that the DR5 gene was strongly expressed. These results suggest that BnmiR394 is involved in rapeseed fruit and seed development.

  7. PECTATE LYASE-LIKE10 is associated with pollen wall development in Brassica campestris.

    Science.gov (United States)

    Jiang, Jingjing; Yao, Lina; Yu, Youjian; Lv, Meiling; Miao, Ying; Cao, Jiashu

    2014-11-01

    PECTATE LYASE-LIKE10 (PLL10) was previously identified as one of the differentially expressed genes both in microspores during the late pollen developmental stages and in pistils during the fertilization process in Chinese cabbage (Brassica campestris ssp. chinensis). Here, antisense-RNA was used to study the functions of BcPLL10 in Chinese cabbage. Abnormal pollen was identified in the transgenic lines (bcpll10-4, -5, and -6). In fertilization experiments, fewer seeds were harvested when the antisense-RNA lines were used as pollen donor. In vivo and in vitro pollen germination assays less germinated pollen tubes were observed in bcpll10 lines. Scanning electron microscopy observation verified that the tryphine materials were over accumulated around the pollen surface and sticked them together in bcpll10. Moreover, transmission electron microscopy observation revealed that the internal endintine was overdeveloped and predominantly occupied the intine, and disturbed the normal proportional distribution of the two layers in the non-germinal furrow region; and no obvious demarcation existed between them in the germinal furrow region in the bcpll10 pollen. Collectively, this study presented a novel PLL gene that played an important role during the pollen wall development in B. campestris, which may also possess potential importance for male sterility usage in agriculture. © 2014 Institute of Botany, Chinese Academy of Sciences.

  8. Properties of a membrane-bound triglyceride lipase of rapeseed (Brassica napus L.) cotyledons.

    Science.gov (United States)

    Rosnitschek, I; Theimer, R R

    1980-04-01

    The properties of the alkaline lipase activity (EC 3.1.1.3) that was recovered almost completely from a microsomal membrane fraction of 4-d-old rapeseed (Brassica napus L.) cotyledons were studied employing a titrimetric test procedure. The apparent KM was 6.5 mmol l(-1), with emulgated sunflower oil as the substrate. The products of triglyceride hydrolysis in vitro were glycerol, free fatty acids, and minor amounts of mono- and diglycerides. Maximum lipase activity depended on the preincubation of the lipolytic membrane fraction in 0.15 mol l(-1) NaCl and on the presence of at least 0.1 mol l(-1) NaCl in the test mixture. Desoxycholate and up to 0.1 mol l(-1) CaCl2 also activated the enzyme while EDTA and detergents such as trito x-100, digitonin, tween 85, and sodium dodecylsulfate were inhibitory. The rapeseed lipase displayed a conspicuous substrate selectivity among different plant triglycerides; the activity was inversely correlated with the oleic acid content of the oils. Water-soluble triacetin and the phospholipid lecithin were not hydrolyzed. Increasing amounts of free fatty acids reduced lipase activity; erucic acid, a major component of rapeseed oil, exhibited the strongest effect, suggesting a possible role in the regulation of lipase activity in vivo. The data demonstrate that the lipolytic membrane fraction houses a triglyceride lipase with properties similar to other plant and animal lipases. It can both qualitatively and quantitatively account for the fat degradation in rapeseed cotyledons. The evidence that provides further reason to acknowledge the membranous appendices of the spherosomes as the intracellular site of lipolysis is discussed.

  9. Development of high yielding mutants of Brassica campestris L. cv. Toria selection through gamma rays irradiation

    International Nuclear Information System (INIS)

    Javed, M.A.; Siddiqui, M.A.; Khan, M.K.R.; Khatri, A.; Khan, I.A.; Dahar, N.A.; Khanzada, M.H.; Khan, R.

    2003-01-01

    Homogeneous seeds of Brassica campestris L. cv. Toria selection were treated with different doses of gamma rays (750, 1000 and 1250 Gy) to induce genetic variability for the selection of new genotypes with improved agronomic traits. After passing through different stages of selection, two promising mutants were selected for further studies. Two selected mutants along with 5 other entries including parent variety were evaluated for yield and yield components in yield trials for two consecutive years. The mutant TS96-752 was significantly (P less than or equal to 0.05) superior to all other entries in grain yield but at par with FSD 86028-3

  10. Refined global methyl halide budgets with respect to rapeseed (Brassica napus) by life-cycle measurements

    Science.gov (United States)

    Jiao, Y.; Acdan, J.; Xu, R.; Deventer, M. J.; Rhew, R. C.

    2017-12-01

    A precise quantification of global methyl halide budgets is needed to evaluate the ozone depletion potential of these compounds and to predict future changes of stratospheric ozone. However, the global budgets of methyl halides are not balanced between currently identified and quantified sources and sinks. Our study re-evaluated the methyl bromide budget from global cultivated rapeseed (Brassica napus) through life-cycle flux measurements both in the greenhouse and in the field, yielding a methyl bromide emission rate that scales globally to 1.0 - 1.2 Gg yr-1. While this indicates a globally significant source, it is much smaller than the previously widely cited value of 5 - 6 Gg yr-1(Mead et al., 2008), even taking into account the near tripling of annual global yield of rapeseed since the previous evaluation was conducted. Our study also evaluated the methyl chloride and methyl iodide emission levels from rapeseed, yielding emission rates that scale to 5.4 Gg yr-1 for methyl chloride and 1.8 Gg yr-1 of methyl iodide. The concentrations of the methyl donor SAM (S-adenosyl methionine) and the resultant product SAH (S-Adenosyl-L-homocysteine) were also analyzed to explore their role in biogenic methyl halide formation. Halide gradient incubations showed that the magnitude of methyl halide emissions from rapeseed is highly correlated to soil halide levels, thus raising the concern that the heterogeneity of soil halide contents geographically should be considered when extrapolating to global budget.

  11. Tobacco Rotated with Rapeseed for Soil-Borne Phytophthora Pathogen Biocontrol: Mediated by Rapeseed Root Exudates

    Directory of Open Access Journals (Sweden)

    Yuting Fang

    2016-06-01

    Full Text Available Black shank, caused by Phytophthora parasitica var. nicotianae, is a widespread and destructive disease of tobacco. Crop rotation is essential in controlling black shank. Here, we confirmed that rotating black shank-infested fields with rapeseed (Brassica napus suppressed the incidence this disease. Further study demonstrated that rapeseed roots have a strong ability to attract zoospores and subsequently stop the swimming of zoospores into cystospores. Then, rapeseed roots secrete a series of antimicrobial compounds, including 2-butenoic acid, benzothiazole, 2-(methylthiobenzothiazole, 1-(4-ethylphenyl-ethanone, and 4-methoxyindole, to inhibit the cystospore germination and mycelial growth of P. parasitica var. nicotianae. Thus, rapeseed rotated with tobacco suppresses tobacco black shank disease through the chemical weapons secreted by rapeseed roots.

  12. Unraveling the genetic basis of seed tocopherol content and composition in rapeseed (Brassica napus L.).

    Science.gov (United States)

    Wang, Xingxing; Zhang, Chunyu; Li, Lingjuan; Fritsche, Steffi; Endrigkeit, Jessica; Zhang, Wenying; Long, Yan; Jung, Christian; Meng, Jinling

    2012-01-01

    Tocopherols are important antioxidants in vegetable oils; when present as vitamin E, tocopherols are an essential nutrient for humans and livestock. Rapeseed (Brassica napus L, AACC, 2 n = 38) is one of the most important oil crops and a major source of tocopherols. Although the tocopherol biosynthetic pathway has been well elucidated in the model photosynthetic organisms Arabidopsis thaliana and Synechocystis sp. PCC6803, knowledge about the genetic basis of tocopherol biosynthesis in seeds of rapeseed is scant. This project was carried out to dissect the genetic basis of seed tocopherol content and composition in rapeseed through quantitative trait loci (QTL) detection, genome-wide association analysis, and homologous gene mapping. We used a segregating Tapidor × Ningyou7 doubled haploid (TNDH) population, its reconstructed F(2) (RC-F(2)) population, and a panel of 142 rapeseed accessions (association panel). Genetic effects mainly contributed to phenotypic variations in tocopherol content and composition; environmental effects were also identified. Thirty-three unique QTL were detected for tocopherol content and composition in TNDH and RC-F(2) populations. Of these, seven QTL co-localized with candidate sequences associated with tocopherol biosynthesis through in silico and linkage mapping. Several near-isogenic lines carrying introgressions from the parent with higher tocopherol content showed highly increased tocopherol content compared with the recurrent parent. Genome-wide association analysis was performed with 142 B. napus accessions. Sixty-one loci were significantly associated with tocopherol content and composition, 11 of which were localized within the confidence intervals of tocopherol QTL. This joint QTL, candidate gene, and association mapping study sheds light on the genetic basis of seed tocopherol biosynthesis in rapeseed. The sequences presented here may be used for marker-assisted selection of oilseed rape lines with superior tocopherol

  13. Unraveling the genetic basis of seed tocopherol content and composition in rapeseed (Brassica napus L..

    Directory of Open Access Journals (Sweden)

    Xingxing Wang

    Full Text Available BACKGROUND: Tocopherols are important antioxidants in vegetable oils; when present as vitamin E, tocopherols are an essential nutrient for humans and livestock. Rapeseed (Brassica napus L, AACC, 2 n = 38 is one of the most important oil crops and a major source of tocopherols. Although the tocopherol biosynthetic pathway has been well elucidated in the model photosynthetic organisms Arabidopsis thaliana and Synechocystis sp. PCC6803, knowledge about the genetic basis of tocopherol biosynthesis in seeds of rapeseed is scant. This project was carried out to dissect the genetic basis of seed tocopherol content and composition in rapeseed through quantitative trait loci (QTL detection, genome-wide association analysis, and homologous gene mapping. METHODOLOGY/PRINCIPAL FINDINGS: We used a segregating Tapidor × Ningyou7 doubled haploid (TNDH population, its reconstructed F(2 (RC-F(2 population, and a panel of 142 rapeseed accessions (association panel. Genetic effects mainly contributed to phenotypic variations in tocopherol content and composition; environmental effects were also identified. Thirty-three unique QTL were detected for tocopherol content and composition in TNDH and RC-F(2 populations. Of these, seven QTL co-localized with candidate sequences associated with tocopherol biosynthesis through in silico and linkage mapping. Several near-isogenic lines carrying introgressions from the parent with higher tocopherol content showed highly increased tocopherol content compared with the recurrent parent. Genome-wide association analysis was performed with 142 B. napus accessions. Sixty-one loci were significantly associated with tocopherol content and composition, 11 of which were localized within the confidence intervals of tocopherol QTL. CONCLUSIONS/SIGNIFICANCE: This joint QTL, candidate gene, and association mapping study sheds light on the genetic basis of seed tocopherol biosynthesis in rapeseed. The sequences presented here may be used

  14. Cultivar Variation in Hormonal Balance Is a Significant Determinant of Disease Susceptibility to Xanthomonas campestris pv. campestris in Brassica napus

    Directory of Open Access Journals (Sweden)

    Md. Tabibul Islam

    2017-12-01

    Full Text Available This study aimed to directly elucidate cultivar variation in disease susceptibility and disease responses in relation to hormonal status in the interaction of Brassica napus cultivars and Xanthomonas campestris pv. campestris (Xcc, the causal agent of black rot disease. Fully expanded leaves of six B. napus cultivars (cvs. Capitol, Youngsan, Saturnin, Colosse, Tamra, and Mosa were inoculated with Xcc. At 14 days post-inoculation with Xcc, cultivar variation in susceptibility or resistance was interpreted with defense responses as estimated by redox status, defensive metabolites, and expression of phenylpropanoid synthesis-related genes in relation to endogenous hormonal status. Disease susceptibility of six cultivars was distinguished by necrotic lesions in the Xcc-inoculated leaves and characterized concurrently based on the higher increase in reactive oxygen species and lipid peroxidation. Among these cultivars, as the susceptibility was higher, the ratios of abscisic acid (ABA/jasmonic acid (JA and salicylic acid (SA/JA tended to increase with enhanced expression of SA signaling regulatory gene NPR1 and transcriptional factor TGA1 and antagonistic suppression of JA-regulated gene PDF 1.2. In the resistant cultivar (cv. Capitol, accumulation of defensive metabolites with enhanced expression of genes involved in flavonoids (chalcone synthase, proanthocyanidins (anthocyanidin reductase, and hydroxycinnamic acids (ferulate-5-hydroxylase biosynthesis and higher redox status were observed, whereas the opposite results were obtained for susceptible cultivars (cvs. Mosa and Tamra. These results clearly indicate that cultivar variation in susceptibility to infection by Xcc was determined by enhanced alteration of the SA/JA ratio, as a negative regulator of redox status and phenylpropanoid synthesis in the Brasica napus–Xcc pathosystem.

  15. Occurrence of Xanthomonas campestris pv. campestris (Pammel, 1895) Dowson 1939, on brassicas in Montenegro

    OpenAIRE

    Radunović Dragana; Balaž Jelica

    2012-01-01

    Brassicas form the most important group of vegetable crops in Montenegro. The cabbage (Brassica oleracea var. capitata) is most commonly grown, although other brassicas, particularly kale, Brussels sprout, cauliflower and broccoli, have been increasingly produced since recently. One of the specialties of vegetable production in Montenegro is growing of collard (Brassica oleracea var. acephala), which is the simplest variety of the Brassica oleracea species ...

  16. Applying Mendelian rules in rapeseed (Brassica napus breeding

    Directory of Open Access Journals (Sweden)

    Marjanović-Jeromela Ana

    2016-01-01

    Full Text Available Rapeseed is one of the most important sources of edible oil, raw material for industry, as well as feed. The yield and quality of rapeseed have significantly been improved in recent decades as a result of intensive breeding and optimized production technology. The application of Mendel's rules in introducing monogenic traits has also contributed to success in rapeseed breeding. Rule 1, which refers to the uniformity of F1 generation, is now the basis of widespread development of rapeseed hybrids. Rule 2, dealing with genetic segregation in the F2 generation, is the basis for understanding the process of breeding lines. Rule 3, regarding the independent segregation of genes and traits, while exempting linked traits, is the basis of combining different desirable properties by selection. In the last few decades, the systematic use of Mendel's rules has contributed to the improvement of many properties of rapeseed, including tolerance to biotic and abiotic stress, yield and seed quality. Particular progress has been made in breeding for resistance to diseases, including the identification of molecular markers for marker-assisted selection. The next objective of rapeseed breeding is to create varieties with improved tolerance to environmental stress (e.g. frost, heat, and drought. Based on Mendel's rules, classical breeding methods and the latest developments in the field of molecular genetics and breeding, future progress is expected in the field of rapeseed breeding with an emphasis on polygenic, quantitative traits such as biomass, seed, and oil yield.

  17. Foliar K application delays leaf senescence of winter rape-seed (Brassica napus L.) under waterlogging

    Institute of Scientific and Technical Information of China (English)

    Lin Wan; Chao Hu; Chang Chen; Liyan Zhang; Ni Ma; Chunlei Zhang

    2017-01-01

    To better understand waterlogging effect on leaf senescence in winter rapseed (Brassica napus L.) during flowering stage, experiments were designed to explore foliar K application influences on adverse effects of waterlogging stress. Winter rapeseed was sprayed with K after waterlogging at initial flowering stage. Results indicated that waterlog-ging significantly decreased leaf net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci) and transpiration rate (Tr). It also declined maximum quantum yield of PS II (Fv/Fm), quantum yield of electron transport (ΦPS II) and pho-tochemical quenching (qP), but increased leaf non-photochemical quenching (NPQ) and minimal fluorescence (Fo). Interestingly, exogenous application of K significantly alleviated waterlogging-induced photosynthesis inhibition. Foliar K application increased RuBisCO activation, chlorophyll and soluble protein contents, while significantly decreased MDA con-tent under waterlogging stress. Moreover, K supplementation improved accumulation of K+, Ca2+, Mg2+, N, Zn2+, Mn2+, Fe2+ in leaves. In general, foliar K application is effective in alleviating deleterious effects of waterlogging stress and delays leaf senescence of winter rapeseed.

  18. Varietal improvement of Brassica species through introduction, hybridization and mutation breeding techniques

    International Nuclear Information System (INIS)

    Rhaman, A.

    1988-11-01

    Germplasm of Brassica campestris and Brassica juncea was collected from various parts of Bangladesh and evaluated for yield, oil content etc. prior to the breeding programme. Seeds of the B. campestris variety YS-52, possessing good agronomic characteristics, were treated with mutagens (gamma rays and sodium azide) to widen the genetic variation. Mutants were selected for higher yield and resistance against Alternaria brassicae. The two mutant lines BINA 1 and BINA 2 were selected exceeding the parent variety considerably in yield and disease resistance. They are candidates for recommended varieties. Brassica juncea variety RCM 625 was treated with gamma rays and EMS. Four higher yielding and earlier maturing mutants are being evaluated further. 6 tabs

  19. A Tourist-like MITE insertion in the upstream region of the BnFLC.A10 gene is associated with vernalization requirement in rapeseed (Brassica napus L.).

    Science.gov (United States)

    Hou, Jinna; Long, Yan; Raman, Harsh; Zou, Xiaoxiao; Wang, Jing; Dai, Shutao; Xiao, Qinqin; Li, Cong; Fan, Longjiang; Liu, Bin; Meng, Jinling

    2012-12-15

    Rapeseed (Brassica napus L.) has spring and winter genotypes adapted to different growing seasons. Winter genotypes do not flower before the onset of winter, thus leading to a longer vegetative growth period that promotes the accumulation and allocation of more resources to seed production. The development of winter genotypes enabled the rapeseed to spread rapidly from southern to northern Europe and other temperate regions of the world. The molecular basis underlying the evolutionary transition from spring- to winter- type rapeseed is not known, however, and needs to be elucidated. We fine-mapped the spring environment specific quantitative trait locus (QTL) for flowering time, qFT10-4,in a doubled haploid (DH) mapping population of rapeseed derived from a cross between Tapidor (winter-type) and Ningyou7 (semi-winter) and delimited the qFT10-4 to an 80-kb region on chromosome A10 of B. napus. The BnFLC.A10 gene, an ortholog of FLOWERING LOCUS C (FLC) in Arabidopsis, was cloned from the QTL. We identified 12 polymorphic sites between BnFLC.A10 parental alleles of the TN-DH population in the upstream region and in intron 1. Expression of both BnFLC.A10 alleles decreased during vernalization, but decreased more slowly in the winter parent Tapidor. Haplotyping and association analysis showed that one of the polymorphic sites upstream of BnFLC.A10 is strongly associated with the vernalization requirement of rapeseed (r2 = 0.93, χ2 = 0.50). This polymorphic site is derived from a Tourist-like miniature inverted-repeat transposable element (MITE) insertion/deletion in the upstream region of BnFLC.A10. The MITE sequence was not present in the BnFLC.A10 gene in spring-type rapeseed, nor in ancestral 'A' genome species B. rapa genotypes. Our results suggest that the insertion may have occurred in winter rapeseed after B. napus speciation. Our findings strongly suggest that (i) BnFLC.A10 is the gene underlying qFT10-4, the QTL for phenotypic diversity of flowering time in

  20. Metal accumulation in a potential winter vegetable mustard (Brassica campestris L.) irrigated with different types of waters in Punjab, Pakistan

    International Nuclear Information System (INIS)

    Khan, Z. I.; Ahmad, K.; Yasmeen, S.; Ashfaq, A.

    2016-01-01

    Considering the harmful effects of metal-enriched vegetables a comprehensive study was conducted to appraise the extent of accumulation of different metals in mustard (Brassica campestris L.). The vegetable was treated with ground water, sewage water and canal water irrigation in areas of Punjab, Pakistan. Metals and metalloids observed in all three sites treated with sewage, canal and ground water were As, Cu, Fe, Ni, Pb, Mo, Se and Zn were observed in the sites treated with ground, sewage and canal waters as well as the vegetable grown therein. The metal concentration observed in water samples was: Fe>Zn >Pb> Ni> Mo> Cu> As> Se, the order in the soil was: As >Pb> Fe > Ni > Mo > Cu > Zn > Se, while the order in the vegetable was: Zn > Fe> Cu> Ni> Mo>Pb> As> Se. The values of bio-concentration factor varied from 0.09-15.47 mg kg-1. Correlation was positively significant for Brassica campestris and soil except Ni and Se which showed positive non significant correlation. Pollution load index was observed to be in the following order: As >Pb> Ni > Mo >Fe > Cu > Se > Zn in the sites GWI, CWI and CWI. Fe and Zn (0.169) showed highest value of daily intake of metal (DIM), while Se (0.003) showed lowest value in crop of all three sites GWI, CWI and CWI. The health risk index and EF ranged from 0.24-69.86 mg day/sup -1/and 0.134-14.12 mg day/sup -1/, respectively. Overall, the vegetable treated with sewage water may have considerable impact on food quality and in turn on the health of people consuming it. (author)

  1. A Tourist-like MITE insertion in the upstream region of the BnFLC.A10 gene is associated with vernalization requirement in rapeseed (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Hou Jinna

    2012-12-01

    Full Text Available Abstract Background Rapeseed (Brassica napus L. has spring and winter genotypes adapted to different growing seasons. Winter genotypes do not flower before the onset of winter, thus leading to a longer vegetative growth period that promotes the accumulation and allocation of more resources to seed production. The development of winter genotypes enabled the rapeseed to spread rapidly from southern to northern Europe and other temperate regions of the world. The molecular basis underlying the evolutionary transition from spring- to winter- type rapeseed is not known, however, and needs to be elucidated. Results We fine-mapped the spring environment specific quantitative trait locus (QTL for flowering time, qFT10-4,in a doubled haploid (DH mapping population of rapeseed derived from a cross between Tapidor (winter-type and Ningyou7 (semi-winter and delimited the qFT10-4 to an 80-kb region on chromosome A10 of B. napus. The BnFLC.A10 gene, an ortholog of FLOWERING LOCUS C (FLC in Arabidopsis, was cloned from the QTL. We identified 12 polymorphic sites between BnFLC.A10 parental alleles of the TN-DH population in the upstream region and in intron 1. Expression of both BnFLC.A10 alleles decreased during vernalization, but decreased more slowly in the winter parent Tapidor. Haplotyping and association analysis showed that one of the polymorphic sites upstream of BnFLC.A10 is strongly associated with the vernalization requirement of rapeseed (r2 = 0.93, χ2 = 0.50. This polymorphic site is derived from a Tourist-like miniature inverted-repeat transposable element (MITE insertion/deletion in the upstream region of BnFLC.A10. The MITE sequence was not present in the BnFLC.A10 gene in spring-type rapeseed, nor in ancestral ‘A’ genome species B. rapa genotypes. Our results suggest that the insertion may have occurred in winter rapeseed after B. napus speciation. Conclusions Our findings strongly suggest that (i BnFLC.A10 is the gene underlying qFT10

  2. Survival of pathogens of Brussels sprouts (Brassica oleracea Gemifera group) in crop residues

    NARCIS (Netherlands)

    Köhl, J.; Vlaswinkel, M.E.T.; Groenenboom-de Haas, B.H.; Kastelein, P.; Hoof, van R.A.; Wolf, van der J.M.; Krijger, M.C.

    2011-01-01

    Mycosphaerella brassicicola (ringspot), Alternaria brassicicola and A. brassicae (dark leaf spot) and Xanthomonas campestris pv. campestris (black spot) can infect leaves of Brussels sprouts resulting in yield losses. Infections of outer leaves of sprouts cause severe losses in quality. Crop

  3. Effect of 60Co γ irradiation with seed and shoot-tip of Brassica campestris L. var on its culture in vitro

    International Nuclear Information System (INIS)

    Liao Feixiong; Yu Rangcai; Pan Ruichi

    2003-01-01

    The survival rate in vitro of shoot-tips of Brassica campestris L. var from seeds irradiated by 60 Co γ-rays decreased with the increase of dose. Irradiation inhibited proliferation of shoot-tip, induction of callus from cotyledons and differentiation of the callus. The age of explant contributed to the effect of irradiation in the culture. Irradiation stimulated the proliferation of shoot-tip with dose less than 50 Gy. Based on the effect of irradiation in the tissue culture, the effective dose recommended was about 200 Gy for seeds, 50-100 Gy for pre-soaked germinating seeds and 40-70 Gy for shoot-tips in vitro, respectively

  4. Effects of foliar dressing of selenite and silicate alone or combined with different soil ameliorants on the accumulation of As and Cd and antioxidant system in Brassica campestris.

    Science.gov (United States)

    Ding, Yongzhen; Wang, Yongjiu; Zheng, Xiangqun; Cheng, Weimin; Shi, Rongguang; Feng, Renwei

    2017-08-01

    This study was conducted to investigate the possibility of using a combined technology to synchronously reduce As and Cd accumulation in the edible parts of Brassica campestris. The results showed that a foliar application of selenite (Se) and silicon (Si) combined with soil ameliorants (including Ca-Mg-P fertilizer, sodium silicate and red mud) showed limited effects on the growth of B. campestris. The As concentration in the leaves of B. campestris in all treatments was below the Chinese safety standard. When sodium silicate and Ca-Mg-P fertilizer were added to the soil, the additional foliar application of Se and Si could in some cases help further reduce the concentrations of As and Cd in the leaves of B. campestris. However, when red mud was applied to the soil, the foliar application of Se and Si enhanced the Cd concentration in the leaves of B. campestris. In most cases, high levels of soil ameliorants plus foliar application of Se and Si significantly enhanced the As concentrations in both the soil solution and the roots of B. campestris but reduced the soil solution Cd concentration and the leaf As concentration. Most of the treatments reduced the thiobarbituric acid reactive substances (TBARS) concentration in the leaves of B. campestris, and the foliar application of Se and Si helped the soil ameliorants alleviate the oxidative stress resulting from As and Cd exposure. In this study, several treatments significantly increased the activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX). However, the enzymes peroxidase (POD) and catalase (CAT) were not induced by most treatments. In summary, the combined treatment of 1gkg -1 Ca-Mg-P fertilizer plus foliar spraying 2mmolL -1 sodium selenite was most effective in reducing the Cd concentration and a rather strong ability to reduce the As concentration and trigger the activities of SOD and APX in the leaves of B. campestris. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. A candidate gene-based association study of tocopherol content and composition in rapeseed (Brassica napus

    Directory of Open Access Journals (Sweden)

    Steffi eFritsche

    2012-06-01

    Full Text Available Rapeseed (Brassica napus L. is the most important oil crop of temperate climates. Rapeseed oil contains tocopherols, also known as vitamin E, which is an indispensable nutrient for humans and animals due to its antioxidant and radical scavenging abilities. Moreover, tocopherols are also important for the oxidative stability of vegetable oils. Therefore, seed oil with increased tocopherol content or altered tocopherol composition is a target for breeding. We investigated the role of nucleotide variations within candidate genes from the tocopherol biosynthesis pathway. Field trials were carried out with 229 accessions from a worldwide B. napus collection which was divided into two panels of 96 and 133 accessions. Seed tocopherol content and composition were measured by HPLC. High heritabilities were found for both traits, ranging from 0.62 to 0.94. We identified polymorphisms by sequencing selected regions of the tocopherol genes from the 96 accession panel. Subsequently, we determined the population structure (Q and relative kinship (K as detected by genotyping with genome-wide distributed SSR markers. Association studies were performed using two models, the structure-based GLM+Q and the PK mixed model. Between 26 and 12 polymorphisms within two genes (BnaX.VTE3.a, BnaA.PDS1.c were significantly associated with tocopherol traits. The SNPs explained up to 16.93 % of the genetic variance for tocopherol composition and up to 10.48 % for total tocopherol content. Based on the sequence information we designed CAPS markers for genotyping the 133 accessions from the 2nd panel. Significant associations with various tocopherol traits confirmed the results from the first experiment. We demonstrate that the polymorphisms within the tocopherol genes clearly impact tocopherol content and composition in B. napus seeds. We suggest that these nucleotide variations may be used as selectable markers for breeding rapeseed with enhanced tocopherol quality.

  6. Cluster Analysis in Rapeseed (Brassica Napus L.)

    International Nuclear Information System (INIS)

    Mahasi, J.M

    2002-01-01

    With widening edible deficit, Kenya has become increasingly dependent on imported edible oils. Many oilseed crops (e.g. sunflower, soya beans, rapeseed/mustard, sesame, groundnuts etc) can be grown in Kenya. But oilseed rape is preferred because it very high yielding (1.5 tons-4.0 tons/ha) with oil content of 42-46%. Other uses include fitting in various cropping systems as; relay/inter crops, rotational crops, trap crops and fodder. It is soft seeded hence oil extraction is relatively easy. The meal is high in protein and very useful in livestock supplementation. Rapeseed can be straight combined using adjusted wheat combines. The priority is to expand domestic oilseed production, hence the need to introduce improved rapeseed germplasm from other countries. The success of any crop improvement programme depends on the extent of genetic diversity in the material. Hence, it is essential to understand the adaptation of introduced genotypes and the similarities if any among them. Evaluation trials were carried out on 17 rapeseed genotypes (nine Canadian origin and eight of European origin) grown at 4 locations namely Endebess, Njoro, Timau and Mau Narok in three years (1992, 1993 and 1994). Results for 1993 were discarded due to severe drought. An analysis of variance was carried out only on seed yields and the treatments were found to be significantly different. Cluster analysis was then carried out on mean seed yields and based on this analysis; only one major group exists within the material. In 1992, varieties 2,3,8 and 9 didn't fall in the same cluster as the rest. Variety 8 was the only one not classified with the rest of the Canadian varieties. Three European varieties (2,3 and 9) were however not classified with the others. In 1994, varieties 10 and 6 didn't fall in the major cluster. Of these two, variety 10 is of Canadian origin. Varieties were more similar in 1994 than 1992 due to favorable weather. It is evident that, genotypes from different geographical

  7. Alleviation of Drought Stress by Nitrogen Application in Brassica campestris ssp. Chinensis L.

    Directory of Open Access Journals (Sweden)

    Xin Xiong

    2018-05-01

    Full Text Available To assess the influence of drought stress on the growth and nitrogen nutrition status of pakchoi (Brassica campestris ssp. Chinensis L. at different nitrogen (N levels, the changes in N accumulation and enzyme activities involved in N assimilation were investigated. The drought was induced by adding polyethylene glycol (PEG under hydroponic culture conditions. Pakchoi seedlings were exposed to a modified nutrient solution with different nitrogen concentration (N1, N2, and N3 represent 2, 9 and 18 mM NaNO3, respectively and osmotic potential (W1, W2 and W3 represent 0, 60 and 120 g·L−1 PEG 6000 in a full factorial, replicated randomized block design. A short time (seven days of drought stress caused a significant decline in plant water content, transpiration rate, shoot biomass and shoot nitrogen concentration. Increasing N availability considerably alleviate drought stress by increasing the content of total free amino acids in the roots, promoting the acceleration of root biomass accumulation, and improving the activities of nitrate reductase (NR; EC 1.7.1.1 and glutamine synthetase (GS; EC 6.3.1.2 which would reduce moisture limitations. The results suggested that pakchoi supplied with relative higher N had better growth performance under drought stress.

  8. Relative degree of susceptibility and resistance of different brassica campestris l. genotypes against aphid myzus persicae- a field investigation

    International Nuclear Information System (INIS)

    Sarwar, M.

    2013-01-01

    Field evaluation of twenty three Brassica campestris L. genotypes was conducted for aphid (Homoptera: Aphididae) resistance during 2008 crop season. The parameters used to assess tolerance of germplasm lines included pest population during growth season and grain yield at crop maturity. Aphids showed obvious preferences for all of the germplasm investigated; however, the evaluation for resistance to pest identified several genotypes with variable potential for tolerance and sensitivity. Estimated grain yield also varied significantly due to variable pest intensity noted, and seemed to be more appropriately dependent on the pest population conditions at the experimental site. Among the germplasm, the estimation obtained regarding both the parameters sorted out MM-II/02-3 and MM-I285 genotypes as most tolerant due to less pest infestation and damage. Peak infestations by aphid caused severe crop fatalities on S-9-S-97-0.75+75/55 and S-9-1006/95 genotypes, affecting the seed weight and resulting an immense reduction in grain Brassica genotypes appeared to be governed by means of varietals characteristics of diverse germplasms. The result of resistance test conducted under field environment is an effective and consistent approach in the practical selection of crop lines resistant or partially resistant to pests for use in future breeding programs. (author)

  9. Antioxidant Enzyme Activities and Lipid Oxidation in Rape (Brassica campestris L. Bee Pollen Added to Salami during Processing

    Directory of Open Access Journals (Sweden)

    Yawei Zhang

    2016-10-01

    Full Text Available The present research investigated the antioxidant effect of rape (Brassica campestris L. bee pollen (RBP on salami during processing. Eight flavonoids in RBP ethanol extract were quantified by high-performance liquid chromatography-mass spectrometry (HPLC-MS analysis, and quercetin, rutin, and kaempferol were the major bioactive compounds. The RBP ethanol extract exhibited higher total antioxidant capacity than 6-hydroxy-2,5,7,8-tertramethylchromancarboxylic acid (trolox at the same concentration. The salami with 0.05% RBP extract had higher catalase (CAT, superoxide dismutase (SOD, and glutathione peroxidase (GSH-Px activities than that of the control throughout the processing time (p < 0.05. Significant decreases in peroxide value (POV and thiobarbituric acid-reactive substances (TBARS were obtained in the final salami product with 0.05% RBP ethanol extract or 1% RBP (p < 0.05. These results suggested that RBP could improve oxidative stability and had a good potential as a natural antioxidant for retarding lipid oxidation.

  10. Exploring genotypic variations for improved oil content and healthy fatty acids composition in rapeseed (Brassica napus L.).

    Science.gov (United States)

    Ishaq, Muhammad; Razi, Raziuddin; Khan, Sabaz Ali

    2017-04-01

    Development of new genotypes having high oil content and desirable levels of fatty acid compositions is a major objective of rapeseed breeding programmes. In the current study combining ability was determined for oil, protein, glucosinolates and various fatty acids content using 8 × 8 full diallel in rapeseed (Brassica napus). Highly significant genotypic differences were observed for oil, protein, glucosinolates, oleic acid, linolenic acid and erucic acid content. Mean squares due to general combining ability (GCA), specific combining ability (SCA) and reciprocal combining ability (RCA) were highly significant (P ≤ 0.01) for biochemical traits. Parental line AUP-17 for high oil content and low glucosinolates, genotype AUP-2 for high protein and oleic acids, and AUP-18 for low lenolenic and erucic acid were best general combiners. Based on desirable SCA effects, F 1 hybrids AUP-17 × AUP-20; AUP-2 × AUP-8; AUP-7 × AUP-14; AUP-2 × AUP-9; AUP-7 × AUP-14 and AUP-2 × AUP-9 were found superior involving at least one best general combiner. F 1 hybrids AUP-17 × AUP-20 (for oil content); AUP-2 × AUP-8 (for protein content); AUP-7 × AUP-14 (for glucosinolates); AUP-2 × AUP-9 (for oleic acid); AUP-7 × AUP-14 (for linolenic acid) and AUP-2 × AUP-9 (for erucic acid) were found superior involving at least one best general combiner. As reciprocal crosses of AUP-14 with AUP-7 and AUP-8 were superior had low × low and low × high GCA effects for glucosinolates and oleic acid, respectively therefore, these could be exploited in future rapeseed breeding programmes to develop new lines with good quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Genome-Wide Analysis of Seed Acid Detergent Lignin (ADL) and Hull Content in Rapeseed (Brassica napus L.)

    Science.gov (United States)

    Wei, Lijuan; Qu, Cunmin; Xu, Xinfu; Lu, Kun; Qian, Wei; Li, Jiana; Li, Maoteng; Liu, Liezhao

    2015-01-01

    A stable yellow-seeded variety is the breeding goal for obtaining the ideal rapeseed (Brassica napus L.) plant, and the amount of acid detergent lignin (ADL) in the seeds and the hull content (HC) are often used as yellow-seeded rapeseed screening indices. In this study, a genome-wide association analysis of 520 accessions was performed using the Q + K model with a total of 31,839 single-nucleotide polymorphism (SNP) sites. As a result, three significant associations on the B. napus chromosomes A05, A09, and C05 were detected for seed ADL content. The peak SNPs were within 9.27, 14.22, and 20.86 kb of the key genes BnaA.PAL4, BnaA.CAD2/BnaA.CAD3, and BnaC.CCR1, respectively. Further analyses were performed on the major locus of A05, which was also detected in the seed HC examination. A comparison of our genome-wide association study (GWAS) results and previous linkage mappings revealed a common chromosomal region on A09, which indicates that GWAS can be used as a powerful complementary strategy for dissecting complex traits in B. napus. Genomic selection (GS) utilizing the significant SNP markers based on the GWAS results exhibited increased predictive ability, indicating that the predictive ability of a given model can be substantially improved by using GWAS and GS. PMID:26673885

  12. Oilseed brassica improvement: through induced mutations

    International Nuclear Information System (INIS)

    Shah, S.A.; Ali, I.; Rehman, K.

    1990-06-01

    The oilseed brassica improvement programme is discussed in this report. Some observations on different plant mutants were made throughout the growth period and results revealed that most of the selected mutants of both the varieties expressed better performance than the parent by showing superior plant traits. A new species named brassica carinata has tremendous untapped potential as an oilseed crop. Efforts for creating maximum variability in rapeseed mustard varieties by means other than gamma radiation continued. (A.B.)

  13. Nutritive values of brassica campestris L. oil as affected by growth regulator treatments

    International Nuclear Information System (INIS)

    Bano, A.; Khan, N.

    2009-01-01

    The effects of plant growth regulators, viz. Indole acetic acid (IAA), Gibberellic acid (GA) and Abscisic acid (ABA) were studied on fatty acid compositions, glucosinolate content and protein content of Brassica campestris L subsp. Oleifera (common name yellow sarson). Growth regulators were applied in seed soaking solution as well as foliar spray during vegetative phase and at flowering stage. There were reductions in the amount of long chain fatty acids viz erucic acid, eicosenoic acid and increase in the amount of unsaturated fatty acid viz. linoleic acid by lAA applications. The stimulating effect of lAA which reduced amount of unsaturated fatty acid was more pronounced when applied as foliar spray at vegetative stage. But, foliar spray of ABA during flowering increased the concentration of linoleic acid and reduced the eicosenoic acid and erucic acid. The glucosinolate content was greater in seeds soaked in 10/sup -5/ M lAA than that of control but less in 10/sup -5/ M GA treated seeds than that of control. The ABA treatment (10/sup -5/M) increased the concentration of glucosinolates in the seeds IAA treatments (10/sup -5/M) increased the protein percentage in the seeds. Foliar application of GA (10/sup -5/M) during vegetative growth and ABA (10/sup -5/M) as seed soaking prior to sowing as well as foliar spry during flowering decreased the protein content of seeds. (author)

  14. In vitro activity of glucosinolates and their degradation products against brassica-pathogenic bacteria and fungi.

    Science.gov (United States)

    Sotelo, T; Lema, M; Soengas, P; Cartea, M E; Velasco, P

    2015-01-01

    Glucosinolates (GSLs) are secondary metabolites found in Brassica vegetables that confer on them resistance against pests and diseases. Both GSLs and glucosinolate hydrolysis products (GHPs) have shown positive effects in reducing soil pathogens. Information about their in vitro biocide effects is scarce, but previous studies have shown sinigrin GSLs and their associated allyl isothiocyanate (AITC) to be soil biocides. The objective of this work was to evaluate the biocide effects of 17 GSLs and GHPs and of leaf methanolic extracts of different GSL-enriched Brassica crops on suppressing in vitro growth of two bacterial (Xanthomonas campestris pv. campestris and Pseudomonas syringae pv. maculicola) and two fungal (Alternaria brassicae and Sclerotinia scletoriorum) Brassica pathogens. GSLs, GHPs, and methanolic leaf extracts inhibited the development of the pathogens tested compared to the control, and the effect was dose dependent. Furthermore, the biocide effects of the different compounds studied were dependent on the species and race of the pathogen. These results indicate that GSLs and their GHPs, as well as extracts of different Brassica species, have potential to inhibit pathogen growth and offer new opportunities to study the use of Brassica crops in biofumigation for the control of multiple diseases. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. The phytotoxic effects and biodegradability of stored rapeseed oil and rapeseed oil methyl ester

    Directory of Open Access Journals (Sweden)

    V. VAUHKONEN

    2008-12-01

    Full Text Available The aims of this study were to determine the phytotoxicity of stored rapeseed (Brassica rapa oil (RSO and rapeseed oil methyl ester (RME after "spill like" contamination on the growth of barley (Hordeum vulgare and the biodegradability of these substances in OECD 301F test conditions and in ground water. Rapeseed oil and rapeseed oil methyl ester were both stored for a period of time and their fuel characteristics (e.g. acid number had changed from those set by the fuel standards and are considered to have an effect on its biodegradation. The phytotoxicity was tested using two different types of barley cultivars: ‘Saana’ and ‘Vilde’. The phytotoxic effect on the barley varieties was determined, after the growth season, by measuring the total biomass growth and the mass of 1000 kernels taken from the tests plots. Also visual inspection was used to determine what the effects on the barley growth were. These measurements suggest that both RSO and RME have a negative impact on barley sprouts and therefore the total growth of the barley. RSO and RME both decreased the total amount of harvested phytomass. The weight of 1000 kernels increased with low concentrations of these contaminants and high contamination levels reduced the mass of the kernels. The results of these experiments suggest that the stored rapeseed oil and rapeseed oil methyl ester are both phytotoxic materials and therefore will cause substantial loss of vegetation in the case of a fuel spill. The RSO and RME biodegraded effectively in the measurement period of 28 days under OECD test conditions: the degree of biodegradation being over 60%. The biodegradation in the ground water was much slower: the degree of biodegradation being about 10% after 28 days.;

  16. Caracterização de isolados de Xanthomonas campestris pv campestris de sistemas de produção orgânico e reação de brássicas à podridão-negra Characterization of strains of Xanthomonas campestris pv campestris from organic farming systems and reaction of brassicas to black rot

    Directory of Open Access Journals (Sweden)

    Liliana Andréa dos Santos

    2008-12-01

    Full Text Available Noventa isolados de Xanthomonas campestris pv. campestris (Xcc de brássicas oriundas de sistemas de produção orgânico das Zonas da Mata e Agreste de Pernambuco foram caracterizados com base na sensibilidade a antibióticos e sulfato de cobre e atividade de esterase. A maioria apresentou alta sensibilidade à tetraciclina (76,6%, eritromicina (63,3% e estreptomicina (63,3%, resistência à amoxicilina (70%, gentamicina (40,0% e norfloxacin (45,5% e média sensibilidade (44,4% ou resistência (44,4% à neomicina. Cinqüenta e cinco isolados de Xcc foram resistentes ao sulfato de cobre na concentração de 50 mg/mL e todos foram sensíveis ao produto na concentração de 200 mg/mL. Atividade de esterase foi apresentada por 92,22% dos isolados. A análise Euclidiana por ligação simples evidenciou variabilidade entre os isolados separando-os em sete grupos de similaridade. Foi estudada também a reação de 14 cultivares de brássicas à podridão-negra, utilizando o isolado "B21" de Xcc. As cultivares diferiram significativamente entre si em relação ao período de incubação, incidência e severidade final da doença. Os maiores valores de severidade final da doença foram verificados em brócolos "Ramoso", couve-flor "Bola de Neve" e "Piracicaba de Verão", e repolho "Chato de Quintal". Os híbridos de couve-chinesa "AF 70", "AF 72", "AF 69" e "AF 66" mostraram-se altamente resistentes à doença, enquanto que brócolos "Ramoso" e "Precoce Piracicaba", couve-flor "Piracicaba de Verão" e "Híbrido Cindy" e repolho "60 Dias" foram medianamente resistentes.Ninety strains of Xanthomonas campestris pv. campestris (Xcc from brassicas grown under organic farming systems in the "Mata" and "Agreste" regions of Pernambuco, Brazil, were characterized based upon sensitivity to antibiotics and copper sulfate, and esterase activity. Most of the strains showed high sensitivity to tetracycline (76.6%, erythromycin (63.3% and streptomycin (63

  17. Immunity at Cauliflower Hydathodes Controls Systemic Infection by Xanthomonas campestris pv campestris.

    Science.gov (United States)

    Cerutti, Aude; Jauneau, Alain; Auriac, Marie-Christine; Lauber, Emmanuelle; Martinez, Yves; Chiarenza, Serge; Leonhardt, Nathalie; Berthomé, Richard; Noël, Laurent D

    2017-06-01

    Hydathodes are water pores found on leaves of a wide range of vascular plants and are the sites of guttation. We report here on the detailed anatomy of cauliflower ( Brassica oleracea ) and Arabidopsis ( Arabidopsis thaliana ) hydathodes. Hydathode surface presents pores resembling stomata giving access to large cavities. Beneath, the epithem is composed of a lacunar and highly vascularized parenchyma offering a direct connection between leaf surface and xylem vessels. Arabidopsis hydathode pores were responsive to ABA and light similar to stomata. The flg22 flagellin peptide, a well-characterized elicitor of plant basal immunity, did not induce closure of hydathode pores in contrast to stomata. Because hydathodes are natural infection routes for several pathogens, we investigated hydathode infection by the adapted vascular phytopathogenic bacterium Xanthomonas campestris pv campestris ( Xcc ), the causal agent of black rot disease of Brassicaceae. Microscopic observations of hydathodes six days postinoculation indicated a digestion of the epithem cells and a high bacterial multiplication. Postinvasive immunity was shown to limit pathogen growth in the epithem and is actively suppressed by the type III secretion system and its effector proteins. Altogether, these results give a detailed anatomic description of Brassicaceae hydathodes and highlight the efficient use of this tissue as an initial niche for subsequent vascular systemic dissemination of Xcc in distant plant tissues. © 2017 American Society of Plant Biologists. All Rights Reserved.

  18. Immunity at Cauliflower Hydathodes Controls Systemic Infection by Xanthomonas campestris pv campestris1

    Science.gov (United States)

    Cerutti, Aude; Jauneau, Alain; Auriac, Marie-Christine; Lauber, Emmanuelle; Martinez, Yves; Chiarenza, Serge

    2017-01-01

    Hydathodes are water pores found on leaves of a wide range of vascular plants and are the sites of guttation. We report here on the detailed anatomy of cauliflower (Brassica oleracea) and Arabidopsis (Arabidopsis thaliana) hydathodes. Hydathode surface presents pores resembling stomata giving access to large cavities. Beneath, the epithem is composed of a lacunar and highly vascularized parenchyma offering a direct connection between leaf surface and xylem vessels. Arabidopsis hydathode pores were responsive to ABA and light similar to stomata. The flg22 flagellin peptide, a well-characterized elicitor of plant basal immunity, did not induce closure of hydathode pores in contrast to stomata. Because hydathodes are natural infection routes for several pathogens, we investigated hydathode infection by the adapted vascular phytopathogenic bacterium Xanthomonas campestris pv campestris (Xcc), the causal agent of black rot disease of Brassicaceae. Microscopic observations of hydathodes six days postinoculation indicated a digestion of the epithem cells and a high bacterial multiplication. Postinvasive immunity was shown to limit pathogen growth in the epithem and is actively suppressed by the type III secretion system and its effector proteins. Altogether, these results give a detailed anatomic description of Brassicaceae hydathodes and highlight the efficient use of this tissue as an initial niche for subsequent vascular systemic dissemination of Xcc in distant plant tissues. PMID:28184011

  19. Effect of Application of Pseudomonas fluorescent Strains on Yield and Yield Components of Rapeseed Cultivars

    Directory of Open Access Journals (Sweden)

    R Najafi

    2015-09-01

    Full Text Available Plant growth promoting rhizobacteria has been identified as an alternative to chemical fertilizer to enhance plant growth and yield directly and indirectly. Use of rhizosphere free living bacteria is one of the methods for crop production and leads to improvement of resources absorption. In order to study of yield, yield components and radiation use efficiency, under application of PGPR condition, an experiment was carried out in 2008 growing season at Agriculture and natural resources research station of Mashhad. The cultivars selected from three rapeseed species belong to Brassica napus, Brassica rapa and Brassica juncea (landrace, BP.18، Goldrush، Parkland، Hyola330، Hyola401. Experimental factorial design was randomized in complete block with three replications. Treatments included six varieties of Rapeseed and inoculations were four levels as non–inoculation, inoculation with P. fluorescens169, P. putida108 and use then together. Results showed that strains of fluorescent pseudomonas bacteria had greatest effects on yield and yield components cultivars. A significant difference in the number of pods per plant and 1000 seed weight observed. The cultivars were different in all treats except 1000 seed weight. Overall results indicated that application of growth stimulating bacteria in combination with different cultivars, had a positive effect growth, yield characteristics of plant varieties of rapeseed plants.

  20. Productivity and nutritive quality of three brassica varieties for use in pasture-based systems

    Science.gov (United States)

    Brassicas are gaining popularity among pasture-based livestock producers to extend grazing during the ‘summer slump’ and throughout the fall. A 2-yr study was conducted to compare biomass production and nutrient composition of ‘Barisca’ rapeseed (RAP; Brassica napus L.), ‘Inspiration’ canola (CAN; B...

  1. Analysis of Hydroxy Fatty Acids from the Pollen of Brassica campestris L. var. oleifera DC. by UPLC-MS/MS

    Directory of Open Access Journals (Sweden)

    Nian-Yun Yang

    2013-01-01

    Full Text Available Ultraperformance liquid chromatography coupled with negative electrospray tandem mass spectrometry (UPLC-ESI-MS/MS was used to determine 7 hydroxy fatty acids in the pollen of Brassica campestris L. var. oleifera DC. All the investigated hydroxy fatty acids showed strong deprotonated molecular ions [M–H]−, which underwent two major fragment pathways of the allyl scission and the β-fission of the alcoholic hydroxyl group. By comparison of their molecular ions and abundant fragment ions with those of reference compounds, they were tentatively assigned as 15,16-dihydroxy-9Z,12Z-octadecadienoic acid (1, 10,11,12-trihydroxy-(7Z,14Z-heptadecadienoic acid (2, 7,15,16-trihydroxy-9Z,12Z-octadecadienoic acid (3, 15,16-dihydroxy-9Z,12Z-octadecadienoic acid (4, 15-hydroxy-6Z,9Z,12Z-octadecatrienoic acid (5, 15-hydroxy-9Z,12Z- octadecadienoic acid (6, and 15-hydroxy-12Z-octadecaenoic acid (7, respectively. Compounds 3, 5, and 7 are reported for the first time.

  2. Production of intergeneric allotetraploid between autotetraploid non-heading Chinese cabbage (Brassica campestris ssp. chinensis Makino and autotetraploid radish (Raphanus sativus L.

    Directory of Open Access Journals (Sweden)

    Sun Cheng-Zhen

    2014-03-01

    Full Text Available Intergeneric hybrids between non-heading Chinese cabbage (Brassica campestris ssp. chinensis Makino; 2n = 4x = 40 and radish (Raphanus sativus L.; 2n = 4x = 36 were obtained through ovary culture and embryo rescue. Some hybrid embryos (0.11 per ovary were produced, but only 4 of them germinated. As most hybrid embryos failed to develop into plantlets directly, plants were regenerated by inducing shoots on the cultured cotyledon and inducing roots on the root induction medium. All hybrid plants were morphologically uniform. They resembled the non-heading Chinese cabbage in the long-lived habit, the plant status, the vernalization requirement and the petiole color, while the petiole shape, leaf venation pattern and flowers were more similar to those of radish. Upon examination of the flowers, these were found to have normal pistil, but rudimentary anthers with non-functional pollen grains. The somatic chromosome number of F1 plants was 38. Analysis of SSR banding patterns provided additional confirmation of hybridity.

  3. Early interspecific interference in the wheat/faba bean (Triticum aestivum/ Vicia faba ssp. minor and rapeseed/squarrosum clover (Brassica napus var. oleifera/Trifolium squarrosum intercrops

    Directory of Open Access Journals (Sweden)

    Paolo Benincasa

    2012-04-01

    Full Text Available Most of research on intercrops evaluate performances and interference between species on the basis of final yield, while little knowledge is available on the interference in early stages and at the root level, at least for cultivated intercrops. In fact, in the few studies on this subject species are often combined minding at experimental needs (e.g. common substrate, temperature and water requirements, easy root separation more than at their actual use in the farm. The present work evaluates interspecific interference during early developmental stages for two intercrops of agricultural interest: soft wheat-faba bean and rapeseed-squarrosum clover. Improving this knowledge would help intercrop growth modelling and rational cultivation. The experiments were carried out on soft wheat (Triticum aestivum, faba bean (Vicia faba var. minor, rapeseed (Brassica napus var. oleifera and squarrosum clover (Trifolium squarrosum, germinated and grown until 32 days after sowing (DAS as one-species stands or as wheat/faba bean and rapeseed/squarrosum clover intercrops, with different densities and proportions for the two species in each couple. Germination was studied in controlled-temperature chamber, plantlet growth was studied on pots in the greenhouse. During germination no interspecific interference was observed for both wheat/faba bean and rapeseed/squarrosum clover intercrops. During plantlet growth, interspecific interference occurred in both intercrops causing variations in whole plant and root dry matter accumulation. In the wheat/faba bean intercrop each species suffered from the competitive effect of the companion species and faba bean was the dominant species when present in lower proportion than wheat. The unexpectedly high aggressivity of faba bean may be explained either with the greater seed size that could have represented an initial advantage within the short duration of the experiment or with the competition towards wheat for substrate N

  4. Biochemical and histopathological profiling of Wistar rat treated with Brassica napus as a supplementary feed

    Directory of Open Access Journals (Sweden)

    Kazi Md. Mahmudul Hasan

    2018-03-01

    Full Text Available Metabolic changes together with cardiovascular and hepatic factors are related to the development of diseases like myocardial lipidosis, heart disease, and profound toxicity. The aim of this animal study is to determine the effects of high erucic acid containing rapeseed oil (Brassica napus L. varieties on liver, kidney and heart muscles in Wistar rats. Male Wistar rats were divided into three groups where each group containing four rats. Group A was considered as control diet group, while Group B rapeseed wild oil group and Group C rapeseed hybrid oil group were considered as experimental diet groups. The levels of aspartate aminotransferase (AST, alanine aminotransferase (ALT,alkaline phosphatase(ALP, creatine kinase-MB (CK-MB and creatinine of two experimental groups were significantly elevated while compared to the control groups (p  0.05. Noticeable tissue injury observed in this study is a sign of the relative toxicity of erucic acid containing rapeseed oil to mammalian species. The use of Brassica napus as a supplementary feed ingredient should be, therefore, thoroughly considered Keywords: Rapeseed oil, Rattus norvegicus, Serum enzymes, Erucic acid, Tissue profiling

  5. Expression analysis of four flower-specific promoters of Brassica spp ...

    African Journals Online (AJOL)

    The 5'-flanking region of ca. 1200 bp upstream of the translation start site (TSS) of a putative cell wall protein gene was cloned from Brassica campestris, B. chinensis, B. napus and B. oleracea, and transferred to tobacco via Agrobacterium-mediation after fused to promoter-less beta-glucuronidase (GUS) reporter gene.

  6. Genetic damage induced by a food coloring dye (sunset yellow) on meristematic cells of Brassica campestris L.

    Science.gov (United States)

    Dwivedi, Kshama; Kumar, Girjesh

    2015-01-01

    We have performed the present piece of work to evaluate the effect of synthetic food coloring azo dye (sunset yellow) on actively dividing root tip cells of Brassica campestris L. Three doses of azo dye were administered for the treatment of actively dividing root tip cells, namely, 1%, 3%, and 5%, for 6-hour duration along with control. Mitotic analysis clearly revealed the azo dye induced endpoint deviation like reduction in the frequency of normal divisions in a dose dependent manner. Mitotic divisions in the control sets were found to be perfectly normal while dose based reduction in MI was registered in the treated sets. Azo dye has induced several chromosomal aberrations (genotoxic effect) at various stages of cell cycle such as stickiness of chromosomes, micronuclei formation, precocious migration of chromosome, unorientation, forward movement of chromosome, laggards, and chromatin bridge. Among all, stickiness of chromosomes was present in the highest frequency followed by partial genome elimination as micronuclei. The present study suggests that extensive use of synthetic dye should be forbidden due to genotoxic and cytotoxic impacts on living cells. Thus, there is an urgent need to assess potential hazardous effects of these dyes on other test systems like human and nonhuman biota for better scrutiny.

  7. Development of manganese toxicity in pasture legumes under extreme climatic conditions. [Trifolium subterraneum; Medicago sativa; Brassica campestris

    Energy Technology Data Exchange (ETDEWEB)

    Siman, A; Cradock, F W; Hudson, A W

    1974-08-01

    Manganese levels and pH in soil were measured on limed and unlimed plots at bi-monthly intervals for two years at five field sites with lucerne (Medicago sativa) and subterranean clover (Trifolium subterraneum) and related to rainfall and temperature. Pot experiments with lucerne, subterranean clover and rape (Brassica campestris) were used to confirm the results of the field experiments. Manganese toxicity developed in lucerne and subterranean clover under waterlogged conditions after heavy rain on the slightly acid soils (pH 4.7-5.5). Lucerne also showed manganese toxicity on the same soils in summer after extended hot, dry conditions. The maximum available manganese was 210 ..mu..g/g in the waterlogged soil (0-15 cm) the 128 ..mu..g/g in the heat affected soil. Lime treatment of 2240 kg/ha reduced the maximum available manganese to 148 ..mu..g/g in waterlogged plots and to 47 ..mu..g/g in the heat affected plots but failed to correct manganese toxicity. However, lime corrected toxicity symptoms under less severe conditions. In the pot experiments, available manganese reached 270 ..mu..g/g after 2 weeks artificial waterlogging and 68 ..mu..g/g after 2 weeks dry heat exposure. 12 references, 4 figures, 3 tables.

  8. Immunopurification and characterization of a rape ( Brassica napus L.)

    African Journals Online (AJOL)

    Lipase or triacylglycerol acylhydrolase (E.C.3.1.1.3) was purified to homogeneity from rapeseed-germinated cotyledons (Brassica napus L.). The purification scheme involved homogenization, centrifugation, ultracentrifugation and affinity chromatography using polyclonal antibodies raised against porcine pancreatic lipase.

  9. Achievements in NS rapeseed hybrids breeding

    Directory of Open Access Journals (Sweden)

    Marjanović-Jeromela Ana

    2016-01-01

    Full Text Available The increased production of oilseed rape (Brassica napus L. is evident on a global scale, but also in Serbia in the last decade. Rapeseed is used primarily for vegetable oil and processing industry, but also as a source of protein for animal feed and green manure. Following the cultivation of varieties, breeding and cultivation of hybrid rapeseed started in the 1990's, to take advantage of heterosis in F1 generation, while protecting the breeder's rights during seed commercialization. The breeding of hybrid oilseed rape requires high quality starting material (lines with good combining abilities for introduction of male sterility. Ogura sterility system is primarily used at the Institute of Field and Vegetable Crops, Novi Sad, Serbia. To use this system, separate lines are modified with genes for cytoplasmic male sterility (cms female line - mother line and restoration of fertility (Rf male lines - father line. In order to maintain the sterility of the mother line it is necessary to produce a maintainer line of cytoplasmic male sterility. Creation of these lines and hybrids at the Institute of Field and Vegetable Crops was successfully monitored with intense use of cytogenetic laboratory methods. The structure and vitality of pollen, including different phases during meiosis were checked so that cms stability was confirmed during the introduction of these genes into different lines. Rapeseed breeding program in Serbia resulted in numerous varieties through collaboration of researchers engaged in breeding and genetics of this plant species. So far, in addition to 12 varieties of winter rapeseed and two varieties of spring rapeseed, a new hybrid of winter rapeseed NS Ras was registered in Serbia. NS Ras is an early-maturing hybrid characterized by high seed yield and oil content. Average yield of NS Ras for two seasons and three sites was 4256 kg ha-1 of seed and 1704 kg ha-1 of oil. Three promising winter rapeseed hybrids are in the process of

  10. Effects of ambient and elevated level of ozone on Brassica campestris L. with special reference to yield and oil quality parameters.

    Science.gov (United States)

    Tripathi, Ruchika; Agrawal, S B

    2012-11-01

    Tropospheric ozone (O(3)) has become a serious threat to growth and yield of important agricultural crops over Asian regions including India. Effect of elevated O(3) (ambient+10ppb) was studied on Brassica campestris L. (cv. Sanjukta and Vardan) in open top chambers under natural field conditions. Eight hourly mean ambient O(3) concentration varied from 26.3ppb to 69.5ppb during the growth period. Plants under O(3) exposure showed reductions in photosynthetic rate, reproductive parameters, yield as well as seed and oil quality. Cultivar Sanjukta showed more reduction in photosynthetic characteristics, reproductive structures and seed and oil quality. However, total yield was more affected in Vardan. Exposure of O(3) increased the degree of unsaturation and level of PUFA, ω-6fatty acid, linolenic acid and erucic acid in oil indicating the deterioration of its quality. The study further confirmed that there is a correspondence between O(3) induced change in photosynthetic processes, reproductive development and yield and did not find any compensatory response in the final yield. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Overexpression of a eukaryotic glutathione reductase gene from Brassica campestris improved resistance to oxidative stress in Escherichia coli

    International Nuclear Information System (INIS)

    Yoon, Ho-Sung; Lee, In-Ae; Lee, Hyoshin; Lee, Byung-Hyun; Jo, Jinki

    2005-01-01

    Glutathione reductase (GR) plays an essential role in a cell's defense against reactive oxygen metabolites by sustaining the reduced status of an important antioxidant glutathione. We constructed a recombinant plasmid based on the expression vector pET-18a that overexpresses a eukaryotic GR from Brassica campestris (BcGR) in Escherichia coli. For comparative analyses, E. coli GR (EcGR) was also subcloned in the same manner. The transformed E. coli with the recombinant constructs accumulated a high level of GR transcripts upon IPTG induction. Also, Western blot analysis showed overproduction of the BcGR protein in a soluble fraction of the transformed E. coli extract. When treated with oxidative stress generating reagents such as paraquat, salicylic acid, and cadmium, the BcGR overproducing E. coli exhibited a higher level of growth and survival rate than the control E. coli strain, but it was not as high as the E. coli strain transformed with the inducible EcGR. The translated amino acid sequences of BcGR and EcGR share 37.3% identity but all the functionally known important residues are conserved. It appears that eukaryotic BcGR functions in a prokaryotic system by providing protection against oxidative damages in E. coli

  12. Varietals resistance and susceptibility in mustard (brassica campestris l.) genotypes against aphid myzus persicae (sulzer) (homoptera: aphididae)

    International Nuclear Information System (INIS)

    Sarwar, M.; Ahmad, N.; Khan, G.Z.; Tofique, M.

    2009-01-01

    The exploitation of resistant cultivars is an imperative, simple, practical and flexible way to cope with insect pests incidence. Thirty genotypes of mustard (Brassica campestris L.) were tested for their resistance and susceptibility to aphid Myzus persicae (Sulzer) exposed under natural field conditions. Data on pest tolerance of genotypes were judged by quantitative traits such as number of aphids on each infested plant and mean dry weight of seeds per genotype. Studies observed the discrepancy in overall rates of pest invasion and seed yield contained by trailed mustard genotypes. Agati sarson (P), S-9-S-97-100/45 and S-9-S-97-100/45 were the least damaged genotypes showing their moderate resistance. Amongst other genotypes, MM-I/01-5, MM-I285 and MM-I/01-6 were the most damaged showing oversensitive response. Although the majority of genotypes were found vulnerable to pest, Agati sarson (P) and S-9-S-97-100/45 due to their lowest hypersensitive response toward aphid contamination and increased pods yield could be used for the development of essential resistance in mustard plant. A marked mode of damage inflicted by aphid on the crop was noticed and the abiotic factors contributing variations in aphid infestation levels during both growing seasons were determined. Knowledge about the host plant resistance investigated can facilitate growers to choose the most appropriate cultivars as pest control strategy. (author)

  13. Selenium alleviates chromium toxicity by preventing oxidative stress in cabbage (Brassica campestris L. ssp. Pekinensis) leaves.

    Science.gov (United States)

    Qing, Xuejiao; Zhao, Xiaohu; Hu, Chengxiao; Wang, Peng; Zhang, Ying; Zhang, Xuan; Wang, Pengcheng; Shi, Hanzhi; Jia, Fen; Qu, Chanjuan

    2015-04-01

    The beneficial role of selenium (Se) in alleviation of chromium (Cr)-induced oxidative stress is well established. However, little is known about the underlying mechanism. The impacts of exogenous Se (0.1mg/L) on Cr(1mg/L)-induced oxidative stress and antioxidant systems in leaves of cabbage (Brassica campestris L. ssp. Pekinensis) were investigated by using cellular and biochemical approaches. The results showed that supplementation of the medium with Se was effective in reducing Cr-induced increased levels of lipid peroxides and superoxide free radicals (O(-)2(·)), as well as increasing activities of superoxide dismutase (SOD) and peroxidase (POD). Meanwhile, 1mg/L Cr induced loss of plasma membrane integrity, growth inhibition, as well as ultrastructural changes of leaves were significantly reversed due to Se supplementation in the medium. In addition, Se application significantly altered the subcellular distribution of Cr which transported from mitochondria, nucleus and the cell-wall material to the soluble fraction and chloroplasts. However, Se application did no significant alteration of Cr effects on osmotic adjustment accumulating products. The study suggested that Se is able to protect leaves of cabbage against Cr toxicity by alleviation of Cr induced oxidative stress, and re-distribution of Cr in the subcellular of the leaf. Furthermore, free radicals, lipid peroxides, activity of SOD and POD, and subcellular distribution of Cr can be considered the efficient biomarkers to indicate the efficiency of Se to detoxification Cr. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Molecular phylogenetic implications in Brassica napus based on ...

    Indian Academy of Sciences (India)

    Brassica napus L. (canola, rapeseed) is one of the most important oil crops in many countries (Abdelmigid 2012;. Fayyaz et al. 2014), and thought to have originated from a cross where the maternal donor was closely related to two diploid species, B. oleracea (CC, 2n = 18) and B. rapa (AA, 2n = 20). Here, molecular ...

  15. Genetic Diversity in Commercial Rapeseed (Brassica napus L. Varieties from Turkey as Revealed by RAPD

    Directory of Open Access Journals (Sweden)

    Özlem ÖZBEK

    2013-02-01

    Full Text Available In cultivated commercial crop species, genetic diversity tends to decrease because of the extensive breeding processes. Therefore, germplasm of commercial crop species, such as Brassica napus L. should be evaluated and the genotypes, which have higher genetic diversity index, should be addressed as potential parental cross materials in breeding programs. In this study, the genetic diversity was analysed by using randomly amplified polymorphic DNA analysis (RAPD technique in nine Turkish commercial rapeseed varieties. The RAPD primers (10-mer oligonucleotides produced 51 scorable loci, 31 loci of which were polymorphic (60.78% and 20 loci (39.22% were monomorphic The RAPD bands were scored as binary matrix data and were analysed using POPGENE version 1.32. At locus level, the values of genetic diversity within population (Hs and total (HT were 0.15 and 0.19 respectively. The genetic differentiation (GST and the gene flow (Nm values between the populations were 0.20 and 2.05 respectively. The mean number of alleles (na, the mean number of effective alleles (nae, and the mean value of genetic diversity (He were 2.00, 1.26, and 0.19 respectively. According to Pearson’s correlation, multiple regression and principal component analyses, eco-geographical conditions in combination had significant effect on genetic indices of commercial B. napus L. varieties were discussed.

  16. The effect of different physical forms of rapeseed as a fat supplement on the activity of some enzymes in the duodenal chyme of dairy cows

    DEFF Research Database (Denmark)

    Moharerry, A.; Brask, Maike; Weisbjerg, Martin Riis

    2014-01-01

    Studies on nutritional regulation of digestive enzymes in ruminants are scarce. Fat supplementation of diets for dairy cows changes the supply of nutrients for absorption and transport. The aim of this experiment was to study the effect of the physical form of rapeseed (Brassica napus) fat......) and three fat-supplemented rations with either rapeseed cake (RSC), whole cracked rape seed (WCR), or rapeseed oil (RSO). The correlation coefficients among duodenal enzyme activities and the relationship between α-amylase and protease activities were examined. Diurnal samples were taken from the duodenum...

  17. Detecção, transmissão e efeito de Xanthomonas campestris pv. campestris na qualidade fisiológica de sementes de brócolis Detection, transmission and effect of Xanthomonas campestris pv. campestris in the physiological quality of broccoli seeds

    Directory of Open Access Journals (Sweden)

    Nilvanira Donizeti Tebaldi

    2007-12-01

    Full Text Available A detecção, a transmissão e o efeito de Xanthomonas campestris pv. campestris (Xcc na qualidade fisiológica de sementes de brócolis (Brassica oleracea var. italica foram avaliados, a partir de sementes obtidas de plantas ("Baron, Flórida, Hana Midori Sakata, Precoce Piracicaba de Verão, Ramoso Santana e Sabre" inoculadas com a bactéria, em condições de campo. Para a detecção do patógeno nas sementes foram utilizados os meios de cultura semi-seletivos: SX ágar, NSCAA e BSCAA; a taxa de transmissão da bactéria pelas sementes às plântulas foi avaliada usando semeadura em areia e meio de cultura contido em tubo de ensaio. Para a avaliação da qualidade fisiológica de sementes foram realizados o teste padrão de germinação e os testes de vigor: envelhecimento acelerado, índice de velocidade de emergência, crescimento de plântulas e massa seca. De acordo com os resultados, o meio de cultura semi-seletivo NSCAA foi mais eficaz para detectar Xcc em sementes de brócolis; não houve diferença significativa entre os genótipos na taxa de transmissão da bactéria pelas sementes e Xcc não afetou a germinação e o vigor das sementes.The detection, transmission and the effect of Xanthomomas campestris pv. campestris (Xcc in the physiological quality of broccoli seeds were evaluated. The seeds were obtained from inoculated field plants (`Baron', `Flórida', `Hana Midori Sakata', `Precoce Piracicaba de Verão', `Ramoso Santana' and `Sabre' genotypes with the bacterium. For the seed pathogen detection the semi-selective medium were used: starch for xanthomonads (SX agar, nutrient starch cycloheximide antibiotic agar (NSCAA and basal starch cycloheximide antibiotic agar (BSCAA; the bacteria seeds transmission percentage was evaluated using sand and test tube. The physiological seed quality was evaluated by the standard germination and vigor tests: the accelerated aging, speed of emergence, seedling growth and seedling dry weight. The

  18. Detecção, transmissão e efeito de Xanthomonas campestris pv. campestris na qualidade fisiológica de sementes de brócolis Detection, transmission and effect of Xanthomonas campestris pv. campestris in the physiological quality of broccoli seeds

    Directory of Open Access Journals (Sweden)

    Nilvanira Donizete Tebaldi

    2007-09-01

    Full Text Available A detecção, a transmissão e o efeito de Xanthomonas campestris pv. campestris (Xcc na qualidade fisiológica de sementes de brócolis (Brassica oleracea var. italica foram avaliadas, a partir de sementes obtidas de plantas ("Baron, Flórida, Hana Midori Sakata, Precoce Piracicaba de Verão, Ramoso Santana e Sabre" inoculadas com a bactéria, em condições de campo. Para a detecção do patógeno nas sementes foram utilizados os meios de cultura semi-seletivos: SX ágar, NSCAA e BSCAA; a taxa de transmissão da bactéria pelas sementes às plântulas foi avaliada usando semeadura em areia e meio de cultura contido em tubo de ensaio. Para a avaliação da qualidade fisiológica das sementes foram realizados o teste padrão de germinação e os testes de vigor: envelhecimento acelerado, índice de velocidade de emergência, crescimento das plântulas e massa seca. De acordo com os resultados, o meio de cultura semi-seletivo NSCAA foi mais eficaz para detectar Xcc em sementes de brócolis; não houve diferença significativa entre os genótipos na taxa de transmissão da bactéria pelas sementes e Xcc não afetou a germinação e o vigor das sementes.The detection, transmission and the effect of Xanthomomas campestris pv. campestris (Xcc in the physiological quality of broccoli seeds were evaluated. The seeds were obtained from inoculated field plants ('Baron', 'Flórida', 'Hana Midori Sakata', 'Precoce Piracicaba de Verão', 'Ramoso Santana' and 'Sabre' genotypes with the bacterium. For the seed pathogen detection the semi-selective medium were used: starch for xanthomonads (SX agar, nutrient starch cycloheximide antibiotic agar (NSCAA and basal starch cycloheximide antibiotic agar (BSCAA; the bacteria seeds transmission percentage was evaluated using sand and test tube. The physiological seed quality was evaluated by the standard germination and vigor tests: the accelerated aging, speed of emergence, seedling growth and seedling dry weight

  19. Cloning and characterization of a pathogen-induced chitinase in Brassica napus

    DEFF Research Database (Denmark)

    Rasmussen, U.; Bojsen, K.; Collinge, D.B.

    1992-01-01

    A chitinase cDNA clone from rapeseed (Brassica napus L. ssp. oleifera) was isolated. The cDNA clone, ChB4, represents a previously purified and characterized basic chitinase isozyme. The longest open reading frame in ChB4 encodes a polypeptide of 268 amino acids. This polypeptide consists of a 24...

  20. Selection of pathogen-resistant mutants in rapeseed

    International Nuclear Information System (INIS)

    Spanier, A.; Roebbelen, G.

    1990-01-01

    Full text: Significant yield reductions are due to Phoma lingam and Alternaria brassicae. Toxin containing culture filtrates of the pathogens as well as concentrated toxins of Phoma (Sirodesmins) are used for resistance selections in in-vitro cultures of haploid rapeseed materials. A few days after transfer of the in-vitro materials to the selective media the inhibitory effect of both the culture filtrates as well as the Sirodesmins was apparent. Clones were obtained, surviving several transfers onto toxin containing media. Further experiments shall clarify whether the toxin tolerance, selected in vitro at the cell level, is expressed in the differentiated plant in the greenhouse and finally in the field. (author)

  1. Cardinal Temperatures of Brassica sp. and How to Determine It

    Directory of Open Access Journals (Sweden)

    D. K. SUANDA SUANDA

    2013-08-01

    Full Text Available Cardinal temperatures consist of minimum, optimum and maximum of plant growth, and might beable to be determined by assessing effect of temperature on seed germination. An experiment ofseed germination was conducted in laboratory, using thermal gradient plate for ten days. To test hypothesisthat rapeseed genotypes vary in their response to temperatures. The design of this experiment was asplit plot with four replications. The main-treatments were 14 different temperatures: 0.4°C, 3.3°C,7.8°C, 11.6°C, 13.3°C, 15.0°C, 16.8°C, 18.3°C, 20.9°C, 21.1°C, 25.6°C, 29.0°C, 33.0°C and36.3°C. Sub-treatments were 6 brassica genotypes: Brassica napus genotypes (Tatyoon and Marnoo;B. campestris (Jumbuck and Chinoli B; B. juncea (No. 81797 and Zero Erusic Mustard (ZEM 2.Each treatment was using 50 seeds. Germinations were observed daily for ten days and data wereanalyzed with regression and correlation. Genotypes responded differently to temperatures with Jumbuckthe most sensitive to low temperature with minimum temperature (7.90°C, then respectively followedby Chinoli B (6.36°C, ZEM 2 (4.77°C, Tatyoon (4.63°C, No. 81797 (2.59°C, and Marnoo(1.00°C. For high temperature the most sensitive was No. 81797 with maximum temperature 38.61°C.and then respectively followed by Marnoo (39.76°C, Chinoli B (42.93°C, Tatyoon (43.79°C,Jumbuck (44.58°C and ZEM 2 (45.88°C. Optimum temperatures were for Jumbuck was 24.56°C,ZEM 2 (26.95°C, Tatyoon (27.12°C, No. 81797 (28.12°C, Chinoli B (29.74°C and Marnoo(30.48°C.

  2. Evaluation of physiological, growth and yield responses of a tropical oil crop (Brassica campestris L. var. Kranti) under ambient ozone pollution at varying NPK levels

    International Nuclear Information System (INIS)

    Singh, Poonam; Agrawal, Madhoolika; Agrawal, Shashi Bhushan

    2009-01-01

    A field study was conducted to evaluate the impact of ambient ozone on mustard (Brassica campestris L. var. Kranti) plants grown under recommended and 1.5 times recommended NPK doses at a rural site of India using filtered (FCs) and non-filtered open top chambers (NFCs). Ambient mean O 3 concentration varied from 41.65 to 54.2 ppb during the experiment. Plants growing in FCs showed higher photosynthetic rate at both NPK levels, but higher stomatal conductance only at recommended NPK. There were improvements in growth parameters and biomass of plants in FCs as compared to NFCs at both NPK levels with higher increments at 1.5 times recommended. Seed yield and harvest index decreased significantly only at recommended NPK in NFCs. Seed quality in terms of nutrients, protein and oil contents reduced in NFCs at recommended NPK. The application of 1.5 times recommended NPK provided protection against yield loss due to ambient O 3 . - NPK level above recommended alleviates the adverse effects of ambient ozone on a tropical mustard cultivar

  3. Evaluation of physiological, growth and yield responses of a tropical oil crop (Brassica campestris L. var. Kranti) under ambient ozone pollution at varying NPK levels

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Poonam [Laboratory of Air Pollution and Global Climate Change, Ecology Research Circle, Department of Botany, Banaras Hindu University, Varanasi 221005 (India); Agrawal, Madhoolika [Laboratory of Air Pollution and Global Climate Change, Ecology Research Circle, Department of Botany, Banaras Hindu University, Varanasi 221005 (India)], E-mail: madhoo58@yahoo.com; Agrawal, Shashi Bhushan [Laboratory of Air Pollution and Global Climate Change, Ecology Research Circle, Department of Botany, Banaras Hindu University, Varanasi 221005 (India)

    2009-03-15

    A field study was conducted to evaluate the impact of ambient ozone on mustard (Brassica campestris L. var. Kranti) plants grown under recommended and 1.5 times recommended NPK doses at a rural site of India using filtered (FCs) and non-filtered open top chambers (NFCs). Ambient mean O{sub 3} concentration varied from 41.65 to 54.2 ppb during the experiment. Plants growing in FCs showed higher photosynthetic rate at both NPK levels, but higher stomatal conductance only at recommended NPK. There were improvements in growth parameters and biomass of plants in FCs as compared to NFCs at both NPK levels with higher increments at 1.5 times recommended. Seed yield and harvest index decreased significantly only at recommended NPK in NFCs. Seed quality in terms of nutrients, protein and oil contents reduced in NFCs at recommended NPK. The application of 1.5 times recommended NPK provided protection against yield loss due to ambient O{sub 3}. - NPK level above recommended alleviates the adverse effects of ambient ozone on a tropical mustard cultivar.

  4. Enteric methane production and ruminal fermentation of forage brassica diets fed in continuous culture

    Science.gov (United States)

    The aim of the current study was to determine nutrient digestibility, VFA production, N metabolism, and CH4 production of canola (Brassica napus L.), rapeseed (B. napus L.), turnip (B. rapa L.), and annual ryegrass (Lolium multiflorum Lam.) fed with orchardgrass (Dactylis glomerata L.) in continuous...

  5. Interactive Role of Fungicides and Plant Growth Regulator (Trinexapac on Seed Yield and Oil Quality of Winter Rapeseed

    Directory of Open Access Journals (Sweden)

    Muhammad Ijaz

    2015-09-01

    Full Text Available This study was designed to evaluate the role of growth regulator trinexapac and fungicides on growth, yield, and quality of winter rapeseed (Brassica napus L.. The experiment was conducted simultaneously at different locations in Germany using two cultivars of rapeseed. Five different fungicides belonging to the triazole and strobilurin groups, as well as a growth regulator trinexapac, were tested in this study. A total of seven combinations of these fungicides and growth regulator trinexapac were applied at two growth stages of rapeseed. These two stages include green floral bud stage (BBCH 53 and the course of pod development stage (BBCH 65. The results showed that plant height and leaf area index were affected significantly by the application of fungicides. Treatments exhibited induced photosynthetic ability and delayed senescence, which improved the morphological characters and yield components of rape plants at both locations. Triazole, in combination with strobilurin, led to the highest seed yield over other treatments at both experimental locations. Significant effects of fungicides on unsaturated fatty acids of rapeseed oil were observed. Fungicides did not cause any apparent variation in the values of free fatty acids and peroxide of rapeseed oil. Results of our study demonstrate that judicious use of fungicides in rapeseed may help to achieve sustainable farming to obtain higher yield and better quality of rapeseed.

  6. Transmission of Xanthomonas campestris pv. campestris in seed production crops of cauliflower

    NARCIS (Netherlands)

    Kastelein, P.; Krijger, M.C.; Zouwen, van der P.S.; Steen, van der J.J.M.; Stevens, L.H.; Wolf, van der J.M.; Fernandes Vieira, J.; Amaral Villela, F.

    2014-01-01

    n 2011, two polytunnel greenhouse experiments were conducted on seed production farms, one under conventional conditions in the South-West (Rilland) and the other under organic conditions in the East (Voorst) of the Netherlands, to study transmission routes of Xanthomonas campestris pv. campestris

  7. Identification of flavonoids and hydroxycinnamic acids in pak choi varieties (Brassica campestris L. ssp. chinensis var. communis) by HPLC-ESI-MSn and NMR and their quantification by HPLC-DAD.

    Science.gov (United States)

    Harbaum, Britta; Hubbermann, Eva Maria; Wolff, Christian; Herges, Rainer; Zhu, Zhujun; Schwarz, Karin

    2007-10-03

    Twenty-eight polyphenols (11 flavonoid derivatives and 17 hydroxycinnamic acid derivatives) were detected in different cultivars of the Chinese cabbage pak choi ( Brassica campestris L. ssp. chinensis var. communis) by HPLC-DAD-ESI-MS(n). Kaempferol was found to be the major flavonoid in pak choi, glycosylated and acylated with different compounds. Smaller amounts of isorhamnetin were also detected. A structural determination was carried out by (1)H and (13)C NMR spectroscopy for the main compound, kaempferol-3-O-hydroxyferuloylsophoroside-7-O-glucoside, for the first time. Hydroxycinnamic acid derivatives were identified as different esters of quinic acid, glycosides, and malic acid. The latter ones are described for the first time in cabbages. The content of polyphenols was determined in 11 cultivars of pak choi, with higher concentrations present in the leaf blade than in the leaf stem. Hydroxycinnamic acid esters, particularly malic acid derivatives, are present in both the leaf blade and leaf stem, whereas flavonoid levels were determined only in the leaf blade.

  8. Overcoming interspecific incompatibility in the cross Brassica campestris ssp. japonica x Brassica oleracea var. botrytis using irradiated mentor pollen page

    International Nuclear Information System (INIS)

    Sarla, N.

    1988-01-01

    The cross B. campestris ssp. japonica x B. oleracea var. botrytis fails due to incompatibility barrier at the stigma. To realize this cross, irradiated compatible pollen (mentor pollen) was used before the incompatible pollination. The presence of mentor pollen stimulated the incompatible pollen to germinate and effect fertilization and seed set. One hybrid was thus obtained. Most of the seeds were inviable. Of the 5 plants raised one was a hybrid and 4 resembled the female parent. 1 tab., 7 refs

  9. Preferential exclusion of hybrids in mixed pollinations between oilseed rape (Brassica napus) and weedy B. campestris (Brassicaceae)

    DEFF Research Database (Denmark)

    Hauser, T.P.; Bagger Jørgensen, Rikke; Østergård, Hanne

    1997-01-01

    amplified polymorphic DNA analysis. Using data on the proportion of fully developed seeds and the proportion of these seeds that were hybrids, a statistical model was constructed to estimate the fitness of conspecific and heterospecific pollen and the survival of conspecific and heterospecific zygotes...... for competition between male gametophytes and/or seeds within pods. To test whether competition influences the success of hybridization, pollen from the two species was mixed in different proportions and applied to stigmas of both species. The resulting seeds were scored for paternity by isozyme and randomly...... to seeds. B. campestris pollen in B. napus styles had a significantly lower fitness than the conspecific pollen, whereas no difference between pollen types was found in B. campestris styles. Hybrid zygotes survived to significantly lower proportions than conspecific zygotes in both species, with the lowest...

  10. Alternaria resistance of Brassicae campestris L. improved by induced mutations

    International Nuclear Information System (INIS)

    Das, M.L.; Rahman, A.

    1989-01-01

    Full text: Seeds of 'YS 52', a cultivar susceptible to Alternaria brassicae (Berk.) Sacc., were exposed to gamma rays (30-90 kR). Eight more resistant mutants were selected in M3 and subjected to further field evaluation. The best mutant '17-5-83' appeared resistant and gave 44% higher yield than the parent, mutant '70-7-82' was found to be moderately resistant and gave a yield 21% higher than the parent. The yield increases seem to be connected with plant architecture changes. (author)

  11. Introgression of Black Rot Resistance from Brassica carinata to Cauliflower (Brassica oleracea botrytis Group) through Embryo Rescue.

    Science.gov (United States)

    Sharma, Brij B; Kalia, Pritam; Singh, Dinesh; Sharma, Tilak R

    2017-01-01

    Black rot caused by Xanthomonas campestris pv. campestris ( Xcc ) is a very important disease of cauliflower ( Brassica oleracea botrytis group) resulting into 10-50% yield losses every year. Since there is a dearth of availability of resistance to black rot disease in B. oleracea (C genome), therefore exploration of A and B genomes was inevitable as they have been reported to be potential reservoirs of gene(s) for resistance to black rot. To utilize these sources, interspecific hybrid and backcross progeny (B 1 ) were generated between cauliflower "Pusa Sharad" and Ethiopian mustard "NPC-9" employing in vitro embryo rescue technique. Direct ovule culture method was better than siliqua culture under different temperature regime periods. Hybridity testing of F 1 inter-specific plants was carried out using co-dominant SSR marker and Brassica B and C genome-specific (DB and DC) primers. Meiosis in the di-genomic (BCC) interspecific hybrid of B. oleracea botrytis group (2 n = 18, CC) × B. carinata (2 n = 4x = 34, BBCC) was higly disorganized and cytological analysis of pollen mother cells revealed chromosomes 2 n = 26 at metaphase-I. Fertile giant pollen grain formation was observed frequently in interspecific F 1 hybrid and BC 1 plants. The F 1 inter-specific plants were found to be resistant to Xcc race 1. Segregation distortion was observed in BC 1 generation for black rot resistance and different morphological traits. The At1g70610 marker analysis confirmed successful introgression of black rot resistance in interspecific BC 1 population. This effort will go a long way in pyramiding gene(s) for resistance against black rot in Cole crops, especially cauliflower and cabbage for developing durable resistance, thus minimize dependency on bactericides.

  12. Introgression of Black Rot Resistance from Brassica carinata to Cauliflower (Brassica oleracea botrytis Group) through Embryo Rescue

    Science.gov (United States)

    Sharma, Brij B.; Kalia, Pritam; Singh, Dinesh; Sharma, Tilak R.

    2017-01-01

    Black rot caused by Xanthomonas campestris pv. campestris (Xcc) is a very important disease of cauliflower (Brassica oleracea botrytis group) resulting into 10–50% yield losses every year. Since there is a dearth of availability of resistance to black rot disease in B. oleracea (C genome), therefore exploration of A and B genomes was inevitable as they have been reported to be potential reservoirs of gene(s) for resistance to black rot. To utilize these sources, interspecific hybrid and backcross progeny (B1) were generated between cauliflower “Pusa Sharad” and Ethiopian mustard “NPC-9” employing in vitro embryo rescue technique. Direct ovule culture method was better than siliqua culture under different temperature regime periods. Hybridity testing of F1 inter-specific plants was carried out using co-dominant SSR marker and Brassica B and C genome-specific (DB and DC) primers. Meiosis in the di-genomic (BCC) interspecific hybrid of B. oleracea botrytis group (2n = 18, CC) × B. carinata (2n = 4x = 34, BBCC) was higly disorganized and cytological analysis of pollen mother cells revealed chromosomes 2n = 26 at metaphase-I. Fertile giant pollen grain formation was observed frequently in interspecific F1 hybrid and BC1 plants. The F1 inter-specific plants were found to be resistant to Xcc race 1. Segregation distortion was observed in BC1 generation for black rot resistance and different morphological traits. The At1g70610 marker analysis confirmed successful introgression of black rot resistance in interspecific BC1 population. This effort will go a long way in pyramiding gene(s) for resistance against black rot in Cole crops, especially cauliflower and cabbage for developing durable resistance, thus minimize dependency on bactericides. PMID:28769959

  13. Introgression of Black Rot Resistance from Brassica carinata to Cauliflower (Brassica oleracea botrytis Group through Embryo Rescue

    Directory of Open Access Journals (Sweden)

    Brij B. Sharma

    2017-07-01

    Full Text Available Black rot caused by Xanthomonas campestris pv. campestris (Xcc is a very important disease of cauliflower (Brassica oleracea botrytis group resulting into 10–50% yield losses every year. Since there is a dearth of availability of resistance to black rot disease in B. oleracea (C genome, therefore exploration of A and B genomes was inevitable as they have been reported to be potential reservoirs of gene(s for resistance to black rot. To utilize these sources, interspecific hybrid and backcross progeny (B1 were generated between cauliflower “Pusa Sharad” and Ethiopian mustard “NPC-9” employing in vitro embryo rescue technique. Direct ovule culture method was better than siliqua culture under different temperature regime periods. Hybridity testing of F1 inter-specific plants was carried out using co-dominant SSR marker and Brassica B and C genome-specific (DB and DC primers. Meiosis in the di-genomic (BCC interspecific hybrid of B. oleracea botrytis group (2n = 18, CC × B. carinata (2n = 4x = 34, BBCC was higly disorganized and cytological analysis of pollen mother cells revealed chromosomes 2n = 26 at metaphase-I. Fertile giant pollen grain formation was observed frequently in interspecific F1 hybrid and BC1 plants. The F1 inter-specific plants were found to be resistant to Xcc race 1. Segregation distortion was observed in BC1 generation for black rot resistance and different morphological traits. The At1g70610 marker analysis confirmed successful introgression of black rot resistance in interspecific BC1 population. This effort will go a long way in pyramiding gene(s for resistance against black rot in Cole crops, especially cauliflower and cabbage for developing durable resistance, thus minimize dependency on bactericides.

  14. Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil.

    Science.gov (United States)

    Ok, Yong Sik; Usman, Adel R A; Lee, Sang Soo; Abd El-Azeem, Samy A M; Choi, Bongsu; Hashimoto, Yohey; Yang, Jae E

    2011-10-01

    Rapeseed (Brassica napus L.) has been cultivated for biodiesel production worldwide. Winter rapeseed is commonly grown in the southern part of Korea under a rice-rapeseed double cropping system. In this study, a greenhouse pot experiment was conducted to assess the effects of rapeseed residue applied as a green manure alone or in combinations with mineral N fertilizer on Cd and Pb speciation in the contaminated paddy soil and their availability to rice plant (Oryza sativa L.). The changes in soil chemical and biological properties in response to the addition of rapeseed residue were also evaluated. Specifically, the following four treatments were evaluated: 100% mineral N fertilizer (N100) as a control, 70% mineral N fertilizer+rapeseed residue (N70+R), 30% mineral N fertilizer+rapeseed residue (N30+R) and rapeseed residue alone (R). The electrical conductivity and exchangeable cations of the rice paddy soil subjected to the R treatment or in combinations with mineral N fertilizer treatment, N70+R and N30+R, were higher than those in soils subjected to the N100 treatment. However, the soil pH value with the R treatment (pH 6.3) was lower than that with N100 treatment (pH 6.9). Use of rapeseed residue as a green manure led to an increase in soil organic matter (SOM) and enhanced the microbial populations in the soil. Sequential extraction also revealed that the addition of rapeseed residue decreased the easily accessible fraction of Cd by 5-14% and Pb by 30-39% through the transformation into less accessible fractions, thereby reducing metal availability to the rice plant. Overall, the incorporation of rapeseed residue into the metal contaminated rice paddy soils may sustain SOM, improve the soil chemical and biological properties, and decrease the heavy metal phytoavailability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. LMI1-like genes involved in leaf margin development of Brassica napus.

    Science.gov (United States)

    Ni, Xiyuan; Liu, Han; Huang, Jixiang; Zhao, Jianyi

    2017-06-01

    In rapeseed (Brassica napus L.), leaf margins are variable and can be entire, serrate, or lobed. In our previous study, the lobed-leaf gene (LOBED-LEAF 1, BnLL1) was mapped to a 32.1 kb section of B. napus A10. Two LMI1-like genes, BnaA10g26320D and BnaA10g26330D, were considered the potential genes that controlled the lobed-leaf trait in rapeseed. In the present study, these two genes and another homologous gene (BnaC04g00850D) were transformed into Arabidopsis thaliana (L.) Heynh. plants to identify their functions. All three LMI1-like genes of B. napus produced serrate leaf margins. The expression analysis indicated that the expression level of BnaA10g26320D determined the difference between lobed- and entire-leaved lines in rapeseed. Therefore, it is likely that BnaA10g26320D corresponds to BnLL1.

  16. Xerophilic mycopopulations isolated from rapeseeds (Brassica napus

    Directory of Open Access Journals (Sweden)

    Škrinjar Marija M.

    2013-01-01

    Full Text Available This paper presents the results of an investigation related to mycological populations of rapeseed samples produced in the Institute of Field and Vegetable Crops in Novi Sad (location: Rimski Šančevi, Novi Sad, with a special emphasis on the potentially toxigenic mycopopulations. Mycological investigations were performed on the samples that were treated with 4% solution of Na-hypochlorite, and on the ones that were not submitted to this treatment. Isolation and determination of total mould count was carried out using Dichloran Glycerol Agar (DG18. The identification of isolated moulds was done according to modern keys for fungal determination. From 20 untreated tested samples, 17 were contaminated with moulds (10.0 to 4.7x102 cfu/g. When the samples were treated with 4% solution of Na-hypochlorite, moulds were isolated only form 4 samples, and the total mould count ranged from 10.0 to 60.0 cfu/g. In the isolated mycopopulations, xerophilic moulds dominated, especially those from the genera Aspergillus, Eurotium and Penicillium. In the isolated mycopopulations, high degree of isolated species belonged to toxigenic species from the genera Alternaria, Aspergillus, Fusarium, Eurotium and Penicillium. [Projekat Ministarstva nauke Republike Srbije, br. III46009 i br.TR31025

  17. Micro-pressing of rapeseed (Brassica napus L. and Arabidopsis thaliana seeds for evaluation of the oil extractability

    Directory of Open Access Journals (Sweden)

    Savoire Raphaëlle

    2010-03-01

    Full Text Available Pressing is a crucial step in the crushing process of rapeseed seeds, regarding its major effect on the oil extraction yield, the energy consumption and the quality of the meal. In order to study and model in a rigorous way the behaviour of rapeseed seeds, and the oil extraction during pressing, the potential of a micro-pressing technique using a instrumented micro press adapted to quantities of seeds as low as 10 g for rapeseed and 3 g for Arabidopsis thaliana was examined and discussed. Using a phenomenological model, data from the pressing process and the material behaviour (compressibility modules were obtained with a good precision, highlighting small differences between samples. The well-known positive effect of the temperature on the oil extraction yield was confirmed with A. thaliana. Micro-pressing of ground and cooked rapeseed seeds did not lead to the results usually reported in the literature for continuous pressing. The results strongly suggest that the performance of the static micro-pressing is related to the macro-and micro-structure of seeds and is less sensitive to the moisture than continuous pressing. Further experiments are needed to confirm that the micro-pressing could be an effective tool for predicting the extractability of oil and therefore, contribute to plant breeding programmes in the future.

  18. The use of environmental metabolomics to determine glyphosate level of exposure in rapeseed (Brassica napus L.) seedlings

    International Nuclear Information System (INIS)

    Petersen, Iben Lykke; Tomasi, Giorgio; Sorensen, Hilmer; Boll, Esther S.; Hansen, Hans Christian Bruun; Christensen, Jan H.

    2011-01-01

    Metabolic profiling in plants can be used to differentiate between treatments and to search for biomarkers for exposure. A methodology for processing Ultra-High-Performance Liquid Chromatography-Diode-Array-Detection data is devised. This methodology includes a scheme for selecting informative wavelengths, baseline removal, retention time alignment, selection of relevant retention times, and principal component analysis (PCA). Plant crude extracts from rapeseed seedling exposed to sublethal concentrations of glyphosate are used as a study case. Through this approach, plants exposed to concentrations down to 5 μM could be distinguished from the controls. The compounds responsible for this differentiation were partially identified and were different from those specific for high exposure samples, which suggests that two different responses to glyphosate are elicited in rapeseed depending on the level of exposure. The PCA loadings indicate that a combination of other metabolites could be more sensitive than the response of shikimate to detect glyphosate exposure. - Highlights: → A method for processing UHPLC-DAD data for plant metabolic profiling is devised. → The metabolic profiling approach is more sensitive to glyphosate exposure than shikimate. → Plants exposed to concentrations down to 5 μM can be distinguished from the controls. → Two different responses to glyphosate may be elicited in rapeseed depending on the level of exposure. - A novel untargeted environmental metabololomic approach is used to detect low-level glyphosate exposure of rapeseed seedlings.

  19. The use of environmental metabolomics to determine glyphosate level of exposure in rapeseed (Brassica napus L.) seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Iben Lykke; Tomasi, Giorgio; Sorensen, Hilmer; Boll, Esther S.; Hansen, Hans Christian Bruun [Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C (Denmark); Christensen, Jan H., E-mail: jch@life.ku.dk [Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C (Denmark)

    2011-10-15

    Metabolic profiling in plants can be used to differentiate between treatments and to search for biomarkers for exposure. A methodology for processing Ultra-High-Performance Liquid Chromatography-Diode-Array-Detection data is devised. This methodology includes a scheme for selecting informative wavelengths, baseline removal, retention time alignment, selection of relevant retention times, and principal component analysis (PCA). Plant crude extracts from rapeseed seedling exposed to sublethal concentrations of glyphosate are used as a study case. Through this approach, plants exposed to concentrations down to 5 {mu}M could be distinguished from the controls. The compounds responsible for this differentiation were partially identified and were different from those specific for high exposure samples, which suggests that two different responses to glyphosate are elicited in rapeseed depending on the level of exposure. The PCA loadings indicate that a combination of other metabolites could be more sensitive than the response of shikimate to detect glyphosate exposure. - Highlights: > A method for processing UHPLC-DAD data for plant metabolic profiling is devised. > The metabolic profiling approach is more sensitive to glyphosate exposure than shikimate. > Plants exposed to concentrations down to 5 {mu}M can be distinguished from the controls. > Two different responses to glyphosate may be elicited in rapeseed depending on the level of exposure. - A novel untargeted environmental metabololomic approach is used to detect low-level glyphosate exposure of rapeseed seedlings.

  20. Variations in fatty acid composition, glucosinolate profile and some phytochemical contents in selected oil seed rape (Brassica napus L.) cultivars

    OpenAIRE

    Amin Mohamed, Amal; El-Din Saad El-Beltagi, Hossam

    2010-01-01

    Rapeseed (Brassica napus L.) is now the third most important source of edible oil in the world after soybean and palm oil. In this study seeds of five different rapeseed cultivars namely; pactol, silvo, topas, serw 4 and serw 6 were evaluated for their fatty acid composition, glucosinolate profile, amino acids, total tocopherols and phenolic content. Among all cultivars significant variability in fatty acids were observed. The oleic acid (C18:1) ranged from 56.31% to 58.67%, linoleic acid (C1...

  1. The compact genome of the plant pathogen Plasmodiophora brassicae is adapted to intracellular interactions with host Brassica spp.

    Science.gov (United States)

    Rolfe, Stephen A; Strelkov, Stephen E; Links, Matthew G; Clarke, Wayne E; Robinson, Stephen J; Djavaheri, Mohammad; Malinowski, Robert; Haddadi, Parham; Kagale, Sateesh; Parkin, Isobel A P; Taheri, Ali; Borhan, M Hossein

    2016-03-31

    The protist Plasmodiophora brassicae is a soil-borne pathogen of cruciferous species and the causal agent of clubroot disease of Brassicas including agriculturally important crops such as canola/rapeseed (Brassica napus). P. brassicae has remained an enigmatic plant pathogen and is a rare example of an obligate biotroph that resides entirely inside the host plant cell. The pathogen is the cause of severe yield losses and can render infested fields unsuitable for Brassica crop growth due to the persistence of resting spores in the soil for up to 20 years. To provide insight into the biology of the pathogen and its interaction with its primary host B. napus, we produced a draft genome of P. brassicae pathotypes 3 and 6 (Pb3 and Pb6) that differ in their host range. Pb3 is highly virulent on B. napus (but also infects other Brassica species) while Pb6 infects only vegetable Brassica crops. Both the Pb3 and Pb6 genomes are highly compact, each with a total size of 24.2 Mb, and contain less than 2 % repetitive DNA. Clustering of genome-wide single nucleotide polymorphisms (SNP) of Pb3, Pb6 and three additional re-sequenced pathotypes (Pb2, Pb5 and Pb8) shows a high degree of correlation of cluster grouping with host range. The Pb3 genome features significant reduction of intergenic space with multiple examples of overlapping untranslated regions (UTRs). Dependency on the host for essential nutrients is evident from the loss of genes for the biosynthesis of thiamine and some amino acids and the presence of a wide range of transport proteins, including some unique to P. brassicae. The annotated genes of Pb3 include those with a potential role in the regulation of the plant growth hormones cytokinin and auxin. The expression profile of Pb3 genes, including putative effectors, during infection and their potential role in manipulation of host defence is discussed. The P. brassicae genome sequence reveals a compact genome, a dependency of the pathogen on its host for some

  2. Genetic diversity analysis of brassica napus/brassica campestris progenies using microsatellite markers

    International Nuclear Information System (INIS)

    Fayyaz, L.; Farhatullah, A.; Iqbal, S.; Kanwal, M.; Nawaz, I.

    2014-01-01

    Genetic diversity and relationship of F2 segregating progenies of interspecific crosses between B. napus N-501/B. campestris C-118 were studied. A set of 90 genotypes (2 parental lines and their 88 F2 progenies) was characterized separately using 24 microsatellite or SSR markers to cover the diversity as broadly as possibly present in them. In initial screening only 12 out of 24 SSR primers combination amplified DNA fragments, while the remaining 12 SSR primers did not amplify DNA fragment therefore those 12 SSR molecular markers were not used for further analysis. The 12 SSR primer combinations generated a total of 33 alleles, of that 32 were polymorphic loci, whereas only one was monomorphic locus. Primers BRMS-19 and BRMS-40 were highly polymorphic producing 4 bands each. Primer Ra2-D04 was less polymorphic and it produced only one band. The proportion of polymorphic loci was 95.83% which indicates high genetic diversity among the progenies. The average number of polymorphic alleles per locus was 2.66. The PIC values ranged from 0.395 for primer Ra2-E03 to 0.726 for primer BRMS-019 with an average genetic diversity (PIC value) of 0.584 per locus. Seven primers showed PIC values above 0.5 (50%) indicating high genetic diversity in the studied plant materials. Pair-wise similarity indices among 90 genotypes ranged from 0.3 to 0.95. Dendrogram obtained through UPGMA clustering of F2 progenies depicted eight main groups using similarity coefficient of 0.70. The progenies could be similar to their parents if they have the same banding patterns as that of the parents and could be distinguished from each other by the combination of fragments which are repeatedly present in one progeny and absent in the other. Considerable genetic diversity has been found among the F2 segregating progenies and their parents using SSR markers thus, SSR analysis proved to be a useful tool. (author)

  3. Disruption of a CAROTENOID CLEAVAGE DIOXYGENASE 4 gene converts flower colour from white to yellow in Brassica species.

    Science.gov (United States)

    Zhang, Bao; Liu, Chao; Wang, Yaqin; Yao, Xuan; Wang, Fang; Wu, Jiangsheng; King, Graham J; Liu, Kede

    2015-06-01

    In Brassica napus, yellow petals had a much higher content of carotenoids than white petals present in a small number of lines, with violaxanthin identified as the major carotenoid compound in yellow petals of rapeseed lines. Using positional cloning we identified a carotenoid cleavage dioxygenase 4 gene, BnaC3.CCD4, responsible for the formation of flower colour, with preferential expression in petals of white-flowered B. napus lines. Insertion of a CACTA-like transposable element 1 (TE1) into the coding region of BnaC3.CCD4 had disrupted its expression in yellow-flowered rapeseed lines. α-Ionone was identified as the major volatile apocarotenoid released from white petals but not from yellow petals. We speculate that BnaC3.CCD4 may use δ- and/or α-carotene as substrates. Four variations, including two CACTA-like TEs (alleles M1 and M4) and two insertion/deletions (INDELs, alleles M2 and M3), were identified in yellow-flowered Brassica oleracea lines. The two CACTA-like TEs were also identified in the coding region of BcaC3.CCD4 in Brassica carinata. However, the two INDELs were not detected in B. napus and B. carinata. We demonstrate that the insertions of TEs in BolC3.CCD4 predated the formation of the two allotetraploids. © 2015 The Authors New Phytologist © 2015 New Phytologist Trust.

  4. Origin of the CMS gene locus in rapeseed cybrid mitochondria: active and inactive recombination produces the complex CMS gene region in the mitochondrial genomes of Brassicaceae.

    Science.gov (United States)

    Oshima, Masao; Kikuchi, Rie; Imamura, Jun; Handa, Hirokazu

    2010-01-01

    CMS (cytoplasmic male sterile) rapeseed is produced by asymmetrical somatic cell fusion between the Brassica napus cv. Westar and the Raphanus sativus Kosena CMS line (Kosena radish). The CMS rapeseed contains a CMS gene, orf125, which is derived from Kosena radish. Our sequence analyses revealed that the orf125 region in CMS rapeseed originated from recombination between the orf125/orfB region and the nad1C/ccmFN1 region by way of a 63 bp repeat. A precise sequence comparison among the related sequences in CMS rapeseed, Kosena radish and normal rapeseed showed that the orf125 region in CMS rapeseed consisted of the Kosena orf125/orfB region and the rapeseed nad1C/ccmFN1 region, even though Kosena radish had both the orf125/orfB region and the nad1C/ccmFN1 region in its mitochondrial genome. We also identified three tandem repeat sequences in the regions surrounding orf125, including a 63 bp repeat, which were involved in several recombination events. Interestingly, differences in the recombination activity for each repeat sequence were observed, even though these sequences were located adjacent to each other in the mitochondrial genome. We report results indicating that recombination events within the mitochondrial genomes are regulated at the level of specific repeat sequences depending on the cellular environment.

  5. DNA polymorphism analysis of Xanthomonas campestris pv ...

    African Journals Online (AJOL)

    strand conformation polymorphism (SSCP) techniques using M13 and 16S rRNA primers, respectively, for genotyping of the phytopathogenic bacterium Xanthomonas campestris pv. campestris was studied. RAPD provided a simple, rapid, and ...

  6. Rapeseed (Brassica napus L. as a protein plant species

    Directory of Open Access Journals (Sweden)

    Marinković Radovan

    2010-01-01

    Full Text Available Proteins of plant origin have a profound impact on human and animal lives. It is impossible to solve worldwide nutrition problem without taking into concern needs for proteins. Inadequate nutrition can only be improved by providing adequate proteins. Humans need c. 120g proteins daily, a third of which should come from meat and milk. Certain population categories, such as the sick, children, pregnant women and sportspeople are more sensitive to lack of protein. Oil crops synthesise oil, which is the basic reserve material in seed, but they also synthesise high levels of protein and can serve as protein source for human and animal nutrition. Generally speaking, protein content in seed of rapeseed at site R. Šančevi was from 19.60% (NS-L-74 to 25.93% JR-NS-36, and at site Sombor from 19.26% (NS-L-74 to 24.06% and 24.09% (NS-L-46 and cultivar Mira. Genotype NS-L-74 had the lowest protein content at both testing sites. Higher protein content was evident with spring genotypes than with winter gentypes. .

  7. The effect of Ni on concentration of the most abundant essential cations in several Brassica species

    Directory of Open Access Journals (Sweden)

    Putnik-Delić Marina I.

    2014-01-01

    Full Text Available Some plants from the genus Brassica have the ability to tolerate excessive concentrations of heavy metals, including Ni. Considering the fact that Ni is a very toxic element for living beings we wanted to examine its influence on some species from genus Brassicaceae. The aim of this study was to investigate the effect of Ni on distribution and accumulation of essential macronutrients from the standpoint of food quality and phytoremediation potential. Experiments were performed using winter (W and spring (S varieties of rapeseed (Brassica napus, L., white mustard (Brassica alba, L., black mustard (Brassica nigra, L. and turnip (Brassica rapa, L.. The seeds were exposed to 10 μM Ni from the beginning of germination. Plants were grown in water cultures, in semi-controlled conditions of a greenhouse, on ½ strength Hoagland solution to which was added Ni in the same concentration as during germination. Concentrations and distribution of Ca, Mg, K in leaf and stem were altered in the presence of increased concentration of Ni. Significant differences were found between the control and Ni-treated plants as well as among the genotypes. [Projekat Ministarstva nauke Republike Srbije, br. TR 31036 i br. TR 31016

  8. Functional characterization of Brassica napus DNA topoisomerase Iα-1 and its effect on flowering time when expressed in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Gao, Chenhao; Qi, Shuanghui; Liu, Kaige; Li, Dong; Jin, Changyu; Duan, Shaowei; Zhang, Meng; Chen, Mingxun

    2017-01-01

    Previous studies have shown that DNA topoisomerase Iα (AtTOP1α) has specific developmental functions during growth and development in Arabidopsis thaliana. However, little is known about the roles of DNA topoisomerases in the closely related and commercially important plant, rapeseed (Brassica napus). Here, the full-length BnTOP1α-1 coding sequence was cloned from the A2 subgenome of the Brassica napus inbred line L111. We determine that all BnTOP1α paralogs showed differing patterns of expression in different organs of L111, and that when expressed in tobacco leaves as a fusion protein with green fluorescent protein, BnTOP1α-1 localized to the nucleus. We further showed that ectopic expression of BnTOP1α-1 in the A. thaliana top1α-7 mutant fully complemented the early flowering phenotype of the mutant. Moreover, altered expression levels in top1α-7 seedlings of several key genes controlling flowering time were restored to wild type levels by ectopic expression of BnTOP1α-1. These results provide valuable insights into the roles of rapeseed DNA topoisomerases in flowering time, and provide a promising target for genetic manipulation of this commercially significant process in rapeseed. - Highlights: • BnTOP1α-1 was cloned from the A2 subgenome of Brassica napus inbred line L111. • BnTOP1α-1 rescued the early flowering phenotype of the Attop1α-7 mutant. • BnTOP1α-1 rescued the altered expression of flowering time genes in the Attop1α-mutant. • The functions of BnTOP1α-1 and AtTOP1α are likely conserved.

  9. High oleic acid content materials of rapeseed (Brassica napus) produced by radiation breeding

    International Nuclear Information System (INIS)

    Guan Chunyun; Liu Chunlin; Chen Sheyuan

    2006-01-01

    High oleic acid content rapeseed breeding has great significance, because high oleic acid oil is a healthy and nutritious oil, which is of a long shelflife and also propitious to producing biodiesel fuel. The high oleic acid content breeding materials of rapeseed (B. napus) were obtained by 80-100 kR ~(60)Co gamma ray ionizing radiation treatment of dry seeds and continuous selection. The results showed that the oleic acid contents of M (2), M (3) and M (4) progenies increased by different grades. Moreover, the oleic acid content of M (5) progeny increased greatly. The oleic acid contents were higher than 70% in the most of the plants and the highest one reached 93.5 %. The base G was transited by base A in fad (2) gene at the 270 site of high oleic acid mutation (M(6) 04-855). The location is at the beta folding area and conservative area of this protein. Base mutation at sites 1 044 and 1 062 also led to produce a stop condon. These changes in structure led to loss the function of fad (2). According to molecular mechanism of gene mutation, no matter what transvertion or transition happens, several replications are needed. That is to say several generations are needed. That was also the reason why high oleic acid content mutation occurred in later generations

  10. Analysis of genetic diversity among rapeseed cultivars and breeding lines by srap and ssr molecular markers

    International Nuclear Information System (INIS)

    Channa, S.A.; Tian, H.

    2016-01-01

    The knowledge of genetic diversity is very important for developing new rapeseed (Brassica napus L.) cultivars. The genetic diversity among 77 rapeseed accessions, including 22 varieties and 55 advanced breeding lines were analyzed by 47 sequence-related amplified polymorphism (SRAP) and 56 simple sequence repeat (SSR) primers. A total of 270 SRAP and 194 SSR polymorphic fragments were detected with an average of 5.74 and 3.46 for SRAP and SSR primer, respectively. The cluster analysis grouped the 77 accessions into five major clusters. Cluster I contained spring and winter type varieties from Czech Republic and semi-winter varieties and their respective breeding lines from China. The 16 elite breeding lines discovered in Cluster II, III, IV and V indicated higher genetic distance than accessions in Cluster I. The principal component analysis and structure analysis exhibited similar results to the cluster analysis. Analysis of molecular variance revealed that genetic diversity of the selected breeding lines was comparable to the rapeseed varieties, and variation among varieties and lines was significant. The diverse and unique group of 16 elite breeding lines detected in this study can be utilized in the future breeding program as a source for development of commercial varieties with more desirable characters. (author)

  11. USING Xanthomonas Campestris

    African Journals Online (AJOL)

    eobe

    Xanthan gum is a major biopolymer which finds a lot of applications industrially and domestically. ... gum was produced from pineapple peels using Xanthomonas campestris by ... producing microorganism is strongly influenced by the medium.

  12. Effects of Source and Rate of Nitrogen Fertilizer on Yield, Yield Components and Quality of Winter Rapeseed (Brassica napus L. Efecto de la Fuente y Dosis de Fertilizantes Nitrogenados en el Rendimiento, Componentes de Rendimiento y Calidad de Semilla de Canola (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Özden Öztürk

    2010-03-01

    Full Text Available Winter rapeseed (Brassica napus L. has potential to become an alternate oilseed crop both for edible oil production and energy agriculture (biofuel production for Turkey. This study was conducted to determine the effect of year, N sources and doses on the yield and quality traits of winter rapeseed in a cereal system in calcareous soils over two seasons, 2000-2001 and 2001-2002, in Central Anatolia. Three N sources, ammonium sulfate, ammonium nitrate and urea, were applied as hand broadcast on the soil surface at five doses (0, 50, 100, 150, and 200 kg N ha-1. The traits investigated were plant height, number of branches and pods per plant, number of seed per pod, thousand seed weight, seed yield, oil and protein content. There were significantly effects on seed yield, oil and protein content, and other yield components due to N sources and rates. In general, ammonium sulfate and urea gave higher seed yield than ammonium nitrate. Mean values of both seasons indicated that 100 and 150 kg N ha-1 rate increased significantly yield and quality traits with regard to other N treatments. The present results highlight the practical importance of adequate N fertilization and true N source in seed yield in winter rapeseed and suggest that ammonium sulfate at 150 kg N ha-1 will be about adequate to meet crop N requirements.El raps (Brassica napus L. tiene potencial para convertirse en un cultivo oleaginoso alternativo para producción de aceite comestible y agricultura energética (producción de biodiesel en Turquía. Este estudio fue conducido para determinar el efecto del año, fuente y dosis de N en las características de rendimiento y calidad de raps en un sistema cerealero en suelos calcáreos en dos temporadas, 2000-2001 y 2001-2002, en Anatolia Central. Se aplicaron al voleo tres fuentes de N (sulfato de amonio, nitrato de amonio y urea en cinco dosis (0, 50, 100, 150 y 200 kg N ha-1. Las características investigadas fueron altura de planta, n

  13. Integration of linkage maps for the Amphidiploid Brassica napus and comparative mapping with Arabidopsis and Brassica rapa

    Directory of Open Access Journals (Sweden)

    Delourme Régine

    2011-02-01

    Full Text Available Abstract Background The large number of genetic linkage maps representing Brassica chromosomes constitute a potential platform for studying crop traits and genome evolution within Brassicaceae. However, the alignment of existing maps remains a major challenge. The integration of these genetic maps will enhance genetic resolution, and provide a means to navigate between sequence-tagged loci, and with contiguous genome sequences as these become available. Results We report the first genome-wide integration of Brassica maps based on an automated pipeline which involved collation of genome-wide genotype data for sequence-tagged markers scored on three extensively used amphidiploid Brassica napus (2n = 38 populations. Representative markers were selected from consolidated maps for each population, and skeleton bin maps were generated. The skeleton maps for the three populations were then combined to generate an integrated map for each LG, comparing two different approaches, one encapsulated in JoinMap and the other in MergeMap. The BnaWAIT_01_2010a integrated genetic map was generated using JoinMap, and includes 5,162 genetic markers mapped onto 2,196 loci, with a total genetic length of 1,792 cM. The map density of one locus every 0.82 cM, corresponding to 515 Kbp, increases by at least three-fold the locus and marker density within the original maps. Within the B. napus integrated map we identified 103 conserved collinearity blocks relative to Arabidopsis, including five previously unreported blocks. The BnaWAIT_01_2010a map was used to investigate the integrity and conservation of order proposed for genome sequence scaffolds generated from the constituent A genome of Brassica rapa. Conclusions Our results provide a comprehensive genetic integration of the B. napus genome from a range of sources, which we anticipate will provide valuable information for rapeseed and Canola research.

  14. Physiological Mechanisms behind Differences in Pod Shattering Resistance in Rapeseed (Brassica napus L. Varieties.

    Directory of Open Access Journals (Sweden)

    Jie Kuai

    Full Text Available Pod shattering resistance index (SRI is a key factor affecting the mechanical harvesting of rapeseed. Research on the differences in pod shattering resistance levels of various rapeseed varieties can provide a theoretical basis for varietal breeding and application in mechanical harvesting. The indicators on pod shattering resistance including pod morphology and wall components were evaluated on eight hybrids and open pollinators, respectively, during 2012-2014. The results showed the following: (1 From the current study, SRI varied greatly with variety, and conventional varieties had stronger resistance than hybrid according to the physiological indexes. and (2 Under the experimental conditions, the SRI was linearly related to pod wall weight and the water content in pod walls, and the goodness-of-fit measurements for the regression model of the SRI based on pod wall weight and water content were 0.584** and 0.377*, respectively, reaching the significant level. This illustrated that pod wall weight and the water content in pod walls determined the SRI. (3 Compared with the relative contents of biochemical components in pod walls, the contents of particular biochemical components in pod walls had closer correlations with SRI. Among the biochemical components, the hemicellulose content was the decisive factor for the SRI.

  15. Xanthan gum production by Xanthomonas campestris pv ...

    African Journals Online (AJOL)

    Cassava starch is a main renewable bio-resource with low price and mass production in Guangxi, China. It was used as carbon source in growing Xanthomonas campestris pv. campestris 8004 (Xcc 8004) for xanthan gum production in this study. The xanthan gum yield of gelatinized cassava starch was higher than that of ...

  16. NAPUS 2000 Rapeseed (Brassica napus breeding for improved human nutrition

    Directory of Open Access Journals (Sweden)

    Friedt Wolfgang

    2001-01-01

    Full Text Available Following a competition announcement of the Federal Ministry of Research and Education (BMBF a project dealing with the improvement of the nutritional value of oilseed rape (Brassica napus for food applications and human nutrition was worked out and started in autumn 1999. A number of partners (Figure 2 are carrying out a complex project reaching from the discovery, characterisation, isolation and transfer of genes of interest up to breeding of well performing varieties combined with important agronomic traits. Economic studies and processing trials as well as nutritional investigations of the new qualities are undertaken. B. napus seed quality aspects with respect to seed coat colour, oil composition, lecithin and protein fractions and antioxidants like tocopherols and resveratrol will be improved.

  17. Cogeneration of biodiesel and nontoxic rapeseed meal from rapeseed through in-situ alkaline transesterification.

    Science.gov (United States)

    Qian, Junfeng; Yang, Qiuhui; Sun, Fuan; He, Mingyang; Chen, Qun; Yun, Zhi; Qin, Lizhen

    2013-01-01

    In-situ alkaline transesterification of rapeseed oil with methanol for the production of biodiesel and nontoxic rapeseed meal was carried out. Water removal from milled rapeseed by methanol washing was more effective than vacuum drying. The conversion rate of rapeseed oil into FAME was 92%, FAME mass was 8.81 g, glucosinolates content in remaining rapeseed meal was 0.12% by methanol washing, while by vacuum drying the values were 46%, 4.44 g, 0.58%, respectively. In the presence of 0.10 mol/L NaOH in methanol, with methanol/oil molar ratio of 180:1 and a 3h reaction at 40 °C, a conversion rate of 98% was achieved, and the glucosinolates content was reduce to 0.07%, a value which below the GB/T 22514-2008 standard in China. Thus the rapeseed meal can be used as a source of protein in animal feed. The FAME prepared through in-situ alkaline transesterification met the ASTM specifications for biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. 21 CFR 184.1555 - Rapeseed oil.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Rapeseed oil. 184.1555 Section 184.1555 Food and... Substances Affirmed as GRAS § 184.1555 Rapeseed oil. (a) Fully hydrogenated rapeseed oil. (1) Fully hydrogenated rapeseed oil is a mixture of triglycerides in which the fatty acid composition is a mixture of...

  19. Evaluation of a model for predicting Avena fatua and Descurainia sophia seed emergence in winter rapeseed

    Energy Technology Data Exchange (ETDEWEB)

    Aboutalebian, M.A.; Nazari, S.; Gonzalez-Andujar, J.L.

    2017-07-01

    Avena fatua and Descurainia sophia are two important annual weeds throughout winter rapeseed (Brassica napus L.) production systems in the semiarid region of Iran. Timely and more accurate control of both species may be developed if there is a better understanding of its emergence patterns. Non-linear regression techniques are usually unable to accurately predict field emergence under such environmental conditions. The objectives of this research were to evaluate the emergence patterns of A. fatua and D. sophia and determine if emergence could be predicted using cumulative soil thermal time in degree days (CTT). In the present work, cumulative seedling emergence from a winter rapeseed field during 3 years data set was fitted to cumulative soil CTT using Weibull and Gompertz functions. The Weibull model provided a better fit, based on coefficient of determination (R2sqr), root mean square of error (RMSE) and Akaike index (AICd), compared to the Gompertz model between 2013 and 2016 seasons for both species. Maximum emergence of A. fatua occured 70-119 days after sowing or after equals 329-426 °Cd, while in D. sophia it occurred 119-134 days after sowing rapeseed equals 373-470 °Cd. Both models can aid in the future study of A. fatua and D. sophia emergence and assist growers and agricultural professionals with planning timely and more accurate A. fatua and D. sophia control.

  20. Evaluation of Yield Component Traits of Honeybee-Pollinated (Apis mellifera L.Rapeseed Canola (Brassica napus L. Evaluación de Parámetros de Rendimiento del Raps (Brassica napus L. Polinizado por Abejas (Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Ximena Araneda Durán

    2010-06-01

    Full Text Available Recent introduction of hybrid varieties raises the question if bees (Apis mellifera L. contribute as pollinator agents in developing the full yield potential of rapeseed (Brassica napus L.. In order to evaluate the yield achieved by B. napus cv. Artus pollinated by A. mellifera testing was carried out in the district of Freire, La Araucanía Region, Chile. This consisted in isolating or excluding rapeseed plants from pollinators with exclusion cages. Treatments applied were total exclusion (T1, partial exclusion (T2 and free pollination (T0 with a density of 6.5 hives ha-1, in order to determine the following yield components traits: grains per silique, siliques per plant, 1000 grain weight and yield. The experimental design used was randomized complete blocks with three treatments and three replicates. Results obtained show that the parameter least affected by bee intervention was the grains per silique variable. In contrast, siliques per plant and 1000 grain weight parameters presented significant differences, contributing to a yield greater than 5 t ha-1; which represented a figure 50.34% higher than in the treatment without bees. It may be concluded that the inclusion of bees in crops is fully justified as a production tool.La reciente introducción de variedades híbridas plantea la interrogante de la contribución que pueda tener la presencia de abejas (Apis mellifera L. como agentes polinizadores para desarrollar en pleno el potencial productivo del raps (Brassica napus L.. Con el objetivo de evaluar el rendimiento alcanzado por B. napus cv. Artus polinizado por A. mellifera, se realizó un ensayo en la localidad de Freire, Región de La Araucanía, Chile. Éste consistió en aislar o excluir las plantas de raps de los polinizadores mediante el uso de jaulas excluidoras. Los tratamientos consistieron en la exclusión total (T1, exclusión parcial (T2 y libre polinización (T0 con una densidad de 6,5 colmenas ha-1, con el fin de determinar

  1. Environmental effect of rapeseed oil ethyl ester

    International Nuclear Information System (INIS)

    Makareviciene, V.; Janulis, P.

    2003-01-01

    Exhaust emission tests were conducted on rapeseed oil methyl ester (RME), rapeseed oil ethyl ester (REE) and fossil diesel fuel as well as on their mixtures. Results showed that when considering emissions of nitrogen oxides (NO x ), carbon monoxide (CO) and smoke density, rapeseed oil ethyl ester had less negative effect on the environment in comparison with that of rapeseed oil methyl ester. When fuelled with rapeseed oil ethyl ester, the emissions of NO x showed an increase of 8.3% over those of fossil diesel fuel. When operated on 25-50% bio-ester mixed with fossil diesel fuel, NO x emissions marginally decreased. When fuelled with pure rapeseed oil ethyl ester, HC emissions decreased by 53%, CO emissions by 7.2% and smoke density 72.6% when compared with emissions when fossil diesel fuel was used. Carbon dioxide (CO 2 ) emissions, which cause greenhouse effect, decreased by 782.87 g/kWh when rapeseed oil ethyl ester was used and by 782.26 g/kWh when rapeseed oil methyl ester was used instead of fossil diesel fuel. Rapeseed oil ethyl ester was more rapidly biodegradable in aqua environment when compared with rapeseed oil methyl ester and especially with fossil diesel fuel. During a standard 21 day period, 97.7% of rapeseed oil methyl ester, 98% of rapeseed oil ethyl ester and only 61.3% of fossil diesel fuel were biologically decomposed. (author)

  2. Evaluation of the Use of Spring Rapeseed in Phytoremediation of Soils Contaminated with Trace Elements and Their Effect on Yield Parameters

    Directory of Open Access Journals (Sweden)

    Szulc Piotr Mirosław

    2014-12-01

    Full Text Available The experimental material was made up by the plant organs of Brassica napus L. from a pot experiment during one vegetation period. There was investigated the effect of relatively high concentration of zinc, copper, lead and cadmium in soil on the rapeseed yield, the content of protein and oil in seeds. The impact of metals was defined based on the content of selected fatty acids in oil extracted from seeds. The highest contents of zinc and copper were found in leaves, lead - in roots and cadmium - in stems. The biological concentration factor values were respectively calculated for all the rapeseed organs. For Cu and Pb the values of biological concentration factor were low and very low for all the plant organs. The doses of Zn (300 mg × kg-1, 600 mg × kg-1 and Cu (80 mg × kg-1, 160 mg × kg-1 applied in the pot experiment resulted in the translocation of metals from the roots to the leaves. The doses of lead (400 mg × kg-1, 1600 mg × kg-1 did not trigger any translocation of that metal from the roots to the above-ground rapeseed plant parts, however, after the application of the cadmium doses (2 mg × kg-1, 6 mg × kg-1, there was recorded a clear translocation of Cd to the rapeseed stems and the leaves. A relatively high content of zinc, copper, lead and cadmium in soil had a significant effect neither on the yield parameters and nor on the qualitative characters of the rapeseed seed. Neither did they affect the content of protein, fat and fatty acids in seed-extracted oil. The results of the pot experiment suggest that spring rapeseed is suitable for the phytoremediation of moderately heavy-metalcontaminated soils.

  3. Comparative proteome analysis of drought-sensitive and drought-tolerant rapeseed roots and their hybrid F1 line under drought stress.

    Science.gov (United States)

    Mohammadi, Payam Pour; Moieni, Ahmad; Komatsu, Setsuko

    2012-11-01

    Rapeseed (Brassica napus L.), which is the third leading source of vegetable oil, is sensitive to drought stress during the early vegetative growth stage. To investigate the initial response of rapeseed to drought stress, changes in the protein expression profiles of drought-sensitive (RGS-003) and drought-tolerant lines (SLM-003), and their F1 hybrid, were analyzed using a proteomics approach. Seven-day-old rapeseed seedlings were treated with drought stress by restricting water for 7 days, and proteins were extracted from roots and separated by two-dimensional polyacrylamide gel electrophoresis. In the sensitive rapeseed line, 35 protein spots were differentially expressed under drought stress, and proteins related to metabolism, energy, disease/defense, and transport were decreased. In the tolerant line, 32 protein spots were differentially expressed under drought stress, and proteins involved in metabolism, disease/defense, and transport were increased, while energy-related proteins were decreased. Six protein spots in F1 hybrid were common among expressed proteins in the drought-sensitive and -tolerant lines. Notably, tubulin beta-2 and heat shock protein 70 were decreased in the drought-sensitive line and hybrid F1 plants, while jasmonate-inducible protein and 20S proteasome subunit PAF1 were increased in the F1 hybrids and drought-tolerant line. These results indicate that (1) V-type H(+) ATPase, plasma-membrane associated cation-binding protein, HSP 90, and elongation factor EF-2 have a role in the drought tolerance of rapeseed; (2) The decreased levels of heat shock protein 70 and tubulin beta-2 in the drought-sensitive and hybrid F1 lines might explain the reduced growth of these lines in drought conditions.

  4. Relationship between transpiration and amino acid accumulation in Brassica leaf discs treated with cytokinins and fusicoccin

    International Nuclear Information System (INIS)

    Kuraishi, Susumu; Ishikawa, Fumio

    1977-01-01

    Both cytokinins and fusicoccin (FC) stimulated the transpiration and the amino acid accumulation in leaf discs of Brassica campestris var. komatsuna. Enhancement effects were of the same magnitude. Both the accumulation and the transpiration were similarly inhibited when vaseline was smeared on the leaf surface. Abscisic acid (ABA) also inhibited those cytokinin-induced effects. The accumulation of amino acid- 14 C was at the cytokinin- or FC-treated site unless the leaf surface was smeared with vaseline. These facts suggest that cytokinin- or FC-induced amino acid accumulation in leaf is caused by the stimulation of transpiration. (auth.)

  5. Enhanced phyto-extraction of cadmium and zinc using rapeseed

    Energy Technology Data Exchange (ETDEWEB)

    Ghani, M.; Slycken, S.V.; Meers, E.; Tack, F.M.G. [Laboratory of Analytical Chemistry and Applied Ecochemistry, Ghent University, Ghent (Belgium); Naz, F. [National Insect Museum, National Agricultural Research Centre, Islamabad (Pakistan); Ali, S. [Agriculture Department, University of Haripur, Haripur (Pakistan)

    2013-07-01

    In a green house pot experiment, the effects of three amendments, sulphur (S), ammonium sulphate ((NH{sub 4}){sub 2}SO{sub 4}) and ethylenediaminetetracetic acid (EDTA) were tested for phyto-extraction of Cd and Zn by rapeseed (Brassica napus L.). Elemental sulphur was applied as 20.00, 60.00, and 120.00 mg.kg{sup -1} soil. EDTA was tested at a dose of 585.00 mg.kg{sup -1} soil, and (NH{sub 4}){sub 2}SO{sub 4}) at a rate of 0.23 mg.kg{sup -1} soil. All treatments received a base fertilization (Hogland) before sowing. Plants were harvested after 51 days of growth and shoot dry matter and soil samples were analysed for metal contents. All amendments caused a significant increase in Cd and Zn contents in plant shoots of all treatments than control treatment. Further, EDTA was most effective for extraction metals concentrations in shoot biomass but the plants showed significant signs of toxicity and yield were severely depressed. The addition of sulfur favorably influenced plant biomass production. The fertilized ammonium sulfate treatment resulted in the highest phyto-extraction of Cd and Zn and the amounts of these metals accumulated in plant shoot exceeded by a factor of 4 and 3 respectively. Finally, Brassica napus could be used for soil remediation keeping its other uses which will make the contaminated site income generating source for the farmers. (authors)

  6. Assessment of cadmium accumulation, toxicity, and tolerance in Brassicaceae and Fabaceae plants--implications for phytoremediation.

    Science.gov (United States)

    Anjum, Naser A; Umar, Shahid; Iqbal, Muhammad

    2014-09-01

    This study, based on a greenhouse pot culture experiment conducted with 15-day-old rapeseed (Brassica campestris L. cv. Pusa Gold; family Brassicaceae) and moong bean (Vigna radiata L. Wilczek cv. Pusa Ratna; family Fabaceae) plants treated with cadmium (Cd) concentrations (0, 50, and 100 mg kg(-1) soil), investigates their potential for Cd accumulation and tolerance, and dissects the underlying basic physiological/biochemical mechanisms. In both species, plant dry mass decreased, while Cd concentration of both root and shoot increased with increase in soil Cd. Roots harbored a higher amount of Cd (vs. shoot) in B. campestris, while the reverse applied to V. radiata. By comparison, root Cd concentration was higher in B. campestris than in V. radiata. The high Cd concentrations in B. campestris roots and V. radiata shoots led to significant elevation in oxidative indices, as measured in terms of electrolyte leakage, H2O2 content, and lipid peroxidation. Both plants displayed differential adaptation strategies to counteract the Cd burden-caused anomalies in their roots and shoots. In B. campestris, increasing Cd burden led to a significantly decreased reduced glutathione (GSH) content but a significant increase in activities of GSH reductase (GR), GSH peroxidase (GPX), and GSH sulfotransferase (GST). However, in V. radiata, increasing Cd burden caused significant increase in GSH content and GR activity, but a significant decline in activities of GPX and GST. Cross talks on Cd burden of tissues and the adapted Cd tolerance strategies against Cd burden-accrued toxicity indicated that B. campestris and V. radiata are good Cd stabilizer and Cd extractor, respectively, wherein a fine tuning among the major components (GR, GPX, GST, GSH) of the GSH redox system helped the plants to counteract differentially the Cd load-induced anomalies in tissues. On the whole, the physiological/biochemical characterization of the B. campestris and V. radiata responses to varying Cd

  7. Comparative transcript profiling of fertile and sterile flower buds from multiple-allele-inherited male sterility in Chinese cabbage (Brassica campestris L. ssp. pekinensis).

    Science.gov (United States)

    Zhou, Xue; Liu, Zhiyong; Ji, Ruiqin; Feng, Hui

    2017-10-01

    We studied the underlying causes of multiple-allele-inherited male sterility in Chinese cabbage (Brassica campestris L. ssp. pekinensis) by identifying differentially expressed genes (DEGs) related to pollen sterility between fertile and sterile flower buds. In this work, we verified the stages of sterility microscopically and then performed transcriptome analysis of mRNA isolated from fertile and sterile buds using Illumina HiSeq 2000 platform sequencing. Approximately 80% of ~229 million high-quality paired-end reads were uniquely mapped to the reference genome. In sterile buds, 699 genes were significantly up-regulated and 4096 genes were down-regulated. Among the DEGs, 28 pollen cell wall-related genes, 54 transcription factor genes, 45 phytohormone-related genes, 20 anther and pollen-related genes, 212 specifically expressed transcripts, and 417 DEGs located on linkage group A07 were identified. Six transcription factor genes BrAMS, BrMS1, BrbHLH089, BrbHLH091, BrAtMYB103, and BrANAC025 were identified as putative sterility-related genes. The weak auxin signal that is regulated by BrABP1 may be one of the key factors causing pollen sterility observed here. Moreover, several significantly enriched GO terms such as "cell wall organization or biogenesis" (GO:0071554), "intrinsic to membrane" (GO:0031224), "integral to membrane" (GO:0016021), "hydrolase activity, acting on ester bonds" (GO:0016788), and one significantly enriched pathway "starch and sucrose metabolism" (ath00500) were identified in this work. qRT-PCR, PCR, and in situ hybridization experiments validated our RNA-seq transcriptome analysis as accurate and reliable. This study will lay the foundation for elucidating the molecular mechanism(s) that underly sterility and provide valuable information for studying multiple-allele-inherited male sterility in the Chinese cabbage line 'AB01'.

  8. The apo structure of sucrose hydrolase from Xanthomonas campestris pv. campestris shows an open active-site groove

    DEFF Research Database (Denmark)

    Champion, Elise; Remaud-Simeon, Magali; Skov, Lars Kobberøe

    2009-01-01

    Glycoside hydrolase family 13 (GH-13) mainly contains starch-degrading or starch-modifying enzymes. Sucrose hydrolases utilize sucrose instead of amylose as the primary glucosyl donor. Here, the catalytic properties and X-ray structure of sucrose hydrolase from Xanthomonas campestris pv. campestris...... of GH-13. Comparisons with structures of the highly similar sucrose hydrolase from X. axonopodis pv. glycines most notably showed that residues Arg516 and Asp138, which form a salt bridge in the X. axonopodis sucrose complex and define part of the subsite -1 glucosyl-binding determinants...

  9. Short communication: Evaluation of a model for predicting Avena fatua and Descurainia sophia seed emergence in winter rapeseed

    Directory of Open Access Journals (Sweden)

    Mohammad A. Aboutalebian

    2017-07-01

    Full Text Available Avena fatua and Descurainia sophia are two important annual weeds throughout winter rapeseed (Brassica napus L. production systems in the semiarid region of Iran. Timely and more accurate control of both species may be developed if there is a better understanding of its emergence patterns. Non-linear regression techniques are usually unable to accurately predict field emergence under such environmental conditions. The objectives of this research were to evaluate the emergence patterns of A. fatua and D. sophia and determine if emergence could be predicted using cumulative soil thermal time in degree days (CTT. In the present work, cumulative seedling emergence from a winter rapeseed field during 3 years data set was fitted to cumulative soil CTT using Weibull and Gompertz functions. The Weibull model provided a better fit, based on coefficient of determination (R2sqr, root mean square of error (RMSE and Akaike index (AICd, compared to the Gompertz model between 2013 and 2016 seasons for both species. Maximum emergence of A. fatua occured 70-119 days after sowing or after equals 329-426 °Cd, while in D. sophia it occurred 119-134 days after sowing rapeseed equals 373-470 °Cd. Both models can aid in the future study of A. fatua and D. sophia emergence and assist growers and agricultural professionals with planning timely and more accurate A. fatua and D. sophia control.

  10. Meio semi-seletivo para isolamento de Xanthomonas campestris pv. viticola

    Directory of Open Access Journals (Sweden)

    Peixoto Ana Rosa

    2006-01-01

    Full Text Available O cancro bacteriano causado por Xanthomonas campestris pv. viticola é a fitobacteriose mais importante da videira no Submédio São Francisco. O isolamento de X. campestris pv. viticola de tecidos vegetais infectados é dificultado pela presença de contaminantes bacterianos, entre os quais Microbacterium barkeri. Objetivando-se a formulação de meio de cultura semi-seletivo, 22 isolados de X. campestris pv. viticola foram testados com relação a 30 antibióticos. O meio semi-seletivo NYDAM (extrato de carne 3, peptona 5, glicose 10, extrato de levedura 5, ágar 18 e ampicilina 0,1 em g L-1 inibiu M. barkeri e bactérias fitopatogênicas podendo ser utilizado para isolar X. campestris pv. viticola de hospedeiros com infecção natural em campo.

  11. Genetic Segregation Analysis of a Rapeseed Dwarf Mutant

    International Nuclear Information System (INIS)

    Xiang, G.; Yu, S.; Zhang, T.; Zhao, J.; Lei, S.; Du, C.

    2016-01-01

    Dwarf resources in Brassica napus are very important for developing high-yield cultivars through dwarf-type and lodging-resistant breeding. However, few dwarf varieties have been available for this species. Here, we reported a new rapeseed dwarf mutant GRC1157, which exhibits obvious phenotypic variations on dwarf. Six generations (P /sub 1/, P/sub 1/, F/sub 1/, F/sub 1/, B/sub 1/, and B/sub 1/) were produced from a cross between dwarf mutant GRC1157 and an elite tall-type line XR16 to analyze genetic inheritances of plant height (PH), numbers of the 1st valid branch (VBN), main inflorescence length (MIL), pod numbers per main inflorescence (MPN), pod length (PL) and seed numbers per pod (PSN) using the mixed major gene plus polygene inheritance model. The genetic analysis shows different traits were controlled by different inheritance models: PH and PL by two pairs of additive-dominant-epistatic major genes plus additive-dominant-epistatic polygenes, MPN and PSN by two-pair additive-dominant-epistatic major genes plus additive-dominant polygenes, MIL by two-pair additive-dominant-epistatic major genes and VBN by one-pair additive-dominant major genes plus additive-dominant-epistatic polygenes. Furthermore, positive correlations between PH and some other traits were observed, suggesting that some traits may be co-regulated by several linkage or same loci/genes. In addition, high heritability (40.35-93.7 percent) were found for five traits (except VBN) in different segregating generations, indicating these traits were mainly affected by hereditary factors and suitable for early artificial selection. In sum, the dwarf mutant GRC1157 can serve as a valuable resource for rapeseed dwarf breeding and the genetic analysis in this study provided a foundation for further mapping and cloning dwarf genes in mutant GRC1157. (author)

  12. Genetic and Cytological Analyses of the Natural Variation of Seed Number per Pod in Rapeseed (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Yuhua Yang

    2017-11-01

    Full Text Available Seed number is one of the key traits related to plant evolution/domestication and crop improvement/breeding. In rapeseed germplasm, the seed number per pod (SNPP shows a very wide variation from several to nearly 30; however, the underlying causations/mechanisms for this variation are poorly known. In the current study, the genetic and cytological bases for the natural variation of SNPP in rapeseed was firstly and systematically investigated using the representative four high-SNPP and five low-SNPP lines. The results of self- or cross-pollination experiment between the high- and low-SNPP lines showed that the natural variation of SNPP was mainly controlled by maternal effect (mean = 0.79, followed by paternal effect (mean = 0.21. Analysis of the data using diploid seed embryo–cytoplasmic–maternal model further showed that the maternal genotype, embryo, and cytoplasm effects, respectively, explained 47.6, 35.2, and 7.5% of the genetic variance. In addition, the analysis of combining ability showed that for the SNPP of hybrid F1 was mainly determined by the general combining ability of parents (63.0%, followed by special combining ability of parental combination (37.0%. More importantly, the cytological observation showed that the SNPP difference between the high- and low-SNPP lines was attributable to the accumulative differences in its components. Of which, the number of ovules, the proportion of fertile ovules, the proportion of fertile ovules to be fertilized, and the proportion of fertilized ovules to develop into seeds accounted for 30.7, 18.2, 7.1, and 43.9%, respectively. The accordant results of both genetic and cytological analyses provide solid evidences and systematic insights to further understand the mechanisms underlying the natural variation of SNPP, which will facilitate the development of high-yield cultivars in rapeseed.

  13. High-throughput multiplex cpDNA resequencing clarifies the genetic diversity and genetic relationships among Brassica napus, Brassica rapa and Brassica oleracea.

    Science.gov (United States)

    Qiao, Jiangwei; Cai, Mengxian; Yan, Guixin; Wang, Nian; Li, Feng; Chen, Binyun; Gao, Guizhen; Xu, Kun; Li, Jun; Wu, Xiaoming

    2016-01-01

    Brassica napus (rapeseed) is a recent allotetraploid plant and the second most important oilseed crop worldwide. The origin of B. napus and the genetic relationships with its diploid ancestor species remain largely unresolved. Here, chloroplast DNA (cpDNA) from 488 B. napus accessions of global origin, 139 B. rapa accessions and 49 B. oleracea accessions were populationally resequenced using Illumina Solexa sequencing technologies. The intraspecific cpDNA variants and their allelic frequencies were called genomewide and further validated via EcoTILLING analyses of the rpo region. The cpDNA of the current global B. napus population comprises more than 400 variants (SNPs and short InDels) and maintains one predominant haplotype (Bncp1). Whole-genome resequencing of the cpDNA of Bncp1 haplotype eliminated its direct inheritance from any accession of the B. rapa or B. oleracea species. The distribution of the polymorphism information content (PIC) values for each variant demonstrated that B. napus has much lower cpDNA diversity than B. rapa; however, a vast majority of the wild and cultivated B. oleracea specimens appeared to share one same distinct cpDNA haplotype, in contrast to its wild C-genome relatives. This finding suggests that the cpDNA of the three Brassica species is well differentiated. The predominant B. napus cpDNA haplotype may have originated from uninvestigated relatives or from interactions between cpDNA mutations and natural/artificial selection during speciation and evolution. These exhaustive data on variation in cpDNA would provide fundamental data for research on cpDNA and chloroplasts. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  14. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs.

    Science.gov (United States)

    Shahid, Saima; Kim, Gunjune; Johnson, Nathan R; Wafula, Eric; Wang, Feng; Coruh, Ceyda; Bernal-Galeano, Vivian; Phifer, Tamia; dePamphilis, Claude W; Westwood, James H; Axtell, Michael J

    2018-01-03

    Dodders (Cuscuta spp.) are obligate parasitic plants that obtain water and nutrients from the stems of host plants via specialized feeding structures called haustoria. Dodder haustoria facilitate bidirectional movement of viruses, proteins and mRNAs between host and parasite, but the functional effects of these movements are not known. Here we show that Cuscuta campestris haustoria accumulate high levels of many novel microRNAs (miRNAs) while parasitizing Arabidopsis thaliana. Many of these miRNAs are 22 nucleotides in length. Plant miRNAs of this length are uncommon, and are associated with amplification of target silencing through secondary short interfering RNA (siRNA) production. Several A. thaliana mRNAs are targeted by 22-nucleotide C. campestris miRNAs during parasitism, resulting in mRNA cleavage, secondary siRNA production, and decreased mRNA accumulation. Hosts with mutations in two of the loci that encode target mRNAs supported significantly higher growth of C. campestris. The same miRNAs that are expressed and active when C. campestris parasitizes A. thaliana are also expressed and active when it infects Nicotiana benthamiana. Homologues of target mRNAs from many other plant species also contain the predicted target sites for the induced C. campestris miRNAs. These data show that C. campestris miRNAs act as trans-species regulators of host-gene expression, and suggest that they may act as virulence factors during parasitism.

  15. Effects of gamma irradiation on rapeseed meal with special reference to the quantitative changes in oxazolidinethione and other constituents

    International Nuclear Information System (INIS)

    Nakaya, Tetsuro

    1978-01-01

    Experiments were carried out to confirm whether the irradiation treatment of rapeseed meal with gamma rays was effective in reducing the goitrogenic effect of meal, and to obtain the information on the reasonable dose level to reduce the above effect. The rapeseed meals from two ordinary and one non-commercial low glucosinolate (Brassica napus L. cv. Bronowski) seeds were exposed to gamma rays of 5, 10, 50 and 100 Mrad respectively. And the changes in oxazolidinethone (OZT) content of these meals by the irradiation were investigated compared with those by the autoclaving treatment under the reasonable condition. The influences of irradiation treatment on the content of the several constituents of meal were also examined. Furthermore, with chicks, the influences of irradiation treatment on the palatability of meal and on the apparent digestibility of its crude protein or crude fiber were investigated. When two ordinary meals were irradiated at the level of 50 Mrad or above, their OZT content reduced to the level of that in a low glucosinolate meal (Bronowski meal) and such irradiation dosages also resulted in a loss of the available lysine (AL) of meals. The extent of the above changes in the contents of OZT and AL was similar to that in rapeseed meal which was autoclaved under the reasonable condition. Treatment at irradiation dosage of either 50 or 100 Mrad resulted in lower crude fiber and higher reducing sugar content than those of non-irradiated meal respectively. Tests with chicks revealed that an irradiation treatment tended to improve the palatability and the crude fiber digestibility of meal but had no appreciable effect on the digestibility of its crude protein. In summary, these findings indicate that the gamma irradiation at dosage of 50 Mrad or above as well as the autoclaving treatment under the reasonable condition is effective in reducing the goitrogenic effect of rapeseed meal. (auth.)

  16. Variations in fatty acid composition, glucosinolate profile and some phyto chemical contents in selected oil seed rape (Brassica napus L.) cultivars

    Energy Technology Data Exchange (ETDEWEB)

    El-Din Saad El-Beltag, H.; Mohamed, A. A.

    2010-07-01

    Rapeseed (Brassica napus L.) is now the third most important source of edible oil in the world after soybean and palm oil. In this study seeds of five different rapeseed cultivars namely; pactol, silvo, topas, serw 4 and serw 6 were evaluated for their fatty acid composition, glucosinolate profile, amino acids, total tocopherols and phenolic content. Among all cultivars significant variability in fatty acids were observed. The oleic acid (C18:1) ranged from 56.31% to 58.67%, linoleic acid (C18:2) from 10.52% to 13.74%, {alpha}-linolenic acid (C18:3) from 8.83% to 10.32% and erucic acid (22:1) from 0.15% to 0.91%. The glucosinolate profile of rapeseed was also separated and identified using high-performance liquid chromatography. Small variations in the glucosinolate profile were observed among all tested cultivars; however, progoitrin and gluconapin were the major glucosinolate found. Additionally, silvo cultivar showed the highest total glucosinolate contents (5.97 {mu}mol/g dw). Generally, the contents of aspartic, glutamic, arginine and leucine were high, while the contents of tyrosine and isoleucine were low among all cultivars. For total tocopherols, the results indicated that both serw 6 and pactol cultivars had the highest total tocopherol contents (138.3 and 102.8 mg/100 g oil, respectively). Total phenolic contents varied from 28.0 to 35.4 mg/g dw. The highest total phenolic content was found in topas while the lowest value was detected in serw 6. These parameters; fatty acid contents, glucosinolate profile and amino acids together with total tocopherols and phenolic contents, could be taken into consideration by oilseed rape breeders as selection criteria for developing genotypes with modified seed quality traits in Brassica napus L. (Author)

  17. Determination of Flowering Phenology, Number of Flowers, Nectar and Pollen Potential of Oil Rape (Brassica napus L., Plant in Black Sea Coastal Region

    Directory of Open Access Journals (Sweden)

    Necda Çankaya

    2017-11-01

    Full Text Available This research was carried out in 2011 and 2012 in order to determine the flowering phenology, number of flowers, nectar and pollen potential in the Samsun province of the oilseed rape (Brassica napus L., which is widely used in agriculture in our country. In the first year of the study (2011, it was determined that the rapeseed plant was in flower for 44 days, there were 2.694 flowers per plant, 1.89 kg/da nectar per day and 1330 kg/da pollen production. In the second year of the research (2012, it was revealed that the rapeseed plant was in flower for 39 days, there were 701 plants/flower in the plant, 0.38 kg/da nectar secreted daily and 331.57 kg/da pollen. According to the results of two years, the yield of rapeseed was found to be 41.5 days, the daily nectar production was 0.23 mg/flower/day, the nectar dry matter level was 20.25% and the pollen production was 0.48 mg/flower/day. In Samsun province, it was determined that rapeseed plants flowered before the flowering of many plants in the vicinity in the early spring, and provided honey bees, Apis mellifera L., and many other honey bees, nectar and pollen. It has been demonstrated that the cultivation of rapeseed is cultivated in the early spring, and it can be a convenient source of food for honey bees and other dusty insects.

  18. Genetic Diversity in Commercial Rapeseed (Brassica napus L.) Varieties from Turkey as Revealed by RAPD

    OpenAIRE

    Özlem ÖZBEK; Betül Uçar GIDIK

    2013-01-01

    In cultivated commercial crop species, genetic diversity tends to decrease because of the extensive breeding processes. Therefore, germplasm of commercial crop species, such as Brassica napus L. should be evaluated and the genotypes, which have higher genetic diversity index, should be addressed as potential parental cross materials in breeding programs. In this study, the genetic diversity was analysed by using randomly amplified polymorphic DNA analysis (RAPD) technique in nine Turkish com...

  19. The host plant metabolite glucose is the precursor of diffusible signal factor (DSF) family signals in Xanthomonas campestris.

    Science.gov (United States)

    Deng, Yinyue; Liu, Xiaoling; Wu, Ji'en; Lee, Jasmine; Chen, Shaohua; Cheng, Yingying; Zhang, Chunyan; Zhang, Lian-Hui

    2015-04-01

    Plant pathogen Xanthomonas campestris pv. campestris produces cis-11-methyl-2-dodecenoic acid (diffusible signal factor [DSF]) as a cell-cell communication signal to regulate biofilm dispersal and virulence factor production. Previous studies have demonstrated that DSF biosynthesis is dependent on the presence of RpfF, an enoyl-coenzyme A (CoA) hydratase, but the DSF synthetic mechanism and the influence of the host plant on DSF biosynthesis are still not clear. We show here that exogenous addition of host plant juice or ethanol extract to the growth medium of X. campestris pv. campestris could significantly boost DSF family signal production. It was subsequently revealed that X. campestris pv. campestris produces not only DSF but also BDSF (cis-2-dodecenoic acid) and another novel DSF family signal, which was designated DSF-II. BDSF was originally identified in Burkholderia cenocepacia to be involved in regulation of motility, biofilm formation, and virulence in B. cenocepacia. Functional analysis suggested that DSF-II plays a role equal to that of DSF in regulation of biofilm dispersion and virulence factor production in X. campestris pv. campestris. Furthermore, chromatographic separation led to identification of glucose as a specific molecule stimulating DSF family signal biosynthesis in X. campestris pv. campestris. (13)C-labeling experiments demonstrated that glucose acts as a substrate to provide a carbon element for DSF biosynthesis. The results of this study indicate that X. campestris pv. campestris could utilize a common metabolite of the host plant to enhance DSF family signal synthesis and therefore promote virulence. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Investigation of rapeseed oil at Riga Technical University

    International Nuclear Information System (INIS)

    Gudriniece, E.; Strele, M.; Serzhane, R.

    2002-01-01

    Literature data on investigation of rapeseed oil have been summarized, particular attention paid to the investigations carried out at the Riga Technical University (RTU). The results obtained by scientists of the RTU have revealed following opportunities: to produce high-quality rapeseed oil in Latvia; to simplify the refinement procedure of rapeseed oil - to combine the process of hydration with neutralization using local materials, for example, Ca(OH) 2 ; to utilize the absorbents obtained from Latvian clay deposits for the bleaching of rapeseed oil; to organize the production of bio fuel at the experimental factory. (authors)

  1. Levantamento da intensidade da alternariose e da podridão negra em cultivos orgânicos de brássicas em Pernambuco e Santa Catarina Survey of the intensity of Alternaria black spot and black rot on brassica species under organic farming systems in Pernambuco and Santa Catarina states, Brazil

    Directory of Open Access Journals (Sweden)

    Luiz A M Peruch

    2006-12-01

    Full Text Available O objetivo deste trabalho foi avaliar a intensidade da alternariose, causada por Alternaria brassicicola e/ou Alternaria brassicae, e da podridão negra, causada por Xanthomonas campestris pv. campestris, em cultivos orgânicos de brássicas em Pernambuco e Santa Catarina. Os levantamentos foram realizados no período de novembro de 2001 a fevereiro de 2002, num total de 103 cultivos orgânicos de várias espécies de brássicas. Foram registradas elevadas prevalências das doenças nos estados, com exceção em couve-chinesa em Santa Catarina. A prevalência da alternariose foi 100% nos cultivos de brócolis em Pernambuco, bem como em couve-flor nos dois estados, enquanto a podridão negra atingiu esse nível nos cultivos de brócolis e couve-flor em Santa Catarina. Na média das diferentes espécies de brássicas, as doenças foram mais prevalentes em Pernambuco que Santa Catarina. Entretanto, as médias de severidade de cada doença no conjunto das brássicas não foram diferentes entre os estados, embora as condições climáticas tenham sido nitidamente distintas. A severidade da alternariose variou entre as espécies de brássicas somente em Pernambuco, com a menor severidade registrada em couve-manteiga. Em relação à podridão negra, apenas em Santa Catarina houve diferença na severidade entre as brássicas, sendo registrados os menores níveis em couve-chinesa. Não foram constatadas correlações significativas entre os níveis de severidade da alternariose e da podridão negra, bem como da severidade destas com o número total de plantas e a idade das plantas nos cultivos.The objective of this research was to evaluate the intensity of Alternaria black spot, caused by Alternaria brassicicola and/or Alternaria brassicae, and black rot, caused by Xanthomonas campestris pv. campestris in organic cultivation of brassicas in Pernambuco and Santa Catarina. The survey was carried aut from November 2001 to February 2002, in 103 fields under

  2. Effects of Super-Absorbent Polymer Application on Yield and Yield Components of Rapeseed (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Fariborz SHEKARI

    2015-09-01

    Full Text Available Limitation of water resources and its great impact on agricultural and natural resources play a crucial role in the efficiency of water use. Applying super absorbent polymer to the soil may be one of the methods to minimize the stress of weather dryness in arid and semi-arid regions. In order to evaluate the effects of hydrophilic polymer application on yield and water use efficiency of rapeseed plants, an experiment was conducted under field condition in 2012 at the Research Farm of the Faculty of Agriculture, University of Maragheh. Treatments’ factors were: (i 3 super absorbent polymers (SAP (Taravat A200 levels of 0 (without application, 75 and 150 kg ha-1 A200 application, (ii three irrigation levels of 80, 120 and 180 mm evaporation from class A basin in main plots, (iii two cultivars ʻHyola 401ʼ and ʻRVSʼ in sub plots as factorial split plot combination based on completely randomized block design with three replications. The results showed that in all of the measured traits within the experiment there were significant differences between SAP levels. Furthermore, increasing irrigation interval led to an increase in a thousand seeds’ weight, but decreased seed yield. Increasing water stress raised seed oil percent and infertile silique and subsequently resulted in reduced oil yield. ʻHyola 401ʼ was more susceptible to embryo abortion compared with ʻRVSʼ. As a conclusion of the research, SAP (A200 application in quantities smaller than 75 kg ha-1 may be recommended for rapeseed production under field condition.

  3. Improving rapeseed production practices in the southeastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D.L.; Breve, M.A.; Raymer, P.L.; Minton, N.A.; Sumner, D.R. (Georgia Univ., Tifton, GA (USA). Georgia Coastal Plain Experiment Station)

    1990-04-01

    Oilseed rape or rapeseed is a crop which offers a potential for double-cropping in the southeastern United States. This final project report describes the results from a three year study aimed at evaluating the effect of different planting and harvesting practices on establishment and yield of three rape cultivars, and the double cropping potential of rapeseed in the southeastern United States. The project was conducted on two yield sites in Tifton, Georgia during 1986--87, 1987--88 and 1988--89. The general objective of this research is to improve the seed and biomass yield of winter rapeseed in the southeastern United States by developing appropriate agronomic practices for the region. The primary constraint is to grow rapeseed within the allowable period for double cropping with an economically desirable crop, such as peanut or soybean. Planting and harvesting are the most critical steps in this process. Therefore, the specific objectives of this research were: evaluate and improve the emergence of rapeseed by developing planting techniques that enhance the soil, water and seed regimes for winter rapeseed in the southeast, and evaluate and improve the yields of harvested rapeseed by developing techniques for determining the optimum timing of harvest and efficient methods for harvesting winter rapeseed in the southeast. 6 refs., 12 figs., 9 tabs.

  4. Use of MSAP markers to analyse the effects of salt stress on DNA methylation in rapeseed (Brassica napus var. oleifera.

    Directory of Open Access Journals (Sweden)

    Gianpiero Marconi

    Full Text Available Excessive soil salinity is a major ecological and agronomical problem, the adverse effects of which are becoming a serious issue in regions where saline water is used for irrigation. Plants can employ regulatory strategies, such as DNA methylation, to enable relatively rapid adaptation to new conditions. In this regard, cytosine methylation might play an integral role in the regulation of gene expression at both the transcriptional and post-transcriptional levels. Rapeseed, which is the most important oilseed crop in Europe, is classified as being tolerant of salinity, although cultivars can vary substantially in their levels of tolerance. In this study, the Methylation Sensitive Amplified Polymorphism (MSAP approach was used to assess the extent of cytosine methylation under salinity stress in salinity-tolerant (Exagone and salinity-sensitive (Toccata rapeseed cultivars. Our data show that salinity affected the level of DNA methylation. In particular methylation decreased in Exagone and increased in Toccata. Nineteen DNA fragments showing polymorphisms related to differences in methylation were sequenced. In particular, two of these were highly similar to genes involved in stress responses (Lacerata and trehalose-6-phosphatase synthase S4 and were chosen to further characterization. Bisulfite sequencing and quantitative RT-PCR analysis of selected MSAP loci showed that cytosine methylation changes under salinity as well as gene expression varied. In particular, our data show that salinity stress influences the expression of the two stress-related genes. Moreover, we quantified the level of trehalose in Exagone shoots and found that it was correlated to TPS4 expression and, therefore, to DNA methylation. In conclusion, we found that salinity could induce genome-wide changes in DNA methylation status, and that these changes, when averaged across different genotypes and developmental stages, accounted for 16.8% of the total site

  5. Economics of rapeseed production in Serbia

    Directory of Open Access Journals (Sweden)

    Popović Rade

    2010-01-01

    Full Text Available Rapeseed production in Serbia is characterized by an increasing trend, as a result of positive price signals from international market. Since previous researches on economics of rapeseed production were aimed at non-family farms, focus in this paper is on the same aspects on family farms from lowland production region. Results are analyzed in view of micro and macro-economic trends. Increase of world demand for oil crops, as a result of increasing production of renewable fuels and food needs, causes a trend of higher prices, which will probably remain in the following period. Due to this, opportunities are made for Serbian farmers in lowland production region to increase agriculture area under rapeseed. .

  6. Quantitative proteomics of seed filling in castor: comparison with soybean and rapeseed reveals differences between photosynthetic and nonphotosynthetic seed metabolism.

    Science.gov (United States)

    Houston, Norma L; Hajduch, Martin; Thelen, Jay J

    2009-10-01

    Seed maturation or seed filling is a phase of development that plays a major role in the storage reserve composition of a seed. In many plant seeds photosynthesis plays a major role in this process, although oilseeds, such as castor (Ricinus communis), are capable of accumulating oil without the benefit of photophosphorylation to augment energy demands. To characterize seed filling in castor, a systematic quantitative proteomics study was performed. Two-dimensional gel electrophoresis was used to resolve and quantify Cy-dye-labeled proteins expressed at 2, 3, 4, 5, and 6 weeks after flowering in biological triplicate. Expression profiles for 660 protein spot groups were established, and of these, 522 proteins were confidently identified by liquid chromatography-tandem mass spectrometry by mining against the castor genome. Identified proteins were classified according to function, and the most abundant groups of proteins were involved in protein destination and storage (34%), energy (19%), and metabolism (15%). Carbon assimilatory pathways in castor were compared with previous studies of photosynthetic oilseeds, soybean (Glycine max) and rapeseed (Brassica napus). These comparisons revealed differences in abundance and number of protein isoforms at numerous steps in glycolysis. One such difference was the number of enolase isoforms and their sum abundance; castor had approximately six times as many isoforms as soy and rapeseed. Furthermore, Rubisco was 11-fold less prominent in castor compared to rapeseed. These and other differences suggest some aspects of carbon flow, carbon recapture, as well as ATP and NADPH production in castor differs from photosynthetic oilseeds.

  7. Genome-Wide Identification and Structural Analysis of bZIP Transcription Factor Genes in Brassica napus.

    Science.gov (United States)

    Zhou, Yan; Xu, Daixiang; Jia, Ledong; Huang, Xiaohu; Ma, Guoqiang; Wang, Shuxian; Zhu, Meichen; Zhang, Aoxiang; Guan, Mingwei; Lu, Kun; Xu, Xinfu; Wang, Rui; Li, Jiana; Qu, Cunmin

    2017-10-24

    The basic region/leucine zipper motif (bZIP) transcription factor family is one of the largest families of transcriptional regulators in plants. bZIP genes have been systematically characterized in some plants, but not in rapeseed ( Brassica napus ). In this study, we identified 247 BnbZIP genes in the rapeseed genome, which we classified into 10 subfamilies based on phylogenetic analysis of their deduced protein sequences. The BnbZIP genes were grouped into functional clades with Arabidopsis genes with similar putative functions, indicating functional conservation. Genome mapping analysis revealed that the BnbZIPs are distributed unevenly across all 19 chromosomes, and that some of these genes arose through whole-genome duplication and dispersed duplication events. All expression profiles of 247 bZIP genes were extracted from RNA-sequencing data obtained from 17 different B . napus ZS11 tissues with 42 various developmental stages. These genes exhibited different expression patterns in various tissues, revealing that these genes are differentially regulated. Our results provide a valuable foundation for functional dissection of the different BnbZIP homologs in B . napus and its parental lines and for molecular breeding studies of bZIP genes in B . napus .

  8. Tolerance of Brassica nigra to Pieris brassicae herbivory

    NARCIS (Netherlands)

    Blatt, S.E.; Smallegange, R.C.; Hess, L.; Harvey, J.A.; Dicke, M.; Loon, van J.J.A.

    2008-01-01

    Black mustard, Brassica nigra (L.) Koch, is a wild annual species found throughout Europe and fed on by larvae of the large cabbage-white butterfly, Pieris brassicae L. We examined the impact of herbivory from P. brassicae, a gregarious herbivore, on B. nigra grown from wild seed collected locally.

  9. In Vitro Digestibility of Rapeseed and Bovine Whey Protein Mixtures.

    Science.gov (United States)

    Joehnke, Marcel Skejovic; Rehder, Alina; Sørensen, Susanne; Bjergegaard, Charlotte; Sørensen, Jens Christian; Markedal, Keld Ejdrup

    2018-01-24

    Partial replacement of animal protein sources with plant proteins is highly relevant for the food industry, but potential effects on protein digestibility need to be established. In this study, the in vitro protein digestibility (IVPD) of four protein sources and their mixtures (50:50 w/w ratio) was investigated using a transient pepsin hydrolysis (1 h) followed by pancreatin (1 h). The protein sources consisted of napin-rich rapeseed (Brassica napus L.) protein concentrates (RPCs; RP1, RP2) prepared in pilot scale and major bovine whey proteins (WPs; α-LA, alpha-lactalbumin; β-LG, beta-lactoglobulin). IVPD of individual protein sources was higher for WPs compared to RPCs. The RP2/β-LG mixture resulted in an unexpected high IVPD equivalent to β-LG protein alone. Protein mixtures containing RP1 showed a new IVPD response type due to the negative influence of a high trypsin inhibitor activity (TIA) level. Improved IVPD of RP1 alone and in protein mixtures was obtained by lowering the TIA level using dithiothreitol (DTT). These results showed that napin-rich protein products prepared by appropriate processing can be combined with specific WPs in mixtures to improve the IVPD.

  10. Antagonism of yeasts to Xanthomonas campestris pv. campestris on cabbage phylloplane in field Antagonismo de leveduras a Xanthomonas campestris pv. campestris no filoplano de repolho em condições de campo

    Directory of Open Access Journals (Sweden)

    Sayonara M.P. Assis

    1999-07-01

    Full Text Available Twenty yeast isolates, obtained from cabbage phylloplane, were evaluated for antagonistic activity against Xanthomonas campestris pv. campestris, in field. Plants of cabbage cv. Midori were pulverized simultaneously with suspensions of antagonists and pathogen. After 10 days, plants were evaluated through percentage of foliar area with lesions. Percentage of disease severity reduction (DSR% was also calculated. Yeast isolates LR32, LR42 and LR19 showed, respectively, 72, 75 and 79% of DSR. These antagonists were tested in seven different application periods in relation to pathogen inoculation (T1=4 d before; T2=simultaneously; T3=4 d after; T4=4 d before + simultaneously; T5=4 d after + simultaneously; T6=4 d before + 4 d after; T7=4 d before + simultaneously + 4 d after. The highest DSRs were showed by LR42 (71%, LR42 (67%, LR35 (69% and LR19 (68% in the treatments T7, T4, T5 and T6, which significantly differed from the others. The same yeast antagonists were also tested for black rot control using different cabbage cultivars (Fuyutoyo, Master-325, Matsukaze, Midori, Sekai I and Red Winner. The DSRs varied from 58 to 61%, and there was no significant difference among cultivars.Vinte isolados de leveduras, obtidos a partir do filoplano de repolho foram avaliados pela atividade antagônica contra Xanthomonas campestris pv. campestris, em condições de campo. Plantas de repolho cv. Midori foram pulverizadas simultaneamente com suspensões do antagonista e do patógeno. Após 10 dias, as plantas foram avaliadas através da porcentagem de área foliar infectada. A porcentagem de redução da severidade da doença (DSR%, também foi calculada. Os isolados de leveduras LR32, LR42 e LR19 apresentaram, respectivamente, 72, 75 e 79% de DSR. Estes isolados foram testados em sete diferentes períodos de aplicação dos antagonistas em relação a inoculação do patógeno. (T1=4d antes; T2=simultaneamente; T3=4 d após; T4=4 d antes + simultaneamente; T5

  11. Heritability studies for seed quality traits in introgressed segregating populations of brassica

    International Nuclear Information System (INIS)

    Farhatullah, S.; Nasim, A.; Fayyaz, L.

    2014-01-01

    Estimation of genetic parameters in the context of trait characterization is an essential component of future targeted crop improvement programs. Collection of knowledge about genetic behavior such as genetic variability and heritability etc., of the germplasm is the basic step for initiation of any breeding program. Genetic variability and Broad sense heritability for various seed quality traits in 10 brassica genotypes and their 12 F2 progenies comprising of introgressed hybrids were studied. The genotypes had highly significant variation for oil content, protein, glucosinolates contents, oleic, linolenic and erucic acid contents. Glucosinolates content and erucic acid showed high heritability in all F2 populations, while rest of the traits showed variable trends. The cross combination 547 x 118 (B. napus x B. campestris) proved to be a good interspecific hybrid that had high proportion of introgression and has high heritability for beneficial traits. The individual plants having combination of desirable traits were also identified from the F2 populations. (author)

  12. Purification and protein composition of oil bodies from Brassica napus seeds

    Directory of Open Access Journals (Sweden)

    Jolivet Pascale

    2006-11-01

    Full Text Available Seed oil bodies are intracellular particles to store lipids as food reserves in oleaginous plants. Description of oil body-associated proteins of Arabidopsis thaliana has been recently reported whereas only few data are available in the case of rapeseed. Oil bodies have been prepared from two double-low varieties of Brassica napus seeds, a standard variety (Explus and an oleic variety (Cabriolet. Oil bodies have been purified using floatation technique in the successive presence of high salt concentration, detergent or urea in order to remove non-specifically trapped proteins. The integrity of the oil bodies has been verified and their size estimated. Their protein and fatty acid contents have been determined. The proteins composing these organelles were extracted, separated by denaturing gel electrophoresis, digested by trypsin and their peptides were subsequently analyzed by liquid chromatography-tandem mass spectrometry. Protein identification was performed using Arabidopsis thaliana protein sequence database and a collection of Expressed Sequence Tag (EST of Brassica napus generated from the framework of the French plant genomics programme “Genoplante”. This led to the identification of a limited number of proteins: eight oleosins showing a high similarity each other and representing up to 75% of oil body proteins, a 11 β hydroxysteroid dehydrogenase-like protein highly homologous to the same protein from A. thaliana, and only few contaminating proteins associated with myrosinase activity.

  13. Improvement of large quantity breeding method for making radiation breeding efficient and development of cell culture techniques, (3)

    International Nuclear Information System (INIS)

    Hogetsu, Daisuke; Koyama, Motoko; Minami, Harufumi

    1990-01-01

    In the creation of useful mutant plants using cell culture techniques, the examination on the effectiveness of selecting useful mutation at cell level and the possibility of raising the selection efficiency by irradiation was aimed at. The experimental method is described. The young plants which accumulate proline were obtained. The cells which showed the resistance to hydroxyproline also showed the resistance to salt. In the improvement of redifferentiation ability by irradiation, the method of fixing IAA in the tissues of azuki plants was examined. The possibility of examining the change of IAA due to irradiation by microautoradiography was obtained. It is intended to examine the distribution of IAA in the formation of adventitious roots from the epicotyl of azuki plants. In the introduction of cell engineering techniques in radiation breeding, it is the objective to introduce the genes which resist sour rot that Brassica campestris, Brassica napus, Brassica oleracea and so on have by utilizing cell fusion process. The fusion of the reproduction cells of Brassica napus pollens and the cell protoplasts of Brassica campestris was successfully carried out. The possibility of new asymmetric fusion in Brassica napus was shown. (K.I.)

  14. Rapeseed with tolerance to the non selective herbicide glufosinate ammonium

    Energy Technology Data Exchange (ETDEWEB)

    Rasche, E. [Hoechst Schering AgrEvo GmbH, Frankfurt am Main (Germany)

    1998-12-31

    Weed control with herbicides is essential to grow rapeseed. Glufosinate Ammonium is used as a non selective herbicide successfully in many countries for over 10 years. It conforms well with ever increasing safety standards for human beings, animals and the environment. The tolerance of rapeseed and other crop plants was achieved by genetic modification. A resistance gene (PAT or BAR) was transfered into previously susceptible rapeseed plants. This new approach allowed the development of Glufosinate Ammonium as an almost ideal selective herbicide. In cooperation with major seed companies and by own breeding programmes new Glufosinate tolerant rapeseed varieties and hybrids are developed. Data on metabolism, toxicity, residues, efficacy etc. were generated to get registration for the selective herbicide use. In addition various studies were done for safety assessments of the PAT gene and the modified rapeseed. In spring 1995 Canadian authorities granted worldwide the first approvals for the selective use of Glufosinate Ammonium (trademark Liberty) and Glufosinate tolerant (trademark and logo Liberty Link) spring rapeseed (Canola). After a successful launch in 1995 about 150.000 ha of Liberty Link Canola were grown and treated with Liberty in 1996. The Liberty Link Canola growers were very well satisfied. In a grower survey 84% stated that they will definitely use the Liberty Link System again. In Europe registrations for Glufosinate Ammonium as a selective herbicide and for the first Glufosinate tolerant rapeseed varieties are expected in the course of 1997. The Liberty Link System will be launched in rapeseed most probably in 1998. (orig.)

  15. Effects of Super-Absorbent Polymer Application on Yield and Yield Components of Rapeseed (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Fariborz SHEKARI

    2015-09-01

    Full Text Available Limitation of water resources and its great impact on agricultural and natural resources play a crucial role in the efficiency of water use. Applying super absorbent polymer to the soil may be one of the methods to minimize the stress of weather dryness in arid and semi-arid regions. In order to evaluate the effects of hydrophilic polymer application on yield and water use efficiency of rapeseed plants, an experiment was conducted under field condition in 2012 at the Research Farm of the Faculty of Agriculture, University of Maragheh. Treatments’ factors were: (i 3 super absorbent polymers (SAP (Taravat A200 levels of 0 (without application, 75 and 150 kg ha-1 A200 application, (ii three irrigation levels of 80, 120 and 180 mm evaporation from class A basin in main plots, (iii two cultivars ʻHyola 401ʼ and ʻRVSʼ in sub plots as factorial split plot combination based on completely randomized block design with three replications. The results showed that in all of the measured traits within the experiment there were significant differences between SAP levels. Furthermore, increasing irrigation interval led to an increase in a thousand seeds’ weight, but decreased seed yield. Increasing water stress raised seed oil percent and infertile silique and subsequently resulted in reduced oil yield. ʻHyola 401ʼ was more susceptible to embryo abortion compared with ʻRVSʼ. As a conclusion of the research, SAP (A200 application in quantities smaller than 75 kg ha-1 may be recommended for rapeseed production under field condition.

  16. Glycerol as a carbon source for xantan production by Xanthomonas campestris isolates

    Directory of Open Access Journals (Sweden)

    Bajić Bojana Ž.

    2015-01-01

    Full Text Available The success of xanthan biosynthesis depends on several factors, most importantly the genetic potential of the production microorganism and cultivation media composition. Cultivation media composition affects the yield and quality of the desired product as well as production costs. This is why many studies focus on finding cheap alternative raw materials, especially carbon sources, to replace commercially used glucose and sucrose. In addition to the Xanthomonas campestris ATCC 13951 which is the primary industrial production microorganism, other Xanthomonas strains can produce xanthan as well. Under the same conditions, different strains produce different amounts of the biopolymer of varying quality. The aim of this paper is to compare producibility of phytopathogenic X. campestris strains, isolated from the environment with the reference X. campestris ATCC 13951 strain and to estimate the possibility of xanthan production using alternative glycerol-based media than the synthetic glucose-based media. Submerged cultivation on the medium based on glucose or glycerol (2.0 %w/v was performed using the reference strain and eight isolated X. campestris strains. In order to assess the success of biosynthesis, xanthan yield and rheological properties were determined. Strains isolated from the environment produced yields between 2.98 g/L and 12.17 g/L on the glucose-based medium and 1.68 g/L and 6.31 g/L on the glycerol-based medium. Additionally, X. campestris ATCC 13951 provided the highest yield when using glucose (13.24 g/L, as well as glycerol-based medium (7.44 g/L. The obtained results indicate that in the applied experimental conditions and using all tested strains, glycerol is viable as a carbon source for the production of xanthan.

  17. Inheritance of rapeseed (Brassica napus)-specific RAPD markers and a transgene in the cross B.juncea x (B.juncea x B.napus)

    DEFF Research Database (Denmark)

    Frello, S.; Hansen, K.R.; Jensen, J.

    1995-01-01

    , with B. juncea as the female parent, was successful both in controlled crosses and spontaneously in the field. The controlled backcrossing of selected hybrids to B. juncea, again with B. juncea as the female parent, also resulted in many seeds. The BC1 plants contained from 0 to 20 of the rapeseed RAPD...

  18. Quality evaluation of rapeseed oils used as engine fuels

    Directory of Open Access Journals (Sweden)

    Marek Světlík

    2012-01-01

    Full Text Available Samples from six reference decentralised facilities and one industrial production unit of rapeseed oils were taken for the evaluation of the influence of production processes to the properties specified in the technical standard; in the laboratories, the properties limited by the standard for rapeseed oils were determined. In addition, long-term monitoring of changes in the oxidation stability in the storage test of rapeseed oils additived in the quantities of 200, 400 and 600 mg.kg−1 of the Baynox antioxidant was started. The results confirmed that the critical points in the rapeseed oil production process consist in the contamination with ash-forming elements, such as phosphorus, magnesium, calcium and overall impurities. Not only in the case of hot pressing, but also in two-step cold pressing of rapeseed it is necessary to reduce the content of ash-forming elements using additional processes, such as degumming, neutralisation and whitening. The safety step consisting of filtration down to maximum particle size of 1 μm must be always in place before the oil distribution. A positive effect of the Baynox antioxidant was clearly proved. As 200 mg.kg−1 of Baynox was added, the oxidation stability value increased from 8 to 9.05 hrs immediately after the pressing with a consequent decrease to 6 hrs after 270 days. With using of addition 400 ppm Baynox decreased oxidation stability under 6 hours not until after 390 days of storage. With addition 600 ppm Baynox the oxidation stability of rapeseed oil even after 510 days of storage makes 6.5 hours. The quality monitoring brought about necessary findings and knowledge for the optimisation of the rapeseed oil production and distribution as engine fuels. In addition, it serves as an initial supporting document for the creation of the necessary quality control system.

  19. and Saccostomus campestris (Cricetomyinae) in relation to ...

    African Journals Online (AJOL)

    The gastric anatomy of two African cricetomyines is described and compared with that of the only African cricetine. The stomach of C. gambianus is more specialized than that of S. campestris and shows many parallels with that of M. albicaudatus. Both cricetomyines possess an oesophageal groove system which is absent ...

  20. Analysis of outer membrane vesicle associated proteins isolated from the plant pathogenic bacterium Xanthomonas campestris pv. campestris

    Directory of Open Access Journals (Sweden)

    Niehaus Karsten

    2008-06-01

    Full Text Available Abstract Background Outer membrane vesicles (OMVs are released from the outer membrane of many Gram-negative bacteria. These extracellular compartments are known to transport compounds involved in cell-cell signalling as well as virulence associated proteins, e.g. the cytolysine from enterotoxic E. coli. Results We have demonstrated that Xanthomonas campestris pv. campestris (Xcc releases OMVs into the culture supernatant during growth. A proteome study identified 31 different proteins that associate with the OMV fraction of which half are virulence-associated. A comparison with the most abundant outer membrane (OM proteins revealed that some proteins are enriched in the OMV fraction. This may be connected to differences in the LPS composition between the OMVs and the OM. Furthermore, a comparison of the OMV proteomes from two different culture media indicated that the culture conditions have an impact on the protein composition. Interestingly, the proteins that are common to both culture conditions are mainly involved in virulence. Conclusion Outer membrane vesicles released from the OM of Xcc contain membrane- and virulence-associated proteins. Future experiments will prove whether these structures can serve as "vehicles" for the transport of virulence factors into the host membrane.

  1. Brassica ASTRA: an integrated database for Brassica genomic research.

    Science.gov (United States)

    Love, Christopher G; Robinson, Andrew J; Lim, Geraldine A C; Hopkins, Clare J; Batley, Jacqueline; Barker, Gary; Spangenberg, German C; Edwards, David

    2005-01-01

    Brassica ASTRA is a public database for genomic information on Brassica species. The database incorporates expressed sequences with Swiss-Prot and GenBank comparative sequence annotation as well as secondary Gene Ontology (GO) annotation derived from the comparison with Arabidopsis TAIR GO annotations. Simple sequence repeat molecular markers are identified within resident sequences and mapped onto the closely related Arabidopsis genome sequence. Bacterial artificial chromosome (BAC) end sequences derived from the Multinational Brassica Genome Project are also mapped onto the Arabidopsis genome sequence enabling users to identify candidate Brassica BACs corresponding to syntenic regions of Arabidopsis. This information is maintained in a MySQL database with a web interface providing the primary means of interrogation. The database is accessible at http://hornbill.cspp.latrobe.edu.au.

  2. Effect of Scarification, Self-Inhibition, and Sowing Depth on Seed Germination of Lupinus campestris Efecto de la Escarificación, Autoinhibición y Profundidad de Siembra sobre la Germinación de Semillas de Lupinus campestris

    Directory of Open Access Journals (Sweden)

    Pedro Gutiérrez Nava

    2010-09-01

    Full Text Available Lupinus campestris Schltdl. & Cham. grows in shallow fields and disturbed areas of Central Mexico. It has potential to improve soil fertility and as fodder. Seeds of L. campestris show dormancy, and the technology needed to increase its potential use requires information about conditions favouring seed germination. The aim of this study was to evaluate the seed germination responseof L. campestris under controlled (laboratory and natural field conditions. Under laboratory conditions, 2 yr old seeds had a maximum germination percentage (50% when they were scarified with sulphuric acid for 90 min prior to sowing and when laboratory light (0.5 µmol m-2 s-1 was maintained during the diurnal period. Without scarification, only about 3% of the seeds germinated. Light in laboratory resulted in an increased seed germination as compared to darkness condition. In the field experiment 1 yr old seeds were used testing the following treatments: (a seed scarification (seeds scarified by 30 min immersion in sulphuric acid vs. not scarified, (b presence or absence of plants of L. campestris in plots before field experiments, and (c sowing depth (on soil surface and at 3 cm deep. The scarified seeds showed a germination percentage range between 50 and 64%, whereas non-scarified seeds had 9 to 16% germination. The seeds sowed in plots with or without plants of L. campestris (before the experiment germinated similarly, indicating no evidence of self-inhibition of germination. Three conclusions come out: (1 Scarification treatment with sulphuric acid effectively breaks dormancy in L. campestris seeds; (2 Direct sowing of scarified seeds (on the soil surface or at 3 cm depth resulted in a range of 50-64% of germination under field conditions; and (3 no evidence was obtained for self-inhibition or a positive interaction between preceding vegetation and seed germination of L. campestris.Lupinus campestris Schltdl. & Cham. crece en campos en descanso y

  3. Genomic DNA Enrichment Using Sequence Capture Microarrays: a Novel Approach to Discover Sequence Nucleotide Polymorphisms (SNP) in Brassica napus L

    Science.gov (United States)

    Clarke, Wayne E.; Parkin, Isobel A.; Gajardo, Humberto A.; Gerhardt, Daniel J.; Higgins, Erin; Sidebottom, Christine; Sharpe, Andrew G.; Snowdon, Rod J.; Federico, Maria L.; Iniguez-Luy, Federico L.

    2013-01-01

    Targeted genomic selection methodologies, or sequence capture, allow for DNA enrichment and large-scale resequencing and characterization of natural genetic variation in species with complex genomes, such as rapeseed canola (Brassica napus L., AACC, 2n=38). The main goal of this project was to combine sequence capture with next generation sequencing (NGS) to discover single nucleotide polymorphisms (SNPs) in specific areas of the B. napus genome historically associated (via quantitative trait loci –QTL– analysis) to traits of agronomical and nutritional importance. A 2.1 million feature sequence capture platform was designed to interrogate DNA sequence variation across 47 specific genomic regions, representing 51.2 Mb of the Brassica A and C genomes, in ten diverse rapeseed genotypes. All ten genotypes were sequenced using the 454 Life Sciences chemistry and to assess the effect of increased sequence depth, two genotypes were also sequenced using Illumina HiSeq chemistry. As a result, 589,367 potentially useful SNPs were identified. Analysis of sequence coverage indicated a four-fold increased representation of target regions, with 57% of the filtered SNPs falling within these regions. Sixty percent of discovered SNPs corresponded to transitions while 40% were transversions. Interestingly, fifty eight percent of the SNPs were found in genic regions while 42% were found in intergenic regions. Further, a high percentage of genic SNPs was found in exons (65% and 64% for the A and C genomes, respectively). Two different genotyping assays were used to validate the discovered SNPs. Validation rates ranged from 61.5% to 84% of tested SNPs, underpinning the effectiveness of this SNP discovery approach. Most importantly, the discovered SNPs were associated with agronomically important regions of the B. napus genome generating a novel data resource for research and breeding this crop species. PMID:24312619

  4. Reuse of rapeseed by-products from biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Krička, T.; Matin, A.; Voća, N.; Jurišić, V.; Bilandžija, N.

    2015-07-01

    The objective of this paper is to investigate usability of rapeseed cake from biodiesel fuel production as an energy source. For this research, rapeseed was grown at the research site of the Faculty of Agriculture in Zagreb, Croatia. The investigated rapeseed cake, residue from cold pressing, was divided in two groups of samples. The first group was a mix of three varieties (Bristol, Express and Navajo), while the other group consisted of three hybrids (Artus, Baldur, Titan). The utilization of rapeseed cake for energy via two routes was evaluated; namely, utilization of rapeseed cake as (1) solid biofuel (pellets) with addition of 3% of glycerol, and (2) as substrate in anaerobic digestion (AD). In investigation of cake as solid fuel, proximate (moisture content, ash content, fixed carbon and volatile matter), ultimate (content of carbon, sulphur, hydrogen, oxygen and nitrogen) and physical and calometry analyses (abrasion, diameter, length, density, higher and lower heating value were carried out. As for its use in AD, production of biogas during 40 days was monitored with a view of assessing the use of digested residue as fertilizer in agricultural production. Both groups of digested residues were analysed (pH, electroconductivity, moisture content, ash content, content of nitrogen and carbon, C/N ratio, content of P2O5, K2O, Ca, Mg, Na). The analysis indicated that the investigated raw material is usable as solid and gas biofuel, and digested residue as fertilizer in ecological agriculture. The two groups of samples analysed here did not show significant differences. (Author)

  5. Reuse of rapeseed by-products from biodiesel production

    Directory of Open Access Journals (Sweden)

    Tajana Krička

    2015-03-01

    Full Text Available The objective of this paper is to investigate usability of rapeseed cake from biodiesel fuel production as an energy source. For this research, rapeseed was grown at the research site of the Faculty of Agriculture in Zagreb, Croatia. The investigated rapeseed cake, residue from cold pressing, was divided in two groups of samples. The first group was a mix of three varieties (Bristol, Express and Navajo, while the other group consisted of three hybrids (Artus, Baldur, Titan. The utilization of rapeseed cake for energy via two routes was evaluated; namely, utilization of rapeseed cake as (1 solid biofuel (pellets with addition of 3% of glycerol, and (2 as substrate in anaerobic digestion (AD. In investigation of cake as solid fuel, proximate (moisture content, ash content, fixed carbon and volatile matter, ultimate (content of carbon, sulphur, hydrogen, oxygen and nitrogen and physical and calometry analyses (abrasion, diameter, length, density, higher and lower heating value were carried out. As for its use in AD, production of biogas during 40 days was monitored with a view of assessing the use of digested residue as fertilizer in agricultural production. Both groups of digested residues were analysed (pH, electroconductivity, moisture content, ash content, content of nitrogen and carbon, C/N ratio, content of P2O5, K2O, Ca, Mg, Na. The analysis indicated that the investigated raw material is usable as solid and gas biofuel, and digested residue as fertilizer in ecological agriculture. The two groups of samples analysed here did not show significant differences.

  6. Light enables a very high efficiency of carbon storage in developing embryos of rapeseed.

    Science.gov (United States)

    Goffman, Fernando D; Alonso, Ana P; Schwender, Jörg; Shachar-Hill, Yair; Ohlrogge, John B

    2005-08-01

    The conversion of photosynthate to seed storage reserves is crucial to plant fitness and agricultural production, yet quantitative information about the efficiency of this process is lacking. To measure metabolic efficiency in developing seeds, rapeseed (Brassica napus) embryos were cultured in media in which all carbon sources were [U-14C]-labeled and their conversion into CO2, oil, protein, and other biomass was determined. The conversion efficiency of the supplied carbon into seed storage reserves was very high. When provided with 0, 50, or 150 micromol m(-2) s(-1) light, the proportion of carbon taken up by embryos that was recovered in biomass was 60% to 64%, 77% to 86%, and 85% to 95%, respectively. Light not only improved the efficiency of carbon storage, but also increased the growth rate, the proportion of 14C recovered in oil relative to protein, and the fixation of external 14CO2 into biomass. Embryos grown at 50 micromol m(-2) s(-1) in the presence of 5 microM 1,1-dimethyl-3-(3,4-dichlorophenyl) urea (an inhibitor of photosystem II) were reduced in total biomass and oil synthesis by 3.2-fold and 2.8-fold, respectively, to the levels observed in the dark. To explore if the reduced growth and carbon conversion efficiency in dark were related to oxygen supplied by photosystem II, embryos and siliques were cultured with increased oxygen. The carbon conversion efficiency of embryos remained unchanged when oxygen levels were increased 3-fold. Increasing the O2 levels surrounding siliques from 21% to 60% did not increase oil synthesis rates either at 1,000 micromol m(-2) s(-1) or in the dark. We conclude that light increases the growth, efficiency of carbon storage, and oil synthesis in developing rapeseed embryos primarily by providing reductant and/or ATP.

  7. Diffusible signal factor family signals provide a fitness advantage to Xanthomonas campestris pv. campestris in interspecies competition.

    Science.gov (United States)

    Deng, Yinyue; Wu, Jien; Yin, Wenfang; Li, Peng; Zhou, Jianuan; Chen, Shaohua; He, Fei; Cai, Jun; Zhang, Lian-Hui

    2016-05-01

    Diffusible signal factor (DSF) represents a new class of widely conserved quorum sensing signals, which regulates various biological functions through intra- or interspecies signaling. The previous studies identified that there is an antagonistic interaction between Xanthomonas and Bacillus species bacteria in natural ecosystem, but the detailed molecular mechanism of interspecies competition is not clear. This study showed that Xanthomonas campestris pv. campestris (Xcc) interfered with morphological transition and sporulation of Bacillus thuringiensis in mixed cultures, whereas abrogation of the DSF synthase RpfF reduced the interference. DSF inhibited B. thuringiensis cell division and sporulation through modulation of ftsZ, which encodes an important cell division protein in bacterial cells. In addition, RpfF is essential for production of six DSF-family signals in Xcc, which employ the same signaling pathways to regulate biological functions in Xcc and play similar effects on reduction of cell division, sporulation and antibiotic resistance of B. thuringiensis. Furthermore, abrogation of RpfF decreased the competitive capability of Xcc against B. thuringiensis on the surface of Chinese cabbage leaves. Our findings provide new insights into the role of DSF-family signals in interspecies competition and depict molecular mechanisms with which Xcc competes with B. thuringiensis. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. BrassicaTED - a public database for utilization of miniature transposable elements in Brassica species.

    Science.gov (United States)

    Murukarthick, Jayakodi; Sampath, Perumal; Lee, Sang Choon; Choi, Beom-Soon; Senthil, Natesan; Liu, Shengyi; Yang, Tae-Jin

    2014-06-20

    MITE, TRIM and SINEs are miniature form transposable elements (mTEs) that are ubiquitous and dispersed throughout entire plant genomes. Tens of thousands of members cause insertion polymorphism at both the inter- and intra- species level. Therefore, mTEs are valuable targets and resources for development of markers that can be utilized for breeding, genetic diversity and genome evolution studies. Taking advantage of the completely sequenced genomes of Brassica rapa and B. oleracea, characterization of mTEs and building a curated database are prerequisite to extending their utilization for genomics and applied fields in Brassica crops. We have developed BrassicaTED as a unique web portal containing detailed characterization information for mTEs of Brassica species. At present, BrassicaTED has datasets for 41 mTE families, including 5894 and 6026 members from 20 MITE families, 1393 and 1639 members from 5 TRIM families, 1270 and 2364 members from 16 SINE families in B. rapa and B. oleracea, respectively. BrassicaTED offers different sections to browse structural and positional characteristics for every mTE family. In addition, we have added data on 289 MITE insertion polymorphisms from a survey of seven Brassica relatives. Genes with internal mTE insertions are shown with detailed gene annotation and microarray-based comparative gene expression data in comparison with their paralogs in the triplicated B. rapa genome. This database also includes a novel tool, K BLAST (Karyotype BLAST), for clear visualization of the locations for each member in the B. rapa and B. oleracea pseudo-genome sequences. BrassicaTED is a newly developed database of information regarding the characteristics and potential utility of mTEs including MITE, TRIM and SINEs in B. rapa and B. oleracea. The database will promote the development of desirable mTE-based markers, which can be utilized for genomics and breeding in Brassica species. BrassicaTED will be a valuable repository for scientists

  9. QTL for phytosterol and sinapate ester content in Brassica napus L. collocate with the two erucic acid genes

    Science.gov (United States)

    Amar, Samija; Ecke, Wolfgang; Becker, Heiko C.

    2008-01-01

    Improving oil and protein quality for food and feed purposes is an important goal in rapeseed (Brassica napus L.) breeding programs. Rapeseed contains phytosterols, used to enrich food products, and sinapate esters, which are limiting the utilization of rapeseed proteins in the feed industry. Increasing the phytosterol content of oil and lowering sinapate ester content of meal could increase the value of the oilseed rape crop. The objective of the present study was to identify quantitative trait loci (QTL) for phytosterol and sinapate ester content in a winter rapeseed population of 148 doubled haploid lines, previously found to have a large variation for these two traits. This population also segregated for the two erucic acid genes. A close negative correlation was found between erucic acid and phytosterol content (Spearman’s rank correlation, rs = −0.80**). For total phytosterol content, three QTL were detected, explaining 60% of the genetic variance. The two QTL with the strongest additive effects were mapped on linkage groups N8 and N13 within the confidence intervals of the two erucic acid genes. For sinapate ester content four QTL were detected, explaining 53% of the genetic variance. Again, a close negative correlation was found between erucic acid and sinapate ester content (rs = −0.66**) and the QTL with the strongest additive effects mapped on linkage groups N8 and N13 within the confidence intervals of the two erucic acid genes. The results suggests, that there is a pleiotropic effect of the two erucic acid genes on phytosterol and sinapate ester content; the effect of the alleles for low erucic acid content is to increase phytosterol and sinapate ester content. Possible reasons for this are discussed based on known biosynthetic pathways. Electronic supplementary material The online version of this article (doi:10.1007/s00122-008-0734-2) contains supplementary material, which is available to authorized users. PMID:18335203

  10. Establishment of an inducing medium for type III effector secretion in Xanthomonas campestris pv. campestris

    Directory of Open Access Journals (Sweden)

    Guo-Feng Jiang

    2013-09-01

    Full Text Available It is well known that the type III secretion system (T3SS and type III (T3 effectors are essential for the pathogenicity of most bacterial phytopathogens and that the expression of T3SS and T3 effectors is suppressed in rich media but induced in minimal media and plants. To facilitate in-depth studies on T3SS and T3 effectors, it is crucial to establish a medium for T3 effector expression and secretion. Xanthomonas campestris pv. campestris (Xcc is a model bacterium for studying plant-pathogen interactions. To date no medium for Xcc T3 effector secretion has been defined. Here, we compared four minimal media (MME, MMX, XVM2, and XOM2 which are reported for T3 expression induction in Xanthomonas spp. and found that MME is most efficient for expression and secretion of Xcc T3 effectors. By optimization of carbon and nitrogen sources and pH value based on MME, we established XCM1 medium, which is about 3 times stronger than MME for Xcc T3 effectors secretion. We further optimized the concentration of phosphate, calcium, and magnesium in XCM1 and found that XCM1 with a lower concentration of magnesium (renamed as XCM2 is about 10 times as efficient as XCM1 (meanwhile, about 30 times stronger than MME. Thus, we established an inducing medium XCM2 which is preferred for T3 effector secretion in Xcc.

  11. Preparation, crystallization and preliminary X-ray characterization of a conserved hypothetical protein XC1692 from Xanthomonas campestris

    International Nuclear Information System (INIS)

    Chin, Ko-Hsin; Huang, Zhao-Wei; Wei, Kun-Chou; Chou, Chia-Cheng; Lee, Cheng-Chung; Shr, Hui-Lin; Gao, Fei Philip; Lyu, Ping-Chiang; Wang, Andrew H.-J.; Chou, Shan-Ho

    2005-01-01

    A conserved hypothetical protein XC1692 from X. campestris pv. campestris has been overexpressed in E. coli. The purified recombinant protein crystallized in a variety of forms and diffracted to a resolution of at least 1.45 Å. Xanthomonas campestris pv. campestris strain 17 is a Gram-negative yellow-pigmented pathogenic bacterium that causes black rot, one of the major worldwide diseases of cruciferous crops. Its genome contains approximately 4500 genes, one third of which have no known structure and/or function yet are highly conserved among several different bacterial genuses. One of these gene products is XC1692 protein, containing 141 amino acids. It was overexpressed in Escherichia coli, purified and crystallized in a variety of forms using the hanging-drop vapour-diffusion method. The crystals diffract to at least 1.45 Å resolution. They are hexagonal and belong to space group P6 3 , with unit-cell parameters a = b = 56.9, c = 71.0 Å. They contain one molecule per asymmetric unit

  12. Tribological characteristics of monodispersed cerium borate nanospheres in biodegradable rapeseed oil lubricant

    Energy Technology Data Exchange (ETDEWEB)

    Boshui, Chen, E-mail: boshuichen@163.com; Kecheng, Gu; Jianhua, Fang; Jiang, Wu; Jiu, Wang; Nan, Zhang

    2015-10-30

    Graphical abstract: - Highlights: • Monodispersed stearic acid-capped cerium borate composite nanoparticles were prepared by hydrothermal method. Their morphologies, element compositions, size distributions, crystal and chemical structures, hydrophobic characteristics were also characterized. • The surface-capped cerium borate nanoparticles exhibited excellent dispersing stability in rapeseed oil. As new lubricating additives, they were also outstanding in enhancing friction-reducing and anti-wear capacities of rapeseed oil in biodegradable rapeseed oil. The results presented in this paper would be of important significance for developing green lubricants and lubricant additives. • The prominent tribological performances of SA/CeBO{sub 3} in rapeseed oil were investigated and attributed to the formation of a composite boundary lubrication film mainly composed of lubricous tribochemical species on the tribo-surfaces. - Abstract: Stearic acid-capped cerium borate composite nanoparticles, abbreviated as SA/CeBO{sub 3}, were prepared by hydrothermal method. The morphologies, element compositions, size distributions, crystal and chemical structures, hydrophobic characteristics, of SA/CeBO{sub 3} were characterized by scanning electron microscope, energy dispersive X-ray spectrometer, dynamic laser particle size analyzer, X-ray diffraction, and Fourier transform infrared spectrometer, respectively. The friction and wear performances of SA/CeBO{sub 3} as a lubricating additive in a rapeseed oil were evaluated on a four-ball tribo-tester. The tribochemical characteristics of the worn surfaces were investigated by X-ray photoelectron spectroscopy. The results showed that the hydrophobic SA/CeBO{sub 3} were monodispersed nanospheres with an average diameter of 8 nm, and exhibited excellent dispersing stability in rapeseed oil. Meanwhile, SA/CeBO{sub 3} nanospheres were outstanding in enhancing friction-reducing and anti-wear capacities of rapeseed oil. The prominent

  13. Comparative transcriptome analysis reveals carbohydrate and lipid metabolism blocks in Brassica napus L. male sterility induced by the chemical hybridization agent monosulfuron ester sodium.

    Science.gov (United States)

    Li, Zhanjie; Cheng, Yufeng; Cui, Jianmin; Zhang, Peipei; Zhao, Huixian; Hu, Shengwu

    2015-03-17

    Chemical hybridization agents (CHAs) are often used to induce male sterility for the production of hybrid seeds. We previously discovered that monosulfuron ester sodium (MES), an acetolactate synthase (ALS) inhibitor of the herbicide sulfonylurea family, can induce rapeseed (Brassica napus L.) male sterility at approximately 1% concentration required for its herbicidal activity. To find some clues to the mechanism of MES inducing male sterility, the ultrastructural cytology observations, comparative transcriptome analysis, and physiological analysis on carbohydrate content were carried out in leaves and anthers at different developmental stages between the MES-treated and mock-treated rapeseed plants. Cytological analysis revealed that the plastid ultrastructure was abnormal in pollen mother cells and tapetal cells in male sterility anthers induced by MES treatment, with less material accumulation in it. However, starch granules were observed in chloroplastids of the epidermis cells in male sterility anthers. Comparative transcriptome analysis identified 1501 differentially expressed transcripts (DETs) in leaves and anthers at different developmental stages, most of these DETs being localized in plastid and mitochondrion. Transcripts involved in metabolism, especially in carbohydrate and lipid metabolism, and cellular transport were differentially expressed. Pathway visualization showed that the tightly regulated gene network for metabolism was reprogrammed to respond to MES treatment. The results of cytological observation and transcriptome analysis in the MES-treated rapeseed plants were mirrored by carbohydrate content analysis. MES treatment led to decrease in soluble sugars content in leaves and early stage buds, but increase in soluble sugars content and decrease in starch content in middle stage buds. Our integrative results suggested that carbohydrate and lipid metabolism were influenced by CHA-MES treatment during rapeseed anther development, which might

  14. Variation in G lucosinolate C ontents of C ruciferous P lants

    Directory of Open Access Journals (Sweden)

    Won Park

    2017-03-01

    Full Text Available Glucosinolates are secondary metabolites of almost all plants of the order Brassicales, and have been known to control nematode populations. In this study, 14 glucosinolates were identified, quantified, and compared in several varieties and cultivars of cruciferous plants including Brassica campestris ssp. pekinensis (Chinese cabbage, Brassica juncea var. crispifolia L. H. Bailey (mustard, Brassica juncea L. Czern. var. juncea (leaf mustard, Brassica oleracea L. var. acephala (kale, Raphanus sativus L. (radish, and Brassica campestris L. ssp. oleifera (winter turnip rape. The most abundant glucosinolate in mustard, leaf mustard, kale, and radish was sinigrin. In leaf mustard, the sinigrin content ranged from 193.05 μmol/g to 215.52 μmol/g, and in mustard, the sinigrin contents of blue mustard and red mustard were 219.08 μmol/g and 215.73 μmol/g, respectively. Kale and radish contained 137.79 μmol/g and 120.25 μmol/g, respectively, of sinigrin. Gluconapin was the most abundant glucosinolate in winter turnip rape, at 121.17 μmol/g. Chinese cabbage contained mostly glucocochlearin (79.88 μmol/g. These results will be useful in the development of environmentally friendly plant-based pesticides by allowing for proper control of glucosinolates based on those present in the chosen plant species.

  15. A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Liezhao Liu

    Full Text Available A high density genetic linkage map for the complex allotetraploid crop species Brassica napus (oilseed rape was constructed in a late-generation recombinant inbred line (RIL population, using genome-wide single nucleotide polymorphism (SNP markers assayed by the Brassica 60 K Infinium BeadChip Array. The linkage map contains 9164 SNP markers covering 1832.9 cM. 1232 bins account for 7648 of the markers. A subset of 2795 SNP markers, with an average distance of 0.66 cM between adjacent markers, was applied for QTL mapping of seed colour and the cell wall fiber components acid detergent lignin (ADL, cellulose and hemicellulose. After phenotypic analyses across four different environments a total of 11 QTL were detected for seed colour and fiber traits. The high-density map considerably improved QTL resolution compared to the previous low-density maps. A previously identified major QTL with very high effects on seed colour and ADL was pinpointed to a narrow genome interval on chromosome A09, while a minor QTL explaining 8.1% to 14.1% of variation for ADL was detected on chromosome C05. Five and three QTL accounting for 4.7% to 21.9% and 7.3% to 16.9% of the phenotypic variation for cellulose and hemicellulose, respectively, were also detected. To our knowledge this is the first description of QTL for seed cellulose and hemicellulose in B. napus, representing interesting new targets for improving oil content. The high density SNP genetic map enables navigation from interesting B. napus QTL to Brassica genome sequences, giving useful new information for understanding the genetics of key seed quality traits in rapeseed.

  16. Colonización radical por endófitos fúngicos en Trithrinax campestris (Arecaceae de ecosistemas semiáridos del centro de Argentina Root colonization by fungal endophytes in Trithrinax campestris (Arecaceae from semiarid ecosystems from Central Argentine

    Directory of Open Access Journals (Sweden)

    Mónica A Lugo

    2011-12-01

    Full Text Available En ecosistemas áridos y semiáridos las raíces de las plantas suelen formar simbiosis con hongos, los que les proporcionan nutrientes y agua. Poco se conoce sobre los hongos asociados a palmeras nativas y cómo éstos podrían estar relacionados entre ellos. Se describe y cuantifica la colonización radical de los simbiontes de Trithrinax campestris en poblaciones leve y fuertemente afectadas por el fuego. T. campestris fue colonizada por hongos micorrícico-arbusculares (HMA y endófitos septados oscuros (ESO. La colonización por HMA fue del tipo intermedio entre los tipos Arum y Paris. La colonización por HMA y ESO y la producción de pelos radicales, presentó diferencias entre las poblaciones estudiadas. Los resultados sugieren que en T. campestris la relación entre hongos simbiontes/producción de pelos radicales podrían estar relacionada con su alta tolerancia al fuego y la aridez.In arid and semiarid ecosystems, roots frequently form symbiosis with fungi that provides access to nutrients and water. Knowledge regarding the study of fungal symbionts colonizing native palms roots is still scarce. We described, quantified and compared fungal colonization in roots of Trithrinax campestris from two environmental situations: population with weak-burning-signs and population with strong-burning-signs. T. campestris was colonized by arbuscular-mycorrhizal-fungi (AMF and dark-septate-endophytes (DSE. AMF colonization was an intermediate type between Arum and Paris. The AMF and DSE colonization and root hair production differed between populations. Our results suggest that in T. campestris the relation between fungal-symbionts and root-hair-production might be related to tolerance to burning and aridity.

  17. Light Enables a Very High Efficiency of Carbon Storage in Developing Embryos of Rapeseed1

    Science.gov (United States)

    Goffman, Fernando D.; Alonso, Ana P.; Schwender, Jörg; Shachar-Hill, Yair; Ohlrogge, John B.

    2005-01-01

    The conversion of photosynthate to seed storage reserves is crucial to plant fitness and agricultural production, yet quantitative information about the efficiency of this process is lacking. To measure metabolic efficiency in developing seeds, rapeseed (Brassica napus) embryos were cultured in media in which all carbon sources were [U-14C]-labeled and their conversion into CO2, oil, protein, and other biomass was determined. The conversion efficiency of the supplied carbon into seed storage reserves was very high. When provided with 0, 50, or 150 μmol m−2 s−1 light, the proportion of carbon taken up by embryos that was recovered in biomass was 60% to 64%, 77% to 86%, and 85% to 95%, respectively. Light not only improved the efficiency of carbon storage, but also increased the growth rate, the proportion of 14C recovered in oil relative to protein, and the fixation of external 14CO2 into biomass. Embryos grown at 50 μmol m−2 s−1 in the presence of 5 μm 1,1-dimethyl-3-(3,4-dichlorophenyl) urea (an inhibitor of photosystem II) were reduced in total biomass and oil synthesis by 3.2-fold and 2.8-fold, respectively, to the levels observed in the dark. To explore if the reduced growth and carbon conversion efficiency in dark were related to oxygen supplied by photosystem II, embryos and siliques were cultured with increased oxygen. The carbon conversion efficiency of embryos remained unchanged when oxygen levels were increased 3-fold. Increasing the O2 levels surrounding siliques from 21% to 60% did not increase oil synthesis rates either at 1,000 μmol m−2 s−1 or in the dark. We conclude that light increases the growth, efficiency of carbon storage, and oil synthesis in developing rapeseed embryos primarily by providing reductant and/or ATP. PMID:16024686

  18. Production of inulinase by Xanthomonas campestris pv phaseoli using onion (Allium cepa) and garlic (Allium sativum) peels in solid state cultivation.

    Science.gov (United States)

    Ayyachamy, M; Khelawan, K; Pillay, D; Permaul, K; Singh, S

    2007-10-01

    To access inulinase production by Xanthomonas campestris pv phaseoli using the submerged and solid state cultivation (SSC) methods. Various carbon sources, inulin-rich solid substrates and pure synthetic inulin were tested for their efficiency in inulinase induction. The highest inulinase production (17.42 IU ml(-1)) in submerged cultures of X. campestris was observed with inulin as a carbon source with an initial pH, temperature and agitation of 7.0, 37 degrees C and 150 rev min(-1) respectively. Among the various substrates, garlic peels (117 IU gds(-1)) and onion peels (101 IU gds(-1)) were found to be the best for inulinase production. The inulinase production level of X. campestris was 6.7-fold higher in garlic and 5.8-fold in onion, under optimized SSC conditions compared with the submerged culture. This is the first report on inulinase production from garlic and onion peels by X. campestris using SSC. SSC is an efficient method for inulinase production by X. campestris for commercial applications.

  19. Effect of ultraviolet radiation on growth and photosynthetic ability of turnip (Brassica campestris L.)

    International Nuclear Information System (INIS)

    Inagaki, N.; Maekawa, S.; Terabun, M.

    1986-01-01

    Two experimental plots were prepared to investigate the effect of near-ultraviolet (UV) radiation on the growth and photosynthesis of turnip (Brassica cam pestris L.). They were treated by covering with UV-transmitting vinyl film (UVT) or UV-eliminating vinyl film (UVE) (Fig.1). The results were summarized as follows. 1. UV energy in UVE plot was 3 to 4% of that in UVT plot (Table 1). The temperature of UVE plot was similar to that of UVT plot throughout the growth period (Fig.2). The daily mean temperature throughout the growth period was about 19°C. 2. UVE plot was superior to UVT plot in all the characters investigated on growth (Table 2). Particularly plant length and fresh weight were significant at 5% level throughout the growth period. The growth pattern of each character was almost common to each other between the two experimental plots, except that the relative growth rate during exponential growth period of UVE plot was higher than that of UVT plot (Fig.3-1-Fig.6). 3. Apparent photosynthesis rate per unit of leaf area in UVE plot was higher than that in UVT plot at 24 days after sowing, but at 42, 48 and 70 days of after sowing the result was reversed (Fig.8). From this experiment, the effect UV on photosynthesis was not clearly observed. (author)

  20. Effect of ultraviolet radiation on growth and photosynthetic ability of turnip (Brassica campestris L.)

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, N.; Maekawa, S.; Terabun, M.

    1986-07-01

    Two experimental plots were prepared to investigate the effect of near-ultraviolet (UV) radiation on the growth and photosynthesis of turnip (Brassica cam pestris L.). They were treated by covering with UV-transmitting vinyl film (UVT) or UV-eliminating vinyl film (UVE) (Fig.1). The results were summarized as follows. 1. UV energy in UVE plot was 3 to 4% of that in UVT plot (Table 1). The temperature of UVE plot was similar to that of UVT plot throughout the growth period (Fig.2). The daily mean temperature throughout the growth period was about 19°C. 2. UVE plot was superior to UVT plot in all the characters investigated on growth (Table 2). Particularly plant length and fresh weight were significant at 5% level throughout the growth period. The growth pattern of each character was almost common to each other between the two experimental plots, except that the relative growth rate during exponential growth period of UVE plot was higher than that of UVT plot (Fig.3-1-Fig.6). 3. Apparent photosynthesis rate per unit of leaf area in UVE plot was higher than that in UVT plot at 24 days after sowing, but at 42, 48 and 70 days of after sowing the result was reversed (Fig.8). From this experiment, the effect UV on photosynthesis was not clearly observed. (author)

  1. Amplifying recombination genome-wide and reshaping crossover landscapes in Brassicas

    Science.gov (United States)

    Falque, Matthieu; Trotoux, Gwenn; Eber, Frédérique; Nègre, Sylvie; Gilet, Marie; Huteau, Virginie; Lodé, Maryse; Jousseaume, Thibaut; Dechaumet, Sylvain; Morice, Jérôme; Coriton, Olivier; Rousseau-Gueutin, Mathieu

    2017-01-01

    Meiotic recombination by crossovers (COs) is tightly regulated, limiting its key role in producing genetic diversity. However, while COs are usually restricted in number and not homogenously distributed along chromosomes, we show here how to disrupt these rules in Brassica species by using allotriploid hybrids (AAC, 2n = 3x = 29), resulting from the cross between the allotetraploid rapeseed (B. napus, AACC, 2n = 4x = 38) and one of its diploid progenitors (B. rapa, AA, 2n = 2x = 20). We produced mapping populations from different genotypes of both diploid AA and triploid AAC hybrids, used as female and/or as male. Each population revealed nearly 3,000 COs that we studied with SNP markers well distributed along the A genome (on average 1 SNP per 1.25 Mbp). Compared to the case of diploids, allotriploid hybrids showed 1.7 to 3.4 times more overall COs depending on the sex of meiosis and the genetic background. Most surprisingly, we found that such a rise was always associated with (i) dramatic changes in the shape of recombination landscapes and (ii) a strong decrease of CO interference. Hybrids carrying an additional C genome exhibited COs all along the A chromosomes, even in the vicinity of centromeres that are deprived of COs in diploids as well as in most studied species. Moreover, in male allotriploid hybrids we found that Class I COs are mostly responsible for the changes of CO rates, landscapes and interference. These results offer the opportunity for geneticists and plant breeders to dramatically enhance the generation of diversity in Brassica species by disrupting the linkage drag coming from limits on number and distribution of COs. PMID:28493942

  2. INTERNATIONAL TRADE WHITH RAPESEED

    Directory of Open Access Journals (Sweden)

    Radu Lucian PÂNZARU

    2013-01-01

    Full Text Available The study takes into consideration the international trade situation of rapeseed worldwide. To highlight the situation are analyzed sequentially imports and exports in five units continents: Africa, America, Asia, Europe and Oceania. Applicability and interest increased for trade with this product is emphasized by references from Romania. The study takes into consideration 2008-2010. In terms of world imports and their structure is noted preponderance Europe and Asia in the quantities imported - 87.38% (both, the weights low enough for Oceania and Africa - 0.04 together. If we analyze the situation of exports is apparent fact that Europe remains, as in the case of imports, the main player on the market (48.11%, but not followed by Asia, but of America with a very close relative weight (44 , 45%. Oceania owns more than 5% of world quantitatively of exports, while Asia and Africa have shares almost insignificant - 0.36 and 0.05% respectively. Regarding the situation of global trade balance exchanges for rapeseed can be seen a globally deficient character.

  3. [Flavonoids of Artemisia campestris, ssp. glutinosa].

    Science.gov (United States)

    Hurabielle, M; Eberle, J; Paris, M

    1982-10-01

    Four flavanones (pinostrobin, pinocembrin, sakuranetin and naringenin), one dihydroflavonol (7-methyl aromadendrin) and one flavone (hispidulin) have been isolated from Artemisia campestris L. ssp. glutinosa Gay and identified by spectroscopic methods. Artemisia campestris L. sous-espèce glutinosa Gay est une Composée Anthémidée largement répandue sur les sables du littoral méditerranéean et abondante dans certaines régions d'Espagne et d'Italie. Dans le cadre d'une étude chimiotaxonomique du genre Artemisia Tourn., nous nous sommes intéressés à l'analyse des flavonoïdes, composés jamais décrits, à notre connaissance, dans cette espèce d' Artemisia. Les sommités fleuries d' Artemisia campestris sous-espèce glutinosa, séchées et pulvérisées, sont dégraissées à l'ether de pétrole et épuisées par le chloroforme. Le fractionnement de l'extrait chloroformique, par chromatographie sur colonne de silice, et la purification de certaines fractions conduisent à l'isolement de six génines flavoniques, à l'etat pur. L' étude des spectres UV, des spectres de masse et des spectres de RMN [1,2] et la comparaison avec des échantillons authentiques permettent de proposer, pour ces flavonoïdes, les structures de la pinostrobine [3], de la pinocembrine [4], de la sakuranétine, de la naringénine [5] (flavanones), de la méthyl-7-aromadendrine, [6, 7] (dihydroflavonol) et de l'hispiduline [8, 9] (flavone); quatre de ces génines sont méthylées. Parmi ces flavonoïdes, la pinostrobine n'a jamais été décrite, à notre connaissance, dans la famille des Composées; la pinocembrine, la sakuranétine et la naringénine ont déjà été signalées chez quelques Astéracées et Eupatoriées [10], et l'hispiduline dans la tribu des Anthémidées ( Santolina chamaecyparissus L.) [8]. Seule, la méthyl-7-aromadendrine semble décrite, à ce jour, dans le genre Artemisia Tourn. [7].

  4. Analysis of cold resistance and identification of SSR markers linked to cold resistance genes in Brassica rapa L.

    Science.gov (United States)

    Huang, Zhen; Zhang, Xuexian; Jiang, Shouhua; Qin, Mengfan; Zhao, Na; Lang, Lina; Liu, Yaping; Tian, Zhengshu; Liu, Xia; Wang, Yang; Zhang, Binbin; Xu, Aixia

    2017-06-01

    Currently, cold temperatures are one of the main factors threatening rapeseed production worldwide; thus, it is imperative to identify cold-resistant germplasm and to cultivate cold-resistant rapeseed varieties. In this study, the cold resistance of four Brassica rapa varieties was analyzed. The cold resistance of Longyou6 and Longyou7 was better than that of Tianyou2 and Tianyou4. Thus, an F 2 population derived from Longyou6 and Tianyou4 was used to study the correlation of cold resistance and physiological indexes. Our results showed that the degree of frost damage was related to the relative conductivity and MDA content (r1 = 0.558 and r2 = 0.447, respectively). In order to identify the markers related to cold resistance, 504 pairs of SSR (simple sequence repeats) primers were used to screen the two parents and F 2 population. Four and five SSR markers had highly significant positive correlation to relative conductivity and MDA, respectively. In addition, three of these SSR markers had a highly significant positive correlation to both of these two indexes. These three SSR markers were subsequently confirmed to be used to distinguish between cold-resistant and non-cold-resistant varieties. The results of this study will lay a solid foundation for the mapping of cold-resistant genes and molecular markers assisted selection for the cold-resistance.

  5. Characterization of the Factors that Influence Sinapine Concentration in Rapeseed Meal during Fermentation

    Science.gov (United States)

    Niu, Yanxing; Jiang, Mulan; Guo, Mian; Wan, Chuyun; Hu, Shuangxi; Jin, Hu; Huang, Fenghong

    2015-01-01

    We analyzed and compared the difference in sinapine concentration in rapeseed meal between the filamentous fungus, Trametes sp 48424, and the yeast, Saccharomyces cerevisiae, in both liquid and solid-state fermentation. During liquid and solid-state fermentation by Trametes sp 48424, the sinapine concentration decreased significantly. In contrast, the liquid and solid-state fermentation process by Saccharomyces cerevisiae just slightly decreased the sinapine concentration (P ≤ 0.05). After the solid-state fermented samples were dried, the concentration of sinapine in rapeseed meal decreased significantly in Saccharomyces cerevisiae. Based on the measurement of laccase activity, we observed that laccase induced the decrease in the concentration of sinapine during fermentation with Trametes sp 48424. In order to eliminate the influence of microorganisms and the metabolites produced during fermentation, high moisture rapeseed meal and the original rapeseed meal were dried at 90°C and 105°C, respectively. During drying, the concentration of sinapine in high moisture rapeseed meal decreased rapidly and we obtained a high correlation coefficient between the concentration of sinapine and loss of moisture. Our results suggest that drying and enzymes, especially laccase that is produced during the solid-state fermentation process, may be the main factors that affect the concentration of sinapine in rapeseed meal. PMID:25606856

  6. Temperature Effects on Cuscuta campestris Yunk. Seed Germination

    Directory of Open Access Journals (Sweden)

    Marija Sarić-Krsmanović

    2013-01-01

    Full Text Available Studies of biological characteristics of seeds and conditions for their germination havea major importance for planning and executing rational measures of weed control. Theaim of this study was to investigate the effect of different temperatures on germinationof C. campestris seeds. Three treatments (T1- storage at room temperature; T2 – exposureto 4°C for 30 days; T3 – scarification by concentrated sulphuric acid differing in manipulationwith seeds before germination were tested at different temperatures (5°C, 10°C, 15°C,20°C, 25°C, 30°C, 35°C, 40°C, 45°C. Germinated seeds were counted daily for ten days andthe length of seedlings was measured on the last day. The results showed that differencesin germination of C. campestris seeds were very prominent between temperatures, as wellas between treatments T1, T2 and T3. Seeds failed to germinate at 5°C and 45°C in all treatments(T1, T2, T3. Germination ranged from 6.25 at 10°C to 96.88%, the highest percentage,achieved at 30°C.

  7. Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea

    NARCIS (Netherlands)

    Cheng, Feng; Sun, Rifei; Hou, Xilin; Zheng, Hongkun; Zhang, Fenglan; Zhang, Yangyong; Liu, Bo; Liang, Jianli; Zhuang, Mu; Liu, Yunxia; Liu, Dongyuan; Wang, Xiaobo; Li, Pingxia; Liu, Yumei; Lin, Ke; Bucher, Johan; Zhang, Ningwen; Wang, Yan; Wang, Hui; Deng, Jie; Liao, Yongcui; Wei, Keyun; Zhang, Xueming; Fu, Lixia; Hu, Yunyan; Liu, Jisheng; Cai, Chengcheng; Zhang, Shujiang; Zhang, Shifan; Li, Fei; Zhang, Hui; Zhang, Jifang; Guo, Ning; Liu, Zhiyuan; Liu, Jin; Sun, Chao; Ma, Yuan; Zhang, Haijiao; Cui, Yang; Freeling, Micheal R.; Borm, Theo; Bonnema, Guusje; Wu, Jian; Wang, Xiaowu

    2016-01-01

    Brassica species, including crops such as cabbage, turnip and oilseed, display enormous phenotypic variation. Brassica genomes have all undergone a whole-genome triplication (WGT) event with unknown effects on phenotype diversification. We resequenced 199 Brassica rapa and 119 Brassica oleracea

  8. Enhanced fish oil-in-water emulsions enabled by rapeseed lecithins obtained under different processing conditions.

    Science.gov (United States)

    Li, Jingbo; Pedersen, Jacob Nedergaard; Anankanbil, Sampson; Guo, Zheng

    2018-10-30

    It is hypothesized that rapeseed lecithins may have different emulsifying and antioxidant properties in delivering fish oil compared to soy lecithin based on previous studies. The results showed that in vitro antioxidant activities of rapeseed lecithins were stronger than those of soy lecithin. Emulsions stabilized by rapeseed based lecithins and DATEM were stable over 3 months at 4 °C, whereas the creaming of emulsions containing soy lecithin started immediately after its preparation. Zeta-potential of rapeseed lecithins was higher than soy lecithin and DATEM, which partially contributed to the emulsion stability. Although the particle sizes of emulsions prepared by rapeseed lecithins increased after 14 days storage, no creaming was observed. Lipid oxidation as indicated by TBARS values suggested that DATEM was the most unfavorable, followed by soy lecithin. It is concluded that rapeseed lecithins are better than soy lecithin and DATEM in terms of emulsion stability and antioxidant capability, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Symbiotic Effect of Trichoderma atroviride on Growth Characteristics and Yield of two Cultivars of Rapeseed (Brassica napus L. in a Contaminated Soil Treated with Copper Nitrate

    Directory of Open Access Journals (Sweden)

    E TashakoriFard

    2017-06-01

    Full Text Available Introduction Accumulation of heavy metals in agricultural soils can be a threat to crop production due to plant toxicity. In the recent years, hyperaccumulator plants are cultivated to cleaning up the soils which contaminated with pollutants especially heavy metals. However, the biomass of these plants is low and metal specific. Many studies have shown that microorganisms can be used to significantly reduce the toxicity of heavy metals. Therefore, the present study aimed to determine the role of Trichoderma atroviride on the growth characteristics of tow cultivars of rapeseed in different levels on copper. Materials and Methods In this study, a pot experiment was conducted in factorial arrangement based completely randomized design with three replicates. Treatment were T. atroviride fungi at two levels of inoculated and non-inoculated plants, four levels of copper nitrate including 0, 50, 100 and 150 mg l-1 and two cultivars of rapeseed consist of Hayola 401 and Sarigol. Trichoderma atroviride was prepared from Mycology Lab of Sari Agricultural Science and Natural Resource University. PDA medium (potato extract, dextrose and agar was kept for a week at 25˚C to propagation of fungal strain. The used medium was previously sterilized in autoclave for 30 minutes. So, this fungus propagated in Wheat's bran for five days. Healthy and uniform seeds of rapeseeds were separated from rogues and infertile ones. Seeds disinfected in hypochlorite sodium 0.5% for five minute and then washed with distilled water three times. After preparing fungus spore suspension of 108 CFU per ml water, 50 g wheat' bran mixed to the soil of each pot. Twenty sterilized seeds sown in 2 cm of soil depth in 25×30 cm pot with 10 kg capacity. Copper nitrate was used to pollute treated soil. During this experiment did not used any pesticides and herbicides and all weed controlled manually. Some growth and yield related parameters such as plant height, number of secondary branches

  10. An analysis of growth factors of rapeseed at modern resource-saving technology

    Science.gov (United States)

    Filipova, M.; Zheleva, I.; Sulejmenova, N.; Abildaev, E.

    2017-10-01

    Nowadays the production of rapeseed has grown due to the variety of existing possibilities for its using. This calls the search for new, resource-saving technologies for its growing in Republic of Kazakhstan. For these new technologies it is needed to know which are the factors that influence the production of rapeseed and how each factor influence the production and the quality of this culture. The careful study of these factors is necessary for better understudying the process of the growing aimed increasing the yields and quantity of the rapeseed.

  11. Mitogen-activated protein kinase kinase kinase (MAPKKK) 4 from rapeseed (Brassica napus L.) is a novel member inducing ROS accumulation and cell death

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liang, E-mail: 18710470987@163.com; Ye, Chaofei, E-mail: yechaofei001@163.com; Zhao, Rui, E-mail: 571828628@qq.com; Li, Xin, E-mail: 1458272138@qq.com; Liu, Wu-zhen, E-mail: happywuzhenliu@163.com; Wu, Feifei, E-mail: 283915941@qq.com; Yan, Jingli, E-mail: yanjingli512@163.com; Jiang, Yuan-Qing, E-mail: jiangyq@nwafu.edu.cn; Yang, Bo, E-mail: yangwl@nwafu.edu.cn

    2015-11-27

    MAPKKK is the largest family of MAPK cascade, which is known to play important roles in plant growth, development and immune responses. So far, only a few have been functionally characterized even in the model plant, Arabidopsis due to the potential functional redundancy of MAPKKK. We previously identified and cloned a few MAPKKK family genes from rapeseed. In this study, BnaMAPKKK4 was characterized as a member in eliciting accumulation of reactive oxygen species (ROS) and hypersensitive response (HR)-like cell death. This is accompanied with accumulation of malondialdehyde (MDA), anthocyanin as well as nuclear DNA fragmentation. The transcript abundance of a series of ROS accumulation, cell death, and defense response related genes were up-regulated by the expression of MAPKKK4. Further investigation identified BnaMAPKKK4 elicited ROS through the downstream MPK3. These results indicate that BnaMAPKKK4 and its downstream components function in the ROS-induced cell death. - Highlights: • Expression of rapeseed MAPKKK4 induced ROS accumulation and cell death in leaves. • Cell death induced by MAPKKK4 is associated with membrane lipid peroxidation and DNA fragmentation. • MAPKKK4 interacts with MKK5 and MPK3. • MAPKKK4-induced ROS accumulation and cell death require downstream WIPK and SIPK. • MAPKKK4 is a novel MAPKKK modulating ROS accumulation and cell death.

  12. Mitogen-activated protein kinase kinase kinase (MAPKKK) 4 from rapeseed (Brassica napus L.) is a novel member inducing ROS accumulation and cell death

    International Nuclear Information System (INIS)

    Li, Liang; Ye, Chaofei; Zhao, Rui; Li, Xin; Liu, Wu-zhen; Wu, Feifei; Yan, Jingli; Jiang, Yuan-Qing; Yang, Bo

    2015-01-01

    MAPKKK is the largest family of MAPK cascade, which is known to play important roles in plant growth, development and immune responses. So far, only a few have been functionally characterized even in the model plant, Arabidopsis due to the potential functional redundancy of MAPKKK. We previously identified and cloned a few MAPKKK family genes from rapeseed. In this study, BnaMAPKKK4 was characterized as a member in eliciting accumulation of reactive oxygen species (ROS) and hypersensitive response (HR)-like cell death. This is accompanied with accumulation of malondialdehyde (MDA), anthocyanin as well as nuclear DNA fragmentation. The transcript abundance of a series of ROS accumulation, cell death, and defense response related genes were up-regulated by the expression of MAPKKK4. Further investigation identified BnaMAPKKK4 elicited ROS through the downstream MPK3. These results indicate that BnaMAPKKK4 and its downstream components function in the ROS-induced cell death. - Highlights: • Expression of rapeseed MAPKKK4 induced ROS accumulation and cell death in leaves. • Cell death induced by MAPKKK4 is associated with membrane lipid peroxidation and DNA fragmentation. • MAPKKK4 interacts with MKK5 and MPK3. • MAPKKK4-induced ROS accumulation and cell death require downstream WIPK and SIPK. • MAPKKK4 is a novel MAPKKK modulating ROS accumulation and cell death.

  13. High-density single nucleotide polymorphism (SNP) array mapping in Brassica oleracea: identification of QTL associated with carotenoid variation in broccoli florets.

    Science.gov (United States)

    Brown, Allan F; Yousef, Gad G; Chebrolu, Kranthi K; Byrd, Robert W; Everhart, Koyt W; Thomas, Aswathy; Reid, Robert W; Parkin, Isobel A P; Sharpe, Andrew G; Oliver, Rebekah; Guzman, Ivette; Jackson, Eric W

    2014-09-01

    A high-resolution genetic linkage map of B. oleracea was developed from a B. napus SNP array. The work will facilitate genetic and evolutionary studies in Brassicaceae. A broccoli population, VI-158 × BNC, consisting of 150 F2:3 families was used to create a saturated Brassica oleracea (diploid: CC) linkage map using a recently developed rapeseed (Brassica napus) (tetraploid: AACC) Illumina Infinium single nucleotide polymorphism (SNP) array. The map consisted of 547 non-redundant SNP markers spanning 948.1 cM across nine chromosomes with an average interval size of 1.7 cM. As the SNPs are anchored to the genomic reference sequence of the rapid cycling B. oleracea TO1000, we were able to estimate that the map provides 96 % coverage of the diploid genome. Carotenoid analysis of 2 years data identified 3 QTLs on two chromosomes that are associated with up to half of the phenotypic variation associated with the accumulation of total or individual compounds. By searching the genome sequences of the two related diploid species (B. oleracea and B. rapa), we further identified putative carotenoid candidate genes in the region of these QTLs. This is the first description of the use of a B. napus SNP array to rapidly construct high-density genetic linkage maps of one of the constituent diploid species. The unambiguous nature of these markers with regard to genomic sequences provides evidence to the nature of genes underlying the QTL, and demonstrates the value and impact this resource will have on Brassica research.

  14. Performance of winter-rapeseed lines with an improved fatty acid composition

    International Nuclear Information System (INIS)

    Kraeling, K.

    1990-01-01

    Full text: High levels of linoleic (C18:2) and low content of linolenic acid (C18:3) are desired traits for rapeseed. Induced mutants with an improved fatty acid composition derived from the spring-rapeseed variety Oro were crossed with a winter-rapeseed line exhibiting an increased C18:2 content and backcrossed two times with several high yielding cultivars of winter-rapeseed. After each cross the F 2 was screened by gaschromatography for the mutant-type. After the second backcross from each of 118 lines (BC 2 -F 3 ) an observation plot (9.4 m 2 ) was sown. Results show that through backcrossing it was possible to develop lines with a high proportion of C18:2 and a reduced level of C18:3, whereas C18:1 remained unchanged, demonstrating new combinations different from the usual positive correlation between C18:2 and C18:3. Yield increased continuously with decreasing portion of the mutant genome. Relatively low genotype x location interaction for fatty acids was found. (author)

  15. Identification and expression analysis of BoMF25, a novel polygalacturonase gene involved in pollen development of Brassica oleracea.

    Science.gov (United States)

    Lyu, Meiling; Liang, Ying; Yu, Youjian; Ma, Zhiming; Song, Limin; Yue, Xiaoyan; Cao, Jiashu

    2015-06-01

    BoMF25 acts on pollen wall. Polygalacturonase (PG) is a pectin-digesting enzyme involved in numerous plant developmental processes and is described to be of critical importance for pollen wall development. In the present study, a PG gene, BoMF25, was isolated from Brassica oleracea. BoMF25 is the homologous gene of At4g35670, a PG gene in Arabidopsis thaliana with a high expression level at the tricellular pollen stage. Collinear analysis revealed that the orthologous gene of BoMF25 in Brassica campestris (syn. B. rapa) genome was probably lost because of genome deletion and reshuffling. Sequence analysis indicated that BoMF25 contained four classical conserved domains (I, II, III, and IV) of PG protein. Homology and phylogenetic analyses showed that BoMF25 was clustered in Clade F. The putative promoter sequence, containing classical cis-acting elements and pollen-specific motifs, could drive green fluorescence protein expression in onion epidermal cells. Quantitative RT-PCR analysis suggested that BoMF25 was mainly expressed in the anther at the late stage of pollen development. In situ hybridization analysis also indicated that the strong and specific expression signal of BoMF25 existed in pollen grains at the mature pollen stage. Subcellular localization showed that the fluorescence signal was observed in the cell wall of onion epidermal cells, which suggested that BoMF25 may be a secreted protein localized in the pollen wall.

  16. SSR marker variations in Brassica species provide insight into the origin and evolution of Brassica amphidiploids.

    Science.gov (United States)

    Thakur, Ajay Kumar; Singh, Kunwar Harendra; Singh, Lal; Nanjundan, Joghee; Khan, Yasin Jeshima; Singh, Dhiraj

    2018-01-01

    Oilseed Brassica represents an important group of oilseed crops with a long history of evolution and cultivation. To understand the origin and evolution of Brassica amphidiploids, simple sequence repeat (SSR) markers were used to unravel genetic variations in three diploids and three amphidiploid Brassica species of U's triangle along with Eruca sativa as an outlier. Of 124 Brassica-derived SSR loci assayed, 100% cross-transferability was obtained for B. juncea and three subspecies of B. rapa , while lowest cross-transferability (91.93%) was obtained for Eruca sativa . The average % age of cross-transferability across all the seven species was 98.15%. The number of alleles detected at each locus ranged from one to six with an average of 3.41 alleles per primer pair. Neighbor-Joining-based dendrogram divided all the 40 accessions into two main groups composed of B. juncea / B. nigra/B. rapa and B. carinata/B. napus/B. oleracea . C-genome of oilseed Brassica species remained relatively more conserved than A- and B-genome. A- genome present in B. juncea and B. napus seems distinct from each other and hence provides great opportunity for generating diversity through synthesizing amphidiploids from different sources of A- genome. B. juncea had least intra-specific distance indicating narrow genetic base. B. rapa appears to be more primitive species from which other two diploid species might have evolved. The SSR marker set developed in this study will assist in DNA fingerprinting of various Brassica species cultivars, evaluating the genetic diversity in Brassica germplasm, genome mapping and construction of linkage maps, gene tagging and various other genomics-related studies in Brassica species. Further, the evolutionary relationship established among various Brassica species would assist in formulating suitable breeding strategies for widening the genetic base of Brassica amphidiploids by exploiting the genetic diversity present in diploid progenitor gene pools.

  17. African Journal of Biotechnology - Vol 15, No 8 (2016)

    African Journals Online (AJOL)

    Codon usage bias analysis for the coding sequences of Camellia sinensis and Brassica campestris · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Prosenjit Paul, Supriyo Chakraborty, 236-251 ...

  18. Preparation, crystallization and preliminary X-ray analysis of XC2382, an ApaG protein of unknown structure from Xanthomonas campestris

    International Nuclear Information System (INIS)

    Chin, Ko-Hsin; Chou, Chia-Cheng; Lee, Cheng-Chung; Shr, Hui-Lin; Lyu, Ping-Chiang; Wang, Andrew H.-J.; Chou, Shan-Ho

    2005-01-01

    A putative ApaG gene product from X. campestris pv. campestris was overexpressed in E. coli, purified and crystallized. The crystals diffracted to a resolution of at least 2.3 Å. Xanthomonas campestris pv. campestris is the causative agent of black rot, one of the major worldwide diseases of cruciferous crops. Its genome encodes approximately 4500 proteins, roughly one third of which have unknown function. XC2382 is one such protein, with a MW of 14.2 kDa. Based on a bioinformatics study, it was annotated as an ApaG gene product that serves multiple functions. The ApaG protein has been overexpressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. The crystals diffracted to a resolution of at least 2.30 Å. They are tetragonal and belong to space group P4 1/3 , with unit-cell parameters a = b = 57.6, c = 122.9 Å. There are two, three or four molecules in the asymmetric unit

  19. Ozone affects growth and development of Pieris brassicae on the wild host plant Brassica nigra

    International Nuclear Information System (INIS)

    Khaling, Eliezer; Papazian, Stefano; Poelman, Erik H.; Holopainen, Jarmo K.; Albrectsen, Benedicte R.; Blande, James D.

    2015-01-01

    When plants are exposed to ozone they exhibit changes in both primary and secondary metabolism, which may affect their interactions with herbivorous insects. Here we investigated the performance and preferences of the specialist herbivore Pieris brassicae on the wild plant Brassica nigra under elevated ozone conditions. The direct and indirect effects of ozone on the plant-herbivore system were studied. In both cases ozone exposure had a negative effect on P. brassicae development. However, in dual-choice tests larvae preferentially consumed plant material previously fumigated with the highest concentration tested, showing a lack of correlation between larval preference and performance on ozone exposed plants. Metabolomic analysis of leaf material subjected to combinations of ozone and herbivore-feeding, and focussing on known defence metabolites, indicated that P. brassicae behaviour and performance were associated with ozone-induced alterations to glucosinolate and phenolic pools. - Highlights: • We examined the effects of ozone on Pieris brassicae performance and preference. • We studied ozone and herbivore induced changes in the metabolome of Brassica nigra. • The performance of P. brassicae did not correlate with preference of ozonated plants. • Ozone and herbivore-feeding stress changes the phytochemical pools of B. nigra. - Ozone indirectly reduces herbivore performance, which is associated with change in phytochemical pools, but does not correlate with host plant preference

  20. Rapeseed oil, olive oil, plant sterols, and cholesterol metabolism: an ileostomy study.

    Science.gov (United States)

    Ellegård, L; Andersson, H; Bosaeus, I

    2005-12-01

    To study whether olive oil and rapeseed oil have different effects on cholesterol metabolism. Short-term experimental study, with controlled diets. Outpatients at a metabolic-ward kitchen. A total of nine volunteers with conventional ileostomies. Two 3-day diet periods; controlled diet including 75 g of rapeseed oil or olive oil. Cholesterol absorption, ileal excretion of cholesterol, and bile acids. Serum levels of cholesterol and bile acid metabolites. Differences between diets evaluated with Wilcoxon's signed rank sum test. Rapeseed oil diet contained 326 mg more plant sterols than the olive oil diet. Rapeseed oil tended to decrease cholesterol absorption by 11% (P = 0.050), and increased excretion of cholesterol, bile acids, and their sum as sterols by 9% (P = 0.021), 32% (P = 0.038), and 51% (P = 0.011) compared to olive oil. A serum marker for bile acid synthesis (7alpha-hydroxy-4-cholesten-3-one) increased by 28% (P = 0.038) within 10 h of consumption, and serum cholesterol levels decreased by 7% (P = 0.024), whereas a serum marker for cholesterol synthesis (lathosterol) as well as serum levels of plant sterols remained unchanged. Rapeseed oil and olive oil have different effects on cholesterol metabolism. Rapeseed oil, tends to decrease cholesterol absorption, increases excretion of cholesterol and bile acids, increases serum marker of bile acid synthesis, and decreases serum levels of cholesterol compared to olive oil. This could in part be explained by different concentrations of natural plant sterols. Supported by the Göteborg Medical Society, the Swedish Medical Society, the Swedish Board for Agricultural Research (SJFR) grant 50.0444/98 and by University of Göteborg.

  1. Are herbicide-resistant crops the answer to controlling Cuscuta?

    Science.gov (United States)

    Nadler-Hassar, Talia; Shaner, Dale L; Nissen, Scott; Westra, Phill; Rubin, Baruch

    2009-07-01

    Herbicide-resistant crop technology could provide new management strategies for the control of parasitic plants. Three herbicide-resistant oilseed rape (Brassica napus L.) genotypes were used to examine the response of attached Cuscuta campestris Yuncker to glyphosate, imazamox and glufosinate. Cuscata campestris was allowed to establish on all oilseed rape genotypes before herbicides were applied. Unattached seedlings of C. campestris, C. subinclusa Durand & Hilg. and C. gronovii Willd. were resistant to imazamox and glyphosate and sensitive to glufosinate, indicating that resistance initially discovered in C. campestris is universal to all Cuscuta species. Glufosinate applied to C. campestris attached to glufosinate-resistant oilseed rape had little impact on the parasite, while imazamox completely inhibited C. campestris growth on the imidazolinone-resistant host. The growth of C. campestris on glyphosate-resistant host was initially inhibited by glyphosate, but the parasite recovered and resumed growth within 3-4 weeks. The ability of C. campestris to recover was related to the quality of interaction between the host and parasite and to the resistance mechanism of the host. The parasite was less likely to recover when it had low compatibility with the host, indicating that parasite-resistant crops coupled with herbicide resistance could be highly effective in controlling Cuscuta. (c) 2009 by John Wiley & Sons, Ltd.

  2. Rapeseed meal in the diet of common carp reared in heated waters. Pt. 4

    International Nuclear Information System (INIS)

    Dabrowski, K.; Evans, R.; Czarnocki, J.; Kozlowska, H.; Fisheries Research Board of Canada, Winnipeg, Manitoba. Freshwater Inst.)

    1982-01-01

    Diets based on fish meal or barley meal as controls, and rapeseed meal were fed to common carp for approximately 3 months. Rapeseed meals differed due to processing and contained variable amounts of goitrogenic glucosinolate. Radioiodine Na 125 I was injected intraperitoneally and radioactivity measured in different tissues. It was found that thyroid centres in kidney accumulated the major part of the administred 125 I. Kidneys from fish fed high glucosinolate rapeseed meal (HRM) retained 37.3% of the isotope, a significant higher percentage than from the fish meal (27.45%) or barley meal (10.5%) fed fish. Thyroid centres in the pharyngeal region invariably retained 1.16-2.41% of the 125 I. In kidney extracts from fish fed HRM diet, 98.3% of the 125 I radioactivity was found in the sulfosalicyclic acid precipitate in comparison to 89.7% in those from low glucosinolate rapeseed based diet. Kidney thyroid cell heights were slightly larger in all rapeseed fed groups when compared to control fish; otherwise kidney thyroid tissue appeared normal. (orig.) [de

  3. Brassica villosa, a system for studying non-glandular trichomes and genes in the Brassicas.

    Science.gov (United States)

    Nayidu, Naghabushana K; Tan, Yifang; Taheri, Ali; Li, Xiang; Bjorndahl, Trent C; Nowak, Jacek; Wishart, David S; Hegedus, Dwayne; Gruber, Margaret Y

    2014-07-01

    Brassica villosa is a wild Brassica C genome species with very dense trichome coverage and strong resistance to many insect pests of Brassica oilseeds and vegetables. Transcriptome analysis of hairy B. villosa leaves indicated higher expression of several important trichome initiation genes compared with glabrous B. napus leaves and consistent with the Arabidopsis model of trichome development. However, transcripts of the TRY inhibitory gene in hairy B. villosa were surprisingly high relative to B. napus and relative transcript levels of SAD2, EGL3, and several XIX genes were low, suggesting potential ancillary or less important trichome-related roles for these genes in Brassica species compared with Arabidopsis. Several antioxidant, calcium, non-calcium metal and secondary metabolite genes also showed differential expression between these two species. These coincided with accumulation of two alkaloid-like compounds, high levels of calcium, and other metals in B. villosa trichomes that are correlated with the known tolerance of B. villosa to high salt and the calcium-rich natural habitat of this wild species. This first time report on the isolation of large amounts of pure B. villosa trichomes, on trichome content, and on relative gene expression differences in an exceptionally hairy Brassica species compared with a glabrous species opens doors for the scientific community to understand trichome gene function in the Brassicas and highlights the potential of B. villosa as a trichome research platform.

  4. Predicting rapeseed oil content with near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Roberta Rossato

    2013-12-01

    Full Text Available The objective of this work was to establish a calibration equation and to estimate the efficiency of near-infrared reflectance (NIR spectroscopy for evaluating rapeseed oil content in Southern Brazil. Spectral data from 124 half-sib families were correlated with oil contents determined by the chemical method. The accuracy of the equation was verified by coefficient of determination (R² of 0.92, error of calibration (SEC of 0.78, and error of performance (SEP of 1.22. The oil content of ten genotypes, which were not included in the calibration with NIR, was similar to the one obtained by the standard chemical method. NIR spectroscopy is adequate to differentiate oil content of rapeseed genotypes.

  5. Additives for rapeseed oil fuel. Influence on the exhaust gas emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kastl, Johannes; Remmele, Edgar; Thuneke, Klaus [Technologie- und Foerderzentrum, Straubing (Germany)

    2013-06-01

    In contrast to fossil diesel fuel, the use of additives is not common in rapeseed oil fuel. In a preceding research project the efficacy of several additives, that are commercially available for the use in fossil diesel or FAME, has been investigated for rapeseed oil fuel in the lab. Four additives could be identified, which have a significant influence on the ignition delay or the low temperature flow behaviour of rapeseed oil fuel. To investigate whether there are negative effects of the additives on other fuel-related properties in practical use, a test series on an agricultural tractor capable of running on vegetable oils has been conducted. Attention is focused on the operating parameters like power, torque or fuel consumption as well as on regulated emissions (CO, HC, particulate matter or NOx) and non-regulated emissions like polycyclic aromatic hydrocarbons. Additionally, the influence of the additives on the storage stability of rapeseed oil fuel is investigated in long term studies. No negative influence of the additives on the regulated emissions could be seen in the experiments, the data of the non-regulated emissions is still being analysed. This paper will focus on the emissions testing; results of the long term studies will be given in the presentation. (orig.)

  6. Studies on the cost-effective management of Alternaria blight of rapeseed-mustard (Brassica spp.

    Directory of Open Access Journals (Sweden)

    M.M. Khan

    2007-08-01

    Full Text Available Three systemic fungicides: Topsin-M (Thiophanate methyl, 70%WP, Ridomil MZ (Mancozeb, 64% + Metalaxyl, 8%WP, and Bavistin (Carbendazim, 50%WP alone and in combination with four non-systemic fungicides Captaf (Captan, 50%WP, Indofil M-45 (Mancozeb, 75%WP, Indofil Z-78 (Zineb, 75%WP, and Thiram (Thiram, 75%WP were evaluated both in vitro and in vivo for their effectiveness to manage Alternaria blight of rapeseedmustard caused by Alternaria brassicae. A pure culture of the pathogenic fungus was applied in the field at 2 g colonized sorghum seeds kg-1 soil. All the fungicides were evaluated for their efficacy at various concentrations, 50, 100, 150, 200 and 500 ppm, and were sprayed in the field at 0.2% a.i. l-1. All fungicides significantly reduced the severity of the disease but Ridomil MZ was most effective. Topsin-M at a concentration of 500 ppm was the most effective in reducing radial growth of the pathogenic fungi (74.2%. Ridomil MZ reduced disease severity by 32% and was followed in effectiveness by the combination Bavistin+Captaf (26.5%. Maximum yield was obtained in plots sprayed with Bavistin+Captaf (1198 kg ha-1 followed by Bavistin+Indofil Z-78 (1172 kg ha-1. It was worth noting that the highest net profit as well as the highest cost-benefit ratio was obtained with Bavistin+Indofil Z-78 (1:3.2, followed by Bavistin+Captaf (1:1.3.

  7. Significant reductions in oil quality and lipid content of oilseed rape (Brassica napus L.) under climate change

    DEFF Research Database (Denmark)

    Namazkar, Shahla; Egsgaard, Helge; Frenck, Georg

    2015-01-01

    Despite of the potential importance to food and bioenergy purposes, effects from climate change on plant oil quality have hardly been characterized.On a global basis Brassica napus L., rapeseed or oilseed rape, is the second largest source of vegetable oil after soybean and the predominant oil crop...... in Europe. We found significant changes in oil quality and quantity of four cultivars of oilseed rape grown in five future climate scenarios with elevated [CO2], [O-3] temperature and combinations hereof (similar to RCP8.5,(1)). Populations of the cultivars were grown under ambient and climate change...... conditions in a climate-phytotron. The treatments were ambient (360 ppm CO2, 19/12 degrees C (day/night), 20/20 ppb O-3 (day/night)), all factors elevated (650 ppm CO2, 24/17 degrees C, 60/20 ppb O-3), as well as two- and single-factor treatments with the elevated factors.The overall trend was that oil...

  8. The Host Plant Metabolite Glucose Is the Precursor of Diffusible Signal Factor (DSF) Family Signals in Xanthomonas campestris

    OpenAIRE

    Deng, Yinyue; Liu, Xiaoling; Wu, Ji'en; Lee, Jasmine; Chen, Shaohua; Cheng, Yingying; Zhang, Chunyan; Zhang, Lian-Hui

    2015-01-01

    Plant pathogen Xanthomonas campestris pv. campestris produces cis-11-methyl-2-dodecenoic acid (diffusible signal factor [DSF]) as a cell-cell communication signal to regulate biofilm dispersal and virulence factor production. Previous studies have demonstrated that DSF biosynthesis is dependent on the presence of RpfF, an enoyl-coenzyme A (CoA) hydratase, but the DSF synthetic mechanism and the influence of the host plant on DSF biosynthesis are still not clear. We show here that exogenous ad...

  9. Identification of genes differentially expressed in Mikania micrantha during Cuscuta campestris infection by suppression subtractive hybridization.

    Science.gov (United States)

    Li, Dong-Mei; Staehelin, Christian; Zhang, Yi-Shun; Peng, Shao-Lin

    2009-09-01

    The influence of Cuscuta campestris on its host Mikania micrantha has been studied with respect to biomass accumulation, physiology and ecology. Molecular events of this parasitic plant-plant interaction are poorly understood, however. In this study, we identified novel genes from M. micrantha induced by C. campestris infection. Genes expressed upon parasitization by C. campestris at early post-penetration stages were investigated by construction and characterization of subtracted cDNA libraries from shoots and stems of M. micrantha. Three hundred and three presumably up-regulated expressed sequence tags (ESTs) were identified and classified in functional categories, such as "metabolism", "cell defence and stress", "transcription factor", "signal transduction", "transportation" and "photosynthesis". In shoots and stems of infected M. micrantha, genes associated with defence responses and cell wall modifications were induced, confirming similar data from other parasitic plant-plant interactions. However, gene expression profiles in infected shoots and stems were found to be different. Compared to infected shoots, more genes induced in response to biotic and abiotic stress factors were identified in infected stems. Furthermore, database comparisons revealed a notable number of M. micrantha ESTs that matched genes with unknown function. Expression analysis by quantitative real-time RT-PCR of 21 genes (from different functional categories) showed significantly increased levels for 13 transcripts in response to C. campestris infection. In conclusion, this study provides an overview of genes from parasitized M. micrantha at early post-penetration stages. The acquired data form the basis for a molecular understanding of host reactions in response to parasitic plants.

  10. Multivariate analysis of quantitative traits can effectively classify rapeseed germplasm

    Directory of Open Access Journals (Sweden)

    Jankulovska Mirjana

    2014-01-01

    Full Text Available In this study, the use of different multivariate approaches to classify rapeseed genotypes based on quantitative traits has been presented. Tree regression analysis, PCA analysis and two-way cluster analysis were applied in order todescribe and understand the extent of genetic variability in spring rapeseed genotype by trait data. The traits which highly influenced seed and oil yield in rapeseed were successfully identified by the tree regression analysis. Principal predictor for both response variables was number of pods per plant (NP. NP and 1000 seed weight could help in the selection of high yielding genotypes. High values for both traits and oil content could lead to high oil yielding genotypes. These traits may serve as indirect selection criteria and can lead to improvement of seed and oil yield in rapeseed. Quantitative traits that explained most of the variability in the studied germplasm were classified using principal component analysis. In this data set, five PCs were identified, out of which the first three PCs explained 63% of the total variance. It helped in facilitating the choice of variables based on which the genotypes’ clustering could be performed. The two-way cluster analysissimultaneously clustered genotypes and quantitative traits. The final number of clusters was determined using bootstrapping technique. This approach provided clear overview on the variability of the analyzed genotypes. The genotypes that have similar performance regarding the traits included in this study can be easily detected on the heatmap. Genotypes grouped in the clusters 1 and 8 had high values for seed and oil yield, and relatively short vegetative growth duration period and those in cluster 9, combined moderate to low values for vegetative growth duration and moderate to high seed and oil yield. These genotypes should be further exploited and implemented in the rapeseed breeding program. The combined application of these multivariate methods

  11. User Guidelines for the Brassica Database: BRAD.

    Science.gov (United States)

    Wang, Xiaobo; Cheng, Feng; Wang, Xiaowu

    2016-01-01

    The genome sequence of Brassica rapa was first released in 2011. Since then, further Brassica genomes have been sequenced or are undergoing sequencing. It is therefore necessary to develop tools that help users to mine information from genomic data efficiently. This will greatly aid scientific exploration and breeding application, especially for those with low levels of bioinformatic training. Therefore, the Brassica database (BRAD) was built to collect, integrate, illustrate, and visualize Brassica genomic datasets. BRAD provides useful searching and data mining tools, and facilitates the search of gene annotation datasets, syntenic or non-syntenic orthologs, and flanking regions of functional genomic elements. It also includes genome-analysis tools such as BLAST and GBrowse. One of the important aims of BRAD is to build a bridge between Brassica crop genomes with the genome of the model species Arabidopsis thaliana, thus transferring the bulk of A. thaliana gene study information for use with newly sequenced Brassica crops.

  12. Helping enhances productivity in campo flicker ( Colaptes campestris) cooperative groups

    Science.gov (United States)

    Dias, Raphael Igor; Webster, Michael S.; Macedo, Regina H.

    2015-06-01

    Reproductive adults in many bird species are assisted by non-breeding auxiliary helpers at the nest, yet the impact of auxiliaries on reproduction is variable and not always obvious. In this study, we tested Hamilton's rule and evaluated the effect of auxiliaries on productivity in the facultative cooperative breeder campo flicker ( Colaptes campestris campestris). Campo flickers have a variable mating system, with some groups having auxiliaries and others lacking them (i.e., unassisted pairs). Most auxiliaries are closely related to the breeding pair (primary auxiliaries), but some auxiliaries (secondary auxiliaries) are unrelated females that joined established groups. We found no effect of breeder quality (body condition) or territory quality (food availability) on group productivity, but the presence of auxiliaries increased the number of fledglings produced relative to unassisted pairs. Nonetheless, the indirect benefit of helping was small and did not outweigh the costs of delayed breeding and so seemed insufficient to explain the evolution of cooperative breeding in campo flickers. We concluded that some ecological constraints must limit dispersal or independent breeding, making staying in the group a "best-of-a-bad-job" situation for auxiliaries.

  13. SR-XRF imaging of Cs highly accumulated in vegetables

    International Nuclear Information System (INIS)

    Nakai, Izumi; Oda, Nahoko; Terada, Yasuko

    2011-01-01

    Accumulation of Cs in vegetables was studied with regard to the remediation of radioactive Cs from a nuclear plant accident in Fukushima. It was found that Brassica oleracea var. capitata, Brassica campestris var. perviridis, and Lactuca sativa accumulated Cs to a level of more than 10000 ppm (dry weight) when they were cultivated in 1 mM Cs solution. Two-dimensional distributions of Cs were revealed by SR-XRF imaging showing a homogeneous distribution of Cs in the plant bodies. (author)

  14. In situ immobilisation of toxic metals in soil using Maifan stone and illite/smectite clay.

    Science.gov (United States)

    Ou, Jieyong; Li, Hong; Yan, Zengguang; Zhou, Youya; Bai, Liping; Zhang, Chaoyan; Wang, Xuedong; Chen, Guikui

    2018-03-15

    Clay minerals have been proposed as amendments for remediating metal-contaminated soils owing to their abundant reserves, high performance, simplicity of use and low cost. Two novel clay minerals, Maifan stone and illite/smectite clay, were examined in the in situ immobilisation of soil metals. The application of 0.5% Maifan stone or illite/smectite clay to field soils significantly decreased the fractions of diethylenetriaminepentaacetic acid (DTPA)-extractable Cd, Ni, Cr, Zn, Cu and Pb. Furthermore, reductions of 35.4% and 7.0% in the DTPA-extractable fraction of Cd were obtained with the Maifan stone and illite/smectite clay treatments, respectively, which also significantly reduced the uptake of Cd, Ni, Cr, Zn, Cu and Pb in the edible parts of Brassica rapa subspecies pekinensis, Brassica campestris and Spinacia oleracea. Quantitatively, the Maifan stone treatment reduced the metal uptake in B. rapa ssp. Pekinensis, B. campestris and S. oleracea from 11.6% to 62.2%, 4.6% to 41.8% and 11.3% to 58.2%, respectively, whereas illite/smectite clay produced reductions of 8.5% to 62.8% and 4.2% to 37.6% in the metal uptake in B. rapa ssp. Pekinensis and B. campestris, respectively. Therefore, both Maifan stone and illite/smectite clay are promising amendments for contaminated soil remediation.

  15. Biological Functions of ilvC in Branched-Chain Fatty Acid Synthesis and Diffusible Signal Factor Family Production in Xanthomonas campestris

    OpenAIRE

    Kai-Huai Li; Yong-Hong Yu; Hui-Juan Dong; Wen-Bin Zhang; Jin-Cheng Ma; Hai-Hong Wang

    2017-01-01

    In bacteria, the metabolism of branched-chain amino acids (BCAAs) is tightly associated with branched-chain fatty acids (BCFAs) synthetic pathways. Although previous studies have reported on BCFAs biosynthesis, more detailed associations between BCAAs metabolism and BCFAs biosynthesis remain to be addressed. In this study, we deleted the ilvC gene, which encodes ketol-acid reductoisomerase in the BCAAs synthetic pathway, from the Xanthomonas campestris pv. campestris (Xcc) genome. We characte...

  16. Exploration of indigenous agrowastes for cellulase production by ...

    African Journals Online (AJOL)

    Regional agrowastes such as Vigna mungo, Saccharum spontaneum and Brassica campestris were collected and biohydrolysis of these substrates for cellulase production were carried out by Aspergillus niger. Proximate composition of each agrowastes was analyzed based on dry weight, to have an insight view of their ...

  17. Transcriptome analysis of Brassica juncea var. tumida Tsen responses to Plasmodiophora brassicae primed by the biocontrol strain Zhihengliuella aestuarii.

    Science.gov (United States)

    Luo, Yuanli; Dong, Daiwen; Su, Yu; Wang, Xuyi; Peng, Yumei; Peng, Jiang; Zhou, Changyong

    2018-05-01

    Mustard clubroot, caused by Plasmodiophora brassicae, is a serious disease that affects Brassica juncea var. tumida Tsen, a mustard plant that is the raw material for a traditional fermented food manufactured in Chongqing, China. In our laboratory, we screened the antagonistic bacteria Zhihengliuella aestuarii against P. brassicae. To better understand the biocontrol mechanism, three transcriptome analyses of B. juncea var. tumida Tsen were conducted using Illumina HiSeq 4000, one from B. juncea only inoculated with P. brassicae (P), one inoculated with P. brassica and the biocontrol agent Z. aestuarii at the same time (P + B), and the other was the control (H), in which P. brassicae was replaced by sterile water. A total of 19.94 Gb was generated by Illumina HiSeq sequencing. The sequence data were de novo assembled, and 107,617 unigenes were obtained. In total, 5629 differentially expressed genes between biocontrol-treated (P + B) and infected (P) samples were assigned to 126 KEGG pathways. Using multiple testing corrections, 20 pathways were significantly enriched with Qvalue ≤ 0.05. The resistance-related genes, involved in the production of pathogenesis-related proteins, pathogen-associated molecular pattern-triggered immunity, and effector-triggered immunity signaling pathways, calcium influx, salicylic acid pathway, reactive oxygen intermediates, and mitogen-activated protein kinase cascades, and cell wall modification, were obtained. The various defense responses induced by the biocontrol strain combatted the P. brassicae infection. The genes and pathways involved in plant resistance were induced by a biocontrol strain. The transcriptome data explained the molecular mechanism of the potential biocontrol strain against P. brassicae. The data will also serve as an important public information platform to study B. juncea var. tumida Tsen and will be useful for breeding mustard plants resistant to P. brassicae.

  18. Interesterification of rapeseed oil catalyzed by tin octoate

    International Nuclear Information System (INIS)

    Galia, Alessandro; Centineo, Alessio; Saracco, Guido; Schiavo, Benedetto; Scialdone, Onofrio

    2014-01-01

    The interesterification of rapeseed oil was performed for the first time by using tin octoate as Lewis acid homogeneous catalysts and methyl or ethyl acetate as acyl acceptors in a batch reactor, within the temperature range 393–483 K. The yields in fatty acid ethyl esters (FAEE) and triacetin (TA) after 20 h of reaction time increased from 8% and 2%–to 61% and 22%, respectively, when the reaction temperature increased from 423 to 483 K. An optimum value of 40 for the acyl acceptor to oil molar ratio was found to be necessary to match good fatty acid alkyl ester yields with high enough reaction rate. The rate of generation of esters was significantly higher when methyl acetate was used as acyl acceptor instead of its ethyl homologue. The collected results suggest that tin octoate can be used as effective catalyst for the interesterification of rapeseed oil with methyl or ethyl acetate being highly soluble in the reaction system, less expensive than enzymes and allowing the operator to work under milder conditions than supercritical interesterification processes. - Highlights: • We study the interesterification of rapeseed oil catalyzed by tin(II) octoate. • Tin(II) octoate is an effective homogeneous catalyst at 483 K. • The acyl acceptor to oil molar ratio must be optimized. • Higher rate of reaction is obtained with methyl acetate as acyl acceptor

  19. Hydrogenation of rapeseed oil for production of liquid bio-chemicals

    International Nuclear Information System (INIS)

    Pinto, F.; Martins, S.; Gonçalves, M.; Costa, P.; Gulyurtlu, I.; Alves, A.; Mendes, B.

    2013-01-01

    Highlights: ► Production of renewable liquid hydrocarbons through rapeseed oil hydrogenation. ► Hydrogenation at lower temperature and lower hydrogen pressures. ► Test of a catalyst commonly employed in petrochemical industry. ► Improve of hydrogenation process viability by decreasing operational costs. ► Analysis of hydrogenated product applications as bio-chemicals. -- Abstract: The main objective of rapeseed oil hydrogenation tests was the production of liquid bio-chemicals to be used as renewable raw material for the production of several chemicals and in chemical synthesis to substitute petroleum derived stuff. As, hydrogenation of vegetable oils is already applied for the production of biofuels, the work done focused in producing aromatic compounds, due to their economic value. The effect of experimental conditions on rapeseed oil hydrogenation was studied, namely, reaction temperature and time with the aim of selecting the most favourable conditions to convert rapeseed oil into liquid valuable bio-chemicals. Rapeseed oil was hydrogenated at a hydrogen initial pressure of 1.10 MPa. Reaction temperature varied in the range from 200 °C to 400 °C, while reaction times between 6 and 180 min were tested. The performance of a commercial cobalt and molybdenum catalyst was also studied. The highest hydrocarbons yields were obtained at the highest temperature and reaction times tested. At a temperature of 400 °C and at the reaction time of 120 min hydrocarbons yield was about 92% in catalyst presence, while in the absence of the catalyst this value decreased to 85%. Hydrocarbons yield was even higher when the reaction time of 180 min was used in the presence of catalyst, as the yield of 97% was observed. At these conditions hydrocarbons formed had a high content of aromatic compounds, around 50%. For this reason, the viscosity values of hydrogenated oils were lower than that established by EN590, which together with hydrogenated liquids composition

  20. Effect of Dietary Supplementation by Irradiated Full-Fat Rapeseed on Biochemical Changes in Rats

    International Nuclear Information System (INIS)

    Farga, D. M. H.; El-Shennawy, H. M.; Soliman, N.A.

    2000-01-01

    Supplementation of 230 gk 1 of raw and irradiated full-fat rapeseed at 20 kGy in the food of male albino rats for ten weeks of age, caused significantly lower total plasma protein concentration as compared with those fed control diet, heated seeds and seeds irradiated at 50 and 70 kGy diets. On the other hand, the highest total plasma protein value was obtained from the control group flowed in descending order by heated and seeds irradiated at 70 kGy, and 50 kGy. Plasma albumin decreased significantly in rats fed either raw or rapeseed irradiated at 20 and 50 kGy as compared with rats fed control diet, heated or irradiated rapeseed at 70 kGy diets. The same result was observed with plasma globulin and A/G ratio. Supplementing the diet of rats with raw and irradiated rapeseed at 20 and 50 kGy caused significantly higher plasma transaminases activities (GOT and GPT) as compared with those fed control diet, heated or rapeseed irradiated at 70 kGy. However, rats fed raw and rapeseed irradiated at 20 kGy caused a significant increase in alkaline phosphatase as compared with those fed control diet, heated or irradiated seeds at 50 or 70 kGy diets. Moreover, there was no significant discrepancy between groups fed heated seed and seeds irradiated at 50 or 70 kGy as compared with those fed control diets. Level of plasma creatinine was significantly higher in groups of rats fed row and irradiated seeds at 20 kGy as compared with those fed heat processed and irradiated seeds at 50 kGy and 70 kGy and control diets. The results confirm that the applied radiation doses are insufficient enough to bring a complete detoxification of processed seeds. Increasing the applied radiation doses might be be beneficial in this respect

  1. Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea.

    Science.gov (United States)

    Cheng, Feng; Sun, Rifei; Hou, Xilin; Zheng, Hongkun; Zhang, Fenglan; Zhang, Yangyong; Liu, Bo; Liang, Jianli; Zhuang, Mu; Liu, Yunxia; Liu, Dongyuan; Wang, Xiaobo; Li, Pingxia; Liu, Yumei; Lin, Ke; Bucher, Johan; Zhang, Ningwen; Wang, Yan; Wang, Hui; Deng, Jie; Liao, Yongcui; Wei, Keyun; Zhang, Xueming; Fu, Lixia; Hu, Yunyan; Liu, Jisheng; Cai, Chengcheng; Zhang, Shujiang; Zhang, Shifan; Li, Fei; Zhang, Hui; Zhang, Jifang; Guo, Ning; Liu, Zhiyuan; Liu, Jin; Sun, Chao; Ma, Yuan; Zhang, Haijiao; Cui, Yang; Freeling, Micheal R; Borm, Theo; Bonnema, Guusje; Wu, Jian; Wang, Xiaowu

    2016-10-01

    Brassica species, including crops such as cabbage, turnip and oilseed, display enormous phenotypic variation. Brassica genomes have all undergone a whole-genome triplication (WGT) event with unknown effects on phenotype diversification. We resequenced 199 Brassica rapa and 119 Brassica oleracea accessions representing various morphotypes and identified signals of selection at the mesohexaploid subgenome level. For cabbage morphotypes with their typical leaf-heading trait, we identified four subgenome loci that show signs of parallel selection among subgenomes within B. rapa, as well as four such loci within B. oleracea. Fifteen subgenome loci are under selection and are shared by these two species. We also detected strong subgenome parallel selection linked to the domestication of the tuberous morphotypes, turnip (B. rapa) and kohlrabi (B. oleracea). Overall, we demonstrated that the mesohexaploidization of the two Brassica genomes contributed to their diversification into heading and tuber-forming morphotypes through convergent subgenome parallel selection of paralogous genes.

  2. A Novel Cytoplasmic Male Sterility in Brassica napus (inap CMS) with Carpelloid Stamens via Protoplast Fusion with Chinese Woad.

    Science.gov (United States)

    Kang, Lei; Li, Pengfei; Wang, Aifan; Ge, Xianhong; Li, Zaiyun

    2017-01-01

    A novel cytoplasmic male sterility (CMS) in Brassica napus (inap CMS) was selected from the somatic hybrid with Isatis indigotica (Chinese woad) by recurrent backcrossing. The male sterility was caused by the conversion of tetradynamous stamens into carpelloid structures with stigmatoid tissues at their tips and ovule-like tissues in the margins, and the two shorter stamens into filaments without anthers. The feminized development of the stamens resulted in the complete lack of pollen grains, which was stable in different years and environments. The pistils of inap CMS displayed normal morphology and good seed-set after pollinated by B. napus . Histological sections showed that the developmental alteration of the stamens initiated at the stage of stamen primordium differentiation. AFLP analysis of the nuclear genomic composition with 23 pairs of selective primers detected no woad DNA bands in inap CMS. Twenty out of 25 mitochondrial genes originated from I. indigotica , except for cox2-2 which was the recombinant between cox2 from woad and cox2-2 from rapeseed. The novel cox2-2 was transcribed in flower buds of inap CMS weakly and comparatively with the fertile B. napus addition line Me harboring one particular woad chromosome. The restorers of other autoplasmic and alloplasmic CMS systems in rapeseed failed to restore the fertility of inap CMS and the screening of B. napus wide resources found no fertility restoration variety, showing its distinct origin and the related mechanism of sterility. The reasons for the mitochondrial rearrangements and the breeding of the restorer for the novel CMS system were discussed.

  3. Complete mitochondrial genome sequence of black mustard (Brassica nigra; BB) and comparison with Brassica oleracea (CC) and Brassica carinata (BBCC).

    Science.gov (United States)

    Yamagishi, Hiroshi; Tanaka, Yoshiyuki; Terachi, Toru

    2014-11-01

    Crop species of Brassica (Brassicaceae) consist of three monogenomic species and three amphidiploid species resulting from interspecific hybridizations among them. Until now, mitochondrial genome sequences were available for only five of these species. We sequenced the mitochondrial genome of the sixth species, Brassica nigra (nuclear genome constitution BB), and compared it with those of Brassica oleracea (CC) and Brassica carinata (BBCC). The genome was assembled into a 232 145 bp circular sequence that is slightly larger than that of B. oleracea (219 952 bp). The genome of B. nigra contained 33 protein-coding genes, 3 rRNA genes, and 17 tRNA genes. The cox2-2 gene present in B. oleracea was absent in B. nigra. Although the nucleotide sequences of 52 genes were identical between B. nigra and B. carinata, the second exon of rps3 showed differences including an insertion/deletion (indel) and nucleotide substitutions. A PCR test to detect the indel revealed intraspecific variation in rps3, and in one line of B. nigra it amplified a DNA fragment of the size expected for B. carinata. In addition, the B. carinata lines tested here produced DNA fragments of the size expected for B. nigra. The results indicate that at least two mitotypes of B. nigra were present in the maternal parents of B. carinata.

  4. Phytoextraction of potentially toxic elements by Indian mustard, rapeseed, and sunflower from a contaminated riparian soil.

    Science.gov (United States)

    Shaheen, Sabry M; Rinklebe, Jörg

    2015-12-01

    The objective of this study was to quantify the phytoextraction of the potentially toxic elements Al, As, Cd, Co, Cr, Cu, Mo, Ni, Pb, Se, V, and Zn by Indian mustard, rapeseed, and sunflower from a contaminated riparian soil. To achieve this goal, a greenhouse pot experiment was established using a highly contaminated grassland soil collected at the Wupper River (Germany). The impact of ethylene-diamine-tetra-acetic acid (EDTA), humate (HK), and phosphate potassium (PK) on the mobility and uptake of the elements by rapeseed also was investigated. Indian mustard showed the highest efficiency for phytoextraction of Al, Cr, Mo, Se, and V; sunflower for Cd, Ni, Pb, and Zn, and rapeseed for Cu. The bioconcentration ratios were higher than 1 for the elements (except As and Cu), indicating the suitability of the studied plants for phytoextraction. Application of EDTA to the soil increased significantly the solubility of Cd, Co, Cr, Ni, and Pb and decreased the solubility of Al, As, Se, V, and Mo. Humate potassium decreased significantly the concentrations of Al and As in rapeseed but increased the concentrations of Cu, Se, and Zn. We may conclude that HK can be used for immobilization of Al and As, while it can be used for enhancing the phytoextraction of Cu, Se, and Zn by rapeseed. Phosphate potassium immobilized Al, Cd, Pb, and Zn, but enhanced phytoextraction of As, Cr, Mo, and Se by rapeseed.

  5. Generation and characterization of tribenuron-methyl herbicide-resistant rapeseed (Brasscia napus) for hybrid seed production using chemically induced male sterility.

    Science.gov (United States)

    Li, Haitao; Li, Juanjuan; Zhao, Bo; Wang, Jing; Yi, Licong; Liu, Chao; Wu, Jiangsheng; King, Graham J; Liu, Kede

    2015-01-01

    Identification and molecular analysis of four tribenuron-methyl resistant mutants in Brassica napus , which would be very useful in hybrid production using a Chemically induced male sterility system. Chemically induced male sterility (CIMS) systems dependent on chemical hybridization agents (CHAs) like tribenuron-methyl (TBM) represent an important approach for practical utilization of heterosis in rapeseed. However, when spraying the female parents with TBM to induce male sterility the male parents must be protected with a shield to avoid injury to the stamens, which would otherwise complicate the seed production protocol and increase the cost of hybrid seed production. Here we report the first proposed application of a herbicide-resistant cultivar in hybrid production, using a CIMS system based on identifying four TBM-resistant mutants in Brassica napus. Genetic analysis indicated that the TBM resistance was controlled by a single dominant nuclear gene. An in vitro enzyme activity assay for acetohydroxyacid synthase (AHAS) suggested that the herbicide resistance is caused by a gain-of-function mutation in a copy of AHAS genes. Comparative sequencing of the mutants and wild type BnaA.AHAS.a coding sequences identified a C-to-T transition at either position 535 or 536 from the translation start site, which resulted in a substitution of proline with serine or leucine at position 197 according to the Arabidopsis thaliana protein sequence. An allele-specific dCAPS marker developed from the C536T variation co-segregated with the herbicide resistance. Transgenic A. thaliana plants expressing BnaA.ahas3.a conferred herbicide resistance, which confirmed that the P197 substitution in BnaA.AHAS.a was responsible for the herbicide resistance. Moreover, the TBM-resistant lines maintain normal male fertility under TBM treatment and can be of practical value in hybrid seed production using CIMS.

  6. Cloning, expression, crystallization and preliminary X-ray analysis of a putative multiple antibiotic resistance repressor protein (MarR) from Xanthomonas campestris

    International Nuclear Information System (INIS)

    Tu, Zhi-Le; Li, Juo-Ning; Chin, Ko-Hsin; Chou, Chia-Cheng; Lee, Cheng-Chung; Shr, Hui-Lin; Lyu, Ping-Chiang; Gao, Fei Philip; Wang, Andrew H.-J.; Chou, Shan-Ho

    2005-01-01

    A putative repressor for the multiple antibiotic resistance operon from a plant pathogen X. campestris pv. campestris has been overexpressed in E. coli, purified and crystallized. The crystals diffracted to 2.3 Å with good quality. The multiple antibiotic resistance operon (marRAB) is a member of the multidrug-resistance system. When induced, this operon enhances resistance of bacteria to a variety of medically important antibiotics, causing a serious global health problem. MarR is a marR-encoded protein that represses the transcription of the marRAB operon. Through binding with salicylate and certain antibiotics, however, MarR can derepress and activate the marRAB operon. In this report, the cloning, expression, crystallization and preliminary X-ray analysis of XC1739, a putative MarR repressor protein present in the Xanthomonas campestris pv. campestris, a Gram-negative bacterium causing major worldwide disease of cruciferous crops, are described. The XC1739 crystals diffracted to a resolution of at least 1.8 Å. They are orthorhombic and belong to space group P2 1 2 1 2 1 , with unit-cell parameters a = 39.5, b = 54.2 and c = 139.5 Å, respectively. They contain two molecules in the asymmetric unit from calculation of the self-rotation function

  7. USING OF SECONDARY PRODUCTS OF RAPESEED PROCESSING IN THE FOOD INDUSTRY

    Directory of Open Access Journals (Sweden)

    E. A. Raksha-Slusareva

    2014-04-01

    Full Text Available When oil and biodiesel are extracted from rapeseed, secondary derived products are formed, which are not used effectively at the moment. The article deals with the problems of possible their use in food industry. During food product preparation for special dietary consumption we used electrophysical (processing by hydroelectropulse and physical (drying, grinding, steam treatment processing of raw materials. Through the developed technology for rapeseed cake processing, we received raw materials suitable for use in food industry. On the basis of these raw materials, the «Nutrition product for special dietary consumption “Ripakovyi”» was developed. It is a part of rape seed meal obtained from the seeds with low content of glucosinolates and erucic acid processed by hydroelectropulse dried in the cabinet oven or in the convective dryer, crushed and disinfected based on a developed soft technology for biologically active substances conservation. The production of this product solves the problem of rational utilization of rapeseed meal and diversification of foods for special dietary consumption.

  8. Variations in fatty acid composition, glucosinolate profile and some phytochemical contents in selected oil seed rape (Brassica napus L. cultivars

    Directory of Open Access Journals (Sweden)

    Amin Mohamed, Amal

    2010-06-01

    Full Text Available Rapeseed (Brassica napus L. is now the third most important source of edible oil in the world after soybean and palm oil. In this study seeds of five different rapeseed cultivars namely; pactol, silvo, topas, serw 4 and serw 6 were evaluated for their fatty acid composition, glucosinolate profile, amino acids, total tocopherols and phenolic content. Among all cultivars significant variability in fatty acids were observed. The oleic acid (C18:1 ranged from 56.31% to 58.67%, linoleic acid (C18:2 from 10.52% to 13.74%, α-linolenic acid (C18:3 from 8.83% to 10.32% and erucic acid (22:1 from 0.15% to 0.91%. The glucosinolate profile of rapeseed was also separated and identified using high-performance liquid chromatography. Small variations in the glucosinolate profile were observed among all tested cultivars; however, progoitrin and gluconapin were the major glucosinolate found. Additionally, silvo cultivar showed the highest total glucosinolate c ontents (5.97 μmol/g dw. Generally, the contents of aspartic, glutamic, arginine and leucine were high, while the contents of tyrosine and isoleucine were low among all cultivars. For total tocopherols, the results indicated that both serw 6 and pactol cultivars had the highest total tocopherol contents (138.3 and 102.8 mg/100 g oil, respectively. Total phenolic contents varied from 28.0 to 35.4 mg/g dw. The highest total phenolic content was found in topas while the lowest value was detected in serw 6. These parameters; fatty acid contents, glucosinolate profile and amino acids together with total tocopherols and phenolic contents, could be taken into consideration by oilseed rape breeders as selection criteria for developing genotypes with modified seed quality traits in Brassica napus L.La colza (Brassica napus L. es hoy en día el tercer cultivo más importante de aceites comestibles en el mundo tras el aceite de soja y de palma. En este estudio semillas de cinco cultivos diferentes de colza

  9. Growth and xanthan production of Xanthomonas campestris depending on the N-source concentration

    Energy Technology Data Exchange (ETDEWEB)

    Prell, A [Academy of Sciences of the Czech Republic, Prague (Czech Republic). Inst. of Microbiology; Lasik, J [Academy of Sciences of the Czech Republic, Prague (Czech Republic). Inst. of Microbiology; Konicek, J [Academy of Sciences of the Czech Republic, Prague (Czech Republic). Inst. of Microbiology; Sobotka, M [Academy of Sciences of the Czech Republic, Prague (Czech Republic). Inst. of Microbiology; Sys, J [Academy of Sciences of the Czech Republic, Prague (Czech Republic). Inst. of Microbiology

    1995-11-01

    Growth of X. campestris and production of xanthan were studied in several batch fermentations with different starting concentrations of N-source. The dependencies of growth, productivity and yields on initial N-source concentration were observed. The maximum yields in the course of cultivations were identified. (orig.)

  10. Can rapeseed lower methane emission from heifers?

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Sørensen, Martin Tang; Weisbjerg, Martin Riis

    2013-01-01

    Twelve heifers were assigned to either a control diet (CON) with 26 g fat per kg dry matter (DM) or a supplemented diet (FAT) with crushed rapeseed with 53 g fat per kg DM. Methane (CH4) emission was measured by open-circuit indirect calorimetry for four days when the heifers weighed approximately...

  11. Tolerence of Braccica nigra to Pieris brassicae herbivory

    NARCIS (Netherlands)

    Blatt, S.E.; Smallegange, R.C.; Hess, L.; Harvey, J.A.; Dicke, D.; van Loon, J.J.A.

    2008-01-01

    Black mustard, Brassica nigra (L.) Koch, is a wild annual species found throughout Europe and fed on by larvae of the large cabbage-white butterfly, Pieris brassicae L. We examined the impact of herbivory from P. brassicae, a gregarious herbivore, on B. nigra grown from wild seed collected locally.

  12. Direct bio-utilization of untreated rapeseed meal for effective iturin A production by Bacillus subtilis in submerged fermentation.

    Directory of Open Access Journals (Sweden)

    Hu Jin

    Full Text Available The feasibility of using untreated rapeseed meal as a nitrogen source for iturin A production by Bacillus subtilis 3-10 in submerged fermentation was first evaluated by comparison with two different commercial nitrogen sources of peptone and ammonium nitrate. A significant promoting effect of rapeseed meal on iturin A production was observed and the maximum iturin A concentration of 0.60 g/L was reached at 70 h, which was 20% and 8.0 fold higher than that produced from peptone and ammonium nitrate media, respectively. It was shown that rapeseed meal had a positive induction effect on protease secretion, contributing to the release of soluble protein from low water solubility solid rapeseed meal for an effective supply of available nitrogen during fermentation. Moreover, compared to raw rapeseed meal, the remaining residue following fermentation could be used as a more suitable supplementary protein source for animal feed because of the great decrease of major anti-nutritional components including sinapine, glucosinolate and its degradation products of isothiocyanate and oxazolidine thione. The results obtained from this study demonstrate the potential of direct utilization of low cost rapeseed meal as a nitrogen source for commercial production of iturin A and other secondary metabolites by Bacillus subtilis.

  13. Preparation and mechanical properties of edible rapeseed protein films.

    Science.gov (United States)

    Jang, Sung-Ae; Lim, Geum-Ok; Song, Kyung Bin

    2011-03-01

    Edible films were manufactured from rapeseed oil extraction residues. To prepare rapeseed protein (RP) films, various concentrations of plasticizers and emulsifiers were incorporated into the preparation of a film-forming solution. The optimal conditions for the preparation of the RP film were 2% sorbitol/0.5% sucrose as plasticizer and 1.5% polysorbate 20 as an emulsifier. In addition, RP blend films were prepared. Gelidium corneum or gelatin was added to improve the physical properties of the RP film, and the highest tensile strength value of the films was 53.45 MPa for the 3% RP/4% gelatin film. Our results suggest that the RP-gelatin blend film is suitable for applications in food packaging. Edible RP films prepared in the present investigation can be applied in food packaging.

  14. Biology and harmfulness of Brassica pod midge (Dasineura brassicae Winn. in winter oilseed rape

    Directory of Open Access Journals (Sweden)

    Draga Graora

    2015-04-01

    Full Text Available The Brassica pod midge (Dasineura brassicae Winn. is an important pest in oilseed rape (Brasica napus L.. It develops two generations per year and overwinters in the larval stage in cocoons in soil. Immigration of the first generation adults lasted from the beginning of April until the end of May. Larvae developed in pods from mid-April to mid-June, causing pod deformation and cracking, which resulted in premature falling out of seeds and yield reduction. Pod damage amounted to 11.6%. The emergence of the second generation adults was detected at the end of May and in the first ten days of June. D. brassicae was found to lay eggs in healthy pods and no correlation was found with the cabbage seed weevil, Ceutorhynchus assimilis Paykull.

  15. Integrated control of Rapeseed pests

    International Nuclear Information System (INIS)

    Khattak, S.U.; Hamed, M.

    1990-06-01

    Rapeseed crop is attacked by different insects amongst which cabbage butterfly in Pakistan. Integrated control was conducted and results are mentioned in this report. The mortality in the remaining insecticides varied from 55-83% which was significantly higher than control. The higher dosages of gamma radiation ranged between 60-225 krad and results revealed that the mortality response increased with the post-irradiation time. Mortality was also significantly higher at 80-120 krad as compared to control. These results concluded that mortality was dose dependent. (A.B.)

  16. Combining Ability Analysis and Genetic-Effects Studies for Some Important Quality Characters in Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Aamar Shehzad

    2015-10-01

    Full Text Available Combining ability analysis has an important position in rapeseed breeding. To evaluate genetic and combining ability effects, three Brassica napus L. testers “Punjab Sarson, Legend and Durre-NIFA” and five lines “Duncled, K-258, ZN-R-1, ZN-R-8, ZN-M-6” were crossed using line × tester design in Randomized Complete Block Design (RCBD with three replications. Mean sum of squares of the analysis of variances (ANOVA for genotypes was highly significant for all of the traits. Most of the lines and testers exhibited significant results of mean sum of squares for combining ability. Line ‘Duncled’ was proved good general combiner for oil (8.8, protein (3.7, erucic acid (33.0, oleic acid (13.0 and glucosinolate (-19.3 over other lines and tester ‘Durree-NIFA’ for protein (6.6, erucic acid (-23.4, and linolenic acid (-5.3 over other testers. Significant specific combining ability effects were also observed. The best hybrid combinations were Legend × ZN-R-1 for oil (9.6, Punjab Sarson × Duncled for minimum erucic acid (-14.0 and linolenic acid contents (-6.0, and Legend × ZN-M-6 for maximum protein (8.2 and minimum glucosinolate contents (-11.1. The maximum oil contents were observed in ‘Legend × ZN-R-1’ (52.4%. The cross ‘Punjab Sarson × Duncled’ expressed maximum values of protein (26.5% and oleic acid (62.5% while minimum for erucic acid (2.3%, linolenic acid (5.4% and glucosinolate contents (19.3µmol/g. This research discloses the significance of non-additive genetic effects for most of the studied traits except oil contents. These studies will also help to improve nutritional values of rapeseed crop by selecting noble crosses.

  17. Comparative Transcriptome Analysis between Broccoli (Brassica oleracea var. italica) and Wild Cabbage (Brassica macrocarpa Guss.) in Response to Plasmodiophora brassicae during Different Infection Stages.

    Science.gov (United States)

    Zhang, Xiaoli; Liu, Yumei; Fang, Zhiyuan; Li, Zhansheng; Yang, Limei; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao

    2016-01-01

    Clubroot, one of the most devastating diseases to the Brassicaceae family, is caused by the obligate biotrophic pathogen Plasmodiophora brassicae . However, studies of the molecular basis of disease resistance are still poor especially in quantitative resistance. In the present paper, two previously identified genotypes, a clubroot-resistant genotype (wild cabbage, B2013) and a clubroot-susceptible genotype (broccoli, 90196) were inoculated by P. brassicae for 0 (T0), 7 (T7), and 14 (T14) day after inoculation (DAI). Gene expression pattern analysis suggested that response changes in transcript level of two genotypes under P. brassicae infection were mainly activated at the primary stage (T7). Based on the results of DEGs functional enrichments from two infection stages, genes associated with cell wall biosynthesis, glucosinolate biosynthesis, and plant hormone signal transduction showed down-regulated at T14 compared to T7, indicating that defense responses to P. brassicae were induced earlier, and related pathways were repressed at T14. In addition, the genes related to NBS-LRR proteins, SA signal transduction, cell wall and phytoalexins biosynthesis, chitinase, Ca 2+ signals and RBOH proteins were mainly up-regulated in B2013 by comparing those of 90196, indicating the pathways of response defense to clubroot were activated in the resistant genotype. This is the first report about comparative transcriptome analysis for broccoli and its wild relative during the different stages of P. brassicae infection and the results should be useful for molecular assisted screening and breeding of clubroot-resistant genotypes.

  18. Structure of XC6422 from Xanthomonas campestris at 1.6 Å resolution: a small serine α/β-hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chao-Yu; Chin, Ko-Hsin [Institute of Biochemistry, National Chung-Hsing University, Taichung 40227,Taiwan (China); Chou, Chia-Cheng; Wang, Andrew H.-J. [Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei,Taiwan (China); Core Facility for Protein Crystallography, Academia Sinica, Nankang, Taipei,Taiwan (China); Chou, Shan-Ho, E-mail: shchou@nchu.edu.tw [Institute of Biochemistry, National Chung-Hsing University, Taichung 40227,Taiwan (China)

    2006-06-01

    The crystal structure of a conserved hypothetical protein from X. campestris has been determined to a resolution of 1.6 Å. The determined X. campestris structure shows that it belongs to the superfamily of serine α/β hydrolase, with an extra strand preceding the first β-strand to lead to extensive subunit interactions in the crystal. XC6422 is a conserved hypothetical protein from Xanthomonas campestris pathovar campestris (Xcc), a Gram-negative yellow-pigmented pathogenic bacterium that causes black rot, one of the major worldwide diseases of cruciferous crops. The protein consists of 220 amino acids and its structure has been determined to 1.6 Å resolution using the multi-wavelength anomalous dispersion (MAD) method. Although it has very low sequence identity to protein sequences in the PDB (less than 20%), the determined structure nevertheless shows that it belongs to the superfamily of serine α/β-hydrolases, with an active site that is fully accessible to solvent owing to the absence of a lid domain. Modelling studies with the serine esterase inhibitor E600 indicate that XC6422 adopts a conserved Ser-His-Asp catalytic triad common to this superfamily and has a preformed oxyanion hole for catalytic activation. These structural features suggest that XC6422 is most likely to be a hydrolase active on a soluble ester or a small lipid. An extra strand preceding the first β-strand in the canonical α/β-hydrolase fold leads to extensive subunit interactions between XC6422 monomers, which may explain why XC6422 crystals of good diffraction quality can grow to dimensions of up to 1.5 mm in a few days.

  19. Download this PDF file

    African Journals Online (AJOL)

    ajl yemi

    2011-11-30

    Nov 30, 2011 ... Morphological data included plant height (cm), number of days to emergence, number .... Option500 and Fusia; third group contained. Option501 ..... Summer Rapeseed (Brassica napus ssp. oleifera L.) cultivars for yield and ...

  20. Genome-wide Investigation of microRNAs and Their Targets in Brassica rapa ssp. pekinensis Root with Plasmodiophora brassicae Infection

    Directory of Open Access Journals (Sweden)

    Xiaochun Wei

    2016-07-01

    Full Text Available Increasing evidence has revealed that microRNAs play a pivotal role in the post transcriptional regulation of gene expression in response to pathogens in plants. However, there is little information available about the expression patterns of miRNAs and their targets in Chinese cabbage (Brassica rapa ssp. pekinensis under Plasmodiophora brassicae stress. In the present study, using deep sequencing and degradome analysis, a genome-wide identification of miRNAs and their targets during P. brassicae stress was performed. A total of 221 known and 93 potentially novel miRNAs were successfully identified from two root libraries of one control (635-10CK and P. brassicae-treated Chinese cabbage samples (635-10T. Of these, 14 known and 10 potentially novel miRNAs were found to be differentially expressed after P. brassicae treatment. Degradome analysis revealed that the 223 target genes of the 75 miRNAs could be potentially cleaved. KEGG (Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested that the putative target genes of the miRNAs were predominately involved in selenocompound metabolism and plant hormone signal transduction. Then the expression of 12 miRNAs was validated by quantitative real-time PCR (qRT-PCR. These results provide insights into the miRNA-mediated regulatory networks underlying the stress response to the plant pathogen P. brassicae.

  1. Sinapinic and protocatechuic acids found in rapeseed: isolation, characterisation and potential benefits for human health as functional food ingredients

    Directory of Open Access Journals (Sweden)

    Quinn Leah

    2017-12-01

    Full Text Available Rapeseed is one of the world’s major oilseeds, and rapeseed oil is produced by pressing of the seeds. This process results in the production of a low-economic-value by-product, rapeseed meal, which is commonly used as animal feed. Rapeseed meal is rich in bioactive phenolic compounds, including sinapinic acid (SA and protocatechuic acid (PCA. Isolation of these bioactive compounds from a by-product of rapeseed oil production is largely in agreement with the current concept of the circular economy and total utilisation of crop harvest using a biorefinery approach. In this review, current information concerning traditional and novel methods to isolate phenolic compounds – including SA and PCA – from rapeseed meal, along with in vitro and in vivo studies concerning the bioactivity of SA and PCA and their associated health effects, is collated. These health effects include anti-inflammatory, anti-cancer, anti-diabetes activities, along with histone deacetylase inhibition and protective cardiovascular, neurological and hepatic effects. The traditional extraction methods include use of solvents and/or enzymes. However, a need for simpler, more efficient methodologies has led to the development of novel extraction processes, including microwave-assisted, ultrasound-assisted, pulsed electric field and high-voltage electrical discharge extraction processes.

  2. Characterisation of Rapeseed Oil Based Resins Using Infrared and ...

    African Journals Online (AJOL)

    The hydroxylated chemical structure was crosslinked using methylene-pphenyl diisocyanate to produce a thermoset rapeseed oil resin. The cross linking process was monitored in situ using the Attenuated Total Internal Reflectance Fourier Transform-Infrared spectroscopy and the thermogravimetric analysis techniques.

  3. Oxidation stability of rapeseed biodiesel/petroleum diesel blends

    DEFF Research Database (Denmark)

    Østerstrøm, Freja From; Anderson, James E.; Mueller, Sherry A.

    2016-01-01

    of the oxidation of a biodiesel fuel blend consisting of 30% (v/v) rapeseed methyl ester in petroleum diesel (B30) was conducted at 70 and 90 °C with three aeration rates. Oxidation rates increased with increasing temperature as indicated by decreases in induction period (Rancimat), concentrations of unsaturated...

  4. In vitro propagation of Ethiopian mustard ( Brassica carinata A ...

    African Journals Online (AJOL)

    Brassica carinata (A. Braun) is an amphi-diploid species that originated from interspecific hybridization between Brassica nigra and Brassica oleracea in the highlands of Ethiopia. The crop has many desirable agronomic traits but with oil quality constraints like high erucic acid and glucosinolate contents. In this study, two ...

  5. Unleashing the genome of Brassica rapa

    Directory of Open Access Journals (Sweden)

    Haibao eTang

    2012-07-01

    Full Text Available The completion and release of the Brassica rapa genome is of great benefit to researchers of the Brassicas, Arabidopsis, and genome evolution. While its lineage is closely related to the model organism Arabidopsis thaliana, the Brassicas experienced a whole genome triplication subsequent to their divergence. This event contemporaneously created three copies of its ancestral genome, which had diploidized through the process of homeologous gene loss known as fractionation. By the fractionation of homeologous gene content and genetic regulatory binding sites, Brassica’s genome is well placed to use comparative genomic techniques to identify syntenic regions, homeologous gene duplications, and putative regulatory sequences. Here, we use the comparative genomics platform CoGe to perform several different genomic analyses with which to study structural changes of its genome and dynamics of various genetic elements. Starting with whole genome comparisons, the Brassica paleohexaploidy is characterized, syntenic regions with Arabidopsis thaliana are identified, and the TOC1 gene in the circadian rhythm pathway from Arabidopsis thaliana is used to find duplicated orthologs in Brassica rapa. These TOC1 genes are further analyzed to identify conserved noncoding sequences that contain cis-acting regulatory elements and promoter sequences previously implicated in circadian rhythmicity. Each 'cookbook style' analysis includes a step-by-step walkthrough with links to CoGe to quickly reproduce each step of the analytical process.

  6. Testing local host adaptation and phenotypic plasticity in a herbivore when alternative related host plants occur sympatrically.

    Directory of Open Access Journals (Sweden)

    Lorena Ruiz-Montoya

    Full Text Available Host race formation in phytophagous insects can be an early stage of adaptive speciation. However, the evolution of phenotypic plasticity in host use is another possible outcome. Using a reciprocal transplant experiment we tested the hypothesis of local adaptation in the aphid Brevicoryne brassicae. Aphid genotypes derived from two sympatric host plants, Brassica oleracea and B. campestris, were assessed in order to measure the extent of phenotypic plasticity in morphological and life history traits in relation to the host plants. We obtained an index of phenotypic plasticity for each genotype. Morphological variation of aphids was summarized by principal components analysis. Significant effects of recipient host on morphological variation and life history traits (establishment, age at first reproduction, number of nymphs, and intrinsic growth rate were detected. We did not detected genotype × host plant interaction; in general the genotypes developed better on B. campestris, independent of the host plant species from which they were collected. Therefore, there was no evidence to suggest local adaptation. Regarding plasticity, significant differences among genotypes in the index of plasticity were detected. Furthermore, significant selection on PC1 (general aphid body size on B. campestris, and on PC1 and PC2 (body length relative to body size on B. oleracea was detected. The elevation of the reaction norm of PC1 and the slope of the reaction norm for PC2 (i.e., plasticity were under directional selection. Thus, host plant species constitute distinct selective environments for B. brassicae. Aphid genotypes expressed different phenotypes in response to the host plant with low or nil fitness costs. Phenotypic plasticity and gene flow limits natural selection for host specialization promoting the maintenance of genetic variation in host exploitation.

  7. Genome-Wide Identification, Evolutionary and Expression Analyses of the GALACTINOL SYNTHASE Gene Family in Rapeseed and Tobacco

    Directory of Open Access Journals (Sweden)

    Yonghai Fan

    2017-12-01

    Full Text Available Galactinol synthase (GolS is a key enzyme in raffinose family oligosaccharide (RFO biosynthesis. The finding that GolS accumulates in plants exposed to abiotic stresses indicates RFOs function in environmental adaptation. However, the evolutionary relationships and biological functions of GolS family in rapeseed (Brassica napus and tobacco (Nicotiana tabacum remain unclear. In this study, we identified 20 BnGolS and 9 NtGolS genes. Subcellular localization predictions showed that most of the proteins are localized to the cytoplasm. Phylogenetic analysis identified a lost event of an ancient GolS copy in the Solanaceae and an ancient duplication event leading to evolution of GolS4/7 in the Brassicaceae. The three-dimensional structures of two GolS proteins were conserved, with an important DxD motif for binding to UDP-galactose (uridine diphosphate-galactose and inositol. Expression profile analysis indicated that BnGolS and NtGolS genes were expressed in most tissues and highly expressed in one or two specific tissues. Hormone treatments strongly induced the expression of most BnGolS genes and homologous genes in the same subfamilies exhibited divergent-induced expression. Our study provides a comprehensive evolutionary analysis of GolS genes among the Brassicaceae and Solanaceae as well as an insight into the biological function of GolS genes in hormone response in plants.

  8. Standardized gene nomenclature for the Brassica genus

    Directory of Open Access Journals (Sweden)

    King Graham J

    2008-05-01

    Full Text Available Abstract The genus Brassica (Brassicaceae, Brassiceae is closely related to the model plant Arabidopsis, and includes several important crop plants. Against the background of ongoing genome sequencing, and in line with efforts to standardize and simplify description of genetic entities, we propose a standard systematic gene nomenclature system for the Brassica genus. This is based upon concatenating abbreviated categories, where these are listed in descending order of significance from left to right (i.e. genus – species – genome – gene name – locus – allele. Indicative examples are provided, and the considerations and recommendations for use are discussed, including outlining the relationship with functionally well-characterized Arabidopsis orthologues. A Brassica Gene Registry has been established under the auspices of the Multinational Brassica Genome Project that will enable management of gene names within the research community, and includes provisional allocation of standard names to genes previously described in the literature or in sequence repositories. The proposed standardization of Brassica gene nomenclature has been distributed to editors of plant and genetics journals and curators of sequence repositories, so that it can be adopted universally.

  9. Comparative analysis of miRNAs of two rapeseed genotypes in response to acetohydroxyacid synthase-inhibiting herbicides by high-throughput sequencing.

    Directory of Open Access Journals (Sweden)

    Maolong Hu

    Full Text Available Acetohydroxyacid synthase (AHAS, also called acetolactate synthase, is a key enzyme involved in the first step of the biosynthesis of the branched-chain amino acids valine, isoleucine and leucine. Acetohydroxyacid synthase-inhibiting herbicides (AHAS herbicides are five chemical families of herbicides that inhibit AHAS enzymes, including imidazolinones (IMI, sulfonylureas (SU, pyrimidinylthiobenzoates, triazolinones and triazolopyrimidines. Five AHAS genes have been identified in rapeseed, but little information is available regarding the role of miRNAs in response to AHAS herbicides. In this study, an AHAS herbicides tolerant genotype and a sensitive genotype were used for miRNA comparative analysis. A total of 20 small RNA libraries were obtained of these two genotypes at three time points (0h, 24 h and 48 h after spraying SU and IMI herbicides with two replicates. We identified 940 conserved miRNAs and 1515 novel candidate miRNAs in Brassica napus using high-throughput sequencing methods combined with computing analysis. A total of 3284 genes were predicted to be targets of these miRNAs, and their functions were shown using GO, KOG and KEGG annotations. The differentiation expression results of miRNAs showed almost twice as many differentiated miRNAs were found in tolerant genotype M342 (309 miRNAs after SU herbicide application than in sensitive genotype N131 (164 miRNAs. In additiond 177 and 296 miRNAs defined as differentiated in sensitive genotype and tolerant genotype in response to SU herbicides. The miR398 family was observed to be associated with AHAS herbicide tolerance because their expression increased in the tolerant genotype but decreased in the sensitive genotype. Moreover, 50 novel miRNAs from 39 precursors were predicted. There were 8 conserved miRNAs, 4 novel miRNAs and 3 target genes were validated by quantitative real-time PCR experiment. This study not only provides novel insights into the miRNA content of AHAS herbicides

  10. Ileal digestibility of sunfl ower meal, pea, rapeseed cake, and lupine in pigs

    DEFF Research Database (Denmark)

    Nørgaard, Jan Værum; Fernández, José Adalberto; Jørgensen, Henry

    2012-01-01

    .05) for soybean meal and pea compared to sunfl ower meal, rapeseed cake, and lupine. The SID of Lys and His were lowest (P pea to be a high-digestible protein source relative to sunfl ower......The standardized ileal digestibility (SID) of CP and AA was evaluated in soybean (Glycine max) meal, sunfl ower (Helianthus annuus) meal, rapeseed cake, and fi eld pea (Pisum sativum) using 10 pigs and in lupine (Lupinus angustifolius) using 7 pigs. Pigs were fi tted with either a T...

  11. Distribution and harmfulness of field dodder (Cuscuta campestris Yuncker at sugar beet fields in Slovakia

    Directory of Open Access Journals (Sweden)

    Tóth Peter

    2006-01-01

    Full Text Available During 2002-2004, field surveys of field dodder (Cuscuta campestris Yunck e r in croplands were done in southwestern Slovakia. From among 150 localities surveyed, 80 were found infested by the field dodder. Within crop plants, C. campestris infested sugar beet (Beta vulgaris, alfalfa (Medicago sativa tobacco (Nicotiana tabacum, potato (Solanum tuberosum, lentil (Lens esculenta, parsley (Pastinaca sativa and onion (Allium cepa. Besides the crops, 18 weed species were also recorded. The species from the genus Polygonum (Polygonaceae were the most important and acted as a significant reservoir of field dodder in cropland. C. campestris was not found in cold climatic regions with altitude higher than 240 m. The impact of field dodder infestation on sugar beet yield was studied during the year of 2004 in two localities (Šalov and Žitavce in southwestern Slovakia. The presence of field dodder markedly reduced both, quantity and quality of sugar beet yield. Weight of heavily infested beets was reduced from 21.6 to 37.4% and sugar content from 12.0 to 15.2%. Such decline of both parameters was also recorded when field dodder was removed together with leaves of sugar beet during growing season at the end of July. The aim of the infested leaves removal was to decrease mass of field dodder seeds. Although the leaf area of sugar beet regenerates, the decrease of quality and quantity was observed. The decline was the same at both localities, no matter whether the fields were irrigated (Šalov or not (Žitavce.

  12. White blister rusts and downy mildews from bajaur agency fata, with some new records from pakistan

    International Nuclear Information System (INIS)

    Haq, M.A.; Shahzad, S.

    2015-01-01

    In a species diversity study of Oomycyctes of Bajaur Agency FATA, Pakistan, infection of white blister rusts and downy mildews recorded on three cultivated and four wild plants. Capsella bursa-pastoris showed mixed infection of Albugo candida and Hyaloperonospora parasitica (syn: Peronospora parasitica). Similarly, A. candida and H. brassicae (syn: P. brassicae) parasitized Brassica campestris. Wilsoniana portulacae (syn: Albugo portulacae) and W. occidentalis com. nov. (syn: Albugo occidentalis) recovered from Portulaca oleracea and Spinacia oleracea, respectively. Bremia taraxaci, B. sonchicola and B. saussureae recorded on Taraxicum officinale, Sonchus sp., and Saussurea sp., respectively. All these obligate parasites are new records from Bajaur Agency, while H. parasitica, W. occidentalis, B. taraxaci, and B. saussureae on the mentioned hosts are new records from Pakistan. (author)

  13. BRAD, the genetics and genomics database for Brassica plants

    Directory of Open Access Journals (Sweden)

    Li Pingxia

    2011-10-01

    Full Text Available Abstract Background Brassica species include both vegetable and oilseed crops, which are very important to the daily life of common human beings. Meanwhile, the Brassica species represent an excellent system for studying numerous aspects of plant biology, specifically for the analysis of genome evolution following polyploidy, so it is also very important for scientific research. Now, the genome of Brassica rapa has already been assembled, it is the time to do deep mining of the genome data. Description BRAD, the Brassica database, is a web-based resource focusing on genome scale genetic and genomic data for important Brassica crops. BRAD was built based on the first whole genome sequence and on further data analysis of the Brassica A genome species, Brassica rapa (Chiifu-401-42. It provides datasets, such as the complete genome sequence of B. rapa, which was de novo assembled from Illumina GA II short reads and from BAC clone sequences, predicted genes and associated annotations, non coding RNAs, transposable elements (TE, B. rapa genes' orthologous to those in A. thaliana, as well as genetic markers and linkage maps. BRAD offers useful searching and data mining tools, including search across annotation datasets, search for syntenic or non-syntenic orthologs, and to search the flanking regions of a certain target, as well as the tools of BLAST and Gbrowse. BRAD allows users to enter almost any kind of information, such as a B. rapa or A. thaliana gene ID, physical position or genetic marker. Conclusion BRAD, a new database which focuses on the genetics and genomics of the Brassica plants has been developed, it aims at helping scientists and breeders to fully and efficiently use the information of genome data of Brassica plants. BRAD will be continuously updated and can be accessed through http://brassicadb.org.

  14. Characterization and expression patterns of small RNAs in synthesized Brassica hexaploids.

    Science.gov (United States)

    Shen, Yanyue; Zhao, Qin; Zou, Jun; Wang, Wenliang; Gao, Yi; Meng, Jinling; Wang, Jianbo

    2014-06-01

    Polyploidy has played an important role in promoting plant evolution through genomic merging and doubling. We used high-throughput sequencing to compare miRNA expression profiles between Brassica hexaploid and its parents. A total of 613, 784 and 742 known miRNAs were identified in Brassica rapa, Brassica carinata, and Brassica hexaploid, respectively. We detected 618 miRNAs were differentially expressed (log(2)Ratio ≥ 1, P ≤ 0.05) between Brassica hexaploid and its parents, and 425 miRNAs were non-additively expressed in Brassica hexaploid, which suggest a trend of non-additive miRNA regulation following hybridization and polyploidization. Remarkably, majority of the non-additively expressed miRNAs in the Brassica hexaploid are repressed, and there was a bias toward repression of B. rapa miRNAs, which is consistent with the progenitor-biased gene repression in the synthetic allopolyploids. In addition, we identified 653 novel mature miRNAs in Brassica hexaploid and its parents. Finally, we found that almost all the non-additive accumulation of siRNA clusters exhibited a low-parent pattern in Brassica hexaploid. Non-additive small RNA regulation is involved in a range of biological pathways, probably providing a driving force for variation and adaptation in allopolyploids.

  15. Phenolic Compounds in Brassica Vegetables

    Directory of Open Access Journals (Sweden)

    Pablo Velasco

    2010-12-01

    Full Text Available Phenolic compounds are a large group of phytochemicals widespread in the plant kingdom. Depending on their structure they can be classified into simple phenols, phenolic acids, hydroxycinnamic acid derivatives and flavonoids. Phenolic compounds have received considerable attention for being potentially protective factors against cancer and heart diseases, in part because of their potent antioxidative properties and their ubiquity in a wide range of commonly consumed foods of plant origin. The Brassicaceae family includes a wide range of horticultural crops, some of them with economic significance and extensively used in the diet throughout the world. The phenolic composition of Brassica vegetables has been recently investigated and, nowadays, the profile of different Brassica species is well established. Here, we review the significance of phenolic compounds as a source of beneficial compounds for human health and the influence of environmental conditions and processing mechanisms on the phenolic composition of Brassica vegetables.

  16. Optimization of uncatalyzed steam explosion pretreatment of rapeseed straw for biofuel production.

    Science.gov (United States)

    López-Linares, Juan C; Ballesteros, Ignacio; Tourán, Josefina; Cara, Cristóbal; Castro, Eulogio; Ballesteros, Mercedes; Romero, Inmaculada

    2015-08-01

    Rapeseed straw constitutes an agricultural residue with great potential as feedstock for ethanol production. In this work, uncatalyzed steam explosion was carried out as a pretreatment to increase the enzymatic digestibility of rapeseed straw. Experimental statistical design and response surface methodology were used to evaluate the influence of the temperature (185-215°C) and the process time (2.5-7.5min). According to the rotatable central composite design applied, 215°C and 7.5min were confirmed to be the optimal conditions, considering the maximization of enzymatic hydrolysis yield as optimization criterion. These conditions led to a maximum yield of 72.3%, equivalent to 81% of potential glucose in pretreated solid. Different configurations for bioethanol production from steam exploded rapeseed straw were investigated using the pretreated solid obtained under optimal conditions as a substrate. As a relevant result, concentrations of ethanol as high as 43.6g/L (5.5% by volume) were obtained as a consequence of using 20% (w/v) solid loading, equivalent to 12.4g ethanol/100g biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Conformational changes associated with the binding of zinc acetate at the putative active site of XcTcmJ, a cupin from Xanthomonas campestris pv. campestris

    International Nuclear Information System (INIS)

    Axelrod, Herbert L.; Kozbial, Piotr; McMullan, Daniel; Krishna, S. Sri; Miller, Mitchell D.; Abdubek, Polat; Acosta, Claire; Astakhova, Tamara; Carlton, Dennis; Caruthers, Jonathan; Chiu, Hsiu-Ju; Clayton, Thomas; Deller, Marc C.; Duan, Lian; Elias, Ylva; Feuerhelm, Julie; Grzechnik, Slawomir K.; Grant, Joanna C.; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kumar, Abhinav; Marciano, David; Morse, Andrew T.; Murphy, Kevin D.; Nigoghossian, Edward; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Reyes, Ron; Rife, Christopher L.; Tien, Henry J.; Trout, Christina V.; Bedem, Henry van den; Weekes, Dana; White, Aprilfawn; Xu, Qingping; Zubieta, Chloe; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2009-01-01

    The crystal structure of an RmlC-type cupin with zinc acetate bound at the putative active site reveals significant differences from a previous structure without any bound ligand. The functional implications of the ligand-induced conformational changes are discussed. In the plant pathogen Xanthomonas campestris pv. campestris, the product of the tcmJ gene, XcTcmJ, encodes a protein belonging to the RmlC family of cupins. XcTcmJ was crystallized in a monoclinic space group (C2) in the presence of zinc acetate and the structure was determined to 1.6 Å resolution. Previously, the apo structure has been reported in the absence of any bound metal ion [Chin et al. (2006 ▶), Proteins, 65, 1046–1050]. The most significant difference between the apo structure and the structure of XcTcmJ described here is a reorganization of the binding site for zinc acetate, which was most likely acquired from the crystallization solution. This site is located in the conserved metal ion-binding domain at the putative active site of XcTcmJ. In addition, an acetate was also bound within coordination distance of the zinc. In order to accommodate this binding, rearrangement of a conserved histidine ligand is required as well as several nearby residues within and around the putative active site. These observations indicate that binding of zinc serves a functional role in this cupin protein

  18. Evaluation of the Effect of Rotation and Application Rate of Nitrogen on Yield, Yield Components and Nitrogen Efficiency Indexes in wheat

    Directory of Open Access Journals (Sweden)

    R Nasri

    2016-02-01

    Full Text Available Introduction There are about 160 species in Brassica genus, which are mostly annuals and biennials. The plants in this genus have potential for fodder uses. The progress in plant breeding science has produced new crop varieties for oil and forage usages. Perko varieties are derived from crosses between tetraploid plants of winter rapeseed (Brassica napus L.Var. napus and Chinese cabbage (Brassica campestris L. var. sensulato. The new plants are superior to their parents from various aspects. Buko varieties are new amphiploid plants obtained by crossing between tetraploid winter rapeseed, Chinese cabbage and turnips (Brassica campestris L. var. Rapa. Oilseed radish with scientific name (Raphanus sativus L. is a genus of the Brassica and consumption, oil, green manure, feed and fodder (24. This plant in many countries, including Canada, is cultivated in gardens as cover crop. Oilseed radish grows fast in the cool seasons. Ramtil (Guizotia abyssinica belongs to the Compositae family, Phasilia (Phaceli atanacetifolia L. belongs to Boraginaceae family and clover is from Fabaceae family that is grown for feeding purposes. Materials and Methods A field experiment was conducted from 2011 to 2012 in the Karezan region of Ilam, Iran (42º33′N, 33º46′E on a silty-clay with low organic carbon (1.26% and slightly alkaline soil (pH=7.9. This site is characterized as temperate climate with 370 mm annual precipitation. The experiment was arranged in a split plot based on randomized complete block design with four replications. The main plots consisted of 6 pre-sowing plant treatments (control, Perko PVH, Buko, Clover and Oilseed radish and combination of three plants Ramtil, Phaselia andclover, and sub plots covered four N fertilizer rates including no fertilizer N (Control, 50% lower than recommended N rate, recommended N rate and 50% more than recommended N rate. Winter wheat (cv. Pishtaz was sown on mid-November with the row spacing of 15 cm and a

  19. Potencial alelopático de Cyperus rotundus L. sobre espécies cultivadas Allelopathic potential of Cyperus rotundus L. upon cultivated species

    Directory of Open Access Journals (Sweden)

    Heloísa Monteiro de Andrade

    2009-01-01

    Full Text Available Metabótitos secundários produzidos em algumas plantas podem provocar alterações no desenvolvimento de outras plantas ou até mesmo de outros organismos. Neste trabalho, objetivou-se identificar possíveis efeitos alelopáticos de extratos aquosos de folhas de Cyperus rotundus na germinação e no crescimento de plântulas de Brassica campestris, Brassica oleracea var. botrytis, Brassica oleracea var. capitata, Brassica oleracea var. italica, Brassica rapa, Lactuca sativa cv. Grand rapids, Lycopersicum esculentum e Raphanus sativus. Foram utilizadas sete concentrações do extrato aquoso (0, 10, 30, 50, 70, 90 e 100%. Os tratamentos foram arranjados em delineamento inteiramente casualizado, com cinco repetições de dez sementes das espécies cultivadas, constituindo a unidade amostral. Os extratos aquosos de C. rotundus evidenciaram potencialidades alelopáticas na germinação das sementes e no crescimento das duas partes vegetais (raiz e parte aérea, de todas as espécies testadas, exceto na germinação de sementes de tomate e de alface, sendo que a redução aumentou com o aumento das concentrações dos extratos aquosos utilizados. A estrutura vegetal mais afetada em presença dos extratos aquosos foi o sistema radicular das plântulas.Secondary metabolites produced in some plant species may promote changes in the development of other plants or even in other organisms. The aim of this work was to identify the possible allelopathic effects of aqueous extracts of Cyperus rotundus leaves on germination and growth of Brassica campestris, Brassica oleracea var. botrytis, Brassica oleracea var. capitata, Brassica oleracea var. italica, Brassica rapa, Lactuca sativa cv. Grand rapids, Lycopersicum esculentum and Raphanus sativus seedlings. Seven aqueous extract concentrations were used (0, 10, 30, 50, 70, 90, and 100%. The treatments were arranged in a completely randomized desing, with five replications of ten seeds of each cultivated species

  20. Responses of broiler chicks to radiation processed full-fat rapeseed

    International Nuclear Information System (INIS)

    Farag, El-Din Diaa.M.; Abd El-Hakeim, N.F.; Ali, Y.

    1999-01-01

    Studies were undertaken to determine a safe inclusion for full-fat rapeseed processed through radiation treatment, as a step towards detoxification, in broiler chick's diet. Raw and processed full-fat seeds (10 and 20 KGy) were fed to arbor acres broiler chicks from 7 d of 49 d of age. Body weight of chicks fed the control diet were heaviest followed in order against those fed seed irradiated at 20 and 10 KGy weight depression relative to birds fed, over the experimental duration, of chicks fed diets containing raw and irradiated rapeseed at 10 and 20 KGy were-11.2, - 7.2 and - 0.14%, respectively. In general, the study indicates that processed seeds at 20 KGy fed to broilers resulted in body weights (7 wk) similar to the control birds. leg abnormalities were seen in birds fed raw and irradiated rapeseed at 10 and 20 KGy to be 31.1, 17.8 and 8.9%, respectively. Mortality rate of birds fed raw seeds was more pronounced than those fed the irradiated seeds. Birds fed raw seeds showed thyroid and liver enlargement. Processed seeds at 10 and 20 KGy reduced the effect on these organs. Feeding chicks irradiated seed at 10 and 20 KGy did not normalize the weight of thyroid and liver. Meanwhile, there is no significant difference in relative weight of gizzard, pancreas, heart and kidney of chicks fed control diet and those fed irradiated seeds

  1. Genome-wide identification of aquaporin encoding genes in Brassica oleracea and their phylogenetic sequence comparison to Brassica crops and Arabidopsis

    Science.gov (United States)

    Diehn, Till A.; Pommerrenig, Benjamin; Bernhardt, Nadine; Hartmann, Anja; Bienert, Gerd P.

    2015-01-01

    Aquaporins (AQPs) are essential channel proteins that regulate plant water homeostasis and the uptake and distribution of uncharged solutes such as metalloids, urea, ammonia, and carbon dioxide. Despite their importance as crop plants, little is known about AQP gene and protein function in cabbage (Brassica oleracea) and other Brassica species. The recent releases of the genome sequences of B. oleracea and Brassica rapa allow comparative genomic studies in these species to investigate the evolution and features of Brassica genes and proteins. In this study, we identified all AQP genes in B. oleracea by a genome-wide survey. In total, 67 genes of four plant AQP subfamilies were identified. Their full-length gene sequences and locations on chromosomes and scaffolds were manually curated. The identification of six additional full-length AQP sequences in the B. rapa genome added to the recently published AQP protein family of this species. A phylogenetic analysis of AQPs of Arabidopsis thaliana, B. oleracea, B. rapa allowed us to follow AQP evolution in closely related species and to systematically classify and (re-) name these isoforms. Thirty-three groups of AQP-orthologous genes were identified between B. oleracea and Arabidopsis and their expression was analyzed in different organs. The two selectivity filters, gene structure and coding sequences were highly conserved within each AQP subfamily while sequence variations in some introns and untranslated regions were frequent. These data suggest a similar substrate selectivity and function of Brassica AQPs compared to Arabidopsis orthologs. The comparative analyses of all AQP subfamilies in three Brassicaceae species give initial insights into AQP evolution in these taxa. Based on the genome-wide AQP identification in B. oleracea and the sequence analysis and reprocessing of Brassica AQP information, our dataset provides a sequence resource for further investigations of the physiological and molecular functions of

  2. EFFECT OF FILLER LOADING ON PHYSICAL AND FLEXURAL PROPERTIES OF RAPESEED STEM/PP COMPOSITES

    Directory of Open Access Journals (Sweden)

    Seyed Majid Zabihzadeh

    2011-03-01

    Full Text Available The objective of the study is to develop a new filler for the production of natural filler thermoplastic composites using the waste rapeseed stalks. The long-term water absorption and thickness swelling behaviors and flexural properties of rapeseed filled polypropylene (PP composites were investigated. Three different contents of filler were tested: 30, 45, and 60 wt%. Results of long-term hygroscopic tests indicated that by the increase in filler content from 30% to 60%, water diffusion absorption and thickness swelling rate parameter increased. A swelling model developed by Shi and Gardner can be used to quantify the swelling rate. The increasing of filler content reduced the flexural strength of the rapeseed/PP composites significantly. In contrast to the flexural strength, the flexural modulus improved with increasing the filler content. The flexural properties of these composites were decreased after the water uptake, due to the effect of the water molecules.

  3. Characteristics of a tractor engine using mineral and biodiesel fuels blended with rapeseed oil Características de um motor de trator alimentado com combustíveis mineral e biodisel misturados com óleo de colza

    Directory of Open Access Journals (Sweden)

    Tone Godeša

    2010-10-01

    Full Text Available One of the most unfavourable characteristics of crude vegetable oil when used as the fuel is the high viscosity. To improve this weakness, oil can be blended with mineral diesel or biodiesel fuels. This study was designed to evaluate how the use of mineral diesel or biodiesel blend with cold pressed rapeseed (Brassica napus oil affects the engine power, torque and fuel consumption. A tractor equipped with direct injection, water cooling system and three-cylinder diesel engine was used for the experiment. Fuels used were standard diesel fuel (diesel, rapeseed oil methyl ester - biodiesel (B100 and their mixtures with 10, 30 and 50 vol. % of cold pressed rapeseed oil (RO. Increased portion of RO in diesel fuel blends had almost no effect on the torque measured on the tractor PTO shaft; it however decreased the maximal power. Fuel blends with B100 and rising RO content (up to 50% gave a positive correlation with maximal torque and power. By increasing the portion of RO from 0 to 50%, the minimal specific fuel consumption increased by 6.65% with diesel and decreased by 2.98% with B100 based fuel.Uma das características mais desfavoráveis dos óleos vegetais crus usados como combustível é a alta viscosidade. Para melhorar este ponto fraco, o óleo pode ser misturado com diesel mineral ou biodiesel. Este estudo foi desenvolvido para avaliar como o uso de diesel mineral ou biodiesel misturado a oleo de colza (Brassica napus extraído por pressão a frio afeta a potência do motor, o torque e o consumo de combustível, empregando um trator equipado com injeção direta, sistema de refrigeração de água e um motor de três cilindros. Os combustíveis utilizados foram o diesel padrão (diesel, éster metílico de óleo de sementes de colza - biodiesel (B100 e suas misturas com 10, 30 e 50 % vol. de óleo de semente de colza pressionado a frio (RO. Maiores proporções de RO nas misturas de diesel praticamente não tiveram efeito sobre o torque

  4. Biogenic greenhouse gas emissions linked to the life cycles of biodiesel derived from European rapeseed and Brazilian soybeans

    NARCIS (Netherlands)

    Reijnders, L.; Huijbregts, M.A.J.

    2008-01-01

    Biogenic emissions of carbonaceous greenhouse gases and N2O turn out to be important determinants of life cycle emissions of greenhouse gases linked to the life cycle of biodiesel from European rapeseed and Brazilian soybeans. For biodiesel from European rapeseed and for biodiesel from Brazilian

  5. NMR metabolomics of ripened and developing oilseed rape (Brassica napus) and turnip rape (Brassica rapa).

    Science.gov (United States)

    Kortesniemi, Maaria; Vuorinen, Anssi L; Sinkkonen, Jari; Yang, Baoru; Rajala, Ari; Kallio, Heikki

    2015-04-01

    The oilseeds of the commercially important oilseed rape (Brassica napus) and turnip rape (Brassica rapa) were investigated with (1)H NMR metabolomics. The compositions of ripened (cultivated in field trials) and developing seeds (cultivated in controlled conditions) were compared in multivariate models using principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA). Differences in the major lipids and the minor metabolites between the two species were found. A higher content of polyunsaturated fatty acids and sucrose were observed in turnip rape, while the overall oil content and sinapine levels were higher in oilseed rape. The genotype traits were negligible compared to the effect of the growing site and concomitant conditions on the oilseed metabolome. This study demonstrates the applicability of NMR-based analysis in determining the species, geographical origin, developmental stage, and quality of oilseed Brassicas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Standardized ileal digestibility of amino acids in European soya bean and rapeseed products fed to growing pigs.

    Science.gov (United States)

    Kaewtapee, C; Mosenthin, R; Nenning, S; Wiltafsky, M; Schäffler, M; Eklund, M; Rosenfelder-Kuon, P

    2018-04-01

    This study was conducted to determine the chemical composition and standardized ileal digestibility coefficients (SID) of crude protein (CP) and amino acids (AA) of European soya bean and rapeseed products in pigs. Six soya bean and two rapeseed products were used as the sole dietary source of CP and AA, including raw (FFSB) and roasted full-fat soya beans (FFSB R oasted ), soya bean (SBC) and rapeseed cake (RSC), and rapeseed meal (RSM) from Bavaria (Germany), soya bean meal (SBM) from the Danube region (Austria; SBM A ustria ), a commercially available standard SBM (SBM S td ) and an imported genetically modified organism-free SBM (SBM GMO -free ). Eight ileal- cannulated pigs with an initial body weight of 32 ± 2 kg were allotted to a row-column design with eight diets and six periods of seven days each. Trypsin inhibitor activity (TIA) ranged from 1.8 in SBM S td to 24.5 mg/g DM in FFSB. The SID of CP and all AA in FFSB R oasted were greater than in FFSB, but lower when compared to SBC and SBM A ustria (p soya bean and rapeseed products as influenced by differences in processing conditions. European SBC and SBM A ustria can be used as alternative to imported SBM GMO -free and SBM S td in diets for growing pigs. © 2017 Blackwell Verlag GmbH.

  7. Yield performance of brassica varieties under rainfed condition

    International Nuclear Information System (INIS)

    Hassan, M.Z.U.; Wahla, A.J.; Waqar, M.Q.

    2014-01-01

    A field study was conducted to evaluate crop growth and seed yield performance of Brassica varieties under Rainfed conditions. The varieties, included in the study, were BSA, Zafar-2000, Pakola, Con.1, Con.2, Abaseen, Rainbow, SPS-5, Bard-1, and KJ-119. KJ-119 (2500.0 KG/HA) among Brassica juncea L. varieties and Abaseen (2425.9 kg/ha) among Brassica napusL. Varieties produced with maximum seed yield as compared to rest of varieties. Significantly, minimum seed yield was observed in check variety BSA. The significant difference in seed yield of Brassica varieties, Abaseen and KJ 119, was attributed to improve yield components over other varieties. Maximum pods per plant and seeds per pod led these varieties to attain maximum yield. Inspite of weather variations existence during years 2007-09,the same varieties produced with maximum seed yield. (author)

  8. Is Reduction in Yield Potential of Some Brassicaceous Species Due to Aphid Infestation Associated with the Changes in Stomatal Factors of Photosynthesis

    International Nuclear Information System (INIS)

    Razaq, M.; Farooq, M.; Abbas, G.; Rehman, H. M.; Iqbal, M.

    2016-01-01

    Aphids cause heavy yield losses to Brassicaceous species by affecting various physiological and biochemical processes including photosynthesis. In the present study, seasonal activity of aphid population and its impact on some brassicaceous species was assessed. Three brassicaceous species (Brassica campestris, Brassica carinata, Eruca sativa) were grown in field following standard agricultural practices. Plants of control plots retained aphid free by insecticide spray, whereas treatment plots were freely allowed for aphid infestation. There was also intermediate treatment of partial aphid infestation where insecticidal spray was applied two times. Peak populations of both aphid species were observed in the 2nd week of March during which plant photosynthetic attributes were recorded. At the time of maturity, yield attributes were also recorded. From the results, it is obvious that application of insecticide significantly reduced the aphid populations on the three brassicaceous species and enhanced the crop yield. Yield losses due to aphid infestation were maximal in Brassica campestris followed by B. carinata whereas it was minimal in Eruca sativa. Yield losses in Brassica campestris and B. carinata were due to reduction in number of pods per plant, number of seeds per pod and size of seeds, whereas yield losses due to aphid infestation in Eruca sativa was mainly attributed to reduction in number of pods per plant. Although insecticidal spray reduced the aphid population and increased growth and productivity of all brassicaceous species, it did not change photosynthetic capacity of all plants except in Eruca sativa. Moreover, growth and yield reduction was not associated with stomatal factors of photosynthesis. Chlorophyll contents measured as SPAD values were reduced due to aphid infestation which is positively associated with yield reduction. Insecticidal spray increased chlorophyll contents in these three brassicaceous species by reducing aphid population

  9. 'Abasin-95', a new oilseed rape cultivar developed through induced mutations

    International Nuclear Information System (INIS)

    Shah, S.A.; Ali, I.; Rahman, K.

    2001-01-01

    Brassica oilseeds are the second most important source of vegetable oil in Pakistan. Due to the low priority attached to these to these crops in the past, no systematic breeding work was undertaken to develop improved varieties of rapeseed/mustard, resulting in a narrow genetic base of these crops. At the Nuclear Institute for Food and Agriculture (NIFA), gamma radiation was used to induce genetic variability in traits of economic importance thus diversifying the genetic base of indigenous/exotic cultivars of Brassica oilseeds

  10. Enhanced bioenergy recovery from rapeseed plant in a biorefinery concept

    DEFF Research Database (Denmark)

    Luo, Gang; Talebnia, Farid; Karakashev, Dimitar Borisov

    2011-01-01

    peroxide and stream pretreatment. The byproducts (rapeseed cake, glycerol, hydrolysate and stillage) were evaluated for hydrogen and methane production. In batch experiments, the energy yields from each feedstock for, either methane production alone or for both hydrogen and methane, were similar. However...

  11. Chemical characterization of Xanthan biopolymers synthesized by Xanthomonas campestris pv pruni strains; Caracterizacao quimica de biopolimeros sintetizados por Xanthomonas campestris pv pruni

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Angelita da S.; Vendruscolo, Claire T.; Furlan, Ligia [Universidade Federal de Pelotas, RS (Brazil). Centro de Biotecnologia]. E-mail: angelita@ufpel.tche.br; claire@ufpel.tche.br; ligia@ufpel.tche.br; Galland, Griselda [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Qumica

    2001-07-01

    In this work we describe the characterisation of Xanthan biopolymers synthesized by two Xanthomonas campestris pv pruni strains, in aerobic fermentation. By chromatography on TLC we could notice the presence of Mannose monomer in higher proportion in the 82 strain with relation to the another ones. The viscosity results showed the temperature dependence. The 06 and 82 strains had their viscosity increased whereas for the 87 strain we could observe a reduction with temperature increasing. The {sup 13}C NMR spectrum of 87 strain showed the characteristic signals at approximately 92.8, 70.4 and 61.4 ppm, attributed to C1, C4 and C6 from glucose monomer, with higher intensity. (author)

  12. Antihypertensive and vasorelaxant effects of aqueous extract of Artemisia campestris L. from Eastern Morocco.

    Science.gov (United States)

    Dib, Ikram; Tits, Monique; Angenot, Luc; Wauters, Jean Noel; Assaidi, Asmae; Mekhfi, Hassane; Aziz, Mohammed; Bnouham, Mohammed; Legssyer, Abdelkhaleq; Frederich, Michel; Ziyyat, Abderrahim

    2017-07-12

    Artemisia campestris L. (Asteraceae) has many traditional uses, among which treatment of diabetes and hypertension. This study was conducted in order to confirm the antihypertensive and hypotensive effects of A. campestris L. aqueous extract (AcAE) and to explore the underlying mechanism of action of its vasorelaxant effect, besides the acute toxicity. Also, the chemical composition of AcAE was investigated. the chemical content of AcAE was determined by using HPLC and NMR techniques. The antihypertensive effect was assessed indirectly by tail-cuff method on L-NAME induced hypertensive rats, while the hypotensive action was monitored intravenously by invasive method on normotensive rats. The vasorelaxant effect and vascular mechanism of action were studied in the presence of antagonists and blockers on aorta isolated from normotensive rats. On the other side, the acute toxicity was studied by oral feeding of extract to the mice. The global phytochemical profile of AcAE reveals the presence of several polyphenols as main components. A. campestris L. infusion was characterized by mono- and di-cinnamoyl compounds, with 3,5-dicaffeoylquinic (isochlorogenic A) acid being the main compound, followed by 5-caffeoylquinic (chlorogenic) acid. Vicenin-2 (apigenin 6,8-di-C-glucoside) appeared to be the most abundant compound among flavonoids. The daily treatment with AcAE at 150mg/kg/day prevented the installation of hypertension on L-NAME hypertensive rats, and reduced SBP from 172mmHg up to 144mmHg. At the dose 40mg/kg, AcAE provoked reduction of systolic (SBP), diastolic (DBP) and mean arterial pressure (MAP), without affecting the heart rate. Also, AcAE (10 -2 -2mg/ml) relaxed the precontracted aorta by 95.8±1.3%. The denudation and preincubation of aorta with atropine, calmidazolium, L-NAME, hydroxycobalamin, ODQ, 8-RP-Br-PET-cGMP, thapsigargin and verapamil attenuated the vasorelaxant response, while the pre-treatment with 4-AP, TEA, glibenclamide and BaCl 2 did not

  13. Epidemiological studies on Brassica vegetables and cancer risk

    NARCIS (Netherlands)

    Verhoeven, D.T.H.; Goldbohm, R.A.; Poppel, G. van; Verhagen, H.; Brandt, P.A. van den

    1996-01-01

    This paper gives an overview of the epidemiological data concerning the cancer-preventive effect of brassica vegetables, including cabbage, kale, broccoli, Brussels sprouts, and cauliflower. The protective effect of brassicas against cancer may be due to their relatively high content of

  14. Identification and evolutionary dynamics of cacta DNA transposons in brassica

    International Nuclear Information System (INIS)

    Nouroz, F.; Noreen, S.; Harrison, J.S.H.

    2017-01-01

    Transposable elements are the major drivers of genome evolution and plasticity. Due to their transposition mode, they are classified into two major classes as Retrotransposons and DNA transposons. The En/Spm or CACTA elements are diverse group of DNA transposons proliferating in plant genomes. Various bioinformatics and molecular approaches were used for identification and distribution of CACTA transposons in Brassica genome. A combination of dot plot analysis and BLASTN searches yielded 35 autonomous and 7 non-autonomous CACTA elements in Brassica. The elements ranged in sizes from 1.2 kb non-autonomous elements to 11kb autonomous elements, terminated by 3 bp Target Site Duplication (TSD) and ~15 bp conserved Terminal Inverted Repeat (TIR) motifs (5'-CACTACAAGAAAACA-3'), with heterogeneous internal regions. The transposase (TNP) was identified from autonomous CACTA elements, while other protein domains from Brassica and other plants CACTA revealed similar organizations with minor differences. Both transposases (TNPD, TNPA) are present in most CACTA, while a few CACTA harboured an additional ATHILA ORF1-like domain. The PCR analysis amplified the CACTA transposases from 40 Brassica accessions (A, B, and C-genome) suggesting their distribution among various Brassica crops. A detailed characterization and evolutionary analysis of the identified CACTA elements allowed some to be placed in genome-specific groups, while most of them (Brassica-Arabidopsis elements) have followed the same evolutionary line. The distribution of CACTA in Brassica concluded that 3 bp TSDs generating CACTA transposons contributed significantly to genome size and evolution of Brassica genome. (author)

  15. The response of transgenic Brassica species to salt stress: a review.

    Science.gov (United States)

    Shah, Nadil; Anwar, Sumera; Xu, Jingjing; Hou, Zhaoke; Salah, Akram; Khan, Shahbaz; Gong, Jianfang; Shang, Zhengwei; Qian, Li; Zhang, Chunyu

    2018-06-01

    Salt stress is considered one of the main abiotic factors to limit crop growth and productivity by affecting morpho-physiological and biochemical processes. Genetically, a number of salt tolerant Brassica varieties have been developed and introduced, but breeding of such varieties is time consuming. Therefore, current focus is on transgenic technology, which plays an important role in the development of salt tolerant varieties. Various salt tolerant genes have been characterized and incorporated into Brassica. Therefore, such genetic transformation of Brassica species is a significant step for improvement of crops, as well as conferring salt stress resistance qualities to Brassica species. Complete genome sequencing has made the task of genetically transforming Brassica species easier, by identifying desired candidate genes. The present review discusses relevant information about the principles which should be employed to develop transgenic Brassica species, and also will recommend tools for improved tolerance to salinity.

  16. Brassica oleracea: the dog of the plant world

    Science.gov (United States)

    The horticultural crop Brassica oleracea L. plays an important role in global food systems. Brassica oleracea is unique in that it has been domesticated into several morphotypes (cultivars), including broccoli, Brussels sprout, cabbage, cauliflower, kale, kohlrabi, and several lesser well known morp...

  17. Brassica oleracea; The dog of the plant world

    Science.gov (United States)

    The horticultural crop Brassica oleracea L. plays an important role in global food systems. Brassica oleracea is unique in that it has been domesticated into several morphotypes (cultivars), including broccoli, Brussels sprout, cabbage, cauliflower, kale, kohlrabi, and several lesser well known morp...

  18. Análisis comparativo de los caracteres epidérmicos en Flourensia campestris y F. oolepis (Asteraceae Comparative analysis of the epidermal characters in Flourensia campestris and F. oolepis (Asteraceae

    Directory of Open Access Journals (Sweden)

    Natalia Delbón

    Full Text Available En el presente estudio se examinaron y compararon cuantitativamente las epidermis foliares de Flourensia campestris Griseb. y F. oolepis S. F. Blake, especies endémicas que crecen en las sierras de Córdoba, Argentina. Para ello, se seleccionaron cinco variables: número de células epidérmicas propiamente dichas, estomas, tricomas glandulares y eglandulares e índice estomático. Los resultados obtenidos se evaluaron por métodos estadísticos; ellos indican que hay diferencias significativas entre ambas especies en las variables frecuencia de estomas, de células propiamente dichas, de tricomas glandulares e índice estomático. Estos datos podrían ser de interés para su reconocimiento cuando se dispone de muestras pequeñas o fragmentos.This study provides comparative analyses of foliar epidermis in Flourensia campestris Griseb. and F. oolepis S. F. Blake, endemic species that grow in Córdoba, Argentina. Five variables were selected: number of epidermal cells, stomata, glandular and eglandular trichomes and stomatal index. Results were evaluated by statistical methods; they show that there are significant differences between the variables of both species; these data could be of interest for their identification, when only are available small samples and fragments.

  19. Effect of Rapeseed Meal on Nutrient Digestibility and Gut Morphology in Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Lidija Peric

    2015-05-01

    Full Text Available The study was carried out to determine the effect of rapeseed meal (RSM on nutrient digestibility and intestinal parameters of jejunum of 21 days old broiler chickens. Three groups of Ross 308 chickens were formed and fed with corn-soy based feed (control group or feed with inclusion of 10% or 15% of rapeseed meal (low glucosinolate and low eruca acid content. All mixtures were balanced to the same energy and crude protein level.  To determine digestibility, 20 male chickens per treatment were put into metabolic cages. Digestibility was determined by using the method of total collection. Digestibility of dry matter, organic matter, crude protein, fat and energy was determined. At 21 days of age, chickens were sacrificed to obtain samples for morphometric parameters of jejunum. On jejunal samples, villus height and area, crypt depth and villus to crypt ratio were measured as indicators of gut integrity. No significant differences (P>0.05 were observed in any measured digestibility or gut health parameter. Addition of up to 15% of rapeseed meal in well balanced diets of young broiler chicken does not have an adverse effect on both digestibility of nutrients and broiler gut health.

  20. Molecular breeding in Brassica for salt tolerance: importance of microsatellite (SSR) markers for molecular breeding in Brassica.

    Science.gov (United States)

    Kumar, Manu; Choi, Ju-Young; Kumari, Nisha; Pareek, Ashwani; Kim, Seong-Ryong

    2015-01-01

    Salinity is one of the important abiotic factors for any crop management in irrigated as well as rainfed areas, which leads to poor harvests. This yield reduction in salt affected soils can be overcome by improving salt tolerance in crops or by soil reclamation. Salty soils can be reclaimed by leaching the salt or by cultivation of salt tolerance crops. Salt tolerance is a quantitative trait controlled by several genes. Poor knowledge about mechanism of its inheritance makes slow progress in its introgression into target crops. Brassica is known to be a good reclamation crop. Inter and intra specific variation within Brassica species shows potential of molecular breeding to raise salinity tolerant genotypes. Among the various molecular markers, SSR markers are getting high attention, since they are randomly sparsed, highly variable and show co-dominant inheritance. Furthermore, as sequencing techniques are improving and softwares to find SSR markers are being developed, SSR markers technology is also evolving rapidly. Comparative SSR marker studies targeting Arabidopsis thaliana and Brassica species which lie in the same family will further aid in studying the salt tolerance related QTLs and subsequent identification of the "candidate genes" and finding out the origin of important QTLs. Although, there are a few reports on molecular breeding for improving salt tolerance using molecular markers in Brassica species, usage of SSR markers has a big potential to improve salt tolerance in Brassica crops. In order to obtain best harvests, role of SSR marker driven breeding approaches play important role and it has been discussed in this review especially for the introgression of salt tolerance traits in crops.

  1. Molecular breeding in Brassica for salt tolerance: importance of microsatellite (SSR) markers for molecular breeding in Brassica

    Science.gov (United States)

    Kumar, Manu; Choi, Ju-Young; Kumari, Nisha; Pareek, Ashwani; Kim, Seong-Ryong

    2015-01-01

    Salinity is one of the important abiotic factors for any crop management in irrigated as well as rainfed areas, which leads to poor harvests. This yield reduction in salt affected soils can be overcome by improving salt tolerance in crops or by soil reclamation. Salty soils can be reclaimed by leaching the salt or by cultivation of salt tolerance crops. Salt tolerance is a quantitative trait controlled by several genes. Poor knowledge about mechanism of its inheritance makes slow progress in its introgression into target crops. Brassica is known to be a good reclamation crop. Inter and intra specific variation within Brassica species shows potential of molecular breeding to raise salinity tolerant genotypes. Among the various molecular markers, SSR markers are getting high attention, since they are randomly sparsed, highly variable and show co-dominant inheritance. Furthermore, as sequencing techniques are improving and softwares to find SSR markers are being developed, SSR markers technology is also evolving rapidly. Comparative SSR marker studies targeting Arabidopsis thaliana and Brassica species which lie in the same family will further aid in studying the salt tolerance related QTLs and subsequent identification of the “candidate genes” and finding out the origin of important QTLs. Although, there are a few reports on molecular breeding for improving salt tolerance using molecular markers in Brassica species, usage of SSR markers has a big potential to improve salt tolerance in Brassica crops. In order to obtain best harvests, role of SSR marker driven breeding approaches play important role and it has been discussed in this review especially for the introgression of salt tolerance traits in crops. PMID:26388887

  2. Quality control of mixtures consisting of engine oil and rapeseed oil by means of online oil sensors; Qualitaetsueberwachung von Motoroel-Rapsoelmischungen mit Online-Oelsensoren. Labortests

    Energy Technology Data Exchange (ETDEWEB)

    Thuneke, Klaus; Schreiber, Katja [Technologie- und Foerderzentrum, Straubing (Germany)

    2013-10-01

    It was the goal of the work to investigate interactions between motor oils and rapeseed oil fuel and to test oil sensors for monitoring the quality of aged mixtures of motor oil and rapeseed oil. At first oil samples were aged in the laboratory, whereby motor oil type, share of rapeseed oil and aeration was varied. Depending on type of engine oil different ageing effects were noticed. Higher shares of rapeseed and aeration stimulate increase of viscosity and acid value. In a further step online oil sensors were tested in both, a model of a lubrication system and a test engine. The signals of the sensors plausibly described the oil ageing process by the indicators dynamic or acoustic viscosity, permittivity number, specific electric conductivity. In particular viscosity and permittivity are suitable for showing changes in different motor oil rapeseed oil mixtures during oil ageing. However, for a reliable control system detecting critical rapeseed oil enrichment in the motor oil onboard, further work has to be done. (orig.)

  3. Utilization of rapeseed pellet from fatty acid methyl esters production as an energy source.

    Science.gov (United States)

    Ciunel, Krzysztof; Klugmann-Radziemska, Ewa

    2014-01-01

    Rapeseed pellet - crushed seed residue from oil extraction is a by-product of fatty acid methyl esters production process. As other types of biomass, it can either be burned directly in furnaces or processed to increase its energetic value. Biomass is renewable, abundant and has domestic usage; the sources ofbiomass can help the world reduce its dependence on petroleum products, fossil coal and natural gas. Energetically effective utilization of rapeseed pellet could substantially improve the economic balance of an individual household in which biodiesel for fulfilling the producer's own energetic demand is obtained. In this article, the experimental results of combusting rapeseed pellet in a calorimeter, combustion in a boiler heater and the analysis of the emissions level of different pollutants in exhaust fumes during different stages of biomass boiler operation are presented. It has been proved that the pellet, a by-product of biodiesel production, is not only a valuable substitute of animal fodder, but also an excellent renewable and environmentally friendly energy source, viable for use in household tap water heating installations.

  4. Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes

    Directory of Open Access Journals (Sweden)

    Gupta Vibha

    2008-03-01

    Full Text Available Abstract Background Extensive mapping efforts are currently underway for the establishment of comparative genomics between the model plant, Arabidopsis thaliana and various Brassica species. Most of these studies have deployed RFLP markers, the use of which is a laborious and time-consuming process. We therefore tested the efficacy of PCR-based Intron Polymorphism (IP markers to analyze genome-wide synteny between the oilseed crop, Brassica juncea (AABB genome and A. thaliana and analyzed the arrangement of 24 (previously described genomic block segments in the A, B and C Brassica genomes to study the evolutionary events contributing to karyotype variations in the three diploid Brassica genomes. Results IP markers were highly efficient and generated easily discernable polymorphisms on agarose gels. Comparative analysis of the segmental organization of the A and B genomes of B. juncea (present study with the A and B genomes of B. napus and B. nigra respectively (described earlier, revealed a high degree of colinearity suggesting minimal macro-level changes after polyploidization. The ancestral block arrangements that remained unaltered during evolution and the karyotype rearrangements that originated in the Oleracea lineage after its divergence from Rapa lineage were identified. Genomic rearrangements leading to the gain or loss of one chromosome each between the A-B and A-C lineages were deciphered. Complete homoeology in terms of block organization was found between three linkage groups (LG each for the A-B and A-C genomes. Based on the homoeology shared between the A, B and C genomes, a new nomenclature for the B genome LGs was assigned to establish uniformity in the international Brassica LG nomenclature code. Conclusion IP markers were highly effective in generating comparative relationships between Arabidopsis and various Brassica species. Comparative genomics between the three Brassica lineages established the major rearrangements

  5. Reduction of antinutritional glucosinolates in Brassica oilseeds by mutation of genes encoding transporters

    DEFF Research Database (Denmark)

    Nour-Eldin, Hussam Hassan; Madsen, Svend Roesen; Engelen, Steven

    2017-01-01

    The nutritional value of Brassica seed meals is reduced by the presence of glucosinolates, which are toxic compounds involved in plant defense. Mutation of the genes encoding two glucosinolate transporters (GTRs) eliminated glucosinolates from Arabidopsis thaliana seeds, but translation of loss......-of-function phenotypes into Brassica crops is challenging because Brassica is polyploid. We mutated one of seven and four of 12 GTR orthologs and reduced glucosinolate levels in seeds by 60-70% in two different Brassica species (Brassica rapa and Brassica juncea). Reduction in seed glucosinolates was stably inherited...... over multiple generations and maintained in field trials of two mutant populations at three locations. Successful translation of the gtr loss-of-function phenotype from model plant to two Brassica crops suggests that our transport engineering approach could be broadly applied to reduce seed...

  6. Moisture Sensitivity, Optical, Mechanical and Structural Properties of Whey Protein-Based Edible Films Incorporated with Rapeseed Oil

    Directory of Open Access Journals (Sweden)

    Justyna Kadzińska

    2016-01-01

    Full Text Available The objective of this work is to study the effect of the rapeseed oil content on the physical properties of whey protein emulsion films. For this purpose, whey protein films with the addition of 0, 1, 2 and 3 % of rapeseed oil, and glycerol as a plasticizer were obtained by the casting method. Film-forming emulsions were evaluated and compared using light scattering granulometry. The Sauter mean diameters (d32 of lipid droplets in film-forming solutions showed an increasing trend when increasing the oil volume fractions. The inclusion of rapeseed oil enhanced the hydrophobic character of whey protein films, reducing moisture content and film solubility in water. All emulsified films showed high lightness (L*≈90. Parameter a* decreased and parameter b* and total colour difference (ΔE increased with the increase of the volume fractions of oil. These results were consistent with visual observations; control films were transparent and those containing oil opaque. Water vapour sorption experimental data at the full range of water activity values from 0.11 to 0.93 were well described with Peleg’s equation (R2≥0.99. The tensile strength, Young’s modulus and elongation at break increased with the increase of rapeseed oil volume fraction, which could be explained by interactions between lipids and the protein matrix. These results revealed that rapeseed oil has enormous potential to be incorporated into whey protein to make edible film or coating for some food products. The mechanical resistance decreased with the addition of the lipids, and the opacity and soluble matter content increased.

  7. Moisture Sensitivity, Optical, Mechanical and Structural Properties of Whey Protein-Based Edible Films Incorporated with Rapeseed Oil.

    Science.gov (United States)

    Galus, Sabina; Kadzińska, Justyna

    2016-03-01

    The objective of this work is to study the effect of the rapeseed oil content on the physical properties of whey protein emulsion films. For this purpose, whey protein films with the addition of 0, 1, 2 and 3% of rapeseed oil, and glycerol as a plasticizer were obtained by the casting method. Film-forming emulsions were evaluated and compared using light scattering granulometry. The Sauter mean diameters ( d 32 ) of lipid droplets in film-forming solutions showed an increasing trend when increasing the oil volume fractions. The inclusion of rapeseed oil enhanced the hydrophobic character of whey protein films, reducing moisture content and film solubility in water. All emulsified films showed high lightness ( L* ≈90). Parameter a * decreased and parameter b* and total colour difference (∆ E ) increased with the increase of the volume fractions of oil. These results were consistent with visual observations; control films were transparent and those containing oil opaque. Water vapour sorption experimental data at the full range of water activity values from 0.11 to 0.93 were well described with Peleg's equation (R 2 ≥0.99). The tensile strength, Young's modulus and elongation at break increased with the increase of rapeseed oil volume fraction, which could be explained by interactions between lipids and the protein matrix. These results revealed that rapeseed oil has enormous potential to be incorporated into whey protein to make edible film or coating for some food products. The mechanical resistance decreased with the addition of the lipids, and the opacity and soluble matter content increased.

  8. Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus

    DEFF Research Database (Denmark)

    Andreasson, Erik; Jørgensen, Lise Bolt; Höglund, Anna-Stina

    2001-01-01

    Arabidopsis, Brassica napus, Myrosinase, Myrosinase Binding Protein, Glucosinolates, Myrosin Cell, Immunocytochemistry......Arabidopsis, Brassica napus, Myrosinase, Myrosinase Binding Protein, Glucosinolates, Myrosin Cell, Immunocytochemistry...

  9. Genome-wide microsatellite characterization and marker development in the sequenced Brassica crop species.

    Science.gov (United States)

    Shi, Jiaqin; Huang, Shunmou; Zhan, Jiepeng; Yu, Jingyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong

    2014-02-01

    Although much research has been conducted, the pattern of microsatellite distribution has remained ambiguous, and the development/utilization of microsatellite markers has still been limited/inefficient in Brassica, due to the lack of genome sequences. In view of this, we conducted genome-wide microsatellite characterization and marker development in three recently sequenced Brassica crops: Brassica rapa, Brassica oleracea and Brassica napus. The analysed microsatellite characteristics of these Brassica species were highly similar or almost identical, which suggests that the pattern of microsatellite distribution is likely conservative in Brassica. The genomic distribution of microsatellites was highly non-uniform and positively or negatively correlated with genes or transposable elements, respectively. Of the total of 115 869, 185 662 and 356 522 simple sequence repeat (SSR) markers developed with high frequencies (408.2, 343.8 and 356.2 per Mb or one every 2.45, 2.91 and 2.81 kb, respectively), most represented new SSR markers, the majority had determined physical positions, and a large number were genic or putative single-locus SSR markers. We also constructed a comprehensive database for the newly developed SSR markers, which was integrated with public Brassica SSR markers and annotated genome components. The genome-wide SSR markers developed in this study provide a useful tool to extend the annotated genome resources of sequenced Brassica species to genetic study/breeding in different Brassica species.

  10. Production of rapeseed oil fuel in decentralized oil extraction plants. Handbook. 2. new rev. and enl. ed.; Herstellung von Rapsoelkraftstoff in dezentralen Oelgewinnungsanlagen. Handbuch

    Energy Technology Data Exchange (ETDEWEB)

    Remmele, Edgar [Technologie- und Foerderzentrum (TFZ) im Kompetenzzentrum fuer Nachwachsende Rohstoffe, Straubing (Germany)

    2009-11-15

    Increasing oil prices, the dependence on petroleum imports and the desire to reduce the CO{sub 2} emissions, are arguments to accelerate the production and utilization of biofuels. In 2007, 3.3 million tons of biodiesel and 772,000 tons of vegetable oil were used as fuel. The technically and economically successful production of rapeseed oil fuel in decentralized oil mills requires a quality assurance. Specifically, the brochure under consideration reports on the following: (1) Oilseed processing; (2) Centralized oil production in Germany; (3) Design of a decentralized oil mill; (4) Production of rapeseed oil fuel in decentralized systems; (5) Quality assurance for rapeseed oil fuel in decentralized oil mills; (6) Properties of rapeseed oil fuel; (7) Quality of rapeseed oil fuel from decentralized oil mills; (8) Economic aspects of decentralized oil extraction; (9) Legal framework conditions.

  11. Analysis of the a genome genetic diversity among brassica napus, b. rapa and b. juncea accessions using specific simple sequence repeat markers

    International Nuclear Information System (INIS)

    Tian, H.; Yan, J.; Zhang, R.; Guo, Y.; Hu, S.; Channa, S.A.

    2017-01-01

    This investigation was aimed at evaluating the genetic diversity of 127 accessions among Brassica napus, B. rapa, and B. juncea by using 15 pairs of the A genome specific simple sequence repeat primers. These 127 accessions could be clearly separated into three groups by cluster analysis, principal component analysis, and population structure analysis separately, and the results analyzed by the three methods were very similar. Group I comprised of mainly B. napus accessions and the most of B. juncea accessions formed Group II, Group III included nearly all of the B. rapa accessions. The result showed that 36.86% of the variance was due to significant differences among populations of species, indicated that abundance genetic diversity existed among the A genome of B. napus, B. rapa, and B. juncea accessions. B. napus, B. rapa, and B. juncea have the abundant genetic diversity in the A genome, and some elite genes can be used to broaden the genetic base of them, especially for B. napus, in future rapeseed breeding program. (author)

  12. 7 CFR 457.161 - Canola and rapeseed crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ...: Canola and Rapeseed Crop Provisions If a conflict exists among the policy provisions, the order of... application of disease control measures; (e) Wildlife; (f) Earthquake; (g) Volcanic eruption; or (h) Failure... injurious to human or animal health. (3) Quality will be a factor in determining your loss in canola...

  13. Radio-sensitivity analysis and selection of useful mutants of rape (Brassica napus L.) by gamma irradiation

    International Nuclear Information System (INIS)

    Goh, Eun Jeong; Kim, Wook Jin; Kim, Jin Baek; Kim, Dong Sub; Kim, Sang Hoon; Kang, Si Yong

    2010-01-01

    Rape (Brassica napus L.) plants are one of the major oilseed crops. The main components of rapeseed are oil (35 to 47%) and protein (15 to 32%). For the biodiesel production, the development of a new variety of rape plant with high biomass and/or oleic acid contents is required. In order to determine the optimum dose of gamma-ray irradiation, the rape seeds of cvs. Hanra (Hr), Youngsan (Ys), Tammi (Tm), and Tamra (Tr) were irradiated with a 100 ∼ 4,000 Gy dose range of gamma-rays. Considering the growth factors, the optimum doses were determined to be within the range of 600 ∼ 1,000 Gy for the selection of useful mutant lines. Six-hundred and eighty eight (688) M 2 mutant lines were obtained from 600 ∼ 1,000 Gy gamma-ray-irradiated M 1 plants through selfing. The growth characteristics, leaf shape, early flowering, and flower color were all investigated. The selected mutant numbers of early flowering, leaf shape, and flower color were 34, 52, and 3 from the four cultivars, respectively. These mutant lines will be used for the development of a new variety of rape plant with high biomass and oleic acid contents

  14. Antioxidant Enzyme Activities of some Brassica Species

    Directory of Open Access Journals (Sweden)

    Rodica SOARE

    2017-11-01

    Full Text Available This paper set out to comparatively study five species: white cabbage (Brassica oleracea L. var. capitata alba Alef., red cabbage (Brassica oleracea L. var. capitata f. rubra Alef., Kale (Brassica oleracea L. var. Acephala, cauliflower (Brassica oleracea var. botrytis and broccoli (Brassica oleracea var. cymosa in order to identify those with high enzymatic and antioxidant activities. The enzymatic activity of superoxide dismutase (SOD, catalase (CAT and soluble peroxidase (POX as well as the antioxidant activity against 2.2’-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid (ABTS radical cation were determined. Total superoxide dismutase activity was measured spectrophotometrically based on inhibition in the photochemical reduction of nitroblue tetrazolium. Total soluble peroxidase was assayed by measuring the increase in A436 due to the guaiacol oxidation and the catalase activity was assayed through the colorimetric method. The capacity of extracts to scavenge the ABTS radical cation was assessed colorimetric using Trolox as a standard. The obtained results show that studied enzymatic activities and the antioxidant activity against ABTS vary depending on the analyzed species. So, among the studied Brassicaceae species, it emphasize red cabbage with the highest enzymatic activity (CAT 22.54 mM H2O2/min/g and POX 187.2 mM ΔA/1min/1g f.w. and kale with highest antioxidant activity, of 767 μmol TE/100g f.w. The results of this study recommendintroducing the studied varieties in diet due to the rich antioxidant properties.

  15. The Effect of Field Dodder (Cuscuta campestris Yunck. on Morphological and Fluorescence Parameters of Giant Ragweed (Ambrosia trifida L.

    Directory of Open Access Journals (Sweden)

    Sava Vrbničanin

    2013-01-01

    Full Text Available The effect of the parasitic flowering plant known as field dodder (Cuscuta campestrisYunck. on morphological and fluorescence parameters of infested giant ragweed(Ambrosia trifida L. plants was examined under controlled conditions. The parameters ofchlorophyll fluorescence (Fo, Fv/Fm, ΦPSII, Fv, Fm, ETR and IF were measured on infested (Iand non-infested (N A. trifida plants over a period of seven days, beginning with the day ofinfestation. Morphological parameters (plant height, dry and fresh weight were measuredon the last day of fluorescence measurements. C. campestris was found to affect the height,fresh and dry weight of the infested A. trifida plants, causing significant reduction in plantheight and dry weight. Field dodder also affected several parameters of chlorophyll fluorescence(Fo, Fv/Fm, ΦPSII and Fv in infested A. trifida plants.

  16. Elaboration and characterization of nanoliposome made of soya; rapeseed and salmon lecithins: application to cell culture.

    Science.gov (United States)

    Arab Tehrany, Elmira; Kahn, Cyril J F; Baravian, Christophe; Maherani, Behnoush; Belhaj, Nabila; Wang, Xiong; Linder, Michel

    2012-06-15

    Health benefits of unsaturated fatty acids have been demonstrated over the last decades. Nanotechnology provided new process to produce particles such as liposomes and nanoliposomes made of pure phospholipids. These techniques are already used in pharmaceutics to augment the bioavailability and the bioefficiency of drugs. The aim of this paper is to characterize and evaluate the potential of nanoliposomes made of three lecithins (soya, rapeseed and salmon) on cell culture in order to use them in the future as drug delivery systems for tissue engineering. We began to measure, with zetasizer, the radius size of liposomes particles which are 125.5, 136.7 and 130.3 nm respectively for rapeseed, soya and salmon lecithin. Simultaneously, solutions observed by TEM demonstrated the particles were made much of liposomes than droplet (emulsion). Finally, we found that the solutions of lecithins were enough stable over 5 days at 37 °C to be used in culture medium. We investigated the effect of soya, rapeseed and salmon lecithin liposome from 2mg/mL to 5.2 μg/mL on metabolic activity and cell proliferation on rat bone marrow stem cells (rBMSC) during 14 days. The results showed that the three lecithins (soya, rapeseed and salmon) improve cell proliferation at different concentration. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Association mapping of flowering time QTLs and insight into their contributions to rapeseed growth habits

    Directory of Open Access Journals (Sweden)

    Nian eWang

    2016-03-01

    Full Text Available Plants have developed sophisticated systems to adapt to local conditions during evolution, domestication and natural or artificial selection. The selective pressures of these different growing conditions have caused significant genomic divergence within species. The flowering time trait is the most crucial factor because it helps plants to maintain sustainable development. Controlling flowering at appropriate times can also prevent plants from suffering from adverse growth conditions, such as drought, winter hardness, and disease. Hence, discovering the genome-wide genetic mechanisms that influence flowering time variations and understanding their contributions to adaptation should be a central goal of plant genetics and genomics. A global core collection panel with 448 inbred rapeseed lines was first planted in four independent environments, and their flowering time traits were evaluated. We then performed a genome-wide association mapping of flowering times with a 60 K SNP array for this core collection. With quality control and filtration, 20,342 SNP markers were ultimately used for further analyses. In total, 312 SNPs showed marker-trait associations in all four environments, and they were based on a threshold p value of 4.06x10-4; the 40 QTLs showed significant association with flowering time variations. To explore flowering time QTLs and genes related to growth habits in rapeseed, selection signals related to divergent habits were screened at the genome-wide level and 117 genomic regions were found. Comparing locations of flowering time QTLs and genes with these selection regions revealed that 20 flowering time QTLs and 224 flowering time genes overlapped with 24 and 81 selected regions, respectively. Based on this study, a number of marker-trait associations and candidate genes for flowering time variations in rapeseed were revealed. Moreover, we also showed that both flowering time QTLs and genes play important roles in rapeseed growth

  18. Identification and characterization of mobile genetic elements LINEs from Brassica genome.

    Science.gov (United States)

    Nouroz, Faisal; Noreen, Shumaila; Khan, Muhammad Fiaz; Ahmed, Shehzad; Heslop-Harrison, J S Pat

    2017-09-05

    Among transposable elements (TEs), the LTR retrotransposons are abundant followed by non-LTR retrotransposons in plant genomes, the lateral being represented by LINEs and SINEs. Computational and molecular approaches were used for the characterization of Brassica LINEs, their diversity and phylogenetic relationships. Four autonomous and four non-autonomous LINE families were identified and characterized from Brassica. Most of the autonomous LINEs displayed two open reading frames, ORF1 and ORF2, where ORF1 is a gag protein domain, while ORF2 encodes endonuclease (EN) and a reverse transcriptase (RT). Three of four families encoded an additional RNase H (RH) domain in pol gene common to 'R' and 'I' type of LINEs. The PCR analyses based on LINEs RT fragments indicate their high diversity and widespread occurrence in tested 40 Brassica cultivars. Database searches revealed the homology in LINE sequences in closely related genera Arabidopsis indicating their origin from common ancestors predating their separation. The alignment of 58 LINEs RT sequences from Brassica, Arabidopsis and other plants depicted 4 conserved domains (domain II-V) showing similarity to previously detected domains. Based on RT alignment of Brassica and 3 known LINEs from monocots, Brassicaceae LINEs clustered in separate clade, further resolving 4 Brassica-Arabidopsis specific families in 2 sub-clades. High similarities were observed in RT sequences in the members of same family, while low homology was detected in members across the families. The investigation led to the characterization of Brassica specific LINE families and their diversity across Brassica species and their cultivars. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Heavy metal immobilization in soil near abandoned mines using eggshell waste and rapeseed residue.

    Science.gov (United States)

    Lee, Sang Soo; Lim, Jung Eun; El-Azeem, Samy A M Abd; Choi, Bongsu; Oh, Sang-Eun; Moon, Deok Hyun; Ok, Yong Sik

    2013-03-01

    Heavy metal contamination of agricultural soils has received great concern due to potential risk to human health. Cadmium and Pb are largely released from abandoned or closed mines in Korea, resulting in soil contamination. The objective of this study was to evaluate the effects of eggshell waste in combination with the conventional nitrogen, phosphorous, and potassium fertilizer (also known as NPK fertilizer) or the rapeseed residue on immobilization of Cd and Pb in the rice paddy soil. Cadmium and Pb extractabilities were tested using two methods of (1) the toxicity characteristics leaching procedure (TCLP) and (2) the 0.1 M HCl extraction. With 5 % eggshell addition, the values of soil pH were increased from 6.33 and 6.51 to 8.15 and 8.04 in combination with NPK fertilizer and rapeseed residue, respectively, compared to no eggshell addition. The increase in soil pH may contribute to heavy metal immobilization by altering heavy metals into more stable in soils. Concentrations of TCLP-extracted Cd and Pb were reduced by up to 67.9 and 93.2 % by addition of 5 % eggshell compared to control. For 0.1 M HCl extraction method, the concentration of 0.1 M HCl-Cd in soils treated with NPK fertilizer and rapeseed residue was significantly reduced by up to 34.01 and 46.1 %, respectively, with 5 % eggshell addition compared to control. A decrease in acid phosphatase activity and an increase in alkaline phosphatase activity at high soil pH were also observed. Combined application of eggshell waste and rapeseed residue can be cost-effective and beneficial way to remediate the soil contaminated with heavy metals.

  20. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Genetic correlations of nutrient quality traits including lysine, methionine, leucine, isoleucine, phenylalanine, valine and threonine contents in rapeseed meal were analysed by the genetic model for quantitative traits of diploid plants using a diallel design with nine parents of Brassica napus L. These results indicated that the ...

  1. Development of a novel Sinapis arvensis disomic addition line in Brassica napus containing the restorer gene for Nsa CMS and improved resistance to Sclerotinia sclerotiorum and pod shattering.

    Science.gov (United States)

    Wei, Wenhui; Li, Yunchang; Wang, Lijun; Liu, Shengyi; Yan, Xiaohong; Mei, Desheng; Li, Yinde; Xu, Yusong; Peng, Pengfei; Hu, Qiong

    2010-04-01

    An allo-cytoplasmic male sterile line, which was developed through somatic hybridization between Brassica napus and Sinapis arvensis (thus designated as Nsa CMS line), possesses high potential for hybrid production of rapeseed. In order to select for restorer lines, fertile plants derived from the same somatic hybridization combination were self-pollinated and testcrossed with the parental Nsa CMS line for six generations. A novel disomic alien addition line, B. napus-S. arvensis, has been successfully developed. GISH analysis showed that it contains one pair of chromosomes from S. arvensis and 19 pairs from B. napus, and retains stable and regular mitotic and meiotic processes. The addition line displays very strong restoration ability to Nsa CMS line, high resistance to Sclerotinia sclerotiorum and a low incidence of pod shattering. Because the addition line shares these very important agricultural characters, it is a valuable restorer to Nsa CMS line, and is named NR1 here (Nsa restorer no. 1).

  2. Changes in Growth and Oil Yield Indices of Rapeseed (Brassica napus L., cv. Hyola 401 in Different Concentrations andTimes of Application of Supplementary Nitrogen Fertilizer

    Directory of Open Access Journals (Sweden)

    P. Tousi Kehal

    2013-03-01

    Full Text Available In order to investigate the effect of concentration and time of supplementary nitrogen fertilizer spray on growth indices of rapeseed (cv. Hyola 401, a field experiment was conducted at Rice Research Institute of Iran as a randomized complete blocks design with 16 treatments and 3 replications in 2008-2009. The treatments included concentration of nitrogen fertilizer (urea at two levels (5 and 10 ppm in seven levels of application time:1 spraying at 6-8- leaf stage, 2 beginning of stem elongation, 3 prior to flowering, 4 at 6-8- leaf stage + beginning of stem elongation, 5 at 6-8- leaf + prior to flowering, 6 beginning of stem elongation+ prior to flowering, and 7 at 6-8- leaf + beginning of stem elongation+ prior to flowering, which were compared with two control treatments (no fertilizer nitrogen and conventional soil fertilization. Results showed that significant difference was observed between spray treatments including concentration and times of nitrogen application, between controls and between controls with spray treatments, of grain and oil yield, crop growth rate (CGR, leaf area index (LAI and leaf area duration (LAD. Application of nitrogen (10 ppm at the beginning of stem elongation+ prior to flowering stages produced maximum grain yield (4221.7 kg/ha and oil yield (1771.1 kg/ha. Spray treatments produced maximum oil yield index (15.3% compared to controls. Maximum LAI (6.9 and 5.6 respectively, CGR (15.2 and 14.3 g/m2.10 GDD, respectively and LAD (1204 and 1029 cm2/10 GDD, respectively were also obtained from spray application of nitrogen (10 ppm at the beginning of stem elongation+ prior to flowering stages and at 6-8-leaf stage + beginning of stem elongation + prior to flowering. According to the results of the present investigation, it seems that foliar application of supplementary nitrogen fertilizer at the end growth stages (beginning of stem elongation and prior to flowering of rapeseed plants may help to enhance growth indices

  3. A review of mechanisms underlying anticarcinogenicity by brassica vegetables

    NARCIS (Netherlands)

    Verhoeven, D.T.H.; Verhagen, H.; Goldbohm, R.A.; Brandt, P.A. van den; Poppel, G. van

    1997-01-01

    The mechanisms by which brassica vegetables might decrease the risk of cancer are reviewed in this paper. Brassicas, including all types of cabbages, broccoli, cauliflower and Brussels sprouts, may be protective against cancer due to their relatively high glucosinolate content. Glucosinolates are

  4. Effect of alcoholic extract of guaco (Mikania glomerata on the control of dark rot (Xanthomonas campestris pv. campestris in cauliflower/ Avaliação da eficácia da tintura etanólica de guaco (Mikania glomerata no controle da podridão negra (Xanthomonas campestris pv. campestris em couve-flor

    Directory of Open Access Journals (Sweden)

    Kátia Regina Freitas Schwan-Estrada

    2006-06-01

    Full Text Available With the use of irrigation and new hybrids of cauliflower, it is possible to get production during all the year with hight yield. However, the crop has been affected by diseases, as the dark rot caused by X. campestris pv. campestris. The objective of this research work was to study the potential of Mikania glomerata for the control of this disease. Alcoholic extract 50 ºGL of M. glomerata was evaluated regarding to: in vitro antimicrobial activity through bacterial growth in 100, 250, 500 and 1000 mg L-1 of the alcoholic extract; induction of local or systemic resistance in 25 days old cauliflower, with spray of alcoholic extract concomitantly and three days before the inoculation with the pathogen (water and bordeau mixture were used as control; peroxidases activity in leaves of cauliflower treated and not treated, and harvested concomitantly, 24, 48 and 72 hours after spraying the alcoholic extract and also after inoculation. The alcoholic extract of M. glomerata showed inhibition of the bacterial growth in vitro at the concentrations of 250, 500 and 1000 mg L-1. The concentrations of 500 mg L-1 and 1000 mg L-1 inhibited 24% and 38% of the bacterial growth. This inhibition could be due to antibacterial compounds in the alcoholic extract. An inhibition of the disease in vivo occurred only in the leaves treated with 100 and 500 mg L-1 of alcoholic extract when applied concomitantly with the bacteria. This result was similar to bordeau mixture, indicating a control by direct antimicrobial activity. There was no systemic resistence induction for all treatments. The peroxidases induction was due to infectious pathogen process and not to the treatments with alcoholic extract. The results indicate the potential of M. glomerata alcoholic extract for the preventive control of cauliflower dark rot disease.Com a prática da irrigação e novos híbridos de couve-flor, é possível produzir durante todo o ano e com alta produtividade. Mas, a cultura tem

  5. Effects of Mo, Zn, Sr and Ba loads on these elements' uptake and oil content and fatty acid composition of rapeseed

    Directory of Open Access Journals (Sweden)

    Kastori Rudolf R.

    2003-01-01

    Full Text Available Studied in the present paper were the long-term effects of the application of high Mo, Zn, Sr and Ba rates (0, 90, 270, and 810 kg ha-1 on rapeseed oil content and oil fatty acid composition. The trace elements were applied in the spring of 1991, while the rapeseed was sown on a calcareous сhernozem soil in 2001. The trace elements differed significantly in their rates of accumulation in rapeseed plants. Relative to the control, the Mo content of the stem increased up to 1,000 times, that of the chaff over 100 times, and that of the seed around 60 times. The levels of the other trace elements increased considerably less relative to the control. The increases were typically twofold to threefold, depending on the plant part involved. The trace elements accumulated the most in the vegetative plant parts, except for Zn, a major quantity of which was found in the seed as well. The application of the high rates of Sr, Zn and, to an extent. Mo reduced the seed oil content of rapeseed. However, the differences were not statistically significant. The application of the trace elements had no significant effect on the fatty acid composition of the rapeseed oil, either. The increased levels of the trace elements found in the rapeseed plants indicate that 11 years after application significant amounts of the applied elements are still present in the soil in a form available to plants. However, the rates were not high enough to affect the synthesis of oil and its fatty acid composition.

  6. Effect of spring versus autumn grass/clover silage and rapeseed supplementation on milk production, composition and quality in Jersey cows

    DEFF Research Database (Denmark)

    Larsen, Mette Krogh; Vogdanou, Stefania; Hellwing, Anne Louise Frydendahl

    2016-01-01

    of C16 : 0, riboflavin and α-tocopherol were decreased with autumn silage. The majority of C18 FAs in milk and α-tocopherol concentration increased with rapeseed whereas C11 : 0 to C16 : 0 FA were reduced. Autumn silage reduced biohydrogenation of C18 : 2n6, whereas rapeseed increased biohydrogenation...

  7. Biodiesel from rapeseed variety "Banaćanka" using KOH catalyst

    Directory of Open Access Journals (Sweden)

    Mićić Radoslav D.

    2013-01-01

    Full Text Available This paper presents a complete characterization of rapeseed oil, of Banaćanka variety, as well as the potential use of oil generated after filtering, in order to obtain biodiesel. Researches are based on the fact that Banaćanka is the oldest domestic rapeseed variety, the so-called double zero "00" (low in erucic acid, below 5%, and glucosinolates below than 30 mmol g-1, suitable for use in the region, since it is low temperatures tolerant, posseses high genetic potential for seed yield of about 5.2 t/ha, and high oil content of around 45%. Transesterification was carried out in batch reactor Parr 4520, with KOH as a catalyst. Cold pressed oil without prior treatment was used as feedstock for transesterificataion. The paper analyses the effects of temperature, reaction duration, catalyst amount and rate of agitation on the synthesis of biodiesel at constant pressure and molar methanol/oil ratio.[Projekat Ministarstva nauke Republike Srbije, br. TR-31046: Improvement of the quality of tractors and mobile systems with the aim of increasing competitiveness and preserving soil and environment

  8. Pyranose Dehydrogenase from Agaricus campestris and Agaricus xanthoderma: Characterization and Applications in Carbohydrate Conversions

    Directory of Open Access Journals (Sweden)

    Clemens K. Peterbauer

    2013-08-01

    Full Text Available Pyranose dehydrogenase (PDH is a flavin-dependent sugar oxidoreductase that is limited to a rather small group of litter-degrading basidiomycetes. The enzyme is unable to utilize oxygen as an electron acceptor, using substituted benzoquinones and (organo metal ions instead. PDH displays a broad substrate specificity and intriguing variations in regioselectivity, depending on substrate, enzyme source and reaction conditions. In contrast to the related enzyme pyranose 2-oxidase (POx, PDHs from several sources are capable of oxidizing α- or β-1→4-linked di- and oligosaccharides, including lactose. PDH from A. xanthoderma is able to perform C-1 and C-2 oxidation, producing, in addition to lactobionic acid, 2-dehydrolactose, an intermediate for the production of lactulose, whereas PDH from A. campestris oxidizes lactose nearly exclusively at the C-1 position. In this work, we present the isolation of PDH-encoding genes from A. campestris (Ac and A. xanthoderma (Ax and a comparison of other so far isolated PDH-sequences. Secretory overexpression of both enzymes in Pichia pastoris was successful when using their native signal sequences with yields of 371 U·L−1 for AxPDH and 35 U·L−1 for AcPDH. The pure enzymes were characterized biochemically and tested for applications in carbohydrate conversion reactions of industrial relevance.

  9. Effects of β-Glucans and resistant starch on fermentation of recalcitrant fibers in growing pigs

    NARCIS (Netherlands)

    Vries, de S.; Gerrits, W.J.J.; Kabel, M.A.; Zijlstra, Ruurd; Vasanthan, Thava

    2017-01-01

    Effects of the presence of β-glucans and resistant starch in diets on nutrient and fiber degradability of rapeseed meal [RSM] (Brassica napus) and Distillers Dried Grain with Solubles (DDGS) were tested in a 2 × 3 factorial arrangement. Two basal diets, containing either 500 g/kg RSM or DDGS and

  10. Regional greenhouse gas emissions from cultivation of winter wheat and winter rapeseed for biofuels in Denmark

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Olesen, Jørgen E; Hermansen, John Erik

    2013-01-01

    Biofuels from bioenergy crops may substitute a significant part of fossil fuels in the transport sector where, e.g., the European Union has set a target of using 10% renewable energy by 2020. Savings of greenhouse gas emissions by biofuels vary according to cropping systems and are influenced...... by such regional factors as soil conditions, climate and input of agrochemicals. Here we analysed at a regional scale the greenhouse gas (GHG) emissions associated with cultivation of winter wheat for bioethanol and winter rapeseed for rapeseed methyl ester (RME) under Danish conditions. Emitted CO2 equivalents...

  11. Atmospheric H2S and SO2 as sulfur sources for Brassica juncea and Brassica rapa: Regulation of sulfur uptake and assimilation

    NARCIS (Netherlands)

    Aghajanzadeh, T.; Hawkesford, M.J.; De Kok, L.J.

    2016-01-01

    Brassica juncea and Brassica rapa were able to utilize foliarly absorbed H2S and SO2 as sulfur source for growth and resulted in a decreased sink capacity of the shoot for sulfur supplied by the root and subsequently in a partial decrease in sulfate uptake capacity of the roots. Sulfate-deprived

  12. Mineral, vitamin C and crude protein contents in kale (Brassica ...

    African Journals Online (AJOL)

    ajl yemi

    2011-10-27

    Oct 27, 2011 ... Key words: Kale (Brassica oleracea var. acephala), harvesting stage, vitamin C, crude protein, mineral content. .... L-ascorbic acid (or vitamin C) in plant tissues. .... Cooking methods of Brassica rapa affect the preservation of.

  13. Identification of novel QTLs for isolate-specific partial resistance to Plasmodiophora brassicae in Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Jingjing Chen

    Full Text Available Plasmodiophora brassicae, the causal agent of clubroot disease of the Brassica crops, is widespread in the world. Quantitative trait loci (QTLs for partial resistance to 4 different isolates of P. brassicae (Pb2, Pb4, Pb7, and Pb10 were investigated using a BC1F1 population from a cross between two subspecies of Brassica rapa, i.e. Chinese cabbage inbred line C59-1 as a susceptible recurrent parent and turnip inbred line ECD04 as a resistant donor parent. The BC1F2 families were assessed for resistance under controlled conditions. A linkage map constructed with simple sequence repeats (SSR, unigene-derived microsatellite (UGMS markers, and specific markers linked to published clubroot resistance (CR genes of B. rapa was used to perform QTL mapping. A total of 6 QTLs residing in 5 CR QTL regions of the B. rapa chromosomes A01, A03, and A08 were identified to account for 12.2 to 35.2% of the phenotypic variance. Two QTL regions were found to be novel except for 3 QTLs in the respective regions of previously identified Crr1, Crr2, and Crr3. QTL mapping results indicated that 1 QTL region was common for partial resistance to the 2 isolates of Pb2 and Pb7, whereas the others were specific for each isolate. Additionally, synteny analysis between B. rapa and Arabidopsis thaliana revealed that all CR QTL regions were aligned to a single conserved crucifer blocks (U, F, and R on 3 Arabidopsis chromosomes where 2 CR QTLs were detected in A. thaliana. These results suggest that some common ancestral genomic regions were involved in the evolution of CR genes in B. rapa.

  14. Impact of selenium supply on Se-methylselenocysteine and glucosinolate accumulation in selenium-biofortified Brassica sprouts.

    Science.gov (United States)

    Avila, Fabricio William; Yang, Yong; Faquin, Valdemar; Ramos, Silvio Junio; Guilherme, Luiz Roberto G; Thannhauser, Theodore W; Li, Li

    2014-12-15

    Brassica sprouts are widely marketed as functional foods. Here we examined the effects of Se treatment on the accumulation of anticancer compound Se-methylselenocysteine (SeMSCys) and glucosinolates in Brassica sprouts. Cultivars from the six most extensively consumed Brassica vegetables (broccoli, cauliflower, green cabbage, Chinese cabbage, kale, and Brussels sprouts) were used. We found that Se-biofortified Brassica sprouts all were able to synthesize significant amounts of SeMSCys. Analysis of glucosinolate profiles revealed that each Brassica crop accumulated different types and amounts of glucosinolates. Cauliflower sprouts had high total glucosinolate content. Broccoli sprouts contained high levels of glucoraphanin, a precursor for potent anticancer compound. Although studies have reported an inverse relationship between accumulation of Se and glucosinolates in mature Brassica plants, Se supply generally did not affect glucosinolate accumulation in Brassica sprouts. Thus, Brassica vegetable sprouts can be biofortified with Se for the accumulation of SeMSCys without negative effects on chemopreventive glucosinolate contents. Published by Elsevier Ltd.

  15. Abnormal spindles in second meiosis in canola (Brassica napus and Brassica campestris

    Directory of Open Access Journals (Sweden)

    Alice Maria de Souza

    1999-01-01

    Full Text Available Studies were carried out on the occurrence of abnormal spindles in the second meiotic division in some canola cultivars recently introduced in Brazil. Fusion of spindles was observed in metaphase II rejoining the two sets of chromosomes segregated in anaphase I and also sequential and tripolar spindles were discovered rejoining two sets of chromatids segregated in anaphase II. The frequency of cells with abnormal spindles ranged from 3.18 to 8.10%. The results suggested that this abnormality was caused by environmental stress that affected the plants during the blooming period.O presente estudo descreve a ocorrência de fusos anormais na segunda divisão meiótica em algumas cultivares da canola recentemente introduzidas no Brasil. Fusão de fusos foi observada em metáfase II reunindo os dois conjuntos cromossômicos segregados na anáfase I; fusos sequenciais e tripolares reunindo cromátides segregadas na anáfase II também foram observados. A frequência de células com fusos anormais variou de 3,18 a 8,10% entre as variedades. Os resultados sugerem que estas anormalidades foram causadas por condições climáticas adversas que afetaram as plantas no período de florescimento. As implicações genéticas destas anormalidades são descritas.

  16. A comparative map viewer integrating genetic maps for Brassica and Arabidopsis

    Directory of Open Access Journals (Sweden)

    Erwin Timothy A

    2007-07-01

    Full Text Available Abstract Background Molecular genetic maps provide a means to link heritable traits with underlying genome sequence variation. Several genetic maps have been constructed for Brassica species, yet to date, there has been no simple means to compare this information or to associate mapped traits with the genome sequence of the related model plant, Arabidopsis. Description We have developed a comparative genetic map database for the viewing, comparison and analysis of Brassica and Arabidopsis genetic, physical and trait map information. This web-based tool allows users to view and compare genetic and physical maps, search for traits and markers, and compare genetic linkage groups within and between the amphidiploid and diploid Brassica genomes. The inclusion of Arabidopsis data enables comparison between Brassica maps that share no common markers. Analysis of conserved syntenic blocks between Arabidopsis and collated Brassica genetic maps validates the application of this system. This tool is freely available over the internet on http://bioinformatics.pbcbasc.latrobe.edu.au/cmap. Conclusion This database enables users to interrogate the relationship between Brassica genetic maps and the sequenced genome of A. thaliana, permitting the comparison of genetic linkage groups and mapped traits and the rapid identification of candidate genes.

  17. Functional analysis and tissue-differential expression of four FAD2 genes in amphidiploid Brassica napus derived from Brassica rapa and Brassica oleracea.

    Science.gov (United States)

    Lee, Kyeong-Ryeol; In Sohn, Soo; Jung, Jin Hee; Kim, Sun Hee; Roh, Kyung Hee; Kim, Jong-Bum; Suh, Mi Chung; Kim, Hyun Uk

    2013-12-01

    Fatty acid desaturase 2 (FAD2), which resides in the endoplasmic reticulum (ER), plays a crucial role in producing linoleic acid (18:2) through catalyzing the desaturation of oleic acid (18:1) by double bond formation at the delta 12 position. FAD2 catalyzes the first step needed for the production of polyunsaturated fatty acids found in the glycerolipids of cell membranes and the triacylglycerols in seeds. In this study, four FAD2 genes from amphidiploid Brassica napus genome were isolated by PCR amplification, with their enzymatic functions predicted by sequence analysis of the cDNAs. Fatty acid analysis of budding yeast transformed with each of the FAD2 genes showed that whereas BnFAD2-1, BnFAD2-2, and BnFAD2-4 are functional enzymes, and BnFAD2-3 is nonfunctional. The four FAD2 genes of B. napus originated from synthetic hybridization of its diploid progenitors Brassica rapa and Brassica oleracea, each of which has two FAD2 genes identical to those of B. napus. The BnFAD2-3 gene of B. napus, a nonfunctional pseudogene mutated by multiple nucleotide deletions and insertions, was inherited from B. rapa. All BnFAD2 isozymes except BnFAD2-3 localized to the ER. Nonfunctional BnFAD2-3 localized to the nucleus and chloroplasts. Four BnFAD2 genes can be classified on the basis of their expression patterns. © 2013.

  18. Isolation of an ascorbate peroxidase in Brassica napus and analysis ...

    African Journals Online (AJOL)

    USER

    2010-04-05

    Apr 5, 2010 ... domain; APX, ascorbate peroxidase; Bn-APX, Brassica napus ascorbate ... Brassica napus, which is widely grown as the oilseed crop of rape or canola, .... grew on the SD-Leu-Trp-His-Ade medium and were verified by PCR.

  19. Irradiation of mushrooms (Agaricus campestris L) to extend their shelf-life

    International Nuclear Information System (INIS)

    Lescano, G.

    1990-01-01

    Mushrooms (Agaricus campestris L) were irradiated with 1.0; 2.0 and 3.0 kGy, being then stored either at 10 deg C ± 1 deg C or at room temperature (20 deg C ± 2 deg C), with the purpose of determining the most convenient condition to extend their shelf-life. It is concluded that 3.0 kGy and 10 deg C are the most suitable for that, leading to the inhibition of cap opening and stem elongation, less darkening and no evidence of fungal development until 17th day. Subsequentely almost a duplication of their shelf-life was obtained. (Author) [es

  20. Cytological and morphological analysis of hybrids between Brassicoraphanus, and Brassica napus for introgression of clubroot resistant trait into Brassica napus L.

    Science.gov (United States)

    Zhan, Zongxiang; Nwafor, Chinedu Charles; Hou, Zhaoke; Gong, Jianfang; Zhu, Bin; Jiang, Yingfen; Zhou, Yongming; Wu, Jiangsheng; Piao, Zhongyun; Tong, Yue; Liu, Chao; Zhang, Chunyu

    2017-01-01

    Interspecific hybridization is a powerful tool for improvement of crop species, it has the potential to broaden the genetic base and create new plant forms for breeding programs. Synthetic allopolyploid is a widely-used model for the study of genetic recombination and fixed heterosis in Brassica. In Brassica napus breeding, identification and introgression of new sources of clubroot resistance trait from wild or related species into it by hybridization is a long-term crop management strategy for clubroot disease. Radish (Raphanus sativus L.) is a close relative of the Brassica and most radish accessions are immune to the clubroot disease. A synthesized allotetraploid Brassicoraphanus (RRCC, 2n = 36) between R. sativus cv. HQ-04 (2n = 18, RR) and Brassica oleracea var. alboglabra (L.H Bailey) (2n = 18, CC) proved resistant of multiple clubroot disease pathogen P. brassicae. To predict the possibility to transfer the clubroot resistance trait from the RR subgenome of allotetraploid Brassicoraphanus (RRCC, 2n = 36) into Brassica napus (AACC, 2n = 38), we analyzed the frequency of chromosome pairings in the F1 hybrids produced from a cross between B. napus cv. HS5 and the allotetraploid, characterize the genomic composition of some backcrossed progeny (BC1) using GISH, BAC-FISH and AFLP techniques. The level of intergenomic pairing between A and R genomes in the F1 hybrid was high, allosyndetic bivalents formed in 73.53% PMCs indicative of significant level of homeologous recombination between two genomes and high probability of incorporating chromosomal segments/genes from R-genome into A/C-genomes. The BC1 plants inherited variant extra R chromosomes or fragments from allotetraploid as revealed by GISH and AFLP analysis. 13.51% BC2 individuals were resistant to clubroot disease, and several resistance lines had high pollen fertility, Overall, the genetic material presented in this work represents a potential new genetic resource for practical use in breeding B. napus

  1. Advances in Agronomic Management of Indian Mustard (Brassica juncea (L. Czernj. Cosson: An Overview

    Directory of Open Access Journals (Sweden)

    Kapila Shekhawat

    2012-01-01

    Full Text Available India is the fourth largest oilseed economy in the world. Among the seven edible oilseeds cultivated in India, rapeseed-mustard contributes 28.6% in the total oilseeds production and ranks second after groundnut sharing 27.8% in the India’s oilseed economy. The mustard growing areas in India are experiencing the vast diversity in the agro climatic conditions and different species of rapeseed-mustard are grown in some or other part of the country. Under marginal resource situation, cultivation of rapeseed-mustard becomes less remunerative to the farmers. This results in a big gap between requirement and production of mustard in India. Therefore site-specific nutrient management through soil-test recommendation based should be adopted to improve upon the existing yield levels obtained at farmers field. Effective management of natural resources, integrated approach to plant-water, nutrient and pest management and extension of rapeseed-mustard cultivation to newer areas under different cropping systems will play a key role in further increasing and stabilizing the productivity and production of rapeseed-mustard. The paper reviews the advances in proper land and seedbed preparation, optimum seed and sowing, planting technique, crop geometry, plant canopy, appropriate cropping system, integrated nutrient management and so forth to meet the ever growing demand of oil in the country and to realize the goal of production of 24 million tonnes of oilseed by 2020 AD through these advanced management techniques.

  2. Extracting sensitive spectrum bands of rapeseed using multiscale multifractal detrended fluctuation analysis

    Science.gov (United States)

    Jiang, Shan; Wang, Fang; Shen, Luming; Liao, Guiping; Wang, Lin

    2017-03-01

    Spectrum technology has been widely used in crop non-destructive testing diagnosis for crop information acquisition. Since spectrum covers a wide range of bands, it is of critical importance to extract the sensitive bands. In this paper, we propose a methodology to extract the sensitive spectrum bands of rapeseed using multiscale multifractal detrended fluctuation analysis. Our obtained sensitive bands are relatively robust in the range of 534 nm-574 nm. Further, by using the multifractal parameter (Hurst exponent) of the extracted sensitive bands, we propose a prediction model to forecast the Soil and plant analyzer development values ((SPAD), often used as a parameter to indicate the chlorophyll content) and an identification model to distinguish the different planting patterns. Three vegetation indices (VIs) based on previous work are used for comparison. Three evaluation indicators, namely, the root mean square error, the correlation coefficient, and the relative error employed in the SPAD values prediction model all demonstrate that our Hurst exponent has the best performance. Four rapeseed compound planting factors, namely, seeding method, planting density, fertilizer type, and weed control method are considered in the identification model. The Youden indices calculated by the random decision forest method and the K-nearest neighbor method show that our Hurst exponent is superior to other three Vis, and their combination for the factor of seeding method. In addition, there is no significant difference among the five features for other three planting factors. This interesting finding suggests that the transplanting and the direct seeding would make a big difference in the growth of rapeseed.

  3. Growth and "1"3"7Cs uptake and accumulation among 56 Japanese cultivars of Brassica rapa, Brassica juncea and Brassica napus grown in a contaminated field in Fukushima: Effect of inoculation with a Bacillus pumilus strain

    International Nuclear Information System (INIS)

    Djedidi, Salem; Kojima, Katsuhiro; Ohkama-Ohtsu, Naoko; Bellingrath-Kimura, Sonoko Dorothea; Yokoyama, Tadashi

    2016-01-01

    Fifty six local Japanese cultivars of Brassica rapa (40 cultivars), Brassica juncea (10 cultivars) and Brassica napus (6 cultivars) were assessed for variability in growth and "1"3"7Cs uptake and accumulation in association with a Bacillus pumilus strain. Field trial was conducted at a contaminated farmland in Nihonmatsu city, in Fukushima prefecture. Inoculation resulted in different responses of the cultivars in terms of growth and radiocesium uptake and accumulation. B. pumilus induced a significant increase in shoot dry weight in 12 cultivars that reached up to 40% in one B. rapa and three B. juncea cultivars. Differences in radiocesium uptake were observed between the cultivars of each Brassica species. Generally, inoculation resulted in a significant increase in "1"3"7Cs uptake in 22 cultivars, while in seven cultivars it was significantly decreased. Regardless of plant cultivar and bacterial inoculation, the transfer of "1"3"7Cs to the plant shoots (TF) varied by a factor of up to 5 and it ranged from to 0.011 to 0.054. Five inoculated cultivars, showed enhanced shoot dry weights and decreased "1"3"7Cs accumulations, among which two B. rapa cultivars named Bitamina and Nozawana had a significantly decreased "1"3"7Cs accumulation in their shoots. Such cultivars could be utilized to minimize the entry of radiocesium into the food chain; however, verifying the consistency of their radiocesium accumulation in other soils is strongly required. Moreover, the variations in growth and radiocesium accumulation, as influenced by Bacillus inoculation, could help selecting well grown inoculated Brassica cultivars with low radiocesium accumulation in their shoots. - Highlights: • Out of 56 Brassica cultivars, inoculation significantly increased shoot dry weight in 12 cultivars. • Inoculation triggered a significant increase and decrease in "1"3"7Cs uptake, respectively in 22 and 7 cultivars. • Five cultivars had an enhanced shoot dry weight and decreased "1"3"7Cs

  4. Ideotype population exploration: growth, photosynthesis, and yield components at different planting densities in winter oilseed rape (Brassica napus L.).

    Science.gov (United States)

    Ma, Ni; Yuan, Jinzhan; Li, Ming; Li, Jun; Zhang, Liyan; Liu, Lixin; Naeem, Muhammad Shahbaz; Zhang, Chunlei

    2014-01-01

    Rapeseed is one of the most important edible oil crops in the world and the seed yield has lagged behind the increasing demand driven by population growth. Winter oilseed rape (Brassica napus L.) is widely cultivated with relatively low yield in China, so it is necessary to find the strategies to improve the expression of yield potential. Planting density has great effects on seed yield of crops. Hence, field experiments were conducted in Wuhan in the Yangtze River basin with one conventional variety (Zhongshuang 11, ZS11) and one hybrid variety (Huayouza 9, HYZ9) at five planting densities (27.0×10(4), 37.5×10(4), 48.0×10(4), 58.5×10(4), 69.0×10(4) plants ha(-1)) during 2010-2012 to investigate the yield components. The physiological traits for high-yield and normal-yield populations were measured during 2011-2013. Our results indicated that planting densities of 58.5×10(4) plants ha(-1) in ZS11 and 48.0×10(4) plants ha(-1) in HYZ9 have significantly higher yield compared with the density of 27.0×10(4) plants ha(-1) for both varieties. The ideal silique numbers for ZS11 and HYZ9 were ∼0.9×10(4) (n m(-2)) and ∼1×10(4) (n m(-2)), respectively, and ideal primary branches for ZS11 and HYZ9 were ∼250 (n m(-2)) and ∼300 (n m(-2)), respectively. The highest leaf area index (LAI) and silique wall area index (SAI) was ∼5.0 and 7.0, respectively. Moreover, higher leaf net photosynthetic rate (Pn) and water use efficiency (WUE) were observed in the high-yield populations. A significantly higher level of silique wall photosynthesis and rapid dry matter accumulation were supposed to result in the maximum seed yield. Our results suggest that increasing the planting density within certain range is a feasible approach for higher seed yield in winter rapeseed in China.

  5. Optimization of H2SO4-catalyzed hydrothermal pretreatment of rapeseed straw for bioconversion to ethanol

    DEFF Research Database (Denmark)

    Xuebin, Lu; Zhang, Y.; Angelidaki, Irini

    2009-01-01

    A central composite design of response surface method was used to optimize H2SO4-catalyzed hydrothermal pretreatment of rapeseed straw, in respect to acid concentration (0.5-2%), treatment time (5-20 min) and solid content (10-20%) at 180 degrees C. Enzymatic hydrolysis and fermentation were also...... content for 10 min at 180 degrees C was found to be the most optimal condition for pretreatment of rapeseed straw for ethanol production. After pretreatment at the optimal condition and enzymatic hydrolysis, 75.12% total xylan and 63.17% total glucan were converted to xylose and glucose, respectively...

  6. Effect of salinity and priming on seedling growth in rapeseed (Brassica napus var oleifera Del. - doi: 10.4025/actasciagron.v35i4.17655

    Directory of Open Access Journals (Sweden)

    Paolo Benincasa

    2013-05-01

    Full Text Available Experiments were performed to examine the effect of salt stress and GA3-priming on initial growth of two rapeseed cultivars, one tolerant and one sensitive to salt stress during germination. Seedlings from seeds germinated in salty (as NaCl and non salty substrate were grown in salty and non salty hydroponics. Salt stress reduced seedling growth of the two genotypes consistently with their degree of stress tolerance during germination. Seedlings from stress sensitive seeds germinated under high salinity showed a rapid recover of growth in non stressing conditions. The effect of salt stress on shoot/root ratio was controversial, increased for lab and decreased for greenhouse experiments, probably due to different timing of stress application and additional experimental conditions. Salt stress decreased leaf photosynthesis and increased thermal dissipation in sensitive seedlings (decrease of ΦPSII and qP, increase of NPQ. The GA3-priming did not affect seedling growth of the stress sensitive cultivar subjected to stress, while it greatly improved the performance of the stress tolerant cultivar.

  7. Complete genome sequence of the rapeseed plant-growth promoting Serratia plymuthica strain AS9

    Energy Technology Data Exchange (ETDEWEB)

    Neupane, Saraswoti [Uppsala University, Uppsala, Sweden; Hogberg, Nils [Uppsala University, Uppsala, Sweden; Alstrom, Sadhna [Uppsala University, Uppsala, Sweden; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Han, James [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Lu, Megan [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Fiebig, Anne [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Finlay, Roger D. [Uppsala University, Uppsala, Sweden

    2012-01-01

    Serratia plymuthica are plant-associated, plant beneficial species belonging to the family Enterobacteriaceae. The members of the genus Serratia are ubiquitous in nature and their life style varies from endophytic to free-living. S. plymuthica AS9 is of special interest for its ability to inhibit fungal pathogens of rapeseed and to promote plant growth. The genome of S. plymuthica AS9 comprises a 5,442,880 bp long circular chromosome that consists of 4,952 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome is part of the project entitled Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogens awarded through the 2010 DOE-JGI Community Sequencing Program (CSP2010).

  8. Identification and characterization of microRNAs in oilseed rape (Brassica napus) responsive to infection with the pathogenic fungus Verticillium longisporum using Brassica AA (Brassica rapa) and CC (Brassica oleracea) as reference genomes.

    Science.gov (United States)

    Shen, Dan; Suhrkamp, Ina; Wang, Yu; Liu, Shenyi; Menkhaus, Jan; Verreet, Joseph-Alexander; Fan, Longjiang; Cai, Daguang

    2014-11-01

    Verticillium longisporum, a soil-borne pathogenic fungus, causes vascular disease in oilseed rape (Brassica napus). We proposed that plant microRNAs (miRNAs) are involved in the plant-V. longisporum interaction. To identify oilseed rape miRNAs, we deep-sequenced two small RNA libraries made from V. longisporum infected/noninfected roots and employed Brassica rapa and Brassica oleracea genomes as references for miRNA prediction and characterization. We identified 893 B. napus miRNAs representing 360 conserved and 533 novel miRNAs, and mapped 429 and 464 miRNAs to the AA and CC genomes, respectively. Microsynteny analysis with the conserved miRNAs and their flanking protein coding sequences revealed 137 AA-CC genome syntenic miRNA pairs and 61 AA and 42 CC genome-unique miRNAs. Sixty-two miRNAs were responsive to the V. longisporum infection. We present data for specific interactions and simultaneously reciprocal changes in the expression levels of the miRNAs and their targets in the infected roots. We demonstrate that miRNAs are involved in the plant-fungus interaction and that miRNA168-Argonaute 1 (AGO1) expression modulation might act as a key regulatory module in a compatible plant-V. longisporum interaction. Our results suggest that V. longisporum may have evolved a virulence mechanism by interference with plant miRNAs to reprogram plant gene expression and achieve infection. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  9. Evaluating the environmental sustainability of energy crops: A life cycle assessment of Spanish rapeseed and Argentinean soybean cultivation

    Directory of Open Access Journals (Sweden)

    Francisca Fernández-Tirado

    2017-04-01

    Full Text Available Rapeseed oil is expected to be increasingly used in Spain as raw material to produce biodiesel to the detriment of extra-EU imports of biodiesel mainly based on soybean oil from Argentina. Therefore, the environmental impacts produced throughout the life cycle of energy crops used to produce biodiesel which is consumed in Spain could be radically affected. In this context, the environmental impacts of rapeseed cultivation in Spain and soybean cultivation in Argentina, were compared under certain growing conditions using Life Cycle Assessment (LCA. Two methods of calculation for Life Cycle Impact Assessment (LCIA and two functional units (FUs were used to test potential biases. The results showed that the cultivation of soybean in Argentina had, in general, fewer environmental impacts than rapeseed cultivation in Spain when the FU was the area of cultivation, but these findings are inverted when the analysis is conducted according to the energy content of the biodiesel obtained from these crops. Soybean in fact has very low oil content, meaning that larger areas of land are required to obtain the same amount of biodiesel and that consequently it has a higher environmental impact by energy content. Fertilization was, in general, the process that generated the greatest environmental burdens, and is an area in which improvement is necessary in order to increase sustainability, particularly with regard to Spanish rapeseed.

  10. Evaluating the environmental sustainability of energy crops: A life cycle assessment of Spanish rapeseed and Argentinean soybean cultivation

    International Nuclear Information System (INIS)

    Fernández-Tirado, F.; Parra-López, C.; Romero-Gámez, M.

    2017-01-01

    Rapeseed oil is expected to be increasingly used in Spain as raw material to produce biodiesel to the detriment of extra-EU imports of biodiesel mainly based on soybean oil from Argentina. Therefore, the environmental impacts produced throughout the life cycle of energy crops used to produce biodiesel which is consumed in Spain could be radically affected. In this context, the environmental impacts of rapeseed cultivation in Spain and soybean cultivation in Argentina, were compared under certain growing conditions using Life Cycle Assessment (LCA). Two methods of calculation for Life Cycle Impact Assessment (LCIA) and two functional units (FUs) were used to test potential biases. The results showed that the cultivation of soybean in Argentina had, in general, fewer environmental impacts than rapeseed cultivation in Spain when the FU was the area of cultivation, but these findings are inverted when the analysis is conducted according to the energy content of the biodiesel obtained from these crops. Soybean in fact has very low oil content, meaning that larger areas of land are required to obtain the same amount of biodiesel and that consequently it has a higher environmental impact by energy content. Fertilization was, in general, the process that generated the greatest environmental burdens, and is an area in which improvement is necessary in order to increase sustainability, particularly with regard to Spanish rapeseed.

  11. Evaluating the environmental sustainability of energy crops: A life cycle assessment of Spanish rapeseed and Argentinean soybean cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Tirado, F.; Parra-López, C.; Romero-Gámez, M.

    2017-09-01

    Rapeseed oil is expected to be increasingly used in Spain as raw material to produce biodiesel to the detriment of extra-EU imports of biodiesel mainly based on soybean oil from Argentina. Therefore, the environmental impacts produced throughout the life cycle of energy crops used to produce biodiesel which is consumed in Spain could be radically affected. In this context, the environmental impacts of rapeseed cultivation in Spain and soybean cultivation in Argentina, were compared under certain growing conditions using Life Cycle Assessment (LCA). Two methods of calculation for Life Cycle Impact Assessment (LCIA) and two functional units (FUs) were used to test potential biases. The results showed that the cultivation of soybean in Argentina had, in general, fewer environmental impacts than rapeseed cultivation in Spain when the FU was the area of cultivation, but these findings are inverted when the analysis is conducted according to the energy content of the biodiesel obtained from these crops. Soybean in fact has very low oil content, meaning that larger areas of land are required to obtain the same amount of biodiesel and that consequently it has a higher environmental impact by energy content. Fertilization was, in general, the process that generated the greatest environmental burdens, and is an area in which improvement is necessary in order to increase sustainability, particularly with regard to Spanish rapeseed.

  12. Tranformasi Fragmen Dna Kromosom Xanthomonas Campestris ke dalam Escherichia Coli

    Directory of Open Access Journals (Sweden)

    Wibowo Mangunwardoyo

    2002-04-01

    Full Text Available Research on DNA transformation of Xanthomonas campestris into Escherichia coli DH5αα using plasmid vector Escherichia coli (pUC19. was carried out. DNA chromosome was isolated using CTAB method, alkali lysis method was used to isolate DNA plasmid. Both of DNA plasmid and chromosome were digested using restriction enzyme EcoRI. Competent cell was prepared with CaCl2 and heat shock method for transformation procedure. The result revealed transformation obtain 5 white colonies, with transformation frequency was 1,22 x 10-8 colony/competent cell. Electrophoresis analysis showed the DNA fragment (insert in range 0.5 – 7,5 kb. Further research should be carried out to prepare the genomic library to obtain better result of transformant.

  13. Applications and challenges of next-generation sequencing in Brassica species.

    Science.gov (United States)

    Wei, Lijuan; Xiao, Meili; Hayward, Alice; Fu, Donghui

    2013-12-01

    Next-generation sequencing (NGS) produces numerous (often millions) short DNA sequence reads, typically varying between 25 and 400 bp in length, at a relatively low cost and in a short time. This revolutionary technology is being increasingly applied in whole-genome, transcriptome, epigenome and small RNA sequencing, molecular marker and gene discovery, comparative and evolutionary genomics, and association studies. The Brassica genus comprises some of the most agro-economically important crops, providing abundant vegetables, condiments, fodder, oil and medicinal products. Many Brassica species have undergone the process of polyploidization, which makes their genomes exceptionally complex and can create difficulties in genomics research. NGS injects new vigor into Brassica research, yet also faces specific challenges in the analysis of complex crop genomes and traits. In this article, we review the advantages and limitations of different NGS technologies and their applications and challenges, using Brassica as an advanced model system for agronomically important, polyploid crops. Specifically, we focus on the use of NGS for genome resequencing, transcriptome sequencing, development of single-nucleotide polymorphism markers, and identification of novel microRNAs and their targets. We present trends and advances in NGS technology in relation to Brassica crop improvement, with wide application for sophisticated genomics research into agronomically important polyploid crops.

  14. Comparison of biogas production from rapeseed and wheat residues in compound with cattle manure

    Directory of Open Access Journals (Sweden)

    M Safari

    2016-09-01

    Full Text Available Introduction Seventy million tons of agricultural crops are produced from 18 million hectares of agricultural lands in Iran every year. Since 80% of the crops (wt. basis ends up as residues, therefore, about 50 million tons of crop residues are generated annually the majority of which is burnt on field leading to vast emissions of greenhouse gases (GHG due to the incomplete combustion process. These residues could potentially be transformed into heat energy directly by adopting a burning process or indirectly by first transforming them into secondary fuel as hydrogen, bio-methane, methanol or ethanol. Materials and Methods The present study was conducted using, wheat and rapeseed straws dried at ambient temperature co-digested with fresh cow dung while the total solid content and detention time were kept constant. To conduct the Anaerobic Digestion (AD experiments, cylinder reactors (13 L were constructed and placed in a water bath equipped with a heater and sensor to maintain the temperature at 35±2 oC. The biogas produced in the digester was investigated by measuring the displacement of the water in a measuring tube connected to the reactor. Gas samples were obtained from the sampling port and were analyzed gas chromatograph. The temperature for detector, injector and oven were 170, 110 and 50 oC respectively. Before the test, the first CH4 and CO2 net gases, peaks corresponding percentage was determined with respect to the retention time of the area. Then sample was compared with standard gas and samples gas percentage was determined. The residues were mechanically pretreated using a mill in order to increase the availability of the biomass to enzymes. After the pre-treatment, the material (<2 mm was mixed with a different proportion of fresh cow dung, Initial Total Solids (TS content in the reactor was adjusted at 9%. Factors such as PH, Volatile Solids (VS were determined by the standard method. Results and Discussion A decrease in the

  15. The Large Subunit rDNA Sequence of Plasmodiophora brassicae Does not Contain Intra-species Polymorphism.

    Science.gov (United States)

    Schwelm, Arne; Berney, Cédric; Dixelius, Christina; Bass, David; Neuhauser, Sigrid

    2016-12-01

    Clubroot disease caused by Plasmodiophora brassicae is one of the most important diseases of cultivated brassicas. P. brassicae occurs in pathotypes which differ in the aggressiveness towards their Brassica host plants. To date no DNA based method to distinguish these pathotypes has been described. In 2011 polymorphism within the 28S rDNA of P. brassicae was reported which potentially could allow to distinguish pathotypes without the need of time-consuming bioassays. However, isolates of P. brassicae from around the world analysed in this study do not show polymorphism in their LSU rDNA sequences. The previously described polymorphism most likely derived from soil inhabiting Cercozoa more specifically Neoheteromita-like glissomonads. Here we correct the LSU rDNA sequence of P. brassicae. By using FISH we demonstrate that our newly generated sequence belongs to the causal agent of clubroot disease. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  16. Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate

    DEFF Research Database (Denmark)

    López-Linares, Juan Carlos; Romero, Inmaculada; Cara, Cristobal

    2018-01-01

    This study evaluated the possibility of using rapeseed straw hemicellulosic hydrolysate as a fermentation medium for xylitol production. Two yeast strains, namely Debaryomyces hansenii and Candida guilliermondii, were used for this bioconversion process and their performance to convert xylose...

  17. Conserved microstructure of the Brassica B Genome of Brassica nigra in relation to homologous regions of Arabidopsis thaliana, B. rapa and B. oleracea

    Science.gov (United States)

    2013-01-01

    Background The Brassica B genome is known to carry several important traits, yet there has been limited analyses of its underlying genome structure, especially in comparison to the closely related A and C genomes. A bacterial artificial chromosome (BAC) library of Brassica nigra was developed and screened with 17 genes from a 222 kb region of A. thaliana that had been well characterised in both the Brassica A and C genomes. Results Fingerprinting of 483 apparently non-redundant clones defined physical contigs for the corresponding regions in B. nigra. The target region is duplicated in A. thaliana and six homologous contigs were found in B. nigra resulting from the whole genome triplication event shared by the Brassiceae tribe. BACs representative of each region were sequenced to elucidate the level of microscale rearrangements across the Brassica species divide. Conclusions Although the B genome species separated from the A/C lineage some 6 Mya, comparisons between the three paleopolyploid Brassica genomes revealed extensive conservation of gene content and sequence identity. The level of fractionation or gene loss varied across genomes and genomic regions; however, the greatest loss of genes was observed to be common to all three genomes. One large-scale chromosomal rearrangement differentiated the B genome suggesting such events could contribute to the lack of recombination observed between B genome species and those of the closely related A/C lineage. PMID:23586706

  18. Metabolic profiling and biological capacity of Pieris brassicae fed with kale (Brassica oleracea L. var. acephala).

    Science.gov (United States)

    Ferreres, Federico; Fernandes, Fátima; Oliveira, Jorge M A; Valentão, Patrícia; Pereira, José A; Andrade, Paula B

    2009-06-01

    Phenolic and organic acid profiles of aqueous extracts from Pieris brassicae material and the host kale (Brassica oleracea L. var. acephala) leaves were determined by HPLC/UV-DAD/MS(n)-ESI and HPLC-UV, respectively. The identified phenolics included acylated and nonacylated flavonoid glycosides, hydroxycinnamic acyl gentiobiosides, and sulphate phenolics. Kale exhibited the highest content (11g/kg lyophilized extract), while no phenolics were identified in the butterflies or exuviae. Nine different organic acids were characterized in the materials, with kale showing the highest amount (112g/kg lyophilized extract). With the exception of the exuviae extract, the rest were screened for bioactivity. Using spectrophotometric microassays, all exhibited antiradical capacity against DPPH and NO in a concentration-dependent way, whereas only kale and excrement extracts were active against superoxide. All displayed activity on intestinal smooth muscle, albeit with distinct relaxation-contraction profiles. Larvae and butterfly extracts were more efficacious for intestinal relaxation than was kale extract, whereas excrement extract evoked only contractions, thus evidencing their different compositions. Collectively, these results show that P. brassicae sequesters and metabolizes kale's phenolic compounds. Moreover, the extract's bioactivities suggest that they may constitute an interesting source of bioactive compounds whose complex chemical structures preclude either synthesis or isolation.

  19. Tracing the Transcriptomic Changes in Synthetic Trigenomic allohexaploids of Brassica Using an RNA-Seq Approach

    Science.gov (United States)

    Zhao, Qin; Zou, Jun; Meng, Jinling; Mei, Shiyong; Wang, Jianbo

    2013-01-01

    Polyploidization has played an important role in plant evolution and speciation, and newly formed allopolyploids have experienced rapid transcriptomic changes. Here, we compared the transcriptomic differences between a synthetic Brassica allohexaploid and its parents using a high-throughput RNA-Seq method. A total of 35,644,409 sequence reads were generated, and 32,642 genes were aligned from the data. Totals of 29,260, 29,060, and 29,697 genes were identified in Brassica rapa , Brassica carinata , and Brassica allohexaploid, respectively. We compared 7,397 differentially expressed genes (DEGs) between Brassica hexaploid and its parents, as well as 2,545 nonadditive genes of Brassica hexaploid. We hypothesized that the higher ploidy level as well as secondary polyploidy might have influenced these changes. The majority of the 3,184 DEGs between Brassica hexaploid and its paternal parent, B . rapa , were involved in the biosynthesis of secondary metabolites, plant–pathogen interactions, photosynthesis, and circadian rhythm. Among the 2,233 DEGs between Brassica hexaploid and its maternal parent, B . carinata , several played roles in plant–pathogen interactions, plant hormone signal transduction, ribosomes, limonene and pinene degradation, photosynthesis, and biosynthesis of secondary metabolites. There were more significant differences in gene expression between the allohexaploid and its paternal parent than between it and its maternal parent, possibly partly because of cytoplasmic and maternal effects. Specific functional categories were enriched among the 2,545 nonadditive genes of Brassica hexaploid compared with the additive genes; the categories included response to stimulus, immune system process, cellular process, metabolic process, rhythmic process, and pigmentation. Many transcription factor genes, methyltransferases, and methylation genes showed differential expression between Brassica hexaploid and its parents. Our results demonstrate that the

  20. Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.

    Directory of Open Access Journals (Sweden)

    Areli Herrera Diaz

    Full Text Available Antimicrobial peptides (AMPs are small peptides with less than 50 amino acids and are part of the innate immune response in almost all organisms, including bacteria, vertebrates, invertebrates and plants. AMPs are active against a broad-spectrum of pathogens. The inducible expression of AMPs in plants is a promising approach to combat plant pathogens with minimal negative side effects, such as phytotoxicity or infertility. In this study, inducible expression of the de-novo designed AMP SP1-1 in Micro Tom tomato protected tomato fruits against bacterial spot disease caused by Xanthomonas campestris pv. vesicatoria. The peptide SP1-1 was targeted to the apoplast which is the primary infection site for plant pathogens, by fusing SP1-1 peptide to the signal peptide RsAFP1 of radish (Raphanus sativus. The pathogen inducibility of the expression was enabled by using an optimized inducible 4XW2/4XS promoter. As a result, the tomato fruits of independently generated SP1-1 transgenic lines were significantly more resistant to X. campestris pv. vesicatoria than WT tomato fruits. In transgenic lines, bacterial infection was reduced up to 65% in comparison to the infection of WT plants. Our study demonstrates that the combination of the 4XW2/4XS cis-element from parsley with the synthetic antimicrobial peptide SP1-1 is a good alternative to protect tomato fruits against infections with X. campestris pv. vesicatoria.

  1. Development of immunofluorescence colony staining (IFC) for detection of Xanthomonas campestris pv. vesicatoria and Clavibacter michiganensis subsp michiganensis in tomato seeds

    NARCIS (Netherlands)

    Nemeth, J.; Vuurde, van J.W.L.

    2006-01-01

    Immunofluorescence colony-staining (IFC) is based on sample pour plating in combination with immunofluorescence staining for recognition of the target colony. IFC was optimised for detecting Xanthomonas campestris pv. vesicatoria (Xcv) and Clavibacter michiganensis subsp. michiganensis (Cmm) in

  2. Fluidized bed treatment of rapeseed meal and cake as possibility for the production of canolol

    Directory of Open Access Journals (Sweden)

    Pudel Frank

    2014-01-01

    Full Text Available Canolol (2,6-dimethoxy-4-vinylphenol, 4-vinylsyringol, which is formed by thermally initiated CO2splitting off from sinapic acid, possesses a high antioxidant potential. Furthermore different positive physiological properties are described. Due to rapeseed’s high content of phenolic acids, particularly sinapic acid, it is obvious to produce canolol as by-product of rapeseed processing. Roasting of rapeseed meal or cake in a fluidized bed followed by extraction with supercritical carbon dioxide of the formed canolol represents a production procedure which not impairs the commercial oil mill process. This article summarizes results from the roasting process with rapeseed meal and cake in fluidized bed equipments of different design and size showing that it is a suitable technique to transform sinapic acid into canolol. The achieved canolol contents are at 500 mg/kg in minimum, if the material is rapidly cooled-down after reaching the optimal temperature of 165 °C. Further roasting leads to a fast reduction of the canolol content. In addition it could be observed, that the sinapic acid content is not decreasing in the same amount as the canolol content increases. Sinapic acid seems to be “reproduced” during roasting. The reaction mechanisms of the described phenomena are not known.

  3. Selective separation and concentration of antihypertensive peptides from rapeseed protein hydrolysate by electrodialysis with ultrafiltration membranes.

    Science.gov (United States)

    He, Rong; Girgih, Abraham T; Rozoy, Elodie; Bazinet, Laurent; Ju, Xing-Rong; Aluko, Rotimi E

    2016-04-15

    Rapeseed protein isolate was subjected to alcalase digestion to obtain a protein hydrolysate that was separated into peptide fractions using electrodialysis with ultrafiltration membrane (EDUF) technology. The EDUF process (6h duration) led to isolation of three peptide fractions: anionic (recovered in KCl-1 compartment), cationic (recovered in KCl-2 compartment), and those that remained in the feed compartment, which was labeled final rapeseed protein hydrolysate (FRPH). As expected the KCl-1 peptides were enriched in negatively-charged (43.57%) while KCl-2 contained high contents of positively-charged (28.35%) amino acids. All the samples inhibited angiotensin converting enzyme (ACE) and renin activities in dose-dependent manner with original rapeseed protein hydrolysate having the least ACE-inhibitory IC50 value of 0.0932±0.0037 mg/mL while FRPH and KCl-2 had least renin-inhibitory IC50 values of 0.47±0.05 and 0.55±0.06 mg/mL, respectively. Six hours after oral administration (100 mg/kg body weight) to spontaneously hypertensive rats, the FRPH produced the maximum systolic blood pressure reduction of -51 mmHg. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Development of Convenient Screening Method for Resistant Radish to Plasmodiophora brassicae

    Directory of Open Access Journals (Sweden)

    Su-Jung Jo

    2011-08-01

    Full Text Available To establish simple and reliable screening method for resistant radish to Plasmodiophora brassicae Woron. using soil-drenching inoculation, the development of clubroot on radish seedlings inoculated with P. brassicae GN-1 isolate according to several conditions such as inoculum concentration, plant growth stage and incubation period after inoculation was studied. To select resistant radish against clubroot, 10-day-old seedlings were inoculated with P. brassicae by drenching the roots with the spore suspension of the pathogen to give 1×10(9 spores/pot. The inoculated seedlings were incubated in a growth chamber at 20℃ for 3 days then cultivated in a greenhouse (20±5℃ for 6 weeks. Under the optimum conditions, 46 commercial cultivars of radish were tested for resistance to YC-1 (infecting 15 clubroot-resistant cultivars of Chinese cabbage and GN-1 (wild type isolates of P. brassicae. Among them, thirty-five cultivars showed resistance to both isolates and one cultivar represented susceptible response to the pathogens. On the other hand, the other cultivars showed different responses against the tested P. brassicae pathogens. The results suggest that this method is an efficient system for screening radish with resistance to clubroot.

  5. Arabinogalactan Proteins Accumulate in the Cell Walls of Searching Hyphae of the Stem Parasitic Plants, Cuscuta campestris and Cuscuta japonica.

    Science.gov (United States)

    Hozumi, Akitaka; Bera, Subhankar; Fujiwara, Daiki; Obayashi, Takeshi; Yokoyama, Ryusuke; Nishitani, Kazuhiko; Aoki, Koh

    2017-11-01

    Stem parasitic plants (Cuscuta spp.) develop a specialized organ called a haustorium to penetrate their hosts' stem tissues. To reach the vascular tissues of the host plant, the haustorium needs to overcome the physical barrier of the cell wall, and the parasite-host interaction via the cell wall is a critical process. However, the cell wall components responsible for the establishment of parasitic connections have not yet been identified. In this study, we investigated the spatial distribution patterns of cell wall components at a parasitic interface using parasite-host complexes of Cuscuta campestris-Arabidopsis thaliana and Cuscuta japonica-Glycine max. We focused on arabinogalactan proteins (AGPs), because AGPs accumulate in the cell walls of searching hyphae of both C. campestris and C. japonica. We found more AGPs in elongated haustoria than in pre haustoria, indicating that AGP accumulation is developmentally regulated. Using in situ hybridization, we identified five genes in C. campestris that encode hyphal-expressed AGPs that belong to the fasciclin-like AGP (FLA) family, which were named CcFLA genes. Three of the five CcFLA genes were expressed in the holdfast, which develops on the Cuscuta stem epidermis at the attachment site for the host's stem epidermis. Our results suggest that AGPs are involved in hyphal elongation and adhesion to host cells, and in the adhesion between the epidermal tissues of Cuscuta and its host. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Salt tolerance potential of brassica juncea Linn

    Energy Technology Data Exchange (ETDEWEB)

    Ibrar, M; Jabeen, M; Tabassum, J [University of Peshawar (Pakistan). Dept. of Botany; Hussain, F; Ilahi, I [University of Peshawar (Pakistan). Dept. of Pharmacy

    2003-07-01

    The present study showed that percent germination, radicle and plumule lengths of Brassica juncea were adversely affected by increasing the level of salinity. As compared to 95 per cent germination of the control, there were 92.50. 90.00. 90.00, 85.00, 87.50 and 80.00 per cent germinations respectively at 2.5, 5.0, 7.5. 10.0. 12.5 and 15.0 dSm/sup -1/ NaCI salinity levels. Similarly. all the parameters tested in the pot experiments showed gradual decline with the corresponding increasing levels of NaCl salinity. At lower levels of salinity (2.5 and 5.0 dSm/sup -l/), Brassica juncea had reasonably good growth and productivity. It showed greatly reduced growth and at 7.5 and 10.0 dSm/sup -1/ while at 12.5 and 15.0 10.0 dSm/sup -1/ salinity levels it was severely production affected. It is concluded from the present work that Brassica juncea can be grown fairly on mild saline soils for a food, fodder and seed production. (author)

  7. Salt tolerance potential of brassica juncea Linn

    International Nuclear Information System (INIS)

    Ibrar, M.; Jabeen, M.; Tabassum, J.; Hussain, F.; Ilahi, I.

    2003-01-01

    The present study showed that percent germination, radicle and plumule lengths of Brassica juncea were adversely affected by increasing the level of salinity. As compared to 95 per cent germination of the control, there were 92.50. 90.00. 90.00, 85.00, 87.50 and 80.00 per cent germinations respectively at 2.5, 5.0, 7.5. 10.0. 12.5 and 15.0 dSm/sup -1/ NaCI salinity levels. Similarly. all the parameters tested in the pot experiments showed gradual decline with the corresponding increasing levels of NaCl salinity. At lower levels of salinity (2.5 and 5.0 dSm/sup -l/), Brassica juncea had reasonably good growth and productivity. It showed greatly reduced growth and at 7.5 and 10.0 dSm/sup -1/ while at 12.5 and 15.0 10.0 dSm/sup -1/ salinity levels it was severely production affected. It is concluded from the present work that Brassica juncea can be grown fairly on mild saline soils for a food, fodder and seed production. (author)

  8. Intraspecific chromosomal and genetic polymorphism in Brassica ...

    Indian Academy of Sciences (India)

    2014-04-16

    Apr 16, 2014 ... acid in rapeseeds is one of the important factor of its food or industrial ... under additive control of alleles of FAE1.1 and FAE1.2 genes that encode the .... was designed in such a way that an artificial restriction site for TaqI ...

  9. Region-specific greenhouse gas balances for rapeseed cultivation in Mecklenburg-West Pomerania; Regionalspezifische Treibhausgasbilanzen fuer den Rapsanbau in Mecklenburg-Vorpommern

    Energy Technology Data Exchange (ETDEWEB)

    Weirauch, Mareike [Landesforschungsanstalt fuer Landwirtschaft und Fischerei Mecklenburg-Vorpommern, Guelzow-Pruezen (Germany). Sachgebiet Nachwachsende Rohstoffe

    2014-08-01

    The renewable energy directive (RED, 2009128/EG) announced guidelines to reduce the greenhouse gas (GHG) emissions during the use of biofuels in comparison to the fossil fuels since 2009. The EU-RED contains maximum permissible values for the several production pathways of biofuels. On the basis of operating agriculture data (crop years 2011, 2012 and 2013) the current practical values of GHG emissions during the cultivation of rapeseed in Mecklenburg-West Pomerania have been analyzed in a present research project of the State Research Institute of Agriculture and Fishery Mecklenburg-West Pomerania. The results of the status quo analysis of the GHG emissions during rapeseed cultivation are compared with the EU-RED standard value for biodiesel (made of rapeseed) and optimization options for GHG reduction are discussed, which will make it possible to require the EU-RED 50% GHG reduction value in 2017.

  10. ANALYSIS OF SLG GENE – THE MOLECULAR MARKER IN HYBRID BREEDING OF OIL SEED RAPE

    Directory of Open Access Journals (Sweden)

    L DOLANSKÁ

    2004-07-01

    Full Text Available Oil seed rape (Brassica napus L. cultivars, donors of quality (SC and self-incompatible (SI lines have been analysed using identification of S-locus. In several Brassica napus cultivars one S-locus SLG gene was detected as dominant and the second S-locus as recessive. Amplification class II SLG gene screened recessive gene in all analysed samples (SC and SI. The DNA fragment of recessive gene corresponded to SLG gene W found in cv. Westar. S-haplotypes were analysed by PCR-RFLP. Different Brassica napus cultivars had an identical electrophoretic profile conforming with nonfunctional A10 allele in B. campestris. In B. napus A10 allele is localised in genome A. The functional recessive SLG gene is probably localised in genome C. Model of their segregation was suggested. SC and SI plants segregated in F2 generation at the ratio of approximately 3:1. This indicates a recessive monogenic disposition of SI in the experimental population.

  11. Genome-wide identification of QTL for seed yield and yield-related traits and construction of a high-density consensus map for QTL comparison in Brassica napus

    Directory of Open Access Journals (Sweden)

    Weiguo eZhao

    2016-01-01

    Full Text Available Seed yield (SY is the most important trait in rapeseed, which was determined by multiple seed yield-related traits (SYRTs and also easily subject to environmental influence. Lots of quantitative trait loci (QTL for SY and SYRTs were reported in Brassica napus. However, no studies have focused on SY and seven agronomic traits affecting SY simultaneous. Genome-wide QTL analysis for SY and seven SYRTs in eight environments was conducted in a doubled haploid population containing 348 lines. Totally, 18 and 208 QTLs for SY and SYRTs were observed, respectively, and then these QTLs were integrated into 144 consensus QTLs by a meta-analysis. Three major QTLs for SY were observed, including cqSY-C6-2 and cqSY-C6-3 that expressed stably in winter cultivation area for three years and cqSY-A2-2 only expressed in spring rapeseed area. Trait-by-trait meta-analysis revealed that the 144 consensus QTLs were integrated into 72 pleiotropic unique QTLs. Among them, all the unique QTLs affected SY, except for uq-A6-1, including uq.A2-3, uq.C1-2, uq.C1-3, uq.C6-1, uq.C6-5 and uq.C6-6 could also affect more than two SYRTs. According to high density consensus map construction and QTL comparison from literature, 36 QTLs from five populations were co-localized with QTLs identified in this study. In addition, 13 orthologs genes were observed, including five each genes for SY and SW, one each gene for BY, BH and PH, respectively. The genomic information of these QTLs would be valuable in hybrid cultivar breeding, and be helpful to analyze QTL expression in different environments.

  12. The inheritance of resistance to bacterial leaf spot of lettuce caused by Xanthomonas campestris pv. vitians in three lettuce cultivars

    Science.gov (United States)

    Lettuce yields can be reduced by the disease bacterial leaf spot (BLS) caused by the pathogen Xanthomonas campestris pv. vitians (Xcv) and host resistance is the most feasible method to reduce disease losses. The cultivars La Brillante, Pavane, and Little Gem express an incompatible host-pathogen in...

  13. A Phylogenetic Analysis of Chloroplast Genomes Elucidates the Relationships of the Six Economically Important Brassica Species Comprising the Triangle of U

    NARCIS (Netherlands)

    Li, Peirong; Zhang, Shujiang; Li, Fei; Zhang, Shifan; Zhang, Hui; Wang, Xiaowu; Sun, Rifei; Bonnema, Guusje; Borm, Theo J.A.

    2017-01-01

    The Brassica genus comprises many economically important worldwide cultivated crops. The well-established model of the Brassica genus, U’s triangle, consists of three basic diploid plant species (Brassica rapa, Brassica oleracea, and Brassica nigra) and three amphidiploid species (Brassica napus,

  14. Biological Functions of ilvC in Branched-Chain Fatty Acid Synthesis and Diffusible Signal Factor Family Production in Xanthomonas campestris

    Directory of Open Access Journals (Sweden)

    Kai-Huai Li

    2017-12-01

    Full Text Available In bacteria, the metabolism of branched-chain amino acids (BCAAs is tightly associated with branched-chain fatty acids (BCFAs synthetic pathways. Although previous studies have reported on BCFAs biosynthesis, more detailed associations between BCAAs metabolism and BCFAs biosynthesis remain to be addressed. In this study, we deleted the ilvC gene, which encodes ketol-acid reductoisomerase in the BCAAs synthetic pathway, from the Xanthomonas campestris pv. campestris (Xcc genome. We characterized gene functions in BCFAs biosynthesis and production of the diffusible signal factor (DSF family signals. Disruption of ilvC caused Xcc to become auxotrophic for valine and isoleucine, and lose the ability to synthesize BCFAs via carbohydrate metabolism. Furthermore, ilvC mutant reduced the ability to produce DSF-family signals, especially branched-chain DSF-family signals, which might be the main reason for Xcc reduction of pathogenesis toward host plants. In this report, we confirmed that BCFAs do not have major functions in acclimatizing Xcc cells to low temperatures.

  15. Deduction of upstream sequences of Xanthomonas campestris flagellar genes responding to transcription activation by FleQ

    International Nuclear Information System (INIS)

    Hu, R.-M.; Yang, T.-C.; Yang, S.-H.; Tseng, Y.-H.

    2005-01-01

    Xanthomonas campestris pv. campestris (Xcc), a close relative to Pseudomonas aeruginosa, is the pathogen causing black rot in cruciferous plants. In P. aeruginosa, FleQ serves as a cognate activator of σ 54 in transcription from several σ 54 -dependent promoters of flagellar genes. These P. aeruginosa promoters have been analyzed for FleQ-binding sequences; however, no consensus was deduced. Xcc, although lacks fleSR, has a fleQ homologue residing among over 40 contiguously clustered flagellar genes. A fleQ mutant, Xc17fleQ, constructed by insertional mutation is deficient in FleQ protein, non-flagellated, and immobile. Transcriptional fusion assays on six putative σ 54 -dependent promoters of the flagellar genes, fliE, fliQ, fliL, flgG, flgB, and flhF, indicated that each of them is also FleQ dependent. Each of these promoters has a sequence with weak consensus to 5'-gaaacCCgccgCcgctTt-3', immediately upstream of the predicted σ 54 -binding site, with an imperfect inverted repeat containing a GC-rich center flanked by several A and T at 5'- and 3'-ends, respectively. Replacing this region in fliE promoter with a HindIII recognition sequence abolished the transcription, indicating that this region responds to transcription activation by FleQ

  16. Volatiles and Nonvolatiles in Flourensia campestris Griseb. (Asteraceae), How Much Do Capitate Glandular Trichomes Matter?

    Science.gov (United States)

    Piazza, Leonardo A; López, Daniela; Silva, Mariana P; López Rivilli, Marisa J; Tourn, Mónica G; Cantero, Juan J; Scopel, Ana L

    2018-03-01

    The distribution and ultrastructure of capitate glandular trichomes (GTs) in Flourensia species (Asteraceae) have been recently elucidated, but their metabolic activity and potential biological function remain unexplored. Selective nonvolatile metabolites from isolated GTs were strikingly similar to those found on leaf surfaces. The phytotoxic allelochemical sesquiterpene (-)-hamanasic acid A ((-)-HAA) was the major constituent (ca. 40%) in GTs. Although GTs are quaternary ammonium compounds (QACs)-accumulating species, glycine betaine was not found in GTs; it was only present in the leaf mesophyll. Two (-)-HAA accompanying surface secreted products: compounds 4-hydroxyacetophenone (piceol; 1) and 2-hydroxy-5-methoxyacetophenone (2), which were isolated and fully characterized (GC/MS, NMR), were present in the volatiles found in GTs. The essential oils of fresh leaves revealed ca. 33% monoterpenes, 26% hydrocarbon- and 30% oxygenated sesquiterpenes, most of them related to cadinene and bisabolene derivatives. Present results suggest a main role of GTs in determining the volatile and nonvolatile composition of F. campestris leaves. Based on the known activities of the compounds identified, it can be suggested that GTs in F. campestris would play key ecological functions in plant-pathogen and plant-plant interactions. In addition, the strikingly high contribution of compounds derived from cadinene and bisabolene pathways, highlights the potential of this species as a source of high-valued bioproducts. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  17. Baby leaf lettuce germplasm enhancement: developing diverse populations with resistance to bacterial leaf spot caused by Xanthomonas campestris pv. vitians

    Science.gov (United States)

    Baby leaf lettuce cultivars with resistance to bacterial leaf spot (BLS) caused by Xanthomonas campestris pv. vitians (Xcv) are needed to reduce crop losses. The objectives of this research were to assess the genetic diversity for BLS resistance in baby leaf lettuce cultivars and to select early gen...

  18. Macroporous Activated Carbon Derived from Rapeseed Shell for Lithium–Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Mingbo Zheng

    2017-10-01

    Full Text Available Lithium–sulfur batteries have drawn considerable attention because of their extremely high energy density. Activated carbon (AC is an ideal matrix for sulfur because of its high specific surface area, large pore volume, small-size nanopores, and simple preparation. In this work, through KOH activation, AC materials with different porous structure parameters were prepared using waste rapeseed shells as precursors. Effects of KOH amount, activated temperature, and activated time on pore structure parameters of ACs were studied. AC sample with optimal pore structure parameters was investigated as sulfur host materials. Applied in lithium–sulfur batteries, the AC/S composite (60 wt % sulfur exhibited a high specific capacity of 1065 mAh g−1 at 200 mA g−1 and a good capacity retention of 49% after 1000 cycles at 1600 mA g−1. The key factor for good cycling stability involves the restraining effect of small-sized nanopores of the AC framework on the diffusion of polysulfides to bulk electrolyte and the loss of the active material sulfur. Results demonstrated that AC materials derived from rapeseed shells are promising materials for sulfur loading.

  19. Could nitrile derivatives of turnip (Brassica rapa) glucosinolates be Hepato-and/or cholangiotoxic in cattle?

    Science.gov (United States)

    Turnip (Brassica rapa ssp. rapa) and rape (Brassica napus ssp. biennis) and other brassica forage crops are generally regarded as “safe” feed for cattle during late summer and fall in New Zealand. However, when Pithomyces chartarum spore counts are high there are epidemics of sporidesmin toxicity (...

  20. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus.

    Science.gov (United States)

    He, Yajun; Mao, Shaoshuai; Gao, Yulong; Zhu, Liying; Wu, Daoming; Cui, Yixin; Li, Jiana; Qian, Wei

    2016-01-01

    WRKY transcription factors play important roles in responses to environmental stress stimuli. Using a genome-wide domain analysis, we identified 287 WRKY genes with 343 WRKY domains in the sequenced genome of Brassica napus, 139 in the A sub-genome and 148 in the C sub-genome. These genes were classified into eight groups based on phylogenetic analysis. In the 343 WRKY domains, a total of 26 members showed divergence in the WRKY domain, and 21 belonged to group I. This finding suggested that WRKY genes in group I are more active and variable compared with genes in other groups. Using genome-wide identification and analysis of the WRKY gene family in Brassica napus, we observed genome duplication, chromosomal/segmental duplications and tandem duplication. All of these duplications contributed to the expansion of the WRKY gene family. The duplicate segments that were detected indicated that genome duplication events occurred in the two diploid progenitors B. rapa and B. olearecea before they combined to form B. napus. Analysis of the public microarray database and EST database for B. napus indicated that 74 WRKY genes were induced or preferentially expressed under stress conditions. According to the public QTL data, we identified 77 WRKY genes in 31 QTL regions related to various stress tolerance. We further evaluated the expression of 26 BnaWRKY genes under multiple stresses by qRT-PCR. Most of the genes were induced by low temperature, salinity and drought stress, indicating that the WRKYs play important roles in B. napus stress responses. Further, three BnaWRKY genes were strongly responsive to the three multiple stresses simultaneously, which suggests that these 3 WRKY may have multi-functional roles in stress tolerance and can potentially be used in breeding new rapeseed cultivars. We also found six tandem repeat pairs exhibiting similar expression profiles under the various stress conditions, and three pairs were mapped in the stress related QTL regions

  1. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus.

    Directory of Open Access Journals (Sweden)

    Yajun He

    Full Text Available WRKY transcription factors play important roles in responses to environmental stress stimuli. Using a genome-wide domain analysis, we identified 287 WRKY genes with 343 WRKY domains in the sequenced genome of Brassica napus, 139 in the A sub-genome and 148 in the C sub-genome. These genes were classified into eight groups based on phylogenetic analysis. In the 343 WRKY domains, a total of 26 members showed divergence in the WRKY domain, and 21 belonged to group I. This finding suggested that WRKY genes in group I are more active and variable compared with genes in other groups. Using genome-wide identification and analysis of the WRKY gene family in Brassica napus, we observed genome duplication, chromosomal/segmental duplications and tandem duplication. All of these duplications contributed to the expansion of the WRKY gene family. The duplicate segments that were detected indicated that genome duplication events occurred in the two diploid progenitors B. rapa and B. olearecea before they combined to form B. napus. Analysis of the public microarray database and EST database for B. napus indicated that 74 WRKY genes were induced or preferentially expressed under stress conditions. According to the public QTL data, we identified 77 WRKY genes in 31 QTL regions related to various stress tolerance. We further evaluated the expression of 26 BnaWRKY genes under multiple stresses by qRT-PCR. Most of the genes were induced by low temperature, salinity and drought stress, indicating that the WRKYs play important roles in B. napus stress responses. Further, three BnaWRKY genes were strongly responsive to the three multiple stresses simultaneously, which suggests that these 3 WRKY may have multi-functional roles in stress tolerance and can potentially be used in breeding new rapeseed cultivars. We also found six tandem repeat pairs exhibiting similar expression profiles under the various stress conditions, and three pairs were mapped in the stress related

  2. Evolutionary genomics of miniature inverted-repeat transposable elements (MITEs) in Brassica.

    Science.gov (United States)

    Nouroz, Faisal; Noreen, Shumaila; Heslop-Harrison, J S

    2015-12-01

    Miniature inverted-repeat transposable elements (MITEs) are truncated derivatives of autonomous DNA transposons, and are dispersed abundantly in most eukaryotic genomes. We aimed to characterize various MITEs families in Brassica in terms of their presence, sequence characteristics and evolutionary activity. Dot plot analyses involving comparison of homoeologous bacterial artificial chromosome (BAC) sequences allowed identification of 15 novel families of mobile MITEs. Of which, 5 were Stowaway-like with TA Target Site Duplications (TSDs), 4 Tourist-like with TAA/TTA TSDs, 5 Mutator-like with 9-10 bp TSDs and 1 novel MITE (BoXMITE1) flanked by 3 bp TSDs. Our data suggested that there are about 30,000 MITE-related sequences in Brassica rapa and B. oleracea genomes. In situ hybridization showed one abundant family was dispersed in the A-genome, while another was located near 45S rDNA sites. PCR analysis using primers flanking sequences of MITE elements detected MITE insertion polymorphisms between and within the three Brassica (AA, BB, CC) genomes, with many insertions being specific to single genomes and others showing evidence of more recent evolutionary insertions. Our BAC sequence comparison strategy enables identification of evolutionarily active MITEs with no prior knowledge of MITE sequences. The details of MITE families reported in Brassica enable their identification, characterization and annotation. Insertion polymorphisms of MITEs and their transposition activity indicated important mechanism of genome evolution and diversification. MITE families derived from known Mariner, Harbinger and Mutator DNA transposons were discovered, as well as some novel structures. The identification of Brassica MITEs will have broad applications in Brassica genomics, breeding, hybridization and phylogeny through their use as DNA markers.

  3. miR395 is involved in detoxification of cadmium in Brassica napus

    International Nuclear Information System (INIS)

    Zhang, Liu Wei; Song, Jian Bo; Shu, Xia Xia; Zhang, Yun; Yang, Zhi Min

    2013-01-01

    Highlights: ► Involvement of miR395 in sulfate uptake and assimilation in B. napus. ► miR395 regulation of Cd accumulation and distribution in B. napus. ► Depression of Cd-induced oxidative stress by miR395. -- Abstract: The toxic metal cadmium (Cd) constitutes one of the major inorganic contaminants in environments. microRNAs (miRNAs) are a class of endogenous non-coding small RNAs. miR395 is conserved and regulates sulfate assimilation and distribution in higher plants, but whether it is involved in detoxification of Cd in plants has not been described. In this study, transgenic rapeseed (Brassica napus) over-expressing miR395 was identified under Cd stress. miR395-over-expressing plants showed a lower degree of Cd-induced oxidative stress than wild type. By contrast, chlorophyll, glutathione and non-protein thiols contents were higher in the transformants than wild type. Determination of growth response showed that 35S::MIR395 plants accumulated higher levels of biomass and sulfur than wild type under Cd exposure. miR395 transgenic plants had higher levels of Cd in plants, particularly at the high supply of Cd in the medium, but they tended to repress Cd translocation from roots to shoots. Simultaneously, expression of metal-tolerance genes such as BnPCS1, BnHO1 and Sultr1;1 was up-regulated under Cd stress, and the expression of the genes was more pronounced in 35S::MIR395 plants than in wild type. These results suggest that miR395 would be involved in detoxification of Cd in B. napus

  4. miR395 is involved in detoxification of cadmium in Brassica napus

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liu Wei; Song, Jian Bo; Shu, Xia Xia; Zhang, Yun [Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095 (China); Yang, Zhi Min, E-mail: zmyang@njau.edu.cn [Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095 (China)

    2013-04-15

    Highlights: ► Involvement of miR395 in sulfate uptake and assimilation in B. napus. ► miR395 regulation of Cd accumulation and distribution in B. napus. ► Depression of Cd-induced oxidative stress by miR395. -- Abstract: The toxic metal cadmium (Cd) constitutes one of the major inorganic contaminants in environments. microRNAs (miRNAs) are a class of endogenous non-coding small RNAs. miR395 is conserved and regulates sulfate assimilation and distribution in higher plants, but whether it is involved in detoxification of Cd in plants has not been described. In this study, transgenic rapeseed (Brassica napus) over-expressing miR395 was identified under Cd stress. miR395-over-expressing plants showed a lower degree of Cd-induced oxidative stress than wild type. By contrast, chlorophyll, glutathione and non-protein thiols contents were higher in the transformants than wild type. Determination of growth response showed that 35S::MIR395 plants accumulated higher levels of biomass and sulfur than wild type under Cd exposure. miR395 transgenic plants had higher levels of Cd in plants, particularly at the high supply of Cd in the medium, but they tended to repress Cd translocation from roots to shoots. Simultaneously, expression of metal-tolerance genes such as BnPCS1, BnHO1 and Sultr1;1 was up-regulated under Cd stress, and the expression of the genes was more pronounced in 35S::MIR395 plants than in wild type. These results suggest that miR395 would be involved in detoxification of Cd in B. napus.

  5. Effects of fish oil type, lipid antioxidants and presence of rapeseed oil on oxidative flavour stability of fish oil enriched milk

    DEFF Research Database (Denmark)

    Bruni Let, Mette; Jacobsen, Charlotte; Meyer, Anne S.

    2004-01-01

    As a part of our ongoing experiments on optimization of the oxidative stability of fish oils in genuine food systems, this study investigated the oxidative deterioration of fish oil enriched milk emulsions during cold storage. The experimental data showed that addition of rapeseed oil to fish oil...... (1:1) prior to emulsification into milk significantly protected the emulsions against oxidative deterioration. Addition of propyl gallate and a citric acid ester to the fish oil prior to emulsification also protected the fish oil enriched milk during storage. Emulsions containing a rapeseed:fish oil...... mixture were oxidatively stable during 11 d at 2 øC. Thus, no additional inhibitory effect of the added antioxidants was observed. The peroxide value and concentrations of five selected volatiles derived from n- 3 PUFA degradation in rapeseed:fish oil mixture emulsions were not significantly different...

  6. Counteracting foaming caused by lipids or proteins in biogas reactors using rapeseed oil or oleic acid as antifoaming agents

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Boe, Kanokwan; Einarsdottir, E. S.

    2015-01-01

    in biogas reactors fed with protein or lipid rich substrates. The results showed that both antifoams efficiently suppressed foaming. Moreover rapeseed oil resulted in stimulation of the biogas production. Finally, it was reckoned that the chemical structure of lipids, and more specifically their carboxylic...... deterioration of the methanogenic process. Many commercial antifoams are derivatives of fatty acids or oils. However, it is well known that lipids can induce foaming in manure based biogas plants. This study aimed to elucidate the effect of rapeseed oil and oleic acid on foam reduction and process performance...

  7. French environmental communication on sunflower and rapeseed oils based on life cycle assessment

    Directory of Open Access Journals (Sweden)

    Badey Laureen

    2013-07-01

    Full Text Available The French “Grenelle” laws sparked a French national experiment trialling the environmental labelling of fast-moving consumer goods. The data required for this labelling scheme are generated by carrying out a life cycle assessment (LCA. The aim of this study is to provide all necessary information to fit the national experiment for two standard oils: sunflower oil and rapeseed oil. The complete oil life cycle was studied, from oilseed farming through to the end-of-life of the packaging. We focused heavily on the impacts of crushing and refining. The seed processing data was collected from different plants that are representative of the French crushing/refining industry and packaging site practice. The data inventory was used to calculate the identified environmental labelling indicators, i.e. greenhouse gas (GHG emissions and water consumption. The production of 100g of refined bulk sunflower and rapeseed emits 89 and 127 g equivalent CO2 and consumes 1.7 L and 0.8 L of water, respectively. Most impacts on the studied indicators stem from the farming phase. Energy and water consumptions during crushing and refining also weigh on the studied indicators. The results of this study provide a relevant overview of all sunflower and rapeseed oils produced in France, and are usable as standard values for vegetable oil producers and users. Oil supply chain operators can use these values to compare to their own process values and gauge the improvements brought about by their ecodesign strategies. For example, using a biomass boiler, using less packaging, and making different choices on seed suppliers can lead to a lower set of impact values.

  8. Efficiency of wheat brassica mixtures with different seed rates in rainfed areas of potohar-pakistan

    International Nuclear Information System (INIS)

    Khan, S.; Khan, M.A.; Akmal, M.; Jabeen, A.

    2014-01-01

    Mixed over sole cropping is advantageous under the rainfed conditions in Pakistan. This avoids risk of complete crop failure and may returns higher income. The study aimed to investigate appropriate seed-rates combination for wheat-Brassica as mixed- or intercropped in rainfed conditions. Experiments were conducted at National Agricultural Research Center (NARC), Islamabad Pakistan during winter 2004-05 and 2005-06 using 10 treatments for wheat and Brassica as sole and mixed- or intercropped with 100 and 5 kg ha/sup -1/ for sole crop and 100 kg ha/sup -1/ for wheat with 40, 50, 60, and 70% lower than the recommended for Brassica. Sowing was done in 3rd week of October each year, in lines spaced 30cm. Fertilizer was applied N 48, P/sub 2/O/sub 5/ 34 and K/sub 2/O 18 (kg ha/sup -1/). Brassica was manually removed for fodder at flowering. Seed rate (SR) significantly (p<0.05) affected wheat grain yield. Cropping system (CS) significantly (p<0.05) affected grain yield of Brassica. Interactions of CS and SR were also significant (p<0.05) for both species. Planned mean comparison for grain yield was found significant (p<0.05) for wheat and brassica. Grain yield for sole wheat was 4.28t ha/sup -1/ but reported higher in mixed than intercropped. Grain yield of wheat decreased with increase in seed rate of Brassica as intercropped. Higher grain yield (4.39 t ha/sup -1/) of wheat was recorded for seed rates combinations 100:50 (%) as wheat: Brassica intercropped. The land equivalent ratio (LER) for mixed or intercropped system was higher than the sole crop and it increased with increase in the seed rate of Brassica as mixed crop but decreased as intercropped. The high LER was associated to treatment 100:50 (%) seed rates combination for wheat:Brassica as intercropped. Intercropped resulted the greater LER (1.78) than the mixed crop (1.66) and was found most effective for sustainable production in the rainfed areas for a higher net return. (author)

  9. Chemical characterization of Xanthan biopolymers synthesized by Xanthomonas campestris pv pruni strains

    International Nuclear Information System (INIS)

    Moreira, Angelita da S.; Vendruscolo, Claire T.; Furlan, Ligia; Galland, Griselda

    2001-01-01

    In this work we describe the characterisation of Xanthan biopolymers synthesized by two Xanthomonas campestris pv pruni strains, in aerobic fermentation. By chromatography on TLC we could notice the presence of Mannose monomer in higher proportion in the 82 strain with relation to the another ones. The viscosity results showed the temperature dependence. The 06 and 82 strains had their viscosity increased whereas for the 87 strain we could observe a reduction with temperature increasing. The 13 C NMR spectrum of 87 strain showed the characteristic signals at approximately 92.8, 70.4 and 61.4 ppm, attributed to C1, C4 and C6 from glucose monomer, with higher intensity. (author)

  10. A rich TILLING resource for studying gene function in Brassica rapa

    Directory of Open Access Journals (Sweden)

    Amoah Stephen

    2010-04-01

    Full Text Available Abstract Background The Brassicaceae family includes the model plant Arabidopsis thaliana as well as a number of agronomically important species such as oilseed crops (in particular Brassica napus, B. juncea and B. rapa and vegetables (eg. B. rapa and B. oleracea. Separated by only 10-20 million years, Brassica species and Arabidopsis thaliana are closely related, and it is expected that knowledge obtained relating to Arabidopsis growth and development can be translated into Brassicas for crop improvement. Moreover, certain aspects of plant development are sufficiently different between Brassica and Arabidopsis to warrant studies to be carried out directly in the crop species. However, mutating individual genes in the amphidiploid Brassicas such as B. napus and B. juncea may, on the other hand, not give rise to expected phenotypes as the genomes of these species can contain up to six orthologues per single-copy Arabidopsis gene. In order to elucidate and possibly exploit the function of redundant genes for oilseed rape crop improvement, it may therefore be more efficient to study the effects in one of the diploid Brassica species such as B. rapa. Moreover, the ongoing sequencing of the B. rapa genome makes this species a highly attractive model for Brassica research and genetic resource development. Results Seeds from the diploid Brassica A genome species, B. rapa were treated with ethyl methane sulfonate (EMS to produce a TILLING (Targeting Induced Local Lesions In Genomes population for reverse genetics studies. We used the B. rapa genotype, R-o-18, which has a similar developmental ontogeny to an oilseed rape crop. Hence this resource is expected to be well suited for studying traits with relevance to yield and quality of oilseed rape. DNA was isolated from a total of 9,216 M2 plants and pooled to form the basis of the TILLING platform. Analysis of six genes revealed a high level of mutations with a density of about one per 60 kb. This

  11. The genome of the mesopolyploid crop species Brassica rapa

    DEFF Research Database (Denmark)

    Wang, Xiaowu; Wang, Hanzhong; Wang, Jun

    2011-01-01

    We report the annotation and analysis of the draft genome sequence of Brassica rapa accession Chiifu-401-42, a Chinese cabbage. We modeled 41,174 protein coding genes in the B. rapa genome, which has undergone genome triplication. We used Arabidopsis thaliana as an outgroup for investigating...... of Brassica oil and vegetable crops....

  12. Tracing the transcriptomic changes in synthetic Trigenomic allohexaploids of Brassica using an RNA-Seq approach.

    Directory of Open Access Journals (Sweden)

    Qin Zhao

    Full Text Available Polyploidization has played an important role in plant evolution and speciation, and newly formed allopolyploids have experienced rapid transcriptomic changes. Here, we compared the transcriptomic differences between a synthetic Brassica allohexaploid and its parents using a high-throughput RNA-Seq method. A total of 35,644,409 sequence reads were generated, and 32,642 genes were aligned from the data. Totals of 29,260, 29,060, and 29,697 genes were identified in Brassicarapa, Brassicacarinata, and Brassica allohexaploid, respectively. We compared 7,397 differentially expressed genes (DEGs between Brassica hexaploid and its parents, as well as 2,545 nonadditive genes of Brassica hexaploid. We hypothesized that the higher ploidy level as well as secondary polyploidy might have influenced these changes. The majority of the 3,184 DEGs between Brassica hexaploid and its paternal parent, B. rapa, were involved in the biosynthesis of secondary metabolites, plant-pathogen interactions, photosynthesis, and circadian rhythm. Among the 2,233 DEGs between Brassica hexaploid and its maternal parent, B. carinata, several played roles in plant-pathogen interactions, plant hormone signal transduction, ribosomes, limonene and pinene degradation, photosynthesis, and biosynthesis of secondary metabolites. There were more significant differences in gene expression between the allohexaploid and its paternal parent than between it and its maternal parent, possibly partly because of cytoplasmic and maternal effects. Specific functional categories were enriched among the 2,545 nonadditive genes of Brassica hexaploid compared with the additive genes; the categories included response to stimulus, immune system process, cellular process, metabolic process, rhythmic process, and pigmentation. Many transcription factor genes, methyltransferases, and methylation genes showed differential expression between Brassica hexaploid and its parents. Our results demonstrate that the

  13. Influence of agitation and aeration in xanthan production by Xanthomonas campestris pv pruni strain 101 Influencia de la agitación y la aireación en la producción de xantano por Xanthomonas campestris pv. pruni cepa 101

    Directory of Open Access Journals (Sweden)

    C. D. Borges

    2008-06-01

    Full Text Available Production, viscosity, and chemical composition of xanthan synthesized by bacterium Xanthomonas campestris pv pruni strain 101 were evaluated in bioreactor systems. During the process, the volumetric oxygen mass transfer coefficient (kLa and the biomass were determined and the pH was monitored. The cultures were grown in a 3 l bioreactor, with aeration and agitation varying as follows: conditions (A 300 rpm, 3 vvm and (B 200 rpm, 2 vvm, at 28 °C. Our results showed that gum production was dependent on kLa, with a maximum yield of 8.15 g/l at 300 rpm, 3 vvm, 54 h of fermentation, kLa 21.4/h, while biomass was not affected. All aqueous solutions of 3% (w/v xanthans synthesized showed a pseudoplastic behavior. The highest viscosity was reached under the strongest aeration/agitation conditions. All xanthan samples contained glucose, mannose, rhamnose, and glucuronic acid as their main components. The highest agitation and aeration rates used under condition A (300 rpm and 3 vvm favorably influenced the yield and viscosity of the xanthan produced by bacterium X. campestris pv pruni 101 at different fermentation times.Se evaluó la producción, viscosidad y composición química del xantano sintetizado por la bacteria Xanthomonas campestris pv. pruni cepa 101 en un fermentador. Durante el proceso se controló el pH y se determinaron el coeficiente de transferencia de masa de oxígeno (kLa y la producción de masa celular seca. Los cultivos se realizaron en un fermentador de 3 l variando la aireación y la agitación, en las siguientes condiciones: (A 300 rpm, 3 vvm y (B 200 rpm, 2 vvm; a 28 °C. Nuestros resultados mostraron que la producción de goma fue dependiente del kLa, con un rendimiento máximo de 8,15 g/l a 300 rpm y 3 vvm a las 54 h de fermentación, kLa de 21,4/h, mientras que la producción de biomasa no se afectó. Todas las soluciones acuosas de xantano al 3% (m/v sintetizadas presentaron comportamiento pseudoplástico. La mayor

  14. Current Status and Challenges in Identifying Disease Resistance Genes in Brassica napus

    Directory of Open Access Journals (Sweden)

    Ting Xiang Neik

    2017-11-01

    Full Text Available Brassica napus is an economically important crop across different continents including temperate and subtropical regions in Europe, Canada, South Asia, China and Australia. Its widespread cultivation also brings setbacks as it plays host to fungal, oomycete and chytrid pathogens that can lead to serious yield loss. For sustainable crop production, identification of resistance (R genes in B. napus has become of critical importance. In this review, we discuss four key pathogens affecting Brassica crops: Clubroot (Plasmodiophora brassicae, Blackleg (Leptosphaeria maculans and L. biglobosa, Sclerotinia Stem Rot (Sclerotinia sclerotiorum, and Downy Mildew (Hyaloperonospora parasitica. We first review current studies covering prevalence of these pathogens on Brassica crops and highlight the R genes and QTL that have been identified from Brassica species against these pathogens. Insights into the relationships between the pathogen and its Brassica host, the unique host resistance mechanisms and how these affect resistance outcomes is also presented. We discuss challenges in identification and deployment of R genes in B. napus in relation to highly specific genetic interactions between host subpopulations and pathogen pathotypes and emphasize the need for common or shared techniques and research materials or tighter collaboration between researchers to reconcile the inconsistencies in the research outcomes. Using current genomics tools, we provide examples of how characterization and cloning of R genes in B. napus can be carried out more effectively. Lastly, we put forward strategies to breed resistant cultivars through introgressions supported by genomic approaches and suggest prospects that can be implemented in the future for a better, pathogen-resistant B. napus.

  15. Current Status and Challenges in Identifying Disease Resistance Genes in Brassica napus

    Science.gov (United States)

    Neik, Ting Xiang; Barbetti, Martin J.; Batley, Jacqueline

    2017-01-01

    Brassica napus is an economically important crop across different continents including temperate and subtropical regions in Europe, Canada, South Asia, China and Australia. Its widespread cultivation also brings setbacks as it plays host to fungal, oomycete and chytrid pathogens that can lead to serious yield loss. For sustainable crop production, identification of resistance (R) genes in B. napus has become of critical importance. In this review, we discuss four key pathogens affecting Brassica crops: Clubroot (Plasmodiophora brassicae), Blackleg (Leptosphaeria maculans and L. biglobosa), Sclerotinia Stem Rot (Sclerotinia sclerotiorum), and Downy Mildew (Hyaloperonospora parasitica). We first review current studies covering prevalence of these pathogens on Brassica crops and highlight the R genes and QTL that have been identified from Brassica species against these pathogens. Insights into the relationships between the pathogen and its Brassica host, the unique host resistance mechanisms and how these affect resistance outcomes is also presented. We discuss challenges in identification and deployment of R genes in B. napus in relation to highly specific genetic interactions between host subpopulations and pathogen pathotypes and emphasize the need for common or shared techniques and research materials or tighter collaboration between researchers to reconcile the inconsistencies in the research outcomes. Using current genomics tools, we provide examples of how characterization and cloning of R genes in B. napus can be carried out more effectively. Lastly, we put forward strategies to breed resistant cultivars through introgressions supported by genomic approaches and suggest prospects that can be implemented in the future for a better, pathogen-resistant B. napus. PMID:29163558

  16. Hepatoprotective Effect of Cuscuta campestris Yunck. Whole Plant on Carbon Tetrachloride Induced Chronic Liver Injury in Mice.

    Science.gov (United States)

    Peng, Wen-Huang; Chen, Yi-Wen; Lee, Meng-Shiou; Chang, Wen-Te; Tsai, Jen-Chieh; Lin, Ying-Chih; Lin, Ming-Kuem

    2016-12-07

    Cuscuta seeds and whole plant have been used to nourish the liver and kidney. This study was aimed to investigate the hepatoprotective activity of the ethanol extract of Cuscuta campestris Yunck. whole plant (CC EtOH ). The hepatoprotective effect of CC EtOH (20, 100 and 500 mg/kg) was evaluated on carbon tetrachloride (CCl₄)-induced chronic liver injury. Serum alanine aminotransferase, aspartate aminotransferase, triglyceride and cholesterol were measured and the fibrosis was histologically examined. CC EtOH exhibited a significant inhibition of the increase of serum alanine aminotransferase, aspartate aminotransferase, triglyceride and cholesterol. Histological analyses showed that fibrosis of liver induced by CCl₄ were significantly reduced by CC EtOH . In addition, 20, 100 and 500 mg/kg of the extract decreased the level of malondialdehyde (MDA) and enhanced the activities of anti-oxidative enzymes including superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GRd) in the liver. We demonstrate that the hepatoprotective mechanisms of CC EtOH were likely to be associated to the decrease in MDA level by increasing the activities of antioxidant enzymes such as SOD, GPx and GRd. In addition, our findings provide evidence that C. campestris Yunck. whole plant possesses a hepatoprotective activity to ameliorate chronic liver injury.

  17. Hepatoprotective Effect of Cuscuta campestris Yunck. Whole Plant on Carbon Tetrachloride Induced Chronic Liver Injury in Mice

    Directory of Open Access Journals (Sweden)

    Wen-Huang Peng

    2016-12-01

    Full Text Available Cuscuta seeds and whole plant have been used to nourish the liver and kidney. This study was aimed to investigate the hepatoprotective activity of the ethanol extract of Cuscuta campestris Yunck. whole plant (CCEtOH. The hepatoprotective effect of CCEtOH (20, 100 and 500 mg/kg was evaluated on carbon tetrachloride (CCl4-induced chronic liver injury. Serum alanine aminotransferase, aspartate aminotransferase, triglyceride and cholesterol were measured and the fibrosis was histologically examined. CCEtOH exhibited a significant inhibition of the increase of serum alanine aminotransferase, aspartate aminotransferase, triglyceride and cholesterol. Histological analyses showed that fibrosis of liver induced by CCl4 were significantly reduced by CCEtOH. In addition, 20, 100 and 500 mg/kg of the extract decreased the level of malondialdehyde (MDA and enhanced the activities of anti-oxidative enzymes including superoxide dismutase (SOD, glutathione peroxidase (GPx and glutathione reductase (GRd in the liver. We demonstrate that the hepatoprotective mechanisms of CCEtOH were likely to be associated to the decrease in MDA level by increasing the activities of antioxidant enzymes such as SOD, GPx and GRd. In addition, our findings provide evidence that C. campestris Yunck. whole plant possesses a hepatoprotective activity to ameliorate chronic liver injury.

  18. Allelopathic effect of aqueous extracts of Eucalyptus globulus Labill. and of Casearia sylvestris Sw. on cropsEfeito alelopático de extratos aquosos de Eucalyptus globulus Labill. e de Casearia sylvestris Sw. sobre espécies cultivadas

    Directory of Open Access Journals (Sweden)

    Grasielle Soares Gusman

    2011-10-01

    Full Text Available Allelopathy is characterized by the harmful or benefic effects caused by secondary metabolites, that are produced by plants, microorganisms or fungi and are released in the environment, on the development of natural biological systems or implemented ones. This study aimed to evaluate the allelopathic effects of aqueous extracts of eucalypt (Eucalyptus globulus Labill. and wild coffee (Casearia sylvestris Sw. on the germination and initial development of mustard (Brassica campestris L., cabbage (Brassica oleracea L. cv. capitata, broccoli (Brassica oleracea L. cv. italica, kale (Brassica pekinensis L., lettuce (Lactuca sativa L. cv. grand rapids, tomato (Lycopersicum esculentum Miller, turnip (Brassica rapa L., rucola (Eruca sativa L. and radish (Raphanus sativus L.. Six concentrations of each aqueous extract were tested (10, 30, 50, 70, 90 and 100% and compared to control (distilled water, with five replicates of each concentration, being ten seeds of each crop distributed in each replicate. The aqueous extracts of E. globulus and C. sylvestris reduced significantly the percentage of seed germination, the index of germination speed and the initial growth of the above ground part and roots of all cultivated species, being the reduction of these parameters higher with the increment of the aqueous extracts concentration, which led to thicker and atrophied roots with a higher number of absorbent hairs. Therefore, the results indicate an existence of allelopathic potential of E. globulus and C. sylvestris.A alelopatia caracteriza-se pelos efeitos danosos ou benéficos que metabólitos secundários produzidos por plantas, microrganismos ou fungos liberados no ambiente exercem sobre o desenvolvimento de sistemas biológicos naturais ou implantados. O objetivo do trabalho foi avaliar o efeito alelopático de extratos aquosos de eucalipto (Eucalyptus globulus Labill. e guaçatonga (Casearia sylvestris Sw. na germinação e no crescimento inicial de

  19. Impact of nanoparticles and butanol on properties and spray characteristics of waste cooking oil biodiesel and pure rapeseed oil

    Directory of Open Access Journals (Sweden)

    Ahmad K. H.

    2017-01-01

    Full Text Available Renewable biofuels can offset greenhouse gases by replacing fossil fuels destined for internal combustion engines. However, biofuels have their own setbacks and may lead to poor combustion inside the engine cylinder. In this study, nanoparticles and butanol were blended either separately or together with waste cooking oil biodiesel and neat rape seed oil to investigate the impact of these additives on the properties and spray characteristics. The investigation comprised of three stages, with each having an effect on how the next stage of the investigation was conducted. Initially, the physicochemical characteristics of 25ppm, 50ppm, 75ppm and 100ppm concentrations of aluminium oxide and copper oxide nanoparticle blends with fossil diesel, waste cooking oil biodiesel and rapeseed oil were investigated. The results from first stage investigation showed that, in general, blends containing aluminium oxide nanoparticles gave better results for almost all the concentrations when compared with copper oxide nanoparticle blends with the same nanoparticle concentrations. Overall, waste cooking oil biodiesel blended with 100ppm aluminium oxide nanoparticle showed most promising results like the flash point of 159.3°C, kinematic viscosity @40°C of 4.66 cSt, and gross calorific value of 44.43 MJ/kg. These values were 61.6% higher, 51.3% higher and 3.2% lower than that of corresponding fossil diesel values. Subsequently, in the second stage of the study, the addition of butanol was investigated to assess its ability to enhance the emulsion of biofuel-nanoparticles blends. Four blends containing 90% biodiesel & 10% butanol, and 90% rapeseed oil & 10% butanol, with and without 100ppm Al2O3 were prepared. Results showed that the kinematic viscosity of the fuel blends containing 100ppm aluminium oxide nanoparticles were decreased by 0.4% and 3.3%, for 90% biodiesel & 10% butanol and 90% rapeseed oil & 10% butanol blends respectively, when compared to without

  20. Impact of nanoparticles and butanol on properties and spray characteristics of waste cooking oil biodiesel and pure rapeseed oil

    Science.gov (United States)

    Ahmad, K. H.; Hossain, A. K.

    2017-11-01

    Renewable biofuels can offset greenhouse gases by replacing fossil fuels destined for internal combustion engines. However, biofuels have their own setbacks and may lead to poor combustion inside the engine cylinder. In this study, nanoparticles and butanol were blended either separately or together with waste cooking oil biodiesel and neat rape seed oil to investigate the impact of these additives on the properties and spray characteristics. The investigation comprised of three stages, with each having an effect on how the next stage of the investigation was conducted. Initially, the physicochemical characteristics of 25ppm, 50ppm, 75ppm and 100ppm concentrations of aluminium oxide and copper oxide nanoparticle blends with fossil diesel, waste cooking oil biodiesel and rapeseed oil were investigated. The results from first stage investigation showed that, in general, blends containing aluminium oxide nanoparticles gave better results for almost all the concentrations when compared with copper oxide nanoparticle blends with the same nanoparticle concentrations. Overall, waste cooking oil biodiesel blended with 100ppm aluminium oxide nanoparticle showed most promising results like the flash point of 159.3°C, kinematic viscosity @40°C of 4.66 cSt, and gross calorific value of 44.43 MJ/kg. These values were 61.6% higher, 51.3% higher and 3.2% lower than that of corresponding fossil diesel values. Subsequently, in the second stage of the study, the addition of butanol was investigated to assess its ability to enhance the emulsion of biofuel-nanoparticles blends. Four blends containing 90% biodiesel & 10% butanol, and 90% rapeseed oil & 10% butanol, with and without 100ppm Al2O3 were prepared. Results showed that the kinematic viscosity of the fuel blends containing 100ppm aluminium oxide nanoparticles were decreased by 0.4% and 3.3%, for 90% biodiesel & 10% butanol and 90% rapeseed oil & 10% butanol blends respectively, when compared to without the nanoparticles. The

  1. Analysis of yield and plant traits of oilseed rape (Brassica napus L. cultivated in temperate region in light of the possibilities of sowing in arid areas

    Directory of Open Access Journals (Sweden)

    Tadeusz Zając

    2016-12-01

    Full Text Available This work is a review of selected literature on the species of Brassica with the greatest economic significance. Oilseed rape (Brassica napus ssp. oleifera currently ranks third worldwide among oilseed crops used for oil production and is the most important in the temperate zone. The manifold uses of rape include not only human consumption of oil, but also the use of post-extraction meal to feed livestock as well as industrial applications as a source of bioenergy or cellulose. The improvement in the economic position of rape among crop plants is also due to the doubling of its yield between 1970 and 2009; the average annual increase in seed yield worldwide was 27 kg ha−1 yr−1. The yield level in Europe exceeds the average yields achieved in the world, particularly in Asia. Recently, the cultivation of oilseed rape was started on a relatively large acreage in Iran where the yield amounted 2.1 t ha−1, exceeding the yields of China and India. In Poland, the acreage of oilseed rape cultivation between 1965 and 2013 increased 3–4 times, and during this period the annual increase in seed yield was 29 kg ha−1 yr−1. Under the field conditions of the temperate climate zone, winter oilseed rape yield is mainly determined by agro-climatic conditions during the growing period, the level of nitrogen fertilization, and the production potential of varieties, which is currently highest in hybrids. There is a noticeable tendency of hybrids towards formation of more siliques by individual oilseed plants. Different production categories of plants appear in a rape crop. Semi-dwarf varieties of winter rapeseed are distinguished by greater silique density, particularly on the main shoot. Moreover, these hybrids are characterized by faster growth of the root system, which enables them to take up nitrogen from the soil more efficiently.

  2. Experimental investigations of combustion and emission characteristics of rapeseed oil–diesel blends in a two cylinder agricultural diesel engine

    International Nuclear Information System (INIS)

    Qi, D.H.; Lee, C.F.; Jia, C.C.; Wang, P.P.; Wu, S.T.

    2014-01-01

    Highlights: • The main properties of rapeseed oil and diesel fuel were measure and analyzed. • The cylinder pressure of the rapeseed oil–diesel blends was measured and compared. • The heat release rate of the test fuels was calculated and the combustion process was analyzed. • The fuel consumption and emissions characteristics were measured and compared. - Abstract: The main objective of this paper was to study the performance, emissions and combustion characteristics of a diesel engine using rapeseed oil–diesel blends. The main fuel properties of rapeseed oil (RSO) were investigated and compared with that of diesel fuel. The experimental results showed that the viscosity and density of the blends were decreased and approached to that of diesel fuel when RSO volume fraction was less than 20%. At low engine loads, the start of combustion for the blends was almost similar to that for diesel fuel, but the peak cylinder pressure and heat release rate were higher. At high engine loads, the start of combustion for the blends was slightly earlier than that for diesel fuel, but the peak cylinder pressure and heat release rate were identical. For the blends, there was slightly higher brake specific fuel consumptions (BSFC) and brake specific energy consumptions (BSEC) at low engine loads. Smoke emission was higher at low engine loads, but lower at high engine loads. Nitrogen oxide (NO x ) emission was observed slightly lower at low engine loads and almost identical at high engine loads. Carbon monoxide (CO) and hydrocarbon (HC) emission were higher under all range of engine loads for the blends

  3. Ultrasound-assisted production of biodiesel FAME from rapeseed oil in a novel two-compartment reactor

    DEFF Research Database (Denmark)

    Nakayama, Ryo-ichi; Imai, Masanao; Woodley, John

    2017-01-01

    Ultrasonication has been proposed as a promising technique for enzymatic transesterification. In contrast, excess ultrasonication causes an enzyme inactivation. This paper presents enzymatic transesterification to produce fatty acid methyl ester (FAME) from rapeseed oil using Callera Trans L™ usi...

  4. Effect of graded levels of rapeseed oil in isonitrogenous diets on the development of the gastrointestinal tract, and utilisation of protein, fat and energy in broiler chickens

    DEFF Research Database (Denmark)

    Jørgensen, Henry; Zhao, Xin Quan; Theil, Peter Kappel

    2008-01-01

    The effect of feeding 0, 4, 8 and 16% rapeseed oil from 12-42 days of age was studied in broiler chickens on performance, digestibility of nutrients, and development of gastrointestinal tract, protein and energy metabolism. Thirty six female chickens (Ross 208) with initial body weight average 246...... periods each of five days with two 24 h measurements of gas exchange in two open-air-circuit respiration chambers inserted on the second and third day of each period. The addition of rapeseed oil increased the amount of gutfill indicating a reduced rate of passage and causing a hypertrophy...... of the gastrointestinal tract. There was a positive effect on feed utilisation as well as on digestibility especially of dietary fat together with higher utilisation of protein with addition of rapeseed oil. The partial fat digestibility of rapeseed oil estimated by regression was 91.1% and the partial metabolisability...

  5. Synthesis, crystal structure and biological activity of n-(5-(o-tolyl)-1, 3, 4-thiadiazol-2-yl)cyclopropanecarboxamide

    International Nuclear Information System (INIS)

    Tong, J.Y.; Sun, N.B.; Wu, H.K.

    2013-01-01

    A new 1, 3, 4-thiadiazole compound, N-(5-(o-tolyl)-1,3,4-thiadiazol-2-yl) cyclopropanecarboxamide, was synthesized and its structure was confirmed by 1H NMR, MS and HRMS. The single crystal structure of the title compound was determined by X-ray diffraction. The preliminary biological test showed that the synthesized compound has moderate herbicidal activity against Brassica campestris and fungicidal activities against Sclerotinia sclerotiorum(Lib.) de Bary, Rhizoctonia solanii, Fusarium oxysporum, Corynespora cassiicola, and Botrytis cinerea. (author)

  6. Study on the Occurrence and Epidemic Model of Rape Sclerotinia Stem Rot of ‘Zheyou 50’

    OpenAIRE

    Xu Sen-fu; Wang Hui-fu; Yu Shanhong; Wang En-guo

    2013-01-01

    In order to investigate invading and epidemic rules of rape sclerotinia stem rot of ‘Zheyou 50’ and promote the development of brassica campestris industry, this paper studied the outbreak regularity and epidemic model of rape sclerotinia stem rot according to field investigation and infection. The result showed that machinery direct seeding rape was good for the occurrence of sclerotinia stem rot for the reason of late seeding and high density. The period from water damage appeared to wiltin...

  7. Quantification of Plasmodiophora brassicae Using a DNA-Based Soil Test Facilitates Sustainable Oilseed Rape Production.

    Science.gov (United States)

    Wallenhammar, Ann-Charlotte; Gunnarson, Albin; Hansson, Fredrik; Jonsson, Anders

    2016-04-22

    Outbreaks of clubroot disease caused by the soil-borne obligate parasite Plasmodiophora brassicae are common in oilseed rape (OSR) in Sweden. A DNA-based soil testing service that identifies fields where P. brassicae poses a significant risk of clubroot infection is now commercially available. It was applied here in field surveys to monitor the prevalence of P. brassicae DNA in field soils intended for winter OSR production and winter OSR field experiments. In 2013 in Scania, prior to planting, P. brassicae DNA was detected in 60% of 45 fields on 10 of 18 farms. In 2014, P. brassicae DNA was detected in 44% of 59 fields in 14 of 36 farms, in the main winter OSR producing region in southern Sweden. P. brassicae was present indicative of a risk for >10% yield loss with susceptible cultivars (>1300 DNA copies g soil(-1)) in 47% and 44% of fields in 2013 and 2014 respectively. Furthermore, P. brassicae DNA was indicative of sites at risk of complete crop failure if susceptible cultivars were grown (>50 000 copies g(-1) soil) in 14% and 8% of fields in 2013 and 2014, respectively. A survey of all fields at Lanna research station in western Sweden showed that P. brassicae was spread throughout the farm, as only three of the fields (20%) showed infection levels below the detection limit for P.brassicae DNA, while the level was >50,000 DNA copies g(-1) soil in 20% of the fields. Soil-borne spread is of critical importance and soil scraped off footwear showed levels of up to 682 million spores g(-1) soil. Soil testing is an important tool for determining the presence of P. brassicae and providing an indication of potential yield loss, e.g., in advisory work on planning for a sustainable OSR crop rotation. This soil test is gaining acceptance as a tool that increases the likelihood of success in precision agriculture and in applied research conducted in commercial oilseed fields and at research stations. The present application highlights the importance of prevention of

  8. Quantification of Plasmodiophora brassicae Using a DNA-Based Soil Test Facilitates Sustainable Oilseed Rape Production

    Directory of Open Access Journals (Sweden)

    Ann-Charlotte Wallenhammar

    2016-04-01

    Full Text Available Outbreaks of clubroot disease caused by the soil-borne obligate parasite Plasmodiophora brassicae are common in oilseed rape (OSR in Sweden. A DNA-based soil testing service that identifies fields where P. brassicae poses a significant risk of clubroot infection is now commercially available. It was applied here in field surveys to monitor the prevalence of P. brassicae DNA in field soils intended for winter OSR production and winter OSR field experiments. In 2013 in Scania, prior to planting, P. brassicae DNA was detected in 60% of 45 fields on 10 of 18 farms. In 2014, P. brassicae DNA was detected in 44% of 59 fields in 14 of 36 farms, in the main winter OSR producing region in southern Sweden. P. brassicae was present indicative of a risk for >10% yield loss with susceptible cultivars (>1300 DNA copies g soil−1 in 47% and 44% of fields in 2013 and 2014 respectively. Furthermore, P. brassicae DNA was indicative of sites at risk of complete crop failure if susceptible cultivars were grown (>50 000 copies g−1 soil in 14% and 8% of fields in 2013 and 2014, respectively. A survey of all fields at Lanna research station in western Sweden showed that P. brassicae was spread throughout the farm, as only three of the fields (20% showed infection levels below the detection limit for P.brassicae DNA, while the level was >50,000 DNA copies g−1 soil in 20% of the fields. Soil-borne spread is of critical importance and soil scraped off footwear showed levels of up to 682 million spores g−1 soil. Soil testing is an important tool for determining the presence of P. brassicae and providing an indication of potential yield loss, e.g., in advisory work on planning for a sustainable OSR crop rotation. This soil test is gaining acceptance as a tool that increases the likelihood of success in precision agriculture and in applied research conducted in commercial oilseed fields and at research stations. The present application highlights the importance of

  9. Database derived microsatellite markers (SSRs) for cultivar differentiation in Brassica oleracea

    DEFF Research Database (Denmark)

    Louarn, Sébastien Jean Yves; Torp, Anna Maria; Holme, I.B.

    2007-01-01

     Fifty-nine Brassica oleracea cultivars, belonging to five botanical varieties, were evaluated for microsatellite (SSR) polymorphisms using 11 database sequence derived primer pairs. The cultivars represented 12 broccoli (Brassica oleracea var. italica), ten Brussels sprouts (B. o. var. gemmifera...

  10. Brassicaceae Mustards: Traditional and Agronomic Uses in Australia and New Zealand

    OpenAIRE

    Mahmudur Rahman; Amina Khatun; Lei Liu; Bronwyn J. Barkla

    2018-01-01

    Commonly cultivated Brassicaceae mustards, namely garlic mustard (Alliaria petiolata), white mustard (Brassica alba), Ethiopian mustard (B. carinata), Asian mustard (B. juncea), oilseed rape (B. napus), black mustard (B. nigra), rapeseed (B. rapa), white ball mustard (Calepina irregularis), ball mustard (Neslia paniculata), treacle mustard (Erysimum repandum), hedge mustard (Sisymbrium officinale), Asian hedge mustard (S. orientale), smooth mustard (S. erysimoides) and canola are the major ec...

  11. Multivariate ordination identifies vegetation types associated with spider conservation in brassica crops

    Directory of Open Access Journals (Sweden)

    Hafiz Sohaib Ahmed Saqib

    2017-10-01

    Full Text Available Conservation biological control emphasizes natural and other non-crop vegetation as a source of natural enemies to focal crops. There is an unmet need for better methods to identify the types of vegetation that are optimal to support specific natural enemies that may colonize the crops. Here we explore the commonality of the spider assemblage—considering abundance and diversity (H—in brassica crops with that of adjacent non-crop and non-brassica crop vegetation. We employ spatial-based multivariate ordination approaches, hierarchical clustering and spatial eigenvector analysis. The small-scale mixed cropping and high disturbance frequency of southern Chinese vegetation farming offered a setting to test the role of alternate vegetation for spider conservation. Our findings indicate that spider families differ markedly in occurrence with respect to vegetation type. Grassy field margins, non-crop vegetation, taro and sweetpotato harbour spider morphospecies and functional groups that are also present in brassica crops. In contrast, pumpkin and litchi contain spiders not found in brassicas, and so may have little benefit for conservation biological control services for brassicas. Our findings also illustrate the utility of advanced statistical approaches for identifying spatial relationships between natural enemies and the land uses most likely to offer alternative habitats for conservation biological control efforts that generates testable hypotheses for future studies.

  12. Biocompounds from rapeseed oil industry co-stream as active ingredients for skin care applications.

    Science.gov (United States)

    Rivera, D; Rommi, K; Fernandes, M M; Lantto, R; Tzanov, T

    2015-10-01

    Despite the great number of substances produced by the skincare industry, very few of them seem to truly have an effect on the skin. Therefore, given the social implications surrounding physical appearance, the search for new bioactive compounds to prevent or attenuate skin ageing and enhance self-image is a priority of current research. In this context, being rich in valuable compounds, such as proteins, phenolics, lipids and vitamins, this study is focused on the potential activity of rapeseed press cake hydrolysates to be used as raw materials for skincare applications. In this study, the protein-rich press residue from the rapeseed oil industry was converted enzymatically into short-chain biologically active peptides using four protease products with varying substrate specificity - Alcalase 2.4L FG, Protex 6L, Protamex and Corolase 7089. The antioxidant, anti-wrinkle and anti-inflammatory activities of the obtained hydrolysates were evaluated in vitro while their biocompatibility with human skin fibroblasts was tested. All hydrolysates were biocompatible with skin fibroblasts after 24 h of exposure, while the non-hydrolysed extract induced cell toxicity. Alcalase 2,4L FG and Protex 6L-obtained hydrolysates were the most promising extracts showing improved bioactivities suitable for skin anti-ageing formulations, namely antioxidant activity, inhibiting approximately 80% cellular reactive oxidative species, anti-inflammatory and anti-wrinkle properties, inhibiting around 36% of myeloperoxidase activity and over 83% of elastase activity. The enzymatic technology applied to the rapeseed oil industry costream results in the release of bioactive compounds suitable for skincare applications. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  13. Distributions of imidacloprid, imidacloprid-olefin and imidacloprid-urea in green plant tissues and roots of rapeseed (Brassica napus) from artificially contaminated potting soil.

    Science.gov (United States)

    Seifrtova, Marcela; Halesova, Tatana; Sulcova, Klara; Riddellova, Katerina; Erban, Tomas

    2017-05-01

    Imidacloprid-urea is the primary imidacloprid soil metabolite, whereas imidacloprid-olefin is the main plant-relevant metabolite and is more toxic to insects than imidacloprid. We artificially contaminated potting soil and used quantitative UHPLC-QqQ-MS/MS to determine the imidacloprid, imidacloprid-olefin and imidacloprid-urea distributions in rapeseed green plant tissues and roots after 4 weeks of exposure. In soil, the imidacloprid/imidacloprid-urea molar ratios decreased similarly after the 250 and 2500 µg kg -1 imidacloprid treatments. The imidacloprid/imidacloprid-urea molar ratios in the root and soil were similar, whereas in the green plant tissue, imidacloprid-urea increased more than twofold compared with the root. Although imidacloprid-olefin was prevalent in the green plant tissues, with imidacloprid/imidacloprid-olefin molar ratios of 2.24 and 1.47 for the 250 and 2500 µg kg -1 treatments respectively, it was not detected in the root. However, imidacloprid-olefin was detected in the soil after the 2500 µg kg -1 imidacloprid treatment. Significant proportions of imidacloprid-olefin and imidacloprid-urea in green plant tissues were demonstrated. The greater imidacloprid supply increased the imidacloprid-olefin/imidacloprid molar ratio in the green plant tissues. The absence of imidacloprid-olefin in the root excluded its retransport from leaves. The similar imidacloprid/imidacloprid-urea ratios in the soil and root indicated that the root serves primarily for transporting these substances. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Evaluation of in vitro anticancer activity of Ocimum basilicum, Alhagi maurorum, Calendula officinalis and their parasite Cuscuta campestris.

    Science.gov (United States)

    Behbahani, Mandana

    2014-01-01

    The present investigation was carried out to study the relationship between presence of cytotoxic compounds in Ocimum basilicum, Alhagi maurorum, Calendula officinalis and their parasite Cuscuta campestris. The cytotoxic activity of the pure compounds was performed by MTT assay against breast cancer cell lines (MCF-7 and MDA-MB-231) and normal breast cell line (MCF 10A). The induction of apoptosis was measured by the expression levels of p53, bcl-2, bax and caspase-3 genes using quantitative Real Time PCR. Three active fractions were detected by nuclear magnetic resonance as lutein, lupeol and eugenol, respectively, in C. officinalis, A. maurorum and O. basilicum. These compounds and their epoxidized forms were also detected in their parasite C. campestris. The cytotoxic activity of lutein epoxide, lupeol epoxide and eugenol epoxide was significantly more than lutein, lupeol and eugenol. The mRNA expression level of p53, caspase-3 and bax genes were increased in both cancer cells treated with all pure compounds. However, bcl-2 gene expression decreased in treated breast cancer cells. In conclusion, all the data indicated that the epoxide forms of lupeol, lutein and eugenol are potential drug candidates for inducing apoptosis in human breast cancer cells.

  15. Evaluation of in vitro anticancer activity of Ocimum basilicum, Alhagi maurorum, Calendula officinalis and their parasite Cuscuta campestris.

    Directory of Open Access Journals (Sweden)

    Mandana Behbahani

    Full Text Available The present investigation was carried out to study the relationship between presence of cytotoxic compounds in Ocimum basilicum, Alhagi maurorum, Calendula officinalis and their parasite Cuscuta campestris. The cytotoxic activity of the pure compounds was performed by MTT assay against breast cancer cell lines (MCF-7 and MDA-MB-231 and normal breast cell line (MCF 10A. The induction of apoptosis was measured by the expression levels of p53, bcl-2, bax and caspase-3 genes using quantitative Real Time PCR. Three active fractions were detected by nuclear magnetic resonance as lutein, lupeol and eugenol, respectively, in C. officinalis, A. maurorum and O. basilicum. These compounds and their epoxidized forms were also detected in their parasite C. campestris. The cytotoxic activity of lutein epoxide, lupeol epoxide and eugenol epoxide was significantly more than lutein, lupeol and eugenol. The mRNA expression level of p53, caspase-3 and bax genes were increased in both cancer cells treated with all pure compounds. However, bcl-2 gene expression decreased in treated breast cancer cells. In conclusion, all the data indicated that the epoxide forms of lupeol, lutein and eugenol are potential drug candidates for inducing apoptosis in human breast cancer cells.

  16. Monitoring lipase-catalyzed butterfat interesterification with rapesee oil by Fourier transform near-infrared spectroscopy

    DEFF Research Database (Denmark)

    Zhang, Hong; Mu, Huiling; Xu, Xuebing

    2006-01-01

    This work demonstrates the application of FT-NIR spectroscopy to monitor the enzymatic interesterification process for butterfat modification. The reactions were catalyzed by Lipozyme TL IM at 70 C for the blend of butterfat/rapeseed oil (70/30, w/w) in a packed-bed reactor. The blend and intere...

  17. Effects of Toasting Time on Digestive Hydrolysis of Soluble and Insoluble 00-Rapeseed Meal Proteins

    NARCIS (Netherlands)

    Salazar-Villanea, Sergio; Bruininx, Erik M.A.M.; Gruppen, Harry; Carré, Patrick; Quinsac, Alain; Poel, van der Thomas

    2017-01-01

    Thermal damage to proteins can reduce their nutritional value. The effects of toasting time on the kinetics of hydrolysis, the resulting molecular weight distribution of 00-rapeseed meal (RSM) and the soluble and insoluble protein fractions separated from the RSM were studied. Hydrolysis was

  18. Improvement of tissue culture, genetic transformation, and applications of biotechnology to Brassica.

    Science.gov (United States)

    Ravanfar, Seyed Ali; Orbovic, Vladimir; Moradpour, Mahdi; Abdul Aziz, Maheran; Karan, Ratna; Wallace, Simon; Parajuli, Saroj

    2017-04-01

    Development of in vitro plant regeneration method from Brassica explants via organogenesis and somatic embryogenesis is influenced by many factors such as culture environment, culture medium composition, explant sources, and genotypes which are reviewed in this study. An efficient in vitro regeneration system to allow genetic transformation of Brassica is a crucial tool for improving its economical value. Methods to optimize transformation protocols for the efficient introduction of desirable traits, and a comparative analysis of these methods are also reviewed. Hence, binary vectors, selectable marker genes, minimum inhibitory concentration of selection agents, reporter marker genes, preculture media, Agrobacterium concentration and regeneration ability of putative transformants for improvement of Agrobacterium-mediated transformation of Brassica are discussed.

  19. Fermentation of rapeseed meal, sunflower meal and faba beans in combination with wheat bran increases solubility of protein and phosphorus

    DEFF Research Database (Denmark)

    Poulsen, Hanne Damgaard; Blaabjerg, Karoline

    2017-01-01

    BACKGROUND To increase self-supply of protein and phosphorus (P) in European pig and poultry diets and reduce nitrogen (N) and P excretion, attention is directed to approaches increasing protein and P digestibility of rapeseed, sunflower and faba beans. Wheat bran is rich in enzymes degrading...... and solubilizing protein and phytate. Herein, solubilization of protein, N and P was investigated when increasing ratios of wheat bran were fermented with rapeseed meal (RSM), sunflower meal (SFM), faba beans (FB) or a combination of these (RSM/SFM/FB). RESULTS Protein, N and P solubility was greater, for all...

  20. COMPARATIVE ASSESSMENT OF NUCLEAR MAGNETIC RELAXATION CHARACTERISTICS OF SUNFLOWER AND RAPESEED LECITHIN

    OpenAIRE

    Lisovaya E. V.; Victorova E. P.; Agafonov O. S.; Kornen N. N.; Shahray T. A.

    2015-01-01

    The article presents a comparative assessment and peculiarities of nuclear magnetic relaxation characteristics of rapeseed and sunflower lecithin. It was established, that lecithin’s nuclear magnetic relaxation characteristics, namely, protons’ spin-spin relaxation time and amplitudes of nuclear magnetic relaxation signals of lecithin components, depend on content of oil’s fat acids and phospholipids, contained in the lecithin. Comparative assessment of protons’ spin-spin relaxation time of r...

  1. SWOT Analysis of Industrial Development of Double-low Rapeseed in Hubei Province

    OpenAIRE

    Xiong, Qiu-fang; Sun, Xiu-li

    2011-01-01

    Based on SWOT analysis method, this paper conducts analysis on the industrial development environment of double-low rapeseed in Hubei Province from the following four aspects, in order to crystallize its resources advantage and disadvantage and make it how the opportunities and challenges that it is faced by. First, advantage analysis: excellent geographic conditions, vigorous government support, powerful scientific research force, sound industrial system support; second, disadvantage analysi...

  2. Variation and Distribution of Glucosinolates in 42 Cultivars of Brassica oleracea Vegetable Crops

    NARCIS (Netherlands)

    Verkerk, R.; Tebbenhoff, S.; Dekker, M.

    2010-01-01

    Brassica vegetables are known to contain glucosinolates that are precursors for bioactive compounds like isothiocyanates that have been shown to play an important role in human health. This study reports the results of a screening of 11 Brassica oleracea crops consisting of 42 cultivars (6 white

  3. Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity

    Directory of Open Access Journals (Sweden)

    Ramin Lotfi

    2015-10-01

    Full Text Available The ameliorative effect of fulvic acid (0, 300, and 600 mg L− 1 on photosystem II and antioxidant enzyme activity of the rapeseed (Brassica napus L. plant under water stress (60, 100, and 140 mm evaporation from class A pan was studied using split plots in a randomized complete block design with three replications. Results indicated that application of fulvic acid (FA improved the maximum quantum efficiency of PSII (Fv/Fm and performance index (PI of plants under both well-watered and limited-water conditions. The time span from Fo to Fm and the energy necessary for the closure of all reaction centers was significantly increased, but the size of the plastoquinone pool was reduced with increasing water stress levels. Plants treated with FA had higher peroxidase and catalase activities under all irrigation conditions. Activities of ascorbate peroxidase and superoxide dismutase in plants increased with increasing water stress. Malondialdehyde increased under severe water stress, but application of FA significantly decreased lipid peroxidation. Production of reactive oxygen species (ROS is a common phenomenon in plants under stress. Under this condition, the balance between the production of ROS and the quenching activity of antioxidants is upset, often resulting in oxidative damage. In this study, application of FA significantly increased fluorescence of chlorophyll a, inhibiting ROS production and enhancing antioxidant enzymes activity that destroyed ROS. Thus, ROS in plant cells was reduced under water stress by application of FA and consequently lipid peroxidation was reduced.

  4. Mitochondrial genome sequencing helps show the evolutionary mechanism of mitochondrial genome formation in Brassica

    Science.gov (United States)

    2011-01-01

    Background Angiosperm mitochondrial genomes are more complex than those of other organisms. Analyses of the mitochondrial genome sequences of at least 11 angiosperm species have showed several common properties; these cannot easily explain, however, how the diverse mitotypes evolved within each genus or species. We analyzed the evolutionary relationships of Brassica mitotypes by sequencing. Results We sequenced the mitotypes of cam (Brassica rapa), ole (B. oleracea), jun (B. juncea), and car (B. carinata) and analyzed them together with two previously sequenced mitotypes of B. napus (pol and nap). The sizes of whole single circular genomes of cam, jun, ole, and car are 219,747 bp, 219,766 bp, 360,271 bp, and 232,241 bp, respectively. The mitochondrial genome of ole is largest as a resulting of the duplication of a 141.8 kb segment. The jun mitotype is the result of an inherited cam mitotype, and pol is also derived from the cam mitotype with evolutionary modifications. Genes with known functions are conserved in all mitotypes, but clear variation in open reading frames (ORFs) with unknown functions among the six mitotypes was observed. Sequence relationship analysis showed that there has been genome compaction and inheritance in the course of Brassica mitotype evolution. Conclusions We have sequenced four Brassica mitotypes, compared six Brassica mitotypes and suggested a mechanism for mitochondrial genome formation in Brassica, including evolutionary events such as inheritance, duplication, rearrangement, genome compaction, and mutation. PMID:21988783

  5. Produção de goma xantana por cepas nativas de Xanthomonas campestris a partir de casca de cacau ou soro de leite Production of xanthan gum by Xanthomonas campestris strains native from bark cocoa or whey

    Directory of Open Access Journals (Sweden)

    Denis de M. Diniz

    2012-01-01

    Full Text Available Foi estudada a otimização do processo de produção de goma xantana a partir de casca de cacau ou soro de leite como fonte de carbono, e determinou-se o rendimento da goma obtida pela bioconversão de casca de cacau e soro de leite com a Xanthomonas campestris 1182. A goma foi produzida em meios com potássio e nitrogênio a 25 °C, 250 rpm por 120 horas. Os rendimentos foram: 2,335 g.L-1 para a sacarose; 4,995 g.L-1 para a casca de cacau seca e 12,01 g.L-1 utilizando soro de leite. Portanto, é viável a produção de goma xantana utilizando fontes de carbono como a casca de cacau e o soro de leite.The optimization of the production process of xanthan gum from cocoa husks or milk whey as carbon source was studied, and the production rate of gum obtained by the bioconversion of cocoa pods and whey was determined, using Xanthomonas campestris 1182. The gum was produced in a medium with potassium and nitrogen at 25 °C, 250 rpm for 120 hours. The results were: 2.335 g.L-1 for sucrose; 4.995 g.L-1 for cocoa dry pods and 12.01 g.L-1 using whey. Therefore, the production of xanthan gum is feasible upon using carbon sources such as cocoa hulls and whey.

  6. Seasonal Effects on Bioactive Compounds and Antioxidant Capacity of Six Economically Important Brassica Vegetables

    Directory of Open Access Journals (Sweden)

    Eduardo A.S. Rosa

    2011-08-01

    Full Text Available Research on natural and bioactive compounds is increasingly focused on their effects on human health, but there are unexpectedly few studies evaluating the relationship between climate and natural antioxidants. The aim of this study was analyze the biological role of six different Brassica vegetables (Brassica oleracea L. and Brassica rapa L. as a natural source of antioxidant compounds. The antioxidant activity may be assigned to high levels of L-ascorbic acid, total phenolics and total flavonoids of each sample. The climate seasons affected directly the concentration of bioactive components and the antioxidant activity. Broccoli inflorescences and Portuguese kale showed high antioxidant activity in Spring-Summer whilst turnip leaves did so in Summer-Winter. The Brassica vegetables can provide considerable amounts of bioactive compounds and thus may constitute an important natural source of dietary antioxidants.

  7. Carbon dioxide concentrations are very high in developing oilseeds.

    Science.gov (United States)

    Goffman, Fernando D; Ruckle, Mike; Ohlrogge, John; Shachar-Hill, Yair

    2004-09-01

    A new method has been developed to rapidly determine the total inorganic carbon concentration (gaseous [CO2] + aqueous [CO(2)] + [HCO3-] + [CO3(2)-]) in developing seeds. Seeds are rapidly dissected and homogenized in 1 N HCl in gas-tight vials. The headspace gas is then analyzed by infrared gas analysis. Developing rapeseed (Brassica napus L.) and soybean [Glycine max (L.) Merr.] seeds were analyzed and found to have up to 40 and 12 mM total inorganic carbon, respectively. These concentrations are ca. 600-2000-fold higher than in ambient air or values reported for leaves. Carbon dioxide concentrations in rapeseed peaked during the stage of maximum oil synthesis and declined as seeds matured. The consequences for seed metabolism, physiology and carbon economy are discussed.

  8. Light influence in the nutritional composition of Brassica oleracea sprouts.

    Science.gov (United States)

    Vale, A P; Santos, J; Brito, N V; Peixoto, V; Carvalho, Rosa; Rosa, E; Oliveira, M Beatriz P P

    2015-07-01

    Brassica sprouts are considered a healthy food product, whose nutritional quality can be influenced by several factors. The aim of this work was to monitor the nutritional composition changes promoted by different sprouting conditions of four varieties of Brassica oleracea (red cabbage, broccoli, Galega kale and Penca cabbage). Sprouts were grown under light/darkness cycles and complete darkness. Standard AOAC methods were applied for nutritional value evaluation, while chromatographic methods with UV-VIS and FID detection were used to determine the free amino acids and fatty acids, respectively. Mineral content was analyzed by atomic absorption spectrometry. Sprouts composition revealed them as an excellent source of protein and dietary fiber. Selenium content was one of the most distinctive feature of sprouts, being the sprouting conditions determinant for the free amino acid and fatty acids profile. The use of complete darkness was beneficial to the overall nutritional quality of the brassica sprouts studied. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Quantification of Plasmodiophora brassicae Using a DNA-Based Soil Test Facilitates Sustainable Oilseed Rape Production

    OpenAIRE

    Ann-Charlotte Wallenhammar; Albin Gunnarson; Fredrik Hansson; Anders Jonsson

    2016-01-01

    Outbreaks of clubroot disease caused by the soil-borne obligate parasite Plasmodiophora brassicae are common in oilseed rape (OSR) in Sweden. A DNA-based soil testing service that identifies fields where P. brassicae poses a significant risk of clubroot infection is now commercially available. It was applied here in field surveys to monitor the prevalence of P. brassicae DNA in field soils intended for winter OSR production and winter OSR field experiments. In 2013 in Scania, prior to plantin...

  10. Digital gene expression analysis of gene expression differences within Brassica diploids and allopolyploids.

    Science.gov (United States)

    Jiang, Jinjin; Wang, Yue; Zhu, Bao; Fang, Tingting; Fang, Yujie; Wang, Youping

    2015-01-27

    Brassica includes many successfully cultivated crop species of polyploid origin, either by ancestral genome triplication or by hybridization between two diploid progenitors, displaying complex repetitive sequences and transposons. The U's triangle, which consists of three diploids and three amphidiploids, is optimal for the analysis of complicated genomes after polyploidization. Next-generation sequencing enables the transcriptome profiling of polyploids on a global scale. We examined the gene expression patterns of three diploids (Brassica rapa, B. nigra, and B. oleracea) and three amphidiploids (B. napus, B. juncea, and B. carinata) via digital gene expression analysis. In total, the libraries generated between 5.7 and 6.1 million raw reads, and the clean tags of each library were mapped to 18547-21995 genes of B. rapa genome. The unambiguous tag-mapped genes in the libraries were compared. Moreover, the majority of differentially expressed genes (DEGs) were explored among diploids as well as between diploids and amphidiploids. Gene ontological analysis was performed to functionally categorize these DEGs into different classes. The Kyoto Encyclopedia of Genes and Genomes analysis was performed to assign these DEGs into approximately 120 pathways, among which the metabolic pathway, biosynthesis of secondary metabolites, and peroxisomal pathway were enriched. The non-additive genes in Brassica amphidiploids were analyzed, and the results indicated that orthologous genes in polyploids are frequently expressed in a non-additive pattern. Methyltransferase genes showed differential expression pattern in Brassica species. Our results provided an understanding of the transcriptome complexity of natural Brassica species. The gene expression changes in diploids and allopolyploids may help elucidate the morphological and physiological differences among Brassica species.

  11. TGMS in Rapeseed (Brassica napus Resulted in Aberrant Transcriptional Regulation, Asynchronous Microsporocyte Meiosis, Defective Tapetum, and Fused Sexine

    Directory of Open Access Journals (Sweden)

    Xi-Qiong Liu

    2017-07-01

    Full Text Available The thermo-sensitive genic male sterility (TGMS line SP2S is a spontaneous rapeseed mutation with several traits that are favorable for the production of two-line hybrids. To uncover the key cellular events and genetic regulation associated with TGMS expression, a combined study using cytological observation, transcriptome profiling, and gene expression analysis was conducted for SP2S and its near-isogenic line SP2F grown under warm conditions. Asynchronous microsporocyte meiosis and abnormal tapetal plastids and elaioplasts were demonstrated in the anther of SP2S. The tetrad microspore did not undergo mitosis before the cytoplasm degenerated. Delayed degradation of the tetrad wall, which led to tetrad microspore aggregation, resulted in postponement of sexine (outer layer of pollen exine formation and sexine fusion in the tetrad. The nexine (foot layer of exine was also absent. The delay of tetrad wall degradation and abnormality of the exine structure suggested that the defective tapetum lost important functions. Based on transcriptomic comparisons between young flower buds of SP2S and SP2F plants, a total of 465 differentially expressed transcripts (DETs were identified, including 303 up-regulated DETs and 162 down-regulated DETs in SP2S. Several genes encoding small RNA degrading nuclease 2, small RNA 2′-O-methyltransferase, thioredoxin reductase 2, regulatory subunit A alpha isoform of serine/threonine-protein phosphatase 2A, glycine rich protein 1A, transcription factor bHLH25, leucine-rich repeat receptor kinase At3g14840 like, and fasciclin-like arabinogalactan proteins FLA19 and FLA20 were greatly depressed in SP2S. Interestingly, a POLLENLESS3-LIKE 2 gene encoding the Arabidopsis MS5 homologous protein, which is necessary for microsporocyte meiosis, was down-regulated in SP2S. Other genes that were up-regulated in SP2S encoded glucanase A6, ethylene-responsive transcription factor 1A-like, pollen-specific SF3, stress

  12. Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana

    NARCIS (Netherlands)

    Ji, X.

    2014-01-01

    Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana.

    I studied numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and

  13. Extreme thermophilic ethanol production from rapeseed straw: using the newly isolated Thermoanaerobacter pentosaceus and combining it with Saccharomyces cerevisiae in a two-step process

    DEFF Research Database (Denmark)

    Tomás, Ana Faria; Karagöz, Pınar; Karakashev, Dimitar Borisov

    2013-01-01

    from the liquid fraction of pretreated rapeseed straw, without any dilution or need for additives. However, when the hydrolysate was used undiluted the ethanol yield was only 37% compared to yield of the control, in which pure sugars in synthetic medium were used. The decrease of ethanol yield...... showed that the two strains together could achieve up to 85% of the theoretical ethanol yield based on the sugar composition of the rapeseed straw, which was 14% and 50% higher compared to the yield with the yeast or the bacteria alone, respectively. Biotechnol. Bioeng. © 2012 Wiley Periodicals, Inc.......The newly isolated extreme thermophile Thermoanaerobacter pentosaceus was used for ethanol production from alkaline-peroxide pretreated rapeseed straw (PRS). Both the liquid and solid fractions of PRS were used. T. pentosaceus was able to metabolize the typical process inhibitors present...

  14. Complete mitochondrial genome sequences of Brassica rapa (Chinese cabbage and mizuna), and intraspecific differentiation of cytoplasm in B. rapa and Brassica juncea.

    Science.gov (United States)

    Hatono, Saki; Nishimura, Kaori; Murakami, Yoko; Tsujimura, Mai; Yamagishi, Hiroshi

    2017-09-01

    The complete sequence of the mitochondrial genome was determined for two cultivars of Brassica rapa . After determining the sequence of a Chinese cabbage variety, 'Oushou hakusai', the sequence of a mizuna variety, 'Chusei shiroguki sensuji kyomizuna', was mapped against the sequence of Chinese cabbage. The precise sequences where the two varieties demonstrated variation were ascertained by direct sequencing. It was found that the mitochondrial genomes of the two varieties are identical over 219,775 bp, with a single nucleotide polymorphism (SNP) between the genomes. Because B. rapa is the maternal species of an amphidiploid crop species, Brassica juncea , the distribution of the SNP was observed both in B. rapa and B. juncea . While the mizuna type SNP was restricted mainly to cultivars of mizuna (japonica group) in B. rapa , the mizuna type was widely distributed in B. juncea . The finding that the two Brassica species have these SNP types in common suggests that the nucleotide substitution occurred in wild B. rapa before both mitotypes were domesticated. It was further inferred that the interspecific hybridization between B. rapa and B. nigra took place twice and resulted in the two mitotypes of cultivated B. juncea .

  15. Synergetic Use of Principal Component Analysis Applied to Normed Physicochemical Measurements and GC × GC-MS to Reveal the Stabilization Effect of Selected Essential Oils on Heated Rapeseed Oil.

    Science.gov (United States)

    Sghaier, Lilia; Cordella, Christophe B Y; Rutledge, Douglas N; Lefèvre, Fanny; Watiez, Mickaël; Breton, Sylvie; Sassiat, Patrick; Thiebaut, Didier; Vial, Jérôme

    2017-06-01

    Lipid oxidation leads to the formation of volatile compounds and very often to off-flavors. In the case of the heating of rapeseed oil, unpleasant odors, characterized as a fishy odor, are emitted. In this study, 2 different essential oils (coriander and nutmeg essential oils) were added to refined rapeseed oil as odor masking agents. The aim of this work was to determine a potential antioxidant effect of these essential oils on the thermal stability of rapeseed oil subject to heating cycles between room temperature and 180 °C. For this purpose, normed determinations of different parameters (peroxide value, anisidine value, and the content of total polar compounds, free fatty acids and tocopherols) were carried out to examine the differences between pure and degraded oil. No significant difference was observed between pure rapeseed oil and rapeseed oil with essential oils for each parameter separately. However, a stabilizing effect of the essential oils, with a higher effect for the nutmeg essential oil was highlighted by principal component analysis applied on physicochemical dataset. Moreover, the analysis of the volatile compounds performed by GC × GC showed a substantial loss of the volatile compounds of the essential oils from the first heating cycle. © 2017 Institute of Food Technologists®.

  16. Resistance of Newly Introduced Vegetables to Meloidogyne arenaria and M. incognita in Korea

    Directory of Open Access Journals (Sweden)

    Donggeun Kim

    2013-12-01

    Full Text Available To select resistant vegetables against two species of root-knot nematodes, M. incognita and M. arenaria, 39 vegetables belongs to 7 families, 13 genera, 25 species were screened in greenhouse pot test. Susceptible vegetables to both nematodes were amarath and leaf beet in Amaranthaceae, Malabar spinach in Basellaceae, Moroheiya in Tiliaceae, and Water-convolvulus in Convolvulaceae, Pak-choi in Brassica campestris var. chinensis, Tah tasai in B. campestris var. narinosa, B. campestris var. chinensis x narinosa, Leaf mustard, Mustard green in B. juncea, Kyona in B. juncea var. laciniate, Choy sum in B. rapa subsp. arachinenesis, Kairan in B. oleracea var. alboglabra, Arugula in Eruca sativa, Garland chrysanthemum in Chrysanthemum coronarium, Endive in Cichorium endivia, Artichoke in Cynara cardunculus var. scolymus, Lettuce in Lactuca sativa. Resistant to M. arenaria but susceptible to M. incognita were B. oleracea cv. Matjjang kale, B. oleracea var. gongyloides cv. Jeok kohlrabi, and C. intybus cv. Radicchio. Resistant vegetables to both nematodes were C. intybus cv. Sugar loaf, Grumoro, Radichio treviso, B. oleracea cv. Manchu collard, Super matjjang, B. oleracea italica, B. oleracea var. botrytis italiana, and Perilla in Lamiaceae. Vegetables resistant to both species of root-knot nematodes could be used as high-valued rotation crops in greenhouses where root-knot nematodes are problem.

  17. Tribological study on rapeseed oil with nano-additives in close contact sliding situation

    Science.gov (United States)

    Gupta, Rajeev Nayan; Harsha, A. P.; Singh, Sagar

    2018-02-01

    The present work deals with the tribological evaluation of three types of nano-additives, i.e., copper oxide (CuO; ≈ 151.2 nm), cerium oxide (CeO2; ≈ 80 nm) and polytetrafluoroethylene (PTFE; ≈ 90.4 nm) with rapeseed oil under steel-steel sliding contacts. The nano-additives concentrations in the base oil were 0.1, 0.25 and 0.5% w/v for the lubricant formulation. Further, the rapeseed oil was also epoxidized by a chemical method and the tribological behavior was compared with the base oil (unmodified oil) at similar nano-additives concentrations. The ASTM standards were followed for the study of wear preventive and extreme-pressure analysis of nanolubricants, and it was carried out using four-ball tester. In the antiwear test, CeO2 and PTFE nano-additives have shown the significant reduction in the wear scar diameter at the concentration of 0.1% w/v. In the extreme-pressure test, 0.5% w/v concentration was optimum for oxide nanoparticles; however, PTFE nanoparticles did not show positive effect with both the base oils. Different characterization techniques were employed to confirm the oil modification and for the study of the worn surfaces.

  18. Effects of dietary cold-pressed turnip rapeseed oil and butter on serum lipids, oxidized LDL and arterial elasticity in men with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Wallenius Marja

    2010-12-01

    Full Text Available Abstract Background Rapeseed oil is the principal dietary source of monounsaturated and n-3 polyunsaturated fatty acids in the Northern Europe. However, the effect of rapeseed oil on the markers of subclinical atherosclerosis is not known. The purpose of this study was to compare the effects of dietary intake of cold-pressed turnip rapeseed oil (CPTRO and butter on serum lipids, oxidized LDL and arterial elasticity in men with metabolic syndrome. Methods Thirty-seven men with metabolic syndrome completed an open and balanced crossover study. Treatment periods lasted for 6 to 8 weeks and they were separated from each other with an eight-week washout period. Subjects maintained their normal dietary habits and physical activity without major variations. The daily fat adjunct consisted either of 37.5 grams of butter or 35 mL of VirginoR CPTRO. Participants were asked to spread butter on bread on the butter period and to drink CPTRO on the oil period. The fat adjunct was used as such without heating or frying. Results Compared to butter, administration of CPTRO was followed by a reduction of total cholesterol by 8% (p Conclusion Cold-pressed turnip rapeseed oil had favourable effects on circulating LDL cholesterol and oxidized LDL, which may be important in the management of patients at high cardiovascular risk. Trial registration ClinicalTrial.gov NCT01119690

  19. Life cycle assessment of rapeseed oil, rape methyl ester and ethanol as fuels - a comparison between large- and smallscale production

    Energy Technology Data Exchange (ETDEWEB)

    Bernesson, Sven [Swedish Univ. of Agriculture Sciences, Uppsala (Sweden). Dep. of Biometry and Engineering

    2004-05-01

    Production of rapeseed oil, rape methyl ester (RME) and ethanol fuel for heavy diesel engines can be carried out with different systems solutions, in which the choice of system is usually related to the scale of the production. The main purpose of this study was to analyse whether the use of a small-scale rapeseed oil, RME and ethanol fuel production system reduced the environmental load in comparison to a medium- and a large-scale system. To fulfil this purpose, a limited LCA, including air-emissions and energy requirements, was carried out for the three fuels and the three plant sizes. Four different methods to allocate the environmental burden between different products were compared: physical allocation according to the lower heat value in the products [MJ/kg], economic allocation according to the product prices [SEK/kg], no allocation and allocation with a system expansion so that rapemeal and distiller's waste could replace soymeal mixed with soyoil and glycerine could replace glycerine produced from fossil raw material. The functional unit, to which the total environmental load was related, was 1.0 MJ of energy delivered on the engine shaft to the final consumer. Production of raw materials, cultivation, transport, fuel production and use of the fuels produced were included in the systems studied. It was shown in the study that the differences in environmental impact and energy requirement between small-, medium- and large-scale systems were small or even negligible in most cases for all three fuels, except for the photochemical ozone creation potential (POCP) during ethanol fuel production. The longer transport distances to a certain degree outweighed the higher oil extraction efficiency, the higher energy efficiency and the more efficient use of machinery and buildings in the large-scale system. The dominating production step was the cultivation, in which production of fertilisers, followed by soil emissions and tractive power, made major contributions to

  20. Life cycle assessment of rapeseed oil, rape methyl ester and ethanol as fuels - a comparison between large- and smallscale production

    Energy Technology Data Exchange (ETDEWEB)

    Bernesson, Sven [Swedish Univ. of Agriculture Sciences, Uppsala (Sweden). Dep. of Biometry and Engineering

    2004-05-01

    Production of rapeseed oil, rape methyl ester (RME) and ethanol fuel for heavy diesel engines can be carried out with different systems solutions, in which the choice of system is usually related to the scale of the production. The main purpose of this study was to analyse whether the use of a small-scale rapeseed oil, RME and ethanol fuel production system reduced the environmental load in comparison to a medium- and a large-scale system. To fulfil this purpose, a limited LCA, including air-emissions and energy requirements, was carried out for the three fuels and the three plant sizes. Four different methods to allocate the environmental burden between different products were compared: physical allocation according to the lower heat value in the products [MJ/kg], economic allocation according to the product prices [SEK/kg], no allocation and allocation with a system expansion so that rapemeal and distiller's waste could replace soymeal mixed with soyoil and glycerine could replace glycerine produced from fossil raw material. The functional unit, to which the total environmental load was related, was 1.0 MJ of energy delivered on the engine shaft to the final consumer. Production of raw materials, cultivation, transport, fuel production and use of the fuels produced were included in the systems studied. It was shown in the study that the differences in environmental impact and energy requirement between small-, medium- and large-scale systems were small or even negligible in most cases for all three fuels, except for the photochemical ozone creation potential (POCP) during ethanol fuel production. The longer transport distances to a certain degree outweighed the higher oil extraction efficiency, the higher energy efficiency and the more efficient use of machinery and buildings in the large-scale system. The dominating production step was the cultivation, in which production of fertilisers, followed by soil emissions and tractive power, made major

  1. Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana.

    Science.gov (United States)

    Yu, Jingyin; Tehrim, Sadia; Zhang, Fengqi; Tong, Chaobo; Huang, Junyan; Cheng, Xiaohui; Dong, Caihua; Zhou, Yanqiu; Qin, Rui; Hua, Wei; Liu, Shengyi

    2014-01-03

    Plant disease resistance (R) genes with the nucleotide binding site (NBS) play an important role in offering resistance to pathogens. The availability of complete genome sequences of Brassica oleracea and Brassica rapa provides an important opportunity for researchers to identify and characterize NBS-encoding R genes in Brassica species and to compare with analogues in Arabidopsis thaliana based on a comparative genomics approach. However, little is known about the evolutionary fate of NBS-encoding genes in the Brassica lineage after split from A. thaliana. Here we present genome-wide analysis of NBS-encoding genes in B. oleracea, B. rapa and A. thaliana. Through the employment of HMM search and manual curation, we identified 157, 206 and 167 NBS-encoding genes in B. oleracea, B. rapa and A. thaliana genomes, respectively. Phylogenetic analysis among 3 species classified NBS-encoding genes into 6 subgroups. Tandem duplication and whole genome triplication (WGT) analyses revealed that after WGT of the Brassica ancestor, NBS-encoding homologous gene pairs on triplicated regions in Brassica ancestor were deleted or lost quickly, but NBS-encoding genes in Brassica species experienced species-specific gene amplification by tandem duplication after divergence of B. rapa and B. oleracea. Expression profiling of NBS-encoding orthologous gene pairs indicated the differential expression pattern of retained orthologous gene copies in B. oleracea and B. rapa. Furthermore, evolutionary analysis of CNL type NBS-encoding orthologous gene pairs among 3 species suggested that orthologous genes in B. rapa species have undergone stronger negative selection than those in B .oleracea species. But for TNL type, there are no significant differences in the orthologous gene pairs between the two species. This study is first identification and characterization of NBS-encoding genes in B. rapa and B. oleracea based on whole genome sequences. Through tandem duplication and whole genome

  2. Brassica database (BRAD) version 2.0: integrating and mining Brassicaceae species genomic resources.

    Science.gov (United States)

    Wang, Xiaobo; Wu, Jian; Liang, Jianli; Cheng, Feng; Wang, Xiaowu

    2015-01-01

    The Brassica database (BRAD) was built initially to assist users apply Brassica rapa and Arabidopsis thaliana genomic data efficiently to their research. However, many Brassicaceae genomes have been sequenced and released after its construction. These genomes are rich resources for comparative genomics, gene annotation and functional evolutionary studies of Brassica crops. Therefore, we have updated BRAD to version 2.0 (V2.0). In BRAD V2.0, 11 more Brassicaceae genomes have been integrated into the database, namely those of Arabidopsis lyrata, Aethionema arabicum, Brassica oleracea, Brassica napus, Camelina sativa, Capsella rubella, Leavenworthia alabamica, Sisymbrium irio and three extremophiles Schrenkiella parvula, Thellungiella halophila and Thellungiella salsuginea. BRAD V2.0 provides plots of syntenic genomic fragments between pairs of Brassicaceae species, from the level of chromosomes to genomic blocks. The Generic Synteny Browser (GBrowse_syn), a module of the Genome Browser (GBrowse), is used to show syntenic relationships between multiple genomes. Search functions for retrieving syntenic and non-syntenic orthologs, as well as their annotation and sequences are also provided. Furthermore, genome and annotation information have been imported into GBrowse so that all functional elements can be visualized in one frame. We plan to continually update BRAD by integrating more Brassicaceae genomes into the database. Database URL: http://brassicadb.org/brad/. © The Author(s) 2015. Published by Oxford University Press.

  3. Cloning of a two-component signal transduction system of Xanthomonas campestris pv. phaseoli var. fuscans strain BXPF65

    DEFF Research Database (Denmark)

    Chan, JWYF; Maynard, Scott; Goodwin, PH

    1998-01-01

    A putative two-component signal transduction system was amplified and cloned from the plant pathogenic bacterium Xanthomonas campestris pv. phaseoli var. fuscans isolate BXPF65. The 620 bp amplified fragment was sequenced and analyzed with the BLAST Enhanced Alignment Utility (BEAUTY). BEAUTY...... that the putative histidine kinase has homology with conserved “transmitter” domains of sensor proteins in two-component signal transduction systems. RFLP analysis using the putative signal transduction system showed polymorphisms among the strains....

  4. Limpeza clonal de mudas de videira infectadas por Xanthomonas campestris pv. viticola Clonal cleaning of grapevine plants infected by Xanthomonas campestris pv. viticola

    Directory of Open Access Journals (Sweden)

    Adriano Márcio Freire Silva

    2013-03-01

    Full Text Available O cancro bacteriano da videira é causado por Xanthomonas campestris pv. viticola (Xcv. Visando à limpeza clonal de mudas de 'Red Globe', foram estudados: tamanho ideal de ápices e gemas axilares para cultivo em meio de Galzy modificado (MGM; efeito da termoterapia (38ºC/30 dias; e ação de antibióticos na eliminação de Xcv em videiras infectadas. Os percentuais de contaminação por Xcv e de regeneração foram analisados, e as plantas obtidas foram indexadas em meio ágar nutritivo-dextrose-extrato de levedura-ampicilina (NYDAM, seguindo-se teste de patogenicidade. O cultivo de explantes com 3 mm possibilitou a obtenção de plantas livres da bactéria, com regeneração 14,3 vezes maior que explantes com 1 mm. A termoterapia de mudas infectadas, associada ao cultivo in vitro, não eliminou o patógeno. O cultivo de explantes com 10 mm, durante 40 dias em MGM + cefotaxima (300 mg L-1, proporcionou limpeza clonal das mudas. A indexação de plantas de videira regeneradas in vitro, quanto à infecção por Xcv utilizando NYDAM, seguida de teste de patogenicidade, é uma alternativa econômica e eficiente para produção de mudas de alta qualidade fitossanitária.Bacterial canker is caused by Xanthomonas campestris pv. viticola (Xcv. In order to eliminate Xcv from 'Red Globe' plants it was studied: optimal size of meristem tips and axillary buds for cultivation in modified Galzy's medium (MGM; effects of thermotherapy (38ºC/30 days; and action of antibiotics in the elimination of Xcv in infected grapevines. The percentages of contamination by Xcv and regeneration were analyzed and plants obtained were indexed using the semi-selective culture medium nutrient agar-dextrose-yeast extract-ampicilin (NYDAM followed by a pathogenicity test. The cultivation of 3 mm explants permitted to obtain plants free of bacteria with regeneration 14.3 times higher than 1 mm explants. The thermotherapy of infected plants associated to the in vitro culture

  5. Detection of Ribosomal DNA Sequence Polymorphisms in the Protist Plasmodiophora brassicae for the Identification of Geographical Isolates

    Directory of Open Access Journals (Sweden)

    Rawnak Laila

    2017-01-01

    Full Text Available Clubroot is a soil-borne disease caused by the protist Plasmodiophora brassicae (P. brassicae. It is one of the most economically important diseases of Brassica rapa and other cruciferous crops as it can cause remarkable yield reductions. Understanding P. brassicae genetics, and developing efficient molecular markers, is essential for effective detection of harmful races of this pathogen. Samples from 11 Korean field populations of P. brassicae (geographic isolates, collected from nine different locations in South Korea, were used in this study. Genomic DNA was extracted from the clubroot-infected samples to sequence the ribosomal DNA. Primers and probes for P. brassicae were designed using a ribosomal DNA gene sequence from a Japanese strain available in GenBank (accession number AB526843; isolate NGY. The nuclear ribosomal DNA (rDNA sequence of P. brassicae, comprising 6932 base pairs (bp, was cloned and sequenced and found to include the small subunits (SSUs and a large subunit (LSU, internal transcribed spacers (ITS1 and ITS2, and a 5.8s. Sequence variation was observed in both the SSU and LSU. Four markers showed useful differences in high-resolution melting analysis to identify nucleotide polymorphisms including single- nucleotide polymorphisms (SNPs, oligonucleotide polymorphisms, and insertions/deletions (InDels. A combination of three markers was able to distinguish the geographical isolates into two groups.

  6. Enteric methane production and ruminal fermentation from forage brassica diets fed in continuous culture

    Science.gov (United States)

    Brassicas provide forage for livestock during the late fall when traditional perennial cool-season forages are not productive. However, little research exists on ruminal fermentation and methane(CH4) production of brassicas fed as forage. A continuous culture fermentor system was used to assess nutr...

  7. A comparison of screening methods to identify waterlogging tolerance in the field in Brassica napus L. during plant ontogeny.

    Directory of Open Access Journals (Sweden)

    Xiling Zou

    Full Text Available Waterlogging tolerance is typically evaluated at a specific development stage, with an implicit assumption that differences in waterlogging tolerance expressed in these systems will result in improved yield performance in fields. It is necessary to examine these criteria in fields. In the present study, three experiments were conducted to screen waterlogging tolerance in 25 rapeseed (Brassica napus L. varieties at different developmental stages, such as seedling establishment stage and seedling stage at controlled environment, and maturity stage in the fields. The assessments for physiological parameters at three growth stages suggest that there were difference of waterlogging tolerance at all the development stages, providing an important basis for further development of breeding more tolerant materials. The results indicated that flash waterlogging restricts plant growth and growth is still restored after removal of the stress. Correlation analysis between waterlogging tolerance coefficient (WTC of yield and other traits revealed that there was consistency in waterlogging tolerance of the genotypes until maturity, and good tolerance at seedling establishment stage and seedling stage can guarantee tolerance in later stages. The waterlogging-tolerant plants could be selected using some specific traits at any stage, and selections would be more effective at the seedling establishment stage. Thus, our study provides a method for screening waterlogging tolerance, which would enable the suitable basis for initial selection of a large number of germplasm or breeding populations for waterlogging tolerance and help for verifying their potential utility in crop-improvement.

  8. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes

    Science.gov (United States)

    Liu, Shengyi; Liu, Yumei; Yang, Xinhua; Tong, Chaobo; Edwards, David; Parkin, Isobel A. P.; Zhao, Meixia; Ma, Jianxin; Yu, Jingyin; Huang, Shunmou; Wang, Xiyin; Wang, Junyi; Lu, Kun; Fang, Zhiyuan; Bancroft, Ian; Yang, Tae-Jin; Hu, Qiong; Wang, Xinfa; Yue, Zhen; Li, Haojie; Yang, Linfeng; Wu, Jian; Zhou, Qing; Wang, Wanxin; King, Graham J; Pires, J. Chris; Lu, Changxin; Wu, Zhangyan; Sampath, Perumal; Wang, Zhuo; Guo, Hui; Pan, Shengkai; Yang, Limei; Min, Jiumeng; Zhang, Dong; Jin, Dianchuan; Li, Wanshun; Belcram, Harry; Tu, Jinxing; Guan, Mei; Qi, Cunkou; Du, Dezhi; Li, Jiana; Jiang, Liangcai; Batley, Jacqueline; Sharpe, Andrew G; Park, Beom-Seok; Ruperao, Pradeep; Cheng, Feng; Waminal, Nomar Espinosa; Huang, Yin; Dong, Caihua; Wang, Li; Li, Jingping; Hu, Zhiyong; Zhuang, Mu; Huang, Yi; Huang, Junyan; Shi, Jiaqin; Mei, Desheng; Liu, Jing; Lee, Tae-Ho; Wang, Jinpeng; Jin, Huizhe; Li, Zaiyun; Li, Xun; Zhang, Jiefu; Xiao, Lu; Zhou, Yongming; Liu, Zhongsong; Liu, Xuequn; Qin, Rui; Tang, Xu; Liu, Wenbin; Wang, Yupeng; Zhang, Yangyong; Lee, Jonghoon; Kim, Hyun Hee; Denoeud, France; Xu, Xun; Liang, Xinming; Hua, Wei; Wang, Xiaowu; Wang, Jun; Chalhoub, Boulos; Paterson, Andrew H

    2014-01-01

    Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear. Brassica is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome sequence of Brassica oleracea, comparing it with that of its sister species B. rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes. Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to B. oleracea. This study provides insights into Brassica genome evolution and will underpin research into the many important crops in this genus. PMID:24852848

  9. An analysis of the energy efficiency of winter rapeseed biomass under different farming technologies. A case study of a large-scale farm in Poland

    International Nuclear Information System (INIS)

    Budzyński, Wojciech Stefan; Jankowski, Krzysztof Józef; Jarocki, Marcin

    2015-01-01

    The article presents the results of a three-year study investigating the impact of production technology on the energy efficiency of winter rapeseed produced in large-scale farms. Rapeseed biomass produced in a high-input system was characterized by the highest energy demand (30.00 GJ ha"−"1). The energy demand associated with medium-input and low-input systems was 20% and 34% lower, respectively. The highest energy value of oil, oil cake and straw was noted in winter rapeseed produced in the high-input system. In the total energy output (268.5 GJ ha"−"1), approximately 17% of energy was accumulated in oil, 20% in oil cake, and 63% in straw. In lower input systems, the energy output of oil decreased by 13–23%, the energy output of oil cake – by 6–16%, and the energy output of straw – by 29–37% without visible changes in the structure of energy accumulated in different components of rapeseed biomass. The highest energy gain was observed in the high-input system. The low-input system was characterized by the highest energy efficiency ratio, at 4.22 for seeds and 9.43 for seeds and straw. The increase in production intensity reduced the energy efficiency of rapeseed biomass production by 8–18% (seeds) and 5–9% (seeds and straw). - Highlights: • Energy inputs in the high-input production system reached 30 GJ ha"−"1. • Energy inputs in the medium- and low-input systems were reduced by 20% and 34%. • Energy gain in the high-input system was 15% and 42% higher than in other systems. • Energy ratio in the high-input system was 5–18% lower than in the low-input system.

  10. Brassica rapa L. seed development in hypergravity

    NARCIS (Netherlands)

    Musgrave, M.E.; Kuang, A.; Allen, J.; Blasiak, J.; van Loon, J.J.W.A.

    2009-01-01

    Previous experiments had shown that microgravity adversely affected seed development in Brassica rapa L. We tested the hypothesis that gravity controls seed development via modulation of gases around the developing seeds, by studying how hypergravity affects the silique microenvironment and seed

  11. Genetic diversity and relationships among cabbage ( Brassica ...

    African Journals Online (AJOL)

    The integration of our data with historical documents confirmed that traditional cabbage landraces cultivated in North of China were first introduced from Russia. Key words: Amplified fragment length polymorphism (AFLP), genetic diversity, cabbage (Brassica oleracea var. capitata), landraces, population structure.

  12. Molecular characterization and diversity of a novel non-autonomous mutator-like transposon family in brassica

    International Nuclear Information System (INIS)

    Nouroz, F.

    2015-01-01

    Transposable elements (TEs) are capable of mobilizing from one genomic location to other, with changes in their copy numbers. Mutator-like elements (MULEs) are DNA transposons characterized by 9 bp target site duplications (TSDs), with high variability in sequence and length, and include non-conserved terminal inverted repeats (TIRs). We identified and characterized a family of Mutator-like elements designated as Shahroz. The structural and molecular analyses revealed that family had a small number of mostly defective non-autonomous MULEs and has shown limited activity in the evolutionary history of the Brassica A-genome. The Shahroz elements range in size from 2734 to 3160 bp including 76 bp imperfect TIRs and 9 bp variable TSDs. The individual copies have shown high homology (52-99%) in their entire lengths. The study revealed that the elements are less in numbers but active in Brassica rapa genomes and PCR amplification revealed their specificity and amplification in A-genome containing diploid and polyploids Brassica. The phylogenetic analysis of Brassica MULEs with other plant Mutator elements revealed that no correlation exists between Brassica MULEs and other elements suggesting a separate line of evolution. Analyzing the regions flanking the insertions revealed that the insertions have showed a preference for AT rich regions. The detailed study of these insertions revealed that although less in number and small sizes, they have played a role in Brassica genome evolution by their mobilization. (author)

  13. High Density Linkage Map Construction and QTL Detection for Three Silique-Related Traits in Orychophragmus violaceus Derived Brassica napus Population

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2017-09-01

    Full Text Available Seeds per silique (SS, seed weight (SW, and silique length (SL are important determinant traits of seed yield potential in rapeseed (Brassica napus L., and are controlled by naturally occurring quantitative trait loci (QTLs. Mapping QTLs to narrow chromosomal regions provides an effective means of characterizing the genetic basis of these complex traits. Orychophragmus violaceus is a crucifer with long siliques, many SS, and heavy seeds. A novel B. napus introgression line with many SS was previously selected from multiple crosses (B. rapa ssp. chinesis × O. violaceus × B. napus. In present study, a doubled haploid (DH population with 167 lines was established from a cross between the introgression line and a line with far fewer SS, in order to detect QTLs for silique-related traits. By screening with a Brassica 60K single nucleotide polymorphism (SNP array, a high-density linkage map consisting of 1,153 bins and spanning a cumulative length of 2,209.1 cM was constructed, using 12,602 high-quality polymorphic SNPs in the DH population. The average recombination bin densities of the A and C subgenomes were 1.7 and 2.4 cM, respectively. 45 QTLs were identified for the three traits in all, which explained 4.0–34.4% of the total phenotypic variation; 20 of them were integrated into three unique QTLs by meta-analysis. These unique QTLs revealed a significant positive correlation between SS and SL and a significant negative correlation between SW and SS, and were mapped onto the linkage groups A05, C08, and C09. A trait-by-trait meta-analysis revealed eight, four, and seven consensus QTLs for SS, SW, and SL, respectively, and five major QTLs (cqSS.A09b, cqSS.C09, cqSW.A05, cqSW.C09, and cqSL.C09 were identified. Five, three, and four QTLs for SS, SW, and SL, respectively, might be novel QTLs because of the existence of alien genetic loci for these traits in the alien introgression. Thirty-eight candidate genes underlying nine QTLs for silique

  14. Optimization of medium composition for the production of compounds effective against Xanthomonas campestris by bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Rončević Zorana Z.

    2014-01-01

    Full Text Available The biocontrol agents are a very promising alternative to synthetic pesticides that are presently used to control plant diseases caused by phytopathogenic microorganisms. Members of the Bacillus genera are soil bacteria that produce significant quantities of agriculturally important bioactive compounds. Production of these compounds can be improved by changing the nutritional and environmental conditions. The aim of this study was the optimization of medium composition, using response surface methodology, for the production of compounds effective against Xanthomonas campestris ATCC 13951 by Bacillus subtilis ATCC 6633. To study the production of antimicrobial compounds by selected Bacillus strain, the producing microorganisms were cultivated on nutrient broth. The inhibition zone diameter of 18.0 mm obtained by the diffusion-disc method indicated that the used Bacillus subtilis strain produces compounds with antimicrobial activity against Xanthomonas campestris ATCC 13951. To optimize the composition of the cultivation medium in terms of glycerol, sodium nitrite and phosphates content, experiments were carried out in accordance with Box-Behnken design, and optimization of multiple responses was performed using the concept of desirability function. The developed model predicted that the maximum inhibition zone diameter (26.23 mm against tested phytopathogen is achieved when the initial content of glycerol, sodium nitrite and phosphate were 50.00 g/L, 2.85 g/L and 11.00 g/L, respectively. To minimize the consumption of medium components and costs of effluents processing, additional optimization set was made. The techno-economic analysis of the obtained results has to be done to select optimal medium composition for industrial production of antimicrobial compounds.

  15. Genetic variation in the hTAS2R38 taste receptor and brassica vegetable intake

    DEFF Research Database (Denmark)

    Gorovic, Nela; Afzal, Shoaib; Tjonneland, Anne

    2011-01-01

    The human TAS2R38 receptor is believed to be partly responsible for the ability to taste phenylthiocarbamide (PTC), a bitter compound very similar to the bitter glucosinolates found in brassica vegetables. These vegetables and their active compounds have chemo-protective properties. This study...... investigated the relationship between genetic variation in the hTAS2R38 receptor and the actual consumption of brassica vegetables with the hypothesis that taster status was associated with intake of these vegetables. Furthermore, secondary intake information on alcohol, chocolate, coffee, smoking, BMI...... on their brassica vegetables intake from the upper quartile (>= a parts per thousand yen23 g/day) and the lower quartile (brassicas from a randomly selected sub-cohort of DCH. DNA was analysed for three functional SNPs in the hTAS2R38 gene. The hTAS2R38...

  16. Integrated production of cellulosic bioethanol and succinic acid from rapeseed straw after dilute-acid pretreatment

    DEFF Research Database (Denmark)

    Kuglarz, Mariusz; Alvarado-Morales, Merlin; Dąbkowska, Katarzyna

    2018-01-01

    in high glucose yield (80%) and ethanol output (122-125 kg of EtOH/Mg of rapeseed straw). Supplementation the enzymatic process with 10% dosage of endoxylanases (Cellic® HTec2) reduced the hydrolysis time required to achieve the maximum glucan conversion by 44-46% and increased the xylose yield by 10...

  17. Transesterification of rapeseed and palm oils in supercritical methanol and ethanol

    International Nuclear Information System (INIS)

    Biktashev, Sh.A.; Usmanov, R.A.; Gabitov, R.R.; Gazizov, R.A.; Gumerov, F.M.; Gabitov, F.R.; Abdulagatov, I.M.; Yarullin, R.S.; Yakushev, I.A.

    2011-01-01

    The results of the rapeseed and palm oils transesterification with supercritical methanol and ethanol were presented. The studies were performed using the experimental setups which are working in batch and continuous regimes. The effect of reaction conditions (temperature, pressure, oil to alcohol ratio, reaction time) on the biodiesel production (conversion yield) was studied. Also the effect of preliminary ultrasonic treatment (ultrasonic irradiation, emulsification of immiscible oil and alcohol mixture) of the initial reagents (emulsion preparation) on the stage before transesterification reaction conduction on the conversion yield was studied. We found that the preliminary ultrasonic treatment of the initial reagents increases considerably the conversion yield. Optimal technological conditions were determined to be as follows: pressure within 20-30 MPa, temperature within 573-623 K. The optimal values of the oil to alcohol ratio strongly depend on preliminary treatment of the reaction mixture. The study showed that the conversion yield at the same temperature with 96 wt.% of ethanol is higher than with 100 wt.% of methanol. -- Highlights: → The results of the rapeseed and palm oils transesterification with supercritical methanol and ethanol were presented. → The effect of reaction conditions (temperature, pressure, oil to alcohol ratio, reaction time) on the biodiesel production (conversion yield) was studied. → Transesterification of vegetable oil with supercritical alcohols. → Effect of temperature and pressure on conversion yield. → Preliminary ultrasonic treatment of the vegetable oil+methanol mixture.

  18. Evaluation of In Vitro Anticancer Activity of Ocimum Basilicum, Alhagi Maurorum, Calendula Officinalis and Their Parasite Cuscuta Campestris

    OpenAIRE

    Behbahani, Mandana

    2014-01-01

    The present investigation was carried out to study the relationship between presence of cytotoxic compounds in Ocimum basilicum, Alhagi maurorum, Calendula officinalis and their parasite Cuscuta campestris. The cytotoxic activity of the pure compounds was performed by MTT assay against breast cancer cell lines (MCF-7 and MDA-MB-231) and normal breast cell line (MCF 10A). The induction of apoptosis was measured by the expression levels of p53, bcl-2, bax and caspase-3 genes using quantitative ...

  19. Health Promoting Effects of Brassica-Derived Phytochemicals: From Chemopreventive and Anti-Inflammatory Activities to Epigenetic Regulation

    Directory of Open Access Journals (Sweden)

    Anika Eva Wagner

    2013-01-01

    Full Text Available A high intake of brassica vegetables may be associated with a decreased chronic disease risk. Health promoting effects of Brassicaceae have been partly attributed to glucosinolates and in particular to their hydrolyzation products including isothiocyanates. In vitro and in vivo studies suggest a chemopreventive activity of isothiocyanates through the redox-sensitive transcription factor Nrf2. Furthermore, studies in cultured cells, in laboratory rodents, and also in humans support an anti-inflammatory effect of brassica-derived phytochemicals. However, the underlying mechanisms of how these compounds mediate their health promoting effects are yet not fully understood. Recent findings suggest that brassica-derived compounds are regulators of epigenetic mechanisms. It has been shown that isothiocyanates may inhibit histone deacetylase transferases and DNA-methyltransferases in cultured cells. Only a few papers have dealt with the effect of brassica-derived compounds on epigenetic mechanisms in laboratory animals, whereas data in humans are currently lacking. The present review aims to summarize the current knowledge regarding the biological activities of brassica-derived phytochemicals regarding chemopreventive, anti-inflammatory, and epigenetic pathways.

  20. Study on Spray Characteristics and Spray Droplets Dynamic Behavior of Diesel Engine Fueled by Rapeseed Oil

    Directory of Open Access Journals (Sweden)

    Sapit Azwan

    2014-07-01

    Full Text Available Fuel-air mixing is important process in diesel combustion. It directly affects the combustion and emission of diesel engine. Biomass fuel needs great help to atomize because the fuel has high viscosity and high distillation temperature. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fueled by rapeseed oil (RO. Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the rapeseed oil spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. The results show that RO has very poor atomization due to the high viscosity nature of the fuel. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  1. Consequences of gene flow between oilseed rape (Brassica napus) and its relatives.

    Science.gov (United States)

    Liu, Yongbo; Wei, Wei; Ma, Keping; Li, Junsheng; Liang, Yuyong; Darmency, Henri

    2013-10-01

    Numerous studies have focused on the probability of occurrence of gene flow between transgenic crops and their wild relatives and the likelihood of transgene escape, which should be assessed before the commercial release of transgenic crops. This review paper focuses on this issue for oilseed rape, Brassica napus L., a species that produces huge numbers of pollen grains and seeds. We analyze separately the distinct steps of gene flow: (1) pollen and seeds as vectors of gene flow; (2) spontaneous hybridization; (3) hybrid behavior, fitness cost due to hybridization and mechanisms of introgression; (4) and fitness benefit due to transgenes (e.g. herbicide resistance and Bt toxin). Some physical, biological and molecular means of transgene containment are also described. Although hybrids and first generation progeny are difficult to identify in fields and non-crop habitats, the literature shows that transgenes could readily introgress into Brassica rapa, Brassica juncea and Brassica oleracea, while introgression is expected to be rare with Brassica nigra, Hirschfeldia incana and Raphanus raphanistrum. The hybrids grow well but produce less seed than their wild parent. The difference declines with increasing generations. However, there is large uncertainty about the evolution of chromosome numbers and recombination, and many parameters of life history traits of hybrids and progeny are not determined with satisfactory confidence to build generic models capable to really cover the wide diversity of situations. We show that more studies are needed to strengthen and organize biological knowledge, which is a necessary prerequisite for model simulations to assess the practical and evolutionary outputs of introgression, and to provide guidelines for gene flow management. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. The first generation of a BAC-based physical map of Brassica rapa

    Directory of Open Access Journals (Sweden)

    Lee Soo

    2008-06-01

    Full Text Available Abstract Background The genus Brassica includes the most extensively cultivated vegetable crops worldwide. Investigation of the Brassica genome presents excellent challenges to study plant genome evolution and divergence of gene function associated with polyploidy and genome hybridization. A physical map of the B. rapa genome is a fundamental tool for analysis of Brassica "A" genome structure. Integration of a physical map with an existing genetic map by linking genetic markers and BAC clones in the sequencing pipeline provides a crucial resource for the ongoing genome sequencing effort and assembly of whole genome sequences. Results A genome-wide physical map of the B. rapa genome was constructed by the capillary electrophoresis-based fingerprinting of 67,468 Bacterial Artificial Chromosome (BAC clones using the five restriction enzyme SNaPshot technique. The clones were assembled into contigs by means of FPC v8.5.3. After contig validation and manual editing, the resulting contig assembly consists of 1,428 contigs and is estimated to span 717 Mb in physical length. This map provides 242 anchored contigs on 10 linkage groups to be served as seed points from which to continue bidirectional chromosome extension for genome sequencing. Conclusion The map reported here is the first physical map for Brassica "A" genome based on the High Information Content Fingerprinting (HICF technique. This physical map will serve as a fundamental genomic resource for accelerating genome sequencing, assembly of BAC sequences, and comparative genomics between Brassica genomes. The current build of the B. rapa physical map is available at the B. rapa Genome Project website for the user community.

  3. Brassica cover crops for nitrogen retention in the Mid-Atlantic coastal plain.

    Science.gov (United States)

    Dean, Jill E; Weil, Ray R

    2009-01-01

    Brassica cover crops are new to the mid-Atlantic region, and limited information is available on their N uptake capabilities for effective N conservation. Forage radish (Raphanus sativus L. cv. Daikon), oilseed radish (Raphanus sativus L. cv. Adagio), and rape (Brassica napus L. cv. Dwarf Essex) were compared with rye (Secale cereale L. cv. Wheeler), a popular cover crop in the region, with regard to N uptake ability and potential to decrease N leaching at two sites in Maryland. Plants were harvested in fall and spring for dry matter and N analysis. Soil samples from 0 cm to 105 to 180 cm depth were obtained in fall and spring for NH(4)-N and NO(3)-N analyses. Ceramic cup tension lysimeters were installed at depths of 75 to 120 cm to monitor NO(3)-N in soil pore water. Averaged across 3 site-years, forage radish and rape shoots had greater dry matter production and captured more N in fall than rye shoots. Compared with a weedy fallow control, rape and rye caused similar decreases in soil NO(3)-N in fall and spring throughout the sampled profile. Cover crops had no effect on soil NH(4)-N. During the spring on coarse textured soil, pore water NO(3)-N concentrations in freeze-killed Brassica (radish) plots were greater than in control and overwintering Brassica (rape) and rye plots. On fine textured soil, all cover crops provided a similar decrease in pore water NO(3)-N concentration compared with control. On coarse textured soils, freeze-killed Brassica cover crops should be followed by an early-planted spring main crop.

  4. Selective modes determine evolutionary rates, gene compactness and expression patterns in Brassica.

    Science.gov (United States)

    Guo, Yue; Liu, Jing; Zhang, Jiefu; Liu, Shengyi; Du, Jianchang

    2017-07-01

    It has been well documented that most nuclear protein-coding genes in organisms can be classified into two categories: positively selected genes (PSGs) and negatively selected genes (NSGs). The characteristics and evolutionary fates of different types of genes, however, have been poorly understood. In this study, the rates of nonsynonymous substitution (K a ) and the rates of synonymous substitution (K s ) were investigated by comparing the orthologs between the two sequenced Brassica species, Brassica rapa and Brassica oleracea, and the evolutionary rates, gene structures, expression patterns, and codon bias were compared between PSGs and NSGs. The resulting data show that PSGs have higher protein evolutionary rates, lower synonymous substitution rates, shorter gene length, fewer exons, higher functional specificity, lower expression level, higher tissue-specific expression and stronger codon bias than NSGs. Although the quantities and values are different, the relative features of PSGs and NSGs have been largely verified in the model species Arabidopsis. These data suggest that PSGs and NSGs differ not only under selective pressure (K a /K s ), but also in their evolutionary, structural and functional properties, indicating that selective modes may serve as a determinant factor for measuring evolutionary rates, gene compactness and expression patterns in Brassica. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  5. Partitioning of K, Cl, S and P during combustion of poplar and brassica energy crops

    DEFF Research Database (Denmark)

    Díaz-Ramírez, Maryori; Jappe Frandsen, Flemming; Glarborg, Peter

    2014-01-01

    K-, Cl-, S- and P-release from a herbaceous (brassica) and a short rotation coppice (poplar) cultivated in the Mediterranean region, have been investigated under combustion conditions [500-1100 °C]. Contrary to brassica, Cl- and S-release from poplar were substantial for all temperatures tested....... Low-temperature [500-700 °C] Cl-release from the high-Cl brassica appeared to be primarily limited by the fuel chemical composition and secondarily by interactions of the ash-forming elements with the fuel organic matrix. Below 700 °C, Cl-release was nearly 50%, whereas complete dechlorination...... resulted around 800 °C. S-release from brassica was up to 40% at low temperature. Above 1000 °C, additional S-release was observed presumably by sulfate dissociation. K-release was linked to Cl-release around 700 °C and, gradually increased afterwards. At 1100 °C, nearly 60% of K in poplar was retained...

  6. Cold-pressed and hot-pressed rapeseed oil: The effects of roasting and seed moisture on the antioxi- dant activity, canolol, and tocopherol level.

    Science.gov (United States)

    Siger, Aleksander; Józefiak, Marta; Górnaś, Paweł

    2017-01-01

    The paper looks at the levels of canolol, tocopherols and antioxidant activity in cold-pressed and hot-pressed rapeseed oils produced from seeds of various moisture levels (5%, 7.5%, and 10%). The paper also considers the effects of seed roasting on the levels of these compounds. The material used for the tests was rapeseed cv. Adrianna. The quality of the oils obtained is determined using peroxide and acid values. The levels of canolol and tocopherols are analyzed using HPLC. The DPPH radical-scavenging activity method for oil samples and phenolic extract from oils was used. It has been demonstrated that the oils produced from rapeseeds with a 5% moisture content, and   in particular from cold-pressed oils, were characterized by the lowest peroxide values. Cold-pressed oils produced from rapeseeds with a 5% moisture content were characterized by higher levels of tocopherols and plastochromanol-8. In the case of hot-pressed oils, the highest levels of tocopherols were found in oils pro- duced from seeds with a 7.5% moisture content, and the greatest amount of PC-8 (more than 4 mg/100 g) was found in oils produced from seeds with a 10% moisture content. Hot-pressed oils have been shown to have higher levels of these compounds than cold-pressed oils. Both roasting and hot pressing led to an increase in the amount of canolol in the oils investigated. When analysing the antioxidant activity of the oils and phenolic extracts it was shown that phenolic compounds are responsible for approx. 10% of total antioxidant activity. Various levels of biologically active compounds were shown to be present in the rapeseed oil obtained from raw materials of a varying moisture content. The type of pressing process (cold-pressing or hot-pressing) and whether the seeds have undergone roasting has also been shown to affect the resulting oil and the level of native antioxidants it contains.

  7. Rapeseed is an efficient energy crop which can still improve

    Directory of Open Access Journals (Sweden)

    Flenet Francis

    2007-11-01

    Full Text Available The ability of biofuels to contribute efficiently to the replacement of fossil energy and to the reduction of greenhouse gas emissions has been a matter of debate. Hence, there is a need to assess accurately the energy balance of biofuels and their ability to reduce greenhouse gas emissions, in order to evaluate and to improve the benefit for society. In rapeseed, the energy ratio (energy produced per unit of non-renewable energy input is well above 2 whatever the method of calculation. In order to investigate the variability of energy ratios and to identify ways of improvement, a study was conducted in France in 2005 and 2006. The method of mass allocation of input energy was used for calculations, instead of the substitution method, because with this method the results do not depend on the utilization of co-products. Hence, this method is better adapted to follow improvements. A great variability in the energy ratio was observed in 2005 and 2006. Seed yields and energy cost of fertilizer N explained most of this variability. Hence, improvements should focus on increasing yield with little increase in energy cost, and on decreasing wasting of N fertilizer. However the farmer incomes, and the net production of energy per hectare, must also be a matter of concern. The inventories of greenhouse gas emissions of biofuels are still uncertain because of the great variability of soil emissions, due to environmental and management factors. Hence, in order to assess the effect of rapeseed on greenhouse gas emissions, methods based on process-oriented models accounting for these factors must be used. Such models give promising results, but further testing is still needed.

  8. Methane production and digestion of different physical forms of rapeseed as fat supplements in dairy cows

    DEFF Research Database (Denmark)

    Brask, Maike; Lund, Peter; Weisbjerg, Martin Riis

    2013-01-01

    The purpose of this experiment was to study the effect of the physical form of rapeseed fat on methane (CH4) mitigation properties, feed digestion, and rumen fermentation. Four lactating ruminal-, duodenal-, and ileal-cannulated Danish Holstein dairy cows (143 d in milk, milk yield of 34.3 kg) were...

  9. Induced mutagenesis for the development of high yielding varieties in mustard

    International Nuclear Information System (INIS)

    Das, M.L.; Rahman, A.

    1988-01-01

    Variation for resistance to Alternaria brassicae (Berk.) Sacc. was induced in the oleiferous Brassica campestris cultivar yellow sarson, 'YS 52' using gamma rays. Variations were identified and isolated from the M 2 population. Screening in the subsequent generations (M 3 -M 4 ) confirmed the varying degrees of field resistance of the mutants. A total of 8 mutants of mustard developed by gamma irradiation was compared with the parental line and a released variety 'Sampad' as a check. Maximum plant height, highest number of pods and primary branches/plant were recorded in mutant '17-5-83'. The mutants '17-5-83' and '70-7-82' gave 45 and 21 per cent more grain yield respectively than the parent cultivar 'YS 52'. The mutant '17-5-83' appeared resistant while the mutants '70-7-82' and '53-11-82' were found to be moderately resistant against the disease. (author). 6 refs., 2 tables

  10. Genetic basis of nitrogen use efficiency and yield stability across environments in winter rapeseed.

    Science.gov (United States)

    Bouchet, Anne-Sophie; Laperche, Anne; Bissuel-Belaygue, Christine; Baron, Cécile; Morice, Jérôme; Rousseau-Gueutin, Mathieu; Dheu, Jean-Eric; George, Pierre; Pinochet, Xavier; Foubert, Thomas; Maes, Olivier; Dugué, Damien; Guinot, Florent; Nesi, Nathalie

    2016-09-15

    Nitrogen use efficiency is an important breeding trait that can be modified to improve the sustainability of many crop species used in agriculture. Rapeseed is a major oil crop with low nitrogen use efficiency, making its production highly dependent on nitrogen input. This complex trait is suspected to be sensitive to genotype × environment interactions, especially genotype × nitrogen interactions. Therefore, phenotyping diverse rapeseed populations under a dense network of trials is a powerful approach to study nitrogen use efficiency in this crop. The present study aimed to determine the quantitative trait loci (QTL) associated with yield in winter oilseed rape and to assess the stability of these regions under contrasting nitrogen conditions for the purpose of increasing nitrogen use efficiency. Genome-wide association studies and linkage analyses were performed on two diversity sets and two doubled-haploid populations. These populations were densely genotyped, and yield-related traits were scored in a multi-environment design including seven French locations, six growing seasons (2009 to 2014) and two nitrogen nutrition levels (optimal versus limited). Very few genotype × nitrogen interactions were detected, and a large proportion of the QTL were stable across nitrogen nutrition conditions. In contrast, strong genotype × trial interactions in which most of the QTL were specific to a single trial were found. To obtain further insight into the QTL × environment interactions, genetic analyses of ecovalence were performed to identify the genomic regions contributing to the genotype × nitrogen and genotype × trial interactions. Fifty-one critical genomic regions contributing to the additive genetic control of yield-associated traits were identified, and the structural organization of these regions in the genome was investigated. Our results demonstrated that the effect of the trial was greater than the effect of nitrogen nutrition

  11. Identification and insertion polymorphisms of short interspersed nuclear elements (SINEs) in Brassica genomes

    International Nuclear Information System (INIS)

    Nouroz, F.; Naveed, M.

    2018-01-01

    The non-LTR retrotransposons (retroposons) are abundant in plant genomes including members of Brassicaceae. Of the retroposons, long interspersed nuclear elements (LINEs) are more copious followed by short interspersed nuclear elements (SINEs) in sequenced eukaryotic genomes. The SINEs are short elements and ranged from 100-500 bps flanked by variable sized target site duplications, 5' tRNA region with polymerase III promoter, internal tRNA unrelated region, 3' LINEs derived region and a poly adenosine tail. Different computational approaches were used for the identification and characterization of SINEs, while PCR was used to detect the SINEs insertion polymorphisms in various Brassica genotypes. Ten previously unidentified families of SINEs were identified and characterized from Brassica genomes. The structural features of these SINEs were studied in detail, which showed typical SINE features displaying small sizes, target site duplications, head regions, internal regions (body) of variable sizes and a poly (A) tail at the 3' terminus. The elements from various families ranged from 206-558 bp, where BoSINE2 family displayed smallest SINE element (206 bp), while larger members belonged to BoSINE9 family (524-558 bp). The distribution and abundance of SINEs in various Brassica species and genotypes (40) at a particular site/locus were investigated by SINEs based PCR markers. Various SINE insertion polymorphisms were detected from different genotypes, where higher PCR bands amplified the SINE insertions, while lower bands amplified the pre-insertion sites (flanking regions). The analysis of Brassica SINEs copy numbers from 10 identified families revealed that around 860 and 1712 copies of SINEs were calculated from B. rapa and B. oleracea Whole-genome shotgun contigs (WGS) respectively. Analysis of insertion sites of Brassica SINEs revealed that the members from all 10 SINE families had shown an insertion preference in AT rich regions. The present

  12. Cloning, crystallization and preliminary X-ray studies of XC2981 from Xanthomonas campestris, a putative CutA1 protein involved in copper-ion homeostasis

    International Nuclear Information System (INIS)

    Lin, Chien-Hung; Chin, Ko-Hsin; Gao, Fei Philip; Lyu, Ping-Chiang; Shr, Hui-Lin; Wang, Andrew H.-J.; Chou, Shan-Ho

    2006-01-01

    A probable copper-ion tolerance protein from the plant pathogen X. campestris has been overexpressed in E. coli, purified and crystallized. Divalent metal ions play key roles in all living organisms, serving as cofactors for many proteins involved in a variety of electron-transfer activities. However, copper ions are highly toxic when an excessive amount is accumulated in a cell. CutA1 is a protein found in all kingdoms of life that is believed to participate in copper-ion tolerance in Escherichia coli, although its specific function remains unknown. Several crystal structures of multimeric CutA1 with different rotation angles and degrees of interaction between trimer interfaces have been reported. Here, the cloning, expression, crystallization and preliminary X-ray analysis of XC2981, a possible CutA1 protein present in the plant pathogen Xanthomonas campestris, are reported. The XC2981 crystals diffracted to a resolution of 2.6 Å. They are cubic and belong to space group I23, with unit-cell parameters a = b = c = 130.73 Å

  13. A novel method for efficient and abundant production of Phytophthora brassicae zoospores on Brussels sprout leaf discs

    Directory of Open Access Journals (Sweden)

    Govers Francine

    2009-08-01

    Full Text Available Abstract Background Phytophthora species are notorious oomycete pathogens that cause diseases on a wide range of plants. Our understanding how these pathogens are able to infect their host plants will benefit greatly from information obtained from model systems representative for plant-Phytophthora interactions. One attractive model system is the interaction between Arabidopsis and Phytophthora brassicae. Under laboratory conditions, Arabidopsis can be easily infected with mycelial plugs as inoculum. In the disease cycle, however, sporangia or zoospores are the infectious propagules. Since the current P. brassicae zoospore isolation methods are generally regarded as inefficient, we aimed at developing an alternative method for obtaining high concentrations of P. brassicae zoospores. Results P. brassicae isolates were tested for pathogenicity on Brussels sprout plants (Brassica oleracea var. gemmifera. Microscopic examination of leaves, stems and roots infected with a GFP-tagged transformant of P. brassicae clearly demonstrated the susceptibility of the various tissues. Leaf discs were cut from infected Brussels sprout leaves, transferred to microwell plates and submerged in small amounts of water. In the leaf discs the hyphae proliferated and abundant formation of zoosporangia was observed. Upon maturation the zoosporangia released zoospores in high amounts and zoospore production continued during a period of at least four weeks. The zoospores were shown to be infectious on Brussels sprouts and Arabidopsis. Conclusion The in vitro leaf disc method established from P. brassicae infected Brussels sprout leaves facilitates convenient and high-throughput production of infectious zoospores and is thus suitable to drive small and large scale inoculation experiments. The system has the advantage that zoospores are produced continuously over a period of at least one month.

  14. A diet rich in monounsaturated rapeseed oil reduces the lipoprotein cholesterol concentration and increases the relative content of n-3 fatty acids in serum in hyperlipidemic subjects.

    Science.gov (United States)

    Gustafsson, I B; Vessby, B; Ohrvall, M; Nydahl, M

    1994-03-01

    The effects of 3 wk on a diet rich in monounsaturated rapeseed oil were compared with those of a diet containing sunflower oil within a lipid-lowering diet. Ninety-five subjects with moderate hyperlipoproteinemia were randomly assigned to one of the two well-controlled diets prepared at the hospital kitchen. Total serum, low-density- and high-density-lipoprotein cholesterol concentrations decreased by 15%, 16%, and 11% (P oil diet and by 16%, 14%, and 13% (P oil diet. Serum triglycerides decreased more markedly (by 29%, P oil than on the rapeseed oil diet (14%, P oil diet but decreased on the sunflower oil diet. There was an increase in the alpha-tocopherol concentrations after both diets. The findings indicate that low erucic acid rapeseed oil can replace oils and fats rich in polyunsaturated fatty acids in a lipid-lowering diet.

  15. Glucosinolates during preparation of Brassica vegetables in Indonesia

    NARCIS (Netherlands)

    Nugrahedi, P.Y.

    2015-01-01

    Title:

    Glucosinolates during preparation of Brassica vegetables in Indonesia

    Dutch translation of title:

    Effecten van Indonesische bereidingsmethoden op gezondheidsbevorderende stoffen in groenten

    Title/description

  16. Consumption of a diet rich in Brassica vegetables is associated with a reduced abundance of sulphate-reducing bacteria: A randomised crossover study.

    Science.gov (United States)

    Kellingray, Lee; Tapp, Henri S; Saha, Shikha; Doleman, Joanne F; Narbad, Arjan; Mithen, Richard F

    2017-09-01

    We examined whether a Brassica-rich diet was associated with an increase in the relative abundance of intestinal lactobacilli and sulphate-reducing bacteria (SRB), or alteration to the composition of the gut microbiota, in healthy adults. A randomised crossover study was performed with ten healthy adults who were fed a high- and a low-Brassica diet for 2-wk periods, with a 2-wk washout phase separating the diets. The high-Brassica diet consisted of six 84 g portions of broccoli, six 84 g portions of cauliflower and six 300 g portions of a broccoli and sweet potato soup. The low-Brassica diet consisted of one 84 g portion of broccoli and one 84 g portion of cauliflower. Faecal microbiota composition was measured in samples collected following 2-wk Brassica-free periods (consumption of all Brassica prohibited), and after each diet, whereby the only Brassica consumed was that supplied by the study team. No significant changes to the relative abundance of lactobacilli were observed (p = 0.8019). The increased consumption of Brassica was associated with a reduction in the relative abundance of SRB (p = 0.0215), and members of the Rikenellaceae, Ruminococcaceae, Mogibacteriaceae, Clostridium and unclassified Clostridiales (p < 0.01). The increased consumption of Brassica vegetables was linked to a reduced relative abundance of SRB, and therefore may be potentially beneficial to gastrointestinal health. © 2017 The Authors. Molecular Nutrition & Food Research published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The intensity of tyrosine nitration is associated with selenite and selenate toxicity in Brassica juncea L.

    Science.gov (United States)

    Molnár, Árpád; Feigl, Gábor; Trifán, Vanda; Ördög, Attila; Szőllősi, Réka; Erdei, László; Kolbert, Zsuzsanna

    2018-01-01

    Selenium phytotoxicity involves processes like reactive nitrogen species overproduction and nitrosative protein modifications. This study evaluates the toxicity of two selenium forms (selenite and selenate at 0µM, 20µM, 50µM and 100µM concentrations) and its correlation with protein tyrosine nitration in the organs of hydroponically grown Indian mustard (Brassica juncea L.). Selenate treatment resulted in large selenium accumulation in both Brassica organs, while selenite showed slight root-to-shoot translocation resulting in a much lower selenium accumulation in the shoot. Shoot and root growth inhibition and cell viability loss revealed that Brassica tolerates selenate better than selenite. Results also show that relative high amounts of selenium are able to accumulate in Brassica leaves without obvious visible symptoms such as chlorosis or necrosis. The more severe phytotoxicity of selenite was accompanied by more intense protein tyrosine nitration as well as alterations in nitration pattern suggesting a correlation between the degree of Se forms-induced toxicities and nitroproteome size, composition in Brassica organs. These results imply the possibility of considering protein tyrosine nitration as novel biomarker of selenium phytotoxicity, which could help the evaluation of asymptomatic selenium stress of plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Immobilized protease on the magnetic nanoparticles used for the hydrolysis of rapeseed meals

    International Nuclear Information System (INIS)

    Jin Xin; Li Jufang; Huang Pingying; Dong Xuyan; Guo Lulu; Yang Liang; Cao Yuancheng; Wei Fang; Zhao Yuandi

    2010-01-01

    (3-aminopropl) triethoxysilaneand modified magnetic nanoparticles with the average diameter of 25.4 nm were synthesized in water-phase co-precipitation method. And then these nanoparticles were covalently coupled with alkaline protease as enzyme carrier by using 1,4-phenylene diisothlocyanate as coupling agent. Experiments showed that the immobilized protease can keep the catalytic bioactivity, which can reach to 47.8% when casein was served as substrate. Results showed that the catalytic activity of immobilized protease on these magnetic nanoparticles could retain 98.63±2.37% after 60 days. And it is more stable than the free protease during the shelf-life test. The enzyme reaction conditions such as optimum reaction temperature and pH are the same as free protease. Furthermore, mix-and-separate experiments showed that the immobilized protease could be recycled through the magnetic nanoparticles after the biocatalysis process. When the rapeseed meals were used as substrate, the degree of hydrolysis of immobilized alkaline protease achieved 9.86%, while it was 10.41% for the free protease. The macromolecular proteins of rapeseed meals were hydrolyzed by immobilized protease into small molecules such as polypeptides or amino acids. Thus, a novel efficient and economic way for the recycling of enzymes in the application of continuous production of active peptides was provided based on these magnetic nanoparticles.

  19. Immobilized protease on the magnetic nanoparticles used for the hydrolysis of rapeseed meals

    Energy Technology Data Exchange (ETDEWEB)

    Jin Xin [Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, HuBei 430074 (China); Li Jufang [Key Lab of Oil Crops Biology, Ministry of Agriculture, Institute of Oil Crops Research, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062 (China); Huang Pingying [Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, HuBei 430074 (China); Dong Xuyan [Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, HuBei 430074 (China); Key Lab of Oil Crops Biology, Ministry of Agriculture, Institute of Oil Crops Research, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062 (China); Guo Lulu [Key Lab of Oil Crops Biology, Ministry of Agriculture, Institute of Oil Crops Research, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062 (China); Yang Liang; Cao Yuancheng [Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, HuBei 430074 (China); Wei Fang [Key Lab of Oil Crops Biology, Ministry of Agriculture, Institute of Oil Crops Research, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062 (China); Zhao Yuandi, E-mail: zydi@mail.hust.edu.c [Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, HuBei 430074 (China)

    2010-07-15

    (3-aminopropl) triethoxysilaneand modified magnetic nanoparticles with the average diameter of 25.4 nm were synthesized in water-phase co-precipitation method. And then these nanoparticles were covalently coupled with alkaline protease as enzyme carrier by using 1,4-phenylene diisothlocyanate as coupling agent. Experiments showed that the immobilized protease can keep the catalytic bioactivity, which can reach to 47.8% when casein was served as substrate. Results showed that the catalytic activity of immobilized protease on these magnetic nanoparticles could retain 98.63+-2.37% after 60 days. And it is more stable than the free protease during the shelf-life test. The enzyme reaction conditions such as optimum reaction temperature and pH are the same as free protease. Furthermore, mix-and-separate experiments showed that the immobilized protease could be recycled through the magnetic nanoparticles after the biocatalysis process. When the rapeseed meals were used as substrate, the degree of hydrolysis of immobilized alkaline protease achieved 9.86%, while it was 10.41% for the free protease. The macromolecular proteins of rapeseed meals were hydrolyzed by immobilized protease into small molecules such as polypeptides or amino acids. Thus, a novel efficient and economic way for the recycling of enzymes in the application of continuous production of active peptides was provided based on these magnetic nanoparticles.

  20. Medicinal significance of vegetables cultivated over minerals supplemented soil

    International Nuclear Information System (INIS)

    Bangash, J.A.; Arif, M.; Khan, F.; Khan, F.; Khan, A.S.

    2010-01-01

    Three winter season vegetables Fenugreek/Methi (Trigonella-foenum-graceum), Sarson (Brassica-campestris-var-sarson) and Garlic (Allium-sativum) were included in the present study to determine some of their mineral components and see if some of their mineral (Cr, Zn, Mn, Cu, Mg and Fe) content could be increased by supplementation through their roots. Thus calculated amount of Cr, Zn, Mn, Cu, Mg and Fe salts (as fertilizer) were applied in solution form to the roots of vegetables in different concentration as individual or in combinations. These vegetables were grown from seeds in the soil plot. After harvesting vegetables were dried, acid digested and analyzed for Cr, Mn, Zn, Cu, Fe and Mg on Hitachi Zeeman Japan Z-8000, Atomic Absorption Spectrophotometer. Thus in Fenugreek/Methi (Trigonella-foenum-graceum) total increase of Cr, Zn, Mn, Mg and Fe recorded was (10, 94, 10, 256 and 520) mg/Kg dry weight basis; in Sarson (Brassica-campestris-var-sarson) total increase of Cr, Zn, Mn and Mg recorded was (12, 30, 22 and 424) mg/Kg dry weight basis and ( Garlic) (Allium-sativum) total increase of Cr, Zn, Mn, Cu, Mg and Fe recorded was (14, 28, 4, 4, 116 and 10) mg/Kg dry weight basis. From the present study it can be concluded that by changing the soil minerals environment the uptake of required mineral content of vegetables, perhaps could be enhanced. This could play important role in management of diabetes control and also in the elimination of other deficiency diseases like anemia. (author)

  1. Contribution of multitemporal polarimetric synthetic aperture radar data for monitoring winter wheat and rapeseed crops

    Science.gov (United States)

    Betbeder, Julie; Fieuzal, Remy; Philippets, Yannick; Ferro-Famil, Laurent; Baup, Frederic

    2016-04-01

    This paper aims to evaluate the contribution of multitemporal polarimetric synthetic aperture radar (SAR) data for winter wheat and rapeseed crops parameters [height, leaf area index, and dry biomass (DB)] estimation, during their whole vegetation cycles in comparison to backscattering coefficients and optical data. Angular sensitivities and dynamics of polarimetric indicators were also analyzed following the growth stages of these two common crop types using, in total, 14 radar images (Radarsat-2), 16 optical images (Formosat-2, Spot-4/5), and numerous ground data. The results of this study show the importance of correcting the angular effect on SAR signals especially for copolarized signals and polarimetric indicators associated to single-bounce scattering mechanisms. The analysis of the temporal dynamic of polarimetric indicators has shown their high potential to detect crop growth changes. Moreover, this study shows the high interest of using SAR parameters (backscattering coefficients and polarimetric indicators) for crop parameters estimation during the whole vegetation cycle instead of optical vegetation index. They particularly revealed their high potential for rapeseed height and DB monitoring [i.e., Shannon entropy polarimetry (r2=0.70) and radar vegetation index (r2=0.80), respectively].

  2. Extraction of oil and minor lipids from cold-press rapeseed cake with supercritical CO2

    Directory of Open Access Journals (Sweden)

    E. Uquiche

    2012-09-01

    Full Text Available This study examines the extraction of oil from cold-press rapeseed cake using Supercritical CO2(SC-CO2. The effects of pressure (20, 30, and 40 MPa, temperature (40, 50, and 60 ºC, and extraction time (60, 90, and 120 min on oil yield and composition (tocopherols and carotenoids were studied using response surface design. The results indicated that pressure influenced the most the yield of oil, followed by temperature and extraction time. Extraction time had no effect on oil composition. Extraction pressure and temperature did not affect the tocopherol concentration of the oil to a great extent, whereas temperature had no affect in its carotenoid concentration. A comparison was made between the relative qualities of oil extracted with SC-CO2at 40 MPa and 60 ºC and with n-hexane. Neither solvent affected the unsaponifiable matter content or the composition of phytosterols (mainly β-sitosterol, campesterol and brassicasterol of the oils, although there was a significant difference (p<0.05 in tocopherol. Extraction with SC-CO2at 40 MPa and 60 ºC is recommended to obtain rapeseed-oil enriched with tocopherols and carotenoids as important functional components.

  3. Effects of Trichoderma harzianum Rifai over Plasmodiophora brassicae Woronin in broccoli, in Escagüey, municipality of Rangel, Mérida state

    Directory of Open Access Journals (Sweden)

    Mirna Labrador Morales

    2014-04-01

    Full Text Available The effectiveness of Trichoderma harzianum in suppressing clubroot of brassicas, which is caused by Plasmodiophora brassicae, was tested on broccoli (Brassica oleracea var. italica Plenck, in field conditions, in Escagüey, municipality of Rangel, Merida State, Venezuela. The experiment showed that the applications of a biopesticide based on this antagonist had a significant effect on the percentage of health plants and the crop yields, in dependence of the dose used. In addition, the relation benefits/cost was also favorable. These results showed that, for these particular conditions, P. brassicae is an adequate biological alternative to control the clubroot of brassicas, no aggressive to environment and human beings, useful for the transition phase toward a sustainable agriculture, without chemical pesticides.

  4. Effects of Trichoderma harzianum Rifai over Plasmodiophora brassicae Woronin in broccoli, in Escagüey, municipality of Rangel, Mérida State

    Directory of Open Access Journals (Sweden)

    Mirna Labrador Morales

    2016-03-01

    Full Text Available The effectiveness of Trichoderma harzianum in suppressing clubroot of brassicas, which is caused by Plasmodiophora brassicae, was tested on broccoli (Brassica oleracea var. italica Plenck, in field conditions, in Escagüey, municipality of Rangel, Merida State, Venezuela. The experiment showed that the applications of a biopesticide based on this antagonist had a significant effect on the percentage of health plants and the crop yields, in dependence of the dose used. In addition, the relation benefits/cost was also favorable. These results showed that, for these particular conditions, P. brassicae is an adequate biological alternative to control the clubroot of brassicas, no aggressive to environment and human beings, useful for the transition phase toward a sustainable agriculture, without chemical pesticides.

  5. Genomes and transcriptomes of partners in plant-fungal-interactions between canola (Brassica napus and two Leptosphaeria species.

    Directory of Open Access Journals (Sweden)

    Rohan G T Lowe

    Full Text Available Leptosphaeria maculans 'brassicae' is a damaging fungal pathogen of canola (Brassica napus, causing lesions on cotyledons and leaves, and cankers on the lower stem. A related species, L. biglobosa 'canadensis', colonises cotyledons but causes few stem cankers. We describe the complement of genes encoding carbohydrate-active enzymes (CAZys and peptidases of these fungi, as well as of four related plant pathogens. We also report dual-organism RNA-seq transcriptomes of these two Leptosphaeria species and B. napus during disease. During the first seven days of infection L. biglobosa 'canadensis', a necrotroph, expressed more cell wall degrading genes than L. maculans 'brassicae', a hemi-biotroph. L. maculans 'brassicae' expressed many genes in the Carbohydrate Binding Module class of CAZy, particularly CBM50 genes, with potential roles in the evasion of basal innate immunity in the host plant. At this time, three avirulence genes were amongst the top 20 most highly upregulated L. maculans 'brassicae' genes in planta. The two fungi had a similar number of peptidase genes, and trypsin was transcribed at high levels by both fungi early in infection. L. biglobosa 'canadensis' infection activated the jasmonic acid and salicylic acid defence pathways in B. napus, consistent with defence against necrotrophs. L. maculans 'brassicae' triggered a high level of expression of isochorismate synthase 1, a reporter for salicylic acid signalling. L. biglobosa 'canadensis' infection triggered coordinated shutdown of photosynthesis genes, and a concomitant increase in transcription of cell wall remodelling genes of the host plant. Expression of particular classes of CAZy genes and the triggering of host defence and particular metabolic pathways are consistent with the necrotrophic lifestyle of L. biglobosa 'canadensis', and the hemibiotrophic life style of L. maculans 'brassicae'.

  6. Biological control of dodder (Cuscuta campestris L. by fungi pathogens

    Directory of Open Access Journals (Sweden)

    F. Fallahpour

    2016-04-01

    Full Text Available Parasite weeds are the most important yield reducing factors, and among them dodder (Cuscuta campestris L. is an obligate parasite of many plant families. In order to find a suitable biocontrol agent for dodder a study was conducted based on a randomized complete design with four replications at research greenhouse of Faculty of Agriculture, Ferdowsi University of Mashhad, Iran during 2007-2009. Diseased dodders sampled from sugarbeet farms of Chenaran, Iran. After culturing and isolating exiting fungi from infected tissues of dodder, Fusarium sp., Alternaria sp. and Colletotrichum sp. were recognized. Inoculation of isolates was carried out with concenteration of 1×108 spores per ml sterile water at different growth stages of dodder in labratoary and greenhouse. Among different fungi, isolate of 323 of F. oxysporum showed an effective control on germination of dodder seeds and the highest level of plant pathogencity was before the contact of dodder with host and infection in older plants decreased. Infection of this isolate with crops such as sugarbeet (Beta vulgaris L., alfalfa (Medigago sativa L., basil (Ocimum basilicum L., wheat (Triticum aestivum L. and barley (Hordeum vulgare L. showed no symptoms.

  7. The Comparison of Co, Ni, Mo, CoMo and NiMo Sulfided Catalysts in Rapeseed Oil Hydrodeoxygenation.

    Czech Academy of Sciences Publication Activity Database

    Kaluža, Luděk; Kubička, D.

    2017-01-01

    Roč. 122, č. 1 (2017), s. 333-341 ISSN 1878-5190 R&D Projects: GA ČR(CZ) GA17-22490S Institutional support: RVO:67985858 Keywords : triolein hydrodeoxygenation scheme * rapeseed oil * sulfide catalysts Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 1.264, year: 2016

  8. The Brassica epithionitrile 1-cyano-2,3-epithiopropane triggers cell death in human liver cancer cells in vitro.

    Science.gov (United States)

    Hanschen, Franziska S; Herz, Corinna; Schlotz, Nina; Kupke, Franziska; Bartolomé Rodríguez, María M; Schreiner, Monika; Rohn, Sascha; Lamy, Evelyn

    2015-11-01

    Glucosinolates are secondary metabolites present in Brassica vegetables. Alkenyl glucosinolates are enzymatically degraded forming nitriles or isothiocyanates, but in the presence of epithiospecifier protein, epithionitriles are released. However, studies on the occurrence of epithionitriles in Brassica food and knowledge about their biological effects are scarce. Epithionitrile formation from glucosinolates of seven Brassica vegetables was analyzed using GC-MS and HPLC-DAD. Bioactivity of synthetic and plant-derived 1-cyano-2,3-epithiopropane (CETP) - the predominant epithionitrile in Brassica vegetables - in three human hepatocellular carcinoma (HCC) cell lines and primary murine hepatocytes was also evaluated. The majority of the Brassica vegetables were producers of nitriles or epithionitriles as hydrolysis products and not of isothiocyanates. For example, Brussels sprouts and savoy cabbage contained up to 0.8 μmol CETP/g vegetable. Using formazan dye assays, concentrations of 380-1500 nM CETP were observed to inhibit the mitochondrial dehydrogenase activity of human HCC cells without impairment of cell growth. At 100-fold higher CETP concentrations, cell death was observed. Presence of plant matrix increased CETP-based toxicity. These in vitro data provide no indication that epithionitriles will severely affect human health by Brassica consumption. In contrast to isothiocyanates, no evidence of selective toxicity against HCC cells was found. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Characterization of a new high copy Stowaway family MITE, BRAMI-1 in Brassica genome

    Science.gov (United States)

    2013-01-01

    Background Miniature inverted-repeat transposable elements (MITEs) are expected to play important roles in evolution of genes and genome in plants, especially in the highly duplicated plant genomes. Various MITE families and their roles in plants have been characterized. However, there have been fewer studies of MITE families and their potential roles in evolution of the recently triplicated Brassica genome. Results We identified a new MITE family, BRAMI-1, belonging to the Stowaway super-family in the Brassica genome. In silico mapping revealed that 697 members are dispersed throughout the euchromatic regions of the B. rapa pseudo-chromosomes. Among them, 548 members (78.6%) are located in gene-rich regions, less than 3 kb from genes. In addition, we identified 516 and 15 members in the 470 Mb and 15 Mb genomic shotgun sequences currently available for B. oleracea and B. napus, respectively. The resulting estimated copy numbers for the entire genomes were 1440, 1464 and 2490 in B. rapa, B. oleracea and B. napus, respectively. Concurrently, only 70 members of the related Arabidopsis ATTIRTA-1 MITE family were identified in the Arabidopsis genome. Phylogenetic analysis revealed that BRAMI-1 elements proliferated in the Brassica genus after divergence from the Arabidopsis lineage. MITE insertion polymorphism (MIP) was inspected for 50 BRAMI-1 members, revealing high levels of insertion polymorphism between and within species of Brassica that clarify BRAMI-1 activation periods up to the present. Comparative analysis of the 71 genes harbouring the BRAMI-1 elements with their non-insertion paralogs (NIPs) showed that the BRAMI-1 insertions mainly reside in non-coding sequences and that the expression levels of genes with the elements differ from those of their NIPs. Conclusion A Stowaway family MITE, named as BRAMI-1, was gradually amplified and remained present in over than 1400 copies in each of three Brassica species. Overall, 78% of the members were identified in

  10. Ruminal Degradability of Dry Matter and Crude Protein from Moist Dehulled Lupin and Extruded Rapeseed Meal Degradabilidad Ruminal de la Materia Seca y de la Proteína Cruda de Lupino Descascarado y Torta de Raps Extruidos

    Directory of Open Access Journals (Sweden)

    Claudia Barchiesi-Ferrari

    2011-09-01

    Full Text Available The flow of ruminal undegradable protein (RUP to the small intestine can be increased if ruminal degradation of dietary protein is reduced. The objective of this study was to evaluate the effect of extrusion on ruminal degradability of dry matter (DM and crude protein (CP from dehulled lupin (Lupinus albus L. (DL and rapeseed (Brassica napus L. meal (RM. Unextruded soybean (Glicine max L. meal (SBM was used as a control. The DL was extruded at 130 ºC with 20% moisture and RM was extruded at 120 ºC with 20% moisture. Ruminal degradability was evaluated in situ by incubating feed samples for 2, 4, 8, 12, 24, and 48 h of fermentation in the rumen using three rumen-fistulated dairy cows. Values of CP soluble fraction (“a” in SBM, DL, extruded dehulled lupin (EDL, RM, and extruded rapeseed meal (ERM was lower in the extruded feeds (P El flujo de proteína no degradable en el rumen (RUP hacia el intestino delgado puede ser incrementado si se reduce la degradación ruminal de la proteína dietaria. El objetivo de este trabajo fue evaluar el efecto de la extrusión sobre la degradabilidad ruminal de la materia seca (DM y proteína cruda (CP de lupino (Lupinus albus L. descascarado (DL y torta de raps (Brassica napus L. (RM. Se utilizó afrecho de soya (Glicine max L. sin extruir (SBM como control. El DL fue extruido a 130 ºC con 20% de humedad y la RM fue extruida a 120 ºC con 20% de humedad. La degradabilidad ruminal se evaluó in situ incubando las muestras de alimentos a 2, 4, 8, 12, 24 y 48 h de fermentación en tres vacas lecheras con fístula ruminal. Los valores de la fracción soluble de la CP (“a” en SBM, en DL, lupino descascarado extruido (EDL, RM y torta de raps extruida (ERM fue menor en los extruidos (P < 0.05. La fracción lentamente degradable (“b” de SBM, DL, EDL, RM y de ERM fue 858; 593; 622 y 451 y 457 g kg-1, respectivamente, y se incrementó por extrusión (P < 0.05. La extrusión redujo la degradabilidad efectiva

  11. Genetic diversity assessment in brassica germplasm based on morphological attributes

    International Nuclear Information System (INIS)

    Ali, I.; Ali, N.; Ali, S.; Hussain, I.; Khan, S. A.; Tahira, R.

    2015-01-01

    Genetic diversity of 28 Brassica genotypes was studied using different morphological attributes. Data were recorded on days to maturity (DM), plant height (PH), primary branches plant (PBPP), pod length (PL), seed pod (SP), 1000 - seed weight (1000 - SW), yield plant (YPP) and oil (percentage). Three checks (Pakola, CM and TA), were used to check the performance of collected materials with already available brassica varieties. significant statistical differences were observed among the tested genotypes based on the studied morphological traits. Among the tested genotypes, genotype keelboat proved to be superior as compared to other studied genotypes due to maximum level of studied traits like pod length (7.03 cm), seed pod (32.33), 1000 - seed weight (5.38 g), seed yield plant (110.8 g) and oil content (52.9 percentage. The highest level of performance recorded by kalabat in terms of branches plant, pod length (cm), number of seed pod, seed yield plant (g), 1000 - seed weight (g) and oil content (percentage), indicates that this genotype is genetically different and superior than the other studied genotype. Therefore, genotype kalabat can be either used as variety after adaptability trials over a larger area or included in Brassica breeding programmes as a good source of genetic variation. (author)

  12. Phosphate-assisted phytoremediation of arsenic by Brassica napus and Brassica juncea: Morphological and physiological response.

    Science.gov (United States)

    Niazi, Nabeel Khan; Bibi, Irshad; Fatimah, Ayesha; Shahid, Muhammad; Javed, Muhammad Tariq; Wang, Hailong; Ok, Yong Sik; Bashir, Safdar; Murtaza, Behzad; Saqib, Zulfiqar Ahmad; Shakoor, Muhammad Bilal

    2017-07-03

    In this study, we examined the potential role of phosphate (P; 0, 50, 100 mg kg -1 ) on growth, gas exchange attributes, and photosynthetic pigments of Brassica napus and Brassica juncea under arsenic (As) stress (0, 25, 50, 75 mg kg -1 ) in a pot experiment. Results revealed that phosphate supplementation (P100) to As-stressed plants significantly increased shoot As concentration, dry biomass yield, and As uptake, in addition to the improved morphological and gas exchange attributes and photosynthetic pigments over P0. However, phosphate-assisted increase in As uptake was substantially (up to two times) greater for B. napus, notably due to higher shoot As concentration and dry biomass yield, compared to B. juncea at the P100 level. While phosphate addition in soil (P100) led to enhanced shoot As concentration in B. juncea, it reduced shoot dry biomass, primarily after 50 and 75 mg kg -1 As treatments. The translocation factor and bioconcentration factor values of B. napus were higher than B. juncea for all As levels in the presence of phosphate. This study demonstrates that phosphate supplementation has a potential to improve As phytoextraction efficiency, predominantly for B. napus, by minimizing As-induced damage to plant growth, as well as by improving the physiological and photosynthetic attributes.

  13. Multiplex PCR for specific and robust detection of Xanthomonas campestris pv. musacearum in pure culture and infected plant material

    DEFF Research Database (Denmark)

    Adriko, John; Aritua, V.; Mortensen, Carmen Nieves

    2012-01-01

    The present study developed a pathovar-specific PCR for the detection of Xanthomonas campestris pv. musacearum (Xcm), the cause of banana xanthomonas wilt, by amplification of a 265-bp region of the gene encoding the general secretion pathway protein D (GspD). A distinct DNA fragment......-specific PCR was successfully multiplexed with internal control primers targeting 16S rDNA for application on DNA from bacterial cultures and with primers targeting plant mitochondrial 26S rDNA for application on DNA extracted from plant material. Diagnostic discrimination of healthy and infected plants...

  14. Phenotyping of Brassica napus for high oil content

    Science.gov (United States)

    Multi-trait and multi-growth stage phenotyping may improve our ability to assess the dynamic changes in the B. napus phenome under spatiotemporal field conditions. A minimum set of phenotypic traits that can integrate ontogeny and architecture of Brassica napus L. is required for breeding and select...

  15. Effects of Drought and Salinity Stresses on Germination Characteristics of Dodder (Cuscuta campestris

    Directory of Open Access Journals (Sweden)

    A Ghanbari

    2012-10-01

    Full Text Available In order to study the germination characteristics of dodder (Cuscuta campestris under drought and salinity stress conditions, two laboratory's experiment were conducted. Experiments were conducted in completely randomized design with 4 replications. The treatments, for salinity and drought stress were six potential levels (0,-3, -6, -9, -12 and -15 bar of NaCl and five potential levels (0, -3, -6, -9 and -12 bar of PEG 6000 respectively. Results showed that increasing drought and salinity stress significantly germination rate and germination percentage, plumule and radicle length, plumule of Dodder and its radicle fresh weight decreased. However ratio of radicle to plumule and root to shoot were increased (P≤0.01. It seems that among the characters, plumule length is more sensitive to drought and salinity stresses. In addition, germination of dodder was tolernt to drought stress more than salinity stresses.

  16. Evaluating relative contribution of osmotolerance and tissue tolerance mechanisms toward salinity stress tolerance in three Brassica species.

    Science.gov (United States)

    Chakraborty, Koushik; Bose, Jayakumar; Shabala, Lana; Eyles, Alieta; Shabala, Sergey

    2016-10-01

    Three different species of Brassica, with differential salt sensitivity were used to understand physiological mechanisms of salt tolerance operating in these species and to evaluate the relative contribution of different strategies to cope with salt load. Brassica napus was the most tolerant species in terms of the overall performance, with Brassica juncea and Brassica oleracea being much more sensitive to salt stress with no obvious difference between them. While prominent reduction in net CO2 assimilation was observed in both sensitive species, physiological mechanisms beyond this reduction differed strongly. Brassica juncea plants possessed high osmotolerance and were able to maintain high transpiration rate but showed a significant reduction in leaf chlorophyll content and efficiency of leaf photochemistry. On the contrary, B. oleracea plants possessed the highest (among the three species) tissue tolerance but showed a very significant stomatal limitation of photosynthesis. Electrophysiological experiments revealed that the high tissue tolerance in B. oleracea was related to the ability of leaf mesophyll cells to maintain highly negative membrane potential in the presence of high apoplastic Na(+) . In addition to high osmotolerance, the most tolerant B. napus showed also lesser accumulation of toxic Na(+) and Cl(-) in the leaf, possessed moderate tissue tolerance and had a superior K(+) retention ability. Taken together, the results from this study indicate that the three Brassica species employ very different mechanisms to cope with salinity and, despite its overall sensitivity to salinity, B. oleracea could be recommended as a valuable 'donor' of tissue tolerance genes to confer this trait for marker-assisted breeding programs. © 2016 Scandinavian Plant Physiology Society.

  17. Cloning and expression study of BnaLCR78 in Brassica napus

    International Nuclear Information System (INIS)

    Zhuang, L.; Ze, L. Y.; Cheng, W. Y.

    2016-01-01

    BnaLCR78 genes of three types of rape were cloned in rape (Brassica napus), and encoded protein structure was analyzed, the Results showed that the protein had a conserved coding domain which was analogues among LCR family of Arabidopsis. The expression patterns of genes of three types of rape in varying tissues and in specific same tissues were analyzed using quantitative method. The Results showed that their expression patterns differ from that of former research in Brassica napus, which may result from the difference of sampling time. We speculated that the gene might be involved in transpiration and transportation and distribution of nutrient, oil content in seed. (author)

  18. Effect of processing of rapeseed under defined conditions in a pilot plant on chemical composition and standardized ileal amino acid digestibility in rapeseed meal for pigs.

    Science.gov (United States)

    Eklund, M; Sauer, N; Schöne, F; Messerschmidt, U; Rosenfelder, P; Htoo, J K; Mosenthin, R

    2015-06-01

    Five rapeseed meals (RSM) were produced from a single batch of rapeseed in a large-scale pilot plant under standardized conditions. The objective was to evaluate the effect of residence time in the desolventizer/toaster (DT) on chemical composition and standardized ileal digestibility (SID) of AA in RSM. Four RSM, with 48, 64, 76, and 93 min residence time and using unsaturated steam in the DT, referred to as RSM48, RSM64, RSM76, and RSM93, respectively, and 1 low-glucosinolate RSM, which was subjected to sequential treatment with unsaturated steam, saturated steam, and dry heat in the DT, referred to as low-GSL RSM, were assayed. Six barrows (average initial BW = 22 ± 1 kg) were surgically fitted with a T-cannula at the distal ileum. Pigs were allotted to a 5 × 6 row × column design with 5 diets and 5 periods. The 5 RSM were included in a cornstarch-casein-based basal diet. In addition, basal ileal endogenous losses and SID of AA originating from casein were determined at the conclusion of the experiment in 2 additional periods by means of the regression method and using 3 graded levels of casein. The SID of AA in the 5 RSM was determined in difference to SID of AA originating from casein. The glucosinolates (GSL) were efficiently reduced, whereas NDF, ADF, ADL, and NDIN contents increased and reactive Lys (rLys) and Lys:CP ratio decreased as the residence time in the DT was increased from 48 to 93 min. The SID of most AA in RSM linearly decreased (P based on content of NDIN, GSL, rLys or on Lys:CP ratio, in different batches of RSM used for feed manufacturing.

  19. Influence of metal loading on hydrocracking of rapeseed oil using bifunctional micro-/mesoporous composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Gille, T.; Busse, O.; Reschetilowski, W. [Technische Univ. Dresden (Germany). Inst. of Industrial Chemistry

    2013-11-01

    Hydrocracking of rapeseed oil has been investigated in a fixed bed reactor under integral conditions. A synthesized micro-/mesoporous composite material Al-MCM-41/ZSM-5 modified by different metal loadings (NiMo, PtNiMo, Pt) was used as catalyst system. It could be demonstrated that the support material and their metal loading influence the product selectivity as well as the deactivation tendencies of the catalyst sample. (orig.)

  20. Rapeseed Oil as Renewable Resource for Polyol Synthesis

    Science.gov (United States)

    Stirna, Uldis; Fridrihsone, Anda; Misane, Marija; Vilsone, Dzintra

    2011-01-01

    Vegetable oils are one of the most important platform chemicals due to their accessibility, specific structure of oils and low price. Rapeseed oil (RO) polyols were prepared by amidization of RO with diethanolamine (DEA). To determine the kinetics of amidization reaction, experiments were carried out. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), amine (NH) value was determined. Group contribution method by Fedor‵s was used to calculate solubility parameters, van der Waals volume was calculated by Askadskii. Obtained polyol‵s OH and NH value are from 304 up to 415 mg KOH/g. RO polyols synthesis meets the criteria of "green chemistry". In the present study, reaction of RO amidization with DEA was investigated, as well as optimum conditions for polyol synthesis was established to obtain polyols for polyurethane production. Calculations of solubility parameter and cohesion energy density were calculated, as RO polyols will be used as side chains in polymers, and solubility parameter will be used to explain properties of polymers.

  1. Sulphur Nutrition and its Effect on Yield and Oil Content of Oilseed Rape (Brassica Napus L.

    Directory of Open Access Journals (Sweden)

    Mária Varényiová

    2017-01-01

    Full Text Available The aim of the experiment was to study the importance of sulphur in oilseed rape (Brassica napus L. nutrition as well as the effect of rising doses of sulphur in combination with nitrogen on yield, oiliness, oil production, nutrients content in seed and nutrients uptake by rapeseed. The plot–scale experiment was established in years 2013/14 and 2014/15 within the agricultural cooperative in Mojmírovce. There were four fertilization treatments on 600 m2 experimental plots in three replications in this experiment. The first treatment was unfertilized control. Other three treatments were fertilized by the same nitrogen dose of 160 kg.ha−1 and by increasing doses of sulphur. The second treatment was fertilized by a dose of 15 kg.ha−1 S, the third by a dose of 40 kg.ha−1 and a dose of 65 kg.ha−1 S was applied at the fourth treatment. The highest average yield 3.96 t.ha-1 was found when a dose of 40 kg.ha−1 S was applied. The application of sulphur in a dose of 65 kg.ha−1 was accompanied by a yield decrease by 11.4 % as compared to the treatment where a sulphur dose of 40 kg.ha−1 was used. An average oil content of 45.1, 45.5, and 44.0 % was found in treatments in which the doses of sulphur of 15, 40 and 65 kg.ha−1 were applied. No significant difference among the treatments fertilized by sulphur was found. The average oil production reached 1809, 1802 and 1595 kg.ha−1 in cases of treatments fertilized by sulphur doses of 15, 40 and 65 kg.ha−1.

  2. Genetic diversity analysis of mustard ( Brassica spp.) germplasm ...

    African Journals Online (AJOL)

    Molecular characterization of 16 mustard (Brassica spp.) genotypes by using 12 RAPD markers revealed that three primers GLA-11, OPB-04 and OPD-02 showed good technical resolution and sufficient variations among different genotypes. A total of 40 RAPD bands were scored of which 38 (94.87%) polymorphic ...

  3. Neofunctionalization of duplicated Tic40 genes caused a gain-of-function variation related to male fertility in Brassica oleracea lineages.

    Science.gov (United States)

    Dun, Xiaoling; Shen, Wenhao; Hu, Kaining; Zhou, Zhengfu; Xia, Shengqian; Wen, Jing; Yi, Bin; Shen, Jinxiong; Ma, Chaozhi; Tu, Jinxing; Fu, Tingdong; Lagercrantz, Ulf

    2014-11-01

    Gene duplication followed by functional divergence in the event of polyploidization is a major contributor to evolutionary novelties. The Brassica genus evolved from a common ancestor after whole-genome triplication. Here, we studied the evolutionary and functional features of Brassica spp. homologs to Tic40 (for translocon at the inner membrane of chloroplasts with 40 kDa). Four Tic40 loci were identified in allotetraploid Brassica napus and two loci in each of three basic diploid Brassica spp. Although these Tic40 homologs share high sequence identities and similar expression patterns, they exhibit altered functional features. Complementation assays conducted on Arabidopsis thaliana tic40 and the B. napus male-sterile line 7365A suggested that all Brassica spp. Tic40 homologs retain an ancestral function similar to that of AtTic40, whereas BolC9.Tic40 in Brassica oleracea and its ortholog in B. napus, BnaC9.Tic40, in addition, evolved a novel function that can rescue the fertility of 7365A. A homologous chromosomal rearrangement placed bnac9.tic40 originating from the A genome (BraA10.Tic40) as an allele of BnaC9.Tic40 in the C genome, resulting in phenotypic variation for male sterility in the B. napus near-isogenic two-type line 7365AB. Assessment of the complementation activity of chimeric B. napus Tic40 domain-swapping constructs in 7365A suggested that amino acid replacements in the carboxyl terminus of BnaC9.Tic40 cause this functional divergence. The distribution of these amino acid replacements in 59 diverse Brassica spp. accessions demonstrated that the neofunctionalization of Tic40 is restricted to B. oleracea and its derivatives and thus occurred after the divergence of the Brassica spp. A, B, and C genomes. © 2014 American Society of Plant Biologists. All Rights Reserved.

  4. The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases.

    Science.gov (United States)

    Schwelm, Arne; Fogelqvist, Johan; Knaust, Andrea; Jülke, Sabine; Lilja, Tua; Bonilla-Rosso, German; Karlsson, Magnus; Shevchenko, Andrej; Dhandapani, Vignesh; Choi, Su Ryun; Kim, Hong Gi; Park, Ju Young; Lim, Yong Pyo; Ludwig-Müller, Jutta; Dixelius, Christina

    2015-06-18

    Plasmodiophora brassicae causes clubroot, a major disease of Brassica oil and vegetable crops worldwide. P. brassicae is a Plasmodiophorid, obligate biotrophic protist in the eukaryotic kingdom of Rhizaria. Here we present the 25.5 Mb genome draft of P. brassicae, developmental stage-specific transcriptomes and a transcriptome of Spongospora subterranea, the Plasmodiophorid causing powdery scab on potato. Like other biotrophic pathogens both Plasmodiophorids are reduced in metabolic pathways. Phytohormones contribute to the gall phenotypes of infected roots. We report a protein (PbGH3) that can modify auxin and jasmonic acid. Plasmodiophorids contain chitin in cell walls of the resilient resting spores. If recognized, chitin can trigger defense responses in plants. Interestingly, chitin-related enzymes of Plasmodiophorids built specific families and the carbohydrate/chitin binding (CBM18) domain is enriched in the Plasmodiophorid secretome. Plasmodiophorids chitin synthases belong to two families, which were present before the split of the eukaryotic Stramenopiles/Alveolates/Rhizaria/Plantae and Metazoa/Fungi/Amoebozoa megagroups, suggesting chitin synthesis to be an ancient feature of eukaryotes. This exemplifies the importance of genomic data from unexplored eukaryotic groups, such as the Plasmodiophorids, to decipher evolutionary relationships and gene diversification of early eukaryotes.

  5. Effect of topdressing with nitrogen and boron on the yield and quality of rapeseed

    Directory of Open Access Journals (Sweden)

    Ladislav Varga

    2010-01-01

    Full Text Available Field trials with winter rape (Brassica napus L. var. napus variety Rasmus were established in August in the years 2002–2004 at the experimental station in Kolíňany which belongs to the Slovak University of Agriculture in Nitra. In the experiments we explore the effect of supplementary spring topdressing of rape with nitrogen and boron in the BBCH 29–30 stage with regard to the yields of seeds and their qualitative parameters (TSW, content of oil and crude protein. In the experiment we applied DAM–390 (solution of ammonium nitrate and urea, 30% N at a rate of 30 kg N/ha and Humix Bór (humic acids + N, K, B at a rate of 0.240 kg B / ha. The different climate conditions in the respective years had a significant effect on yields of rapeseed and ranged as follows: 2003: 1.80–2.29 t / ha; 2004: 2.60–3.35 t / ha; 2005: 2.45–3.29 t / ha. The significant decrease in seed yields in the first year of the experiment was caused namely by the deficit in precipitation in January, February and June 2003 and high temperatures in May and June in the same year. In terms of the individual years and the three-year average the application of Humix Bór itself did not significantly improve the yield and qualitative parameters of seeds compared to the unfertilised control. In a three-year average the application of the N fertiliser alone or in combination with Humix Bór increased seed yields and the crude protein content by 22.4–30.7 % and 4.0–4.9 rel. %, respectively, compared to the unfertilised control. The significantly highest seed yields (2.98 t / ha were achieved when the plants were treated with a combination of nitrogen and Humix Bór as compared to all the other treatments (2.28–2.79 t / ha. The oil content in seeds increased significantly to 44.1% only when treated with a combined application of DAM–390 and Humix Bór as against the unfertilised control (42.8%. Fertilisation did not change

  6. Oviposition Preference for Young Plants by the Large Cabbage Butterfly (Pieris brassicae ) Does not Strongly Correlate with Caterpillar Performance.

    Science.gov (United States)

    Fei, Minghui; Harvey, Jeffrey A; Yin, Yi; Gols, Rieta

    2017-06-01

    The effects of temporal variation in the quality of short-lived annual plants on oviposition preference and larval performance of insect herbivores has thus far received little attention. This study examines the effects of plant age on female oviposition preference and offspring performance in the large cabbage white butterfly Pieris brassicae. Adult female butterflies lay variable clusters of eggs on the underside of short-lived annual species in the family Brassicaceae, including the short-lived annuals Brassica nigra and Sinapis arvensis, which are important food plants for P. brassicae in The Netherlands. Here, we compared oviposition preference and larval performance of P. brassicae on three age classes (young, mature, and pre-senescing) of B. nigra and S. arvensis plants. Oviposition preference of P. brassicae declined with plant age in both plant species. Whereas larvae performed similarly on all three age classes in B. nigra, preference and performance were weakly correlated in S. arvensis. Analysis of primary (sugars and amino acids) and secondary (glucosinolates) chemistry in the plant shoots revealed that differences in their quality and quantity were more pronounced with respect to tissue type (leaves vs. flowers) than among different developmental stages of both plant species. Butterflies of P. brassicae may prefer younger and smaller plants for oviposition anticipating that future plant growth and size is optimally synchronized with the final larval instar, which contributes >80% of larval growth before pupation.

  7. Vernalization and photoperiod-related changes in the DNA methylation state in winter and spring rapeseed

    Czech Academy of Sciences Publication Activity Database

    Guzy-Wrobelska, J.; Filek, M.; Kaliciak, A.; Szarejko, I.; Macháčková, Ivana; Krekule, Jan; Barciszewska, M.

    2013-01-01

    Roč. 35, č. 3 (2013), s. 817-827 ISSN 0137-5881 Institutional research plan: CEZ:AV0Z50380511 Keywords : Brassica napus * DNA methylation * MSAP Subject RIV: EF - Botanics Impact factor: 1.524, year: 2013

  8. Atmospheric H2S and SO2 as sulfur source for Brassica juncea and Brassica rapa: Impact on the glucosinolate composition

    NARCIS (Netherlands)

    Aghajanzadeh, T.; Kopriva, S; Hawkesford, M.J.; Koprivova, A.; De Kok, L.J.

    2015-01-01

    The impact of sulfate deprivation and atmospheric H2S and SO2 nutrition on the content and composition of glucosinolates was studied in Brassica juncea and Brasscia rapa. Both species contained a number of aliphatic and indolic glucosinolates. The total glucosinolate content was more than 5.5-fold

  9. Canola/rapeseed protein-functionality and nutrition

    Directory of Open Access Journals (Sweden)

    Wanasundara Janitha P.D.

    2016-07-01

    Full Text Available Protein rich meal is a valuable co-product of canola/rapeseed oil extraction. Seed storage proteins that include cruciferin (11S and napin (2S dominate the protein complement of canola while oleosins, lipid transfer proteins and other minor proteins of non-storage nature are also found. Although oil-free canola meal contains 36–40% protein on a dry weight basis, non-protein components including fibre, polymeric phenolics, phytates and sinapine, etc. of the seed coat and cellular components make protein less suitable for food use. Separation of canola protein from non-protein components is a technical challenge but necessary to obtain full nutritional and functional potential of protein. Process conditions of raw material and protein preparation are critical of nutritional and functional value of the final protein product. The storage proteins of canola can satisfy many nutritional and functional requirements for food applications. Protein macromolecules of canola also provide functionalities required in applications beyond edible uses; there exists substantial potential as a source of plant protein and a renewable biopolymer. Available information at present is mostly based on the protein products that can be obtained as mixtures of storage protein types and other chemical constituents of the seed; therefore, full potential of canola storage proteins is yet to be revealed.

  10. Isolate dependency of Brassica rapa resistance QTLs to Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Wei eZhang

    2016-02-01

    Full Text Available Generalist necrotrophic pathogens including Botrytis cinerea cause significant yield and financial losses on Brassica crops. However, there is little knowledge about the mechanisms underlying the complex interactions encoded by both host and pathogen genomes in this interaction. This potentially includes multiple layers of plant defense and pathogen virulence mechanisms that could complicate in breeding broad spectrum resistance within Brassica species. Glucosinolates are a diverse group of defense metabolites that play a key role in interaction between Brassica and biotic attackers. In this study, we utilized a collection of diverse B. cinerea isolates to investigate resistance within the B. rapa R500 x IMB211 recombinant inbred line population. We tested variation on lesion development and glucosinolate accumulation in parental lines and all population lines. We then mapped quantitative trait loci (QTL for both resistances to B. cinerea and defense metabolites in this population. Phenotypic analysis and QTL mapping demonstrate that the genetic basis of resistance to B. cinerea in B. rapa is isolate specific and polygenic with transgressive segregation that both parents contribute resistance alleles. QTLs controlling defensive glucosinolates are highly dependent on pathogen infection. An overlap of two QTLs identified between resistance to B. cinerea and defense metabolites also showed isolate specific effects. This work suggests that directly searching for resistance loci may not be the best approach at improving resistance in B. rapa to necrotrophic pathogen.

  11. NEW ACCESSIONS OF BRASSICA OLERACEA L. IN VIR PLANT COLLECTION

    Directory of Open Access Journals (Sweden)

    A. M. Artemieva

    2017-01-01

    Full Text Available Varieties of Brassica oleracea L. are widespread and favorite crops, where among them the head cabbage and cauliflower are the most economically important. Russia takes third place after India and Chine among countries with largest production areas and gross yield for the crop. In Russia, the area sown to cabbage is about 27 thousand hectares. 728 cultivars and hybrids of eight cabbage crops including 528 hybrids have been added in State Register of Breeding Achievements of Russian Federation in 2017. The collection of Brassica oleracea L. totally contains of 2421 accessions and takes first place at number of collected items among the world’s plant genbanks. The phenotyping, genotyping, passportization, development of core collection and trait collection as well as initial breeding accessions, covering all genetic diversity have been carried out at department of genetic resources of vegetables and melons at VIR. Selection of most promising accessions is performed to find genes and sources for economically valuable traits to develop proper lines and hybrids. There are the enrichment of the collection by means of ordering and gathering in expeditions, the improvement of methods of phenotyping and development of database for all biological accessions studied at the department. In 2007-2016, 255 accessions of Brassica oleracea L. have been included into collection to be used in different national breeding programs.

  12. Enzymatic interesterification of butterfat with rapeseed oil in a continuous packed bed reactor

    DEFF Research Database (Denmark)

    Rønne, Torben Harald; Yang, Tiankui; Mu, Huiling

    2005-01-01

    , whereafter it dramatically decreased over the next 10 days to an activity level of 40%. In general, the study shows no significant difference for butterfat interesterification in terms of enzyme behavior from normal vegetable oils and fats even though it contains short-chain fatty acids and cholesterol......Lipase-catalyzed interesterification of butterfat blended with rapeseed oil (70/30, w/w) was investigated both in batch and in continuous reactions. Six commercially available immobilized lipases were screened in batch experiments, and the lipases, Lipozyme TL IM and Lipozyme RM IM, were chosen...

  13. Can we “cultivate” erucic acid in southern Europe?

    Directory of Open Access Journals (Sweden)

    Federica Zanetti

    Full Text Available Over the last fifteen years, considerable progress has been made in the field of “green chemistry”, as regards both research aspects and market development. In particular, extraction of erucic acid (C22:1 from plants and its industrial applications have received increasing attention. At present, known species producing oils yielding large quantities of erucic acid belong, with few exceptions, to the Brassicaceae family. Among these, the two major sources of erucic acid in the world are HEAR (High Erucic Acid Rapeseed, Brassica napus var. oleifera and crambe (Crambe abyssinica, both mainly cultivated in the USA. Their cultivation has also recently been considered and extended to southern Europe, supported by specific research projects. The quantity of erucic acid in Brassicaceae oils ranges greatly, from 55% in Crambe abyssinica to nearly zero in some varieties of Brassica napus var. oleifera. Even more differentiated and peculiar to each species and variety is adaptability to specific climatic and soil conditions. In this regard, the major limitation to the cultivation of some interesting Brassicaceae species, crambe in particular, is their poor tolerance to cold. Among Brassicaceae producing erucic acid, the less frequently cultivated species, such as Brassica juncea and B. carinata, if grown in areas with relatively mild winters, may give yields of seed and oil similar to those of the most productive rapeseed genotypes. Within this framework, in order to achieve high production of erucic acid, it is essential to identify the most productive genotypes, among available species, for each environment. In this report, seed and oil productions of some important Brassicaceae species for extraction of erucic acid, derived from 15 years of field trials in northern Italy, are discussed in relation to the possibility of autumn or spring sowing.

  14. Assessing risks of pesticides targeting lepidopteran pests in cruciferous ecosystems to eggs parasitoid, Trichogramma brassicae (Bezdenko

    Directory of Open Access Journals (Sweden)

    D.P. Thubru

    2018-05-01

    Full Text Available Lethal and sub lethal effects of fresh and old residues of azadirachtin, spinosad, Bacillus thuringiensis var. kurstaki (Bt var. k, and deltamethrin, were evaluated at their recommended field doses against adult and immature stages of Trichogramma brassicae under in vitro conditions. The experiments were carried out at the Entomology section of Division of Crop Protection, ICAR Research Complex for NEH region, Umiam, Meghalaya, in 2012–2013. The effects of different pesticides were determined by bioassays using the residual film method, the diet contamination method, the pupal dip method and the topical application technique. The four pesticides were found harmful to adult T. brassicae after ingestion, however surface contact bioassays revealed that Bt var. k was the least toxic pesticide. Except Bt var. k, other three pesticides were found harmful also to the immature stages of T. brassicae and significantly affected parasitism potential, adult emergence, longevity of adults, and sex ratio of the progeny. Deltamethrin and azadirachtin were the most harmful, even after 15 days of application. Spinosad was found to be relatively safe to T. brassicae after 15 days of application. As Bt appeared to be the least toxic pesticide for T. brassicae, it could be used for the management of severe infestations of lepidopteran pests in cruciferous ecosystems.If essential, spinosad may be used 15 days after parasitoid release, thus minimizing the chances of parasitoid exposure. Keywords: Azadirachtin, Bacillus thuringiensis, Deltamethrin, Spinosad

  15. Effect of Nitrogen and Zinc Sulphate Fertilizers and Azotobacter and Azospirillum Biofertilizer on Yield and Growth Traits of Rapeseed (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    N. Jafari

    2013-06-01

    Full Text Available In order to study the effects of simultaneous application of nitrogen (N and ZnSO4 fertilizers and biofertilizer (Azotobacter and Azospirillum on grain yield and growth traits of rapeseed, Hyola308 cultivar, a field experiment, with split plot factorial layout based on randomized complete blocks design with three replications, was conducted at Research Field of Faculty of Agriculture, University of Guilan, Rasht, Iran, during 2007-2008 growing season. Nitrogen fertilizer at four levels (0, 50, 100 and 150 kg/ha were the main plot and ZnSO4 fertilizer at two levels (0 and 50 kg/ha and biofertilizer at two levels (with and without biofertilizer were arranged in sub-plots. Results showed that maximum and minimum leaf area indices at flowering stage (average of 1.29 and 0.95, respectively were obtained in 150 kg/ha N+ZnSO4+ biofertilizer and in 50 kg/ha N+ no ZnSO4+ no biofertilizer treatments. Maximum and minimum crop growth rates at flowering stage (average of 5.89 and 3.19 g/m2.GDD, respectively were obtained in 150 kg/ha N+ZnSO4+ biofertilizer and control treatments. Maximum and minimum grain yields (2568, 2468 and 543 kg/ha, respectively were obtained in 150 kg/ha N+ with/without ZnSO4+ biofertilizer and control (no fertilizer treatments. Maximum and minimum oil yields (42.8 and 37.3%, respectively were measured in 0 kg/ha N+ZnSO4+ biofertilizer and 150 kg/ha N+ no ZnSO4+ no biofertilizer treatments. Since there was no significant difference between 150 and 100 kg/ha N+ZnSO4+ biofertilizer treatments in terms of impact on canola grain yield and growth traits, it seems that application of biofertilizer (Azotobacter and Azospirillum, without any reduction in yield, increased grain production and oil content and saved 50 kg/ha of N fertilizer. Biofertilizer (Azotobacter and Azospirillum, along with zinc and sulfur, produced phytohormones, and N fertilizer increased dry matter accumulation and leaf area index (by increasing carbohydrate conversion

  16. Epidemiology of dark leaf spot caused by Alternaria brassicicola and Alternaria brassicae in organic seed production of cauliflower

    NARCIS (Netherlands)

    Köhl, J.; Tongeren, van C.A.M.; Groenenboom-de Haas, B.H.; Hoof, van R.A.; Driessen, R.; Heijden, van der L.

    2010-01-01

    In organic seed production of Brassica vegetables, infections by Alternaria brassicicola and A. brassicae can cause severe losses of yield and seed quality. Four field experiments with or without artificial inoculation with A. brassicicola were conducted in organically managed seed-production crops

  17. Regulatory network of secondary metabolism in Brassica rapa: insight into the glucosinolate pathway.

    Directory of Open Access Journals (Sweden)

    Dunia Pino Del Carpio

    Full Text Available Brassica rapa studies towards metabolic variation have largely been focused on the profiling of the diversity of metabolic compounds in specific crop types or regional varieties, but none aimed to identify genes with regulatory function in metabolite composition. Here we followed a genetical genomics approach to identify regulatory genes for six biosynthetic pathways of health-related phytochemicals, i.e carotenoids, tocopherols, folates, glucosinolates, flavonoids and phenylpropanoids. Leaves from six weeks-old plants of a Brassica rapa doubled haploid population, consisting of 92 genotypes, were profiled for their secondary metabolite composition, using both targeted and LC-MS-based untargeted metabolomics approaches. Furthermore, the same population was profiled for transcript variation using a microarray containing EST sequences mainly derived from three Brassica species: B. napus, B. rapa and B. oleracea. The biochemical pathway analysis was based on the network analyses of both metabolite QTLs (mQTLs and transcript QTLs (eQTLs. Co-localization of mQTLs and eQTLs lead to the identification of candidate regulatory genes involved in the biosynthesis of carotenoids, tocopherols and glucosinolates. We subsequently focused on the well-characterized glucosinolate pathway and revealed two hotspots of co-localization of eQTLs with mQTLs in linkage groups A03 and A09. Our results indicate that such a large-scale genetical genomics approach combining transcriptomics and metabolomics data can provide new insights into the genetic regulation of metabolite composition of Brassica vegetables.

  18. Plant extracts in the control of aphids Brevicoryne brassicae (L. and Myzus persicae (SulzerExtratos vegetais no controle dos afídeos Brevicoryne brassicae (L. e Myzus persicae (Sulzer

    Directory of Open Access Journals (Sweden)

    Rafael Reginato Ávila

    2011-07-01

    Full Text Available Were accomplished the effect of plant extracts of clove basil (Ocimum gratissimum L., horsetail (Equisetum hyemale L., coriander (Coriandrum sativum L. and tobacco (Nicotiana tabacum L. on Brevicoryne brassicae (L., 1758 and Myzus persicae (Sulzer, 1776 aphids in cabbage Brassica oleracea (L.. The treatments consisted of plant extracts prepared fresh and dry (concentrations of 2.5; 5.0; and 10% and the controls insecticide acephate and water. These solutions were sprayed on cabbage discs placed on agar in Petri dishes, containing twenty adult aphids. In sequence, the Petri dishes were sealed with plastic film and this procedure was repeated for the two aphid species studied. The assessment of the number of live nymphs and adults occurred at 1, 12, 24, and 72 hours after installation. The extracts of coriander and tobacco prepared in a concentration of 10% showed toxic effects similar to the organophosphate insecticide acephate, on adults and nymphs of the aphids Brevicoryne brassicae and Myzus persicae. Coriander revealed a promising alternative that deserves detailed studies regarding the performance of its active ingredients and dosage determination in order to provide a safe herbal product to control insects.Avaliou-se o efeito de extratos vegetais de alfavaca-cravo (Ocimum gratissimum L., cavalinha (Equisetum hyemale L., coentro (Coriandrum sativum L. e fumo (Nicotiana tabacum L. sobre os pulgões Brevicoryne brassicae (L., 1758 e Myzus persicae (Sulzer, 1776 em couve Brassica oleracea (L.. Os tratamentos consistiram de extratos vegetais preparados a fresco e seco (nas concentrações de 2,5; 5,0 e 10%, do padrão inseticida acefato e de água. As soluções assim obtidas foram pulverizadas em discos de couve colocados sobre agar em placas de Petri, contendo vinte pulgões adultos. Na sequência, as placas de Petri foram vedadas com filme plástico transparente, sendo este procedimento repetido para as duas espécies de afídeos. A avalia

  19. Processing of Brassica seeds for feedstock in biofuels production

    Science.gov (United States)

    Several Brassica species are currently being evaluated to develop regionalized production systems based on their suitability to the environment and with the prevailing practices of growing commodity food crops like wheat, corn, and soybeans. This integrated approach to farming will provide high qual...

  20. Phytotoxicity assay for seed production using Brassica rapa L.

    Science.gov (United States)

    Although pesticide drift can affect crop yield adversely, current plant testing protocols emphasize only the potential impacts on vegetative plant growth. The present study was conducted to determine whether a plant species with a short life cycle, such as Brassica rapa L. Wiscon...